

May 13, 2010

VIA ALAMEDA COUNTY FTP SITE

Ms. Barbara Jakub Alameda County Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

RECEIVED

8:49 am, May 14, 2010

Alameda County
Environmental Health

Re: Groundwater Monitoring and Remediation Summary Report – First Half 2010

Douglas Parking Company 1721 Webster Street Oakland, California ACEH File No. 129

Dear Ms. Jakub:

On behalf of the Douglas Parking Company, Pangea Environmental Services, Inc. has prepared this *Groundwater Monitoring and Remediation Summary Report – First Half 2010* for the above-referenced site. The report describes groundwater monitoring and sampling, site remediation, and other site activities.

As we discussed on May 10, 2010, Pangea respectfully requests agency direction regarding site remediation efforts. Currently, the air sparge (AS) compressor is *broken* and the soil vapor extraction (SVE) system has very low influent soil vapor concentrations. While the SVE/AS has reduced benzene concentrations in site groundwater, the system has been less effective at reducing TPHg and xylenes concentrations in nearby source area wells MW-2 and/or MW-3. Rather than incurring cost to repair the AS compressor, Pangea recommends a 30-day pilot test of ozone sparging using the existing sparge wells, existing piping, and existing electrical service. Ozone sparging could oxidize source area hydrocarbons and enhance dissolved oxygen to encourage biodegradation of downgradient hydrocarbons (dissolved oxygen concentrations in site wells, including MW-2 and MW-3, are regularly <1.0 mg/L). Pangea would monitor MW-3 for dissolved oxygen, oxidation-reduction potential, and total heterotrophic bacteria. Monthly monitoring of downgradient well MW-3 would also be performed to evaluate remedial effectiveness and potential formation of hexavalent chromium or bromate. If ozone sparging provides effective site remediation, ozone sparging could be incorporated into the downgradient and offsite remediation proposed within Pangea's *Investigation and Remediation Workplan* dated March 5, 2009. This Workplan proposed additional investigation, a natural attenuation evaluation, and system expansion downgradient and across Webster Street, to address agency concerns.

In closing, Pangea again proposes to shutdown the soil vapor extraction (SVE) system. And due to the breakdown of the air sparging compressor, Pangea has delayed compressor repair until additional agency direction is provided regarding remediation. If you have any questions, please call me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Groundwater Monitoring and Remediation Summary Report - First Half 2010

cc: Mr. Lee Douglas, Douglas Parking Company, 1721 Webster Street, Oakland, California 94612 SWRCB Geotracker Database (electronic copy)

PANGEA Environmental Services, Inc.

GROUNDWATER MONITORING AND REMEDIATION SUMMARY REPORT - FIRST HALF 2010

Douglas Parking Company 1721 Webster Street Oakland, California File No. 4070

May 13, 2010

Prepared for:

Mr. Lee Douglas 1721 Webster Street Oakland, California 94612

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

NO. C U49029

F CALIFORNIA Bob

Morgan Gillies Project Manager Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

Groundwater Monitoring and Remediation Report – First Half 2010 1721 Webster Street

Oakland, California

May 13, 2010

INTRODUCTION

On behalf of Douglas Parking Company, Pangea Environmental Services, Inc. (Pangea), performed groundwater monitoring and sampling, and remediation system operation and sampling during this half-year at the subject site (Figure 1). Current groundwater analytical results and elevation data are shown on Figure 2. Current and historical groundwater data are summarized on Table 1. Site remediation data are summarized on Table 2.

SITE BACKGROUND

The site is currently being utilized as a parking garage, and is located between 17th and 19th Streets in downtown Oakland, California, approximately four miles east of San Francisco Bay and one quarter of a mile west of Lake Merritt (Figure 1). The site is relatively flat with an elevation of approximately 30 feet (ft) above mean sea level (msl).

Several former underground storage tank (UST) sites are located close to the site, including Prentiss Properties to the northeast at 1750 Webster Street, a former gas station to the east at 1700 Webster, and a former Chevron service station which is located approximately 400 feet to the southwest on the corner of 17th Street and Harrison Street.

On August 3 and 6, 1992, Parker Environmental Services removed one 1,000-gallon and two 500-gallon gasoline underground storage tanks (USTs) from the site. Up to 1,500 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and up to 12 mg/kg benzene were detected in the soil samples collected from the UST excavation.

Several investigations have been completed at the site. On July 8 and September 8, 1994, Gen Tech/Piers Environmental, Inc. (Gen Tech) of San Jose, California drilled six exploratory borings and installed three groundwater monitoring wells (MW-1 through MW-3). In February and May 1996, Cambria Environmental Technology (Cambria) of Emeryville, California advanced seven geoprobe soil borings and installed two groundwater monitoring wells (MW-4 and MW-5). On June 27, 2003 Cambria installed two additional offsite monitoring wells (MW-6 and MW-7).

Limited site remediation has been conducted at the site. In January 1998, Cambria installed ORC socks in well MW-2 to enhance the natural attenuation of dissolved-phase hydrocarbons. Dissolved oxygen (DO) concentrations temporarily increased in well MW-2 following the ORC sock installation. In February and March 1999, a total of 120 gallons of 7.5% hydrogen peroxide solution was added into monitoring wells MW-2 and MW-3 to oxidize hydrocarbons and also increase DO levels to enhance biodegradation of

1

dissolved-phase hydrocarbons. The hydrogen peroxide *temporarily* increased groundwater DO levels, but hydrocarbon concentrations remained at elevated levels.

On March 4, 2003, Cambria installed a co-axial air sparging/soil vapor extraction well (SV-1/AS-1) and two angled air sparging wells (AS-2 and AS-3) to approximately 30 ft bgs (Figure 3). The wells were installed to facilitate feasibility testing and future site remediation. Site remediation via soil vapor extraction and air sparging began in October 2007. To improve system performance and further evaluate site conditions, Pangea submitted an *Investigation and Remediation Workplan* dated March 5, 2009, which proposed additional investigation, remediation system expansion, and evaluation of groundwater geochemistry.

GROUNDWATER MONITORING AND SAMPLING

On February 3, 2010, Pangea conducted groundwater monitoring and sampling at the site. All site monitoring wells were gauged for depth to water. Following the reduced sampling protocol presented in Appendix A, groundwater samples were collected from all seven monitoring wells (MW-1 through MW-7).

Prior to sample collection approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump or new polyethylene tubing with a check valve. During well purging field technicians measured pH, temperature and conductivity. A groundwater sample was collected from each well with a disposable bailer and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4° C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Field data sheets are presented as Appendix B.

Monitoring Results

Groundwater elevation and analytical data are described below and summarized on Table 1 and Figure 2. Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015C; and benzene, toluene, ethylbenzene and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method 8021B. Samples were analyzed by McCampbell Analytical, Inc. of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included as Appendix C.

Groundwater Flow Direction

Based on depth-to-water measurements collected on February 3, 2010, groundwater beneath the site flowed northeastwards (Figure 2). The groundwater depth measurements and inferred flow direction during this event are consistent with historical site conditions. Groundwater depths at the site have historically ranged from approximately 14 to 23 ft below ground surface (bgs), equivalent to a groundwater elevation range from 5 to 13 feet above msl (Table 1).

Hydrocarbon and MTBE Distribution in Groundwater

TPHg, benzene and MTBE concentrations in groundwater at the site are shown on Figure 2. During this event the maximum TPHg (22,000 μ g/L) concentration was detected in well MW-2, while the maximum benzene (82 μ g/L) concentration was detected in well MW-6. Detected hydrocarbon concentrations in sampled wells this event were within historical ranges. TPHg (6,200 μ g/L) and benzene (82 μ g/L) concentrations detected this event in well MW-6 are the lowest in that well since October 2004. In general, TPHg and BTEX concentrations in site monitoring wells exhibit a stable long-term or decreasing trend.

TPHg and benzene concentration trends in key wells MW-2 and MW-3 are shown on Figure 3. TPHg and especially benzene concentrations had been decreasing in source area well MW-2 over the last two and a half years likely as the result of site remediation efforts. However, during this event both the TPHg and benzene concentrations in well MW-2 increased compared to the previous monitoring event. This increase may be due to the increased groundwater elevation measured in well MW-2 during this event, which was the highest measured since July 2007. The benzene concentration in well MW-2 remains significantly reduced from the elevated concentration of 3,000 μ g/L in April 2008, with only 47 μ g/L benzene detected during this event. Historic concentration reductions and subsequent rebounding was presumably due to short-term hydrogen peroxide and ORC activities in well MW-2. Future monitoring will help evaluate long-term trends.

MTBE was not detected above reporting limits in any of the sampled wells this quarter. The only apparent historical MTBE detection at the site (48 μ g/L in well MW-3 by EPA Method 8020) was interpreted to be a false positive, based on the results of confirmation testing using EPA Method 8260 on July 21, 2003. Since the tank was removed in 1992 and because of the lack of confirmed detectable historical MTBE, MTBE is not a compound of concern at this site.

REMEDIATION SYSTEM SUMMARY

Soil Vapor Extraction/Air Sparge System

The soil vapor extraction (SVE) remediation system consists of a blower that extracts soil vapor from well SVE-1. Extracted vapors are routed through a moisture separator then treated by two 2,000-lb canisters of granular activated carbon plumbed in series. The treated vapor is discharged to the atmosphere in accordance with Bay Area Air Quality Management District (BAAQMD) requirements. The air sparging (AS) system consists of a compressor for injecting air into wells AS-1, AS-2 and/or AS-3. Injection into AS wells is controlled by timer-activated solenoid valves. Wells SVE-1 and AS-1 are constructed as vertical co-axial wells, with angled wells AS-2 and AS-3 located in the same vault. A cross section of the remediation wells is included as Figure 4. The remediation system layout is shown on Figure 5.

Operation and Performance

SVE system operation commenced on October 29, 2007, and AS system operation started on November 12, 2007. On August 8, 2008, air sparge wells AS-1 and AS-3 were disconnected from the air compressor and air sparging was conducted solely in well AS-2 to target hydrocarbons in nearby well MW-2. The SVE system is monitored in accordance with air permit requirements of the *Authority to Construct* issued by the Bay Area Air Quality Management District (BAAQMD). The BAAQMD approved reduction of the monitoring frequency *daily* to *weekly* on November 27, 2007, and from *weekly* to *monthly* on June 26, 2009. System operation and performance data is summarized on Table 2.

As of April 7, 2010, the SVE/AS system operated for a total of about 15,701.1 hours (approximately 654 days). During the April 7, 2010 site visit, the technician noted that the AS compressor was not operating. Based on apparent reduced remedial effectiveness and the estimated cost and effort to repair or replace the compressor for repairs and the relatively low removal rates, Pangea is awaiting agency direction regarding Pangea's remediation recommendations presented below. If the ACEH approves expansion of the remediation system expansion as outlined in the *Investigation and Remediation Workplan* dated March 5, 2009, a larger air compressor would be required.

Based on laboratory analytical data, the TPHg removal rates observed during the second half 2009 and first quarter 2010 (September 18, 2009 to April 7, 2010) ranged from 0.1 to 0.3 lbs/day. Benzene was detected in the laboratory samples collected on February 3, 2010 for the first time since October 6, 2008, and the benzene removal rate for the period was approximately 0.0008 lbs/day. As of April 7, 2010, laboratory analytical data indicates that the system removed a total of approximately 3,114.6 lbs TPHg and 6.58 lbs benzene.

OTHER SITE ACTIVITIES

Site Investigation, Remediation System Expansion and Bioparameter Evaluation

The 24+ months of SVE/AS system operation has apparently improved groundwater conditions, although elevated TPHg concentrations remain in several wells. Most importantly, benzene concentrations have been reduced in key source area well MW-2, likely due to enhanced sparging efforts in well AS-2. The limited system effectiveness for TPHg (and xylenes) may be due to insufficient well spacing/quantity or due to a possible offsite source. To improve system performance and further evaluate site conditions, Pangea submitted an *Investigation and Remediation Workplan* dated March 5, 2009, which proposes additional investigation, remediation system expansion, and evaluation of groundwater geochemistry. The ACEH informed Pangea that they are reviewing the workplan but not issuing and new directives for this site at this time.

Pangea respectfully requests agency direction regarding site remediation efforts. Currently, the air sparge (AS) compressor is broken and the soil vapor extraction (SVE) system has very low influent soil vapor concentrations. While the SVE/AS has reduced benzene concentrations in site groundwater, the system has been less effective at reducing TPHg and xylenes concentrations in nearby source area wells MW-2 and/or MW-3. Rather than incurring cost to repair the AS compressor, Pangea recommends a 30-day pilot test of ozone sparging using the existing sparge wells, existing piping, and existing electrical service. Ozone sparging could oxidize source area hydrocarbons and enhance dissolved oxygen to encourage biodegradation of downgradient hydrocarbons (dissolved oxygen concentrations in site wells, including MW-2 and MW-3, are regularly <1.0 mg/L). Pangea would monitor MW-3 for dissolved oxygen, oxidation-reduction potential, and total heterotrophic bacteria. Monthly monitoring of downgradient well MW-3 would be performed to evaluate remedial effectiveness and potential formation of hexavalent chromium or bromate. If ozone sparging provides effective site remediation, ozone sparging could be incorporated into the downgradient and offsite remediation proposed within Pangea's *Investigation and Remediation Workplan* dated March 5, 2009. This Workplan proposed additional investigation, a natural attenuation evaluation, and system expansion downgradient and across Webster Street, to address agency concerns.

