RECEIVED

By Alameda County Environmental Health at 4:21 pm, Jun 26, 2014

Ms. Karel Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Alaska Gas Service Station, 6211 San Pablo Avenue, Oakland, California (ACEHS Case No. RO0000127)

Dear Ms. Detterman:

Stratus Environmental, Inc. (Stratus) has recently prepared a *Groundwater Monitoring and Sampling Results Report* on my behalf. The report was prepared in regards to Alameda County Fuel Leak Case No. RO0000127, located at 6211 San Pablo Avenue, Oakland, California.

I have reviewed a copy of this report, sent to me by representatives of Stratus, and "I declare, under penalty of perjury, that the information and or/recommendations contained in the attached document or report is true and correct to the best of my knowledge."

Sincerely,

Pritpaul Sappal

June 24, 2014 Project No. 2192-6211-01

Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Groundwater Monitoring and Sampling Results Report, Spring 2014

Alaska Gas Service Station

6211 San Pablo Avenue, Oakland, California

Fuel Leak Case No. RO0000127

Dear Ms. Detterman:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, on behalf of Pritpaul Sappal, for the Alaska Gas Service Station underground storage tank fuel leak case, located at 6211 San Pablo Avenue, Oakland, California. This report presents a summary of recent groundwater monitoring and sampling activities performed at the subject property. This report has been prepared in compliance with Alameda County Environmental Health Department and California Regional Water Quality Control Board (CRWQCB) requirements for underground storage tank (UST) investigations.

If you have any questions regarding this report, please contact Scott Bittinger at (530) 676-2062 or via email at sbittinger@stratusinc.net.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P.G.

Project Manager

Gowri S. Kowtha, P.E. Principal Engineer

Attachment: Groundwater Monitoring and Sampling Results Report, Spring 2014

cc: Mr. Pritpaul Sappal, Alaska Gas Service Station

ALASKA GAS SERVICE STATION GROUNDWATER MONITORING AND SAMPLING RESULTS REPORT

Facility Address: 6211 San Pablo Avenue, Oakland, California

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Scott Bittinger, P.G.

Consultant Project No: 2192-6211-01

Primary Agency/Regulatory ID No: Ms. Karel Detterman, Alameda County Environmental Health

Department (ACEHD), Fuel Leak Case No. RO0000127

WORK PERFORMED THIS PERIOD (March to May 2014):

Stratus conducted a groundwater monitoring and sampling event on March 28, 2014. At this time 10
wells were gauged for depth to groundwater levels. Purge groundwater samples were collected from
9 of these wells; one well (offsite well MW-7) was not sampled due to the presence of free phase
petroleum hydrocarbons.

2. Stratus returned to the site on May 28, 2014 to gauge and sample well MW-7. A sheen of free phase petroleum hydrocarbons was observed. Given the presence of sheen only, Stratus elected to sample the well. During well purging, a product sheen was noted on the extracted groundwater.

WORK PROPOSED FOR NEXT PERIOD (Third Quarter 2014):

1. A groundwater monitoring and sampling event will be conducted during the third guarter 2014.

Current Phase of Project:	Verification Monitoring (VM)
Frequency of Groundwater Monitoring:	All monitoring wells = Semi-annually (1st & 3rd quarters)
Frequency of Groundwater Sampling:	All monitoring wells = Semi-annually (1st & 3rd quarters)
Groundwater Sampling Date:	March 28, 2014, May 28, 2014 for MW-7
Are Free Phase Petroleum Hydrocarbons Present:	Yes, offsite well MW-7, 0.03 feet on March 28, 2014 and 0.01 feet on May 28, 2014
Depth to Groundwater:	2.50 to 8.18 feet below the top of the well casing
Groundwater Flow Direction :	West-southwest
Groundwater Gradient :	0.01 ft/ft

Stratus conducted first quarter groundwater monitoring and sampling activities on March 28, 2014. During this event, wells MW-1R, MW-2, MW-3R, MW-4R, and MW-5 through MW-10 were gauged for depth to groundwater and evaluated for the presence of free phase petroleum hydrocarbons. After well gauging, purge groundwater samples were collected from the site's monitoring wells, with the exception of MW-7 which contained measureable free phase petroleum hydrocarbons. In order to further evaluate conditions at well MW-7, Stratus returned to the site on May 28, 2014 to check for the presence of free phase petroleum hydrocarbons. After observing only a thin sheen (0.01 feet), a sample of purged groundwater was collected from MW-7 on this date.

Groundwater samples were forwarded to a state-certified analytical laboratory to be analyzed for gasoline range organics (GRO) by EPA Method SW8015B/SW8260B, for benzene, toluene, ethylbenzene, and xylene (BTEX compounds), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), and

tertiary butyl alcohol (TBA) using EPA Method SW8260B. Table 2 provides depth to water measurements and groundwater elevations. Table 3 presents a summary of groundwater analytical data collected for the site's monitoring well network.

Field data sheets documenting measurements and observations collected by Stratus personnel are provided in Appendix A. A description of sampling and analysis procedures used by Stratus/laboratory personnel are provided in Appendix B. Certified analytical results provided by the analyzing laboratory (Alpha Analytical, Inc.) are presented in Appendix C. Analytical results of sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.

FINDINGS:

Groundwater levels beneath the property are relatively shallow, ranging from 2.5 to 8.2 feet below the top of the well casing on March 28, 2014. Using the available data, groundwater levels were corrected to elevation mean sea level and used to prepare a groundwater elevation contour map (Figure 3). On March 28, 2014, west-southwest groundwater flow, at a gradient of approximately 0.01 ft/ft, was observed.

Figure 4 presents a summary of GRO, benzene, MTBE, and TBA concentrations in shallow groundwater using the March and May 2014 well sampling results. GRO was detected in three onsite well samples, at concentrations ranging from 77 micrograms per liter (μ g/L) to 1,200 μ g/L. As stated earlier, free phase petroleum hydrocarbons were observed at offsite well MW-7 between March and May 2014. GRO was detected in offsite well samples MW-9 (at 55 μ g/L) and MW-10 (95 μ g/L), and at a level of 8,300 μ g/L in offsite well MW-7 on May 28, 2014. Benzene was detected in three onsite well samples, at a maximum level of 6.0 μ g/L (well MW-6). Benzene was also reported in offsite well MW-7 (43 μ g/L). MTBE was detected in all 10 well samples; offsite concentrations ranged from 24 μ g/L to 340 μ g/L and onsite MTBE concentrations ranged from 0.51 μ g/L to 28 μ g/L. TBA was detected in six of the ten well samples, at a maximum concentration of 33,000 μ g/L (well MW-8). TAME was detected in samples collected from well MW-3R (5.3 μ g/L), MW-6 (2.0 μ g/L), and MW-7 (9.7 μ g/L).

DISCUSSION:

In May and June 2011, a soil excavation project was performed onsite in order to remove petroleum hydrocarbon mass from the subsurface. The approximate limits of the excavation cavity are depicted on Figure 2. In order to facilitate the excavation, several monitoring wells and numerous remediation wells that had been historically installed at the site were destroyed. In order to facilitate excavation, de-watering was performed, which allowed the excavation to extend to depths of approximately 10 to 12 feet bgs. After backfilling the excavation area, two replacement groundwater monitoring wells (MW-3R and MW-4R) were installed, near the historical locations of MW-3 and MW-4, respectively.

A review of Table 3 data appears to indicate that excavation and de-watering work has resulted in a significant reduction in fuel contaminant concentrations in groundwater onsite, in particular at well(s) MW-3/3R and MW-4/4R. In the area of the excavation, no GRO or BTEX were detected in groundwater samples, and relatively low levels of MTBE, TBA, and TAME were observed.

ATTACHMENTS:

•	Table 1	Monitoring Well Construction Detail Summary
•	Table 2	Groundwater Elevation Data
•	Table 3	Groundwater Analytical Data

Figure 1 Site Location MapFigure 2 Site Vicinity Map

Figure 3 Groundwater Elevation Contour Map, Spring 2014
 Figure 4 Groundwater Analytical Summary, Spring 2014

Appendix A Field Data Sheets

Appendix B Sampling and Analyses Procedures

Appendix C Laboratory Analytical Reports and Chain-of-Custody Documentation

• Appendix D GeoTracker Electronic Submittal Confirmations

TABLE 1 MONITORING WELL CONSTRUCTION DETAIL SUMMARY

Alaska Gas Service Station 6211 San Pablo Avenue, Oakland, CA

Well I.D.	Installation Date	Well Diameter (inches)	Well Depth (feet)	Screen Interval (feet bgs)
MW-1*	Oct-1999	2	23	3-23
MW-1R	Jan-2004	2	23	3-23
MW-2	Oct-1999	2	21	6-21
MW-3**	Oct-1999	2	21	6-21
MW-3R	June-2011	2	15	5-15
MW-4**	Nov-2001	2	20	5-20
MW-4R	June-2011	2	15	5-15
MW-5	Nov-2001	2	25	5-25
MW-6	Nov-2001	2	25	5-25
MW-7	Feb-2010	2	16	6-16
MW-8	Feb-2010	2	15	5-15
MW-9	Feb-2010	2	15	5-15
MW-10	Feb-2010	2	15	5-15
EX-1**	Jan-2004	4	30	5-30

Notes:

bgs = below ground surface

Information prior to February 2014, taken from the AEI Consultants, Remedial Action Report / Groundwater Monitoring Report - 2nd Semester 2011, dated October 6, 2011.

^{* =} Monitoring well destroyed approximately 2004

^{** =} Monitoring well was destroyed on May 17, 2011

TABLE 2 GROUNDWATER ELEVATION DATA Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-1	11/07/99	34.70	8.53	26.17
	03/08/01		6.32	28.38
	11/17/01		8.09	26.61
	03/31/02		7.18	27.52
	09/09/03		8.54	26.16
	12/09/03		7.50	27.20
		Well Destroy	ved May 17, 2011	
MW-1R	02/19/04	36.67	5.45	31.22
	05/24/04		8.58	28.09
	09/03/04		9.15	27.52
	02/17/05		6.57	30.10
	08/15/05		8.55	28.12
	11/17/05		8.41	28.26
	02/08/06		6.81	29.86
	05/05/06		7.46	29.21
	08/18/06		8.58	28.09
	12/01/06		6.56	30.11
	08/16/07		9.33	27.34
	11/08/07		8.83	27.84
	02/14/08		6.89	29.78
	05/15/08		8.53	28.14
	09/10/08		9.36	27.31
	11/18/08		8.82	27.85
	02/17/09		5.67	31.00
	05/15/09		7.79	28.88
	08/13/09		9.20	27.47
	02/23/10		6.67	30.00
	08/12/10		8.74	27.93
	02/17/11		6.51	30.16
	08/17/11		8.78	27.89
	03/28/14		8.18	28.49

TABLE 2 GROUNDWATER ELEVATION DATA Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-2	11/07/99	34.94	8.26	26.68
	03/08/01		5.89	29.05
	11/17/01		7.75	27.19
	03/31/02		6.68	28.26
•	09/09/03		8.26	26.68
	12/09/03		7.20	27.74
	02/19/04		5.81	29.13
	05/24/04		7.79	27.15
	09/03/04		8.43	26.51
	11/02/04		7.65	27.29
	02/17/05		5.86	29.08
	05/26/05		6.39	28.55
	08/17/05		7.99	26.95
	11/17/05		7.88	27.06
	02/08/06		6.24	28.70
ľ	05/05/06		6.89	28.05
	08/18/06		8.05	26.89
	12/01/06		7.58	27.36
	08/16/07		7.26	27.68
	11/08/07		7.81	27.13
	02/14/08		5.90	29.04
	05/15/08	36.33	7.63	28.70
	09/10/08		8.43	27.90
	11/18/08		7.83	28.50
	02/17/09		4.92	31.41
	05/15/09		6.81	29.52
	08/13/09		8.23	28.10
	02/23/10		6.06	30.27
	08/12/10		7.70	28.63
	02/17/11		6.16	30.17
	08/17/11		7.16	29.17
	03/28/14		7.60	28.73

TABLE 2 GROUNDWATER ELEVATION DATA

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-3	11/07/99	33.74	7.55	26.19
	03/08/01		5.36	28.38
	11/17/01		7.18	26.56
	03/31/02		6.27	27.47
	09/09/03		7.52	26.22
	12/09/03		6.45	27.29
	02/19/04		5.56	28.18
	05/24/04		6.99	26.75
	09/03/04		7.53	26.21
	11/02/04		6.88	26.86
	02/17/05		5.01	28.73
	08/15/05		7.71	26.03
	11/17/05		7.56	26.18
	02/08/06		6.00	27.74
	05/05/06		6.65	27.09
	08/18/06		7.73	26.01
	12/01/06		8.51	25.23
	08/16/07		7.62	26.12
	11/08/07		7.52	26.22
	02/14/08		5.60	28.14
	05/15/08	35.12	7.23	27.89
	09/10/08		8.08	27.04
	11/18/08		7.52	27.60
	02/17/09		4.36	30.76
	05/15/09		6.50	28.62
	08/13/09		7.96	27.16
	02/23/10		5.10	30.02
	08/12/10		7.40	27.72
		Well Destroy	ved May 17, 2011	
MW-3R	07/14/11		7.01	
	08/17/11		7.48	
	3828/14		7.68	

TABLE 2 GROUNDWATER ELEVATION DATA

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-4	11/17/01	32.38	5.75	26.63
	03/31/02		5.40	26.98
	12/09/03			
	09/09/03			
	05/24/04*		5.70	26.91
	02/19/04*		3.56	29.00
	05/05/06		5.60	26.78
	08/18/06		6.45	25.93
	12/01/06		5.95	26.43
	11/18/07		6.60	25.78
	02/14/08		4.28	28.10
	05/15/08	34.11	5.43	28.68
	09/10/08		7.26	26.85
	11/18/08		5.84	28.27
	02/17/09		2.67	31.44
	05/15/09		4.90	29.21
	08/13/09		6.02	28.09
	02/23/10		3.84	30.27
	08/12/10		5.65	28.46
	02/17/11		3.19	30.92
		Well Destroy	ved May 17, 2011	
MW-4R	07/14/11		5.31	
	08/17/11		5.78	
	03/28/14		5.90	

