RECEIVED

Declaration from the Responsible Party

5:17 pm, May 02, 2012

Alameda County Environmental Health

Letter Report Decommissioning/Abandonment of Seven Wells Conducted 5 January 2012 4401 Market Street Oakland CA Fuel Leak Case No. RO0000132 Geotracker Global ID T0600100430

Prepared by Streamborn, Dated 9 March 2012

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Casmiro Damele 3750 Victor Avenue Oakland CA 94619

Signed <u>Animing</u> Donnele Dated <u>H-19-12</u>

Casimiro Damele 3750 Victor Avenue Oakland CA 94619 9 March 2012

Project No. P257

Letter Report Decommissioning/Abandonment of Seven Wells Conducted 5 January 2012 4401 Market Street Oakland CA Fuel Leak Case No. RO0000132 Geotracker Global ID T0600100430

Dear Mr. Damele (hardcopy):

This report documents the decommissioning/abandonment of seven wells (MW1, MW2, MW4, MW5, MW6, and MW7) located at/near the subject site. Fieldwork was conducted 5 January 2012. We performed the decommission/abandonment pursuant to correspondence from the Alameda County Health Care Services Agency (letter dated 3 September 2010).

The results of our work are summarized in the following:

- Table 1 provides a chronology of environmental activities.
- Table 2 provides a bibliography.
- Table 3 summarizes groundwater level and gradient information since 2001.
- Table 4 summarizes waste soil analytical data.
- Table 5 summarizes wastewater analytical data.
- Figure 1 provides a USGS location map.
- Figure 2 provides a Google Earth location map.
- Figure 3 presents a site map.
- Photos 1-3 show the well decommissioning/abandonment.
- Attachment 1 contains the Alameda County Permit to decommission/abandon the wells.
- Attachment 2 contains the City of Oakland Excavation Permit.
- Attachment 3 contains the City of Oakland Obstruction Permit.
- Attachment 4 contains the access agreement for 904 44th Street (property where well MW7 was decommissioned/abandoned).

- Attachment 5 contains the boring logs and well completion schematics for the wells that were decommissioned/abandoned.
- Attachment 6 contains the well decommissioning/abandonment field logs.
- Attachment 7 contains the field sampling form, chain-of-custody form, and laboratory analytical report for the waste soil (soil generated during decommissioning/abandonment).
- Attachment 8 contains the chain-of-custody form and laboratory analytical report for the wastewater (purge water generated during historic well sampling events).
- Attachment 9 contains documentation regarding disposal of the waste soil and wastewater.
- Attachment 10 contains the DWR-188 forms.
- Attachment 11 contains a request to rescind encroachment permits for wells MW2, MW4, MW5, and MW6 (wells located in the street).
- Attachment 12 presents dimensioned locations of the wells.

WELL DECOMMISSIONING/ABANDONMENT

Prior to performing fieldwork the following activities were conducted:

- A permit was obtained from Alameda County Health Care Services Agency for the well decommissioning/abandonment.
- An excavation permit was obtained from the City of Oakland for decommissioning/abandonment work performed in the street.
- An obstruction permit was obtained from the City of Oakland for decommissioning/abandonment work performed in the street.
- An access agreement was obtained to for decommissioning/abandoning well MW7 located at 903 44th Street.
- 811/Underground Service Alert was notified to clear the decommissioning/abandonment locations.

The following activities were conducted to decommission/abandon the wells:

- The depth to groundwater and total depth were initially measured in each well.
- The following activities were conducted for wells MW2, MW4, MW5, and MW6 located in the street:

Using a Geoprobe direct-push track-mounted drill rig, the concrete skirt and wellhead vault were removed. A tremie pipe was used to place neat cement grout (94 pounds/one sack of Type I/II cement to ± 6 gallons of water) to a depth of ± 1 -foot inside each well casing. Next, the grout was

pressurized at 25 psi and held at that pressure for 5 minutes. The wells were then overdrilled to a depth of ± 5 feet using an 8-inch outside diameter hollow-stem auger. The resulting borehole was backfilled to a depth of ± 16 inches with concrete. The overdrilling cuttings (waste soil) were containerized in a labeled drum and stored onsite.

The pavement restoration of each wellhead was performed by sawcutting a ± 20 -inch-by- ± 20 -inch square in the pavement and removing the asphalt concrete debris and underlying aggregate base (the existing asphalt concrete pavement was ± 8 inches thick and the existing aggregate base was ± 9 inches thick). Approximately 9 inches of new aggregate base were then placed and compacted using a jumping jack. A tack coat of asphalt was applied to the aggregate base and sawcut. Approximately 8 inches of hot-mix asphalt concrete were placed and compacted with a jumping jack and finished with a vibratory roller.

• The following activities were conducted for wells MW1, MW3, and MW7 located on private property.

A tremie pipe was used to place neat cement grout (94 pounds/one sack of Type I/II cement to ± 6 gallons of water) to a depth of ± 1 -foot inside each well casing. According to the Alameda County Public Works Agency inspector (Victoria Hamlin), pressure grouting was not required; accordingly, pressure grouting was not performed.

For wells MW1 and MW7, the wellhead vault was removed and the grout seal and casing were removed to a depth of ± 1 foot. The resulting void was backfilled with concrete.

For well MW3, access restrictions prevented removal of the wellhead vault; accordingly, the casing and grout seal were removed to a depth of ± 6 inches and the void was backfilled with concrete.

• Vitoria Hamlin of the Alameda County Public Works Agency inspected the decommissioning/abandonment activities. A representative of the City of Oakland inspected traffic control and pavement restoration in the street.

DISPOSAL OF WASTE SOIL

Waste soil was generated via overdrilling wells MW2, MW4, MW5, and MW6. The waste soil was stored onsite in a labeled 55-gallon drum. A composite sample was collected from the drummed soil. The composite sample was analyzed for TPH-gasoline/BTEX/fuel oxygenates (EPA 8260), TPH-diesel, and total lead. A soil profile was then prepared that classified the waste soil as nonhazardous solids. On 6 March 2012, North State Environmental picked up and transported the waste soil to an appropriately-permitted facility for disposal.

DISPOSAL OF WASTEWATER

Purge water had been generated during historic groundwater sampling events and this wastewater had been stored onsite in four 55-gallon drums. A composite sample was collected from the drummed wastewater. The composite sample was analyzed for TPH-gasoline/BTEX/fuel oxygenates (EPA 8260), volatile organic compounds (EPA 8260), and total CAM 17 Metals. A wastewater profile was then prepared that classified the wastewater as nonhazardous liquids. On 6 March 2012, North State Environmental picked up and transported the wastewater to an appropriately-permitted facility for disposal.

Upon completion of the described work, no wells remain at the site and no investigation-derived wastes remain at the site.

Please contact us with any questions or comments.

Sincerely,

STREAMBORN

ough to cover

Douglas W. Lovell, PE Geoenvironmental Engineer

Attachments

cc: Paresh Khatri/Alameda County Health Care Services Agency, Alameda CA (ecopy)

Donna Drogos/Alameda County Health Care Services Agency, Alameda CA (ecopy)

This report was uploaded to the Alameda County Server

This report was uploaded to Geotracker (www.geotracker.swrcb.ca.gov)

Table 1 (Page 1 of 4) Environmental Chronology

Date	Activities Performed By	Description
Unknown	Unknown	• Four underground gasoline tanks (one 1,000-gallon and three 500-gallon tanks) were installed.
		• W.A. Craig reported that the structure at 4401 Market Street was constructed in 1943 and used as a gasoline station until the 1970s.
22 June 1990	Environmental Bio-Systems	• The four underground gasoline tanks were removed. Removal of the fuel dispensers, product piping, and pump island was not documented. Soil excavated during tank removal was reused to backfill the excavations.
		• Soil samples were collected from below the tanks. Samples of the excavated soil were also collected. Soil samples were analyzed for TPH-gasoline and BTEX. Soil sampling indicated a release of gasoline.
6 September 1990	W.A. Craig	 Two trenches were excavated to depths of approximately 5 feet in the vicinity of the former dispenser island. Contaminated soil was observed during excavation but no laboratory analyses were
		performed. The excavated soil was reused to backfill the trenches.
27 and 28 October 1994	W.A. Craig	• Seven borings were drilled to depths of approximately 25 feet at and near 4401 Market Street (SB1, SB2, SB3, SB4, MW1, MW2, and MW3); three of the borings were completed as monitoring wells (MW1, MW2, and MW3). Soil samples were collected during drilling.
		• Free product, presumably gasoline, was observed in boring SB2, located near the southwest corner of 4401 Market Street.
		• Soil samples were analyzed for TPH-gasoline and BTEX.
8 November 1994	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline and BTEX.
14 February 1995	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline and BTEX.
7 June 1995	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline and BTEX.
29 August 1995	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline and BTEX.
8 December 1995	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		Samples were analyzed for TPH-gasoline and BTEX.
7 March 1996	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline, BTEX, and MtBE.
19 June 1996	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline, BTEX, and MtBE.
20 December 1996	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		Samples were analyzed for TPH-gasoline, BTEX, and MtBE.
12 June 1997	W.A. Craig	• Groundwater monitoring was conducted for wells MW1, MW2, and MW3.
		• Samples were analyzed for TPH-gasoline, BTEX, and MtBE.
31 March 1999	Streamborn	• Groundwater levels measured in wells MW1, MW2, and MW3.
April and July 1999	Streamborn	• Nine borings were drilled to depths of approximately 20 feet near 4401 Market Street (B8 through B16). Free product, presumably gasoline, was observed in boring B10, located on the south side of 44th Street, adjacent to 903 44th Street. Soil samples were collected during drilling. Groundwater samples were collected from temporary casings installed in the borings. The borings were grouted upon completion of groundwater sampling.
		• Soil samples and groundwater samples were analyzed for TPH-gasoline, BTEX, and fuel oxygenates.
4-5 January 2001	Streamborn	• Four monitoring wells (MW4, MW5, MW6, and MW7) were installed to depths of approximately 25 feet near 4401 Market Street. Soil samples were collected during drilling.
		• Soil samples were analyzed for TPH-Gasoline, BTEX, and fuel oxygenates.
		• An elevation survey was performed for the newly-installed monitoring wells.

Table 1 (Page 2 of 4)Environmental Chronology4401 Market Street, Oakland CA

Date	Activities Performed By	Description
1 February 2001	Streamborn	• Wells MW4, MW5, MW6, and MW7 were developed.
		• Groundwater samples were collected from wells MW1, MW3, MW4, MW5, MW6, and MW7. Samples were analyzed for TPH-Gasoline, BTEX, and fuel oxygenates.
		• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
9 March 2001	Streamborn	• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
23 April 2001	Streamborn	 Water levels were measured in MW1, MW2, MW3, MW4, MW5, MW6, and MW7. Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
30 May 2001	Streamborn	• Groundwater samples were collected from wells MW1, MW3, MW4, MW5, MW6 and MW7. Samples were analyzed for TPH-Gasoline, BTEX, and fuel oxygenates.
		• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
19 June 2001	Streamborn	• Water levels were measured in MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
19 July 2001	Streamborn	• Water levels were measured in MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
22 August 2001	Streamborn	• Groundwater samples were collected from wells MW1, MW3, MW4, MW5, MW6 and MW7. Samples were analyzed for TPH-Gasoline, BTEX, and fuel oxygenates.
		• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
29 November 2001	Streamborn	• Groundwater samples were collected from wells MW1, MW3, MW4, MW5, MW6 and MW7. Samples were analyzed for TPH-Gasoline, BTEX, and fuel oxygenates.
		 Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
29 September 2003	Streamborn	• Groundwater samples were collected from wells MW1, MW3, MW4, MW5, MW6 and MW7. Samples were analyzed for TPH-Gasoline, BTEX, and fuel oxygenates.
		• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• Wells MW4, MW5, and MW6 were monitored for free product; no free product was detected.
21 November 2008	Streamborn	• Wells MW1, MW2, MW3, MW4, MW5, and MW6 were redeveloped by surging with a surge block and pumping with a submersible pump.
		• Streamborn repeatedly attempted to contact the property owner of 903 44 th Street and obtain permission to access well MW7. The property owner did not respond to the inquiries and well MW7 could not be redeveloped.
15 December 2008	Streamborn	• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, and MW6.
		• Groundwater samples were collected from wells MW1, MW2, MW3, MW4, MW5, and MW6. Samples were analyzed for TPH-Gasoline/BTEX/fuel oxygenates (EPA Method 8260).
		• Streamborn repeatedly attempted to contact the property owner of 903 44 th Street and obtain permission to access well MW7. The property owner did not respond to the inquiries and well MW7 could not be monitored.
14 April 2009	Streamborn	• Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, and MW6.
		• Groundwater samples were collected from wells MW1, MW2, MW3, MW4, MW5, and MW6. Samples were analyzed for TPH-Gasoline/BTEX/fuel oxygenates (EPA Method 8260).
		• Streamborn repeatedly attempted to contact the property owner of 903 44 th Street and obtain permission to access well MW7. The property owner did not respond to the inquiries and well MW7 could not be monitored.

Table 1 (Page 3 of 4)

Environmental Chronology

Date	Activities Performed By	Description
29 June 2009	Streamborn	• Six borings (SG1 through SG6) were drilled to depths of approximately 6.5 feet at/near 4401 Market Street.
		• Soilgas implants were installed in each borehole at a depth of approximately 5.7 feet. Teflon tubing (3/16" ID, 1/4" OD) lead from the implant to the ground surface. The boreholes were backfilled with sand, dry bentonite, and hydrated bentonite and allowed to equilibrate for at least two hours prior to collecting soilgas samples.
		• A soilgas purge test was conducted in one of the boreholes (SG3) to determine the purge volume appropriate for sampling. The results of the purge test indicated that approximately two sandpack volumes (sandpack volume = volume of the voids in the interval of the sandpack) should be purged prior to sampling. This corresponded to a purge time of approximately 4.2 minutes at the purge flowrate = 0.167 liters/minute.
		 Soilgas samples were collected from each of the six implants. The samples were collected after purging two sandpack volumes. The samples were collected using 1-liter summa canisters at the sampling flowrate = 0.167 liters/minute. Air Toxics (Folsom CA) analyzed the soilgas samples for volatile organic compounds (EPA Method Modified TO-15).
		• During soilgas sampling, a shroud was placed on the ground surface over each borehole. A tracer gas (2-propanol or isopropyl alcohol also known as "rubbing alcohol") was introduced inside the shroud prior to and during purging and sampling. This activity was performed to determine whether soilgas samples contained atmospheric air (for example, due to short-circuiting or leakage along the outside of the implant tubing). Very low concentrations of the tracer gas were detected in each of the six soilgas samples; probably as a result of cross-contamination that occurred when the sample tubing was threaded through the shroud.
		• After each soilgas sample was collected; a vacuum leak check was performed on the sample train, including the implant tubing connection. The leak check consisted of applying a vacuum of approximately 27 inches Hg for a period of approximately five minutes. No leaks were detected.
		• The implant tubing was pulled and the borings were grouted. The asphalt concrete pavement was patched at the two sampling locations within the street.

Table 1 (Page 4 of 4)Environmental Chronology4401 Market Street, Oakland CA

Date	Activities Performed By	Description
5 January 2012	Streamborn	 An access agreement was executed with the property owner 903 44th Street. Water levels were measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and MW7.
		• The following activities were conducted to decommission/abandon wells MW2, MW4, MW5, and MW6 (these four wells were located in the street):
		Using a Geoprobe direct-push track-mounted drill rig, the concrete skirt and wellhead vault were removed. A tremie pipe was used to place neat cement grout (94 pounds/one sack of Type I/II cement to ± 6 gallons of water) to a depth of ± 1 -foot inside each well casing. Next, the grout was pressurized at 25 psi and held at that pressure for 5 minutes. The wells were then overdrilled to a depth of ± 5 feet using an 8-inch outside diameter hollow-stem auger. The resulting borehole was backfilled to a depth of ± 16 inches with concrete. The overdrilling cuttings (waste soil) were containerized in a labeled drum and stored onsite.
		The pavement restoration of each wellhead was performed by sawcutting a ± 20 -inch- by- ± 20 -inch square in the pavement and removing the asphalt concrete debris and underlying aggregate base (the existing asphalt concrete pavement was ± 8 inches thick and the existing aggregate base was ± 9 inches thick). Approximately 9 inches of new aggregate base were then placed and compacted using a jumping jack. A tack coat of asphalt was applied to the aggregate base and sawcut. Approximately 8 inches of hot- mix asphalt concrete were placed and compacted with a jumping jack and finished with a vibratory roller.
		• The following activities were conducted to decommission/abandon wells MW1, MW3, and MW7 (these three wells were located on private property):
		A tremie pipe was used to place neat cement grout (94 pounds/one sack of Type I/II cement to ±6 gallons of water) to a depth of ±1-foot inside each well casing. According to the Alameda County Public Works Agency inspector (Victoria Hamlin), pressure grouting was not required; accordingly, pressure grouting was not performed.
		For wells MW1 and MW7, the wellhead vault was removed and the grout seal and casing were removed to a depth of ± 6 inches. The resulting void was backfilled with concrete.
		For well MW3, access prevented removal of the wellhead vault; accordingly, the casing and grout seal were removed to a depth of ± 6 inches and the void was backfilled with concrete.
		• Vitoria Hamlin of the Alameda County Public Works Agency inspected the decommissioning/abandonment activities. A representative of the City of Oakland inspected traffic control and restoration work in the street.
		• A composite sample was collected from the single drum of waste soil. The sample was analyzed for TPH-gasoline/BTEX/fuel oxygenates (EPA 8260), TPH-diesel, and total lead.
		• Four drums of purge water had been historically generated and were stored onsite. A composite sample of wastewater was collected an analyzed for TPH-gasoline/BTEX/fuel oxygenates, volatile organic compounds (EPA 8260), and CAM 17 Metals.
6 March 2012	North State Environmental	• North State Environmental picked up and transported one drum of waste soil and four drums of wastewater to an appropriately-permitted facility for disposal.

General Note

(a) TPH = total petroleum hydrocarbons. BTEX = benzene, toluene, ethylbenzene, and xylenes. MtBE = methyl tert-butyl ether.

Table 2 (Page 1 of 2)Bibliography4401 Market Street, Oakland CA

ACHCSA (1999a). *Leon's Arco, 4401 Market Street, Oakland CA 94608; StId 812*. Correspondence to Casimiro and Josephine Damele, Oakland CA. Correspondence from Don Hwang, Alameda County Environmental Health Services, Alameda CA. 10 December 1999.

ACHCSA (1999b). *Leon's Arco, 4401 Market Street, Oakland CA 94608; StId 812*. Correspondence to Casimiro and Josephine Damele, Oakland CA. Correspondence from Don Hwang, Alameda County Environmental Health Services, Alameda CA. 29 December 1999.

ACHCSA (2000). *Leon's Arco, 4401 Market Street, Oakland CA 94608; StId 812*. Correspondence to Casimiro and Josephine Damele, Oakland CA. Correspondence from Don Hwang, Alameda County Environmental Health Services, Alameda CA. 13 January 2000.

ACHCSA (2001). *Leon's Arco, 4401 Market Street, Oakland CA 94608, RO0000132*. Correspondence to Casimiro and Josephine Damele, Oakland CA. Correspondence from Don Hwang, Alameda County Environmental Health Services, Alameda CA. 20 September 2001.

ACHCSA (2002). *Fuel Leak Case No. RO0000132, Leon's Arco, 4401 Market Street, Oakland CA 94608.* Correspondence to Casimiro and Josephine Damele, Oakland CA. Correspondence from Don Hwang, Alameda County Environmental Health Services, Alameda CA. 27 December 2002.

ACHCSA (2003). *Fuel Leak Case No. RO0000132, Leon's Arco, 4401 Market Street, Oakland, CA 94608*. Correspondence to Casimiro and Josephine Damele, Oakland CA. Correspondence from Don Hwang, Alameda County Environmental Health Services, Alameda CA. 8 April 2003.

ACHCSA (2008a). *Fuel Leak Case No. RO0000132, Arco, 4401 Market Street, Oakland, CA 94608*. Correspondence to Casimiro Damele, Oakland CA. Correspondence from Paresh Khatri and Jerry Wickham, Alameda County Environmental Health Services, Alameda CA. 20 June 2008.

ACHCSA (2008b). Fuel Leak Case No. RO0000132 and Geotracker Global ID T0600100430, Arco, 4401 Market Street, Oakland, CA 94608. Correspondence to Casimiro Damele, Oakland CA. Correspondence from Paresh Khatri and Donna Drogos, Alameda County Environmental Health Services, Alameda CA. 25 September 2008.

ACHCSA (2009a). Fuel Leak Case No. RO0000132 and Geotracker Global ID T0600100430, Arco, 4401 Market Street, Oakland, CA 94608. Correspondence to Casimiro Damele, Oakland CA. Correspondence from Paresh Khatri and Donna Drogos, Alameda County Environmental Health Services, Alameda CA. 16 March 2009.

ACHCSA (2009b). *Fuel Leak Case No. RO0000132 and Geotracker Global ID T0600100430, Arco, 4401 Market Street, Oakland, CA 94608.* Correspondence to Casimiro Damele, Oakland CA. Correspondence from Paresh Khatri, Alameda County Environmental Health Services, Alameda CA. 24 September 2009.

ACHCSA (2010a). Public Notification for Fuel Leak Case No. RO0000132 and Geotracker Global ID T0600100430, Arco, 4401 Market Street, Oakland, CA 94608. Correspondence to Casimiro Damele, Oakland CA. Correspondence from Paresh Khatri, Alameda County Environmental Health Services, Alameda CA. 12 March 2010.

ACHCSA (2010b). *Fuel Leak Case No. RO0000132 and Geotracker Global ID T0600100430, Arco, 4401 Market Street, Oakland, CA 94608* Correspondence to Casimiro Damele, Oakland CA. Correspondence from Paresh Khatri and Donna Drogos, Alameda County Environmental Health Services, Alameda CA. 3 September 2010.

Air Toxics. Guide to Air Sampling and Analysis.

CalEPA (1999). *Technical Support Document for Describing Available Cancer Potency Factors*. Prepared by California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Air Toxicology and Epidemiology Section, Sacramento CA. April 1999.

CalEPA (2005). Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties. Prepared by California Environmental Protection Agency. January 2005.

Department of Toxic Substances Control and Los Angeles Regional Water Quality Control Board (2003). *Advisory - Active Soil Gas Investigations*. Prepared by the Department of Toxic Substances Control and the Los Angeles Regional Water Quality Control Board, Glendale CA and Los Angeles CA. 28 January 2003.

Department of Toxic Substances Control (2005). *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Interim Final - 15 December 2004, Revised 7 February 2005).* Prepared by the Department of Toxic Substances Control, California Environmental Protection Agency, Sacramento CA. 7 February 2005.

Jon B. Marshack (2000). *A Compilation of Water Quality Goals*. Central Valley Regional Water Quality Control Board, Sacramento CA. August 2000.

RWQCB (1996). *Memorandum, To: San Francisco Bay Area Agencies Overseeing UST cleanup, Supplemental Instruction to State Water Board, December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites.* Prepared by San Francisco Bay Regional Water Quality Control Board, Oakland CA. 5 January 1996.

RWQCB (2003). Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final - July 2003. Prepared by the San Francisco Bay Regional Water Quality Control Board, Oakland CA. 21 July 2003.

Table 2 (Page 2 of 2)Bibliography4401 Market Street, Oakland CA

San Francisco Bay Regional Water Quality Control Board (2008). *Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final - November 2007, Revised May 2008)*. Prepared by San Francisco Bay Regional Water Quality Control Board, Oakland CA. 27 May 2008. <u>http://www.waterboards.ca.gov/sanfranciscobay/esl.shtml</u>.

Streamborn (1999a). *Workplan, Investigation and Remediation of Gasoline-Contaminated Soil and Groundwater, 4401 Market Street, Oakland CA*. Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 15 October 1999.

Streamborn (1999b). *Revised Workplan, Investigation and Remediation of Gasoline Contaminated Soil and Groundwater, 4401 Market Street, Oakland CA.* Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 22 December 1999.

Streamborn (2001a). *Report, Installation and Sampling of Four New Monitoring Wells, 4401 Market Street, Oakland CA*. Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 23 March 2001.

Streamborn (2001b). *Letter Report, Groundwater Monitoring, 4401 Market Street, Oakland CA*. Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 18 June 2001.

Streamborn (2001c). *Letter Report, Groundwater Monitoring, 4401 Market Street, Oakland CA*. Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 14 September 2001.

Streamborn (2001d). Letter Report, Potential Conduit and Sensitive Receptor Study, 4401 Market Street, Oakland CA. Prepared by Streamborn, Berkeley CA. 3 December 2001.

Streamborn (2002). *Letter Report, Groundwater Monitoring Conducted 29 November 2001, 4401 Market Street, Oakland CA*. Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 18 January 2002.

Streamborn (2003a). *Workplan, Groundwater Monitoring and Site-Specific Risk Assessment, 4401 Market Street, Oakland CA.* Prepared for Casimiro and Josephine Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. 18 March 2003.

Streamborn (2003b). *Letter Report, Groundwater Monitoring Conducted 29 September 2003, 4401 Market Street, Oakland CA*. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 22 December 2003.

Streamborn (2004). Letter Report, Site-Specific Risk Assessment and Site Conceptual Model, 4401 Market Street, Oakland CA. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 16 January 2004.

Streamborn (2008). *Workplan for Soilgas Sampling, 4401 Market Street, Oakland CA, Fuel Leak Case No. RO 0000132*. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 5 August 2008.

Streamborn (2009a). Letter Report, Groundwater Monitoring Conducted 15 December 2008, 4401 Market Street, Oakland CA, Fuel Leak Case No. RO 0000132. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 9 January 2009.

Streamborn (2009b). Letter Report, Groundwater Monitoring Conducted 14 April 2009, 4401 Market Street, Oakland CA, Fuel Leak Case No. RO 0000132. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 17 August 2009.

Streamborn (2009c). Letter Report, Soilgas Sampling Conducted 29 June 2009, 4401 Market Street, Oakland CA, Fuel Leak Case No. *RO 0000132*. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 25 August 2009.

Streamborn (2009d). Letter Report, Response to Alameda County Comments Dated 24 September 2009, 4401 Market Street, Oakland CA, Fuel Leak Case No. RO 0000132. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 18 November 2009.

Streamborn (2010). Letter Report, Case Closure Summary Report, 4401 Market Street, Oakland CA, Fuel Leak Case No. RO

0000132. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 14 May 2010.

Streamborn (2012a). Letter Report, Decommissioning/Abandonment of Seven Monitoring Wells Conducted 5 January 2012, 4401 Market Street, Oakland CA, Fuel Leak Case No. RO 0000132, Geotracker Global ID T0600100430. Prepared for Casimiro Damele, Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 9 March 2012.

Streamborn (2012b). *Request to Rescind Encroachment Permits ENMI00033 and ENMI97046, 4401 Market Street, Oakland CA.* Correspondence to City of Oakland, Community & Economic Development Agency (CEDA), Oakland CA. Prepared by Streamborn, Berkeley CA. Project No. P257. 9 March 2012.

USEPA (2000). Preliminary Remediation Goals (PRGs), 2000. USEPA, Region 9, San Francisco CA. 1 December 2000.

Wiedemeier, T.H., Rifai, H.S., Newell, C.J., and Wilson, J.T. (1999). Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, New York NY. 1999.

Table 3

Groundwater Level and Gradient Data Since 2001

4401 Market Street, Oakland CA

Location	М	W1	Μ	W2	М	W3	М	W4	М	W5	М	W6	М	W7		
Casing Diameter (inches)		2		2		2	1	2		2		2	2	2		
Ground Surface	Elev =	998.74	Elev =	998.07	Elev =	999.64	Elev =	998.18	Elev =	997.78	Elev =	998.02	Elev =	999.12		
GPS Coordinates	37.8 -122.	3395 27322	37.8 -122.	3381 27335	37.8 -122.1	3393 27322	37.8 -122.1	3381 27332	37.8 -122.	3380 27342	37.8 -122.1	3376 27337	37.8 -122.1	3360 27343	Groun Grae	dwater dient
Measuring Point	TOC I Elev =	N Side, 998.22	TOC I Elev =	N Side, 997.73	TOC I Elev =	N Side, 998.90	TOC I Elev =	N Side, 997.87	TOC Elev =	N Side, 997.33	TOC I Elev =	N Side, 997.50	TOC I Elev =	N Side, 998.69		
	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev		
Intercepted Interval	19 to 25.5	972.9 to 979.7	19 to 27.5	970.6 to 979.1	19 to 27.5	972.1 to 980.6	9 to 25	973.2 to 989.2	9 to 25	972.8 to 988.8	9 to 25	973.0 to 989.0	9 to 25	974.1 to 990.1	Direction	Magnitude
1 February 2001	13.77	984.45	13.21	984.52	14.01	984.89	13.22	984.65	13.14	984.19	13.31	984.19	14.76	983.93		
9 March 2001	12.54	985.68	12.30	985.43	13.32	985.58	12.28	985.59	11.70	985.63	12.54	984.96	13.94	984.75		
23 April 2001	14.01	984.21	13.36	984.37	14.15	984.75	13.05	984.82	13.30	984.03	13.39	984.11	14.63	984.06		
30 May 2001	14.74	983.48	NM	NM	14.67	984.23	13.93	983.94	14.14	983.19	14.17	983.33	15.79	982.90	N 138° W	0.01
19 June 2001	14.83	983.39	13.93	983.80	14.67	984.23	15.47	982.40	14.29	983.04	14.34	983.16	15.87	982.82		
19 July 2001	15.04	983.18	14.51	983.22	14.84	984.06	14.73	983.45	14.48	982.85	14.47	983.03	15.99	982.70		
22 August 2001	15.03	983.19	14.48	983.25	14.83	984.07	14.63	983.24	14.58	982.75	14.57	982.93	16.15	982.54	N 143° W	0.01
29 November 2001	12.59	985.63	12.01	985.72	12.66	986.24	12.78	985.09	11.05	986.28	11.42	986.08	12.94	985.75		
29 September 2003	15.05	983.17	14.50	983.23	14.94	983.96	14.53	983.34	14.53	982.80	14.52	982.98	16.19	982.50	N 131° W	0.01
15 December 2008	13.12	985.10	12.25	985.48	13.05	985.85	12.39	985.48	12.24	985.09	12.05	985.45	NM	NM	N 88° W	0.01
14 April 2009	13.33	984.89	12.51	985.22	13.16	985.74	12.63	985.24	12.56	984.77	12.34	985.16	NM	NM	N 97° W	0.01
5 January 2012	24.6	984.72	12.38	985.35	13.50	985.40	12.85	985.02	12.65	984.68	12.60	984.90	14.20	984.49		
Total Depth (last measurement)	24.6		24.6		24.6		24.5		24.9		24.8		24.6		Ave = N 119° W	Ave = 0.01

General Notes

(a) Measurements are cited in units of feet, referenced to a site-specific datum (NOT Mean Sea Level).

