

June 17, 2002 Project A51-01.02

Mr. Don Hwang Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Ste. 250 Alameda, CA 94502-6577

JUN 1 9 2002

Re: Results of Well Installation, Quarterly Groundwater Monitoring, and Interim Remedial Action Plan, Alaska Gasoline Company, Oakland, California

Dear Mr. Hwang:

HerSchy Environmental is pleased to present the results of the most recent phase of monitoring well installation, two rounds of quarterly groundwater monitoring, and a proposed interim remedial action plan (RAP) and additional off site investigation. The site is located at 6211 San Pablo Avenue, which is on the northwest corner of San Pablo Avenue and 62nd Street in Oakland, Alameda County, California (Figure 1). This work was performed in accordance with the May 2, 2001 "*Results of Groundwater Monitoring and Work Plan for Additional Investigation, Alaska Gasoline Company, Oakland, California*" and the June 30, 2001 work plan addendum, both prepared by HerSchy Environmental. This work was subsequently approved in the July 10, 2001 correspondence from your office regarding the site.

PREVIOUS INVESTIGATIONS

Previous work included the drilling, sampling, and laboratory analysis of soil and groundwater from three soil borings (B-1 through B-3) using hollow stem auger drilling equipment (Figure 2). Details of this investigation are contained in the April 22, 1999 *"Results of Underground Storage Tank (UST) Site Assessment, Alaska Gasoline Company, Oakland, California"* prepared by HerSchy Environmental. Significant concentrations of gasoline constituents were encountered in soil during this initial investigation. Groundwater was encountered during this investigation at an approximate depth of ten feet, and a groundwater sample was collected from boring B-1. Boring locations are presented in Figure 2 and summarized in Table 1 on the following page:

Labo	ratory An	alytical Res	ults, April 10	5, 1999, Alaska (<u>Gasoline, Oa</u>	kland
Sample	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
B-1 @ 10'	440	2.3	4.8	7.4	31	3.7
B-1 @ 15'	74	1.4	1.6	1.6	6.3	4.8
B-2 @ 10'	290	3.6	9.0	5.8	24	2.0
B-3 @ 10'	460	3.8	18	7.6	37	86
B-1, GW	99,000	10,000	4,300	3,100	11,000	48,000

 Table 1

 Laboratory Analytical Results, April 16, 1999, Alaska Gasoline, Oakland

All results expressed in parts per million (ppm)

GW results expressed in parts per billion (ppb)

TPH = gasoline-range total petroleum hydrocarbons

MTBE = methyl tertiary butyl ether

Based on the results of this initial investigation, five additional borings (B-4 through B-5) were drilled and sampled using direct push drilling equipment (Figure 2). Results of this work are contained in the July 19, 1999 "Results of Phase II Soil Investigation, Alaska Gasoline Company, Oakland, California" prepared by HerSchy Environmental. Laboratory analytical results of this work are summarized in Table 2 below:

		Table 2	2	· · ·	A STATE OF STATE
Laboratory A	nalytical Res	ults, Alaska	Gasoline, Oakla	nd, June 29	, 1999
Sample TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
B-4 @ 5' 100	0.68	1.4	1.5	7.8	2.2
B-4 @ 10' 14	0.71	ND	0.23	0.11	9.3
B-5 @ 5' 5.7	0.068	0.0061	0.033	0.065	3.5
B-5 @ 10' 34	0.37	0.079	0.17	0.57	2.0
	• • •		а. г .	7.0	02
B-6 @ 5 92	2.3	5.4	1.5	7.0	23
B-6 @ 10' 30	1.3	ND	ND	0.060	46
B-7 @ 5' 3.2	0.12	ND	0.073	0.14	0.023
B-7 @ 10' 280	0.57	0.56	2.8	14	ND
		к			
B-8 @ 5' ND	ND	ND	ND	ND	ND
B-8 @ 10' 270	0,93	2.9	4.6	20	2.7

All results presented in ppm

ND = below detectable concentrations

Based on the results of the soil investigations described above and the relatively shallow depth to groundwater, a preliminary hydrogeologic investigation was performed. This investigation consisted of the drilling and installation of three groundwater monitoring wells (MW-1 through MW-3). Details of this work are contained in the December 13, 1999 "Results of Drilling, Sampling, and Monitoring Well Installation, Alaska Gasoline Company, Oakland, California" prepared by HerSchy Environmental.

Soil samples were collected from each of the monitoring wells and submitted for laboratory analysis. Monitoring well locations are presented in Figure 3. Laboratory analytical results for soil are summarized in Table 3 below:

	-		Table 3	• • • • • • • • • • • • • • • • • • •		والأجريب والمراجع
Laborator	y Analy	tical Results fo	or Soil, Octo	ober, 1999, Alas	<u>ka Gasoline</u>	, Oakland
Sample	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW-1 @ 5'	1.1	0.14	ND	0.017	0.016	0.065
MW-1 @ 10	° 570	4.6	18	10	47	10
MW-2 @ 5'	16	0.25	ND	0.26	0.30	1.2
MW-2 @ 10	, 22	0.79	0.38	0.52	2.1	1.4
MW-3 @ 5'	2.200	11	63	35	170	48
MW-3 @ 10	' 14	0.12	0.80	ND	0.087	28
MW-3 @ 10	' 14	0.12	0.80	ND	0.087	28

All results presented in parts per million (ppm)

Drill cuttings and soil samples from each of the monitoring well locations were described in accordance with the Unified Soil Classification System by a California Registered Geologist. Soil consists entirely of silty clay (CL) from surface grade to an approximate depth of 20 feet in each boring. Groundwater conditions from this investigation and the most recent monitoring events are presented in subsequent sections of this report.

METHODS OF INVESTIGATION

Drilling and Soil Sampling:

Drilling was performed using a truck-mounted drill rig equipped with eight-inch hollow stem augers. Augers were steam cleaned prior to arriving on site. Three monitoring wells (MW-4 through MW-6) and six soil borings (B-9 through B-12) were drilled and sampled at the site (Figure 3). Monitoring wells were installed to a depth of 20 to 25 feet, whereas borings were drilled and sampled to a depth of 10 feet except for boring B-13 where the steel auger plug was lost.

Soil samples were collected using a California modified split spoon sampler equipped with brass liners. The samples were collected at five and ten feet from each of the borings. Samples were collected by driving the sampler ahead of the drill bit. The sampler and liners were cleaned between sampling events.

Soil samples were field screened using a portable organic vapor analyzer (OVA) for the presence of volatile organic compounds (VOCs). All of the soil samples were submitted to the laboratory for analysis.

Samples were placed in a cooler chest with frozen gel packs ("blue ice") and maintained at a temperature of four degrees Celsius or less until delivered to the laboratory. All samples were maintained, transported, and delivered to the laboratory under chain of custody documentation. Soil samples and drill cuttings were described in accordance with the Unified Soil Classification System by a California Registered Geologist. Drill cuttings were contained in DOT-approved 55-gallon drums and stored on site as directed by the property owner. Soil sampling was discontinued below a depth of ten feet due to the presence of shallow groundwater. Boring logs and well construction details are presented in Appendix A.

Monitoring Well Installation, Development, and Sampling Procedures:

Well construction and annular materials were installed through the hollow stem augers. Groundwater monitoring wells were constructed with two-inch schedule 40 PVC well casing with screw joints. The screened intervals were constructed with 15 to 20 feet of 0.020-inch factory slotted screen such that 10 to 15 feet of the screened interval is below first encountered groundwater in each of the monitoring wells. Blank casing was installed from the top of the screened interval to surface grade. The monitoring wells were completed flush with surface grade in a traffic rated well cover with a locking well cap. Soil borings were filled with a sand-cement slurry from the bottom of the boring to surface grade.

Annular materials consist of #3 sand from the bottom of the borings to approximately two feet above the screened interval, followed by a minimum one-foot bentonite seal, followed by a sand-cement grout to the surface. Monitoring well elevations were surveyed to the nearest 0.01 feet after installation. Depth to groundwater measurements were made to the nearest 0.01 feet prior to sampling using an electric sounder.

The depth to groundwater was measured in each of the monitoring wells to the nearest 0.01 feet prior to initiating monitoring well development and sampling activities. The depth to groundwater and the total depth of the existing wells were used to calculate the appropriate purge volume. Well development, purging, and sampling was performed using a two-inch submersible pump. Physical characteristics (pH, electrical conductivity, and temperature) were measured prior to development and purging and again prior to sampling. Groundwater samples were collected in paired 40 milliliter vials. Groundwater samples were stored, transported, and delivered in a similar manner as described for soil above. In the absence of floating product, development and purge water was discharged an appropriate distance from the well head. Groundwater field sampling data sheets are presented in Appendix B.

Laboratory Analysis:

Soil and groundwater samples were analyzed for gasoline-range total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE). Samples were analyzed using EPA method 8015M for TPH and EPA method 8020 for BTEX and MTBE. Certified analytical reports are presented in Appendix C.

RESULTS OF INVESTIGATION

Soil Conditions:

Soil beneath the site consists primarily of silty clay (CL) in the borings drilled during this investigation. Lesser intervals of silt, clayey silt, and very fine- to fine-grained sand (ML), and very fine to medium-grained or coarse-grained sand (SW) were encountered in some of the borings. Clayey gravel (GC) was encountered at a depth of 25 feet in MW-6, and at 10 feet in B-10.

