RECEIVED

9:50 am, Nov 10, 2010

Alameda County Environmental Health

November 4, 2010

Paresh Khatri Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Authorization To Sign On Behalf of Ms. Kanwaljit Sappal 6211 San Pablo Avenue Oakland, California AEI Project # 280346 Fuel Leak Case RO0000127

Dear Mr. Khatri:

This letter has been submitted to inform you that I (Ms. Kanwaljit K. Sappal) am the owner of the property located at 6211 San Pablo Avenue in San Pablo, California, and that Jeremy Smith of AEI Consultants is authorized to sign reports and correspondence submitted to the Alameda County Health Care Services Agency on my behalf. I declare, to the best of my knowledge, that the information and/or recommendations contained in the attached document are true and correct.

If you have any additional questions or require additional information, please contact me at (707) 553-1200.

Best Regards,

KKSeppel

Kanwaljit Sappal

cc: Mr. Jeremy Smith - AEI Consultants

October 5, 2010

WELL INSTALLATION & FEASIBILITY STUDY REPORT

6211 San Pablo Avenue Oakland, California

AEI Project No. 280346

Prepared For

Mr. Pritpaul Sappal 2718 Washburn Court Vallejo, California 94591

Prepared By

AEI Consultants 2500 Camino Diablo Walnut Creek, California 94597 (925) 746-6000

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND HISTORY	
2.0		2
3.0	GEOLOGY AND HYDROGEOLOGY	······
4.0	MONITORING WELL INSTALLATION	4
2	4.1 Soil Sampling	
2	4.2 Groundwater Grab Sampling - Soil Borings	4
2	4.3 Soil Sampling Results	5
2	4.4 Groundwater Grab Sampling Results	5
2	4.5 Monitoring Well Installation	
5.0	Well Development and Sampling	6
4	5.1 Field Results	7
4	5.2 Groundwater Quality	7
<u> </u>		o
0.0	SHE SURVEY	0
7.0	SOIL VAPOR PROBE INSTALLATION AND SAMPLING	9
7	7.1 Soil Vapor Monitoring Probe Installation	9
7	7.2 Baseline Soil Vapor Sampling	9
	7.2.1 Sampling Methodology	
	7.2.2 Soil Gas Permeability	
	7.2.3 Soil Vapor Field Screening Results and Bioventing Feasibility	
7	7.3 Soil Vapor Analytical Results	
8.0	PILOT STUDY ACTIVITIES	
8	8.1 Pressure and Oxygen Influence Testing	
8	8.2 Air Sparging Pilot Testing	
	8.2.1 AS-1 Test Details	
	8.2.2 AS-2 Test Details	
	8.2.3 AS-3 Test Details	
ž	8.3 Air Sparging Results	
	8.3.1 Injection Pressure and Flow Rate	
	8.3.2 DO una OKF Monitoring	
	8.3.4 Soil Gas Pressure Monitoring	
	8.3.5 Helium Distribution and Recovery	22
8	8.4 Air Sparging Conclusions	
	8.4.1 AS-1 Conclusions	
	8.4.2 AS-2 Conclusions	
	8.4.3 AS-3 Conclusions	
9.0	SUMMARY AND CONCLUSIONS	
ç	9.1 Groundwater Conditions	
9	9.2 Soil Conditions	
9	9.3 Soil Vapor Conditions	
9	9.4 Pilot Testing - Bioventing	
9	9.5 Pilot Testing - Sparging	

9.6 Conclusions	27
10.0RECOMMENDATIONS	28
10.1 Low Risk Closure Overview	29
10.2 Factor 1. Affected groundwater is limited in extent	29
10.3 Factor 2. Further migration of impacted groundwater is unlikely	30
10.4 Factor 3. Drinking water wells, or other sensitive receptors, are not located close to the plume	30
10.5 Factor 4. There is a low likelihood that impacted groundwater will be needed before its beneficial restored by natural attenuation.	use is30
10.6 Factor 5. Impacted groundwater is shallow and within the depth limits of surface seal protection re by local well construction requirements	quired
10.7 Factor 6. Appropriate corrective action, including appropriate source removal, has been performed	31
10.8 Factor 7. The remaining petroleum does not pose a threat to human health or safety	31
10.9 Conclusion and Request for Closure	32
11.0References	33
12.0REPORT LIMITATION & SIGNATURES	34

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	Extended Site Plan
FIGURE 3	SITE PLAN
FIGURE 4	FENCE DIAGRAM LOCATION MAP
FIGURE 5	Fence Diagram A-A'
FIGURE 6	Fence Diagram B-B'
FIGURE 7	GROUNDWATER ELEVATION MAP
FIGURE 8	Soil Analytical Map
FIGURE 9	GROUNDWATER ANALYTICAL MAP
FIGURE 10	TYPICAL SOIL VAPOR MONITORING PROBE
FIGURE 11	INFLUENT PID READINGS OVER TIME
FIGURE 12	Wellhead Pressure Over Time
FIGURE 13	PRESSURE TRANSDUCER RESPONSES OVER TIME (SPARGING AS-1)
FIGURE 14	PRESSURE TRANSDUCER RESPONSES OVER TIME (SPARGING AS-2)
FIGURE 15	PRESSURE TRANSDUCER RESPONSES OVER TIME (SPARGING AS-3)
FIGURE 16	Soil Gas Pressure Over Time (AS-1)
FIGURE 17	Soil Gas Pressure Over Time (AS-2)
FIGURE 18	Soil Gas Pressure Over Time (AS-3)
FIGURE 19	Sparge Test AS-1 Helium Distribution
FIGURE 20	SPARGE TEST AS-2 HELIUM DISTRIBUTION
FIGURE 21	Sparge Test AS-3 Helium Distribution
FIGURE 22	MW-3 GROUNDWATER CONCENTRATIONS OVER TIME
FIGURE 23	MW-4 GROUNDWATER CONCENTRATIONS OVER TIME

TABLES

TABLE 1	Soil Analytical Data
TABLE 2	GROUNDWATER ANALYTICAL DATA – SOIL BORINGS
TABLE 3	Soil Vapor Analytical Data
TABLE 4	ADDITIONAL SOIL ANALYTICAL DATA
TABLE 5	GROUNDWATER ELEVATION DATA
TABLE 6	GROUNDWATER FLOW DATA
TABLE 7	GROUNDWATER ANALYTICAL DATA – MONITORING WELLS
TABLE 8	Soil Gas Field Screening Data Summary
TABLE 9	Combined Influent PID Readings Over Time
TABLE 10	SPARGE TEST MONITORING PARAMETERS SUMMARY
TABLE 11	AIR SPARGE WELL INJECTION PRESSURE OVER TIME
TABLE 12	Soil Gas Pressure Over Time
TABLE 13	HELIUM DISTRIBUTION DATA SUMMARY
TABLE 14	Helium Recovery Test Data Summary
TABLE 15	SUMMARY OF MONITORING POINT DETAILS

APPENDICES

APPENDIX A	Soil Borings
APPENDIX B	Permits
Appendix C	LABORATORY ANALYTICAL REPORTS
APPENDIX D	GROUNDWATER MONITORING WELL FIELD SAMPLING FORMS
Appendix E	Well Survey

1.0 INTRODUCTION

AEI has prepared this report on behalf of Mr. Pritpaul Sappal (client) for the property located at 6211 San Pablo Avenue, Oakland, California (Figure 1: Site Location Map). AEI has been retained by the client to provide environmental engineering and consulting services relating to the release of petroleum hydrocarbons from the use of underground storage tanks (USTs) at the property. The ongoing investigation and remediation of the release is being performed under the direction of the Alameda County Health Care Services Agency (ACHCSA). AEI submitted the "Feasibility Study/Corrective Action Plan Addendum" to the ACHCSA on September 29, 2009. The addendum was approved by the ACHCSA in a letter dated October 22, 2009. This report has been prepared to document and summarize the methods and findings of the recent installation and sampling activities and to evaluate the proposed remedial options. In summary, this report contains the following:

- A summary of the historic and current site conditions.
- Details of the installation, survey, and sampling activities for offsite wells MW-7 through MW-10.
- Details of the installation and sampling activities for soil vapor probes SG-4 through SG-8.
- Details of the pilot testing activities for both soil and groundwater remediation alternatives, which included Bio-venting and sparging.
- A low risk closure evaluation for the subject site.

2.0 SITE DESCRIPTION AND HISTORY

The subject property is located at 6211 San Pablo Avenue, northwest of the intersection of San Pablo Avenue and 62^{nd} Street in a mixed residential and light commercial area of Oakland, California (Figure 1 and 2). The site currently consists of a retail gasoline station with three USTs dispensing gasoline fuel through six dual-sided fuel dispensing islands. Site features are included in Figure 3.

In April 1999, three borings B-1 through B-3 were advanced at the site by Herschy Environmental, Inc. (Herschy). Significant concentrations of hydrocarbons were present in the soil and groundwater samples collected during the investigation. Subsequently, in June 1999, five additional soil borings were advanced (B-4 through B-8) at the site. Based on the data collected during the investigation, it was determined that additional assessment was necessary as the lateral extent of the contamination had not been determined. Therefore, in October 1999 monitoring wells MW-1 through MW-3 were installed and a groundwater monitoring program was initiated.

In November 2001, monitoring wells MW-4 through MW-6 were installed and borings B-9 through B-14 were advanced on the property. Based on the data obtained, it was determined that additional wells were necessary offsite and interim remedial action was required, therefore a

workplan was prepared for the implementation of both. The offsite monitoring wells were not installed by Herschy due to difficulty obtaining an encroachment permit with the City of Oakland.

In an effort to remediate hydrocarbons at the site, five air sparge wells (AS-1 through AS-5), thirteen vapor extraction wells (VE-1 through VE-13), and one groundwater extraction well (EX-1) were installed in January 2004. In addition, well MW-1R was installed to replace well MW-1. In February 2004, three 10,000 gallon USTs and associated product piping were removed and replaced (with the current UST system) at the site. During construction activities, approximately 1,100 tons of soil and 40,000 to 60,000 gallons of groundwater was removed from the site and properly disposed of.

A soil vapor extraction (SVE) system was installed and was operational from August 31, 2006 through November 19, 2007. Initially the system operated utilizing a thermal oxidizer; however, due to low influent concentrations, the system was modified to run in catalytic mode only during January and February 2007. Shortly thereafter, it was determined that hydrocarbon removal was reaching asymptotic levels. Therefore, on May 7, 2007, a dual phase extraction (DPE) pilot test was attempted in order to determine if SVE coupled with DPE would increase removal. The test was halted after 4 hours due to high temperatures (outside the catalytic oxidizer operating range) and increasing influent concentrations. Subsequently, after acquiring the proper equipment, on February 5 and 6, 2008, the DPE test was performed for approximately 13 hours. Following the test, Herschy concluded that the limited data suggested that DPE may be a viable option. DPE was never implemented and the SVE system was removed by Herschy in August and September 2008.

In August 2007 borings DP-1 and DP-3 were installed at and in the vicinity of the site. Several offsite borings were expected to be completed, however, they were not performed for a variety of reasons. In September 2008, consulting responsibilities were transferred to AEI Consultants. AEI submitted the requested revised Site Conceptual Model (SCM) dated October 8, 2008 which updated a proposed scope of work to complete additional offsite characterization for the site. Approval for the completion of the work was issued in a letter from the ACHCSA dated October 16, 2008.

On November 24 through November 26, 2008 AEI advanced ten shallow soil borings (DP-4, SB-5, SB-7 to SB-14) in the vicinity of the subject property and four deep soil borings (DDP-1 to DDP-4) at the subject property. In addition, three nested soil vapor probes (SG-1 through SG-3) were installed at the site. Data obtained during the investigation further validated the known need for offsite monitoring wells in the vicinity of the site.

The locations of all former and current site features, including previous boring locations, are included on Figures 2 and 3. Historical analytical and sampling results are included in Tables 1 to 7.

3.0 GEOLOGY AND HYDROGEOLOGY

Sediments encountered during the November 2008 investigation were generally classified as fine grained sediments (a combination of silt and clay) just below the asphalt surface to depths ranging from approximately 5 to 11 feet below ground surface (bgs). Grain size distribution analysis of samples encountered from this zone indicated approximately 7% to 21% sand, approximately 40% silt, and approximately 37% to 53% clay. The fine grained silty clay was underlain by a sandy, gravelly silt/clay with varying amounts of fine to coarse grained sand and minor gravel to depths ranging from approximately 11 feet bgs to 17 feet bgs (the terminus of several of the shallow borings). Grain size distribution analysis of select sediments encountered from this zone indicated approximately 4% to 26% gravel, 44% to 58% sand, and 29% to 36% fine grained silt and clay. Deep borings advanced at the site identified interbedded layers of silt and well graded sand and gravel to the maximum depth explored, 40 feet bgs. Laboratory reported physical properties of soil conditions are included on Table 4.

Sediments encountered during the recent investigation (February 2010) generally confirmed the 2008 investigation findings and were classified as fine grained (silty clay) with varying amounts of sand and gravel throughout to depths ranging from approximately 5 to 11 feet bgs. A general increase in silt and sand content was observed beneath the silty clay in the majority of the borings with interbedded layers of silt. A well graded gravelly sand layer was observed in MW-7 from 24.5 to 26.5 feet bgs, in MW-8 from 19.5 to 23 feet bgs, and MW-9 from 10 to 11 feet bgs. The well graded gravelly sand was underlain by silt or clay to the maximum depth explored (30 feet bgs in MW-7). A detailed description of encountered soils is included in the soil borings (Appendix A) as well as the Fence Diagrams as Figures 4 and 6.

The 2008 investigation identified shallow groundwater as being present at depths ranging approximately from 11 to 14 feet bgs, and stabilizing between 5 feet to 10 feet bgs. In deep borings DDP-2 through DDP-4, deep groundwater (past 20 feet bgs) was not collected. Several potential water producing zones were identified during drilling, however the zones may be described as slow producing and upon setting screens in these borings at varying depths from 25 to 40 feet bgs, measurable groundwater was not present after approximately 1 hour. In boring DDP-1, a hydropunch screen was open from 32 to 40 feet bgs; however, it was initially dry. After approximately 3 hours, groundwater was measured at 28 feet bgs.

The recent investigation (February 2010) identified shallow groundwater at depths ranging from 10 to 12 feet bgs in MW-7 through MW-9. Shallow water was measured in MW-10 at a depth of approximately 4 feet bgs. Borings MW-7 and MW-8 were advanced beyond the first identified water producing zone in order to investigation deeper groundwater for vertical delineation. A second water producing zone was identified based on field observations at approximately 20.5 to 24.5 feet bgs in MW-7 and 19.5 feet bgs in MW-8.

Groundwater during the recent monitoring episode on February 23, 2010 ranged from 0.98 to 6.67 feet below the top of casing or 26.06 to 30.31 feet above mean sea level (amsl). The direction of the groundwater flow during the February 23, 2010 sampling event was towards the west with an estimated overall hydraulic gradient of 0.01 feet/foot, relatively consistent with

historical data. Groundwater elevation and flow data is included on Table 5 and 6 as well as Figure 7.

4.0 MONITORING WELL INSTALLATION

Prior to initiating drilling activities, well construction permits (permit numbers W2010-0058 through W2010-0061) were obtained from the Alameda County Public Works Agency (ACPWA), and encroachment permits (application numbers X1000155 through X1000158) were obtained from the City of Oakland. Copies of the permits are included in Appendix B. Following permit approval, drilling activities were scheduled and Underground Service Alert-North (USA North) was notified to locate possible underground utilities in the area. On February 11 and February 12, 2010, AEI advanced four soil borings (MW-7 through MW-10) at the property, and converted the borings into groundwater monitoring wells.

4.1 Soil Sampling

The monitoring wells were installed with a direct push combo drilling rig, capable of running $8\frac{1}{4}$ inch diameter hollow stem augers. Prior to sampling, each boring was hand augured to approximately 5 feet bgs to clear for possible underground utility locations. The boreholes were advanced to depths of approximately 30 feet bgs (MW-7), 25 feet bgs (MW-8), and 15 feet bgs (MW-9 and MW-10). Soil samples were continuously collected with 1" diameter acrylic liners using a dual walled, direct push Geoprobe technique. Soil samples were examined and logged using the Unified Soil Classification System (USCS) and screened in the field using a PID. At approximately 4 foot intervals, AEI personnel cut a soil sample from the liner, sealed it with Teflon tape and plastic caps, and placed it in a cooler filled with water ice. The samples were transported under appropriate chain-of-custody documentation for potential analysis to McCampell Analytical Inc., (DOHS Certification Number 1644) of Pittsburg, California. Select soil samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015, benzene toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) by EPA Method 8021B, and fuel oxygenates by EPA Method 8260B. Field observations and screening data is presented on the borings logs in Appendix A.

4.2 Groundwater Grab Sampling - Soil Borings

Borings MW-7 and MW-8 were advanced to a depth of 30 feet bgs and 25 feet bgs, respectively. These borings were advanced past first encountered groundwater (approximately 11 to12 feet bgs) for the collection of a "deep" groundwater sample in the second water bearing zone. Since monitoring wells were to be installed within the first water producing zone, a groundwater sample was not collected from this "shallow" zone. Using dual walled, direct push sampling methods, the first groundwater zone was sealed off and upon encountering saturated sediments within the second water producing zone (approximately 21 feet bgs), a temporary ³/₄" diameter factory-slotted poly-vinyl chloride (PVC) casing was inserted into each of the borings to facilitate the collection of groundwater samples. New materials were used in each boring to avoid possible cross-contamination. Groundwater samples were collected using a check valve with dedicated, disposable tubing into 40-ml volatile organic analysis (VOA) vials. The

groundwater samples were capped so that there was no head space or visible air bubbles within the vials and labeled with a unique identifier and immediately placed in a cooler with wet ice and delivered to the designated laboratory.

4.3 Soil Sampling Results

A total of four soil samples were analyzed from soil borings MW-7 and MW-8 and three soil samples were analyzed from soil borings MW-9 and MW-10. The soil samples were reported to contain TPHg, benzene, and methyl tert butyl ether (MTBE) (the primary constituents of concern) as follows:

- MW-7 was reported to contain TPHg at a concentration of 220 milligrams per kilogram (mg/kg) at 8 feet bgs, however TPHg was not detected at or above the laboratory detection limit in the samples collected from 14.5 feet bgs, 19.5 feet bgs, and 29.5 feet bgs. Benzene was not detected at or above the laboratory detection limit in any of the soil samples analyzed from boring MW-7. MTBE was detected in MW-7 at a concentration of 0.19 mg/kg and 0.59 mg/kg at the depth of 14.5 feet bgs and 19.5 feet bgs, respectively, however did not contain MTBE at or above the laboratory detection limit in the soil samples from 8 feet bgs and 29.5 feet bgs.
- MW-8 was reported to contain TPHg at a concentration of 19 mg/kg and 1.8 mg/kg at 4.5 feet bgs and 9.5 feet bgs, respectively, however TPHg was not detected at or above the laboratory detection limit in the samples collected from 14.5 feet bgs and 19.5 feet bgs. Benzene was not detected at or above the laboratory detection limit in any of the soil samples analyzed from boring MW-8. MTBE was detected in MW-8 at a concentration of 0.40 mg/kg at the depth of 14.5 feet bgs, however did not contain MTBE at or above the laboratory detection limit in the soil samples from 4.5 feet bgs, 9.5 feet bgs, and 19.5 feet bgs.
- TPHg and benzene were not detected at or above the laboratory detection limit in any of the soil samples analyzed from boring MW-9. MTBE was detected in MW-9 at a concentration of 0.027 mg/kg at the depth of 14.5 feet bgs, however did not contain MTBE at or above the laboratory detection limit in the soil samples from 5.5 feet bgs and 9.5 feet bgs.
- MW-10 was reported to contain TPHg at a concentration of 64 mg/kg and 1.9 mg/kg at 6 feet bgs and 9.5 feet bgs, respectively, however TPHg was not detected at or above the laboratory detection limit in the sample collected from 14.5 feet bgs. Benzene and MTBE were not detected at or above the laboratory detection limit in any of the soil samples analyzed from boring MW-10.

Soil analytical data is displayed on Table 1 and Figure 8. A copy of the laboratory analytical reports is included in Appendix C.

4.4 Groundwater Grab Sampling Results

One "deep" groundwater sample was analyzed from MW-7 and MW-8 which was collected from the apparent second water bearing zone at approximately 21 feet bgs. The groundwater samples

were reported to contain TPHg, benzene, and MTBE (the primary constituents of concern) as follows:

- MW-8(D) was reported to contain TPHg and MTBE at a concentration of 54 micrograms per liter (μ g/L) and 570 μ g/L, respectively. Benzene was not detected at or above the laboratory detection limit.
- MW-7(D) did not contain TPHg, benzene, or MTBE at or above the laboratory detection limit.

Groundwater analytical data is displayed on Table 2 and 7 as well as Figure 9. A copy of the laboratory analytical reports is included in Appendix C.

4.5 Monitoring Well Installation

Following soil sampling activities, each of the boreholes were over drilled by advancing 8¹/₄-inch diameter hollow stem augers to a depth of approximately 15 to 16 feet bgs in order to install the monitoring wells. Boreholes drilled deeper than 15 feet bgs (MW-7 and MW-8) were backfilled to approximately 15 feet bgs with bentonite pellets prior to well installation activities. The monitoring wells were constructed by placing a 2" diameter, schedule 40 PVC casing with 10' of factory slotted 0.020-inch well screen through the augers. An annular sand pack (consisting of clean #3 Monterey Sand) was installed through the augers to approximately 0.5 feet above the screened interval. A 1.5 foot bentonite seal was placed above the sand and hydrated with water while the remainder of each boring was sealed with neat cement grout. A flush mounted traffic rated well box was installed over the casing, and an expanding, locking inner cap was placed on the casing top. The drilling and well installation work was performed under the ACPWA permit guidelines. DWR well registration forms (DWR Form 188) have been completed for each of the wells and have been forwarded to the ACPWA.

Soil cuttings generated during the drilling and well installation activities, as well as purged groundwater and decontamination water, were stored on-site in sealed, labeled, department of transportation approved, 55-gallon drums and removed from the site by A&S Environmental.

5.0 Well Development and Sampling

The newly installed monitoring wells were developed by surging, bailing, and purging the wells to remove accumulated fines from the casing and stabilize the sand pack on February 17, 2010. The wells were developed with the attempt to purge each well until water had cleared up and measurements including pH, conductivity, and temperature had stabilized.

AEI measured the depth to groundwater in the well network (MW-1R, MW-2 through MW-10, and EX-1) on February 23, 2010. The wells caps were first removed from each well, allowing the groundwater to equilibrate with the atmosphere. The depth to water from the top of each well casing was measured with an electric water level indicator prior to sampling. The wells were also checked for the presence of light non-aqueous phase liquid (LNAPL) using an oil/water interface meter,

however LNAPL was not detected in any of the wells. The wells were then purged by using a submersible pump and groundwater samples were collected using clean, unused disposable plastic bailers. The following parameters were measured during purging: temperature, pH, specific conductivity, dissolved oxygen (DO) and oxidation-reduction potential (ORP). At least three well volumes of water were removed from the wells that were sampled. Once the wells had recharged to at least 90% of the original water level, a water sample was collected. Groundwater field sampling forms are included in Appendix D.

Groundwater was collected into 40 ml VOA vials and capped so that neither headspace nor air bubbles were visible within the sample containers. Samples were transported on ice under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644).

The groundwater samples were collected and analyzed for TPHg (EPA Method 8015Cm), and BTEX and MTBE, by EPA Method 8021B. The groundwater samples were also analyzed for tert-Amyl Methyl Ether (TAME), tert-Butanol (TBA), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), 1,2-Dichloroethane (1,2-DCA), ethylene dibromide (EDB), and MTBE by EPA method 8260.

5.1 Field Results

No free product was encountered during monitoring activities during the February 23, 2010 sampling events. Groundwater elevations during the recent monitoring episode ranged from 26.06 to 30.31 feet above mean sea level (amsl). The groundwater was on average 2.03 feet higher then during the previous event. The direction of the groundwater flow during the February 23, 2010 sampling event was towards the west with an estimated overall hydraulic gradient of 0.01 feet/foot, relatively consistent with historical groundwater flow data. This data includes readings from the newly installed monitoring wells MW-7 through MW-10. Groundwater elevation data is summarized in Table 5 and 6, and a groundwater elevation map is included as Figure 7.

5.2 Groundwater Quality

A summary of dissolved hydrocarbons detected in the groundwater samples during the February 23, 2010 sampling event is as follows:

- Monitoring well MW-1R was reported to contain TPHg, benzene, and MTBE at concentrations of 3,200 μ g/L, 31 μ g/L, and 3.9 μ g/L, respectively. These concentrations are generally higher than last quarter, however relatively similar to historical concentrations.
- Monitoring well MW-2 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 170 μ g/L, 9.4 μ g/L, 14 μ g/L, and 36 μ g/L, respectively. These concentrations represent a slight increase since the previous event, however are relatively consistent with recent data.

- Monitoring well MW-3 was reported to contain TPHg, benzene, MTBE, and TBA at concentrations of 1,700 μ g/L, 22 μ g/L, 4,700 μ g/L, and 260,000 μ g/L, respectively. These concentrations are relatively consistent with recent data, however MTBE continues to decrease and is the lowest concentration observed in MW-3 to date.
- Monitoring well MW-4 was reported to contain TPHg, benzene, MTBE, and TBA at concentrations of 15,000 μ g/L, 250 μ g/L, 180 μ g/L, and 400 μ g/L, respectively. These concentrations are generally lower than recently observed.
- Monitoring well MW-5 was reported to contain MTBE at a concentration of 1.9 μ g/L, which is consistent with historical results.
- Monitoring well MW-6 was reported to contain benzene, MTBE, and TBA at a concentration of 0.66 μ g/L, 5.7 μ g/L, and 15 μ g/L, respectively. These concentrations represent a general decrease since the last event.
- Monitoring well MW-7 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 29,000 μ g/L, 410 μ g/L, 410 μ g/L, and 1,500 μ g/L, respectively. This is the first sampling event for this well.
- Monitoring well MW-8 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 690 μ g/L, 3.5 μ g/L, 1,600 μ g/L, and 24,000 μ g/L, respectively. This is the first sampling event for this well.
- Monitoring well MW-9 was reported to contain MTBE and TBA at a concentration of 260 μ g/L and 1,600 μ g/L, respectively. This is the first sampling event for this well.
- Monitoring well MW-10 was reported to contain TPHg and MTBE at a concentration of $1,300 \mu$ g/L and 2.8μ g/L, respectively. This is the first sampling event for this well.
- Well EX-1 was reported to contain TPHg, benzene, MTBE, and TBA at concentrations of 39,000 µg/L, 1,300 µg/L, 880 µg/L, and 670 µg/L, respectively. With the exception of TBA, these concentrations, are higher than the last sampling event, however relatively similar to those seen during the historical sampling events. TBA concentrations have decreased to historical lows in the well.

Complete groundwater sample analytical data from the sampling event is included in Table 7 and select data is displayed on Figure 9. Laboratory results and chain of custody documents are included in Appendix C.

6.0 SITE SURVEY

On February 25, 2010, the well box and well casing elevations were surveyed by Milani & Associates, Concord, California; a California Registered Land Surveyor (LS No. 5311). Data from the survey was uploaded to the state GeoTracker database as required by Assembly Bill 592 and Senate Bill 1189. A copy of the well survey is included in Appendix E.

7.0 SOIL VAPOR PROBE INSTALLATION AND SAMPLING

7.1 Soil Vapor Monitoring Probe Installation

On February 11, 2010, AEI advanced five soil borings (SG-4 through SG-8) at the subject property and converted each boring into a permanent soil vapor monitoring probe. The borings were advanced by hand using direct push drilling equipment and tooling. A rotary hammer drill and solid drive point was used to created $1-\frac{1}{2}$ inch diameter borehole for each probe. The total depth of each boring was approximately 4.5-feet bgs. Each soil vapor probe was constructed using the open-borehole method.

First, a bed of clean #30 Monterey sand 2 to 3-inches thick was installed at the bottom of the boring followed by installation of the soil vapor probe. Each soil vapor probe was constructed of a ¹/₂-inch outside diameter (OD) by 6-inch long stainless steel soil gas implant (#100 pore screen size) attached to ¹/₄-inch OD by 4-foot long piece of type 316 stainless steel tubing using a ¹/₄-inch Swagelok® compression fitting. Next, 9 to 12-inches of clean #30 Monterey sand was installed above the vapor screen to form a sandpack and 6-inches of dry granular bentonite was placed above each sand pack. Then, an annular seal consisting granular bentonite was installed and hydrated in 6 to 12-inch lifts to approximately 1-foot bgs. The remainder of each boring was sealed with cement grout. A ¹/₄-inch Swagelok® plug valve was installed on the top of each probe to prevent intrusion of ambient air. Finally, a small flush-mounted well box was installed over each soil vapor probe. A typical soil vapor probe construction detail is shown on Figure 10.

7.2 Baseline Soil Vapor Sampling

On March 18, 2010, AEI completed a baseline soil vapor survey. The work was performed to evaluate the concentrations of hydrocarbons in soil vapor at newly installed probes as well as existing probes and to measure baseline soil gas conditions to evaluate the feasibility of Bioventing. Soil vapor samples were collected from SG-1(S/D) through SG-3(S/D) and SG-4 through SG-8 for field screening and lab analysis. Sampling activities included: 1) down-hole pressure (purge vacuum) measurements to estimate the relative soil air permeability, 2) field screening for evaluating natural attenuation potential and the feasibility of bioventing, and 3) collection of soil vapor samples for laboratory analysis.

7.2.1 Sampling Methodology

The sampling method described below was developed by AEI for the collection of soil vapor samples from lower permeability and/or pore water-saturated soils and other difficult formations, such as bedrock, where other soil gas sample collection methods and use of Summa canisters often fail.

Initially, AEI connected a Magnehelic® differential pressure gauge to each soil gas probe to check the initial soil gas pressure. Next, a new piece of 3/16-inch inside diameter (ID) by 12-inch long PVC tubing was connected to the soil gas probe using a Swagelok® compression fitting. A nylon tee was connected to the other end of the tubing. The low pressure side of a Magnehelic® differential pressure gauge was connected to the tee using a second identical piece of new PVC tubing. The other end of the second piece of PVC tubing was connected a new 12-inch long section of PharmaPure® using a straight connector. Then, the PharmaPure® tubing was secured in the peristaltic pump head. A 1-liter tedlar bag was connected to the downstream side of the peristaltic pump for collection of the soil vapor sample.

First, AEI performed a shut-in leak test by closing the plug valve at the top of the soil gas probe, turning on the peristaltic pump for a few seconds to develop vacuum in the sampling train, and then monitoring the Magnehelic® gauge for vacuum loss for at least one minute. If a leak was detected, the fittings were checked and another shut-in test was performed until no significant vacuum loss was observed. After demonstrating the sampling train was air-tight and leak-free, the peristaltic pump was turned on and operated at a relatively low flow rate of approximately 100 to 200 mL/minute. The sampling train was purged for several seconds prior to attaching the tedlar bag.

AEI collected each vapor sample into a tedlar bag until the bag was filled completely. The bag was then screened for total volatile hydrocarbons (TVH), methane, oxygen, and carbon dioxide using a RKI Instruments Eagle (Model No. 52-0206RK) Multi-gas detector. The tedlar bag containing the remainder of the vapor sample was labeled with unique identifiers, entered onto the chain of custody record, and transported to McCampbell Analytical, Inc (Department of Health Services Certification #1644) for analyses. The soil vapor samples were analyzed for TPHg by EPA Method 8015B and BTEX and MTBE by EPA Method 8021B.

7.2.2 Soil Gas Permeability

During soil vapor sampling, AEI recorded the purge vacuum using a Magnehelic gauge and noted if water was observed in the soil vapor probes, tubing, and/or tedlar bags. Groundwater and/or pore water was encountered in each of the probes with the exception of SG-2D and SG-8. The purge vacuums ranged from 30 inches of water in SG-6 to greater than 408 inches of water in SG-8, which is essentially a complete vacuum. As the purge vacuum increased, the flow rate decreased. In order for a soil vapor probe to be defined as "low-flow", a conservative value of 100 inches of water at a flow rate of 100 to 200 ml/min was used (DTSC-LARWQCB, 2003; DTSC, 2010). Purge vacuums greater than 100 inches of water and "low-flow" conditions were observed at the following probes: SG-1S, SG-1D, SG-2D, SG-3D, SG-5, SG-7, and SG-8. The flow rates were exceptionally low (less than 1 ml/min) to non-existent in SG-7 and SG-8. As a

result, "no-flow" conditions were observed at these probes and collecting soil vapor samples was not possible. Furthermore, all of the 1-liter tedlar bags with the exception of SG-2D contained approximately 10% to 50% or more water by volume. Since the soil vapor samples either contained water and/or were collected under deep vacuum, which is known to affect contaminant partitioning, none of the soil vapor samples are likely to be representative of the actual vaporphase concentration and should not be used for potential vapor intrusion assessment. Furthermore, a significant portion of the volatile hydrocarbons measured in most of the tedlar bags was also most likely part of the dissolved-phase.

7.2.3 Soil Vapor Field Screening Results and Bioventing Feasibility

Part of the pilot study was to evaluate the feasibility of Bioventing as a potential vadose zone remedial alternative for onsite areas that were not previously excavated¹. Because bioventing relies on aerating oxygen-depleted soil to stimulate and enhance natural biodegradation, the existing oxygen levels in the soil were measured and evaluated. TVH, methane, and carbon dioxide levels were also measured as indicators of soil and/or shallow groundwater contamination and to confirm respiration by petroleum-degrading microorganisms. Since biodegradation is not oxygen-limited at oxygen levels greater than 1 to 2% by volume, a practical design goal of Bioventing is to supply at least 5% oxygen to the entire contaminated soil volume during operation (USEPA, 1995; Leeson, 1996). As a result, if the existing oxygen levels are greater than about 5%, biodegradation is not oxygen-limited, and Bioventing may not provide any added However, other conditions, such as low soil moisture content, may also limit benefit. biodegradation. Refer to the results of the U.S. Air Force Center for Environmental Excellence (AFCEE) Bioventing Initiative, which was a 145-site nationwide bioventing pilot test program, for more information on condition that may limited biodegradation and the "lessons learned" (Leeson, 1996).

The following exhibit summarizes the soil vapor field screening results. The soil vapor field screening results are also summarized in Table 8.

¹ During the February 2004 UST system replacement activities, approximately 1,100 tons of contaminated soil was excavated and hauled off-site. The onsite target treatment zone is primarily in the west and southwest portion of the site in the vicinity of MW-1, MW-3, and MW-4.

Soil Vapor Probe ID	Initial Soil Gas Pressure (in-H ₂ O)	Purge Vacuum (in-H ₂ O)	TVH (ppmv)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
SG-1S*	0.00	326	210	4.5	11.2	6.1
SG-1D*	0.00	136	>11,000	51	5.3	18.6
SG-2S*	0.00	50	880	8.5	13.2	3.1
SG-2D	0.00	190	>11,000	60	2.5	20.0
SG-3S*	0.00	93	0	0	19.2	1.0
SG-3D*	0.00	354	>11,000	78.5	0.9	>20.0
SG-4*	0.00	90	10	0	16.8	1.5
SG-5*	0.00	300	>11,000	50	1.4	13.7
SG-6*	0.00	30	80	0	20.6	1.2
SG-7*	0.00	367	NM	NM	NM	NM
SG-8*	0.00	>408	NM	NM	NM	NM

Exhibit A: Soil Vapor Field Screening Data (March 18, 2010)

* = Water was observed in the soil vapor probe, tubing, and/or tedlar bag

NM = Not measured; soil gas sample collection not possible due to saturated soil and "no-flow" conditions

Based on this line of evidence, all of the shallowest probes (SG-1S, SG-2S, and SG-3S) screened from 2.5 to 3-feet bgs and two of the deeper probes (SG-4 and SG-6) screened from 4 to 4.5-feet bgs had more than sufficient oxygen (>10%) to support natural biodegradation. SG-1D had a minimal level of oxygen and high levels of TVH, methane, and carbon dioxide. However, three of the deeper soil vapor probes (SG-2D, SG-3D, and SG-5) had oxygen levels below the recommended 5% with high levels of TVH (>10,000), methane (\geq 50%), and carbon dioxide (>15%) which is generally associated with oxygen-limited biodegradation and a higher biological oxygen demand. Therefore, oxygen is a limiting factor at the deeper probes and supplying oxygen to this zone would most likely enhance biodegradation. However, aeration by means of Bioventing may not be technically feasible because the air permeability of this zone is extremely low due to the presence of shallow groundwater and/or pore water and capillary actions. In other words, aerating saturated soil is not technically feasible unless combined with groundwater extraction to lower the water table.

