RECEIVED

9:47 am, Nov 10, 2010

Alameda County Environmental Health

November 4, 2010

Paresh Khatri Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Authorization To Sign On Behalf of Ms. Kanwaljit Sappal 6211 San Pablo Avenue Oakland, California AEI Project # 280346 Fuel Leak Case RO0000127

Dear Mr. Khatri:

This letter has been submitted to inform you that I (Ms. Kanwaljit K. Sappal) am the owner of the property located at 6211 San Pablo Avenue in San Pablo, California, and that Jeremy Smith of AEI Consultants is authorized to sign reports and correspondence submitted to the Alameda County Health Care Services Agency on my behalf. I declare, to the best of my knowledge, that the information and/or recommendations contained in the attached document are true and correct.

If you have any additional questions or require additional information, please contact me at (707) 553-1200.

Best Regards,

KKSeppel

Kanwaljit Sappal

cc: Mr. Jeremy Smith - AEI Consultants

November 3, 2010

GROUNDWATER MONITORING REPORT Second Semester, 2010

6211 San Pablo Avenue Oakland, California

AEI Project No. 280346 ACHCS Case No. RO0000127

Prepared For

Mr. Pritpaul Sappal 2718 Washburn Court Vallejo, California 94591

Prepared By

AEI Consultants 2500 Camino Diablo

Walnut Creek, CA 94597 (925) 746-6000

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

November 3, 2010

Mr. Pritpaul Sappal 2718 Washburn Court Vallejo, California 94591

Subject: Quarterly Groundwater Monitoring Report Second Semester, 2010 6211 San Pablo Avenue Oakland, California AEI Project No. 280346 ACHCS Case No. RO0000127

Dear Mr. Sappal:

AEI Consultants (AEI) has prepared this report on behalf of Mr. Pritpaul Sappal (client), owner of the subject site, located at 6211 San Pablo Avenue, Oakland, California (Figure 1: Site Location Plan). This report has been prepared at the request of the client, as required by the Alameda County Health Care Services Agency (ACHCSA), and presents the findings of the 2nd Semester 2010 groundwater monitoring and sampling event conducted on August 12, 2010.

Background

The subject property is located at 6211 San Pablo Avenue, northwest of the intersection of San Pablo Avenue and 62nd Street in a mixed residential and light commercial area of Oakland, California (Figure 1 and 2). The site currently consists of a retail gasoline station with three underground storage tanks (USTs) dispensing gasoline fuel through six dual-sided fuel dispensing islands. Site features are included in Figure 3.

Between 1999 and 2007, Herschy Environmental, Inc. (Herschy) advanced sixteen soil borings (B-1 through B-14, DP-1, and DP-3), installed six monitoring wells (MW-1 through MW-6), five air sparge wells (AS-1 through AS-5), thirteen vapor extraction wells (VE-1 through VE-13), one groundwater extraction well (EX-1), and replaced MW-1 with MW-1R. In addition, three 10,000 gallon USTs and associated product piping were removed and replaced (with the current UST system) at the site. A soil vapor extraction system was operated at the site between 2006 and 2007, however is no longer present.

In September 2008, consulting responsibilities were transferred to AEI Consultants. Between 2008 and 2010, AEI advanced ten shallow soil borings (DP-4, SB-5, SB-7 to SB-14), four deep

AEI Project # 280346 6211 San Pablo Avenue, Oakland, CA November 3, 2010 Page 2

soil borings (DDP-1 to DDP-4), three nested soil vapor probes (SG-1 through SG-3), four offsite monitoring wells (MW-7 through MW-10), and five soil vapor wells (SG-4 through SG-8) to further evaluate the extent of contamination. From February 17, 2010 through April 16, 2010, AEI conducted pilot testing activities to investigate the possibility of using Bioventing and/or ozone sparging as a remedial option for the adsorbed and dissolved phase contamination.

Please refer to AEI's Well Installation and Feasibility Study Report dated October 5, 2010 for a detailed description of historical site activities. The remainder of this report describes the findings of the recent monitoring and sampling event for the subject property.

Summary of Groundwater Sampling Activities

AEI measured the depth to groundwater in the well network (MW-1R, MW-2 through MW-10, and EX-1) on August 12, 2010. The wells caps were first removed from each well, allowing the groundwater to equilibrate with the atmosphere. The depth to water from the top of each well casing was measured with an electric water level indicator prior to sampling. The wells were also checked for the presence of light non-aqueous phase liquid (LNAPL) using an oil/water interface meter, however LNAPL was not detected in any of the wells. The wells were then purged by using a submersible pump and groundwater samples were collected using clean, unused disposable plastic bailers. The following parameters were measured during purging: temperature, pH, specific conductivity, dissolved oxygen (DO) and oxidation-reduction potential (ORP). At least three well volumes of water were removed from the wells that were sampled. Once the wells had recharged to at least 90% of the original water level, a water sample was collected. Groundwater field sampling forms are included in Appendix A.