All of the soil samples were submitted for laboratory analysis. Soil samples all indicated the presence of gasoline constituents based on field observations and screening. Certified analytical reports are presented in Appendix C and summarized in Table 4 below:

alytical F PH B	Results for enzene	Soil, Novem	ber, 2001, Alas	ska Gasonne,	Oakiand
PH B	enzene		Ethylhenzene	Xvienes	MTBE
000		Tolucile	Lutytoenzene		1(0
,000	250	1,700	510	2,700	100
4.6 0	.011	0.080	0.033	0.19	9.8
3.1	ND	0.0064	0.0051	0.0070	0.012
17 0	.067	0.018	0.20	0.25	ND
30 ().57	0.14	0.72	2.9	1.5
900	10	64	37	190	7.6
100	0.91	1.8	1.8	7.9	33
250	2.4	6.6	4.5	20	52
5.5	0.18	0.015	0.11	0.16	4.7
200	0.63	4.1	3.6	19	1.5
160	0 84	4.3	2.6	15	15
530	3.9	36	10	58	82
220	11	68	4.2	21	9.4
99	1.5	4.8	1.8	9.3	44
110	1.7	5.0	2.1	11	8.1
22	0.11	0.047	0.12	0.0056	1.5
	,000 1.6 0 3.1 17 0 30 (,900 100 250 5.5 200 160 530 220 99 110 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,000 250 $1,700$ 4.6 0.011 0.080 3.1 ND 0.0064 17 0.067 0.018 30 0.57 0.14 $,900$ 10 64 100 0.91 1.8 250 2.4 6.6 5.5 0.18 0.015 200 0.63 4.1 160 0.84 4.3 530 3.9 36 220 1.1 6.8 99 1.5 4.8 110 1.7 5.0 22 0.11 0.047	,000 250 $1,700$ 310 4.6 0.011 0.080 0.033 3.1 ND 0.0064 0.0051 17 0.067 0.018 0.20 30 0.57 0.14 0.72 $,900$ 10 64 37 100 0.91 1.8 1.8 250 2.4 6.6 4.5 5.5 0.18 0.015 0.11 200 0.63 4.1 3.6 160 0.84 4.3 2.6 530 3.9 36 10 220 1.1 6.8 4.2 99 1.5 4.8 1.8 110 1.7 5.0 2.1 22 0.11 0.047 0.12	000 250 $1,700$ 510 $2,700$ 4.6 0.011 0.080 0.033 0.19 8.1 ND 0.0064 0.0051 0.0070 17 0.067 0.018 0.20 0.25 30 0.57 0.14 0.72 2.9 900 10 64 37 190 100 0.91 1.8 1.8 7.9 250 2.4 6.6 4.5 20 5.5 0.18 0.015 0.11 0.16 200 0.63 4.1 3.6 19 160 0.84 4.3 2.6 15 530 3.9 36 10 58 220 1.1 6.8 4.2 21 99 1.5 4.8 1.8 9.3 110 1.7 5.0 2.1 11 22 0.11 0.047 0.12 0.0056

Table 4

All results presented in ppm

All of the soil samples collected during the most recent phase of drilling and sampling contained gasoline constituents. The highest concentrations were encountered

in MW-4 at five feet, and in MW-6 at ten feet. Most of the borings indicated an increase in concentrations between five and ten feet, which may be reflective of a widespread "smear" zone above shallow first encountered groundwater.

Groundwater Conditions:

Groundwater was present beneath the site at an approximate depth of 6.41 feet below the surveyed well elevations during the March 31, 2002 sampling event. The elevation of groundwater beneath the site averaged 27.62 feet above mean sea level at the time of the most recent sampling. The groundwater elevation increased approximately 0.61 feet since the November 17, 2001 sampling event. Groundwater gradient was S. 26 degrees W. at a gradient of .0108. Groundwater conditions are summarized in Table 5 and presented graphically in Figures 4 and 5.

$\kappa_{i} = \frac{1}{2^{n-1}} \sum_{i=1}^{n-1} \frac{1}{2^{n-1}} \sum_{i=1$	ſ	Table 5	
Gro	oundwater Condition	ns, Alaska Gasoline, Oak	land
Well Number	Elevation	Depth to GW	GW Elevation
November 7, 1999:	<u> </u>		
MW-1	34.70	8.53	26.17
MW-2	34.94	8.26	26.68
MW-3	33.74	7.55	26.19
Flow Direction = S .	52 W.; Gradient = $.00$)68	
March 8, 2001:			
MW-1	34.70	6.32	28.38
MW-2	34.94	5.89	29.05
MW-3	33.74	5.36	28.30
Flow Direction $=$ S.	39 W.; Gradient = .00)92	
November 17, 2001	ter de la construcción de la constr Este de la construcción de la const		
MW-1	34.70	8.09	26.61
MW-2	34.94	7.75	27.19
MW-3	33.74	7.18	26.56
MW-4	32.38	5.75	26.63
MW-5	33.75	6.22	27.53
MW-6	34.68	7.19	27.49
Flow Direction $=$ S.	50 W.; Gradient = .00	091	
	an a		
March 31, 2002:			
MW-1	34.70	7.18	27.52
MW-2	34.94	6.68	28.26
MW-3	33.74	6.27	27.47
MW-4	32.38	5.40	26.98
MW-5	33.75	6.35	27.40
MW-6	34.68	6.58	28.10
Flow Direction = S.	26 W.; Gradient = $.0$	108	

The groundwater flow direction is toward San Francisco Bay, located approximately 0.75 miles southwest of the site. Regional groundwater flow appears to parallel the surface grade in the area.

Groundwater Quality:

All of the site monitoring wells contained petroleum hydrocarbon-impacted groundwater. The highest overall concentrations are present in MW-3 which is directly down gradient relative the location of the USTs. Relatively high concentrations gasoline constituents are also present in the other monitoring wells except for MW-5 which has relatively low concentrations. The fuel oxygenate MTBE was detected at relatively high concentrations in all of the wells, particularly in down gradient well MW-3. Certified analytical reports are presented in Appendix C and are summarized in Table 6 below:

La	boratory Ai	nalytical Res	ults for Grou	ndwater, Alaska	Gasoline, C	akland
Well	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Novem	ber 7, 1999:					
MW-1	5,700	170	59	22	85	20,000
MW-2	6,000	1,300	92	50	400	6,800
MW-3	43,000	860	70	ND	65	120,000
March	8, 2001:					and and an and a second se Second second
MW-1	17,000	480	150	52	170	38,000
MW-2	41,000	8,100	870	2,000	4,100	26,000
MW-3	90,000	1,800	ND	ND	ND	210,000
Novem	ber 17, 2001	1:				
MW-1	10,000	230	210	60	250	22,000
MW-2	18,000	3,700	180	610	640	16,000
MW-3	110,000	1,600	ND	ND	ND	300,000
MW-4	64,000	960	1,400	360	1,600	140,000
MW-5	210	15	12	11	23	4.8
MW-6	3,500	160	260	95	420	1,500
March	31, 2002:					
MW-1	12,000	61	ND	ND	29	35,000
MW-2	32,000	6,500	270	1,700	2,700	19,000
MW-3	130,000	2,400	670	300	390	300,000
MW-4	78,000	4,400	4,700	690	2,700	150,000
MW-5	120	11	7.4	6.1	16	4.2
MW-6	3,200	410	170	82	280	3,000

Table 6

All results presented in parts per billion (ppb)

All of the site monitoring wells are impacted with gasoline constituents. The concentrations are highest in down gradient wells MW-3 and MW-4. Concentrations are significantly lower in MW-5 than any of the other well, reflecting its distance from and up gradient location relative the USTs. Based on the results of this most recent investigation, it appears that additional investigation and interim remedial action is warranted. A work plan for additional off site well installation, and an evaluation and recommendation of remedial options is presented in subsequent sections of this submittal.

WORK PLAN FOR ADDITIONAL INVESTIGATION

Drilling and Soil Sampling:

Drilling will be performed using a truck-mounted drill rig equipped with eightinch hollow stem augers. Augers will be steam cleaned prior to arriving on site. Two additional monitoring wells (MW-7 and MW-8) will be drilled and sampled at the site. Site locations are not presented because they will be down gradient and off site, with anticipated restrictions related to underground and overhead utilities. These wells will require encroachment permits from the City of Oakland. Monitoring wells will be installed to a depth of 20 to 25 feet.

Soil samples will be collected using a California modified split spoon sampler equipped with brass liners. The samples will be collected at five and ten feet from each of the borings used for well installation. Samples will be collected by driving the sampler ahead of the drill bit. The sampler and liners will be cleaned between sampling events.

Soil samples will be field screened using a portable organic vapor analyzer (OVA) for the presence of volatile organic compounds (VOCs). All of the soil samples will be submitted to the laboratory for analysis.

Samples will be placed in a cooler chest with frozen gel packs ("blue ice") and maintained at a temperature of four degrees Celsius or less until delivered to the laboratory. All samples will be maintained, transported, and delivered to the laboratory under chain of custody documentation. Soil samples and drill cuttings will be described in accordance with the Unified Soil Classification System by a California Registered Geologist. Drill cuttings will be contained in DOT-approved 55-gallon drums and stored on site as directed by the property owner. Soil sampling will be discontinued below a depth of ten feet due to the presence of shallow groundwater.

Monitoring Well Installation, Development, and Sampling Procedures:

Well construction and annular materials will be installed through the hollow stem augers. Groundwater monitoring wells will be constructed with two-inch schedule 40 PVC well casing with screw joints. The screened intervals will be constructed with 15 to 20 feet of 0.020-inch factory slotted screen such that 10 to 15 feet of the screened interval is below first encountered groundwater in each of the monitoring wells. Blank casing will be installed from the top of the screened interval to surface grade. The monitoring wells will be completed flush with surface grade in a traffic rated well cover with a locking well cap.

Annular materials will consist of #3 sand from the bottom of the borings to approximately two feet above the screened interval, followed by a minimum one-foot bentonite seal, followed by a sand-cement grout to the surface. Monitoring well elevations will be surveyed to the nearest 0.01 feet after installation. Depth to groundwater measurements will be made to the nearest 0.01 feet prior to sampling using an electric sounder.

The depth to groundwater will be measured in each of the monitoring wells to the nearest 0.01 feet prior to initiating monitoring well development and sampling activities. Well development, purging, and sampling will be performed using a two-inch submersible pump. Physical characteristics (pH, electrical conductivity, and temperature) will be measured prior to development and purging and again prior to sampling. Groundwater samples will be collected in paired 40 milliliter vials. Groundwater samples will be stored, transported, and delivered in a similar manner as described for soil above. In the absence of floating product, development and purge water will be discharged an appropriate distance from the well head.

Laboratory Analysis:

Soil and groundwater samples will be analyzed for gasoline-range total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE). Samples will be analyzed using EPA method 8015M for TPH and EPA method 8020 for BTEX and MTBE.

INTERIM REMEDIAL ACTION PLAN

Feasibility Study:

Groundwater beneath the site has been designated as beneficial use. Therefore, it is proposed that gasoline adsorbed to soil be removed as an initial remedial measure, and that a "no action" alternative is inappropriate. Groundwater monitoring during soil vapor extraction/treatment may indicate that future additional direct remediation of groundwater such as air sparging or pump and treat may not be warranted. Nonetheless, air sparge wells and a four-inch groundwater extraction well are proposed to be installed along with the vapor extraction system in anticipation of possible additional direct remediation of groundwater.