7.3 Soil Vapor Analytical Results

The soil vapor samples were reported to contain petroleum hydrocarbons as follows:

• TPHg was detected in six of the eight vapor samples at concentrations ranging from 1,100,000 micrograms per cubic meter ($\mu g/m^3$) in SG-6 to 59,000,000 $\mu g/m^3$ in SG-5. TPHg was not detected at or above the laboratory detection limit in SG-3S or SG-4.

- Benzene was detected in 5 of the 8 soil vapor samples at concentrations ranging from 1,900 μ g/m³ in SG-2S to 730,000 in SG-5 μ g/m³. Benzene was not detected at or above the laboratory detection limit in SG-1S, SG-3S, and SG-4.
- Toluene was detected in 7 of the 8 soil vapor samples at concentrations ranging from 280 μ g/m³ in SG-4 to 470,000 μ g/m³ in SG-1D. Toluene was not detected at or above the laboratory detection limit in SG-3S.
- Ethylbenzene was detected in 1 of the soil vapor samples (SG-5) at a concentration of 75,000 μ g/m³.
- Xylenes were detected in 5 of the 8 soil vapor samples at concentrations ranging from 720 μ g/m³ in SG-1S to 72,000 in SG-5 μ g/m³. Xylenes were not detected at or above the laboratory detection limit in SG-3S, SG-4, and SG-2D.
- MTBE was detected in 2 of the 8 soil vapor samples at a concentration of 7,400 μ g/m³ in SG-4 and 76,000 in SG-5 μ g/m³.

It is important to note that several of these concentrations were from vapor samples in which purge vacuums exceeded 100 inches of water (resulting in low flow conditions) and therefore may not be representative of actual soil conditions. Soil vapor analytical data is summarized on Table 3 and a copy of the laboratory analytical report with chain of custody documentation and quality control summary is included in Appendix C.

8.0 PILOT STUDY ACTIVITIES

On February 17, March 18, 2010, March 23, 2010, and April 12 through April 16, 2010, AEI conducted the pilot study activities. SVE pilot test was performed under an active Bay Area Air Quality Management District (BAAQMD) Permit to Operate (Plant No. 165113). The majority of the pilot testing activities occurred during the week of April 12, 2010. However, several site visits were necessary for site preparation. The following is a brief summary of the timeline and completion of field activities:

<u>February 17, 2010</u> – AEI mobilized to the site with Foresite Utility Locating to determine which pipe from the system manifold corresponded with the actual vapor extraction well or air sparge well. The installation of the system by Herschy included air sparge wells and vapor extraction wells and associated conveyance piping connected to a common manifold at the northeast corner of the remediation system compound. Because flush-mounted well boxes were not installed, the wellheads were not accessible. The vapor extraction wells and air sparge wells were not labeled at the manifold. In addition, the entire site was resurfaced and no piping diagrams or as-built drawings were provided to AEI. Therefore, AEI attempted to identify the wells by tapping on the ground near the approximate location of each wellhead and listening at the manifold with a high-powered microphone and headset. Once the piping was identified based on field observations, it was marked at the manifold. This method was able to identify air sparge wells

AS-2 and AS-3 which were used for pilot testing. Vapor wells VE-2 and VE-3 were also identified, but to a lesser degree of certainty.

<u>March 18, 2010</u> – AEI mobilized to the site to complete all baseline soil vapor probe field screening and sampling activities (Refer to Section 7.2). While at the site, AEI also fixed the electrical connections running to the existing air compressor, and completed minor modifications to the air compressor, which was used for the pilot study. In addition, AEI used air injection to further evaluate and determine if the wells identified during the February 17, 2010 microphone testing were identified correctly. Air was injected into previously identified sparge wells AS-2 and AS-3 and pressure readings were taken from nearby monitoring wells to verify that these wells were properly identified. Next, AEI injected air into two vapor extraction wells identified as potentially VE-3, but neither well was positively identified as VE-3. No pressure changes were observed in nearby monitoring points when the first well was tested. The second well tested had no flow at backpressures up to 150 psi. Upon realizing the no-flow condition, testing was immediately terminated and the backpressure was slowly relieved from this well. Excessive backpressure was observed because this well is most likely screened across saturated and essentially impermeable strata.

<u>March 23, 2010</u> – AEI mobilized to the site to determine which pipe at the manifold corresponded to VE-2 and VE-3. This involved excavating pea gravel from large two concrete utility boxes to expose the pipes installed in a common trench. The utility boxes were located inside the remediation compound south of the vapor extraction well manifold. Each pipe was fitted with a brass sample port and faint sharpie markings that identified which well the pipe was connected to. After this discovery, AEI quickly identified which pipes were connected which wells by injecting air into each pipe at the manifold and checking for pressure at the corresponding sample ports. Then, AEI labeled each well at the manifold and photographed it for future reference. After the piping at the manifold was identified, AEI injected air into newly identified wells VE-2 and VE-3. During injection, pressure readings were collected from nearby monitoring points. Proper identification of VE-2 and VE-3 was confirmed by the results of the air injection and soil gas pressure monitoring tests.

<u>April 12, 2010</u> – AEI mobilized to the site to set up equipment for the pilot testing activities. AEI's custom built vapor extraction and off-gas treatment system was setup on-site. The system consisted of a high pressure regenerative blower with variable speed drive and instrumentation and controls, a 55-gallon knock-out tank with high water level switch, two 200-pound activated carbon absorbers arranged in series, and ancillary equipment. AEI connected the blower system to the existing vapor extraction manifold, installed additional sample ports on the manifold, and connected the helium supply inline with air injection line.

<u>April 13, 2010</u> – AEI completed the standard air sparging pilot testing and the helium tracer and recovery testing for AS-3.

<u>April 14, 2010</u> – AEI completed the standard air sparging pilot testing and the helium tracer and recovery testing for AS-1.

<u>April 15, 2010</u> – AEI completed the standard air sparging pilot testing and the helium tracer and recovery testing for AS-2.

<u>April 16, 2010</u> – AEI demobilized the blower system and other pilot testing equipment and retrieved the pressure transducers from the monitoring wells.

8.1 Pressure and Oxygen Influence Testing

After measuring and evaluating the baseline soil gas conditions, part of the pilot study was to perform pressure and oxygen influence testing, if applicable. This test is used to estimate the permeability of the soil and to determine the oxygen radius of influence from an air injection well or vapor extraction well. This test is conducted by injecting into or extracting soil gas from a vapor extraction well and measuring the soil gas pressure and oxygen levels at various monitoring points over time. The test can be short-term (1 to 2 days) for higher permeability soils, such as gravel and sands, or long-term (2 to 4 weeks) for lower permeability soils, such as clays and silts. Because the results of the baseline soil gas survey indicated that the shallow soil was already naturally-aerated and injection of air into the deeper internal is not technically feasibly due to extremely low permeability and saturated soil conditions, pressure and oxygen influence testing was not attempted.

8.2 Air Sparging Pilot Testing

Over 3 days, AEI completed standard air sparging pilot testing and helium tracer and recovery testing on AS-1 through AS-3. The standard pilot testing activities included a 1) injection pressure versus flow rate test, 2) transient pressure response test during sparging startup and shutdown, 3) soil gas pressure and composition monitoring, 4) groundwater dissolved oxygen monitoring before and after sparging, and 5) helium tracer and recovery test. The injection pressure versus flow rate test was used to determine if the desired flow rates (1 to 5 cfm) can be achieved at reasonable pressures. The transient pressure response test was used to determine the time for the air injection to reach steady-state conditions, the general characteristics of the air distribution in the subsurface, and significance of trapped air and potential lateral migration due to stratification. Helium tracer testing was used to evaluate the distribution of helium in the subsurface and extent of vapor capture by the SVE system. The purpose of these simple field tests was to use multiple lines of evidence to determine an effective treatment radius of influence (ROI) from an air, oxygen, and/or ozone injection well.

During these tests, the following field activities were conducted:

- Pressure transducers were installed in selected monitoring wells near the air sparge well that was tested. The transducers were installed prior to air sparging startup and remained in the well for a minimum of 12 hours following air sparging shutdown.
- General groundwater physical-chemical data, including: temperature, pH, specific conductivity, DO, and ORP were collected from select monitoring wells near the sparge well that was tested. The groundwater parameters were collected prior to air sparging

startup activities using a peristaltic pump and low-flow (minimal drawdown) sampling techniques (Puls and Barcelona, 1996). Field readings were collected until the groundwater parameters stabilized. A second round of readings was collected from the same wells immediately following air sparging shutdown

- The SVE system was connected to the piping manifold and the selected vapor extraction wells near the air sparge well that was tested were opened. The vapor extraction system operated for approximately 30 to 60 minutes while soil gas pressure readings and field screening samples were collected from combined vapor influent and nearby soil gas probes. After the combined influent vapor concentration stabilized, air sparging commenced. Air sparging continued until the injection pressure reached near-equilibrium which indicated the air channels were fully developed. Influent PID readings over time are included as Figure 11 and on Table 9.
- Once near-steady air distribution was established, helium was bled into the injection line at a known flow rate and concentration. Soil gas samples were collected from the monitoring points and screened for helium to determine the lateral extent of the air distribution.
- After completing the helium tracer test, a helium recovery test was performed. First, helium was injected directly into the vapor extraction manifold to determine the 100% helium recovery concentration ($C_{100\%}$) and the helium flow rate and pressure readings were recorded. After determining the 100% helium recovery concentration, helium was injected into the sparge well and the helium cylinder pressure regulator and down-stream needle valve were adjusted to achieve the same flow rate and backpressure during the previous step. Helium injection continued until the combined influent vapor concentration stabilized. The concentration of helium in the SVE off-gas ($C_{off-gas}$) was divided by the 100% recovery concentration to determine the percent recovery.

8.2.1 AS-1 Test Details

Dissolved oxygen and other groundwater parameters were collected from monitoring wells MW-3, MW-4, and MW-5 before and immediately after the sparging test. Dissolve oxygen and other groundwater parameters were also collected from groundwater extraction well EX-1, but after the test only. Pressure transducers were deployed in wells MW-3, MW-4, and MW-5 to measure the pressure response during air sparging startup and shutdown. Vapor extraction wells VE-3, VE-4, and VE-13 were used to monitor the influent hydrocarbon vapor concentration and helium recovery. In addition, the soil gas pressure and the TVH, methane, oxygen, carbon dioxide, and helium levels in MW-3, MW-4, MW-5, EX-1, SG-3S, SG-3D, SG-5, and SG-6 were monitored periodically. The sparge test monitoring summary for AS-1 is also shown on Table 10.

8.2.2 AS-2 Test Details

Dissolved oxygen and other groundwater parameters were collected from monitoring wells MW-1R, MW-3, and MW-6 before and immediately after the sparging test. Pressure transducers were deployed in wells MW-1R, MW-3, and MW-6 to measure the pressure response during air sparging startup and shutdown. Vapor extraction wells VE-4, VE-5, VE-6, and VE-7 were used

to monitor the influent hydrocarbon vapor concentration and helium recovery. In addition, the soil gas pressure and the TVH, methane, oxygen, carbon dioxide, and helium levels in MW-1R, MW-3, MW-6, SG-1S, SG-1D, SG-2S, SG-2D, SG-4, SG-7, and SG-8 were monitored periodically. The sparge test monitoring summary for AS-2 is also shown on Table 10.

8.2.3 AS-3 Test Details

Dissolved oxygen and other groundwater parameters were collected from monitoring wells MW-1R, MW-3, and MW-6 before and immediately after the sparging test. Pressure transducers were deployed in wells MW-1R, MW-3, and MW-6 to measure the pressure response during air sparging startup and shutdown. Vapor extraction wells VE-5, VE-6, and VE-8 were used to monitor the influent hydrocarbon vapor concentration and helium recovery. In addition, the soil gas pressure and the TVH, methane, oxygen, carbon dioxide, and helium levels in MW-1R, MW-3, MW-6, SG-1S, SG-1D, SG-2S, SG-2D, SG-7, and SG-8 were monitored periodically. The sparge test monitoring summary for AS-3 is also shown on Table 10.

8.3 Air Sparging Results

As discussed previously, multiple lines of evidence were used to determine the effective treatment ROI for an air, oxygen, and/or ozone sparge well. The lines of evidence evaluated during the pilot study were 1) DO and ORP levels, 2) transient pressure transducer response data, 3) soil gas pressure data, and 4) helium distribution and recovery data.

8.3.1 Injection Pressure and Flow Rate

During air sparging activities, a flow rate of approximately 5 cubic feet per minute (cfm) was initially injected in each well. The injection began with 5 cfm in an attempt not to increase wellhead pressure above the calculated pressure at which fracturing of the aquifer could occur. This flow rate remained constant throughout the test in wells AS-2 and AS-3. A wellhead pressure up to 13.5 psig (AS-3) and 27 psig (AS-2) was initially observed. This was below the calculated potential fracturing pressure (15.3 psig) in AS-3, however above the calculated pressure in AS-2. However, it is likely that the fracturing occurred only within close proximity to the sparge well. This pressure slowly decreased in each well until after approximately 2 hours when pressure had stabilized at approximately 9 psig (AS-3) and 17 psig (AS-2).

During sparging activities in AS-1, an increase in wellhead pressure was not observed; therefore, AEI increased the flow rate to approximately 8 cfm. Following the increase of flow to 8 cfm in AS-1, a pressure increase was still not observed in the wellhead leading AEI to the conclusion that a broken well, wellhead, and/or conveyance piping was present at AS-1.

The air injection pressure for AS-1, AS-2, and AS-3 are summarized in Table 11. Plots of manifold injection pressure over time for AS-1, AS-2, and AS-3 are shown on Figure 12.

8.3.2 DO and ORP Monitoring

The first line of evidence evaluated was field measurements of DO and ORP in nearby monitoring wells before and immediately after the air sparging tests. The following exhibit summarizes the groundwater data collected from the wells for each air sparge well tests. The reported values are the final readings once the groundwater parameters stabilized. The groundwater field sampling forms are included in Appendix D.

Monitoring Well ID	Relative Sample Time	Temp (C°)	рН	pH Electrical Conductivity (µS/cm)		ORP (meV)					
	Baseline Sampling Results: AS-1										
MW-3	Baseline (~20 hrs before test)	18.75	6.61	626	1.01	80.2					
MW-4	Baseline	18.00	7.09	462	0.29	-3.0					
MW-5	Baseline	18.88	6.96	602	0.37	278.1					
		Post-Sp	arge Test Resul	ts: AS-1							
MW-3	Post (<1 hr)	18.27	6.64	666	0.56	78.7					
MW-4	Post (<1 hr)	18.24	7.05	473	0.17	-25.4					
MW-5	Post (<1 hr)	18.23	6.88	602	0.51	199.2					
EX-1	Post (<1hr)	17.89	7.08	460	0.18	-24.5					

Exhibit B: Groundwater Field Parameters: Sparge Well AS-1

The DO and ORP levels did not change significantly in any of the monitoring wells before and after sparging into AS-1. Therefore, positive communication between AS-1 and MW-3 (~50 feet away), MW-4 (~15 feet away), and MW-5 (~80 feet away) was not observed.

Monitoring Well ID	Relative Sample Time	Temp (C ^o)	pH Electrical Conductivity (µS/cm)		DO (mg/L)	ORP (meV)					
	Baseline Sampling Results: AS-2										
MW-1R	Baseline	18.17	6.92	441	4.75	78.0					
MW-3	Baseline	18.94	6.72	672	0.45	58.6					
MW-6	Baseline	17.53	6.83	437	0.78	98.7					
		Post-Sp	oarge Test Resu	lts: AS-2							
MW-1R	Post (<1 hr)	17.55	6.68	454	3.05	256.6					
MW-3	Post (< 1 hr)	18.52	6.61	701	1.63	214.3					
MW-6	Post (<1 hr)	17.31	6.63	428	1.95	262.0					

Exhibit C: Groundwater Field Parameters: Sparge Well AS-2

The DO and ORP levels increased significantly in MW-3 and MW-6 after sparging into AS-2. The DO level was higher and the ORP level was lower in MW-1R before sparging into AS-2. According to the groundwater field sampling forms, the baseline DO levels in MW-1R were initially very low (<1 mg/L) and slowly increased over time which may have been caused entrainment of ambient air in the samples. However, the ORP increased significantly in all three monitoring wells, including MW-1R. Therefore, positive communication between AS-2 and MW-1R (~40 feet away), MW-3 (~5 feet away), and MW-6 (~50 feet away) was observed.

Monitoring Well ID	Relative Sample Time	Temp (C ⁰)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)					
	Baseline Sampling Results: AS-3										
MW-1R	Baseline	17.87	6.86 563		0.53	29.0					
MW-3	Baseline	18.56	6.67	697	0.44	42.6					
MW-6	Baseline	17.22	6.89	377	0.32	73.4					
		Post-Sparg	ge Test Results	s: AS-3							
MW-1R	Post (~17 hrs) 17.79 7.17 481		481	3.18	293.7						
MW-3	Post (< 1 hr)	18.75	6.61	626	1.01	80.2					
MW-6	Post (~17 hrs)	17.16	6.96	405	3.29	283.9					

Exhibit D: Groundwater Field Parameters: Sparge Well AS-3

The DO levels increased significantly in all three monitoring wells. Therefore, positive communication between AS-3 and MW-1R (~25 feet away), MW-3 (~45 feet away), and MW-6 (~15 feet away) was observed.

8.3.3 Transient Pressure Transducer Response

The second line of evidence evaluated was the transient pressure transducer response data. Graphs of the pressure transducer response in the monitoring wells were created for each air sparge well. The pressure response graphs for AS-1 showed no response, which demonstrates that air was not being injected below the water table. This is consistent with the near zero air injection backpressure (well blow the minimum hydrostatic pressure) observed at the initiation of sparging and presumption that the sparge well and/or conveyance piping was broken and leaking. The response graphs for AS-2 and AS-3 showed response in all three wells that were monitored. The highest pressure response was measured in the monitoring well closest to the air injection well. Accordingly, the lowest pressure response was measured in the monitoring well furthest from the air sparge well.

The first area of the graph (before time = 0) shows the baseline or static pressure response prior to sparging startup. The next area of the graph shows the pressure buildup as air was being injected into the sparge well, started displacing groundwater, and began migrating upward to the vadose zone and possibly outward. The peak of the first hump indicates the maximum pressure response and point at which breakthrough occurred. This is also an indicator of the relative soil permeability but also depends on the air injection flow rate. In other words, lower, shorterduration pressure responses on the order of a few millimeters to tens of centimeters are observed in higher permeability soils, such as gravels and sands, and higher, longer-duration pressure responses on the order of meters are observed in lower permeability soils, such as clays and silts (Leeson, 2002). The next area of the graph shows the pressure response declining back towards the baseline pressure which is the point at which the air distribution in the subsurface reached near steady state conditions. The short declining peaks within this interval correspond to soil gas pressure measurements and sample collection times and would not normally be observed if the monitoring wells remained completely sealed for the duration of the test. The steep drop in the pressure response is the point at which air sparging was stopped and the air channels began to collapse. This is usually represented by a single inverted u-shaped hump. However, since groundwater field measurements were collected after air sparging shutdown, a second inverted hump was observed after the first hump. The last area of the graph shows the time for the pressure response to return to near baseline conditions and can be used to evaluate the significance of trapped air and potential for lateral migration and pneumatic fracturing.

Overall, the pressure responses measured in the monitoring wells suggest that some (but not all) of the air may be trapped in stratified layers and could result is significant lateral migration. For example, it took over 10 hours for the pressure response to return the near-baseline conditions in MW-3 after terminating air injection into AS-2.

The transient pressure response graphs during air sparing startup and shutdown are included in Figures 13 to 15.

8.3.4 Soil Gas Pressure Monitoring

The third line of evidence evaluated was the soil gas pressure data. The soil gas pressure was measured at several monitoring points located at varying distances from the air sparing wells. All of soil gas pressure measurements, including the baseline measurements are shown in Table 12. Plots of the soil gas pressure measurements collected during sparging on AS-1, AS-2, and AS-3 are shown on Figures 16, 17, and 18, respectively. The following exhibit summarizes the soil gas pressure measurements during sparging activities:

Sparge Well AS-1			Sparge Well AS-2			Sparge Well AS-3			
Well ID	Maximum Soil Gas Pressure (in-H2O)	Distanc e From Sparge Well	Well ID	Maximum Soil Gas Pressure (in-H2O)	Distance From Sparge Well	Well ID	Maximum Soil Gas Pressure (in-H2O)	Distanc e from Sparge Well	
SG-5	0.60	18'	MW-6	0	50'	MW-6	32	15'	
MW-5	1.5*	80'	MW-3	85	6'	SG-1S	0	7'	
MW-3	0	40'	SG-1D	7.5	48'	SG-1D	45	7'	
SG-3D	6.8	17'	SG-1S	0.24	48'	MW-1R	62	23'	
SG-3S	0.18	17'	SG-2D	40	20'	SG-8	0	25'	
EX-1	0.11	30'	SG-2S	1.0	20'	SG-7	0.20	33'	
SG-6	0.36	20'	MW-1R	4.0	42'	SG-2S	0.06	43'	
MW-4	0.16	15'	SG-4	0	30'	SG-2D	0	43'	
			SG-7	0.50	26'	MW-3	0	48'	
			SG-8	0.18	52'				

Exhibit E: Soil Gas Pressure Data

*The baseline pressure was 1.5 in-H $_2O$ and did not change significantly for the duration of the test.

The soil gas pressure did not change significantly in any of the monitoring points with the exception of SD-3D before and after sparging into AS-1. When sparging into AS-2, the soil gas pressure increased significantly in several of the monitoring points, including: MW-3 (~6 feet away), SG-1S, (~48-feet away), SG-1D (~48 feet away), SG-2D (~20 feet away), and MW-1R (~42 feet away). When sparging into AS-3, the soil gas pressure increased significantly in several of the monitoring points, including: MW-6 (~15 feet away), SG-1D (~7 feet away), and MW-1R (~23 feet away). Based on these lines of evidence, the ROI for AS-2 and AS-3 was estimated at up to 40 feet and 20 feet, respectively. The ROI for AS-1 was effectively zero because all data indicate that the well casing, wellhead, and/or conveyance piping is damaged.

8.3.5 Helium Distribution and Recovery

Following the injection of helium into the sparge wells, AEI collected tedlar bag samples from the selected monitoring points to check for the presence of the tracer gas. The helium distribution test was used to assist in ROI determination as pressure measurements alone are not sufficient to verify the lateral extent of the air distribution in the subsurface. The helium concentrations were

measured with a Marks Product (Model MGD-2002) radiodetection handheld helium detector. The helium detector was capable of measuring helium at concentrations from as low as 0.0025% to as high as 100% by volume. The following exhibit summarizes helium concentrations detected during sparging activities. Where multiple data points exist, the highest helium concentration detected has been used.

Sparge Well AS-1			Sparge Well AS-2			Sparge Well AS-3			
Well ID	Helium Detection (%)	Distanc e From Sparge Well	Well ID	Helium Detection (%)	Distance From Sparge Well	Well ID	Helium Detection (%)	Distanc e from Sparge Well	
SG-5	9.3	18'	MW-6	5.0	50'	MW-6	7.3	15'	
MW-5	0	80'	MW-3	6.0	6'	SG-1S	8.5	7'	
MW-3	0	40'	SG-1D	9.5	48'	SG-1D	9.4	7'	
SG-3D	4.5	17'	SG-1S	1.9	48'	MW-1R	7.8	23'	
SG-3S	0.96	17'	SG-2D	5.3	20'	SG-8	0.53	25'	
EX-1	0.37	30'	SG-2S	4.5	20'	SG-7	0.25	33'	
SG-6	0.12	20'	MW-1R	5.9	42'	SG-2S	0	43'	
MW-4	0.04	15'	SG-4	0.25	30'	SG-2D	0.01	43'	
						MW-3	0	48'	

Exhibit F: Helium Distribution Data

To evaluate the results of the helium distribution test, significant helium detection was defined as any measurement at or above 1% by volume. If greater than 1% helium was measured at a monitoring point, the sparge air and air channels most likely extended at least (and possibly beyond) this distance. Based on the results of the helium detections alone, communication between AS-1 was observed as far away as 18 feet (SG-5). Monitoring points at 15, 20, 30, 40, and 80 liner feet from AS-1 did not contain elevated helium readings. Helium was observed as far away as 50 feet (MW-6) when sparging into AS-2. However, monitoring points at 30 feet (SG-4) and 48 feet (SG-3D) did not contain significant helium detections. Communication between AS-3 was observed as far away as 23 feet (MW-1R), but monitoring points greater than 23 feet did not contain significant levels of helium. The helium distribution is summarized on Table 13 and shown on Figures 19 to 21.

The second helium test was performed to assess the recovery of sparge air and associated off-gas by the onsite SVE system. Calculations of the helium recovered by the SVE system can be used to determine if injected air is either being trapped below the water table (not captured by the SVE wells) indicating that lateral migration of the vapors may be a concern, or if the SVE wells are successful at capturing the injected air. Typically helium recovery over 80% indicates that the SVE system is performing well with regard to sparge air recovery. Based on the influent samples collected during the helium recovery test, it was calculated that approximately 90% of helium injected into AS-1 was captured by the SVE system, however this high recovery is likely due to the suspected broken well/pipe, and helium was not actually being injected into the groundwater. Helium recovery was calculated at approximately 44% for helium injected into AS-2, and approximately 4% of helium injected into AS-3 was captured by the SVE system. The helium recovery is summarized on Table 14.

8.4 Air Sparging Conclusions

8.4.1 AS-1 Conclusions

During sparging activities on AS-1, an airflow of approximately 8 cfm with near zero backpressure (<0.5 psig) was observed at the wellhead. The data gathered is indicative of a potential broken pipe, well, and/or wellhead in the ground. Therefore, data collected from this well was not used to estimate the effective ROI. Although helium was detected in some of the monitoring points (SG-5 in particular), other lines of evidence suggest this is a result of a broken pipe and helium traveling along the conveyance piping trench backfill rather then sparging communication. For instance, well MW-4 did not contain significant helium concentrations (approximately 15 feet from AS-1). Furthermore, the calculated recovery of 90% during the helium recovery test indicates that helium was likely being injected into the vadose zone rather than below the water table. In addition, monitoring wells did not exhibit a significant change in field readings (DO and ORP) after sparging into AS-1. Furthermore, pressure transducer response data did not indicate any communication between the sparge well and monitoring wells MW-3, MW-4, and MW-5.

8.4.2 AS-2 Conclusions

As previously discussed, the main objective of the air sparging pilot testing activities was to determine an effective ROI for potential injection activities at the site. The first test, DO and ORP monitoring, indicated that wells as far away as 50 feet (MW-6) observed positive communication. The second test completed, transient pressure transducer response, observed pressure changes in each of the wells monitored with the further well located approximately 50 feet away (MW-6). In addition, the injected air appears to be trapped, to some degree, in stratified layers which most likely resulted in significant lateral migration and an ROI greater than what would normally be expected for low permeability soil. The third test completed, soil gas pressure monitoring, indicated communication up to 48 feet away (SG-1S and SG-1D) resulting in an estimated ROI of up to 40 feet. The fourth test, helium distribution, indicated that communication was observed as far away as 50 feet (MW-6); however, select monitoring points

at 30 feet (SG-4) and 48 feet (SG-3D) did not contain elevated helium readings. Based on these lines of evidence, AEI has estimated an effective ROI of up to 40 feet for AS-2. Finally, helium recovery testing resulted in approximately 44% helium recovery by the vapor extraction wells which further supports the conclusion that soil stratification has resulted in significant lateral migration of injected gas and an ROI that most likely extends beyond 40-feet. However, it is unclear at this time in what direction or directions lateral migration has and will occur.

8.4.3 AS-3 Conclusions

In AS-3, the first test, DO and ORP monitoring, indicated that wells as far away as 45 feet (MW-3) observed positive communication. The second test completed, transient pressure transducer response, observed pressure changes in each of the wells monitored with the further well located approximately 45 feet away (MW-3). In addition, the injected air appears to be trapped, to some degree, which resulted in significant lateral migration. The third test completed, soil gas pressure monitoring, indicated communication up to 23 feet away (MW-1R) resulting in an estimated ROI of up to 20 feet. The fourth test, helium distribution, indicated that communication was observed as far away as 23 feet (MW-1R). Based on these lines of evidence, AEI has estimated an effective ROI of up to 20 feet for AS-3. Finally, helium recovery testing resulted in approximately 4% helium recovery by the vapor extraction wells which further supports the conclusion that soil stratification has resulted in significant lateral migration of vapors and an ROI that most likely extends beyond 20-feet. However, it is unclear at this time in what direction or directions lateral migration has and will occur.

9.0 SUMMARY AND CONCLUSIONS

The recent field work was completed in order to evaluate the feasibility of several remedial options as well as offsite groundwater conditions. In addition, pilot study activities were completed in order to further evaluate potential remedial options at the site including Bioventing and ozone sparging.

9.1 Groundwater Conditions

Groundwater during the February 2010 episode, which includes calculations from the newly installed monitoring wells, was calculated to flow towards the west with an estimated overall hydraulic gradient of 0.01 feet/foot, relatively consistent with historical data. Hydrocarbon concentrations in the onsite previously existing monitoring wells was relatively consistent with historical concentrations. Newly installed offsite wells were reported to contain TPHg, benzene, and MTBE at concentrations up to 29,000 μ g/L (MW-7), 410 μ g/L (MW-7), and 1,600 μ g/L, respectively, which are lower than those concentrations reported onsite. Based on this data, the TPHg and benzene portion of the groundwater plume appears relatively well defined to the west and southwest based on data obtained from MW-8 through MW-10. The MTBE portion of the plume appears well defined to the south/southwest based on well MW-10. Additional monitoring events will help determine the stability of the plume and draw further conclusions regarding contaminate distribution and delineation.

During the well installation activities, two additional "deep" samples were collected from the perceived deeper groundwater producing zone at the site. The "deep" groundwater sample was collected from well MW-7 and MW-8 at approximately 20.5 feet and 19.5 feet bgs, respectively. TPHg, benzene, and MTBE were not detected at or above the laboratory detection limit in the "deep" groundwater sample from MW-7. Benzene was not detected at or above the laboratory detection limit in the "deep" groundwater sample collected from MW-8, however TPHg and MTBE were detected at a concentration of 54 μ g/L and 570 μ g/L, respectively. Based on this data, the TPHg and benzene portions of the contamination do not appear to have significantly migrated vertically into any deeper groundwater zones. Well MW-7 is located within a zone with relatively high shallow TPHg and benzene groundwater concentrations, however they were not detected in the deeper zone at approximately 20.5 feet bgs. Although MTBE was not detected in the deep sample from MW-7, MTBE in the deep groundwater sample within the vicinity of MW-8 was detected at a concentration of 570 μ g/L. This MTBE concentration from MW-8 was significantly lower than the 1,600 μ g/L shallow concentration, and suggests limited vertical migration of the MTBE may occur.

9.2 Soil Conditions

Several soil samples were collected from each of the installed monitoring wells. TPHg and MTBE were reported at a maximum concentration of 220 mg/kg and 0.59 mg/kg, respectively in the soil samples analyzed. Benzene was not detected at or above the laboratory detection limit in the soil samples analyzed. However, the deep soil sample from each boring was not report to contain TPHg or MTBE at or above the laboratory detection limit, with the exception of MW-9-14.5 which contained MTBE at a concentration of 0.027 mg/kg, just slightly above the MTBE ESL of 0.023 mg/kg. Based on this data, significant offsite soil contamination is not present at the site. Residual concentrations detected are likely a results of the offsite groundwater contaminate plume.

9.3 Soil Vapor Conditions

Due to the fine grained, non-permeable shallow clay observed at the site, in conjunction with the shallow groundwater, soil vapor sampling has been difficult to perform. As discussed earlier, low flow conditions were present in SG-1S, SG-1D, SG-2D, SG-3D, SG-5, SG-7, and SG-8 during the March 2010 sampling event. The low flow conditions prevented the collection of soil vapor from SG-3 at 6 feet bgs, SG-7 and SG-8. Therefore, soil vapor concentrations could not and have not been investigated in the northwestern portion of the property. Vapor samples from SG-2S and SG-6 near the western property boundary did not fall under the low flow category and indicated significant hydrocarbon concentrations are present in the soil vapor to the north and south of the onsite building. However, the vapor sample from SG-4, located between the building the western property boundary in the central portion of the site has been adequately defined. Further investigation and/or remediation may be necessary to better assess the soil conditions along the western property boundary north and south of the onsite building.

9.4 Pilot Testing - Bioventing

Bioventing pilot testing consists of completing a series of field tests in order to determine the feasibility of Bioventing as a remedial alternative. First, the baseline soil gas data was evaluate and used to determine if site conditions were favorable for Bioventing. The baseline soil gas survey indicated that shallow soil (<4 feet bgs) had sufficient oxygen levels to support biodegradation and injecting additional oxygen was not likely to provide any added benefit. At less than 5% by volume, the deeper soil (>4 feet bgs) did not contain sufficient oxygen levels. However, low-flow and no-flow conditions were observed in the soil which indicated that Bioventing was not a feasible option. The low soil permeability is likely due to fine-grained nature of the soil type (clay) and shallow groundwater conditions. Based on the results of the feasibility study, Bioventing does not appear to be a feasible remedial option to address residual soil contamination at the site. In other words, aerating saturated soil is not technically feasible unless combined with groundwater extraction to lower the water table.

9.5 Pilot Testing - Sparging

Field testing using AS-1 strongly indicated the presence of a broken well, wellhead, and/or conveyance piping. As a result, an effective ROI for AS-1 was not determined. Evaluation of the data collected showed that the effective ROIs for AS-2 and AS-3 were approximately 40 and feet 20 feet, respectively. Therefore, multiple lines of evidence, indicate an effective ROI for sparging in the range of 20 to 40 feet. An ROI in this range could be used to design an air, oxygen, and/or ozone sparging system and well network should this technology be selected to remediate the dissolved hydrocarbon plume.

9.6 Conclusions

AEI's *Feasibility Study/Corrective Action Plan* dated June 29, 2009, evaluated several remedial options for the site and concluded that Bioventing, to target impacted soil, and ISCO using ozone sparging to target the dissolved phase plume may be viable options to reduce contaminant concentrations in a timely and cost effective manner. Therefore, the feasibility study described in this report was completed to evaluate the effectiveness of these remedial options.

Based on several phases of site assessment, shallow soil at the site consists of low permeability, clay-rich soils with a thick capillary fringe, in which a large portion of hydrocarbon source remains. This source is slowly leaching into the groundwater, contributing to the dissolved phase plume. These shallow soil conditions are not amenable for moving air through the soil pore space which was verified by the recent pilot testing activities and suggested by the poor performance of the HerShey SVE system. Despite the poor SVE performance, Bioventing has been effective at sites where SVE has not, where soils accept air at higher rates than it can be extracted. However, at this site, field data collected during the pilot test indicates that Bioventing will not work in the shallow soils; insufficient air flow was observed to consider this a viable option for oxygen delivery to the impacted source area soil.

Given that ISCO is a proven remedial alternative for gasoline contaminants and that AEI has considered using an ISCO (ozone sparging) program to treat groundwater at the site, AEI has

considered ISCO to treat the shallow soil. However, for the same reason that SVE and Bioventing were and would not likely be successful, ISCO would likely not be cost effective in the vadose zone. The low permeability moist to wet soil limits the ROI for the injection, and would require a high density (close spacing) of injection points, with injection point grid spacing expected at less than 5 feet. Furthermore, if an alternative liquid oxidant to ozone is considered, permeability will again be a limited factor, and often two or three injection events are necessary to adequately reduce contaminant concentrations. While a formal cost estimate has not been performed, given the required injection density and expected quantity oxidant needed, it is AEI's experience that an ISCO program for the vadose zone would be extremely costly. Therefore AEI does not recommend pursuing ISCO as a remedial alternative for the shallow soil.