(b) TOC = top of PVC casing. N = north. Measuring points are the top of PVC casing, north side.

(c) The depth to water and total depth were measured relative to the top of PVC casing.

(d) The depth of the intercepted interval was measured relative to the ground surface and corresponds to the sandpack interval.

(e) Global Positioning System (GPS) coordinates were measured 5 January 2012 and correspond to the center of the top of the PVC casing. Measurements were made using a Garmin GPS II Plus handheld meter.

Table 4

Waste Soil Analytical Data

4401 Market Street, Oakland CA

Sample ID	Sample Description	Sample Date	Sample Type	Total Lead (mg/Kg)	TPH- Gasoline (mg/Kg)	TPH- Diesel (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes (mg/Kg)	Fuel Oxygenates (mg/Kg)
Abandon1	One drum of soil cuttings generated during well decommissioning/ abandonment	5 Jan 2012	Composite (4 subsamples)	5.0	<250,000	40	<5,000	<5,000	<5,000	<10,000	<5,000 to <10,000

General Note

(a) TPH = total petroleum hydrocarbons.

Table 5

Wastewater Analytical Data

4401 Market Street, Oakland CA

Sample ID	Sample Description	Sample Date	Sample Type	Total CAM 17 Metals (µg/L)	TPH- Gasoline (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Fuel Oxygenates (µg/L)
Wastewater	Four drums of purge water generated during historic well sampling events	5 Jan 2012	Composite (4 subsamples)	Barium =14 Zinc = 25 Others = <2.0 to <20	<50	<0.50	<0.50	<0.50	<1.0	<0.50 to <50

General Note

(a) TPH = total petroleum hydrocarbons.

Basemap: Google Earth, downloaded Nov 2009. Imagery dated Jun 2007.

Figure 2

Location Map (Google Earth)

5 January 2012. View of wells MW2 and MW4 before decommissioning/abandonment.

5 January 2012. View of wells MW2 and MW4 after grouting and overdrilling to a depth of 5 feet.

5 January 2012. View of wells MW2 and MW4 after decommissioning/ abandonment and subsequent pavement repair.

Photos 1

5 January 2012. View of wells MW5 and MW6 before decommissioning/abandonment.

5 January 2012. View of wells MW5 and MW6 after decommissioning/ abandonment and subsequent pavement repair.

Photos 2

5 January 2012. View of well MW1 after decommissioning/ abandonment and subsequent pavement repair. The wellhead vault was removed.

5 January 2012. View of well MW3 after decommissioning/ abandonment and subsequent pavement repair. The wellhead vault was not removed.

5 January 2012. View of well MW7 after decommissioning/ abandonment and subsequent pavement repair. The well casing was cut off ± 1 -foot below top of pavement, the wellhead vault was removed, the concrete pavement was sawcut, and concrete was placed.

Photos 3

ATTACHMENT 1

Alameda County Permit to Decommission/Abandon the Wells

Alameda County Public Works Agency - Water Resources Well Permit

Public

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 12/16/2011 By jamesy

Permit Numbers: W2011-0767 to W2011-0773 Permits Valid from 01/05/2012 to 01/05/2012

Application Id: Site Location: Project Start Date: Assigned Inspector: Extension Start Date: Extension Count:	1323988689040 4401 Market St, Oakland, CA 12/27/2011 Contact Vicky Hamlin at (510) 670 01/05/2012 1	City of Project Site:Oakland Completion Date:12/27/2011 -5443 or vickyh@acpwa.org Extension End Date: 01/05/2012 Extended By: vickyh1
Applicant:	Streamborn - Kevin Wildenberg	Phone: 510-528-4234
Property Owner:	Casimiro Damele	Phone: 510-531-0778
Client:	** same as Property Owner **	

Т	Total Due:	\$2779.00
Receipt Number: WR2011-0376 T	Total Amount Paid:	\$2779.00
Payer Name : Streamborn F	Paid By: CHECK	PAID IN FULL

Works Requesting Permits:

Well Destruction-Monitoring - 7 Wells Driller: Cascade - Lic #: 938110 - Method: Scond

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	Orig. Permit #	DWR #
W2011- 0767	12/16/2011	03/26/2012	MW1	8.00 in.	2.00 in.	17.00 ft	24.60 ft	No Records	94569	No Records
W2011- 0768	12/16/2011	03/26/2012	MW2	8.00 in.	2.00 in.	17.00 ft	24.60 ft	No Records	94569	No Records
W2011- 0769	12/16/2011	03/26/2012	MW3	8.00 in.	2.00 in.	17.00 ft	24.60 ft	No Records	94569	No Records
W2011- 0770	12/16/2011	03/26/2012	MW4	8.00 in.	2.00 in.	8.00 ft	24.50 ft	No Records	W00-667	No Records
W2011- 0771	12/16/2011	03/26/2012	MW5	8.00 in.	2.00 in.	8.00 ft	24.90 ft	No Records	W00-673	No Records
W2011- 0772	12/16/2011	03/26/2012	MW6	8.00 in.	2.00 in.	8.00 ft	24.80 ft	No Records	W00-677	No Records
W2011- 0773	12/16/2011	03/26/2012	MW7	8.00 in.	2.00 in.	8.00 ft	24.60 ft	No Records	W00675	No Records

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the

Work Total: \$2779.00

Alameda County Public Works Agency - Water Resources Well Permit

permits and requirements have been approved or obtained.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

5. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five(5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

8. Remove the Christy box or similar structure. Destroy wells MW-2, MW-4, MW-5 and MW-6 by overdrilling upper 5 ft. bgs & Tremie Grouting with Cement. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.

9. Remove the Christy box or similar structure. Destroy wells MW-1, MW-3 and MW-7 by grouting neat cement with a tremie pipe or pressure grouting (25 psi for 5min.) to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

ATTACHMENT 2

City of Oakland Excavation Permit

	250 Frank H. Ogaw	a Plaza, 2nd	Floor, Oal	kland, CA 94612	• Phone (510) 2	238-3443 • Fa	ax (510) 238-2263	
Applications	for which no permit is	issued withi	n 180 days	s shall expire by	limitation. No refu	und more than	180 days after expirati	on or final.
Appl# X1	101424	Job Site	4401	MARKET ST		I	Parcel# 013 -10	87-004-00
Descr	Destroy monit Call PWA INSP	oring wel ECTION pi	lls MW- rior to	2;-4;-5;-6 start: 510	along 44th -238-3651.	Street. 4th FLOOR	Permit Issued	12/15/11
Work Type	EXCAVATION-PR	IVATE P						
USA #	•		Util C Util F	0. Job # P2 und #:	:57	Accto	g#:	
				Applcnt	Phone#	Lic#	License Clas	ses
Owner Contractor Arch/Engr	CASCADE DRILL	RO & GUI: ING L P	SEPPINA	X X	(916)638-11	.69 938110	C57	
Agent	STREAMBORN/K	WILDENBE	RG	7A CA 9574	(510)520-32	277		
Appric Addr	. 5052 OFFIC CIR	, influento	CORDOV	, cn, 557.				
					\$436.05 \$71.00	Applic	BE PAID AT ISSU \$309.00	Permit
	-				\$.00 \$.00) Process) Gen Plan	\$36.10 \$.00	Rec Mgmt Invstg
	AR SITE				\$.00) Other	\$19.95	Tech Enh
	100					A		
				Permit Issu	ied By	9	Date:	
				Fina	Led By		Date:	
		m						
		JUL						
	Inna	JUL						
	111110	JUL I						
	111111							
	All III III							01
DRESSS			ALL CALL					156301
Abdress			The second secon					6.05 pt# 156301
AdDRESS:			The second secon					\$#36.05 ceipt# 156301
AthDRESS:								id: \$436.05 2 Receipt# 156301
Abdresss								t Paid: \$436.05 - RO2 Receipt# 156301
Addresss:								Amt Paid: \$436.05 ster RO2 Receipt# 156301
DIST: AdDRESS:ADDRESS:	CIT				AK			/11 Amt Paid: \$436.05 Register RO2 Receipt# 156301
DIST: ADDRESS:ADDRESS:	CIT	Y		FC	AK			2/16/11 Amt Paid: \$436.05 XH Register RO2 Receipt# 156301
DIST: AbDRESS:	CIT			FC	AK			e: 12/16/11 Amt Paid: \$436.05 /: MKH Register RO2 Receipt# 156301

avalanment Agancy

CITY OF OAKLAND • Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund more than 180 days after expiration or final.

Permit No. X1101424 Parcel #: 013 -1087-004-00 Project Address: 4401 MARKET ST Page 2 of 2

Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

I hereby affirm that the intended occupancy [] WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

DIST:

CITY OF OAKLAND Community & Economic Development Agency 250 Frank H. Ogawa Pl, Oakland CA, 94612 Phone: (510)238-4774 FAX: (510)238-2263

PAYMENT RECEIPT

Application#: X1101424 Payme APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE TECHNOLOGY ENHANCEMENT FE Subtotal:	nt#: 001 \$71.00 \$309.00 \$36.10 \$19.95 \$436.05
Sales Tax: ***** TOTAL PAID:	\$.00 \$436.05
Check Payment:	\$436.05
The second se	

Payor: STREAMBORN 10468

Date: 12/16/11 Time: 10:34:43

ATTACHMENT 3

City of Oakland Obstruction Permit

	CITY 250 Frank H. Ogawa	OF OAKLAND • Plaza, 2nd Floor, (Commun Dakland, C	ity and Ed A 94612	• Phone (510) 238	nent Agency -3443 • Fax (510) 238-22	63 evaluation or final
Applications	for which no permit is is	sued within 180 d	ays snall e	xpire by li	mitation. No refund	more than 180 days after	expiration or final.
Appl# O	B110920	Job Site	4401	MARKET	ST	Parcel# 01	3 -1087-004-00
	Reserve parking X1101424. One s Destroy monitor	g for constru space NO FEE ring wells MN	action . Resci N-2;-4;	vehicle ssion n -5;-6 a D	e(s) related needed to fin along 44th St isplay	to Permit I al. reet. ON Dashb	ssued 12/15/11 oard
Nbr of	days: 1					Linear feet:	50
Effec	tive: 01/05/12	SHO	RT TERM	NON-MI	TERED	Expiration:	01/05/12
			qA	plcnt	Phone#	Lic#License	Classes
Owner Contractor	DAMELE CASIMIRO CASCADE DRILLIN) & GUISEPPI NG L P	NA T	x	(916)638-1169	938110 C57	
Alch/Engr Agent oplic Addr	STREAMBORN/K WI 3632 OMEC CIR,	ILDENBERG RANCHO CORDO	DVA, CA	, 9574:	(510)520-3277 2-730		
\$121. \$71. \$. \$. \$. \$.	06 FEES TO BE PA 00 Applic 00 Process 00 Gen Plan 00 Other	AID AT FILING \$34.50 PG \$10.02 RG \$.00 In \$5.54 TG	G ermit ec Mgmt nvstg ech Enh		\$.00 F	EES TO BE PAID AT	ISSUANCE
	JOB SITI			D	isplay	on Dashb	oard
TCP need from the	s to be approved previously appr	l by Transpor coved plan.	station	Servic	ces every 30	days or whenever o	: #121.06 Receipt# 156300
Applicant Issued by	CIT	01	F	0	AK		te: 12/16/11 Amt Paid: By: MKH Register RO2 R
	Applications Appl# O Nbr of Effec Owner Owner Contractor Arch/Engr Agent plic Addr \$121. \$71. \$3. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$.	CITY 250 Frank H. Ogawa Applications for which no permit is is Appl# OB110920 Reserve parking X1101424. One s Destroy monitor Nbr of days: 1 Effective: 01/05/12 Owner DAMELE CASIMIRG Contractor CASCADE DRILLIN Arch/Engr Agent STREAMBORN/K WI plic Addr 3632 OMEC CIR, \$121.06 FEES TO BE PA \$71.00 Applic \$.00 Process \$.00 Gen Plan \$.00 Other JOB SIM TCP needs to be approved from the previously appr	CITY OF OAKLAND - 250 Frank H. Ogawa Plaza, 2nd Floor, O Applications for which no permit is issued within 180 da Appl# OB110920 Job Site Reserve parking for constru- X1101424. One space NO FEE Destroy monitoring wells MU Nbr of days: 1 Effective: 01/05/12 SHOP Owner DAMELE CASIMIRO & GUISEPPIN Contractor CASCADE DRILLING L P Arch/Engr Agent STREAMBORN/K WILDENBERG plic Addr 3632 OMEC CIR, RANCHO CORDO \$121.06 FEES TO BE PAID AT FILINK \$71.00 Applic \$34.50 PC \$.00 Process \$10.02 R \$.00 Gen Plan \$.00 In \$.00 Other \$5.54 To DOT STREAMBORN/K UNCENTER STREAMBORN/K UNCENTER STREAMBORN/K UNCENTER STREAMBORN/K UNCENTER DESTREAMBORN/K UNCENTER STREAMBORN/K UNC	CITY OF CAKLAND - Communi- 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, C Applications for which no permit is issued within 180 days shall e Appl # OB110920 Job Site 4401 Reserve parking for construction X1101424. One space NO FEE. Resci Destroy monitoring wells MW-2;-4; Nbr of days: 1 Effective: 01/05/12 SHORT TERM Owner DAMELE CASIMIRO & GUISEPPINA T Contractor CASCADE DRILLING & F Arch/Engr Agent STREAMBORN/K WILDENBERG plic Addr 3632 OMEC CIR, RANCHO CORDOVA, CA \$121.06 FEES TO BE PAID AT FILING \$71.00 Applic \$34.50 Permit \$.00 Process \$10.02 Rec Mgmt \$.00 Other \$5.54 Tech Enh JOB SITE COUPSIENT \$5.54 Tech Enh COUPSIENT \$5.54 Tech Enh	CITY OF CARLAND - Community and echo 250 Frank H. Ogwa Plaza, 2nd Floor, Oakland, CA 94612 Applications for which no permit is issued within 180 days shall expire by II App1# OBI10920 Job Site 4401 MARKET Reserve parking for construction vehicle X1101424. One space NO FEE. Rescission of Destroy monitoring wells MW-2,-4,-5,-6 a Mbr of days: 1 Effective: 01/05/12 NDr of days: 2 More DAMELE CASIMIRO & GUISEPPINAT Contractor CASCADE DRILLING & P X Arch/Engr Agent STREAMBORN/K WILDENBERG plic Addr 3632 OMEC CIR, RANCHO CORDOVA, CA, 95742 \$121.06 FEES TO BE PAID AT FILING \$71.00 Applic \$34.50 Permit \$.00 Gen Plan \$.00 Invstg \$.00 Other \$5.54 Tech Enh JOB SITE TOP needs to be approved by Transportation Service from the previously approved plan.	Control of Community and Economic Developments 260 Frank H. Ogawa Plaza, 2nd Ploor, Cakinadi, CA 9642 > Phone (610) 253 Applications for which no permit is issued within 180 days shall expire by limitation. No roturd Appl # 0B110920 Job Site 4401 MARKET ST Reserve parking for construction vehicle (s) related X1101424. One space NO FEE. Rescission needed to fin Destroy monitoring wells Mv-2;-4;-5;-6 along 44ths Destroy monitoring wells Mv-2;-4;-5;-6; -0 along 44ths Owner DAMELE CASIMIRO & GUISEPPINA T Contractor CASCADE DRILLING L P X (916) 638-1169 Arcch/Bag (510) 520-3277 Pilci Addr 3632 OMEC CIR, RANCHO COMDUA, CA, 95742-730 Sizi .06 FEES TO BE PAID AT FILING \$.00 F \$100 Octoer \$5.54 Tech Enh JOB SITE Display JOB SITE Display	200 Frank H. Ogawa Piezz, 2016 Forci, Oakina, Cd. Seldi 2, Phone (10) 238-424. For (310) 238-424. Applications for which no permit is issued within 180 days shall expire by fundation. No refund more than 180 days after Appl# 0B110920 Job Site 4401 MARKET ST Parcel # 01 Reserve parking for construction vehicle(s) velated to final. Dermit I Destroy monitoring wells NW-2;-4;-5;-6 Along 44th Street. Dermit I Diffective: 01/05/12 Linear feet: Expiration: Definition: Nor of days: 1 Linear feet: Expiration: Store TERM NON-METTERED Apple Calcometer Comment Non-Metrerence Onemer DawEile CASIMIRO & GUISEPPINA TO Onemer DawEile CASIMIRO & GUISEPPINA TO \$.00 FEES TO BE PAID AT FILINO \$.00 FEES TO BE PAID AT ST.00 Process \$.00 Invitog 3.00 Gen Plan \$.00 Invitog \$.00 FEES TO BE PAID AT FILINO \$.00 FEES TO BE PAID AT ST.00 Process \$.00 Invitog 3.00 Gen Plan \$.00 Invitog \$.00 FEES TO BE PAID AT FILINO \$.00 FEES TO BE PAID AT ST.00 Process S.00 Gen Plan \$.00 Invitog \$.00 Invitog \$.00 FEES TO BE PAID AT ST.00 Process \$.00 FEES TO BE PAID AT ST.00 Process S.00 Gen Plan

CITY OF OAKLAND

Community & Economic Development Agency 250 Frank H. Ogawa Pl, Oakland CA, 94612 Phone: (510)238-4774 FAX: (510)238-2263

PAYMENT RECEIPT

	TETETT							
Application#: OB110920 Payme	nt#: 001							
APPLICATION FEE \$71.00								
OBSTRUCTION PERMIT \$34.50								
RECORDS MANAGEMENT FEE (\$10.02								
TECHNOLOGY ENHANCEMENT FE \$5.54								
Subtotal:	\$121.06							
Sales Tax:	\$.00							
***** TOTAL PAID:	\$121.06							
Check Payment:	\$121.06							
	==========							
Payor: STREAMBORN 10469								
Date: 12/16/11 Time: 10:33:3	7							
Ry, MKH Perister PO2 Persint# 156300								

ATTACHMENT 4

Access Agreement for 904 44th Street

Site Access Agreement 904 44th Street Oakland CA

This Agreement, dated 8 September is made between Casamiro Damele (Investigator) and Rose M. Looney (Property Owner) for work at 903 44th Street, Oakland CA (Property).

1. Grant of License

Subject to the terms and conditions of this Agreement, the Property Owner hereby grants Investigator (and its authorized contractors, including any subcontractors) a license to enter the Property for the limited purpose of implementing the investigative activities that have been reviewed and approved by Alameda County Environmental Health Department (Regulatory Agency).

The anticipated activities consist of the following:

- Abandon/decommission well MW7.
- Restore the ground surface surrounding MW7.

2. Valid Title

Property Owner warrants and represents to Investigator that to the best of Property Owner's knowledge it has valid title to the Property and the right to grant access to Investigator.

3. Conditions on Use

Prior to entry onto the Property, Investigator shall provide 48 hours' notice to the Property Owner or designee of the Property Owner.

Prior to conducting subsurface work, Investigator shall make reasonable efforts to identify subsurface utilities in the vicinity of planned work. Where subsurface utilities are identified and interfere with planned work, Investigator shall adjust planned work to locations clear of known subsurface utilities.

Investigator shall ensure that none of its activities on the Property unreasonably interferes with or delays any other activities that are in progress on the Property.

4. Oversight by Property Owner

Property Owner shall have the right, if it so chooses, to oversee the activities, including collection and testing of split samples.

5. Access to Information

Investigator shall make available and provide, when requested, copies of information gathered from the Property. The Investigator will transmit the information to the Regulatory Agency, with copies to Property Owner.

6. <u>Term</u>

The term of this Agreement shall commence on the date of execution of this Agreement and shall continue thereafter until Investigator has completed aforementioned activities or until 31 December 2011, whichever is sooner; provided, however, that with mutual consent of both parties the term may be extended as necessary to accommodate delays or additional work.

7. Insurance

During the term of this Agreement, Investigator shall maintain and shall require its contractors and consultants responsible for the work under the Agreement to maintain, in full force and effect a workers compensation policy in statutory limits and a commercial general liability policy of insurance. The general liability policy shall include bodily injury and property damage coverage, with limits of not less than \$1,000,000 arising from or in connection with any action allowed under this Site Access Agreement. The general liability policy shall name Property Owner as an additional insured. Investigator shall require its contractors and consultants to provide Property Owner with certificates of insurance prior to entering the Property.

8. <u>Permittee and Generator</u>

Investigator shall be considered permittee for the purposes of the planned activities. Investigator shall procure all necessary permits.

Investigator shall be considered the generator with respect to wastes produced during the sampling. Investigator shall collect and dispose of the wastes in a lawful manner.

9. Property Restoration

Upon completion of the work, Investigator restore the Property to a condition reasonably similar to that which existed prior to the work. In landscaped areas, vegetation shall be re-planted. In paved areas, the pavement shall be patched.

10. Cost

Investigator shall pay for the costs associated with the activities.

11. Agreement Not Admission

By entering into this Agreement, neither Property Owner nor Investigator is admitting any responsibility for any contamination at the Property. This Agreement shall not be construed or

interpreted as an admission or concession of liability or waiver of rights on the part of either Property Owner or Investigator.

Investigator

Casamiro Damele 3750 Victor Avenue Oakland CA 94619 Property Owner

Rose M. Looney 903 44th Street Oakland CA 94608-3403

Signature Comming Dannele Signature

Date //- 6-// 510-531-0778

Date (510)703-6735

ATTACHMENT 5

Boring Logs and Well Completion Schematics

BORING LOG LEGENDAND NOTES

Soil Classification

Soils were classified in the field in approximate accordance with ASTM D 2488-00 (Standard Practice for Description and Identification of Soils, Visual-Manual Procedure). Consistency (density for coarse-grained soils and stiffness for fine-grained soils) described in approximate accordance with NAVFAC DM-7.1.

Textural classifications represent the opinion of the field geologist, field engineer, or field scientist regarding the nature and character of encountered materials. Proportions of textural categories (gravel, sand, silt, clay) cited on the logs should be considered approximate. Laboratory classification tests were not performed to verify the field classifications. In general, mixtures of soil types and gradual transitions between soil types may more accurately represent the subsurface materials, instead of the distinct divisions depicted on the logs. Soils were necessarily classified only at depths where samples were examined; extrapolation to other depths, as depicted on the logs, adds uncertainty.

Textural Classification

Fat clay, fat clay with gravel, lean clay (CH or CL)

Poorly graded sand with clay and gravel (SP)

Silty sand (SM)

Sandy silt (ML)

Poorly graded sand with silt (SM)

Clayey sand (SC)

Transitions or Contact Between Soil Types

— — Approximate location of inferred or observed gradational transition or distinct contact between soil types

Sampling

Sampling Interval (collected or attempted)

General Notes and References

- (a) OVM (ppm v/v) = Measurement by field organic vapor monitor in ppm volume/volume. Measurements performed using Thermo Environmental Instruments Model 580B OVM, 10.0 eV photoionization detector, calibrated to 100 ppm v/v isobutylene. Measurements performed by screening the ends of the freshly cut liners. Value cited on log represents the maximum reading obtained at either end of liner.
- (b) Depths measured from the adjacent pavement or ground surface.
- (c) 2001 Annual Book of ASTM Standards, Volume 04.08, Soil and Rock (1): D 420 D 4914. American Society of Testing and Materials, Philadelphia PA. 2001.
- (d) NAVFAC DM 7.1, Soil Mechanics, Design Manual 7.1. Department of the Navy, Naval Facilities Engineering Command, Alexandria VA. May 1982.

Boring No. MW4 (page 1 of 2)

Project	4401 Market Street, Oakland CA	Address	4401 Market Street, Oakland CA
Location	North side of 44th Street, west of Market Street	Logged By	Matthew B. Hall STREAMBORN (Berkeley CA)
Elevation	For of casing, North side = 997.87 feet (site-specific datum) Ground surface = 998.18 feet (site-specific datum)	Project No.	P257
Drill Method	\pm 4.25-inch ID by \pm 8-inch OD hollow-stem auger	Start Finish	10:30 am, 5 January 2001 12:30 am, 5 January 2001
Drill Rig	B-61, Rig #D9	Driller	Gregg Drilling and Testing/Tony
Completion	2-inch PVC well with traffic rated vault	Drillad Donth	⊥25 foot
Sampling	± 2 -inch ID by ± 2.5 -inch OD driven split spoon fitted with ± 2 -inch diameter by ± 6 -inch long brass liners. Samples collected by driving spoon ahead of auger bit.	Groundwater (during drilling)	± 13 -feet
		Groundwater (stabilized)	±13.2-feet (1 February 2001)

Depth (feet)	Graphic Log	NSCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	(v/v mqq) MVO
0.0						Asphalt overlying aggregate base. No staining, no odor.	
1.0							
1.0							
-2.0-							
-3.0-							
-4.0-							
-5.0-						Fat alay (CH) Dark brown major maderate to high plasticity	
			\land	2		stiff No staining no odor	
			$ \vee $	2	10	stiff. No stanning, no odor.	
-6.0-			$ \land $	- 3	-18		
0.0			$ / \rangle$	3			
			r				
7.0							
7.0							
		—СН—					
0.0	////						
-8.0-							
	V///						
-9.0-							
16.5							
10.0	<u> </u>						

Boring No. MW4 (page 2 of 2)

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
10.0							
-12.0-							
				-7	—18—	Same as above except very stiff. No staining, petroleum odor.	
			$\langle \rangle$	—16— —7—		Same as above except very stiff to hard. No staining, petroleum odor.	
		-CH-		-13 -17	18		
15.0			\bigvee	6 7		Same as above except very stiff. No staining, petroleum odor found only in top 1-foot of sample.	
-16.0-				9			
-17.0-							
			7	—11—		Poorly graded sand with clay and gravel (SP). Greyish brown, wet,	
-19.0-				 25	—18—	very dense. No staining, no odor.	
-20.0-							
-21.0-		SP					
-22.0-							
-23.0-							
-24.0-				6	—18—	Same as above except medium dense. No staining, no odor. Total drilled depth = 25 feet. Boring completed as well. See com-	
25.0	111		$V \setminus$			pletion diagram.	

Boring No. MW5 (page 1 of 2)

Project	4401 Market Street, Oakland CA	Address	4401 Market Street, Oakland CA	
Location	South side of 44th Street, west of Market Street	Logged By	Matthew B. Hall	
Elevation	Top of casing, North side = 997.33 feet (site-specific datum)		STREAMBORN (Berkeley CA)	
	Ground surface = 997.78 feet (site-specific datum)	Project No.	P257	
Drill Method	±4.25-inch ID by ±8-inch OD hollow-stem auger	Start	11:09 am, 4 January 2001	
Drill Rig	D-14 "Rhino"	ГШІSП	1.30 pm, 4 January 2001	
Dimitug		Driller	Gregg Drilling and Testing/Bob	
Completion	2-inch PVC well with traffic rated vault			
Sampling	± 1.5 -inch ID by ± 2 -inch OD driven split spoon fitted	Drilled Depth	±25-feet	
Sumpring	with ± 1.5 -inch diameter by ± 6 -inch long brass liners.	Groundwater	±13-feet	
	Samples collected by driving spoon ahead of auger bit.	(during drilling)		
		Groundwater (stabilized)	±13.1-feet (1 February 2001)	

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
0.0						Asphalt overlying aggregate base. No staining, no odor.	
1.0							
-1.0-							
_2 0							
2.0							
3.0							
5.0							
<u> 4 0 </u>							
-5.0-							
			\land /			Fat clay (CH). Dark brown, moist, moderate to high plasticity,	
			$ \vee $			stiff. No stanning, no odor.	
-6.0-			$ \land $		10		
			$/ \setminus$				
-7.0-							
		CII					
		—СН—					
-8.0-							
-9.0-							
	////						
10.0	$\langle / / / \rangle$						

Boring No. MW5 (page 2 of 2)

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
10.0							
-11.0-							
-12.0-		1				Same as above. No staining, petroleum odor.	
		—СН—	$\left \right\rangle /$				
-13.0-			X		—18—		
			$/ \setminus$				
			Λ /			Fat clay with gravel (CH). Dark greyish brown, wet, high plastici- ty. <10% subangular gravel. No staining, petroleum odor.	
-14.0-					—18—	-// // // // // // //	
			$ / \setminus$				
-15.0-			$\langle \rangle$	┝───		Sandy silt (ML). Dark brown, wet, moderate plasticity, <10% fine	
			$ \rangle /$			sand. No staining, petroleum odor found only in top 1.5-feet of sam-	
-16.0-			$ \rangle$			pie.	
					24		
17.0			$/ \land$				
-17.0-							
		-ML-					
-18.0-							
-19.0-							
-20.0-			Λ /	1		Poorly graded sand with clay and gravel (SP). Greyish brown, wet, fine to coarse sand, subrounded sand <15% gravel <25% fines	
			$ \rangle$		—18—	No staining, no odor.	
-21.0-			$ / \setminus$				
	111						
-22.0-	$\frac{1}{1}$						
	11.	-SP-					
-23.0-	11,						
	11	·					
			$\overline{\mathbf{N}}$	1		Same as above. No staining, no odor.	
24.0-	11,		$ \rangle$		—18—		
	111		$ / \rangle$			Total drilled depth = 25 feet. Boring completed as well. See com-	
25.0	111		\vee			pletion diagram.	

Boring No. MW6 (page 1 of 2)

Project	4401 Market Street, Oakland CA	Address	4401 Market Street, Oakland CA
Location	South side of 44th Street, west of Market Street	Logged By	Matthew B. Hall
Elevation	Top of casing North side = 997.50 feet (site-specific datum)		STREAMBORN (Berkeley CA)
	Ground surface = 998.02 feet (site-specific datum)	Project No.	P257
Drill Method	± 4.25 -inch ID by ± 8 -inch OD hollow-stem auger	Start	8:50 am, 4 January 2001
		Finish	10:45 am, 4 January 2001
Drill Rig	D-14, "Rhino"	Drillor	Grage Drilling and Testing/Pah
Completion	2-inch PVC well with traffic rated vault	Dimer	Gregg Drining and Testing/Bob
Sampling	± 1.5 inch ID by ± 2 inch OD driven split spoon fitted	Drilled Depth	±25-feet
Samping	with ± 1.5 -inch diameter by ± 6 -inch long brass liners	Groundwater	±13-feet
	Samples collected by driving spoon ahead of auger bit.	(during drilling)	
		Groundwater (stabilized)	±13.3-feet (1 February 2001)
1			

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
0.0						Asphan overrying aggregate base. No staining, no odor.	
-1.0-							
-2.0-							
-3.0-							
4.0							
5 0							
			\land /			Fat clay (CH). Dark greyish brown, moist, moderate to high plas-	
			$ \vee $			ticity, stiff. No staining, no odor.	
-6.0-			$ \land $		10		
			\vee \setminus				
— 7.0 —	++++						
		СН					
-8.0-	+++						
-9.0-							
10.0							

Boring No. MW6 (page 2 of 2)

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
10.0							
-11.0-							
-12.0-		—CH—				Eat alow (CH). Gray moist moderate to high placticity low dile	
			$\left \right\rangle /$			tancy, stiff. No staining, petroleum odor.	
-13.0-					—18—		
			$\left(\longrightarrow \right)$			Sandy silt (ML). Grey, moist to wet, moderate plasticity, <10%	
-14.0-		M			10	fine sand. No staining, petroleum odor.	
		-ML-	$ \wedge $				
-15.0-			$\langle - \rangle$			Lean clay (CL). Grey, moist to wet, low to moderate plasticity,	
			$ \rangle /$			<10% fine sand. No staining, no odor.	
-16.0-		-CL-	X		—24—		
			$ / \setminus$				
-17.0-			$\left(\rightarrow \right)$			Poorly graded sand with silt (SM). Brown, wet, fine sand, <15% silt.	
					—18—	No staining, no odor.	
-18.0-			$ / \setminus$				
			$\langle \rangle$			Sandy silt (ML). Grey to brown, wet, low plasticity, <30% fine sand.	_
-19.0-					—18—		
		-ML-	$/ \setminus$				
-20.0-			\land			Same as above. No staining, no odor.	
			$ \vee $		10	Poorly graded sand with clay and gravel (SP). Greyish brown, wet,	
			$ \wedge $		10	fine to coarse sand, subrounded sand, <15% gravel, <25% fines. No staining, no odor.	
			/				
		—SP—					
23.0-							
-24.0-			\mathbb{N} /			Same as above. No staining, no odor.	
24.0			X		—18—		
25.0			\backslash			Total drilled depth = 25 feet. Boring completed as well. See com- pletion diagram.	

