Mr. Lee Douglas Douglas Parking Company 1721 Webster Street Oakland, California 94612

Ms. Barbara Jakub Alameda County Environmental Health Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502-6577

Re: Douglas Parking Company 1721 Webster Street Oakland, California ACEH File No. 129

Dear Ms. Jakub:

I, Mr. Lee Douglas, have retained Pangea Environmental Services, Inc. (Pangea) as the environmental consultant for the project referenced above. Pangea is submitting the attached report on my behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Sincerely,

Lee Douglas

June 19, 2017

VIA ALAMEDA COUNTY FTP SITE

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Soil Gas Sampling Report and Updated SCM Douglas Parking Company 1721 Webster Street Oakland, California ACEH File No. 129

Dear Ms. Detterman:

On behalf of the Douglas Parking Company, Pangea Environmental Services, Inc has prepared this *Soil Gas Sampling Report and Updated SCM* (Report). This Report documents implementation of the *Data Gap Workplan* dated June 21, 2016, which was approved in an Alameda County Environmental Health (ACEH) letter dated August 22, 2016 (Appendix B).

If you have any questions, please contact me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely, Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Soil Gas Sampling Report and Updated SCM

cc: Mr. Lee Douglas, Douglas Parking Company, 1721 Webster Street, Oakland, California 94612 SWRCB Geotracker (electronic copy)

PANGEA Environmental Services, Inc.

SOIL GAS SAMPLING REPORT AND UPDATED SCM

Douglas Parking Company 1721 Webster Street Oakland, California File No. 4070

June 19, 2017

Prepared for:

Mr. Lee Douglas 1721 Webster Street Oakland, California 94612

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Elizabeth Avery Project Geologist

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

1710 Franklin Street, Suite 200, Oakland, CA 94612 Telephone 510.836.3700 Facsimile 510.836.3709 www.pangeaenv.com

INTRODUCTION

On behalf of property owner Andy Saberi, Pangea Environmental Services, Inc has prepared this *Soil Gas Sampling Report and Updated SCM* (Report). This Report documents implementation of the *Data Gap Workplan* dated June 21, 2016, which was approved in an Alameda County Environmental Health (ACEH) letter dated August 22, 2016 (Appendix B). The purpose of the investigation is to evaluate potential human health impacts.

SITE BACKGROUND

The site is currently being utilized as a parking garage, and is located between 17th and 19th Streets in downtown Oakland, California, approximately four miles east of San Francisco Bay and one quarter of a mile west of Lake Merritt (Figure 1). The site is relatively flat with an elevation of approximately 30 feet (ft) above mean sea level (msl).

Several former underground storage tank (UST) sites are located close to the site, including Prentiss Properties to the northeast at 1750 Webster Street, a former gas station to the east at 1700 Webster, and a former Chevron service station which is located approximately 400 feet to the southwest on the corner of 17th Street and Harrison Street.

On August 3 and 6, 1992, Parker Environmental Services removed one 1,000-gallon and two 500-gallon gasoline underground storage tanks (USTs) from the site. Up to 1,500 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and up to 12 mg/kg benzene were detected in the soil samples collected from the UST excavation.

Several investigations have been completed at the site. On July 8 and September 8, 1994, Gen Tech/Piers Environmental, Inc. (Gen Tech) of San Jose, California drilled six exploratory borings and installed three groundwater monitoring wells (MW-1 through MW-3). In February and May 1996, Cambria Environmental Technology (Cambria) of Emeryville, California advanced seven geoprobe soil borings and installed two groundwater monitoring wells (MW-4 and MW-5). On August 8, 2000, *Conduit Study and File Review Report* was submitted by Cambria Environmental Technology. The report provided significant information about offsite hydrocarbon impact and offsite sources, and concluded that there were no identified conduits for contaminant migration in groundwater. On June 27, 2003 Cambria installed two additional offsite monitoring wells (MW-6 and MW-7) to facilitate additional plume delineation.

Limited site remediation has been conducted at the site. In January 1998, Cambria installed ORC socks in well MW-2 to enhance the natural attenuation of dissolved-phase hydrocarbons. Dissolved oxygen (DO)

concentrations temporarily increased in well MW-2 following the ORC sock installation. In February and March 1999, a total of 120 gallons of 7.5% hydrogen peroxide solution was added into monitoring wells MW-2 and MW-3 to oxidize hydrocarbons and also increase DO levels to enhance biodegradation of dissolved-phase hydrocarbons. The hydrogen peroxide *temporarily* increased groundwater DO levels, but hydrocarbon concentrations remained at elevated levels.

On March 4, 2003, Cambria installed a co-axial air sparging/soil vapor extraction well (SV-1/AS-1) and two angled air sparging wells (AS-2 and AS-3) to approximately 30 ft bgs. The wells were installed to facilitate feasibility testing and future site remediation. Site remediation via soil vapor extraction and air sparging began in October 2007. To improve system performance and further evaluate site conditions, Pangea submitted an *Investigation and Remediation Workplan* dated March 5, 2009, which proposed additional investigation, remediation system expansion, and evaluation of groundwater geochemistry.

On November 19, 2010, ACEH issued a letter requesting a cross section, additional information regarding a potential offsite source and a preferential pathway survey. In December 2010, Pangea informed the ACEH that significant information about the offsite hydrocarbon impact was presented in the August 8, 2000 *Conduit Study and File Review Report* prepared by Cambria. In December 2010, the UST Cleanup Fund prepared a 5 Year Review that recommended a site conceptual model (SCM), risk assessment, and sensitive receptor survey to help facilitate selection of a remediation technique. In March 2011, Pangea provided information requested by the ACEH and proposed remediation and assessment tasks to help facilitate regulatory case closure. In a letter dated June 17, 2011, ACEH requested a site conceptual model with a preferential pathway evaluation. The UST Cleanup Fund 5-Year Review of March 12, 2012 also requested an SCM prior to any system modification. Pangea submitted a *Sensitive Receptor Survey, Conduit Study and Site Conceptual Model* dated March 26, 2012. In a letter dated December 21, 2012, ACEH requested a workplan to evaluate vapor intrusion and to investigate secondary source near well MW-2. Pangea submitted a *Workplan for Additional Assessment and Soil Gas Sampling* dated April 4, 2013. Following a meeting with ACEH on May 28, 2013, Pangea submitted a *Revised Data Gap Workplan* dated July 25, 2013.

Following approval of the workplan, Pangea installed two confirmation soil borings (CB-1 and CB-2) near the former UST excavation areas and three soil gas probes (SS-1 through SS-3). Pangea detailed the findings of this data gap investigation in the *Data Gap Site Assessment Report* dated January 22, 2014. Included in the report was an updated SCM in tabular format. Historic site soil and groundwater analytical data is summarized on Tables 2 and 3, respectively.

Pangea submitted a *Data Gap Workplan* (Workplan) dated June 21, 2016. This Workplan was requested by an Alameda County Environmental Health (ACEH) email dated April 20, 2016. The Workplan included a sensitive receptor survey, and identified vapor intrusion evaluation as a remaining data gap. The Workplan

proposed subslab and soil gas sampling to further evaluate potential vapor intrusion. The Workplan was approved in an Alameda County Environmental Health (ACEH) letter dated August 22, 2016 (Appendix B). The goal for implementation of this Workplan is to facilitate regulatory case closure in the very near future.

SITE ASSESSMENT PROCEDURES

The objective of the investigation is to evaluate shallow soil gas conditions and the potential for vapor intrusion for current site use and potential future site redevelopment.

Pre-Field Activities

Drilling permits were obtained from Alameda County Public Works Agency (ACPWA). A comprehensive site safety plan was prepared to protect site workers and the plan was kept onsite during all field activities. The proposed drilling locations were marked and Underground Service Alert was notified at least 48 hours before the proposed field activities.

Drilling Procedures

All soil gas probes were installed in general accordance with the procedures described in Pangea's June 21, 2016 Workplan. Pangea retained Confluence Environmental (Confluence) of Sacramento, California, to hand auger the borings and install the soil gas probes.

Soil Borings and Soil Gas Probe Installation

On September 8, 2016, Pangea coordinated installation of two soil gas probes (SG-1 and SG-2) to facilitate evaluation of shallow soil gas conditions. Soil gas probe SG-1 was installed near subslab probe SS-2 (in the entrance to the parking structure), and soil gas probe SG-2 was installed near subslab probe SS-3 (in the northeastern corner of the building). Soil gas probe locations are shown on Figure 2. The boring permit is included in Appendix C. Boring logs are included in Appendix D.

To facilitate probe construction, the soil gas probe boreholes were advanced with a 3.25-inch diameter hand auger to a total depth of approximately 6 ft bgs. All site investigation activities were performed under the supervision of a California Registered Civil Professional Engineer (P.E.).

After advancing the borings, two semi-permanent soil gas probes were constructed with a stainless steel Geoprobe[™] soil vapor implant connected to new ¼-inch diameter Teflon tubing and capped with a Swagelok[®] type fitting. The implant was placed in a 0.5 ft thick sand pack with 0.5 ft of dry granular bentonite above, followed by hydrated bentonite. Probe sampling intervals are approximately 5.0 to 6.0 ft bgs.

Waste Management and Disposal

Soil cuttings and other investigation-derived waste were stored onsite in Department of Transportation (DOT)approved 55-gallon drums. Subsequently, the soil drum was transported to an appropriate disposal/recycling facility. The waste manifest is included in Appendix F.

SOIL GAS AND SUBSLAB GAS SAMPLING PROCEDURES

To evaluate shallow soil gas conditions, Pangea coordinated soil gas sampling from two semi-permanent soil gas probe locations (SG-1 and SG-2) and two existing subslab vapor probes (SS-2 and SS-3) on September 23, 2016. Soil gas probe locations are shown on Figure 2. Soil gas analytical results are summarized on Table 1. Field data sheets are included in Appendix E and laboratory analytical reports are in Appendix G. The soil gas sampling was performed by Pangea staff under the supervision of Pangea's Bob Clark-Riddell, a California Registered Professional Civil Engineer.

An analytical laboratory provided sampling assemblies and certified Summa canisters for sampling. The Summa canisters came under a complete vacuum of approximately 30 inches of mercury. Prior to sample collection a shut in test was conducted on the sampling assembly to confirm no leak and the maintenance of the initial vacuum in the sampling manifold system. After shut in testing, the probe was connected to the sampling assembly using a Swagelok fitting and Teflon tubing, then a shroud was placed over the probe and isopropyl alcohol (tracer compound) was introduced into the shroud. The isopropyl alcohol concentration within the shroud was monitored periodically using a PID and purging summa canisters were used to purge the manifold/probe assembly. Upon completion of purging of approximately three times the ambient volume of air in the assembly/probe and void space, the sampling Summa canister was opened for sample collection. The pre-set valve regulated the vapor flow to approximately 150 milliliters of air per minute, which equates to approximately 5 minutes to fill the 1-liter canister. Sample collection is typically discontinued when the vacuum decreases to 5 inches of mercury.

The subslab/soil gas sampling was also conducted in general accordance with procedures described in California EPA's *Advisory Active Soil Gas Investigations* July 2015. The soil gas samples were submitted for analysis to Sunstar Laboratories, Inc., of Lake Forest, California, a State-certified laboratory.

Soil Gas and Subslab Gas Analyses

Soil gas and subslab gas samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by Total Organics Method 3 (TO-3), benzene, toluene, ethylbenzene, xylene(s) (BTEX), methyl-tertiary butyl ether (MTBE), and isopropyl alcohol by Total Organics Method 15 (TO-15); methane by EPA Method 8015m; and for percent oxygen by Method ASTM D-1946. The oxygen analysis helps evaluate the potential for future

degradation and bio-attenuation of detected hydrocarbons, and helps assess soil column characteristics (>= 4% oxygen in soil gas is referenced as a bio-attenuation zone in the SWRCB's Underground Storage Tank Low-Threat Site Closure Policy [LTCP]).

SITE ASSESSMENT RESULTS

Analytical results from soil gas sampling are described below.

Soil Gas Analytical Results

The only benzene concentration detected in site soil gas was 12 μ g/m³ in probe SG-2. The only other hydrocarbon detected in probe SG-2 was xylenes at a concentration of 23.9 μ g/m³. Relatively low concentrations of toluene (5.7 μ g/m³) and xylenes were detected in probe SG-1. All detected concentrations are below applicable ESLs. No other hydrocarbons were detected in soil gas probes SG-1 and SG-2 above reporting limits ('non-detect'). Methane concentrations were also below reporting limits in both samples. The lack of isopropyl alcohol detected in either soil gas sample suggests that the samples are representative of subsurface conditions. Soil gas analytical results are summarized on Table 1.

The percent oxygen detected in soil gas probes SG-1 and SG-2 was 17.7% and 19.8%, respectively. This data suggests that a bio-attenuation zone is present at the site as described in the SWRCB's LTCP.

Subslab Gas Analytical Results

No hydrocarbons were detected above reporting limits in the subslab gas sample from probe SS-2. Subslab gas from probe SS-3 contained toluene and xylene concentrations of 4.0 μ g/m³ and 13 μ g/m³, respectively, which are well below applicable ESLs. All other hydrocarbon concentrations were below reporting limits. Methane concentrations were below reporting limits in both subslab gas samples. The lack of isopropyl alcohol detected in either subslab gas sample suggests that the samples are representative of subsurface conditions. Subslab gas analytical results are summarized on Table 1.

The percent oxygen detected in subslab gas probes SS-2 and SS-3 was 20.4% and 20.5%, respectively.

UPDATED SITE CONCEPTUAL MODEL

An updated site conceptual model in tabular format is included in Appendix A. A chart showing potential exposure pathways for the current site use is shown on Figure 3.

CONCLUSIONS AND RECOMMENDATIONS

Based on the above information, Pangea offers the following conclusions and recommendations:

- Oxygen levels exceed the 4% level presented in the Low Threat UST Closure Policy as sufficient to represent a 'bio-attenuation zone' that provides biodegradation of residual hydrocarbon vapors.
- Based on the low concentrations of hydrocarbon contamination detected in soil gas and the presence of a bio-attenuation zone, Pangea concludes that there is an insignificant human health risk from vapor intrusion at the site for the current site use.
- Based on the SCM detailed below and results of this investigation, Pangea concludes that SCM data gaps have been addressed and the site is eligible for regulatory closure under the SWRCB LTCP.

REFERENCES

- AECOM, 2016, *Phase I Environmental Site Assessment*, Douglas Parking Property, 1721 Webster Street, Oakland, California, July 21.
- California EPA, 2015, *Advisory-Active Soil Gas Investigation*, California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, July.
- Radbruch, D.H., 1957, Areal and Engineering Geology of the Oakland West Quadrangle, California, U.S. Geological Survey.

