RECEIVED

1:32 pm, Mar 17, 2009

Alameda County Environmental Health

FOURTH QUARTER 2008 QUARTERLY MONITORING REPORT

Former City of Paris Cleaners 3516 Adeline Street Oakland, California 94608

USTCF Claim #002192

Prepared For:

Ms. Paulette Satterley 14601 Guadalupe Drive Rancho Murieta, CA 95683

Prepared By:

Western Resource Management P.O. Box 8938 Citrus Heights, CA 95621

March 14, 2009

www.westernresourcemgmt.com

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Project Description	1
	1.2	Site Location and Description	1
	1.3	Site History and Previous Subsurface Investigations	1
2.0	GRO	UNDWATER MONITORING, SAMPLING AND ANALYSIS	3
	2.1	Groundwater Monitoring	3
	2.2	Groundwater Sampling and Analysis	3
3.0	CON	CLUSIONS, RECOMMENDATIONS AND PROJECT STATUS	4
4.0	REPO	DRT DISTRIBUTION	5
5.0	REM	ARKS AND SIGNATURES	6

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Groundwater Elevation Contour Map
Figure 4	Groundwater Analytical Summary

LIST OF TABLES

Table 1	Groundwater Elevation Data
Table 2	Groundwater Analytical Results – Petroleum Hydrocarbon Constituents
Table 3	Groundwater Analytical Results – Fuel Oxygenates

LIST OF APPENDICES

Appendix A	Field Data Sheets
Appendix B	Laboratory Reports

1.0 INTRODUCTION

1.1 Project Description

On behalf of the responsible party, Western Resource Management (WRM) has prepared this *Fourth Quarter 2008 Quarterly Monitoring Report* for submittal to the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) and Alameda County Health Care Services Agency (ACHSA). The scope of work conducted during this project complies with existing SRWQCB and ACHSA directive letters.

1.2 Site Location and Description

The former City of Paris Cleaners is a former dry cleaning, laundry and dyeing operation currently owned by Mrs. Debra Runyon and located at 3516 Adeline St., Oakland, CA. The plant was in operation for over 40 years until the 1960's, but cleaning materials were not completely removed from the site until 1990. The site buildings remained vacant for a number of years following the closure of the dry cleaning operation and then were converted to residential and light commercial use.

The site lies at the southern corner of the intersection between 35th St. and Adeline St. at approximately 30 feet above mean sea level (msl) in the northwest portion of the City of Oakland, California. The site buildings currently house City of Paris Studios, a workshop for art, art restoration, collectibles and hobbies, as well as on-site living quarters. The current owner acquired the site in July 2000.

1.3 Site History and Previous Subsurface Investigations

On October 4, 1990, three underground storage tanks (1 750-gallon and 2 1,000-gallon) were excavated and removed from the site by Semco Company of San Mateo. These UST were formerly used to store Stoddard Solvent for use in the dry cleaning operations at the site. Six soil samples were collected in conjunction with the UST removal.

On July 31 and August 1 and 2, 1991, Uriah Inc. (UES) performed a soil vapor survey at the site in an attempt to define the approximate boundaries of soil impacted by Stoddard Solvent. Soil vapors were found to be widely distributed across the site but, due to physical restrictions posed by site structures, sidewalks, etc., the full extent of the impacted soil could not be defined.

W.A. Craig was contracted to overexcavate the eastern portion of the tank pit on August 30, 1991. Approximately 44 cubic yards were excavated and place in a cell for on-site bioremediation of the impacted soil. During the course of the overexcavation activities, an additional 250-gallon UST containing Stoddard Solvent was discovered. This UST was removed and disposed by W. A. Craig on October 31, 1991. An additional 15 cubic yards was overexcavated by W.A. Craig on January 27, 1992 and added to the on-site bioremediation cell.

W. A. Craig backfilled the tank pit with bioremediated soil and clean fill on April 21, 1992.

UES supervised the installation of three 30-foot ground water monitoring wells on-site on October 29 and 30, 1992. The wells were installed by Soils Exploration Services of Vacaville, California. Initial groundwater elevations in the wells ranged from 13 to 14 feet below grade. Groundwater samples from all three wells contained Total Petroleum Hydrocarbons, as

Fourth Quarter 2008, Quarterly Monitoring Report

Former City of Paris Cleaners, 3516 Adeline Street, Oakland, California

Stoddard Solvent (TPH-SS), ranging from 630 parts per billion (ppb) in MW-2 to 11,000 ppb in MW-3. All other tested constituents were below laboratory detection limits.

On March 19, 1998, Dugan Associates of San Jose, California advanced six on and off-site soil borings to a total depth of 18 feet below grade. Five of the soil borings were advanced on the north side of 35th Street in the projected downgradient direction from the site (EB-2 through EB-6). One soil boring was advanced on-site to the northwest of the former UST location (EB-1). Three soil samples and one grab groundwater sample were collected from each soil boring. The groundwater sample from the on-site soil boring (EB-1) reported 270,000 ppb TPH-SS with one off-site groundwater sample (EB-5) reporting 780 ppb TPH-SS. All the other groundwater samples were below laboratory detection limits for all tested constituents. Soil samples at EB-1 contained 310 and 340 ppb of TPH-SS at 10 and 15 ft. below grade, respectively, and trace amounts of total xylenes and/or toluene.

By December 1999, the chemical suite of analytes that were monitored grew to include 1,2-Dichlorobenzene (DCB), 1,1-Dichloroethane, 2-methylnaphthalene and naphthalene. All these constituents were present in one or more wells. The groundwater gradient was also defined as trending to the north at 0.003 ft./ft.

In March 2002, in compliance with an ACHSA directive letter, WellTest, Inc. (formerly Dugan and Associates) redeveloped the three monitoring wells (by purging 10 well-volumes) and sampled the three wells pursuant to quarterly monitoring responsibilities. WellTest, Inc. also sampled the industrial well on-site. The analytical results of the sampling indicated up to 11,000 μ g/L of TPH-SS in the sample from MW-1, no BTEX above laboratory detection limits, up to 31 μ g/L MTBE in the sample from MW-3, 0.61 μ g/L DCB in the sample from MW-1, and 130 ug/l Naphthalene in MW-1. The groundwater gradient was also defined to the southeast at 0.14 ft./ft., which appears to be an anomalously steep gradient for this site. This steep gradient may be a result of sediment blocking some or all of the screened section of one or more well. When Dugan redeveloped the wells in 2002, they appear to have adversely impacted the ability of the wells to adjust to changing water levels.

WRM assumed environmental consulting responsibilities for the site commencing in June 2007.

2.0 GROUNDWATER MONITORING, SAMPLING, AND ANALYSIS

On December 18, 2008, to comply with quarterly groundwater monitoring requirements, WRM gauged and sampled on-site groundwater monitoring wells MW-1 through MW-3. An on-site industrial well (W-IND) was also monitored this quarter.

2.1 Groundwater Monitoring

Depth-to-groundwater was measured in the three monitoring wells using a water level meter capable of measurements to within 0.01 foot. The depth to the groundwater table ranged from 10.58 feet below ground surface (bgs) in MW-2 to 12.53 in MW-3. Groundwater surface elevations ranged from a high of 6.73 feet above mean sea level (msl) in MW-1 and MW-2 to a low of 4.91 feet above msl at MW-3. The direction of groundwater flow is to the southeast at a gradient of 0.125 feet per foot. A groundwater surface contour map is included as Figure 3 and groundwater elevation data are summarized in Table 1. Field data sheets for the groundwater monitoring are included as Appendix A.

2.2 Groundwater Sampling and Analysis

Following groundwater level measurements, the four wells were purged and sampled in accordance with the established sampling schedule. The monitoring wells were purged with a pump and dedicated disposable tubing until at least three well casing volumes had been removed and/or after groundwater temperature, pH and electrical conductivity values had stabilized. Groundwater was sampled from the monitoring wells using dedicated and disposable polyethylene bailers and laboratory-supplied containers. All sample containers were transported in an iced cooler with chain-of-custody documentation to Sparger Technology, Inc. (Sparger), of Rancho Cordova, California, a state certified analytical laboratory (ELAP Certification #1614).

Sparger analyzed each of the groundwater samples for Total Petroleum Hydrocarbons as Stoddard solvent (TPH-SS) by EPA Method 8015Cm, Total Petroleum Hydrocarbons as gasoline (TPH-G), benzene, toluene, ethyl benzene and xylenes (BTEX), and oxygenate methyl tertiary butyl ether (MTBE) by EPA Method 8260B.

Maximum concentrations of dissolved TPH-SS and TPH-G were detected in the groundwater samples collected from MW-1, with concentrations of 9,900 and 2,700 μ g/l, respectively. Groundwater samples collected from MW-2, and MW-3 reported lower TPH-SS concentrations of 300 and 5,900 μ g/l, respectively. Groundwater samples collected from MW-3 also reported lower TPH-G concentrations of 610 μ g/l. Dissolved MtBE was detected in groundwater samples collected from MW-2, MW-3, and W-IND at 7.3, 20, and 0.7 μ g/l, respectively. Dissolved MtBE and BTEX were below minimum laboratory detection limits in MW-1, and BTEX were below minimum laboratory detection limits in all wells.