Boring No. MW7 (page 1 of 2)

Project	4401 Market Street, Oakland CA	Address	4401 Market Street, Oakland CA
Location	Back yard of 903 44th Street	Logged By	Matthew B. Hall
Elevation	Top of casing, North side = 998.69 feet (site-specific datum) Ground surface = 999.12 feet (site-specific datum)	Project No.	STREAMBORN (Berkeley CA) P257
Drill Method	±4.25-inch ID by ±8-inch OD hollow-stem auger	Start	8:15 am, 5 January 2001
Drill Rig	B-61, Rig #D9	Finish	10:20 am, 5 January 2001
Completion	2-inch PVC well with traffic rated vault	Driller	Gregg Drilling and Testing/Tony
Sampling	\pm 2-inch ID by \pm 2 5-inch OD driven split spoon fitted	Drilled Depth	±25-feet
Sampling	with ± 2 -inch diameter by ± 6 -inch long brass liners. Samples collected by driving spoon ahead of auger bit.	Groundwater (during drilling)	±43-feet
		Groundwater (stabilized)	±14.8-feet (1 February 2001)

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
0.0						Topsoil. No staining, no odor.	
-1.0-							
-2.0-							
4 0							
ч.0							
-5.0-						Sandy silt (ML) Dark brown moist low to moderate plasticity	
			\land	2		<30% fine sand, medium stiff to stiff. No staining, no odor.	
			X	3	—18—		
<u> 6.0 </u>			$ / \setminus$	5			
			$\langle \rangle$				
7.0							
		-ML-					
<u> </u>							
-9.0-	┠┼┼┼┼						
	▋ <u></u>						
10.0		-CL	$\left \right>$	—5—	—18—	Lean clay (CL). Dark brown, moist, low to moderate plasticity, <5% fine sand, very stiff. No staining, no odor.	

Boring No. MW7 (page 2 of 2)

Depth (feet)	Graphic Log	USCS	Sample Interval	Blows per 6 inches	Recovery (inches)	Soil Description, Observations, Comments	OVM (ppm v/v)
10.0			\bigvee	—10—	18	See description previous page.	
			\square	—13—	10		
12.0							
-13.0-							
14.0							
-14.0-							
15.0		—CH—	\setminus /	8		Fat clay (CH). Dark brownish grey, moist to wet, moderate plastici- ty $<15\%$ fine sand very stiff. No staining no odor	
-15.0-				9	—18—		
			$ / \setminus$	9			
-16.0-							
-17.0-							
-18.0-							
-19.0-							
			$\overline{}$	8		Silty sand (SM). Brown, wet, fine to medium sand, subrounded	
-20.0-				—10—	—18—		
			$ / \setminus$	—13—			
-21.0-							
		-SM-					
-22.0-							
-23.0-							
			7	5		Clayey sand (SC). Brown, wet, coarse to fine sand, subrounded	
-24.0-		—sc—		—7—	—18—	sana, ~2370 miles, mearann achse. No Stanning, 110 0001.	
25.0			$/ \setminus$	8		Total drilled depth = 25 feet. Boring completed as well. See completion diagram.	

ATTACHMENT 6

Well Decommissioning/Abandonment Field Logs

LOG FOR WELL DESTRUCTION/DECOMMISSIONING/ABANDONMENT BY GROUTING

Project Name/Number:	Market Street/P257	Logged By:	Kevin R. Wilde	enberg
Property Location:	4401 Market Street, Oakland CA	Date:	5 January 2012	
Well Identification:	MW1	Depth to Water (ft):	24'7"	(below ground surface)
Measuring Point:	Ground surface	Total Depth (ft):	13'5"	(below ground surface)
Abandonment Methods:	Tremie grout followed by pressure	Casing Diameter (in):	2	
Total Casing Length (ft):	25.5 (below ground surface)	Casing Material:	SCH 40 PVC	
Total Casing Volume (ft ³):	0.55	Casting/Ground Surf (ft):	16"	(below ground surface)
Total Sandpack Length (ft):	6.5	Borehole Diameter (in):	8	
Sandpack Annulus (ft ²):	0.32	Sandpack Voidspace (ft ³):	0.62	
Total Sandpack Volume (ft ³):	2.08	Grout Proportions:	94# (sack) Type	e I/II to ± 6 gal water
GPS:	N 37°50,037	TOC to TOG (tremie):	511	inches
	W 122º 16.393	TOC to TOG (pressure):	-	inches

Note obstructions, well damage, etc. under comments. Reference all measurements from the ground surface. 1 $ft^3 = 7.4$	481 gallons = 28.3 L. Assume sandpack porosity = 0.3
Theoretical grout take (casing volume plus sandpack voidspace): 1.17 ft ³ Actual total grout	t take: 1.069 cubic feet = 8 gallons
Was tremie pipe used to place grout? $\underline{\gamma}$ Describe tremie pipe: $\underline{75^{1} \text{ ID PVL}}_{\text{Top-of-C}}$	Casing to Top of Grout
Was the grout pressurized? <u>N</u> Pressure (psi): <u>Hold time (minutes):</u>	-
Describe protector casing: Describe removal of protection	casing:
Describe cut-off of well casing: USING a Saw and cutters the Well ca	sing was removed 6" below TOC
Describe restoration of area: Base stilled with portland cement	after well vault
was removed.	*

Project Name/Number:	Market Street/P257	Logged By:	Kevin R. Wildenberg	
Property Location:	4401 Market Street, Oakland CA	Date:	5 January 2012	
Well Identification:	MW2	Depth to Water (ft):	12.38 (below grou	und surface)
Measuring Point:	Ground surface	Total Depth (ft):	24.6 (below grou	und surface)
Abandonment Methods:	Pressure Grout and Overdrill ±5ft bgs	Casing Diameter (in):	2	
Total Casing Length (ft):	27.5 (below ground surface)	Casing Material:	Schedule 40 PVC	
Original Drilled Depth (ft):	27.5 (below ground surface)	Overdrilled Diameter (in):	10"	
Original Borehole Diameter (in):	8	Overdrilled Depth (ft):	3.5' to 15"	bgs = 475
Overdrilled Borehole Volume (ft ³):	10.28	Grout Proportions:	94# Type I/II to ±6 gallo	ons water
GPS:	N 39 1801.10016 37 "50.029"	TOC to TOG (tremie):	1"	inches
	W Machan 61/22° 16.401	TOC to TOG (pressure):	2"	inches
Note obstructions, well damage, etc. under con	mments. Reference depths from the measuring po 10.623 Gallages	int. 1 $ft^3 = 7.481$ gallons = 28.3 L.	. 5	
Theoretical grout take (overdrilled bor	ehole volume): 1.42 ft ³ Actual total	grout take: K cubic fe	et = 20 gallons	
Was tremie pipe used to place grout?	Describe tremie pipe:	5 1D PVC		
Was the grout pressurized?	Pressure (psi): 25 Hold time (n	ninutes): 5		
Describe protector casing:	Describe rer	noval of protection casing: _		
Describe cut-off of well casing:	erdrilled 3.5' feet bgs, i	vell vault and concre	eteskiit were rema	wed, Soll was
Describe restoration of wellhead area:	saw but 6" past concrete skirt in and finished with tack and	Sc vare whot coat asphi	att layerd with jump	ing jack
Comments: We direct push	to knock out well vault			

1

LOG FOR WELL DESTRUCTION/DECOMMISSIONING/ABANDONMENT BY GROUTING

Project Name/Number:	Market Street/P257	Logged By:	Kevin R. Wilde	enberg
Property Location:	4401 Market Street, Oakland CA	Date:	5 January 2012	
Well Identification:	MW3	Depth to Water (ft):	24 '8	(below ground surface)
Measuring Point:	Ground surface	Total Depth (ft):	13'5	(below ground surface)
Abandonment Methods:	Tremie grout followed by pressure	Casing Diameter (in):	2	
Total Casing Length (ft):	27.5 (below ground surface)	Casing Material:	SCH 40 PVC	
Total Casing Volume (ft ³):	0.60	Casting/Ground Surf (#):	7″	(below ground surface)
Total Sandpack Length (ft):	8.5	Borehole Diameter (in):	8	
Sandpack Annulus (ft ²):	0.32	Sandpack Voidspace (ft ³):	0.82	
Total Sandpack Volume (ft ³):	2.72	Grout Proportions:	94# (sack) Type	e I/II to ± 6 gal water
GPS:	N 37° 50.036	TOC to TOG (tremie):	0"	inches
	W 122° 16.393	TOC to TOG (pressure):		inches
Note obstructions, well damage, etc.	under comments. Reference all measurements from the gro	und surface. 1 $ft^3 = 7.481$ gallons	= 28.3 L. Assume s	sandpack porosity $= 0.3$

Theoretical grout take (casing volume plus sandpack voidspace): <u>1.42</u> ft ³ Actual total grout take: <u>$/.34'$</u> cubic feet = <u>$^{\prime}/0$</u> gallons
Was tremie pipe used to place grout? \checkmark Describe tremie pipe: .75 <i>ID PVC</i>
Was the grout pressurized? Pressure (psi): Hold time (minutes):
Describe protector casing: Describe removal of protection casing:
Describe cut-off of well casing: Not rest off per
Describe restoration of area: Cast Iron ring was removed using a concrete drill and the
well varity was backfilled with portland cement per instructions by

Project Name/Number:	Market Street/P257	Logged By: Kevin R. V	Wildenberg
Property Location:	4401 Market Street, Oakland CA	Date: 5 January 2	2012
Well Identification:	MW4	Depth to Water (ft): /2.85	(below ground surface)
Measuring Point:	Ground surface	Total Depth (ft): 24.6	(below ground surface)
Abandonment Methods:	Pressure Grout and Overdrill ±5ft bgs	Casing Diameter (in): 2	
Total Casing Length (ft):	25.0 (below ground surface)	Casing Material: Schedule 4	O PVC
Original Drilled Depth (ft):	25.0 (below ground surface)	Overdrilled Diameter (in): 10 "	2
Original Borehole Diameter (in):	8	Overdrilled Depth (ft [®]): 3'5	1 -fo 15" bas = 4.
Overdrilled Borehole Volume (ft ³):	10.28	Grout Proportions: 94# Type I	/II to ± 6 gallons water
GPS:	N 37° 50. 029"	TOC to TOG (tremie):	1 ¹ 1 ^{''} inches
	W 122° 16. 399	TOC to TOG (pressure):	3 ¹⁾ inches
Note obstructions, well damage, etc. under co Theoretical grout take (overdrilled bor	rehole volume): 2.08 ft ³ Actual total	point. 1 ft ³ = 7.481 gallons = 28.3 L. grout take: 1.74 cubic feet = 1.74	13 gallons
Was tremie pipe used to place grout?	Describe tremie pipe:	. 15 10 PVC	
Was the grout pressurized?	Pressure (psi): $\frac{25}{100}$ Hold time (r	minutes): 5	
Describe protector casing:	— Describe ren	moval of protection casing:	-
Describe cut-off of well casing: $0 \sqrt{c}$	erdrilled 3.5' feetbas, well	Vautt and concrete start y	vas venoved and sell seperat
Describe restoration of wellhead area:	Square 6 past concrete skirt su	V (UT; NOT LOUI asprayII layer	a with jumping jack

and win iszed with hot tack and asphalt voller

Comments:

Project Name/Number:	Market Street/P257	Logged By:	Kevin R. Wi	ldenberg
Property Location:	4401 Market Street, Oakland CA	Date:	5 January 20	12
Well Identification:	MW5	Depth to Water (ft):	12.65 ((below ground surface)
Measuring Point:	Ground surface	Total Depth (ft):	29.9 ((below ground surface)
Abandonment Methods:	Pressure Grout and Overdrill ± 5 ft bgs	Casing Diameter (in):	2	
Total Casing Length (ft):	25.0 (below ground surface)	Casing Material:	Schedule 40	PVC
Original Drilled Depth (ft):	25.0 (below ground surface)	Overdrilled Diameter (in):	10" lo"	
Original Borehole Diameter (in):	8	Overdrilled Depth (ft ³):	4' 40	15 695=5.25
Overdrilled Borehole Volume (ft ³):	11.37	Grout Proportions:	94# Type I/II	to ± 6 gallons water
GPS:	N 37. 50.028'	TOC to TOG (tremie):	0"	inches
	W 122° 16.405'	TOC to TOG (pressure):	3″	inches

Note obstructions, well damage, etc. under comments. Reference depths from the measuring point. 1 ft³ = 7.481 gallons = 28.3 L.

13. 5
Theoretical grout take (overdrilled borehole volume): $L \mathscr{G} ft^3$ Actual total grout take: $/\mathscr{G} ft^3$ cubic feet = $//$ gallons
Was tremie pipe used to place grout? \angle Describe tremie pipe: -75 ID PVC
Was the grout pressurized? $\underline{}$ Pressure (psi): $\underline{}$ Hold time (minutes): $\underline{}$
Describe protector casing: Describe removal of protection casing:
Describe cut-off of well casing: overdrilled 3.5 bgs, well varit and concrete stirt removed, Soil was septrated
Describe restoration of wellhead area: Saw (ut 6" square past concrete skirt Vhot coat asphalt layered with jum ping jack- and finisted with bot tack and asphalt voller
Comments:

Project Name/Number:	Market Street/P257	Logged By: Kevin R. Wildenberg
Property Location:	4401 Market Street, Oakland CA	Date: 5 January 2012
Well Identification:	MW6	Depth to Water (ft): 12.60 (below ground surface)
Measuring Point:	Ground surface	Total Depth (ft): 24.8 (below ground surface)
Abandonment Methods:	Pressure Grout and Overdrill ±5ft bg	Casing Diameter (in): 2
Total Casing Length (ft):	25.0 (below ground surfac	Casing Material: Schedule 40 PVC
Original Drilled Depth (ft):	25.0 (below ground surfac) Overdrilled Diameter (in): 10^{11}
Original Borehole Diameter (in):	8	Overdrilled Depth (ft^{\bullet}): 3.5' to 15" bys = 4.75
Overdrilled Borehole Volume (ft ³):	10.28	Grout Proportions: 94# Type I/II to ± 6 gallons water
GPS:	N 37 0 50.026 "	TOC to TOG (tremie): / ¹¹ inches
	W 122°16.4011	TOC to TOG (pressure): $2.75''$ inches

Note obstructions, well damage, etc. under comments. Reference depths from the measuring point. 1 ft³ = 7.481 gallons = 28.3 L.

15 Sqallons
Theoretical grout take (overdrilled borehole volume): 205 ft ³ Actual total grout take: 0.94 cubic feet = 7 gallons $7ga/$
Was tremie pipe used to place grout? \checkmark Describe tremie pipe: .75 ID PVC 5 foot flights
Was the grout pressurized? γ Pressure (psi): 25 Hold time (minutes): 5
Describe protector casing: Describe removal of protection casing:
Describe cut-off of well casing: overdrilled 3.5 bgs, well Valult concrete skirt removed, soil was separated
Describe restoration of wellhead area: 6" past concrete skirf Square saw cut not cout asphatt layered 4 jumping jack
Comments: No water came up with tremie, Only 7 gallons growt

LOG FOR WELL DESTRUCTION/DECOMMISSIONING/ABANDONMENT BY GROUTING

Project Name/Number:	Market Street/P257	Logged By:	Kevin R. Wilde	nberg
Property Location:	4401 Market Street, Oakland CA	Date:	5 January 2012	
Well Identification:	MW7	Depth to Water (ft):	14.20	(below ground surface)
Measuring Point:	Ground surface	Total Depth (ft):	24.6	(below ground surface)
Abandonment Methods:	Tremie grout followed by pressure	Casing Diameter (in):	2	
Total Casing Length (ft):	25.0 (below ground surface)	Casing Material:	SCH 40 PVC	
Total Casing Volume (ft ³):	0.54	Casting/Ground Surf (4):	8"	(below ground surface)
Total Sandpack Length (ft):	16	Borehole Diameter (in):	8	
Sandpack Annulus (ft ²):	0.32	Sandpack Voidspace (ft ³):	1.54	
Total Sandpack Volume (ft ³):	5.13	Grout Proportions:	94# (sack) Type	e I/II to ± 6 gal water
GPS:	N 37°50.016"	TOC to TOG (tremie):	0"	inches
	W 122° 16.406 "	TOC to TOG (pressure):		inches

Note obstructions, well damage, etc. under comments. Reference all measurements from the ground surface. 1 $ft^3 = 7.481$ gallons = 28.3 L. Assume sandpack porosity = 0.3
Theoretical grout take (casing volume plus sandpack voidspace): 2.08 ft ³ Actual total grout take: 1.20 cubic feet = 9 gallons
Was tremie pipe used to place grout? \checkmark Describe tremie pipe:75 ID PVC
Was the grout pressurized? Pressure (psi): Hold time (minutes):
Describe protector casing: Describe removal of protection casing:
Describe cut-off of well casing: USING SAW and cuters well casin was removed 6" below TOC
Describe restoration of area: vell Vault removed, saw cut square would concrete skirt, back
filled with portlant cement spread to match existing Grade

ATTACHMENT 7

Field Sampling Form, Chain-of-Custody Form, and Laboratory Report for Waste Soil

Project Name/Number:	Market Street/P257	Logged By:	Kevin R. Wildenberg
Property Location:	4401 Market Street	Date:	5 January 2012
Sample ID:	Abandon1	Driller:	Cascade Drilling
Sampling Equipment:	Streamborn Soil Sampling Supplies	Comments:	

Note unusual conditions or activities under comments.

Sample ID	Describe Location	Sample Time	Sample Depth Interval (feet)	Sample Type	End OVM Screening (ppm v/v)	Chemical Odor	Chemical Staining	Soil Classification	Comments
Abandon l	Composite Sample from Wells located In Road way	1:47	0.0-5.0	С	NM	hore	hore	gravelly lean clay	

Sample type: G = grab. C = composite.

End OVM screening was performed by holding the organic vapor meter probe adjacent to each end of the freshly cut liner and recording the maximum reading. End screening was performed immediately after cutting the liner.

Field organic vapor meter = Mini Rae Classic or Mini Rae 2000 meter, equipped with 10.6 eV photoionization detector, calibrated to 100 ppm v/v isobutylene.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-39642-1

Client Project/Site: 4401 Market Street Oakland, CA

For:

Streamborn 900 Santa Fe Avenue Albany, California 94706

Attn: Mr. Douglas W Lovell

Surmider Sidhu

Authorized for release by: 1/13/2012 3:58:09 PM

Surinder Sidhu Customer Service Manager surinder.sidhu@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	14
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Definitions/Glossary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 720-39642-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-39642-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA No analytical or quality issues were noted.

GC Semi VOA No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Client Sample ID: Abandon1 Lab Sample ID: 720-39642-1 MDL Unit Dil Fac D Method Analyte Result Qualifier RL Prep Type Diesel Range Organics [C10-C28] 0.99 mg/Kg 8015B Total/NA 40 1 5.0 1.9 4 6010B Total/NA Lead mg/Kg

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Result Qualifier

Lab Sample ID: 720-39642-1

Matrix: Solid 5 Analyzed Dil Fac 6 /09/12 23:57 1 6

Methyl tert-butyl ether	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	- 2
Benzene	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
EDB	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
1,2-DCA	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
Ethylbenzene	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
Toluene	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
Xylenes, Total	ND		10	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
Gasoline Range Organics (GRO) -C5-C12	ND		250	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
ТВА	ND		10	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
DIPE	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
ТАМЕ	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
Ethyl t-butyl ether	ND		5.0	ug/Kg	01/09/12 19:00	01/09/12 23:57	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	100		45 - 131		01/09/12 19:00	01/09/12 23:57	1	
1,2-Dichloroethane-d4 (Surr)	101		60 - 140		01/09/12 19:00	01/09/12 23:57	1	
Toluene-d8 (Surr)	103		58 - 140		01/09/12 19:00	01/09/12 23:57	1	

RL

MDL Unit

D

Prepared

Client Sample ID: Abandon1

Analyte

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: Abandon1 Date Collected: 01/05/12 13:47 Date Received: 01/06/12 18:10							Lab S	Sample ID: 720- Matri	39642-1 x: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	40		0.99		mg/Kg		01/10/12 07:09	01/10/12 22:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	102		40 - 130				01/10/12 07:09	01/10/12 22:38	1

Method: 6010B - Metals (ICP)									
Client Sample ID: Abandon1 Date Collected: 01/05/12 13:47 Date Received: 01/06/12 18:10							Lab S	Sample ID: 720- Matri	39642-1 ix: Solid
Analyte Lead	Result 5.0	Qualifier	RL 1.9	MDL	Unit mg/Kg	D	Prepared 01/11/12 18:49	Analyzed 01/13/12 02:27	Dil Fac

RL

5.0

5.0

5.0

5.0

5.0

5.0

10

10

5.0

5.0

5.0

250

MDL Unit

ug/Kg

D

Prepared

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

01/09/12 19:00

Lab Sample ID: MB 720-105710/1-A

Matrix: Solid

Methyl tert-butyl ether

Analyte

Benzene

1,2-DCA

Toluene

-C5-C12 TBA

DIPE

TAME

Ethylbenzene

Xylenes, Total

Ethyl t-butyl ether

EDB

Analysis Batch: 105692

Gasoline Range Organics (GRO)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

MB MB Result Qualifier

ND

Client Sample ID: Method Blank

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

01/09/12 20:05

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 105710 Dil Fac Analyzed 01/09/12 20:05

6 7 8 9 10 11		
7 8 9 10 11	; Ī	
8 9 10 11		7
9 10 11	l	8
10 11	l	9
11	I	
49	l	
	l	

	МВ	МВ					2
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	98		45 - 131	01/09/12 19:00	01/09/12 20:05	1	
1,2-Dichloroethane-d4 (Surr)	98		60 - 140	01/09/12 19:00	01/09/12 20:05	1	
Toluene-d8 (Surr)	99		58 - 140	01/09/12 19:00	01/09/12 20:05	1	

Lab Sample ID: LCS 720-105710/2-A Matrix: Solid

Analysis Batch: 105692

Analysis Batch: 105692							Prep Batch: 105710
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	50.0	56.0		ug/Kg		112	70 - 144
Benzene	50.0	48.6		ug/Kg		97	70 - 130
EDB	50.0	53.2		ug/Kg		106	70 - 140
1,2-DCA	50.0	48.6		ug/Kg		97	70 - 130
Ethylbenzene	50.0	48.4		ug/Kg		97	80 - 137
Toluene	50.0	48.6		ug/Kg		97	80 - 128
m-Xylene & p-Xylene	100	100		ug/Kg		100	70 - 146
o-Xylene	50.0	51.8		ug/Kg		104	70 - 140
ТВА	1000	891		ug/Kg		89	63 - 130
DIPE	50.0	53.8		ug/Kg		108	70 - 131
TAME	50.0	57.6		ug/Kg		115	70 - 140
Ethyl t-butyl ether	50.0	52.6		ug/Kg		105	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene			45 - 131
1,2-Dichloroethane-d4 (Surr)	103		60 - 140
Toluene-d8 (Surr)	101		58 - 140

Lab Sample ID: LCS 720-105710/4-A Matrix: Solid					Client S	Sample	ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 105692	Spike	LCS	LCS				Prep Batch: 105710 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)	1000	812		ug/Kg		81	61 - 128

-C5-C12

Limits

45 - 131

60 - 140

58 - 140

Lab Sample ID: LCS 720-105710/4-A

Matrix: Solid

Surrogate

Analysis Batch: 105692

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

LCS LCS

%Recovery Qualifier

100

100

101

Prep Type: Total/NA

Prep Batch: 105710

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

7

Lab Sample ID: LCSD 720-105710/3-A Matrix: Solid

Analysis	Batch: 105692
----------	---------------

						Prep B	atch: 1	05710
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
50.0	54.4		ug/Kg		109	70 - 144	3	20
50.0	47.6		ug/Kg		95	70 - 130	2	20
50.0	50.4		ug/Kg		101	70 ₋ 140	5	20
50.0	47.8		ug/Kg		96	70 - 130	2	20
50.0	48.0		ug/Kg		96	80 - 137	1	20
50.0	48.0		ug/Kg		96	80 - 128	1	20
100	98.2		ug/Kg		98	70 _ 146	2	20
50.0	51.0		ug/Kg		102	70 ₋ 140	2	20
1000	916		ug/Kg		92	63 - 130	3	20
50.0	53.2		ug/Kg		106	70 ₋ 131	1	20
50.0	55.8		ug/Kg		112	70 - 140	3	20
50.0	51.6		ug/Kg		103	70 - 130	2	20
	Spike Added 50.0	Spike LCSD Added Result 50.0 54.4 50.0 47.6 50.0 50.4 50.0 47.6 50.0 47.8 50.0 48.0 50.0 48.0 50.0 51.0 1000 916 50.0 53.2 50.0 55.8 50.0 51.6	Spike LCSD LCSD Added Result Qualifier 50.0 54.4 0 50.0 47.6 0 50.0 50.4 0 50.0 50.4 0 50.0 47.6 0 50.0 48.0 0 50.0 48.0 0 50.0 48.0 0 100 98.2 0 50.0 51.0 0 1000 916 0 50.0 53.2 0 50.0 55.8 0 50.0 51.6 0	Spike LCSD LCSD Added Result Qualifier Unit 50.0 54.4 ug/Kg 50.0 47.6 ug/Kg 50.0 50.4 ug/Kg 50.0 47.8 ug/Kg 50.0 47.8 ug/Kg 50.0 48.0 ug/Kg 50.0 48.0 ug/Kg 50.0 51.0 ug/Kg 100 98.2 ug/Kg 50.0 51.0 ug/Kg 50.0 51.0 ug/Kg 50.0 53.2 ug/Kg 50.0 55.8 ug/Kg 50.0 51.6 ug/Kg	Spike LCSD LCSD Added Result Qualifier Unit D 50.0 54.4 ug/Kg ug/Kg 50.0 47.6 ug/Kg 50.0 50.4 ug/Kg 50.0 47.6 ug/Kg 50.0 47.8 ug/Kg 50.0 48.0 ug/Kg 50.0 48.0 ug/Kg 100 98.2 ug/Kg 100 98.2 ug/Kg 50.0 51.0 ug/Kg 1000 916 ug/Kg 50.0 53.2 ug/Kg 50.0 55.8 ug/Kg 50.0 51.6 ug/Kg	Spike LCSD LCSD Added Result Qualifier Unit D %Rec 50.0 54.4 ug/Kg 109 109 50.0 47.6 ug/Kg 95 50.0 50.4 ug/Kg 101 50.0 50.4 ug/Kg 96 50.0 47.8 ug/Kg 96 50.0 48.0 ug/Kg 96 50.0 48.0 ug/Kg 96 50.0 48.0 ug/Kg 98 50.0 51.0 ug/Kg 98 50.0 51.0 ug/Kg 92 1000 916 ug/Kg 92 50.0 53.2 ug/Kg 102 1000 55.8 ug/Kg 112 50.0 51.6 ug/Kg 103	Spike LCSD LCSD Wite Mage Mage Limits Added Result Qualifier Unit D %Rec. Limits 50.0 54.4 ug/Kg D %Rec. Limits 50.0 54.4 ug/Kg 109 70 - 144 50.0 47.6 ug/Kg 95 70 - 130 50.0 50.4 ug/Kg 96 70 - 140 50.0 47.8 ug/Kg 96 80 - 130 50.0 48.0 ug/Kg 96 80 - 137 50.0 48.0 ug/Kg 98 70 - 140 100 98.2 ug/Kg 98 70 - 140 1000 916 ug/Kg 92 63 - 130 50.0 51.0 ug/Kg 92 63 - 130 50.0 53.2 ug/Kg 106 70 - 131 50.0 55.8 ug/Kg 112 70 - 140 50.0 51.6 ug/Kg	Added Result Qualifier Unit D %Rec. 50.0 54.4 ug/Kg D %Rec Limits RPD 50.0 54.4 ug/Kg 95 70-130 2 50.0 47.6 ug/Kg 96 70-130 2 50.0 50.4 ug/Kg 96 70-130 2 50.0 47.8 ug/Kg 96 70-130 2 50.0 47.8 ug/Kg 96 80-137 1 50.0 48.0 ug/Kg 96 80-128 1 100 98.2 ug/Kg 98 70-140 2 50.0 51.0 ug/Kg 92 63-130 3 1000 916 ug/Kg 92 63-130 3 50.0 53.2 ug/Kg 106 70-131 1 50.0 55.8 ug/Kg 112 70-140 3 50.0 51.6 ug/Kg

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		45 - 131
1,2-Dichloroethane-d4 (Surr)	102		60 - 140
Toluene-d8 (Surr)	101		58 - 140

Lab Sample ID: LCSD 720-105710/5-A			Client	Samp	le ID: La	ab Contro	I Sampl	e Dup	
Matrix: Solid						Prep Ty	ype: Tot	al/NA	
Analysis Batch: 105692						Prep E	Batch: 1	05710	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	1000	835		ug/Kg		84	61 - 128	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		45 - 131
1,2-Dichloroethane-d4 (Surr)	104		60 - 140
Toluene-d8 (Surr)	101		58 - 140

Lab Sample ID: 720-39642-1 MS Matrix: Solid

-C5-C12

Prep Type: Total/NA Analysis Batch: 105692 Prep Batch: 105710 Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Analyte Added Unit %Rec Limits D Methyl tert-butyl ether ND 50.1 58.5 69 - 130 ug/Kg 117 ND 50.1 48.5 97 70 - 130 Benzene ug/Kg EDB ND 50.1 53.1 ug/Kg 106 66 - 135 1,2-DCA ND 50.1 48.3 ug/Kg