ATTACHMENTS

- Figure 1 Vicinity Map
- Figure 2 Soil Gas Sampling Locations
- Figure 3 Conceptual Site Model Chart and Exposure Pathway Analysis
- Table 1 Subslab/Soil Gas Analytical Data
- Table 2 Soil Analytical Data
- Table 3 Groundwater Elevation and Analytical Data
- Appendix A Site Conceptual Model in Tabular Format
- Appendix B Regulatory Correspondence
- Appendix C Permit
- Appendix D Boring Logs
- Appendix E Soil Gas Sampling Field Data Sheets
- Appendix F Waste Manifest
- Appendix G Laboratory Analytical Reports

Douglas Parking Facility 1721 Webster Street Oakland, California

Vicinity Map

Douglas Parking 1721 Webster Street Oakland, California

Site Map

Oakland, California

Conceptual Site Model Chart and Exposure Pathway Analysis

Pangea

Boring/	Date	Sample Depth	Benzene	Tolucite	Eurythenzer	Aylenes, "Te	TPH Gasolin	Allar.	Naphilial Gro	topiopano,	Methane	Heliun	Orteen,	Notes
Sample ID	Sampled	(ft - ft bgs)				u	ıg/m ³				→	%	%	
2016 Tier 1 ESL			48	160,000	560	52,000	50,000	5,400	41					For SG/SS samples
Residential ESL for subs	lab/soil gas; VI Hum	an Health Risk:	48	160,000	560	52,000	300,000	5,400	41					For SG/SS samples
Commercial ESL for subs	slab/soil gas; VI Hun	nan Health Risk:	420	1,300,000	4,900	440,000	2,500,000	47,000	360					For SG/SS samples
No Bio-Attenuation Zone	e, Residential (LTCH	?)	85		1,100				93					
No Bio-Attenuation Zone	e, Commercial (LTC	P)	280		3,600				310					
With Bio-Attenuation Zo	ne, Residential (LT	CP)	85,000		1,100,000				93,000					
With Bio-Attenuation Zo	ne, Commercial (L1	TCP)	280,000		3,600,000				310,000					
Soil Gas Samples														
SG-1	9/23/2016	5 - 6	<3.3	5.7	<4.4	13.6	<7,170	<3.7		<13	<5,100		17.7	
SG-2	9/23/2016	5 - 6	12	<3.8	<4.4	23.9	<7,170	<3.7		<13	<5,100		19.8	
Subslab Gas Samp	les													
SS-1	11/14/2013	0.5 - 0.7	<1.6	<1.9	<2.2	<6.6	2,300	<1.8	<5.3			0.13	17	For other VOC detections see the lab report.
	6/23/2015	0.5 - 0.7					floor re	efinished, prol	be covered					
SS-2	11/13/2013	0.5 - 0.7	58	2.7	<2.2	<6.6	2,000	<1.8	<5.3			0.48	16	For other VOC detections see the lab report.
	6/23/2015	0.5 - 0.7	<1.6	3.7	2.3	14	<720	<1.8	<5.3	<50				For other VOC detections see the lab report.
	9/23/2016	0.5 - 0.7	<3.3	<3.8	<4.4	<13.2	<7,170	<3.7		<13	<5,400		20.4	
\$\$-3	11/13/2013	08-10	71	26	<2.2	<6.6	1 400	<1.8	<5.3			0.12	17	For other VOC detections see the lab report
20 5	6/23/2015	0.8 - 1.0	<1.6	3.3	<2.2	13	1,100	<1.8	<5.3	<50	-	0.12	17	For other VOC detections see the lab report
	9/23/2016	0.8 - 1.0	<3.2	4.0	~2.2	13	<7 170	<3.7	-5.5	<13	<5.000		20.5	Tor other voc detections see the lab report.
	7/25/2010	0.0 - 1.0	~5.5	4.0	~4.4	15	~7,170	~5.7		~15	~5,000		20.5	

Table 1. Subslab/Soil Gas Analytical Data - Douglas Parking, 1721 Webster Street, Oakland, California

Abbreviations:

SG-1 = Soil Gas Sample

SS-1 = Subslab Sample

ug/m3 = Micrograms per cubic meter of air results calculated by laboratory from parts per billion results using normal temperature and pressure (NPT).

ft - ft bgs = Depth interval below ground surface (bgs) in feet.

% = Percent of total sample volume.

Volatile organic compounds (VOCs) by EPA Method TO-15 (partial list), uses GC/MS scan.

Oxygen by Modified ASTM Method D-1946, uses GC/TCD scan.

< n = Chemical not present at a concentration in excess of detection limit shown.

MRL = Method reporting limit. Laboratory reporting limit based on parts per billion on volume to volume basis (ppbv/v) and converted to ug/m3.

ESL = Environmental Screening Level, from California Regional Water Quality Control Board - San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Revised February 2016 (Revision 3).

LTCP = Low Threat Closure Policy

Bold = Concentrations above Lowest ESLs for Commercial Land Use for shallow soil gas (SG & SS samples).

Pangea

Table 2. Soil Analytical Data: Petroleum Hydrocarbons - 1721 Webster Street, Oakland, California

Sample ID	Date Sampled	Sample Depth (ft)	TPHg	Benzene	Toluene	Ethylbenzene mg/kg	Xylenes	MTBE	Naphthanlene	Notes
Tier 1 ESL	1	1 ()	100	0.044	2.9	1.4	2.3	0.023	0.033	
ESL Direct Exposure	e: Residential Shall	low Soil	740	0.23	970	5.1	560	42	3.3	
ESL Direct Exposure	e: Commercial Sha	llow Soil	3,900	1.0	4,600	22.0	2,400	180	14	
ESL Direct Exposur	e: Any Depth, Any	Land Use	2,800	24	4,100	480.0	2,400	3,700	350	
ESL Leaching to Gr	oundwater - Drinki	ng Water	770	0.044	2.9	1.4	2.3	0.023	0.033	
ESL Leaching to Gr	oundwater - Nondr	inking Water	3,400	0.049	9.3	1.4	11	0.84	3.9	
Residential LTCP ou	utdoor air criteria (() to 5 ft bgs):		1.9		21			9.7	
Residential LTCP ou	utdoor air criteria (5	5 to 10 ft bgs):		2.8		32			9.7	
Commercial LTCP of	outdoor air criteria ((0 to 5 ft bgs):		8.2		89			45	
Commercial LTCP of	outdoor air criteria ((5 to 10 ft bgs):		12		134			219	

Pangea Environmental Services, Inc. - 2013

Confirmation Soil Borings

CB-1-4	12/10/2013	4.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
CB-1-8	12/10/2013	8.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
CB-1-12	12/10/2013	12.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
CB-2-4	12/10/2013	3.5 - 4.0*	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
CB-2-8	12/10/2013	7.0 - 7.5*	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
CB-2-10	12/10/2013	8.5 - 9.0*	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

Cambria Environmental Technology, Inc. - 2003

MW-6	6/27/2003	20.0	220	< 0.10	0.14	< 0.10	0.35	<1.0	
Cambria Envi	ronmental Techn	ology, Inc 1	996						
SB-A	2/22/1996	19.5	<1.0	< 0.005	0.007	< 0.005	< 0.005		
SB-B	2/22/1996	20.5	580	< 0.3	1.3	1.8	4.2		
SB-C	2/22/1996	19.5	1.4	< 0.005	0.013	0.027	0.12		
SB-D	2/22/1996	20.5	660	< 0.2	2.3	< 0.2	5.2		
SB-E	2/23/1996	20.5	<1.0	< 0.005	0.009	< 0.005	< 0.005		
SB-F	2/23/1996	20.0	<1.0	< 0.005	0.006	< 0.005	< 0.005		
SB-G	2/23/1996	20.0	<1.0	< 0.005	0.009	< 0.005	< 0.005		
SB-H	5/3/1996	20.5	1.2	< 0.005	0.006	0.025	0.038		
(MW-4)	5/3/1996	31.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		
SB-I	5/3/1996	15.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		
(MW-5)	5/3/1996	26.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		
Gen-Tech En	vironmental - 199	4							
EB-1@20	7/8/1994	20.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		
EB-2@20	7/8/1994	20.0	300	0.2	17	0.26	3.0		
EB-3@20	7/8/1994	20.0	51	0.039	0.56	0.32	2.9		
EB-4@20	7/8/1994	20.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		
EB-5@20	7/8/1994	20.0	650	0.17	5.2	4.4	48		
EB-6@20	7/8/1994	20.0	68	< 0.005	22	4.3	23		

Pangea

Table 2. Soil Analytical Data: Petroleum Hydrocarbons - 1721 Webster Street, Oakland, California

	Date	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Naphthanlene	Notes
Sample ID	Sampled	Depth (ft)	←			mg/kg			\rightarrow	
Tier 1 ESL			100	0.044	2.9	1.4	2.3	0.023	0.033	
ESL Direct Exposur	e: Residential Shall	low Soil	740	0.23	970	5.1	560	42	3.3	
ESL Direct Exposur	e: Commercial Sha	llow Soil	3,900	1.0	4,600	22.0	2,400	180	14	
ESL Direct Exposur	e: Any Depth, Any	Land Use	2,800	24	4,100	480.0	2,400	3,700	350	
ESL Leaching to Gr	oundwater - Drinki	ng Water	770	0.044	2.9	1.4	2.3	0.023	0.033	
ESL Leaching to Gr	oundwater - Nondr	inking Water	3,400	0.049	9.3	1.4	11	0.84	3.9	
Residential LTCP or	utdoor air criteria (() to 5 ft bgs):		1.9		21			9.7	
Residential LTCP of	utdoor air criteria (5	5 to 10 ft bgs):		2.8		32			9.7	
Commercial LTCP of	outdoor air criteria ((0 to 5 ft bgs):		8.2		89			45	
Commercial LTCP of	outdoor air criteria ((5 to 10 ft bgs):		12		134			219	

Parker Environmental - 1992

Beneath UST Sampl	es								
T-1	8/3/1992	9.0	150	2.2	2.9	1.8	13	 	
T-2	8/3/1992	9.0	120	0.62	0.56	0.87	2.2	 	
T-3	8/6/1992	8.0	580	1.7	5.9	5.6	43	 	Overexcavated
T-4	8/6/1992	8.0	1,500	11	140	48	280	 	Overexcavated
T-5	8/6/1992	8.0	410	6.7	22	6.2	35	 	Overexcavated
T-6	8/6/1992	12.0	1,400	12	70	29	150	 	
T-7	8/6/1992	14.0	2.3	0.11	0.19	0.05	0.31	 	
South Excavation Si	idewall Samples								
SW1	8/6/1992	9.5	280	2.9	5.8	3.2	15	 	
SW2	8/6/1992	7.0	1,500	5.7	40	18	150	 	
SW3	8/6/1992	8.0	400	2.7	5.8	4.0	21	 	
SW4	8/6/1992	9.0	2.3	0.42	0.028	0.077	0.18	 	
Piping and Dispense	er Samples								
L-1	8/3/1992	1.5	2.6	< 0.005	0.01	< 0.005	0.03	 	
L-2	8/3/1992	1.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	 	
L-3	8/3/1992	1.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	 	
L-4	8/3/1992	1.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	 	
L-5	8/3/1992	2.0	8.2	0.01	0.02	0.012	0.092	 	
L-6	8/3/1992	2.0	<1.0	< 0.005	0.007	< 0.005	< 0.034	 	
Stockpile Samples									
C1	8/6/1992	1.5	560	< 0.1	5.0	3.1	24	 	

Notes, Abbreviations and Methods:

mg/kg = Milligrams per kilogram, approximately equivalent to parts per million (ppm).

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

TPHg = Total petroleum hydrocarbons by EPA Method 8015.

BTEX = Benzen, toluene, ethylbenzene, xylenes by EPA Method 8020/8021.

MTBE = Methyl tertiary-butyl ether by EPA Method 8020.

ESL = Environmental Screening Levels for shallow soil with commercial/industrial land use where groundwater is a current or potential drinking water resource

from Table A-2, established by the SFBRWQCB, Interim Final - November 2007 (Revised May 2013).

LTCP = Low Threat Closure Policy

-- = Not available or not analyzed.

< n = Chemical not present at a concentration in excess of detection limit shown.

* Boring installed at 25° angle from vertical. Listed and calculated sample depth is rounded to the nearest 0.5 ft.

Boring / Well		Depth to	Groundwater						
ID	Date	Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	<		(t	ıg/L)		\longrightarrow
Monitoring V	Vells								
litering									
MW-1	12/2/1994	19.42	9.83	ND	ND	ND	ND	ND	-
29.25	3/6/1995	20.69	9.04	ND	ND	ND	ND	ND	-
29.73	7/11/1995	20.65	9.16	ND	ND	ND	ND	ND	-
29.81	5/10/1996	20.80	9.01	ND	ND	ND	ND	ND	-
	10/2/1996	21.35	8.46	-	-	-	-	-	-
	2/28/1997	20.57	9.24	-	-	-	-	-	-
	9/16/1997	21.50	8.31	-	-	-	-	-	-
	2/5/1998	20.91	8.90	-	-	-	-	-	-
	8/11/1998	20.50	9.31	-	-	-	-	-	-
	2/8/1999	21.42	8.39	-	-	-	-	-	-
	2/24/1999	22.99	6.82	-	-	-	-	-	-
	3/3/1999	20.84	8.97	-	-	-	-	-	-
	3/10/1999	20.89	8.92	-	-	-	-	-	-
	3/17/1999	20.84	8.97	-	-	-	-	-	-
	5/4/1999	20.80	9.01	-	-	-	-	-	-
	7/20/1999	21.25	8.56	-	-	-	-	-	-
	10/5/1999	21.37	8.44	-	-	-	-	-	-
	1/7/2000	21.65	8.16	-	-	-	-	-	-
	4/6/2000	21.05	8.76	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/31/2000	21.13	8.68	-	-	-	-	-	-
	10/3/2000	21.69	8.12	-	-	-	-	-	-
	1/12/2001	22.00	7.81	-	-	-	-	-	-
	4/11/2001	22.16	7.65	-	-	-	-	-	-
	7/6/2001	22.57	7.24	-	-	-	-	-	-
	10/25/2001	22.71	7.10	-	-	-	-	-	-
	3/4/2002	22.53	7.28	-	-	-	-	-	-
	4/18/2002	22.81	7.00	-	-	-	-	-	-
	7/9/2002	22.95	6.86	-	-	-	-	-	-
	10/4/2002	23.13	6.68	-	-	-	-	-	-
	1/12/2003	22.05	7.76	-	-	-	-	-	-
	4/21/2003	21.17	8.64	-	-	-	-	-	-
32.75	7/21/2003	21.39	11.36	-	-	-	-	-	-
	10/2/2003	21.64	11.11	-	-	-	-	-	-
	1/15/2004	21.10	11.65	-	-	-	-	-	-
	4/5/2004	21.20	11.55	-	-	-	-	-	-
	8/9/2004	22.97	9.78	-	-	-	-	-	-
	10/7/2004	23.55	9.20	-	-	-	-	-	-
	2/7/2005	20.90	11.85	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
	4/5/2005	20.60	12.15	-	-	-	-	-	-
	7/6/2005	20.66	12.09	-	-	-	-	-	-
	10/10/2005	21.16	11.59	-	-	-	-	-	-
	1/26/2006	20.73	12.02	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/10/2006	20.05	12.70	-	-	-	-	-	-
	7/6/2006	20.90	11.85	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/26/2006	21.80	10.95	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/19/2007	22.02	10.73						
	4/17/2007	22.13	10.62						
	7/6/2007	21.83	10.92						
	10/15/2007	22.28	10.47						
	1/17/2008	22.33	10.42	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
	4/9/2008	22.11	10.64						