TABLE 2
GROUNDWATER ELEVATION DATA
Alaska Gas Service Station

6211 San Pablo Avenue, Oakland, CA

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-5	11/17/01	33.75	6.22	27.53
	03/31/02		6.35	27.40
	09/09/03		7.08	26.67
	12/09/03		6.13	27.62
	02/19/04		5.11	28.64
	05/24/04		6.57	27.18
	09/03/04		7.01	26.74
	11/02/04		6.43	27.32
1	05/24/05		6.02	27.73
	08/17/05		6.75	27.00
1	11/17/05		6.47	27.28
	02/08/06		5.53	28.22
	05/05/06		6.10	27.65
1	08/18/06		6.77	26.98
	12/01/06		6.47	27.28
	08/16/07		6.79	26.96
	11/08/07		6.43	27.32
	02/14/08		5.31	28.44
	05/15/08	35.17	6.29	28.88
	09/10/08		6.99	28.18
	11/18/08		6.41	28.76
	02/17/09		4.07	31.10
	05/15/09		5.59	29.58
	08/13/09		6.81	28.36
	02/23/10		5.05	30.12
	08/12/10		6.61	28.56
	02/17/11		5.03	30.14
	08/17/11		6.59	28.58
	03/28/14		6.97	28.20

STRATUS

TABLE 2
GROUNDWATER ELEVATION DATA
Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-6	11/17/01	34.68	7.19	27.49
	03/31/02		6.58	28.10
	09/09/03		8.21	26.47
	12/09/03		7.11	27.57
	02/19/04		5.61	29.07
	05/24/04			
	09/03/04		8.25	26.43
	11/02/04		7.57	27.11
	02/17/05		5.70	28.98
	08/15/05		7.91	26.77
	11/17/05		7.80	26.88
	02/08/06		6.16	28.52
	05/05/06		6.81	27.87
	08/18/06		7.97	26.71
	12/01/06		7.60	27.08
	08/16/07		7.94	26.74
	11/08/07		7.71	26.97
	02/14/08		5.83	28.85
	05/15/08	36.07	7.51	28.56
	09/10/08		8.32	27.75
	11/18/08		7.73	28.34
	02/17/09		4.64	31.43
	05/15/09		6.89	29.18
	08/13/09		8.26	27.81
	02/23/10		5.76	30.31
	08/12/10		7.71	28.36
	02/17/11		4.89	31.18
	08/17/11		7.78	28.29
	03/28/14		7.20	28.87

TABLE 2
GROUNDWATER ELEVATION DATA

Alaska Gas Service Station

6211 San Pablo Avenue, Oakland, CA	6211	San	Pablo	Avenue,	Oakland,	CA
------------------------------------	------	-----	--------------	---------	----------	----

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-7	02/23/10	31.16	2.09	29.07
	08/12/10		4.14	27.02
	02/17/11		1.68	29.48
	08/17/11		4.01	27.15
	03/28/14		4.48	26.70*
	05/28/14		5.07	26.10*
MW-8	02/23/10	30.92	2.66	28.26
	08/12/10		4.16	26.76
	02/17/11		1.01	29.91
	08/17/11		4.41	26.51
	03/28/14		3.87	27.05
MW-9	02/23/10	28.90	2.84	26.06
	08/12/10		4.53	24.37
	02/17/11		1.93	26.97
	08/17/11		4.82	24.08
	03/28/14		4.65	24.25
MW-10	02/23/10	30.28	0.98	29.30
	08/12/10		3.47	26.81
	02/17/11		0.95	29.33
	08/17/11		3.39	26.89
	03/28/14		2.50	27.78

TABLE 2 GROUNDWATER ELEVATION DATA

Alaska Gas Service Station

6211 San Pablo Avenue, Oakland, CA

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
EX-1	02/19/04	33.28	3.96	29.32
	05/24/04*		5.56	28.25
	02/08/06		4.92	28.36
	05/05/06		5.15	28.13
	08/18/06		5.85	27.43
	12/01/06		4.96	28.32
	11/08/07		5.10	28.18
	02/14/08		3.51	29.77
	05/15/08		4.69	28.59
	09/10/08		5.46	27.82
	11/18/08		4.79	28.49
	02/17/09		1.86	31.42
	05/15/09		4.16	29.12
 	08/13/09		8.36	24.92
	02/23/10		3.09	30.19
	08/12/10		4.91	28.37
	02/17/11		2.53	30.75
		Well Destroy	ved May 17, 2011	

Notes:

-- = Not measured or Not Available

MSL = mean sea level

bgs = below ground surface

Information prior to February 2014, taken from the AEI Consultants, Remedial Action Report / Groundwater Monitoring Report - 2nd Semester 2011, dated October 6, 2011.

^{* =} Corrected for the presence of free phase petroleum hydrocarbons by the following formula: casing elevation - depth to water + (0.7 * free phase petroleum hydrocarbon thickness)

TABLE 3
GROUNDWATER ANALYTICAL DATA
Alaska Gas Service Station

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDI
							μg/L			-			
MW-1	11/07/99	5,700	170	59	22	85	20,000						
	03/08/01	17,000	480	150	52	170	38,000						
	11/17/01	10,000	230	210	60	250	22,000						
	03/31/02	12,000	61	ND	ND	29	35,000						
	11/09/03	19,000	ND	ND	ND	ND	50,000						
	12/09/03	22,000	150	ND	ND	ND	66,000						
					i	Well Destroy	ved May 17,	2011					
MW-1R	11/17/01												
	03/31/02												
	09/09/03												
	12/09/03												
	02/19/04	1,800	95	130	44	200	220						_
	05/24/04	210	12	10	5.4	23	79	ND	ND	2.1	37	ND	NI
		300	1.5	7.1	9.4	42	81			1.6	ND	ND	NI
	09/03/04	290	1.5	30	9.4		45	ND	ND	1.0	ND ND		
	11/02/04					45		ND	ND				-
	02/17/05	530	3.4	ND	ND	2.6	1,000	ND	ND	100	ND		 >T
	05/24/05							ND	ND	610	ND	ND	NI
	08/15/05	2,500	64	240	61	210	2,300	ND	ND	210	ND	ND	NI
	11/17/05	2,500	66	290	75	290	1,300	ND	ND	110	1,600	ND	NI
	02/08/06	3,300	100	310	86	470	1,400	ND	ND	130	1,400	ND	NI
	05/05/06	3,400	170	350	97	550	1,100	ND	ND	100	2,400	ND	NI
	08/18/06	5,800	190	1,000	230	1,000	490	ND	ND	36	2,900	ND	NI
	12/01/06	410	1.7	6.3	1.2	47	100	ND	ND	4.7	100	ND	NI
	02/23/07	ND	ND	0.51	ND	1.4	3	ND	ND	ND	ND	ND	NI
	05/10/07	ND	ND	ND	ND	2.0	5.9	ND	ND	ND	ND	ND	NI
	08/16/07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI
	11/08/07	1,300	11	82	54	270	1.4	ND	ND	ND	ND	ND	NI
	02/14/08	800	7.6	31	23	150	1.7	ND	ND	ND	ND	ND	NI
	05/15/08	3,200	20	200	110	550	4.2	< 0.50	< 0.50	1.0	<20	< 0.50	<0.5
	09/10/08	1,000	6.5	22	19	120	2.3	< 0.50	< 0.50	< 0.50	4.0	< 0.50	<0.5
	11/18/08	430	4.1	18	12	100	1.8	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	<0.5
	02/17/09	220	3.6	6.1	2.0	41	1.3	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	<0.5
	05/15/09	890	6.0	17	27	110	1.8	< 0.50	< 0.50	< 0.50	3.9	< 0.50	< 0.5
	08/13/09	2,000	17	23	73	350	2.1	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.5
	02/23/10	3,200	31	77	120	810	3.9	<1.7	<1.7	<1.7	<6.7	<1.7	<1.
	08/12/10	1,300	13	16	40	280	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.
	02/17/11	210	4.0	1.7	13	21	<0.5	<0.5	< 0.5	<0.5	<2.0	<0.5	<0.
	08/17/11	670	6.1	13	26	200	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<0.
	03/28/14	1,200	3.7	11	34	299	1.2			<2.0[1]	<20		

TABLE 3 GROUNDWATER ANALYTICAL DATA

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ЕТВЕ	TAME	TBA	1,2-DCA	EDB
							μg/L	,					
MW-2	11/07/99	6,000	1,300	92	50	400	6,800						
	03/08/01	41,000	8,100	870	2,000	4,100	26,000						
	11/17/01	18,000	3,700	180	610	640	16,000						
ļļ	03/31/02	32,000	6,500	270	1,700	2,700	19,000						
1	09/09/03	24,000	4,600	ND	1,200	440	19,000						
	12/09/03	31,000	6,200	170	1,600	2,700	19,000						
	02/19/04	21,000	4,600	120	970	2,000	15,000						
	05/24/04	1,200	120	3	63	67	1,900	ND	ND	ND	ND	ND	ND
	09/03/04	2,300	120	ND	51	70	1,700	ND	ND	26	ND	ND	ND
	11/02/04	530	35	ND	17	30	520	ND	ND	28	100		
	02/17/05	18,000	2,100	31	800	680	20,000	ND	ND	1,000	ND		
	05/24/05	22,000	3,200	52	1,400	1,700	16,000	ND	ND			ND	ND
	08/15/05	2,000	66	ND	46	47	2,400	ND	ND	95	880	ND	ND
	11/17/05	760	19	0.64	15	13	1,000	ND	ND	26	810	ND	ND
	02/08/06	10,000	1,500	8	660	380	4,300	ND	ND	120	2,800	ND	ND
	05/05/06	15,000	1,800	ND	1,200	1,200	5,800	ND	ND	150	4,300	ND	ND
	08/18/06	360	11	ND	13	9.7	160	ND	ND	4.6	600	ND	ND
	12/01/06	11,000	1,000	ND	990	910	2,100	ND	ND	87	2,000	ND	ND
	02/23/07	3,200	210	ND	270	85	900	ND	ND	33	1,400	ND	ND
	05/10/07	590	31	ND	39	22	200	ND	ND	5.9	250	ND	ND
	08/16/07	650	49	ND	71	49	100	ND	ND	3.5	82	ND	ND
	11/08/07	110	1.6	ND	1.9	1.6	23	ND	ND	0.64	48	ND	ND
	02/14/08	350	24	ND	12	5.9	190	ND	ND	7.7	320	ND	ND
	05/15/08	81	0.59	< 0.50	0.71	0.66	38	< 0.50	< 0.50	1.4	54	< 0.50	< 0.50
	09/10/08	150	6.4	< 0.50	8.4	5.1	14	< 0.50	< 0.50	0.55	38	< 0.50	< 0.50
	11/18/08	420	25	0.70	46	47	29	< 0.50	< 0.50	1.3	60	< 0.50	< 0.50
	02/17/09	460	23	0.96	51	37	26	< 0.50	< 0.50	1.4	61	< 0.50	< 0.50
	05/15/09	220	13	0.93	26	13	21	< 0.50	< 0.50	0.87	60	< 0.50	< 0.50
	08/13/09	110	7.0	< 0.50	13	5.0	7.7	< 0.50	< 0.50	< 0.50	26	< 0.50	< 0.50
	02/23/10	170	9.4	0.65	27	5.6	14	< 0.50	< 0.50	< 0.50	36	< 0.50	< 0.50
	08/12/10	< 50	1.1	< 0.50	1.8	0.63	3.7	< 0.50	< 0.50	< 0.50	6.3	< 0.50	< 0.50
	02/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	8.3	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	< 0.50
	08/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	150	<2.5	<2.5	<2.5	<10	<2.5	<2.5
	03/28/14	<50	<0.50	< 0.50	< 0.50	< 0.50	0.51			<1.0	<10		

TABLE 3 GROUNDWATER ANALYTICAL DATA

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ЕТВЕ	TAME	TBA	1,2-DCA	EDB
							μg/L						
MW-3	11/07/99	43,000	860	70	ND	65	120,000						
	03/08/01	90,000	1,800	ND	ND	ND	210,000						
	11/17/01	110,000	1,600	ND	ND	ND	300,000						
	03/31/02	130,000	2,400	670	300	390	300,000						
	09/09/03	190,000	1,600	ND	ND	ND	420,000						
	12/09/03	170,000	2,000	ND	ND	ND	4,500,000						
	02/19/04	86,000	1,800	630	ND	ND	160,000						
	05/24/04	120,000	2,200	ND	180	220	400,000	ND	ND	15,000	ND	ND	ND
	09/03/04	180,000	2,000	ND	ND	ND	510,000	ND	ND	14,000	ND	ND	ND
	11/02/04	150,000	1,700	ND	ND	ND	350,000	ND	ND	31,000	140,000		
	02/17/05	130,000	2,100	420	210	730	290,000	ND	ND	11,000	ND		
	05/24/05												
	08/15/05	110,000	1,500	ND	ND	ND	260,000	ND	ND	21,000	25,000	ND	ND
	11/17/05	200,000	2,400	ND	ND	ND	580,000	ND	ND	24,000	49,000	ND	ND
	02/08/06	470,000	3,800	660	ND	790	490,000	ND	ND	26,000	49,000	ND	ND
	05/05/06	400,000	3,300	ND	ND	ND	590,000	ND	ND	21,000	86,000	ND	ND
	08/18/06	310,000	1,800	ND	ND	ND	440,000	ND	ND	23,000	79,000	ND	ND
	12/01/06	270,000	ND	ND	ND	ND	290,000	ND	ND	11,000	90,000	ND	ND
	02/23/07	220,000	ND	ND	ND	ND	260,000	ND	ND	15,000	33,000	ND	ND
	05/10/07	140,000	ND	ND	ND	ND	180,000	ND	ND	7,100	80,000	ND	ND
	08/16/07	69,000	ND	ND	ND	ND	85,000	ND	ND	3,400	180,000	ND	ND
	11/08/07	34,000	ND	ND	ND	ND	38,000	ND	ND	1,400	140,000	ND	ND
	02/14/08	41,000	ND	ND	ND	ND	44,000	ND	ND	1,900	110,000	ND	ND
	05/15/08	43,000	<100	<100	<100	<100	62,000	<100	<100	1,100	200,000	<100	<100
	09/10/08	1,600	14	8.6	7.7	23	21,000	<1,000	<1,000	<1,000	290,000	<1,000	<1,000
	11/18/08	4,500	86	150	100	590	29,000	<1,000	<1,000	<1,000	290,000	<1,000	<1,000
	02/17/09	2,500	45	53	35	160	16,000	<1,000	<1,000	<1,000	190,000	<1,000	<1,000
	05/15/09	2,000	15	21	13	35	13,000	<1,000	<1,000	<1,000	260,000	<1,000	<1,000
	08/13/09	1,300	10	11	4.1	14	7,900	<1,200	<1,200	<1,200	250,000	<1,200	<1,200
	02/23/10	1,700	22	21	11	38	4,700	<1,700	<1,700	<1,700	260,000	<1,700	<1,700
	08/12/10	1,600	5.8	16	5.8	16	4,200	<1,200	<1,200	<1,200	250,000	<1,200	<1,200
	02/17/11	290	1.0	5.5	6.5	8.1	73	<50	<50	<50	8,500	< 50	<50
					i	Well Destro	yed May 17,	2011					
MW-3R	07/14/11	130	3.2	0.97	<0.5	1.2	1,200	<250	<250	<250	35,000	<250	<250
	08/17/11	64	< 0.5	<0.5	<0.5	< 0.5	260	<50	<50	<50	3,800	<50	<50
	03/28/14	<200[1]	<1.0[1]	<1.0[1]	<1.0[1]	<1.0[1]	28			5.3	1,400		