Semi-Annual Groundwater Monitoring

Pangea will conduct semi-annual groundwater monitoring and sampling at the site in accordance with the approved monitoring program shown in Appendix A. All monitoring wells will be gauged for depth to water. Groundwater samples from program wells will be analyzed for TPHg, BTEX and MTBE by EPA Method 8015Cm/8021B. If well AS-1 is accessible for groundwater monitoring, Pangea recommends sampling of this well. Please comment on this recommendation.

ELECTRONIC REPORTING

This report will be submitted to Alameda County Environmental Health via upload to the County's ftp site. Applicable data, maps, and reports for groundwater monitoring and other activities will be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to local agencies.

ATTACHMENTS

Figure 1 – Vicinity Map

Figure 2 – Groundwater Elevations and Hydrocarbon Concentration Map

Figure 3 – TPHg and Benzene Concentration Trends in Groundwater

Figure 4 – Cross Section of Remediation Wells

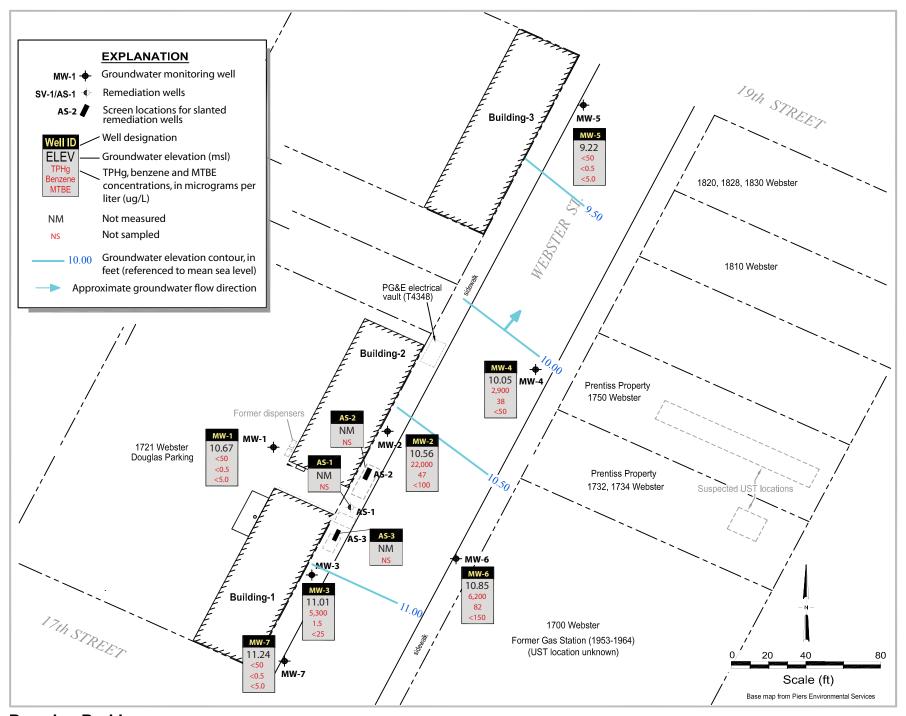
Figure 5 – Remediation System Layout

Table 1 – Groundwater Elevation and Analytical Data

Table 2 – SVE System Performance Summary

Appendix A – Groundwater Monitoring Program

Appendix B – Groundwater Monitoring Field Data Sheets


Appendix C – Laboratory Analytical Reports

1

Vicinity Map

Douglas Parking 1721 Webster Street Oakland, California

Groundwater Elevations and Hydrocarbon Concentration Map

FIGURE

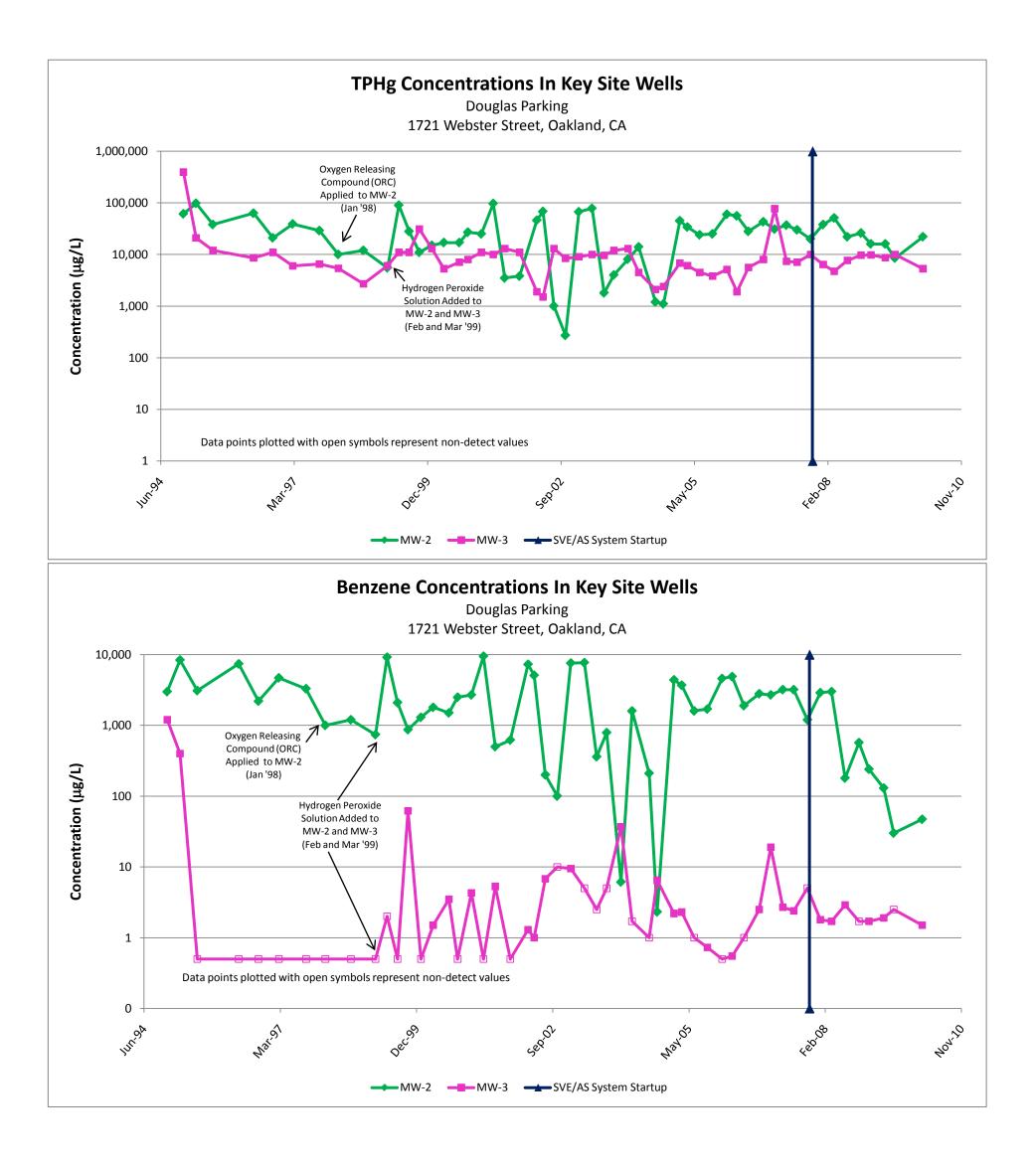
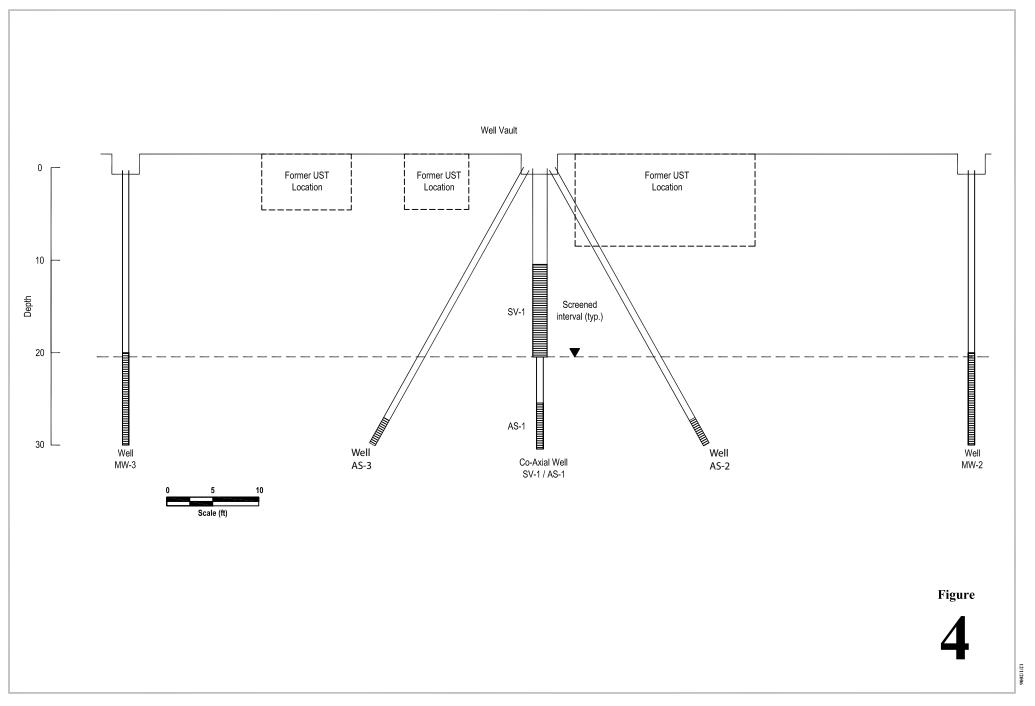
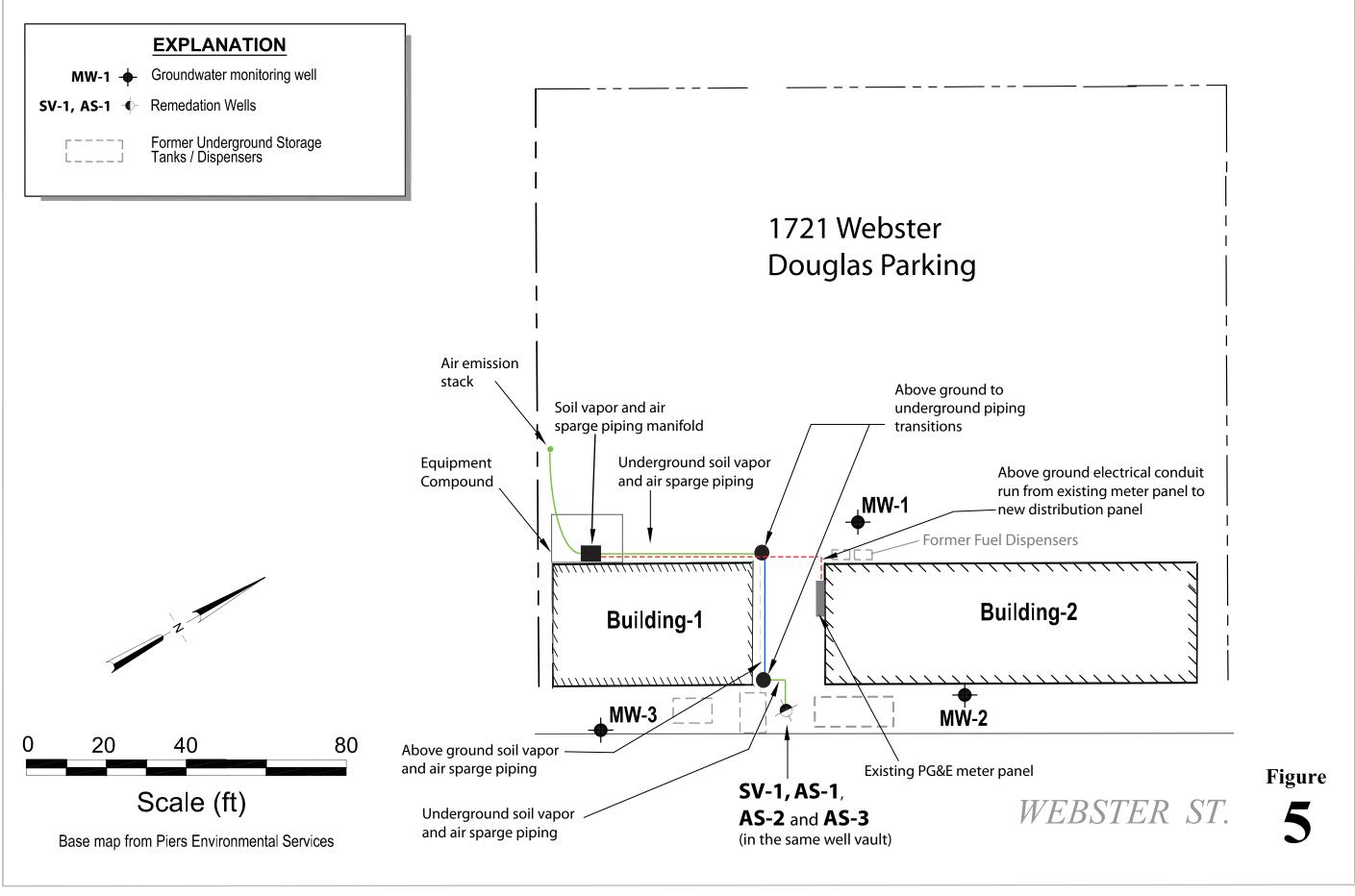