Groundwater was collected into 40 ml volatile organic analysis (VOA) vials and capped so that neither headspace nor air bubbles were visible within the sample containers. Samples were transported on ice under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644).

The groundwater samples were collected and analyzed for total petroleum hydrocarbons as gasoline (TPHg) (EPA Method 8015Cm), and benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) and methyl tert-butyl ether (MTBE), by EPA Method 8021B. The groundwater samples were also analyzed for tert-Amyl Methyl Ether (TAME), tert-Butanol (TBA), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), 1,2-Dichloroethane (1,2-DCA), ethylene dibromide (EDB), and MTBE by EPA method 8260.

Field Results

No free product was encountered during monitoring activities during the recent sampling events. Groundwater elevations during the current monitoring episode ranged from 24.37 to 28.63 feet above mean sea level (amsl). The groundwater was on average 1.90 feet lower then during the previous sampling event. The direction of the groundwater flow during the August 12, 2010 sampling event was towards the west/southwest with an estimated overall hydraulic gradient of

AEI Project # 280346 6211 San Pablo Avenue, Oakland, CA November 3, 2010 Page 3

0.01 feet/foot, relatively consistent with historical groundwater flow data. Groundwater elevation data is summarized in Table 1 and 2, and a groundwater elevation map is included as Figure 4.

Groundwater Quality

Select dissolved hydrocarbons were detected in the groundwater samples as follows:

- Monitoring well MW-1R was reported to contain TPHg and benzene at a concentration of $1,300 \mu g/L$ and $13 \mu g/L$, respectively. MTBE was not reported at or above the laboratory detection limit. These concentrations are generally lower than the previous sampling event, however relatively similar to historical concentrations.
- Monitoring well MW-2 was reported to contain benzene, MTBE, and TBA at a concentration of 1.1 μ g/L, 3.7 μ g/L, and 6.3 μ g/L, respectively. TPHg was not reported at or above the laboratory detection limit. These concentrations represent a decrease since the previous event, and are at or near historical lows.
- Monitoring well MW-3 was reported to contain TPHg, benzene, MTBE, and TBA at concentrations of 1,600 μ g/L, 5.8 μ g/L, 4,200 μ g/L, and 250,000 μ g/L, respectively. These concentrations are relatively consistent with recent data, however MTBE continues to decrease and is the lowest concentration observed in MW-3 to date.
- Monitoring well MW-4 was reported to contain TPHg, benzene, MTBE, and TBA at concentrations of 17,000 μ g/L, 200 μ g/L, 150 μ g/L, and 1,800 μ g/L, respectively. These concentrations are relatively consistent with those recently observed.
- Monitoring well MW-5 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 120 μ g/L, 1.5 μ g/L, 13 μ g/L, and 3.0 μ g/L, respectively. These concentrations are either similar to or slightly higher than typical results.
- Monitoring well MW-6 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 92 μ g/L, 7.5 μ g/L, 32 μ g/L, and 180 μ g/L, respectively. These concentrations represent a general increase since the last event.
- Monitoring well MW-7 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 2,000 μ g/L, 26 μ g/L, 2,400 μ g/L, and 9,600 μ g/L, respectively. TPHg and benzene were significantly lower than during the first sampling event, however MTBE and TBA increased.
- Monitoring well MW-8 was reported to contain TPHg, benzene, MTBE, and TBA at a concentration of 260 μ g/L, 4.1 μ g/L, 2,100 μ g/L, and 25,000 μ g/L, respectively. These are relatively consistent with the initial sampling event.

- Monitoring well MW-9 was reported to contain MTBE and TBA at a concentration of 85 μ g/L and 880 μ g/L, respectively. These concentrations are significantly lower than during the initial sampling event.
- Monitoring well MW-10 was reported to contain TPHg and MTBE at a concentration of 61 μ g/L and 39 μ g/L, respectively. Benzene and TBA were not detected at or above the laboratory detection limit. TPHg decreased significantly from the initial sampling event, however MTBE increased.
- Well EX-1 was reported to contain TPHg, benzene, MTBE, and TBA at concentrations of 12,000 µg/L, 1,000 µg/L, 660 µg/L, and 1,000 µg/L, respectively. With the exception of TBA, these concentrations, are lower than the last sampling event.