TABLE 3
GROUNDWATER ANALYTICAL DATA

					0211 San P	abio Aven	uc, Cakiai	iu, CA					
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	DIPE	ЕТВЕ	TAME	ТВА	1,2-DCA	EDB
							μg/L						
MW-4	11/17/01	64,000	960	1,400	360	1,600	140,000						
	03/31/02	78,000	4,400	4,700	690	2,700	150,000						
	09/06/07	49,000	710	840	ND	10,000	3,600	ND	ND	510	32,000	ND	ND
	11/08/07	64,000	1,300	2,600	1,000	8,500	1,500	ND	ND	360	14,000	ND	ND
	02/14/08	60,000	390	460	230	2,000	52,000	ND	ND	2,000	58,000	ND	ND
	05/15/08	22,000	670	130	740	2,700	3,300	<5.0	<5.0	340	35,000	<5.0	<5.0
	09/10/08	16,000	500	150	730	2,500	2,000	<250	<250	<250	65,000	<250	<250
	11/18/08	24,000	820	190	1,200	5,000	1,400	< 50	< 50	260	9,300	<50	<50
	02/17/09	17,000	350	170	620	2,600	360	<10	<10	82	2,100	<10	<10
	05/15/09	32,000	300	190	880	3,200	470	<10	<10	95	380	<10	<10
	08/13/09	29,000	320	250	980	3,400	350	<50	< 50	61	10,000	< 50	<50
]	02/23/10	15,000	250	77	580	2,200	180	<5.0	<5.0	41	400	< 5.0	<5.0
	08/12/10	17,000	200	47	580	1,400	150	<10	<10	28	1,800	<10	<10
	02/17/11	7,600	190	15	260	440	130	<5.0	<5.0	29	790	< 5.0	<5.0
					ì	Well Destroy	ved May 17,	2011					
MW-4R	07/14/11	1,000	210	3.6	<2.5	32	7,800	<200	<200	390	41,000	<200	<200
	08/17/11	840	9.1	< 5.0	< 5.0	<5.0	4,500	<250	<250	310	26,000	<250	<250
	03/28/14	<50	<0.50	<0.50	<0.50	<0.50	3.6			<1.0	110		

TABLE 3
GROUNDWATER ANALYTICAL DATA

					ozii San i	ablo Aven	ue, Oakia	iu, CA	_				
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	DIPE	ЕТВЕ	TAME	ТВА	1,2-DCA	EDB
							μg/L	·					
MW-5	11/17/01	210	15	12	11	23	4.8						
	03/31/02	120	11	7.4	6.1	16	4.2						
	09/09/03	ND	1.5	ND	ND	ND	1.7						
1	12/09/03	130	32	ND	2.6	0.57	5						
	02/19/04	ND	ND	ND	ND	ND	1.5						
	05/24/04	ND	ND	ND	ND	ND	0.55	ND	ND	ND	ND	ND	ND
	09/03/04	100	6.4	ND	ND	0.79	4.2	ND	ND	ND	ND	ND	ND
	11/02/04	ND	2.6	ND	1.7	0.87	1	ND	ND	ND	ND	ND	ND
	02/17/05	51	0.74	ND	0.94	ND	1.5	ND	ND	ND	ND	ND	ND
H	05/24/05	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	08/15/05	ND	ND	ND	ND	ND	0.88	ND	ND	ND	ND	ND	ND
	11/17/05	71	0.81	ND	1.1	ND	1.4	ND	ND	ND	ND	ND	ND
	02/08/06	50	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
1	05/05/06	ND	ND	ND	ND	ND	0.93	ND	ND	ND	ND	ND	ND
	08/18/06	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	12/01/06	ND	0.69	ND	ND	0.52	0.97	ND	ND	ND	ND	ND	ND
	02/23/07	73	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND
	05/10/07	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	08/16/07	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	11/08/07	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
İ	02/14/08	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	05/15/08	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	< 0.50	< 0.50	< 0.50	<20	< 0.50	<0.50
	09/10/08	480	17	1.8	2.7	0.59	12	< 0.50	< 0.50	< 0.50	4.4	< 0.50	<0.50
	11/18/08	130	2.3	1.6	< 0.50	< 0.50	7.3	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	<0.50
	02/17/09	170	< 0.50	2.7	< 0.50	< 0.50	4.2	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.50
	05/15/09	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.6	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.50
	08/13/09	380	19	2.1	3.8	0.88	11	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.50
ľ	02/23/10	< 50	< 0.50	0.87	< 0.50	< 0.50	1.9	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.50
	08/12/10	120	1.5	2.9	0.74	3.5	13	< 0.50	< 0.50	< 0.50	3.0	< 0.50	<0.50
	02/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.7	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	<0.5
	08/17/11	160	2.3	1.1	< 0.5	< 0.5	5.4	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	<0.5
	03/28/14	77	0.52	<0.50	<0.50	< 0.50	5.2			<1.0	<10		

TABLE 3
GROUNDWATER ANALYTICAL DATA
Alaska Gas Service Station

Well Date ID Collect MW-6 11/17/ 03/31/ 09/09/ 12/09/ 02/19/ 09/03/ 11/02/ 02/17/ 08/15/ 11/17/ 02/08/ 05/05/ 08/18/ 12/01/ 02/23/ 05/10/ 08/16/ 11/08/ 02/14/	ed GRO 201 3,500 202 3,200 203 800 203 970 204 1,900 204 1,100 204 1,800 205 5,600 205 1,800 206 1,600 206 1,700 207 ND	160 410 49 150 280 27 32 190 27 30 220 130 27 ND	70luene 260 170 ND 9.9 58 ND ND 34 ND ND 43 21 ND ND ND ND ND	95 82 7.4 31 17 14 5 41 6 4 66 37 3 ND	Total Xylenes 420 280 ND 83 160 27 11 110 23 9 160 65 4 ND	MTBE 1,500 3,000 1,700 1,200 2,700 2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	ND	ETBE ND	TAME 85 170 780 300 190 180 53 11	TBA ND 270 2,000 3,500 9,500 7,800 3,100 2,400	1,2-DCA ND	EDB ND
03/31// 09/09// 12/09// 02/19// 09/03// 11/02// 02/17// 08/15// 11/17// 02/08// 05/05// 08/18// 02/23// 05/10// 08/16// 11/08// 02/14//	3,200 3,200 800 970 94 1,900 94 1,100 94 1,800 95 5,600 95 1,800 96 1,600 96 270 96 1,700 90 ND	410 49 150 280 27 32 190 27 30 220 130 27 ND	170 ND 9.9 58 ND ND 34 ND ND 43 21 ND ND	82 7.4 31 17 14 5 41 6 4 66 37 3	280 ND 83 160 27 11 110 23 9 160 65 4	1,500 3,000 1,700 1,200 2,700 2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	ND	 ND ND ND ND ND ND ND	 85 170 780 300 190 180 53	 ND 270 2,000 3,500 9,500 7,800 3,100	 ND ND ND ND ND ND	 ND ND ND ND ND ND
03/31// 09/09// 12/09// 02/19// 09/03// 11/02// 02/17// 08/15// 11/17// 02/08// 05/05// 08/18// 02/23// 05/10// 08/16// 11/08// 02/14//	3,200 3,200 800 970 94 1,900 94 1,100 94 1,800 95 5,600 95 1,800 96 1,600 96 270 96 1,700 90 ND	410 49 150 280 27 32 190 27 30 220 130 27 ND	170 ND 9.9 58 ND ND 34 ND ND 43 21 ND ND	82 7.4 31 17 14 5 41 6 4 66 37 3	280 ND 83 160 27 11 110 23 9 160 65 4	3,000 1,700 1,200 2,700 2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	 ND ND ND ND ND ND ND	 ND ND ND ND ND ND ND	 85 170 780 300 190 180 53	 ND 270 2,000 3,500 9,500 7,800 3,100	 ND ND ND ND ND ND	 ND ND ND ND ND ND
09/09/0 12/09/0 02/19/0 09/03/0 11/02/0 02/17/0 08/15/0 11/17/0 02/08/0 05/05/0 08/18/0 02/23/0 05/10/0 08/16/0 11/08/0	03 800 03 970 04 1,900 04 1,100 04 1,800 05 5,600 05 1,800 05 1,100 06 3,600 06 1,600 06 270 06 1,700 07 ND	49 150 280 27 32 190 27 30 220 130 27 ND	ND 9.9 58 ND ND 34 ND ND 43 21 ND ND	7.4 31 17 14 5 41 6 4 66 37 3	ND 83 160 27 11 110 23 9 160 65 4	1,700 1,200 2,700 2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	ND	ND	 85 170 780 300 190 180 53	 ND 270 2,000 3,500 9,500 7,800 3,100	ND	 ND ND ND ND ND ND ND
12/09/0 02/19/0 09/03/0 11/02/0 02/17/0 08/15/0 11/17/0 02/08/0 05/05/0 08/18/0 12/01/0 02/23/0 05/10/0 08/16/0 11/08/0	970 94 1,900 94 1,100 94 1,800 95 5,600 95 1,800 95 1,100 96 3,600 96 1,600 96 270 96 1,700 97 ND	150 280 27 32 190 27 30 220 130 27 ND	9.9 58 ND ND 34 ND ND 43 21 ND ND	31 17 14 5 41 6 4 66 37 3	83 160 27 11 110 23 9 160 65 4	1,200 2,700 2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	ND N	ND	 85 170 780 300 190 180 53	ND 270 2,000 3,500 9,500 7,800 3,100	ND	ND
02/19/\ 09/03/\ 11/02/\ 02/17/\ 08/15/\ 11/17/\ 02/08/\ 05/05/\ 08/18/\ 12/01/\ 02/23/\ 08/16/\ 11/08/\ 02/14/\	1,900 1,100 1,800 1,800 1,800 1,800 1,800 1,800 1,100 1,600 1,600 1,600 1,700 1,700 1,700 1,700	280 27 32 190 27 30 220 130 27 ND	58 ND ND 34 ND ND 43 21 ND ND	17 14 5 41 6 4 66 37 3	160 27 11 110 23 9 160 65 4	2,700 2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	ND	ND	 85 170 780 300 190 180 53	ND 270 2,000 3,500 9,500 7,800 3,100	ND ND ND ND ND ND ND	ND
09/03/4 11/02/4 02/17/4 08/15/4 11/17/4 02/08/4 05/05/6 08/18/4 02/23/4 05/10/6 08/16/6 11/08/6 02/14/6	1,100 1,800 05 5,600 05 1,800 05 1,100 06 3,600 06 1,600 06 270 06 1,700 07 ND	27 32 190 27 30 220 130 27 ND	ND ND 34 ND ND 43 21 ND ND	14 5 41 6 4 66 37 3	27 11 110 23 9 160 65 4	2,200 4,100 10,000 3,800 2,400 2,700 1,400 240	ND	ND	85 170 780 300 190 180 53	ND 270 2,000 3,500 9,500 7,800 3,100	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
11/02/0 02/17/0 08/15/0 11/17// 02/08/0 05/05/0 08/18/0 12/01/0 02/23/0 05/10/0 08/16/0 11/08/0 02/14/0	1,800 05 5,600 05 1,800 05 1,100 06 3,600 06 1,600 06 270 06 1,700 07 ND	32 190 27 30 220 130 27 ND	ND 34 ND ND 43 21 ND	5 41 6 4 66 37 3	11 110 23 9 160 65 4	4,100 10,000 3,800 2,400 2,700 1,400 240	ND ND ND ND ND ND	ND ND ND ND ND ND	170 780 300 190 180 53	270 2,000 3,500 9,500 7,800 3,100	ND ND ND ND ND ND	ND ND ND ND ND
02/17/08/15/0 08/15/0 11/17/0 02/08/0 05/05/0 08/18/0 02/23/0 05/10/0 08/16/0 11/08/0 02/14/0	5,600 5,600 1,800 5,1100 6,63,600 6,61,600 6,6270 6,700 7,700	190 27 30 220 130 27 ND	34 ND ND 43 21 ND	41 6 4 66 37 3	110 23 9 160 65 4	10,000 3,800 2,400 2,700 1,400 240	ND ND ND ND ND	ND ND ND ND ND ND	780 300 190 180 53	2,000 3,500 9,500 7,800 3,100	ND ND ND ND ND	ND ND ND ND ND
08/15// 11/17// 02/08// 05/05// 08/18// 12/01// 02/23// 05/10// 08/16// 11/08// 02/14//	1,800 1,100 06 3,600 06 1,600 06 270 06 1,700 07 ND	27 30 220 130 27 ND	ND ND 43 21 ND ND	6 4 66 37 3	23 9 160 65 4	3,800 2,400 2,700 1,400 240	ND ND ND ND ND	ND ND ND ND ND	300 190 180 53	3,500 9,500 7,800 3,100	ND ND ND ND	ND ND ND ND
11/17// 02/08// 05/05// 08/18// 12/01// 02/23// 05/10// 08/16// 11/08// 02/14//	1,100 3,600 06 1,600 06 270 06 1,700 07 ND	30 220 130 27 ND	ND 43 21 ND ND	4 66 37 3	9 160 65 4	2,400 2,700 1,400 240	ND ND ND ND	ND ND ND ND	190 180 53	9,500 7,800 3,100	ND ND ND	ND ND ND
02/08// 05/05// 08/18// 12/01// 02/23// 05/10// 08/16// 11/08// 02/14//	3,600 06 1,600 06 270 06 1,700 07 ND	220 130 27 ND	43 21 ND ND	66 37 3	160 65 4	2,700 1,400 240	ND ND ND	ND ND ND	180 53	7,800 3,100	ND ND	ND ND
05/05/0 08/18/0 12/01/0 02/23/0 05/10/0 08/16/0 11/08/0 02/14/0	06 1,600 06 270 06 1,700 07 ND	130 27 ND	21 ND ND	37 3	65 4	1,400 240	ND ND	ND ND	53	3,100	ND	ND
08/18/0 12/01/0 02/23/0 05/10/0 08/16/0 11/08/0 02/14/0	06 270 06 1,700 07 ND	27 ND	ND ND	3	4	240	ND	ND		-		
12/01// 02/23/0 05/10/0 08/16/0 11/08/0 02/14/0	06 1,700 07 ND	ND	ND						11	2,400	ND	ND
02/23/0 05/10/0 08/16/0 11/08/0 02/14/0)7 ND			ND	ND	1 700						
05/10/0 08/16/0 11/08/0 02/14/0		ND	MID		1110	1,700	ND	ND	92	800	ND	ND
08/16/0 11/08/0 02/14/0			עא	ND	ND	15	ND	ND	ND	ND	ND	ND
11/08/0 02/14/0)7 ND	3.0	ND	ND	1.9	26	ND	ND	2	48	ND	ND
02/14/0)7 ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND
)7 ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND .
)8 ND	ND	ND	ND	ND	11	ND	ND	0.94	220	ND	ND
05/15/0)8 <50	< 0.50	< 0.50	< 0.50	< 0.50	13	< 0.50	< 0.50	1.0	130	< 0.50	< 0.50
09/10/0)8 78	1.4	0.60	0.94	1.3	71	<1.0	<1.0	6.2	160	<1.0	<1.0
11/18/0		2.4	< 0.50	< 0.50	0.70	72	<1.2	<1.2	7.2	180	<1.2	<1.2
02/17/0	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
05/15/0		3.2	< 0.50	< 0.50	1.7	44	<1.0	<1.0	4.3	89	<1.0	<1.0
08/13/0		5.9	0.57	0.97	5.0	27	< 0.50	< 0.50	2.2	140	< 0.50	<0.50
02/23/1		0.66	< 0.50	< 0.50	0.57	5.7	< 0.50	< 0.50	< 0.50	15	< 0.50	<0.50
08/12/1	.0 92	7.5	0.94	< 0.50	1.0	32	<1.0	<1.0	2.7	180	<1.0	<1.0
02/17/1	1 <50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	<0.5
08/17/1	1 <50	< 0.5	< 0.5	< 0.5	< 0.5	73	<1.2	<1.2	7.7	130	<1.2	<1.2
03/28/1	4 110	6.0	< 0.50	2.2	1.1	14			2.0	36		