The distribution of petroleum hydrocarbon compounds and fuel oxygenates in shallow groundwater is shown on Figure 4. The groundwater sample analytical results are summarized in Table 2 and the laboratory reports, notes, and comments are included in Appendix B.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Groundwater gradients at the site fluctuate from north-northeast to southeast, with northeast being the most typical groundwater flow direction. The southeast flow direction this quarter is within the typical range for this site. The gradient of 0.125 is anomalously steep, especially considering the Bay Muds underlying the site and the proximity to San Francisco Bay, which would indicate a much flatter gradient.

Between August 12, 2008 and December 18, 2008, dissolved TPH-SS concentrations increased by 5,900 μ g/l in MW-1 and by 3,100 μ g/l in MW-3. Dissolved TPH-SS concentrations decreased by 1,900 μ g/l in MW-2 and remained below minimum laboratory detection limits in W-IND. Dissolved TPH-G concentrations decreased by 9,300 μ g/l in MW-1 and by 3,690 μ g/l in MW-3, and decreased by at least 300 μ g/l to below minimum laboratory detection limits in MW-2. Dissolved TPH-G remained below laboratory detection limits in W-IND. Dissolved TPH-G remained below laboratory detection limits in W-1. Dissolved MTBE showed slight increases in the samples collected from MW-2, MW-3, and W-IND this quarter; from non-detect in MW-2 and W-IND to 7.3 and 0.7 μ g/l, respectively, and from 6.5 to 20 μ g/l in MW-3. BTEX concentrations were non-detect in all groundwater samples this quarter.

The lateral extent of impacted groundwater continues to be concentrated in the vicinity of the former tank pit, concentrated in the northwest-southeast pattern between MW-1 and MW-2 and extending to the northeast as defined in previous off-site soil borings. The trend of constituents of concern in groundwater appears to indicate a residual soil source area remaining on the property. The groundwater plume remains undefined both down and cross gradient from the location of the former UST's at the site.

The anomalously steep gradient at the site indicates there may be issues with the wells resulting from the 2002 well redevelopment. WRM recommends re-surveying the wells to determine if the wells may have been disturbed during the well redevelopment process. Additional steps may include well swabbing and an additional redevelopment to clear out any sediment blockages.

WRM further recommends the use of the Hydrasleeve no-purge sampling method at the site to reduce due to concerns with dealing with and storing purge water at the site where young children live. Detailed documentation on the Hydrasleeve sampling protocols has been provided under separate cover.

First Quarter sampling is scheduled for March 2009.

4.0 REPORT DISTRIBUTION

Ms. Paulette Satterley 14601 Guadalupe Drive Rancho Murieta, CA 95683

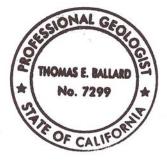
Ms. Donna Drogos Alameda County Health Care Services Agency 1131 Harbor Parkway, Suite 250 Alameda CA, 94502

Ms. Cherie McCaulou San Francisco Bay Regional Water Quality Control Board 1515 Clay St., Suite 1400 Oakland, CA 94612

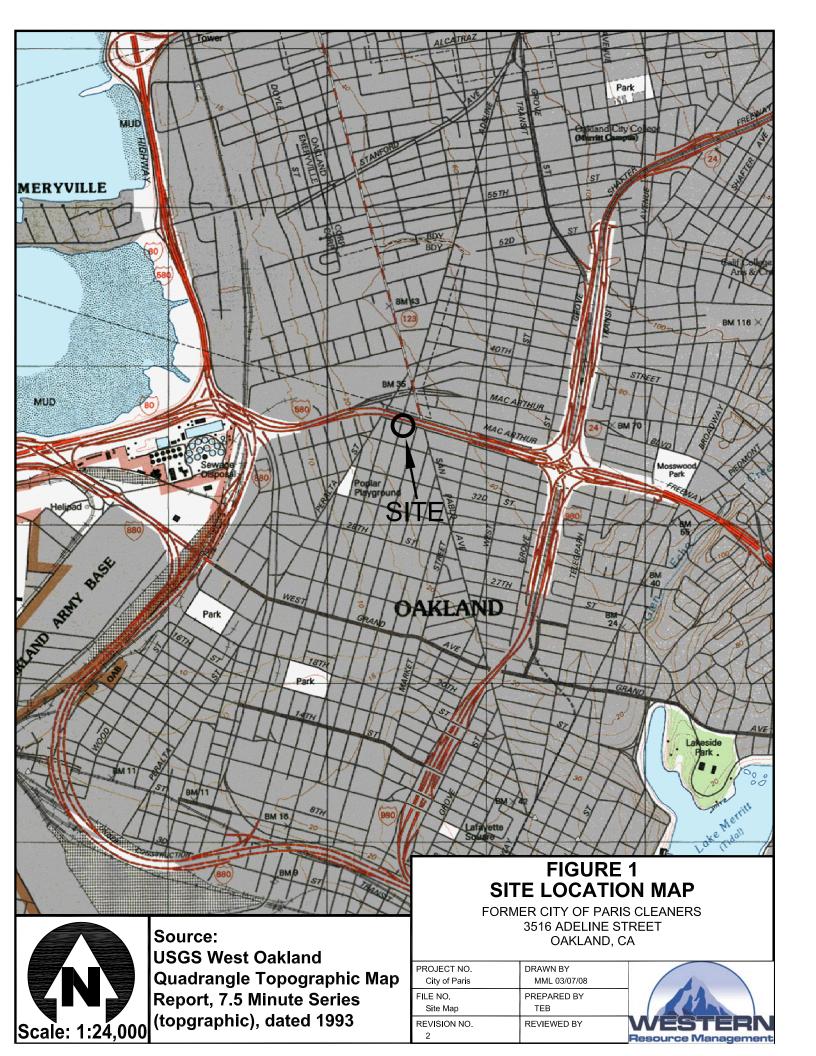
5.0 REMARKS AND SIGNATURE

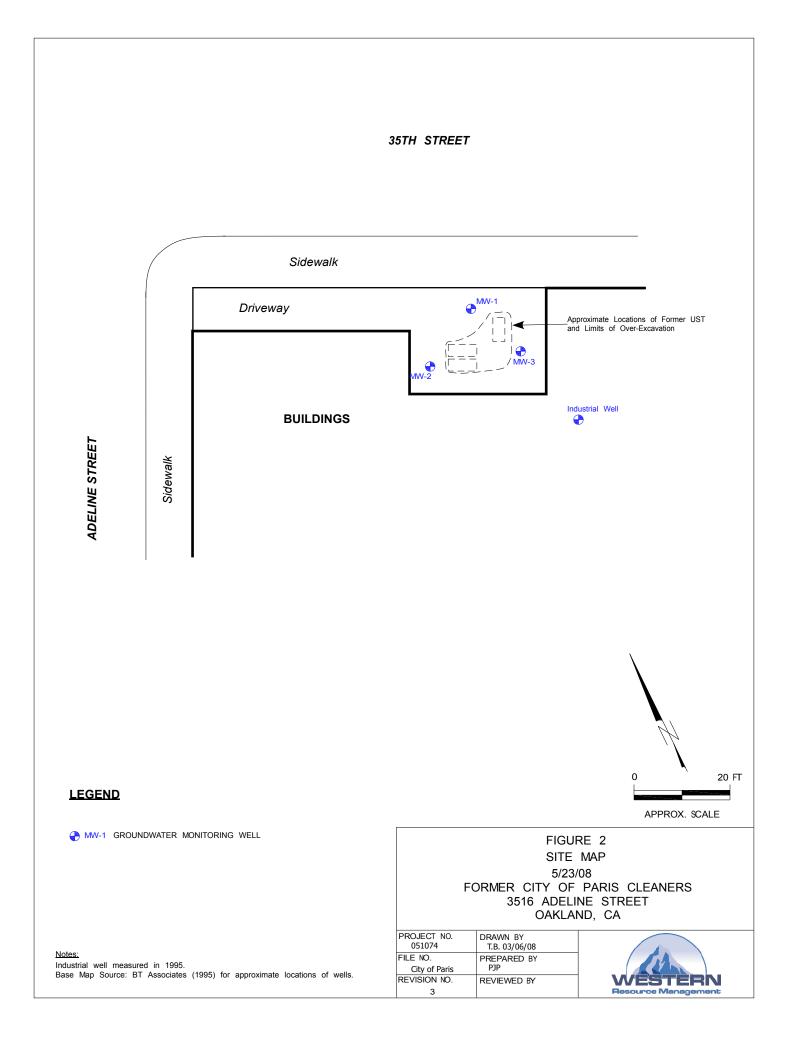
The interpretations and/or conclusions contained in this report represent our professional opinions and are based in part on information supplied by the client. These opinions are based on currently available information and were developed in accordance with currently accepted geologic, hydrogeologic, and engineering practices at this time and for this specific site. Other than this, no warranty is implied or intended.