Complete groundwater sample analytical data from the sampling event is included in Table 3 and select data is displayed on Figure 5. Laboratory results and chain of custody documents are included in Appendix B.

Summary

Groundwater during the August 2010 monitoring and sampling event was calculated to flow towards the west/southwest with an estimated overall hydraulic gradient of 0.01 feet/foot, relatively consistent with historical data. Groundwater levels decreased during the recent event by 1.90 feet on average. Although hydrocarbons remain elevated in several wells, many of the wells have exhibited a decrease in hydrocarbon concentrations. Trends have not yet been established in offsite wells. The recent Well Installation and Feasibility Study Report, dated October 5, 2010, is currently under review, and in the meantime, AEI plans to continue monitoring the existing well network on a semi-annual basis with the next semi-annual sampling event currently scheduled for February 2011 (1st Semester 2011 Event).

AEI Project # 280346 6211 San Pablo Avenue, Oakland, CA November 3, 2010 Page 5

Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering and consulting field, which existed at the time and location of the work. If you have any questions regarding our investigation, please do not hesitate to contact one of us at (925) 746-6000.

Sincerely, AEI Consultants

Jeremy Smith Senior Project Manager

Figures

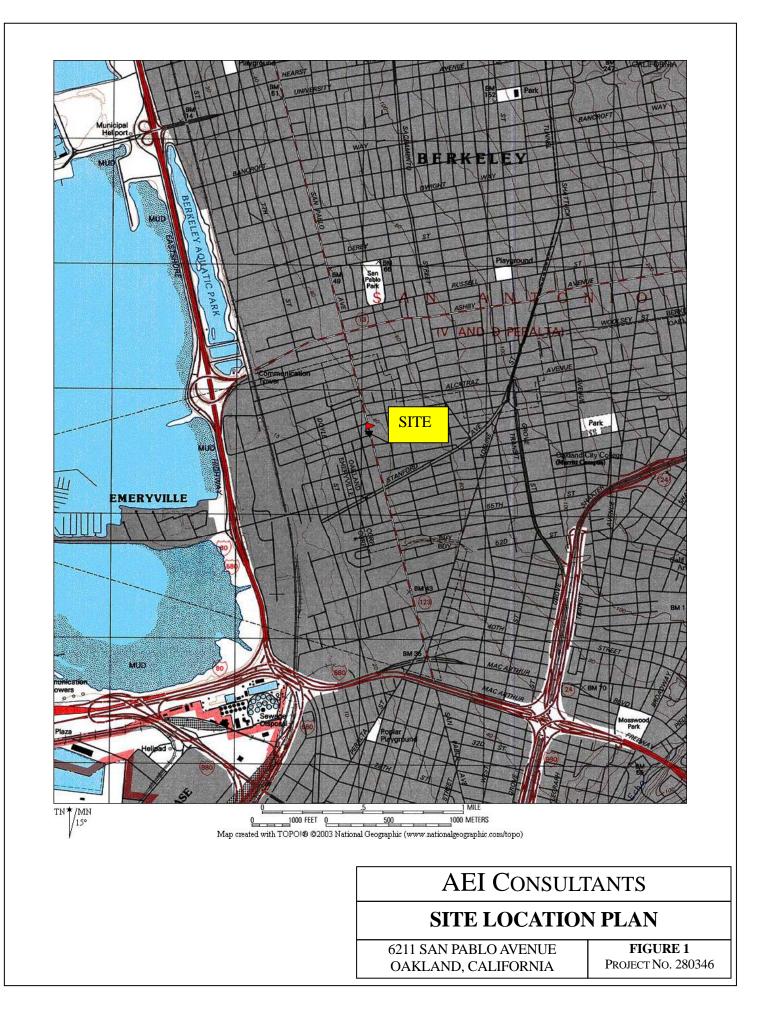
- Figure 1: Site Location Plan
- Figure 2: Extended Site Plan
- Figure 3: Site Plan
- Figure 4: Groundwater Elevation Map
- Figure 5: Groundwater Analytical Map