TABLE 3
GROUNDWATER ANALYTICAL DATA

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ЕТВЕ	TAME	ТВА	1,2-DCA	EDB
							μg/L	,					
MW-7	02/23/10	29,000	410	380	2,100	6,100	410	<10	<10	19	1,500	<10	<10
	08/12/10	2,000	26	17	140	250	2,400	< 50	< 50	75	9,600	< 50	<50
	02/17/11	2,400	35	17	160	190	670	<10	<10	24	1,300	<10	<10
	08/17/11	320	4.3	4.0	5.7	11	3.0	< 0.5	< 0.5	< 0.5	110	< 0.5	< 0.5
	03/28/14												
	05/28/14	8,300	43	8.5	520	490	340			9.7	420		
MW-8	02/23/10	690	3.5	2.8	29	40	1,600	<100	<100	<100	24,000	<100	<100
	08/12/10	260	4.1	1.4	6.9	7.2	2,100	<170	<170	<170	25,000	<170	<170
	02/17/11	500	3.6	5.1	7.8	2.1	1,300	<100	<100	<100	25,000	<100	<100
	08/17/11	3,000	30	23	96	85	320	<100	<100	<100	19,000	<100	<100
	03/28/14	<4,000[1]	<20[1]	<20[1]	<20[1]	<20[1]	200			<40[1]	33,000		
MW-9	02/23/10	<50	< 0.50	0.70	< 0.50	< 0.50	260	<10	<10	<10	1,600	<10	<10
	08/12/10	<50	< 0.50	1.6	< 0.50	< 0.50	85	<10	<10	<10	880	<10	<10
	02/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	160	<5.0	<5.0	<5.0	1,300	<5.0	<5.0
	08/17/11	170	< 0.5	7.0	< 0.5	< 0.5	10	<5.0	<5.0	<5.0	650	<5.0	<5.0
	03/28/14	55	< 0.50	< 0.50	< 0.50	< 0.50	74			<1.0	15		
MW-10	02/23/10	1,300	< 0.50	11	3.1	2.6	2.8	<0.50	<0.50	< 0.50	<2.0	< 0.50	<0.50
	08/12/10	61	< 0.50	0.72	< 0.50	< 0.50	39	< 0.50	< 0.50	1.8	< 2.0	< 0.50	< 0.50
	02/17/11	150	< 0.5	1.6	< 0.5	< 0.5	6.9	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	<0.5
	08/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	6.9	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	<0.5
	03/28/14	95	< 0.50	< 0.50	<0.50	<0.50	24			<1.0	<10		

TABLE 3
GROUNDWATER ANALYTICAL DATA

Alaska Gas Service Station 6211 San Pablo Avenue, Oakland, CA

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	DIPE	ЕТВЕ	TAME	TBA	1,2-DCA	EDB
							μg/L						
EX-1	02/19/04	120,000	9,500	4,300	840	3,900	150,000						
	02/14/08	84,000	2,300	4,900	1,800	14,000	3,900	ND	ND	ND	ND	ND	ND
	05/15/08	24,000	2,100	750	640	2,100	1,800	< 0.50	< 0.50	610	10,000	< 0.50	< 0.50
	09/10/08	9,200	1,000	160	300	1,000	780	<100	<100	380	11,000	<100	<100
	11/18/08	8,900	1,400	290	360	1,300	840	<100	<100	180	22,000	<100	<100
	02/17/09	70,000	2,700	3,600	1,900	13,000	1,400	<25	<25	230	20,000	<25	<25
	05/15/09	18,000	1,400	250	530	1,700	640	<25	<25	480	1,500	<25	<25
	08/13/09	10,000	1,100	150	410	940	520	<25	<25	200	5,500	<25	<25
	02/23/10	39,000	1,300	1,100	1,100	7,700	880	<25	<25	120	5,200	<25	<25
	08/12/10	12,000	1,000	160	470	1,200	660	<17	<17	250	670	<17	<17
	02/17/11	33,000	1,700	600	1,100	6,500	720	<12	<12	160	1,000	<12	<12
						Well Destroy	ved May 17,	2011					

Notes:

μg/L = Micrograms per liter

GRO = Gasoline Range Organics (C4-C13)

MTBE = Methyl Tertiary Butyl Ether

TAME= Tertiary Amyl Methyl Ether ETBE= Ethyl Tertiary Butyl Ether DIPE= Di-Isopropyl Ether

TBA = Tertiary Butyl Alcohol 1,2-DCA= 1,2-Dichloroethane

EDB = Ethylene dibromide

Analytical Methods:

GRO by EPA Method SW8015B/SW8260B All other analytes by EPA Method SW8260B.

Information prior to February 2014, taken from the AEI Consultants, Remedial Action Report

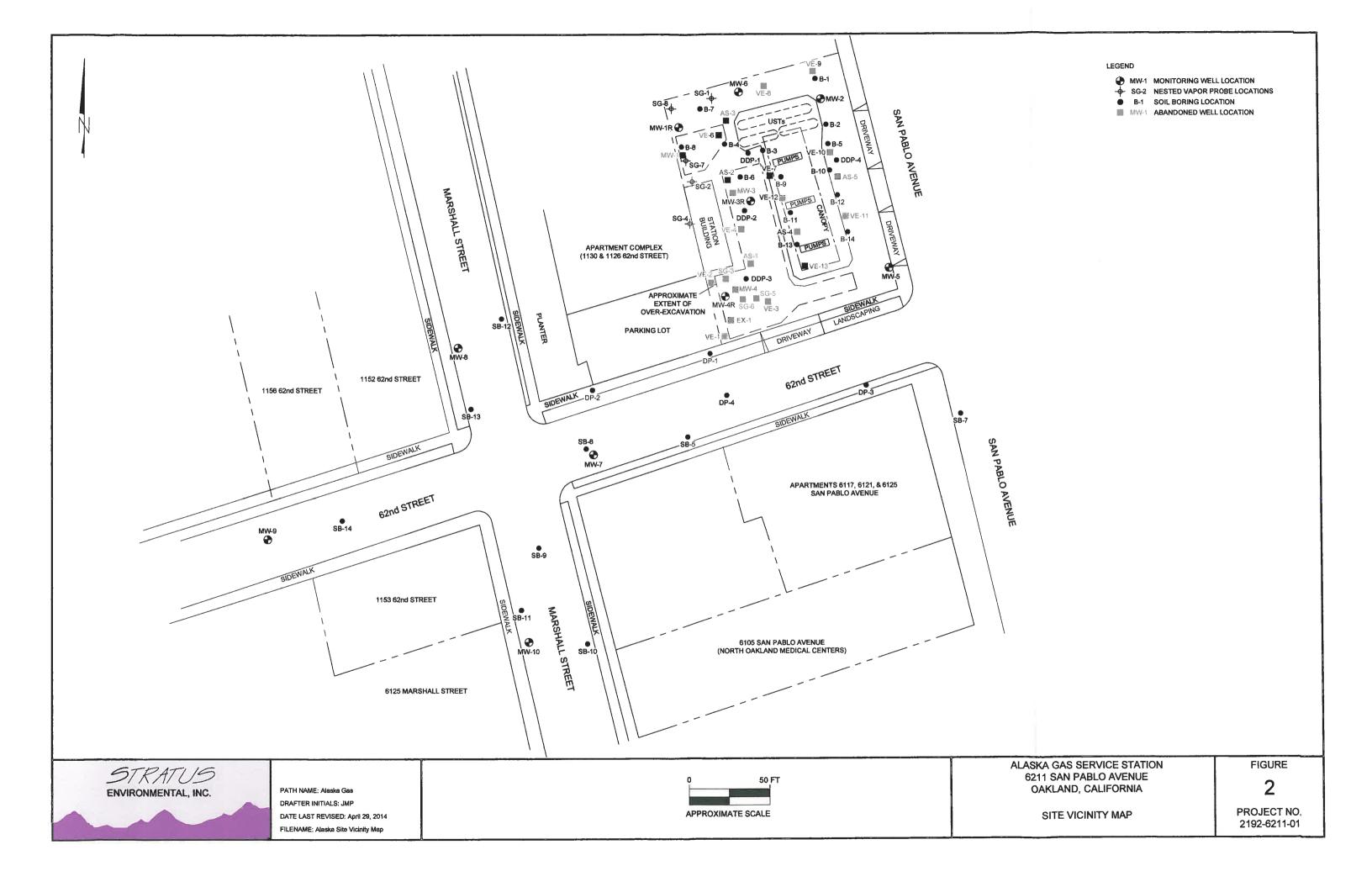
Groundwater Monitoring Report - 2nd Semester 2011, dated October 6, 2011.