Since SVE, Bioventing, and ISCO have either proven not to be feasible at the site, or will not likely be cost effective, the remaining traditional cleanup approach is source removal through excavation. AEI has considered several other approaches, such as thermal desorption and electrical resistance heating, that may be technologically feasible for the shallow tight clay, however given the configuration of the property (utilities, active fuel system, limited area) these options are not considered feasible or cost effective. Therefore, the remaining remedial option for the soil is excavation, which is, as described in the earlier FS/CAP, a feasible option. The main question to consider regarding excavation is if the resulting benefit of soil excavation is justified by the costs associated with excavation in a manner which is consistent with the maximum benefit of the people of the state, including economic and social costs (SWRCB Resolution 92-49). A preliminary estimate, which does not account for many logistical issues which would have to take place in order to complete the excavation (closure of an active gasoline station, etc.) estimates an excavation program could cost between \$250,000 and \$400,000.

As discussed in this report, an estimated effective ROI suggests that an ISCO program using ozone sparging would be an effective method for treating the groundwater plume. Given the relatively large plume identified at and in the vicinity of the site, the location of utilities within the public right of way, and the nearby residential properties, several factors must be evaluated to determine if the risk posed by the contaminated groundwater is justified by the costs associated with a groundwater remedial program in a manner which is consistent with the maximum benefit of the people of the state.

10.0 RECOMMENDATIONS

The previously proposed cleanup goals for the site were based on environmental screening levels (ESLs) in which shallow groundwater was a potential drinking water source. Current groundwater and soil concentrations do not meet these proposed cleanup goals and are not expected to in the near future. Therefore, at the request of our client, AEI has since evaluated the site on a risk basis to determine if alternative cleanup goals may be more appropriate for the site, or if the site would qualify for a low risk closure based on SWRCB low risk closure criteria. AEI understands that relatively high concentrations of petroleum hydrocarbons are present at the

site, however provided the contamination does not appear to present a significant threat to human health or the environment, the economic impact of site remediation would not be consistent with the maximum benefit of the people of the state. The following presents a low risk closure evaluation for the subject site.

10.1 Low Risk Closure Overview

In 1996, the San Francisco Bay RWQCB published guidance to assist responsible parties and regulatory personnel in evaluating petroleum release sites with respect to potential risk posed to human health and water quality (SF RWQCB January 5 1996, "Low Risk Guidelines"). This guidance provided six criteria that when all were met, were defined to represent a low-risk condition. The guidance was very useful but low-risk sites were sometimes still not closed due to the fact that the water quality objectives (WQOs) were not met in all parts of the plume (including the source area). Between 1998 and 2009, the SWRCB adopted closure orders for 14 sites that had been appealed from the regional board level, and clearly established that site closure could be granted even though WQOs had not yet been met, as long as site conditions were protective of human health, safety, and the environment and the beneficial use would be restored within a reasonable time period. The closure orders clarified that what constitutes "a reasonable time period" is based on several factors, and could be decades based on site specific conditions. In November 2009, the SWRCB adopted Resolution 2009-0081, which directed agencies to use the decision framework in the 14 case closures to close low-risk sites, and stated that such closures are consistent with SWRCB Resolution 92-49. Resolution 2009-0081 explained that the decision framework relied on several key factors for the regional boards to consider when evaluating the low-risk status of a site and granting closure. These factors are:

- (1) Affected groundwater is limited in extent
- (2) Further migration is unlikely
- (3) Drinking water wells (or other sensitive receptors) are not located close to the plume
- (4) Low likelihood that impacted groundwater will be needed before the beneficial use is restored
- (5) Depth to impacted groundwater relative to local well construction ordinance
- (6) Appropriate corrective action, including appropriate source removal, was performed
- (7) Remaining petroleum does not pose a threat to human health or safety

Conditions at this site meet each of these low-risk factors as described below.

10.2 Factor 1. Affected groundwater is limited in extent

As described in Section 4.0, during February 2010, AEI completed additional groundwater plume delineation activities in the vicinity of the site. Prior to completing these activities, the extent of the offsite plume was unknown. Based on sampling data obtain from these wells, as described in Section 9.1, the horizontal TPHg and benzene portion of the groundwater plume appears relatively well defined to the west to southwest based on data obtained from MW-8

through MW-10. The horizontal MTBE portion of the plume appears well defined to the south/southwest based on well MW-10.

As described in Section 9.1, TPHg and benzene were either not detected, or present at very low concentrations in "deep" groundwater samples collected from MW-7 and MW-8, indicating that the TPHg and benzene portions of the contamination do not appear to have significantly migrated vertically into any deeper groundwater zones. MTBE was not detected in the deep sample from MW-7 indicating that MTBE has not migrated into any deeper groundwater zones, however, MTBE in the deep groundwater sample within the vicinity of MW-8 was detected at a concentration of 570 μ g/L. This MTBE concentration from MW-8 was significantly lower than the 1,600 μ g/L shallow concentration, and suggests limited vertical migration of the MTBE may occur at the site.

Based on the above observations, the relatively high dissolved concentrations seen at the site significantly decrease by downgradient wells MW-9 and MW-10. Therefore, the affected groundwater appears limited in extent and site conditions meet low-risk Factor 1.

10.3 Factor 2. Further migration of impacted groundwater is unlikely

In February 2004, the USTs (contamination source) were removed from the site. Now that the source is gone, it is expected that the contaminate plume has migrated as far as it will, therefore further migration is highly unlikely. Data collected from wells MW-1R, MW-2 through MW-6, and EX-1 indicates that concentrations show a decreasing trend. Therefore, site conditions meet low-risk Factor 2.

10.4 Factor 3. Drinking water wells, or other sensitive receptors, are not located close to the plume

Based on the HerSchy's June 18, 2008 Addendum to Site Conceptual Model, there appears to be 14 sites located within a $\frac{1}{2}$ mile of the subject site which contain a water well. The water wells in each of the 14 sites were reportedly used for monitoring purposes. In addition, no observed surface water is present within a $\frac{1}{2}$ mile radius of the site as well. Therefore, there are no known sensitive receptors within a $\frac{1}{2}$ mile of the site potentially exposed to impacted groundwater.

Based on the lack of sensitive receptors, the site conditions meet low-risk Factor 3.

10.5 Factor 4. There is a low likelihood that impacted groundwater will be needed before its beneficial use is restored by natural attenuation

It is highly unlikely that shallow groundwater beneath the site will be used as a drinking water source in the near future. The source for the contamination (former USTs) have been removed. Based on hydrocarbon concentration trend lines for TPHg, benzene, and MTBE in wells MW-3 and MW-4 (within the source zone), it appears that hydrocarbon concentrations are currently decreasing at the site (Figures 22 and 23). This natural attenuation appears to be occurring at a rate in which WQOs will be reached within 40 years which is within a reasonable time frame as

defined by the SWRCB (decades to hundreds of years). It is highly unlikely that shallow groundwater in the vicinity of the site will be used for drinking water in the next 40 years.

Since the groundwater beneath the site is expected to naturally attenuate to below WQOs within 40 years, site conditions meet low-risk Factor 4.

10.6 Factor 5. Impacted groundwater is shallow and within the depth limits of surface seal protection required by local well construction requirements

Again, the site groundwater is not currently used as a source of drinking water or for any of the other designated beneficial uses, and it is highly unlikely that shallow groundwater in a mixed industrial/residential area less than 1 mile from the San Francisco Bay will ever be used as a drinking water supply. However, in theory a well could be installed at the site in the future for a different purpose. The majority of the contamination is in the upper 20 feet at the site (shallow groundwater) and wells in the immediate source zone (MW-3 and MW-4) are set at approximately 20 feet bgs. The State's minimum well seal depth requirement is 20 feet; therefore, the impacted zone at this site would be sealed off and would not be accessible for water supply due to local well construction requirements. Site conditions therefore meet low-risk Factor 5.

10.7 Factor 6. Appropriate corrective action, including appropriate source removal, has been performed

In 2004, the USTs (source) were removed, and during construction activities, approximately 1,100 tons of soil and 40,000 to 60,000 gallons of groundwater was removed from the site and properly disposed of. From August 31, 2006 through November 19, 2007, approximately 940.65 lbs., or 152 gallons, of free product were removed by the SVE/AS activities. During the February 2008 DPE pilot testing activities, approximately 104.19 lbs, or 16.86 gallons of product were removed from the subsurface. Finally, various small scale free product removal activities (absorbent socks) have taken place historically in order to remove measureable free product in wells MW-4 and EX-1.

Tight soil conditions have made remedial efforts difficult to date. Although over 168 gallons of free product and a relatively large sum of money has been spent on unsuccessful remedial alternatives which have been able to remove the contamination to the maximum extent practicable.

Thus, appropriate corrective action, including appropriate source removal, has been performed and site conditions meet low-risk Factor 6.

10.8 Factor 7. The remaining petroleum does not pose a threat to human health or safety

As discussed earlier, drinking water at the site is from supplied by East Bay Municipal Utilities District and shallow groundwater at the site is not and is not expected to be used as a drinking
water source. Additionally no know water wells are within the ¹/₂ mile radius of the site. Therefore the groundwater beneath the site does not pose a threat to human health or safety. Furthermore, the majority of the site is capped with asphalt or concrete which limits the potential of direct exposure to contaminated soil beneath the site. If necessary, the property owner is willing to sign a deed restriction to limit the use of the site to non-senstive commercial land use and will create a soil management plan to outline soil handling requirements and worker health and safety in the case of potential future excavations into the impacted area.

Therefore, the remaining petroleum does not pose a threat to human health or safety and site conditions meet low-risk Factor 7.

10.9 Conclusion and Request for Closure

In conclusion, site conditions satisfy all of the low-risk factors and the decisional framework discussed in SWRCB Resolution 2009-0081. Corrective actions taken at the site and current site conditions ensure protection of human health, safety and the environment. Corrective actions taken at the site are consistent with SWRCB Resolution 92-49 and other water quality control policies and applicable water quality control plans. Due to the low risk posed by the contamination at the site, the incremental benefit from additional source removal through excavation and/or groundwater treatment is not economically feasible in order to assure the maximum benefit of the people of the state. AEI, on behalf of our client, is requesting that the ACHCSA consider this site for closure on a low risk basis. Although a low risk closure is requested at this time, the second semester semi-annual groundwater monitoring event has already been completed and the results (which do not change the request for closure) will be issued under separate cover in the near future.

11.0 REFERENCES

Department of Toxic Substances Control (DTSC) and Los Angeles Regional Water Quality Control Board (DTSC-LARWQCB). 2003. Advisory – Active Soil Gas Investigations. Glendale and Los Angeles, California. Issued January 28, 2003.

DTSC. 2010. Advisory - Active Soil Gas Investigations. Draft for Review, Issued March 2010.

Leeson, A., Johnson, P.C., Johnson, R.L., et al. "Air Sparging Design Paradigm" August 12, 2004.

Leeson, A. and Hinchee, R.E., "*Principles and Practices of Bioventing Volumes I & II*", Prepared for USAF Environics Directorate of the Armstrong Laboratory, Tyndall Air Force Base, FL and National Risk Management Research Laboratory of U.S. EPA, Cincinnati, OH, dated September 29, 1996.

U.S. Environmental Protection Agency (USEPA), "Bioventing Principles and Practice", EPA/540/R-95/534a, September 1995.

12.0 REPORT LIMITATION & SIGNATURES

AEI Consultants (AEI) has prepared this report on behalf of the client for the property located at 6211 San Pablo Avenue in the City of Oakland, Alameda County, California. AEI has been retained by the property owner to provide environmental engineering and consulting services relating to the unauthorized release of petroleum hydrocarbons from the former UST at the subject property. Material samples have been collected and analyzed, and where appropriate conclusions drawn and recommendations made based on these analyses and other observations. This report may not reflect subsurface variations that may exist between sampling points. These variations cannot be fully anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This document should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s) and petroleum products, the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. All specified work has been performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology that existed at the time and location of the work and performed under the direction of appropriate California registered professionals.

If you have any questions regarding our investigation, please do not hesitate to contact the undersigned at (925) 746-6000.

Sincerely, AEI Consultants

Jeremy Smith, REA II Senior Proje¢t Manager

Peter J. McIntyre, PG, REA Vice President, Principal Geologist OF CA

REGI

Report Distribution:

Richard J. Bradford Project Engineer

Mr. Pritpaul Sappal, 2718 Washburn Court, Vallejo, CA 94591 Mr. Paresh Khatri, ACHCSA, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 (electronic upload) Mr. Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612 GeoTracker (electronically)

GEOLO

FIGURES

LEGEND

 \oplus MONITORING WELL

(28.68) = Groundwater Elevation Mean Sea Level

Depth to Groundwater Collected on February 23, 2010 Contour Line Gradient = 0.50 Feet Contour Lines by Surfe[®] Version 7

San Pable		$W \xrightarrow{N}_{S} E$
Avenue		
t		
5125		
(S) 25 50 SCALE: 1" = 50'		
DRAFTED BY JAS 9/10/08 REVISED BY JAS 5/10/10	AEI CONS 2500 CAMINO DIABLO, SU	ULTANTS JITE 200, WALNUT CREEK
-	6211 SAN PABLO AVENUE OAKLAND, CALIFORNIA	ION MAP FIGURE 7 PROJECT NO. 280346

FIGURE 11: INFLUENT PID READINGS OVER TIME

FIGURE 12: WELLHEAD PRESSURE OVER TIME

FIGURE 13: PRESSURE TRANSDUCER RESPONSES OVER TIME (AS-1 SPARGING)

FIGURE 14: PRESSURE TRANSDUCER RESPONSES OVER TIME (SPARGING AS-2)

FIGURE 15: PRESSURE TRANSDUCER RESPONSES OVER TIME (SPARGING AS-3)

FIGURE 16: SOIL GAS PRESSURE OVER TIME (AS-1)

FIGURE 17: SOIL GAS PRESSURE OVER TIME (AS-2)

FIGURE 18: SOIL GAS PRESSURE OVER TIME (AS-3)

FIGURE 19: SPARGE TEST AS-1 HELIUM DISTRIBUTION

6211 San Pablo Avenue, Oakland, California

■AS-1

FIGURE 20: SPARGE TEST AS-2 HELIUM DISTRIBUTION

6211 San Pablo Avenue, Oakland, California

■AS-1

FIGURE 21: SPARGE TEST AS-3 HELIUM DISTRIBUTION

Figure 22: MW-3 Groundwater Concentrations Over Time

Date

Figure 23: MW-4 Groundwater Concentrations Over Time

Date

TABLES

Table 1, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Soil Analytical Data

Sample ID	Date	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	(feet bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DP-4														NID 0.004
DP-4-3.5	11/24/2008	3.5	16	ND<0.005	0.037	ND<0.005	0.041	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.15	ND<0.004	ND<0.004
DP-4-7.5	11/24/2008	7.5	16	ND<0.005	0.12	0.016	0.032	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DP-4-15	11/24/2008	15	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	1.3	ND<0.10	ND<0.10	0.12	ND<1.0	ND<0.080	ND<0.080
SB-5														
SB-5-7.5	11/25/2008	7.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SR_7														
SB-7-3 5	11/25/2008	3.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-7-10.5	11/25/2008	10.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
cn o														
SB-0 SB-8-3-5	11/24/2008	3.5	15	ND<0.005	0.024	ND<0.005	ND<0.005	0.055	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-8-6	11/24/2008	5.5	1.5	0.024	0.024	0.45	0.087	0.055	ND<0.005	ND<0.005	ND<0.005	0.00	ND<0.004	ND<0.004
SB-8-11.5	11/24/2008	11.5	14	ND<0.024	ND<0.005	0.45	0.007	1.092	ND<0.005	ND<0.005	0.061	2.050	ND<0.004	ND<0.004
50-0-11.5	11/24/2006	11.5	1.4	ND~0.005	ND~0.005	0.054	0.047	1.4	ND~0.050	ND~0.050	0.001	2.1	ND~0.040	ND~0.040
SB-9														
SB-9-10	11/24/2008	10	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-10														
SB-10-6	11/24/2008	6	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-11														
SB-11-3.5	11/24/2008	3.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-11-7.5	11/24/2008	7.5	200	ND<0.10	0.96	1.4	3.9	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-11-15.5	11/24/2008	15.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.023	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SR.12														
SB-12-3-5	11/25/2008	3.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.0083	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-12-5.5 SB-12-6.5	11/25/2008	6.5	4.2	0.023	0.034	0.036	0.0088	0.26	ND<0.005	ND<0.005	ND<0.000	0.17	ND<0.004	ND<0.004
SB-12-11.5	11/25/2008	11.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.050	ND<0.050	ND<0.050	ND<0.050	2.1	ND<0.040	ND<0.040
SB-13	11/05/2000		•	0.010	0.20	0.10	0.64	NID -0.010	ND -0.010	ND -0.010	NID -0.010	0.12	NID -0.0000	NID -0.0000
SB-13-7.5	11/25/2008	7.5	26	0.010	0.20	0.18	0.64	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.12	ND<0.0080	ND<0.0080
SB-14														
SB-14-3.5	11/24/2008	3.5	3.0	ND<0.050	0.014	ND<0.050	ND<0.050	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
SB-14-7.5	11/24/2008	7.5	120	ND<0.050	0.75	2.3	6.2	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<1.0	ND<0.080	ND<0.080
SB-14-11.5	11/24/2008	11.5	ND<1.0	ND<0.050	ND<0.050	ND<0.050	ND<0.050	0.15	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004

Table 1, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Soil Analytical Data

Sample ID	Date	Depth (fast here)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
DDB 1		(leet bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DDP-1-5	11/25/2008	5	4.5	0.096	0.044	0.017	0.021	79	ND<0.25	ND<0.25	0.28	12	ND<0.20	ND<0.20
DDP-1-8	11/25/2008	8	96	ND<0.050	0.93	0.19	0.13	0.32	ND<0.20	ND<0.020	ND<0.20	1.3	ND<0.016	ND<0.20
DDP-1-11.5	11/25/2008	11.5	11	0.0077	0.099	0.016	0.057	1.0	ND<0.033	ND<0.033	0.17	4.4	ND<0.027	ND<0.027
DDP-1-19.5	11/25/2008	19.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	4.0	ND<0.20	ND<0.20	0.26	7.1	ND<0.16	ND<0.16
DDP-2														
DDP-2-5	11/26/2008	5	5.8	0.010	0.054	0.0063	0.057	3.4	ND<0.10	ND<0.10	0.23	2.3	ND<0.080	ND<0.080
DDP-2-7.5	11/26/2008	7.5	850	0.78	4.0	6.8	63	7.9	ND<0.20	ND<0.20	0.58	3.4	ND<0.16	ND<0.16
DDP-2-10.5	11/26/2008	10.5	14	0.045	0.13	0.040	0.14	8.0	ND<0.50	ND<0.50	ND<0.50	12	ND<0.40	ND<0.40
DDP-2-20.5	11/26/2008	20.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.86	ND<0.050	ND<0.050	ND<0.050	ND<0.50	ND<0.040	ND<0.040
DDP-2-26.5	11/26/2008	26.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.14	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-2-35.5	11/26/2008	35.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.039	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-3														
DDP-3-5	11/26/2008	5	170	ND<0.10	1.6	0.81	20	6.3	ND<0.25	ND<0.25	0.38	6.6	ND<0.20	ND<0.20
DDP-3-7.5	11/26/2008	7.5	930	1.7	23	11	73	11	ND<0.50	ND<0.50	1.1	ND<5.0	ND<0.40	ND<0.40
DDP-3-12.5	11/26/2008	12.5	ND<1.0	ND<0.005	0.0075	ND<0.005	0.013	0.78	ND<0.10	ND<0.10	ND<0.10	12	ND<0.080	ND<0.080
DDP-3-20.5	11/26/2008	20.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.18	ND<0.010	ND<0.010	ND<0.010	ND<0.10	ND<0.0080	ND<0.0080
DDP-3-26	11/26/2008	26	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.022	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-3-35.5	11/26/2008	35.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.020	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-4														
DDP-4-3.5	11/26/2008	3.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.055	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-4-7.5	11/26/2008	7.5	180	0.040	0.84	0.26	2.5	0.11	ND<0.020	ND<0.020	ND<0.020	ND<0.20	ND<0.016	ND<0.016
DDP-4-10.5	11/26/2008	10.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.0093	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-4-20.5	11/26/2008	20.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
DDP-4-29.5	11/26/2008	29.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
MW-7														
MW-7-8	2/11/2010	8	220	ND<0.10	1.6	2.6	1.9	ND<1.0*	NA	NA	NA	NA	NA	NA
MW-7-14.5	2/11/2010	14.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.19*	NA	NA	NA	NA	NA	NA
MW-7-19.5	2/11/2010	19.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.59*	NA	NA	NA	NA	NA	NA
MW-7-29.5	2/11/2010	29.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
MW-8														
MW-8-4.5	2/11/2010	4.5	19	ND<0.005	0.19	0.066	0.033	ND<0.05*	NA	NA	NA	NA	NA	NA
MW-8-9.5	2/11/2010	9.5	1.8	ND<0.005	0.010	0.022	0.097	ND<0.05*	NA	NA	NA	NA	NA	NA
MW-8-14.5	2/11/2010	14.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.40*	NA	NA	NA	NA	NA	NA
MW-8-19.5	2/11/2010	19.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
MW-9														
MW-9-5.5	2/12/2010	5.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05*	NA	NA	NA	NA	NA	NA
MW-9-9.5	2/12/2010	9.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05*	NA	NA	NA	NA	NA	NA
MW-9-14.5	2/12/2010	14.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.027	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.004	ND<0.004
MW-10														
MW-10-6	2/12/2010	6	64	ND<0.050	0.62	ND<0.050	ND<0.050	ND<0.50*	NA	NA	NA	NA	NA	NA
MW-10-9.5	2/12/2010	9.5	1.9	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05*	NA	NA	NA	NA	NA	NA
MW-10-14.5	2/12/2010	14.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05*	NA	NA	NA	NA	NA	NA

Table 1, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Soil Analytical Data

Comula ID Dat	Data	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	(feet bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg

Notes:

TPHg = total petroleum hydrocarbons as gasoline using EPA Method 8015 Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B MTBE = methyl-tertiary butyl ether using EPA Method 8260B * = MTBE = methyl-tertiary butyl ether using EPA Method 8260B TBA = tert-butyl alcohol using EPA Method 8260B DIPE = diisopropyl ether using EPA Method 8260B ETBE = ethyl tert-butyl ether using EPA Method 8260B I,2-DCA = 1,2-dichloroethane using EPA Method 8260B EDB = Ethylene dibromide using EPA Method 8260B mg/kg = milligrams per kilogram ND = non detect at respective reporting limit NA = not analyzed

Sample ID	Data	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
DP-4	11/24/2008	1,700	17	5.6	22	5.3	9,700	ND<250	ND<250	800	10,000	ND<250	ND<250
SB-5	11/25/2008	430	ND<1.7	ND<1.7	ND<1.7	ND<1.7	4,600	ND<100	ND<100	460	ND<400	ND<100	ND<100
SB-7	11/25/2008	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<0.5	ND<0.5
SB-8	11/24/2008	47,000	530	200	3,100	4,100	1,900	ND<170	ND<170	ND<170	30,000	ND<170	ND<170
SB-9	11/24/2008	1,300	8.6	3.9	55	200	180	ND<5.0	ND<5.0	12	25	ND<5.0	ND<5.0
SB-10	11/24/2008	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	18	ND<0.5	ND<0.5	ND<0.5	2.5	ND<0.5	ND<0.5
SB-11	11/24/2008	1,200	5.6	0.59	38	220	160	ND<5.0	ND<5.0	5.4	37	ND<5.0	ND<5.0
SB-12	11/25/2008	390	1.3	0.93	18	56	3,900	ND<120	ND<120	ND<120	29,000	ND<120	ND<120
SB-13	11/25/2008	1,100	ND<5.0	ND<5.0	ND<5.0	14	18,000	ND<250	ND<250	720	5,400	ND<250	ND<250
SB-14	11/24/2008	1,300	20	6.9	61	170	1,900	ND<50	ND<50	52	350	ND<50	ND<50
DDP-1	11/25/2008	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	47	ND<1.0	ND<1.0	2.8	100	ND<1.0	ND<1.0
DDP-1D	11/25/2008	130	5.7	6.6	5.4	21	21	ND<2.5	ND<2.5	2.7	500	ND<2.5	ND<2.5
MW-7(D)	2/11/2010	ND<50	ND<0.5	ND<0.5	1.2	2.3	ND<25	ND<25	ND<25	ND<25	3,000	ND<25	ND<25
MW-8(D)	2/11/2010	54	ND<0.5	ND<0.5	1.1	3.0	570	ND<12	ND<12	14	ND<50	ND<12	ND<12

Table 2, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Groundwater Analytical Data - Soil Borings

Notes:

TPHg = total petroleum hydrocarbons as gasoline using EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B

MTBE = methyl-tertiary butyl ether using EPA Method 8260B

TBA = tert-butyl alcohol using EPA Method 8260B

TAME = tert-amyl methyl ether using EPA Method 8260B

DIPE = diisopropyl ether using EPA Method 8260B

ETBE = ethyl tert-butyl ether using EPA Method 8260B

1,2-DCA = 1,2-dichloroethane using EPA Method 8260B

EDB = Ethylene dibromide using EPA Method 8260B

 $\mu g/L=$ micrograms per liter

ND = non detect at respective reporting limit

	Table 3, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346 Soil Vanor Analytical Data										
				Soll vapor A	Inalytical Dat	a					
Sample ID	Date	Notes	Purge Vacuum	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE		
Sumple 15	Dute	110105	(in-H2O)	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³		
Shallow Probes (Screened Interval)											
SG-1-3	12/3/2008	1,3,5	NA	20,000	ND<6.5	25	10	39	ND<7.3		
(2.5 to 3.0')	5/15/2009	1,3,5,8	NA	150,000	ND<26	ND<31	ND<35	ND<110	ND<29		
	3/18/2010	2,4,6,8	326	3,800,000	ND<250	26,000	ND<250	720	ND<2,500		
SG-2-3	12/3/2008	1,3,5	NA	18,000	ND<26	ND<31	ND<35	ND<110	470		
(2.5 to 3.0')	5/15/2009 3/18/2010	8 2468	NA 50	NS 5.700.000	NS 1.900	NS 57.000	NS ND<1 000	NS 1.700	NS ND<25 000		
		_,.,.,.		-,,	-,	,		-,			
SG-3-3	12/3/2008	1,4,6	NA	470,000	ND<140	10,000 ND<7.7	ND<120	750	ND<1,200		
(2.5 to 5.0)	3/13/2009	2,4,6,8	NA 93	ND<25,000	ND<0.5 ND<250	ND<7.7 ND<250	ND<250	ND<27 ND<250	ND<7.5 ND<2,500		
			00	NID -25 000			10.450	100.050	- 400		
SG-4 (4 to 4.5')	3/18/2010	2,4,6,8	90	ND<25,000	ND<250	280	ND<250	ND<250	7,400		
SG-5 (4 to 4.5')	3/18/2010	2,4,6,8	300	59,000,000	730,000	320,000	75,000	72,000	ND<800,000		
SG-6 (4 to 4.5')	3/18/2010	2,4,6,8	30	1,100,000	9,200	12,000	ND<1,700	28,000	76,000		
SG-7 (4 to 4.5')	3/18/2010	8,10	367	NS	NS	NS	NS	NS	NS		
SG-8 (4 to 4.5')	3/18/2010	10	>408	NS	NS	NS	NS	NS	NS		
Deep Probes											
SG-1-6	12/3/2008	1,4,6	NA	43,000,000	12,000	480,000	ND<7,600	21,000	ND<110,000		
(5.5' to 6.0')	5/15/2009	1,3,7	NA	860,000	3,200	ND<500	ND<500	ND<500	ND<500		
	3/18/2010	2,4,6,8	136	48,000,000	42,000	470,000	ND<5,000	37,000	ND<150,000		
SG-2-6	12/3/2008	1,4,6	NA	38,000,000	41,000	370,000	ND<5,400	ND<8,000	ND<290,000		
(5.5' to 6.0')	5/15/2009	1,3,7	NA	860,000	12,000	ND<500	ND<500	ND<500	ND<500		
	3/18/2010	2,4,6	190	41,000,000	72,000	390,000	ND<10,000	ND<10,000	ND<200,000		
SG-3-6	12/3/2008	1,4,6	NA	1,200,000	890	26,000	ND<1.5	2,300	ND<15,000		
(5.5' to 6.0')	5/15/2009	1,3,7,9	NA 354	860,000	2,300	ND<500	ND<500	ND<500	ND<500		
	5/16/2010	2,4,0,0	554	143	145	145	145	145	14.5		
Replicate Samples	12/2/2008	146	NA	110.000	570	0 000	ND -200	1 100	ND <17.000		
SG-3-6-DUP SG-3-3	5/15/2008	1,4,6	NA	440,000	5/0 ND<6.5	8,800 ND<7.7	ND<390 ND<8.8	1,100 ND<27	ND<17,000 ND<7.3		
SG-6(Dup)	3/18/2010	2,4,6,8	35	480,000	1,800	7,300	ND<500	600	87,000		
ESL - Residential ESL - Commercial				10,000	84 280	63,000 180,000	980 3 300	21,000 58,000	9,400 31,000		
Replicate Samples SG-3-6-DUP SG-3-3 SG-6(Dup) ESL - Residential ESL - Commercial Notes: TPHg = total petroleur MTBE = methyl-tertia µg/m ² = micrograms pp ND = non detect at res NA = not available NS = not available SS = not sampled ESL = Environmental 190 - Red color indica 1 - Sample collected u 2 - Sample collected u 3 - TPHg analyzed usi 5 - BTEX/MTBE anal 6 - BTEX/MTBE anal 7 - BTEX/MTBE anal	12/3/2008 5/15/2009 3/18/2010 n hydrocarbons a ry butyl ether er cubic meter pective reporting Screening Level tes purge vacuun sing a summa ca sing a tedlar bag ng EPA Method yzed using EPA Vzed using EPA	1,4,6 1,3,5 2,4,6,8 as gasoline g limit for shallow n is greater t nister 8015 od T015 Method 802 Method 802	NA NA 35 soil vapor as determ han current "low flo 1B 0B	440,000 10,000 480,000 10,000 29,000	570 ND<6.5 1,800 84 280 hal Water Quality (n-H2O	8,800 ND<7.7 7,300 63,000 180,000	ND<390 ND<8.8 ND<500 980 3,300	1,100 ND<27 600 21,000 58,000	ND<17,000 ND<7.3 87,000 9,400 31,000		

8 - Water observed coming from the probe, partial or no sample collected.
 9 - Low flow conditions, took 1 hour to move from -30 in-Hg to -20 in-Hg 10 - After 15+ minutes, no air collected in Tedlar Bag.

Sample ID	Date	Depth (feet bgs)	Moisture Content ¹	Bulk Density	Dry Bulk Density	Estimated Total Porosity	Estimated Water-Filled Porosity	Estimated Air-Filled Porosity	TIC	тос	тс	Grain Size Distribution (%)		n (%)	Soil Description	
			(wet wt)	(g/cm ³)	(g/cm ³)	(n)	(θ _{w)}	$(\theta_{a)}$	(mg/kg)	(mg/kg)	(mg/kg)	Gravel	Sand	Silt	Clay	
SB-12																
SB-12-11.5	11/25/08	11.5	17.4%	2.0	1.7	0.36	0.36	0.00	390	660	1,050	4.4	58.5	26.9	10.2	Gray Clayey SAND
DDP-1																
DDP-1-6	11/25/08	6	19.6%	1.9	1.6	0.40	0.31	0.09	1,200	5,200	6,400	0	7.3	39.6	53.1	Gray CLAY
DDP-1-10	11/25/08	10	13.3%	2.1	1.9	0.30	0.30	0.00	ND<200	1,000	1,100	18.5	45.6	21.1	14.8	Olive Gray Clayey SAND w/ Gravel
DDP-3																
DDP-3-5.5	11/26/08	5.5	13.1%	1.9	1.7	0.37	0.22	0.15	6,700	10,000	16,700	0	21.1	41.5	37.4	Gray CLAY w/ Sand & Calcium Carbonate
DDP-3-10	11/26/08	10	14.8%	1.9	1.7	0.38	0.38	0.00	ND<200	900	1,000	26.3	44.9	21.8	7.0	Mottled Olive Clayey SAND w/ Gravel

Table 4, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346 Additional Soil Analytical Data

NOTES:

feet bgs = feet below ground surfaceBulk Density by SSSA #5g/cm³ = grams per cubic centimeterMoisture Content by ASTM D2216pcf = pounds per cubic footTIC by SM5310Bwet wt = wet weightTOC by SM5310BTIC = Total Inorganic CarbonGrain-Size Distribution by ASTM D422TOC = Total Organic CarbonMoisture Content (w) = Weight of Water / Weight of SolidsTC = TIC + TOC = Total CarbonMoisture Content (w) = Weight of Water / Weight of Solids

Bulk Density (γ) Dry Bulk Density (γ_d) = $\gamma/(1+w)$ Total Porosity (n) = 1 - (Dry Bulk Density / Soil Specific Gravity) Water-Filled Porosity = Moisture Content * Dry Bulk Density Air-Filled Porosity = Total Porosity - Water-Filled Porosity Soil Specific Gravity = 2.65 (estimated value for sand) 1 pound = 454 grams 1 ft³ = 28,317 cm³ g/cm³ * 62.37 = pcf Density of Water = 1.0 g/cm³

1) A 2% by weight was the lowest soil moisture content measured at a successful U.S. Air Force Bioventing Initiative site in San Bernardino County, California (Hinchee & Leeson, 1997) 2) Because the soil core sample was compressed during collection, the actual air-filled porosity is most likley greater than the estimated value

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
, , , , , , , , , , , , , , , , , , ,		(ft amsl)	(ft)	(ft amsl)
		-	-	
MW-1R	5/15/2008	36.67	8.53	28.14
(3-23)	9/10/2008	36.67	9.36	27.31
	11/18/2008	36.67	8.82	27.85
	2/17/2009	36.67	5.67	31.00
	5/15/2009	36.67	7.79	28.88
	8/13/2009	36.67	9.20	27.47
	2/23/2010	36.67	6.67	30.00
MW-2	5/15/2008	36.33	7.63	28.70
(6-21)	9/10/2008	36.33	8.43	27.90
(0 -1)	11/18/2008	36.33	7.83	28.50
	2/17/2009	36.33	4.92	31.41
	5/15/2009	36.33	6.81	29.52
	8/13/2009	36.33	8.23	28.10
	2/23/2010	36.33	6.06	30.27
MW-3	5/15/2008	35.12	7.23	27.89
(6-21)	9/10/2008	35.12	8.08	27.04
	11/18/2008	35.12	7.52	27.60
	2/17/2009	35.12	4.36	30.76
	5/15/2009	35.12	6.50	28.62
	8/13/2009	35.12	7.96	27.16
	2/23/2010	35.12	5.10	30.02
MW_4	5/15/2008	3/11	5 /3	28.68
(5, 20)	9/10/2008	34.11	7.26	26.85
(5-20)	11/18/2008	34.11	5.84	20.03
	2/17/2000	34.11	2.04 2.67	20.27
	2/17/2009	34.11 24.11	2.07	20.21
	2/12/2009 2/12/2000	34.11 24.11	4.90	29.21
	0/15/2009 2/23/2010	34.11 34 11	0.02 3 8 4	20.09 30 27
i	2/23/2010	34.11	3.04	30.47

Table 5, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346Groundwater Elevation Data

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft amsl)	(ft)	(ft amsl)
MW-5	5/15/2008	35.17	6.29	28.88
(5-25)	9/10/2008	35.17	6.99	28.18
	11/18/2008	35.17	6.41	28.76
	2/17/2009	35.17	4.07	31.10
	5/15/2009	35.17	5.59	29.58
	8/13/2009	35.17	6.81	28.36
	2/23/2010	35.17	5.05	30.12
MW-6	5/15/2008	36.07	7.51	28.56
(5-25)	9/10/2008	36.07	8.32	27.75
	11/18/2008	36.07	7.73	28.34
	2/17/2009	36.07	4.64	31.43
	5/15/2009	36.07	6.89	29.18
	8/13/2009	36.07	8.26	27.81
	2/23/2010	36.07	5.76	30.31
MW-7	2/23/2010	31.16	2.09	29.07
(6-16)				
MW-8	2/23/2010	30.92	2.66	28.26
(5-15)				
MW-9	2/23/2010	28.90	2.84	26.06
(5-15)				
MW-10	2/23/2010	30.28	0.98	29.30
(5-15)				
EX-1	5/15/2008	33.28	4.69	28.59
(5-30)	9/10/2008	33.28	5.46	27.82
× -/	11/18/2008	33.28	4.79	28.49
	2/17/2009	33.28	1.86	31.42
	5/15/2009	33.28	4.16	29.12
	8/13/2009	33.28	8.36	24.92
	2/23/2010	33.28	3.09	30.19
Event #	Date	Average Water Table Elevation (ft amsl)	Change from Previous Episode (ft)	Gradient (Flow Direction) (ft/ft)
------------------------	------------------------	--	---	---
1	11/7/1000	NT A	NI A	0.0069 (SW)
1	2/8/2001	NA NA	INA NA	0.0008 (SW)
2	5/6/2001	NA NA	INA NA	0.0092 (SW)
5	3/31/2002	NA NA	INA NA	0.0091(SW)
4 5	0/0/2002	NA NA	INA NA	0.0108 (SSW)
5	9/9/2003	NA NA	INA NA	0.0031 (SW)
0 7	2/10/2004	NA NA	INA NA	0.0031 (SW)
7	2/19/2004	NA NA	INA NA	0.0134 (SW)
8 0	3/24/2004 0/2/2004	INA NA	INA NA	0.0081 (WSW)
9	9/3/2004	INA NA	INA NA	0.0073(SW)
10	11/2/2004	INA NA	INA NA	0.0085 (WSW)
11	2/17/2005	NA NA	INA NA	0.0050(SW)
12	3/24/2005 9/15/2005	INA NA	INA NA	0.0097(55W)
15	8/15/2005	NA	INA NA	0.013 (SW)
14	11/17/2005	NA	INA NA	0.010(SW)
15	2/8/2006	NA	NA	0.010(SW)
16	5/5/2006	NA	NA	0.013 (SSW)
17	8/18/2006	NA	NA	0.0125 (SSW)
18	12/1/2006	NA	NA	0.03(S)
19	2/23/2007	NA	NA	0.012 (SW)
20	5/10/2007	NA	NA	0.013 (SW)
21	8/16/2007	NA	NA	0.022 (SW)
22	11/8/2007	NA	NA	0.012 (WSW)
23	2/14/2008	NA	NA	0.013 (SW)
24	5/15/2008	28.49	NA	0.01 (W)
25	9/10/2008	27.55	-0.94	0.015 (SW)
26	11/18/2008	28.26	0.71	0.012 (W)
27	2/17/2009	31.22	2.96	0.01 (SW)
28	5/15/2009	29.16	-2.06	0.01 (WSW)
29	8/13/2009	27.42	-1.74	0.01 (W)
30 ¹	2/23/2010	29.44	2.03	0.01 (W)

Table 6, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346Groundwater Flow Data

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing

NA = not available

 1 = Includes data from newly installed monitoring wells MW-7 through MW-10.