Boring / Well		Depth to	Groundwater						
ID	Date	Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		(j	ug/L)		\longrightarrow
MW-1	7/17/2008	22.50	10.25						
(cont'd)	10/27/2008	22.75	10.00						
	1/9/2009	22.89	9.86	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
	4/27/2009	22.40	10.35						
	7/9/2009	22.55	10.20						
	2/3/2010	22.08	10.67	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/13/2010	21.20	11.55						
	1/17/2011				Well I	naccessible			
	7/12/2011	20.72	12.03						
	1/11/2012	21.33	11.42	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/25/2012	20.94	11.81						
	1/25/2013	21.41	11.34	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/29/2013	22.14	10.61						
	1/28/2014	22.75	10.00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/24/2014	22.84	9.91						
	1/22/2015	22.45	10.30	<50	< 0.5	< 0.5	< 0.5	<1.5	<5.0
	7/20/2015	22.87	9.88						
	8/3/2016	22.27	10.48	<50	< 0.5	< 0.5	< 0.5	<1.5	<5.0
	1/20/2017	21.83	10.92	<50	<0.5	<0.5	<0.5	<1.5	<5.0
MW-2	12/2/1994	19.50	7.60	61,300	3,000	3,900	160	4,500	-
27.10	3/6/1995	18.49	8.61	98,000	8,400	16,000	2,000	2,600	-
27.40	7/11/1995	18.45	8.95	38,000	3,100	7,500	940	3,700	-
	5/10/1996	18.56	8.84	63,000	7,400	16,000	1,500	6,000	-
	10/2/1996	19.15	8.25	21,000	2,200	3,400	430	1,600	-
	2/28/1997	18.43	8.97	39,000	4,700	9,600	950	4,200	ND
	9/16/1997	19.26	8.14	29,000	3,300	5,800	690	2,900	<620
	2/5/1998	18.66	8.74	10,000	1,000	2,000	170	860	<330
	8/11/1998	18.41	8.99	12,000	1,200	2,300	260	1,400	300
	2/8/1999	19.84	7.56	5,500	740	1,200	150	780	60
	2/17/1999	18.94	8.46	-	-	-	-	-	-
	2/24/1999	20.76	6.64	-	-	-	-	-	-
	3/3/1999	18.55	8.85	-	-	-	-	-	-
	3/10/1999	20.74	6.66	-	-	-	-	-	-
	3/17/1999	18.57	8.83	-	-	-	-	-	-
	5/4/1999	18.55	8.85	90,000	9,200	21,000	1,600	10,000	560
	7/20/1999	18.98	8.42	28,000	2,100	3,700	900	4,200	<860
	10/5/1999	19.10	8.30	11,000	870	180	30	1,400	<110
	1/7/2000	19.41	7.99	15,000	1,300	2,100	440	1,800	<14
	4/6/2000	18.80	8.60	17,000	1,800	3,100	500	2,200	<50
	7/31/2000	18.87	8.53	17,000	1,500	2,700	430	2,100	<200
	10/3/2000	19.45	7.95	27,000	2,500	4,000	660	2,900	<50
	1/12/2001	19.80	7.60	25,000	2,700	4,100	670	3,000	<200
	4/11/2001	20.03	7.37	97,000	9,500	21,000	2,200	7,900	<200
	7/6/2001	20.19	7.21	3,500	500	150	11	420	<5.0
	10/25/2001	20.35	7.05	3.800	620	230	70	400	<50
	3/4/2002	20.37	7.03	46,000	7,300	12.000	870	3,200	<500
	4/18/2002	20.15	7.25	68.000	5.100	8.900	1.100	4.000	<1.000
	7/9/2002	21.09	6.31	1,000	200	8.9	0.67	82	<10
	10/4/2002	21.28	6.12	270	100	3.4	0.53	10	<5.0
	1/12/2003	20.59	6.81	67.000	7.600	13,000	1.400	5.600	<500
	4/21/2003	19.98	7.42	78,000	7,700	12,000	1,900	6,900	<500
30.40	7/21/2003	20.08	10.32	1.800	360	16	<5.0	190	<50
20.10	10/2/2003	20.00	9,99	4,000	790	110	60	350	<50
	10.2.2000			.,			00	220	00

Boring / Well	D (Depth to	Groundwater	TDU	D	T 1	F-1 11	37.1	MTDE
ID	Date	water	Elevation	IPHg	Benzene	Ioluene	Ethylbenzene	Xylenes	MIBE
TOC		(ft)	(ft amsl)			(μ	.g/L)		\longrightarrow
MW-2	1/15/2004	19.93	10.47	8,100	6.1	23	44	530	<50
(cont'd)	4/5/2004	18.99	11.41	14.000	1,600	2,100	550	2,500	<500
(,	8/9/2004	19.79	10.61	1.200	210	16	14	100	<20
	10/7/2004	20.26	10.14	1.100	2.3	9.8	2.9	36	<5.0
	2/7/2005	18.80	11.60	45.000	4.400	4.800	1.400	5.800	<200
	4/5/2005	18.40	12.00	34,000	3,700	3,600	1,200	5,300	<500 (<5.0)
	7/6/2005	18.48	11.92	24,000	1,600	1,700	570	2,800	<500
	10/10/2005	19.00	11.40	25,000	1,700	2,100	710	3,200	<500
	1/26/2006	18 58	11.10	60,000	4 600	7 200	1 600	6 900	<1.000
	4/10/2006	17.84	12.56	56,000	4 900	7,200	1,000	7 400	< 500
	7/6/2006	18.76	11.64	28,000	1,900	1,300	720	2,900	<500
	10/26/2006	19.60	10.80	43 000	2 800	2 500	1 700	2,500	<500
	1/19/2007	19.80	10.56	31,000	2,000	2,300	1,700	5,800	<150
	4/17/2007	10.04	10.50	37,000	2,700	2,400	1,400	5,800 6,400	<100
	7/6/2007	19.90	10.50	30,000	3,200	2,900	1,000	5,200	<250
	10/15/2007	20.11	10.77	30,000	3,200	2,000	650	3,200	<230
	1/17/2007	20.11	10.29	20,000	1,200	990 5 100	1 200	2,300	<300
	1/1//2008	20.10	10.30	51,000	2,900	5,100	1,200	5,000	<210
	4/9/2008	20.12	10.28	31,000	3,000	500	1,700	0,500	<230
	10/27/2008	20.01	0.70	22,000	180	2 100	660	2,100	<230
	10/2//2008	20.61	9.79	26,000	570	2,100	670	3,400	<50
	1/9/2009	20.80	9.60	16,000	240	680	460	3,000	<100
	4/2//2009	20.17	10.23	16,000	130	660	570	3,600	<500
	7/9/2009	20.36	10.04	8,500	30	110	250	1,400	<100
	2/3/2010	19.84	10.56	22,000	47	140	500	3,000	<100
	7/13/2010	19.08	11.32	1,900	3.5	5.8	38	110	<5.0
	1/17/2011	19.02	11.38	17,000	23	100	330	2,200	<100
	7/12/2011	18.52	11.88	15,000	22	30	190	740	<50
	1/12/2011	19.18	11.22	20,000	17	47	250	2,100	<84
	7/25/2012	18.83	11.57	440	<0.5	2.2	1.0	39	<5.0
	1/25/2013	19.21	11.19	8,300	17	11	140	510	<50
	7/29/2013	19.94	10.46	8,000	13	13	200	100	<25
	1/28/2014	20.56	9.84	5,900	10	7.3	100	80	<50
	7/24/2014	20.61	9.79	2,100	1.5	3.1	21	37	<5.0
	1/22/2015	20.24	10.16	1,700	3.3	3.0	8.0	25	<10
	7/20/2015	20.66	9.74	770	0.57	0.69	9.2	10	<5.0
	8/3/2016	20.03	10.37	980	0.9	1.9	9.4	9.9	<5.0
	1/20/2017	19.49	10.91	3,000	2.7	3.7	19	29	<5.0
MW-3	12/2/1994	22.15	7.35	394,000	1,200	ND	1,800	4,000	-
29.50	3/6/1995	20.09	9.16	21,000	400	150	24	62	-
29.25	7/11/1995	19.99	9.57	12,000	ND	10	16	99	-
29.56	5/10/1996	20.24	9.32	8,600	ND	7.6	16	84	-
	10/2/1996	20.90	8.66	11,000	ND	7.4	19	92	-
	2/28/1997	20.12	9.44	6,000	ND	4.4	17	88	50
	9/16/1997	20.97	8.59	6,500	< 0.5	0.69	1.2	6.7	<5.0
	2/5/1998	20.39	9.17	5,400	< 0.5	6.3	15	86	<63
	8/11/1998	19.95	9.61	2,700	< 0.5	3.5	3.2	12	<10
	2/8/1999	20.58	8.98	6,100	< 0.5	8.1	18	80	<140
	2/17/1999	20.53	9.03	-	-	-	-	-	-
	2/24/1999	22.53	7.03	-	_	_	_	-	_
	3/3/1999	20.28	9.28	-	_	_	_	-	_
	3/10/1999	22.45	7.11	_	_	_	_	_	_
	3/17/1999	20.26	9.30	-	_	_	_	-	_
	5/4/1999	20.24	9.32	11,000	<2	<2	9.8	140	<10
	U / / / /						2.0		.10

Boring / Well ID TOC	Date	Depth to Water	Groundwater Elevation (ft amsl)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
100		(11)	(it unisi)				<i>µBD)</i>		/
MW-3	7/20/1999	20.68	8.88	11.000	< 0.5	3.1	13	88	<80
(cont'd)	10/5/1999	20.81	8.75	31.000	62	<0.5	21	170	<90
(1/7/2000	21.09	8.47	13.000	<0.5	<2	21	140	<80
	4/6/2000	20.48	9.08	5.300	1.5	1.4	9.8	60	<30
	7/31/2000	20.62	8 94	7 100	3.5	1.0	12	66	<5.0
	10/3/2000	21.13	8 43	8,000	<0.5	3 3	11	70	<40
	1/12/2001	21.15	8 11	11 000	4 3	6.7	11	73	<70
	4/11/2001	21.19	7.87	10,000	<0.5	<0.5	11	65	<10
	7/6/2001	21.69	7.96	13,000	5 3	1.6	11	58	<5.0
	10/25/2001	21.00	7.90	11,000	<0.5	3.0	15	70	<10
	3/4/2002	21.70	7.00	1 900	1.3	0.8	<0.5	15	<5.0
	4/18/2002	21.05	7.91	1,900	1.5	0.8	<0.5 1 3	58	<5.0
	7/0/2002	22.03	7.53	13 000	6.8	5.7	13	50	<90
	10/4/2002	22.03	7.55	8 400	<10	<10	<10	42	<100
	1/12/2002	22.13	8 43	9,000	0.5	<10 5 1	×10 8 5	46	< 90
	1/12/2003	21.13	8.43	9,000	9.5 <5.0	<5.0	8.5	32	< 50
22.56	4/21/2003	20.03	0.93	0,600	< 3.0	< 3.0	8.J 7.4	32	<30
52.50	10/2/2003	20.08	11.00	9,000	<2.5	<2.3	/.4	39 40	40 (<1.0)
	1/15/2003	20.99	11.57	12,000	~3.0	<3.0	10	40	<90
	1/13/2004	20.74	11.02	15,000	-1 7	41	/0	930	<17
	4/3/2004	20.39	10.29	4,300	<1.7	~1.7	<1./	12	<10
	8/9/2004	22.18	10.38	2,100	<1.0	3.7	<1.0	8.1	<10
	2/7/2004	22.79	9.77	2,400	6.5	26	7.5	89	<15
	2/ //2005	20.35	12.21	6,800	2.2	5.6	2.0	12	< 30
	4/5/2005	19.95	12.61	6,100	2.3	2.6	1.3	8.3	<45 (<0.5)
	7/6/2005	19.93	12.63	4,500	<1.0	1.5	1.0	8.3	<10
	10/10/2005	20.45	12.11	3,800	0.73	<0.5	0.98	5.7	<15
	1/26/2006	20.05	12.51	5,100	<0.5	1.1	<0.5	6.6	<15
	4/10/2006	19.39	13.17	1,900	0.55	1.6	0.51	4.1	<10
	7/6/2006	20.25	12.31	5,600	<1.0	2.3	<1.0	6.4	<20
	10/26/2006	21.07	11.49	8,000	2.5	1.0	2.3	12	<35
	1/19/2007	21.38	11.18	77,000	19	40	9.5	130	<300
	4/17/2007	21.45	11.11	7,400	2.7	6.6	1.1	12	<40
	7/6/2007	21.29	11.27	7,100	2.4	5.6	0.85	10	<30
	10/15/2007	21.62	10.94	10,000	<5.0	<5.0	<5.0	14	<50
	1/17/2008	21.68	10.88	6,400	1.8	<0.5	1.0	8.4	23
	4/9/2008	21.42	11.14	4,700	1.7	2.2	<0.5	3.8	<18
	7/17/2008	22.10	10.46	7,700	2.9	3.1	1.4	11	<60
	10/27/2008	22.13	10.43	9,700	<1.7	1.8	2.3	11	<17
	1/9/2009	22.27	10.29	9,800	1.7	2.0	3.0	14	<17
	4/27/2009	21.74	10.82	8,700	1.9	3.3	<1.7	11	<50
	7/9/2009	21.92	10.64	10,000	<2.5	4.1	2.6	11	<60
	2/3/2010	21.55	11.01	5,300	1.5	2.3	< 0.5	2.7	<25
	7/13/2010	21.31	11.25	4,400	<2.5	9.0	<2.5	4.6	<25
	1/17/2011	20.75	11.81	4,100	1.2	1.8	< 0.5	2.7	<20
	7/12/2011	20.14	12.42	4,500	2.4	2.8	< 0.5	5.0	<25
	1/11/2012	20.80	11.76	3,000	1.1	1.6	< 0.5	1.9	<15
	7/25/2012	20.44	12.12	5,400	<1.7	<1.7	<1.7	4.1	<17
	1/25/2013	20.84	11.72	4,900	<1.7	2.7	<1.7	3.5	<17
	7/29/2013	21.48	11.08	9,700	<2.5	<2.5	<2.5	<2.5	<25
	1/28/2014	22.08	10.48	12,000	2.8	2.8	<2.5	4.6	<25
	7/24/2014	22.15	10.41	6,700	2.2	<1.7	1.9	5.2	<35
	1/22/2015	21.76	10.80	8,900	<5.0	<5.0	<5.0	<5.0	<50

Boring / Well	Date	Depth to Water	Groundwater Elevation	ТРНо	Benzene	Toluene	Ethylbenzene	Xvlenes	MTBE
TOC	Dute	(ft)	(ft amsl)	// II IIg	Denizene	(rigienes	
100		(11)	(it allist)			(µg/L)		/
MW-3	7/20/2015	22.14	10.42	3,600	<1.7	<1.7	<1.7	3.5	<17
(cont'd)	8/3/2016	21.51	11.05	7,400	3.0	3.5	<2.5	<7.5	27
	1/20/2017	21.15	11.41	4.200	<2.5	5.0	<2.5	<7.5	<25
				,					
MW-4	5/10/1996	16.98	8.31	14,000	ND	1,200	720	3,100	-
25.29	10/2/1996	17.65	7.64	12,000	ND	650	580	2,200	-
	2/28/1997	16.80	8.49	13,000	ND	1,100	750	2,700	110
	9/17/1997	17.93	7.36	13,000	<2.5	820	750	2,900	<190
	2/5/1998	16.78	8.51	13,000	<1.0	690	690	2,900	<170
	8/11/1998	16.59	8.70	15,000	<5	360	520	1,900	280
	2/8/1999	17.10	8.19	9,800	<5	680	770	2,200	300
	2/24/1999	18.95	6.34	-	-	-	-	-	-
	3/3/1999	16.80	8.49	-	-	-	-	-	-
	3/10/1999	16.86	8.43	-	-	-	-	-	-
	3/17/1999	16.82	8.47	-	-	-	-	-	-
	5/4/1999	16.86	8.43	11,000	46	600	620	1,900	<100
	7/20/1999	17.30	7.99	13,000	<0.5	470	7.0	2,000	<150
	10/5/1999	17.43	7.86	18,000	4.4	720	800	2,100	<120
	1///2000	17.78	7.51	18,000	<2	930	990	2,700	<30
	4/6/2000	17.17	8.12	8,000	31	390	530	1,300	<10
	10/2/2000	17.21	8.08	0,200 14.000	13	170	460	850	<10
	10/3/2000	18.00	7.29	14,000	42	820 <0.5	/30	2,000	<50
	4/11/2001	18.20	6.08	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/6/2001	18.31	6.94	<50 470	~0.5	<0.5	<0.5 0.81	<0.5 43	<5.0
	10/25/2001	18.55	6.82	110	0.70	<0.5	<0.5	33	<5.0
	3/4/2002	18.47	6.86	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/18/2002	18.61	6.68	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/9/2002	19.50	5.79	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/4/2002	19.83	5.46	310	2.0	2.9	13	16	<0.5
	1/12/2003	19.07	6.22	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
	4/21/2003	18.71	6.58	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
28.29	7/21/2003	18.81	9.48	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/2/2003	19.02	9.27	59	0.78	< 0.5	1.1	0.91	<5.0
	1/15/2004	18.68	9.61	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/5/2004	17.41	10.88	6,200	29	250	450	730	<100
	8/9/2004	19.07	9.22	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/7/2004	19.65	8.64	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	2/7/2005	17.21	11.08	8,700	48	340	550	720	<100
	4/5/2005	16.78	11.51	6,900	27	290	520	660	<170 (<0.5)
	7/6/2005	16.98	11.31	5,600	<5.0	130	470	480	<50
	10/10/2005	17.59	10.70	6,300	23	78	530	430	<50
	1/26/2006	17.08	11.21	5,600	41	68	400	290	<120
	4/10/2006	16.27	12.02	2,900	39	32	200	140	<60
	7/6/2006	17.20	11.09	5,400	65	59	340	150	<120
	10/26/2006	18.06	10.23	7,200	72	46	460	200	<150
	1/19/2007	18.29	10.00	7,100	140	35	520	150	<200
	4/17/2007	18.30	9.99	4,900	90	32	290	89	<110
	7/6/2007	18.00	10.29	4,600	91	30	210	55	<90
	10/15/2007	18.52	9.77	8,600	200	62	480	110	<210
	1/17/2008	18.46	9.83	820	15	3.7	25	9.3	<10
	4/9/2008	18.23	10.06	5,600	22	20	100	04 190	<60
	10/27/2008	18.72	9.37	0,500	210	4/	510 450	180	<150
	10/2//2008	19.07	7.22	/,/00	∠00	∠0	430	0/	~130