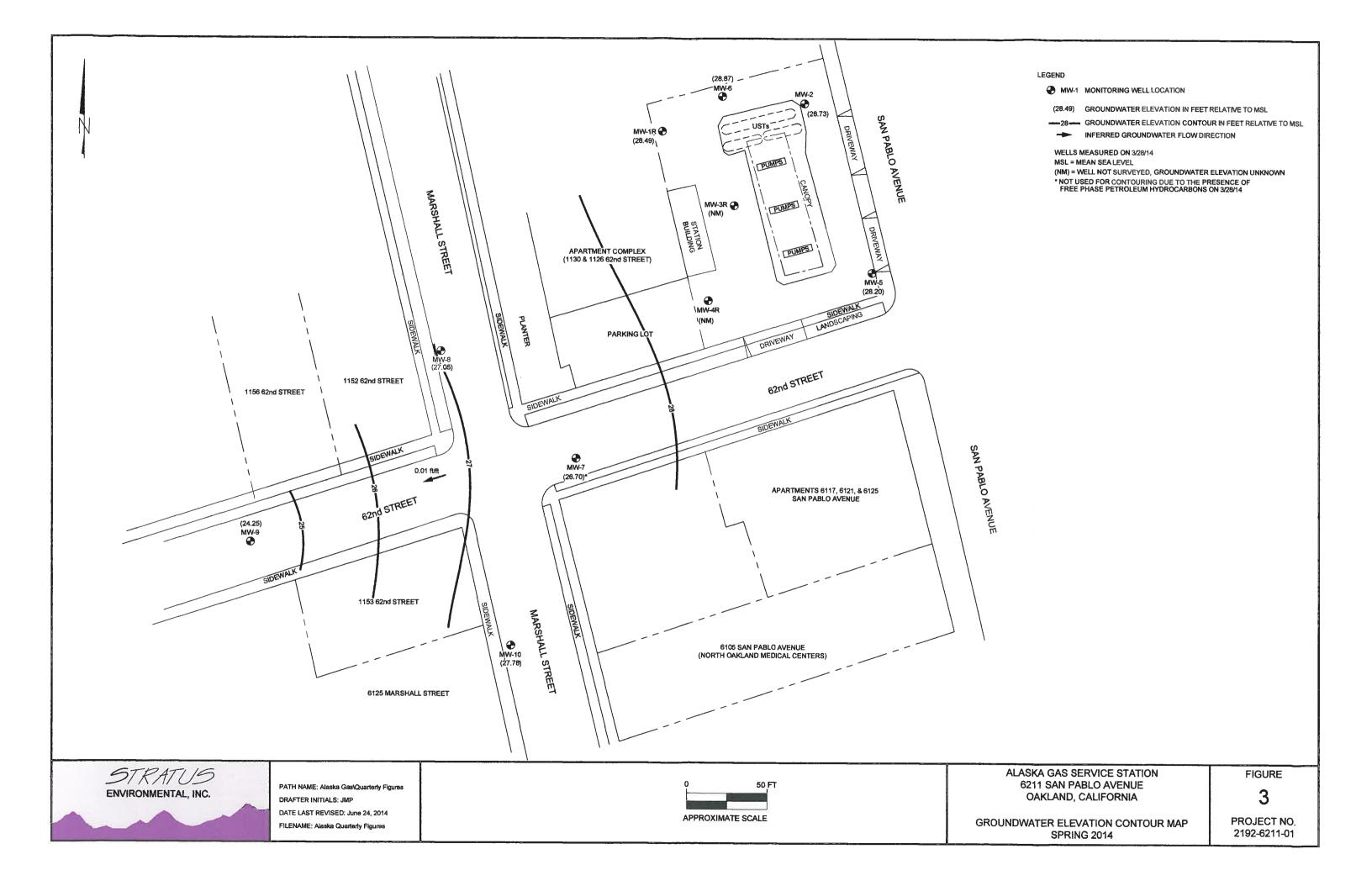
^{1 =} Reporting limits were increased due to high concentrations of target analytes.

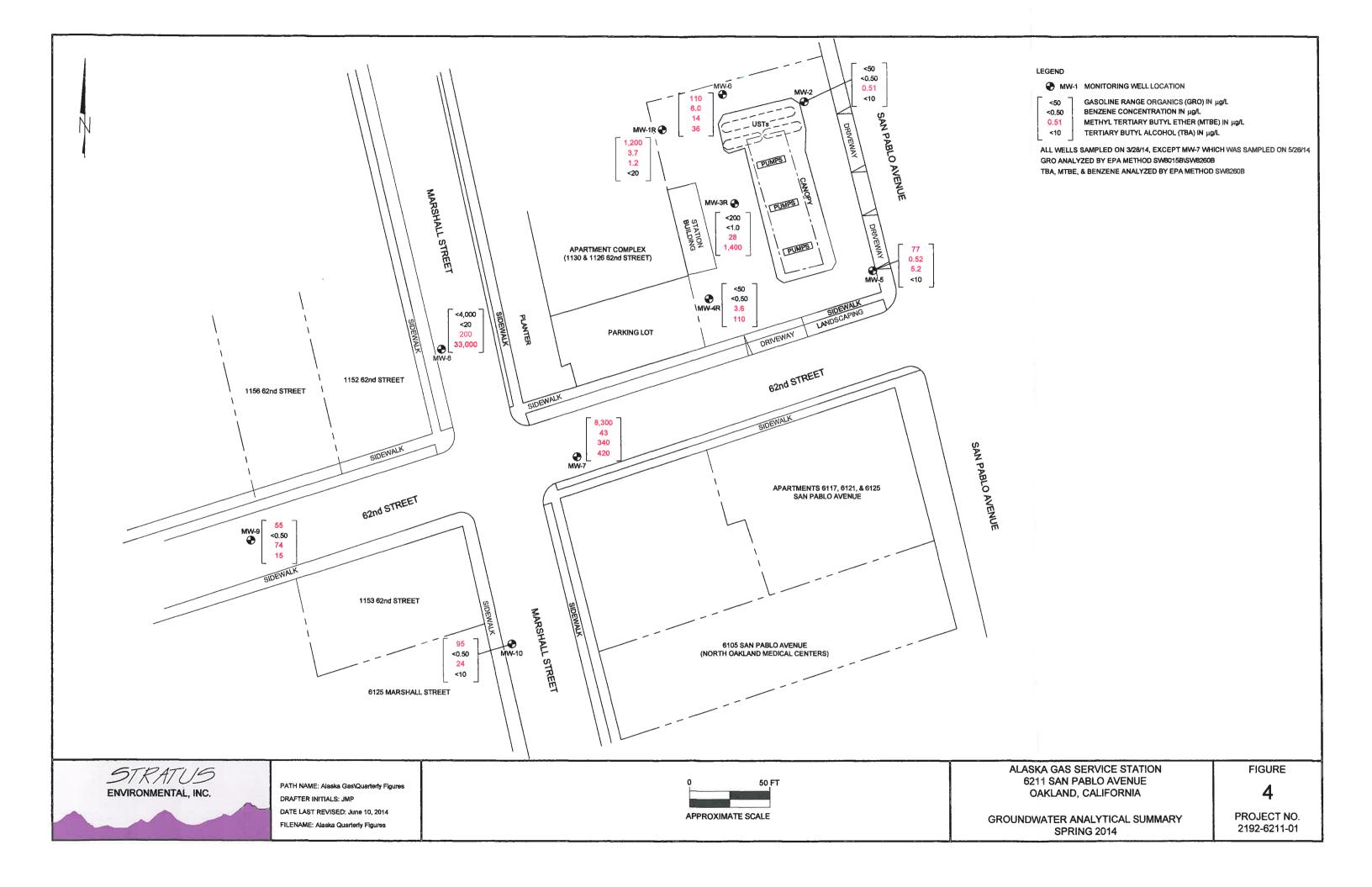
GENERAL NOTES: BASE MAP FROM U.S.G.S. OAKLAND WEST, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 2012

STRATUS

ENVIRONMENTAL, INC.




ALASKA GAS SERVICE STATION 6211 SAN PABLO AVENUE OAKLAND, CALIFORNIA


SITE LOCATION MAP

FIGURE

1 PROJECT NO. **2192-6211-01**

APPENDIX A FIELD DATA SHEETS

Site Address 6211 San Pablo Ave
City Oakland
Sampled By: Jerry Gon Zules
Signature

				Veli ID Mu	7-4			
11 58		Odor	⊘ N	ourge start time	1155		Odor	YN
Temp C	рН	cond	gallons		Temp C	pН	cond	gallons
		1/85	2	ime //56	1827	690	650	18
			4	ime 1157	1853	6-86	628	3.7
1799	6,53	985	6	ime // 58"	18.32	6.85	639	5,5
				lime				
1132	-	ORP-	25.4	purge stop time /	159		ORP-/	2.9
1.10				Well ID MI	W. / R			
1217		Odor	Y (N)	Purge start time	1335	•	Odor	Y (N)
Temp C	рН	cond	gallons		Temp C	рН	cond	gallons
15.88	6.57	685	28				615	2.5
1653	6.57	684	4.3				559	5.0
1605	656	694	6.5	time /338	17.84	6.01	530	7.5
				time				
12:21		ORP 2	21.9	purge stop time	1339		ORP	21.8
1-6			5-	Well ID M	N: 3	R		-
1350	٥	Ödor	Y 10	Purge start time	1410)	Odor	Y (N)
Temp C	pН	cond	gallons		Temp C	pHℯ	cond	gallons
18.04	6.56		2.8	time /4//	1868	6.55	753	1.3
18:05	6.53	1	5.6	time /4/2	1807	6.62	386	2-6
17.77	651	506	8.5	ime 14/3	1767	6,63	191	4.0
				lime	, i			
13:59		ORP-	Co				ORP -	09
						· · · · · · · · · · · · · · · · · · ·		
1-2			الما	Well ID MI	U-4R	·		
1-2	7	Odor	* (1)	Well ID AUC Purge start time	1480		Odor	Y
	5 pH	Odor	gallorac 4	Purge start time			Odor	y (v)
145	ρН		2 1	Purge start time	/480 Temp C	T		
/ / Z	pH 6.56	cond	gallor## 2.7 .4.4	Purge start time	/450 Temp C	pH 665 6.79	cond	gallons
/ 42 Temp C /889	pH 6.56 6.49	cond 6 2 7	gallora 4	Purge start time	/480 Temp C */833	pH 665	506	gallons
/ Y Z Temp C / 859	pH 6.56 6.49	cond 6 2 7 6 6 /	gallor## 2.7 .4.4	Purge start time	/ 450 Temp C * / 833	pH 665 6.79	506 664	gallons /. 6 3.3
	Temp C / 768 / 7.99 / 7.79 // 7.77 Temp C / 5.88 / 6.53 / 6.55 / 12:2/ / 1-6 / 3.50 / 18:09 / 8:05 / 7.77	Temp C pH 1768 6.60 17.59 6.55 17.79 6.5 J 1/3 2 1/3 2 1/3 7 Temp C pH 1/3.88 6.5 7 1/6.53 6.5 7 1/6.05 6.5 6 1 3.50 Temp C pH 1/8.09 6.5 6 1/8.05 6.5 3	Temp C pH cond 1768 6.60 //85 17.59 6.55 /009 17.79 6.5	Temp C pH cond gallons 1768 6.60 1/85 Z 17.99 6.55 1009 Y 1799 6.53 985 6 1/3 Z ORP-25.4 1/3 Z ORP-25.4 1/4 S 6.57 685 2.8 1/6 S 6.56 694 6.5 1/2 Z ORP Z 1.9 1-6 1350 Odor Y N Temp C pH cond gallons 1804 6.56 565 2.8 1805 6.53 504 5.6 17.77 6.51 506 8.5	Temp C pH cond gallons 1768 6.60 1/85 7 1 1/56 1799 6.55 1/99 1 1 1/57 1799 6.53 1/85 6 1 1 1/58 1/3 2 0 0 0 0 0 1/3 2 0 0 0 0 0 1/3 2 0 0 0 0 1/3 2 0 0 0 0 1/3 2 0 0 0 0 1/3 3 0 0 0 0 1/3 8 6.57 6 6 5 2 8 1 1 1 1/4 5 5 6 5 6 5 0 1/4 5 6 5 6 5 0 1/4 5 6 5 0 0 1/4 5 6 5 5 0 0 1/4 5 6 5 5 5 5 0 1/4 7 7 6 5 5 5 5 5 0 1/4 7 7 6 5 5 5 5 5 5 5 5 1/4 7 7 6 5 5 5 5 5 5 5 5 1/4 7 7 6 5 5 5 5 5 5 5 5 1/4 7 7 6 5 5 5 5 5 5 5 5 5	Temp C pH cond gallons Temp C 1768 6.60 1/85 Z time 1/56 827 1/59 6.55 1/99 5.6 time 1/57 1/58 6.57 1/58 6.57 6.58 1/58 6.58 1/	Temp C pH cond gallons Temp C pH / 768 6.60 // 85 Z time // 56 / 827 690 / 7.59 6.55 /009 Y time // 57 / 853 6-86 / 7.79 6.53 9 85 6 time // 58 / 8.3 2 6 85 time // 3 Z ORP-2S.4 purge stop time // 59 / 7.77 Odor Y N Purge start time / 3 3 S Temp C pH cond gallons Temp C pH / 7.88 6.57 6 85 2.8 time / 3 3 7 / 8 2 7 6.3 2 / 6.55 6.56 6 9 9 6 5 time / 3 3 8 / 2 8 9 6.3 / time / 3 50 Odor Y N Purge start time / 3 3 8 / 2 8 9 6.5 / / 8.55 6.53 5 6 5 2.8 time / 3 3 8 / 2 8 9 6.3 / / 8.50 Odor Y N Purge start time / 9 / 70 Temp C pH cond gallons Temp C pH / 8.59 6.56 5 6 5 2.8 time / 9 / 1 / 8 68 6.5 5 / 8.55 6.53 5 7 5 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	

Site Address_	6211 San Pablo Avenue
City_	Oakland
Sampled by:	Jerry Gonzales
Signature _	Nice-
1	

Site Number	Alaska Gas	<u> </u>
Project Number	2192-6211-01	
Project PM	S. Bittinger	
DATE	3-28-14	1

	Water Level Data				Purge Volume Calculations Purge Method						d	S	ample Reco	ord	Field Data		
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge	Bailer	Pump	other	DTW at sample time (feet)	Sample I.D	Sample Time	DO (mg/L)
UW. IR	10:40			22.70	14.5	2"	0.5	9. 2	7.5			×			MW-IR	1345	241
MUZ	1047			20.50		211	0-5	6.4	6.6			X		7.94	MW. Z	1437	153
MW 34	10:28		768	1480	7.2	211	0.5	3.6	9.0			X		7.81	nw -32	7 0 0	
WW 40	1017		590	14.60	8.7	2"	5.0	4.38	5.0			X		6.03	11-41		209
MWS	1103		697	24.00	17.0	2"	0.5	8.5	9.0			Х		205	pw.5	1520	0.51
HW6	1055		5.20	23,00	15.8	2 '	0.5	7.9	8.5			人		7.31	MW-6	1400	428
uw 7	10 00	4.45		15.71		2"	0.5					·	No.		Mu-7		
MW 8				14.72		Zr	0.5	5.4	60			X	T. Cr	4.61	nu.8		3 09
	930		4.65	1465	10.0	ス"	0.5	5.0	5.5			<	nest (1) o	5,87	pw-9	12/0	3.83
MWID	947		2.50	1490	12.4	2"	0.5	6.2	6.5		1.15	X		3.19	NW-10	1220	2.31
		b	1								7.						
							٠.										
									· .								
<u> </u>																	
										ļ						4	<u> </u>
ļl		-							·								
																•	
ļļ	 -						•4.			\vdash							<u> </u>
ļ															_		
<u> </u>						34											\vdash
ļļ																	
ļ																	
-						-											