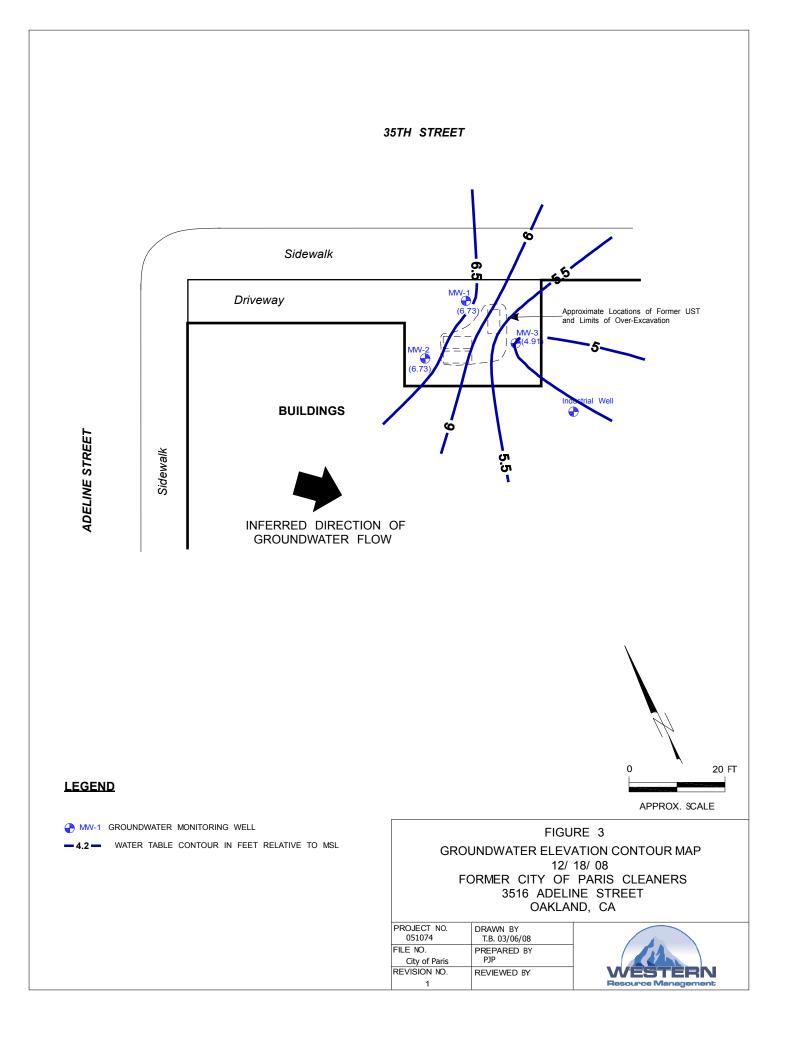
This report has been prepared solely for the use of Ms. Paulette Satterley. Any reliance on this report by third parties shall be at such parties' sole risk. The work described herein was performed under the direct supervision of the professional geologist, registered with the State of California, whose signature appears below.

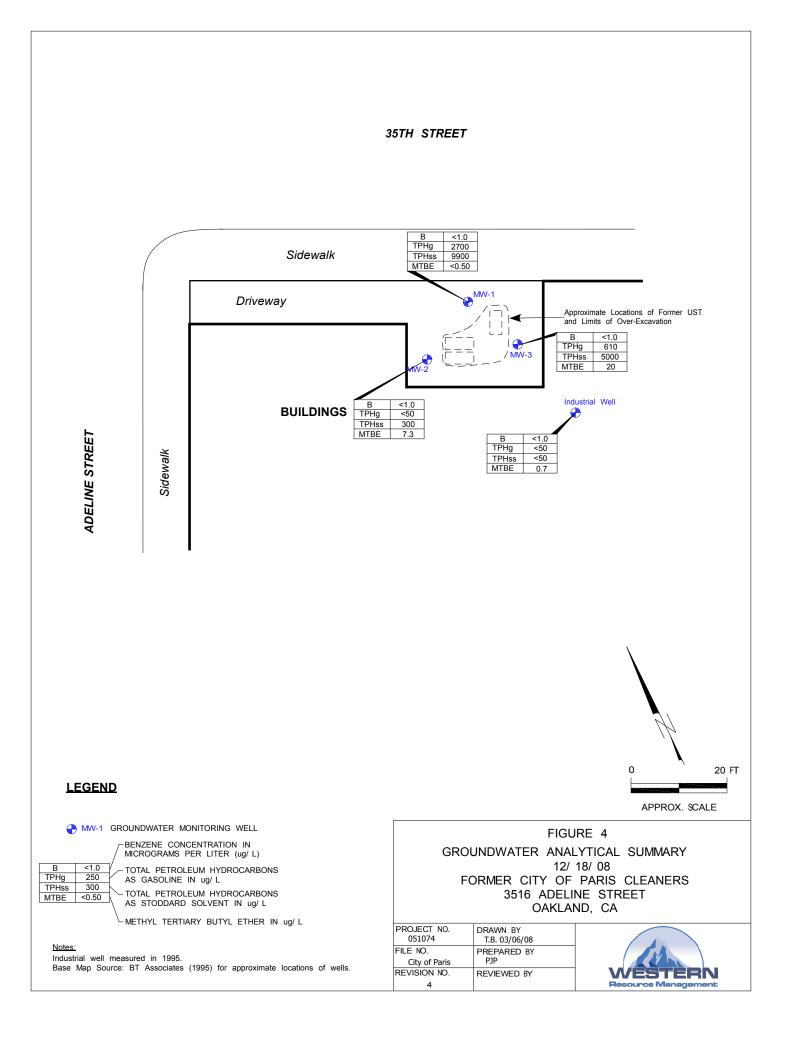

We appreciate the opportunity to provide you with geologic, engineering and environmental consulting services and trust this report meets your needs. If you have any questions or concerns, please call us at (916) 729-1760.

Sincerely,

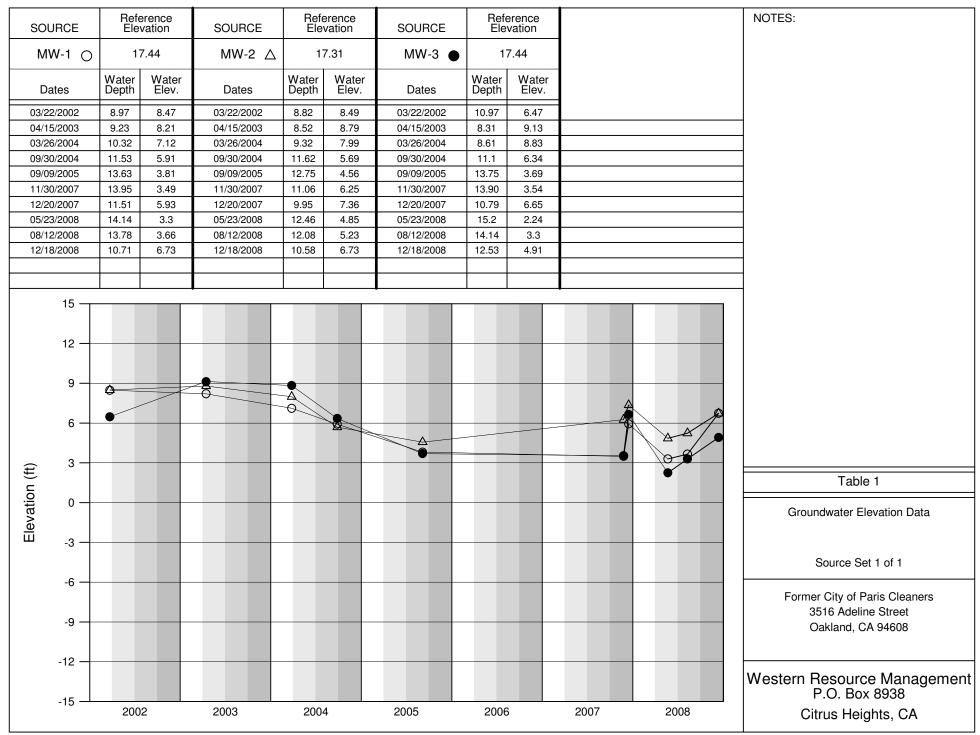

Western Resource Management, Inc.