The California Underground Storage Tank Cleanup Fund (USTCF) Cost Guidelines (1996) require that at least three alternatives for restoring groundwater resources be evaluated under such conditions. This cost analysis evaluates three alternatives, including excavation and disposal because of the relatively limited lateral and vertical extent of impacted soil and accessibility. A review of the extent and concentration of petroleum fuel in site soils indicates that impacted soil is relatively widespread beneath the site. The total volume of significantly impacted soil in this area is approximately 3,700 cubic yards of soil.

Of the remedial alternatives available for removing fuel constituents from soil and groundwater without excavation, the most cost effective generally consist of vapor extraction with some form of air abatement measures. The most cost effective and easily permitted air abatement measures are by using either granular activated carbon (GAC) filtration or thermal oxidation (incineration). The cost evaluation assumes the removal of 90 percent of the gasoline adsorbed to soil over a six month operating period. The quantity of gasoline adsorbed to soil has been estimated by reviewing boring logs and laboratory analytical results from previous investigations.

The surface area underlain by petroleum hydrocarbon-impacted soil in excess of 100 ppm is relatively widespread around the USTs and dispensers, and in the southwest portion of the site which appears to be the dominant groundwater flow direction. Significantly impacted soil appears to be restricted to less than 10 feet in depth due to relatively shallow groundwater. $(e \propto e_{\text{ption}} \mathbb{E}_{-7}, \mathbb{E}_{-8}/(m_{\text{tot}}-1))$

Using data gathered to date, it is estimated that the average concentration of TPH beneath the site 2,000 ppm. The quantity of petroleum hydrocarbon-impacted soil is estimated to be a combined maximum of approximately 99,000 cubic feet (approximately 3,700 cubic yards). Using an average soil weight of 2,600 pounds per yard, the quantity of gasoline in soil is estimated to be 19,240 pounds or approximately 3,200 gallons. The cost evaluation of soil vapor extraction and treatment alternatives assumes the removal of 90 percent of the gasoline adsorbed to soil (2,880 gallons) over a six month year operating period. The estimated cost of the remedial action options are presented in Table 8 below:

Table 0

Alternative Costs	Estimated Cost
Excavation and Treatment:	
Demolition/Replacement of existing structures/USTs Excavate 3,700 cubic yards soil @ \$6.00/yd Replace/compact @ \$4.75/yd Laboratory Analysis, 35 samples @ \$100/sample Transport/disposal of 3,700 cubic yards @ \$20/yd.	\$250,000 \$22,200 \$17,575 \$3,500 \$74,000
Total Excavation/Disposal:	\$367,275
Carbon Adsorption (GAC): Installation/Permitting: Direct Labor Materials and Equipment	\$22,000 \$5,000

Alternative	stimated Cost
Air Sampling (Laboratory)	\$600
One Year Monitoring/Reporting/O & M:	an an an tha star an
Direct Labor	\$10,140
Blower Rental	\$4,000
Expenses (mileage, PID, etc.)	\$7,020
GAC @ 20% Loading (inc. disposal)	\$214,000 -
Total GAC:	\$262,760
Thermal Oxidation: Installation/Permitting: Direct Labor Materials and Equipment Air Sampling (Laboratory)	\$22,000 \$5,000 \$600
One Year Monitoring/Reporting/O & M:	
Direct Labor	\$3,240
Expenses (mileage, PID, etc.)	\$1,620
Thermal Oxidizer Rental @ \$3,200/mo.	\$19,200
Fuel @ \$500/wk	\$13,000
PG & E hookup	\$2,000
Total Thermal Oxidizer:	\$66,660

Table 8(continued)

Costs for installation and direct labor for GAC and thermal oxidation are shown as being identical in that similar equipment and materials (blowers, fencing, piping, etc.) are needed for both vapor extraction and treatment alternatives. Labor for operation and maintenance (O & M) are somewhat different due to weekly air monitoring requirements for GAC as opposed to monthly monitoring for thermal oxidizer equipment as dictated by the Bay Area Air Quality Management District (BAAQMD). Permitting and startup inspection requirements of the BAAQMD are otherwise identical

The primary cost differences are related to the use and disposal of GAC versus the rental and fuel cost of the thermal oxidizer equipment. The cost for purchase and disposal of the GAC filters is approximately \$400 per 180 pound drum. The rental charges for the thermal oxidizer unit will remain constant during the duration of the project. Fuel charges for the thermal oxidizer will be relatively low initially when influent concentrations are high, and will increase gradually as influent concentrations decrease. However, past experience with similar projects suggests that an estimated fuel cost of \$500 per week is reasonable. The only other charges that differ between the two

alternatives are for the natural gas hookup to fuel the oxidizer and blower rental for the GAC filters.

Based on the cost analysis presented above, it is apparent that the most cost effective interim corrective action is the installation and operation of an SVES using thermal oxidation for air abatement. The SVES will be operated concurrent with air sparging of groundwater. A four-inch groundwater extraction well will be installed in the event that future direct treatment of groundwater is required to complete the corrective action. Therefore, a work plan for installation of a SVES, including the installation of vapor extraction, air sparging, and a groundwater extraction well is presented below.

Soil Vapor Extraction and Treatment:

The petroleum hydrocarbon-impacted soil will be treated in place by installation of a SVES. Installation of air sparging wells and a groundwater extraction well will be performed simultaneous with the SVES installation. Soil vapor extraction and treatment will be performed using a shallow vapor extraction "gallery" consisting of a series of tenfoot screened intervals in 13 vapor extraction wells (VW-1 through VW-13) along individual pipe runs (Figure 6). The exact configuration of the piping and location of the air abatement equipment will be determined after consultation with the site operator, but will likely be on the north side of the existing store building. Soil vapor treatment will be performed by thermal oxidation.

An appropriately sized blower or similar equipment will be used for the extraction of VOCs from soil. The above ground blower and air abatement equipment will be located in a secure fenced area, most likely on the northwest area of the property. Pipelines will be installed below grade from the vapor extraction wells, air sparging wells, and groundwater extraction well to a fenced area constructed for the remediation equipment. A vacuum pump (blower) will transfer the VOCs to the air abatement equipment for destruction of the VOCs. Vapor extraction and treatment will be performed under a permit to operate (PTO) issued by the BAAQMD.

Gasoline concentrations in groundwater are expected to decrease concurrently along with the removal of gasoline constituents from overlying soil. This occurs as the partial vapor pressure changes in the soil pore spaces within the vadose zone, causing gasoline to volatilize from groundwater. A more important mechanism is the change to an aerobic environment in the "core" of the groundwater contaminant plume that will accelerate naturally occurring biodegradation. This change will be dramatic with the concurrent air sparging of groundwater during SVES operation. Documentation of decreasing concentrations of gasoline constituents in groundwater will be via continued quarterly groundwater monitoring.

Vapor Extraction, Air Sparging, and Groundwater Extraction Well Installation Procedures:

Vapor extraction, air sparging, and groundwater extraction well installation will be performed using hollow stem auger drilling equipment. Vapor extraction and air sparging wells will be installed with eight-inch augers and two-inch diameter well casing. The groundwater extraction well will be installed using ten-inch augers and four-inch diameter well casing.

Vapor extraction wells will be installed to a depth of approximately 12 feet with a ten-foot screened interval. Air sparging wells (AS-1 through AS-5) will be installed to a depth of 25 feet with a five-foot screened interval. Groundwater extraction well EX-1 will be installed with four-inch casing to a depth of 30 feet with a 25-foot screened interval.

Trenching and Pipe Installation:

All of the piping for the SVES will be installed at a depth of 14 to 18 inches under concrete pavement. The pavement will be saw cut to accommodate a 14-inch trench. Pavement will be removed and taken to a pavement recycling facility. Pavement will be removed and trenching performed using a backhoe with a 14-inch trenching bucket. Two-inch schedule 40 PVC irrigation pipe will be used to install the horizontal piping of the SVES.

Horizontal piping will be attached to the vertical vapor extraction and air sparging wells with PVC "T's" and 90 degree elbows. Vapor extraction and air sparging lines will lead to two-inch above ground PVC ball valves within a fenced enclosure. The groundwater extraction well will be hooked into the horizontal PVC piping using 90 degree sweeps to accommodate hoses and electrical wiring for future installation of down-hole water extraction equipment at a later date. The water extraction piping will end above-ground within the equipment enclosure as a capped line.

Upon completion of trenching, well drilling, and installation of the horizontal lines, the trenches will be backfilled with native soil and compacted. The pavement will be replaced with concrete pavement. All of the vapor extraction and air sparge wells will be below ground beneath pavement. The four-inch water extraction well will be completed beneath a 12-inch well cover installed flush with surface grade.

Well Installation Procedures.

Borings for well installation will be drilled using hollow stem auger drilling equipment. Borings will be drilled directly within previously excavated trenches. Vapor extraction and air sparging wells will be drilled with eight-inch diameter augers, whereas the groundwater extraction well will be drilled with ten-inch augers. Vapor extraction wells will be drilled to a depth of 12 feet. Air sparging wells and the groundwater extraction wells will be drilled to depths of 25 and 30 feet, respectively. Soil will be described in accordance with the Unified Soil Classification System by a California Registered Geologist. Boring logs will be prepared by description of drill cuttings, soil stuck to the auger plug brought to the surface during auger connections, and by drilling habit.

All well construction and annular materials will be installed through the hollow stem augers. Well construction materials will consist of schedule 40 PVC casing and screen. Vapor extraction and air sparging wells will be constructed with two-inch diameter materials. Vapor extraction wells will be constructed with 10 feet of 0.020-inch factory slotted screen from 2 to 12 feet, and blank casing from 2 feet to surface grade. Air sparging wells will be constructed with five feet of screen from 20 to 25 feet, and blank casing from surface grade to 20 feet. The groundwater extraction well will be constructed with similar four-inch diameter materials. The screened interval will extend from 5 to 30 feet, with blank casing from surface grade to 5 feet.