Boring / Well	D (Depth to	Groundwater	TDU	D	T 1	F-1 11	V 1	MEDE
ID	Date	Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MIBE
TOC		(ft)	(ft amsl)	\leftarrow		(μg/L)		\longrightarrow
1017.4	1/0/2000	10.12	0.17	4 400	100	24	100	02	-150
WW-4	1/9/2009	19.12	9.17	4,400	180	34	180	93	<150
(cont a)	4/2//2009	18.32	9.77	2,300	110	24	190	82	<150
	7/9/2009	18.78	9.51	5,600	150	34	270	83	<250
	2/3/2010	18.24	10.05	2,900	38	20	69	54	<50
	//13/2010	17.59	10.70	1,100	20	/.6	43	26	<60
	1/17/2011	17.42	10.87	2,900	16	43	60	99	<15
	7/12/2011	17.01	11.28	<50	<0.5	0.56	0.52	0.93	<5.0
	1/11/2012	17.68	10.61	4,100	52	52	49	130	<90
	7/25/2012	17.26	11.03	100	1.2	<0.5	<0.5	<0.5	<5.0
	1/25/2013	17.58	10.71	3,500	33	20	23	65	<35
	7/29/2013	18.34	9.95	97	4.7	< 0.5	<0.5	0.70	<10
	1/28/2014	18.99	9.30	<50	1.2	< 0.5	<0.5	<0.5	<5.0
	7/24/2014	19.05	9.24	4,200	83	19	40	32	<50
	1/22/2015	18.57	9.72	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/20/2015					well p	aved over		
	8/3/2016					well p	aved over		
	1/20/2017					well p	aved over		
MW-5	5/10/1996	14.60	7.37	ND	ND	ND	ND	ND	-
21.97	10/2/1996	15.25	6.72	ND	ND	ND	ND	ND	-
	2/28/1997	14.31	7.66	ND	ND	ND	ND	ND	ND
	9/17/1997	15.18	6.79	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<5.0
	2/5/1998	13.64	8.33	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	8/11/1998	13.92	8.05	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0
	2/8/1999	14.19	7.78	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0
	2/24/1999	16.18	5.79	-	-	-	-	-	-
	3/3/1999	14.23	7.74	-	-	-	-	-	-
	3/10/1999	14.32	7.65	-	-	-	-	-	-
	3/17/1999	14.25	7.72	-	-	-	-	-	-
	5/4/1999	14.41	7.56	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0
	7/20/1999	14.44	7.53	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0
	10/5/1999	14.79	7.18	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0
	1/7/2000*	15.23	6.74	-	-	-	-	-	-
	4/6/2000	14.74	7.23	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
	7/31/2000	14.52	7.45	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/3/2000	15.37	6.60	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/12/2001	15.70	6.27	6,400	13	290	450	1,100	<40
	4/11/2001	15.78	6.19	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/6/2001	15.97	6.00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/25/2001	16.05	5.92	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	3/4/2002	16.21	5.76	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/18/2002	16.59	5.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/9/2002	16.94	5.03	170	1.0	0.65	2.1	4.0	<15
	10/4/2002	17.14	4.83	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/12/2003	16.58	5.39	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/21/2003	15.90	6.07	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/21/2003	16.03	8.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
24.99	10/2/2003	16.33	8.66	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/15/2004	16.21	8.78	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/5/2004	15.01	9.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	8/9/2004	16.85	8.14	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/7/2004	17.48	7.51	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	2/7/2005	16.52	8.47	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/5/2005	14.45	10.54	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0 (<0.5)

Boring / Well		Depth to	Groundwater						
ID	Date	Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		(μ	.g/L)		\longrightarrow
MW-5	7/6/2005	14.85	10.14	<50	<0.5	<0.5	<0.5	<0.5	<5.0
(cont'd)	10/10/2005	15.44	9.55	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/26/2006	14.96	10.03	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	4/10/2006	14.01	10.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/6/2006	15.17	9.82	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/26/2006	15.94	9.05	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/19/2007	16.05	8.94	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/17/2007	15.99	9.00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/6/2007	15.50	9.49	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/15/2007	16.27	8.72	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/17/2008	15.10	9.89	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	4/9/2008	15.96	9.03	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	7/17/2008	16.44	8.55	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/27/2008	16.78	8.21	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/9/2009	16.75	8.24	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
	4/27/2009	16.21	8.78						
	7/9/2009	16.48	8.51						
	2/3/2010	15.77	9.22	<50	<0.5	<0.5	<0.5	<0.5	< 5.0
	7/13/2010	15.34	9.65						
	1/17/2011	14.93	10.06	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/12/2011	14.93	10.00	<50	-0.5	<0.5	-0.5	<0.5	<5.0
	1/11/2012	15.44	9.55	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/25/2012	14 70	10.20	~50	~0.5	~0.5	~0.5	~0.5	<5.0
	1/25/2012	14.79	0.78						<5.0
	7/20/2012	15.21	9.70	<30	<0.5	<0.5	<0.5	<0.5	<5.0
	1/29/2013	16.05	8.90						
	1/28/2014	16.65	8.34	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	//24/2014	16.75	8.24						
	1/22/2015	16.25	8.74	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/20/2015	16.82	8.17						
	8/3/2016	16.23	8.76	<50	<0.5	<0.5	<0.5	<1.5	<5.0
	1/20/2017	14.98	10.01	<50	<0.5	<0.5	<0.5	<1.5	<5.0
MW-6	6/30/2003	19.60	11.39	68.000	950	6.000	2.400	10.000	<1.000
30.99	7/21/2003	19.60	11.32	120,000	170	1 400	1 100	10,000	<1,000
50.77	10/2/2003	19.07	11.02	16,000	7.6	200	38	1 800	<100
	1/15/2003	19.57	11.02	14,000	/.0	51	94	1,000	<50
	4/5/2004	19.55	11.82	24 000	180	900	430	1,100	<500
	8/0/2004	20.98	10.01	5 300	6.4	25	53	60	<17 (<0.5)
	10/7/2004	20.98	0.47	5,500	11	2 <i>3</i> 59	18	210	<17(<0.5)
	2/7/2004	10.00	9.47	21,000	11	58	10	1 200	<500
	2/7/2003	19.00	11.99	31,000	120	020	310	1,200	<500 (<5.0)
	4/5/2005	18.60	12.39	21,000	170	1,100	350	1,300	<500 (<5.0)
	//6/2005	18.50	12.43	26,000	130	920	320	1,200	<500
	10/10/2005	19.99	11.00	19,000	140	840	250	980	<500
	1/26/2006	18.70	12.29	10,000	140	1,100	270	1,200	<170
	4/10/2006	18.04	12.95	13,000	140	1,000	280	1,000	<250
	7/6/2006	18.80	12.19	17,000	150	1,000	290	1,000	<250
	10/26/2006	19.62	11.37	23,000	230	660	470	1,500	<500
	1/19/2007	19.92	11.07	18,000	190	620	350	1,100	<150
	4/17/2007	19.97	11.02	23,000	380	1,400	590	2,000	<450
	7/6/2007	19.81	11.18	28,000	600	3,000	900	2,700	<500
	10/15/2007	20.15	10.84	25,000	290	680	410	1,100	<250
	10/15/2007	20.15	10.84	25,000	290	680	410	1,100	<250
	1/17/2007	20.22	10.77	16,000	200	130	130	460	<150
	4/9/2008	19.86	11.13	18,000	320	870	480	1,500	<250

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
100		(11)	(It amsi)	~~~~~		(μg/L)		>
MW-6	7/17/2008	20.36	10.63	18 000	320	510	420	1 200	<500
(cont'd)	10/27/2008	20.50	10.05	31,000	320	320	410	990	<350
(com u)	1/9/2009	20.83	10.16	22,000	340	390	560	1 400	<250
	4/27/2009	20.85	10.72	13,000	110	97	380	1,400	<350
	7/9/2009	20.27	10.56	18,000	250	520	470	1,100	<450
	2/3/2010	20.43	10.50	6 200	82	180	190	550	<150
	7/13/2010	10.20	11.70	12 000	260	420	480	1 600	<450
	1/17/2011	19.29	11.70	4 900	200	52	210	500	<50
	7/12/2011	18.73	12.26	1,400	20	8.5	64	130	<30
	1/11/2012	10.75	11.60	6,000	100	38	310	700	<210
	7/25/2012	19.39	11.00	2,800	21	12	140	240	<210
	1/25/2012	19.02	11.97	2,800	86	13	310	240 620	<100
	7/20/2013	19.33	11.04	5,400	1.2		<0.5	<0.5	<100
	1/29/2013	20.60	10.20	2 600	26	<0.5 11	<0.J	<0.5 52	<50
	7/24/2014	20.00	10.39	2,000	160	52	52	500	<30
	1/24/2014	20.70	10.29	9,600	160	12	410	390	<70
	7/20/2015	20.51	10.08	12,000	23	13	55	650	< 30
	8/2/2015	20.08	10.51	12,000	710	13	2 800	2 100	<430 450
	8/3/2010	20.02	10.97	12,000	/10	71	5,800	5,100	430
	1/20/2017	19.50	11.45	13,000	120	/1	/00	/00	200
MW-7	6/30/2003	21.40	11 71	170	<0.5	2.1	2.0	87	<5.0
33.11	7/21/2003	21.40	11.71	<50	<0.5	<0.5	<0.5	<0.5	<5.0
55.11	10/2/2003	21.73	11.38	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/15/2004	21.75	11.50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/5/2004	20.84	12.27	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	8/9/2004	20.64	10.43	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/7/2004	22.00	9.84	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	2/7/2005	20.60	12 51	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/5/2005	20.00	12.51	<50	<0.5	0.75	<0.5	<0.5	<5.0 (<0.5)
	7/6/2005	20.22	12.89	<50	<0.5	<0.5	<0.5	<0.5	<5.0 (<0.5)
	10/10/2005	20.23	12.00	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
	1/26/2005	20.70	12.41	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/20/2006	10.62	12.79	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/6/2006	20.47	12.49	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/26/2006	20.47	11.04	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
	1/10/2007	21.50	11.01	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/17/2007	21.02	11.49	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/6/2007	21 50	11.49	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/15/2007	21.39	11.52	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
	1/17/2007	21.85	11.20	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/1//2007	21.90	11.21	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/9/2008	21.01	11.50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/27/2008	22.09	10.72	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/0/2000	22.39	10.72	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/9/2009	22.32	10.39	~30	~0.5	~0.3	~0.3	~0.5	~3.0
	4/2//2009	21.98	11.15						
	2/2/2010	22.18	10.95						
	2/3/2010	21.07	11.24	~30	~0.5	~0.5	~0.3	~0.5	~3.0
	1/15/2010	21.01	12.10						
	7/12/2011	21.07	12.04	~50	<0.5	~0.5	<0.5	~0.5	~3.U ~5.0
	1/11/2012	20.72	12.39	~50	<0.5	<0.5	<0.5	<0.5	<3.0 <5.0
	1/11/2012	41.13	11.70	~30	~V.J	~0.5	~V.J	~V.J	~5.0

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		(μg/L)		\longrightarrow
			10.07						
MW-7	7/25/2012	20.75	12.36						
(cont'd)	1/25/2013	21.10	12.01	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/29/2013	21.70	11.41						
	1/28/2014	22.34	10.77	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/24/2014	22.41	10.70						
	1/22/2015	21.99	11.12	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	7/20/2015					well p	aved over		
	8/3/2016					well p	aved over		
	1/20/2017					well p	aved over		
AS-1	7/6/2006	19.53		18,000	2,700	570	700	1,900	<500
	10/26/2006	20.33		15,000	1,900	340	360	1,400	<250
	1/19/2007	20.64		5,700	1,100	110	88	630	<50
	1/19/2007	20.64		5,700	1,100	110	88	630	<50
	4/17/2007	20.71							
	7/16/2007								
	10/15/2007								
	1/17/2008								
	4/9/2008								
	1/25/2013			70	10	< 0.5	< 0.5	< 0.5	<5.0
AS-2	7/6/2006	22.26		2,100	6.1	< 0.5	33	200	<20
	10/26/2006	23.25		280	1.1	< 0.5	< 0.5	6.0	<15
	1/19/2007	23.61		2,100	2.3	< 0.5	96	310	<35
	4/17/2007	23.70							
	7/16/2007								
	10/15/2007								
	1/17/2008								
	4/9/2008								
	1/25/2013	22.02		<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
AS-3	7/6/2006	21.77		<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	10/26/2006	22.66		<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/19/2007	22.97		<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/17/2007	23.06							
	7/16/2007								
	10/15/2007								
	1/17/2008								
	4/9/2008								
	1/25/2013	22.60		<50	< 0.5	<0.5	0.55	< 0.5	<5.0
Trip Blank	01/12/01	-	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0
•	4/11/2001	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0
	7/6/2001	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0
	3/4/2002	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0
	10/2/2003	-	-	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	10/15/2007								

Table 3 - Groundwater Elevation and Analytical Data.

Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID <i>TOC</i>	Date	Depth to Water (ft)	Groundwater Elevation (ft amsl)	TPHg	Benzene	Toluene (Ethylbenzene µg/L) ————	Xylenes	MTBE
Grab Ground	dwater								
SB-A	2/22/1996			16,000	38	16	180	620	
SB-B	2/22/1996			20,000	100	29	320	590	
SB-C	2/22/1996			1,200	130	100	68	230	
SB-D	2/22/1996			7,400	550	110	160	89	
SB-E	2/23/1996			16,000	31	160	390	1,400	
SB-F	2/23/1996			<50	< 0.5	1.4	< 0.5	2.3	
SB-G	2/23/1996			5,200	1.3	<0.5	0.7	<0.5	
EB-1GWS	7/8/1994			62,000	<0.5	26	850.0	8,900	
EB-2GWS	7/8/1994			160,000	5,300	20,000	2,100	17,000	
EB-3GWS	7/8/1994			87,000	1,400	21,000	1,700	19,000	
EB-4GWS	7/8/1994			350,000	290	1,300	3,200	31,000	
EB-5GWS	7/8/1994			120,000	2,100.0	13,000	1,300.0	16,000	
EB-6GWS	7/8/1994			230,000	10,000	34,000	2,300	16,000	

Notes and Abbreviations:

TOC = Top of casing elevations in feet above mean sea level.

ft amsl = Measured in feet above mean sea level

 $\mu g/L = Micrograms per liter.$

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C.

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B.

MTBE = Methyl tertiary butyl ether by EPA Method 8021B, and by EPA Method 8260 in parenthesis.

<0.5 = Concentration not detected above specific laboratory reporting limit.

-- = Not analyzed, not sampled, or not applicable.

ND = Not detected.

Data prior to 7/11/95 from Gen Tech and Piers Environmental Quarterly Groundwater Monitoring Reports dated December 2, 1994 and March 6, 1995, respectively.

On July 31, 2003, Virgil Chavez Land Surveying of Vallejo, California surveyed monitoring wells using a benchmark in the top of the curb near the SW return of the NW corner of 34th and Broadway.

APPENDIX A

Site Conceptual Model

SITE CONCEPTUAL MODEL AND DATA GAP EVALUATION

.