96	70 - 130	

Client Sample ID: Abandon1

TestAmerica San Francisco 1/13/2012

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-39642-1 MS Matrix: Solid Analysis Batch: 105692								Clien	t Sample ID: Abandon1 Prep Type: Total/NA Prep Batch: 105710
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	ND		50.1	49.1		ug/Kg		98	65 - 130
Toluene	ND		50.1	49.7		ug/Kg		99	70 - 130
m-Xylene & p-Xylene	ND		100	100		ug/Kg		100	70 - 130
o-Xylene	ND		50.1	51.9		ug/Kg		104	68 - 130
ТВА	ND		1000	906		ug/Kg		90	70 - 130
DIPE	ND		50.1	55.9		ug/Kg		112	70 - 130
TAME	ND		50.1	60.1		ug/Kg		120	70 - 130
Ethyl t-butyl ether	ND		50.1	54.9		ug/Kg		110	70 - 130
	MS	MS							
Surrogate	%Recoverv	Qualifier	l imits						

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene			45 - 131
1,2-Dichloroethane-d4 (Surr)	102		60 - 140
Toluene-d8 (Surr)	102		58 - 140

Lab Sample ID: 720-39642-1	MSD
Matrix: Solid	
Analysis Batch: 105692	

Toluene-d8 (Surr)

Analysis Baton. 100002									1100 5		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		49.2	56.1		ug/Kg		114	69 - 130	4	20
Benzene	ND		49.2	47.4		ug/Kg		96	70 - 130	2	20
EDB	ND		49.2	50.4		ug/Kg		102	66 _ 135	5	20
1,2-DCA	ND		49.2	47.2		ug/Kg		96	70 - 130	2	20
Ethylbenzene	ND		49.2	46.7		ug/Kg		95	65 _ 130	5	20
Toluene	ND		49.2	47.2		ug/Kg		96	70 - 130	5	20
m-Xylene & p-Xylene	ND		98.4	94.9		ug/Kg		96	70 - 130	6	20
o-Xylene	ND		49.2	49.0		ug/Kg		100	68 _ 130	6	20
ТВА	ND		984	882		ug/Kg		90	70 - 130	3	20
DIPE	ND		49.2	54.7		ug/Kg		111	70 - 130	2	20
TAME	ND		49.2	57.9		ug/Kg		118	70 - 130	4	20
Ethyl t-butyl ether	ND		49.2	53.1		ug/Kg		108	70 - 130	3	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	101		45 - 131								
1,2-Dichloroethane-d4 (Surr)	101		60 - 140								

Method: 8015B - Diesel Range Organics (DRO) (GC)

102

Lab Sample ID: MB 720-105717/1-A Matrix: Solid Analysis Batch: 105721							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	d Blank fotal/NA : 105717
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		0.99		mg/Kg		01/10/12 07:09	01/10/12 23:02	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	108		40 - 130				01/10/12 07:09	01/10/12 23:02	1

58 - 140

Client Sample ID: Abandon1 Prep Type: Total/NA Prep Batch: 105710

TestAmerica San Francisco 1/13/2012
Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 720-105717/2-A Matrix: Solid Analysis Batch: 105721 Spike			Snika	105		С	lient S	Sample	ID: Lab Co Prep Ty Prep B	ntrol Sa /pe: Tot atch: 1	ample al/NA 05717
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics [C10-C28]			82.8	74.9		mg/Kg		90	50 - 150		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
p-Terphenyl	104		40 - 130								
Lab Sample ID: LCSD 720-105	717/3-A					Client	Samp	le ID: L	ab Control	Sampl	e Dup
Matrix: Solid									Prep Ty	pe: To	al/NA
Analysis Batch: 105721									Prep B	atch: 1	05717
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics			82.4	75.1		mg/Kg		91	50 - 150	0	35
[C10-C28]											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-105862/1-A									Client Sa	ample ID: I	Nethod	Blank
Matrix: Solid										Prep Ty	ype: To	tal/NA
Analysis Batch: 105971										Prep E	Batch: 1	05862
-	MB	MB										
Analyte	Result	Qualifier		RL	М	DL Unit		D Pr	epared	Analyze	ed	Dil Fac
Lead	ND			0.50		mg/Kg		01/1	1/12 18:49	01/13/12 0	02:06	1
Lab Sample ID: LCS 720-105862/2-A								Client	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid										Prep Ty	ype: To	tal/NA
Analysis Batch: 105971										Prep E	Batch: 1	05862
			Spike		LCS	LCS				%Rec.		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Lead			50.0		48.9		mg/Kg		98	80 - 120		
Lab Sample ID: LCSD 720-105862/3-A							Clie	ent Sam	ple ID: L	ab Contro	I Samp	le Dup
Matrix: Solid										Prep Ty	ype: To	tal/NA
Analysis Batch: 105971										Prep E	Batch: 1	05862
-			Spike		LCSD	LCSD				%Rec.		RPD
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead			50.0		49.6		mg/Kg		99	80 - 120	1	20
Lab Sample ID: LCSSRM 720-105862	/20-A							Client	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid										Prep Ty	ype: To	tal/NA
Analysis Batch: 105971										Prep E	Batch: 1	05862
-			Spike		LCSSRM	LCSSRM				%Rec.		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Lead			181		152		mg/Kg		84	62 - 113		

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 720-39642-1 MS Matrix: Solid Analysis Batch: 105971	Sample	Sample	Spike	MS	MS			Clien	t Sample I Prep Ty Prep E %Rec.	D: Abai /pe: To Batch: 1	ndon1 tal/NA 05862
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	5.0		48.5	46.7		mg/Kg		86	75 _ 125		
Lab Sample ID: 720-39642-1 MSD Matrix: Solid Analysis Batch: 105971	Sample	Sample	Spike	MSD	MSD			Clien	t Sample I Prep Ty Prep E %Rec.	D: Abai /pe: To Batch: 1	ndon1 tal/NA 05862
Analvte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	5.0		49.0	46.1		mg/Kg		84	75 - 125	1	20

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

GC/MS VOA

Analy	/sis	Batc	h: 1	05692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39642-1	Abandon1	Total/NA	Solid	8260B/CA_LUFT	105710
720-39642-1 MS	Abandon1	Total/NA	Solid	MS 8260B/CA_LUFT	105710
				MS	
720-39642-1 MSD	Abandon1	Total/NA	Solid	8260B/CA_LUFT MS	105710
LCS 720-105710/2-A	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	105710
LCS 720-105710/4-A	Lab Control Sample	Total/NA	Solid	MS 8260B/CA_LUFT	105710
LCSD 720-105710/3-A	Lab Control Sample Dup	Total/NA	Solid	MS 8260B/CA_LUFT	105710
	Lab Control Sample Dup	Total/NIA	Solid	MS	105710
LCSD 720-1037 10/3-A		Total/INA	Solid	8260B/CA_LUFT MS	105710
MB 720-105710/1-A	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS	105710

Prep Batch: 105710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39642-1	Abandon1	Total/NA	Solid	5030B	
720-39642-1 MS	Abandon1	Total/NA	Solid	5030B	
720-39642-1 MSD	Abandon1	Total/NA	Solid	5030B	
LCS 720-105710/2-A	Lab Control Sample	Total/NA	Solid	5030B	
LCS 720-105710/4-A	Lab Control Sample	Total/NA	Solid	5030B	
LCSD 720-105710/3-A	Lab Control Sample Dup	Total/NA	Solid	5030B	
LCSD 720-105710/5-A	Lab Control Sample Dup	Total/NA	Solid	5030B	
MB 720-105710/1-A	Method Blank	Total/NA	Solid	5030B	

GC Semi VOA

Prep Batch: 105717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39642-1	Abandon1	Total/NA	Solid	3546	
LCS 720-105717/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-105717/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-105717/1-A	Method Blank	Total/NA	Solid	3546	
Analysis Batch: 105720					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39642-1	Abandon1	Total/NA	Solid	8015B	105717
Analysis Batch: 105721					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-105717/2-A	Lab Control Sample	Total/NA	Solid	8015B	105717
LCSD 720-105717/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	105717
MB 720-105717/1-A	Method Blank	Total/NA	Solid	8015B	105717

Metals

Prep Batch: 105862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39642-1	Abandon1	Total/NA	Solid	3050B	
720-39642-1 MS	Abandon1	Total/NA	Solid	3050B	
720-39642-1 MSD	Abandon1	Total/NA	Solid	3050B	

QC Association Summary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

TestAmerica Job ID: 720-39642-1

Metals (Continued)

Prep Batch: 105862 (Continued)

• • •	,				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-105862/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-105862/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-105862/20-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-105862/1-A	Method Blank	Total/NA	Solid	3050B	
Analysis Batch: 105971					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39642-1	Abandon1	Total/NA	Solid	6010B	105862
720-39642-1 MS	Abandon1	Total/NA	Solid	6010B	105862
720-39642-1 MSD	Abandon1	Total/NA	Solid	6010B	105862
LCS 720-105862/2-A	Lab Control Sample	Total/NA	Solid	6010B	105862
LCSD 720-105862/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	105862
LCSSRM 720-105862/20-A	Lab Control Sample	Total/NA	Solid	6010B	105862
MD 720 105962/1 A	Mothod Plank	Total/NIA	Solid	6010P	105862

Certification Summary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica San Francisco	California	State Program	9	2496

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S			
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL SF
6010B	Metals (ICP)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA TestAmerica Job ID: 720-39642-1

Lak Osmala ID		Madain	0 - 11 41	Deschurd
Lab Sample ID		Matrix	Collected	Received
720-39642-1	Abandon1	Solid	01/05/12 13:47	01/06/12 18:10

12

720-39642

Streamborn

Chain-of-Custody Form

Project Name: Market Street	Project Location: 4401 Market Street, Oakland CA	Project Number: P257		
Sampler: Kevin R Wildenberg	Laboratory: TestAmerica	Laboratory Number: 925-484-1919		

]	Matri	x	Ty	/pe	Co	intainers		Tu	rnarou	und			Analy	/ses			
Sample Designation	Depth (feet)	Date	Time	Soil	Water	Vapor	Grab	Composite	Quantity	Type	Preservative (in addition to ice)	24 Hour	5 Working Days	10 Working Days		TPH-gasoline/BTEX/fuel oxygenates	TPHdiesel	Total Lead		Sampler Comments	Laboratory Comments
Abandon1		05-Jan-12	1:47	Х				X	1	Liner	None			х		X	Х	Х		4 subsamples	
Subsamples were	collected fr	om the drumn	ned waste so	oil pro	oduce	d by	overd	lrillin	g the	wells. The	subsample	s were	e com	osited	i in fie	ld and	packed	into th	e líner.		

Note: Sampler and laboratory to observe preservative, condition, integrity, etc. of samples and record (under "Comments") any exceptions from standard protocols.

6	\square	1	, A	1				2	A						
Relinquished By:	47	$\overline{\Lambda}$	'Il	1V	\sim	2-	Received By:	al	1000	\leq	Date:	1-6-1	12	Time:	1636
Relinquished B	Sé	Or	2		. ((Received By:	Jour	1 Mul	en	Date: 🖋	1.le.1	2	Time:	1810
						V									

STREAMBORN Mail: PO Box 8330, Berkeley CA 94707-8330 Office: 900 Santa Fe Ave, Albany CA 94706 510-528-4234 Fax: 528-2613

· ·			
Donast require ter information (Dotroom horn dom	Property EDE for Geotropicar Unload? Vec	Streemborn Logoode: SDA	1 (Jaba) ID 106/01/04/0
Report results to information association to the	riebaie EDr Iol Ocollackel Obload? Its	Bucamboin Logcout. SDA	1 0000100400 10000000000000000000000000
		<u> </u>	

Login Sample Receipt Checklist

Client: Streamborn

Login Number: 39642 List Number: 1

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 720-39642-1

List Source: TestAmerica San Francisco

ATTACHMENT 8

Chain-of-Custody Form and Laboratory Report for Wastewater

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-39643-1

Client Project/Site: 4401 Market Street Oakland, CA

For:

Streamborn 900 Santa Fe Avenue Albany, California 94706

Attn: Mr. Douglas W Lovell

Surmider Sidhu

Authorized for release by: 1/13/2012 4:14:06 PM

Surinder Sidhu Customer Service Manager surinder.sidhu@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

Definitions/Glossary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-39643-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-39643-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) percent recoveries and %RPD for batch #105693 were outside control limits. This is attributed to: non-homogeneity of the sample matrix; abundance of target analytes at concentrations significantly higher than the spike concentration; matrix interferences.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Client Sample ID: WASTEWATER Lab Sample ID: 720-39643-1 Dil Fac D Method Analyte Result Qualifier RL MDL Unit Prep Type Barium 0.014 6010B Total/NA 0.0050 mg/L 1 mg/L Zinc 0.025 0.020 6010B Total/NA 1

5

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: 720-39643-1

Client Sample ID: WASTEWATER
Date Collected: 01/05/12 13:10
Date Received: 01/06/12 18:10

Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		01/10/12 04:19	1
Acetone	ND	50	ug/L		01/10/12 04:19	1
Benzene	ND	0.50	ug/L		01/10/12 04:19	1
Dichlorobromomethane	ND	0.50	ug/L		01/10/12 04:19	1
Bromobenzene	ND	1.0	ug/L		01/10/12 04:19	1
Chlorobromomethane	ND	1.0	ug/L		01/10/12 04:19	1
Bromoform	ND	1.0	ug/L		01/10/12 04:19	1
Bromomethane	ND	1.0	ug/L		01/10/12 04:19	1
2-Butanone (MEK)	ND	50	ug/L		01/10/12 04:19	1
n-Butylbenzene	ND	1.0	ug/L		01/10/12 04:19	1
sec-Butylbenzene	ND	1.0	ug/L		01/10/12 04:19	1
tert-Butylbenzene	ND	1.0	ug/L		01/10/12 04:19	1
Carbon disulfide	ND	5.0	ug/L		01/10/12 04:19	1
Carbon tetrachloride	ND	0.50	ug/L		01/10/12 04:19	1
Chlorobenzene	ND	0.50	ug/L		01/10/12 04:19	1
Chloroethane	ND	1.0	ug/L		01/10/12 04:19	1
Chloroform	ND	1.0	ug/L		01/10/12 04:19	1
Chloromethane	ND	1.0	ug/L		01/10/12 04:19	1
2-Chlorotoluene	ND	0.50	ug/L		01/10/12 04:19	1
4-Chlorotoluene	ND	0.50	ug/L		01/10/12 04:19	1
Chlorodibromomethane	ND	0.50	ug/L		01/10/12 04:19	1
1,2-Dichlorobenzene	ND	0.50	ug/L		01/10/12 04:19	1
1,3-Dichlorobenzene	ND	0.50	ug/L		01/10/12 04:19	1
1,4-Dichlorobenzene	ND	0.50	ug/L		01/10/12 04:19	1
1,3-Dichloropropane	ND	1.0	ug/L		01/10/12 04:19	1
1,1-Dichloropropene	ND	0.50	ug/L		01/10/12 04:19	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		01/10/12 04:19	1
Ethylene Dibromide	ND	0.50	ug/L		01/10/12 04:19	1
Dibromomethane	ND	0.50	ug/L		01/10/12 04:19	1
Dichlorodifluoromethane	ND	0.50	ug/L		01/10/12 04:19	1
1,1-Dichloroethane	ND	0.50	ug/L		01/10/12 04:19	1
1,2-Dichloroethane	ND	0.50	ug/L		01/10/12 04:19	1
1,1-Dichloroethene	ND	0.50	ug/L		01/10/12 04:19	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		01/10/12 04:19	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		01/10/12 04:19	1
1,2-Dichloropropane	ND	0.50	ug/L		01/10/12 04:19	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		01/10/12 04:19	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		01/10/12 04:19	1
Ethylbenzene	ND	0.50	ug/L		01/10/12 04:19	1
Hexachlorobutadiene	ND	1.0	ug/L		01/10/12 04:19	1
2-Hexanone	ND	50	ug/L		01/10/12 04:19	1
Isopropylbenzene	ND	0.50	ug/L		01/10/12 04:19	1
4-Isopropyltoluene	ND	1.0	ug/L		01/10/12 04:19	1
Methylene Chloride	ND	5.0	ug/L		01/10/12 04:19	1
- 4-Methyl-2-pentanone (MIBK)	ND	50	ua/L		01/10/12 04:19	1
Naphthalene	ND	1.0	ua/L		01/10/12 04:19	1
N-Propylbenzene	ND	1.0	ua/L		01/10/12 04:19	1
Styrene	ND	0.50	ua/L		01/10/12 04:19	1
1,1,1,2-Tetrachloroethane	ND	0.50	ua/L		01/10/12 04:19	1
			5			

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

5	
6	
8	
9	

9

Lab Sample	ID: 720-39643-1

Matrix: Water

Date Collected: 01/05/12 13:10	
Date Received: 01/06/12 18:10	

Client Sample ID: WASTEWATER

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			01/10/12 04:19	1
Tetrachloroethene	ND		0.50		ug/L			01/10/12 04:19	1
Toluene	ND		0.50		ug/L			01/10/12 04:19	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			01/10/12 04:19	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			01/10/12 04:19	1
1,1,1-Trichloroethane	ND		0.50		ug/L			01/10/12 04:19	1
1,1,2-Trichloroethane	ND		0.50		ug/L			01/10/12 04:19	1
Trichloroethene	ND		0.50		ug/L			01/10/12 04:19	1
Trichlorofluoromethane	ND		1.0		ug/L			01/10/12 04:19	1
1,2,3-Trichloropropane	ND		0.50		ug/L			01/10/12 04:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			01/10/12 04:19	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			01/10/12 04:19	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			01/10/12 04:19	1
Vinyl acetate	ND		10		ug/L			01/10/12 04:19	1
Vinyl chloride	ND		0.50		ug/L			01/10/12 04:19	1
Xylenes, Total	ND		1.0		ug/L			01/10/12 04:19	1
2,2-Dichloropropane	ND		0.50		ug/L			01/10/12 04:19	1
Gasoline Range Organics (GRO)	ND		50		ug/L			01/10/12 04:19	1
-C5-C12									
ТВА	ND		4.0		ug/L			01/10/12 04:19	1
Ethyl tert-butyl ether	ND		0.50		ug/L			01/10/12 04:19	1
DIPE	ND		0.50		ug/L			01/10/12 04:19	1
TAME	ND		0.50		ug/L			01/10/12 04:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130			-		01/10/12 04:19	1
1,2-Dichloroethane-d4 (Surr)	96		75 _ 138					01/10/12 04:19	1
Toluene-d8 (Surr)	97		70 - 130					01/10/12 04:19	1

5 6 7 8 9 10

Lab Sample ID: 720-39643-1 Matrix: Water

Client Sample ID: WASTEWATER Date Collected: 01/05/12 13:10 Date Received: 01/06/12 18:10

Method: 6010B - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	6
Antimony	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Arsenic	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Barium	0.014		0.0050		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Beryllium	ND		0.0020		mg/L		01/10/12 09:32	01/10/12 17:30	1	5
Cadmium	ND		0.0025		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Chromium	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	6
Cobalt	ND		0.0020		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Copper	ND		0.020		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Lead	ND		0.0050		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Molybdenum	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Nickel	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Selenium	ND		0.020		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Silver	ND		0.0050		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Thallium	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Vanadium	ND		0.010		mg/L		01/10/12 09:32	01/10/12 17:30	1	
Zinc	0.025		0.020		mg/L		01/10/12 09:32	01/10/12 17:30	1	

Method: 7470A - Mercury (CVAA	()								
Client Sample ID: WASTEWATER Date Collected: 01/05/12 13:10 Date Received: 01/06/12 18:10							Lab \$	Sample ID: 720- Matrix	39643-1 k: Water
Analyte Mercury	Result ND	Qualifier	RL 0.00020	MDL	Unit mg/L	<u>D</u>	Prepared 01/11/12 09:08	Analyzed 01/11/12 14:05	Dil Fac

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Matrix: Water
Analysis Batch: 105693

Lab Sample ID: MB 720-105693/5

МВ	МВ					
Analyte Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether ND	0.50	ug/L			01/09/12 19:36	1
Acetone ND	50	ug/L			01/09/12 19:36	1
Benzene ND	0.50	ug/L			01/09/12 19:36	1
Dichlorobromomethane ND	0.50	ug/L			01/09/12 19:36	1
Bromobenzene ND	1.0	ug/L			01/09/12 19:36	1
Chlorobromomethane ND	1.0	ug/L			01/09/12 19:36	1
Bromoform ND	1.0	ug/L			01/09/12 19:36	1
Bromomethane ND	1.0	ug/L			01/09/12 19:36	1
2-Butanone (MEK) ND	50	ug/L			01/09/12 19:36	1
n-Butylbenzene ND	1.0	ug/L			01/09/12 19:36	1
sec-Butylbenzene ND	1.0	ug/L			01/09/12 19:36	1
tert-Butylbenzene ND	1.0	ug/L			01/09/12 19:36	1
Carbon disulfide ND	5.0	ug/L			01/09/12 19:36	1
Carbon tetrachloride ND	0.50	ug/L			01/09/12 19:36	1
Chlorobenzene ND	0.50	ug/L			01/09/12 19:36	1
Chloroethane ND	1.0	ug/L			01/09/12 19:36	1
Chloroform ND	1.0	ug/L			01/09/12 19:36	1
Chloromethane ND	1.0	ug/L			01/09/12 19:36	1
2-Chlorotoluene ND	0.50	ug/L			01/09/12 19:36	1
4-Chlorotoluene ND	0.50	ug/L			01/09/12 19:36	1
Chlorodibromomethane ND	0.50	ug/L			01/09/12 19:36	1
1,2-Dichlorobenzene ND	0.50	ug/L			01/09/12 19:36	1
1,3-Dichlorobenzene ND	0.50	ug/L			01/09/12 19:36	1
1,4-Dichlorobenzene ND	0.50	ug/L			01/09/12 19:36	1
1,3-Dichloropropane ND	1.0	ug/L			01/09/12 19:36	1
1,1-Dichloropropene ND	0.50	ug/L			01/09/12 19:36	1
1,2-Dibromo-3-Chloropropane ND	1.0	ug/L			01/09/12 19:36	1
Ethylene Dibromide ND	0.50	ug/L			01/09/12 19:36	1
Dibromomethane ND	0.50	ug/L			01/09/12 19:36	1
Dichlorodifluoromethane ND	0.50	ug/L			01/09/12 19:36	1
1,1-Dichloroethane ND	0.50	ug/L			01/09/12 19:36	1
1,2-Dichloroethane ND	0.50	ug/L			01/09/12 19:36	1
1,1-Dichloroethene ND	0.50	ug/L			01/09/12 19:36	1
cis-1,2-Dichloroethene ND	0.50	ug/L			01/09/12 19:36	1
trans-1,2-Dichloroethene ND	0.50	ug/L			01/09/12 19:36	1
1,2-Dichloropropane ND	0.50	ug/L			01/09/12 19:36	1
cis-1,3-Dichloropropene ND	0.50	ug/L			01/09/12 19:36	1
trans-1.3-Dichloropropene ND	0.50	ug/L			01/09/12 19:36	1
Ethylbenzene ND	0.50	ug/L			01/09/12 19:36	1
Hexachlorobutadiene ND	1.0	ug/L			01/09/12 19:36	1
2-Hexanone ND	50	ug/L			01/09/12 19:36	1
Isopropylbenzene ND	0.50	ug/L			01/09/12 19:36	1
4-Isopropyltoluene ND	1.0	ug/L			01/09/12 19:36	1
Methylene Chloride ND	5.0	ug/L			01/09/12 19:36	1
4-Methyl-2-pentanone (MIBK) ND	50	uq/L			01/09/12 19:36	1
Naphthalene ND	1.0	ug/L			01/09/12 19:36	1
N-Propylbenzene ND	1.0	ug/L			01/09/12 19:36	1
Styrene ND	0.50	ug/L			01/09/12 19:36	1
1,1,1,2-Tetrachloroethane ND	0.50	ug/L			01/09/12 19:36	1

Client Sample ID: Method Blank

Prep Type: Total/NA

5

7
8
9

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Co	ontinued)
--	-----------

Lab Sample ID: MB 720-105693/5 Matrix

Matri	x: N	/ater	
Analy	ysis	Batch:	105693

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			01/09/12 19:36	1
Tetrachloroethene	ND		0.50		ug/L			01/09/12 19:36	1
Toluene	ND		0.50		ug/L			01/09/12 19:36	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			01/09/12 19:36	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			01/09/12 19:36	1
1,1,1-Trichloroethane	ND		0.50		ug/L			01/09/12 19:36	1
1,1,2-Trichloroethane	ND		0.50		ug/L			01/09/12 19:36	1
Trichloroethene	ND		0.50		ug/L			01/09/12 19:36	1
Trichlorofluoromethane	ND		1.0		ug/L			01/09/12 19:36	1
1,2,3-Trichloropropane	ND		0.50		ug/L			01/09/12 19:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			01/09/12 19:36	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			01/09/12 19:36	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			01/09/12 19:36	1
Vinyl acetate	ND		10		ug/L			01/09/12 19:36	1
Vinyl chloride	ND		0.50		ug/L			01/09/12 19:36	1
Xylenes, Total	ND		1.0		ug/L			01/09/12 19:36	1
2,2-Dichloropropane	ND		0.50		ug/L			01/09/12 19:36	1
Gasoline Range Organics (GRO)	ND		50		ug/L			01/09/12 19:36	1
-C5-C12									
ТВА	ND		4.0		ug/L			01/09/12 19:36	1
Ethyl tert-butyl ether	ND		0.50		ug/L			01/09/12 19:36	1
DIPE	ND		0.50		ug/L			01/09/12 19:36	1
TAME	ND		0.50		ug/L			01/09/12 19:36	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130		01/09/12 19:36	1
1,2-Dichloroethane-d4 (Surr)	85		75 - 138		01/09/12 19:36	1
Toluene-d8 (Surr)	98		70 - 130		01/09/12 19:36	1

Lab Sample ID: LCS 720-105693/6 Matrix: Water

Analysis Batch: 105693

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether		24.3		ug/L		97	62 - 130	
Acetone	125	78.8		ug/L		63	26 - 180	
Benzene	25.0	23.0		ug/L		92	79 ₋ 120	
Dichlorobromomethane	25.0	22.4		ug/L		90	70 - 130	
Bromobenzene	25.0	23.8		ug/L		95	79 ₋ 127	
Chlorobromomethane	25.0	24.9		ug/L		100	70 ₋ 130	
Bromoform	25.0	23.5		ug/L		94	68 ₋ 136	
Bromomethane	25.0	24.2		ug/L		97	43 ₋ 151	
2-Butanone (MEK)	125	102		ug/L		82	54 - 124	
n-Butylbenzene	25.0	23.8		ug/L		95	79 ₋ 142	
sec-Butylbenzene	25.0	23.4		ug/L		94	81 - 134	
tert-Butylbenzene	25.0	23.3		ug/L		93	82 - 135	
Carbon disulfide	25.0	23.0		ug/L		92	58 ₋ 124	
Carbon tetrachloride	25.0	21.9		ug/L		88	77 - 146	
Chlorobenzene	25.0	23.1		ug/L		92	70 ₋ 130	
Chloroethane	25.0	23.3		ug/L		93	62 - 138	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Vinyl chloride