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
<u>,</u>		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW 1	11/7/1000	5 700	170	50	22	85	20.000	NA	NA	NΛ	NA	ΝA	NΛ
101 00 - 1	3/8/2001	17,000	480	150	52	170	20,000	NA	NA	NA	NA	NA	NA
	11/17/2001	10,000	230	210	52 60	250	22,000	NA	NA	NA	NA	NA	NA
	3/31/2002	12,000	61	ND	ND	250	35,000	NA	NA	NA	NA	NA	NA
	11/9/2002	10,000	ND	ND	ND	ND	50,000	NA	NA	NA	NA	NA	NA
	12/9/2003	22,000	150	ND	ND	ND	56,000 66,000	NA	NA	NA	NA	NA	NA
	12/9/2005	22,000	150	ND	ND	ND	00,000	NA.	INA	INA	11A	NA	INA.
MW-1R	11/17/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/19/2004	1,800	95	130	44	200	220	NA	NA	NA	NA	NA	NA
	5/24/2004	210	12	10	5.4	23	79	ND	ND	2.1	37	ND	ND
	9/3/2004	300	1.5	7.1	9.4	42	81	ND	ND	1.6	ND	ND	ND
	11/2/2004	290	14	30	9.5	45	45	ND	ND	1.1	ND	NA	NA
	2/17/2005	530	3.4	ND	ND	2.6	1,000	ND	ND	100	ND	NA	NA
	5/24/2005	NA	NA	NA	NA	NA	NA	ND	ND	610	ND	ND	ND
	8/15/2005	2,500	64	240	61	210	2,300	ND	ND	210	ND	ND	ND
	11/17/2005	2,500	66	290	75	290	1,300	ND	ND	110	1,600	ND	ND
	2/8/2006	3,300	100	310	86	470	1,400	ND	ND	130	1,400	ND	ND
	5/5/2006	3,400	170	350	97	550	1,100	ND	ND	100	2,400	ND	ND
	8/18/2006	5,800	190	1,000	230	1,000	490	ND	ND	36	2,900	ND	ND
	12/1/2006	410	1.7	6.3	1.2	47	100	ND	ND	4.7	100	ND	ND
	2/23/2007	ND	ND	0.51	ND	1.4	3	ND	ND	ND	ND	ND	ND
	5/10/2007	ND	ND	ND	ND	2.0	5.9	ND	ND	ND	ND	ND	ND
	8/16/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/8/2007	1,300	11	82	54	270	1.4	ND	ND	ND	ND	ND	ND
	2/14/2008	800	7.6	31	23	150	1.7	ND	ND	ND	ND	ND	ND
	5/15/2008	3,200	20	200	110	550	4.2	ND<0.50	ND<0.50	1.0	ND<20	ND<0.50	ND<0.50
	9/10/2008	1,000	6.5	22	19	120	2.3	ND<0.50	ND<0.50	ND<0.50	4.0	ND<0.50	ND<0.50
	11/18/2008	430	4.1	18	12	100	1.8	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	2/17/2009	220	3.6	6.1	2.0	41	1.3	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	5/15/2009	890	6.0	17	27	110	1.8	ND<0.50	ND<0.50	ND<0.50	3.9	ND<0.50	ND<0.50
	8/13/2009	2,000	17	23	73	350	2.1	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	2/23/2010	3,200	31	77	120	810	3.9	ND<1.7	ND<1.7	ND<1.7	ND<6.7	ND<1.7	ND<1.7

Sample ID	Data	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L
MW-2	11/7/1999	6,000	1,300	92	50	400	6,800	NA	NA	NA	NA	NA	NA
	3/8/2001	41,000	8,100	870	2,000	4,100	26,000	NA	NA	NA	NA	NA	NA
	11/17/2001	18,000	3,700	180	610	640	16,000	NA	NA	NA	NA	NA	NA
	3/31/2002	32,000	6,500	270	1,700	2,700	19,000	NA	NA	NA	NA	NA	NA
	9/9/2003	24,000	4,600	ND	1,200	440	19,000	NA	NA	NA	NA	NA	NA
	12/9/2003	31,000	6,200	170	1,600	2,700	19,000	NA	NA	NA	NA	NA	NA
	2/19/2004	21,000	4,600	120	970	2,000	15,000	NA	NA	NA	NA	NA	NA
	5/24/2004	1,200	120	3	63	67	1,900	ND	ND	ND	ND	ND	ND
	9/3/2004	2,300	120	ND	51	70	1,700	ND	ND	26	ND	ND	ND
	11/2/2004	530	35	ND	17	30	520	ND	ND	28	100	NA	NA
	2/17/2005	18,000	2,100	31	800	680	20,000	ND	ND	1,000	ND	NA	NA
	5/24/2005	22,000	3,200	52	1,400	1,700	16,000	ND	ND	NS	NS	ND	ND
	8/15/2005	2,000	66	ND	46	47	2,400	ND	ND	95	880	ND	ND
	11/17/2005	760	19	0.64	15	13	1,000	ND	ND	26	810	ND	ND
	2/8/2006	10,000	1,500	8	660	380	4,300	ND	ND	120	2,800	ND	ND
	5/5/2006	15,000	1,800	ND	1,200	1,200	5,800	ND	ND	150	4,300	ND	ND
	8/18/2006	360	11	ND	13	9.7	160	ND	ND	4.6	600	ND	ND
	12/1/2006	11,000	1,000	ND	990	910	2,100	ND	ND	87	2,000	ND	ND
	2/23/2007	3,200	210	ND	270	85	900	ND	ND	33	1,400	ND	ND
	5/10/2007	590	31	ND	39	22	200	ND	ND	5.9	250	ND	ND
	8/16/2007	650	49	ND	71	49	100	ND	ND	3.5	82	ND	ND
	11/8/2007	110	1.6	ND	1.9	1.6	23	ND	ND	0.64	48	ND	ND
	2/14/2008	350	24	ND	12	5.9	190	ND	ND	7.7	320	ND	ND
	5/15/2008	81	0.59	ND<0.50	0.71	0.66	38	ND<0.50	ND<0.50	1.4	54	ND<0.50	ND<0.50
	9/10/2008	150	6.4	ND<0.50	8.4	5.1	14	ND<0.50	ND<0.50	0.55	38	ND<0.50	ND<0.50
	11/18/2008	420	25	0.70	46	47	29	ND<0.50	ND<0.50	1.3	60	ND<0.50	ND<0.50
	2/17/2009	460	23	0.96	51	37	26	ND<0.50	ND<0.50	1.4	61	ND<0.50	ND<0.50
	5/15/2009	220	13	0.93	26	13	21	ND<0.50	ND<0.50	0.87	60	ND<0.50	ND<0.50
	8/13/2009	110	7.0	ND<0.50	13	5.0	7.7	ND<0.50	ND<0.50	ND<0.50	26	ND<0.50	ND<0.50
	2/23/2010	170	9.4	0.65	27	5.6	14	ND<0.50	ND<0.50	ND<0.50	36	ND<0.50	ND<0.50

Table 7, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Sample ID	Data	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L
MW-3	11/7/1999	43,000	860	70	ND	65	120,000	NA	NA	NA	NA	NA	NA
ł	3/8/2001	90,000	1,800	ND	ND	ND	210,000	NA	NA	NA	NA	NA	NA
ł	11/17/2001	110,000	1,600	ND	ND	ND	300,000	NA	NA	NA	NA	NA	NA
	3/31/2002	130,000	2,400	670	300	390	300,000	NA	NA	NA	NA	NA	NA
	9/9/2003	190,000	1,600	ND	ND	ND	420,000	NA	NA	NA	NA	NA	NA
	12/9/2003	170,000	2,000	ND	ND	ND	4,500,000	NA	NA	NA	NA	NA	NA
	2/19/2004	86,000	1,800	630	ND	ND	160,000	NA	NA	NA	NA	NA	NA
	5/24/2004	120,000	2,200	ND	180	220	400,000	ND	ND	15,000	ND	ND	ND
	9/3/2004	180,000	2,000	ND	ND	ND	510,000	ND	ND	14,000	ND	ND	ND
	11/2/2004	150,000	1,700	ND	ND	ND	350,000	ND	ND	31,000	140,000	NA	NA
	2/17/2005	130,000	2,100	420	210	730	290,000	ND	ND	11,000	ND	NA	NA
	5/24/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/15/2005	110,000	1,500	ND	ND	ND	260,000	ND	ND	21,000	25,000	ND	ND
	11/17/2005	200,000	2,400	ND	ND	ND	580,000	ND	ND	24,000	49,000	ND	ND
	2/8/2006	470,000	3,800	660	ND	790	490,000	ND	ND	26,000	49,000	ND	ND
	5/5/2006	400,000	3,300	ND	ND	ND	590,000	ND	ND	21,000	86,000	ND	ND
	8/18/2006	310,000	1,800	ND	ND	ND	440,000	ND	ND	23,000	79,000	ND	ND
	12/1/2006	270,000	ND	ND	ND	ND	290,000	ND	ND	11,000	90,000	ND	ND
	2/23/2007	220,000	ND	ND	ND	ND	260,000	ND	ND	15,000	33,000	ND	ND
	5/10/2007	140,000	ND	ND	ND	ND	180,000	ND	ND	7,100	80,000	ND	ND
	8/16/2007	69,000	ND	ND	ND	ND	85,000	ND	ND	3,400	180,000	ND	ND
	11/8/2007	34,000	ND	ND	ND	ND	38,000	ND	ND	1,400	140,000	ND	ND
	2/14/2008	41,000	ND	ND	ND	ND	44,000	ND	ND	1,900	110,000	ND	ND
	5/15/2008	43,000	ND<100	ND<100	ND<100	ND<100	62,000	ND<100	ND<100	1,100	200,000	ND<100	ND<100
	9/10/2008	1,600	14	8.6	7.7	23	21,000	ND<1,000	ND<1,000	ND<1,000	290,000	ND<1,000	ND<1,000
	11/18/2008	4,500	86	150	100	590	29,000	ND<1,000	ND<1,000	ND<1,000	290,000	ND<1,000	ND<1,000
	2/17/2009	2,500	45	53	35	160	16,000	ND<1,000	ND<1,000	ND<1,000	190,000	ND<1,000	ND<1,000
	5/15/2009	2,000	15	21	13	35	13,000	ND<1,000	ND<1,000	ND<1,000	260,000	ND<1,000	ND<1,000
	8/13/2009	1,300	10	11	4.1	14	7,900	ND<1,200	ND<1,200	ND<1,200	250,000	ND<1,200	ND<1,200
	2/23/2010	1,700	22	21	11	38	4,700	ND<1,700	ND<1,700	ND<1,700	260,000	ND<1,700	ND<1,700

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L
MW-4	11/17/2001	64,000	960	1,400	360	1,600	140,000	NA	NA	NA	NA	NA	NA
	3/31/2002	78,000	4,400	4,700	690	2,700	150,000	NA	NA	NA	NA	NA	NA
	9/6/2007	49,000	710	840	ND	10,000	3,600	ND	ND	510	32,000	ND	ND
	11/8/2007	64,000	1,300	2,600	1,000	8,500	1,500	ND	ND	360	14,000	ND	ND
	2/14/2008	60,000	390	460	230	2,000	52,000	ND	ND	2,000	58,000	ND	ND
	5/15/2008	22,000	670	130	740	2,700	3,300	ND<5.0	ND<5.0	340	35,000	ND<5.0	ND<5.0
	9/10/2008	16,000	500	150	730	2,500	2,000	ND<250	ND<250	ND<250	65,000	ND<250	ND<250
	11/18/2008	24,000	820	190	1,200	5,000	1,400	ND<50	ND<50	260	9,300	ND<50	ND<50
	2/17/2009	17,000	350	170	620	2,600	360	ND<10	ND<10	82	2,100	ND<10	ND<10
	5/15/2009	32,000	300	190	880	3,200	470	ND<10	ND<10	95	380	ND<10	ND<10
	8/13/2009	29,000	320	250	980	3,400	350	ND<50	ND<50	61	10,000	ND<50	ND<50
	2/23/2010	15,000	250	77	580	2,200	180	ND<5.0	ND<5.0	41	400	ND<5.0	ND<5.0
MW-5	11/17/2001	210	15	12	11	23	4.8	NA	NA	NA	NA	NA	NA
	3/31/2002	120	11	7.4	6.1	16	4.2	NA	NA	NA	NA	NA	NA
	9/9/2003	ND	1.5	ND	ND	ND	1.7	NA	NA	NA	NA	NA	NA
	12/9/2003	130	32	ND	2.6	0.57	5	NA	NA	NA	NA	NA	NA
	2/19/2004	ND	ND	ND	ND	ND	1.5	NA	NA	NA	NA	NA	NA
	5/24/2004	ND	ND	ND	ND	ND	0.55	ND	ND	ND	ND	ND	ND
	9/3/2004	100	6.4	ND	ND	0.79	4.2	ND	ND	ND	ND	ND	ND
	11/2/2004	ND	2.6	ND	1.7	0.87	1	ND	ND	ND	ND	ND	ND
	2/17/2005	51	0.74	ND	0.94	ND	1.5	ND	ND	ND	ND	ND	ND
	5/24/2005	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	8/15/2005	ND	ND	ND	ND	ND	0.88	ND	ND	ND	ND	ND	ND
	11/17/2005	71	0.81	ND	1.1	ND	1.4	ND	ND	ND	ND	ND	ND
	2/8/2006	50	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	5/5/2006	ND	ND	ND	ND	ND	0.93	ND	ND	ND	ND	ND	ND
	8/18/2006	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	12/1/2006	ND	0.69	ND	ND	0.52	0.97	ND	ND	ND	ND	ND	ND
	2/23/2007	73	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND
	5/10/2007	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	8/16/2007	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	11/8/2007	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	2/14/2008	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	5/15/2008	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.7	ND<0.50	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
	9/10/2008	480	17	1.8	27	0.59	12	ND<0.50	ND<0.50	ND<0.50	44	ND<0.50	ND<0.50

Table 7, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-5	11/18/2008	130	2.3	1.6	ND<0.50	ND<0.50	7.3	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
(cont.)	2/17/2009	170	ND<0.50	2.7	ND<0.50	ND<0.50	4.2	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	5/15/2009	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	7.6	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	8/13/2009	380	19	2.1	3.8	0.88	11	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	2/23/2010	ND<50	ND<0.50	0.87	ND<0.50	ND<0.50	1.9	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
MW-6	11/17/2001	3,500	160	260	95	420	1,500	NA	NA	NA	NA	NA	NA
	3/31/2002	3,200	410	170	82	280	3,000	NA	NA	NA	NA	NA	NA
	9/9/2003	800	49	ND	7.4	ND	1,700	NA	NA	NA	NA	NA	NA
	12/9/2003	970	150	9.9	31	83	1,200	NA	NA	NA	NA	NA	NA
	2/19/2004	1,900	280	58	17	160	2,700	NA	NA	NA	NA	NA	NA
	9/3/2004	1,100	27	ND	14	27	2,200	ND	ND	85	ND	ND	ND
	11/2/2004	1,800	32	ND	5	11	4,100	ND	ND	170	270	ND	ND
	2/17/2005	5,600	190	34	41	110	10,000	ND	ND	780	2,000	ND	ND
	8/15/2005	1,800	27	ND	6	23	3,800	ND	ND	300	3,500	ND	ND
	11/17/2005	1,100	30	ND	4	9	2,400	ND	ND	190	9,500	ND	ND
	2/8/2006	3,600	220	43	66	160	2,700	ND	ND	180	7,800	ND	ND
	5/5/2006	1,600	130	21	37	65	1,400	ND	ND	53	3,100	ND	ND
	8/18/2006	270	27	ND	3	4	240	ND	ND	11	2,400	ND	ND
	12/1/2006	1,700	ND	ND	ND	ND	1,700	ND	ND	92	800	ND	ND
	2/23/2007	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	5/10/2007	ND	3.0	ND	ND	1.9	26	ND	ND	2	48	ND	ND
	8/16/2007	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND
	11/8/2007	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND
	2/14/2008	ND	ND	ND	ND	ND	11	ND	ND	0.94	220	ND	ND
	5/15/2008	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	13	ND<0.50	ND<0.50	1.0	130	ND<0.50	ND<0.50
	9/10/2008	78	1.4	0.60	0.94	1.3	71	ND<1.0	ND<1.0	6.2	160	ND<1.0	ND<1.0
	11/18/2008	ND<50	2.4	ND<0.50	ND<0.50	0.70	72	ND<1.2	ND<1.2	7.2	180	ND<1.2	ND<1.2
	2/17/2009	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	5/15/2009	53	3.2	ND<0.50	ND<0.50	1.7	44	ND<1.0	ND<1.0	4.3	89	ND<1.0	ND<1.0
	8/13/2009	74	5.9	0.57	0.97	5.0	27	ND<0.50	ND<0.50	2.2	140	ND<0.50	ND<0.50
	2/23/2010	ND<50	0.66	ND<0.50	ND<0.50	0.57	5.7	ND<0.50	ND<0.50	ND<0.50	15	ND<0.50	ND<0.50

Table 7, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Sample ID	Date	TPHg ug/L	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE ug/L	DIPE ug/L	ETBE ug/L	TAME ug/L	TBA ug/L	1,2-DCA ug/L	EDB ug/L
MW-7	2/23/2010	29,000	410	380	2,100	6,100	410	ND<10	ND<10	19	1,500	ND<10	ND<10
MW-8	2/23/2010	690	3.5	2.8	29	40	1,600	ND<100	ND<100	ND<100	24,000	ND<100	ND<100
MW-9	2/23/2010	ND<50	ND<0.50	0.70	ND<0.50	ND<0.50	260	ND<10	ND<10	ND<10	1,600	ND<10	ND<10
MW-10	2/23/2010	1,300	ND<0.50	11	3.1	2.6	2.8	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
EX-1	2/19/2004	120,000	9,500	4,300	840	3,900	150,000	NA	NA	NA	NA	NA	NA
	2/14/2008	84,000	2,300	4,900	1,800	14,000	3,900	ND	ND	610	10,000	ND	ND
	5/15/2008	24,000	2,100	750	640	2,100	1,800	ND<0.50	ND<0.50	380	11,000	ND<0.50	ND<0.50
	9/10/2008	9,200	1,000	160	300	1,000	780	ND<100	ND<100	180	22,000	ND<100	ND<100
	11/18/2008	8,900	1,400	290	360	1,300	840	ND<100	ND<100	230	20,000	ND<100	ND<100
	2/17/2009	70,000	2,700	3,600	1,900	13,000	1,400	ND<25	ND<25	480	1,500	ND<25	ND<25
	5/15/2009	18,000	1,400	250	530	1,700	640	ND<25	ND<25	200	5,500	ND<25	ND<25
	8/13/2009	10,000	1,100	150	410	940	520	ND<25	ND<25	120	5,200	ND<25	ND<25
	2/23/2010	39,000	1,300	1,100	1,100	7,700	880	ND<25	ND<25	250	670	ND<25	ND<25

Table 7, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346

Groundwater Analytical Data

Notes:

TPHg = total petroleum hydrocarbons as gasoline using EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B

MTBE = methyl-tertiary butyl ether using EPA Method 8021B; EPA Method 8260B Beginning in May 2008

TBA = tert-butyl alcohol using EPA Method 8260B

TAME = tert-amyl methyl ether using EPA Method 8260B

DIPE = diisopropyl ether using EPA Method 8260B

ETBE = ethyl tert-butyl ether using EPA Method 8260B

1,2-DCA = 1,2-dichloroethane using EPA Method 8260B

EDB = Ethylene dibromide using EPA Method 8260B

µg/L= micrograms per liter

ND = non detect at respective reporting limit

NA - not analyzed

TABLE 8: SOIL GAS FIELD SCREENING DATA SUMMARY

6211	San	Pablo	Avenue	Oakland	California
0211	San	1 4010	rivenue,	Oukland,	Camorina

Soil Gas Probe ID (screen interval)	Date	Notes	Vacuum/ Pressure (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
SG-1S	03/18/10	1,2	0.00	326	210	4.5	11.2	6.1
(2.5 - 3.0)	04/13/10	2,5	-	-	-	-	-	-
	04/15/10	2,10	-	-	50	0.0	18.2	3.0
SG-1-D	03/18/10	1,2	0.00	136	>11,000	51.0	5.3	18.6
(5.5 - 6.0)	04/13/10	2,5	-	-	-	-	-	-
	04/15/10	2,5	-	-	-	-	-	-
SG-2S	03/18/10	12	0.00	50	880	85	13.2	31
(2.5 - 3.0)	04/13/10	2,5	-	-	-	-	-	-
× ,	04/15/10	2,8	-	-	>11,000	15.5	8.2	17.9
SG-2D	03/18/10	1	0.00	190	>11.000	60.0	2.5	20.0
(5.5 - 6.0)	04/13/10	5	-	-	-	-	-	-
. , ,	04/15/10	8	-	-	>11,000	27.5	9.4	19.7
	04/15/10	9	-	-	>11,000	24.5	10.2	18.6
SG-3S	03/18/10	1.2	0.00	93	0	0.0	19.2	1.0
(2.5 - 3.0)	03/18/10	1,2,4	0.00	65	0	0.0	19.6	0.5
× ,	04/14/10	2,7	-	-	2,250	2.5	19.1	0.8
SG-3D	03/18/10	1.2	0.00	354	>11.000	78.5	0.9	>20.0
(5.5 - 6.0)	04/14/10	2,7	-	-	>11,000	67.0	1.5	20.0
SG-4	03/18/10	12	0.00	90	10	0.0	16.8	15
(4.0 - 4.5)	00,10,10	-,-	0.000		10	0.0	1010	
SG-5	03/18/10	12	0.00	300	>11.000	50.0	14	13.7
(4.0 - 4.5)	04/14/10	2.6	-	-	>11,000	55.0	5.2	14.0
	04/14/10	2,7	-	-	>11,000	16.5	2.5	10.1
SG-6	03/18/10	12	0.00	30	80	0.0	20.6	12
(4.0 - 4.5)	03/18/10	1.2.4	0.00	35	60	0.0	19.5	1.0
	04/14/10	2,7	-	-	200	0.5	18.5	2.0
SG-7	03/18/10	1.2.3	0.00	367	-	-	-	_
(4.0 - 4.5)	04/13/10	2,3	-	-	-	-	-	-
SG-8	03/18/10	1.2.3	0.00	>408	-	-	-	-
(4.0 - 4.5)	04/13/10	2,3	-	-	-	-	-	-

TABLE 8: SOIL GAS FIELD SCREENING DATA SUMMARY

6211 San Pablo Avenue, Oakland, California

Soil Gas Probe ID (screen interval)	Date	Notes	Vacuum/ Pressure (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
---	------	-------	---------------------------------	-----------------------------	---------------	------------	-----------	------------

NOTES

in-H2O = inches of water

- not applicable or measured

ppmv = parts per million by volume

% = percent concentration by volume

 $gw = groundwater \ present$

1) Baseline soil gas survey

2) Groundwater present in soil gas probe, sample tubing, and/or 1-liter tedlar bag

3) Waited 30 minutes, but less than 10ml of sample. Therefore, sample collection not possible. Flow rate was less than 1.0 ml/min

4) Duplicate soil gas sample for data QA/QC purposes

5) More than 50% groundwater in 1-liter teldar bag; not enough headspace left after helium field screening

6) Soil gas sample collected approximately 90 minutes after sparging into AS-1

7) Soil gas sample collected approximately 120 to 150 minutes after sparging into AS-1

8) Soil gas sample collected approximately 150 minutes after sparging into AS-2

9) Soil gas sample collected approximately 175 minutes after sparging into AS-2

10) Soil gas sample collected approximately 200 minutes after sparging into AS-2

TABLE 9: COMBINED INFLUENT PID READINGS OVER TIME

	Well II	D: AS-3			Well II	D: AS-1		Well ID: AS-2				
Date	Time	Elapsed Time (min)	Influent PID (ppmv)	Date	Time	Elapsed Time (min)	Influent PID (ppmv)	Date	Time	Elapsed Time (min)	Influent PID (ppmv)	
04/13/10	1120 1200 1230 1330 ^a 1400 1500 1630 ^b	0 40 70 130 160 220 310	<1.0 27.7 10.5 5.0 8.3 4.8 4.6	04/14/10	1130 1200 1230 1330 ^c 1400 1510 1520 1545 ^d 1600	0 30 60 120 150 220 230 255 270	13.0 8.0 6.9 4.3 3.6 3.9 2.8 3.3 3.3	04/15/10	1200 1330 ^e 1400 1600 1615 1630 1645 ^f 1655	0 90 120 240 255 270 285 295	6.8 166.1 132.5 242.6 195.3 202.2 195.6 128.3	

6211 San Pablo Avenue, Oakland, California

NOTES:

ppmv = parts per million by volume

a) Started sparging into AS-3 at 13:15 (extracting from VE-5, 6 and 8 only)

b) Stopped sparging into AS-3 at 17:00

c) Started sparging into AS-1 at 13:00 (extracting from VE-3, 4 and 13 only)

d) Stopped sparging into AS-3 at 15:40

e) Started sparging into AS-2 at 13:00 (extracting from VE-4, 5, 6 and 7 only)

f) Stopped sparging into AS-2 at 16:40

TABLE 10: SPARGE TEST MONITORING PARAMETER SUMMARY

		Soil Gas P	arameters		Groundwater Parameters					
Test Well	Soil Gas Pressure (Magnehelic)	TVH, CH4, O2, & CO2 (Eagle)	IVH, CH4, D2, & CO2 (Eagle) (Marks)		Manual Water Level	Groundwater Pressure (Levelogger)	Temp, pH, ec, DO, ORP (YSI 556)	TPH-g MBTEX (8015/8021)		
AS-1 (21' - 26')	SG-3, SG-5, SG-6, MW-3, MW-4, EX-1	VE-2, VE-3, VE-4, SG-3, SG-5, SG-6	MW-3, MW-4 MW-5, EX-1, SG-3, SG-5, SG-6, INF	All Probes Before	All Wells Before/After MW-3, MW-4, EX-1	MW-3, MW-4, MW-5	All Wells Before / After MW-3, MW-4 MW-5 Post - EX-1	NA		
AS-2 (21' - 26')	SG-2, SG-7, SG-1,MW-1R, MW-3, MW-6 SG-8	VE-4, VE-5, VE-6, VE-7, SG-2, SG-4	MW-3, MW-1R MW-6, INF SG-1, SG-2	All Probes Before	All Wells Before/After MW-1R, MW-3, MW-6	MW-1R, MW-3, MW-6	All Wells Before/After MW-1R, MW-3 MW-6	NA		
AS-3 (21' - 26')	SG-1, SG-7 SG-2, MW-1R, MW-6, MW-3	VE-5, VE-6, VE-8, SG-1, SG-2	SG-1, SG-2 SG-7, SG-8, MW-1R, MW-3, MW-6, INF	All Probes Before	All Wells Before/After MW-1R, MW-3, MW-6	MW-1R, MW-3, MW-6	All Wells Before/After MW-1R, MW-3, MW-6	NA		

6211 San Pablo Avenue, Oakland, California

NOTES:

Reference: Air Sparging Design Paradigm - Appendix F

TABLE 11: AIR SPARGE WELL INJECTION PRESSURE OVER TIME

6211 San Pablo Avenue, Oakland, California

We	ID: AS-3		Well ID: AS-1				Well ID: AS-2			
Date Time	Elapsed Time (min)	Wellhead Pressure (psig)	Date	Time	Elapsed Time (min)	Wellhead Pressure (psig)	Date	Time	Elapsed Time (min)	Wellhead Pressure (psig)
04/13/10 1315 1320 1325 1330 1335 1340 1345 1350 1355 1400 1405 1410 1415 1420 1425 1430 1445 1440 1445 1450 1455 1500 1505 1510 1515 1520 1525 1530 1505 1510 1515 1520 1525 1530 1505 1555 1520 1525 1530 1505 1555 1550 1600 1605 1615 1620 1625 1630 1635 1640 1645 1650 1655 165 165 165 165 165 165 165 165 16	$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55\\ 60\\ 65\\ 70\\ 75\\ 80\\ 85\\ 90\\ 95\\ 100\\ 105\\ 110\\ 105\\ 110\\ 105\\ 110\\ 115\\ 120\\ 125\\ 130\\ 135\\ 140\\ 145\\ 150\\ 155\\ 160\\ 165\\ 170\\ 175\\ 180\\ 185\\ 190\\ 195\\ 200\\ 205\\ 210\\ 215\\ 220\\ \end{array}$	$\begin{array}{c} 13.5\\ 11.2\\ 11.0\\ 10.8\\ 10.4\\ 10.4\\ 10.2\\ 10.0\\ 10.0\\ 9.8\\ 9.8\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.4\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2$	04/14/10	$\begin{array}{c} 1255\\ 1300\\ 1305\\ 1310\\ 1315\\ 1320\\ 1325\\ 1330\\ 1325\\ 1330\\ 1335\\ 1340\\ 1345\\ 1350\\ 1355\\ 1400\\ 1405\\ 1410\\ 1415\\ 1420\\ 1425\\ 1430\\ 1425\\ 1430\\ 1435\\ 1440\\ 1445\\ 1450\\ 1455\\ 1500\\ 1505\\ 1510\\ 1515\\ 1520\\ 1525\\ 1530\\ 1535\\ 1540\\ \end{array}$	$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55\\ 60\\ 65\\ 70\\ 75\\ 80\\ 85\\ 90\\ 95\\ 100\\ 105\\ 110\\ 115\\ 120\\ 125\\ 130\\ 135\\ 140\\ 145\\ 150\\ 155\\ 160\\ 165 \end{array}$	$\begin{array}{c} < 1.0^{1} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0$	04/15/10	$\begin{array}{c} 1300\\ 1305\\ 1310\\ 1315\\ 1320\\ 1325\\ 1330\\ 1325\\ 1330\\ 1335\\ 1340\\ 1345\\ 1350\\ 1355\\ 1400\\ 1405\\ 1410\\ 1415\\ 1420\\ 1425\\ 1430\\ 1425\\ 1430\\ 1425\\ 1430\\ 1425\\ 1430\\ 1425\\ 1430\\ 1455\\ 1500\\ 1505\\ 1510\\ 1515\\ 1520\\ 1525\\ 1530\\ 1535\\ 1540\\ 1545\\ 1550\\ 1555\\ 1600\\ 1605\\ 1610\\ 1615\\ 1620\\ 1625\\ 1630\\ 1635\\ 1640\\ \end{array}$	$egin{array}{cccc} 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 & 165 & 170 & 175 & 180 & 185 & 190 & 195 & 200 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 205 & 210 & 215 & 220 & 0 & 205 & 210 & 215 & 220 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	$\begin{array}{c} 27.0\\ 25.0\\ 22.5\\ 21.0\\ 21.5\\ 19.5\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.5\\ 17.0\\$

NOTES:

1) Near zero backpressure indicates broken pipe and /or well

TABLE 12: SOIL GAS PRESSURE OVER TIME

6211 San Pablo Avenue, Oakland, California

Date	Time	Elapsed Time (min)	SG-1S (in-H2O)	SG1D (in-H2O)	SG2S (in-H2O)	SG2D (in-H2O)	SG3S (in-H2O)	SG3D (in-H2O)	SG-5 (in-H2O)	SG-6 (in-H2O)	SG-7 (in-H2O)	SG-8 (in-H2O)	MW-1R (in-H2O)	MW-3 (in-H2O)	MW-4 (in-H2O)	MW-5 (in-H2O)	MW-6 (in-H2O)	EX-1 (in-H2O)
04/13/10	11:30	0	0.74	0.92	0.00	0.00	-	-	-	-	0.18	3.10	0.00	0.00	-	-	0.00	-
(AS-3)	11:35	5	1.00	1.00	0.00	0.00	-	-	-	-	0.10	3.70	-0.40	0.00	-	-	0.00	-
	12:00	30	1.50	1.00	0.00	0.00	-	-	-	-	0.10	3.30	-0.20	0.00	-	-	0.00	-
	12:30	60	0.10	0.80	0.00	0.00	-	-	-	-	0.20	0.70	-0.20	0.00	-	-	0.00	-
	13:00	90	0.10	1.00	0.00	0.00	-	-	-	-	0.08	0.90	-0.20	0.00	-	-	0.00	-
	13:20	110	0.00	1.00	0.04	0.00	-	-	-	-	0.00	-0.10	62	0.00	-	-	32	-
	13:45	135	0.00	44	0.00	0.00	-	-	-	-	0.00	-0.20	62	0.00	-	-	26	-
	14:00	150	-0.20	45	0.00	0.00	-	-	-	-	0.00	0.00	59	0.00	-	-	25	-
	14:15	165	-0.40	45	0.02	0.00	-	-	-	-	0.14	0.00	58	0.00	-	-	23	-
	14:35	185	-0.14	44	0.06	0.00	-	-	-	-	0.00	0.00	58	0.00	-	-	21	-
	14:50	200	0.00	44	0.04	0.00	-	-	-	-	0.00	0.00	60	0.00	-	-	19	-
	15:20	230	0.00	42	0.06	0.00	-	-	-	-	0.00	0.04	58	0.00	-	-	15	-
04/14/10	11:00	0	-	-	-	-	0.00	0.00	-0.14	0.00	-	-	-	0.00	0.18	1.50	-	0.10
(AS-1)	11:15	15	-	-	-	-	0.00	0.24	-0.23	-0.04	-	-	-	0.00	-0.10	1.30	-	-0.06
	11:30	30	-	-	-	-	0.00	1.00	-0.24	-0.04	-	-	-	0.00	-0.08	1.30	-	-0.03
	11:50	50	-	-	-	-	0.00	2.70	-0.25	-0.04	-	-	-	0.00	-0.02	1.30	-	0.00
	12:00	60	-	-	-	-	0.00	3.80	-0.25	-0.02	-	-	-	0.00	0.00	1.30	-	0.00
	12:10	70	-	-	-	-	0.00	4.00	-0.25	0.00	-	-	-	0.00	-0.02	1.30	-	0.08
	12:20	80	-	-	-	-	0.00	4.00	-0.10	0.00	-	-	-	0.00	0.10	1.30	-	0.08
	12:30	90	-	-	-	-	0.00	5.00	0.00	0.00	-	-	-	0.00	0.20	1.30	-	0.08
	12.40	110	-	-	-	-	0.00	5.00	0.00	0.00	-	-	-	0.00	0.12	1.30	-	0.12
	12:50	125					0.10	6.00	0.00	0.00				0.00	0.14	1.30	-	0.13
	13:25	145	-	_	-	-	0.12	6.80	0.50	0.08	-	-	-	0.00	0.16	1.30	-	0.08
	13:40	160	-	-	-	-	0.00	4.80	0.60	0.16	-	-	-	0.00	0.16	1.30	-	0.04
	14:00	180	-	-	-	-	0.00	2.10	0.00	0.36	-	-	-	0.00	0.14	1.30	-	0.02
04/15/10	11:35	0	0.00	0.00	0.00	0.04	_	_	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
(AS-2)	12:05	30	0.00	0.00	0.00	0.06	-	-	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
	12:15	40	0.00	0.00	0.00	0.06	-	-	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
	12:25	50	0.00	0.00	0.00	0.06	-	-	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
	12:35	60	0.00	0.00	0.00	0.06	-	-	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
	12:45	70	0.00	0.00	0.00	0.06	-	-	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
	12:55	80	0.00	0.00	0.00	0.06	-	-	-	-	0.00	0.00	0.00	0.00	-	-	0.00	-
	13:05	90	0.01	0.00	0.00	0.00	-	-	-	-	0.00	0.02	0.00	40	-	-	0.00	-
	13:15	100	0.04	0.10	0.00	40	-	-	-	-	0.20	0.02	3.00	85	-	-	0.00	-
	13:25	110	0.22	0.68	0.17	32	-	-	-	-	0.50	0.18	4.00	85	-	-	0.00	-
	13:35	120	0.08	0.40	0.17	30	-	-	-	-	0.10	0.00	3.00	80	-	-	0.00	-
	13:43	130	0.00	0.80	0.18	31	-	-	-	-	0.00	0.00	0.00	75 75	-	-	0.00	-
	13.55	150	0.24	0.90	0.20	31		-	-	-	0.50	0.00	0.00	75	-	-	0.00	-
	14.05	160	0.00	0.60	1.00	35		-		-	0.30	0.00	0.00	75	-	_	0.00	
	14.25	170	0.00	0.02	0.32	30	_	_	_	_	0.00	0.00	0.00	70	_	_	0.00	_
	14.35	180	0.00	0.90	0.50	31	-	-	-	-	0.00	0.00	0.00	70	-	-	0.00	-
	14:45	190	0.00	0.90	0.50	30	-	-	-	-	0.00	0.00	0.00	65	-	-	0.00	-
	16:30	295	0.00	6.00	0.30	31	-	-	-	-	0.00	0.00	0.00	60	-	-	0.00	-
	16:40	305	0.00	7.50	0.31	31	-	-	-	-	0.00	0.00	0.00	60	-	-	0.00	-

NOTES: in-H2O = inches of water

TABLE 13: HELIUM DISTRIBUTION DATA SUMMARY

Monitoring Point ID	Notes	AS-3 Test (04/13/10) Helium (%)	AS-1 Test (04/14/10) Helium (%)	AS-2 Test (04/15/10) Helium (%)
50.16		05		1.0
5G-15 5G-1 D		8.5	-	1.9
SG-I-D		9.4	-	9.5
SG-2S		0.0	-	4.5
SG-2D		0.01	-	4.9
SG-3S		-	1.0	-
SG-3D		-	4.5	-
SG-4		-	-	-
SG-5		-	9.3	-
SG-6		-	0.1	-
SG-7		0.2	-	-
SG-8		0.5	-	-
MW-1R		7.8	-	5.8
MW-3		0.0	0.0	5.7
MW-4		-	0.0	nm
MW-5		-	0.0	nm
MW-6		7.3	-	4.6
EX-1		-	0.4	-
INF #1		-	0.1	0.1
INF #2		0.1	2.7	1.2
Pipe Vault		-	5.6	-

6211 San Pablo Avenue, Oakland, California

NOTES

ppmv = parts per million by volume

1% = 10,000 ppmv

% = percent concentration by volume

- not applicable or measured

TABLE 14: HELIUM RECOVERY TEST DATA SUMMARY

6211 San Pablo Avenue, Oakland, California

Air Sparge Well Tested	Date	Notes	C _{off-gas}	C _{100%}	% Recovery
AS-3	4/13/2010	1	875 (ppm)	23,000 (ppm)	4
AS-1	4/14/2010	2	2.7%	3.0%	90
AS-2	4/15/2010	3	1.1%	2.5%	44

NOTES

ppm = parts per million by volume

% = percent concentration by volume

- not applicable or measured

% Recovery = $(C_{off-gas}/C1_{00\%})*100$

1) Low helium recovery (<30%); it is likley that air is being trapped below the water table and the vapor extraction wells are not capturing the vapors. Therefore, lateral migration of vapor may be a concern.