The following table presents the site conceptual model (SCM) and data gap evaluation in tabular format. This table summarizes the risk for petroleum hydrocarbon impact (TPHg and benzene) at this site, providing detailed media-specific numerical concentration goals and a numerical assessment of progress in achieving those goals. Since hydrocarbons are the primary risk driver, assessment of the hydrocarbon goals alone provides a valid assessment of human health risks at the site.

Site Address:	1721 Webster Street	ACEH Case No.	RO0000129	
City:	Oakland	Regulator:	Karel	
		-	Detterman	
SCM Element/ Sub-	Description	Data Gap No. and Description	Proposed	Rationale
Element			Investigation	
	Site Description			
Land Use and Site History	The site is currently being utilized as a parking garage, and is located between 17th and 19th Streets in Oakland, California, approximately four miles east of San Francisco Bay and one quarter of a mile west of Lake Merritt (Figure 1). The site is relatively flat with an elevation of approximately 30 feet (ft) above mean sea level (msl). According to reviews of historical documentation by AECOM in their 2016 Phase I ESA the site was initially developed as a residence and greenhouse in the late 1800s.	None	NA	NA
	The property was converted to residences in the early 1900s and to the current configuration by the 1930s. The site was used for parking and automotive services such as repair and painting in the 1950s and 1960s.			
Nearby Sites	Based on Geotracker information, several former underground storage tank (UST) sites are located close to the site, including Prentiss Properties to the northeast at 1750 Webster Street, a former gas station to the east at 1700 Webster, and a former Chevron service station which is located approximately 450 feet to the southwest on the corner of 17 th Street and Harrison Street. There are also several closed leaking underground storage tank (LUST) sites within a 1,000 foot radius of the site.	None	NA	NA

SCM Updated 6-13-2017

Building Characteristics	The subject property consists primarily of a parking garage with small retail businesses such as a coffee shop and pet food store fronting Webster Street (Figure 2).	None	e	NA	NA
	Geology and Hydrogeology				
Regional	The site is situated in the Coast Range Physiograpic Province, which is an area characterized by northwest- southeast running valleys and ridges. Geologic formations of the San Francisco Bay Region range from the Jurassic Period to the Holocene epoch (end of the Pleistocene era).	None	e	NA	NA
	Tectonic activity during the Plio-Pleistocene era formed a structural depression (San Francisco Bay) through subsidence and uplift along the San Andreas, Hayward and Calaveras fault zones. The Bay filled with alluvial deposits of gravel, sand, silt and clay from the surrounding highlands and sea level fluctuation deposited bay muds all around San Francisco Bay (Radbruch, 1957). The alluvial deposits generally become finer closer to the Bay, where they interbed with predominately fine-grain sediment deposited by the Bay.				
Local Geology	Soil from site borings consists of a mixture of clay, silt and sand to a depth of approximately 14 ft bgs, underlain by sand and/or silty sand to a depth of 25 to 30 ft bgs. The shallow water-bearing zone is present within the primarily sandy soil beneath 14 feet bgs. Between 25 and 30 ft bgs a silty clay layer was encountered.	None	e.	NA	NA
Local Hydrogeology	Unconfined groundwater conditions exist at the site. A shallow water-bearing zone consisting of highly permeable sand is present beneath 14 feet bgs to a depth of 25 to 30 feet bgs, and is underlain by a silty clay layer. Since 1994, the depth to groundwater beneath and surrounding the site has ranged from approximately 13.6 feet bgs (MW-5) to 23.6 feet bgs (MW-1) equivalent to a groundwater elevation range from 9 to 11 feet above msl over twenty-three years of monitoring. Rainfall in this area occurs primarily between November and March and the average rainfall is approximately 23 inches per year.	None	ie.	NA	NA

	Groundwater elevation data indicates that the groundwater beneath the site generally flows <i>northwards</i> to <i>northeastwards</i> , consistent with the local topography. The recent groundwater flow direction is shown on Figure 2. The <i>northwards</i> to <i>northeastwards</i> flow direction is generally consistent with the inferred groundwater flow directions at the nearby LUST site at 1633 Harrison Street.				
Surface Water	The closest surface water to the site is Lake Merritt, which is located approximately 1,295 feet (approximately ¼ mile) east-northeast of the site.	None	NA	NA	
Nearby Wells	 Based on our review of well information provided by the Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA), Pangea identified several permitted wells within approximately a ¼ mile radius of the site. Permitted domestic well information provided by the DWR and ACPWA is considered confidential and is not disclosed herein. Two locations are listed as irrigation wells. One location is listed as having 10 irrigation wells with total depths of approximately 280 ft bgs and is situated approximately 1,360 ft northeast (downgradient) of the site. The second is listed as having 6 irrigation wells with total depths of approximately 95 ft bgs and is situated approximately 1,080 ft east (crossgradient) of the site. Pangea identified thirteen additional permitted well locations within the ¼ mile radius search of the site using DWR/ACPWA information. Seven of the thirteen locations were listed as groundwater monitoring wells and 6 are listed as test wells for the City of Oakland Redevelopment Agency. 	None	NA	NA	
	Board (SWRCB) GeoTracker database for nearby wells. Two sites with groundwater monitoring wells were identified on Geotracker within a ¼ mile of the site. The identified monitoring wells are across Webster Street from the subject site. The wells are associated with 1700-1710				

	Webster Street (MW-1 through MW-4) and 1750 Webster Street (A-1 through A-3).			
Groundwater Beneficial Use	According to the Basin Plan from the California Regional Water Quality Control Board (RWQCB), the site lies near the northern end of the East Bay Plain Subbasin of the Santa Clara Valley Basin. The <i>existing</i> beneficial uses for this basin include (1) municipal and domestic water supply, (2) industrial process water supply, (3) industrial service water supply and (4) agricultural water supply.	None	NA	NA
	Contaminant Source and Release Information			
Source/ Release Information	On August 3 and 6, 1992, Parker Environmental Services removed one 1,000-gallon and two 500-gallon gasoline underground storage tanks (USTs) from the site. Up to 1,500 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and up to 12 mg/kg benzene were detected in the soil samples collected from the UST excavation (Parker, 1992).	None	NA	NA
	An unauthorized release was reported on January 7, 1993, which is the same day the RWQCB and ACEH opened this case (#01-0151 and RO#4070, respectively).			
Chemicals of Concern	The chemicals of concern (COC) in site soil and groundwater are the following petroleum hydrocarbons: TPHg; benzene, toluene, ethylbenzene, and xylenes (BTEX).	None	NA	NA
Soil and Groundwater Investigations	Several investigations have been completed at the site. On July 8 and September 8, 1994, Gen Tech/Piers Environmental, Inc. (Gen Tech) of San Jose, California drilled six exploratory borings and installed three groundwater monitoring wells (MW 1 through MW 3). Gen Tech reported the investigation work in its Soil and Groundwater Investigation and Quarterly Monitoring Report dated December 2, 1994. In February and May 1996, Cambria Environmental Technology (Cambria) of Emeryville, California advanced seven geoprobe soil borings and installed two groundwater monitoring wells (MW 4 and MW 5), which was reported in the Subsurface Investigation Report dated July 16, 1996. On August 8, 2000, Conduit Study and File Review Report was	None	NA	NA

	submitted by Cambria Environmental Technology. The report provided significant information about offsite hydrocarbon impact and offsite sources, and concluded that there were no identified conduits for contaminant migration in groundwater. On June 27, 2003 Cambria installed two additional offsite monitoring wells (MW-6 and MW-7) to facilitate additional plume delineation. Pangea began periodic groundwater monitoring at the site in July 2006. In November and December 2013, Pangea installed and sampled three subslab gas probes and drilled two confirmation soil borings. The subslab gas probes contained no contaminant concentrations above commercial Environmental Screening Levels (ESLs) for shallow soil gas. Soil samples collected from the two borings contained no detectable concentrations of contaminants.			
Free Product	No free product has been encountered in any site monitoring wells, but a sheen was noted historically by the laboratory in several grab groundwater samples collected from site borings. Based on results from site borings and monitoring wells it appears that no free product is currently present at the site.	None	NA	NA
Soil	In August 1992, elevated contaminant concentrations were detected in source area soil near the former USTs. In July 1994, elevated contaminant concentrations were detected east and northeast of the USTs at depths of approximately 20 and 20.5 ft bgs in predominately sandy soil. In February and May 1996, soil samples from borings SB-A through SB-I did not contain any contaminant concentrations above applicable ESLs. Additionally, source area confirmation soil borings CB-1 and CB-2, drilled in December 2013 and analyzed for TPHg, BTEX, MTBE and Naphthalene did not contain any detectable contaminant concentrations. The extent of soil contamination at the site is well defined by the existing soil sample data. Soil analytical results are summarized on Table 2.	None	NA	NA
Groundwater	The downgradient extent of TPHg and benzene contamination in groundwater is fairly well defined by monitoring well MW-5. Contaminant concentrations are	None	NA	NA

	generally highest in source wells MW-2 and MW-3, which are both located near the former USTs, and in offsite wells MW-4 and MW-6 located down/crossgradient from the source area. Hydrocarbons detected in wells MW-4 and MW-6 located across the street may be from an offsite source. Groundwater analytical data indicates that the contaminant plume is stable to decreasing.			
	The vertical extent of contamination at the site is fairly well defined by samples collected from wells AS-1 through AS-3 in January 2013. Wells AS-1 through AS-3 are screened from approximately 27 to 30 ft bgs and did not contain any contaminant concentrations above applicable ESLs except 10 μ g/L benzene in well AS-1. The maximum explored depth at the site is approximately 30 ft bgs. There is a layer of clay at approximately 30 ft bgs near the former USTs. This clay layer may be preventing contaminants from migrating into deeper water-bearing zones. Groundwater analytical results are summarized on Table 3.			
Subslab/Soil Gas	On November 6, 2013, Pangea installed three subslab probes at the subject site. Subslab probe SS-1 was installed near the source area in an adjacent retail building. Probe SS-2 was installed in the driveway near the source area onsite and probe SS-3 was installed near key well MW-2 inside the parking garage near the office.	None	NA	NA
	The first round of subslab vapor sampling (cold season) was completed on November 13 and 14, 2013. The only site constituents of concern detected during this sampling event were TPHg and benzene: these concentrations were below applicable commercial ESLs. Additional subslab gas sampling was conducted on June 23, 2015. TPHg concentrations were below applicable commercial ESLs and benzene concentrations were below detection limits.			
	To further evaluate shallow soil gas conditions, Pangea coordinated soil gas sampling from two semi-permanent soil gas probe locations (SG-1 and SG-2) and two existing subslab vapor probes (SS-2 and SS-3) on September 23, 2016. Soil gas from probe SG-1 contained a toluene concentration of 5.7 μ g/m ³ and xylene concentration of 13.6			

	μ g/m ³ . Soil gas from probe SG-2 contained a benzene concentration of 12 μ g/m ³ and xylene concentration of 23.9 μ g/m ³ . All detected concentrations are below applicable ESLs. All other hydrocarbons and VOCs in samples from soil gas probes SG-1 and SG-2 were below method reporting limits ('non-detect'). The percent oxygen detected in soil gas probes SG-1 and SG-2 was 17.7% and 19.8%, respectively. All hydrocarbons and VOCs in samples from subslab gas probe SS-2 were below method reporting limits ('non-detect'). Subslab gas from probe SS-3 contained toluene and xylene concentrations of 4.0 μ g/m ³ and 13 μ g/m ³ , respectively. The percent oxygen detected in subslab gas probes SS-2 and SS-3 was 20.4% and 20.5%, respectively. Methane concentrations were below reporting limits in all samples. Subslab/soil gas analytical results are summarized on Table 1.			
	Remediation Activities			
Remedial Activities	Several remedial techniques have been utilized at the subject site. In January 1998, Cambria installed ORC socks in well MW-2 to enhance the natural attenuation of dissolved-phase hydrocarbons. Dissolved oxygen (DO) concentrations temporarily increased in well MW-2 following the ORC sock installation. In February and March 1999, a total of 120 gallons of 7.5% hydrogen peroxide solution was added into monitoring wells MW-2 and MW-3 to oxidize hydrocarbons and also increase DO levels to enhance biodegradation of dissolved-phase hydrocarbons. While hydrogen peroxide <i>temporarily</i> increased groundwater DO levels, hydrocarbon concentrations fluctuated (even increased) before returning to pre-remediation levels. On March 4, 2003, Cambria installed a co-axial air sparging/soil vapor extraction well (SV-1/AS-1) and two angled air sparging wells (AS-2 and AS-3) to approximately 30 ft bgs. The wells were installed to facilitate feasibility testing and remediation via soil vapor extraction (SVE) and air sparging (AS). The SVE system ran from October 2007 to November 2010 and the AS system operated from November 2007 to April 2010. The SVE remediation system	None	NA	NA

	consisted of a blower that extracted soil vapor from well SVE-1. Extracted vapors were routed through a moisture separator then treated by two 2,000-lb canisters of granular activated carbon plumbed in series. The treated vapor was discharged to the atmosphere in accordance with Bay Area Air Quality Management District (BAAQMD) requirements. The AS system consisted of a compressor for injecting air into wells AS-1, AS-2 and/or AS-3. Injection into AS wells was controlled by timer-activated solenoid valves.			
	On August 8, 2008, air sparge wells AS-1 and AS-3 were disconnected from the air compressor and air sparging was conducted solely in well AS-2 to target hydrocarbons in nearby well MW-2. As of October 26, 2010, the SVE system operated for a total of about 19,396 hours (approximately 808 days). Laboratory analytical data indicates that the system removed a total of approximately 3,212 lbs TPHg and 6.88 lbs benzene. The SVE system was briefly restarted and subsequently shutdown on November 23, 2010 due to low removal rates.			
	Risk Pathways			
Prior Risk Evaluation	On August 3 and 6, 1992, Parker Environmental Services removed one 1,000-gallon and two 500-gallon gasoline underground storage tanks (USTs) from the site. Thus, there is no threat of a future release or continuing source. To evaluate the potential for contaminant migration via preferential pathways, Pangea surveyed subsurface utilities beneath the site and nearby vicinity and compared utility depths to groundwater depth and contaminants in site monitoring wells. To conduct the conduit study, Pangea first reviewed a prior conduit study for the site from August 2000 and compared sewer and storm drain depths/locations from the conduit study with maps provided by the City of Oakland. On August 2, 2011, Pangea conducted a site visit to locate and measure depths of subsurface utilities within nearby manholes. The conduit study identified several subsurface utilities at or near the site. The identified subsurface utilities near the site include water supply lines.	None	NA	NA

	electrical lines, telecommunication lines, sanitary sewers and storm drains. The primary conduits of concern were the two 18" diameter sanitary sewer lines adjacent to the site, which are the deepest of the identified conduits. Given the historical range of depth to water in site wells of approximately 18 to 22 ft bgs near the USTs and primary impact area, the 18" diameter sanitary sewer lines have very limited potential to intersect groundwater. Although the potentiometric surface of groundwater could occasionally be shallower than the bottom of these conduits, groundwater was first encountered at approximately 20 ft depth or deeper in site borings near the primary impact area. This information suggests that the sanitary sewer and storm drain lines do <i>not</i> likely act as preferential pathways for <i>significant</i> contaminant migration.			
Risk Pathway Summary	 Based on the characterization data provided under the Contaminant Source and Release Information SCM Elements above, the following risk pathways are NOT considered to be potentially complete for the Site: Soil: Vapor intrusion to indoor air Migration of contaminants to groundwater through leaching and vapor flow. Direct exposure to construction workers or to potential future residents and biota. Gross contamination concerns (primarily odors) Groundwater: Vapor intrusion to indoor air Ingestion of groundwater impacting wells, sumps or basements at nearby properties Impacts to aquatic biota in surface water bodies Soil Vapor: Vapor intrusion to indoor air 	None	NA	NA

SCM Updated 6-13-2017

Indoor Air	Commercial properties dominate both sides of Webster	None	NA	NA
	Street and most of the surrounding areas. Residential			
	properties are present above the commercial properties near			
	the site, but are predominantly located northeast and			
	southeast of the site, adjacent to Lake Merritt.			
	In June 2016, Pangea surveyed surrounding businesses for			
	subgrade structures. ACEH expressed concern that			
	VOCs from the residual groundwater plume could pose a			
	potential vapor intrusion risk if basements were			
	present. No basements were identified in nearby buildings			
	downgradient (north-northwest) of the site.			
APPENDIX B

Regulatory Correspondence

Elizabeth Avery

From:	Bob Clark-Riddell
Sent:	Wednesday, August 24, 2016 11:26 PM
То:	Elizabeth Avery
Cc:	Morgan Gillies
Subject:	FW: Work Plan Approval for Fuel Leak Case No. RO0000129 and GeoTracker Global ID T0600100140, Douglas Parking Company, 1721 Webster Street, Oakland, CA 94612
Attachments:	Attachment_1_and_ftpUploadInstructions_2014-05-15.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Please save this notice on server. Put on schedule. We can discuss.