m-Xylene & p-Xylene

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ole NA

7

Analysis Batch: 105693 Spike LCS LCS Spike Lmit Chowdorm 260 21.9 upit 8.8 70.150 Chowdorm 260 23.2 upit 8.8 70.150 Chowdorm 260 23.2 upit 9.0 70.100 Chowdormomethane 260 23.2 upit 9.0 70.100 Chowdormomethane 260 23.2 upit 9.0 70.130 Chowdormomethane 260 24.4 upit 9.6 70.130 1.3-Dictocomethane 250 24.1 upit 9.6 70.130 1.3-Dictocomethane 250 25.1 upit 8.8 70.130 1.2-Dictocomethane 250 25.1 upit 8.7 71.8 1.3-Dictocomethane 250 25.1 upit 8.7 71.8 1.2-Dictocomethane 250 25.1 upit 8.4 72.138 1.3-Dictocomethane 250 25.1	Lab Sample ID: LCS 720-105693/6 Matrix: Water				Clier	nt S	ample I	D: Lab Control Sam Prep Type: Total/I
Spike LCS Verker. Adays Result Quiller upl. D Result Quiller upl. D Result Quiller upl. D Result Quiller Upl. D Result Quiller Result Quiller Result Quiller Result Quiller D	Analysis Batch: 105693							
Analyse Added Result Qualifier Unit P %Res Limit Charonom 250 22.3 upl. 93 27.178 Charonomshane 25.0 22.2 upl. 93 27.178 Charonoluone 25.0 22.2 upl. 90 70.130 Choronoluone 25.0 22.4 upl. 90 70.130 Choronoluone 25.0 22.4 upl. 90 70.130 1.3-Dethorobenzene 25.0 24.1 upl. 90 70.130 1.3-Dethoropopane 25.0 22.1 upl. 98 70.130 1.3-Dethorophane 25.0 22.1 upl. 88 70.130 1.2-Dethorophane 25.0	·····, ····	Spike	LCS	LCS				%Rec.
Chordom 250 21.9 ugl. 88 70.130 2.0hordohane 250 22.2 ugl. 93 70.130 2.0hordohane 250 22.2 ugl. 93 70.130 4.0hordohane 250 22.2 ugl. 93 70.130 1.2.Dichorberane 250 22.2 ugl. 93 70.130 1.2.Dichorberane 250 22.4 ugl. 96 70.130 1.3.Dichorberane 250 23.5 ugl. 96 77.136 1.3.Dichorporpane 250 23.5 ugl. 96 72.136 1.3.Dichorporpane 250 23.5 ugl. 90 70.130 1.3.Dichorporpane 250 20.2 ugl. 88 70.130 1.3.Dichorporpane 250 20.0 ugl. 88 70.130 1.3.Dichorporpane 250 20.1 ugl. 97 70.130 1.3.Dichorporpane 250 23.1 ugl.	Analyte	Added	Result	Qualifier U	nit	D	%Rec	Limits
Chooreshane Choore	Chloroform	25.0	21.9	ug	/L	_	88	70 - 130
2.Chotroluene 25.0 22.2 upl. 90 70.130 Chlorodbrommehane 25.0 22.2 upl. 93 76.146 1.2.Dechtoroberazene 25.0 24.0 upl. 96 70.130 1.3.Dechtoroberazene 25.0 24.1 upl. 96 70.130 1.4.Dechtoroberazene 25.0 22.1 upl. 94 75.124 1.1.Dechtoroberazene 25.0 22.1 upl. 96 7.130 1.1.Dechtoroporopane 25.0 22.3 upl. 98 70.130 Ditoromethane 25.0 22.3 upl. 98 70.130 Ditoromethane 25.0 22.1 upl. 76 70.130 Ditoromethane 25.0 22.1 upl. 76 70.130 Ditoromethane 25.0 22.1 upl. 76 70.130 1.1.Dechtorothane 25.0 22.1 upl. 86 4.132 1.1.Dechtorothane 25.0 22.1<	Chloromethane	25.0	23.2	ug	/L		93	52 ₋ 175
4.Chioroburname 250 22.4 upl. 90 70 1.2.Dichlorobursame 250 24.0 upl. 96 70 1.3.Dichlorobursame 250 24.1 upl. 96 70 1.3.Dichlorobursame 250 23.5 upl. 96 87 1.3.Dichloroporpane 250 23.5 upl. 98 70 130 1.3.Dichloroporpane 250 23.7 upl. 98 70 130 1.1.Dichloroporpane 250 23.7 upl. 98 70 130 1.2.Dichloroporpane 250 23.1 upl. 98 70 130 Dichlorodifusomethane 250 20.1 upl. 88 70 130 Dichlorodifusomethane 250 21.9 upl. 88 70 130 Dichlorodifusomethane 250 21.9 upl. 88 70 130 1.2.Dichloroporpane 250 23.1 upl. 88 70 130 Dichlorodifusomethane 250 23.1 upl. 88 70 130 1.2.Dichloroporpane 250 23.6 upl. 83 160 112	2-Chlorotoluene	25.0	23.2	ug	/L		93	70 ₋ 130
Chlordstrummethane 250 2.2 up1, 96 70 130 1.2 Dichlorobertzene 250 24.1 up1, 96 70 130 1.4 Dichlorobertzene 250 24.1 up1, 96 70 130 1.4 Dichlorobertzene 250 23.5 up1, 96 72 130 1.1 Dichlorobertzene 250 23.1 up1, 160 70 130 1.1 Dichlorobertzene 250 23.1 up1, 100 70 130 Dichorobertzene 250 23.1 up1, 100 70 130 Dichorobertzene 250 23.0 up1, 88 84 132 Dichorobertzene 250 21.1 up1, 88 84 132 Dichorobertzene 250 23.1 up1, 88 84 132 Dichorobertzene 250 23.4 up1, 90 70 130 Dichorobertzene 25	4-Chlorotoluene	25.0	22.4	ug	/L		90	70 - 130
1.2-Dehtorobenzene 25.0 24.0 upl. 96 70 - 130 1.3-Behtorobenzene 25.0 24.1 upl. 96 70 - 130 1.3-Dehtoropene 25.0 22.5 upl. 96 70 - 130 1.3-Dehtoropone 25.0 22.1 upl. 96 70 - 130 1.2-Dehtoropone 25.0 23.7 upl. 95 72 - 136 Enlyten Dietromäte 25.0 23.3 upl. 93 70 - 130 Dietromäthane 25.0 23.3 upl. 88 70 - 130 Dietromäthane 25.0 21.1 upl. 88 70 - 130 1.2-Dehtoroethane 25.0 21.1 upl. 70 - 70 - 70 1.2-Dehtoroethane 25.0 22.1 upl. 80 64 - 128 1.2-Dehtoroethane 25.0 23.4 upl. 70 - 730 70 - 130 1.2-Dehtoroethane 25.0 23.6 upl. 80 128 1.2-Dehtoroethane 25.0 23.6 upl. 80 128 1.2-Dehtoroethane 25.0	Chlorodibromomethane	25.0	23.2	ug	/L		93	78 ₋ 145
1.3-Dichlorophane 25.0 24.1 upL 96 77.130 1.4-Dichlorophane 25.0 23.5 upL 98 77.130 1.1-Dichlorophane 25.0 23.1 upL 88 70.130 1.1-Dichlorophane 25.0 23.1 upL 95 72.136 Enlyten Ditromde 25.0 23.1 upL 95 72.136 Ditromomethane 25.0 23.1 upL 08 70.130 Ditromomethane 25.0 21.0 upL 88 70.130 1.1-Dichlorophane 25.0 21.1 upL 88 46.128 1.1-Dichlorophane 25.0 22.1 upL 88 46.128 cis-1.2-Dichlorophane 25.0 23.4 upL 97 70.130 1.2-Dichlorophane 25.0 23.4 upL 98 41.20 1.2-Dichlorophane 25.0 23.6 upL 98 41.20 1.2-Dichlorophane 25.0 23.6 upL 98 41.20 1.2-Dichlorophane 25.0 23.6<	1,2-Dichlorobenzene	25.0	24.0	ug	/L		96	70 - 130
1.4-Dichloropropane 25.0 24.1 upt 96 87.118 1.3-Dichloropropane 25.0 22.1 upt 95 75.124 1.2-Dichoropropane 25.0 23.7 upt 95 72.138 Ellydane Dicromethane 25.0 23.3 upt 93 70.130 Dichorodifucomethane 25.0 20.0 upt 88 70.130 1.4-Dichloropthane 25.0 21.9 upt 86 70.130 1.1-Dichloropthane 25.0 21.9 upt 86 70.130 1.2-Dichloropthane 25.0 21.1 upt 86 70.130 1.2-Dichloropthane 25.0 22.1 upt 86 70.130 1.2-Dichloropthane 25.0 23.1 upt 86 70.130 itans.1.3-Dichloropthopene 25.0 23.4 upt 90 74.126 itans.1.3-Dichloropthopene 25.0 23.5 upt 90 84.120 itans.1.3-Dichloropthopene 25.0 23.5 upt 90 84.120 Itans.1.	1,3-Dichlorobenzene	25.0	24.1	ug	/L		96	70 - 130
1.3-Dickhoropropane 25.0 22.1 up1 88 75.124 1.1-Dickhoropropane 25.0 23.1 up1 88 70.130 Elhyden Dbromide 25.0 23.1 up1 100 70.130 Doromorchane 25.0 23.1 up1 100 70.130 Dichorodifuoromehane 25.0 20.0 up1 88 70.130 1.1-Dichorodifuoromehane 25.0 21.9 up1 76 70.130 1.1-Dichorodifuoromehane 25.0 22.1 up1 86 64.122 1.1-Dichorodifuoromehane 25.0 22.4 up1 90 70.130 Tatani-1.2-Dichorodifuoromehane 25.0 22.4 up1 90 70.130 Tatani-1.2-Dichorodifuoromehane 25.0 23.1 up1 80 86.18 1.2-Dichorodifuoromehane 25.0 23.4 up1 90 86.18 1.2-Dichorodifuoromehane 25.0 23.1 up1 83 140 1.2-Dichorodifuoromehane 25.0 23.5 up1 93 70.130	1,4-Dichlorobenzene	25.0	24.1	ug	/L		96	87 - 118
1.1-Dickloropropene 25.0 22.1 upl. 8.8 70.130 1.2-Dibrom-3-Chiropropene 25.0 23.7 upl. 100 70.130 Dibromenthane 25.0 23.3 upl. 9.8 70.130 Dibromenthane 25.0 20.0 upl. 8.8 70.130 1.1-Dickloroethane 25.0 21.9 upl. 8.8 70.130 1.2-Dickloroethane 25.0 21.9 upl. 8.8 70.130 1.1-Dickloroethane 25.0 22.1 upl. 8.8 70.130 trans.1.2-Dickloroethane 25.0 22.1 upl. 8.8 64.128 cis.1.2-Dickloroptopene 25.0 23.1 upl. 9.0 70.130 trans.1.3-Dickloroptopene 25.0 23.3 upl. 9.8 70.130 trans.1.3-Dickloroptopene 25.0 23.7 upl. 9.6 70.130 trans.1.3-Dickloroptopene 25.0 23.7 upl. 9.6 70.130 trans.1.3-Dickloroptopene 25.0 23.7 upl. 9.6 70.130 <	1,3-Dichloropropane	25.0	23.5	ug	/L		94	75 - 124
1.2-Ditoromo-S-Chioropropane 25.0 25.7 up1, 96 72136 Ehylene Ditoromole 25.0 25.1 up1, 98 70.130 Dichlorodifuoromethane 25.0 20.0 up1, 88 70.130 Dichlorodifuoromethane 25.0 21.9 up1, 76 70.126 1.1-Dichloroethane 25.0 22.1 up1, 76 70.130 cis.1-2-Dichloroethane 25.0 22.1 up1, 88 64.128 cis.1-2-Dichloroethane 25.0 22.4 up1, 90 70.130 trans.1-2-Dichloroethane 25.0 22.4 up1, 90 70.130 cis.1-3-Dichloropropene 25.0 22.6 up1, 90 70.130 cis.1-3-Dichloropropene 25.0 23.3 up1, 90 70.130 cis.1-3-Dichloropropene 25.0 23.3 up1, 94 83.140 Ehylenzane 25.0 23.3 up1, 96 70.130 2-Hoxanona 125 24.2 up1, 97 10.130	1,1-Dichloropropene	25.0	22.1	ug	/L		88	70 - 130
Ethylane Dibromide 25.0 25.1 upL 100 7.0.130 Dibromethane 25.0 23.3 upL 80 34.132 1.1-Dichloroethane 25.0 21.9 upL 88 70.130 1.2-Dichloroethane 25.0 21.9 upL 88 70.130 1.2-Dichloroethane 25.0 22.1 upL 88 44.182 cis-1.2-Dichloroethane 25.0 22.1 upL 80 68.118 1.2-Dichloroethane 25.0 22.4 upL 90 70.130 trans-1.2-Dichloropone 25.0 23.1 upL 98 68.118 1.2-Dichloropone 25.0 23.1 upL 98 64.128 trans-1.3-Dichloropone 25.0 23.3 upL 98 70.130 Ethylenzene 25.0 23.3 upL 95 60.164 Exportpleazene 25.0 23.3 upL 93 70.130 4-Hexanone 25.0 23.3	1,2-Dibromo-3-Chloropropane	25.0	23.7	ug	/L		95	72 - 136
Dbromomethane 25.0 23.3 ug/L 93 70.130 Dbrokoronthane 25.0 20.0 ug/L 80 34.132 1.1-Dichioronthane 25.0 19.1 ug/L 76 70.130 1.2-Dichioronthane 25.0 22.1 ug/L 76 70.130 1.1-Dichioronthane 25.0 22.1 ug/L 88 64.128 cis-1.2-Dichioronthane 25.0 22.1 ug/L 90 70.130 trans.1.2-Dichioronthane 25.0 23.1 ug/L 92 81.18 1.2-Dichioronthane 25.0 23.6 ug/L 93 70.130 cist.3-Dichioronthane 25.0 23.6 ug/L 93 70.130 cist.3-Dichioronthane 25.0 23.3 ug/L 93 70.130 cist.3-Dichioronthane 25.0 23.3 ug/L 93 70.130 cist.3-Dichioronthane 25.0 23.3 ug/L 94 83 70.130 cist.3-Dich	Ethylene Dibromide	25.0	25.1	ug	/L		100	70 - 130
Dichorodifuoromethane 25.0 20.0 ug/L 60 34.132 1.1-Dichloromethane 25.0 21.9 ug/L 68 70.130 1.2-Dichloromethane 25.0 22.1 ug/L 68 64.128 1.1-Dichloromethane 25.0 22.1 ug/L 68 64.128 1.1-Dichloromethane 25.0 22.1 ug/L 69 68.118 1.2-Dichloromethane 25.0 22.4 ug/L 90 70.130 1.2-Dichloromethane 25.0 22.4 ug/L 90 70.130 1.2-Dichloromethane 25.0 23.1 ug/L 93 70.130 1.12-Dichloromethane 25.0 23.2 ug/L 93 70.130 Hexachinorbutuatione 25.0 23.3 ug/L 93 70.130 Hexachinorbutuatione 25.0 23.1 ug/L 94 71.30 Hexachinorbutuatione 25.0 23.0 ug/L 94 70.130 Hexachinorbutune	Dibromomethane	25.0	23.3	ug	/L		93	70 - 130
1,1-Dichloroethane 25.0 21.9 ug/L 88 70.130 1,2-Dichloroethane 25.0 19.1 ug/L 88 64.128 cis-1,2-Dichloroethane 25.0 24.3 ug/L 88 64.128 cis-1,2-Dichloroethane 25.0 22.1 ug/L 80 68.118 1.2-Dichloropropane 25.0 22.4 ug/L 90 70.130 cis-1,3-Dichloropropane 25.0 23.1 ug/L 92 81.126 trans.1,3-Dichloropropane 25.0 23.6 ug/L 94 83.140 Ethylbenzene 25.0 23.3 ug/L 93 70.130 +texachlorobladiene 25.0 23.3 ug/L 93 70.130 2+bexanone 125 94.2 ug/L 75 60.164 Isopropylourene 25.0 23.3 ug/L 93 70.130 4+bexanorobladiene 25.0 23.3 ug/L 94 70.130 4+lospropylourene 25.0 23.3 ug/L 93 70.130 4-lospropylourene	Dichlorodifluoromethane	25.0	20.0	uç	/L		80	34 - 132
1.2.Dichloroethane 25.0 19.1 ug/L 76 70.126 1.1.Dichloroethane 25.0 22.1 ug/L 88 64.128 cs1.2.Dichloroethane 25.0 20.1 ug/L 97 70.130 trans-1.2.Dichloroethane 25.0 20.1 ug/L 90 70.130 cs1.3.Dichloropopane 25.0 22.4 ug/L 90 78.126 cs1.3.Dichloropopane 25.0 22.6 ug/L 94 83.140 Ethylbenzene 25.0 22.5 ug/L 90 84.126 Hexachlorobutatione 25.0 23.3 ug/L 93 70.130 2-Hexanone 125 94.2 ug/L 95 70.130 4-Isoprophtionzene 25.0 23.7 ug/L 95 70.130 4-Isoprophtionzene 25.0 23.1 ug/L 84 73.147 4-Isoprophtionzene 25.0 23.0 ug/L 84 73.147 4-Isoprophtionzene 25.0 22.4 ug/L 90 70.130 11.1.2.Teitachoroethane	1,1-Dichloroethane	25.0	21.9	uç	/L		88	70 - 130
1.1.Dichloroethene 25.0 22.1 ug/L 88 64.128 cis-1.2.Dichloroethene 25.0 24.3 ug/L 97 70.130 trans-1.2.Dichloroethene 25.0 22.4 ug/L 80 68-118 1.2.Dichloropropane 25.0 23.1 ug/L 92 81-126 trans-1.3.Dichloropropane 25.0 23.6 ug/L 94 83.140 Ethylbenzene 25.0 23.6 ug/L 93 70.130 2-Hexanore 25.0 23.3 ug/L 93 70.130 2-Hexanore 25.0 23.3 ug/L 93 70.130 2-Hexanore 25.0 23.3 ug/L 93 70.130 4-Isopropyltoluene 25.0 23.7 ug/L 94 73.147 4-Methyl-2-pentanone (MBK) 125 107 ug/L 84 73.147 Abetrytenethene 25.0 25.9 ug/L 04 74.129 N-Prophylenzene 25.0 25.9 ug/L 00 70.130 1.1.1.2.Tetholoroethane <td< td=""><td>1.2-Dichloroethane</td><td>25.0</td><td>19.1</td><td>uc</td><td>/L</td><td></td><td>76</td><td>70 - 126</td></td<>	1.2-Dichloroethane	25.0	19.1	uc	/L		76	70 - 126
cis-12-Dichloroethene 25.0 24.3 ugl. 97 70.130 trans-12-Dichloroethene 25.0 22.4 ugl. 90 70.130 cis-13-Dichloropropene 25.0 22.4 ugl. 90 70.130 cis-13-Dichloropropene 25.0 23.1 ugl. 92 81.126 trans-13-Dichloropropene 25.0 23.6 ugl. 94 83.140 Ethylenzene 25.0 23.3 ugl. 93 70.130 Peaxachorobutatiene 25.0 23.3 ugl. 93 70.130 2-Hexanone 125 94.2 ugl. 75 60.164 Isopropyltolurene 25.0 23.3 ugl. 93 70.130 Hethylene Chloride 25.0 23.3 ugl. 93 70.130 Hethylene Chloride 25.0 23.3 ugl. 93 70.130 Hethylene Chloride 25.0 23.4 ugl. 94 74.129 Nephthalene 25.0 22.4 ugl. 90 70.130 1,1,2.2-Tetrachloroethane </td <td>1,1-Dichloroethene</td> <td>25.0</td> <td>22.1</td> <td>uc</td> <td>/L</td> <td></td> <td>88</td> <td>64 - 128</td>	1,1-Dichloroethene	25.0	22.1	uc	/L		88	64 - 128
trans-1,2-Dichlorogenee 25.0 20.1 ug/L 80 68 - 118 1,2-Dichlorogropene 25.0 22.4 ug/L 90 70 - 130 cis-1,3-Dichlorogropene 25.0 23.1 ug/L 92 81 - 126 tizms-1,3-Dichlorogropene 25.0 23.6 ug/L 94 83.140 Ethylbenzene 25.0 22.5 ug/L 90 84.120 Hexachlorobutadiene 25.0 23.3 ug/L 93 70.130 -Hexanone 125 94.2 ug/L 75 60.164 Isopropytbenzene 25.0 23.7 ug/L 95 70.130 -Hexanone 125 94.2 ug/L 87 63.165 Naphthalene 25.0 23.1 ug/L 84 73.147 Adhtryl-pentanone (MIBK) 125 107 ug/L 84 73.147 Naphthalene 25.0 25.9 ug/L 104 74.129 N-Propytbenzene 25.0 25.0 ug/L 100 70.130 1,1,2-Tetrachloroethane 2	cis-1,2-Dichloroethene	25.0	24.3		/L		97	70 - 130
1.2-Dichloropropane 25.0 22.4 ug/L 90 70.130 cis-1.3-Dichloropropene 25.0 23.1 ug/L 92 81.126 trans-1.3-Dichloropropene 25.0 23.6 ug/L 94 83.140 Ethylbenzene 25.0 23.3 ug/L 93 70.130 2-Hexanne 125 94.2 ug/L 75 60.164 Isopropylbenzene 25.0 23.3 ug/L 93 70.130 2-Hexanne 25.0 23.7 ug/L 95 70.130 4-Isopropylbenzene 25.0 23.3 ug/L 93 70.130 4-Isopropylbenzene 25.0 23.1 ug/L 95 70.130 4-Isopropylbenzene 25.0 23.3 ug/L 93 70.130 4-Isopropylbenzene 25.0 23.1 ug/L 84 73.147 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 84 73.147 4-Methyl-2-pentanone (MIBK) 125.0 22.4 ug/L 90 70.130 1.1.1.2-Tetrachloroetha	trans-1.2-Dichloroethene	25.0	20.1	uc	/L		80	68 - 118
ci-1,3-Dichloropropene 25.0 23.1 ug/L 92 81 - 126 trans-1,3-Dichloropropene 25.0 23.6 ug/L 94 83 - 140 Ethylbenzene 25.0 23.3 ug/L 93 70 - 130 Hexachlorobutadiene 25.0 23.3 ug/L 93 70 - 130 2+Hexanone 125 94.2 ug/L 95 70 - 130 4-Hexanone 25.0 23.3 ug/L 93 70 - 130 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 85 63 - 165 Naphthalene 25.0 25.9 ug/L 104 74 - 129 N-Prophylbenzene 25.0 25.0 ug/L 90 70 - 130 1,1,1,2-Tetrachloroethane 25.0 23.2 ug/L 93 70 - 130 1,1,2-Tetrachloroethane	1.2-Dichloropropane	25.0	22.4	uc	/L		90	70 - 130
trans-1.3-Dichloropropene 25.0 23.6 ug/L 94 83.140 Ethylbenzene 25.0 22.5 ug/L 90 84.120 Hexachlorobutadiene 25.0 23.3 ug/L 93 70.130 2-Hexanone 125 94.2 ug/L 95 70.130 4-Isopropylebrezne 25.0 23.3 ug/L 93 70.130 4-Isopropylebrezne 25.0 23.3 ug/L 94 73.147 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 85 63.165 Naphthalene 25.0 25.9 ug/L 104 74.129 N-Propylbenzene 25.0 25.0 ug/L 90 70.130 Styrene 25.0 25.0 ug/L 90 70.130 1.1.2-Zretrachloroethane 25.0 23.2 ug/L 90 70.130 1.1.4.2-Tetrachloroethane 25.0 23.9 ug/L 90 70.130 1.1.2-Zretrachloroethane 25.0 23.9 ug/L 90 70.130 1.2.4-Trichloroethane	cis-1.3-Dichloropropene	25.0	23.1	uc			92	81 - 126
Ethylbenzene 25.0 22.5 ug/L 90 84 - 120 Hexachlorobutadiene 25.0 23.3 ug/L 93 70 - 130 2-Hexanone 125 94.2 ug/L 95 70 - 130 2-Hexanone 25.0 23.3 ug/L 93 70 - 130 4-Isopropylbenzene 25.0 23.3 ug/L 84 73 - 147 4-Isopropylbenzene 25.0 21.0 ug/L 84 73 - 147 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 85 63 - 165 Naphthalene 25.0 22.4 ug/L 90 70 - 130 1.1, 1.2-Tetrachloroethane 25.0 22.4 ug/L 90 70 - 130 1.1, 1.2-Tetrachloroethane 25.0 23.9 ug/L 96 70 - 130 1.1, 1.2-Tetrachloroethane 25.0 23.9 ug/L 96 70 - 130 1.1, 2.2-Trichloroethane 25.0 24.1 ug/L 96 70 - 130 1.1, 2.4-Tr	trans-1.3-Dichloropropene	25.0	23.6	uc	/L		94	83 - 140
Hexachlorobutadiene 25.0 23.3 ug/L 93 70.130 2-Hexanone 125 94.2 ug/L 75 60.164 Isopropylbenzene 25.0 23.7 ug/L 95 70.130 4-Isopropylbenzene 25.0 23.3 ug/L 93 70.130 Methylene Chloride 25.0 21.0 ug/L 84 73.147 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 85 365 Naphthalene 25.0 25.9 ug/L 104 74.129 N-Propylbenzene 25.0 25.0 ug/L 90 70.130 Styrene 25.0 25.0 ug/L 90 70.130 1,1,2.2-fetrachloroethane 25.0 23.2 ug/L 90 70.130 1,1,2.2-fetrachloroethane 25.0 23.2 ug/L 96 70.130 1,1,2.2-fetrachloroethane 25.0 23.9 ug/L 96 70.130 1,1,2.2-fictachloroethane 25.0 24.9 ug/L 97 78.130 1,1,2.2-fictachloroethan	Ethylbenzene	25.0	22.5	uc	/L		90	84 - 120
2-Hexanone 125 94.2 ug/L 75 60.164 Isopropylbenzene 25.0 23.7 ug/L 95 70.130 4-Isopropylbuene 25.0 23.3 ug/L 93 70.130 Methylene Chloride 25.0 21.0 ug/L 84 73.147 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 86 63.165 Naphthalene 25.0 25.9 ug/L 104 74.129 N-Propylbenzene 25.0 25.0 ug/L 100 70.130 1,1,2.2-Tetrachloroethane 25.0 25.0 ug/L 100 70.130 1,1,2.2-Tetrachloroethane 25.0 23.9 ug/L 90 70.130 1,1,2.2-Tetrachloroethane 25.0 23.9 ug/L 93 70.130 1,1,2.2-Tetrachloroethane 25.0 23.9 ug/L 94 70.130 1,2.2-Tetrachloroethane 25.0 23.9 ug/L 104 70.130 1,2.4-Trichloroethane 25.0 26.1 ug/L 104 70.130 1	Hexachlorobutadiene	25.0	23.3	uc			93	70 - 130
Isopropylbenzene 250 23.7 ug/L 93 70.130 4-Isopropyltoluene 25.0 23.3 ug/L 93 70.130 Methylene Chloride 25.0 21.0 ug/L 84 73.147 4-Methyl-2-pentanone (MIBK) 125 107 ug/L 85 63.165 Naphthalene 25.0 25.9 ug/L 104 74.129 N-Propylbenzene 25.0 25.0 ug/L 90 70.130 Styrene 25.0 25.0 ug/L 90 70.130 1,1,2-Tetrachloroethane 25.0 23.2 ug/L 96 70.130 1,1,2-Tetrachloroethane 25.0 23.9 ug/L 96 70.130 1,1,2-Tetrachloroethane 25.0 23.9 ug/L 92 78.118 1,2-3-Tichlorobenzene 25.0 24.1 ug/L 94 70.130 1,2-4-Tichlorobenzene 25.0 24.9 ug/L 90 78.125 1,2-4-Tichlorobenzene <td< td=""><td>2-Hexanone</td><td>125</td><td>94.2</td><td>uc</td><td>/L</td><td></td><td>75</td><td>60 - 164</td></td<>	2-Hexanone	125	94.2	uc	/L		75	60 - 164
Alsopropytolulene 25.0 23.3 ug/L 03 70.130 Methylene Chloride 25.0 21.0 ug/L 84 73.147 4.Methyl-2-pentanone (MIBK) 125 107 ug/L 85 63.165 Naphthalene 25.0 25.9 ug/L 104 74.129 N-Propytbenzene 25.0 25.0 ug/L 90 70.130 1,1,2Tetrachloroethane 25.0 22.4 ug/L 90 70.130 1,1,2Tetrachloroethane 25.0 23.2 ug/L 96 70.130 1,1,2Tetrachloroethane 25.0 23.9 ug/L 96 70.130 1,1,2Tetrachloroethane 25.0 23.9 ug/L 96 70.130 1,1,2Tetrachloroethane 25.0 23.9 ug/L 92 78.118 1,2.3-Trichlorobenzene 25.0 24.9 ug/L 100 70.130 1,2.4-Trichloroethane 25.0 24.9 ug/L 104 70.130 1,1.1-Trichloroethane 25.0 24.9 ug/L 90 66.132 <t< td=""><td>Isopropylbenzene</td><td>25.0</td><td>23.7</td><td>-9</td><td>/1</td><td></td><td>95</td><td>70 - 130</td></t<>	Isopropylbenzene	25.0	23.7	-9	/1		95	70 - 130
Attyler Att Att Att Att Wethylene Chloride 25.0 21.0 ug/L 85 63 - 165 Naphthalene 25.0 25.9 ug/L 104 74 - 129 N-Propylbenzene 25.0 25.0 22.4 ug/L 90 70 - 130 Styrene 25.0 25.0 24.1 ug/L 96 70 - 130 1,1,2-Tetrachloroethane 25.0 23.2 ug/L 96 70 - 130 1,1,2-Tetrachloroethane 25.0 23.2 ug/L 96 70 - 130 Tetrachloroethane 25.0 23.9 ug/L 96 70 - 130 Toluene 25.0 23.9 ug/L 96 70 - 130 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 92 78 - 118 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 90 70 - 130 1,1,2-Trichlorobenzene 25.0 26.0 24.9 ug/L 90 76 - 130 1,1,2-Trichlorobenzene 25.0 24.9 ug/L 97 78 - 125	4-lsopropyltoluene	25.0	23.3	uc	//L		93	70 - 130
AMethyl-2-pentanone (MIBK) 125 107 ug/L 85 63 - 165 Naphthalene 25.0 25.9 ug/L 104 74 - 129 N-Propylbenzene 25.0 22.4 ug/L 90 70 - 130 Styrene 25.0 25.0 ug/L 90 70 - 130 1,1,2-Tetrachloroethane 25.0 23.2 ug/L 96 70 - 130 1,1,2-Tetrachloroethane 25.0 23.9 ug/L 96 70 - 130 Toluene 25.0 23.9 ug/L 96 70 - 130 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 96 70 - 130 1,2,4-Trichlorobenzene 25.0 26.9 ug/L 100 70 - 130 1,2,4-Trichlorobenzene 25.0 26.1 ug/L 104 70 - 130 1,1,2-Trichloroethane 25.0 26.1 ug/L 100 70 - 130 1,1,2-Trichloroethane 25.0 26.0 24.2 ug/L 100 70 - 130 1,1,2-Trichloroethane 25.0 23.4 ug/L 97 78 - 125	Methylene Chloride	25.0	21.0	uc UC	/1		84	73 - 147
Naphtalene 25.0 25.9 ug/L 104 74 - 129 Naphtalene 25.0 25.9 ug/L 90 70 - 130 Styrene 25.0 25.0 ug/L 100 70 - 130 1,1,2-Tetrachloroethane 25.0 25.0 ug/L 96 70 - 130 1,1,2-Tetrachloroethane 25.0 23.2 ug/L 93 70 - 130 Tetrachloroethane 25.0 23.9 ug/L 96 70 - 130 Toluene 25.0 23.9 ug/L 96 70 - 130 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 92 78 - 118 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 104 70 - 130 1,1,2-Trichlorobenzene 25.0 26.1 ug/L 104 70 - 130 1,1,2-Trichlorobenzene 25.0 26.1 ug/L 104 70 - 130 1,1,2-Trichlorobenzene 25.0 21.6 ug/L 104 70 - 130 1,1,2-Trichlorofhune 25.0 23.4 ug/L 97 78 - 125 T	4-Methyl-2-pentanone (MIBK)	125	107	uc	/1		85	63 - 165
Ni-Propylenzene25.022.4ug/L9070 - 130Styrene25.025.0ug/L10070 - 1301,1,1,2-Tetrachloroethane25.023.2ug/L9670 - 1301,1,2,2-Tetrachloroethane25.023.2ug/L9670 - 130Tetrachloroethane25.023.9ug/L9670 - 130Toluene25.022.9ug/L9278 - 1181,2,3-Trichlorobenzene25.026.1ug/L10470 - 1301,2,4-Trichloroethane25.026.1ug/L10070 - 1301,1,2-Trichloroethane25.024.9ug/L10070 - 1301,1,2-Trichloroethane25.024.9ug/L9778 - 1251,1,1-Trichloroethane25.024.2ug/L9778 - 1251,1,1-Trichloroethane25.023.4ug/L9470 - 1301,1,2-Trichloroethane25.022.5ug/L9066 - 1321,2,3-Trichloroethane25.022.5ug/L9066 - 1321,2,3-Trichloroethane25.022.8ug/L9170 - 1301,1,2-Trichloroethane25.022.9ug/L9270 - 1301,1,2-Trichloroethane25.022.9ug/L9270 - 1301,1,2-Trichloroethane25.022.9ug/L9270 - 1301,3,5-Trinethylbenzene25.022.9ug/L9270 - 1321,3,5-Trinethylbenzene25.0	Nanhthalene	25.0	25.9		/		104	74 129
11.1.2-Tetrachloroethane 25.0 25.0 25.0 ug/L 100 70 130 1,1,2-Tetrachloroethane 25.0 24.1 ug/L 93 70 130 1,1,2-Tetrachloroethane 25.0 23.2 ug/L 93 70 130 Tetrachloroethane 25.0 23.9 ug/L 96 70 130 Toluene 25.0 22.9 ug/L 92 78 118 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 104 70 130 1,2,4-Trichlorobenzene 25.0 26.1 ug/L 104 70 130 1,2,4-Trichloroethane 25.0 21.6 ug/L 100 70 130 1,1,2-Trichloroethane 25.0 21.6 ug/L 97 78 125 1,1,1-Trichloroethane 25.0 22.5 ug/L 94 70 130 1,1,2-Trichlorofucromethane 25.0 22.5 ug/L 94 70 130 1,1,2-Trichlorofucromethane 25.0 22.5 ug/L 94	N-Pronylbenzene	25.0	20.0	ug	/1		90	70 130
Cycle25.526.51001001001001,1,2-2-Tetrachloroethane25.024.1ug/L9670 - 1301,1,2,2-Tetrachloroethane25.023.2ug/L9670 - 130Tetrachloroethane25.023.9ug/L9670 - 130Toluene25.022.9ug/L10470 - 1301,2,3-Trichlorobenzene25.026.1ug/L10470 - 1301,2,4-Trichlorobenzene25.024.9ug/L10070 - 1301,1,2-Trichloroethane25.024.9ug/L9670 - 1301,1,2-Trichloroethane25.024.2ug/L9778 - 1251,1,2-Trichloroethane25.024.2ug/L9778 - 1251,1,2-Trichloroethane25.024.2ug/L9470 - 1301,1,2-Trichloroethane25.022.5ug/L9470 - 1301,1,2-Trichloroptane25.022.8ug/L9470 - 1301,2,3-Trichloroptane25.022.8ug/L9170 - 1301,1,2-Trichloroptane25.022.8ug/L9170 - 1301,1,2-Trichloroptane25.026.1ug/L9270 - 1321,2,4-Trimethylbenzene25.022.9ug/L9270 - 1321,3,5-Trimethylbenzene25.023.1ug/L9270 - 1321,3,5-Trimethylbenzene25.023.1ug/L9270 - 1301,3,5-Trimethylbenzene	Styrene	25.0	25.4	ug	/1		100	70 130
1,1,2,2-Tetrachloroethane25.023.2ug/L9370.130Tetrachloroethane25.023.9ug/L9670.130Toluene25.022.9ug/L9278.1181,2,3-Trichlorobenzene25.026.1ug/L10470.1301,2,4-Trichloroethane25.024.9ug/L10070.1301,1,1-Trichloroethane25.024.9ug/L9778.1251,1,2-Trichloroethane25.024.9ug/L9778.1251,1,2-Trichloroethane25.024.2ug/L9778.125Trichloroethane25.024.2ug/L9470.1301,1,2-Trichloroethane25.024.2ug/L9470.1301,1,2-Trichloroethane25.024.2ug/L9066.1321,2,3-Trichloroptapae25.022.8ug/L9170.1301,1,2-Trichloroethane25.022.8ug/L9170.1301,2,3-Trichloroptapae25.022.8ug/L9270.1301,2,4-Trimethylbenzene25.022.9ug/L9270.1321,3,5-Trimethylbenzene25.022.9ug/L9270.1321,3,5-Trimethylbenzene25.023.1ug/L9270.130Vinyl acetate25.026.2ug/L9270.130	1 1 1 2-Tetrachloroethane	25.0	20.0		/		96	70 130
Tetrachloroethane 25.0 23.9 ug/L 96 70 - 130 Toluene 25.0 22.9 ug/L 92 78 - 118 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 104 70 - 130 1,2,4-Trichlorobenzene 25.0 24.9 ug/L 100 70 - 130 1,1,1-Trichloroethane 25.0 21.6 ug/L 86 70 - 130 1,1,2-Trichloroethane 25.0 24.2 ug/L 97 78 - 125 Trichloroethane 25.0 24.2 ug/L 90 66 - 132 1,1,2-Trichloroethane 25.0 22.5 ug/L 90 66 - 132 1,2,3-Trichloroptopane 25.0 22.8 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroethan 25.0 22.8 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 26.1 ug/L 92 70 - 130 1,2,4-Trimethylbenzene 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92	1 1 2 2-Tetrachloroethane	25.0	23.2	ug	/1		93	70 130
Toluene 25.0 22.9 ug/L 92 78 - 118 1,2,3-Trichlorobenzene 25.0 26.1 ug/L 104 70 - 130 1,2,4-Trichlorobenzene 25.0 24.9 ug/L 100 70 - 130 1,1,1-Trichloroethane 25.0 21.6 ug/L 86 70 - 130 1,1,2-Trichloroethane 25.0 24.2 ug/L 97 78 - 125 Trichloroethane 25.0 23.4 ug/L 94 70 - 130 1,1,2-Trichloroethane 25.0 22.5 ug/L 94 70 - 130 Trichloroethane 25.0 22.5 ug/L 90 66 - 132 1,2,3-Trichloropropane 25.0 22.8 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 26.1 ug/L 91 42 - 162 ne	Tetrachloroethene	25.0	23.9	ug	/1		96	70 130
1,2,3-Trichlorobenzene25.026.1ug/L102102-1101,2,4-Trichlorobenzene25.026.1ug/L10070 - 1301,2,4-Trichlorobenzene25.024.9ug/L10070 - 1301,1,1-Trichloroethane25.021.6ug/L9778 - 1251,1,2-Trichloroethane25.023.4ug/L9470 - 1301,1,2-Trichloroethane25.023.4ug/L9470 - 1301,2,3-Trichloroethane25.022.5ug/L9066 - 1321,2,3-Trichloropropane25.022.8ug/L9170 - 1301,1,2-Trichloro-1,2,2-trifluoroetha25.026.1ug/L10442 - 162ne1010,1,2-Trichloroetha25.020,1,1,1,2-Trichloroetha10,1,2,2-Trichloroetha1,2,4-Trimethylbenzene25.022.9ug/L9270 - 1301,3,5-Trimethylbenzene25.023.1ug/L9270 - 130Vinyl acetate25.026.2ug/L10543 - 163	Toluene	25.0	20.0		//		92	78 118
1,2,4-Trichlorobenzene25.024.9ug/L1041051051,1,1-Trichlorobenzene25.024.9ug/L8670 - 1301,1,2-Trichlorobenzene25.021.6ug/L9778 - 1251,1,2-Trichlorobenzene25.023.4ug/L9470 - 1301,1,2-Trichlorobenzene25.023.4ug/L9470 - 1301,2,3-Trichloropenzene25.022.5ug/L9066 - 1321,2,3-Trichloropropane25.022.8ug/L9170 - 1301,1,2-Trichloro-1,2,2-trifluorobethan25.026.1ug/L9270 - 1301,2,4-Trimethylbenzene25.022.9ug/L9270 - 1321,3,5-Trimethylbenzene25.023.1ug/L9270 - 130Vinyl acetate25.026.2ug/L10543 - 163	1 2 3-Trichlorobenzene	25.0	26.1	ug	/1		104	70 130
1,2,4 Trininolocitizatio25.024.0agic1001001001,1,1-Trichloroethane25.021.6ug/L8670 - 1301,1,2-Trichloroethane25.024.2ug/L9778 - 125Trichloroethane25.023.4ug/L9470 - 130Trichlorofluoromethane25.022.5ug/L9066 - 1321,2,3-Trichloropropane25.022.8ug/L9170 - 1301,1,2-Trichloro-1,2,2-trifluoroetha25.026.1ug/L10442 - 162ne110442 - 16210442 - 1621,2,4-Trimethylbenzene25.022.9ug/L9270 - 1321,3,5-Trimethylbenzene25.023.1ug/L9270 - 130Vinyl acetate25.026.2ug/L10543 - 163	1.2.4 Trichlorobenzene	25.0	20.1	ug	/1		104	70 130
1,1,2-Trichloroethane25.021.0ug/L0070 - 1301,1,2-Trichloroethane25.024.2ug/L9778 - 125Trichloroethane25.023.4ug/L9470 - 130Trichlorofluoromethane25.022.5ug/L9066 - 1321,2,3-Trichloropropane25.022.8ug/L9170 - 1301,1,2-Trichloro-1,2,2-trifluoroetha25.026.1ug/L10442 - 162ne11111111,2,4-Trimethylbenzene25.022.9ug/L9270 - 1321,3,5-Trimethylbenzene25.023.1ug/L9270 - 130Vinyl acetate25.026.2ug/L10543 - 163	1 1 1-Trichloroethane	25.0	24.0		//		86	70 130
Trichloroethane 25.0 24.2 ug/L 94 70 - 125 Trichloroethene 25.0 23.4 ug/L 94 70 - 130 Trichloroethane 25.0 22.5 ug/L 90 66 - 132 1,2,3-Trichloropropane 25.0 22.8 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 26.1 ug/L 104 42 - 162 ne 1 104 42 - 162 104 42 - 162 1,3,5-Trimethylbenzene 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163	1.1.2-Trichloroethane	25.0	21.0	ug	/L		97	78 125
Trichlobeliefie 25.0 25.0 25.4 ug/L 94 76 - 130 Trichlorofluoromethane 25.0 22.5 ug/L 90 66 - 132 1,2,3-Trichloropropane 25.0 22.8 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 26.1 ug/L 104 42 - 162 ne 1 1,2,4-Trimethylbenzene 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163		25.0	27.2	ug	/		04	70 - 120
1.2,3-Trichloropropane 25.0 22.3 ug/L 30 00 - 132 1,2,3-Trichloropropane 25.0 22.8 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 26.1 ug/L 104 42 - 162 ne 1,2,4-Trimethylbenzene 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163	Trichlorofluoromethane	25.0	23.4	uy	/∟ //		94	70 - 130 66 132
1,2,-Trichloro-1,2,2-trifluoroetha 25.0 26.0 ug/L 91 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 26.1 ug/L 104 42 - 162 ne 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163		20.0	22.5	ug	/ 🗆		90	70 130
1,1,2-1 ricnioro-1,2,2-trifiuoroetha 25.0 26.1 Ug/L 104 42 - 162 ne 1,2,4-Trimethylbenzene 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163		20.0	22.8	ug	/ 🗆		91	10 - 100
1,2,4-Trimethylbenzene 25.0 22.9 ug/L 92 70 - 132 1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163	n, n, 2- i richioro-1, 2, 2-trifiuoroetha	20.0	20.1	ug			104	4 2 - 102
1,3,5-Trimethylbenzene 25.0 23.1 ug/L 92 70 - 130 Vinyl acetate 25.0 26.2 ug/L 105 43 - 163	1.2.4-Trimethylbenzene	25.0	22 9	ш	/L		92	70 - 132
Vinyl acetate 25.0 26.2 ug/L 105 43 - 163	1,3,5-Trimethylbenzene	25.0	23.1	uc uc	/L		92	70 - 130
	Vinyl acetate	25.0	26.2	uc	/L		105	43 - 163