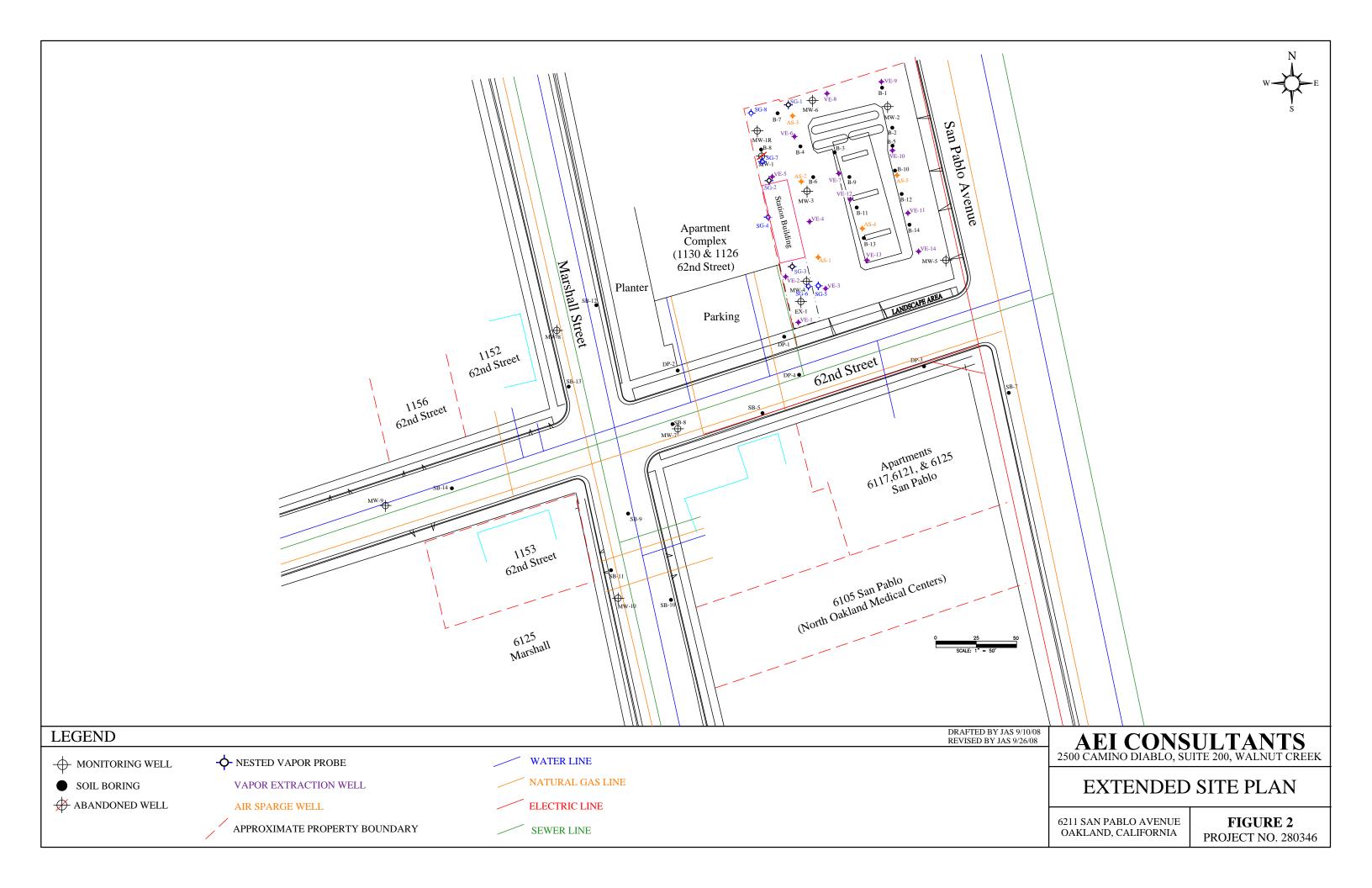
Tables

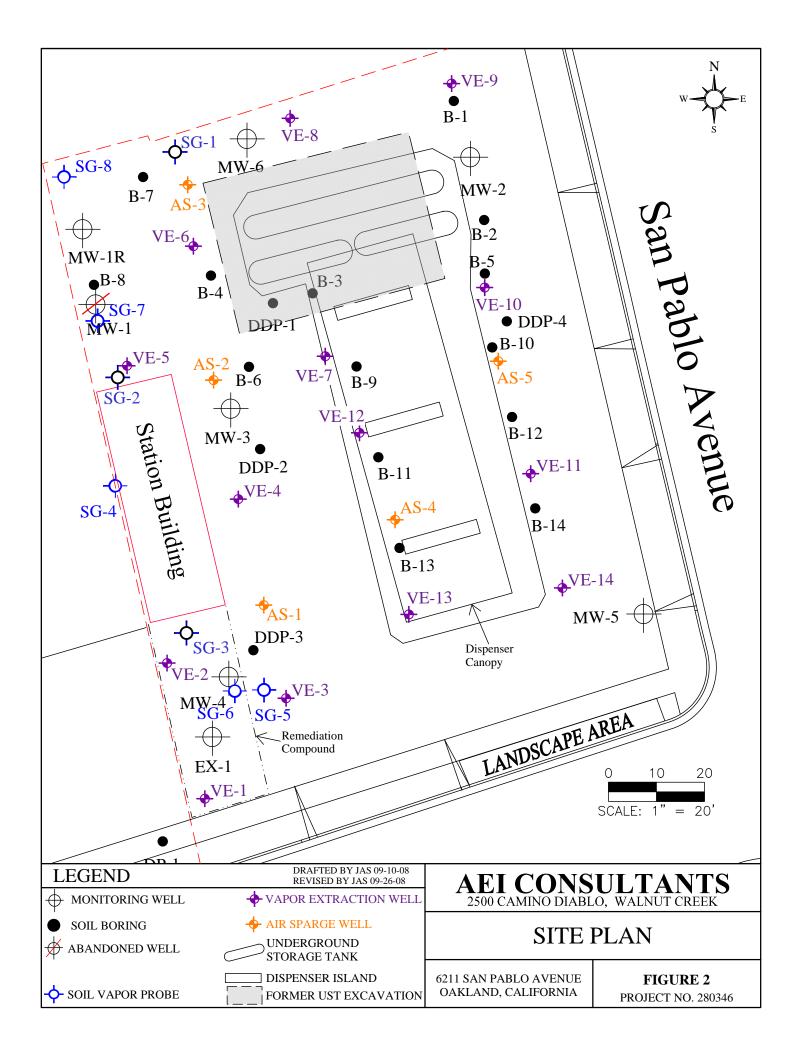
- Table 1: Groundwater Elevation Data
- Table 2: Groundwater Flow Data
- Table 3: Groundwater Analytical Data