2) High helium recovery (>80%); it is likley that the vapor extraction wells are recovering helium being injected into the vadose zone due to broken pipe and/or sparge well (AS-1).

3) Partial helium recovery; it is likely that some air is being trapped below the water table, but the vapor extraction well are catching some of the vapors. However, lateral migration of vapor may still be a concern because the helium recovery is not high.

Well ID	Installation Date	Nominal Diameter (inch)	Total Depth (ft bgs)	Screen Interval (ft bgs)	Sand Pack Interval (ft bgs)	Sand Pack Size	Screen Slot Size (inch)	Bentonite Seal Interval (ft bgs)	Cement Grout Interval (feet bgs)	Casing Material	Design / Use
MW-1R*	01/12/04	2	23	3 - 23	2 - 23	#3	0.02	1 - 2	05-1	SCH40 PVC	Monitoring Well
MW_2*	10/11/99	2	23	5 - 25 6 - 21	2 - 23 5 - 21	#3 #3	0.02	35-5	0.5 - 3.5	SCH40 PVC	Monitoring Well
MW-2*	10/11/99	2	21	6 - 21	5 - 21	#3	0.02	35-5	0.5 - 3.5	SCH40 PVC	Monitoring Well
MW-4*	11/16/01	2	20	5 - 20	4 - 20	#3	0.02	2 - 4	0.5 - 2	SCH40 PVC	Monitoring Well
MW-5*	11/16/01	2	25	5 - 25	4 - 25	#3	0.02	2 - 4	0.5 - 2	SCH40 PVC	Monitoring Well
MW-6*	11/16/01	2	25	5 - 25	4 - 25	#3	0.02	2 - 4	0.5 - 2	SCH40 PVC	Monitoring Well
EX-1*	01/12/04	4	30	5 - 30	3 - 30	#3	0.02	2 - 3	0.5 - 2	SCH40 PVC	Monitoring / Remediation
MW-7	02/11/10	2	16	6 - 16	5.5 - 6	#3	0.02	4.5 - 5.5	0.5 - 4.5	SCH40 PVC	Monitoring Well
MW-8	02/11/10	2	15	5 - 15	4.5 - 15	#3	0.02	3 - 4.5	0.5 - 3	SCH40 PVC	Monitoring Well
MW-9	02/11/10	2	15	5 - 15	4.3 - 15	#3	0.02	3 - 4.3	0.5 - 3	SCH40 PVC	Monitoring Well
MW-10	02/12/10	2	15	5 - 15	4.5 - 15	#3	0.02	3 - 4.5	0.5 - 3	SCH40 PVC	Monitoring Well
VE-1*	01/13/04	2	13	3 - 13	2 - 13	#3	0.02	1 - 2	0 - 0.5	SCH40 PVC	SVE Well
VE-2*	01/13/04	2	13	3 - 13	2 - 13	#3	0.02	1 - 2	0 - 0.5	SCH40 PVC	SVE Well
VE-3*	01/13/04	2	13	3 - 13	2 - 13	#3	0.02	1 - 2	0 - 0.5	SCH40 PVC	SVE Well
VE-4*	01/13/04	2	13.5	3.5 - 13.5	2 - 13.5	#3	0.02	1 - 2	0 - 0.5	SCH40 PVC	SVE Well
VE-5*	01/13/04	2	13.5	3.5 - 13.5	2 - 13.5	#3	0.02	1 - 2	0 - 0.5	SCH40 PVC	SVE Well
VE-6*	01/13/04	2	13.5	3.5 - 13.5	2 - 13.5	#3	0.02	1 - 2	0 - 0.5	SCH40 PVC	SVE well
VE-7*	01/13/04	2	14	4 - 14	2 - 14	#3	0.02	1.5 - 2	0 - 1.5	SCH40 PVC	SVE Well
VE-8*	01/13/04	2	14	3 - 13	2.5-14	#3	0.02	1.5 - 2.5	0 - 1.5	SCH40 PVC	SVE well
VE-9*	01/13/04	2	14	3 - 13	2.5-14	#3	0.02	1.5 - 2.5	0 - 1.5	SCH40 PVC	SVE well
VE-10*	01/13/04	2	14	3 - 13	2.5-14	#3	0.02	1.5 - 2.5	0 - 1.5	SCH40 PVC	SVE well
VE-11*	01/14/10	2	14	3 - 13 2 12	2.5-14	#3	0.02	1.5 - 2.5	0 - 1.5	SCH40 PVC	SVE Well
VE-12*	01/14/10	2	14	3 - 13 2 12	2.5-14	#3	0.02	1.5 - 2.5	0 - 1.5	SCH40 PVC	SVE Well
VE-13*	01/14/10	2	14	3 - 15	2.5-14	#3	0.02	1.5 - 2.5	0 - 1.5	SCH40 PVC	SVE well
AS-1*	01/15/04	2	26	21 - 26	19 - 26	#3	0.02	~ 17 - 19	0.5 - 17	SCH40 PVC	Air Sparge Well
AS-2*	01/15/04	2	26	21 - 26	18 - 26	#3	0.02	~ 16 - 18	0.5 - 16	SCH40 PVC	Air Sparge Well
AS-3*	01/14/04	2	26	21 - 26	18 - 26	#3	0.02	~ 16 - 18	0.5 - 16	SCH40 PVC	Air Sparge Well
AS-4*	01/14/04	2	26	21 - 26	12 - 26	#3	0.02	~ 10 - 12	0.5 - 10	SCH40 PVC	Air Sparge Well
AS-5*	01/14/04	2	26	21 - 26	14 - 26	#3	0.02	~ 12 - 14	0.5 - 12	SCH40 PVC	Air Sparge Well
SG-1(S)	11/25/08	0.25	3	2.5 - 3	2 - 3	#30 Mesh	-	1 - 2	0.5 - 1	Kynar Tubing	Soil Gas Probe
SG-1(D)	11/25/08	0.25	6	5.5 - 6	5 - 6	#30 Mesh	-	3 - 5	-	Kynar Tubing	Soil Gas Probe
SG-2(S)	11/25/08	0.25	3	2.5 - 3	2 - 3	#30 Mesh	-	1 - 2	0.5 - 1	Kynar Tubing	Soil Gas Probe
SG-2(D)	11/25/08	0.25	6	5.5 - 6	5 - 6	#30 Mesh	-	3 - 5	-	Kynar Tubing	Soil Gas Probe
SG-3(S)	11/25/08	0.25	3	2.5 - 3	2 - 3	#30 Mesh	-	1 - 2	0.5 - 1	Kynar Tubing	Soil Gas Probe
SG-3(D)	11/25/08	0.25	6	5.5 - 6	5 - 6	#30 Mesh	-	3 - 5	-	Kynar Tubing	Soil Gas Probe
SG-4	02/11/10	0.25	4.5	4 - 4.5	3.5 - 4.5	#30 Mesh	-	1 - 3.5	0 - 1	Stainless Steel	Soil Gas Probe
SG-5	02/11/10	0.25	4.5	4 - 4.5	3.5 - 4.5	#30 Mesh	-	1 - 3.5	0 - 1	Stainless Steel	Soil Gas Probe
SG-6	02/11/10	0.25	4.5	4 - 4.5	3.5 - 4.5	#30 Mesh	-	1 - 3.5	0 - 1	Stainless Steel	Soil Gas Probe
SG-7	02/11/10	0.25	4.5	4 - 4.5	3.5 - 4.5	#30 Mesh	-	1 - 3.5	0 - 1	Stainless Steel	Soil Gas Probe
SG-8	02/11/10	0.25	4.5	4 - 4.5	3.5 - 4.5	#30 Mesh	-	1 - 3.5	0 - 1	Stainless Steel	Soil Gas Probe
	:					1				:	

Table 15, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346 Summary of Monitoring Point Details

NOTES:

* Installed by HerSchy Environmental, Inc. SVE = soil vapor extraction ft bgs = feet below ground surface APPENDIX A

SOIL BORINGS

Log of Boring MW-7

Date(s) Drilled February 11, 2010	Logged By Jeremy Smith	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Double walled direct push	Size/Type 2 inch	of Borehole 30 feet bgs
Drill Rig	Drilling	Approximate
Type Combo Rig	Contractor Penecore	Surface Elevation
Groundwater Level	Sampling	Hammer
and Date Measured	Method(s) Tube, Grab	Data
Borehole Backfill	Location	

Log of Boring MW-7

Sheet 2 of 2

400	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
26- 19- 26- 19- 26- 26- 26- 26- 26- 26- 26- 26		MW-7-29.5		SW CL		Well graded fine to coarse grained sand, (0,90,10), some silt, saturated. (cont.) Stiff, silty clay, becomes greenish grey (5 BG/6) (0,5,95), moist. Boring Terminated at 30 feet bgs; backfilled with bentonite to 16 feet bgs, well set at 16 feet bgs.	8		
X:/PRO								Figu	ure

Log of Boring MW-8

Date(s) Drilled February 11, 2010	Logged By Jeremy Smith	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Double walled direct push	Size/Type 2 inch	of Borehole 25 feet bgs
Drill Rig	Drilling	Approximate
Type Combo Rig	Contractor Penecore	Surface Elevation
Groundwater Level	Sampling	Hammer
and Date Measured	Method(s) Tube	Data
Borehole Backfill	Location	

Depth, feet Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
-			CL		Asphalt and fill material. Mottled brown/grey silty clay with some gravel, (10,10,80) moist, stiff.	-	•	-Neat Cement Grout
5	W-8-4.5		CL		Gravelly clay, grey, varying amounts of sand/gravel throughout, (20, 20, 60) very moist.	27		-2" Schedule 40 PVC Blank
10	W-8-9.5		CL		Becomes brown, decrease in sand and gravel (10,10,80)	1,706		- #3 Sand
-			SC		 Silty clay / clayey silt with fine to coarse grained sand (0, 20, 80) soft, wet. - 	-		- 0.020 Slotted Screen
15	W-8-14.5		MI			17		
			SC		 Clayey slit, brown, stiff, moist, (0,0,100) Sandy, slity clay with increasing sand and gravel (20, 50, 30) to 19 feet bgs, very moist to wet. 	17		
20	W-8-19.5		SW		Well graded sand and gravel (20, 70, 10) fine to coarse sand, brown, loose, saturated.	17		
25			ML		Clayey, sandy, silt, brown, moist. 	86		
			L			<u> </u>	Fig	ure

Log of Boring MW-9

Date(s) Drilled February 11, 2010	Logged By Jeremy Smith	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Double walled direct push	Size/Type 2 inch	of Borehole 15 feet bgs
Drill Rig	Drilling	Approximate
Type Combo Rig	Contractor Penecore	Surface Elevation
Groundwater Level	Sampling	Hammer
and Date Measured	Method(s) Tube	Data
Borehole Backfill	Location	

Elevation, feet	Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
Elevati		Sample	MW-9-5.5 MW-9-9.5	Sampli Resiste	SSSN CL SM SM SP ML	Graphi	MATERIAL DESCRIPTION Asphalt and fill material. Black clay Gravelly, silty clay, light grey, (20, 10, 70), increasing sand and gravel with depth. very moist to wet at 5 feet bgs. Greenish grey (5G/6) clayey, sandy silt, (10,20,70) Greenish grey (5G/6) clayey, sandy silt, (10,20,70) Becomes brown with an increase in sand, (10,40,50) very moist to wet throughout. Well graded, silty sand (20,70,10) with gravel, wet. Fine grained sand, Clayey silt, yellowish brown (10YR 4/6), very moist. (0,10,90) Boring terminated at 15 feet bgs, well set. - - - - -	7.7 7.9 4.7		AND OTHER TESTS
	- - 25						-		Fiç	gure

Log of Boring MW-10

Date(s) Drilled February 12, 2010	Logged By Jeremy Smith	Checked By Peter McIntyre
Drilling	Drill Bit	Total Depth
Method Double walled direct push	Size/Type 2 inch	of Borehole 15 feet bgs
Drill Rig	Drilling	Approximate
Type Combo Rig	Contractor Penecore	Surface Elevation
Groundwater Level	Sampling	Hammer
and Date Measured	Method(s) Tube	Data
Borehole Backfill	Location	

Elevation, feet	Depth, feet	Sample Type	Sample Number	Sampling Resistance, blows/foot	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
	-				SC		Asphalt and fill material. Sandy, gravelly clay, light brown (10,40,50), very mosit		-	- Neat Cement - 2" Schedule 40 PVC Blank
_	- 5—				SC CL/ML		Gravelly, sandy clay (20,50,20), wet. Brown and grey mottled silty clay/clayey silt, with varying amounts of			Bentonite
	-	\times	MW-10-6				_ sand throughout (10,20,70), very moist. _	_		0.020 Slotted Screen
	- 10	\times	MW-10-9.5		SC ML		Brown, (20,50,30) very moist. Increase in silt, (10,30,60), very moist. at 10 feet bgs becomes has rust color throughout, less gravel and sand (0,20,80),	38		#3 Sand
-	-	-			SM		- - - Deckets of increased cond. (0.40.60)	-		
_	- 15	\times	MW-10-14.5		ML		Back to silt. Boring terminated at 15 feet bgs, well set.	19		
	-						-	-		
_	_ 20—	-					-	_		
_	-						~	_		
-	- 25	-					~	-		
	-								Fiç	gure

APPENDIX B

PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(51	5 0)782-1939
Application Approved	l on: 02/01/2010 By jamesy	Permit Numbers: W2010-0058 to W2010-0062 Permits Valid from 02/11/2010 to 02/12/2010
Application Id: Site Location: Project Start Date: Assigned Inspector:	1264195894092 6211 San Pablo Avenue 02/11/2010 Contact John Shouldice at (510) 670-5424 or joh	City of Project Site:Oakland Completion Date:02/12/2010 Ins@acpwa.org
Applicant:	AEI Consultants - Jeremy Smith	Phone: 925-746-6000 x128
Property Owner:	Pritpaul Sappal	Phone:
Client: Contact:	** same as Property Owner ** Jeremy Smith	Phone: Cell:
	Receipt Number: WR2010-0027 Payer Name : Jeremy Smith	Total Due:\$1853.00Total Amount Paid:\$1853.00Paid By: VISAPAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 4 Wells Driller: PeneCore Drilling - Lic #: 906899 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0058	02/01/2010	05/12/2010	MW-10	8.00 in.	2.00 in.	3.00 ft	15.00 ft
W2010- 0059	02/01/2010	05/12/2010	MW-7	8.00 in.	2.00 in.	3.00 ft	50.00 ft
W2010- 0060	02/01/2010	05/12/2010	MW-8	8.00 in.	2.00 in.	3.00 ft	50.00 ft
W2010- 0061	02/01/2010	05/12/2010	MW-9	8.00 in.	2.00 in.	3.00 ft	15.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the

Work Total: \$1588.00

Alameda County Public Works Agency - Water Resources Well Permit

permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Well Construction-Vapor monitoring well-Vapor monitoring well - 5 Wells Driller: PeneCore Drilling - Lic #: 906899 - Method: DP

Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0062	02/01/2010	05/12/2010	SG-4	1.50 in.	0.25 in.	2.50 ft	5.00 ft
W2010- 0062	02/01/2010	05/12/2010	SG-5	1.50 in.	0.25 in.	2.50 ft	5.00 ft
W2010- 0062	02/01/2010	05/12/2010	SG-6	1.50 in.	0.25 in.	2.50 ft	5.00 ft
W2010- 0062	02/01/2010	05/12/2010	SG-7	1.50 in.	0.25 in.	2.50 ft	5.00 ft
W2010- 0062	02/01/2010	05/12/2010	SG-8	1.50 in.	0.25 in.	2.50 ft	5.00 ft

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the

Alameda County Public Works Agency - Water Resources Well Permit

Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.

7. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

8. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

10. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X1000155 Parcel #: 016 -1455-020-00 Project Address: 6211 SAN PABLO AV Page 2 of 2

Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender

Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: _____POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

I hereby affirm that the intended occupancy [] WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

ADDRESS:

DIST

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X1000156 Parcel #: 016 -1455-020-00 Project Address: 6211 SAN PABLO AV

Page 2 of 2

Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers! compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: _____POLICY NO. ____

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS! COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

I hereby affirm that the intended occupancy [] WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

ADDRESS

DIST

Ser.					- Alexandre - Alex	
he for the series	1.1.200 1.0110	T F		1		
1.0	111	11	תר	A , γ	1	j
·	~~~~		w -	VIV		
<i></i>						

CITY OF OAKLAND . Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X1000157 Parcel #: 016 -1455-020-00 6211 SAN PABLO AV Project Address:

Page 2 of 2

Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender_____Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: _____POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

I hereby affirm that the intended occupancy [] WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

ADDRESS

DISI

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X1000158 Parcel #: 016 -1455-020-00 Project Address: 6211 SAN PABLO AV Page 2 of 2

Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender_____

Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: _____POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

I hereby affirm that the intended occupancy [] WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

ADDRESS

DISI

APPENDIX C

LABORATORY ANALYTICAL REPORTS
McCampbell Au "When Quality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, (campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled:	02/11/10
2500 Camino Diablo Ste #200			Date Received:	02/11/10
2000 Cultimo Dialoto, Ste. #200	Client Contact: Jeremy Sr	nith	Date Reported:	02/19/10
Walnut Creek, CA 94597	Client P.O.: #WC082233		Date Completed:	02/19/10

WorkOrder: 1002321

February 19, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: **#280346; Alaska Gas,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Telepho	McCAN	1PBELI 1534 V Pitts 2-9262	L ANAJ Willow Pass burg, CA 9	LYT Road 4565	ICA F	L II	NC (92	5) 2:	52-9	269	,			T	UF DF I	RN .	AR	0U d?		AII TII Ye	N C ME)F		JST J USH No	ГО		Y F	۲ Е (4		D [72) HR	5 DAY
Report To: Jeren	w Smith		E	Bill To	: san	ne		P	.0.	# W	C0	8223	33			-		A	nal	sis	Req	uest							Other		Cor	nments
Company: AEI (Consultants																		0	T	T	1										
2500	Camino Dial	blo												1		lica			3						~							
Walr	ut Creek, C	A 94597		E-M	ail: ja	smit	h@a	eico	nsul	tants	s.co	m		1		// Si	1	ú	3				10		100							
Tele: (925) 746-0	Walnut Creek, CA 94597 E-Mail: jasmith@aeiconsultants.com : (925) 746-6000 Fax: (925) 944-2895												1			(T)	118	S				/ 83		(90								
Project #: 280340	5		P	rojec	t Nar	ne:	Alas	ska	Gas					1		413.	418	ц ц	SC				270		zinc							
Project Location:	6211 San P	ablo Aven	ue, Oak	and,	Calif	orni	a							1		se (Suo	B B	3	3			2/8/		,NI,							
Sampler Signatur	Project Location: 6211 San Pablo Avenue, Oakland, California															Grea	carb	EL,	2	NO		02	62		, pb,	(8)						
Lat. D	A	SAMP	LING		ers		MA	TR	IX	Р	ME	SERV	D ED	\$021B	015)	Oil & (Hydrod	2-DCA	EX	PCB's		AHs) 82	by EPA		(Cd, Cr	ed 200.						
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Contain	Water	Soil	Air	Sludge	Uther	ICe	HU	Other	BTEX //MTBE 8	FPH - gasoline (8)	Total Petroleum	Total Petroleum	TAME, TBA, 1,	TPH(g)+MB	EPA 608 / 8080	VOCs 8260	SVOCs (with P/	PAH's / PNA's	CAM-17 Metals	LUFT 5 Metals	Lead (field filter	RCI		0-10+1			
MW-7(D)		2-11-10	900	3	V	X				>	()	x		Χ	X			X														
MU 7-8		1	940	I	r.		~				1					-	-		~	-									x		MET	Holl and
7145		1	Qu-		1		×	-	-		t	-				+	+			+-	-	+	-	-					X			hear age
MW-1-17.5			045	\vdash	++		×	-	-		4	-	-			-	+	-		+-	-	-	-	-	-			\vdash	C	-	-	r
1110-1-1913			550	\square	\vdash		×	-	-	-12	x	-				-	-	-	X	-	-	-	-	-	-		-		5	-	-	
MW-7-24.5			910	⊢	\square		×	_	-		<	-	-		_	-	-	_	-	-	-	-	-			_			~			
Mw-7-29.5			920	1	3		X			X	(X							_			X		OFF	Hold
MW-8(D)			1300	3	V	×					K)	X		X	x			X														
MU-8-4.5			1230	1	Lin		X				K		4						X										X		OFF	Hold
MUN-8-915			1240	1	1		X				x								X										×		1	
MW-8-14.5			1245				x				×								X	*									×			
MW-8-19.5			1250	1	7		×			>	<																		×			
Relinquished By: Belinquished By: EWTRO-FECH Relinquished By:	Sur LSR	Date: 2211 10 Date: 1730 Date	Time: 450 Time: 2/14 Time:	Rece	ived B	y:	te	rc.	h	7		22	. /		CE/ GOO HEA						J		PRE	SER		TIO TE RS_		DAS	0&G	ME	TALS	OTHER

1534 Willow Pass Rd Pittsburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262				I	WorkOr	der:	100232			Client	Code: A	AEL				
		WaterTrax	WriteC	Dn 🖌 EDF		Excel	[Fax		🖌 Email		Hard	Сору	Thir	dParty	J-	flag
Report to: Jeremy Smir AEI Consult 2500 Camin Walnut Cree (925) 283-600	th ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	Email: jası cc: PO: #W ProjectNo: #28	mith@aeico /C082233 30346; Alas	onsultants.com ka Gas		В	Bill to: De AE 250 Wa dm	nise Mo I Consu 00 Carr alnut Cr nockel@	ockel ultants iino Di eek, C aeico	ablo, St A 94597 nsultant	e. #20 7 ts.com	0	Req Dat Dat Dat	uested e Rece e Add e Prin	TAT: vived: On: ted:	5 02/11 02/16 02/16	days /2010 5/2010 5/2010
l ah ID	Client ID		Matrix	Collection Date	Hold	1	2	3	Rec 4	uested	Tests	(See le	gend b	elow)	10	11	12
			matrix	Concolion Date	mona	•	-		-	Ū							
1002321-002	MW-7-8		Soil	2/11/2010 8:40		А											
1002321-003	MW-7-14.5		Soil	2/11/2010 8:45		А											
1002321-004	MW-7-19.5		Soil	2/11/2010 8:50		А											
1002321-006	MW-7-29.5		Soil	2/11/2010 9:20		А											
1002321-008	MW-8-4.5		Soil	2/11/2010 12:30		А											
1002321-009	MW-8-9.5		Soil	2/11/2010 12:40		А											
1002321-010	MW-8-14.5		Soil	2/11/2010 12:45		А											

Test Legend:

1	G-MBTEX_S
6	
11	

2 7 12

3
8

4	
9	

5		
10		

Prepared by: Samantha Arbuckle

Comments: Soil samples off HOLD and set up for TPH(g)+MBTEX 5-day except MW-7-24.5 and MW-8-19.5 per JS 02/16/10.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbe	ell An	alyti	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	ass Road, Pittsbur bell.com E-mail 377-252-9262 Fa	g, CA 94565-17 : main@mccamp ix: 925-252-926	701 bell.com 9		
AEI C	Consultants			Client P	roject ID: #	‡280346; Ala	ıska Gas	Date Sample	ed: 02/11	/10		
2500 (Camino Diablo. Ste. #2	200						Date Receiv	ed: 02/11	/10		
				Client C	Contact: Jer	emy Smith		Date Extract	ed: 02/16	5/10		
Walnu	ıt Creek, CA 94597			Client P	2.O.: #WC0	82233		Date Analyz	zed: 02/16	5/10-02/	18/10	
	G	asoline F	Range ((C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	k		
Extraction Lab ID	Client ID	Matrix	тр		Analy	Banzana	SW8021B/8015	Ethylbenzene	Vylanas	Wor	k Order:	1002321
	Chent ID	Matrix	11	n(g)	WITBE	Belizelle	Toluelle	Ethyldenzene	Aylelles	Dr	70 55	Comments
002A	MW-7-8	S	2	220	ND<1.0	ND<0.10	1.6	2.6	1.9	20	100	d1
003A	MW-7-14.5	S]	ND	0.19	ND	ND	ND	ND	1	89	
004A	MW-7-19.5	S]	ND	0.59	ND	ND	ND	ND	1	79	
006A	MW-7-29.5	S]	ND	ND	ND	ND	ND	ND	1	89	
008A	MW-8-4.5	S		19	ND	ND	0.19	0.066	0.033	1	84	d2,d9
009A	MW-8-9.5	S		1.8	ND	ND	0.010	0.022	0.097	1	86	d2
010A	MW-8-14.5	S]	ND	0.40	ND	ND	ND	ND	1	85	
Repo	rting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		ug/I	
aboy	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

d2) heavier gasoline range compounds are significant (aged gasoline?)

d9) no recognizable pattern

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8021B/8015Bm

BatchID: 48686 QC Matrix: Soil WorkOrder 1002321 W.O. Sample Matrix: Soil EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1002368-014A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH(btex) ND 0.60 109 102 6.84 108 108 0 70 - 130 20 70 - 130 20 MTBE 0.10 ND 113 111 1.86 111 115 3.06 70 - 130 20 70 - 130 20 0.10 89.2 0.0398 90.9 0.832 ND 89.1 91.6 70 - 130 20 70 - 130 20 Benzene ND 0.10 93 92.6 0.339 92.2 93.3 1.21 70 - 130 20 70 - 130 20 Toluene 0.10 0.749 91 92.5 70 - 130 Ethylbenzene ND 93.1 92.4 1.62 20 70 - 130 20 **Xylenes** ND 0.30 94.8 93.9 0.991 92.2 93.2 0.993 70 - 130 20 70 - 130 20 70 - 130 0.10 80 70 - 130 20 20 %SS: 87 80 80 0 81 1.15 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

			BATCH 48686 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002321-002A	02/11/10 8:40 AM	02/16/10	02/17/10 2:05 PM	1002321-003A	02/11/10 8:45 AM	02/16/10	02/18/10 6:13 PM
1002321-004A	02/11/10 8:50 AM	02/16/10	02/16/10 5:50 PM	1002321-006A	02/11/10 9:20 AM	02/16/10	02/16/10 6:21 PM
1002321-008A	02/11/10 12:30 PM	I 02/16/10	02/16/10 6:51 PM	1002321-009A	02/11/10 12:40 PM	02/16/10	02/16/10 7:21 PM
1002321-010A	02/11/10 12:45 PM	I 02/16/10	02/16/10 7:51 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled:	02/11/10
2500 Camino Diablo. Ste. #200			Date Received:	02/11/10
	Client Contact: Jeremy Su	nith	Date Reported:	02/19/10
Walnut Creek, CA 94597	Client P.O.: #WC082233		Date Completed:	02/23/10

WorkOrder: 1002321

February 25, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#280346; Alaska Gas,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Telepho	McCAN	APBEL 1534 V Pitts 2-9262	L ANA Willow Pas sburg, CA	LYT s Road 94565	TICA	LI	(92	5) 2	252-9	9269	9			T	TUF	RN Rea	AR	COU		TIN	I O AE	F		IST I ISH	2		Y R		ORI	D D 72 H	IR 5	DAY
Report To: Jeren	y Smith		J	Bill T	o: sar	ne	-	F	P.O.	# W	VCO	8223	33	-				A	naly	sis F	Rear	lest						0	ther	10	ommo	onte
Company: AEI C	onsultants							-											9			10.00						T		+	Junne	ints
2500 0	Camino Dial	blo												1		ica			0													
Waln	ut Creek, C	A 94597		E-M	ail: ja	smit	th@a	acico	onsu	Itant	s.coi	m		1		/ Si		шĩ	3				0		00							
Tele: (925) 746-6	000		1	Fax:	(925)	944	1-28	95						1		1) w	E	EIB	64				83		(60)							
Project #: 280346	5		1	roje	et Na	ne:	Ala	ska	Gas	5				1		413.	418	E, E	E				102		linc							
Project Location:	6211 San P	ablo Aver	ue, Oak	land.	Calif	orn	ia		2.44					1		se (4) SUI	B	13	X			/ 82		Ni,z							
Sampler Signature:														1		irea	arbo	E ge	2	INC		2	625		pb.,	0						
SAMPLING / MATRIX METHOD													D		_	80	droc	CA,	2	3's (82	PA		5	00.8						
		SAMI	LING		lers		MA	IR	AL	P	RES	SERV	ED	8021	015	Oil	Hy	-D-	5	PCI		AHS	by E		Cd,	cd 2						
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Container	Type Contain	Water	Soil	Air	Sludge	Other	HCI	HNO ₃	Other	BTEX / /MTBE	TPH - gasoline (8	Total Petroleum	Total Petroleum	TAME, TBA, 1,	Nitrate/Nitrite	EPA 608 / 8080	VOCs 8260	SVOCs (with P/	PAH's / PNA's {	CAM-17 Metals	LUFT 5 Metals (Lead (field filter	RCI	U IVTI	1040			
MW-7(D)		2-11-10	900	3	V	X				>	$\langle \rangle$	0		Х	X			X					+				+	+	++	+		
MW-7-8		1	840	1	line					1	4							1	2				-	-	1		+	X		In	FELIN	1.00
Mars -7-14.5			845	1	1													K	2				-		-		-				The	Tap
M12-7-19.5			am	\square	\vdash		X	-	+		1	+				-	-	K			-	-	+		-	-	+	+(-		+	P
10111-2 2016			0.0		+		×	-		-12	-	-	-		-	-	-	- 1	-			-	-	-	-	-	-	-10	+		-	
1-64.5			710				×	-			-	-			_		-		-			-	_	-	-	_	-	X	++			
MW-7-69.5			920	*	<		x	-	-	X	4	-		-				XX										X		0	FFHO	d
MW-8(D)			1300	3	V	×	-				e x	C		X	x			X											IT			
MW-8-4,5			1230	1	Lin		X			X	(4					N	(X		01	FHOL	d
MUU-8-915			1240	1			X				<							5	2							1		×		-	1	1
MW-8-14.5			1245				×											D	2									×	++	-	1	
MW-8-195		-	1250				X			X					1		13	X	2		+		-	-	+	+		Y		ar	Cilar	21
				-						t	-				-		-	-			-						+	-	+	UP	- noll	12
Λ																														+		
Relinquished By:		Date:	Time:	Rece	ived B	12							_																			
1 alman	man 1	adulo	450	F	nvi	CA	to	r.	4	T		1						6	00								VOA	slo	sel	META	ik on	HED
Relinquished By:		Date:	Time:	Rece	ived B	1	10			-	4	5	1	10	CE/t	YC	3	0.	100	1		PF	ESI	ERV	AT	101	N			ALL LAD		ansk
Europa-Tech	SR	1730	2/14	-	- and	-					-2	P		G	00	DC	ONI	DITIC	N_	1	1	AI	PR	OPF	RIAT	ГЕ	1					-
Relinguished By	PIN	Date /	Time	Reco	ded P.			,		-	0		-	H	EAL	D SP	AC	E AB	SENT	LAP	1	AND.	DNT	AIN	ER	S_	N	Ala				
		/	ymile,	THEFE	Hea D		- N /	10000					1 1	1 1	ALC: N	au U	APT1.	ALL D	N 114	LIA.D		10	LK	OLI	N V L	17 I.	IN LA	101	-113			