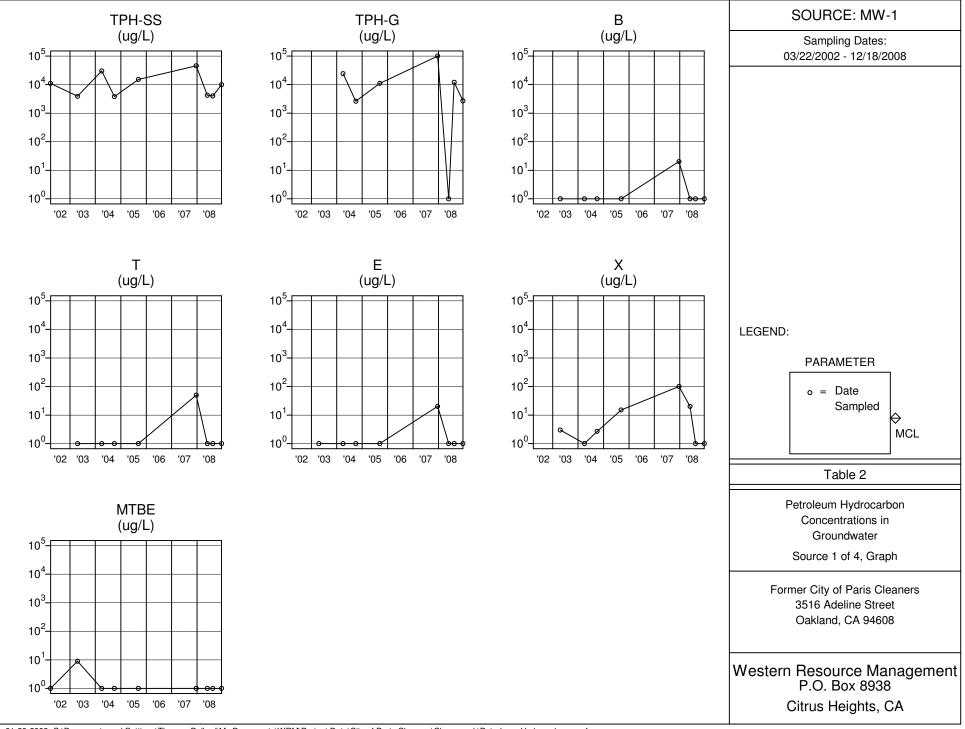

I ho E BALLY

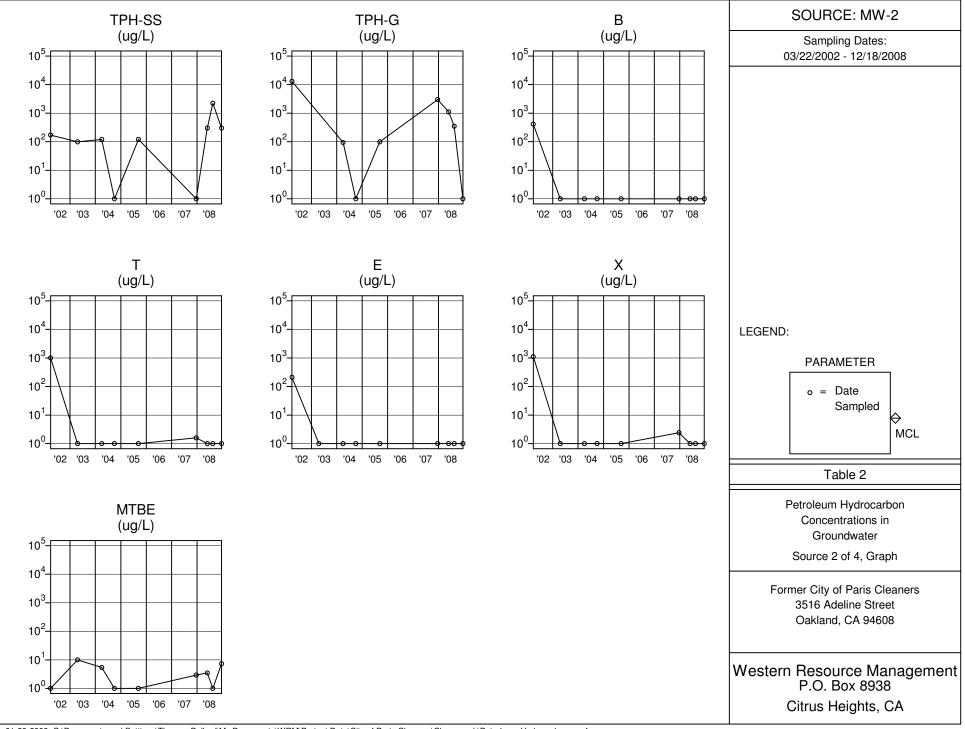

Thomas E. Ballard, P.G. #7299 Senior Geologist



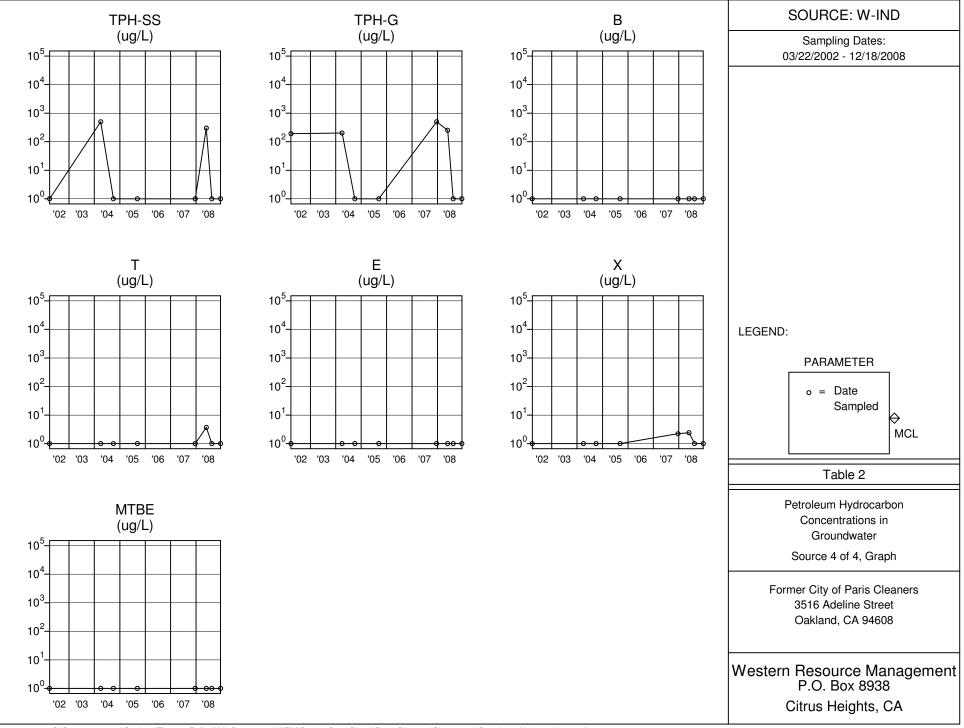
FIGURES






TABLES

	TPH as	TPH as	Benzene	Toluene	Ethyl-	Total	MTBE		SOURCE: MW-1
	Stoddard Solvent	Gasoline			Benzene	Xylenes			Sampling Dates:
Jnits:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		03/22/2002 - 12/18/2008
ACL:									NOTES:
03/22/2002	11000	-	-	-	-	-	<5.0		
04/15/2003	3900	-	<2.5	<2.5	<2.5	3	9		
03/26/2004	30000	24000	<50	<50	<50	<50	<500		
09/30/2004	3800	2600	<0.5	<0.5	<0.5	2.7	<5		
09/09/2005	15000	11000	<5	<5	<5	15	<50		
1/30/2007	-	-	-	-	-	-	-		
2/20/2007	45000	110000	20	50	20	100	<5		
05/23/2008	4200	<500	<1.0	<1.0	<1.0	20	<0.50		
08/12/2008	4000	12000	<1.0	<1.0	<1.0	<1.0	<0.50		
12/18/2008	9900	2700	<1.0	<1.0	<1.0	<1.0	<0.50		
									Table 2
									Table 2 Petroleum Hydrocarbon Concentrations in Groundwater Source 1 of 4
									Petroleum Hydrocarbon Concentrations in Groundwater
									Petroleum Hydrocarbon Concentrations in Groundwater Source 1 of 4 Former City of Paris Cleaners 3516 Adeline Street


	Stoddard	Gasoline	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	SOURCE: MW-2 Sampling Dates:
Units:	Solvent	ug/L	ug/L	ug/L				03/22/2002 - 12/18/2008
MCL:	ug/L	ug/L	ug/∟	ug/L	ug/L	ug/L	ug/L	NOTES:
03/22/2002	170	13000	410	1000	210	1100	<5.0	
04/15/2003	99	-	<0.5	<0.5	<0.5	0.76	10	
03/26/2004	120	93	<0.5	<0.5	< 0.5	0.76	5.4	
09/30/2004	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5	
09/09/2005	120	98	<0.5	<0.5	<0.5	<0.5	<5	
11/30/2007	-	-	-	-	-	-	-	
12/20/2007	<50	3000	<1	1.6	<1	2.4	2.9	
05/23/2008	300	1100	<1.0	<1.0	<1.0	<1.0	3.5	
08/12/2008	2200	350	<1.0	<1.0	<1.0	<1.0	<0.50	
12/18/2008	300	<50	<1.0	<1.0	<1.0	<1.0	7.3	
								Table 2
								Table 2 Petroleum Hydrocarbon Concentrations in Groundwater Source 2 of 4
								Petroleum Hydrocarbon Concentrations in Groundwater
								Petroleum Hydrocarbon Concentrations in Groundwater Source 2 of 4 Former City of Paris Cleaners 3516 Adeline Street