- Appendix A: Groundwater Monitoring Well Field Sampling Forms

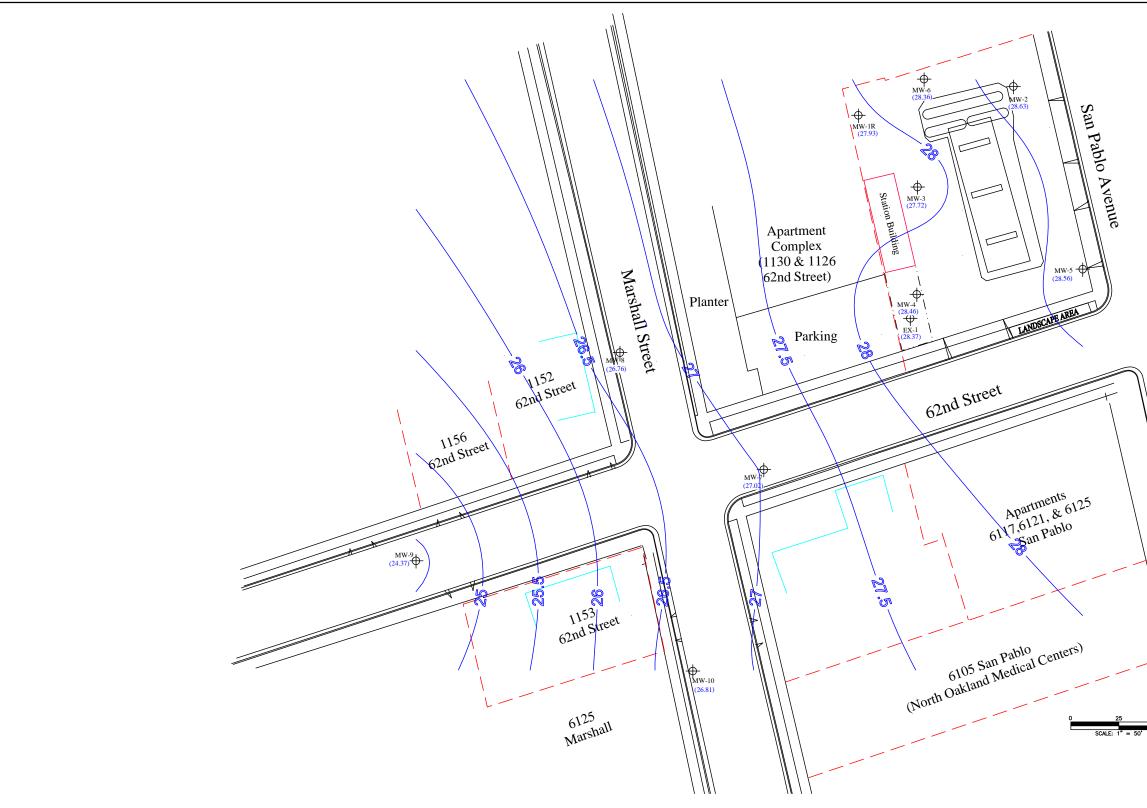
Appendix B: Laboratory Analyses with Chain of Custody Documentation