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	□ J-flag
WaterTrax WriteOn VEDF Excel Fax VEmail HardCopy ThirdParty	
Report to: Bill to: Requested TAT:	5 days
Jeremy Smith Email: jasmith@aeiconsultants.com Denise Mockel Date Received.	02/11/2010
2500 Camino Diablo, Ste. #200 PO: #WC082233 2500 Camino Diablo, Ste. #200 Date Add-On:	02/22/2010
Walnut Creek, CA 94597ProjectNo: #280346; Alaska GasWalnut Creek, CA 94597Date Printed:(925) 283-6000FAX(925) 944-2895dmockel@aeiconsultants.com	02/22/2010
Requested Tests (See legend below)	

	Chent ID	Watrix	Conection Date	HOIU		2	3	4	5	0	1	0	9	10	11	12
1002321-006	MW-7-29.5	Soil	2/11/2010 9:20		А											
1002321-011	MW-8-19.5	Soil	2/11/2010 12:50		А	А										

Test Legend:

1	5-OXYS+PBSCV_S
6	
11	

2	G-MBTEX_S	
7		
12		

3	
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments: Soil samples off HOLD and set up for TPH(g)+MBTEX 5-day except MW-7-24.5 and MW-8-19.5 per JS 02/16/10. MW-8-19.5 & MW-7-29.5 2/22/10 5d per email

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell An	alyti ^{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants		Client Pro	oject ID:	#28034	6; Alaska Gas	Date Sampled:	02/11/10				
2500 Coming Dichle Sta #200				02/11/10							
2500 Camino Diabio, Ste. #200		Client Co	ontact: Je	remy Sı	nith	Date Extracted:	02/22/10				
Walnut Creek, CA 94597	Client P.C	D.: #WC0	82233		Date Analyzed:	02/22/10					
Oxygenate	ed Vola	tile Organ	ucs + EDE	B and 1,	2-DCA by P&T	and GC/MS*					
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	1002321			
Lab ID	10023	21-006A	1002321	-011A							
Client ID	MW	-7-29.5	MW-8-2	19.5			Reporting DF	the second seco			
Matrix		S	S								
DF		1	1				S	W			
Compound	Conce	entration		mg/kg	ug/L						
tert-Amyl methyl ether (TAME)]	ND	ND	1			0.005	NA			
t-Butyl alcohol (TBA)	1	ND	ND	1			0.05	NA			
1,2-Dibromoethane (EDB)]	ND					0.004	NA			
1,2-Dichloroethane (1,2-DCA)]	ND NI		1			0.004	NA			
Diisopropyl ether (DIPE)]	ND	ND	1			0.005	NA			
Ethyl tert-butyl ether (ETBE)	1	ND	ND	1			0.005	NA			
Methyl-t-butyl ether (MTBE)]	ND	ND	1			0.005	NA			
		Surro	ogate Rec	overies	s (%)						
%SS1:		128	126	5							
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reportin	μg/L, so es in μg/ ng limit/	il/sludge/so wipe. method det	lid samples	in mg/k	g, product/oil/non-a eans analyte not ap	queous liquid sampl	es and all TC	LP & SPLP			

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbe	ell Ar	nalyti _{Counts"}	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	ass Road, Pittsbur bell.com E-mail 77-252-9262 Fa	g, CA 94565-1 : main@mccamp x: 925-252-926	701 bell.com 9				
AEI C	Consultants			Client P	roject ID: #	‡280346; Ala	ıska Gas	Date Sample	ed: 02/11	/10				
2500 0	Camino Diablo, Ste. #2	00						Date Received: 02/11/10						
				Client C	Contact: Jer	emy Smith		Date Extract	ed: 02/22	2/10				
Walnut Creek, CA 94597Client P.O.: #WC						82233		Date Analyz	zed: 02/22	2/10				
Extraction	Gaton method: SW5030B	asoline l	Range ((C6-C12)	Volatile Hy Analys	drocarbons	as Gasoline sw8021B/8015	e with BTEX á Bm	and MTBE*	⊧ Worl	k Order: 1	002321		
Lab ID	Client ID	Matrix	TF	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
011A	MW-8-19.5	S	i	ND	ND	ND	ND	ND	ND	1	91			
Repo: ND m	rting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		ug/L			
abov	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg				

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil		QC Matrix: Soil						BatchID: 48791			WorkOrder 1002321		
EPA Method SW8260B	ethod SW8260B Extraction SW5030B									nple ID	: 1002452-0)10a	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))	
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	0.050	79.5	79.6	0.212	80.5	80.6	0.153	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	0.25	84.2	82.4	2.07	85.3	86	0.871	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	0.050	107	107	0	106	109	3.10	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	0.050	98.4	96.3	2.15	99.9	98.6	1.32	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	0.050	93.2	92.4	0.805	93.1	95.3	2.26	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	0.050	92.8	92.5	0.385	92.5	94	1.60	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	89.9	89.3	0.721	91.3	91.7	0.473	70 - 130	30	70 - 130	30	
%SS1:	93	0.13	122	122	0	123	123	0	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 48791 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002321-006A	02/11/10 9:20 AM	02/22/10	02/22/10 9:07 PM	1002321-011A	02/11/10 12:50 PM	02/22/10	02/22/10 9:46 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			BatchID: 48790 WorkOrder					21				
EPA Method SW8021B/8015Bm	nod SW8021B/8015Bm Extraction SW5030B									nple ID	: 1002452-0	10A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	104	105	1.00	109	105	3.82	70 - 130	20	70 - 130	20
MTBE	ND	0.10	117	113	3.34	102	107	4.37	70 - 130	20	70 - 130	20
Benzene	ND	0.10	92.3	90.6	1.81	87	89.6	2.89	70 - 130	20	70 - 130	20
Toluene	ND	0.10	90.7	89.2	1.61	85.6	88	2.81	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	90.1	88.9	1.34	86.8	87.5	0.749	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	90.9	90.4	0.600	85.7	88.5	3.16	70 - 130	20	70 - 130	20
%SS:	101	0.10	98	102	3.53	96	94	2.78	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

			BATCH 48790 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002321-011A	02/11/10 12:50 PM	02/22/10	02/22/10 11:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell An "When Quality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, CA 94565-1701 ccampbell.com E-mail: main@mccampbell.com one: 877-252-9262 Fax: 925-252-9269
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled: 02/11/10
2500 Camino Diablo Ste #200			Date Received: 02/11/10
	Client Contact: Jeremy Sr	nith	Date Reported: 02/18/10
Walnut Creek, CA 94597	Client P.O.: #WC082233		Date Completed: 02/18/10

WorkOrder: 1002321

February 18, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#280346; Alaska Gas**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAN	APBEL	L ANA	LYT	ICA	LI	NC						Ť			-	(CH/		10	F	CI	IST	ΓO	D	YR	EC	OR	D		
		1534 V	Willow Pas	s Road	1									TI	URN	A	ROU	ND	TIM	ME		Ę	3						[C	in
Telepho	one: (925) 25	52-9262	sourg, c.r.	1305	F	ax:	(925	5) 25	52-92	269				FD	FR	aui	red?	6	Ve			RI	SH		24 H	R	48	HR	72	HR	5 DAY
Report To: Jerem	y Smith		I	Bill T	o: san	ne		P	0.#	W	C082	2233	3	ED	r ne	qui	A A	naly	sis l	Requ	uest	<u> </u>	140				(Other		Con	iments
Company: AEI C	Consultants																			T							T	T			
2500 (Camino Dia	blo													live	E-MI								<i>d</i>							
Waln	ut Creek, C	A 94597		E-M	ail: ja	smit	h@a	eico	nsulta	ants.	com				S /m	2	щ					10		100							
Tele: (925) 746-6	000		I	ax:	(925)	944	-289	95							1	18	ELLE					/ 83		: (60							
Project #: 280346	i		1	roje	ct Name: Alaska Gas							413	141	PE,					270		,zinc										
Project Location:	6211 San P	ablo Aver	nue, Oak	e, Qakland, California							906	Suod	IG B		LY			5/8		"Ni											
Sampler Signatur	e:		12	_	-	_				_				-	en B	cart cart	L'BE		NO		270	V 62		r, pb	8						
	A	SAME	PLING		ers	1	MA	TRI	X	PR	ESE	HOD	ED a	9170	(cli	Hvdm	-DCA		PCB's		Hs) 8.	y EP/		Cd, Cl	d 200						
SAMPLE ID	LOCUTION			ners	tain				-				0 00	0 10	leum	m	8260 A, 1,5	ite	80801		th PA	A's b	ctals	tals (filtere						
(Field Point Name)	LUCATION	Date	Time	Itai	Col	1						-	. 17	WI	solu	etrol	TB ()	Nitr	8/8	3260	(wi	PN	7 M	Me	eld		1		1		
		Date	Time	Col	be	ate	=	2	her		5	9	her	V	- ga	alPo	WE O	rate/	1 60	Cs 8	Scs	H's'H	M-1	FT 5	g (fi		3	3			
				#	L,F	3	So	A.	50	l ≊	H	H	ŏ		Tot	Tot	Fue	Nits	EP	02	SVC	PAI	CA	EG	Lea	RCI	=	-	1		
MW-7(p)		2-11-10	900	3	V	X				X	X		2	X	x		X														
MW-7-8		1	840	1	Line		X			¥)	c			
MW-7-14.5		1	845	1	1		0			X																	Ì	x			Ster
MW-7-19.5			850				5		+	1¢			+	+	+	+		-	-					-		+					
MW-7-745			910		\square		X		+	C		+	+	+	-	+		+	\vdash			-	-	-		-				1. 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	
Mur.7-295			920	1	1		×		+	Ŷ		-	+	-	-	+		-	-			-				-	-x	+	-		
MU-9(D)			1300	2	V	V		-	+	C	V	+	5	d		+	X	-				-	-	-		+	-	+			
ALL 8-4 5			1230	i	1.		V	+	+	v	~	6	1	-	4	+	<u>_</u>	-	-		-	-	-	-		-	-	+	-		
NIN-8-95			1240	1	- (10-		0		-	÷		1	-	+	+	+		-	-			-	-			-	X	-	-		
MW-8-145			1745				<u>A</u>		+			+	+	+	+	+		-				-	-	-		-	- Č	+	-		
Mu-8-195		-	17.50				£	+	+	£		+	+	+	+	+		-	-		-	-	-	-		+	-5		-		
100-0 11.0			1000	*	4		-	+	+-	1	-	+	+	+		+-		-	-		-	-	-	_	-	-	-	1	-	-	
			-	-	-		+	+	-		-	-	+	+	-	-		-			_	_	_	_	_	\rightarrow	_				
Λ							+	-	-		-	+	+	+	-	-		+			-	-	-	-	-	-	_		-		
Relinquished By:)	Date:	Time	Rece	ived B		_		_		_	_	+	_																	
		adula	450	E	h		to	- 1	-	T	1															VO					OTHER
Relinquished By:	m l	Date:	Time:	Rece	ived B	. 0	12		5	-	5	-	1	IC	E/t	C	30.	100	1		P	RES	ER	VAT	TION	N	0	au	MUS	TALP	OTHER
Further Tech	SR	1730	2/14	Tarte	and	-					t	/		GO	OOD	CO	NDITIC	DN_	1	1	A	PPR	OP	RIA	TE	. (
	01	11.00	10-11										1	HE	AD	SPA	CE AB	SENT	r •	~	C	ON'	FAI	NEF	RS	V					
clinquished By	-	Date /	Time:	Rece	ided B			,		N	NI.	11.	Th.	DF	CHI	OP	INATE	D IN	T AT	RIA	AaA	DE	OCE	DV	FDI	NT	APA	100-			

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 100232	1 Client	Code: AEL		
	VaterTrax	WriteOn	✓ EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	I to:		Rec	quested TAT:	5 days
Jeremy Smith E	mail:	jasmith@aeicons	sultants.com		Denise Mocl	kel			
AEI Consultants co	c:				AEI Consulta	ants			
2500 Camino Diablo, Ste. #200 PC	O:	#WC082233			2500 Camin	o Diablo, Ste. #20	$D_0 Dat$	te Received:	02/11/2010
Walnut Creek, CA 94597 Pi	rojectNo:	#280346; Alaska	Gas		Walnut Cree	ek, CA 94597	Dat	te Printed:	02/11/2010
(925) 283-6000 FAX (925) 944-2895					dmockel@a	eiconsultants.con	n		

								Req	uested	Tests (See leg	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
						-		-		-	-					
1002321-001	MW-7D	Water	2/11/2010 9:00		В	А	Α									
1002321-007	MW-8 (D)	Water	2/11/2010 13:00		В	А										

Test Legend:

1	7-OXYS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Date a	and Time Received:	2/11/2010	9:42:27 PM
Project Name:	#280346; Alaska	Gas				Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	1002321	Matrix <u>S</u>	Soil/Water			Carrie	r: <u>Rob Pringle (M</u>	AI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Informa	ition		
Chain of custody	present?			Yes	✓	No 🗆			
Chain of custody	signed when relinqui	shed and r	received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample l	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ient on CO	C?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes		No 🗆			
			<u>Sa</u>	ample	Receipt	Information	<u>I</u>		
Custody seals int	tact on shipping conta	iner/cooler	r?	Yes		No 🗆		NA 🗹	
Shipping containe	er/cooler in good cond	lition?		Yes	✓	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?		Yes		No 🗌			
		<u>Sam</u>	nple Preser	vatior	and Ho	old Time (HT)) Information		
All samples recei	ved within holding time	e?		Yes	✓	No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	8.1°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no but	bbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation?	,	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH	l<2)?		Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee commei	nts below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality	alyti	<u>cal, In</u>	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 925	94565-1701 @mccampbell.c 5-252-9269	om
AEI Consultants		Client Pr	oject ID:	#28034	6; Alaska Gas	Date Sampled:	02/11/10	
2500 Comino Diablo Sta #200						Date Received:	02/11/10	
2500 Camino Diabio, Ste. #200		Client Co	ontact: Je	remy Sr	nith	Date Extracted:	02/17/10	
Walnut Creek, CA 94597		Client P.0	D.: #WC0)82233		Date Analyzed:	02/17/10	
	Oxyge	nated Vol	atile Orga	nics by	P&T and GC/M	IS*		
Extraction Method: SW5030B		Anal	ytical Method	1: SW826	0B	1	Work Order:	1002321
Lab ID	10023	21-001B	1002321	-007B				
Client ID	М	W-7D	MW-8	(D)			Reporting DF	Limit for =1
Matrix		W	W					
DF		50	25				S	W
Compound				Conce	entration		ug/kg	µg/L
tert-Amyl methyl ether (TAME)	NI	D<25	14				NA	0.5
t-Butyl alcohol (TBA)	3	000	ND<	50			NA	2.0
1,2-Dibromoethane (EDB)	NI	D<25	ND<	12			NA	0.5
1,2-Dichloroethane (1,2-DCA)	NI	D<25	ND<	12			NA	0.5
Diisopropyl ether (DIPE)	NI	D<25	ND<	12			NA	0.5
Ethyl tert-butyl ether (ETBE)	NI	D<25	ND<	12			NA	0.5
Methyl-t-butyl ether (MTBE)	NI	D<25	570)			NA	0.5
		Surr	ogate Rec	overies	s (%)			
%SS1:		111	110)				
Comments		b1	b1					
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, sc es in μg/	oil/sludge/sc wipe.	olid samples	in mg/k	g, product/oil/non-a	queous liquid sample	s and all TC	LP & SPLP
ND means not detected above the reporti	ng limit/	method det	ection limit	t; N/A m	eans analyte not ap	oplicable to this anal	ysis.	
# surrogate diluted out of range or surrog	ate coelu	ites with an	other peak.					

b1) aqueous sample that contains greater than ~1 vol. % sediment

Angela Rydelius, Lab Manager

	McCampbo	ell An nen Ouality	alyti	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	ass Road, Pittsbur bell.com E-mail 77-252-9262 Fa	g, CA 94565-17 : main@mccamp ix: 925-252-926	701 bell.com 9		
AEI C	Consultants			Client P	roject ID: #	‡280346; Ala	ıska Gas	Date Sample	ed: 02/11	/10		
2500	Camino Diablo. Ste. #2	200						Date Receiv	ed: 02/11	/10		
	,			Client C	Contact: Jer	emy Smith		Date Extract	ed: 02/12	2/10-02/	16/10	
Walnı	ut Creek, CA 94597			Client P	2.O.: #WC08	82233		Date Analyz	zed: 02/12	2/10-02/	16/10	
E-t	G	asoline F	Range ((C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	k	la Orada an	1002221
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-7D	w	I	ND	6.0	ND	ND	1.2	2.3	1	100	b1
007A	MW-8 (D)	w		54	580	ND	ND	1.1	3.0	1	107	d1,b1
		<u> </u>			1	1						
Repor ND m	rting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		μg/I	
abo	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b1) aqueous sample that contains greater than ~1 vol. % sediment

d1) weakly modified or unmodified gasoline is significant

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	k: Water			Batch	D: 48614		WorkC	order 10023	21
EPA Method SW8260B	Extrac	ction SW	5030B					5	Spiked San	nple ID	: 1002264-0	07a
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND<170	10	80.8	86.1	6.36	86.8	96.4	10.4	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND<670	50	77	85.9	10.9	79.8	89.9	11.9	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<170	10	118	126	6.04	113	119	5.19	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<170	10	97.2	104	6.84	96	102	5.76	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND<170	10	86.5	93.5	7.74	95.6	102	6.05	70 - 130	30	70 - 130	30
%SS1:	94	25	117	117	0	109	110	0.646	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

BATCH 48614 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 1002321-007B 02/11/10 1:00 PM 02/17/10 02/17/10 10:04 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	D: 48656		WorkC	Order 10023	21
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked San	nple ID	: 1002318-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	89	92.8	4.12	86.5	91	5.06	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	95.1	110	14.5	78.2	86	9.61	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	125	129	3.31	125	129	2.93	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	106	112	5.11	104	107	3.28	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	97.2	105	7.56	94.8	95.5	0.698	70 - 130	30	70 - 130	30
%SS1:	110	25	118	122	3.05	113	108	3.81	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

BATCH 48656 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 1002321-001B 02/11/10 9:00 AM 02/17/10 02/17/10 9:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water			QC Matri	k: Water			Batchi	D: 48629		WorkC	order 10023	21
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					S	piked San	nple ID:	: 1002285-0	05A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	107	105	2.50	115	120	4.10	70 - 130	20	70 - 130	20
MTBE	ND	10	123	122	1.39	118	125	5.98	70 - 130	20	70 - 130	20
Benzene	0.63	10	102	101	0.634	107	110	3.30	70 - 130	20	70 - 130	20
Toluene	ND	10	95.2	94.6	0.670	93.1	96.1	3.11	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.5	94.4	0.111	93.4	94.8	1.52	70 - 130	20	70 - 130	20
Xylenes	ND	30	107	107	0	106	108	1.73	70 - 130	20	70 - 130	20
%SS:	99	10	105	101	4.00	102	104	2.40	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following e	exceptions:			

BATCH 48629 SUMMARY Lab ID **Date Sampled** Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 1002321-001A 02/11/10 9:00 AM 02/16/10 02/16/10 8:39 PM 1002321-007A 02/11/10 1:00 PM 02/12/10 02/12/10 11:58 PM 1002321-007A 02/11/10 1:00 PM 02/16/10 02/16/10 9:38 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled:	02/12/10
2500 Camino Diablo. Ste. #200			Date Received:	02/12/10
	Client Contact: Jeremy Su	nith	Date Reported:	02/22/10
Walnut Creek, CA 94597	Client P.O.: #WC082234		Date Completed:	02/23/10

WorkOrder: 1002359

February 25, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#280346; Alaska Gas,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

												.0	0(9	3	5	59															
	McCAM	IPBELI 1534 V	L ANA	LYT s Road	ICA	LI	NC.						г	TIT	۱	AF	105	CH	AI	NO	DF	C		ТО	D	Y F	E	COR	D	2	M	
Telepho	ne: (925) 25	Pitts 2-9262	burg, CA 9	4565	F	ax:	(925)	252	-926	9			E	DF	Rea	uir	ed?	à	V Y	25	-	R	USH	ł	24 H	IR	4	8 HR	72	2 HR	5 DA	Y
Report To: Jerem	y Smith		F	Bill To	o: san	ne		P.0	. # 1	VCO	822	34					0	Anal	ysis	Rec	ques	st			_			Other		Co	mment	5
Company: AEI C	consultants												9	10			122	0												1	9	
2500 (Camino Dial	blo											T	-	silice		2	6						6								
Waln	ut Creek, C	A 94597		E-M	ail: ja	ismit	n@ae	const	ultan	ts.co	m		R	1	w/ S		BE	X				310		010								
Tele: (925) 746-6	000		F	ax: ((925)	944	-2895	;					-F	A	3.1)	18.1	EL	0				0/8		ac (6								
Project #: 280346		1		rojec	t Na	me: /	Alask	a Ga	1S				-	H	(41	s (4)	IPE	2 de	1			827		li,zit								
Project Location:	6211 San P	ablo Aven	ue, Oak	land,	Calif	orni	a						E	4D	ease	hon	E, D	5				25/		Q,"9								
Sampler Signatur	e:	erenny	A	me	-	_	-	_	_	ME	TH	D	0	e	k Gr	rocar	A, I	X	0.	2	8271	PA 6		Cr, p	0.8)							
		SAMP	LING		S		MAT	RIX		PRE	SER	ED	118	E	Oil	Hydi	N-U	2	a Ja		F	N El		Cd,	sd 2(
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containe	Water	Soil	Sludge	Other	Ice	HNO,	Other	BTEKE ANDRE B	I PH - gasoline (80	Total Petroleum (Total Petroleum	Fuel Oxys (8260) TAME, TBA, 1,2	M+(A)+M	Nitrate/Nitrite	VOCe 8260	SVOCs (with PA	PAH's / PNA's b	CAM-17 Metals	LUFT 5 Metals (Lead (field filtere	RCI		HOLP				
Mul-9-5.5		2-12-10	835	1	Line	1	Х			X			X	X			X	X						-				X		Off	Hold	-
Mw-9-9.5			840	1	T		1											X										1			1 22	. 60
MW-9-145			845		H						-				-	-	X		-	+	t	+			-						Per	11/1
Musical			11.0	++	++					+	+					1			+	+	+	+	+	-	-						04	10/1
10-10-0			1110	++	++	+		-	+	+	+	-			-	-	-	9	+	+	+	+	+	-	-				-			
1110-10-115			1115		\square	+	+	-	+	+	+	-	t i		-	-	-	0	+	+	+	+	-	-	-					NH	Holdo	1-
MW-10-14.5			1120	4	-		-			+	+																	*			in g	21
ni 10960-							-		-		-		_			_		-	-			-	-						_			_
					_		-		-	-	-	-	_		_	_		-	•	-				-								_
											1						æ.,				t											
	Λ				-	\square			+	-	+	-	-		-	-		_	-	-	+	-	-						_	-		-
Relinquisted By:	h	Date:	Time: 345	Rece	ived B	iy:	oh	0	M							0	57	q	00			-				vo	DAS	0&G	MF	ETAL	отне	R
Relinquished By: Ewico - Te	ch8R.	Date: 2/12/10	Time: (750	Rece	ived B	ly: /s	K	E.						CE/ GOO HEA		ON		ON	U TV	M	-	PRE APP COM	RO	RVA PRI/	TIO ATE RS	N	1					-
Relinquished By:		Date: 2/12/10	Time:	Rece	red B	y:	V.	L	Ø	21	3	10	Î	DEC	HLO	ORI	NAT	EDI	NL	B	MA	PI	RSI	ERV	ED	IN L	AB	MH				
9 49			1	~	-							T		-		-				-				-	-							

~

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262					WorkOrd	ler: 100235	A o	ClientCod	le: AEL		
	WaterTra	ax 🗌 Writ	eOn 🗹 EDF	Γ	Excel	Fax	🖌 Email		HardCopy	ThirdParty	J-flag
Report to:					Bi	II to:			Red	quested TAT:	5 days
Jeremy Smith AEI Consultants 2500 Camino Diablo, Ste. #200	Email: cc: PO:	jasmith@aei #WC082234	iconsultants.co	m		Denise Mo AEI Consu 2500 Cami	ckel Itants ino Diablo, Ste	e. #200	Da Da	te Received. te Add-On:	: 02/12/2010 02/22/2010
Walnut Creek, CA 94597 (925) 283-6000 FAX (925) 944-28	ProjectNo:	#280346; Ala	aska Gas			Walnut Cre dmockel@	eek, CA 94597 aeiconsultant	s.com	Da	te Printed:	02/22/2010
							Requested	Tests (Se	e legend b	elow)	
Lah ID Client	n	Matrix	Collection D	ata Hald	1	2 2	4 5	6	7 9	0 10	11 12

	Chent ID	Watin	Conection Date	noiu		2	3	7	3	0	0	3	10	 12
				_										
1002359-003	MW-9-14.5	Soil	2/12/2010 8:45		А									
1002359-006	MW-10-14.5	Soil	2/12/2010 11:20			А								

Test Legend:

1	5-OXYS+PBSCV_S	
6]
11		1

2	G-MBTEX_S	
7		
12		

3	
8	

4	
9	

5				
10				

Prepared by: Samantha Arbuckle

Comments: Soil samples off HOLD and set up for TPH(g)+MBTEX 5-day except MW-10-14.5 per JS 02/16/10. MW-9-14.5 & MW-10-14.5 off Hold 2/22/10 5d per email.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell An "When Ouality	alyti _{Counts"}	cal, Inc	<u>C.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 925	94565-1701 @mccampbell.c 5-252-9269	om
AEI Consultants		Client Pro	ject ID:	#28034	6; Alaska Gas	Date Sampled:	02/12/10	
2500 Camino Diablo Sta #200						Date Received:	02/12/10	
2500 Camino Diaolo, Stc. #200		Client Co	ntact: Je	remy Sı	nith	Date Extracted:	02/22/10	
Walnut Creek, CA 94597		Client P.C	D.: #WC0	82234		Date Analyzed:	02/22/10	
Oxygenate	ed Vola	tile Organ	ics + EDB	and 1,	2-DCA by P&T	and GC/MS*		
Extraction Method: SW5030B	100234	Analy	tical Method	: SW826	0B		Work Order:	1002359
	10025. MW	-9-14 5						
Client ID		, 110					Reporting DF	Limit for =1
Matrix		S						
DF		1					S	W
Compound				Conce	entration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)	1	ND					0.005	NA
t-Butyl alcohol (TBA)	1	ND					0.05	NA
1,2-Dibromoethane (EDB)	1	ND					0.004	NA
1,2-Dichloroethane (1,2-DCA)	1	ND					0.004	NA
Diisopropyl ether (DIPE)	1	ND					0.005	NA
Ethyl tert-butyl ether (ETBE)	1	ND					0.005	NA
Methyl-t-butyl ether (MTBE)	0.	027					0.005	NA
		Surro	gate Rec	overies	s (%)			
%SS1:	1	27						
Comments								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, so es in μg/	il/sludge/sol wipe.	id samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP
ND means not detected above the reporti	ng limit/	method dete	ection limit	; N/A m	eans analyte not ap	oplicable to this anal	ysis.	
# surrogate diluted out of range or coelut	es with a	nother peak	; &) low su	irrogate	due to matrix inter	ference.		

	McCampbe	ell An en Oualitv	alyti _{Counts"}	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	ass Road, Pittsbur bell.com E-mail: 77-252-9262 Fa	g, CA 94565-17 main@mccamp x: 925-252-926	701 bell.com Ə					
AEI C	Consultants			Client P	roject ID: #	280346; Ala	ıska Gas	Date Sample	ed: 02/12	2/10					
2500 0	Camino Diablo, Ste. #2	00						Date Receiv	ed: 02/12	2/10					
				Client C	Contact: Jer	emy Smith		Date Extract	ed: 02/22	2/10					
Walnu	ut Creek, CA 94597			Client P	.O.: #WC08	82234		Date Analyz	xed: 02/22	2/10					
Extracti	Gaton method: SW5030B	asoline l	Range ((C6-C12)	Volatile Hy Analyt	drocarbons	as Gasoline SW8021B/8015	with BTEX a ^{5Bm}	and MTBE*	• Worl	c Order:	1002359			
Lab ID	Client ID	Matrix	TF	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
006A	MW-10-14.5	S	:	ND	ND	ND	ND	ND	ND	1	95				
Report ND m	rting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		ug/L				
abo	ve the reporting limit	s not detected at or he reporting limit S 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg									g				

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 48791		Work	Order 10023	59
EPA Method SW8260B	Extra	ction SW	5030B					ę	Spiked Sar	nple ID	: 1002452-0)10a
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, individ	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	79.5	79.6	0.212	80.5	80.6	0.153	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	84.2	82.4	2.07	85.3	86	0.871	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	107	107	0	106	109	3.10	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	98.4	96.3	2.15	99.9	98.6	1.32	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	93.2	92.4	0.805	93.1	95.3	2.26	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	92.8	92.5	0.385	92.5	94	1.60	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	89.9	89.3	0.721	91.3	91.7	0.473	70 - 130	30	70 - 130	30
%SS1:	93	0.13	122	122	0	123	123	0	70 - 130	30	70 - 130	30
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 48791 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002359-003A	02/12/10 8:45 AM	I 02/22/10	02/22/10 8:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 48790		WorkC	Order 10023	59
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	piked San	nple ID	: 1002452-0	10A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	e Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD	RPD	
TPH(btex ^f)	ND	0.60	104	105	1.00	109	105	3.82	70 - 130	20	70 - 130	20
MTBE	ND	0.10	117	113	3.34	102	107	4.37	70 - 130	20	70 - 130	20
Benzene	ND	0.10	92.3	90.6	1.81	87	89.6	2.89	70 - 130	20	70 - 130	20
Toluene	ND	0.10	90.7	89.2	1.61	85.6	88	2.81	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	90.1	88.9	1.34	86.8	87.5	0.749	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	90.9	90.4	0.600	85.7	88.5	3.16	70 - 130	20	70 - 130	20
%SS:	101	0.10	98	102	3.53	96	94	2.78	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			BATCH 48790 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002359-006A	02/12/10 11:20 AM	02/22/10	02/22/10 10:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled:	02/12/10
2500 Camino Diablo. Ste. #200			Date Received:	02/12/10
	Client Contact: Jeremy Su	nith	Date Reported:	02/22/10
Walnut Creek, CA 94597	Client P.O.: #WC082234		Date Completed:	02/18/10

WorkOrder: 1002359

February 22, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: **#280346; Alaska Gas,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Telepho	McCAN	IPBELI 1534 W Pittsb	ANAI Villow Pass ourg, CA 9	Road	ICA		NC.) 25	7-01	260				T	UF	RN .	AR	(OU	CH	AII	N C ME)F		JST D	ГО		Y F	E [4	COR	D [72		5 DAY
Telepho	ne. (525) 25	2-7202			-	aA	() 40	-	0.1		1000		2.4	E	DF I	Requ	uire	ed?	Ò	Ye	S			No	_	_	_	_	0.1		C	
Report To: Jerem	y Smith		В	ill To	: san	le		P.	0.#	F W	CO	822.	34	\vdash				- 1	na	ysis	Req	uest		-		_			Other	-	Con	iments
Company: AEI C	onsultants	la								-			_			ca			6													
2500 C	amino Diat	A 04507		F-M	ail· ia	emit	a	rico	neult	ante	000					Sili		1	0				0		S							
Tele: (025) 746-6	000	1 94371	F	av. (025)	044	-280	5	isuiu	anc	S.COI		-			/m (=	TBE	a				831		(601							
Project # 280346	000	-	P	roiec	t Nar	ne:	Alas	ka	Gas							13.1	418.	ш	3				101		tinc							
Project Location:	6211 San P	able Aven	ue. Oakl	and.	Calif	orni	9	in the second	040				-			sc (4	us (BDIP	200				/ 82		Ni,2							
Sampler Signature	P:	into riven	X		-					_				1		irca	arbo	ED, BE,	C	INC		2	625		pb,	8						
oumpier orginitur		SAMD	LINC				MA	TDI	v	Т	ME	THO	DD	m		80	droc	AT N	Ð	B's) 82	EPA		C.	200						
		SAMIP	LING	90	lers		MA	IR	-	P	RES	ER	VED	8021	015	lio	Hy	07	2	PC		AHs	- A	00	(Cd	red						
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Container	Type Contair	Water	Soil	Air .	Other	Tao	HCI	HNO	Other	BTEX / /MTBE	FPH - gasoline (8	Total Petroleum	Total Petroleum	Fuel Oxys (826 TAME, TBA, 1	1+14)+1	EPA 608 / 8080	VOCs 8260	SVOCs (with P.	PAH's / PNA's	CAM-17 Metal	LUFT 5 Metals	Lead (field filte	RCI		HOLD			
Mary -9-5.5		2-12-10	835	1	Linc	ł	X			t	X	1		X	X			X	X			1							×	\square	Off	Hold
Mu 9.95			QUA	1	T		1	+	+	t	1	-							2			1							1		1	1 cm
MW-9-145			QUS				++	+	+	$^{+}$		+	-				-	1	7	-	+	+	+			-				\square		pers
p10 - 1 - 112			040		H		++	+	+	+		+	-			-	-		7	+	+	+	-	-		-			-	\vdash		0410
MW-10-6			1110	+	++	\vdash	+	+	+	╋	-	-	-			-	-		2	-	-	-	-		-	-			+	\vdash		
MW-10-9,5			1115	\vdash		\vdash		+	+	+	4	+	-	-		_	-		X	-	-	-	-	-	-	-				\vdash		
MW-10-14.5		-	1120	4	-		-	_	-	+	-	-				_	-	_	+	_	-	-	-						+			
										1							_															
																_	_				_											
																-				*												
										Т																						
										T		-								-										\square		
Λ	Λ					\vdash	-	+	-	$^{+}$	+	+					+		+	-	-	-								\vdash		
Relinquished By:	()	Date:	Time:	Rece	ived B	v:		-	_	-	-	_	-	-				_	_	_	-	_	-	-				_				
leans	X	7 12 - 10	345	Th	MAIN	nt	20 V	1	m	1						1000	~	. 7	0	00	2						VO	DAS	0&G	MI	ETALS	OTHER
Relinquished By:		Date:	Time:	Rece	ived B	y:	T	k	U.						ICE/	ťY	C	24	11	1		1	PRE	SEF	VA	TIO	N_					
Ewico-Te	ch8R.	2/12/10	1750	4	End	1.	K	U	,						GOC	DS	PAC	DITI TE AF	UN	NTI	SW	- 1	CON	RO	PRI	RS	-	1				
Relinquished By: L	UTC - C	Date:	Time:	Rece	wed B	y:	40	4	4	CE	211	2	10	l i	DEC	HLO	ORI	NATI	EDI	NL/	B	MA	PE	RS	ERV	ED	INI	LAB	MA	•		
A. L NI		21.1.	11	0	16	1	V	Y	V	-	-1'	0		L							_	T								_		

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					Work	Order:	1002	359 C	lientCode:	AEL				
		WaterTrax	WriteOn	EDF		Excel	[Fax	🖌 Email	Hai	dCopy	Third	Party	□J-fl	lag
Report to: Jeremv Smi	th	Email: i	iasmith@aeic	onsultants.com			Bill to: De	nise M	ockel		Rec	quested 1	ΓΑΤ:	5 d	lays
AEI Consult 2500 Camir Walnut Cree (925) 283-600	ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	cc: PO: # ProjectNo: #	#WC082234 #280346; Alas	ska Gas			AE 250 Wa dm	l Consu 00 Carr Ilnut Cr ockel@	ultants nino Diablo, Ste reek, CA 94597 ⊉aeiconsultants	. #200 s.com	Dat Dat	te Recei te Printo	ved: ed:	02/12/2 02/16/2	2010 2010
									Requested 1	Fests (See lo	egend k	pelow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6 7	8	9	10	11	12
1002359-001	MW-9-5.5		Soil	2/12/2010 8:35		А	Α								
1002359-002	MW-9-9.5		Soil	2/12/2010 8:40		A									
1002359-003	MW-9-14.5		Soil	2/12/2010 8:45		A									

2/12/2010 11:10

2/12/2010 11:15

А

А

Test Legend:

1002359-004

1002359-005

1	G-MBTEX_S	
6		
11		

2	PREDF REPORT	
7		
12		

MW-10-6

MW-10-9.5

Soil

Soil

3	
8	

4	
9	

5			
10			

Prepared by: Samantha Arbuckle

Soil samples off HOLD and set up for TPH(g)+MBTEX 5-day except MW-10-14.5 per JS 02/16/10. **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Da	te and	Time Received:	2/12/2010	8:35:46 PM
Project Name:	#280346; Alaska	Gas				Ch	ecklist	completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	1002359	Matrix <u>S</u>	oil			Ca	rrier:	<u>EnviroTech (M</u>	<u>TZ)</u>	
			<u>Chain</u>	of Cu	stody (C	OC) Infor	matio	<u>n</u>		
Chain of custody	present?			Yes	✓	No 🗆				
Chain of custody	signed when relinquis	shed and r	eceived?	Yes	✓	No 🗆				
Chain of custody	agrees with sample la	abels?		Yes	✓	No				
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆				
Date and Time of	collection noted by Cli	ent on COC	C?	Yes	✓	No 🗆				
Sampler's name n	noted on COC?			Yes	✓	No 🗆				
			Sa	ample	Receipt	Informat	<u>ion</u>			
Custody seals int	tact on shipping contai	iner/cooler	?	Yes		No 🗆			NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No				
Samples in prope	er containers/bottles?			Yes	✓	No 🗆				
Sample container	rs intact?			Yes	✓	No 🗆				
Sufficient sample	volume for indicated	test?		Yes		No				
		<u>Sam</u>	ple Preser	vation	and Ho	ld Time (<u>HT) In</u>	formation		
All samples receive	ved within holding time	e?		Yes		No				
Container/Temp E	Blank temperature			Coole	r Temp:	7.9°C			NA 🗆	
Water - VOA vial	s have zero headspac	ce / no bub	obles?	Yes		No 🗆] No	o VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?		Yes	✓	No				
Metal - pH accept	table upon receipt (pH	<2)?		Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆				
			(Ісе Туре	e: WE	TICE))				
* NOTE: If the "N	lo" box is checked, se	ee commer	nts below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbe	Web	1534 Willow P : www.mccamp Telephone: 8	ass Road, Pittsbur bell.com E-mail 77-252-9262 Fa	g, CA 94565-17 : main@mccamp ax: 925-252-926	701 bell.com Ə														
onsultants			Client P	roject ID: #	#280346; Alaska Gas Date Sampled: 02/12/10														
Camino Diablo, Ste. #2	200						Date Received: 02/12/10												
,			Client C	Contact: Jer	emy Smith		Date Extracted: 02/16/10												
t Creek, CA 94597			Client P	.O.: #WC0	82234		Date Analyzed: 02/17/10-02/18/10												
Generation SW 5020P	asoline H	Range ((C6-C12)	Volatile Hy	drocarbons	as Gasoline	te with BTEX and MTBE*												
Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments								
MW-9-5.5	s]	ND	ND	ND	ND	ND	ND	1	92									
MW-9-9.5	S]	ND	ND	ND	ND	ND	ND	1	95									
MW-9-14.5	s]	ND	0.075	ND	ND	ND	ND	1	93									
MW-10-6	S		64	ND<0.50	ND<0.050	0.62	ND<0.050	ND<0.050	10	83	d7,d9								
MW-10-9.5	S		1.9	ND	ND	ND	ND	ND	1	83	d7								
ting Limit for DF =1; eans not detected at or we the reporting limit	W S		50 1.0	5.0 0.05	0.5 0.005	0.5 0.005	0.5	0.5 0.005	ug/L mg/Kg										
McCampbell Analytical "When Ouality Counts" Clive Ouality Counts" Ouality Counts" Clive Ouality Counts" Ouality Counts" Clive Ouality Counts" Matrix TPH(g) MW-9-9.5 MW-10-6 S Ouality Counts" Ouality Counts" Ouality Counts" MW-10-6<		McCampbell Analytical, In "When Ouality Counts" Client P Client ID Matrix TPH(g) MW-9-5.5 S ND MW-9-5.5 S ND MW-9-14.5 S ND MW-10-6 S 64 MW-10-6 S 1.9 MW-10-9.5 S 1.9 MW-10-10 M M 1.9 MW-10-10 M M 1.9 1.0 MW-10-10 M M 1.0 1.0	McCampbell Analytical, Inc. "When Quality Counts" onsultants Client Project ID: # Camino Diablo, Ste. #200 Client Contact: Jer t Creek, CA 94597 Client P.O.: #WCO Casoline Range (C6-C12) Voltile Hy method: SW5030B Analy Client ID Matrix TPH(g) MTBE MW-9-5.5 S ND ND MW-9-5.5 S ND ND MW-9-5.5 S ND ND MW-9-14.5 S ND ND MW-10-6 S 64 ND<0.075	MCCampbell Analytical, Inc. web When Quality Counts" Client Project ID: #280346; Ala Client Diablo, Ste. #200 Client Contact: Jeremy Smith Client Contact: Jeremy Smith Client P.O:: #WC082234 Client Sy5030B Analytical (C6-C12) Voltile Hyrorations is an unchoi: SW5030B MW-9-5.5 S ND ND MW-9-5.5 S ND ND ND MW-9-5.5 S ND ND ND MW-9-5.5 S ND ND ND MW-9-14.5 S ND ND ND MW-10-6 S 6 A ND ND MW-10-9.5 S 1.9 ND ND ND MW-10-6 S 1.9 ND	McCampbell Analytical, Inc. 	McCampbell Analytical, Inc. 13:34 willow Pass Road, Pittsker Wet: www.meampell.com When Ouality Counts: Date Sample Client Project ID: #280346; Alaska Gas Date Sample Client Project ID: #280346; Alaska Gas Date Sample Client Project ID: #280346; Alaska Gas Date Sample Client Contact: Jeremy Smith Date Extract Client Roge (CC-C12) Volatile Hydrocarbons as Casolure with BTEX is analyzed and in the system of the s	Italian interview in	$\begin{tabular}{ c c c c c c } \hline $134 willow Pass Road, Pitsburg: C & 94365:1701 Weitween completions IF-nail main encompletions IF-nail Park Road Pitsburg: C & 94365:1701 Weitween completions IF-nail Park Road Pitsburg: C & 94365:1701 Weitween completions IF-nail Park Road Pitsburg: C & 94365:1701 Weitween completions IF-nail Park Pits 925:232:926 Fax: 925:23:926 Fax: 925:926 Fax: 926:926 Fax: 925:926 Fax: 926:926 Fax: 925:926 Fax: 926:926 F$	1534 Willow Pass Road, Pritishing: $< 0.494561.701$ Wei: www.encompletion Network 204561.701 Wei: www.encompletion Canado in objetion of the priority of th										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Soil BatchID: 48682 WorkOrder 1002359 W.O. Sample Matrix: Soil EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1002358-003A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH(btex) ND 0.60 103 104 0.277 103 100 2.91 70 - 130 20 70 - 130 20 MTBE ND 0.10 124 117 5.71 122 124 1.40 70 - 130 20 70 - 130 20 0.10 ND 93.5 91.8 1.86 94.7 95.7 1.01 70 - 130 20 70 - 130 20 Benzene ND 0.10 90.8 89.5 1.51 92.5 93.3 0.872 70 - 130 70 - 130 20 Toluene 20 0.10 91.3 92 Ethylbenzene ND 90.7 89 1.83 0.738 70 - 130 20 70 - 130 20 **Xylenes** ND 0.30 85.9 90.1 4.85 92.6 92.9 0.407 70 - 130 20 70 - 130 20 70 - 130 0.10 0.675 70 - 130 20 %SS: 84 86 87 84 87 2.87 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 48682 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID **Date Sampled** Date Extracted Date Analyzed 1002359-001A 02/12/10 8:35 AM 02/16/10 02/17/10 6:14 AM 1002359-002A 02/12/10 8:40 AM 02/16/10 02/17/10 6:45 AM 02/17/10 3:43 PM 1002359-004A 1002359-003A 02/12/10 8:45 AM 02/16/10 02/18/10 7:44 PM 02/12/10 11:10 AM 02/16/10 1002359-005A 02/12/10 11:15 AM 02/16/10 02/17/10 3:37 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled:	02/23/10
2500 Camino Diablo. Ste. #200			Date Received:	02/23/10
	Client Contact: Jeremy Su	nith	Date Reported:	03/02/10
Walnut Creek, CA 94597	Client P.O.: #WC082247		Date Completed:	03/02/10

WorkOrder: 1002575

March 02, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: **#280346; Alaska Gas,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

inn	5	1	5
1002	0	1	>

McCAMPBELL ANALYTICAL INC.							Т	CHAIN OF CUSTODY RECORD												,														
		1534 V Pitts	Willow Pass	Road											T	TURN AROUND TIME 📮 📮 📮										1 >	Ø							
Telepho	ne: (925) 25	2-9262	burg, CA y	1000	F	ax:	(925	5) 2	52-	926	9					RUSH 24 HR 48 HR								72	HR	5 D	ΑY							
Denest Tex Issue				211 T.			2		0	# 1	VC	003	2.47	+	EI)F I	F Required? Yes No							04		-	C		4-					
Company: AEL Consultants										+	-	_			Anar	SIS	Rec	ues	1	-	-			-	Oth	er	+	Com	men	ts				
2500 Camino Diablo										-			ica																					
Walnut Creek, CA 94597 E-Mail: iasmith@aeiconsultants.com												/ Sil	ഫ്					9		0														
Tele: (925) 746-6	000		F	ax:	(925)	746	-609	9									1) w	ETB					/ 83		(60									
Project #: 280346	1		Р	rojec	t Nar	ne:	Alaŝ	ka	Gas	s							413.	(418 PE, 1					270		zinc									
Project Location:	6211 San P	ablo Aven	ue, Oakl	and,	Calif	orni	a										ase (DB DB					5/8		iN.,									
Sampler Signatur	e: tha	VL	h			_		_		_				_			Gre	TBE TBE		NO.		270	A 62		r, pt	(8)								
	1	SAMP	LING		ers		MA	TR	IX		PRE	ESE	HOD RVE	D	021B	(15)	Oil &	Hydre - M		PCB's		Hs) 8	y EP.		Cd, C	sd 200								
SAMPLE ID				lers	ain					Т				٦	8	e (80	um	sum 260	4	080		h PA	A's b	stals	als (iltere								
(Field Point Name)	LOCATION	D		tair	Ont				9						MTB	solin	strole	ys (8 TB/	Nitri.	8/8	260	(wit	PN	7 Mc	Met	eld f								
		Date	Time	00	be	atei			adg	her		5	ĝ.	her	X	- 83	al Po	al P(rate/	09 P	Cs 8	SC	H's	M-I	FT 5	g) p	_							
	S			#	L,	M	So	Ai	SII	ŏ	Ice	Ħ	H	5	BTI	LPH	Tot	Tot Fue TA	, iz	4	102	SV	PA	CA	B	Lca	RC							
MW-1R		9/23/10	17.15	3	1045	X				1	X	\times		T	Х	X		X											+	+	+			
MW-2		1	1200	ſ)	×					×,	X		T	Х	Х		X													T			
MW-3			17.20			X				1	6	V		1	Х	X		X					1						-	-	1			
MW-4			139			X					x	2T			Х	Х		X		1		t	1						-	-	1			
MW-5			1205			X					x	X		1	Х	Х		X											-		1			
MW-6			1150		\square	X					K,	2		T	Х	Х		X		1	1	t	\top							-	+			
MW-7			940		1	X				Ť	A	X		T	Х	Х		X			1										+			
MW-8			8 30		\uparrow	X					X	$\overline{\boldsymbol{\lambda}}$		T	Х	Х		X			1		\square						-	+	t			
MW-9			915			X				ľ	X	~		1	Χ	Х		X			1									+	+		_	
MW-10			845			X					X,	X			Χ	Х		X													1			
EX-1	21	V	1355	V	V	X				T	Xo	\langle			Х	Х		X													1			
						1				Т																					T			
	Sec																																	
1																															T			
Relinquished By		Date:	Time:	Rece	ived B	D	V	4	00	1	/													2				1	_	1	-	1		
m ph		2/23/10	7:40	V	1º	-	Y	a	~	_					I	CE/	n S	He.		/			PDF	SFP	VA	TIO	N	AS	0&G		MET	ALS	OTH	ER
Relinquished By:		Date:	Time:	Rece	ived B	y:									G	00	DC	ONDITI	ION_		_]		APP	ROI	RI	TE		1						
Relinquished Bu		Date	Time	Deer	lund P			_	_					_	H	EA	DS	PACE A	BSEN	T	P	- (CON	TAI	NE	RS_	INT	1						
Reinquished By: Date: Time: Received By:						D	EC.	and	JANAI	ED II				- re	noi	SRV	CUI	UN L	AB_		_			DECHLORINATED IN LAB PERSERVED IN LAB										
1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					Work	Order	: 1002	575	(ClientC	ode: A	EL				
		WaterTrax	WriteOn	EDF	Γ	Excel		Fax		🗸 Email		Hard	dCopy	🗌 Thii	rdParty	□ J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
Jeremy Smi AEI Consult 2500 Camir Walnut Cree (925) 283-600	th ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	Email: ja cc: PO: # ProjectNo: #	asmith@aeic WC082247 280346; Alas	onsultants.com ska Gas	Denise Mockel AEI Consultants 2500 Camino Diablo, Ste. #20 Walnut Creek, CA 94597 dmockel@aeiconsultants.com					D	Dat Dat	0ate Received: 02/ 0ate Printed: 02/			2010 2010		
									Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1002575-001	MW-1R		Water	2/23/2010 12:15		В	А	А									
1002575-002	MW-2		Water	2/23/2010 12:00		В	Α										
1002575-003	MW-3		Water	2/23/2010 12:20		В	Α										
1002575-004	MW-4		Water	2/23/2010 13:50		В	Α										
1002575-005	MW-5		Water	2/23/2010 12:05		В	Α										
1002575-006	MW-6		Water	2/23/2010 11:50		В	Α										
1002575-007	MW-7		Water	2/23/2010 9:40		В	Α										
1002575-008	MW-8		Water	2/23/2010 8:30		В	Α										
1002575-009	MW-9		Water	2/23/2010 9:15		В	Α			1						1	
1002575-010	MW-10		Water	2/23/2010 8:45	П	В	Α				1				1	1	

Test Legend:

1002575-011

1	5-OXYS+PBSCV_W	2
6		7
11		12

EX-1

G-MBTEX_W	3
	8

Water

3	PREDF REPORT
8	

В

А

2/23/2010 13:55

4			
9			

	5	
Ī	10	

Prepared by: Menssa valles	Prepared	by:	Melissa	Valles
----------------------------	----------	-----	---------	--------

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date	and Time Received:	2/23/2010	7:57:04 PM			
Project Name:	#280346; Alaska	Gas			Chec	klist completed and r	eviewed by:	Melissa Valles			
WorkOrder N°:	1002575	Matrix <u>Water</u>			Carrie	er: <u>Client Drop-In</u>					
		<u>Chai</u>	in of Cu	stody (C	OC) Information	ation					
Chain of custody	present?		Yes	✓	No 🗆						
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗆						
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌						
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆						
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆						
Sampler's name r	noted on COC?		Yes	✓	No 🗆						
Sample Receipt Information											
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽				
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗆						
Samples in prope	er containers/bottles?		Yes	✓	No 🗆						
Sample containe	rs intact?		Yes	\checkmark	No 🗆						
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌						
		Sample Pres	ervatio	n and Ho	old Time (HT	<u>) Information</u>					
All samples recei	ived within holding time	e?	Yes	✓	No 🗌						
Container/Temp E	Blank temperature		Coole	er Temp:	5.4°C		NA 🗆				
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted				
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌						
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹				
Samples Receive	ed on Ice?		Yes	✓	No 🗆						
		(Ice Ty	vpe: WE	TICE)						
* NOTE: If the "N	lo" box is checked, se	e comments below									

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants		Client Pr	oject ID:	#28034	6; Alaska Gas	Date Sampled:	Date Sampled: 02/23/10				
2500 Camino Diablo. Ste. #200						Date Received:	02/23/10				
2500 Cumilo Diablo, Sc. #200		Client C	ontact: Je	remy Si	mith	Date Extracted: 02/25/10-03/01/10					
Walnut Creek, CA 94597		Client P.	Client P.O.: #WC082247 Date Analyzed: 02/25								
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1002575											
Lab ID	10025	75-001B	1002575-	-002B	1002575-003B	1002575-004B					
Client ID	W-1R	MW	-2	MW-3	MW-4	Reporting Limit for DF =1					
Matrix		W	W	W		W					
DF		3.3	1		3300	10	S	W			
Compound		Conce	entration		ug/kg	µg/L					
tert-Amyl methyl ether (TAME)	NI	D<1.7	ND		ND<1700	41	NA	0.5			
t-Butyl alcohol (TBA)	NI	D<6.7	36		260,000	400	NA	2.0			
1,2-Dibromoethane (EDB)	NI	D<1.7	ND		ND<1700	ND<5.0	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	NI	D<1.7	ND	ND<1700		ND<5.0	NA	0.5			
Diisopropyl ether (DIPE)	NI	D<1.7	ND		ND<1700	ND<5.0	NA	0.5			
Ethyl tert-butyl ether (ETBE)	NI	D<1.7	ND		ND<1700	ND<5.0	NA	0.5			
Methyl-t-butyl ether (MTBE)		3.9	14		4700	180	NA	0.5			
		Surr	ogate Rec	overies	s (%)						
%SS1:		101	119		95	91					
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, so es in μg/	oil/sludge/so /wipe.	olid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An	alyti _{Counts"}	<u>cal, In</u>	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants		Client Pr	oject ID:	#28034	6; Alaska Gas	Date Sampled:					
2500 Camino Diablo. Ste. #200						Date Received:	: 02/23/10				
2500 Camino Diabio, Sc. #200		Client Co	ontact: Je	remy Sı	nith	Date Extracted: 02/25/10-03/01/10					
Walnut Creek, CA 94597		Client P.	D.: #WC0	82247		Date Analyzed:	02/25/10-0	3/01/10			
Oxygenate Extraction Method: SW5030B	Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1002575										
Lab ID	10025	75-005B	1002575-	-006B	1002575-007B	1002575-008B					
Client ID	W-5	MW	-6	MW-7	MW-8	Reporting DF	Limit for				
Matrix		W	W		W	W					
DF		1	1		20	200	S	W			
Compound				Conce	entration		ug/kg	µg/L			
tert-Amyl methyl ether (TAME)	1	ND	ND		19	ND<100	NA	0.5			
t-Butyl alcohol (TBA)	1	ND	15		1500	24,000	NA	2.0			
1,2-Dibromoethane (EDB)	1	ND	ND	ND<10		ND<100	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	1	ND	ND		ND<10	ND<100	NA	0.5			
Diisopropyl ether (DIPE)	1	ND	ND		ND<10	ND<100	NA	0.5			
Ethyl tert-butyl ether (ETBE)	1	ND	ND		ND<10	ND<100	NA	0.5			
Methyl-t-butyl ether (MTBE)		1.9	5.7		410	1600	NA	0.5			
		Surr	ogate Rec	overies	s (%)						
%SS1:	-	117	116	5	93	92					
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample	μg/L, so es in μg/	il/sludge/so wipe.	olid samples	in mg/k	g, product/oil/non-a	queous liquid sample	s and all TC	LP & SPLP			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	alyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants		Client Pr	oject ID:	#28034	6; Alaska Gas	Date Sampled:	02/23/10				
2500 Camino Diablo Ste #200						Date Received:	02/23/10				
2500 Camino Diabio, Stc. #200		Client Co	ontact: Je	remy Si	nith	Date Extracted: 02/25/10-03/01/10					
Walnut Creek, CA 94597		Client P.0	D.: #WC0	82247		Date Analyzed:	: 02/25/10-03/01/10				
Oxygenat	ed Vola	tile Organ	nics + EDB	and 1	2-DCA by P&T	and GC/MS*					
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B	1	Work Order:	1002575			
Lab ID	10025	75-009B	1002575-010B 1002575-011B								
Client ID	W-9	MW-	10	EX-1		Limit for $r = 1$					
Matrix		W			W		1				
DF		20	1	50			S	W			
Compound	Conce	entration	ug/kg	µg/L							
tert-Amyl methyl ether (TAME)	N	D<10	10 ND		250	250		0.5			
t-Butyl alcohol (TBA)	1	600	ND		670		NA	2.0			
1,2-Dibromoethane (EDB)	N	D<10	ND		ND<25		NA	0.5			
1,2-Dichloroethane (1,2-DCA)	N	D<10	ND		ND<25		NA	0.5			
Diisopropyl ether (DIPE)	N	D<10	ND		ND<25		NA	0.5			
Ethyl tert-butyl ether (ETBE)	N	D<10	ND		ND<25		NA	0.5			
Methyl-t-butyl ether (MTBE)		260	2.8		880		NA	0.5			
		Surr	ogate Rec	overies	s (%)						
%SS1:		96	102	2	96						
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, so es in μg/ ng limit	oil/sludge/sc /wipe. /method.dot	lid samples	in mg/k	g, product/oil/non-a	iqueous liquid sample	es and all TC	LP & SPLP			

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbo	ell An	alyti	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	Pass Road, Pittsbur bell.com E-mail: 377-252-9262 Fa	g, CA 94565-17 main@mccamp x: 925-252-926	701 bell.com 9				
AEI C	Consultants			Client P	roject ID: #	#280346; Alaska Gas Date Sampled: 02/23/10								
2500 0	Camino Diablo, Ste. #2	200				Date Received: 02/23/10								
	,			Client C	Contact: Jer	emy Smith Date Extracted: 02/24/10-02/27/10								
Walnu	tt Creek, CA 94597			Client P	.O.: #WC08	82247		Date Analyz	xed: 02/24	/10-02/	27/10			
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 10025'										1002575				
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	MW-1R	w	3	200	ND<50	31	77	120	810	10	117	d1		
002A	MW-2	w	1	170	18	9.4	0.65	27	5.6	1	118	d1		
003A	MW-3	w	1	700	4500	22	21	11	38	10	118	d1		
004A	MW-4	w	15	,000	ND<500	250	77	580	2200	10	119	d1		
005A	MW-5	w]	ND	ND	ND	0.87	ND	ND	1	111			
006A	MW-6	w]	ND	6.0	0.66	ND	ND	0.57	1	97			
007A	MW-7	W	29	,000	ND<1300	410	380	2100	6100	20	116	d1		
008A	MW-8	W	6	590	1800	3.5	2.8	29	40	1	111	d1		
009A	MW-9	W]	ND	290	ND	0.70	ND	ND	1	112			
010A	MW-10	W	1	300	ND	ND	11	3.1	2.6	1	100	d2,d9		
011A	EX-1	W	39	,000	760	1300	1100	1100	7700	20	111	d1		
Repor	ting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		μg/I			
ND me abov	eans not detected at or ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg				

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

d2) heavier gasoline range compounds are significant (aged gasoline?)

d9) no recognizable pattern

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	ID: 48847	WorkOrder 1002575						
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 1002528-0	017C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1			
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
tert-Amyl methyl ether (TAME)	ND	10	98.8	99.9	1.13	84.5	85	0.595	70 - 130	30	70 - 130	30			
t-Butyl alcohol (TBA)	ND	50	88.8	110	21.6	86.3	87	0.858	70 - 130	30	70 - 130	30			
1,2-Dibromoethane (EDB)	ND	10	107	107	0	99.1	98.3	0.806	70 - 130	30	70 - 130	30			
1,2-Dichloroethane (1,2-DCA)	ND	10	121	119	1.50	101	99.5	1.39	70 - 130	30	70 - 130	30			
Diisopropyl ether (DIPE)	ND	10	113	112	0.613	95	95	0	70 - 130	30	70 - 130	30			
Ethyl tert-butyl ether (ETBE)	ND	10	108	109	0.398	99.3	99.1	0.198	70 - 130	30	70 - 130	30			
Methyl-t-butyl ether (MTBE)	ND	10	114	118	3.81	89.9	89.5	0.413	70 - 130	30	70 - 130	30			
%SS1:	117	25	95	98	2.68	118	115	2.66	70 - 130	30	70 - 130	30			
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:						

BATCH 48847 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1002575-001B	02/23/10 12:15 PM	02/25/10	02/25/10 3:33 PM	1002575-002B	02/23/10 12:00 PM	02/25/10	02/25/10 5:06 PM
1002575-003B	02/23/10 12:20 PM	02/25/10	02/25/10 8:54 PM	1002575-004B	02/23/10 1:50 PM	02/26/10	02/26/10 5:12 PM
1002575-005B	02/23/10 12:05 PM	02/25/10	02/25/10 5:44 PM	1002575-006B	02/23/10 11:50 AM	02/25/10	02/25/10 11:32 PM
1002575-007B	02/23/10 9:40 AM	02/26/10	02/26/10 2:01 PM	1002575-008B	02/23/10 8:30 AM	03/01/10	03/01/10 8:27 PM
1002575-009B	02/23/10 9:15 AM	02/27/10	02/27/10 9:23 AM	1002575-010B	02/23/10 8:45 AM	02/26/10	02/26/10 12:11 AM
1002575-011B	02/23/10 1:55 PM	03/01/10	03/01/10 9:14 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	ID: 48875		Work	Drder 10025	75					
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked Sample ID: 1002607-002								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1					
/ individe	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD					
TPH(btex ^f	ND	60	113	112	1.63	108	109	1.70	70 - 130	20	70 - 130	20					
MTBE	ND	10	122	116	4.63	113	123	7.93	70 - 130	20	70 - 130	20					
Benzene	ND	10	107	108	0.997	103	105	1.67	70 - 130	20	70 - 130	20					
Toluene	ND	10	93.8	95	1.27	91	93.2	2.38	70 - 130	20	70 - 130	20					
Ethylbenzene	ND	10	93.4	94.7	1.40	91.1	89.7	1.57	70 - 130	20	70 - 130	20					
Xylenes	ND	30	107	107	0	103	104	0.545	70 - 130	20	70 - 130	20					
%SS:	100	10	102	105	2.21	104	102	2.03	70 - 130	20	70 - 130	20					
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:								

BATCH 48875 SUMMARY												
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed					
1002575-001A	02/23/10 12:15 PM	02/24/10	02/24/10 6:41 PM	1002575-002A	02/23/10 12:00 PM	02/25/10	02/25/10 1:36 AM					
1002575-003A	02/23/10 12:20 PM	02/24/10	02/24/10 7:11 PM	1002575-003A	02/23/10 12:20 PM	02/25/10	02/25/10 11:55 PM					
1002575-004A	02/23/10 1:50 PM	02/24/10	02/24/10 7:41 PM	1002575-005A	02/23/10 12:05 PM	02/25/10	02/25/10 2:34 AM					
1002575-006A	02/23/10 11:50 AM	02/26/10	02/26/10 4:20 AM	1002575-007A	02/23/10 9:40 AM	02/24/10	02/24/10 8:40 PM					
1002575-008A	02/23/10 8:30 AM	02/24/10	02/24/10 9:10 PM	1002575-008A	02/23/10 8:30 AM	02/25/10	02/25/10 8:28 PM					
1002575-009A	02/23/10 9:15 AM	02/25/10	02/25/10 3:33 AM	1002575-010A	02/23/10 8:45 AM	02/25/10	02/25/10 6:29 AM					
1002575-011A	02/23/10 1:55 PM	02/27/10	02/27/10 12:59 AM									

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell An "When Ouality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #28034	6; Alaska Gas	Date Sampled:	03/18/10					
2500 Camino Diablo. Ste. #200			Date Received:	03/18/10					
	Client Contact: Jeremy Sr	nith	Date Reported:	03/25/10					
Walnut Creek, CA 94597	Client P.O.: #WC082291		Date Completed:	03/22/10					

WorkOrder: 1003544

March 25, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: **#280346; Alaska Gas,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL INC. 1934 Wiley was bad Propert 10: Jeremy Smith Report To: J																	10	0	3	54	-4																
UBAN MINOR 'BAR Read Titlober, CAMASS Telephone: (925) 252-2262 TURN AROUND TIME C C CONSTRUCTION CONST		McCAN	IPBEL	L ANAI	LYT	ICA	LI	IN	с.											(CHA	I	N C)F	CI	US	ГС	DD	ΥI	RE	CO	RI	D		D	1	
Telephone: (925) 252-9262 Rush RUSH 2.4 IR 4.8 IR 7.2 HR BDF Required? Ores No Company: AEI Consultants 2.500 Camino Diablo Walnut Creek, CA 94597 E-Mall: jasmith@aciconsultants.com Tei: (225) 746-6009 Project Name: Alaska Gas Project Name: Alaska Gas SAMPLE ID No SAMPLE ID SAMPLING Sumpler Signature: Signature: SAMPLING Sampler Signature: Signature: SAMPLING Sampler Signature: Signature: SAMPLING Sampler Signature: Signature: Sampler Signature: Signature: Signature: Sampler Signature: Signature: Signature: Signature: Signature: Signature: Signature: <td></td> <td></td> <td>1534 Pitt</td> <td>Willow Pass sburg, CA 9</td> <td>Road 4565</td> <td></td> <td>T</td> <td>U</td> <td>RN</td> <td>AF</td> <td>ROU</td> <td>ND</td> <td>TI</td> <td>ME</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>[</td> <td></td> <td></td> <td>×۲</td> <td>1</td> <td>4</td> <td>¥</td>			1534 Pitt	Willow Pass sburg, CA 9	Road 4565											T	U	RN	AF	ROU	ND	TI	ME		1					[×۲	1	4	¥	
Report To: Jeremy Smith Bill To: same P.O. # WC082291 Analysis Request Other Common Company: AEI Consultants Common Comm	Telepho	one: (925) 25	2-9262			F	ax:	: (9	25) 2	252-	-920	69				EI	DF	Req	uir	ed?	6	Yes			R	USH No	l	24 F	IR	4	8 HF	2	72	HR	51	DAY	
Company: AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 E-Mail: jasmith@aciconsultants.com Tel:: (225) 746-6000 Fax: (925) 746-600 Fax: (925) 746-600 Sampler Signature: Solution (11) Sci-16 Sci-26 IIII The X Sci-26 IIIIII The X Sci-26 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Report To: Jerem	ny Smith		B	ill To	o: san	ne]	P.O	.#	wc	082	2291					_	A	naly	sis	Req	ues	t	_					Oth	ier		Cor	nme	nts	
2500 Camino Diable Walnut Creek, CA 94597 E-Mail: jasmith@acionsultants.com Tele: (925) 746-6099 Project Xare: Alaska Gas SAMPLING SAMPLING <th cols<="" td=""><td>Company: AEI C</td><td>Consultants</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Company: AEI C</td> <td>Consultants</td> <td></td>	Company: AEI C	Consultants																																		
Wahrut Creek, CA 94597 E-Mail: jsamin@aciconsitants.com Tele: (252) 746-6090 Fax: (252) 746-6090 Project #: 280346 Project Name: Alaska Gas Project #: 280346 Project Name: Alaska Gas Sampler Signature: MATRIX Sampler Signature: MATRIX Sampler Signature: MATRIX Science Project #: 280346 Date Time Sampler Signature: Sampler Signature: Science Project #: 280346 Date Time Science Project #: 280346 Field Point Name) Date Date Time Science Project #: 280346 Project #: 280346 Project #: 280346 Science Project #: 280346 Sampler Signature: Science Science Project #: 280346 <	2500 0	Camino Dial	olo												_			Silic									6										
Tele: (225) 746-6000 Fax: (225) 746-6009 Project II: 280346 Project II: Project	Waln	ut Creek, C	A 94597		E-M	ail: ja	smi	ith@	aeic	consi	ultar	nts.c	om	_	_			W/		BE					310		2010										
Project Location: 6211 Say Pablo Avenue, Oakland, California Sampler Signature: SAMPLING segment for the second secon	Tele: (925) 746-6	5000	5	F	ax:	(925)	746	-60	199	0	10/0				-			3.1)	18.1	EI					10		nc (é										
Sampler Signature: SAMPLING sumpler Signature: MATRIX METHOD SAMPLE ID LOCATION Date Time sumpler Signature: MATRIX PRESERVED SAMPLE ID LOCATION Date Time sumpler Signature: MATRIX PRESERVED SG-13 3/15/0 1332 Th X X X X SG-16 1332 Th X X X X X X SG-26 1412 1750 X<	Project #: 280340	(211 6	hla And	P Och	rojec	ct Nar	ne:	Al	aska	Ga	15		_	_	-			e (41	1s (4	DIPE		~			827		Ni,zi										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Project Location:	6211 San Pa	ablo Ave	nye, Oaki	and,	Calif	orn	ua						-	-			reas	Indoi	EDE		IN		0	525		pb,,1	-									
SAMPLE ID (Field Point Name) LOCATION Date Time Sample Support MATRIX- (Source) PRESERVED (Source) Date Time Sample (Source) MATRIX- (Source) PRESERVED (Source) Date Time Sample (Source) Matrix Non-standard SG-1-3 3/15/µ 1332 1 Tb X	Sampler Signatur	e:	~ /	2		T	—	12.12	10.2.23			N	IETI	HOD	Η	~		& C	roça	ATB		s,s 0		827	PA		G,	00.8									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		~~	SAM	PLING		ers	L	M	ATI	ax		PR	ESE	RVE	D	0211	015)	Oil	Hyd	2-D(PCB		(HIS)	by E		Cd,	ed 2									
SG-1-3 3/15/10 1332 1 Tb X	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Contain	Water	Soil	Air	Sludge	Other	Ice	HCI	HNO ₃	Other	BTEX //MTBE 8	TPH - gasoline (80	Total Petroleum	Total Petroleum	Fuel Oxys (8260 TAME, TBA, 1,	Nitrate/Nitrite	EPA 608 / 8080	VOCs 8260	SVOCs (with P/	PAH's / PNA's	CAM-17 Metals	LUFT 5 Metals (Lead (field filter	RCI	C JOFT							
SG-1-6 1244 1 Tb X <	SG-1-3		3/18/10	1332	1	Tb	F		X						1	Х	X																	her	atu	V	
SG-2-3 H/I 1 Tb X <t< td=""><td>SG-1-6</td><td></td><td>1</td><td>1344</td><td>1</td><td>Tb</td><td>Γ</td><td></td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>Di</td><td>the</td></t<>	SG-1-6		1	1344	1	Tb	Γ		X							Х	Х																	15	Di	the	
SG-2-6 I I/478 1 Tb X <t< td=""><td>SG-2-3</td><td></td><td></td><td>HIT</td><td>1</td><td>Tb</td><td>Γ</td><td></td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>in</td><td>5</td><td>Lves</td></t<>	SG-2-3			HIT	1	Tb	Γ		X							Х	Х																	in	5	Lves	
SG-3-3 1055 1 Tb X <	SG-2-6			1478	1	Tb	T	1	X							Х	Х																	TR	5		
SG-3-6 1 Tb X<	SG-3-3			1055	1	Tb	T		X							Х	Х																	-	0	10.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SG-3-6				1	Tb	F	-	X				-	-	1	Х	Х	-																300	wh		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SG-4		L	1441	1	Tb	t	T	X		_					Х	Χ																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SG-5		3/18/10	1075	1	Tb	t	T	X						1	Х	Χ					\square			\vdash												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SG-6		1	1047	1	Tb	t	1	X							Х	Χ						-	\square													
SG-8 1 Tb X X X X SG-8 1 Tb X X X X SG-6 Dep - .15cl 1 TB X X SG-6 Dep - .15cl 1 TB X X Relinquished By: Date: Time: Received By: Belinquished By: Date: Time: Received By: Belinquished By: Date: Time: Received By:	SG-7			1010	1	Tb	÷	-	X		-		-	+	4	X	X			-		+			\vdash		1		-			-					
SG-6 Dup - 15cl 1 TB X X -	SG-8				1	Tb			X		_					Х	X						-													_	
Comparison Comparison <td></td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>۰.</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td>											_		_	_						-										۰.		_				_	
Comparison Comparison <td>>6-6 DUP</td> <td></td> <td>4.</td> <td>1501</td> <td>1</td> <td>TB</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>X</td> <td>X</td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	>6-6 DUP		4.	1501	1	TB			X				_			X	X				_																
Relinquished By: Date: Time: Received By: 510 510 510 510 With feedbill Relinquished By: Date: Time: Received By: ICE/t ^o NA Relinquished By: Date: Time: Received By: A ICE/t ^o NA Relinquished By: Date: Time: Received By: A ICE/t ^o NA	G-353 DVP	1	-	1523	1	TB		1	×																					X		2					
Belinquished By: Date: Time: Received By: ICE/t* /V// PRESERVATION GOOD CONDITION APPROPRIATE	Relinquished By:	-	Date:	Time: 5:10	Rece	eived B	V	11	6	Ke	20	h	T.	2	-				NI	4						oper			ve	DAS	0&	G	ME	TAL	01	THEF	
HEAD SPACE ABSENT CONTAINERS	Belinquished By:	Mor	Date: 3 18	Time: 1803	Rece	pived B	y:	A	A								GOC GOC HEA	DD C	CON	DITI	ON_ SSEN	<u>/</u> T_	-		APP	ROI	PRL	ATE RS_	N								
Relinquished By: Date: Time: Received By: 3/18/10 DECHLORINATED IN LAB PERSERVED IN LAB	Relinquished By:	m	Date: 3/18	Time: 6:15 F.	Reco	eived B	y:	1	E	l	+	3	/10	8/1	0	I	DEC	HL	ORI	NATI	ED IN	LA	B	_	_ PI	RSI	ERV	/ED	IN I	AB		_				_	

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					Work	Order:	1003	544	(ClientC	Code: A	EL				
		WaterTrax	WriteOr	n EDF	Ľ	Excel	[Fax		🖌 Email		Hard	ICopy	🗌 Thii	rdParty	□ J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
Jeremy Smi	ith	Email:	jasmith@aei	consultants.com			De	nise M	ockel								
AEI Consult	tants	cc:					AE	I Consi	ultants								
2500 Camir	no Diablo, Ste. #200	PO:	#WC082291				25	00 Carr	nino Dia	ablo. St	e. #20	0	Dat	e Rece	ived:	03/18/	2010
Walnut Cree	ek CA 94597	ProjectNo:	#280346 Ala	ska Gas			Wa	alnut Cr	eek C.	A 94597	7	-	Dat	e Prin	ted·	03/18/	2010
									Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1003544-001	SG-1-3		Air	3/18/2010 13:32		А	А										
1003544-002	SG-1-6		Air	3/18/2010 13:44		Α											
1003544-003	SG-2-3		Air	3/18/2010 14:11		А											
1003544-004	SG-2-6		Air	3/18/2010 14:28		А											
1003544-005	SG-3-3		Air	3/18/2010 10:55		А											
1003544-006	SG-4		Air	3/18/2010 14:41		Α											
1003544-007	SG-5		Air	3/18/2010 10:25		Α											

А

А

Test Legend:

1003544-008

1003544-009

1	G-MBTEX_AIR	2	PREDF REF
6		7	
11		12	

Port	3	
	8	

Air

Air

3/18/2010 10:42

3/18/2010 15:01

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A contain testgroup.