54 - 135

70 _ 142

94

89

23.5

44.4

ug/L

ug/L

25.0

50.0

Prep Type: Total/NA

7

Client Sample ID: Lab Control Sample

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-105693/6

Matrix: Water

Analysis Batch: 105693								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	25.0	22.9		ug/L		92	85 - 127	
2,2-Dichloropropane	25.0	24.0		ug/L		96	70 - 140	
ТВА	500	471		ug/L		94	82 - 116	
Ethyl tert-butyl ether	25.0	22.6		ug/L		90	70 - 130	
DIPE	25.0	24.1		ug/L		96	69 - 134	
TAME	25.0	25.6		ug/L		102	79 - 129	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		75 - 138
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCS 720-105693/8 Matrix: Water Analysis Batch: 105693

Analysis balon. 100095								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	499		ug/L		100	62 - 117	
-C5-C12								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	94		67 - 130
1,2-Dichloroethane-d4 (Surr)	86		75 - 138
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-105693/7 Matrix: Water

Analysis Batch: 105693

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.7		ug/L		95	62 - 130	3	20
Acetone	125	78.2		ug/L		63	26 - 180	1	30
Benzene	25.0	23.0		ug/L		92	79 _ 120	0	20
Dichlorobromomethane	25.0	21.8		ug/L		87	70 - 130	3	20
Bromobenzene	25.0	24.1		ug/L		96	79 _ 127	1	20
Chlorobromomethane	25.0	24.6		ug/L		98	70 - 130	1	20
Bromoform	25.0	23.4		ug/L		94	68 - 136	0	20
Bromomethane	25.0	23.6		ug/L		94	43 _ 151	3	20
2-Butanone (MEK)	125	102		ug/L		81	54 - 124	1	20
n-Butylbenzene	25.0	24.4		ug/L		98	79 ₋ 142	2	20
sec-Butylbenzene	25.0	24.0		ug/L		96	81 - 134	3	20
tert-Butylbenzene	25.0	23.9		ug/L		96	82 - 135	3	20
Carbon disulfide	25.0	23.1		ug/L		92	58 _ 124	0	20
Carbon tetrachloride	25.0	21.6		ug/L		86	77 _ 146	1	20
Chlorobenzene	25.0	23.5		ug/L		94	70 - 130	2	20
Chloroethane	25.0	23.2		ug/L		93	62 _ 138	0	20
Chloroform	25.0	21.6		ug/L		86	70 - 130	1	20
Chloromethane	25.0	23.4		ug/L		94	52 _ 175	1	20
2-Chlorotoluene	25.0	23.7		ug/L		95	70 - 130	2	20

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab	Control Samp	le Dup
	Prep Type: To	otal/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

5

6 7 8 9 10 11 12 13

Method: 8260B/CA	LUFTMS - 8260B	/ CA LUFT MS	(Continued)