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 510.435.8664 direct

From: Detterman, Karel, Env. Health [mailto:Karel.Detterman@acgov.org]
Sent: Monday, August 22, 2016 5:25 PM
To: lee@douglasparking.com
Cc: 'MCcaulou, Cherie@Waterboards' <Cherie.MCcaulou@waterboards.ca.gov>; Bob Clark-Riddell
<briddell@pangeaenv.com>; Roe, Dilan, Env. Health <Dilan.Roe@acgov.org>
Subject: Work Plan Approval for Fuel Leak Case No. RO0000129 and GeoTracker Global ID T0600100140, Douglas
Parking Company, 1721 Webster Street, Oakland, CA 94612

Hello Mr. Douglas:

Alameda County Department of Environmental Health (ACDEH) staff has reviewed the case file including the *Data Gap Work Plan* (Work Plan) dated June 21, 2016, prepared and submitted on your behalf by Pangea Environmental Services, Inc. (Pangea) in conjunction with the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). The Work Plan was submitted in response to a meeting with you and Pangea representatives on March 16, 2016. Thank you for submitting the Work Plan.

Based on ACEH staff review of the work plan, the proposed scope of work is conditionally approved for implementation provided that the technical comment below is incorporated during the proposed work. Submittal of a revised work plan or a work plan addendum is not required unless an alternate scope of work outside that described in the work plan or these technical comments is proposed. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide 72-hour advance written notification to this office (e-mail preferred to: <u>karel.detterman@acgov.org</u>) prior to the start of field activities.

TECHNICAL COMMENTS

- 1. Methane Analysis: Please include methane as an analyte for the soil gas samples.
- 2. Updated Site Conceptual Model (SCM) Table: Please include an updated SCM including the new data with the Report requested below.
- 3. Groundwater Monitoring and Sampling Event: The Work Plan states that the groundwater sampling event was scheduled to be conducted in July 2016. Please coordinate the next groundwater sampling event with Ms. Cherie MCcaulou of the Regional Water Quality Control Board, who has expressed an interest in coordinating a joint sampling event between neighboring cases at 1700 Webster Street, 1721 Webster Street, and 1750 Webster Street. ACDEH will also contact and coordinate with the property owner of 1750 Webster Street.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACDEH ftp site (Attention: Karel Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention and schedule:

• October 24, 2016 – Soil and Groundwater Investigation Report File to be named: RO129_SWI_R_yyyy-mm-dd

This report is being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please send me an e-mail message at <u>karel.detterman@acgov.org</u> or call me at (510) 567-6708.

Karel Detterman, PG Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 Direct: 510.567.6708 Fax: 510.337.9335 Email: karel.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

APPENDIX C

Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/06/2016 By jamesy

Permit Numbers: W2016-0649 Permits Valid from 09/08/2016 to 09/08/2016

Application Id: Site Location:	1472488748782 1721 Webster Street	City of Project Site:Oakland	
Project Start Date: Assigned Inspector:	09/08/2016 Contact Marcelino Vialpando at (510) 670-5760	Completion Date: 09/08/2016) or Marcelino@acpwa.org	
Applicant:	Pangea Environmental Services, Inc Patrick	Phone: 925-818-0010	
Property Owner:	Groff 1710 Franklin ST #200, Oakland, CA 94612 Lee Douglas	Phone:	
Client:	1721 Webster Street, Oakland, CA 94612 Lee Douglas 1721 Webster Street, Oakland, CA 94612	Phone:	
		Total Duo:	\$265.00

	Total Due:	
Receipt Number: WR2016-0437	Total Amount Paid:	\$265.00
Payer Name : Robert Clark-Riddell	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

Specifications

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 2 Boreholes Driller: Penecore Drilling - Lic #: 906899 - Method: Hand

Work Total: \$265.00

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2016-	09/06/2016	12/07/2016	2	3.25 in.	6.00 ft
0649					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

Alameda County Public Works Agency - Water Resources Well Permit

waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX D

Boring Logs

PANGEA	Client: Project Addres	: Douglas Parking t: ss: 1721 Webster St, Oaklad	BOF Boring No. Page:	RING LOG - 56-1 1 of 1	
Drilling Start Date: 9,8,1 Drilling End Date: 9,8 Drilling Company: Conflu Drilling Method: Wand Drilling Equipment: Wand Drilling Equipment: Wand Drilling: 505 Logged By: E. Lerva	hoger Loger Loger	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):			
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Date & Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTIC	DN	PID (ppm) WEASUM Lab Sample	DEPTH (ft)
5- 	drated ent- y Bent- y Sand	6" concrete Dark brown Sand. poorly no odor, dry -2.5" Brown Sandy silt(). ho dry -4.0 Boring terminated SG-1 Construction. I foot sand 6" Dry bentonte Hydrated bent. to surfa 3.5" diameter - X" (0.17TED) Teflon - 1" screen. - 6" Well box - Probe tip set at 5.5" Lmiddle of sand pack.	greded odor tubing bgs		- 5

		Clien Proje Addr	t: Douglas Parking et: Boring No. Page: Page:	ING L SG	.0G -2	
Drilling Start Date: 9. Drilling End Date: 9. Drilling Company: 0 on Drilling Method: Hav Drilling Equipment: Hav Driller: 10000 Logged By: 0. Ler	8.16 8.16 Fluence d Auger nd Auger NCay	r t	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y): See map.			
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION	Sample Type Date & Time Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEAS (mdd) CIId	Lab Sample	DEPTH (ft)
0 - - - - - - - - - - - - -	Hyd. Bent Lry bent sand		4"concrete Brown Sand () poorly graded dry, no odor -3.0 Light brown sandy sill() dry, no odor - 6.0 boring terminated SG-Z Construction 3.5" diameter I Ft Sand 5'-6' 6" ory Bentonite (4.5'-5') Hudrated bent to surface - 4 (0.177 id) teflon tubing - 1" screened probe tip - 6" well box to match surface elev. - probe tip set at 5.5' bgs (mddke of sand pack)			- 0

APPENDIX E

Soil Gas Sampling Field Data Sheets

		-	Soll	Vapor P	obe Pur	ging/Sam	pling Lo	g	
Pr	oject Name:	Dougla	s Park	ing	_		Sub-Sla	b Probe ID:	56-1 \$
J	ob Number:						Suma Ca	an Serial #	55AT-0084
	Date	9-2	3.16				Flow	Controller #	55AT - 2045
	Sempler(s):	E.L	erraag				Initi	al Vacuum:	30
Sample I	D and Time:	56-110	1547				Fin	al Vacuum:	5
	Notes:								
Sp	cifications					Purge Volu	me Calcula	tion	×
Tu	bing length:		cm Se	e		Purge volum	e = tubing +	sandpack	
Tubing inn	er diameter:		cm O	1000	e ⁶⁶⁰	Tubing =	Pi*(Inner di	ameter/2) ² *	length .
Bori	ng diameter:		cm '	orge				cm3	· · · · · · · · · · · · · · · · · · ·
Send	pack height		am	Celos		Sandpack =	Pi * (boning	diameter/2)*	* sendpack height * porosity
Pin	a diamater		cm		Single p	me volume:	-	cm ³	Start Time:
Sum	na flow rate:	150	mL/min	Total	purge volum	as extracted:	And the second second	Total	Purge Time: 16:32
Pur	ge flow rate:	25	mL/min	Pi =	3.1416	1 inch = 2.54	cm	Est ma	x. porosity = 0.375
						1 mi = 1 cm	3		
Time	He Delivery Pressure (psi)	He in Shroud (% or ppm)	Purge Time (mini./sec.)	Purge Sample	(ppamv)	O2 (%)	CO2 (%)	CH4 (%)	Commente .
				(% pr bom)	X	1 1			
0531		1.6	0.		Start	Purge			
0534		11.4	3						
0 537		13.3	6						
0539		12.7	9						
otel	0542	12.9	12	54	0.				
0547		(1, 1)	10.54	51	pp ru	5	-		
0548		11,3		Sto	rt s	tobe			30
0548		10.8				1			25
0549		11.2							20
0550		9.9		121	6-7				15
0552		9.4		Job	Saple	-			10
0553		1.5		510	e Sa	pe			5
						+			
		1.							
					-				
	1		1	1	1			1	
	1	1	1	<u>i</u>	1	1	L	1	<u>.</u>

٠.,

.....

			Soll	Vapor P	robe Purg	ing/Sam	pling Lo	>g					
Pr	oject Name:	Dougl	as Par	KIDS			Sub-Sta	b Probe ID:	S6-2 2				
J	ob Number:	0.2					Suma C	an Serial #	SSAT-0107				
	Dale:	7.2	5.16				Flow	Controlling IF.	5247-2037				
Semple	Sampler(s):	56-21	Ob72	2			ing Fi	Nel Vecuum:	- <u>30</u>				
	Notes	31,21		1º		÷							
<u>Sip</u> Tu Tubing inn Roti	ecifications bing length: er diameter:		cm See Purge volume Calculation cm See Tubing = Pi * (Inner diameter/2) ² * length										
Send	pack height:		am	Cale	5	Sandpack =	Pi * (boring	diameter/2)	* sendback height * porosity				
P	robe length:		cm			=		cm3					
Pio	e diameter:		cm		Single pu	ige volume:		cm ^a	Start Time: O				
Sumi	na flow rate:	150	mL/min	Total	purge volume	s extracted:		Total	Purge Time: 16/32				
Pur	ge now rate:	25	miumin	PIS	3.1416	1 mi = 1 cm ³	CIN	Est ma	IX. porosity = 0.375				
Time	He Delivery Pressure (psi)	He in Shroud (% or ppm)	Purge Time (mini/sec.)	He in Purge Semple (% or pom)	VOCe (ppmv)	O ₂ (%)	CO2 (%)	CH4 (%)	Comments				
	• •							-					
0 60 6		3,6	0		Start	PUTA							
0609		14,7	. 3			0							
0612		18.)	6	remo	e IPA	rag							
0615		17.9	9			3		-					
0618		16.5	12.		-								
0621		16.9	16:32	51	og P	brge							
		1.5			10	10			2-				
2620		13.4		Sta	rt Da	pie			30				
624		14,0					•		. 43				
0125		19,8							20				
0626		13,1							12				
21.79		124			C				10				
1629		12.7		51	00 2	pe							
		1			1								
-													
			1		1								
		1	-		1								
		1	1	1	1	1		1					
	1	1	1	1	1	· · ·		1	1				

		er The second	Soll	Vapor Pr	obe Purg	ing/Sam	pling Lo	g	
Pn	ject Name:	Douglo	s Parl	Ling			Sub-Sia	b Probe ID:	35A 2. (23
J	ob Number:						Suma Ca	n Serial #	SSAT- 0+83 0138
	Date:	9.23	.16				Flow	Controller #	SSAT- 2045
Comula II	Sampler(s):	E. al	onay				lniti Cla	al Vacuum:	30
Sample II	Notes:	22-21	0101						
Sp	cifications					Purge Volu	me Calcula	tion	
Tu	bing length:		cm Se	4		Purge volun	ne = tubing +	sendpack	
Tubing inn	er diameter:		cm O		1. 1	Tubing =	Pi * (Inner di	ameter/2) ²	'iength
Bork	g diameter:		cm Pc	orge	L	=		cm3	· · · · · · · · · · · · · · · · · · ·
Send	pack height _		am Ca	ales		Sendpack =	Pi - (boning	cm3	- sandpack height * poroeity
Pitol	e diameter:	-	cm		Single pu	ge volume:		cm ³	Stiert Time:
Sum	na flow rate:	150	mL/min	Total	purge volume	s extracted:	-	Total	Purge Time: 18 sec
Pur	ge flow rate:	25	ml./min	Pi=	3.1416	1 inch = 2.5	i4 cm	Est m	ax. porcelly = 0.375
	He Delines	Helo		-110-87 -		1 ml = 1 cm	13		· · · · · · · · · · · · · · · · · · ·
Time	(psi)	Shroud (% or ppm)	Purge Time (min./sec.)	Purge Sample (% or pom)	(ppmv)	O2 (%)	CO2 (%)	CH4 (%)	Comments .
0719			D	Sta	+ Pu	rge			
0719		-	185	. Sto	P PL	rge			
0721.		8.6		Star	+ Sad	k			300
0722		17.6		remou	e IPA	rag	1		25
0723		12.1	-					-	20 .
0724		12.6					-		15
0726		11.3							10
0728		10.9		5.4	op Say	e			5
-					-		-	-	
		1		1		1			
		-							
	1	1000		1					
	1	1							
						and the second second			

۰.

			Soll	Vapor Pr	obe Purg	ing/Sam	pling Lo	yg	
Pro	ject Name:	Dougla	ns Parl	ring			Sub-Sia	b Probe ID:	55-3 📾
J	ob Number:						Suma C	an Serial #	5547-0007
	Date:	91.23	-16				Flow	Controller #	35AT-2059
	Sampler(s):	E. Lin	vaas				livit	ial Vacuum:	30
Sample II) and Time:	10	0658				Fir	al Vacuum:	5
	Notes:								
Spe	cifications					Purge Volu	me Calcula	ition	
Ти	bing length:		on Se	L		Purge volum	ne = tubing +	sandpack	
Tubing inn	er diameter:		cm P.	rge	. **	Tubing =	Pi* (inner d	iameter/2) ² '	length
Bonin	g diameter:		cm	calos		-		cm3	· · · · · · · ·
Sendpack height:			am	2000-5		Sendpeck =	Pi * (boring	diameter/2)	** sandpack height * porosity
Pini	nobe lengen.		cm		Single pr	me volime:	-	cm ³	Start Time:
Sumn	a flow rate:	150	mL/min	Total	purge volume	s extracted:		Total	Purge Time: 18 Sec
Puŋ	ge flow rate:	25	mL/min	Pi =	3.1416	1 inch = 2.5	4 cm	Est m	ax. porosity = 0.375
Time	He Delivery Pressure (psi)	He in Shroud (% or ppm)	Purge Time (mini./sec.)	He in Purge Sample	VOCe (ppmv)	O ₂ (%)	CO2 (%)	CH4 (%)	Comments
									31
	÷		0	Por					
			185						
۷									
0658		19.3		Sta	7 Samp	re			30
0659		22.1		521	nove ?	EPA ra	y & ven	40	25
1010		12.3	·				Suc	DUCI	120
0702		10.4							15
0703		9.1						-	10
0705		8.9		Stop	Saple				5
		-						-	
								1	
	1	1	1	1	-	1		1	
		1							