Annular materials will consist of number 3 sand from the bottom of the borings to approximately two feet above the screened interval in all of the wells. A continuous bentonite seal will be installed from the top of the sand pack to surface grade. The vapor extraction and air sparging wells will be connected directly to horizontal piping beneath pavement. The extraction well will be completed with a locking well cap inside of a 12inch well cover installed flush with surface grade.

If you have any questions or need additional information, please contact me at the letterhead address or at (559) 641-7320.

With best regards,

mon Schymin

Herman Schymiczek Registered Geologist #4165 Certified Engineering Geologist #2023

pc: Mr. Pritpaul Sappal Mr. Syed Nawab, Alaska Gasoline Company

APPENDIX C

CERTIFIED ANALYTICAL REPORTS

Environmental Testing Services Certificate # 2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek	Client Project ID: Alaska Gasoline Oakland Reference Number: 4536 Sample Description: Water Sample Prep/Analysis Method: EPA 5030/8015M, 8020 Lab Numbers: 4536-1W, 2W, 3W, 4W, 5W	Sampled: 03-31-02 Received: 04-01-02 Extracted: 04-02-02 Analyzed: 04-02-02 Reported: 04-11-02

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT µg/L	SAMPLE ID MW - 1 (µg/L)	SAMPLE ID MW - 2 (µg/L)	SAMPLE ID MW - 3 (µg/L)	SAMPLE ID MW - 4 (µg/L)	SAMPLE ID MW - 5 (µg/L)	
MTBE	0.50	35000	19000	300000	150000	4.2	
BENZENE	0.50	61	6500	2400	4400	11	
TOLUENE	0.50	ND	270	670	4700	7.4	
ETHYL BENZENE	0.50	ND	1700	300	690	6.1	
TOTAL XYLENES	0.50	29	2700	390	2700	16	
GASOLINE RANGE HYDROCARBONS	50	12000	32000	130000	78000	120	
Report Limit Multiplication Report Limit Multiplication	Factor: Factor for MTBE only:	50 1000	200 1000	500 20000	100 5000	1	

100% / PID: 98.6%	FID: 107% / PID: 102%	FID: 104% / PID: 102%	FID: 106% / PID: 104%	FID: 103% / PID: 99.0%
/AR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1
1	100% / PID: 98.6% /AR-GC1	00% / PID: 98.6% FID: 107% / PID: 102%	00% / PID: 98.6% FID: 107% / PID: 102% FID: 104% / PID: 102%	00% / PID: 98.6% FID: 107% / PID: 102% FID: 104% / PID: 102% FID: 106% / PID: 104% /AR-GC1 VAR-GC1 VAR-GC1 VAR-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

ANALYST: Clarolon	
Clari J. Cone	James C. Phillips Laboratory Director

Environmental Testing Services Certificate # 2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek	Client Project ID: Alaska Gasoline Oakland Reference Number: 4536 Sample Description: Water Sample Prep/Analysis Method: EPA 5030/8015M, 8020 Lab Numbers: 4536-6W	Sampled: 03-31-02 Received: 04-01-02 Extracted: 04-02-02 Analyzed: 04-02-02 Reported: 04-11-02

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID MW - 6	
	µg/L	(µg/L)	
MTBE	0.50	3000	
BENZENE	0.50	410	
TOLUENE	0.50	170	
ETHYL BENZENE	0.50	82	
TOTAL XYLENES	0.50	280	
GASOLINE RANGE HYDROCARBONS	50	3200	
Report Limit Multiplication Report Limit Multiplication	Factor: Factor for MTBE only:	10 100	

		· · · · · · · · · · · · · · · · · · ·
Surrogate % Recovery:	FID: 113% / PID: 107%	
Instrument ID:	VAR-GC1	
Analytes reported as ND were not d	etected or below the Practical Quantitation Limit	
Practical Quantitation Limit = Report	ting Limit x Report Limit Multiplication Factor	
Ω	2	
	and me approver by	$\mathcal{M}($
Clari J. Cone	3 Japies C. Phillips	
	Laboratory Director	•

Environmental Testing Services Certificate # 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek Client Project ID: Alaska Gasoline Oakland Reference Number: 4536 Sample Description: Water Analyst: Jim Phillips Method: EPA 5030/8015M,8020 Instrument ID: Var-GC1 Prepared: 04-02-02 Analyzed: 04-02-02 Reported: 04-11-02

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	110	2.10	1.32	7.94	1.84	9.22
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
LCS Batch #:	VW-4022	VW-4022	VW-4022	VW-4022	VW-4022	VW-4022
LCS % Recovery: Surrogate Recovery:	113% 105%	117% 101%	123% 101%	110% 101%	117% 101%	110% 101%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
MS/MSD Batch #:	VW-4022	VW-4022	VW-4022	VW-4022	VW-4022	VW-4022
Spike Concentration:	110	2.10	1.32	7.94	1.84	9.22
MS % Recovery: Surrogate Recovery:	107% 112%	118% 106%	119% 106%	111% 106%	119% 106%	116% 106%
MSD % Recovery: Surrogate Recovery:	98.6% 107%	235% 10 2 %	112% 102%	103% 102%	111% 102%	107% 102%
Relative % Difference:	7.50%	63.5%	5.86%	6.61%	6.93%	7.30%
Methanol Blank : Surrogate Recovery:	ND 99.9%	ND 101%	ND 101%	ND 101%	ND 101%	ND 101%

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

bN ANALYST: Clari J. Cone

APPROVED BY: James C. Phillips

Laboratory Director

CHAIN OF CUSTODY

Location: 2333 Shuttle Drive, Bldg 908/909, Atwater, CA 95301

Certificate No. 2079

Mailing Address: 2333 Shuttle Drive, Atwater, CA 95301

PAGE / OF

Phone: (209) 384-2930 - Fax: (209) 384-1507

Customer:	Alas	ka G	asoli	nd	Τ				REC	DUES	STED A	NALY	SES			T		Method of Shipment:
Address: Oakland					Γ				ТГ					s				
City/State/	ZIP:				dete	× ₹										L L	Ĕ	
Phone / FA	X:				1 0 8	MTH ©	GAS		ᆸ	ξ			Ι.				IAI	Notes:
Proj # / P.C). #:				ЧЦ Ц Ц Ц Ц Ц Ц Ц Ц	quid N	Ŧ	BE	ES I	418							ĝ	
Report Atte	ention:	1	1. 1	/	l ⊢ g ≊i ⊣ l	M E	۲ Σ	Σ	王	H					1		Ы	
Sampler Sig	gnature:	lermon	1 Jahr	mich] H B	solic S	Б		-	F							BER	
Pr	inted:	erman	Schon	ichek	80	(s)											NN	
Lab ID#	SAMPLE ID	DATE	TIME	DESCRIPTION/LOCATION	1													OBSERVATIONS/REMARKS
4536-W	MW-1	3/31/02	11:00		d	4	×	×								╶╢		
200	MW-2	u	11:30		1	Ī	1											
<u>3</u> w	MW-3	u	12:30				IT	Π							-		-	
<u>4w</u>	MW-4	11	12:00				IT	Π								╢		
<u> </u>	MW-5	11	10:00		\Box	П										╢	-†	
<u>l</u> w	MW-6	11	10:30		V	V		¥								╢		· ·
			-															
												Γ						
	1	Signature	. /	Printed Name		Da	te	Tir	ne		Cor	npar	N N	ame		T		Total number of containers submitted to the laboratory
Relinquished by	: lenmon &	Amis	olb	Korman Shumicz	ok	411	02	9:1	15	Ilar	Sch	Fn	1. in	A Ma	Ala.	7	Note	e: All special requests (e.g. quick
Received by:	Junt	D/		Tames Phillips		el.	62	9.	15	0	J.	. A	y a	<u>. 1</u>	1	케	turn	times) must be cleared through
Relinquished	/: /:			Contraction of the second seco		17.17		1	╘╼┚┨		S AL		- w	7 0	al		auth	iorized laboratory personnel .
Received by:						1												
Relinquished by	/:															╢	RES	SULTS DUE :
Received by:																		

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental	Client Project ID: Alaska Gasoline, Oakland	Sampled: 11-16-01
Bass Lake CA 93604	Reference Number: 4226	Received: 11-19-01
Attn: Herman Schymiczek	Sample Description, Soli Sample Prep/Analysis Method: EPA 5030/8015M_8020	
	Lab Numbers: 4226- 1S, 2S, 3S, 4S, 5S	Reported: 12-11-01

TOTAL PETROLEUM HYDROCARBONS - GASOLINE RANGE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID					
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
MTBE	0.010	160	9.8	0.012	ND	1.5	
BENZENE	0.0050	250	0.011	ND	0.067	0.57	
TOLUENE	0.0050	1700	0.080	0.0064	0.018	0.14	
ETHYLBENZENE	0.0050	510	0.033	0.0051	0.20	0.72	
TOTAL XYLENES	0.0050	2700	0.19	0.0070	0.25	2.9	Ng 1 - 1
GASOLINE RANGE							
HYDROCARBONS	1.0	25000	4.6	3.1	17	30	
Report Limit Multiplication Report Limit Multiplication) Factor:) Factor for MTBE only:	2000	1	1	1	5	
	- -, .						

Surrogate % Recovery:	NA	FID: 74.3% / PID: 72.3%	FID: 77.1% / PID: 74.2%	FID: 128% / PID: 97.6%	NA	
Instrument ID:	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

lawfine ANALYST: APPROVED BY: Clari J. Cone James C. Phillips Laboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental	Client Project ID: Alaska Gasoline, Oakland	Sampled: 11-16-01
P.O. Box 229	Reference Number: 4226	Received: 11-19-01
Bass Lake, CA 93604	Sample Description: Soil	Extracted: 11-23-01
Attn: Herman Schymiczek	Sample Prep/Analysis Method: EPA 5030/8015M, 8020	Analyzed: 11-23-01
	Lab Numbers: 4226- 6S, 7S, 8S, 9S, 10S	Reported: 12-11-01

TOTAL PETROLEUM HYDROCARBONS - GASOLINE RANGE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID MW-6 @ 10' (mg/kg)	SAMPLE ID B-9 @ 5' (mg/kg)	SAMPLE ID B-9 @ 10' (mg/kg)	SAMPLE ID B-10 @ 5' (mg/kg)	SAMPLE ID B-10 @ 10' (mg/kg)	
MTBE	0.010	7.6	33	52	4.7	1.5	
BENZENE	0.0050	10	0.91	2.4	0.18	0.63	
TOLUENE	0.0050	64	1.8	6.6	0.015	4.1	
ETHYLBENZENE	0.0050	37	1.8	4.5	0.11	3.6	
TOTAL XYLENES	0.0050	190	7.9	20	0.16	19	
GASOLINE RANGE HYDROCARBONS	1.0	1900	100	250	5.5	200	
Report Limit Multiplication Report Limit Multiplication	Factor: Factor for MTBE only:	200	10 100	20 100	1 20	10.	