Multiplier 2" = 0.5 3" = 1.0 4" = 2.0 6" = 4.4 Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

	CALIBRA	TIO	Ņ DATE
pH_	3/	27/	14
Conductivity		\mathbf{L}'	
DO	1	1	

T:\Forms

Site Address 6211 San Pablo Ave
City Oakland
Sampled By: Tarry Governo

Sampled By: Tarry governous Signature

Site Number Alaska Gas
Project Number 2192-6211-01
Project PM S. Bittinger
DATE

Well ID M	W.5				Weil iD				<u> </u>	
Purge start time)	Odor	Ø N	Purge start time	Odor	Y N			
	Temp C	рН	cond	gallons		Temp C	pН	cont	gallons	
time /5 //	189	6.56	754	J	lime		10 10			
time /5 /	2/84/	6,63	743	6	time					
time /5/	3/878	6,67	729	9	time		,			
time					time					
purge stop time	15:14		ORP /	0.0	purge stop time			ORP		
Well ID					Well ID		<u></u>			
Purge start time			Odor	YN	Purge start time	-		Odor	Y N	
	Temp C	рΗ	cond	gallons	[4]	Temp C	рН	cond	gallons	
time					time					
time					time					
time					time					
time			2		time					
purge stop time	ourge stop time ORP				purge stop time	ORP				
Well ID					Well ID		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · ·	<u> </u>	
Purge start time			Odor	Y N	Purge start time			O.dor	Y N	
	Temp C	рН	cond	gallons		Temp C	pН	cond	gallons	
lime					time					
time					time '					
time					time					
time					time					
purge slop time			ORP	co services	purge stop time			ORP		
Well ID					Well ID					
Purge start time	•		Odor	YN	Purge start time			Odor	Y N	
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons	
time					time					
time					time .					
lime					time					
time					time					
purge stop time	•		ORP		ourge stop time			ORP.		

Site Address_	6211 San Palolo Ave
City _	Oakland
Sampled by:	Col Schulce
Signature	C .98 //

Site Number	Aleska	
Project Number	2192-6211-01	
Project PM	Scott Bittinger	_
DATE	05/28	

Water Level Data					Purge Volume Calculations					Purge Method				Sample Record			Field Data
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge		Pump		DTW at sample time (feet)	Sample I.D	Sample Time	DO (mg/L)
MW-7	0601	5.0 €	5.67	16.60	10.94	2,	0.5	5,47	5.5		¥			7.53	МО-7	6630	1.60
																	\Box
											<u> </u>			_			
												<u> </u>					
										L	ļ			-			
											<u> </u>	igsquare					
\vdash											<u> </u>						
<u> </u>												<u> </u>					
										<u> </u>							
-																	
		-															
																-	
		-															

Multiplier 2" = 0.5 3" = 1.0 4" = 2.0 6" = 4.4 Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

CALIBRATION DATE								
pH	05/23/14							
Conductivity	1							
DO	4							

Site Address 6211 Son Parks Are
City Ocal Cond .

Sampled By: Cond Schulze
Signature Schulze

Site Number Alaska
Project Number 2197-6711-01
Project PM Scott Bittinge
DATE 05/28/14

Well ID AU-7		NP			Wetl ID MU -	7 100	e			
Purge start time			Odor	YN	Purge start time	1		Odor	<i>В</i> и	
	Temp C	pΗ	cond	gallons		Temp C	pН	cond	gailons	
time 0608					time 0617	20.3	7.39	135/	0	
time					time 0616	19.8	7,40	428	2	
time					time 0620	19.7	7.47	418	4	
time					time 0630	18.4	7.55	186.1	5.5	
purge stop time			ORP		purge stop time	00: 1.60	5	ORP -162		
Well ID					Well ID					
Purge start time			Odor	YN	Purge start time			Odor	Y N	
	Temp C	рН	cond	gallons		Temp C	pН	cond	gallons	
time					time		M			
time					time					
time					time		9			
time					lime ·					
purge stop time			ORP		purge stop time ORP					
Well ID					Well ID		-			
Purge start time			Odor	Y N	Purge start time	Офог	Y N			
	Temp C	pН	cond	gallons		Temp C	ρH	cond	gallons	
time					time					
time					time				 	
time					time					
time					time					
purge stop time			ORP		purge stop time	ORP				
Well ID					Well ID					
Purge start time			Odor	Y N	Purge start time	Odor	YN			
	Temp C	рΗ	cond	gallons		Temp C	рН	cond	gallons	
time					time					
time					time					
time					time				 	
time					time				†	
purge stop time ORP					purge stop time	<u> </u>		ORP		

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use
 of spiked samples, duplicate samples, split samples, use of reference blanks, and
 check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported and stored with the samples and analyzed to assess the impact of sample transport and storage for data quality. In the event that any analyte is detected in the field blank, a trip blank will be included in the subsequent groundwater sampling event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Scott Bittinger
Phone: (530) 676-2062
Fax: (530) 676-6005
Date Received: 04/02/14

Job:

2192-6211-01/Alaska Gas

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentrat	ion	Reporting Limit	Date Extracted	Date Analyzed
Client ID:	MW-1R						
Lab ID :	STR14040241-01A	TPH-P (GRO)	1,200		200 μg/L	04/03/14	04/03/14
Date Sampled	03/28/14 13:45	Tertiary Butyl Alcohol (TBA)	ND		20 μg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	1.2		1.0 μg/L	04/03/14	04/03/14
		Benzene	3.7		1.0 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND	V	2.0 μg/L	04/03/14	04/03/14
		Toluene	11		1.0 µg/L	04/03/14	04/03/14
		Ethylbenzene	34		1.0 μg/L	04/03/14	04/03/14
		m,p-Xylene	220		1.0 μg/L	04/03/14	04/03/14
		o-Xylene	79		1.0 µg/L	04/03/14	04/03/14
Client ID:	MW-2						
Lab ID:	STR14040241-02A	TPH-P (GRO)	ND		50 μg/L	04/03/14	04/03/14
Date Sampled	03/28/14 14:35	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	0.51		0.50 μg/L	04/03/14	04/03/14
		Benzene	ND		0.50 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μ g/ L	04/03/14	04/03/14
		Toluene	ND		0.50 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND		0.50 μ g/L	04/03/14	04/03/14
		m,p-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
		o-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
Client ID:	MW-3R						
Lab ID:	STR14040241-03A	TPH-P (GRO)	ND	V	200 μg/L	04/03/14	04/03/14
Date Sampled	03/28/14 14:20	Tertiary Butyl Alcohol (TBA)	1,400		20 μg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	28		1.0 μg/L	04/03/14	04/03/14
		Benzene	ND	V	1.0 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	5,3		2.0 μg/L	04/03/14	04/03/14
		Toluene	ND	V	1.0 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND	V	1.0 μ g/L	04/03/14	04/03/14
		m,p-Xylene	ND	V	1.0 μg/L	04/03/14	04/03/14
		o-Xylene	ND	V	1.0 μg/L	04/03/14	04/03/14
Client ID:	MW-4R						
Lab ID:	STR14040241-04A	TPH-P (GRO)	ND		50 μ g/ L	04/03/14	04/03/14
Date Sampled	03/28/14 15:00	Tertiary Butyl Alcohol (TBA)	110		10 μ g/ L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	3.6		0.50 μg/L	04/03/14	04/03/14
		Benzene	ND		0.50 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μ g/ L	04/03/14	04/03/14
		Toluene	ND		0.50 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND	-	0. 50 μg/L	04/03/14	04/03/14
		m,p-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
		o-Xylene	ND		0.50 μg/L	04/03/14	04/03/14

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	MW-5						
Lab ID:	STR14040241-05A	TPH-P (GRO)	77		50 μg/L	04/03/14	04/03/14
	03/28/14 15:20	Tertiery Butyl Alcohol (TBA)	ND		10 μg/L	04/03/14	04/03/14
Date Datiples	05/30/11/10:20	Methyl tert-butyl ether (MTBE)	5.2		0.50 μg/L	04/03/14	04/03/14
		Benzene	0.52		0.50 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	04/03/14	04/03/14
		Toluene	ND		0.50 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND		0.50 μg/L	04/03/14	04/03/14
		m,p-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
		o-Xylene	ND		0.50 μg/L 0.50 μg/L	04/03/14	04/03/14
Client ID:	MW-6	0-Ayelle	ND		0.50 pg.L	04/03/14	04/03/14
Lab ID:	STR14040241-06A	TPH-P (GRO)	110		50 μg/L	04/03/14	04/03/14
	03/28/14 14:00	Tertiary Butyl Alcohol (TBA)	36		- 10 μg/L	04/03/14	04/03/14
Date Sampled	03/26/14 14.00	• • • •			0.50 µg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	14			04/03/14	04/03/14
		Benzene	6.0		0.50 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	2.0		1.0 μg/L	04/03/14	04/03/14
		Toluene	ND		0.50 μg/L		04/03/14
		Ethylbenzene	2.2		0.50 μg/L	04/03/14	
		m,p-Xylene	1.1		0.50 μg/L	04/03/14	04/03/14
Client ID:	DATE O	o-Xylenc	ND		0.50 μg/L	04/03/14	04/03/14
	MW-8	TRU B (CDO)	MD	v	4 000 ug/ī	04/03/14	04/03/14
Lab ID :	STR14040241-07A	TPH-P (GRO)	ND	٧	4,000 μg/L	04/03/14	04/03/14
Dane Sambled	03/28/14 11:40	Tertiary Butyl Alcohol (TBA)	33,000		400 μg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	200	17	20 μg/L		04/03/14
		Benzene	ND	V	20 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND	٧	40 μg/L	04/03/14	
		Toluene	ND	V	20 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND	V	20 μg/L	04/03/14	04/03/14
		m,p-Xylene	ND	V	20 μg/L	04/03/14	04/03/14
ar in	2001.0	o-Xylene	ND	V	2 0 μg/L	04/03/14	04/03/14
Client ID:	MW-9	TTTL D (CDC)			50 ··-//	04/03/14	04/03/14
Lab ID:	STR14040241-08A	TPH-P (GRO)	55		50 μg/L	04/03/14	
Date Sampled	03/28/14 12:10	Tertiary Butyl Alcohol (TBA)	15		10 μg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	74		0.50 μg/L	04/03/14	04/03/14
		Benzene	ND		0.50 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	04/03/14	04/03/14
		Toluene	ND		0.50 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND		0.50 μg/L	04/03/14	04/03/14
		m,p-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
		o-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
Client ID:	MW-10				50 · - 4	04/03/14	0.4/02/1.4
Lab ID :	STR14040241-09A	TPH-P (GRO)	95		50 μg/L	04/03/14	04/03/14
Date Sampled	03/28/14 12:30	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	04/03/14	04/03/14
		Methyl tert-butyl ether (MTBE)	24		0.50 μg/L	04/03/14	04/03/14
		Benzene	ND		0.50 μg/L	04/03/14	04/03/14
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	04/03/14	04/03/14
		Toluene	ND		0.50 μg/L	04/03/14	04/03/14
		Ethylbenzene	ND		0.50 μg/L	04/03/14	04/03/14
		m,p-Xylene	ND		0.50 μg/L	04/03/14	04/03/14
		o-Xylene	ND		0.50 μg/L	04/03/14	04/03/14

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Gasoline Range Organics (GRO) C4-C13

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

ACLASS

Roger Scholl Kan

Kandy Soulur

Walter Hirihan

er L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officeramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available Chifornia (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported as

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR14040241

Job:

2192-6211-01/Alaska Gas

Alpha's Sample ID	Client's Sample ID	Matrix	pH
14040241-01A	MW-1R	Aqueous	2
14040241-02A	MW-2	Aqueous	2
14040241-03A	MW-3R	Aqueous	2
14040241-04A	MW-4R	Aqueous	2
14040241-05A	MW-5	Aqueous	2
14040241-06A	MW-6	Aqueous	2
14040241-07A	MW-8	Aqueous	2
14040241-08A	MW-9	Aqueous	2
14040241-09A	MW-10	Aqueous	2

4/9/14

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 08-Apr-14	(Work Order: 14040241						
Method Blank File ID: 14040304.D		Туре М		est Code: EPA etch ID: MS15			15B/C / SW8260B Analysis Date:	04/03/2014 11:51	
Sample ID: MBLK MS15W0403B	Units : µg/L			SD_15_14040			Prep Date:	04/03/2014 11:61	
Analyte	Result	PQL	SpkVal	SpkRefVal %	REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	ND	50							
Surr: 1,2-Dichloroethane-d4	12.3		10		123	70	130		
Surr: Toluene-d8	9.93		10		99	70	130		
Surr: 4-Bromofluorobenzene	9.02		10		90	70	130		
Laboratory Control Spike		Турв L	CS Te	est Code: EP/	A Meti	hod SW80	15B/C / SW8260B		
File ID: 14040303.D			Ba	atch ID: MS16	W040	3B	Analysis Date:	04/03/2014 11:30	
Sample ID: GLCS MS15W0403B	Units : µg/L			SD_15_14040			Prep Date:	04/03/2014 11:30	
Analyte	Result	PQL	SpkVal	SpkRefVal 9	6REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	398	50	400		0	70	130		
Surr: 1,2-Dichloroethane-d4	12		10		120	70	130		
Surr: Toluene-d8	9.71		10		97	70	130		
Surr: 4-Bromofluorobenzene	9.36		10		94	70	130)15B/C / SW8280E		
Sample Matrix Spike									
File ID: 14040327.D			В	atch ID: MS18	5W040)3B	Analysis Date	04/03/2014 20:09	
Sample ID: 14010241-06AGS	Units : µg/L			SD_15_14040			Prep Date:	04/03/2014 20:09	
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)	UCL(ME) RPDRe	Nal %RPD(Limit)	Qual
TPH-P (GRO)	2200	250	2000	106.9	105	54	143		
Surr. 1,2-Dichloroethane-d4	63.6		50		127	70	130		
Surr: Toluene-d8	47.4		50		95	70	130		
Surr: 4-Bromofluorobenzene	49.1		50		98	70	130		
Sample Matrix Spike Duplicate		Type 1	ASD T	est Code: EP	A Met	hod SW8	015B/C / SW8260E		
File ID: 14040328.D			В	atch ID: MS1	5W04	03B	Analysis Date	: 04/03/2014 20:31	
Sample ID: 14010241-06AGSD	Units: µg/L		Run ID: M	SD_15_1404	03B		Prep Date:	04/03/2014 20:31	
Analyte	Result	PQL	SpkVal	SpkRefVal 5	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qua
TPH-P (GRO)	2290	250	2000	106.9	109	54	143 219	99 4.1(23)	
Surr: 1,2-Dichloroethane-d4	64.3		50		129	70	130		
Surr: Toluene-d8	47.3		50		95	70	130		
Surr: 4-Bromofluorobenzene	47.5		50		95	70	130		