Distribution:

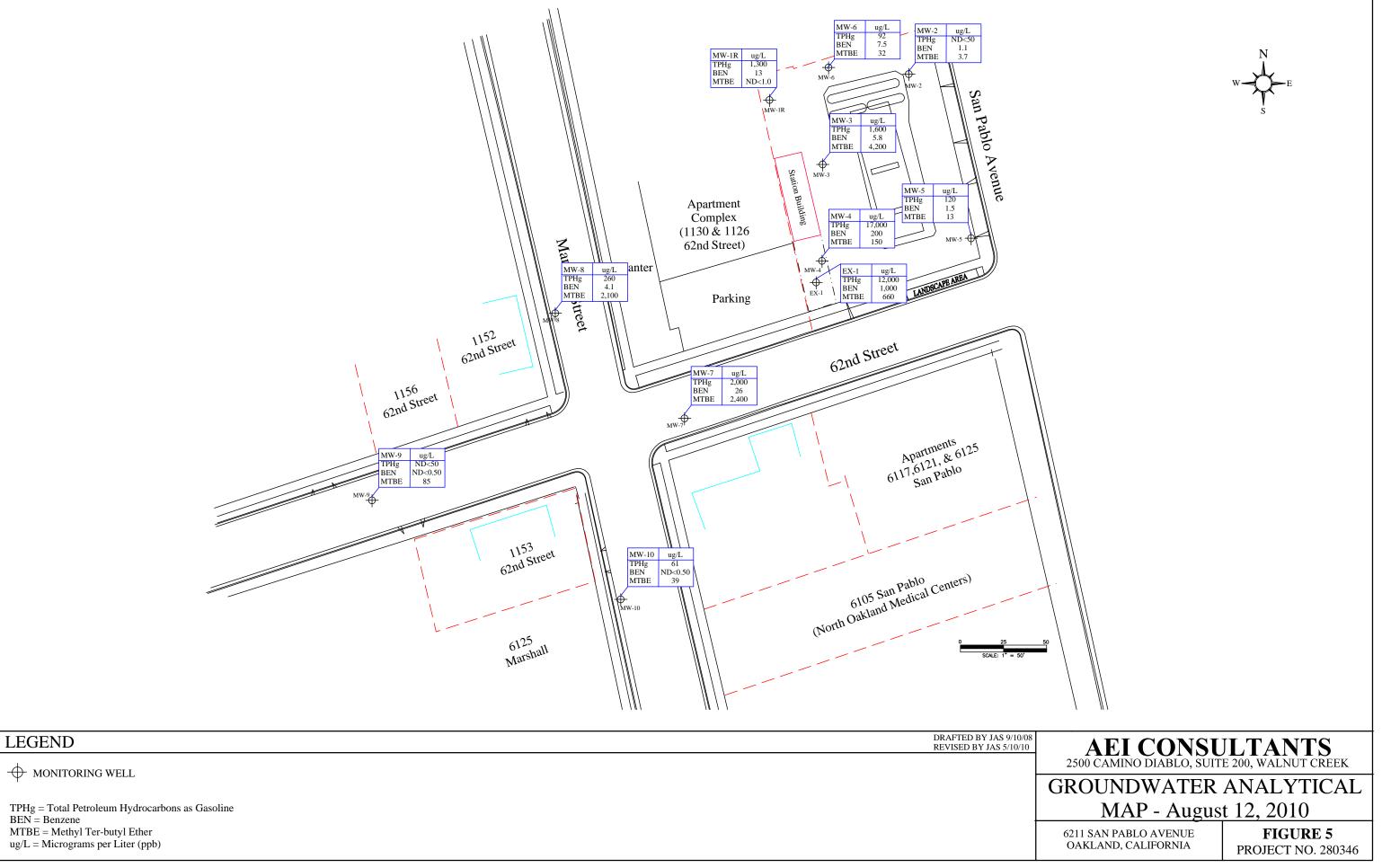

Mr. Paresh Khatri, ACHCSA, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 (electronic upload)


Mr. Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612


Peter J. McIntyre, H Senior Project Geølogist


Mr. Pritpaul Sappal, 2718 Washburn Court, Vallejo, CA 94591

FIGURES


LEGEND

 \oplus MONITORING WELL

(28.68) = Groundwater Elevation Mean Sea Level

Depth to Groundwater Collected on August 12, 2010 Contour Line Gradient = 0.50 Feet Contour Lines by Surfe[®] Version 7 Groundwater Flow Direction Groundwater Gradient Approximately 0.01 ft/ft