Surrogate % Recovery:	NA	NA	NA	FID: 81,0% / PID: 75.9%	NA	
Instrument ID:	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

ANALYST: Clari J. Cone

APPROVED BY:

James C. Phillips Laboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental	Client Project ID: Alaska Gasoline, Oakland	Sampled: 11-16-01
P.O. Box 229	Reference Number: 4226	Received: 11-19-01
Bass Lake, CA 93604	Sample Description: Soil	Extracted: 11-23-01
Attn: Herman Schymiczek	Sample Prep/Analysis Method: EPA 5030/8015M, 8020	Analyzed: 11-23-01
	Lab Numbers: 4226- 11S, 12S, 13S, 14S, 15S	Reported: 12-11-01

TOTAL PETROLEUM HYDROCARBONS - GASOLINE RANGE WITH BTEX DISTINCTION

ANALYTE		SAMPLE ID B-11 @ 5'	SAMPLE ID B-11 @ 10'	SAMPLE ID B-12 @ 5'	SAMPLE ID B-12 @ 10'	SAMPLE ID B-13 @ 5'	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
MTBE	0.010	15	82	9.4	44	8.1	
BENZENE	0.0050	0.84	3.9	1.1	1.5	1.7	
TOLUENE	0.0050	4.3	36	6.8	4.8	5.0	
ETHYLBENZENE	0.0050	2.6	10	4.2	1.8	2.1	
TOTAL XYLENES	0.0050	15	58	21	9.3	11 ¹	
GASOLINE RANGE HYDROCARBONS	1.0	160	530	220	99	110	
Report Limit Multiplication Report Limit Multiplication	Factor: Factor for MTBE only:	10 20	100	20	10 100	10	
	-						

Surrogate % Recovery:	NA	Na	NA	NA	NA	
Instrument ID:	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

M ANALYST: APPROVED BY: Clari J. Cone James C. Phillips Laboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek	Client Project ID: Alaska Gasoline, Oakland Reference Number: 4226 Sample Description: Soil Sample Prep/Analysis Method: EPA 5030/8015M, 8020 Lab Numbers: 4226- 16S	Sampled: 11-16-01 Received: 11-19-01 Extracted: 11-23-01 Analyzed: 11-26-01 Reported: 12-11-01

TOTAL PETROLEUM HYDROCARBONS - GASOLINE RANGE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID		
	(mg/kg)	B-14 @ 10' (mg/kg)		
MTBE	0.010	1.5		· · · · · · · · · · · · · · · · · · ·
BENZENE	0.0050	0.11		
TOLUENE	0.0050	0.047		
ETHYLBENZENE	0.0050	0.12		
TOTAL XYLENES	0.0050	0.0056		
GASOLINE RANGE				
HYDROCARBONS	1.0	22		and the second second
Report Limit Multiplication	Factor:	2	•	

Surrogate % Recovery: NA Instrument ID: VAR-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

inl ANALYST: APPROVED BY: Clari J. Cone Janes C. Phillips Jaboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507	
HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek	Client Project ID: Alaska Gasoline, Oakland Reference Number: 4226 Sample Description: Water Sample Prep/Analysis Method: EPA 5030/8015M, 8020 Lab Numbers: 4226-17W, 18W, 19W, 20W, 21W	Sampled: 11-17-01 Received: 11-19-01 Extracted: 11-24-01 Analyzed: 11-24-01 Reported: 12-11-01	

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID MW-1 (µg/L)	SAMPLE ID MW-2 (µg/L)	SAMPLE ID MW-3 (µg/L)	SAMPLE ID MW-4 (µg/L)	SAMPLE ID MW-5 (µg/L)	
MTBE	0.50	22000	16000	300000	140000	4.8	
BENZENE	0.50	230	3700	1600	960	15	
TOLUENE	0.50	210	180	ND	1400	12	
ETHYL BENZENE	0.50	60	610	ND	360	11	
TOTAL XYLENES	0.50	250	640	ND	1600	23	
GASOLINE RANGE HYDROCARBONS	50	10000	18000	110000	64000	210	
Report Limit Multiplicatior Report Limit Multiplicatior	n Factor: a Factor for MTBE only:	50 1000	200 1000	500 20000	100 5000	1 	

				•		
Surrogate % Recovery:	FID: 95.9% / PID: 94.2%	FID: 96.8% / PID: 93.6%	FID:94.0% / PID: 92.4%	FID: 98.2% / PID: 95.3%	FID:112% / PID: 104%	
Instrument ID:	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	
			VAR-001	VAR-001	VAR-601	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

11 on Kan ANALYST: APPROVED BY: Clari J. Cone James C. Phillips Laboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek	Client Project ID: Alaska Gasoline, Oakland Reference Number: 4226 Sample Description: Water Sample Prep/Analysis Method: EPA 5030/8015M, 8020 Lab Numbers: 4226-22W	Sampled: 11-17-01 Received: 11-19-01 Extracted: 11-24-01 Analyzed: 11-24-01 Reported: 12-11-01

< **5**

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID MW-6	
	µg/L	(µg/L)	
MTBE	0.50	1500	
BENZENE	0.50	160	
TOLUENE	0.50	260	
ETHYL BENZENE	0.50	95	
TOTAL XYLENES	0.50	420	
GASOLINE RANGE HYDROCARBONS	50	3500	
Report Limit Multiplication Fa	ctor:	50	

Surrogate % Recovery:	FID: 103% / PID: 102%	•	
Instrument ID:	VAR-GC1		

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

one ANALYST: APPROVED BY: Clari J. Cone James C. Phillips Laboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Ph	one: (209) 384-2930 Fax: (209) 384-1507	
HerSchy Environmental P.O. Box 229	Client Project ID: Alaska Gasoline, Oakland Reference Number: 4226	Method: EPA 5030/8015M,8020		
Bass Lake, CA 93604 Attn: Herman Schymiczek	Matrix: Soil Analyst: Clari Cone	Prepared: Analyzed: Reported:	11-23-01 11-23-01 12-11-01	

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	2.20	42.0	26.4	159	36.8	184
Units:	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
LCS Batch #:	VS-N231	VS-N231	VS-N231	VS-N231	VS-N231	VS-N2 31
LCS % Recovery: Surrogate Recovery:	87.1% 93.2%	92.0% 90.4%	103% 90.4%	93.3% 90.4%	97.1% 90.4%	94.1% 90.4%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	7 0-1 30 %
MS/MSD Batch #:	VS-N231	VS-N231	VS-N231	VS-N231	VS-N231	VS-N 231
MS % Recovery: Surrogate Recovery:	84.8% 86.9%	80.4% 86.0%	74.4% 86.0%	82.6% 86.0%	84.2% 86.0%	82.5% 86.0%
MSD % Recovery: Surrogate Recovery:	71.6% 81.2%	71.5% 79.8%	73.8% 79.8%	77.7% 79.8%	80.8% 79.8%	79.0% 79.8%
Relative % Difference:	15.4%	10.6%	0.659%	5.71%	3.83%	4.06%
Methanol Blank : Surrogate Recovery:	ND 93.5%	ND 93.3%	ND 93.3%	ND 93.3%	ND 93.3%	ND 93.3%

Please Note:

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

81 ANALYST: APPROVED BY: Clari J. Cone James C. Phillips Laboratory Director

Environmental Testing Services Certificate #I-2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507		
HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Herman Schymiczek	Client Project ID: Alaska Gasoline, Oakland Reference Number: 4226 Matrix: Water Analyst: Jim Phillips	Method: EPA 5030/8015M,8020 Instrument ID: Var-GC1 Prepared: 11-24-01 Analyzed: 11-24-01 Reported: 12-11-01		

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes	
Spike Concentration:	110	2.10	1.32	7.94	1.84	9.22	
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
LCS Batch #:	VW-N241	VW-N241	VW-N241	VW-N24 1	∨W-N 241	VW-N241	
Surrogate Recovery:	95.7% 96.7%	114% 94.2%	106% 94.2%	98.5% 94.2%	104% 94.2%	99.6% 94.2%	
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	
MS/MSD Batch #:	VW-N241	VW-N241	VW-N241	VW-N241	VW-N241	VW-N241	
Spike Concentration:	110	2.10	1.32	7.94	1. 84	9.22	
MS % Recovery: Surrogate Recovery:	91.6% 103%	105% 99.9%	104% 99.9%	101% 99.9%	105% 99. 9 %	102% 99.9%	
MSD % Recovery: Surrogate Recovery:	126% 101%	101% 98.2%	103% 98.2%	97.9% 98.2%	109% 98.2%	102% 98.2%	
Relative % Difference:	30.4%	4.59%	1.33%	3.27%	3.77%	0.170%	
Methanol Blank : Surrogate Recovery:	ND 94.2%	ND 94.6%	ND 94.6%	ND 94.6%	ND 94.6% .	ND 94.6%	

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

UN ANALYST: APPROVED BY: Clari J. Cone ames C. Phillips Laboratory Director

CHAIN OF CUSTODY

PAGE___OF___

Location: 2333 Shuttle Drive, Bldg 908/909, Atwater, CA 95301

Certificate No. 2079

Mailing Address: 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 - Fax: (209) 384-1507