Figure 3 - TPHg and Benzene Concentration Trends in Groundwater

Douglas Parking

1721 Webster Street
Oakland, California

Table 1 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		(μ	g/L)		\longrightarrow
MW-1	12/2/1994	19.42	9.83	ND	ND	ND	ND	ND	
29.25	3/6/1995	20.69	9.04	ND	ND	ND	ND	ND	-
29.23	7/11/1995	20.65	9.16	ND	ND	ND	ND ND	ND	-
29.73	5/10/1996	20.80	9.01	ND	ND	ND	ND	ND	-
29.01	10/2/1996	21.35	8.46	ND -	ND -	ND -	-	ND -	-
	2/28/1997	20.57	9.24	-	-	-	_	-	-
	9/16/1997	21.50	8.31	-	-	-	-	-	-
	2/5/1998	20.91	8.90	-	-	-	-	-	-
	8/11/1998	20.50	9.31	-	-	-	-	-	-
	2/8/1999	21.42	8.39	_	_	_	_	_	_
	2/24/1999	22.99	6.82	-	-	-	-	-	-
	3/3/1999	20.84	8.97	-	-	-	-	-	-
	3/10/1999	20.89	8.92	-	-	-	-	-	-
	3/10/1999	20.89	8.97	-	-	-	_	-	_
	5/4/1999	20.84	9.01	-	-	-	-	-	-
	7/20/1999	21.25	8.56	-	-	-	-	-	-
	10/5/1999	21.23	8.44	-	-	-	-	-	-
	1/7/2000	21.65	8.16	-	-	-	-	-	-
	4/6/2000	21.05	8.76	<50	< 0.5	<0.5	<0.5	<0.5	< 5.0
	7/31/2000	21.03	8.68	-	-	<0.5 -	<0.5 -	<0.5 -	<3.0
	10/3/2000	21.13	8.12	-	-	-		-	-
	1/12/2001	22.00	7.81	-	-	-	-	-	-
	4/11/2001	22.16	7.65	-	-	-	-	-	-
	7/6/2001	22.16	7.03 7.24	-	-	-	-	-	-
	10/25/2001	22.71	7.24	-	-	-	-	-	-
	3/4/2002	22.71	7.10	-	-	-	-	-	-
		22.33	7.28	-	-	-	-	-	-
	4/18/2002			-	-	-	-	-	-
	7/9/2002	22.95	6.86	-	-	-	-	-	-
	10/4/2002	23.13	6.68	-	-	-	-	-	-
	1/12/2003	22.05	7.76	-	-	-	-	-	-
22.55	4/21/2003	21.17	8.64	-	-	-	-	-	-
32.75	7/21/2003	21.39	11.36	-	-	-	-	-	-
	10/2/2003	21.64	11.11	-	-	-	-	-	-
	1/15/2004	21.10	11.65	-	-	-	-	-	-
	4/5/2004	21.20	11.55	-	-	-	-	-	-
	8/9/2004	22.97	9.78	-	-	-	-	-	-
	10/7/2004	23.55	9.20	-	-	-	-	-	-
	2/7/2005	20.90	11.85	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/5/2005	20.60	12.15	-	-	-	-	-	-
	7/6/2005	20.66	12.09	-	-	-	-	-	-
	10/10/2005	21.16	11.59	-	-	-	-	-	-
	1/26/2006	20.73	12.02	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/10/2006	20.05	12.70	-	-	-	-	-	-
	7/6/2006	20.90	11.85	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/26/2006	21.80	10.95	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	1/19/2007	22.02	10.73						
	4/17/2007	22.13	10.62						
1	7/6/2007	21.83	10.92						
	10/15/2007	22.28	10.47						
	1/17/2008	22.33	10.42	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/9/2008	22.11	10.64						
	7/17/2008	22.50	10.25						
	10/27/2008	22.75	10.00						
	1/9/2009	22.89	9.86	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/27/2009	22.40	10.35						
	7/9/2009	22.55	10.20						
	2/3/2010	22.08	10.67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

Table 1 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		(μg/L) ————		\longrightarrow
MW-2	12/2/1994	19.50	7.60	61,300	3,000	3,900	160	4,500	
27.10	3/6/1995	18.49	8.61	98,000	8,400	16,000	2,000	2,600	_
27.40	7/11/1995	18.45	8.95	38,000	3,100	7,500	940	3,700	
27.70	5/10/1996	18.56	8.84	63,000	7,400	16,000	1,500	6,000	_
	10/2/1996	19.15	8.25	21,000	2,200	3,400	430	1,600	_
	2/28/1997	18.43	8.97	39,000	4,700	9,600	950	4,200	ND
	9/16/1997	19.26	8.14	29,000	3,300	5,800	690	2,900	<620
	2/5/1998	18.66	8.74	10,000	1,000	2,000	170	860	<330
	8/11/1998	18.41	8.99	12,000	1,200	2,300	260	1,400	300
	2/8/1999	19.84	7.56	5,500	740	1,200	150	780	60
	2/17/1999	18.94	8.46	-	-	-	-	-	_
	2/24/1999	20.76	6.64	-	-	-	-	-	_
	3/3/1999	18.55	8.85	-	-	-	-	-	-
	3/10/1999	20.74	6.66	-	-	-	-	-	-
	3/17/1999	18.57	8.83	-	-	-	-	-	-
	5/4/1999	18.55	8.85	90,000	9,200	21,000	1,600	10,000	560
	7/20/1999	18.98	8.42	28,000	2,100	3,700	900	4,200	<860
	10/5/1999	19.10	8.30	11,000	870	180	30	1,400	<110
	1/7/2000	19.41	7.99	15,000	1,300	2,100	440	1,800	<14
	4/6/2000	18.80	8.60	17,000	1,800	3,100	500	2,200	< 50
	7/31/2000	18.87	8.53	17,000	1,500	2,700	430	2,100	< 200
	10/3/2000	19.45	7.95	27,000	2,500	4,000	660	2,900	< 50
	1/12/2001	19.80	7.60	25,000	2,700	4,100	670	3,000	< 200
	4/11/2001	20.03	7.37	97,000	9,500	21,000	2,200	7,900	< 200
	7/6/2001	20.19	7.21	3,500	500	150	11	420	< 5.0
	10/25/2001	20.35	7.05	3,800	620	230	70	400	< 50
	3/4/2002	20.37	7.03	46,000	7,300	12,000	870	3,200	< 500
	4/18/2002	20.15	7.25	68,000	5,100	8,900	1,100	4,000	<1,00
	7/9/2002	21.09	6.31	1,000	200	8.9	0.67	82	<10
	10/4/2002	21.28	6.12	270	100	3.4	0.53	10	< 5.0
	1/12/2003	20.59	6.81	67,000	7,600	13,000	1,400	5,600	< 500
	4/21/2003	19.98	7.42	78,000	7,700	12,000	1,900	6,900	< 500
30.40	7/21/2003	20.08	10.32	1,800	360	16	< 5.0	190	< 50
	10/2/2003	20.41	9.99	4,000	790	110	60	350	< 50
	1/15/2004	19.93	10.47	8,100	6.1	23	44	530	< 50
	4/5/2004	18.99	11.41	14,000	1,600	2,100	550	2,500	< 500
	8/9/2004	19.79	10.61	1,200	210	16	14	100	<20
	10/7/2004	20.26	10.14	1,100	2.3	9.8	2.9	36	< 5.0
	2/7/2005	18.80	11.60	45,000	4,400	4,800	1,400	5,800	<200
	4/5/2005	18.40	12.00	34,000	3,700	3,600	1,200	5,300	<500 (<
	7/6/2005	18.48	11.92	24,000	1,600	1,700	570	2,800	< 500
	10/10/2005	19.00	11.40	25,000	1,700	2,100	710	3,200	< 500
	1/26/2006	18.58	11.82	60,000	4,600	7,200	1,600	6,900	<1,00
	4/10/2006	17.84	12.56	56,000	4,900	7,500	1,200	7,400	< 500
	7/6/2006	18.76	11.64	28,000	1,900	1,700	720	2,900	<500
	10/26/2006	19.60	10.80	43,000	2,800	2,500	1,700	7,600	< 500
	1/19/2007	19.84	10.56	31,000	2,700	2,400	1,400	5,800	<150
	4/17/2007	19.90	10.50	37,000	3,200	2,900	1,600	6,400	<400
	7/6/2007	19.63	10.77	30,000	3,200	2,000	1,500	5,200	<250
	10/15/2007	20.11	10.29	20,000	1,200	990 5.100	650	2,300	<500
	1/17/2008	20.10	10.30	38,000	2,900	5,100	1,200	5,000	<210
	4/9/2008	20.12	10.28	51,000	3,000	6,400	1,700	6,500	<250
	7/17/2008	20.01	10.39	22,000	180	500	660	2,100	<250
	10/27/2008	20.61	9.79	26,000	570	2,100	670	3,400	<50
	1/9/2009	20.80	9.60	16,000	240	680	460	3,000	<100
	4/27/2009	20.17	10.23	16,000	130	660	570	3,600	<500
	7/9/2009 2/3/2010	20.36 19.84	10.04 10.56	8,500 22,000	30 47	110 140	250 500	1,400 3,000	<100 <100

Table 1 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow			(μg/L) ————		\longrightarrow
MW-3	12/2/1994	22.15	7.35	394,000	1,200	ND	1,800	4,000	_
29.50	3/6/1995	20.09	9.16	21,000	400	150	24	62	_
29.25	7/11/1995	19.99	9.57	12,000	ND	10	16	99	_
29.56	5/10/1996	20.24	9.32	8,600	ND	7.6	16	84	_
	10/2/1996	20.90	8.66	11,000	ND	7.4	19	92	_
	2/28/1997	20.12	9.44	6,000	ND	4.4	17	88	50
	9/16/1997	20.97	8.59	6,500	< 0.5	0.69	1.2	6.7	< 5.0
	2/5/1998	20.39	9.17	5,400	< 0.5	6.3	15	86	<63
	8/11/1998	19.95	9.61	2,700	< 0.5	3.5	3.2	12	<10
	2/8/1999	20.58	8.98	6,100	< 0.5	8.1	18	80	<140
	2/17/1999	20.53	9.03	-	-	-	-	-	-
	2/24/1999	22.53	7.03	-	-	-	-	-	-
	3/3/1999	20.28	9.28	-	-	-	-	-	-
	3/10/1999	22.45	7.11	-	-	-	-	-	-
	3/17/1999	20.26	9.30	-	-	-	-	-	-
	5/4/1999	20.24	9.32	11,000	<2	<2	9.8	140	<10
	7/20/1999	20.68	8.88	11,000	< 0.5	3.1	13	88	<80
	10/5/1999	20.81	8.75	31,000	62	< 0.5	21	170	<90
	1/7/2000	21.09	8.47	13,000	< 0.5	<2	21	140	<80
	4/6/2000	20.48	9.08	5,300	1.5	1.4	9.8	60	< 30
	7/31/2000	20.62	8.94	7,100	3.5	1.0	12	66	< 5.0
	10/3/2000	21.13	8.43	8,000	< 0.5	3.3	11	70	<40
	1/12/2001	21.45	8.11	11,000	4.3	6.7	11	73	< 70
	4/11/2001	21.69	7.87	10,000	< 0.5	< 0.5	11	65	<10
	7/6/2001	21.60	7.96	13,000	5.3	1.6	11	58	< 5.0
	10/25/2001	21.70	7.86	11,000	< 0.5	3.0	15	70	<10
	3/4/2002	21.65	7.91	1,900	1.3	0.8	< 0.5	15	< 5.0
	4/18/2002	21.77	7.79	1,500	1.0	0.97	1.3	5.8	<5
	7/9/2002	22.03	7.53	13,000	6.8	5.7	13	59	<90
	10/4/2002	22.15	7.41	8,400	<10	<10	<10	42	<100
	1/12/2003	21.13	8.43	9,000	9.5	5.1	8.5	46	<90
	4/21/2003	20.63	8.93	10,000	< 5.0	< 5.0	8.5	32	< 50
32.56	7/21/2003	20.68	11.88	9,600	< 2.5	<2.5	7.4	39	48 (<1.
	10/2/2003	20.99	11.57	12,000	< 5.0	< 5.0	10	40	<90
	1/15/2004	20.74	11.82	13,000	37	41	78	930	< 50
	4/5/2004	20.59	11.97	4,500	<1.7	<1.7	<1.7	12	<17
	8/9/2004	22.18	10.38	2,100	<1.0	3.7	<1.0	8.1	<10
	10/7/2004	22.79	9.77	2,400	6.5	26	7.5	89	<15
	2/7/2005	20.35	12.21	6,800	2.2	5.6	2.0	12	<30
	4/5/2005	19.95	12.61	6,100	2.3	2.6	1.3	8.3	<45 (<0
	7/6/2005	19.93	12.63	4,500	<1.0	1.5	1.0	8.3	<10
	10/10/2005	20.45	12.11	3,800	0.73	< 0.5	0.98	5.7	<15
	1/26/2006	20.05	12.51	5,100	< 0.5	1.1	< 0.5	6.6	<15
	4/10/2006	19.39	13.17	1,900	0.55	1.6	0.51	4.1	<10
	7/6/2006	20.25	12.31	5,600	<1.0	2.3	<1.0	6.4	<20
	10/26/2006	21.07	11.49	8,000	2.5	1.0	2.3	12	<35
	1/19/2007	21.38	11.18	77,000	19	40	9.5	130	< 300
	4/17/2007	21.45	11.11	7,400	2.7	6.6	1.1	12	<40
	7/6/2007	21.29	11.27	7,100	2.4	5.6	0.85	10	<30
	10/15/2007	21.62	10.94	10,000	< 5.0	< 5.0	< 5.0	14	< 50
	1/17/2008	21.68	10.88	6,400	1.8	< 0.5	1.0	8.4	23
	4/9/2008	21.42	11.14	4,700	1.7	2.2	< 0.5	3.8	<18
	7/17/2008	22.10	10.46	7,700	2.9	3.1	1.4	11	<60
	10/27/2008	22.13	10.43	9,700	<1.7	1.8	2.3	11	<17
	1/9/2009	22.27	10.29	9,800	1.7	2.0	3.0	14	<17
	4/27/2009	21.74	10.82	8,700	1.9	3.3	<1.7	11	< 50
	7/9/2009	21.92	10.64	10,000	<2.5	4.1	2.6	11	<60
	2/3/2010	21.55	11.01	5,300	1.5	2.3	< 0.5	2.7	<25