	TPH as Stoddard Solvent	lGasoline	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE			SOURCE: MW-3 Sampling Dates:
Jnits:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	-		03/22/2002 - 12/18/2008
ACL:	ug/L	ug/L	ug/L	ug/∟	ug/L	ug/∟	ug/L	-		NOTES:
03/22/2002	420	<50	<0.5	<0.5	<0.5	<0.5	31	-		
04/15/2003	2700	-	<0.5	<0.5	<0.5	< 0.5	40	-		
3/26/2004	2700	1900	<1.7	<1.7	<1.7	4.3	<17	-		
9/30/2004	3900	2600	<0.5	<0.5	<0.5	3.2	<10			
9/09/2005	4000	2600	< 0.5	< 0.5	0.57	2.7	12			
1/30/2007	-	-	-	-	-	-	-			
2/20/2007	18000	12000	<1	1.6	1.1	2.4	9.2			
5/23/2008	900	3000	<1.0	<1.0	<1.0	<1.0	9.1			
8/12/2008	1900	4300	<1.0	<1.0	<1.0	<1.0	6.5			
2/18/2008	5000	610	<1.0	1.0	<1.0	<1.0	20			
										Table 2
										Table 2 Petroleum Hydrocarbon Concentrations in Groundwater Source 3 of 4
										Petroleum Hydrocarbon Concentrations in Groundwater

	TPH as	TPH as	Benzene	Toluene	_Ethyl-	Total	MTBE	SOURCE: W-IND
	Stoddar	dGasoline)		Benzene	Xylenes		Sampling Dates:
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	03/22/2002 - 12/18/2008
MCL:				<u>_</u>	;		<u>_</u>	NOTES:
03/22/2002	<50	190	<0.5	<0.5	<0.5	0.80	<5.0	
04/15/2003	-	-	-	-	-	-	-	
03/26/2004	500	200	<0.5	<0.5	<0.5	<0.5	<5	
09/30/2004	<50	<50	<0.5	<0.5	<0.5	<0.5	<5	
09/09/2005	<50	<50	<0.5	<0.5	<0.5	<0.5	<5	
11/30/2007		-	-	-	-	-	-	
12/20/2007	<50	500	<1	1	<1	2.2	<.50	
05/23/2008	300	250	<1.0	3.7	<1.0	2.4	<0.50	
08/12/2008	<50.0 <50	<50.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 0.7	
12/18/2008	<00	<50	<1.0	<1.0	<1.0	<1.0	0.7	
								Table 2
								Definition of the second
								Petroleum Hydrocarbon
								Concentrations in
								Concentrations in Groundwater
								Concentrations in
								Concentrations in Groundwater Source 4 of 4
								Concentrations in Groundwater Source 4 of 4 Former City of Paris Cleaners
								Concentrations in Groundwater Source 4 of 4 Former City of Paris Cleaners 3516 Adeline Street
								Concentrations in Groundwater Source 4 of 4 Former City of Paris Cleaners
								Concentrations in Groundwater Source 4 of 4 Former City of Paris Cleaners 3516 Adeline Street Oakland, CA 94608
								Concentrations in Groundwater Source 4 of 4 Former City of Paris Cleaners 3516 Adeline Street

APPENDIX A FIELD DATA SHEETS

Western Resource Management Groundwater/Liquid Level Data (Measurements in feet)

Project Address:

Western Resources Management 3516 Adeline Street Oakland, CA.

5. Kh

12/18/08 Date: Project: Lity of PAREs-4TH QTIR 2008 WWW THORING

Recorded by:

									U
	Well No.	Time	Well Elev.	Depth to	Measured	Groundwater	Depth to	Product	Comments
			TOC	Groundwater	Total Depth	Elevation	Product	Thickness	
	MW-1	10:45		10,71	27,28				
	MN-Z	10:35		10,58	29,50				
3	MN-3	10:40		12,53	29,70				
1.	Frid-WELL	10:30		12,65	58.33				
		1							
					1.1				
			х	а на Стала	÷.,				
			N						
ſ						0			
					···· , ···	8			

E

4

WESTERN RESOURC	E MANAGME	NT	SAN	SAMPLING INFORMATION SHEET				
Client: <u>CITY of</u> Site:	Pane's		Projec	ing Date:/ t No.: vesignation://	s/os 1-1			
Is setup of traffic control dev	vices required?	(%No (Ye	es time:	ho	Ire			
Is there standing water in th		©No CYe		an han publication and a state of the state of the state of the state	ow TOC			
Is top of casing cut level?		C No GAY		see remarks				
Is well cap sealed and locke	d?			ee remarks				
Height of well casing riser (i		NC, CINO CAR						
Well cover type: 8" or 7 12" Christy □ 8" M& 12" CNI □ 36" CNI □	12" UV 🦵 D 📝 12" M	12" EMCO ┌─ &D ┌── 12" DWF eco ┌── Other:		BK	Christy 🦵			
General condition of wellhe	ad assembly:	Excellent (Good	C Fair C	Poor (
Purging Equipment: Sampled with: Dispo	☐ 2" disposa ☐ 2" PVC ba ☐ 4" PVC ba psable bailer√		⊢ De I≯ Ce	bmersible pump dicated bailer entrifugal pump osable Tubing [
	J				- Antophyse Mariner - Antophyse Mullered Antophyse A			
Well Diame Purge Vol. Multiplier:	1	4"	6"	8"	Ft .			
Initial Measurement	0.16	0.65 Recharge Measur	1.47	2.61 gal/	n.			
		Time: 13/2	5	Calculated p	urge: 7.95			
Time: <u>10:45</u>	20		AIE		ourge: 8,0			
Depth of well:	0	Depth of water:	11,67		010			
Depth of water: 1017	-1		1.1					
Start purge:	3:18	Sampling	Time: 1	3:30				
Time	Temperature	E.C.	pН	Turbidity	Volume			
13:20	18.77	100/uslam	9.02		215			
13:24	19.07	1034 ulden	8,19		5.0			
13:26	20,98	1146 uglen	7.48	-	8.0			
						1		
Sample appea	irance:		Lock:					
Equipment rep	blaced: (check all	that apply) No	ote condition of	replaced item(s)	an a			
					nhead:			
2" Locking Cap:					nead:			
4" Locking Cap:				9/16 Bold	1			
C Looking Cap. 1				and a start of the				
Remarks:	sitteen / od	ant -						
//	ings for		An	ana ana amin'ny faritr'o ana amin'ny faritr'o ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny fa	an an an ann an an Airmean an Airmean			
Signature:								

WESTERN RESOURCE MANAGMENT	SAMPLING INFORMATION SHEET
Client: <u>City of PARis</u> Site:	Sampling Date: <u>12/18/08</u> Project No.: Well Designation: <u>MW-2</u>
Is setup of traffic control devices required?	Yes time: hours
Is there standing water in the well box?	Yes Above TOC Below TOC
Is top of casing cut level? C No 🕅	Yes If no, see remarks
Is well cap sealed and locked? No	Yes If no, see remarks
Height of well casing riser (in inches):	
Well cover type: 8" or 12" UV □ 12" EMCO □	8" or 12" BK
12" Christy 🔽 8" M&D 📝 12" M&D 🖵 12" DV	
12" CNI	
General condition of wellhead assembly: Excellent	Good C Fair 🔗 Poor C
Purging Equipment:	Submersible pump
C 2" PVC bailer	Dedicated bailer
☐ 4" PVC bailer	🕅 Centrifugal pump
Sampled with: Disposable bailer	
Well Diameter:2" \swarrow 4" \square Purge Vol. Multiplier:0.16 \square 0.65 \square Initial MeasurementRecharge MeasTime:10:35 \square Depth of well:29.57 \square Depth of water:10,58 \square	Coloulated purso; Q i
Start purge: 12:05 Sampli	ing Time: 12:30
Time Temperature E.C.	pH Turbidity Volume
12',17 17.57 7127as/m	10,22 - 3.02
12:19 17:63 7160	9,06 6.04
12:21 17:62 1731	80) - 61
	7.1
Sample appearance:	Lock:
Equipment replaced: (check all that apply)	Note condition of replaced item(s)
2" Locking Cap: Lock:	7/32 Allenhead:
	9/16 Bold
	ead (DWP)
Remarks:	
Signature:	<u></u>