SG-6

SG-6(Dup)

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Shino Hamilton

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	3/18/2010	6:34:53 PM
Project Name:	#280346; Alaska	Gas			Check	klist completed and r	eviewed by:	Shino Hamilton
WorkOrder N°:	1003544	Matrix <u>Air</u>			Carrie	r: <u>EnviroTech (M</u>	<u>TZ)</u>	
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	v present?		Yes		No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes		No 🗆			
Chain of custody	agrees with sample l	abels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes		No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes		No 🗆			
Sampler's name i	noted on COC?		Yes		No 🗆			
		<u>s</u>	ample	Receipt Inf	ormatior	1		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes		No 🗆			
Samples in prope	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes		No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Prese	vatio	n and Hold 1	<u>Гіте (HT</u>) Information		
All samples recei	ived within holding time	e?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes		No 🗌			
Metal - pH accep	table upon receipt (pH	I<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

J.	When Ouality Counts"						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI C	Consultants			Client P	roject ID: #	#280346; Alaska Gas Date Sampled: 03/18/10						
2500	Camino Diablo, Ste. #2	200						Date Receiv	ed: 03/18	3/10		
	_ · · _ · · , · · · · ,			Client C	Client Contact: Jeremy Smith				ed: 03/19	9/10		
Walnu	ut Creek, CA 94597			Client P	.O.: #WC0	82291		Date Analyz	xed: 03/19	0/10		
E-tre of	G	asoline R	Range (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	k	h Order	1002544
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	SG-1-3	А	3	800	ND	ND	26	ND	0.72	1	85	d1
002A	SG-1-6	А	48	,000	ND<150	42	470	ND<5.0	37	20	109	d1
003A	\$G-2-3	А	5	700	ND<25	1.9	57	ND<1.0	1.7	4	99	d1
004A	SG-2-6	А	41	,000	ND<200	72	390	ND<10	ND<10	40	92	d1
005A	SG-3-3	А	1	ND	ND	ND	ND	ND	ND	1	99	
006A	SG-4	А	1	ND	7.4	ND	0.28	ND	ND	1	104	
007A	SG-5	А	59	,000	ND<800	730	320	75	72	40	99	d1
008A	SG-6	А	1	100	76	9.2	12	ND<1.7	28	6.7	109	d1
009A	SG-6(Dup)	А	4	180	87	1.8	7.3	ND<0.50	0.60	2	103	d1
Report ND m	rting Limit for DF =1; eans not detected at or	A		25	2.5	0.25	0.25	0.25	0.25		μg/I	
abo	ve the reporting limit	S]	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	g

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI C	Consultants			Client Project ID): #280346;	Alaska Gas	Date Sample	d: 03/18/1	0			
2500	Camino Diablo. Ste	e. #200				Date Receiv	ed: 03/18/1	0				
	,			Client Contact:	Jeremy Smit	h	Date Extract	ed: 03/19/1	0			
Walnu	ıt Creek, CA 9459	7		Client P.O.: #W	C082291		Date Analyz	ed: 03/19/1	0			
Extract	Ga Gan method: SW5020E	asoline F	Range (C6-0	lrocarbons as	s Gasoline wit	th MTBE and]	BTEX in ppn	1 V*	Ir Ondonu	1002544		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	SG-1-3	A	1100	ND	ND	6.9	ND	0.16	1	85	d1	
002A	SG-1-6	А	13,000	ND<45	13	120	ND<1.1	8.3	20	109	d1	
003A	SG-2-3	А	1600	ND<10	0.60	15	ND<0.23	0.38	4	99	d1	
004A	SG-2-6	А	12,000	ND<65	22	100	ND<2.3	ND<2.3	40	92	d1	
005A	SG-3-3	А	ND	ND	ND	ND	ND	ND	1	99		
006A	SG-4	А	ND	2.0	ND	0.074	ND	ND	1	104		
007A	SG-5	А	16,000	ND<250	220	83	17	16	40	99	d1	
008A	SG-6	А	300	21	2.8	3.2	ND<0.38	6.4	6.7	109	d1	
009A	SG-6(Dup)	А	130	24	0.56	1.9	ND<0.11	0.14	2	103	d1	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water						BatchID: 49316 WorkOrder 1003544						
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	Spiked San	nple ID	: 1003517-0)10A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	109	104	4.61	104	106	2.22	70 - 130	20	70 - 130	20
MTBE	ND	10	101	105	3.89	101	102	0.779	70 - 130	20	70 - 130	20
Benzene	ND	10	93.2	92	1.34	89.8	90.6	0.827	70 - 130	20	70 - 130	20
Toluene	ND	10	93.6	92.7	0.994	90.4	90.4	0	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	92.3	91.5	0.885	88.7	90	1.45	70 - 130	20	70 - 130	20
Xylenes	ND	30	95.4	93.8	1.64	91.4	92.5	1.21	70 - 130	20	70 - 130	20
%SS:	98	10	97	99	1.90	96	97	0.500	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 49316 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003544-001A	03/18/10 1:32 PM	03/19/10	03/19/10 10:42 AM	1003544-001A	03/18/10 1:32 PM	03/19/10	03/19/10 10:42 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water						BatchID: 49319 WorkOrder 1003544					44	
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 1003543-0	06B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, may to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf	ND	60	94.9	97.6	2.78	94.8	96	1.28	70 - 130	20	70 - 130	20
MTBE	ND	10	98	102	3.74	101	104	2.54	70 - 130	20	70 - 130	20
Benzene	ND	10	96.6	99.2	2.58	100	99.7	0.501	70 - 130	20	70 - 130	20
Toluene	ND	10	96.7	97.1	0.359	98.1	97.3	0.753	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	95.6	97.5	1.95	98.8	97.9	0.920	70 - 130	20	70 - 130	20
Xylenes	ND	30	98.3	99.9	1.65	102	101	0.510	70 - 130	20	70 - 130	20
%SS:	99	10	98	99	0.255	98	98	0	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			<u>BATCH 49319 SL</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003544-002A	03/18/10 1:44 PM	03/19/10	03/19/10 4:45 PM	1003544-002A	03/18/10 1:44 PM	03/19/10	03/19/10 4:45 PM
1003544-003A	03/18/10 2:11 PM	03/19/10	03/19/10 7:16 PM	1003544-003A	03/18/10 2:11 PM	03/19/10	03/19/10 7:16 PM
1003544-004A	03/18/10 2:28 PM	03/19/10	03/19/10 7:46 PM	1003544-004A	03/18/10 2:28 PM	03/19/10	03/19/10 7:46 PM
1003544-005A	03/18/10 10:55 AM	03/19/10	03/19/10 9:16 PM	1003544-005A	03/18/10 10:55 AM	03/19/10	03/19/10 9:16 PM
1003544-006A	03/18/10 2:41 PM	03/19/10	03/19/10 9:46 PM	1003544-006A	03/18/10 2:41 PM	03/19/10	03/19/10 9:46 PM
1003544-007A	03/18/10 10:25 AM	03/19/10	03/19/10 10:16 PM	1003544-007A	03/18/10 10:25 AM	03/19/10	03/19/10 10:16 PM
1003544-008A	03/18/10 10:42 AM	03/19/10	03/19/10 1:21 PM	1003544-008A	03/18/10 10:42 AM	03/19/10	03/19/10 1:21 PM
1003544-009A	03/18/10 3:01 PM	03/19/10	03/19/10 5:16 PM	1003544-009A	03/18/10 3:01 PM	03/19/10	03/19/10 5:16 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

APPENDIX D

GROUNDWATER MONITORING WELL FIELD SAMPLING FORMS

Monitoring Well Number: MW-1R

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
Wellhead Condition	OK			
Elevation of Top of Casing (feet above msl)	36.67			
Depth of Well		22.75		
Depth to Water (from top of casing)		6.67		
Water Elevation (feet above msl)		30.00		
Well Volumes Purged		3		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		7.7		
Actual Volume Purged (gallons)	8.0			
Appearance of Purge Water	Initially black, clearing before 1 gallon purged			
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAMPLES									
Number of Sam	ples/Container S	Size		4 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments		
10:00	1	18.33	6.20	580	1.68	-236.4	Clear		
	2	18.38	6.31	571	1.17	-230.9	Clear		
	3	18.40	6.40	565	0.90	-227.0	Clear		
	4	18.43	6.53	558	0.70	-224.5	Clear		
	5	18.48	6.60	554	0.62	-224.6	Clear		
	6	18.57	6.67	546	0.50	-220.5	Clear		
	7	18.57	6.69	545	0.46	-218.8	Clear		
	8	18.59	6.70	544	0.46	-216.8	Clear		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-2

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)		36.33		
Depth of Well		20.70		
Depth to Water (from top of casing)		6.06		
Water Elevation (feet above msl)		30.27		
Well Volumes Purged		3		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		7.0		
Actual Volume Purged (gallons)	8.0			
Appearance of Purge Water	Initially brown, clearing around 1.5 gallons			
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		4 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
10:32	1	18.63	6.50	589	0.52	-109.4	Brown
	2	18.33	6.53	589	0.47	-119.4	Clear
	3	18.14	6.52	588	0.45	-124.0	Clear
	4	17.95	6.54	590	0.39	-130.5	Clear
	5	17.86	6.54	590	0.34	-135.0	Clear
	6	17.92	6.55	599	0.29	-143.2	Clear
	7	18.10	6.56	604	0.28	-149.7	Clear
	8	18.38	6.58	612	0.26	-159.3	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No hydrocarbon odors noted.

Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	35.12				
Depth of Well	20.82				
Depth to Water (from top of casing)	5.10				
Water Elevation (feet above msl)	30.02				
Well Volumes Purged		3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.5				
Actual Volume Purged (gallons)		8.0			
Appearance of Purge Water	Initially dark/grey, clears quickly				
Free Product Present?	No	Thickness (ft):			

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		4 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
11:16	1	16.93	6.43	385	4.35	-105.0	Clear
	2	16.98	6.44	419	3.86	-107.8	Clear
	3	17.73	6.45	581	1.28	-127.0	Clear
	4	18.06	6.46	637	0.80	-136.0	Clear
	5	18.21	6.49	659	0.66	-140.3	Clear
	6	18.41	6.48	690	0.52	-145.2	Clear
	7	18.64	6.51	722	0.44	-149.9	Clear
	8	18.91	6.55	760	0.39	-154.8	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong petroleum odors present Rain water entered well during purging

Monitoring Well Number: MW-4

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
Wellhead Condition	ОК	•		
Elevation of Top of Casing (feet above msl)		34.11		
Depth of Well	19.75			
Depth to Water (from top of casing)	3.84			
Water Elevation (feet above msl)	30.27			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	⁶ 7.6			
Actual Volume Purged (gallons)	8.0			
Appearance of Purge Water		Initially Black, clearing quickly		
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		4 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
12:54	1	17.81	6.08	567	0.97	-229.4	Clear
	2	17.59	6.27	566	0.80	-237.2	Clear
	3	17.57	6.39	574	0.72	-237.1	Clear
	4	17.61	6.52	596	0.63	-234.4	Clear
	5	17.66	6.61	617	0.57	-234.5	Clear
	6	17.72	6.68	634	0.51	-236.5	Clear
	7	17.76	6.72	642	0.48	-238.0	Clear
	8	17.80	6.76	653	0.44	-239.5	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong hydrocarbon odors present

Monitoring Well Number: MW-5

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	35.17				
Depth of Well	24.31				
Depth to Water (from top of casing)	5.05				
Water Elevation (feet above msl)	30.12				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	9.2				
Actual Volume Purged (gallons)	Clear				
Appearance of Purge Water	10				
Free Product Present?	PNO Thickness (ft):				

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		4 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
10:55	1	19.34	6.49	713	0.83	-125.9	Clear
	2	18.74	6.56	706	0.72	-136.4	Clear
	3	18.09	6.69	700	0.57	-149.3	Clear
	4	17.83	6.73	697	0.45	-159.3	Clear
	5	17.88	6.75	696	0.40	-164.5	Clear
	6	17.95	6.75	696	0.37	-137.2	Clear
	7	18.12	6.75	697	0.34	-169.8	Clear
	8	18.48	6.74	699	0.30	-173.0	Clear
	10	19.05	6.74	699	0.28	-175.3	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-6

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	36.07				
Depth of Well	23.45				
Depth to Water (from top of casing)	5.76				
Water Elevation (feet above msl)	30.31				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	8.5				
Actual Volume Purged (gallons)	9.0				
Appearance of Purge Water		Initially brown, clearing quickly			
Free Product Present?	No	Thickness (ft):			

GROUNDWATER SAMPLES								
Number of Sample	es/Container S	Size		4 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments	
10:20	1	17.80	6.67	544	1.40	-158.3	Brown	
	2	17.92	6.66	540	0.94	-164.8	Clear	
	3	17.92	6.65	537	0.71	-165.5	Clear	
	4	18.01	6.64	534	0.60	-165.8	Clear	
	5	18.01	6.64	532	0.50	-166.3	Clear	
	6	18.03	6.64	529	0.48	-164.9	Clear	
	7	18.07	6.64	526	0.46	-162.5	Clear	
	8	18.18	6.64	526	0.46	-162.0	Clear	
	9	18.08	6.64	527	0.44	-162.7	Clear	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-7

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ок				
Elevation of Top of Casing (feet above msl)	31.16				
Depth of Well		16.00			
Depth to Water (from top of casing)	2.09				
Water Elevation (feet above msl)	29.07				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6 6.7				
Actual Volume Purged (gallons)	7.0				
Appearance of Purge Water	Bro	ownish, turned light brown at 3 gallons			
Free Product Present?	No	Thickness (ft):			

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size			4 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
9:23	1	17.78	6.45	677	1.42	-56.7	Brownish
	2	17.80	6.50	674	0.97	-82.2	Brownish
	3	17.89	6.60	675	0.75	-104.7	Light brown
	4	17.91	6.66	677	0.69	-116.6	Light brown
	5	17.90	6.70	677	0.67	-121.9	Light brown
	7	17.93	6.75	672	0.58	-137.1	Light brown

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-8

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	30.92			
Depth of Well		15.00		
Depth to Water (from top of casing)	2.66			
Water Elevation (feet above msl)	28.26			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	¹⁶ 5.9			
Actual Volume Purged (gallons)	6.0			
Appearance of Purge Water	Initially brown, light brown after 2 gallons purged			
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAMPLES

Number of Samples/Container Size			4 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
7:49	1	17.76	5.47	1201	2.74	-17.5	Brown
	2	17.26	5.88	1178	2.79	-45.9	Brown
	3	17.08	6.13	1182	2.89	-59.6	Light brown
	4	17.26	6.26	1173	2.79	-74.1	Light brown
	5	17.40	6.34	1182	2.66	-77.1	Light brown
	6	17.59	6.39	1166	2.35	-82.9	Light brown

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-9

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	28.90			
Depth of Well		15.00		
Depth to Water (from top of casing)	2.84			
Water Elevation (feet above msl)		26.06		
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	¹⁶ 5.8			
Actual Volume Purged (gallons)	7.0			
Appearance of Purge Water	Initially brown, turning light brown after 3 gallon			
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAM	MPLES
-----------------	-------

Number of Samples/Container Size			4 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
8:57	1	17.44	6.24	674	1.72	-75.9	Brown
	2	17.77	6.35	674	1.32	-92.5	Brown
	3	17.13	6.50	725	1.20	-96.6	Brown
	4	17.21	6.60	776	1.11	-101.9	Light Brown
	5	17.31	6.63	746	0.84	-114.3	Light Brown
	6	17.41	6.66	798	0.70	-127.1	Light Brown
	7	17.51	6.69	691	0.63	-138.9	Light Brown

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Hydrocarbon odors not noted during purging.

Monitoring Well Number: MW-10

Project Name:	Alaska Gas	Date of Sampling: 2/23/2010
Job Number:	280346	Name of Sampler: A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)		30.28		
Depth of Well		15.00		
Depth to Water (from top of casing)	0.98			
Water Elevation (feet above msl)	29.30			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.7			
Actual Volume Purged (gallons)		7.0		
Appearance of Purge Water	Initially brown, becoming light brown at 2 gallons			
Free Product Present?	No	Thickness (ft):		

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size			4 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
8:35	1	16.03	6.45	316	1.04	-81.7	Brown
	2	15.45	6.50	322	0.75	-112.9	Light Brown
	3	15.42	6.52	335	0.68	-124.2	Light Brown
	4	15.42	6.52	351	0.62	-134.9	Light Brown
	5	15.45	6.52	365	0.56	-143.4	Light Brown
	6	15.48	6.52	375	0.53	-149.7	Light Brown
	7	15.48	6.52	382	0.50	-156.6	Light Brown

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: EX-1

Project Name:	Alaska Gas	Date of Sampling:	2/23/2010
Job Number:	280346	Name of Sampler:	A. Nieto
Project Address:	6211 San Pablo Avenue, Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4"			
Wellhead Condition	ОК	•		
Elevation of Top of Casing (feet above msl)	33.28			
Depth of Well	27.50			
Depth to Water (from top of casing)	3.09			
Water Elevation (feet above msl)	30.19			
Well Volumes Purged		3		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		47.6		
Actual Volume Purged (gallons)	48.0			
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	lize		4 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
13:13	1	19.24	6.64	774	0.50	-192.9	Clear
	2	19.22	6.70	773	0.47	-203.5	Clear
	3	19.12	6.75	771	0.47	-206.9	Clear
	4	18.97	6.80	768	0.42	-212.0	Clear
	5	18.50	6.81	766	0.39	-214.3	Clear
	10	18.40	6.83	755	0.27	-217.7	Clear
	15	17.95	6.91	742	0.28	-209.0	Clear
	20	17.88	6.90	735	0.31	-201.1	Clear
	25	17.80	6.88	727	0.35	-193.9	Clear
	30	17.71	6.86	721	0.35	-190.3	Clear
	35	17.65	6.85	722	0.31	-192.0	Clear
	40	17.50	6.84	720	0.40	-192.2	Clear
	45	17.49	6.84	720	0.37	-190.2	Clear
	48	17.47	6.84	720	0.36	-188.3	Clear
COMMENTS (i.e., sample odor, well recharge time & percent, etc.)							

Monitoring Well Number: MW-1R

Project Name:	Alaska Gas	Date of Sampling: 4/13/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"		
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	36.67		
Depth of Well	22.75		
Depth to Water (from top of casing)			
Water Elevation (feet above msl)			
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge		
Actual Volume Purged (gallons)			
Appearance of Purge Water	Mostly clear, some silt		
Free Product Present?	Thickness (ft):		

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge (AS-3)							
9:54	1	17.57	6.86	583	0.56	125.0	HC Odor
9:56	2	17.65	6.85	581	0.46	86.0	HC Odor
9:58	3	17.73	6.86	580	0.60	53.9	HC Odor
10:00	4	17.74	6.86	576	0.60	37.6	HC Odor
10:02	5	17.85	6.86	565	0.54	30.7	HC Odor
10:04	6	17.87	6.86	563	0.53	29.0	HC Odor

Monitoring Well Number: MW-1R

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"	
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	36.67		
Depth of Well	22.75		
Depth to Water (from top of casing)			
Water Elevation (feet above msl)			
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge		
Actual Volume Purged (gallons)			
Appearance of Purge Water	Clear		
Free Product Present?		Thickness (ft):	

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge	e (AS-3)						
9:12	1	17.13	7.24	483	4.17	335.0	Clear
9:14	2	17.36	7.23	484	3.54	330.0	Clear
9:16	3	17.46	7.20	483	3.36	324.8	Clear
9:18	4	17.59	7.20	483	3.30	319.1	Clear
9:20	5	17.69	7.18	483	3.16	310.2	Clear
9:22	6	17.79	7.17	481	3.18	293.7	Clear

Monitoring Well Number: MW-1R

Project Name:	Alaska Gas	Date of Sampling: 4/15/2010
Job Number:	280346	Name of Sampler: J. Sigg
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"					
Wellhead Condition	ОК					
Elevation of Top of Casing (feet above msl)	36.67					
Depth of Well	22.75					
Depth to Water (from top of casing)	6.18					
Water Elevation (feet above msl)						
Well Volumes Purged						
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6 Micropurge					
Actual Volume Purged (gallons)						
Appearance of Purge Water	Clear					
Free Product Present?	Thickness (ft):					

GROUNDWATER SAMPLES							
Number of Sample	es/Container S						
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge	(AS-2)						
9:50	1	17.37	6.99	486	0.81	70.0	Clear
9:54	3	17.90	6.97	487	0.46	75.4	Clear
9:58	5	18.07	7.00	485	1.55	65.4	Clear
10:02	7	18.14	6.99	468	2.83	63.9	Clear
10:06	9	18.17	6.97	462	3.47	64.7	Clear
10:10	11	18.17	6.96	454	3.94	66.9	Clear
10:14	13	18.11	6.94	455	3.90	70.0	Clear
10:18	15	18.23	6.94	445	4.47	73.3	Clear
10:22	17	18.19	6.93	445	4.56	76.1	Clear
10:26	19	18.18	6.92	440	4.74	81.2	Clear
10:28	20	18.12	6.92	441	4.74	82.1	Clear

Monitoring Well Number: MW-1R

Project Name:	Alaska Gas	Date of Sampling: 4/15/2010
Job Number:	280346	Name of Sampler: J. Sigg
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"					
Wellhead Condition	ОК						
Elevation of Top of Casing (feet above msl)	36.67						
Depth of Well	22.75						
Depth to Water (from top of casing)	6.69						
Water Elevation (feet above msl)							
Well Volumes Purged							
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge						
Actual Volume Purged (gallons)							
Appearance of Purge Water	Clear				Clear		
Free Product Present?	? Thickness (ft):						

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge	e (AS-2)						
17:12	1	17.43	6.68	462	3.05	259.4	Clear
17:14	2	17.43	6.65	461	2.93	257.6	Clear
17:16	3	17.46	6.64	459	2.89	256.8	Clear
17:18	4	17.53	6.67	454	3.00	256.2	Clear
17:20	5	17.54	6.68	454	3.03	256.3	Clear
17:21	6	17.55	6.68	454	3.05	256.6	Clear

Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 4/13/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	35.12			
Depth of Well	20.82			
Depth to Water (from top of casing)				
Water Elevation (feet above msl)	35.12			
Well Volumes Purged				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge			
Actual Volume Purged (gallons)				
Appearance of Purge Water	Clear			
Free Product Present?	? Thickness (ft):			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge	(AS-3)						
10:26	1	18.23	6.68	693	0.62	60.4	
10:28	2	18.28	6.66	695	0.49	52.2	
10:30	3	18.47	6.67	697	0.40	46.1	
10:32	4	18.56	6.67	697	0.44	42.6	

Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 4/13/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"		
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	35.12		
Depth of Well	20.82		
Depth to Water (from top of casing)			
Water Elevation (feet above msl)	35.12		
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge		
Actual Volume Purged (gallons)			
Appearance of Purge Water	Clear		
Free Product Present?	? Thickness (ft):		

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge (AS-3) - Pre-Sparge (AS-1)							
16:15	1	18.44	6.62	641	1.56	137.7	
16:17	2	18.50	6.56	638	1.27	115.4	
16:19	3	18.54	6.57	635	1.15	97.2	
16:21	4	18.65	6.60	632	1.15	86.7	
16:23	5	18.75	6.61	626	1.01	80.2	

Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"	
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	35.12		
Depth of Well	20.82		
Depth to Water (from top of casing)			
Water Elevation (feet above msl)	35.12		
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge		
Actual Volume Purged (gallons)			
Appearance of Purge Water	Clear		
Free Product Present?	? Thickness (ft):		

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge (AS-1)							
15:52	1	17.88	6.62	652	0.54	125.1	Clear
15:54	2	18.00	6.60	658	0.64	105.2	Clear
15:56	3	18.11	6.62	663	0.54	89.3	Clear
15:58	4	18.27	6.64	666	0.56	78.7	Clear

Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 4/15/2010
Job Number:	280346	Name of Sampler: J. Sigg
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"		
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	35.12		
Depth of Well	20.82		
Depth to Water (from top of casing)		4.93	
Water Elevation (feet above msl)	30.19		
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge		
Actual Volume Purged (gallons)			
Appearance of Purge Water	Clear		
Free Product Present?		Thickness (ft):	

GROUNDWATER SAMPLES							
Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge	(AS-2)						
9:15	1	18.22	6.71	685	1.57	184.1	Clear
9:17	2	18.44	6.73	685	1.47	157.4	Clear
9:19	3	18.52	6.72	686	1.23	140.6	Clear
9:21	4	18.69	6.72	687	0.99	116.3	Clear
9:23	5	18.72	6.72	688	0.89	105.8	Clear
9:25	6	18.75	6.71	686	0.80	95.6	Clear
9:27	7	18.81	6.72	687	0.70	83.3	Clear
9:29	8	18.84	6.72	686	0.66	78.4	Clear
9:31	9	18.88	6.71	683	0.57	69.7	Clear
9:33	10	18.89	6.72	682	0.52	64.9	Clear
9:35	11	18.91	6.71	675	0.46	60.5	Clear
9:37	12	18.92	6.73	673	0.46	59.2	Clear
9:39	13	18.94	6.72	672	0.45	58.6	Clear
Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 4/15/2010
Job Number:	280346	Name of Sampler: J. Sigg
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	35.12			
Depth of Well		20.82		
Depth to Water (from top of casing)		7.18		
Water Elevation (feet above msl)	27.94			
Well Volumes Purged				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge			
Actual Volume Purged (gallons)				
Appearance of Purge Water	Clear			
Free Product Present?	Thickness (ft):			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge (AS-2)							
17:26	1	18.43	6.63	711	2.40	214.1	Clear
17:28	2	18.46	6.62	709	2.08	213.8	Clear
17:30	3	18.47	6.62	706	1.87	214.4	Clear
17:32	4	18.50	6.62	703	1.65	214.4	Clear
17:34	5	18.50	6.61	702	1.64	214.7	Clear
17:36	6	18.52	6.61	701	1.63	214.3	Clear

Monitoring Well Number: MW-4

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
Wellhead Condition	ОК	•		
Elevation of Top of Casing (feet above msl)		34.11		
Depth of Well		19.75		
Depth to Water (from top of casing)				
Water Elevation (feet above msl)				
Well Volumes Purged				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge			
Actual Volume Purged (gallons)				
Appearance of Purge Water	Clear			
Free Product Present?	P Thickness (ft):			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge (AS-1)							
10:21	1	17.82	7.09	460	0.56	83.1	Clear
10:23	2	17.90	7.08	461	0.26	37.3	Clear
10:25	3	17.94	7.10	462	0.23	15.4	Clear
10:27	4	17.98	7.09	464	0.27	3.5	Clear
10:29	5	18.00	7.09	462	0.29	-3.0	Clear

Monitoring Well Number: MW-4

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
Wellhead Condition	ОК	•		
Elevation of Top of Casing (feet above msl)		34.11		
Depth of Well		19.75		
Depth to Water (from top of casing)				
Water Elevation (feet above msl)				
Well Volumes Purged				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge			
Actual Volume Purged (gallons)				
Appearance of Purge Water	Clear			
Free Product Present?	P Thickness (ft):			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge (AS-1)							
16:19	1	18.16	7.04	469	0.40	-14.5	Clear
16:21	2	18.19	7.02	470	0.22	-18.6	Clear
16:23	3	18.23	7.05	471	0.18	-22.5	Clear
16:25	4	18.24	7.05	473	0.17	-25.4	Clear

Monitoring Well Number: MW-5

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"	
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)		35.17	
Depth of Well		24.31	
Depth to Water (from top of casing)			
Water Elevation (feet above msl)			
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge		
Actual Volume Purged (gallons)			
Appearance of Purge Water	Clear		
Free Product Present?	? Thickness (ft):		

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge (AS-1)							
10:02	1	18.83	6.95	604	0.77	304.7	Clear
10:04	2	18.85	6.96	604	0.39	297.4	Clear
10:06	3	18.92	6.95	603	0.32	291.3	Clear
10:08	4	18.91	6.95	603	0.33	285.0	Clear
10:10	5	18.88	6.96	602	0.37	278.1	Clear

Monitoring Well Number: MW-5

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	\checkmark
Elevation of Top of Casing (feet above msl)		35.17
Depth of Well		24.31
Depth to Water (from top of casing)		
Water Elevation (feet above msl)		
Well Volumes Purged		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		Micropurge
Actual Volume Purged (gallons)		
Appearance of Purge Water		Clear
Free Product Present?		Thickness (ft):

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge	e (AS-1)						
15:36	1	18.27	6.92	602	0.92	226.5	Clear
15:38	2	18.03	6.86	600	0.61	218.3	Clear
15:40	3	18.17	6.87	601	0.58	207.9	Clear
15:42	4	18.23	6.88	602	0.51	199.2	Clear

Monitoring Well Number: MW-6

Project Name:	Alaska Gas	Date of Sampling: 4/13/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	•
Elevation of Top of Casing (feet above msl)		36.07
Depth of Well		23.45
Depth to Water (from top of casing)		
Water Elevation (feet above msl)		
Well Volumes Purged		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		Micropurge
Actual Volume Purged (gallons)		
Appearance of Purge Water		Clear
Free Product Present?		Thickness (ft):

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge	(AS-3)						
10:09	1	17.06	6.92	311	0.77	54.4	
10:11	2	17.16	6.90	354	0.47	66.8	
10:13	3	17.24	6.91	374	0.35	71.2	
10:15	4	17.22	6.89	377	0.32	73.4	

Monitoring Well Number: MW-6

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	\checkmark
Elevation of Top of Casing (feet above msl)		36.07
Depth of Well		23.45
Depth to Water (from top of casing)		
Water Elevation (feet above msl)		
Well Volumes Purged		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		Micropurge
Actual Volume Purged (gallons)		
Appearance of Purge Water		Clear
Free Product Present?		Thickness (ft):

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge	e (AS-3)						
9:29	1	16.84	6.99	403	3.62	294.1	Clear
9:31	2	16.91	6.95	405	3.32	290.3	Clear
9:33	3	17.07	6.96	406	3.34	286.7	Clear
9:35	4	17.16	6.96	405	3.29	283.9	Clear

Monitoring Well Number: MW-6

Project Name:	Alaska Gas	Date of Sampling: 4/15/2010
Job Number:	280346	Name of Sampler: J. Sigg
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	•
Elevation of Top of Casing (feet above msl)		36.07
Depth of Well		23.45
Depth to Water (from top of casing)		5.17
Water Elevation (feet above msl)		
Well Volumes Purged		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		Micropurge
Actual Volume Purged (gallons)		
Appearance of Purge Water		Clear
Free Product Present?		Thickness (ft):

GROUNDWATER SAMPLES	

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Pre-Sparge (AS-2)							
10:42	1	17.28	6.87	437	1.98	103.2	Clear
10:44	2	17.21	6.86	438	1.26	100.4	Clear
10:46	3	17.29	6.87	439	1.07	98.3	Clear
10:48	4	17.30	6.87	439	0.95	97.1	Clear
10:50	5	17.37	6.87	439	0.86	96.4	Clear
10:52	6	17.40	6.86	437	0.81	96.6	Clear
10:54	7	17.41	6.84	437	0.78	97.6	Clear
10:56	8	17.47	6.84	437	0.78	98.1	Clear
10:58	9	17.52	6.84	437	0.79	98.6	Clear
11:00	10	17.53	6.83	437	0.78	98.7	Clear

Monitoring Well Number: MW-6

Project Name:	Alaska Gas	Date of Sampling: 4/15/2010
Job Number:	280346	Name of Sampler: J. Sigg
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	36.07			
Depth of Well	23.45			
Depth to Water (from top of casing)	5.17			
Water Elevation (feet above msl)				
Well Volumes Purged				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge			
Actual Volume Purged (gallons)				
Appearance of Purge Water	Clear			
Free Product Present?	Thickness (ft):			

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-Sparge (AS-2)							
16:52	1	17.22	6.78	413	2.83	246.2	Clear
16:54	2	17.25	6.71	419	2.50	250.6	Clear
16:56	3	17.26	6.67	422	2.22	254.4	Clear
16:58	4	17.28	6.66	423	2.05	258.3	Clear
17:00	5	17.29	6.65	427	2.02	260.3	Clear
17:02	6	17.30	6.64	427	2.00	260.7	Clear
17:04	7	17.31	6.64	428	1.96	261.1	Clear
17:06	8	17.31	6.63	428	1.95	262.0	Clear

Monitoring Well Number: EX-1

Project Name:	Alaska Gas	Date of Sampling: 4/14/2010
Job Number:	280346	Name of Sampler: J. Smith
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	33.28			
Depth of Well	27.50			
Depth to Water (from top of casing)				
Water Elevation (feet above msl)				
Well Volumes Purged				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	Micropurge			
Actual Volume Purged (gallons)				
Appearance of Purge Water	Clear			
Free Product Present?	Thickness (ft):			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Post-	Sparge (AS-1)					
16:07	1	17.99	7.07	463	0.41	-1.8	
16:09	2	17.94	7.07	463	0.24	-11.3	
16:11	3	17.92	7.08	460	0.21	-18.5	
16:13	4	17.89	7.08	460	0.18	-24.5	
COMMENTS (i.e., sample odor, well recharge time & percent, etc.)							

APPENDIX E

WELL SURVEY

BRASS DISC AT THE NORTHEAST CORNER OF THE JUNCTION OF SAN PABLO AVENUE AND 61st STREET, IN THE TOP OF THE NORTH CURB OF THE STREET AT THE NORTHWEST CORNER OF A CATCH BASIN, 1.4' SOUTH OF A STREET SIGN POST, AND ABOUT LEVEL WITH THE STREET.