Table 1 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

oring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	МТВІ
TOC		(ft)	(ft amsl)	\leftarrow		(μg/L) ————		\longrightarrow
MW-4	5/10/1996	16.98	8.31	14,000	ND	1,200	720	3,100	_
25.29	10/2/1996	17.65	7.64	12,000	ND	650	580	2,200	_
23.29	2/28/1997	16.80	8.49	13,000	ND	1,100	750	2,700	110
	9/17/1997	17.93	7.36	13,000	<2.5	820	750 750	2,700	<190
	2/5/1998	16.78	8.51	13,000	<1.0	690	690	2,900	<170
	8/11/1998	16.79	8.70	15,000	<5	360	520	1,900	280
	2/8/1999	17.10	8.19	9,800	<5	680	770	2,200	300
	2/24/1999	18.95	6.34	- -	-	-	-	-	-
	3/3/1999	16.80	8.49	_	_	_	_	_	
	3/10/1999	16.86	8.43	_	_	_	_	_	_
	3/17/1999	16.82	8.47	_	_	_	_	_	_
	5/4/1999	16.86	8.43	11,000	46	600	620	1,900	<100
	7/20/1999	17.30	7.99	13,000	< 0.5	470	7.0	2,000	<150
	10/5/1999	17.43	7.86	18,000	4.4	720	800	2,100	<120
	1/7/2000	17.78	7.51	18,000	<2	930	990	2,700	<30
	4/6/2000	17.73	8.12	8,000	31	390	530	1,300	<10
	7/31/2000	17.17	8.08	6,200	13	170	460	850	<10
	10/3/2000	18.00	7.29	14,000	42	820	730	2,000	<50
	1/12/2001	18.20	7.29	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	4/11/2001	18.31	6.98	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/6/2001	18.35	6.94	470	2.3	1.6	0.81	43	<5.0
	10/25/2001	18.47	6.82	110	0.70	<0.5	<0.5	3.3	<5.0
	3/4/2002		6.86	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/18/2002	18.43 18.61	6.68	<50 <50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<5.0 <5.0
	7/9/2002	19.50	5.79	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5	<5.0 <5.0
	10/4/2002	19.83	5.46	310	2.0	2.9	13	16	<0.5
	1/12/2003	19.83	6.22	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0
	4/21/2003	18.71	6.58	<50	<0.5	<0.5	<0.5	<0.5	<5.0
28.29	7/21/2003	18.81	9.48	<50 <50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<5.0 <5.0
20.29	10/2/2003	19.02	9.48 9.27	<30 59	0.78	<0.5	<0.5 1.1	0.91	<5.0 <5.0
	1/15/2004	18.68	9.61	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/5/2004	17.41			<0.3 29	250	<0.3 450	730	<100
	8/9/2004		10.88 9.22	6,200 <50	< 0.5	<0.5	<0.5		<5.0
	10/7/2004	19.07	9.22 8.64	<50		<0.5	<0.5 <0.5	<0.5	<5.0 <5.0
	2/7/2004	19.65 17.21	11.08		<0.5 48	340	<0.3 550	<0.5 720	<100
	4/5/2005	16.78		8,700 6,900	46 27	290	520	660	<170 (<
			11.51						,
	7/6/2005	16.98	11.31	5,600	<5.0	130	470 530	480	<50
	10/10/2005 1/26/2006	17.59	10.70	6,300 5,600	23	78 68		430	<50
	4/10/2006	17.08 16.27	11.21 12.02	5,600 2,900	41 39	68 32	400 200	290 140	<120 <60
	7/6/2006	17.20	12.02	2,900 5,400	59 65	52 59	340	150	<00 <120
	10/26/2006	17.20	10.23	7,200	72	39 46	460	200	<120
	1/19/2007	18.29	10.00	7,100	140	35	520	150	<200
	4/17/2007	18.30	9.99 10.20	4,900	90	32	290 210	89 55	<110 <90
	7/6/2007	18.00	10.29	4,600 8,600	91	30 62		55 110	
	10/15/2007	18.52	9.77	8,600	200	62 3.7	480	110	<210
	1/17/2008	18.46	9.83	820	15	3.7	25	9.3	<10
	4/9/2008	18.23	10.06	3,600	55	20	160	64	<60
	7/17/2008	18.72	9.57	6,500	210	47	510	180	<180
	10/27/2008	19.07	9.22	7,700	200	28	450	87	<150
	1/9/2009	19.12	9.17	4,400	180	34	180	93	<150
	4/27/2009	18.52	9.77	2,500	110	24	190	69	<150
	7/9/2009	18.78	9.51	5,600	150	34	270	83	<250

Table 1 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well Depth to Groundwater TPHg MTBE ID Date Water Elevation Benzene Toluene Ethylbenzene Xylenes $(\mu g/L)$ TOC (ft) (ft amsl) \leftarrow MW-5 5/10/1996 14.60 7.37 ND ND ND ND ND 21.97 15.25 6.72 ND ND ND ND ND 10/2/1996 ND 2/28/1997 14.31 7.66 ND ND ND ND ND 9/17/1997 15.18 6.79 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/5/1998 13.64 8.33 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/11/1998 13.92 8.05 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/8/1999 14.19 7.78 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 16.18 2/24/1999 5.79 3/3/1999 14.23 7.74 3/10/1999 14.32 7.65 7.72 3/17/1999 14.25 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/4/1999 14.41 7.56 7/20/1999 14.44 7.53 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 10/5/1999 14.79 7.18 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 1/7/2000* 15.23 6.74 4/6/2000 14.74 7.23 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 7/31/2000 14.52 7.45 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 < 0.5 6.60 < 50 < 0.5 < 0.5 < 5.0 10/3/2000 15.37 290 450 1,100 1/12/2001 15.70 6.27 6,400 13 <40 4/11/2001 15.78 6.19 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 7/6/2001 15.97 6.00 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 10/25/2001 16.05 5.92 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 3/4/2002 16.21 5.76 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 4/18/2002 16.59 5.38 < 50 7/9/2002 16.94 5.03 170 1.0 0.65 2.1 4.0 <15 < 0.5 10/4/2002 17.14 4.83 < 50 < 0.5 < 0.5 < 0.5 < 5.0 16.58 < 0.5 < 0.5 < 0.5 < 5.0 1/12/2003 5.39 < 50 < 0.5 < 50 < 0.5 < 0.5 < 0.5 < 5.0 4/21/2003 15.90 6.07 < 0.5 7/21/2003 16.03 8.96 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 24.99 10/2/2003 16.33 8.66 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 1/15/2004 16.21 8.78 < 50 < 0.5 < 0.5 < 0.5 < 5.0 4/5/2004 15.01 9.98 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/9/2004 16.85 8.14 < 50 10/7/2004 17.48 7.51 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/7/2005 16.52 8.47 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5 4/5/2005 14.45 10.54 < 50 <5.0 (<0.5) 7/6/2005 14.85 10.14 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 10/10/2005 15.44 9.55 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 1/26/2006 14.96 10.03 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 4/10/2006 14.01 10.98 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 7/6/2006 15.17 9.82 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 9.05 < 0.5 10/26/2006 15.94 < 50 < 0.5 < 0.5 < 0.5 < 5.0 16.05 8.94 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 1/19/2007 15.99 4/17/2007 9.00 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 15.50 9.49 < 0.5 < 0.5 < 0.5 < 5.0 7/6/2007 < 50 < 0.5 10/15/2007 16.27 8.72 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 1/17/2008 15.10 9.89 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 4/9/2008 15.96 9.03 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 < 0.5 < 0.5 < 0.5 8.55 < 50 < 0.5 < 5.0 7/17/2008 16.44 16.78 8.21 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 10/27/2008 1/9/2009 16.75 8.24 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 4/27/2009 16.21 8.78 ------------7/9/2009 16.48 8.51 2/3/2010 15.77 9.22 < 50 <0.5 < 0.5 < 0.5 < 0.5 <5.0

Table 1 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		(j	ug/L) ————		\longrightarrow
MW-6	6/30/2003	19.60	11.39	68,000	950	6,000	2,400	10,000	<1,000
30.99	7/21/2003	19.67	11.32	120,000	170	1,400	1,100	10,000	<1,000
30.77	10/2/2003	19.97	11.02	16,000	7.6	200	38	1,800	<100
	1/15/2004	19.55	11.44	14,000	48	51	94	1,100	<50
	4/5/2004	19.17	11.82	24,000	180	900	430	1,800	<500
	8/9/2004	20.98	10.01	5,300	6.4	25	5.3	69	<17 (<0.5
	10/7/2004	21.52	9.47	5,600	11	58	18	210	<50 (<0.5
	2/7/2005	19.00	11.99	31,000	120	620	310	1,200	<500
	4/5/2005	18.60	12.39	21,000	170	1,100	350	1,300	<500 (<5.
	7/6/2005	18.56	12.43	26,000	130	920	320	1,200	<500
	10/10/2005	19.99	11.00	19,000	140	840	250	980	<500
	1/26/2006	18.70	12.29	10,000	140	1,100	270	1,200	<170
	4/10/2006	18.04	12.95	13,000	140	1,000	280	1,000	<250
	7/6/2006	18.80	12.19	17,000	150	1,000	290	1,000	<250
	10/26/2006	19.62	11.37	23,000	230	660	470	1,500	<500
	1/19/2007	19.92	11.07	18,000	190	620	350	1,100	<150
	4/17/2007	19.97	11.02	23,000	380	1,400	590	2,000	<450
	7/6/2007	19.81	11.18	28,000	600	3,000	900	2,700	<500
	10/15/2007	20.15	10.84	25,000	290	680	410	1,100	<250
	10/15/2007	20.15	10.84	25,000	290	680	410	1,100	<250
	1/17/2007	20.13	10.77	16,000	200	130	130	460	<150
	4/9/2008	19.86	11.13	18,000	320	870	480	1,500	<250
	7/17/2008	20.36	10.63	18,000	320	510	420	1,200	<500
	10/27/2008	20.69	10.30	31,000	320	320	410	990	<350
	1/9/2009	20.83	10.16	22,000	340	390	560	1,400	<250
	4/27/2009	20.33	10.72	13,000	110	97	380	1,100	<350
	7/9/2009	20.43	10.56	18,000	250	520	470	1,300	<450
	2/3/2010	20.14	10.85	6,200	82	180	190	550	<150
MW-7	6/30/2003	21.40	11.71	170	< 0.5	2.1	2.0	8.7	<5.0
33.11	7/21/2003	21.44	11.67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/2/2003	21.73	11.38	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	1/15/2004	21.57	11.54	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/5/2004	20.84	12.27	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	8/9/2004	22.68	10.43	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/7/2004	23.27	9.84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	2/7/2005	20.60	12.51	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/5/2005	20.22	12.89	< 50	< 0.5	0.75	< 0.5	< 0.5	<5.0 (<0.5
	7/6/2005	20.25	12.86	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/10/2005	20.70	12.41	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	1/26/2006	20.32	12.79	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/10/2006	19.62	13.49	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	7/6/2006	20.47	12.64	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/26/2006	21.30	11.81	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	1/19/2007	21.62	11.49	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/17/2007		11.49	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	7/6/2007	21.59	11.52	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/15/2007	21.85	11.26	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0
	1/17/2007	21.90	11.21	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0
	4/9/2008	21.61	11.50	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/17/2008	22.09	11.02	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	10/27/2008	22.39	10.72	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/9/2009	22.52	10.59	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	4/27/2009	21.98	11.13						
	7/9/2009	22.18	10.93						
	2/3/2010	21.87	11.24	<50	<0.5	<0.5	<0.5	<0.5	<5.0

Table 1 - Groundwater Elevation and Analytical Data.

Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID TOC	Date	Depth to Water (ft)	Groundwater Elevation (ft amsl)	TPHg ←	Benzene	Toluene	Ethylbenzene (µg/L)	Xylenes	МТВЕ
		()	(======)				(F-8)		
AS-1	7/6/2006	19.53		18,000	2,700	570	700	1,900	< 500
	10/26/2006	20.33		15,000	1,900	340	360	1,400	<250
	1/19/2007	20.64		5,700	1,100	110	88	630	< 50
	1/19/2007	20.64		5,700	1,100	110	88	630	< 50
	4/17/2007	20.71							
	7/16/2007								
	10/15/2007								
	1/17/2008								
	4/9/2008								
AS-2	7/6/2006	22.26		2,100	6.1	< 0.5	33	200	<20
	10/26/2006	23.25		280	1.1	< 0.5	< 0.5	6.0	<15
	1/19/2007	23.61		2,100	2.3	< 0.5	96	310	<35
	4/17/2007	23.70							
	7/16/2007								
	10/15/2007								
	1/17/2008								
	4/9/2008								
AS-3	7/6/2006	21.77		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/26/2006	22.66		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	1/19/2007	22.97		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/17/2007	23.06							
	7/16/2007								
	10/15/2007								
	1/17/2008								
	4/9/2008								
rip Blank	01/12/01	-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/11/2001	-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	7/6/2001	-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	3/4/2002	-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/2/2003	-	-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/15/2007								

Notes and Abbreviations:

TOC = Top of casing elevations in feet above mean sea level.

ft amsl = Measured in feet above mean sea level

 $\mu g/L = Micrograms \ per \ liter.$

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C.

 $BTEX = Benzene, \ toluene, \ ethylbenzene, \ and \ xylenes \ by \ EPA \ Method \ 8021B.$

 $MTBE = Methyl \ tertiary \ butyl \ ether \ by \ EPA \ Method \ 8021B, \ and \ by \ EPA \ Method \ 8260 \ in \ parenthesis.$

< 0.5 = Concentration not detected above specific laboratory reporting limit.

-- = Not analyzed, not sampled, or not applicable.

ND = Not detected.

Data prior to 7/11/95 from Gen Tech and Piers Environmental Quarterly Groundwater Monitoring Reports dated December 2, 1994 and March 6, 1995, respectively.

On July 31, 2003, Virgil Chavez Land Surveying of Vallejo, California surveyed monitoring wells using a benchmark in the top of the curb near the SW return of the NW corner of 34th and Broadway.

Restart system at 200.3 hours

on 11/12/07; start air sparge system

Table 2. SVE/AS System Performance Summary - 1721 Webster Street, Oakland, California FIELD MEASUREMENTS ANALYTICAL RESULTS REMOVAL Sample ID TPHg SVE TPHg Cumulative SVE SVE Benzene Cumulative SVE Hour Meter System Vapor Applied Benzene Air Sparge Comments Vacuum FID Reading Date Reading Flow Rate Lab Data Lab Data Removal Rate TPHg Removal Removal Rate Benzene Removal Unit on? (hours) (cfm) ("H20) (ppm) (ppmv) (ppmv) (lbs/day) (lbs) (lbs) (yes/no) 10/29/07 N/A 1.0 0 0 0 0 0 0 0 System start up 0 no 2.30 10/29/07 SYS-INF 1.5 104 68 3,400 76 320.3 6.7 0.05 9,600 no SYS-MID 23 ND<0.077 SYS-EFF 27 0.15 0 10/30/07 SYS-INF 24.3 27 37,000 74 1.08 1.07 50 9,000 144.4 143.8 Readings upon arrival SYS-MID ND<7.0 ND<0.077 635 SYS-EFF 700 60 0.29 10/30/07 SYS-INF 25.2 45 27 3,200 1,500 11 21.7 144.6 0.14 1.08 Readings after dilution air introduced to SYS-MID ND<7.0 ND<0.077 620 reduce noise and limit hydrocarocarbon SYS-EFF 530 ND<7.0 ND<0.077 loading on carbon (prevent thermal 10/31/07 SYS-INF 48.8 40 27 922* 8.6 11.3 155.7 0.10 1.17 no Dilution airflow set at ~25% of total SYS-MID 0* ND<7.0 ND<0.077 SYS-EFF 0* ND<7.0 ND<0.077 11/01/07 SYS-INF 78.8 39 27 1,475 11.0 169.5 0.10 1.30 no SYS-MID 14 ------SYS-EFF 11/02/07 SYS-INF 100.2 27 736 0.10 1.39 Shut system down at 100.5 hours 40 11.3 179.6 --no SYS-MID 19 for weekend SYS-EFF Restart system at 100.5 hours 11/05/07 SYS-INF 100.9 38 27 1,546 10.7 179.9 0.10 1.39 no SYS-MID on 11/5/07 SYS-EFF 4 11/06/07 SYS-INF 126.7 38 27 213 10.7 191.4 0.10 1.49 no SYS-MID 0 ---SYS-EFF 0 ---11/07/07 SYS-INF 154.7 45 27 170 12.7 206.2 0.11 1.62 no SYS-MID 0 SYS-EFF 0 ---11/08/07 SYS-INF 178.2 47 27 160 13.3 219.2 0.12 1.74 Lab analysis performed for methane; no 2.4 ul/L detected in SYS EFF SYS-MID 0 ------SYS-EFF 0 11/09/07 SYS-INF 200.3 45 31 163 12.7 230.9 0.11 1.84 Shut system down at 200.3 hours for --no ---SYS-MID 0 --weekend SYS-EFF

11.9

13.0

233.9

244.3

0.11

0.12

1.87

1.96

11/12/07

11/13/07

SYS-INF

SYS-MID

SYS-EFF

SYS-INF

SYS-MID

SYS-EFF

206.3

225.6

42

46

211

0

2,937

0

28

28

Table 2. SVE/AS System Performance Summary - 1721 Webster Street, Oakland, California FIELD MEASUREMENTS ANALYTICAL RESULTS REMOVAL TPHg Sample ID SVE TPHg Cumulative SVE SVE Benzene Cumulative SVE Hour Meter System Vapor Applied Benzene Air Sparge Comments Vacuum FID Reading Date Reading Flow Rate Lab Data Lab Data Removal Rate TPHg Removal Removal Rate Benzene Removal Unit on? (hours) (cfm) ("H20) (ppm) (ppmv) (ppmv) (lbs/day) (lbs) (yes/no) 11/14/07 SYS-INF 253.0 45 28 4,113 12.7 258.9 0.11 2.09 yes SYS-MID SYS-EFF 0 ---11/15/07 SYS-INF 278.4 45 2,810 12.7 272.3 0.11 2.21 28 yes SYS-MID SYS-EFF 0 11/16/07 SYS-INF 301.4 43 28 2,570 12.1 283.9 0.11 2.31 yes SYS-MID 0 ------SYS-EFF 0 ---11/17/07 SYS-INF 327.1 42 41 11 11.9 296.6 0.11 2.42 --yes SYS-MID 0 ------SYS-EFF 0 ---11/18/07 SYS-INF 530 0.11 2.54 352.1 44 41 12.4 309.6 yes SYS-MID 0 ------SYS-EFF 0 11/19/07 24 22 < 0.077 SYS-INF 375.2 42 41 0.3 309.9 0.00 2.54 yes SYS-MID 0 SYS-EFF 11/20/07 SYS-INF 398.8 49 68 660 0.3 310.2 0.00 2.54 Increased system vacuum by closing ------SYS-MID off recirculation valve on blower. SYS-EFF 0 11/26/07 SYS-INF 426.3 49 68 1,800 0.3 310.6 0.00 2.54 Received verbal approval from SYS-MID BAAQMD to decrease monitoring from 0 ------SYS-EFF 0 -----daily to weekly. 12/03/07 SYS-INF 593.5 48 61 1,300 0.3 313.0 0.00 2.54 yes SYS-MID ------0 SYS-EFF 0 12/14/07 SYS-INF 853.0 52 54 280 280 0.17 4.7 363.5 0.003 2.57 yes SYS-MID < 0.077 < 7.0 0 SYS-EFF 0 < 7.0 < 0.077 12/21/07 SYS-INF 385.7 0.00 1,021.5 58 54 0 170 0.14 3.2 2.58 SVE shutdown after reading, restarted yes SYS-MID < 7.0 < 0.077 0 SYS-EFF 0 < 7.0 < 0.077 SYS-INF SVE shutdown on arrival, restart 12/27/07 1,163.5 54 NM 2.2 0.00 2.59 40 ---398.6 yes SYS-MID NM --and monitor SYS-EFF NM 12/28/07 14 SYS-INF 1,188.5 50 54 14 < 0.077 0.2 398.8 0.00 2.59 yes SYS-MID < 7.0 < 0.077 SYS-EFF 0 < 7.0 < 0.077 01/03/08 SYS-INF 1,329.5 51 54 50 50 < 0.077 0.8 403.6 0.00 2.59 yes SYS-MID 15 < 0.077 SYS-EFF < 0.077 < 7.0 0 01/10/08 SYS-INF 1,430.2 50 54 < 0.077 0.3 404.7 0.00 2.59 AS system off while sampling SYS-MID 13 < 0.077 0 SYS-EFF 0 < 7.0 < 0.077

Table 2. SVE/AS System Performance Summary - 1721 Webster Street, Oakland, California FIELD MEASUREMENTS ANALYTICAL RESULTS REMOVAL TPHg Sample ID SVE TPHg Cumulative SVE SVE Benzene Cumulative SVE Hour Meter System Vapor Applied Benzene Air Sparge Comments Vacuum FID Reading Date Reading Flow Rate Lab Data Lab Data Removal Rate TPHg Removal Removal Rate Benzene Removal Unit on? (hours) (cfm) ("H20) (ppm) (ppmv) (ppmv) (lbs/day) (lbs) (lbs/day) (lbs) (yes/no) 1/15/2008* SYS-INF 1,546.0 50 81 1,200 2.1 19.2 497.6 0.03 2.74 yes SYS-MID 7.7 < 0.077 SYS-EFF < 7.0 < 0.077 1/23/2008* SYS-INF 1,694.5 50 1,300 1.6 626.6 0.02 2.88 95 20.9 yes SYS-MID 11 < 0.077 SYS-EFF < 7.0 < 0.077 01/30/08 SYS-INF 1,864.6 49 81 2,300 2.6 36.2 882.9 0.04 3.15 yes SYS-MID 24 < 0.077 SYS-EFF < 7.0 < 0.077 02/06/08 SYS-INF 2,027.5 50 81 1,700 2.9 27.3 1,068.0 0.04 3.43 yes SYS-MID < 0.077 43 SYS-EFF < 7.0 < 0.077 02/12/08 SYS-INF 2,173.3 95 1,243.4 0.03 60 1,500 1.7 28.9 3.61 yes SYS-MID 520 1.1 SYS-EFF 28 < 0.077 02/21/08 SYS-INF 2,394.1 95 0.03 65 31.3 1,531.2 3.91 Samples not picked up by the laboratory --yes SYS-MID -----courier before hold time expired. SYS-EFF 02/29/08 SYS-INF 2,580.5 27 95 1,100 1.4 1,605.2 0.01 3.99 9.5 System shut down for future changeout yes SYS-MID 890 5.3 of carbon in first vessel. SYS-EFF < 7.0 < 0.077 1,605.8 04/07/08 SYS-INF 2,581.4 44 7.5 1,100 1.4 15.5 0.02 3.99 Restart system after carbon changeout SYS-MID SYS-EFF 04/10/08 SYS-INF 2,650.3 26 1,200 3.6 10.0 1,634.5 0.03 4.07 yes SYS-MID < 7.0 < 0.077 SYS-EFF < 7.0 < 0.077 04/17/08 SYS-INF 2,826.1 28 962 10.8 1,713.5 0.03 4.29 yes SYS-MID ------SYS-EFF ---04/23/08 SYS-INF 2,969.4 1,100 1.5 1,768.2 0.01 4.36 26 7.5 9.2 yes < 0.077 SYS-MID < 7.0 SYS-EFF < 7.0 < 0.077 04/30/08 4.42 SYS-INF 3,136.8 23 7.5 780 1.4 1,808.4 0.01 5.8 yes SYS-MID < 7.0 < 0.077 SYS-EFF < 7.0 < 0.077 05/07/08 378 SYS-INF 3,304.6 28 7.0 1,857.4 0.01 4.50 --yes SYS-MID 0 ------SYS-EFF 05/14/08 523 SYS-INF 3,472.2 26 6.5 1,902.8 0.01 4.57 yes SYS-MID SYS-EFF 0 05/23/08 SYS-INF 3,690.2 28 264 7.0 1,966.5 0.01 4.68 yes SYS-MID 0 ------SYS-EFF 0 ---