WESTERN RESOURCE MANAGMENT	SAMPLING INFORMATION SHEET
Client: <u>City of PARis</u> Site:	Sampling Date: 12/18/08 Project No.: Well Designation:
Is setup of traffic control devices required? No Yes Is there standing water in the well box? Is No Yes Is top of casing cut level? No Yes Is well cap sealed and locked? No No Yes Height of well casing riser (in inches): Yes Yes Well cover type: 8" or 12" UV 12" EMCO	☐ Above TOC ☐ Below TOC If no, see remarks
12" Christy 8" M&D 12" M&D 12" DWP 12" CNI 36" CNI 12" Pomeco Other: General condition of wellhead assembly: Excellent C	
Purging Equipment: 2" disposable bailer 2" PVC bailer 4" PVC bailer Sampled with: Disposable bailer	 Submersible pump Dedicated bailer Centrifugal pump Disposable Tubing
1	Calculated purge: 8,25
Time Temperature E.C. 12:50 17.39 1357.4	Time: 13700 pHTurbidityVolume $8,17$ $$ 2.5 7.91 $$ 5.5 7.77 8.5
Sample appearance: <u>Loudy (Streef MK)</u> Equipment replaced: (check all that apply) Note	Lock:e condition of replaced item(s)
6" Locking Cap: Pinned Allenhead (9/16 Bold (DWP)
Remarks: <u>Chenk Cloudy - Slight Odor</u> Signature:	W

WESTERN RESOURCE MANAGMENT	ESOURCE MANAGMENT SAMPLING INFORMATION SHEET Ty Image: 12/18/07				
Client:	Sampling Date: 12/18/07 Project No.: Well Designation: Twith with				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
s setup of traffic control devices required?	CYes time:hours				
s there standing water in the well box?	C Yes ☐ Above TOC ☐ Below TOC				
s top of casing cut level?	C Yes If no, see remarks				
s well cap sealed and locked?	C Yes If no, see remarks				
Height of well casing riser (in inches):					
Well cover type: 8" or 12" UV □ 12" EMCO □ 12" Christy □ 8" M&D □ 12" M&D □ 12					
Purging Equipment:	Submersible pump				
☐ 2" PVC bailer	Dedicated bailer				
☐ 4" PVC bailer	Centrifugal pump				
Sampled with: Disposable bailer	Disposable Tubing				
Well Diameter: 2" 🟹 4" 🥅	6"				
Purge Vol. Multiplier: 0.16 0.65					
Depth of well: <u>58,33</u> Depth of wa					
Depth of water: 12.65					
Start purge: 11:30 Sa	npling Time: 11:50				
Time Temperature E.C.	pH Turbidity Volume				
11:33 17:27 719-5	im +2,9,71 - 7,5				
11.40 17.67 110 11	ma 0111				
Sample appearance: BRW/ Clkpn	Lock:				
Equipment replaced: (check all that apply)	anarola ina analalalalalalalalalalalalalalalalala				
Remarks:					
Signature					
Signature:					

Sparge Techno Environmental La Project Contact (H Tom Ballard (to Company / Addre	boratories lardcopy or PDF cemail address			Sa La Fa Ca	crar b: ! x: !	Bradvie nento 916.36 916.36 nia El	, CA 69.7 69.7 DF I	A 958 7688 7689 Repo	327 ort?	<u> </u>] Yes	5	0		#/	Lab N				-Ci	usto	ody					d A			ge sis		of que:	1 st
P.O. Box 8938,		. Ca 95621			RM		μh	any	LUY	000	u c .											Ana	alys	is R	equ	lest	t					ſ	TAT	
		1		Glo	obal	ID:		060										Τ	Τ	Τ	Τ	l în				Τ		Τ				+		
Phone #:		Fax #:		1		eliver			•													260											12 hr	
916-729-1760		916-313-3	139	and the local division in which the local division in which the local division in the lo		Wes				ILC	eM	gmt	t.cor	n	_		-					A 8		560E				- 1					_	
Project #:		P.O. #:		- C		emai																Hin Star		A 82			Î							
51074						s@W			.co	m					V 194		-					E E		(EP		ŝ	0151			Its		ľ	24 hr	
Project Name:				Sa	mpi	er Sig	nati	ure:	1	and the second se		-	>					á				1,2		ist		015	A 8			lver				
GMR CityOfPa Project Address:	ris		Sampling	F	\leq	Contai			\sim			ative			Matri	iv.	-	900	1	5		A		E		× 8	۳ ۳	5	0	So			⊥ 48 hr	
3514 Adeline S	+	`	J	+		T	T	-	<u> </u>		I		-	$-\mathbf{r}$	Viali	Ť	-					B		S		Ľ۵		A6	STL	ard	Ĕ	ľ	+0 11	
Oakland, CA				40 ml VOA	Sleeve	Poly Glace	Tadlar			03	ne			Iter	Soil Air			MTDENDTEV (EDA 00600)		5 Owidenates (EDA 8260B)	ABGUIGICS	Lead Scav.(1,2 DCA & 1,2 EDB-EPA 8260B)		Volatile Organics Full List (EPA 8260B)		TPH as Diesel (EPA 8015M)	TPH as Motor Oil (EPA 8015M)	Total Lead (EPA 6010)	W.E.T. Lead (STLC)	TPH-SS Stoddard Solvents	Chromatagrams	- 1	72 hr	
Sample ID	Field Point Name	Date	Time	4	Sle	Poly		ŭ -	오	Ŧ	None				Sol	Ē		ΗM				Lea		No/		E	E L	Tot	N.	TPI	ч		ן זwk	
MW-1	MW-1	12/18/05	13:30	Г			Τ									Τ)	$\langle \rangle$			Τ				Τ				х	X	T		
MW-2	MW-2	Z	12:30				Τ					П		T				;	_											X	x	T		
MW-3	MW-3	12	13:00				\top					\square				\top		;	_	_				\square						X		+		
W-IND	W-IND	12/18/0	/	\top			T	1						T)	_	_	1	1		П						x		+		
				\square			T							\uparrow					1	$^+$			\top		\neg	1						+		
							T	1		Γ		\square				T			T	T		T										T	3	
																																T		
Relinquished by:			Date 12/19/04	/		Time 17/1	R S			¥: {(1	q	M	18		/		р		e sa	ave f)F's, _ma							nan	ne_	WO	#
Relinquished by:	U		Date			Time	R	epeiv	ed b	y:			_	_	A			E 2	XA 008	MF 3_0	PLE 8_2	: 3_0	SMF	<u>د</u> د	ityO	fPa	aris	5_1	849	95	mt.c			
Relinquished by:			Date			Time	R	eceiv	ed b	y La	abora	atory	<i>r</i> :											_		_			-	_	eceip	_		
																			ſem	p °C	T	Initia			Dat			Tim	<u> </u>			Т		

APPENDIX B LABORATORY REPORTS

Tom Ballard Western Resource Management P.O. Box 8738 Citrus Heights, CA 95621

anagement OfParis				
----------------------	--	--	--	--

The samples were received in EPA specified containers. The samples were transported and received under documented chain of custody and stored at four (4) degrees C until analysis was performed.

Sparger Technology, Inc. ID Suffix Keys - These descriptors will follow the Sparger Technology, Inc. ID numbers and help identify the specific sample and clarify the report.

DUP - Matrix Duplicate MS - Matrix Spike MSD - Matrix Spike Duplicate LCS - Lab Control Sample LCSD - Lab Control Sample Duplicate RPD - Relative Percent Difference QC - Additional Quality Control DIL - Results from a diluted sample ND - None Detected RL - Reporting Limit

Note: In an effort to conserve paper, the results are printed on both sides of the paper.

MES

Ray James Laboratory Director

Tom Ballard Western Resource Management P.O. Box 8738 Citrus Heights, CA 95621

Workorder 18739

Enclosed are the results from samples received on December 19, 2008.

The requested analyses are listed below.

SAMPLE	SAMPLE DESCRIPTION	DATE COLLECTED	TEST METHOD
18739001	MW-1, Water	12/18/08	8015B TPHd 8015B TPHgas 8260B BTEX/FOC
18739002	MW-2, Water	12/18/08	8015B TPHd 8015B TPHgas 8260B BTEX/FOC
18739003	MW-3, Water	12/18/08	8015B TPHd 8015B TPHgas 8260B BTEX/FOC
18739004	W-IND, Water	12/18/08	8015B TPHd 8015B TPHgas 8260B BTEX/FOC

Client ID Workorder #	Western Resource N 18739	lanagement		Woi	rkorder ID	GMR_CityOfl	Paris	
Laboratory ID Sample ID Matrix 8015B TPH Die Parameter	18739001 MW-1 Water esel	M.41.1	D D	Rec Rep	eived orted	12/18/08 12/19/08 01/21/09		
Parameter		Method	-		Analyzed	Result	RL Units	Dilution
Stoddard Solv	vent	8015B TPHd	12/21,	/08	01/08/09	9900	50.0 ug/L	1:1
Laboratory ID Sample ID Matrix 8015B TPH Ga Parameter	18739001 MW-1 Water IS	Method	Pren Da	Rec Rep	eived	12/18/08 12/19/08 01/21/09 Result	RL Units	Dilution
TPHgas		8015B TPHgas	-		12/27/08		50 ug/L	1:1
Irnyas		OUIDB IFHYAS	12/2//	/00	12/2//00	5 2700	50 ug/li	T • T
Surrogates Trifluorotolu	lene		ecovery २० %		imits 65 – 135)		
Laboratory ID Sample ID Matrix	18739001 MW-1 Water			Rec	eived	12/18/08 12/19/08 01/21/09		
8260B Oxygena Parameter	ates	Method	Prep Da	ate	Analyzed	Result	RL Units	Dilution
Methyl-tert-k Benzene Toluene Ethylbenzene Xylene,Total	outyl-ether	8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC	12/27, 12/27, 12/27,	/08 /08 /08	12/27/08 12/27/08 12/27/08	8 ND 8 ND 8 ND	0.50 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L	1:1 1:1 1:1 1:1 1:1
Surrogates		Result Re	ecovery	L	imits			
1,2-Dichloroe	ethane-d4	50 ug/L 10)0 %	(65 - 135)		
Laboratory ID Sample ID Matrix 8015B TPH Did	18739002 MW-2 Water			Rec	eived	12/18/08 12/19/08 01/21/09		
8015B TPH Die Parameter	551	Method	Prep Da	ate	Analyzed	Result	RL Units	Dilution
Stoddard Solv	vent	8015B TPHd	12/21,	/08	01/08/09	300	50.0 ug/L	1:1