Customer:	Alask					REC	UES	TED AN	ALYS	SES			Method of Shipment:				
Address:		Daklar	nd		1					T	Ī			T		S	•
City/State/	ZIP:					X ag										NER	Notoo
Phone / FA	X:] ³⁹ #	FA O	ĮŠ		ដ្ល	Σ						1 F	Notes.
Proj # / P.C	D. #:				l	μğ	ΤĔ	ШВЕ	Щ	418						Ō	
Report Atte	ention:	1		·		₩¥ ⊕	Ň	Z	Ē	P T T	İ					۳ ۳	
Sampler Sig	gnature:	<u>YMAN</u>	sing	nell	MP 8	s și										BE	
rı		<u>erman</u>	Schen	idzek	30	s)				ĺ	1					Ŋ	
Lab ID#	SAMPLE ID	DATE	TIME	DESCRIPTION/LOCATION													OBSERVATIONS/REMARKS
4226-15	MW-4 05'	4/16/01	10:40		d	5	X	X									
25	MW-420'	ų	10:50		1		Ī	1						-			
35	MW-50.5'	11	8:35				Π	T									
45	MW-5010'	11	8:45				Π										
<u> </u>	MW-605'	C/	7:10				Π										· ·
<u>las</u>	MM-6@10'	11	7:15				Π										
75	B-9.25'	"	1:30														
85	8-9010'	61	1:35														
95	B-1005'		1:05														
<u>10s</u>	B-10@10'	11	1:10							Т		\square				4	
<u> 5</u>	B-118.5'	4	2:30														
125	B-11010'	4	2:35	-			Π										
135	B-12@5'	U	12:30					Π									
	B-12@10'	lı	12:45				Π						_				
155	<u>B-13@5'</u>	11	2:50		\downarrow	\checkmark	V	V									
		Signature	1	Printed Name		Dat	te	Tin	nel		Con	ากลก	v Na	me			Total number of containers submitted to
Relinquished by	Ellaman &	him	iels	Upriman Schunicz	ok	ILha	11	3:1	0	Ilor	Ch.	Fair	<u> </u>	A	Fat	Not	e: All special requests (e.g. quick
Received by:	14 11	07	5	Tomes Phillips	1	1/10	To,	2:		0	L.	- <u></u> /		<u>ien</u> //		turn	times) must be cleared through
Relinquished by	1:			with a courters		Y Y	21	0-1			STIS	4	ne	yr		auth	orized laboratory personnel.
Received by:									1							1 .	
Relinquished by	y:															RES	
Received by:							2		3		- 3-2)					. [VERBAL WRITTEN
														-	المسيبي	-	

APPENDIX A

(1

BORING LOGS AND WELL CONSTRUCTION DETAILS

HerS	chy	, E	Invir	onr	ner	ntal	WELL / BORING LOG
CLIENT DATE DRILLED LOCATION HOLE DIAMETE HOLE DEPTH WELL DEPTH WELL DIAMETE ELEVATION	Al 0a 8" 20 19 2" 32	as) -10 kla .40	ca Gas 5-01 and, C.)'	olin A	le		LOGGED BY H. Schymiczek DRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE Sch. 40 PVC SLOT SIZE 0.020" GRAVEL PACK #3 sand
WELL COMPLETION DETAIL	MOISTURE CONTENT	BLOWSFOOT	DEPTH (FEET)	SAMPLE	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS
Plank	dm	3 4 6 8 9 11	0 5 10 10 20 25 30 1 1 1 1 1 1 1 1 1 1 1 1 1			CL ML SW	<pre>Approx. 1" asphalt. Silty clay, dk. grey, distinct petroleum odor. Sand, grey, v.fine-to fine-grained, trace silt, strong gasoline odor no stain; OVA=479ppm. Sand, grey, v.fine-to medgrained, scattered pebbles to 0.25' strong gasoline odor, no stain' OVA=215ppm. Silty clay, brown. T.D.=20'</pre>
			35 40				

Her	·Scl	'iy	E	nvira	onn	ner	ıtal	WELL / BORING LOG	WELL <u>MW-5</u> BORING NA
CLIENT DATE DRILL LOCATION HOLE DIAM HOLE DEP' WELL DEP' WELL DIAM ELEVATIO	A LED 1 O AETER 8 TH 2 TH 2 METER 2 N 3	1a 1- ak 5' 4.	ska 16- 1ar 65' 75'	a Gaso -01 nd, CA	line	2		LOGGED BY H. Schymiczek DRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE Sch. 40 PVC SLOT SIZE 0.020" GRAVEL PACK #3 sand	PAGE1_OF1
WELL COMPLETION DETAIL	2 MOISTURE	CONTENT	BLOWS/FOOT	DEPTH (FEET)	SAMPLE	QRAPHIC	solt TYPE	LITHOLOGY / REMARKS	
a b b b b b a b b b a b b <td></td> <td>P</td> <td>4 5 7 4 6 8</td> <td>0 5 10 15 20 25</td> <td></td> <td></td> <td>CL ML ML SW</td> <td><pre>Approx. 2" asphalt. Silty clay, dk. brown. Silt, grey, trace clay and sand, no odor or stai OVA=25.6ppm. Sandy silt, grey, v.fine-t grained sand fraction clay, no odor or stai OVA=22.2ppm. Silty clay, brown.</pre></td> <td>l v.fine n; o coarse- , trace n; rse-grained 0.5".</td>		P	4 5 7 4 6 8	0 5 10 15 20 25			CL ML ML SW	<pre>Approx. 2" asphalt. Silty clay, dk. brown. Silt, grey, trace clay and sand, no odor or stai OVA=25.6ppm. Sandy silt, grey, v.fine-t grained sand fraction clay, no odor or stai OVA=22.2ppm. Silty clay, brown.</pre>	l v.fine n; o coarse- , trace n; rse-grained 0.5".
· · · · · · · · · ·				30				T.D.=25'	

ı

HerS	chy I	Enviro	nmen	tal	WELL / BORING LOG	WELL MW-6
CLIENT DATE DRILLED LOCATION HOLE DIAMETE HOLE DEPTH WELL DEPTH WELL DIAMETE ELEVATION	Alas 11-1 Oakl 25' 23.7 34.6	ka Gaso 6-01 and, CA 5' 8'	line Co).	LOGGED BY H. Schymiczek CRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE Sch. 40 PVC SLOT SIZE 0.020" GRAVEL PACK #3 sand	PAGE_1_OF
WELL COMPLETION DETAIL	MOISTURE CONTENT BLOWS/FOOT	DEPTH (FEET)	SAMPLE GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS	
grou	t	0		CL	Approx. 1" asphalt. Silty clay, dk. brown.	
	11 dmp13 16	5		CL	Silty clay, grey, faint po odor, no stain; OVA	etroleum =17.9ppm
een sand	dmp 6			Ӎ Ĺ	Silty sand, grey, v.fine- grained, distinct gas no stain; OVA=488ppr	to fine- soline oo n.
scr				ML	Clayey silt, lt. brown.	
		25		GC	Clayey gravel, brown, v.f.	ine-to
				-	coarse-grained sand w up to 0.5" in a clay. T.D.=25'	vith cla:
		30				
		35				
		40				

•

.

< s

HerSo	chy	, E	Enviro	nme	nta	WELL / BORING LOG	WELL/ NA
CLIENT DATE DRILLED LOCATION HOLE DIAMETE HOLE DEPTH WELL DEPTH WELL DIAMETE ELEVATION	Al 0a 8" 10 NA NA R NA	as -1 kl	ka Gaso] 6-01 and, CA surveyed	line		LOGGED BY H. Schymiczek DRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE NA SLOT SIZE NA GRAVEL PACK NA	PAGE 1_ OF 1
WELL COMPLETION DETAIL	MOISTURE	BLOWS/FOOT	DEPTH (FEET)	SAMPLE	SOIL TYPE	LITHOLOGY / REMARKS	
			0		CL	Approx. 2" asphalt. Silty clay, dk. brown.	
	đmp	5812	5		CL	Clay, lt. brown, trace silt gasoline odor, no stai OVA=82.5ppm.	, f aint n;
	amp	4 8 11			SM	Silty sand, grey, v.fine-to grained, scattered per 0.25", distinct gasoli no stain; OVA=509ppm.	med bles to ne odor,
	, , , , , , , , , , , , , , , , , , , 					T.D.=10'	
			20				
			25				,
			30				
			40				

HerS	chy	v 1	Envir	on	mei	nta	WELL / BORING LOG
CLIENT DATE DRILLED LOCATION HOLE DIAMETE HOLE DEPTH WELL DEPTH WELL DIAMETE ELEVATION	A] 11 Oa 8' 8' 10 NZ R NZ	las -1 akl)' A	ka Gas 6-01 and, C survey	olin A ed	ne		LOGGED BY H. Schymiczek DRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE NA SLOT SIZE NA GRAVEL PACK NA
WELL COMPLETION DETAIL	MOISTURE CONTENT	BLOWSFOOT	DEPTH (FEET)	SAMPLE	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS
			0			CL	Approx. 1" asphalt. Silty clay dk. brown.
	dmp	3 6 7	5			CL	Silty clay, grey, faint gasoline odor, no stain; OVA=46.5ppm.
	dmp	4 6 8	10			GC_	Clayey gravel, grey, pebbles up to 0.5", distinct gasoline odor, no stain; OVA=403ppm.
			15				T.D. =10'
			20				
			25				
			30				
			35				
			40				

·

ŝ.