10

•

APPENDIX F

Waste Manifest

	Manifes	ı-Hazar	dous S	oils	-		√ Mar	nifest # \	1		
1	Date of Shipment:	Responsible for	Transport	t Truck #:		Facility #: A07	4	Approval Num	ıber:	Load	
	Generator's Name and Billing	Genera	tor's Phone	#:							
	1721 WEBSTER	Person	to Contact:	0 2							
	OAKLAND, CA 8	4612			FAX#:				Customer Acc	ount Number	
	Consultant's Name and Billin	g Address:			Consul	tant's Phone	2 #:				2
	4 H				Person	to Contact:	10 N				
					FAX#:				Customer Acc	ount Number	
	Generation Site (Transport fro	om): (name & address) G	Site Ph	one #:	11						
tant –	1721 WEBSTER ST		Person	to Contact:							
ulland	and a real start shall	FAX#:									
a/or C	Designated Facility (Transpor SOIL SAFE	Facility (80)	Phone #:	001		0	•				
tor and	12328 HIBISCUS ADELANTO, CA	Person to Contact: JOE PROVANSAL			R a		-				
enera	Turner and Marilia	A J.J.,		(70)	0) 246-8(004					
0	BELSHIRE		Person	-460-520	30		CA	R000183	913		
	FOOTHILL RANC	FOOTHILL RANCH, CA 92610							Customer Acc	450647	
	Description of 0.11	1	949	-460-521	10		Gross Weight Tare Weight Net Weig				
	Sand D Organic D		Gas C		DX. ULY:	Descrip	nion of Dein	very	Gross weigh	Tare weigh	
	Clay Other O	10 - 20%	Diesel C Other C		LAN	SOIL	~		38000	37400	1600
	Sand 🗆 Organic 🗆 Clay 🗆 Other 🗆	10 - 20% 20% - over	Diesel C Other C								.30
	List any exception to items lis		Scale Ticket # 130580								
	Generator's and/or consultant's certification: I/We certify that the soil referenced herein is taken entirely from those soils descried in the Soil Data Sheet completed and certified by me/us for the Generation Site shown above and nothing has been added or done to such soil that would alter it										
	Print or Type Name: Gen Larry Moothart	erator 🗆 Consu of BESI on beha	ltant 0 If of generato	Si	gnature a	nd date:	/	-	-	Month	Day Ye
rter	Transporter's certification	1: I/We acknowledge	e receipt of the so	oil referen	nced abo	ve and cer	tify that su	ch soil i e Gener	s being deliv ation Site to	ered in exac the Design	ated Facil
odsu	without off-loading, addin	ng to, subtracting fr	om or in any wa	y delayir	s delivery to such site.						
Tra	Caren Gaun	part in	51	Bhature a	Late:					29/4	
acility	Discrepancies!	Discrepancies!									
ng Fa	Recycling Facility certifie	Recucling Facility certifies the receint of the soil covered by this manife							5.		1.0
lin	Print or Type Name:	Si	gnature a	nd date:	Å			- 1	-		
Recyclin	J. F	TROWANDAL					-A-	-	- 1 -	3-1	7

NO. 730992 G

NON-HAZARDOUS WASTE DATA FORM

(e)		275381
	Generator's Name and Mailing Address	Generator's Site Address (if different than mailing address)
	DOUGLAS PARKING CO. 1721 WEBSTER ST. OAKLAND, CA 94612	DOUGLAS PARKING 1721 WEBSTER ST. OAKLAND, CA 94612
	Generator's Phone:	
	Container type removed from site:	Container type transported to receiving facility:
	KCMDrums D Vacuum Truck D Roll-off Truck D Dump Truck	Drums XX Vacuum Truck D Roll-off Truck D Dump Truck
	Other	Other
TOR	Quantity	Quantity
RA	WASTE DESCRIPTION NON-HAZARDOUS WATER	GENERATING PROCESS WELL PURGING / DECON WATER
IN IN	COMPONENTS OF WASTE PPM %	COMPONENTS OF WASTE PPM %
3	, WATER 99-100	% 3
		% 4.
	Waste Profile PROPERTIES: D	
		·
	HANDLING INSTRUCTIONS:	
		\sim
	Generator Printed/Typed Name Larry Moothart of BESI on behalf of generator	Month Day Yes
	The Generator certifies that the waste as described is 100% non-hazardous	11 29/4
	Transporter 1 Company Name	Phone#
с	BELSHIRE	949-460-5200
ORTE	Trepsporter 1 Printed/Typed Name Signature	Month Day Yes
SP	Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name	Phone#
MAN	NIETO & SONS TRUCKING, INC.	714-890-6855
۲Ľ	PIDEO ADDIA	the flag last last last last last last last last
	Transporter Acknowledgment of Receipt of Materials	
\geq	Designated Facility Name and Site Address	. Phone#
	2000 N. ALAMEDA ST.	310-037-7100
AC	COMPTON, CA 90222	
G		
M		
B	Printed/Typed Name Signature	Month Day Yea
RE	Designated Facility Owner or Operator: Certification of receipt of materials covered by this data f	12 21 / 6
72	IWEBS	
1 /it	1.578	
TT.		

APPENDIX G

Laboratory Analytical Report

SunStar — Laboratories, Inc.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

05 October 2016

Patrick Groff Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 RE: Douglas 1721 Webster Street

Enclosed are the results of analyses for samples received by the laboratory on 09/24/16 09:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rose Jasheh

Rose Fasheh Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.	Project: Douglas 1721 Webster Street	
1710 Franklin Street, Suite 200	Project Number: 1135.001	Reported:
Oakland CA, 94612	Project Manager: Patrick Groff	10/05/16 16:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SG-1	T162363-01	Air	09/23/16 05:47	09/24/16 09:05
SG-2	T162363-02	Air	09/23/16 06:22	09/24/16 09:05
SS-2	T162363-03	Air	09/23/16 07:21	09/24/16 09:05
SS-3	T162363-04	Air	09/23/16 06:58	09/24/16 09:05

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.	Project: Douglas 1721 Webster Street	
1710 Franklin Street, Suite 200	Project Number: 1135.001	Reported:
Oakland CA, 94612	Project Manager: Patrick Groff	10/05/16 16:54

DETECTIONS SUMMARY

Sample ID:	SG-1	Labora	tory ID:	T162363-01		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Toluene		5.7	3.8	ug/m³ Air	TO-15	
m,p-Xylene	;	9.0	8.8	ug/m³ Air	TO-15	
o-Xylene		4.6	4.4	ug/m³ Air	TO-15	
Oxygen		17.7	1.54	0/0	GC	
Sample ID:	SG-2	Labora	tory ID:	T162363-02		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Benzene		12	3.3	ug/m³ Air	TO-15	
m,p-Xylene	;	9.9	8.8	ug/m³ Air	TO-15	
o-Xylene		14	4.4	ug/m³ Air	TO-15	
Oxygen		19.8	1.54	%	GC	
Sample ID:	SS-2	Labora	tory ID:	T162363-03		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Oxygen		20.4	1.63	%	GC	
Sample ID:	SS-3	Labora	tory ID:	T162363-04		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Toluene		4.0	3.8	ug/m³ Air	TO-15	
m,p-Xylene	:	13	8.8	ug/m³ Air	TO-15	
Oxygen		20.5	1.49	%	GC	

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.Project:Douglas 1721 Webster Str1710 Franklin Street, Suite 200Project Number:1135.001Oakland CA, 94612Project Manager:Patrick Groff								Reported: 10/05/16 16:54	
		T162	SG-1 2363-01 (Ai	r)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorie	es, Inc.					
TO-15									
Isopropyl alcohol	ND	13	ug/m³ Air	1.54	6092946	09/29/16	10/03/16	TO-15	
Benzene	ND	3.3	"	"	"	"	"	"	
Toluene	5.7	3.8	"	"	"		"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.0	8.8	"	"	"	"	"	"	
o-Xylene	4.6	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	3.7	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	40-1	60	"	"	"	"	
Methane by GC									
Methane	ND	5100	ug/m³ Air	1.54	6092683	09/26/16	09/30/16	8015M	
Total Volatile Organic Compounds by	TO-3 (modified)								
C6-C12 (GRO)	ND	7170	ug/m³ Air	1.54	6092947	09/29/16	09/30/16	TO-3/TO-14 m	
Fixed Gases ASTM D1946-90									
Oxygen	17.7	1.54	%	1.54	6092684	09/26/16	09/29/16	GC	

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland CA, 94612		Proj Project Num Project Mana	ject: Dougla ber: 1135.00 ger: Patrick	s 1721 Web)1 Groff	oster Street			Reported: 10/05/16 16	:54
		T162	SG-2 363-02 (Ai	r)					
		Denertine		,					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	aboratori	es, Inc.					
TO-15									
Isopropyl alcohol	ND	13	ug/m³ Air	1.54	6092946	09/29/16	10/03/16	TO-15	
Benzene	12	3.3	"	"	"	"	"	"	
Toluene	ND	3.8	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.9	8.8	"	"	"	"	"	"	
o-Xylene	14	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	3.7	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.3 %	40-1	60	"	"	"	"	
Methane by GC									
Methane	ND	5100	ug/m³ Air	1.54	6092683	09/26/16	09/30/16	8015M	
Total Volatile Organic Compounds by TO-3 (mo	dified)								
C6-C12 (GRO)	ND	7170	ug/m³ Air	1.54	6092947	09/29/16	09/30/16	TO-3/TO-14 m	
Fixed Gases ASTM D1946-90									
Oxygen	19.8	1.54	%	1.54	6092684	09/26/16	09/29/16	GC	

SunStar Laboratories, Inc.

Rose Tasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland CA, 94612	Project: Douglas 1721 Webster Street Project Number: 1135.001 Project Manager: Patrick Groff								:54
			SS-2						
		T162	2363-03 (Ai	r)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorie	es, Inc.					
TO-15									
Isopropyl alcohol	ND	13	ug/m³ Air	1.63	6092946	09/29/16	10/03/16	TO-15	
Benzene	ND	3.3	"	"		"	"	"	
Toluene	ND	3.8	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	3.7	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.1 %	40-1	60	"	"	"	"	
Methane by GC									
Methane	ND	5400	ug/m³ Air	1.63	6092683	09/26/16	09/30/16	8015M	
Total Volatile Organic Compounds by T	O-3 (modified)								
C6-C12 (GRO)	ND	7170	ug/m³ Air	1.63	6092947	09/29/16	09/30/16	TO-3/TO-14 m	
Fixed Gases ASTM D1946-90									
Oxygen	20.4	1.63	%	1.63	6092684	09/26/16	09/29/16	GC	

SunStar Laboratories, Inc.

Rose Tasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland CA, 94612	Project: Douglas 1721 Webster Street Project Number: 1135.001 Project Manager: Patrick Groff							Reported: 10/05/16 16	Reported: 10/05/16 16:54	
		T 4 (SS-3							
		1162	2363-04 (A1	r)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar I	Laboratorie	es, Inc.						
TO-15										
Isopropyl alcohol	ND	13	ug/m³ Air	1.49	6092946	09/29/16	10/03/16	TO-15		
Benzene	ND	3.3	"	"	"	"	"	"		
Toluene	4.0	3.8	"	"	"	"	"	"		
Ethylbenzene	ND	4.4	"	"	"	"	"	"		
m,p-Xylene	13	8.8	"	"	"	"	"	"		
o-Xylene	ND	4.4	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	3.7	"	"	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		92.2 %	40-1	60	"	"	"	"		
Methane by GC										
Methane	ND	5000	ug/m³ Air	1.49	6092683	09/26/16	09/30/16	8015M		
Total Volatile Organic Compounds by T	TO-3 (modified)									
C6-C12 (GRO)	ND	7170	ug/m³ Air	1.49	6092947	09/29/16	09/30/16	TO-3/TO-14 m		
Fixed Gases ASTM D1946-90										
Oxygen	20.5	1.49	%	1.49	6092684	09/26/16	09/29/16	GC		

SunStar Laboratories, Inc.

Rose Tasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.	Project: Douglas 1721 Webster Street	
1710 Franklin Street, Suite 200	Project Number: 1135.001	Reported:
Oakland CA, 94612	Project Manager: Patrick Groff	10/05/16 16:54

TO-15 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6092946 - Canister Analysis

Blank (6092946-BLK1)				Prepared & Analyzed: 09/29/16			
Isopropyl alcohol	ND	13	ug/m³ Air				TO-14
Benzene	ND	3.3	"				TO-14
Toluene	ND	3.8	"				TO-14
Ethylbenzene	ND	4.4	"				TO-14
m,p-Xylene	ND	8.8	"				TO-14
o-Xylene	ND	4.4	"				TO-14
Methyl tert-butyl ether	ND	3.7	"				TO-14
Duplicate (6092946-DUP1) Source: T1623		Source: T162362	2-01	Prepared & Analyzed: 09/29/16			
Isopropyl alcohol	ND	13	ug/m³ Air	ND		30	TO-14
Benzene	ND	3.3	"	ND		30	TO-14
Toluene	2970	3.8	"	2890	2.77	30	TO-14
Ethylbenzene	55.0	4.4	"	49.3	10.9	30	TO-14
m,p-Xylene	264	8.8	"	233	12.3	30	TO-14
o-Xylene	60.1	4.4	"	54.6	9.65	30	TO-14
Methyl tert-butyl ether	ND	3.7	"	ND		30	TO-14

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

SunStar Laboratories, Inc.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland CA, 94612		I Project N Project Ma	Project: Do umber: 113 anager: Pat	uglas 1721 V 35.001 rick Groff		Reported: 10/05/16 16:54						
	1	Methane by	y GC - Q	uality Cor	ntrol							
SunStar Laboratories, Inc.												
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 6092683 - General Prep VOC-GC												
Blank (6092683-BLK1)				Prepared: (09/26/16 A	nalyzed: 09	/30/16					
Methane	ND	3300	ug/m³ Air									
Duplicate (6092683-DUP1)	Sou	rce: T162363	-01	Prepared: (09/26/16 A	nalyzed: 09	/30/16					
Methane	ND	5100	ug/m³ Air		ND				20			

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

SunStar Laboratories, Inc.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.	Project: Douglas 1721 Webster Street	
1710 Franklin Street, Suite 200	Project Number: 1135.001	Reported:
Oakland CA, 94612	Project Manager: Patrick Groff	10/05/16 16:54

Total Volatile Organic Compounds by TO-3 (modified) - Quality Control

SunStar Laboratories, Inc.										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6092947 - Canister Analysis										
Blank (6092947-BLK1)				Prepared &	Analyzed:	09/29/16				
C6-C12 (GRO)	ND	7170	ug/m³ Air							
uplicate (6092947-DUP1)Source: T162362-01Prepared & Analyzed: 09/29/16										
C6-C12 (GRO)	4010	7170	ug/m³ Air		3640			9.84	30	

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.	Project: Douglas 1721 Webster Street							
1710 Franklin Street, Suite 200	Project Number: 1135.001	Reported:						
Oakland CA, 94612	Project Manager: Patrick Groff	10/05/16 16:54						
Fixed Gases ASTM D1946-90 - Quality Control								

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6092684 - General Prep VOC-GC										
Blank (6092684-BLK1)				Prepared: 0	9/26/16 A	nalyzed: 09	0/29/16			
Oxygen	ND	1.00	%							
Duplicate (6092684-DUP1)	Sou	rce: T162347-	01	Prepared: 0	9/26/16 A	nalyzed: 09	0/29/16			
Oxvgen	20.8	1.59	%		20.8			0.145	20	

SunStar Laboratories, Inc.

Rose Jasheh

Rose Fasheh, Project Manager

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc.	Project: Douglas 1721 Webster Street	
1710 Franklin Street, Suite 200	Project Number: 1135.001	Reported:
Oakland CA, 94612	Project Manager: Patrick Groff	10/05/16 16:54

Notes and Definitions

- TO-14 TO-15 analysis of sample was not performed due to high concentration of analyte(s). Sample was analyzed utilizing method TO-14 and reporting limit has been adjusted accordingly.
- DET
 Analyte DETECTED

 ND
 Analyte NOT DETECTED at or above the reporting limit

 NR
 Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Rose Tasheh

Rose Fasheh, Project Manager

AIR		BC	R/	\Τ	0	R	ľ
-----	--	----	----	-----------	---	---	---

Chain of Custody Record

	Sur	nStar	
-		Laboratories,	Inc.