Table 2. SVE/AS System Performance Summary - 1721 Webster Street, Oakland, California FIELD MEASUREMENTS ANALYTICAL RESULTS REMOVAL TPHg Sample ID SVE TPHg Cumulative SVE SVE Benzene Cumulative SVE Hour Meter System Vapor Applied Benzene Air Sparge Comments Vacuum FID Reading Date Reading Flow Rate Lab Data Lab Data Removal Rate TPHg Removal Removal Rate Benzene Removal Unit on? (hours) (cfm) ("H20) (ppm) (ppmv) (ppmv) (lbs/day) (lbs) (yes/no) 05/30/08 SYS-INF 3,859.2 36 317 9.0 2,029.9 0.01 4.78 yes SYS-MID SYS-EFF 0 ---06/05/08 SYS-INF 3,999.6 38 350 2,085.5 0.02 4.87 9.5 yes SYS-MID SYS-EFF 0 06/13/08 SYS-INF 4,193.1 38 700 1.6 8.5 2,154.3 0.02 5.01 yes SYS-MID < 7.0 < 0.077 SYS-EFF < 7.0 < 0.077 06/19/08 SYS-INF 4336.7 25 349 5.6 2,187.9 0.01 5.08 yes SYS-MID 0 SYS-EFF ------06/27/08 SYS-INF 4,529.7 25 335 5.6 2,233.1 0.01 5.18 yes SYS-MID 0 ------SYS-EFF 0 ---07/10/08 SYS-INF 4,839.0 256 0.03 56 12.6 2,395.2 5.51 -----yes SYS-MID 40 ------SYS-EFF 0 07/18/08 5,032.0 330 SYS-INF 33 7.4 2,454.8 0.02 5.64 yes SYS-MID 174 ---SYS-EFF 7/24/2008** SYS-INF 5,178.0 33 360 7.4 2,499.8 0.02 5.73 yes SYS-MID 187 SYS-EFF 0 ---8/1/2008** SYS-INF 5,368.0 33 248 7.4 2,558.5 0.02 5.85 Lowered motor speed of blower to yes SYS-MID 193 reduce noise within garage per client SYS-EFF 0 8/8/2008** SYS-INF 5,536.7 17 4.5 146 3.8 2,585.3 0.01 5.91 Stopped air sparging to wells AS-1 & yes SYS-MID 153 AS-3. Sparging in well AS-2 full time. ------SYS-EFF 0 ---8/18/2008** SYS-INF 5,774.1 17 365 840 1.1 2,630.7 0.01 5.96 4.5 4.6 yes < 0.077 SYS-MID 170 140 SYS-EFF < 7.0 < 0.077 08/22/08 325 SYS-INF 5,873.9 17 4.6 2,649.7 0.01 5.98 yes SYS-MID 207 ---SYS-EFF 0 09/05/08 385 SYS-INF 6,208.4 3.6 2,700.4 0.004 14 ---6.05 yes System shutdown for carbon changeout SYS-MID 219 ------SYS-EFF 23 10/06/08 443 SYS-INF 6,211.0 13 1,000 1.8 3.4 2,700.8 0.004 6.05 System restarted; samples collected after SYS-MID 23 system ran for approximately 1 hour < 7.0 < 0.077 SYS-EFF 0 10/14/08 SYS-INF 6,405.0 15 215 4.7 2,738.4 0.00 6.05 yes SYS-MID 0 ------SYS-EFF 0 ------

Table 2. SVE/AS System Performance Summary - 1721 Webster Street, Oakland, California FIELD MEASUREMENTS ANALYTICAL RESULTS REMOVAL TPHg Sample ID SVE TPHg Cumulative SVE SVE Benzene Cumulative SVE Hour Meter System Vapor Applied Benzene Air Sparge Comments Vacuum FID Reading Date Reading Flow Rate Lab Data Lab Data Removal Rate TPHg Removal Removal Rate Benzene Removal Unit on? (hours) (cfm) ("H20) (ppm) (ppmv) (ppmv) (lbs/day) (lbs) (yes/no) 10/23/08 SYS-INF 6,615.7 14 205 4.5 2,777.8 0.01 6.11 yes SYS-MID 0 SYS-EFF 0 ---10/29/08 SYS-INF 6,760.3 21 160 2,817.5 0.01 6.17 6.6 yes SYS-MID SYS-EFF 0 11/17/08 SYS-INF 7,221.4 20 98 6.3 2,937.6 0.01 6.37 yes SYS-MID 0 ------SYS-EFF 0 ---11/25/08 SYS-INF 7,413.9 19 24 2,986.5 0.01 6.45 ---6.1 yes SYS-MID 0 ------SYS-EFF 0 ---12/05/08 SYS-INF 7,652.3 74 3,034.3 0.01 6.53 15 4.8 Shutdown system to conduct yes SYS-MID 0 -----maintenance on blower. Greased fittings SYS-EFF 0 and lowered motor speed at owner 12/16/08 21 < 0.077 0.00 SYS-INF 7,915.0 15 77 0.43,038.4 6.53 yes SYS-MID 0 SYS-EFF < 7.0 < 0.077 12/23/08 22 SYS-INF 8,079.4 20 0.5 3,041.7 0.00 6.53 --yes SYS-MID SYS-EFF 0 12/31/08 24 SYS-INF 8,277.1 30 0.7 3,047.8 0.00 6.53 yes SYS-MID 0 ---SYS-EFF 0 ---01/06/09 SYS-INF 8,416.9 27 28 0.7 3,051.6 0.00 6.53 Greased blower yes SYS-MID 0 ---SYS-EFF 0 ---01/20/09 SYS-INF 8,756.6 27 NM 3,061.1 0.00 6.53 0.7 Shutdown system to evaluate yes SYS-MID -----effectiveness of remediation on SYS-EFF --groundwater. 02/06/09 50 50 < 0.077 0.00 6.53 SYS-INF 8,756.6 25 0.4 3,061.1 Restart system yes SYS-MID 0 SYS-EFF 0 02/26/09 13 6.53 SYS-INF 9,002.6 22 0.00 0.3 3,064.6 yes Restart system, off on arrival SYS-MID SYS-EFF 0 ---9,197.4 03/06/09 SYS-INF 3,067.6 0.00 6.53 23 ---0.4 yes SYS-MID 0 ---SYS-EFF SYS-INF 03/13/09 NM 20 < 0.077 9,360.4 22 0.1 3,068.5 0.00 6.53 yes SYS-MID NM < 7.0 < 0.077 SYS-EFF NM < 7.0 < 0.077 SYS-INF 03/18/09 3,069.2 6.53 9,480.4 21 0.1 0.00 yes SYS-MID ------SYS-EFF SYS-INF 3,070.3 03/26/09 9,675.1 21 0.1 0.00 6.53 --yes SYS-MID ------SYS-EFF

Table 2. SVE/AS System Performance Summary - 1721 Webster Street, Oakland, California

]	FIELD MEASU	REMENT	S	ANALYTIC	CAL RESULTS		REI	MOVAL			
Date	Sample ID	Hour Meter Reading (hours)	System Vapor Flow Rate (cfm)		FID Reading (ppm)	TPHg Lab Data (ppmv)	Benzene Lab Data (ppmv)		Cumulative SVE TPHg Removal (lbs)		Cumulative SVE Benzene Removal (lbs)	Air Sparge Unit on? (yes/no)	Comments
04/03/09	SYS-INF SYS-MID SYS-EFF	9,868.7	21	5	4 0 0	 	 	0.1	3,071.4	0.00	6.53	yes	
04/10/09	SYS-INF SYS-MID SYS-EFF	10,035.7	22	5	1 0 0	 	 	0.1	3,072.4	0.00	6.53	yes	
04/17/09	SYS-INF SYS-MID SYS-EFF	10,203.7	21	5	4 0 0	 	 	0.1	3,073.3	0.00	6.53	yes	
04/24/09	SYS-INF SYS-MID SYS-EFF	10,366.7	19	5	4 0 0	 	 	0.1	3,074.2	0.00	6.53	yes	Shut AS/SVE off for upcoming QM
05/01/09	SYS-INF SYS-MID SYS-EFF	10,366.7	20	5	3 0 0	 	 	0.1	3,074.2	0.00	6.53	yes	Restart SVE/AS
05/08/09	SYS-INF SYS-MID SYS-EFF	10,543.3	21	5	15 0 0	 	 	0.1	3,075.1	0.00	6.53	yes	
05/15/09	SYS-INF SYS-MID SYS-EFF	10,711.8	20	5	32 0 0	 	 	0.1	3,076.0	0.00	6.53	yes	
05/22/09	SYS-INF SYS-MID SYS-EFF	10,879.5	0	0	NM NM NM	 	 	0.0	3,076.0	0.00	6.53	no	AS compressor down; shut SVE off
09/18/09	SYS-INF SYS-MID SYS-EFF	10,879.5	22	5	41 0 0		 	0.1	3,076.0	0.00	6.53	yes	Restart AS and SVE after repairing AS comp
10/30/09	SYS-INF SYS-MID SYS-EFF	11,889.8	20	5	35 0 0		 	0.1	3,081.5	0.00	6.53	no	SVE on, AS comp has blown fuse
11/30/09	SYS-INF SYS-MID SYS-EFF	12,631.8	20	5	31 0 0	 	 	0.1	3,085.4	0.00	6.53	yes	Replace fuse, restart AS
12/16/09	SYS-INF SYS-MID SYS-EFF	13,017.6	22	5	22 0 0		 	0.1	3,087.7	0.00	6.53	yes	
01/18/10	SYS-INF SYS-MID SYS-EFF	13,808.6	24	5	27 0 0	 	 	0.2	3,092.8	0.00	6.53	yes	
02/03/10	SYS-INF SYS-MID SYS-EFF	14,193.0	12	4	34 0 0	72 <7.0 <7.0	0.25 <0.077 <0.077	0.3	3,097.2	0.00	6.53	yes	Serviced SVE blower, collected lab
04/07/10	SYS-INF SYS-MID SYS-EFF	15,701.1	12	5	45 0 0	 	 	0.3	3,114.6	0.00	6.58	no	AS off, comopressor non-op

Notes: NM = not measured cfm = cubic feet per minute.

cfm = cubic feet per minute.
ppmv = Parts per million by volume
lbs = Pounds
"H2O = Inches of water
SVE/AS = Soil vapor extraction and air sparge
FID = Flame Ionization Detector.

Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

Rate = vapor analytical concentration (ppmv) x system flowrate (scfm) x (1lb-mole/386 ft³) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

* = Subtracted carbon tip readings of 28, 17, and 10, respectively, from influent, midpoint and effluent readings without carbon tip to account for methane.

*Soil vapor flow rates were not measured on 1/15/08 and 1/23/08 due to equipment breakage. For hydrocarbon mass removal calculation purposes, the flow rate recorded during the 1/10/08 visit was used.

**Vapor flow meter being serviced from 7-24-2008 through 8-18-2008. Flow rates assumed from previous data, field observations, and adjustments made to system.

APPENDIX A

Groundwater Monitoring Program

Table A - Groundwater Monitoring Program

Douglas Parking Company, 1721 Webster Street, Oakland, CA.

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency	TPHg/BTEX/ MTBE	TAME/TBA/ DIPE/ETBE/ MTBE
Onsite Monitoring and Remediation Wells								
MW-1	Mon	17-30	Source Area	2	1st, 3rd	1st	1st	
MW-2	Mon	19.5-29.5	Downgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
MW-3	Mon	20-30	Upgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
AS-1	Rem	27-30	Source Area	1				
AS-2	Rem	27-30	Source Area	2				
AS-3	Rem	27-30	Source Area	2				
Offsite Monitor	ring Wells							
MW-4	Mon	15-30	Mid-Downgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
MW-5	Mon	10-25	Downgradient	2	1st, 3rd	1st	1st	
MW-6	Mon	15-30	Crossgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
MW-7	Mon	15-30	Upgradient	2	1st, 3rd	1st	1st	

Notes and Abbreviations:

1st = Sampled during the 1st quarter, typically January

1st, 3rd = Sampled during the 1st and 3rd quarters, typically January and July

Mon = Groundwater Monitoring Only

Rem= Remediation Well Only

--- = None or not applicable

AS-1 = Air Sparging Well

APPENDIX B

Groundwater Monitoring Field Data Sheets

Well Gauging Data Sheet

			Won Out	iging Data s					
Project.Ta				Project Name		LAS PA	RKING		
Address	1721		ER ST,	Signature: Date: 2-3-10					
Name:	BRIA	N Busi		Signature:	_				
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point		
MW-1	Z	0701			22.08	25.85	TOC		
Mw.Z	2	0659			19.84	25.20			
Mw3	2	0655			21.55	25.37			
Mw-4	2	0646			18.24	29.29			
MW-S	2	0643			IS.77	24.27			
MW-6	2	0649			20.19	24.33			
MW-7	2	0652			21.87	25,02	$\sqrt{}$		
	-	÷							
		×							
		33							

Comments:

** MW-1, MW-2 Well Vaw 1ts need to be

re-tapped for bigger bolts.