Lab Sample ID: LCSD 720-105693/7

Matrix:	Nater	
Analysis	Batch:	105693

Analyse Added Result Qualifier Units 0 9.8.6 Units 7.0 1.2. Chioradiuronanetinine 25.0 22.5 ugl. 0.0 7.0 0.2 2.0 1.3.Deltobotanane 25.0 24.4 ugl. 0.0 7.0 0.2 2.0 1.3.Deltobotanane 25.0 24.4 ugl. 0.7 7.1.5 2.0 1.3.Deltobotanane 26.0 22.0 ugl. 0.6 7.0.1.30 1.2 2.0 1.3.Deltobotanane 26.0 22.4 ugl. 0.6 70.1.30 1.2 2.0 1.3.Deltobotanane 25.0 22.4 ugl. 0.6 70.1.30 1.2 2.0 1.3.Deltobotanane 25.0 22.4 ugl. 0.6 70.1.30 1.2 2.0 1.4.Deltobotaname 25.0 22.4 ugl. 0.6 70.1.30 1.2 2.0 1.3.Deltobotaname 25.0 22.2 ugl. 0.6 70.1.30 1.2 <th></th> <th>Spike</th> <th>LCSD</th> <th>LCSD</th> <th></th> <th>%Rec.</th> <th></th> <th>RPD</th>		Spike	LCSD	LCSD		%Rec.		RPD
4.Chinothiomentame 250 2.7 upl. 91 70.130 70.130 20 1.2.Dethorobenzen 250 24.1 upl. 98 70.130 20 20 1.3.Dethorobenzen 250 24.6 upl. 98 70.130 2 20 1.4.Dethorobenzene 250 24.2 upl. 98 70.130 2 20 1.3.Dethoropopate 250 22.3 upl. 98 70.130 2 20 1.3.Dethoropopate 250 22.4 upl. 98 70.130 2 20 1.3.Dethoropopate 250 22.4 upl. 98 70.130 2 20 Detromothorometane 250 26.4 upl. 70 70.130 0 20 1.1.Dethorothorometane 250 26.7 upl. 98 70.130 0 20 1.1.Dethorothorometane 250 26.7 upl. 98 71.30 0 20 1.1.Dethorothorometane 250 27.7 upl. 98 71.30 0<	Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limit
Chinoxitomonethane 25.0 22.5 upl, 00 75.45 32 20 1.3-Delinkopersame 25.0 24.6 upl, 08 70.130 0 20 1.3-Delinkopersame 25.0 23.0 upl, 08 70.130 2 20 1.3-Delinkopersame 25.0 23.0 upl, 08 70.130 2 20 1.3-Delinkopersame 25.0 27.7 upl, 08 70.130 2 20 Delinkonfilkoomethane 25.0 24.5 upl, 08 70.130 0 20 Delinkonfilkoomethane 25.0 18.6 upl, 07 70.130 0 20 1.2-Delinkoomethane 25.0 27.1 upl, 07 70.130 0 20 1.2-Delinkoomethane 25.0 24.6 upl, 07 70.130 0 20 1.2-Delinkoomethane 25.0 22.8 upl, 08 70.130 0 20 1.2-Delinkoomethane 25.0 27.4 upl, 08 70.130	4-Chlorotoluene	25.0	22.7	ug/L	91	70 - 130	1	20
1.2-Dethorbursene 250 24.1 upl 90 70.130 2 20 1.4-Dethorbursene 250 24.2 upl 90 7.14 0 20 1.4-Dethorbursene 250 24.2 upl 90 7.14 0 20 1.5-Dethorbursene 250 22.3 upl 90 7.130 2 20 1.5-Dethorbursene 250 24.5 upl 90 70.130 2 20 Detomorbursentane 250 24.5 upl 90 70.130 0 20 Detomorbursentane 250 22.4 upl 97 70.130 0 20 Detomorbursentane 250 22.7 upl 91 64.128 32 20 1.5-Dethorbursentane 250 22.7 upl 91 64.128 32 20 1.5-Dethorbursentane 250 22.4 upl 98 71.30 0 20 1.5-Dethorbursentane 250 22.4 upl<	Chlorodibromomethane	25.0	22.5	ug/L	90	78 ₋ 145	3	20
1.3-Deinkorobername 250 24.6 upl, 08 7.1.30 0 1.3-Deinkorobername 250 23.0 upl, 08 7.1.20 1.20 1.3-Deinkorobername 250 22.7 upl, 08 7.1.20 1.20 1.3-Deinkorobername 250 22.7 upl, 08 7.1.30 1.4 0 Diskorobername 250 24.5 upl, 08 7.1.30 1.4 0 Diskorobername 250 18.5 upl, 7.7 7.7.30 1.0 0 2.0 1.2-Deinkorobername 250 22.7 upl, 7.7 7.7.30 0 2.0 1.2-Deinkoroberna 250 22.7 upl, 7.7 7.7.30 0 2.0 1.2-Deinkoroberna 250 22.7 upl, 0.7 7.0 0 2.0 1.2-Deinkoroberna 250 22.0 upl, 0.8 7.1.30 1.0 2.0 1.2-Deinkoroberna 250 22.0 upl, 0.8 7.1.30 7.0 2.0 <t< td=""><td>1,2-Dichlorobenzene</td><td>25.0</td><td>24.1</td><td>ug/L</td><td>96</td><td>70 - 130</td><td>0</td><td>20</td></t<>	1,2-Dichlorobenzene	25.0	24.1	ug/L	96	70 - 130	0	20
1.4.Dishonyopane 25.0 24.2 up1, 97 77.148 0 20 1.1.Dishonyopane 25.0 22.3 up1, 98 70.130 1 20 1.1.Dishonyopane 25.0 22.7 up1, 98 70.130 2 20 Ehylene Disomde 25.0 24.4 up1, 68 70.130 2 20 Dishonomethane 25.0 21.8 up1, 67 70.130 0 20 1.1.Dishonoethane 25.0 21.8 up1, 67 70.130 0 20 1.1.Dishonoethane 25.0 22.6 up1, 67 70.130 0 20 1.1.Dishonoethane 25.0 22.6 up1, 62 81.18 2 20 1.1.Dishonoethane 25.0 22.6 up1, 62 68.118 2 20 1.2.Dishonoethane 25.0 22.8 up1, 68 70.130 0 20 1.2.Dishonoethane 25.0 22.8 up1, 68 70.130 3 20 </td <td>1,3-Dichlorobenzene</td> <td>25.0</td> <td>24.6</td> <td>ug/L</td> <td>98</td> <td>70 - 130</td> <td>2</td> <td>20</td>	1,3-Dichlorobenzene	25.0	24.6	ug/L	98	70 - 130	2	20
1.3-Dichlocopropane 25.0 23.0 upl, 92 75.1% 2 2 1.3-Dichlocopropane 25.0 22.3 upl, 91 70.130 1.2 Ehylene Ditromide 25.0 22.4 upl, 98 70.130 2 2 Dichlocontifucornethane 25.0 24.5 upl, 97 70.130 0 2 1.2-Dichlocontifucornethane 25.0 18.6 upl, 97 70.130 0 2 1.2-Dichlocontethane 25.0 24.2 upl, 97 70.130 0 2 1.2-Dichlocontethane 25.0 24.2 upl, 97 70.130 0 2 1.2-Dichlocontethane 25.0 24.2 upl, 97 70.130 0 2 1.2-Dichlocontethane 25.0 22.6 upl, 98 84 4 2 1.2-Dichlocontethane 25.0 22.6 upl, 98 84 4 2 1.2-Dichlocontethane 25.0 22.6 upl, 98 98 4	1,4-Dichlorobenzene	25.0	24.2	ug/L	97	87 _ 118	0	20
1.1-Dichloropopane 250 22.3 ug1 98 70.130 2 20 Enlyane Dicronide 250 24.4 ug1 98 70.130 2 20 Dichronoff.horopopane 250 24.4 ug1 98 70.130 0 20 Dichronoff.horophane 250 18.8 ug1 77 34.132 0 20 1.1-Dichronoff.horophane 250 21.8 ug1 67 70.130 0 20 1.1-Dichronoff.horophane 250 22.7 ug1 67 70.130 0 20 1.1-Dichronoff.horophane 250 22.3 ug1 62 61.18 2 20 1.2-Dichronoff.horophane 250 22.8 ug1 00 83.140 4 20 1.2-Dichronoff.horophane 250 22.8 ug1 00 83.140 4 20 1.2-Dichronoff.horophane 250 22.4 ug1 00 83.140 4 20 1.2-Dichronoff.horophane 250 22.4 ug1 02	1,3-Dichloropropane	25.0	23.0	ug/L	92	75 - 124	2	20
12.Dbromo-3-Chlooppopane 250 22.7 up1 90 72.138 4 20 Dbromosethane 250 22.4 up1 00 70.130 4 20 Dbromosethane 250 18.8 up1 70 10.12 1 20 1.2-Dichlorosethane 250 18.5 up1 70 10.12 3 20 1.2-Dichlorosethane 250 22.7 up1 97 6.1.8 20 20 1.2-Dichlorosethane 250 22.3 up1 80 70.130 0 2 20 tasn.12-Dichlorospone 250 22.6 up1 98 70.130 1 20 tasn.12-Dichlorospone 250 22.6 up1 90 83.140 1 20 tasn.12-Dichlorospone 250 22.6 up1 90 83.140 1 20 tasn.12-Dichlorospone 250 22.9 up1 96 70.130 2 20 tasn.12-Dichlorospone 250 23.9 up1 90 70.130	1,1-Dichloropropene	25.0	22.3	ug/L	89	70 _ 130	1	20
Enylanc Dibornide 250 24.4 upl. 90 70.130 2 20 Diborarontihane 250 10.8 upl. 70 34.132 1 20 1.1-Dichloroethane 250 11.8 upl. 70 70.130 00 20 1.1-Dichloroethane 250 22.7 upl. 91 64.128 3.2 20 1.1-Dichloroethane 250 22.6 upl. 92 68.118 2.2 20 1.2-Dichloroethane 250 22.6 upl. 92 61.12 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 1.2 20 21 20 1.2 20 21<	1,2-Dibromo-3-Chloropropane	25.0	22.7	ug/L	91	72 - 136	4	20
Dbromshhane 250 224 upl. 90 90.100 4.20 1.1-Dichlorosehane 250 218 upl. 70.100 3.2 2.0 1.1-Dichlorosehane 250 218 upl. 70.100 3.2 2.0 1.1-Dichlorosehane 250 227 upl. 90 70.130 0 2.0 1.1-Dichlorosehane 250 223 upl. 80 70.130 0 2.0 1.1-Dichlorosehane 250 223 upl. 80 70.130 4 2.0 1.2-Dichlorosehane 250 223 upl. 90 81.40 4 2.0 1.2-Dichlorosehane 250 226 upl. 90 81.40 4 2.0 1.2-Dichlorosehane 250 226 upl. 90 81.40 4 2.0 1.2-Dichlorosehane 250 226 upl. 90 81.40 4 2.0 1.2-Dichlorosehane 250 2	Ethylene Dibromide	25.0	24.5	ug/L	98	70 - 130	2	20
Dichlorodihuoromethane 250 19.8 upl. 79 34.132 1 20 1.4-Dichloroethane 250 21.8 upl. 74 70.126 3 20 1.4-Dichloroethane 250 22.7 upl. 91 64.128 3 20 1.1-Dichloroethane 250 22.6 upl. 82 68.118 2 20 cis-1.2.Oichloroethane 250 22.6 upl. 83 70.0 0 0 20 cis-1.2.Oichloroethane 250 22.6 upl. 81 70.0 0 20 cis-1.3.Dichloroptopen 250 22.6 upl. 92 81.126 1 20 Horzachlorobulatione 250 22.8 upl. 98 70.130 3 20 Hexachlorobulatione 250 22.4 upl. 98 70.130 3 20 Hexachlorobulatione 250 23.4 upl. 98 70.130 2 <	Dibromomethane	25.0	22.4	ug/L	90	70 - 130	4	20
1.1-Dichloroethane 250 1.8 ugl, 47 70.130 0 20 1.1-Dichloroethane 250 18.5 ugl, 97 70.130 0 20 1.1-Dichloroethane 250 22.7 ugl, 97 70.130 0 20 1.1-Dichloroethane 250 22.3 ugl, 88 70.130 0 20 1.1-Dichloroethane 250 22.3 ugl, 88 70.130 0 20 1.2-Dichloroethone 250 22.8 ugl, 98 81.126 1 20 1.3-Dichloroethone 250 22.8 ugl, 98 81.126 1 20 1.3-Dichloroethane 250 22.6 ugl, 98 70.130 3 20 Hexachorobulardene 250 28.0 ugl, 98 70.130 3 20 2-Hexachorobulardene 250 23.9 ugl, 98 70.130 3 20 2-Hexachorobulardene 250 23.1 ugl, 98 70.130 2	Dichlorodifluoromethane	25.0	19.8	ug/L	79	34 - 132	1	20
1.2-Dichloroethane25.01.6.5up1,7.47.1.263.2.01.1-Dichloroethane25.02.2.7up1,9.64.1.283.20cial-1.2-Dichloroethane25.02.4.2up1,8.07.1.300.020trans.1.2-Dichloroethane25.02.2.3up1,8.07.1.201.020cial-1.3-Dichloroethane25.02.2.5up1,9.08.1.404.20cial-1.3-Dichloroethane25.02.2.6up1,9.08.1.404.20cial-1.3-Dichloroethane25.02.2.6up1,9.08.1.404.20trans.1.3-Dichloroethane25.02.2.6up1,9.08.1.404.20Hexachorobulatione25.02.4.1up1,9.070.1303.202-Hexanone25.02.4.0up1,9.070.1303.204-Hexinopultoine25.02.02.04.1.0070.1303.204-Herkinothane25.02.02.02.02.02.02.02.04-Herkinothane25.02.02.02.02.02.02.02.02.01.1.2-Terkinothoethane25.02.0<	1,1-Dichloroethane	25.0	21.8	ug/L	87	70 - 130	0	20
1.1-Dicklorenthene 25.0 22.7 upl. 97 70.130 0 20 cas-1.2-Dicklorenthene 25.0 22.6 upl. 82 70.130 0 20 1.2-Dicklorenthene 25.0 22.3 upl. 82 70.130 0 20 1.2-Dicklorenthene 25.0 22.3 upl. 90 83.140 4 20 cit-3.3-Dicklorentpene 25.0 22.6 upl. 90 83.140 4 20 Ethybenzene 25.0 22.6 upl. 90 83.140 4 20 2-Hexanhore/budieline 25.0 22.0 upl. 90 83.140 20 2-Hexanhore 25.0 20.0 upl. 96 70.130 20 20 4-happrophenzene 25.0 20.9 upl. 96 70.130 20 20 Vehthyberzene 25.0 20.9 upl. 92 70.130 3 20 Naphthalene 25.0 25.0 20.1 10.1 70.130 0 20	1,2-Dichloroethane	25.0	18.5	ug/L	74	70 _ 126	3	20
cir.1.2.Dichlorogethene 25.0 24.2 upl. 97 70.130 0 20 trans.1.2.Dichlorogene 25.0 22.3 upl. 89 70.130 0 20 cir.1.3.Dichloropropene 25.0 22.3 upl. 92 81.126 1 20 tirans.1.3.Dichloropropene 25.0 22.8 upl. 90 83.140 4 20 Ethybenzene 25.0 22.8 upl. 91 84.120 1 20 Hexachtorobutatiene 25.0 24.4 upl. 96 70.130 3 20 Stepropylbenzene 25.0 24.1 upl. 96 70.130 3 20 4-dispropylbenzene 25.0 23.9 upl. 96 70.130 3 20 Naphthalene 25.0 23.9 upl. 96 70.130 3 20 Naphthalene 25.0 23.1 upl. 92 70.130 3 20 Naphthalene 25.0 23.4 upl. 94 70.130 12	1,1-Dichloroethene	25.0	22.7	ug/L	91	64 - 128	3	20
trans-1.2-bichlorechene25.026.0ugl.8268.1182201.2-bichloropropene25.022.3ugl.8970.130020cis1-3-bichloropropene25.022.6ugl.9083.140420Ethylbenzene25.022.8ugl.9184.1201202-beanone25.024.0ugl.9670.1302202-beanone25.024.1ugl.9670.1302202-beanone25.023.1ugl.9670.1302204-looproylbenzene25.023.9ugl.8473.1470204-looproylbenzene25.023.0ugl.8473.1470204-looproylbenzene25.023.1ugl.8283.65420Naphthalene25.023.1ugl.9270.130220Naphthalene25.023.1ugl.9270.130220Naphthalene25.023.4ugl.9470.1300201.1.2.7 Etrachloroethane25.023.4ugl.9470.1300201.1.2.7 Etrachloroethane25.023.4ugl.9470.1300201.1.2.7 Etrachloroethane25.023.4ugl.9470.1301201.1.2.7 Etrachloroethane25.025.0ugl.8670.1301	cis-1,2-Dichloroethene	25.0	24.2	ug/L	97	70 _ 130	0	20
1.2-Dichloropropene25.022.3upL8970.130020cis-1.3-Dichloropropene25.022.9upL9281.126120Ethylenzene25.022.8upL9184.120120Hexachlorobutadine25.022.8upL9670.1303202Hoxachlorobutadine25.024.0upL9670.130320Stepsorphemzene25.024.1upL9670.130320Alsoprovphemzene25.020.9upL9670.130320Alsoprovphemzene25.020.9upL8473.147020Alsoprovphemzene25.020.9upL8473.147020Naphthalene25.025.4upL9270.130320Naphthalene25.025.4upL9270.130020Naphthalene25.025.4upL9470.1300201.1.2.2-Tetrachloroethane25.023.4upL9470.1300201.1.2.2-Tetrachloroethane25.025.2upL9670.1300201.1.2.2-Tetrachloroethane25.025.4upL9670.1300201.1.2.2-Tetrachloroethane25.025.4upL9670.1300201.2.2-Tetrachloroethane25.025.4upL8670.130	trans-1,2-Dichloroethene	25.0	20.6	ug/L	82	68 - 118	2	20
cis-1.3 Dichloropropene 25.0 22.9 ugl. 92 81.128 1 20 trans-1.3 Dichloropropene 25.0 22.8 ugl. 90 83.14.0 4 20 Hexachlorobutadiene 25.0 22.8 ugl. 91 44.20 20 Hexachlorobutadiene 25.0 24.0 ugl. 96 70.130 3 20 2 Hexanone 25.0 23.9 ugl. 96 70.130 3 20 4 tsopropythourene 25.0 22.9 ugl. 84 73.147 0 20 Methylene Chioride 25.0 26.0 ugl. 92 70.130 3 20 Naphthalene 25.0 26.0 ugl. 92 70.130 3 20 Styrene 25.0 26.4 ugl. 92 70.130 3 20 Styrene 25.0 24.4 ugl. 94 70.130 2 20 1.1.2.2 Tetrachoroethane 25.0 23.4 ugl. 94 70.130 2 20	1,2-Dichloropropane	25.0	22.3	ug/L	89	70 - 130	0	20
trans-1.3-Dichloropropene 25.0 22.6 ug/L 90 83.140 4 20 Ethylbenzene 25.0 22.8 ug/L 91 84.120 1 20 Ethylbenzene 25.0 22.4 ug/L 96 70.130 2 20 2-Hexanone 126 90.1 ug/L 96 70.130 2 20 4-lsopropylotenzene 25.0 24.1 ug/L 96 70.130 2 20 4-lsopropylotenzene 25.0 20.9 ug/L 84 73.147 0 20 4-lsopropylotenzene 25.0 20.9 ug/L 84 70.130 3 20 N-phopyloenzene 25.0 23.1 ug/L 92 70.130 3 20 N-propyloenzene 25.0 25.4 ug/L 96 70.130 1 20 N-phopyloenzene 25.0 25.4 ug/L 96 70.130 1 20 1.1.2-Tetrachloroethane 25.0 23.4 ug/L 96 70.130 0 <td< td=""><td>cis-1,3-Dichloropropene</td><td>25.0</td><td>22.9</td><td>ug/L</td><td>92</td><td>81 - 126</td><td>1</td><td>20</td></td<>	cis-1,3-Dichloropropene	25.0	22.9	ug/L	92	81 - 126	1	20
Ethylenzene 25.0 22.8 ugl. 91 84.120 1 20 Hexachlorobutadiene 25.0 24.0 ugl. 96 70.130 2 20 Jespropylbenzene 25.0 24.1 ugl. 96 70.130 2 20 4lsopropylbenzene 25.0 24.1 ugl. 96 70.130 2 20 4lsopropylbenzene 25.0 23.9 ugl. 96 70.130 2 20 4lsopropylbenzene 25.0 20.0 ugl. 104 74.129 0 20 Naphthalene 25.0 25.4 ugl. 102 70.130 3 20 N-Propylenzene 25.0 25.4 ugl. 102 70.130 1 2 20 1.1,2.2-Tetrachloroethane 25.0 25.4 ugl. 96 70.130 1 2 20 1.2,2Tetrachloroethane 25.0 23.4 ugl. 96 70.130 1 2 20 1.2,2Tetrachloroethane 25.0 25.4 ugl.	trans-1,3-Dichloropropene	25.0	22.6	ug/L	90	83 - 140	4	20
Hexachlorobutadiene 25.0 24.0 ugl 96 70.130 3 20 2-Hexanne 125 90.1 ugl 72 60.164 4 20 Lisopropylenzene 25.0 23.9 ugl 96 70.130 2 20 4-Isopropylenzene 25.0 23.9 ugl 84 73.147 0 20 4-Methyl-2-pentanoe (MBK) 125 103 ugl 82 63.165 4 20 N-Propylenzene 25.0 25.0 ugl 96 70.130 2 20 N-Propylenzene 25.0 25.0 ugl 92 70.130 3 20 Styrane 25.0 25.4 ugl 96 70.130 0 20 1.1.2-Tetrachloroethane 25.0 23.4 ugl 94 76.130 0 20 1.2.2-Tetrachloroethane 25.0 23.4 ugl 94 76.130 0 20 1.2.2-Tetrachloroethane 25.0 23.7 ugl 95 70.130 0 20 <td>Ethylbenzene</td> <td>25.0</td> <td>22.8</td> <td>ug/L</td> <td>91</td> <td>84 - 120</td> <td>1</td> <td>20</td>	Ethylbenzene	25.0	22.8	ug/L	91	84 - 120	1	20
2-Hexanone 125 90.1 ug/L 72 60.164 42 02 Isopropytherzene 250 23.1 ug/L 96 70.130 3 20 Alsopropytherzene 250 20.9 ug/L 68 70.130 3 20 Alsopropytherzene 250 20.9 ug/L 68 73.147 70 20 Naphthalene 250 26.0 ug/L 014 74.129 00 20 NPropytherzene 250 25.4 ug/L 02 70.130 3 20 1,1,2,2-Tetrachloroethane 25.0 23.4 ug/L 96 70.130 0 20 1,1,2,2-Tetrachloroethane 25.0 23.4 ug/L 96 70.130 0 20 1,2,4-Trichhoroethane 25.0 23.4 ug/L 94 78.118 2 20 1,2,4-Trichhoroethane 25.0 23.4 ug/L 96 70.130 0 20 1,2,4-Trichhoroethane 25.0 23.7 ug/L 95 78.125 2 </td <td>Hexachlorobutadiene</td> <td>25.0</td> <td>24.0</td> <td>ug/L</td> <td>96</td> <td>70 - 130</td> <td>3</td> <td>20</td>	Hexachlorobutadiene	25.0	24.0	ug/L	96	70 - 130	3	20
Isopropylbanzene 25.0 24.1 ug/L 96 70.130 2 20 4-isopropylburene 25.0 23.9 ug/L 86 70.130 3 20 4-Methyle-pentanone (MIBK) 125 103 ug/L 82 63.165 4 20 Naphthalene 25.0 26.0 ug/L 104 74.129 0 20 Naphthalene 25.0 26.0 ug/L 104 74.129 0 20 Naphthalene 25.0 26.4 ug/L 102 70.130 0 20 Styrene 25.0 24.4 ug/L 102 70.130 0 20 1,1,2.7-tetrachloroethane 25.0 23.4 ug/L 49 76.118 2 20 1,1.2.7-tetrachloroethane 25.0 23.4 ug/L 49 78.118 2 20 1,2.4-Trichloroethane 25.0 25.4 ug/L 66 70.130 0 20	2-Hexanone	125	90.1	ug/L	72	60 - 164	4	20
4-Isopropylloluene 25.0 23.9 ug/L 96 70.130 3 20 Methylene Chloride 25.0 20.9 ug/L 84 73.147 0 20 4-Methyl-2-pentanone (MIBK) 125 103 ug/L 82 63.165 4 20 N-Propylbenzene 25.0 26.1 ug/L 104 74.129 0 20 N-Propylbenzene 25.0 23.1 ug/L 92 70.130 2 20 1,1,2.7 Etrachloroethane 25.0 23.4 ug/L 94 70.130 1 20 1,1,2.7 Etrachloroethane 25.0 23.4 ug/L 94 70.130 0 20 Toluene 25.0 23.4 ug/L 94 70.130 0 20 1,2.3 Trichlorobenzene 25.0 23.4 ug/L 94 76.118 2 20 1,1.2.1 Trichlorobenzene 25.0 25.5 ug/L 102 70.130 0 20 1,1.2.1 Trichlorobenzene 25.0 23.7 ug/L 95 70.	Isopropylbenzene	25.0	24.1	ug/L	96	70 - 130	2	20
Methylene Chloride 25.0 20.9 ug/L 84 73.147 0 20 4-Methyl-2-pentanone (MIBK) 125 103 ug/L 82 63.165 4 20 Naphthalene 25.0 26.0 ug/L 104 74.129 00 20 N-Propylbenzene 25.0 23.1 ug/L 92 70.130 2 20 1.1.1.2-Tetrachloroethane 25.0 23.4 ug/L 96 70.130 0 20 1.1.1.2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 0 20 1.1.2.2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 0 20 1.1.2.3-Trichlorobenzene 25.0 23.4 ug/L 94 70.130 0 20 1.2.4-Trichlorobenzene 25.0 26.1 ug/L 86 70.130 0 20 1.2.4-Trichlorobenzene 25.0 23.7 ug/L 95 70.130 1 20 1.1.2-Trichlorobenzene 25.0 23.7 ug/L 98<	4-Isopropyltoluene	25.0	23.9	ug/L	96	70 - 130	3	20
4-Methyl-2-pentanone (MIBK) 125 103 ug/L 82 63.165 4 20 Naphthalene 25.0 26.0 ug/L 104 74.129 0 20 N-Propylbenzene 25.0 26.4 ug/L 02 70.130 22 20 1,1,1,2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 12 200 1,1,2.2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 12 200 1,1,2.2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 12 200 1,1,2-Tetrachloroethane 25.0 23.4 ug/L 94 78.18 22 200 1,2.3-Trichlorobenzene 25.0 26.2 ug/L 105 70.130 0 200 1,2.4-Trichlorobenzene 25.0 26.0 23.7 ug/L 86 70.130 1 200 1,1.2-Trichlorobenzene 25.0 23.7 ug/L 88 66.132 2 200 1,1.2-Trichlorobenzene 25.0 23.7	Methylene Chloride	25.0	20.9	ug/L	84	73 - 147	0	20
Naphthalene 25.0 26.0 ug/L 104 74.129 0 20 N-Propylenzene 25.0 23.1 ug/L 92 70.130 3 20 Styrene 25.0 25.4 ug/L 102 70.130 2 20 1,1,2-Tetrachloroethane 25.0 23.4 ug/L 96 70.130 0 20 1,1,2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 0 20 1,2,3-Trichlorobenzene 25.0 23.4 ug/L 94 76.118 2 20 1,2,4-Trichlorobenzene 25.0 25.5 ug/L 102 70.130 0 20 1,1,1-Trichlorobenzene 25.0 25.5 ug/L 102 70.130 0 20 1,1,2-Trichlorobenzene 25.0 25.5 ug/L 86 70.130 1 20 1,1,2-Trichlorobenzene 25.0 23.7 ug/L 88 66.132 2 20	4-Methyl-2-pentanone (MIBK)	125	103	ug/L	82	63 - 165	4	20
N-Propylbenzene 25.0 23.1 ug/L 92 70.130 3 20 Styrene 25.0 25.4 ug/L 102 70.130 2 20 1,1,2.2-Tetrachloroethane 25.0 24.0 ug/L 96 70.130 0 20 1,1,2.2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 0 20 Totuene 25.0 23.9 ug/L 94 78.118 2 20 1,2.3-Trichlorobenzene 25.0 26.2 ug/L 105 70.130 0 20 1,2.4-Trichlorobenzene 25.0 26.5 ug/L 105 70.130 2 20 1,1.2-Trichlorobenzene 25.0 26.1 ug/L 86 70.130 1 20 1,1.2-Trichlorobethane 25.0 23.7 ug/L 86 70.130 1 20 1,1.2-Trichloropethane 25.0 23.7 ug/L 88 70.130 1 20	Naphthalene	25.0	26.0	ug/L	104	74 - 129	0	20
Styrene 25.0 25.4 ug/L 102 70.130 2 20 1,1,1.2-Tetrachloroethane 25.0 24.0 ug/L 96 70.130 10 20 1,1,2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 10 20 Tetrachloroethane 25.0 23.9 ug/L 94 70.130 20 20 1,2,3-Trichlorobenzene 25.0 23.2 ug/L 94 78.18 2 20 1,2,3-Trichlorobenzene 25.0 26.2 ug/L 105 70.130 0 20 1,2,4-Trichlorobenzene 25.0 26.5 ug/L 102 70.130 0 20 1,1,2-Trichlorobenzene 25.0 25.5 ug/L 102 70.130 0 20 1,1,2-Trichlorobenzene 25.0 23.7 ug/L 86 70.130 10 20 1,1,2-Trichloroethane 25.0 22.1 ug/L 88 66.132 22 20 1,2,3-Trichloropopane 25.0 23.7 ug/L 98	N-Propylbenzene	25.0	23.1	ug/L	92	70 - 130	3	20
1,1,1,2-Tetrachloroethane 25.0 24.0 ug/L 96 70.130 0 20 1,1,2,2-Tetrachloroethane 25.0 23.4 ug/L 94 70.130 1 20 Tetrachloroethane 25.0 23.9 ug/L 96 70.130 0 20 Toluene 25.0 23.4 ug/L 94 70.130 0 20 1,2,3-Trichlorobenzene 25.0 26.2 ug/L 96 70.130 0 20 1,2,4-Trichlorobenzene 25.0 26.5 ug/L 102 70.130 0 20 1,1,1-Trichloroethane 25.0 25.0 ug/L 102 70.130 0 20 1,1,2-Trichloroethane 25.0 23.7 ug/L 95 70.130 1 20 1,1,2-Trichloroethane 25.0 23.7 ug/L 95 70.130 1 20 1,1,2-Trichloroethane 25.0 22.1 ug/L 88 66.132 2 20 1,2,3-Trichloroethane 25.0 23.2 ug/L 104	Styrene	25.0	25.4	ug/L	102	70 - 130	2	20
1,1,2,2-Tetrachloroethane 25.0 23.4 ug/L 94 70 - 130 1 20 Tetrachloroethene 25.0 23.9 ug/L 96 70 - 130 0 20 Toluene 25.0 23.4 ug/L 94 78 - 118 2 20 1,2,3-Trichlorobenzene 25.0 26.2 ug/L 105 70 - 130 0 20 1,2,4-Trichlorobenzene 25.0 26.5 ug/L 102 70 - 130 0 20 1,1,1-Trichloroethane 25.0 25.5 ug/L 102 70 - 130 0 20 1,1,2-Trichloroethane 25.0 23.7 ug/L 95 78 - 125 2 20 1,1,2-Trichloroethane 25.0 23.7 ug/L 95 70 - 130 1 20 1,1,2-Trichloroethane 25.0 22.1 ug/L 88 66 - 132 2 20 1,1,2-Trichloroethane 25.0 23.7 ug/L 88 70 - 130 3 20 1,2,3-Trichloroethane 25.0 23.1 ug/L <	1,1,1,2-Tetrachloroethane	25.0	24.0	ug/L	96	70 - 130	0	20
Tetrachloroethene25.023.9ug/L9670.130020Toluene25.023.4ug/L9478.1182201,2,3-Trichlorobenzene25.026.2ug/L10570.1300201,2,4-Trichlorobenzene25.025.5ug/L10270.1300201,1,1-Trichloroethane25.025.5ug/L8670.1300201,1,2-Trichloroethane25.023.7ug/L9578.1252201,1,2-Trichloroethane25.023.7ug/L9570.1301201,2,3-Trichloroethane25.022.1ug/L8866.1322201,2,3-Trichloroethane25.022.1ug/L8866.1322201,2,3-Trichloroethane25.022.1ug/L8866.1322201,2,3-Trichloroethane25.022.1ug/L8866.1322201,2,4-Trinderyopane25.022.1ug/L8870.1303201,3,5-Trinethylbenzene25.023.7ug/L9370.1321201,3,4-Trimethylbenzene25.023.7ug/L9843.1636201,3,5-Trimethylbenzene25.023.7ug/L9843.1636201,3,4-Trimethylbenzene25.023.7ug/L9554.1351201,3,4-Trimethylbenzene25.0 <t< td=""><td>1,1,2,2-Tetrachloroethane</td><td>25.0</td><td>23.4</td><td>ug/L</td><td>94</td><td>70 - 130</td><td>1</td><td>20</td></t<>	1,1,2,2-Tetrachloroethane	25.0	23.4	ug/L	94	70 - 130	1	20
Toluene25.023.4ug/L9478.1182201,2,3-Trichlorobenzene25.026.2ug/L10570.1300201,2,4-Trichlorobenzene25.025.5ug/L10270.1302201,1,1-Trichlorobenzene25.021.6ug/L8670.1300201,1,2-Trichlorobenzene25.023.7ug/L9578.1252201,1,2-Trichlorobenzene25.023.7ug/L9570.1301201,2,3-Trichlorobenzene25.022.1ug/L8866.132220Trichlorobenzene25.022.1ug/L8866.1322201,2,3-Trichloropropane25.025.9ug/L10442.1621201,2,4-Trimbethylbenzene25.023.2ug/L9370.1303201,3,5-Trimethylbenzene25.023.7ug/L9370.1321201,3,5-Trimethylbenzene25.023.7ug/L9370.1303201,3,4-Trimethylbenzene25.023.7ug/L9570.1303201,3,5-Trimethylbenzene25.023.7ug/L9570.1303201,3,6-Trimethylbenzene25.023.7ug/L9574.135220Vinyl chloride25.023.7ug/L9574.135220Vinyl chloride25.023.	Tetrachloroethene	25.0	23.9	ug/L	96	70 - 130	0	20
1.2.3-Trichlorobenzene25.026.2ug/L10570.1300201.2.4-Trichlorobenzene25.025.5ug/L10270.1302201.1.1-Trichloroethane25.021.6ug/L8670.1300201.1.2-Trichloroethane25.023.7ug/L9578.125220Trichloroethane25.023.7ug/L9570.130120Trichloroethane25.023.7ug/L8866.1322201.2.3-Trichloroethane25.022.1ug/L8866.1322201.2.3-Trichloroethane25.022.1ug/L8870.1303201.2.3-Trichloroethane25.025.9ug/L8870.1303201.2.3-Trichloroethan25.023.2ug/L8870.1303201.2.3-Trinethylbenzene25.023.7ug/L8870.1303201.3.5-Trimethylbenzene25.023.7ug/L9370.132120Vinyl acetate25.023.7ug/L9570.130320Vinyl chloride25.023.7ug/L9554.135120Vinyl chloride25.023.7ug/L9670.142220o-Xylene & p-Xylene50.045.1ug/L9385.1271202.2-Dichloropropane25.023.9ug/L <td>Toluene</td> <td>25.0</td> <td>23.4</td> <td>ug/L</td> <td>94</td> <td>78 - 118</td> <td>2</td> <td>20</td>	Toluene	25.0	23.4	ug/L	94	78 - 118	2	20
1.2.4-Trichlorobenzene25.025.5ug/L10270.1302201,1,1-Trichloroethane25.021.6ug/L8670.1300201,1,2-Trichloroethane25.023.7ug/L9578.125220Trichloroethane25.023.7ug/L9570.130120Trichloroethane25.022.1ug/L8866.1322201,2.3-Trichloroptopane25.022.1ug/L8870.1303201,2.4-Trimethylbenzene25.025.9ug/L10442.162120ne125.023.2ug/L9370.1321201,3.5-Trimethylbenzene25.023.7ug/L9370.1321201,3.5-Trimethylbenzene25.023.7ug/L9570.1303201,3.5-Trimethylbenzene25.023.7ug/L9570.1303201,3.5-Trimethylbenzene25.023.7ug/L9570.130320Vinyl acetate25.023.7ug/L9554.135120Nylene & p-Xylene50.045.1ug/L9070.1422200-Xylene25.023.9ug/L9385.1271201EA500475ug/L9582.116120	1,2,3-Trichlorobenzene	25.0	26.2	ug/L	105	70 - 130	0	20
1,1,1-Trichloroethane25.021.6ug/L8670 - 1300201,1,2-Trichloroethane25.023.7ug/L9578 - 125220Trichloroethane25.023.7ug/L9570 - 130120Trichloroethane25.022.1ug/L8866 - 1322201,2,3-Trichloropropane25.022.1ug/L8870 - 1303201,2,3-Trichloro-1,2,2-trifluoroetha25.025.9ug/L10442 - 162120ne125.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.7ug/L9570 - 1303201,3,5-Trimethylbenzene25.023.7ug/L9570 - 130320Vinyl acetate25.023.7ug/L9843 - 163620Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 140020TEA500475ug/L9582 - 116120	1,2,4-Trichlorobenzene	25.0	25.5	ug/L	102	70 - 130	2	20
1,1,2-Trichloroethane25.023.7ug/L9578.125220Trichloroethane25.023.7ug/L9570.130120Trichlorofluoromethane25.022.1ug/L8866.1322201,2,3-Trichloropapane25.022.1ug/L8870.1303201,1,2-Trichloro-1,2,2-trifluoroetha25.025.025.9ug/L9370.1321201,2,4-Trimethylbenzene25.023.2ug/L9370.1321201,3,5-Trimethylbenzene25.023.7ug/L9570.1303201,3,5-Trimethylbenzene25.023.7ug/L9554.135120Vinyl acetate25.023.7ug/L9554.135120vinyl chloride25.023.7ug/L9070.1422200-Xylene & p-Xylene50.045.1ug/L9070.1422202,2-Dichloropropane25.023.9ug/L9385.1271202,2-Dichloropropane25.023.9ug/L9670.1400201EA500475ug/L9582.116120	1,1,1-Trichloroethane	25.0	21.6	ug/L	86	70 - 130	0	20
Trichloroethene25.023.7ug/L9570 - 130120Trichlorofluoromethane25.022.1ug/L8866 - 1322201,2,3-Trichloropropane25.022.1ug/L8870 - 1303201,1,2-Trichloro-1,2,2-trifluoroetha25.025.9ug/L10442 - 162120ne125.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.7ug/L9570 - 1303201,3,5-Trimethylbenzene25.023.7ug/L9570 - 130320Vinyl acetate25.023.7ug/L9554 - 135120vinyl chloride25.023.7ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 1400201,2,2-Dichloropropane25.023.9ug/L9670 - 1400201,2,32023.9ug/L9670 - 140020201,3,52023.9ug/L9582 - 1161201,3,52023.9ug/L9582 - 1161201,3,52023.9ug/L9582 - 1161201,3,52023.9ug/L9582 - 1161	1,1,2-Trichloroethane	25.0	23.7	ug/L	95	78 _ 125	2	20
Trichlorofluoromethane25.022.1ug/L8866.1322201,2,3-Trichloropropane25.022.1ug/L8870.1303201,1,2-Trichloro-1,2,2-trifluoroetha25.025.9ug/L10442.162120ne1,2,4-Trimethylbenzene25.023.2ug/L9370.1321201,3,5-Trimethylbenzene25.023.7ug/L9570.130320Vinyl acetate25.023.7ug/L9843.163620Vinyl chloride25.023.7ug/L9554.135120m-Xylene & p-Xylene50.045.1ug/L9070.1422200-Xylene25.023.2ug/L9385.1271201,2,4-Dichloropropane25.023.9ug/L9670.1400201,3,5-Trimethylbenzene25.023.2ug/L9385.1271201,3,5-Trimethylbenzene25.023.2ug/L9385.1271200-Xylene25.023.2ug/L9385.1271202,2-Dichloropropane25.023.9ug/L9670.140020TBA500475ug/L9582.116120	Trichloroethene	25.0	23.7	ug/L	95	70 - 130	1	20
1,2,3-Trichloropropane25.022.1ug/L8870 - 1303201,1,2-Trichloro-1,2,2-trifluoroetha25.025.9ug/L10442 - 162120ne125.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.7ug/L9570 - 1303201,3,5-Trimethylbenzene25.023.7ug/L9843 - 163620Vinyl acetate25.023.7ug/L9554 - 135120Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271201,2-Dichloropropane25.023.9ug/L9670 - 140020TBA500475ug/L9582 - 116120	Trichlorofluoromethane	25.0	22.1	ug/L	88	66 - 132	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha25.025.9ug/L10442 - 162120ne1,2,4-Trimethylbenzene25.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.7ug/L9570 - 130320Vinyl acetate25.024.6ug/L9843 - 163620Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 140020TBA500475ug/L9582 - 116120	1,2,3-Trichloropropane	25.0	22.1	ug/L	88	70 - 130	3	20
ne1,2,4-Trimethylbenzene25.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.7ug/L9570 - 130320Vinyl acetate25.024.6ug/L9843 - 163620Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 140020TBA500475ug/L9582 - 116120	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.9	ug/L	104	42 - 162	1	20
1,2,4-Trimethylbenzene25.023.2ug/L9370 - 1321201,3,5-Trimethylbenzene25.023.7ug/L9570 - 130320Vinyl acetate25.024.6ug/L9843 - 163620Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 140020TBA500475ug/L9582 - 116120	ne							
1,3,5-Trimethylbenzene25.023.7ug/L9570 - 130320Vinyl acetate25.024.6ug/L9843 - 163620Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 140020TBA500475ug/L9582 - 116120	1,2,4-Trimethylbenzene	25.0	23.2	ug/L	93	70 - 132	1	20
Vinyl acetate25.024.6ug/L9843 - 163620Vinyl chloride25.023.7ug/L9554 - 135120m-Xylene & p-Xylene50.045.1ug/L9070 - 142220o-Xylene25.023.2ug/L9385 - 1271202,2-Dichloropropane25.023.9ug/L9670 - 140020TBA500475ug/L9582 - 116120	1,3,5-Trimethylbenzene	25.0	23.7	ug/L	95	70 _ 130	3	20
Vinyl chloride25.023.7ug/L9554.135120m-Xylene & p-Xylene50.045.1ug/L9070.142220o-Xylene25.023.2ug/L9385.1271202,2-Dichloropropane25.023.9ug/L9670.140020TBA500475ug/L9582.116120	Vinyl acetate	25.0	24.6	ug/L	98	43 - 163	6	20
m-Xylene & p-Xylene 50.0 45.1 ug/L 90 70 - 142 2 20 o-Xylene 25.0 23.2 ug/L 93 85 - 127 1 20 2,2-Dichloropropane 25.0 23.9 ug/L 96 70 - 140 0 20 TBA 500 475 ug/L 95 82 - 116 1 20	Vinyl chloride	25.0	23.7	ug/L	95	54 ₋ 135	1	20
o-Xylene 25.0 23.2 ug/L 93 85 - 127 1 20 2,2-Dichloropropane 25.0 23.9 ug/L 96 70 - 140 0 20 TBA 500 475 ug/L 95 82 - 116 1 20	m-Xylene & p-Xylene	50.0	45.1	ug/L	90	70 _ 142	2	20
2,2-Dichloropropane 25.0 23.9 ug/L 96 70 - 140 0 20 TBA 500 475 ug/L 95 82 - 116 1 20	o-Xylene	25.0	23.2	ug/L	93	85 ₋ 127	1	20
TBA 500 475 ug/L 95 82 - 116 1 20	2,2-Dichloropropane	25.0	23.9	ug/L	96	70 ₋ 140	0	20
	ТВА	500	475	ug/L	95	82 _ 116	1	20

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Water	5693/7					Clien	t Samp	le ID: L	ab Control Prep Ty	Sampl	e Dup tal/NA
Analysis Batch: 105693											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethyl tert-butyl ether			25.0	22.5		ug/L		90	70 - 130	0	20
DIPE			25.0	23.6		ug/L		94	69 _ 134	2	20
TAME			25.0	25.0		ug/L		100	79 ₋ 129	2	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	96		67 - 130								
1,2-Dichloroethane-d4 (Surr)	84		75 - 138								
Toluene-d8 (Surr)	101		70 - 130								
—											
—											
Lab Sample ID: LCSD 720-10	5693/9					Clien	t Samp	le ID: L	ab Control	Sampl	e Dup
_ Lab Sample ID: LCSD 720-10 Matrix: Water	5693/9					Clien	t Samp	le ID: L	ab Control Prep Ty	Sampl /pe: To	e Dup tal/NA
Lab Sample ID: LCSD 720-10 Matrix: Water Analysis Batch: 105693	5693/9					Clien	t Samp	ole ID: La	ab Control Prep Ty	Sampl /pe: To	e Dup tal/NA
Lab Sample ID: LCSD 720-10 Matrix: Water Analysis Batch: 105693	5693/9		Spike	LCSD	LCSD	Clien	t Samp	ole ID: La	ab Control Prep Ty %Rec.	Sampl /pe: To	e Dup tal/NA RPD
Lab Sample ID: LCSD 720-10 Matrix: Water Analysis Batch: 105693 Analyte	5693/9		Spike Added	LCSD Result	LCSD Qualifier	Clien	t Samp	%Rec	ab Control Prep Ty %Rec. Limits	Sampl vpe: Tot RPD	e Dup tal/NA RPD Limit
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO)	5693/9		Spike Added 500	LCSD Result 467	LCSD Qualifier	Clien	t Samp	%Rec 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: To RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12	5693/9		Spike Added 500	LCSD Result 467	LCSD Qualifier	Clien Unit ug/L	t Samp D	%Rec 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: Tot RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12	5693/9 		Spike Added 500	LCSD Result 467	LCSD Qualifier	Clien - Unit ug/L	t Samp	<mark>%Rec</mark> 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: Tot RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12 Surrogate	5693/9 LCSD %Recovery	LCSD Qualifier	Spike Added 500	LCSD Result 467	LCSD Qualifier	Clien Unit ug/L	t Samp	Ne ID: La %Rec 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: To RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-103 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12 Surrogate 4-Bromofluorobenzene	5693/9 	LCSD Qualifier	Spike Added 500 Limits 67 - 130	LCSD Result 467	LCSD Qualifier	Clien Unit ug/L	t Samp	%Rec 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: To RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12 Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr)	5693/9 <i>LCSD</i> %Recovery 95 82	LCSD Qualifier	Spike Added 500 Limits 67 - 130 75 - 138	LCSD Result 467	LCSD Qualifier	Clien - Unit ug/L	t Samp	%Rec 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: To RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12 Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)	5693/9 <i>LCSD</i> %Recovery 95 82 100	LCSD Qualifier	Spike Added 500 Limits 67 - 130 75 - 138 70 - 130	LCSD Result 467	LCSD Qualifier	Clien - Unit ug/L	t Samp	%Rec 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: To RPD 7	e Dup tal/NA RPD Limit 20
Lab Sample ID: LCSD 720-104 Matrix: Water Analysis Batch: 105693 Analyte Gasoline Range Organics (GRO) -C5-C12 Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)	5693/9 <i>LCSD</i> %Recovery 95 82 100	LCSD Qualifier	Spike Added 500 Limits 67 - 130 75 - 138 70 - 130	LCSD Result 467	LCSD Qualifier	Clien - Unit ug/L	t Samp	<mark>%Rec</mark> 93	ab Control Prep Ty %Rec. Limits 62 - 117	Sampl ype: Tor RPD 7	e Dup tal/NA RPD Limit 20