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 08-Apr-14			Work Order: 14040241							
Method Blank File ID: 14040304.D		Туре МВ		st Code: EF				s Date: 0	04/03/2014 11:51	
Sample ID: MBLK MS15W0403A	Units: µg/L	R	tun ID: MS	SD_16_1404	103B		Prep Da	ate: 0	14/03/2014 11:51	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	PDRefVa	l %RPD(Limit)	Qual
Tertiary Butyl Alcohol (TBA)	ND	10								
Methyl tert-butyl ether (MTBE)	ND	0.5								
Benzene	ND	0.5								
Tertiary Amyl Methyl Ether (TAME) Toluene	ND ND	1 0.5								
Ethylbenzene	ND	0.5								
m,p-Xylene	ND	0.5								
o-Xylene	ND	0.5								
Surr. 1,2-Dichloroethane-d4	12.3		10		123	70	130			
Surr: Toluene-d8	9.93		10		99	70	130			
Surr: 4-Bromofluorobenzene	9.02		10		90	70	130			
Laboratory Control Spike		Type LC		est Code: El				a Date: 4	04/09/9944 44-25	
File ID: 14040302.D	11-4-	_		atch ID: MS		JJA	-		04/03/2014 11:00	
Sample ID: LCS MS15W0403A	Units: µg/L			BD_15_140			Prep D		04/03/2014 11:00	
Analyte	Result	PQL	SpkVal	SpkRefVal				RPDRetVa	al %RPD(Limit)	Quel
Methyl tert-butyl ether (MTBE)	9.69	0.5	10		97	63	137			
Benzene	10.1	0.5	10		101	70	130			
Toluene Ethylbenzene	9.53 10.1	0.5 0.5	10 10		95 101	80 80	120 120			
m.p-Xylene	10.6	0.5	10		106	65	139			
o-Xylene	10.2	0.5	10		102	70	130			
Surr. 1,2-Dichloroethane-d4	12.2		10		122	70	130			
Surr: Toluene-d8	9.92		10		99	70	130		-	
Surr. 4-Bromofluorobenzene	9.51		10		95	70	130			
Sample Matrix Spike										
File ID: 14040325.D				atch ID: MS		03A	•		04/03/2014 19:26	
Sample ID: 14040104-02AMS	Units: µg/L			6D_15_140			Prep D		04/03/2014 19:26	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRefV	al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	57.4	1.3	50	0		56	140			
Benzene	51.9	1.3	50	0		67	134			
Toluene	47.5	1.3	50	0		38 70	130 130			
Ethylberzene m.p-Xylene	49.1 52.3	1.3 1.3	50 50	0		65	139			
o-Xylene	50.8	1.3	50	ō		69	130			
Surr: 1,2-Dichloroethane-d4	63.7		50		127	70	130			
Surr: Toluene-d8	47.1		50		94	70	130			
Surr. 4-Bromofluorobenzene	48.2		50		96	70	130			
Sample Matrix Spike Duplicate		Type M	SD T	est Code: E	PA Me	thod SW8				
File ID: 14040326.D				atch ID: MS		03A	Analys	is Date:	04/03/2014 19:48	
Sample ID: 14040104-02AMSD	Units : µg/L	. 1		SD_15_140			Prep D		04/03/2014 19:48	
Analyte	Result	PQL	SpkVal	SpkRefVa	%REC	C LCL(ME)	UCL(ME)	RPDRefV	al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	60.9	1.3	50			56	140	57.35		
Benzene	54.7	1.3	50		_	67	134	51.87		
Toluene	49.4	1.3	50			38	130	47.54		
Ethylbenzene m n Yidana	52.1	1.3	50 50			70 65	130 139	49.09 52.27		
m,p-Xylene o-Xylene	55.6 54.7	1.3 1.3	50 50			69	130	50.83		
Surr: 1.2-Dichloroethane-d4	64.6	1.5	50		129	70	130	30.00	(==/	
Surr: Toluene-d8	46.5		50		93	70	130			
Surr: 4-Bromofluorobenzene	49		50		98	70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 08-Apr-14

QC Summary Report

Work Order: 14040241

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Billing	Information	ı :
---------	-------------	-----

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Client:

PO:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address

Scott Bittinger (530) 676-2062 x sbittinger@stratusinc.net

CA

Page: 1 of 2

Sample Remarks

WorkOrder: STR14040241

Report Due By: 5:00 PM On: 09-Apr-14

EDD Required: Yes

Sampled by : Client

Cooler Temp Samples Received Date Printed

0 °C 02-Apr-14 02-Apr-14

2192-6211-01/Alaska Gas Client's COC #: none = Final Rpt, MBLK, LCS, MS/MSD With Surrogates QC Level: S3 Requested Tests Collection No. of Bottles TPH/P W Client Alpha Matrix Date Alpha Sub TAT Sample ID Sample ID GAS-C BTXE/MTB 03/28/14 0 5 3 STR14040241-01A MW-1R E/TBA/TAM 13:45 EC BTXE/MTB GAS-C STR14040241-02A MW-2 AQ 03/28/14 E/TBA/TAM 14:35 EC BTXE/MTB GAS-C STR14040241-03A MW-3R AQ 03/28/14 3 5 E/TBA/TAM 14:20

BTXE/MTB GAS-C 03/28/14 5 STR14040241-04A MW-4R E/TBA/TAM 15:00 E_C 1-HCI VOA received broken. BTXE/MTB GAS-C 5 STR14040241-05A MW-5 03/28/14 E/TBA/TAM 15:20 EC BTXE/MTB 03/28/14 3 5 STR14040241-06A MW-6 E/TBA/TAM 14:00 EC BTXE/MTB GAS-C 03/28/14 3 STR14040241-07A MW-8 AQ

Co	mm	ents:	

Security seals intact. Frozen ice.:

	Signature	Print Name	Company	Date/Time
Logged in by:		Saidh Nai	Alpha Analytical, Inc.	4/2/14 1020

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing	Inform	ation	:
---------	--------	-------	---

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

EMail Address

EC

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number Report Attention Client: Stratus Environmental

Scott Bittinger (530) 676-2062 x

sbittinger@stratusinc.net

EDD Required: Yes

Sampled by : Client

0°C

Cooler Temp Samples Received 02-ADT-14

WorkOrder: STR14040241

Report Due By: 5:00 PM On: 09-Apr-14

Date Printed 02-Apr-14

Page: 2 of 2

PO:

Client's COC #: none

Sulte 550

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Job: 2192-6211-01/Alaska Gas

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates QC Level: S3

Requested Tests VOC_W Collection No. of Bottles TPH/P_W Alpha Client Sample Remarks Alpha Sub TAT Matrix Date Sample ID Sample ID GAS-C BTXEATB 03/28/14 5 STR14040241-09A MW-10 AQ E/TBA/TAM 12:30

Com	meı	118:
-----	-----	------

Security seals intact. Frozen ice.:

Date/Time Company Print Name Signature Alpha Analytical, Inc. Logged in by:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

	Billing Information:	
mpany:	Stratus Environmental, Inc	
n:		
dress:		
. Ot-t- The		

Main Laboratory: 255 Glendale Ave, Suite 21 Sparks, NV 89431

Phone: 775-355-1044 Fax: 775-355-0408

Satellite Service Centers:

Northern CA: 9891 Horn Road, Suite C, Rancho Cordova, CA 95827

Phone: 916-366-9089

Phon	Numi	per: _	Fa	ж	Southern CA: 1007 E. Dominguez SL, Suite O, Carson, CA 90746						Phone:	702-281-4 714-388-2	901		Page #	1	of _								
Team and			STORY OF THE STORY	DESCRIPTION OF THE PERSON	2415 124 A-1420 MANUA 2011 14		1 g dm 1	MARK ROLL	1	Vorthern	NV: 1250	Lamoille	Hwy., #310	Elko, NV	89801	9-1		Phone:	775-388-7	043	y+(3)		THE SEC		
1000					Control of the Contro					0 25		Popost	Attention/	Project I	Manago	and and train	7 7		and the	OC	Deliver	ble Info	r.		(September 1997)
		5.7	Consultant/ Client Info:		10 TANK	nd Purchase Ord	er into:					report.	Scott Bit		wanaya				EDD Requ					uired?(1	(es A
Comp	eny:		Stratus Environmental, Inc.		Job #	2192-6211-01			—		Name: Email Ad	ddanaa	rschem?		nc net				CDD (step)		-				
Addn			3330 Cameron Park Drive, S	Sulte 550	Job Name:	Alaska Gas					Phone #		530-676		10.1101				Global ID:		T060010	1804			
City,	State, 2	Zip: _(Carneron Park, CA 95682		P.O. #:				_		Cell #:	•	916-601				•		Deta Valid		kages:	III	or	IV	
_		. 10	from which State? (circle one)	40 CA N	S NV OR WA DO	OD Rite Other							2.13.33.				•			_					
Sam	Hea Co	STATE STATE	from which state / (circle one)			面中2月10日20日,王田区2			727						Anal	ysis Requ	ested			-			Rem	irks	
								6		** (See Kay Below)	, MTBE, TAME, TBA														
Tim Samp (HH)	。 ['.		Matric (See Key Below) Lab ID Number (For	Lab Use Only)	Sample Des	oription	TAT	Field Filtered		# Containers	ано, втех,							_							
2	1.	3 45	AQ de la		MW-1	R	STAT	N.	\dashv	3 V	_ X_	\vdash	-												
4		933			MW-	MW-2 MW-3R			4	4		<u> </u>				!	\sqcup								
		420			MW-3				- [1	1 /					<u> </u>									
H	$\overline{}$	1,500			MW-4			П																	
H	15	520		100	MW-																				
H	1,	400			MW-				П	\perp															
	Ï			CANAGE TO SERVICE STREET	TVIVV-			$\downarrow \downarrow$	_		1	-													
H	1	140	7.0		MW-	3						<u> </u>													
H	1	2/0	*	upil .	MW-)				\perp															
	7	250	1		MW-1	0	1	1		1									\square						
			Jan	K.Ψυ υ Grid							<u> </u>														
	7	\neg		"i da																					
(ADDI	TONA	LINSTP	uctions:						_						_										
\vdash																									
			st to the validity and authentic	ity of this sample	ie(s). I am aware that temp	aring with or intention	nally mk	slebetin	g the	e sampl	e location	, date or	time of col	ection is	consider	ed fraud a	nd may be	ground	s for legal	action. I	IAC 445.0	836 (c) (2).		
Samp	uished	by: (6ig	nature/Affiliation):		Date:	Time: // 3	0	1	N	1111	SS 6	20								Date:	-1-1	4		<i>3</i> ŏ	
	uthed	by: (Sig	nature/Affillation):		Date:	Time:	_	Recei	ved t	y: (8lo	eture/Affil	istion):		ATE	MA					Cate: 4	2/1	1	Time:	14	
Relinq	uished	by: (Sign	nature/Affiliation):		Date:	Time:		Recen	ved t	oy: (Sign	ature/Affil	lation):								Date:	• •		Time:		
								<u> </u>	_		/OA	0.0-"	lar ^	- Orbo	T T	odlar	B - Brass		- Plastic	OT	- Other	•			
NOTE	Sam	ples are	" Key: AQ - discarded 60 days after sample	Aqueous receipt unless of	WA - Waste OT ther arrangements are made	- Other SO - S Hazardous samples	ioil **: will be n	L - Lite eturned	er to cli	V - V lent or di	Isposed of	S-Soil at client	expense.	he report	for the ar	alysis of the	ne above se	amples is	s applicable	only to th	nose samp	les			
receive	ed by th	he labora	atory with this COC. The liability	of the laboratory	is limited to the amount pak	for the report.																			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Scott Bittinger
Phone: (530) 676-2062
Fax: (530) 676-6005
Date Received: 05/29/14

Job:

2192-6211-01

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID:	MW-7					
Lab ID :	STR14052906-01A	TPH-P (GRO)	8,300	500 μg/L	05/30/14	05/30/14
Date Sampled	05/28/14 06:30	Tertiary Butyl Alcohol (TBA)	420	50 μg/L	05/30/14	05/30/14
• -	Methyl tert-butyl ether (MTBE)		340	2.5 μg/L	05/30/14	05/30/14
		Benzene	43	2.5 μg/L	05/30/14	05/30/14
		Tertiary Amyl Methyl Ether (TAME)	9.7	5.0 μg/L	05/30/14	05/30/14
		Toluene	8.5	2.5 μg/L	05/30/14	05/30/14
		Ethylbenzene	520	2.5 μg/L	05/30/14	05/30/14
		m,p-Xylene	450	2.5 μg/L	05/30/14	05/30/14
		o-Xylene	40	2.5 μg/L	05/30/14	05/30/14

Gasoline Range Organics (GRO) C4-C13

Reported in micrograms per Liter, per client request.