Client ID Workorder #	Western Resource N 18739	Aanagement		Wo	rkorder ID	GMR_CityOfI	Paris	
Laboratory ID Sample ID Matrix	18739002 MW-2 Water			Rec	npled eived orted	12/18/08 12/19/08 01/21/09		
8015B TPH Ga Parameter	IS	Method	Prep Da	ate	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27	/08	12/27/08	3 ND	50 ug/L	1:1
Surrogates Trifluorotolu	lene		ecovery 30 %		imits 65 - 135	5)		
Laboratory ID Sample ID Matrix 8260B Oyygon	18739002 MW-2 Water			Rec		12/18/08 12/19/08 01/21/09		
8260B Oxygena Parameter	ales	Method	Prep Da	ate	Analyzed	Result	RL Units	Dilution
Methyl-tert-k Benzene Toluene Ethylbenzene Xylene,Total	outyl-ether	8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC 8260B BTEX/FOC	12/27 12/27 12/27	/08 /08 /08	12/27/08 12/27/08 12/27/08	3 ND 3 ND 3 ND	0.50 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L	1:1 1:1 1:1 1:1 1:1
Surrogates 1,2-Dichloroe	thane-d4		ecovery б %		imits 65 - 135	5)		
Laboratory ID Sample ID Matrix 8015B TPH Di Parameter	18739003 MW-3 Water	Method		San Rec Rep	ipled eived	12/18/08 12/19/08 01/21/09 Result	RL Units	 Dilution
Stoddard Solv		8015B TPHd	-		01/08/09	9 5000	50.0 ug/L	1:1
Laboratory ID Sample ID Matrix	18739003 MW-3 Water			Rec	eived	12/18/08 12/19/08 01/21/09		
8015B TPH Ga Parameter	IS	Method	Prep Da	ate	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27	/08	12/27/08	610	50 ug/L	1:1
Surrogates Trifluorotolu	lene		ecovery 0 %		imits 65 – 135	5)		

1 - Non-typical TPH pattern present in gas range.

Client ID Workorder #	Western Resource N 18739	Aanagement	W	orkorder ID G	MR CityOff	Paris	
Laboratory ID Sample ID Matrix	18739003 MW-3 Water		Sa Re	mpled 1 ceived 1	2/18/08 2/19/08 1/21/09		
8260B Oxygena Parameter	ates	Method	Prep Date	Analyzed	Result	RL Units	Dilution
Methyl-tert-b	outyl-ether	8260B BTEX/FOC	12/27/08	12/27/08	20	0.50 ug/L	1:1
Benzene		8260B BTEX/FOC	12/27/08	12/27/08	ND	1.0 ug/L	1:1
Toluene		8260B BTEX/FOC	12/27/08	12/27/08	1.0	1.0 ug/L	1:1
Ethylbenzene		8260B BTEX/FOC	12/27/08	12/27/08	ND	1.0 ug/L	1:1
Xylene,Total		8260B BTEX/FOC	12/27/08	12/27/08	ND	1.0 ug/L	1:1
Surrogates		Result Re	ecovery	Limits			
1,2-Dichloroe	thane-d4		8	(65 - 135)			
Laboratory ID Sample ID Matrix	18739004 W-IND Water		Re	ceived 1	2/18/08 2/19/08 1/21/09		
8015B TPH Die Parameter	esel	Method	Prep Date	Analyzed	Result	RL Units	Dilution
Stoddard Solv	rent	8015B TPHd	12/21/08	01/08/09	ND	50.0 ug/L	1:1
Laboratory ID Sample ID Matrix	18739004 W-IND Water		Re	ceived 1	2/18/08 2/19/08 1/21/09		
8015B TPH Ga Parameter	IS	Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	ND	50 ug/L	1:1
Surrogates Trifluorotolu	lene		ecovery १	Limits (65 - 135)			
Laboratory ID Sample ID Matrix	18739004 W-IND Water		Re	eceived 1	2/18/08 2/19/08 1/21/09		
8260B Oxygena Parameter	ates	Method	Prep Date	Analyzed	Result	RL Units	Dilution
Methyl-tert-b	outyl-ether	8260B BTEX/FOC			0.7	0.50 ug/L	1:1
Benzene		8260B BTEX/FOC			ND	1.0 ug/L	1:1
Toluene		8260B BTEX/FOC			ND	1.0 ug/L	1:1
Ethylbenzene		8260B BTEX/FOC			ND	1.0 ug/L	1:1
Xylene,Total		8260B BTEX/FOC	12/27/08	8 12/27/08	ND	1.0 ug/L	1:1

Client ID	Western Resource Management	Workorder ID GMR_CityOfParis
Workorder #	18739	Sampled 12/18/08
Laboratory ID	18739004	Received 12/19/08
Sample ID	W-IND	Reported 01/21/09
Matrix	Water	

8260B Oxygenates - 8260B BTEX/FOC (continued)

Surrogates	Result	Recovery	Limits
1,2-Dichloroethane-d4	48 ug/L	96 %	(65 - 135)

Environmer	ntal Laboratorie	es N	Aethod Blank	Report			
Client ID Laboratory ID	Western Resource 89238	Management		Sample ID Matrix	MB for HBN 35 Water	59650 [SGXV/2552	2]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
Stoddard Solv	vent	8015B TPHd	12/21/08	01/08/09	ND	50.0 ug/L	1:1
			o Control San				
Client ID Laboratory ID	Western Resource 89239	Management		Sample ID Matrix	LCS for HBN 3 Water	59650 [SGXV/255	2]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
Stoddard Solv	vent	8015B TPHd	12/21/08	01/08/09	913	50.0 ug/L	1:1
			ntrol Sample	Duplicate Repo			
Client ID Laboratory ID	Western Resource 89240	Management		Sample ID Matrix	LCSD for HBN Water	359650 [SGXV/25	552
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
Stoddard Solv	vent	8015B TPHd	12/21/08	01/08/09	854	50.0 ug/L	1:1
		Ν	Aethod Blank	Report			
Client ID Laboratory ID	Western Resource 89271	Management		Sample ID Matrix	MB for HBN 35 Water	59850 [VGXV/298	2]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	ND	50 ug/L	1:1
Surrogates Trifluorotolu	lene	Result 15.4 ug/L	Recovery 77 %	Limits (65 – 1	35)		
			o Control San				
Client ID Laboratory ID	Western Resource 89272	Management		Sample ID Matrix	LCS for HBN 3 Water	59850 [VGXV/298	32]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	710	50 ug/L	1:1

LINIOHHE		Lab Co	ntrol Sample	Duplicate Rep	ort		
Client ID Laboratory ID	Western Resource 89273	Management		Sample ID Matrix	LCSD for HBN Water	359850 [VGXV/2	2982
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	705	50 ug/L	1:1
			Matrix Spike	-			
Client ID Laboratory ID	Western Resource 89274	Management		Sample ID Matrix	MS for HBN 359 Water	9850 [VGXV/298	[2]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	792	50 ug/L	1:1
		Matr	ix Spike Dup	licate Report			
Client ID Laboratory ID	Western Resource 89275	Management		Sample ID Matrix	MSD for HBN 3 Water	59850 [VGXV/29	982]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	801	50 ug/L	1:1
		Ν	Method Blank	Report			
Client ID Laboratory ID	Western Resource 89276	Management		Sample ID Matrix	MB for HBN 359 Water	9853 [VGXV/298	33]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	ND	50 ug/L	1:1
Surrogates Trifluorotol	uene	Result 15 ug/L	Recovery 75 %	Limits (65 – 1	.35)		
			o Control San				
Client ID Laboratory ID	Western Resource 89277	Management		Sample ID Matrix	LCS for HBN 35 Water	59853 [VGXV/29	83]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	708	50 ug/L	1:1