San Pablo Avenue	$W \xrightarrow{N}_{S} E$
Avenue	
6125 o	
0 25 50 SCALE: 1" = 50'	
DRAFTED BY JAS 9/10/08 REVISED BY JAS 5/10/10 AELEVATIO	WATER
6211 SAN PABLO AVENUE OAKLAND, CALIFORNIA	FIGURE 4 PROJECT NO. 280346

TABLES

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft amsl)	(ft)	(ft amsl)
			-	
MW-1R	5/15/2008	36.67	8.53	28.14
(3-23)	9/10/2008	36.67	9.36	27.31
	11/18/2008	36.67	8.82	27.85
	2/17/2009	36.67	5.67	31.00
	5/15/2009	36.67	7.79	28.88
	8/13/2009	36.67	9.20	27.47
	2/23/2010	36.67	6.67	30.00
	8/12/2010	36.67	8.74	27.93
MW-2	5/15/2008	36.33	7.63	28.70
(6-21)	9/10/2008	36.33	8.43	27.90
	11/18/2008	36.33	7.83	28.50
	2/17/2009	36.33	4.92	31.41
	5/15/2009	36.33	6.81	29.52
	8/13/2009	36.33	8.23	28.10
	2/23/2010	36.33	6.06	30.27
	8/12/2010	36.33	7.70	28.63
MW-3	5/15/2008	35.12	7.23	27.89
(6-21)	9/10/2008	35.12	8.08	27.04
	11/18/2008	35.12	7.52	27.60
	2/17/2009	35.12	4.36	30.76
	5/15/2009	35.12	6.50	28.62
	8/13/2009	35.12	7.96	27.16
	2/23/2010	35.12	5.10	30.02
	8/12/2010	35.12	7.40	27.72
MW-4	5/15/2008	34.11	5.43	28.68
(5-20)	9/10/2008	34.11	7.26	26.85
(5-20)	11/18/2008	34.11	5.84	28.27
	2/17/2009	34.11	2.67	31.44
	5/15/2009	34.11	4.90	29.21
	8/13/2009	34.11	6.02	29.21
	2/23/2010	34.11	3.84	30.27
	8/12/2010	34.11	5.65	28.46

Table 1, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346Groundwater Elevation Data

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft amsl)	(ft)	(ft amsl)
MW-5	5/15/2008	35.17	6.29	28.88
(5-25)	9/10/2008	35.17	6.99	28.18
	11/18/2008	35.17	6.41	28.76
	2/17/2009	35.17	4.07	31.10
	5/15/2009	35.17	5.59	29.58
	8/13/2009	35.17	6.81	28.36
	2/23/2010	35.17	5.05	30.12
	8/12/2010	35.17	6.61	28.56
MW-6	5/15/2008	36.07	7.51	28.56
(5-25)	9/10/2008	36.07	8.32	27.75
× /	11/18/2008	36.07	7.73	28.34
	2/17/2009	36.07	4.64	31.43
	5/15/2009	36.07	6.89	29.18
	8/13/2009	36.07	8.26	27.81
	2/23/2010	36.07	5.76	30.31
	8/12/2010	36.07	7.71	28.36
MW-7	2/23/2010	31.16	2.09	29.07
(6-16)	8/12/2010	31.16	4.14	27.02
MW-8	2/23/2010	30.92	2.66	28.26
(5-15)	8/12/2010	30.92	4.16	26.76
MW-9	2/23/2010	28.90	2.84	26.06
(5-15)	8/12/2010	28.90	4.53	24.37
MW-10	2/23/2010	30.28	0.98	29.30
(5-15)	8/12/2010	30.28	3.47	26.81
EX-1	5/15/2008	33.28	4.69	28.59
(5-30)	9/10/2008	33.28	5.46	27.82
	11/18/2008	33.28	4.79	28.49
	2/17/2009	33.28	1.86	31.42
	5/15/2009	33.28	4.16	29.12
	8/13/2009	33.28	8.36	24.92
	2/23/2010	33.28	3.09	30.19
	8/12/2010	33.28	4.91	28.37