ACLASS

Roger Scholl Kandy Soulin

Dalter Hindur

toger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Les Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alphe-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported sample

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR14052906

Job:

2192-6211-01

Alpha's Sample ID	Client's Sample ID	Matrix	pН	· · · · · · · · · · · · · · · · · · ·				
14052906-01A	MW-7	Aqueous	2					

6/5/14

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Jun-14	QC Summary Report											
Method Blank File ID: 14053006.D		Type MBLK Test Code: EPA Method SW8016B/C / SW8260I Batch ID: MS08W0530B Analysis Date										
Sample ID: MBLK MS08W0530B	Units : µg/L		Prep Date:	05/30/2014 12:44								
Analyte	Result	PQL	SpkVal	SpkRefVal 1	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual			
TPH-P (GRO)	ND	50					*					
Surr: 1,2-Dichloroethane-d4	8.45		10		85	70	130					
Surr: Toluene-d8	10.3		10		103	70	130					
Surr: 4-Bromofluorobenzene	10		10		100	70	130		_			
Laboratory Control Spike		Type L	CS To	est Code: EF	A Met	hod SW8()15B/C / SW8260B					
File ID: 14053005.D			В	atch ID: MS0	8W053	30B	Analysis Date:	05/30/2014 12:18				
Sample ID: GLCS MS08W0530B	Units : µg/L		Run ID: M	SD_08_1405	30B		Prep Date:	05/30/2014 12:18				
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual			
TPH-P (GRO)	384	50	400		96	70	130					
Surr: 1,2-Dichloroethane-d4	7.94		10		79	70	130	·				
Surr: Toluene-d8	9.68		10		97	70	130					
Surr: 4-Bromofiuorobenzene	10.8		10		108	70	130					
Sample Matrix Spike		Type I					016B/C / SW8260E					
File ID: 14053014.D			_	atch ID: MS0		30B	•	05/30/2014 15:52				
Sample ID: 14052901-02AGS	Units: µg/L			SD_08_1408			Prep Date:	05/30/2014 15:52				
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual			
TPH-P (GRO)	1750	250		_	87	54	143	•				
Surr: 1,2-Dichloroethane-d4	42.4		50		85	70	130					
Surr. Toluene-d8	47.9		50		96	70 70	130 1 30					
Surr: 4-Bromofluorobenzene	53.4		50		107							
Sample Matrix Spike Duplicate		Type I					015B/C / SW8260E					
File ID: 14053015.D			В	atch ID: MS()8W05	30B		: 05/30/2014 16:16				
Sample ID: 14052901-02AGSD	Units : µg/L			ISD_08_140			Prep Date:	05/30/2014 16:16				
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	Nat %RPD(Limit)	Qual			
TPH-P (GRO)	1910	25	2000	0	95	54	143 174	9.0(23)				
Surr: 1,2-Dichloroethane-d4	40.1		50		80	70	130					
Surr. Toluene-d8	47.6		50		95	70	130					
Surr: 4-Bromofluorobenzene	54.5		50		109	70	130					

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Jun-14		Work Order: 14052906								
Method Blank File ID: 14053008.D		Type MBL	Beto	t Code: EP/ ch ID: MS08	IW053		Analysi		5/30/2014 12:44	
Sample ID: MBLK MS08W0530A	Units : µg/L			D_08_140 5 3			Prep Da		6/30/2014 12:44	
Analyte	Result	PQL :	SpkVal S	SpkRefVal 9	6REC	LCL(ME)	UCL(ME) R	PDRefVa	%RPD(Limit)	Qual
Tertiary Butyl Alcohol (TBA)	ND	10								
Methyl tert-butyl ether (MTBE)	ND	0.5								
Benzene	ND	0.5								
Tertiary Arnyi Methyi Ether (TAME) Toluene	D	. 1 0.5								
Ethylbenzene	ND ND	0.5 0.5								
m,p-Xylene	ND	0.5								
o-Xylene	ND	0.5								
Surr: 1,2-Dichloroethane-d4	8.45		10		85	70	130			
Surr: Toluene-d8	10.3		10		103	70	130			
Surr. 4-Bromofluorobenzene	10		10		100	70	130			
Laboratory Control Spike		Type LCS	Tes	t Code: EP	A Meti	nod SW82	:60B			
File ID: 14053004.D		*-		ch ID: MS0	BW053	OA.	Analysi	is Date: (6/30/2014 11:42	
Sample ID: LCS MS08W0530A	Units : µg/L	Rı	ın ID: MSI	D_08_1405	30R		Prep D	ate: (5/30/2014 11:42	!
Analyte	Result					LCL(ME)	•		I %RPD(Limit)	Qual
				Spareival	***			VI DIVOIVE	ii 70741 D(Liitile)	
Methyl tert-butyl ether (MTBE)	8.68	0.5	10		87 103	63 70	137 130			
Benzene Toluene	10.3 11.7	0.5 0.5	10 10		117	80	120			
Ethylbenzene	10.5	0.5	10		105	80	120			
m,p-Xylene	11	0.5	10		110	65	139			
o-Xylene	10.8	0.5	10		108	70	130			
Surr: 1,2-Dichloroethane-d4	8.26		10		83	70	130			
Surr: Toluene-d8	9.47		10		95	70	130			
Surr: 4-Bromofluorobenzene	9.76		10		98	70	130			
Sample Matrix Spike		Type MS		et Code: EP						
File ID: 14053012.D				tch ID: MS0		30A	•		05/30/2014 15:05	
Sample ID: 14052901-02AMS	Units : µg/L	R		D_08_1405			Prep D		05/30/2014 15:05	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefV	al %RPD(Limit)	Quel
Methyl tert-butyl ether (MTBE)	40.6	1.3	50	0	81	56	140			
Benzene	43.7	1.3	50	0	87	67	134		•	
Toluene	49.2	1.3	50	0	98	38	130			
Ethylbenzene	44.7	1.3	50	0	89	70	130			·
m,p-Xylene	46.5	1.3	50	0	93 91	65 69	139 130			
o-Xylene	45.7 42.1	1.3	50 50	. •	84	70	130			
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	46.6		50 50		93	70	130			
Surr: 4-Bromofluorobenzene	47.8		50		96	70	130			
C 1. M. A. L. C. H. D. W. A.		Type MS	D To	st Code: EF	DA Met	had SWR	260R			
Sample Matrix Spike Duplicate		Typo mo	_	itch ID: MS0				ie Date:	05/30/2014 15:2	9
File ID: 14053013.D	lielle					JUA	Prep [05/30/2014 15:2	
Sample ID: 14052901-02AMSD	Units : µg/L			SD_08_1408			•			
Analyte	Result	PQL							al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	46.3	1.3	50	0	93	56	140	40.58		·
Benzene	47.8	1.3	50	0	96	67	134	43.71	9.0(21)	
Toluene	53.6	1.3	50	0	107	38 70	130	49.22 44.67	1 1	
Ethylbenzene	48.6 50.1	1.3	50 50	0	97 100	70 65	130 139	44.07		
m,p-Xylene o-Xylene	50.1 50	1.3 1.3	50 50	0	100	69	130	45.65		
Sur: 1,2-Dichloroethane-d4	44.4	1.5	50	U	89	70	130			
Sur: Toluene-d8	46.6		50		93	70	130			
Surr: 4-Bromofluorobenzene	47		50		94	70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Jun-14

QC Summary Report

Work Order: 14052906

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

Billing	Information	:
---------	-------------	---

Suite 550

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc. WorkOrder: STR14052906

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address

Scott Bittinger (530) 676-2062 x sbittinger@stratusinc.net

EDD Required : Yes

Sampled by: Carl Schulze

Cooler Temp Samples Received Date Printed

1 °C 29-May-14 29-May-14

Report Due By: 5:00 PM On: 05-Jun-14

Page: 1 of 1

PO:

Client:

Client's COC #: 16775

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Job: 2192-6211-01

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

							Request	ed Tests		
Alpha Sample ID	Client Sample ID	Collection Matrix Date	No. of Bottle Alpha Sub	TAT	TPH/P_W	VOC_W				Sample Remarks
STR14052906-01A	MW-7	AQ 05/28/14 06:30	4 0	5		BTXE/MTB E/TAME/TB A_C				

Comments:

Security seals intact, Frozen ice.:

Signature Print Name Company Date/Time

Logged in by: Morgan Volvey Alpha Analytical, Inc. 5-39-14 1534

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soll) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Company:	4.1	Infon	nation:	Enviro	nmen	121	
Attn:							
Address:	3330	Can	100	Perk	Or.	24	220
City, State, Zip:	Com	600	Park	·S	9568	2	
Dhone Number				For			

Main Laboratory: 255 Glandale Ave, Suite 21 Sparks, NV 89431

Satellite Service Centers:

Northern CA: 9891 Horn Road, Suite C, Rancho Cordova, CA 95827 Southern CA: 1007 E. Dominguaz St., Suita O, Carson, CA 90746 Northern NV: 1250 Lamoille Hwy., #310, Elko, NV 89801 Southern NV: 6255 McLeod Ave, Suite 24, Les Veges, NV 89120

Phone: 775-355-1044

Phone: 916-366-9089

Phone: 714-386-2901

Phone: 775-388-7043

Phone: 702-281-4848

Fax: 775-355-0406

16775

Page # ____ | of ___ |

10 to 1 A	13.7.53	4821		A BURNET			H2\80							F4 34	13 4	WENT	1918年	10-2			建筑工业的 新 斯
The second second	Con		ilent info:			and Purc				1	Report	Attentio	n/Project	Manager B, 17						erable inf	
Company:		Alaska 6211	Sa Pabla Ave		b# b Name:	Z1	97-6	211-01		Name: Email Add			30011	0,11	inge		ED	D Required	d? Yes / No		EDF Required? (No
Address: City, State,	Zip:	Ochla			O. #:					Phone #:								bal ID:		10 600	101804
Samples	Collected	i from wi	nich State? (circle one)	AR C	A KS	NV OF	WA	DOD Site	Other	Cell #:						•	Dal	a Validatio	on Packages:		or IV
\$600\\ <u>\$0</u>	25.50 (b)			es erro	3:070¢				的基础的。			T		Anal	ysis Regu	ested			1		Remarks
										Kay Below)					,						
1										8	L peud				۱.,						
										thers	Field Filtered?	980	GTEX	MIBE	JAME	2	1				ļ
Time Sampled	Date Sempled (htt/DD)	Matrix* (See Key Below)	Lab 10 Number (For Lab Us	e Only)		Samole	Descriptio	n	TAT	#Contain	Yes N	3	5	3	,	-					
(HHMM)	1	AQ	A LA LA LA LA	6676	MU-				31	42	1	c 4	х	A	¥	٧					
													1								
-																					
-		- 100-									Ħ										
				ent :							Ħ										
										_	$\dagger \dagger$	1									
		-									\vdash	1			1						177
-											Ħ	-	+								
-										 	\vdash	+		+	-						
-							-		-		+		-	_							
ADDITION	AL INSTRUC	TIONS:													1						
-									-												
l (field san	pler) attest		ty and authenticity of this sample	le(s). I am av	vere that tamp	pering with	or intentio	nally mislabel	ing the sample	location, o	tate or ti	me of col	lection is	considered	fraud and	l may be gr	ounds for le	gal action	1. NAC 445.0	836 (c) (2).	
Sampled B Relinquishe	y: d by: (Signer	Ore/Affiliatio	ochulze PiO /	Date:	120/12	Time:	07	Re	coived by Can	A LITE ATTI	ation):	7						Di	ste: /28	114	Time: 0715
Relinquishe		are Affiliatio	~~~	Date: /	18/14	Time:	143	Re	ceived by: (Sto			J			-			De	5-29	3-14	Time: 1435
Relinquishe	by: (Signal	ture/Aftiliation	n)()	Date:		Time:	110		Menu	hature/Affill	atton):	0		^	0 1) .		De 1	ste:	1/1	Time: (52)
									1 9	go	<u>حي</u>	C.	ey	-U.	- Tedlar	<u>KO</u> B∙B⊓		- Plastic	<u>√27</u> от-ок	·/-//	1/00
MOTE: S-	nnles pro riie	carded 60 d	* Key: AQ - Aqueous ays after sample receipt unless of	WA - V	ents are made	OT - Othe	s samples			V -6/OA		pense. 1	The report								
received by	the laborator	y with this C	OC. The liability of the laboratory	e limited to ti	ne amount pai	d for the rep	ort.														

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:GEO_WELLReport Title:1Q14 GeowellFacility Global ID:T0600101804

Facility Name: ALASKA GASOLINE
File Name: GEO_WELL.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL IP Address: 50.192.223.97

Submittal Date/Time: 4/28/2014 8:45:38 AM

Confirmation Number: 1834418594

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Report Title: 1Q14 Geowell MW-7

Facility Global ID: T0600101804

Facility Name: ALASKA GASOLINE

File Name: GEO_WELL.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL IP Address: 50.192.223.97

Submittal Date/Time: 6/10/2014 10:31:41 AM

Confirmation Number: 2595633804

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF

Report Title:

1Q4 Analytical

Report Type:

Monitoring Report - Semi-Annually

Facility Global ID:

T0600101804

Facility Name:
File Name:

ALASKA GASOLINE 14040241_EDF.zip

Organization Name:

Stratus Environmental, Inc.

Username:

STRATUS NOCAL

IP Address:
Submittal Date/Time:

50.192.223.97 4/28/2014 8:41:08 AM

Confirmation Number:

5378542065

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF

Report Title:

Analytical MW-7

Report Type:

Monitoring Report - Semi-Annually

Facility Global ID:

T0600101804

Facility Name:
File Name:

ALASKA GASOLINE 14052906_EDF.zip

Organization Name:

Stratus Environmental, Inc.

Organization Name.

STRATUS NOCAL

<u>Username:</u> <u>IP Address:</u>

50.192.223.97

Submittal Date/Time:

6/19/2014 1:55:15 PM

Confirmation Number:

5971117138

VIEW QC REPORT

VIEW DETECTIONS REPORT