Lab Sample ID: MB 720-105729/1-A Matrix: Water Analysis Batch: 105771

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Arsenic	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Barium	ND		0.0050		mg/L		01/10/12 09:23	01/10/12 16:01	1
Beryllium	ND		0.0020		mg/L		01/10/12 09:23	01/10/12 16:01	1
Cadmium	ND		0.0025		mg/L		01/10/12 09:23	01/10/12 16:01	1
Chromium	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Cobalt	ND		0.0020		mg/L		01/10/12 09:23	01/10/12 16:01	1
Copper	ND		0.020		mg/L		01/10/12 09:23	01/10/12 16:01	1
Lead	ND		0.0050		mg/L		01/10/12 09:23	01/10/12 16:01	1
Molybdenum	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Nickel	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Selenium	ND		0.020		mg/L		01/10/12 09:23	01/10/12 16:01	1
Silver	ND		0.0050		mg/L		01/10/12 09:23	01/10/12 16:01	1
Thallium	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Vanadium	ND		0.010		mg/L		01/10/12 09:23	01/10/12 16:01	1
Zinc	ND		0.020		mg/L		01/10/12 09:23	01/10/12 16:01	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 105729

LCS LCS

Result

1.04

1.06

1.08

1.04

0.979

1.02

1.08

1.02

1.02

1.01

1.03

1.01

0.533

1.02

0.975

1.08

Qualifier

Unit

mg/L

D

%Rec

104

106

108

104

98

102

108

102

102

101

103

101

107

102

98

108

Spike

Added

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.500

1.00

1.00

1.00

Lab Sample ID: LCS 720-105729/2-A

Matrix: Water

Analyte

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Molybdenum

Cobalt

Copper

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Analysis Batch: 105771

Method: 6010B - Metals (ICP) (Continued)

Prep Type: Total/NA

Prep Batch: 105729

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

7 8 9 10 11

Lab Sample ID: LCSD	720-105729/3-A
Matrix: Water	

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Analysis Batch: 105771 Prep Batch: 105729 Spike LCSD LCSD %Rec. RPD Analyte Qualifier D Limits RPD Limit Added Result Unit %Rec Antimony 1.00 1.03 103 80 - 120 20 mg/L 1 1.00 1.06 106 80 - 120 20 Arsenic mg/L 1 Barium 1.00 1.06 mg/L 106 80 - 120 2 20 Beryllium 1.00 1.02 mg/L 80 - 120 20 102 2 Cadmium 1.00 0.967 mg/L 97 80 - 120 20 1 Chromium 1.00 0.996 mg/L 100 80 - 120 20 2 Cobalt 1.00 1.07 mg/L 107 80 - 120 1 20 1.00 0.997 100 80 - 120 20 Copper mg/L 2 1.00 Lead 1.01 mg/L 101 80 - 120 20 1 Molybdenum 1.00 1.00 mg/L 100 80 - 120 20 Nickel 1.00 80 - 120 20 1.02 mg/L 102 1 Selenium 1.00 0.991 99 80 - 120 2 20 mg/L 20 Silver 0.500 80 - 120 2 0.523 105 mg/L Thallium 1.00 1.01 mg/L 101 80 - 120 20 Vanadium 1.00 0.952 95 80 - 120 20 mg/L 2 Zinc 1.00 1.07 mg/L 107 80 - 120 1 20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 720-105808/1-A Matrix: Water						Client Sa	ample ID: Metho Prep Type: 1	d Blank
Analysis Batch: 105834							Prep Batch:	105808
	мв	мв						
Analyte	Result	Qualifier	RL	MDL	Unit	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L	 01/11/12 09:08	01/11/12 13:06	1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 720-105808/2-A Matrix: Water Analysis Batch: 105834	Spike	LCS	LCS		Client	Sample	ID: Lab Co Prep Ty Prep E %Rec.	ntrol S /pe: To atch: 1	ample tal/NA 05808
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.0100	0.00932		mg/L		93	85 _ 115		
				Clie	ent Sam	ole ID: L	ab Control	Sampl	e Dup
Matrix: Water							Prep Ty	pe: To	tal/NA
Analysis Batch: 105834							Prep E	atch: 1	05808
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.0100	0.0102		mg/L		102	85 - 115	9	20

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

GC/MS VOA

Analy	/sis	Batch:	105693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39643-1	WASTEWATER	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-105693/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-105693/8	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-105693/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-105693/9	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-105693/5	Method Blank	Total/NA	Water	8260B/CA_LUFT	
L				MS	

Metals

Prep Batch: 105729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39643-1	WASTEWATER	Total/NA	Water	3010A	
LCS 720-105729/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 720-105729/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
MB 720-105729/1-A	Method Blank	Total/NA	Water	3010A	

Analysis Batch: 105771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-105729/2-A	Lab Control Sample	Total/NA	Water	6010B	105729
LCSD 720-105729/3-A	Lab Control Sample Dup	Total/NA	Water	6010B	105729
MB 720-105729/1-A	Method Blank	Total/NA	Water	6010B	105729

Analysis Batch: 105776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39643-1	WASTEWATER	Total/NA	Water	6010B	105729

Prep Batch: 105808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-39643-1	WASTEWATER	Total/NA	Water	7470A	
LCS 720-105808/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 720-105808/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
MB 720-105808/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 105834

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-39643-1	WASTEWATER	Total/NA	Water	7470A	105808
LCS 720-105808/2-A	Lab Control Sample	Total/NA	Water	7470A	105808
LCSD 720-105808/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	105808
MB 720-105808/1-A	Method Blank	Total/NA	Water	7470A	105808

Certification Summary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica San Francisco	California	State Program	9	2496

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S			
6010B	Metals (ICP)	SW846	TAL SF
7470A	Mercury (CVAA)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: Streamborn Project/Site: 4401 Market Street Oakland, CA TestAmerica Job ID: 720-39643-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-39643-1	WASTEWATER	Water	01/05/12 13:10	01/06/12 18:10

720-39643

Streamborn

Chain-of-Custody Form

Project Name: 4401 Market Street	Project Location: 4401 Market Street, Oakland CA	Project Number: P257
Sampler: Kevin R Wildenberg	Laboratory: TestAmerica	Laboratory Number: 925-484-1919

]	Matri	x	Ty	/pe		Containers		Τι	irnaroi	ind			Ana	lyses				
Sample Designation	Depth (feet)	Date	Time	Soil	Water	Vapor	Grab	Composite	Quantity	Type	Preservative (in addition to ice)	24 Hour	5 Working Days	10 Working Days		TPH-gasoline/BTEX/fuel oxygenates	VOCs (EPA \$260)	CAM 17 Total Metals			Sampler Comments	Laboratory Comments
Wastewater		05-Jan-12	1:10		X			X	4	40 mL VOA	HCl			X		X	X				4 subsamples	
Wastewater		05-Jan-12	1:10		X			X	1	250 mL Poly	HNO3		Ī	x				X			4 subsamples	
						[T		-							
				1		1		1								1			1	1		
Subsamples were	collected fr	om the drumn	ned wastewa	ater fi	om g	round	dwate	r san	pling	. The subsampl	es were c	ompo	sited i	n field	1.			I	Ι	[[
				1								[Ι			Ι	[1				

Note: Sampler and laboratory to observe preservative, condition, integrity, etc. of samples and record (under "Comments") any exceptions from standard protocols.

$\kappa / 1$, (1)		0 1	
Relinquished By:	Received By:	Date: / 2	Time QSC
Relinquished By	Received By: Jonn Muler	Date: 1-6-12	Time: / 810

STREAMBORN Mail: PO Box 8330, Berkeley CA 94707-8330 Office: 900 Santa Fe Ave, Albany CA 94706 510-528-4234 Fax: 528-2613

.

Report results to: information@streamborn.com	Prepare EDF for Geotracker Upload? No	Streamborn Logcode: SBA	Global ID: T0600100430

1/13/2012

Login Sample Receipt Checklist

Client: Streamborn

Login Number: 39643 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 720-39643-1

List Source: TestAmerica San Francisco

ATTACHMENT 9

Documentation Regarding Disposal of Waste Soil and Wastewater

A Copy of this acceptance profile must accompany every Hazardous & Non-Hazardous manifest

When completed, please Fax to (909) 421-7103									Profile Acceptance #							
Filter Rec	ycling S	Ser	vices, Inc.						Date:							
P.O. Box	449 - Co	olt	on, Californ	ia 9	9232	24			Aut	horized B	Y:					
A. Generator	r Informatio	on	Househo	ld		<u>CESQG</u>		(Check i	f applical	le	B. FRS Sales Representative:				
Generator Na	me: Ca	asi	miro Damele			Mailing/Manifest Address:						Name:				
Site Address:	PO Box 8	33(0				Pho	one #								
City, State, Zi	ip Oa	akl	and, CA 94608	3		Berkeley,	CA	\ 94	707			С.]	Broker	Infor	rmatio	<u>n:</u>
U.S. E.P.A. II) #: N.	A			5	S.I.C. Code	:					Nai	ne: No	rth S	state	
Technical Co	ntact: Te	erry	Hoehne			Title:	Sa	les	Manag	ger		Ad Cit	dress P y/State	O Bo : SSI	ox 214 F, CA 9	8 94083
Phone Numbe	er: 65	50.5	588.2838		Fa	x Number:	65(0.588	8.1950			Co	ntact: 7	[erry	Hoeh	ne
Name of Wast	te: W	ate	er									Pho	one: 65	0.588	8.2838	9
Process Gener the Waste:	rating Si	te a	assessment from	n Ll	JFT							Fax	: 650.5	88.1	950	
D. Characteristics ATTACH ANY MSDS and ANALYTICAL THAT HAS BEEN PERFORMED												MED				
<u>Color</u>	<u>Odor</u>	P	hysical State @, 70*		L	avers	F	Free L	iquids	E. Meta	ls					3
clear X	None	X	Liquid		Mu	lti-layered			No	X None			TCLP	(MG	/L)	Totals (ppm)
<u>BTU/LB</u>	Mild		Semi-Solid		Bi-l	ayered	Х		Yes	es Arsenic			Sel			
0	Strong		Solid	Х	Sin	gle Layered	10)0	%	6 Barium			Silv			
Flash Pe	oint		140 – 200° F			Der	<u>isity</u> Cadmium			m	Co			oper		
< 70° F			> 200° F			Lbs/Gal	8.4			Chromium			Nickel			
70-100°	F	Х	No Flash			Lbs/Ft		Lead				Zin			inc	
101-139	, F.	_	Exact			API Gravity				Mercury	Ý	Cyanides				
pH Range	F. Phys	ica	l/Chemical Comp	ositie	<u>on</u>) 0/	G	. <u>Sh</u>	ipping	Informat.	ion	1 1 1 1				
≤ 2	Water	13			100) %	SI N	rope hipp	er oing	Water, r	ion-h	hazardous waste solid				
201 T									•			-				
X 4.1-10						%	H C	laza i lass	rd			U	N/NA #	:		
10.1-12.4						%	SI	tate					EPA Code:			
≥ 12.5						%	R	CRA	A Haza	rdous		Y	es		X	No
Exact	<u>TOTAL</u>	(s	hould = 100%)			%	V	olum	<i>ne:</i> 4	x 55 gal.						One-Time
<u>Bulk Liqui</u>	ds 4	Bul	<u>k Solids</u>	X	Drum	<u>(s)</u>	X	[Drun	15		Boy	es/ Sac	ks		Monthly
Method of Shi	pment								Gallo	ons		Yai	·ds		Х	Annually
H. <u>Special H</u> Informati	andling on:								1							
Generator of t derived by sta changes, the g disposal of an	this waste o te certified generator v y material	ert an vill tha	ifies, that the inf alysis and/or gen notify Filter Rec t may be delivered	orma lerato lyclin ed to	ition a or kn g Ser Filter	above is true owledge. If th vices Inc. pri r Recycling S	and ne p or t ervi	d acc hysi to sh ices,	curate. cal or ipmen Inc. th	The deter chemical t. The gen tat is not	rmina compo erato disclos	tion ositio r is s sed i	of this on(s) of colely re n the al	wast the espoi bove	e strea waste s nsible profil	um was stream for the e.
Signature:			Pr No	rinted ame:	T	erry Hoehn	e		1	Title: Sa	ales N	Man	ager	Da	<i>ute:</i> 2/1	0/12
e anders og server af det det en der her ander server af			and the second second second second												11	

A Copy of this acceptance profile must accompany every Hazardous & Non-Hazardous manifest

When com	When completed, please Fax to (909) 421-7103									Profile Acceptance #							
Filter H	Recy	cling S	er	vices, Inc.					Da	Date:							
P.O. Bo	ox 44	49 - Co	lto	on, Californ	ia 9	9232	24		Au	thorized I	By:						
A. Gener	ator I	nformatio	n	Househo	ld		<u>CESQG</u>		Check	neck if applicable B. <u>FRS Sales Repre</u>					ntative:		
Generator	·Nam	e: Ca	isir	niro Damele			Mailing/Ma	anifest Address: Name:									
Site Address:4401 Market StreetPO								330				Phone #					
City, State, Zip Oakland, CA 94608 Berk								CA 9	4707			C. <u>Broker</u>	Info	rmation	<u>:</u>		
U.S. E.P.A	A. ID #	#: NA	4				S.I.C. Code	:				Name: No	orth S	state			
Technical	Conta	act: Te	erry	Hoehne			Title:	Sales	Mana	ager		Address P City/State	PO Bo	ox 2148 F, CA 9	4083		
Phone Nu	mber:	65	0.5	588.2838		Fa	x Number:	650.58	88.195	0		Contact:	Гerry	Hoehi	ie		
Name of V	Vaste	So	il				an a		-			Phone: 65	0.588	8.2838			
Process G the Waste	enera :	ting Sit	te a	assessment from	m Ll	JFT/	well destruc	ction				Fax: 650.5	588.1	950			
D Characteristics ATTACH ANY MSDS and ANALYTICAL THAT HAS REEN PERFORMED																	
D. Churuc		Odor	P	hvsical State @ 70*	AI.		avers	Free	Liauids	F Me	tals	TAS DEEL	NTE	KFUK	MED		
Brown	x	None	-	Liquid		Mu	lti-layered	X	No	X Nor	ne	TCLI	P (MG	/L)	Totals (ppm)		
BTU/LB		Mild		Semi-Solid		Bi-l	avered		Yes	es Arsenic		Sel		enium			
0		Strong	X	Solid	X	Sin	gle Layered		%	Bariun	n		Silv	er			
Flas	h Poi	nt	-	140 – 200° F		T	Den	<u>Density</u> Cadmium			um		Cor	oper			
< 70	• F			> 200° F			Lbs/Gal C			Chrom	hromium Nic			kel			
70-1	00° F		Х	No Flash			Lbs/Ft	bs/Ft 80 Lead					Zin	с			
101-	139° F	<u>۲</u>		Exact			API Gravity			Mercu	ry		Cya	nides			
<u>pH Ran</u>	ge	F. Phys	ica	l/Chemical Comp	oositi	<u>on</u>		<i>G</i> . <u>S</u>	hippin	g Inform	<u>ation</u>						
≤2		Soil				100) %	Prop	er	Soil, n	on-haz	ardous wa	aste	solid			
2.1-4							%	Snip Nam	Shipping Name:								
X 4.1-10							%	Haz	ard			UN/NA #	#:				
10.1-1	2.4						%	State	3			EPA					
								Cod	e:			Code	:	N	N		
≥12.5								RCF	A Haz	zardous		Yes			No		
Exact		<u>TOTAL</u>	(5	hould = 100%)			%	<u>Volu</u>	me:	12 x 55 g	al.				One-Time		
<u>Bulk L</u>	iquids		Bul	<u>k Solids</u>	X	Drum	<u>n(s)</u>	X	Dru	ims		Boxes/ Sa	cks		Monthly		
Method of	^c Shipi	<u>ment</u>							Gal	lons		Yards		X	Annually		
H. <u>Speci</u> Inform	al Har natior	<u>ıdling</u> 1:															
Generato	r of th	is waste c	ert	ifies, that the inf	orma	ation	above is true	and a	curat	e. The det	termina	tion of this	was	te strea	m was		
changes, t	y state the get f any	nerator v	an vill the	notify Filter Rec	erat cyclir	or kn 1g Sei Filte	vices Inc. pri	or to service	hipme	ent. The g	enerato	or is solely 1 sed in the c	respo	nsible f	for the		
Signature	: ally				rinted	<i>l</i>]	Ferry Hoehn	e	3, IIIC.	Title:	Sales I	Manager		ate:	10/12		
		_6	2	1	ume:									21	10/12		
	۰.	_															
--	----	---	--														

•

NON-HAZARDOUS WASTE

•

NON-HAZARDOUS WASTE MANIFEST

ease print or type (Form designed for use on eare (1	2 piloti) typowitier)					
NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No. N / A	Site Address	49	Manifest Document No.	N800249	2. Page 1 of
3. Canarators Name and Malling Address CASTMIRO DAMETLE P.O.BOX 8330 DEDEFINITION	4401 1 04707 OAKLA	MARKET STREET ND				
4. Generator's Phone (-4234 CA 94	608			053	9
5. Transporter 1 Company Name	6C A	RUGERAIDNURDED 6 0	86	A. State Trans	porter's ID	2838
NORTH STATE ENVIRONME	ENTAL		1.0	B. Transporter	1 Phone 000-008-	2030
Environmental Logistics,	Inc. CA	K & O . W. Swell 1 2	13	D. Transporter	2 Phone (510) 670	-9901
Bibbook Rebyslang Service 180 West Monte	s, Inc. 1CA	D SE EBA 12 Nutret 4 4	81	E. State Facilit	y's ID	
BLOOMINGTON CA923	16			F. Facility's Ph	ione (800) 698	-4377
	<u>l</u>		10 00			
II. WASTE DESCRIPTION			12. CO No.	Type	Total Quantity	Unit WL/Vol.
^{a.} NON-HAZARDOUS WAST (WATER)	E LIQUID		04	DM	0220	G
G b. NON-HAZARDOUS WAST E (SOIL)	E SOLID		01	DM	0150	P
E						
d.						
MR. Additional Description (or Materials Listed Above (510) 5	20-3277 Emergen	cy Contact:	L	H. Handling C	odes for Wastes Listed Abo	ve
				a:	4755 ы:	1755
Trans 1 address: 220 SO. St Trans 2 address:	PRUCE AVE. #200, , S	O SAN FRANCISCO, CA	9		ц.	
15. SACOULAND Rg Instructions and Additional Info	ormation					
2 12012309						
		<i>x</i>				
16. GENERATOR'S CERTIFICATION: I hereby cer in proper condition for transport. The materials d	tify that the contents of this shipmer escribed on this manifest are not su	it are fully and accurately described a bject to federal hazardous waste reg	and are in gulations.	all respects		
	·····		L'		\square	Date
Printed Typed Name	SICI	Signatory -	1	MM	den on	nth Day Year
T 17. Transporter 1 Acknowledgement of Receipt of M	laterials	yy manon				Date
Printed Clyped Name Matter	ncii (Signature	5			nth Day Year 3 96 17
18. Transporter 2 Ackglowledgement of Receipt of N Printed/Twoed Name	laterials	Signature		A	>	Date
CHMS WHITT	-	Man /	Ú	Ð		3612
F 19. Discrepancy Indication Space						
20. Facility Owner or Operator, Certification of recei	pt of the waste materials covered by	y this manifest, except as noted in ite	əm 19.			
T Printed/Typed Name		Signature			Mo	Date nth Day Year
Ŷ				•		

NON-HAZARDOUS WASTE MANIFEST

4. manak

leas	Se print or type (Form designed for use on elite (1 NON-HAZARDOUS WASTE MANIFEST	2 pitch) typewriter) 1. Generator's US EF	PAID No. 0 0 2	49	Manifest Document No.	N800249	2. Page 1 of		
	³ CANSIMIRO ⁶ DAMETE P.O.BOX 8330 BERKELEY 510-529	94707	4401 MARKET STREET OAKLAND CA 94608			0539			
	4. Generator's Phone ()	-4234				0339			
-	5. Transporter 1 Company Name	CATAI	6.CARUQERQAIDONum2berO6	086	A. State Trans	A. State Transporter's ID 650-588-2838			
	THE PROPERTY Name or istics	Tra	8CARUSEOAIONUBbel 7	513	C. State Trans	porter's ID FT ON CTO	0001		
	Anvironmental hogistics	, me.			D. Transporter 2 Phone				
	Einburgen Remyalangie Service 180 West Monte	s, Inc.	10C A D USEBAIZNUALDEA 4	481	E. State Facili	ty's ID			
	BLOOMINGTON CA923	16	1		F. Facility's Pt	none (800) 698-	4377		
	11. WASTE DESCRIPTION			12. Co No.	ontainers Type	13. Total Quantity	14. Unit Wt./Vol.		
	a. NON-HAZARDOUS WASI (WATER)	E LIQUID		04	DM	0220	G		
GEN	b. NON-HAZARDOUS WASI (SOIL)	E SOLID	"She	01	DM	0150	P		
RATO	с.		ř						
R	d.								
	MR. AdWILDENBERG Materials (5120) 3	20-3277 Er	mergency Contact:		H. Handling C	odes for Wastes Listed Above			
	Trans 1 address: 220 SO. S Trans 2 address:	PRUCE AVE. #2	200, , so san francisco, c	a 9 ACILIT	e: Y, EPA	d:	X55		
	15. 5+2017339/19 Instructions and Addition of the 2 12012309 #CAD9824 AND	@WCLING S 44481 HAS 1 WILL ACCE	THE APPROPRIATE PER EPT THIS WASTE AS SH	RMIT(S	6) FOR).	1250			
						1222			
	16. GENERATOR'S CERTIFICATION: I hereby cer	tify that the contents of	this shipment are fully and accurately describe	ed and are in	all respects	×			
	in proper condition for transport. The materials o	leschoed on this manife	est are not subject to rederar nazardous waste						
	Printed/Typed Name		Signature A	h1		A Marth	Date Veer		
	MICHAEL KAMIN	SIEL	Thildy	6 Va	muk	la oz	10611Z		
RA	17. Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name	laterials	Signature	1			Date Vear		
NSD	Tony Matter	Acci		2	A CARL CROSS OF CALL AND A	2	06117		
OR	18. Transporter 2 Acknowledgement of Receipt of N	1aterials				~ ~ ~	Date		
ER	CHUS IN4177		Signature	11/1	Ģ	Montil Z	h Day Year		
FAC	19. Discrepancy Indication Space								
L	20. Facility Owner or Operator: Certification of recei	pt of the waste material	Is covered by this manifest, except as noted in	item 19.		[Data		
I T Y	Printed Typed Name	lester:	Signature	-57	2	Monti	Data Day Year 9 1/2		
F-1	4 © 2002 LABELIMASTER ® (800) 621-5808 www	labelmaster.com	PRINTED ON RECYCLED BA				Hev. 3/		

NON-HAZARDOUS WASTE

ATTACHMENT 10

DWR-188s

Note

Figures associated with each DWR-188 that appear earlier in this report have not been duplicated in this attachment.

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

ATTACHMENT 11

Request to Rescind Encroachment Permits

Note

This attachment presents an incomplete copy of the document sent to the City of Oakland. This attachment does not contain (1) the most recent groundwater monitoring report and (2) the report documenting decommissioning/abandonment of the wells.

9 March 2012

City of Oakland Community & Economic Development Agency (CEDA) 250 Frank H. Ogawa Plaza, Suite 2340 Oakland CA 94612

Project No. P257

Request to Rescind Encroachment Permits ENMI00033 and ENMI97046 <u>4401 Market Street</u> Oakland CA

To whom it may concern:

The monitoring wells associated with encroachment permits ENMI00033 and ENMI97046, located in the roadway of 44th street near the subject property, have been properly decommissioned/abandoned. On behalf of the property owner/responsible party, Casimiro Damele, we request the encroachment permits be rescinded.

Please find attached the following items:

- Alameda County Health Care Services Agency Well Destruction Application Approval letter.
- Alameda County Public Works Agency Permit to decommission/abandon wells.
- The most recent groundwater monitoring report.
- The report documenting decommissioning/abandonment of the wells.
- Site maps showing the well locations, along with dimensions to identifiable landmarks.
- A check in the amount of \$382.12 for the fee associated with rescission of the encroachment permits.

Please contact us with any questions or comments.

Sincerely,

STREAMBORN

ough to Braf

Douglas W. Lovell, PE Geoenvironmental Engineer

Attachments

cc: Paresh Khatri/Alameda County Health Care Services Agency, Alameda CA (ecopy)

Casimiro Damele/Property Owner and Responsible Party, Oakland CA (hardcopy)

Mail: PO Box 8330, Berkeley CA 94707-8330

Office: 900 Santa Fe Avenue, Albany CA 94706

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 3, 2010

Casimiro Damele 3750 Victor Avenue Oakland, CA 94619

Subject: Monitoring Well Destruction for Fuel Leak Case No. RO0000132 and GeoTracker Global ID T0600100430, ARCO, 4401 Market Street, Oakland, CA 94608

Dear Mr. Damele:

Final approval of a case closure for the underground storage tank investigation at the subject site is almost complete. A case summary report proposing closure has been forwarded to the Regional Water Quality Control Board (RWQCB) for their thirty (30) day review period. The RWQCB has until Monday, October 4, 2010 to comment on the proposed closure action. Following the thirty (30) day review period and if no comments opposing closure are received, the monitoring wells installed at the site must be properly destroyed, per California Water Code, prior to issuance of a remedial action completion certificate.

ACEH requests that you address the following technical comments, perform the proposed work, and send us the technical reports requested below. Upon receipt of the requested documents a remedial action completion certificate will be sent to the responsible party.

TECHNICAL COMMENTS

 <u>Monitoring Well Destruction</u> – ACEH is requesting that you contact Alameda County Public Works Agency at (510) 567-6791, obtain the necessary permits, destroy the wells, and electronically upload the monitoring well destruction report to ACEH's FTP server and the State Water Resources Control Board's GeoTracker website within ninety (90) days from the date of this letter (December 2, 2010). Electronic reporting is described in detail below.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork.

Mr. Damele RO0000132 September 3, 2010, Page 2

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

• **December 2, 2010** – Monitoring Well Destruction Report

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist

Enclosure: Responsible Party(ies) Legal Requirements/Obligations ACEH Electronic Report Upload (ftp) Instructions

cc: Douglas Lovell, Streamborn, P.O. Box 8330, Berkeley, CA 94707-8330 (Sent via E-mail to: doug_lovell@streamborn.com)
Juli Brady, Streamborn, P.O. Box 8330, Berkeley, CA 94707-8330 (Sent via E-mail to: juli@streamborn.com)
Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (Sent via E-mail to: lgriffin@oaklandnet.com)
Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org)
Paresh Khatri, ACEH (Sent via E-mail to: paresh.khatri@acgov.org)
GeoTracker
File

Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml</u>.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alamoda County Environmental Cleanup	REVISION DATE: July 20, 2010		
Alameda County Environmental Cleanup Oversight Programs	ISSUE DATE: July 5, 2005		
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010		
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions		

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please <u>do not</u> submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection <u>will not</u> be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

Alameda County Public Works Agency - Water Resources Well Permit

Public

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 12/16/2011 By jamesy

Permit Numbers: W2011-0767 to W2011-0773 Permits Valid from 01/05/2012 to 01/05/2012

Application Id: Site Location: Project Start Date: Assigned Inspector: Extension Start Date: Extension Count:	1323988689040 4401 Market St, Oakland, CA 12/27/2011 Contact Vicky Hamlin at (510) 670 01/05/2012 1	City of Project Site:Oakland Completion Date:12/27/2011 -5443 or vickyh@acpwa.org Extension End Date: 01/05/2012 Extended By: vickyh1
Applicant:	Streamborn - Kevin Wildenberg	Phone: 510-528-4234
Property Owner:	Casimiro Damele	Phone: 510-531-0778
Client:	** same as Property Owner **	

Т	Total Due:	\$2779.00
Receipt Number: WR2011-0376 T	Total Amount Paid:	\$2779.00
Payer Name : Streamborn F	Paid By: CHECK	PAID IN FULL

Works Requesting Permits:

Well Destruction-Monitoring - 7 Wells Driller: Cascade - Lic #: 938110 - Method: Scond

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	Orig. Permit #	DWR #
W2011- 0767	12/16/2011	03/26/2012	MW1	8.00 in.	2.00 in.	17.00 ft	24.60 ft	No Records	94569	No Records
W2011- 0768	12/16/2011	03/26/2012	MW2	8.00 in.	2.00 in.	17.00 ft	24.60 ft	No Records	94569	No Records
W2011- 0769	12/16/2011	03/26/2012	MW3	8.00 in.	2.00 in.	17.00 ft	24.60 ft	No Records	94569	No Records
W2011- 0770	12/16/2011	03/26/2012	MW4	8.00 in.	2.00 in.	8.00 ft	24.50 ft	No Records	W00-667	No Records
W2011- 0771	12/16/2011	03/26/2012	MW5	8.00 in.	2.00 in.	8.00 ft	24.90 ft	No Records	W00-673	No Records
W2011- 0772	12/16/2011	03/26/2012	MW6	8.00 in.	2.00 in.	8.00 ft	24.80 ft	No Records	W00-677	No Records
W2011- 0773	12/16/2011	03/26/2012	MW7	8.00 in.	2.00 in.	8.00 ft	24.60 ft	No Records	W00675	No Records

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the

Work Total: \$2779.00

Alameda County Public Works Agency - Water Resources Well Permit

permits and requirements have been approved or obtained.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

5. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five(5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

8. Remove the Christy box or similar structure. Destroy wells MW-2, MW-4, MW-5 and MW-6 by overdrilling upper 5 ft. bgs & Tremie Grouting with Cement. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.

9. Remove the Christy box or similar structure. Destroy wells MW-1, MW-3 and MW-7 by grouting neat cement with a tremie pipe or pressure grouting (25 psi for 5min.) to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

	STREAMBORN P.O. BOX 8330 BERKELEY, CA 94707 510-528-4234		CHASE O JPMorgan Chase Bank, N.A. 1870 Skano Are Bensley, C.A. Broto Www.Chasa.com 90-7162-3222	10484 ^{**}
PAY	Three Hundred Eighty-Two and 12/100 Dollars		DATE 2/29/12	AMOUNT \$382.12
TO THE ORDER OF:	City of Oakland, Comm & Econ Dev, Permit Servic 250 Frank H. Ogawa Plaza, Second Floor Oakland, CA 94612	es	v D	OID AFTER 6 MONTHS
	Memo: Rescind encroachment permits ENMI00033 8 P257	¢ ENMI9		
		6 C (I.	44237446230	
STREAM	IBORN P.O. BOX 8330 BERKELEY, CA 94707			10484
	City of Oakland, Comm & Econ Dev, Permit	10484	2/29/12	\$382.12
	Rescind encroachment permits ENMI00033 & ENM Account Detail:	1197046. 5-1000	P257. Project Vendors, Subs, Exp	\$382.12
STREAM	IBORN P.O. BOX 8330 BERKELEY, CA 94707	10484	2/20/12	10484
	City of Gariana, Comm & Econ Dev, remit	10484	2/29/12	\$382.12
	Rescind encroachment permits ENMI00033 & ENM Account Detail:	1197046. 5-1000	P257. Project Vendors, Subs, Exp	\$382.12

А

ATTACHMENT 12

Dimensioned Locations of Monitoring Wells