Client ID	Wastern Pasourea	Managamant		Sample ID	LCSD for UDN	1 359853 [VGXV/2	0.092
Laboratory ID	Western Resource 89278	Management		Sample ID Matrix	Water	\$ 359855 [VGA V/2	.985
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	705	50 ug/L	1:1
			Matrix Spike	-			
Client ID Laboratory ID	Western Resource 89279	Management		Sample ID Matrix	MS for HBN 35 Water	59853 [VGXV/298	3]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	1060	50 ug/L	1:1
		Matr	ix Spike Dup	licate Report			
Client ID Laboratory ID	Western Resource 89280	Management		Sample ID Matrix	MSD for HBN Water	359853 [VGXV/29	983]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
TPHgas		8015B TPHgas	12/27/08	12/27/08	907	50 ug/L	1:1
		Ν	Method Blank	Report			
Client ID Laboratory ID	Western Resource 89322	Management		Sample ID Matrix	MB for HBN 3. Water	59952 [VMXV/309	90]
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution
Methyl-tert-k	outyl-ether	8260B BTEX/FC			ND	0.50 ug/L	1:1
Benzene		8260B BTEX/FC			ND	1.0 ug/L	1:1
Toluene		8260B BTEX/FC			ND	1.0 ug/L	1:1
Ethylbenzene		8260B BTEX/FC			ND	1.0 ug/L	1:1
Xylene,Total		8260B BTEX/FC)CI2/27/08	12/27/08	ND	1.0 ug/L	1:1
Surrogates		Result	Recovery	Limits			
0	ethane-d4	51 ug/L	102 %	(65 - 1	.35)		
1,2-Dichloroe				mla Domont			
		Lat	o Control San				
1,2-Dichloroe Client ID Laboratory ID	Western Resource 89323		o Control San	Sample ID Matrix	LCS for HBN 3 Water	359952 [VMXV/30	90]
Client ID			o Control San Prep Date	Sample ID		359952 [VMXV/30 RL Units	90] Dilution

Ethylbenzene

Analytical Laboratory Division Mobile Laboratory Division Scientific Division

45 1.0 ug/L

1:1

Client ID	Western Desserve	· Management		Comula ID	LCC for LIDN 2	250052 IVNAVV/20	001	
Laboratory ID	Western Resourc 89323	e Management		Sample ID Matrix	Water	359952 [VMXV/30	90]	
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution	
(continued)								
Toluene		8260B BTEX	/FOC12/27/08	12/27/08	50	1.0 ug/L	1:1	
Ethylbenzene		8260B BTEX	/FOC12/27/08	12/27/08	51	1.0 ug/L	1:1	
Xylene,Total		8260B BTEX	/FOC12/27/08	12/27/08	153	1.0 ug/L	1:1	
		Lab	Control Sample	Duplicate Repo	ort			
Client ID Laboratory ID	Western Resourc 89324	e Management		Sample ID Matrix	LCSD for HBN Water	[359952 [VMXV/:	3090	
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution	
Methyl-tert-	butyl-ether		/FOC12/27/08		66	0.50 ug/L	1:1	
Benzene			/FOC12/27/08		53	1.0 ug/L	1:1	
Toluene			/FOC12/27/08		52	1.0 ug/L	1:1	
Ethylbenzene			/FOC12/27/08		52	1.0 ug/L	1:1	
Xylene,Total		8260B BTEX	/FOC12/27/08	12/27/08	156	1.0 ug/L	1:1	
			Matrix Spike	Report				
Client ID Laboratory ID	Western Resourc 89325	estern Resource Management		Sample ID Matrix	MS for HBN 359952 [VMXV/3090] Water			
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution	
Methyl-tert-	butyl-ether	8260B BTEX	/FOC12/27/08	12/27/08	51	0.50 ug/L	1:1	
Benzene		8260B BTEX	/FOC12/27/08	12/27/08	85	1.0 ug/L	1:1	
Toluene		8260B BTEX	/FOC12/27/08	12/27/08	50	1.0 ug/L	1:1	
Ethylbenzene		8260B BTEX	/FOC12/27/08	12/27/08	47	1.0 ug/L	1:1	
Xylene,Total		8260B BTEX	/FOC12/27/08	12/27/08	150	1.0 ug/L	1:1	
		Ν	atrix Spike Dup	licate Report				
Client ID Laboratory ID	Western Resourc 89326	e Management		Sample ID Matrix	MSD for HBN Water	359952 [VMXV/3	090]	
Parameter		Method	Prep Date	Analyzed	Result	RL Units	Dilution	
Methyl-tert-	butyl-ether	8260B BTEX	/FOC12/27/08	12/27/08	58	0.50 ug/L	1:1	
Benzene			/FOC12/27/08		86	1.0 ug/L	1:1	
Toluene		8260B BTEX	/FOC12/27/08	12/27/08	50	1.0 ug/L	1:1	
TOTUEILE								

8260B BTEX/FOC12/27/08 12/27/08

LINIOIIIICI			atrix Spike Dup	licate Report			
Client ID Laboratory ID	Western Resource M 89326	Management		Sample ID Matrix	MSD for HBN 3 Water	359952 [VMXV/3	090]
Parameter (continued)		Method	Prep Date	Analyzed	Result	RL Units	Dilution
Xylene,Total		8260B BTEX/	FOC12/27/08	12/27/08	149	1.0 ug/L	1:1

Environmental Laboratories

			QUBUILIN					
Client ID	Western Resource Man	agement	Origin	al 187270	01			
QC Batch	VGX 3102	•	Sampl	es Matrix S	Spike [89274]			
Matrix	Water		-	Matrix S	Spike Duplicate	e [89275]		
		Spike	Spike Dup	Recovery		RPD		
Parameter		%Recovery	%Recovery	Limits	RPD	Limits		
TPHgas		65	66	(65-135)	1.5	(20 MAX)		
Client ID	Western Resource Man	nagement	Origin	al 187390	04			
QC Batch	VGX 3103		Sampl	es Matrix S	Spike [89279]			
Matrix	Water		-	Matrix S	Spike Duplicate	e [89280]		
		Spike	Spike Dup	Recovery		RPD		
Parameter		%Recovery	%Recovery	Limits	RPD	Limits		
TPHgas		106	91	(65-135)	15	(20 MAX)		
Client ID	Western Resource Man	nagement	Origin	al 187270	01			
QC Batch	VMX 3133	-	Sampl	es Matrix S	Spike [89325]			
Matrix	Water		Matrix Spike Duplicate [89326]					
		Spike	Spike Dup	Recovery		RPD		
Parameter		%Recovery	%Recovery	Limits	RPD	Limits		
Methyl-tert-	butyl-ether	102	116	(65-135)	13	(20 MAX)		
Benzene		110	112	(65-135)	1.8	(20 MAX)		
Toluene		96	96	(65-135)	00	(20 MAX)		
Ethylbenzene		94	90	(65-135)	4.3	(20 MAX)		
Xylene,Total		97	96	(65-135)	1.0	(20 MAX)		
Client ID	Western Resource Man	agement	Sampl		Lab Control Sample [89239]			
QC Batch	SGX 2582			Lab Co	ntrol Sample D	uplicate [89240]		
Matrix	Water							
		Check	Check Dup	Recovery		RPD		
Parameter		%Recovery	%Recovery	Limits	RPD	Limits		
Stoddard Sol	vent	91	85		6.8			
Client ID	Western Resource Man	nagement	Sampl	SamplesLab Control Sample [89272]				
QC Batch	VGX 3102			Lab Co	ntrol Sample D	uplicate [89273]		
Matrix	Water							
		Check	Check Dup	Recovery		RPD		
						- • •		
Parameter		%Recovery	%Recovery	Limits	RPD	Limits		

QC SUMMARY

QC SUMMARY

Client ID	Western Resource Ma	anagement	Sampl	es Lab Cont	rol Sample [8	9277]
QC Batch	VGX 3103			Lab Cont	rol Sample D	uplicate [89278]
Matrix	Water					
		Check	Check Dup	Recovery		RPD
Parameter		%Recovery	%Recovery	Limits	RPD	Limits
TPHgas		71	70	(65-135)	1.4	(20 MAX)
Client ID	Western Resource Ma	anagement	Sampl	es Lab Cont	rol Sample [8	9323]
	VMX 3133	U	-	Lab Cont	rol Sample D	uplicate [89324]
QC Batch		C	-	Lab Cont	rol Sample D	uplicate [89324]
QC Batch	VMX 3133	Check	Check Dup	Lab Cont Recovery	rol Sample D	uplicate [89324] RPD
QC Batch Matrix Parameter	VMX 3133	C	Check Dup %Recovery		rol Sample D	
QC Batch Matrix Parameter	VMX 3133 Water	Check	-	Recovery	Ĩ	RPD
QC Batch Matrix	VMX 3133 Water	Check %Recovery	%Recovery	Recovery Limits	RPD	RPD Limits
QC Batch Matrix Parameter Methyl-tert- Benzene	VMX 3133 Water	Check %Recovery 128	%Recovery 132	Recovery Limits (65-135)	RPD 3.1	RPD Limits (20 MAX)
QC Batch Matrix Parameter Methyl-tert-1	VMX 3133 Water	Check %Recovery 128 100	%Recovery 132 106	Recovery Limits (65-135) (65-135)	RPD 3.1 5.8	RPD Limits (20 MAX) (20 MAX)