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client: Pangea (Address: 1710 Fram Phone: 510-836-3	Env. Klins 700	5vs 17, 00 Fax:	Klan	2		Date: Project N Collector	9 - 2 lame:	3.	16		-			Pa	ge:l	Of	1	-
Project Manager: Putr	ick	hro	ff			Batch #:_	7	7623	63					EDI	F #:			-
p groff	a pan	yeae	nv.c	Dim														
Sample ID	Date	Start Time	Finish Time	Sample Type : Soil Gas / Indoor Air	Container Type: Summa Can / Tedlar	Initial	Final	0-3	TO-14	TO-15	3015m Methane	3015m Gasoline	ixed Gases by TCD		Summa Car	a # / Comr	nents	aboratory ID #
56~1	9.23.14	0541	0553	56	Summa	30	5		╞	F	<u>∞</u>	<u></u>			550T - 008	1#700mm	lento	
59-2	11	0622	0629	56	Summa	30	5	+	\square	X					SSAT- OI	07		02
55-2	(1	0721	0728	56	Summa	30	5			X					SSAT- OH	83 01	38 60	102
55- 3	11	0658	0705	59	Summa	30	5			X					SSAT - 00	500		104
																		\square
																		<u> </u>
											-							\square
																		\square
									1									-
																		-
									1									<u> </u>
								+	<u> </u>	\square								\vdash
								+	\vdash				<u> </u>					\vdash
							· · · · · · · · · · · · · · · · · · ·	+	+	-								<u> </u>
Relinquished by: (signature)	Date	/ Time	Receive	drby: (sigi	nature) Dat	te / Time	29		To	tal #	of co	ntain	ers			Notes		<u> </u>
01 - 7.	23.16	5922		x	no vyz	5/16 42	Cha	in of (Custo	ody s	eals	Y/N/	NA		· · · · · · ·			
Relinquished by: (signature)	Date	/ Time	Receive	d by: (sig	nature) Dat	te / Time			Sea	als in	act?	YN/	ΝA					
GSD 9.24.16	9:05		A	12	\$ 9-24.	6 9:05	Re	eceive	ed go	od c	onditi	on/c	old					
Relinquished by: (signature)	Date	/ Time	Receive	đ by: (sig	nature) Dat	te / Time	Turn	arou	nd ti	me:_	5	, ,			and the second se	No de la contra de Balance		÷

* TO-15 SIM analysis available upon prior notification. (Precertified Summa cans needed)

COCAL 146050

Form F-LP0005-1.2

Effective Date: 01/01/2016

SunStar Laboratories Inc. 25712 Commercentre Dr. Lake Forest, CA 92630 (949)297-5020 (949)297-5027 fax (530)304-5525 Bill Hannell

	* P	LEASE DO	NOT WRITE	ON OR PLACE	LABELS	ON SUMM	A CANS	' .		
SunStar Laboratories										
Client: PANGEA PATRICK 9-19-16 7+2										
Shipping Inf	ormation			Sampling Information	<u>.</u>	1				
Shipping ini	OIMACION	CHECK	Pressure	Sample	Sample	Initial	Final	Sample	Sample	
Canister Se	erial #	Date	(-30 +/- 2 psia)	ID	Date	Pressure	Pressure	Start Time	Finish Time	
SSAT:	0084	9/19/2016	-30	56-1	9.23.16	30	5	0547	0553	
SSAT:	0107	9/19/2016	-30	54-2	9.23.16	30	5	0622	0629	
SSAT:	0138	9/19/2016	-30	55 -2	9.23.16	30	5	0721	0728	
SSAT:	6006	9/19/2016	-30	PURGE CAN (6L)	-	-				
SSAT:	0217	9/19/2016	-30	PURGE CAN				-		
SSAT:	0143	9/19/2016	-30	PURGE CAN						
SSAT:	0140	9/19/2016	-30	PURGE CAN						
SSAT:	2037	9/19/2016		MANIFOLD (150)						
SSAT:	2045	9/19/2016		MANIFOLD (150)						
	· .									
				• •						
									L	
									1	
		-								

SunStar Laboratories Inc. 25712 Commercentre Dr. Lake Forest, CA 92630 (949)297-5020 (949)297-5027 fax (530)304-5525 Bill Hannell

Effective Date: 01/01/2016

* PLEASE DO NOT WRITE ON OR PLACE LABELS ON SUMMA CANS

SunStar Laboratories

Canister Data Sheet

Client:		PANGEA_	PATRICK_9-2	1-16_1+1					
Shipping Inf	ormation			Sampling Information					
		CHECK	Pressure	Sample	Sample	Initial	Final	Sample	Sample
Canister Se	erial #	Date	(-30 +/- 2 psia)		Date	Pressure	Pressure	Start Time	Finish Time
SSAT:	0007	4/22/10	-30	SSAT-0007	9.23.16	30	5	0658	0705
							-		_
SSAT:	2059	9/21/16		MANIFOLD (150)					
									-
								-	
				· · · · · · · · · · · · · · · · · · ·					

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	7762363	· · · · · · · · · · · · · · · · · · ·			
Client Name:	CANISTE A	Project:		9.24.16	-
Delivered by:	Client SunStar	Courier 🛛 GSO	FedEx	Other	
If Courier, Received by:	- -	Date/Time Received:	Courier		
Lab Received by:	SUNNY	Date/Time Received:	Lab	9.24.16 9:05	
Total number of coolers r	eceived:				
Temperature: Cooler #1	- °C +/- the CF (-	$-0.2^{\circ}C) = -$	°C corre	cted temperature	
Temperature: Cooler #2	°C +/- the CF (-	- 0.2°C) =	°C corre	cted temperature	
Temperature: Cooler #3	°C +/- the CF (·	- 0.2°C) =	°C corre	cted temperature	
Temperature criteria = : (no frozen containers)	≤6°C	Within criteria?	Yes	No	-
If NO:					
Samples received	on ice?	Yes	□No →	to Non-Conforme	nco Shoot
If on ice, samples collected?	received same day	∐Yes → Acceptable	Comple B Comple	te Non-Conformation	nce Sheet
Custody seals intact on co	ooler/sample		≻Yes	No* N/A	
Sample containers intact			⊁Yes	No*	
Sample labels match Chai	in of Custody IDs		×Yes	□No*	
Total number of container	rs received match COC		XYes	□No*	
Proper containers received	d for analyses requested on	COC	Yes	□No*	
Proper preservative indica	ated on COC/containers for	analyses requested	Yes	□No* ►N/A	
Complete shipment receiv containers, labels, volume holding times	ed in good condition with respreservatives and within	correct temperatures, method specified	Yes	No*	
* Complete Non-Conformar	ice Receiving Sheet if checke	d Cooler/Sample F	Review - Initial	s and date:	16
Comments:					· · · · ·

SunStar — Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

Project Name:							
Company: PANGE		Name:	PATRICK	nananan kalina kalan kalan kanan			
		Phone:	925-818-00	10			
ltem		Quantity		Unit			
2 oz Jars 24/CS			-	· · · · · · · · · · · · · · · · · · ·			
4 oz Jars 24/CS				· · · · ·			
8 oz Jars 12/CS							
40 ml unpreserved V	OAs 100/box						
40 ml HCL-preserved	VOAs 72/box		-				
250 ml Poly 24/CS							
1 Liter Poly 12/CS							
500 ml Poly 16/CS							
500 ml Amber Bottle	Wide 12/CS						
1 Liter Amber Bottle	12/CS						
1 Gallon Poly 4/box		4					
5035 kits:(2)Sodium	Bisulfate VOAs 72/box						
	(1) Methanol VOA 72/box		······				
	(1)Syringe 50/pack			· · · ·			
Lock-N-Load Handle	1/pack						
Tedlar Bags 10/pack		·					
Manifold, Inst. Sampl	ler, Variable Sampler	2-MANIFOLDS (150)	CHARGE - 2			
Sub Slab Insert w/ wa	asher & N/F						
Soil Gas SS 16" Drop	Tubes		· · ·	· · · · · · · · · · · · · · · · · · ·			
Gas Extraction Fitting	gs						
Soil Gas Filters			······································				
		# SENT	USED	UNUSED			
	400cc		· · · · · · · · · · · · · · · · · · ·				
Batch Certified	<u>1L</u>	6 (3-PURGE)	3				
Summa Canisters	3L						
	6L	1 (1-PURGE)	CHARGE - 1				
Individually	400cc						
Contified Summa	1L		-				
Certified Summa	3L						
Callisters	6L						
Cooler (Small, Medium,	Large) Number & Quantity						
Swagelok Fittings: N	uts/Ferrules, Ts	3-NUTS/FERRUI	ES	3 RETURNED			
Other: Poly Tube, Valves, Silicon Tape, etc.							
	ng transference i tra Al manufactori i transference i transference i transference i transference i transference i transference i transf						
Prepared By: SUN	٧Y	Date: 9-19-16					
Reviewed By:		Date :					

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

Project Name:				
Company: PANGEA		Name: PATRICK		
		Phone:		
ltem		Quantity		Unit
2 oz Jars 24/CS		The Internet States		
4 oz Jars 24/CS				
8 oz Jars 12/CS				
40 ml unpreserved V	OAs 100/box	and the second second		
40 ml HCL-preserved	VOAs 72/box			
250 ml Poly 24/CS				
1 Liter Poly 12/CS				
500 ml Poly 16/CS	Million at 1 11	ALC: NO.		
500 ml Amber Bottle	Wide 12/CS			
1 Liter Amber Bottle 12/CS				All and a second second
1 Gallon Poly 4/box				
5035 kits:(2)Sodium	Bisulfate VOAs 72/box			
	(1) Methanol VOA 72/box			
(1)Syringe 50/pack				
Lock-N-Load Handle	1/раск			
Tedlar Bags 10/pack				
Manifold, Inst. Sampler, Variable Sampler		1 (150-Manifold)		
Sub Slab Insert w/ washer & N/F				·
Soil Gas SS 16" Drop Tubes				
Gas Extraction Fittings				
Soll Gas Filters				
Constant of the second s		# SEN I	USED	UNUSED
Batch Certified Summa Canisters	400cc			
	1L	1	1	
	3L			
	6L			
Individually Certified Summa Canisters	400cc		····	
	1L			
	3L	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	6L			
Cooler (Sm, Med, Lrg) Number & Quantity				
Swagelok Fittings: Nuts/Ferrules, Ts		1 (Nuts/Ferrules)		RETURNED
Other: Poly Tube, Valves, Silicon Tape, etc.				
an a		-		
Property Pro-		The form	C. L. M. M.	
Prepared Dy.	Maroli	Date.	9/2 I/ II	
Reviewed by:		Date :		

www.SunStarLabs.com 25712 Commercentre Dr, Lake Forest CA 92630
Asset Check-In Receipt

Check-In Date: 9/24/2016

User Name: Lounethone, Sunny

Asset Tag	Asset Type	Serial No	Location	Customer No.	Customer Name
0007	1000cc: 1000cc Summa	0007	Sunstar Labs, Tustin Air Lab	Pangea-Patrick	Patrick
0107	1000cc: 1000cc Summa	0107	Sunstar Labs, Tustin Air Lab	Pangea-Patrick	Patrick
0138	1000cc: 1000cc Summa	0138	Sunstar Labs, Tustin Air Lab	Pangea-Patrick	Patrick
0140	1000cc: 1000cc Summa	0140	Sunstar Labs, Tustin Air Lab	Pangea-Patrick	Patrick
0143	1000cc: 1000cc Summa	0143	Sunstar Labs, Tustin Air Lab	Pangea-Patrick	Patrick
0217	1000cc: 1000cc Summa	0217	Sunstar Labs, Tustin Air Lab	Pangea-Patrick	Patrick
2037	Vapor Manifold: Vapor Manifold	2037	Sunstar Labs, Lake Forest Air Lab	Pangea-Patrick	Patrick
2045	Vapor Manifold: Vapor Manifold	2045	Sunstar Labs, Lake Forest Air Lab	Pangea-Patrick	Patrick
2059	Vapor Manifold: Vapor Manifold	2059	Sunstar Labs, Lake Forest Air Lab	Pangea-Patrick	Patrick
6006	6 L: 6 L Summa	6006	Sunstar Labs, Lake Forest Air Lab	Pangea-Patrick	Patrick

Brian Charon

From: Sent: To: Cc: Subject: Bill [bill@sunstarlabs.com] Friday, September 23, 2016 11:01 AM Rose@sunstarlabs.com Brian Charon Fwd: Vapor/Subslab analysis

See email below

Bill

Sent from my iPhone.

Bill Hannell Vice President of Operations SunStar Labs 530-304-5525 ELAP # 2250

Begin forwarded message:

From: Patrick Groff <<u>pgroff@pangeaenv.com</u>> Date: September 23, 2016 at 10:34:01 AM PDT To: Bill Hannell <<u>bill@sunstarlabs.com</u>> Subject: Vapor/Subslab analysis

Good Morning Bill,

We had our vapor sampling equipment picked up this morning, and I'd like to add to the COC. These are for summa can #'s SSAT – 0084, SSAT – 0107, SSAT – 0138 ecl, and SSAT – 0007.

Methane + O2 by ASTMD 1946

TO-3 for GRO

TO-15 for BTEX, MTBE, Naphthaline, and IPA.

Thanks,

Patrick Groff pgroff@Pangeaenv.com O: (510) 836-3700 C: (925) 818-0010

No virus found in this message. Checked by AVG - <u>www.avg.com</u> Version: 2016.0.7797 / Virus Database: 4656/13069 - Release Date: 09/23/16

SunStar				Printed: 9/26/2016 9:39:56AM			
PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE		WORK ORDER T162363					
Client: Pangea Environme Project: Douglas 1721 Webs	ntal Services, Inc. ster Street		Project Manager: Project Number:	Rose Fasheh 1135.001			
Report To: Pangea Environmental Servic Patrick Groff 1710 Franklin Street, Suite 2 Oakland, CA 94612	ces, Inc. 00						
Date Due: 10/03/16 1	7:00 (5 day TAT)						
Received By: Sunny Lou	nethone		Date Received:	09/24/16 09:05			
Logged In By: Sunny Lou	nethone		Date Logged In:	09/24/16 11:10			
Samples Received at: Custody Seals Yes Received Containers Intact Yes COC/Labels Agree Yes Preservation Confiri No	On Ice No						
Analysis	Due	TAT	Expires	Comments			
T162363-01 SG-1 [Air] Sa &	ampled 09/23/16 05:47 (GMT-08:(00) Pacific Time (US				
8015m Methane	10/03/16 15:00	5	09/26/16 05:47				
Fixed Gases	10/03/16 15:00	5	10/21/16 05:47	Oxygen ONLY			
TO-15	10/03/16 15:00	5	10/23/16 05:47	BTEX, MTBE, IPA, Naphthaline			
TO-3	10/03/16 15:00	5	10/23/16 05:47				
T162363-02 SG-2 [Air] Sampled 09/23/16 06:22 (GMT-08:00) Pacific Time (US							
8015m Methane	10/03/16 15:00	5	09/26/16 06:22				
Fixed Gases	10/03/16 15:00	5	10/21/16 06:22	Oxygen ONLY			
TO-15	10/03/16 15:00	5	10/23/16 06:22	BTEX, MTBE, IPA, Naphthaline			
TO-3	10/03/16 15:00	5	10/23/16 06:22				
T162363-03 SS-2 [Air] Sa &	mpled 09/23/16 07:21 (GMT-08:0	0) Pacific Time (US				
8015m Methane	10/03/16 15:00	5	09/26/16 07:21				
Fixed Gases	10/03/16 15:00	5	10/21/16 07:21	Oxygen ONLY			
TO-15		-					
	10/03/16 15:00	5	10/23/16 07:21	BTEX, MTBE, IPA, Naphthaline			

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide		WORK ORDER T162363		Printed: 9/26/2016 9:39:56AM
Client: Pangea Environme Project: Douglas 1721 Webs	ntal Services, Inc. ter Street		Project Manager: Project Number:	Rose Fasheh 1135.001
Analysis	Due	ТАТ	Expires	Comments
T162363-04 SS-3 [Air] Sat &	mpled 09/23/16 06:58 (GMT-08:00) Pacific Time (US	
8015m Methane	10/03/16 15:00	5	09/26/16 06:58	
Fixed Gases	10/03/16 15:00	5	10/21/16 06:58	Oxygen ONLY
TO-15	10/03/16 15:00	5	10/23/16 06:58	BTEX, MTBE, IPA, Naphthaline
TO-3	10/03/16 15:00	5	10/23/16 06:58	

ī.

-