MONITORING FIELD DATA	SHEET Well ID: MW- /						
Project.Task #:	Project Name: DOUGLAS						
Address: 1721 Webster, Oakl	and, CA						
Date: 2-3-10	Weather: Sunny						
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total Depth (TD): 25,85	Depth to Product:						
Depth to Water (DTW): 22.08	Product Thickness:						
Water Column Height: 3.77	1 Casing Volume: 0.6 gallons						
Reference Point: NTOC	3_ Casing Volumes: / gallons						
Purging Device: disposable ba	iler						
Sampling Device:							
Time Temp © (50 pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW 0.6						
1115 8.0 6.65 557	1.2						
1118 17.9 6.62 562	1.8						
Comments:							
Comments.							
Δ.	lla.						
Sample ID: MW-	Sample Time: 120						
Laboratory: McCampbell Analytical	Sample Date: 2-3-10						
Containers/Preservative: 3 VOA w/ HCL							
Analyzed for: TPHg, BTEX, MTBE - 8015	6Cm / 8021B						
Sampler Name: BRIAN BUSCH	Signature: h /h/						

MONITORING FIELD DATA	SHEET Well ID: MW- 2						
Project.Task #:	Project Name: DOUG LAS						
Address: 1721 Webster St.,							
Date: 2-3-10	Weather: Sunny						
Well Diameter: Z"	Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3^{6} = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^{2} * 0.163}$						
Total Depth (TD): 25.20	Depth to Product:						
Depth to Water (DTW): 19.84	Product Thickness:						
Water Column Height: 5.36	1 Casing Volume: 0-85 gallons						
Reference Point: NTOC	3 Casing Volumes: 2.55 gallons						
Purging Device: disposable bail	l~						
Sampling Device:							
Time Temp © pH Cond (µs) VW 19.3 5.0 59%	NTU DO(mg/L) ORP (mV) Vol(gal) DTW 0.9						
1032 19.8 5.98 612	1.8						
1036 20.0 6.07 624	2.7						
10,0 70.0 0,07							
Comments:							
Och Million Co.							
Sample ID: MW- 2	Sample Time: 1040						
Laboratory: McCampbell Analytical	Sample Date: 7.3./0						
Containers/Preservative: 3 VOA w/ HCL							
Analyzed for: TPHg, BTEX, MTBE - 8015	Cm / 8021B						
Sampler Name: BRIAN BUSCH	Signature: / //						

MONITORING FIELD DATA	A SHEET Well ID: MW- 3						
Project.Task #:	Project Name: DOUGUAS						
Address: 1721 Webster, Oak	cloud, CA						
Date: 2-3-10	Weather: Sunny						
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total Depth (TD): 25.87	Depth to Product:						
Depth to Water (DTW): 21.55	Product Thickness:						
Water Column Height: 4,32	1 Casing Volume: 0.7 gallons						
Reference Point: NTOC	3_ Casing Volumes: 2.1 gallons						
Purging Device: disposable	bailer						
Sampling Device:	h						
Time Temp © pH Cond (μs) 0952 [8,9 5.45 434	NTU DO(mg/L) ORP (mV) Vol(gal) DTW 0.7						
0956 19.4 6.11 441	1.4						
0969 195 6.21 451	2.1						
Comments:							
Comments:							
	1000						
Sample ID: MW- 3	Sample Time: /000						
Laboratory: McCampbell Analytical	Sample Date: 7-3-10						
Containers/Preservative: 3 VOA w/ HCL							
Analyzed for: TPHg, BTEX, MTBE - 8015	5Cm / 8021B						
Sampler Name: BRIAN BUSCH	Signature:						

MONITORING FIELD DATA SHEET Well ID: MW-					
Project.Task #:	Project Name: DOUGLAS				
Address: 1721 Webster,	Oakland, CA				
Date: 2-3-10	Weather: Show				
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163				
Total Depth (TD): 29.29	Depth to Product:				
Depth to Water (DTW): 18-24	Product Thickness:				
Water Column Height: 1.05	1 Casing Volume: 1-77 gallons				
Reference Point: NTOC	3_Casing Volumes: 5.3 gallons				
Purging Device: disposable bailer					
Sampling Device:	ч				
Time Temp © pH Cond (µs					
0803 16.9 7.42 523	1.8				
0809 17.5 6.56 526	3.6				
0319 17.7 6.61 534	5.4				
Comments:					
	:				
Sample ID: MW-	Sample Time: 0823				
Laboratory: McCampbell Analytical	Sample Date: 7-3-70				
Containers/Preservative: 3 VOA w/ HC					
Analyzed for: TPHg, BTEX, MTBE - 80	015Cm / 8021B				
Sampler Name: BRIAN BUSCH Signature: / Signature:					

MONITORING FIELD DATA SHEET		Well ID:	MW-	5	
Project.Task #:	Project Name:	D006LA	5		
Address: 1721 Webster, Oakland, CA					
Date: 2-3-46	Weather: Sun	nv			
Well Diameter: 2	1" = 0.04	$3^{y} = 0.37$ 6 $4^{u} = 0.65$ r	6'' = 1.47 radius ² * 0	.163	
Total Depth (TD): 24.27	Depth to Product:				
Depth to Water (DTW): 15.77	Product Thickness:				
Water Column Height: 8.5	1 Casing Volume:	1.3	6	gallons	
Reference Point: NTOC	3_ Casing Volu	umes:	1.08	gallons	
Purging Device: disp. bailer					
Sampling Device: Time Temp® pH Cond (µs) 0703 8. 6.29 731 0703 8.6 6.59 569.5 0713 18.5 6.64 545.7	NTU DO(mg/L)	ORP (mV)	Vol(gal) 1.4 2.8 4.2	DTW	
- Commone.					
Sample ID: MW- 5	Sample Time: 0715				
Laboratory: McCampbell Analytical	Sample Date: 2-3-10				
Containers/Preservative: 3 VOA w/ HCL					
Analyzed for: TPHg, BTEX, MTBE - 8015Cm / 8021B					
Sampler Name: BRIAN BUSCH	Signature:				

MONITORING FIELD DATA	SHEET Well ID: MW-6			
Project.Task #:	Project Name: DDUGLAS			
Address: 1721 Webster, Oakland, CA				
Date: 2-3-10	Weather: Sun 444			
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163			
Total Depth (TD): 24.33	Depth to Product:			
Depth to Water (DTW): 20.19	Product Thickness:			
Water Column Height: 4.19	1 Casing Volume: 0.67 gallons			
Reference Point: NTOC	3 Casing Volumes: 2.01 gallons			
Purging Device: disposable bailer				
Sampling Device: Time Temp® pH Cond (µs) 0846 17.6 6.57 530 0850 18.5 6.42 557 0853 18.3 6.48 571	NTU DO(mg/L) ORP (mV) Vol(gal) DTW 0.7 1.4 2.1			
Comments:				
Sample ID: MW- 6	Sample Time: 0855			
Laboratory: McCampbell Analytical	Sample Date: 2.3-/0			
Containers/Preservative: 3 VOA w/ HCL				
Analyzed for: TPHg, BTEX, MTBE - 8015Cm / 8021B				
Sampler Name: BRIAN BUSCH Signature: 12 /2				

MONITORING FIELD DATA	A SHEET Well ID: MW-									
Project.Task #:	Project Name: DOUGLAS									
Address: 1721 Webster, Oaklo										
Date: 2-3-10	Weather: Sunny									
Well Diameter: 2"	Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$									
Total Depth (TD): 25.02	Depth to Product:									
Depth to Water (DTW): 21.87	Product Thickness:									
Water Column Height: 3.15	1 Casing Volume: 0-5 gallons									
Reference Point: NTOC	3 Casing Volumes: 1.5 gallons									
Purging Device: disposable										
Sampling Device:	n									
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW									
09/8 18.1 6.42 482	0.5									
0921 18.8 6.38 421	1.0									
0923 18.7 6.38 409	1.5									
Comments:										
Sample ID: MW- 7	Sample Time: 0925									
Laboratory: McCampbell Analytical	Sample Date: Z-3-/0									
Containers/Preservative: 3 VOA w/ HCL										
Analyzed for: TPHg, BTEX, MTBE - 8015	5Cm / 8021B									
Sampler Name: BRIAN BUSCH										

APPENDIX C

Laboratory Analytical Reports

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: DOUGLAS; 1721	Date Sampled: 02/03/10
1710 Franklin Street, Ste. 200	Webster St, Oakland	Date Received: 02/03/10
200	Client Contact: Erica Ray	Date Reported: 02/09/10
Oakland, CA 94612	Client P.O.:	Date Completed: 02/08/10

WorkOrder: 1002077

February 09, 2010

Dear 1	

Enclosed within are:

- 7 analyzed samples from your project: **DOUGLAS**; 1721 Webster St, Oakla 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

1		Pangea	Enviro	nmen	tal Sei	rvi	ces	, Ir	ıc.										0	H	AI	N	OF	C	US	ST	OI	Y	R	E	CO	RI)	
i				Franklin											Т	UF	IN.	AR		IND														X
1		Oakland, CA 94612 Website: www.pangeaenv.com						-					1					RUS			HR		48 F			2 HR	5 DAY							
77		ne: (510) 83					Pax:	(510)) 8.	36-3	709)		!	EI)F I	Req	uire	d?(Coel	y (r	ori	mal)	1	No	V	Vrite	e Or	ı (D	W)	N	0		
	Report To: Erica				Bill To:	Pa	ngea													A	nal	ysis	Rec	ues	t						()the	r	Comments
	Company: Pange																																	Filter
	1710 1	Franklin St	reet, Suite	200, O	akland,	CA	946	12							3E		6										0							Samples
					E-Mail:				_	nv.c	om	1			8015)/MTBE		use (5520 E&F/B&F)	=									8310							for Metals
	Tele: (510) 735-1	751			Fax: (51										(\$11		E&	(418									70/							analysis:
3	Project #:	1			Project !					64					+		5520	ons		20)		>					/82	6	_					Yes / No
	Project Location:		WEBSTE	R ST	, DAK	LA	NO	, (CA	9	76	12			8020		ase (arb		/ 80		N					625	602	020	6				
	Sampler Signatur	e: //	- Phil	_		_	_		_		_				602/	_	Gree	dro	=	602		1,8 (09		PA	10/	9/0	(0109				
		LOCATION	SAMP	LING	. e	ners	N	IAI	RI	X		RES			s Gas ((8015	Oil &	ım Hy	0 / 802	(EPA	-	2 PCB	41	51	24 / 82	/8270	s by E	09) str	ls (601	6.002				
	SAMPLE ID (Field Point Name)	(1721 Webster / Douglas Parking)	Date	Tim e	# Containers	Type Containers	Water	Soil	All	Other	ICE	HCL	HNO3	Other	BTEX & TPH a	TPH as Diesel (8015)	Total Petroleum Oil & Gr	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 /	T03/T015			
+2	MW-1		2-3-10	1120	3	700	X		*		T	X			X																			
	MW-2		1	1040	3	1	V	\top			†	X			X																			
+	MW-3			[000]	3	$^{+}$		+	+	+	+	V			Ć.																			
1				0823	-	Н	7	+	+	+	+	0			0						-			-	-		-			\vdash				
+	MW-4			-	3	Н	٨	+	+	+	⊢	A			X.						-			-									-	
+	MW-5			0715	3	Ш	X	+	+	-	⊢	X			_								- 1		_								_	
+	MW-6			0855	3		X	4	_		┖	X			X																			
+	MW-7		V	0925	3	V	X					X			X																			
									+																									
								+	+	-	\vdash																						-	
						Н		+	+	+	\vdash	\vdash																					+	
						Н		+	+		1	1																					\dashv	
						П				1																								
	Relinquished By:	C.	Date:	Time:	Received	By:	1	S L	> .	10					GO HE. DEC	OD (AD S CHL PRO	CON SPAC ORI PRI	DIT CE A NAT	ION BSE ED CON	NT_4 IN L/	AB_	s_ ,	/					(СОМ	IME	NTS:	:		
	Relinquished By:	-2	Date:	Time:	Received													TIO	vo	n/s	0&		MET		s c	тн	ER							

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

10

Prepared by: Shino Hamilton

Pittsburg, CA 94565-1701 WorkOrder: 1002077 ClientCode: PEO (925) 252-9262 WaterTrax WriteOn ✓ EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Bill to: Report to: Requested TAT: 5 days Bob Clark-Riddell Erica Ray Email: eray@pangeaenv.com Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 02/03/2010 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 Oakland, CA 94612 ProjectNo: DOUGLAS; 1721 Webster St, Oakland Date Printed: 02/03/2010 FAX (510) 836-3709 (510) 836-3700 Requested Tests (See legend below) Lab ID **Client ID** Collection Date Hold 2 3 5 6 9 10 12 Matrix 1 11 1002077-001 MW-1 Water 2/3/2010 11:20 Α 1002077-002 MW-2 2/3/2010 10:40 Α Water 1002077-003 MW-3 Water 2/3/2010 10:00 Α 1002077-004 MW-4 Α Water 2/3/2010 8:23 1002077-005 MW-5 Water 2/3/2010 7:15 Α 1002077-006 MW-6 Water 2/3/2010 8:55 Α 1002077-007 MW-7 Water 2/3/2010 9:25 Α Test Legend: 5 2 G-MBTEX W PREDF REPORT 3