HerS	chy	v 1	Envir	oni	me	ntal	WELL / BORING LOG	WELL
CLIENT DATE DRILLED LOCATION HOLE DIAMETER HOLE DEPTH WELL DEPTH WELL DIAMETER ELEVATION	A] 11 Oa 8' 10 NZ NZ R NZ	Las I-1 akl)' A	ska Gas 6-01 and, C survey	oli A ed	ne		LOGGED BY H. Schymiczek DRULLED BY CTL DRULLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE NA SLOT SIZE NA GRAVEL PACK	PAGE 1 OF 1
WELL COMPLETION DETAIL	MOISTURE CONTENT	BLOWS/FOOT	DEPTH (FEET)	SAMPLE	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS	
	Imp	479456				CL	<pre>Approx. 1" asphalt. Clay, dk. brown. Clay, grey, trace silt, ga oline odor, no stain; OVA=30.1ppm. S.A.A., faint gasoline odo stain; OVA=23.7ppm. T.D.=10'</pre>	int gas- r, no
			30 35 40				•	

HerSo	chy	' E	Envir	onr	ner	ntal	WELL / BORING LOG
CLIENT DATE DRILLED LOCATION HOLE DIAMETER HOLE DEPTH WELL DEPTH WELL DIAMETE ELEVATION	A] 11 Oa 8' 10 NZ R NZ NZ	Las -1 akl)'	ka Gas 6-01 and; (soli CA	ne		LOGGED BY H. Schymiczek DRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE NA SLOT SIZE NA GRAVEL PACK NA
WELL COMPLETION DETAIL	MOISTURE CONTENT	BLOWSFOOT	DEPTH (FEET)	SAMPLE	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS
			0			CL	Approx: 2" asphalt. Silty clay, dk. brown.
	Imp	4 6 8	5			CL	Silty clay, grey, distinct gasoline odor, no stain; OVA=457ppm.
	đmp	4 6 8				CL	Clay, grey, trace silt, distinct gasoline odor, no stain; OVA=316ppm.
			15		•		T.D.=10'
			20				
		and a second	25				
			а 30 30		- - - - - - - - - - - - - - - - - - -		
			35				
			40				

HerS	chy	, E	Inviron	me	ntal	WELL / BORING LOG
CLIENT DATE DRILLED LOCATION HOLE DIAMETER HOLE DEPTH WELL DEPTH WELL DIAMETER ELEVATION	Al 11 Oa 8" 10 NA R NA NO	as) -10 kla	ka Gasoli 5-01 and, CA surveyed	.ne		LOGGED BY H. Schymiczek DRILLED BY CTL DRILLING METHOD HSA SAMPLING METHOD Split Spoon CASING TYPE NA SLOT SIZE NA GRAVEL PACK NA
WELL COMPLETION DETAIL	MOISTURE CONTENT	BLOWS/FOOT	DEPTH (FEET) SAMPLE	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS
			0		ML	Approx. 2" asphalt. Clayey silt, dk. brown.
		2 8 10	5			No recovery
	dmr	6 9 10	10		CL	Silty clay, grey. Silty clay, grey, scattered pebbles to 0.5", distinct gasoline
	-					odor, no stain; OVA=319ppm. T.D.=10'
		and the second secon				
			20			
			25			
			зо <u>—</u>			
			35			
	1					6/69/202 FW

APPENDIX B

e

r

GROUNDWATER FIELD SAMPLING DATA SHEETS

Client Name: Alaska Gassline Location: Oakland
Purged By: H. Schymiczek Sampled By: H. Schymiczek
Sample ID: $\underline{M}\underline{W}\underline{-1}$ Type: Groundwater $\underline{\checkmark}$ Surface Water Other
Casing Diameter (inches): 2 <u>X</u> 3 4 5 0 0ther
Casing Elevation (feet/MSL): <u>34.70</u> Volume in Casing (gal.): <u>2.17</u>
Depth of Well (feet): <u>70.50</u> Calculate Purge Volume (gal.): <u>8.68</u>
Depth to Water (feet): 7.18 Actual Purge Volume (gal.): +9
Date Purged: <u>3-31-02</u> Date Sampled: <u>3-31-02</u>
TIME VOLUME pH E.C. TEMP. TURBIDITY
10:50 - 6.87 151 65.6 clear
11:00 +9 6.87 723 64.7 clear
Other Observations: Odor: $f_{ain} + H_2 S$
Purging Equipment: Purger ES-60
Sampling Equipment:
Remarks:
Samplers Signature: Arman Bernegel

Client Name:	Alaska	Gasolin	e Loca	ution: <u>Oak</u>	land	
Purged By: _	H. Schyr	miczek	Samp	led By: <u>//.</u>	Schymicz	ek
Sample ID: 7	<u>МШ-2</u> ту	pe: Groundwa	iter $\underline{\mathcal{X}}$ Surf	face Water	Other	<u> </u>
Casing Diamo	eter (inches): 2	<u>X</u> 3	45	_60the	r	
Casing Elevat	tion (feet/MSL)	: 34.94	Volume	in Casing (ga	1.): 2.29	
Depth of Wel	l (feet): <u>20</u> -	70 Ca	Iculate Purge	Volume (gal.)	9.16	_
Depth to Wat	er (feet):	68 A	ctual Purge Vo	lume (gal.): _	+10	
Date Purged:	3-31-0	2	Date Sampled	: 3-31	-02	
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY	
11:20		6.89	969	66.7	clear	
:30	+10	6.96	1028	66.2	clear	
Other Observa	ations:		Odor:	Faint Ha	5	_
Purging Equip	ment: <u>Lur</u>	er Es	5-60			
Sampling Equ	ipment:	11 12	17			-
Remarks:						
						-
Samplers Sign	ature:	ner be	mage			-
		2				

Client Name: Alaska Gassline Location: Dakland												
Purged By: <u>H. Schymiczek</u> Sampled By: <u>H. Schymiczek</u>												
Sample ID: <u>MW-3</u> Type: Groundwater <u>X</u> Surface Water Other												
Casing Diameter (inches): 2 X 3 4 5 6 Other												
Casing Elevation (feet/MSL): <u>33.74</u> Volume in Casing (gal.): <u>2.39</u>												
Depth of Well (feet): <u>20.95</u> Calculate Purge Volume (gal.): <u>9.56</u>												
Depth to Water (feet): 6.27 Actual Purge Volume (gal.): +10												
Date Purged: 3-31-02 Date Sampled: 3-31-02												
TIME VOLUME pH E.C. TEMP. TURBIDITY												
12:20 - 7.17 999 69.8 cloudy												
12:30 +10 6.80 874 66.8 clear												
Other Observations: Odor: distinct H_S												
Purging Equipment: <u>Purger ES-60</u>												
Sampling Equipment:												
Remarks:												
Samplers Signature: Merman Schumich												

Client Name: <u>Alaska Gasoline</u> Location: <u>Dakland</u>										
Purged By: H. Schymiczek Sampled By: H. Schymiczek										
Sample ID: <u>MW-4</u> Type: Groundwater <u>k</u> Surface Water <u>Other</u>										
Casing Diameter (inches): 2 <u>X</u> 3 4 <u>5</u> 6 Other										
Casing Elevation (feet/MSL): <u>32.38</u> Volume in Casing (gal.): <u>2.28</u> Depth of Well (feet): <u>19.40</u> Calculate Purge Volume (gal.): <u>9.12</u> Depth to Water (feet): <u>5.40</u> Actual Purge Volume (gal.): <u>$+10$</u>										
Date Purged: <u>3-31-02</u> Date Sampled: <u>3-31-02</u>										
TIME VOLUME pH E.C. TEMP. TURBIDITY										
11:50 - 6.87 805 68.6 cloudy										
12:00 +10 6.89 829 66.4 cloudy										
Other Observations: Odan Gaidt and dida										
Odor: <u>Turk Jasonne</u>										
Purging Equipment: $\underline{PHrger} E \leq -60$										
Sampling Equipment: Remarks: Sheen of gasoline in pumped water. Checked with bailer, sheen of fuel in clear bailer.										
Samplers Signature: Jernan berneugh										

-5° -8

Client Name: Alaska Gassline Location: Dakland
Purged By: <u>H. Schymiczek</u> Sampled By: <u>H. Schymiczek</u>
Sample ID: <u>MW-6</u> Type: Groundwater <u>X</u> Surface Water <u>Other</u>
Casing Diameter (inches): 2 <u>2</u> 3 <u>4</u> 5 <u>6</u> Other <u>6</u>
Casing Elevation (feet/MSL): 34.68 Volume in Casing (gal.): 2.60 Depth of Well (feet): 23.75 Calculate Purge Volume (gal.): 10.40 Depth to Water (feet): 6.58 Actual Purge Volume (gal.): $+11$
Date Purged: <u>3-31-02</u> Date Sampled: <u>3-31-02</u>
TIME VOLUME pH E.C. TEMP. TURBIDITY
10:20 - 7.39 677 65.4 cloudy
10:30 +11 1.06 603 64.6 clear
Other Observations: Odor: $faint H_2 S$ Purging Equipment: $Purger ES-60$ Sampling Equipment: H_2
Sampring Equipment.
Samplers Signature:
$\bigcirc \bigcirc$

Client Name: <u>Alaska Gas.</u>	<u>pline</u> Locat	tion: <u>Jakla</u>	and ,							
Purged By: H. Schymic=	zek Sampl	ed By: <u>/.</u> <	Schymiczek							
Sample ID: <u>MW-1</u> Type: Gro	oundwater \underline{X} Surfa	ace Water	/ Other							
Casing Diameter (inches): $2 \underline{\chi}$	3 4 5	6Other								
Casing Elevation (feet/MSL):	4.70 Volume	in Casing (gal	.): 2.02							
Depth of Well (feet): <u>20.50</u>	Z Calculate Purge V	/olume (gal.):	8.08							
Depth to Water (feet): <u>8.29</u> Actual Purge Volume (gal.): <u>+9</u>										
Date Purged:	Date Sampled:	11-17-0	9/							
TIME VOLUME p	H E. C.	TEMP.	TURBIDITY							
9:55 - 6:	16 733	67.6	clear							
10:05 +9 6.6	5 983	68.4	clear_							
	· · · · · · · · · · · · · · · · · · ·									
Other Observations:	Odor: _<	distinct	H2S							
Purging Equipment:	ES-60		•							
Sampling Equipment:										
Remarks:										
		/								
Samplers Signature:	n koymic	yb	_							
	\bigcirc \sub)								

Client Name: Alaska Gasoline Location: Dakland											
Purged By: <u>H. Schymiczek</u> Sampled By: <u>H. Schymiczek</u>											
Sample ID: <u>MW-2</u> Type: Groundwater X Surface Water Other											
Casing Diameter (inches): 2 <u>×</u> 3 4 <u>5</u> 6 Other <u>6</u>											
Casing Elevation (feet/MSL): <u>34.94</u> Volume in Casing (gal.): <u>2.11</u> Depth of Well (feet): <u>20.70</u> Calculate Purge Volume (gal.): <u>8.44</u> Depth to Water (feet): <u>7.75</u> Actual Purge Volume (gal.): <u>+9</u>											
Date Purged: Date Sampled:											
TIME VOLUME pH E.C. TEMP. TURBIDITY											
10:15 - 6.43 1,036 69.8 clear											
10:25 +9 6.42 1,055 70.8 clear											
Other Observations: Odor: <u>faint H_2 S</u>											
Purging Equipment: Purger ES-60											
Sampling Equipment:											
Remarks:											
Samplers Signature:											