Comments:

6

11

7

12

8

Sample Receipt Checklist

Client Name:	Pangea Environmenta	al Svcs., Inc.			Date a	and Time Received:	2/3/2010 6	5:43:49 PM
Project Name:	DOUGLAS; 1721 Web	ster St, Oaklar	nd		Check	list completed and r	eviewed by:	Shino Hamilton
WorkOrder N°:	1002077 Matr	rix <u>Water</u>			Carrie	r: Rob Pringle (M	IAI Courier)	
		<u>Chain c</u>	of Cu	stody (C	OC) Informa	tion		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinquished	and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample labels	?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No \square			
Date and Time of	f collection noted by Client or	n COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u>Sar</u>	nple	Receipt	Information			
Custody seals in	tact on shipping container/c	cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good condition?		Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	✓	No 🗌			
		Sample Preserv	ation	and Ho	old Time (HT)	Information		
All samples recei	ived within holding time?		Yes	✓	No 🗌			
Container/Temp I	Blank temperature		Coole	r Temp:	3.4°C		NA \square	
Water - VOA via	ls have zero headspace / n	o bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	hecked for correct preserva	tion?	Yes	✓	No 🗌			
Metal - pH accep	otable upon receipt (pH<2)?		Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Type:	WE	TICE)			
* NOTE: If the "N	No" box is checked, see co	mments below.						
	=======		==	===				======
Client contacted:		Date contacted	d:			Contacted	by:	
0								

Pangea Environmental Svcs., Inc.	Client Project ID: DOUGLAS; 1721 Webster St, Oakland	Date Sampled:	02/03/10		
1710 Franklin Street, Ste. 200	webster St, Oakiand	Date Received:	02/03/10		
	Client Contact: Erica Ray	Date Extracted:	02/04/10-02/06/10		
Oakland, CA 94612	Client P.O.:	Date Analyzed:	02/04/10-02/06/10		

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*										
Extraction	on method: SW5030B			Analyt	ical methods:	SW8021B/8015	Bm		Wor	k Order:	1002077
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1	W	ND	ND	ND	ND	ND	ND	1	102	b1
002A	MW-2	W	22,000	ND<100	47	140	500	3000	20	110	d1
003A	MW-3	W	5300	ND<25	1.5	2.3	ND	2.7	1	84	d1
004A	MW-4	W	2900	ND<50	38	20	69	54	10	117	d1
005A	MW-5	W	ND	ND	ND	ND	ND	ND	1	97	
006A	MW-6	W	6200	ND<150	82	180	190	550	3.3	107	d1
007A	MW-7	W	ND	ND	ND	ND	ND	ND	1	96	
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/L	
	eans not detected at or	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	<u>.</u> g

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg,	wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all
TCLP & SPLP extracts in mg/L.	

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 48473 WorkOrder 1002077

EPA Method SW8021B/8015Bm	Extra	tion SW	5030B					S	Spiked San	nple ID	: 1002077-0	007A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
/ tildly to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf	ND	60	112	96.7	15.0	92.6	103	11.0	70 - 130	20	70 - 130	20
MTBE	ND	10	111	123	10.4	119	117	1.49	70 - 130	20	70 - 130	20
Benzene	ND	10	108	113	4.39	91.7	88.4	3.70	70 - 130	20	70 - 130	20
Toluene	ND	10	96.8	98.7	2.00	87.6	86.2	1.70	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.7	99	2.35	85.7	85.7	0	70 - 130	20	70 - 130	20
Xylenes	ND	30	110	112	1.62	86.1	86.3	0.261	70 - 130	20	70 - 130	20
%SS:	96	10	103	104	0.775	100	93	6.96	70 - 130	20	70 - 130	20

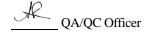
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 48473 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002077-001A	02/03/10 11:20 AM	02/05/10	02/05/10 1:27 AM	1002077-002A	02/03/10 10:40 AM	02/04/10	02/04/10 6:35 PM
1002077-003A	02/03/10 10:00 AM	02/05/10	02/05/10 1:57 AM	1002077-004A	02/03/10 8:23 AM	02/04/10	02/04/10 7:09 PM
1002077-005A	02/03/10 7:15 AM	02/05/10	02/05/10 2:27 AM	1002077-006A	02/03/10 8:55 AM	02/06/10	02/06/10 8:31 AM
1002077-007A	02/03/10 9:25 AM	02/06/10	02/06/10 7:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1135.001; DOUGLAS, 1721 Webster, Oakland	Date Sampled: 02/03/10
1710 Franklin Street, Ste. 200	1721 Webster, Oakland	Date Received: 02/04/10
1710 Trankin Street, Sec. 200	Client Contact: Brian Busch	Date Reported: 02/09/10
Oakland, CA 94612	Client P.O.:	Date Completed: 02/09/10

WorkOrder: 1002111

February 09, 2010

Dear 1	

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #1135.001; DOUGLAS, 1721 Webst
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, Ca 94565-1701 Website: www.mccampbell.com Telephone: (925) 798-1620 Fax: (925) 798-1622 EDF Required? Coelt (Normal) No Write On (DW) No Fax: (925) 798-1622 EDF Required? Coelt (Normal) No Write On (DW) No Filter Samples Fax: (925) 798-1622 EDF Required? Coelt (Normal) No Write On (DW) No Filter Samples Fax: (925) 798-1622 Fax: (926) 798-1622 Fa						
Nebsite: www.mccampbell.com						
Website: www.mccampbell.com Telephone: (925) 798-1620 Fax: (925) 798-1622 EDF Required? Coelt (Normal) No Write On (DW) No						
Report To: Brian Busch Bill To: Pangea Analysis Request Other Comments						
Company: Pangea Environmental Technology, Inc. 1710 Franklin Street, Suite 200, Oakland, CA 94612 E-Mail: bbusch@pangeaenv.com Tele: (925) 708-2775 Fax: (510) 836-3709 Project H: //35.001 Project Name: DOGAS Project Location: 1721 WEBSTER, OAKLANO, CA Sampler Signature: SAMPLE ID LOCATION Wetals (0010) 6050 PRESERVED Samples (0010) 6050 PRESERVED Samples (0010) 6050 PRESERVED Samples (0010) 6050 PRESERVED						
Tele: (925) 708-2775 Fax: (510) 836-3709 Project Location: 1721						
Tele: (925) 708-2775 Fax: (510) 836-3709 Froject H: //35.00) Project Name: DOGGAS Project Location: 1721 WEBSTER, OAKLANO, CA Sampler Signature: SAMPLING SAMPLI						
Tele: (925) 708-2775 Fax: (510) 836-3709 Project #: //35.001 Project Name: DOGAS Sampler Signature: SAMPLING SAMPLING SAMPLE ID (Field Point Name) L2 Metals (6010 / 6000 / 60						
Tele: (925) 708-2775 Fax: (510) 836-3709 Project #: //35.001 Project Name: DOUGAS Project Location: 1721 WEBSTER, OAKLANO, CA Sampler Signature: SAMPLING SAMPLE ID (Field Point Name) Corona analysis: Yes/No SAMPLE ID (Field Point Name) SAM						
Project #: 77 33 . 001 Project Name: \$00 GAS Project Name: \$00 GAS Project Location: 1721 WEBSTER, OAKLANO, CA Project Location Oil & Grease (801 8010 8021 802 80						
Sampler Signature: Sampler						
Sampler Signature: Containers Containers Containers						
Containers Con						
Contain Date Lime Date Lime Date Lime Date						
(Field Point Name) Date Time Unit S 252 524.2.2 NON NON NON NON NON NON NON NON NON NO						
Date Time E X 5						
Control						
INF 23.10 1530 1 beg X X X						
MID X X X Yesuits						
EFF V V i V X I in pamv.						
Relinquished By:// Datq: Time: Received By: ICE/to						
GOOD CONDITION V HEAD SPACE ABSENT						
Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB						
APPROPRIATE CONTAINERS V PRESERVED IN LAB						
elinquished By: Date: Time: Received By:						
VOAS O&G METALS OTHER						

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

ClientCode: PEO

WorkOrder: 1002111

Page 1 of 1

Prepared by: Shino Hamilton

		WaterTrax	WriteOn	✓ EDF		Excel		Fax	I	✓ Email		Hard	Сору	Thir	dParty	☐ J-	flag
Report to: Brian Busch		Email: b	busch@pang	geaenv.com			Bill to:	b Clark	-Ridde	II			Req	uested	TAT:	5 (days
-		cc: PO: ProjectNo: #		OUGLAS, 1721 W	/ebste	r,	17	ingea E 10 Fran akland,	ıklin Stı	eet, Ste		nc.	Date Received: (02/04/2010 02/04/2010		
							1	1	Req	1	Tests	(See le	gend b	1			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1002111-001	INF		Air	2/3/2010 15:30		Α	Α										
1002111-002	MID		Air	2/3/2010 15:30		Α											
1002111-003	EFF		Air	2/3/2010 15:30		Α											
Test Legend:	TEX AID												г	- I			

The following SampIDs: 001A, 002A, 003A contain testgroup.

7 12

Comments:

Sample Receipt Checklist

Client Name:	Pangea Environn	nental Svcs., Inc.			Date a	and Time Received:	2/4/2010 4	:38:50 PM
Project Name:	#1135.001; DOUG	SLAS, 1721 Webst	er, O	akland	Check	dist completed and r	eviewed by:	Shino Hamilton
WorkOrder N°:	1002111	Matrix <u>Air</u>			Carrie	r: Rob Pringle (M	IAI Courier)	
		<u>Chair</u>	of Cu	stody (CO	C) Informa	ation		
Chain of custody	present?		Yes	V	No \square			
Chain of custody	signed when relinqui	shed and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No \square			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u>s</u>	ample	Receipt In	formation	<u>l</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping containe	er/cooler in good cond	ition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No \square			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗆			
		Sample Prese	rvatio	n and Hold	Time (HT) Information		
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes		No \square	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	l<2)?	Yes		No \square		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			
* NOTE: If the "N	No" box is checked, se	ee comments below.		===	===:	=====	====	======
Client contacted:		Date contac	ted:			Contacted	by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1135.001;	Date Sampled:	02/03/10
1710 Franklin Street, Ste. 200	DOUGLAS, 1721 Webster, Oakland	Date Received:	02/04/10
,	Client Contact: Brian Busch	Date Extracted:	02/05/10
Oakland, CA 94612	Client P.O.:	Date Analyzed:	02/05/10

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Bm Extraction method: SW5030B Work Order: 1002111 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes % SS Comments 001A INF A 260 ND 0.81 2.7 0.58 8.6 002A ND ND ND ND 1 96 MID A ND ND 003A **EFF** A ND ND ND ND ND ND 99 1 Reporting Limit for DF = 1; Α 2.5 0.25 0.25 0.25 0.25 25 μ g/L ND means not detected at or 0.05 1.0 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

* water and	i vapor samp	les are reporte	. soil/sliidge			 wipe san 	nnles in ilg/wine	nroduct/oil	11011110	
	i vapor samp			ysona sami	nies in mg/kg					1n mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

1534 Willow Pass Road, Pittsburg, CA 94565-1701 $Web: www.mccampbell.com \qquad E-mail: main@mccampbell.com$

Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1135.001; DOUGLAS, 1721 Webster, Oakland	Date Sampled: 02/03/10
1710 Franklin Street, Ste. 200	DOUGLAS, 1721 Webster, Oakiand	Date Received: 02/04/10
,	Client Contact: Brian Busch	Date Extracted: 02/05/10
Oakland, CA 94612	Client P.O.:	Date Analyzed: 02/05/10

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extraction	on method: SW5030	ethod: SW5030B Analytical methods: SW8021B/8015Bm								k Order:	1002111
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF	A	72	ND	0.25	0.71	0.13	2.0	1	#	d1
002A	MID	A	ND	ND	ND	ND	ND	ND	1	96	
003A	EFF	A	ND	ND	ND	ND	ND	ND	1	99	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.													
Reporting Limit for DF =1;	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L				
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg				

^{*} vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 48488 WorkOrder 1002111

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1002115-007B											07B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	S-LCSD Acceptance Criteria (%)				
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex)	ND	60	110	117	5.63	114	117	2.08	70 - 130	20	70 - 130	20	
MTBE	ND	10	123	123	0	124	124	0	70 - 130	20	70 - 130	20	
Benzene	ND	10	109	120	9.79	106	106	0	70 - 130	20	70 - 130	20	
Toluene	ND	10	95.9	107	10.7	93.7	93.2	0.544	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	96.3	107	10.1	94.9	92.7	2.33	70 - 130	20	70 - 130	20	
Xylenes	ND	30	110	121	10.1	108	105	3.18	70 - 130	20	70 - 130	20	
%SS:	105	10	101	102	1.30	101	101	0	70 - 130	20	70 - 130	20	

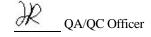
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 48488 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002111-001A	02/03/10 3:30 PM	02/05/10	02/05/10 3:02 PM	1002111-002A	02/03/10 3:30 PM	02/05/10	02/05/10 3:32 PM
1002111-003A	02/03/10 3:30 PM	02/05/10	02/05/10 4:02 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