Client Name: Alaska Gasoline Location: Dakland
Purged By: H. Schymiczek Sampled By: H. Schymiczek
Sample ID: <u>MW-3</u> Type: Groundwater <u>X</u> Surface Water <u>Other</u>
Casing Diameter (inches): 2 <u>X</u> 3 4 5 6 Other
Casing Elevation (feet/MSL): <u>33.74</u> Volume in Casing (gal.): <u>2.24</u> Depth of Well (feet): <u>20.95</u> Calculate Purge Volume (gal.): <u>8.96</u> Depth to Water (feet): <u>1./8</u> Actual Purge Volume (gal.): <u>+9</u>
Date Purged: Date Sampled:
TIME VOLUME pH E. C. TEMP. TURBIDITY
10:40 - 6.59 958 69.3 cloudy
10:50 +9 6.71 918 69.5 clear
Other Observations: Odor: <u>faint easoline</u>
Purging Equipment: <u>Purger ES-60</u>
Remarks:
Samplers Signature: Jerman Jehrman

Client Name:	Alaska	Gasoline	Loca	ntion: <u>Jak</u>	land,						
Purged By: A. Schymiczek Sampled By: H. Schymiczek											
Sample ID: <u>MW-4</u> Type: Groundwater <u>X</u> Surface Water Other											
Casing Diame	eter (inches): 2	<u>X</u> 3	45	_6Othe	r						
Casing Elevation (feet/MSL): <u>32.38</u> Volume in Casing (gal.): <u>2.22</u>											
Depth of Well (feet): <u>19.40</u> Calculate Purge Volume (gal.): <u>8.88</u>											
Depth to Water (feet): <u>5.75</u> Actual Purge Volume (gal.): <u>~60</u>											
Date Purged:		91	Date Sampled	:	-01						
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY						
8:30		7.18	1,276	68.5	muddy						
9:00	N60	7.20	942	72.2	cloudy						
****			·····								
Other Observa	ations:		Odor: <u>d</u>	istact	gasoline						
Purging Equip	oment: <u>Pur</u>	fer Es	5-60								
Sampling Equ	ipment:	<i>R</i> <u>11</u>	<u>, 1</u>		. <u> </u>						
Remarks: Sampled after well development											
Samplers Sign	ature: <u>/</u>	Schymic	zek								
		-									

Client Name:	Alaski	a Gasol	ine Loca	ation: <u>3</u> k	land						
Purged By: <u>H. Schymiczek</u> Sampled By: <u>H. Schymiczek</u>											
Sample ID:	<u>MW-5</u> Ty	pe: Groundwa	ter $\underline{\lambda}$ Sur	face Water	/ Other						
Casing Diam	eter (inches): 2	<u>X</u> 3	45	_6Othe	r						
Casing Eleva	tion (feet/MSL)	33.7	<u> </u>	e in Casing (ga	al.): <u>3.00</u>						
Depth of Wel	l (feet):24	<u>.65</u> Cal	culate Purge	Volume (gal.)	: 12.0						
Depth to Water (feet): 6.22 Actual Purge Volume (gal.): ~60											
Date Purged: Date Sampled:											
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY						
7:30		6.27	1,309	64.7	Muddy						
8:05	N60	6.84	188	69.3	cloudy						
		·									
	· · · ·			<u> </u>							
Other Observa	ations:		Odor:	none							
Purging Equip	oment: <u>Par</u>	ier E	5-60								
Sampling Equ	ipment:	$\frac{2}{\alpha}$	y								
Remarks: <u>Sampled</u> after well development											
			······		<u>, , , , , , , , , , , , , , , , , , , </u>						
Somplor Sig	10	n m n n · · ·	1 hearing	- colo							
Samplets Sign	auto.	Man Z	<u>S (</u>								

Client Name: \underline{A} Purged By: \underline{A} . Sample ID: \underline{MW} Casing Diameter (Casing Elevation (Casing Elevation (Depth of Well (fee Depth to Water (fee Date Purged: \underline{A} TIME VO $\underline{9:}/5$ V $\underline{9:}/5$ V	$\frac{ a \le ka Ga \le Schymic = 0}{Schymic = 0}$ $\frac{ b }{ b } = Groum inches): 2 X 3$ $\frac{ c }{ c } = \frac{23.75}{2.75}$ $\frac{ c }{ c } = \frac{7.19}{2.19}$ $\frac{ c }{ c } = \frac{7.19}{2.19}$ $\frac{ c }{ c } = \frac{7.19}{2.19}$	schild $ckndwater468CalcuActuaDa$	 Loca Samp Surf Surf Surf Volume Volume Volume al Purge Vo ate Sampled E. C 	tion: <u>Jak</u> led By: <u>//.</u> Face Water _6 Othe in Casing (ga Volume (gal.) lume (gal.):	<u>land</u> <u>Schypicz</u> Other al.): <u>2.70</u> al.): <u>2.70</u> 10.80 N60
Sample ID: \underline{MW} Casing Diameter (Casing Elevation (Depth of Well (fee Depth to Water (fee Date Purged: \underline{M} TIME VO $\underline{9:15}$ $\underline{9:45}$ VO	$\frac{1}{16}$ Type: Groun inches): 2 <u>X</u> 3 feet/MSL): <u>34</u> . et): <u>23.75</u> eet): <u>7.19</u> $\frac{1}{17-01}$ DLUME pH	ndwater 4 6 & Calcu Calcu	Volume Volume ulate Purge V al Purge Vo	Tace Water Othe in Casing (ga Volume (gal.) lume (gal.): 	/ Other al.): <u>2.70</u> : <u>10.80</u> ~60
Casing Diameter (Casing Elevation (Depth of Well (fee Depth to Water (fee Date Purged: TIME VO 9:15 9:45 VO	inches): 2×3 feet/MSL): <u>34</u> . et): <u>23.75</u> eet): <u>7.19</u> 1-17-01 DLUME pH	4 Calcu Actua Da	5 Volume alate Purge V al Purge Vo ate Sampled	_6Othe in Casing (ga Volume (gal.) lume (gal.): :	er al.): <u>2.70</u> : <u>10.80</u> ~60
Casing Elevation (Depth of Well (fee Depth to Water (fee Date Purged: TIME V(9:/5 9:45	feet/MSL): <u>34.</u> et): <u>23.75</u> eet): <u>7.19</u> <i>1-17-01</i> DLUME pH	<u> </u>	Volume ulate Purge V al Purge Vo ate Sampled E_C	in Casing (ga Volume (gal.) lume (gal.):	al.): <u>2.70</u> : <u>10.80</u> ~60
Depth of Well (fee Depth to Water (fee Date Purged: _// TIME VO 9:15 9:45 N	rt): <u>23.75</u> pet): <u>7./9</u> //-/ <i>7-01</i> DLUME pH	Calcu _ Actua Da	ulate Purge V al Purge Vo ate Sampled E C	Volume (gal.) lume (gal.): :	- 10.80 N60 01
Depth to Water (for Date Purged: $//$ TIME VO 9:/5 9:45 N	et): <u>7.19</u> 1 <u>-17-01</u> DLUME pH	_ Actua	al Purge Vo ate Sampled	lume (gal.):	N60 01
Date Purged: _/_ TIME VO 9:15 9:45	DLUME pH	Da	ate Sampled	:	01
TIME V(9:15 9:45 N	DLUME pH		FC		
9:15 9:45 N			L. C.	TEMP.	TURBIDITY
9:45 ~		5	1,690	10.0	muddy
	60 7.5	3 /	1,722	68.2	cloudy
		·····		- <u></u>	
Other Observation:	s:		Odor: <u>f</u>	aist aa	solije
Purging Equipmen	t: Purser	ĒS	-60	C	
Sampling Equipme	ent:	11	(1		
Remarks:		_, , , <u>, , , , , , , , , , , , , , , , </u>			
		···			
Samplers Signature	Monar	I	ymin	eb	
	- ft - welder -	and the second s	\mathcal{S}		

•

.

£

CHAIN OF CUSTODY

PAGE 2 OF 2

٨

ς.

Location: 2333 Shuttle Drive, Bldg 908/909, Atwater, CA 95301

Certificate No. 2079

Mailing Address: 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 - Fax: (209) 384-1507

Customer:	Alas	ka Ga	soline	2					REC	DUES	TED AI	ALY	SES				Method of Shipment:
Address:		Oaklan	d		1						T	Τ			T	S	
City/State/2	ZIP:				e g	¥€								1		۲.	
Phone / FA	X:				0.8	₩ E T F T F	B SS		ᆸ	ž						E	Notes:
Proj # / P.O). #:				E B	고 말 비 고	문	E H	S	418						ő	
Report Atte	ention:	./	11	. 1	L is	IN €	ž	Σ	뉡	H		1				Ь	
Sampler Sig	gnature:	Orman	Jo hil	millob	L L L	S Bid	818		티	۴						Ж	
Pr	inted:	erman.	Schumi	ceek	80	; (s)		·								MUM	
Lab ID#	SAMPLE ID	DATE	FIME	DESCRIPTION/LOCATION													OBSERVATIONS/REMARKS
426-165	B-14@ 10	1416101	12:05		d	S	X	X		Τ							
Aw	MW-1	14/17/01	10:05			6	1	1		T							
18w	MW-2	4	10:25														
<u>19</u> w	Mw-3	11	10:50														
20w	MW-4	11	9:00														
212	MW-5	11	8:05				\prod										
22.	MW-6	11	9:45		1	×	\mathbf{z}	\mathbf{V}						Τ			
	-			-													
						7											
	1	Signature	. /	Printed Name		Da	te	Tin	ne		Cor	npar	v Na	пe			Total number of containers submitted to the laboratory
Relinquished by	ellanan 1	ahrait	ille	Herman Shumic	zok	11/19/	01	3:1	0	Ile.	cSh	Fa	inn	1 0 09	F_{a}	Not	e: All special requests (e.g. quick
Received by:	Lint	DC	5	Tomes Phillips		Idia	101	3.7	0	<u></u>	Ho	An		2	7	turn	times) must be cleared through
Relinquished by	/?							6				1	7	و کالا ب	4	autr	ionzed laboratory personnel .
Received by:								an an Taonac		신성	Sa	- 1 A - 6	8 4 S	\$ ¹			
Relinquished by	/:						des j									RES	SULTS DUE :
Received by:											e e Anna					· [