Event #	Date	Average Water Table Elevation (ft amsl)	Change from Previous Episode (ft)	Gradient (Flow Direction) (ft/ft)
1	11/7/1999	NA	NA	0.0068 (SW)
2	3/8/2001	NA	NA	0.0092 (SW)
3	11/17/2001	NA	NA	0.0091 (SW)
4	3/31/2002	NA	NA	0.0108 (SSW)
5	9/9/2003	NA	NA	0.0031 (SW)
6	12/9/2003	NA	NA	0.0031 (SW)
7	2/19/2004	NA	NA	0.0154 (SW)
8	5/24/2004	NA	NA	0.0081 (WSW)
9	9/3/2004	NA	NA	0.0075 (SW)
10	11/2/2004	NA	NA	0.0083 (WSW)
11	2/17/2005	NA	NA	0.0036 (SW)
12	5/24/2005	NA	NA	0.0097 (SSW)
13	8/15/2005	NA	NA	0.013 (SW)
14	11/17/2005	NA	NA	0.010 (SW)
15	2/8/2006	NA	NA	0.010 (SW)
16	5/5/2006	NA	NA	0.013 (SSW)
17	8/18/2006	NA	NA	0.0125 (SSW)
18	12/1/2006	NA	NA	0.03 (S)
19	2/23/2007	NA	NA	0.012 (SW)
20	5/10/2007	NA	NA	0.013 (SW)
20	8/16/2007	NA	NA	0.022 (SW)
22	11/8/2007	NA	NA	0.012 (WSW)
23	2/14/2008	NA	NA	0.012 (WBW)
24	5/15/2008	28.49	NA	0.01 (W)
25	9/10/2008	27.55	-0.94	0.015 (SW)
26	11/18/2008	28.26	0.71	0.012 (W)
27	2/17/2009	31.22	2.96	0.01 (SW)
28	5/15/2009	29.16	-2.06	0.01 (WSW)
29	8/13/2009	27.42	-1.74	0.01 (W)
30 ¹	2/23/2010	29.44	2.03	0.01 (W)
30 31	8/12/2010	29.44 27.54	- 1.90	0.01 (WSW)

Table 2, 6211 San Pablo Avenue, Oakland, CA - AEI Project # 280346Groundwater Flow Data

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing

NA = not available

 1 = Includes data from newly installed monitoring wells MW-7 through MW-10.

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
		μg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	µg/L	μg/L
MW-1	11/7/1999	5,700	170	59	22	85	20,000	NA	NA	NA	NA	NA	NA
	3/8/2001	17,000	480	150	52	170	38,000	NA	NA	NA	NA	NA	NA
	11/17/2001	10,000	230	210	60	250	22,000	NA	NA	NA	NA	NA	NA
	3/31/2002	12,000	61	ND	ND	29	35,000	NA	NA	NA	NA	NA	NA
	11/9/2003	19,000	ND	ND	ND	ND	50,000	NA	NA	NA	NA	NA	NA
	12/9/2003	22,000	150	ND	ND	ND	66,000	NA	NA	NA	NA	NA	NA
MW-1R	11/17/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/19/2004	1,800	95	130	44	200	220	NA	NA	NA	NA	NA	NA
	5/24/2004	210	12	10	5.4	23	79	ND	ND	2.1	37	ND	ND
	9/3/2004	300	1.5	7.1	9.4	42	81	ND	ND	1.6	ND	ND	ND
	11/2/2004	290	14	30	9.5	45	45	ND	ND	1.1	ND	NA	NA
	2/17/2005	530	3.4	ND	ND	2.6	1,000	ND	ND	100	ND	NA	NA
	5/24/2005	NA	NA	NA	NA	NA	NA	ND	ND	610	ND	ND	ND
	8/15/2005	2,500	64	240	61	210	2,300	ND	ND	210	ND	ND	ND
	11/17/2005	2,500	66	290	75	290	1,300	ND	ND	110	1,600	ND	ND
	2/8/2006	3,300	100	310	86	470	1,400	ND	ND	130	1,400	ND	ND
	5/5/2006	3,400	170	350	97	550	1,100	ND	ND	100	2,400	ND	ND
	8/18/2006	5,800	190	1,000	230	1,000	490	ND	ND	36	2,900	ND	ND
	12/1/2006	410	1.7	6.3	1.2	47	100	ND	ND	4.7	100	ND	ND
	2/23/2007	ND	ND	0.51	ND	1.4	3	ND	ND	ND	ND	ND	ND
	5/10/2007	ND	ND	ND	ND	2.0	5.9	ND	ND	ND	ND	ND	ND
	8/16/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/8/2007	1,300	11	82	54	270	1.4	ND	ND	ND	ND	ND	ND
	2/14/2008	800	7.6	31	23	150	1.7	ND	ND	ND	ND	ND	ND
	5/15/2008	3,200	20	200	110	550	4.2	ND<0.50	ND<0.50	1.0	ND<20	ND<0.50	ND<0.
	9/10/2008	1,000	6.5	22	19	120	2.3	ND<0.50	ND<0.50	ND<0.50	4.0	ND<0.50	ND<0.
	11/18/2008	430	4.1	18	12	100	1.8	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.
	2/17/2009	220	3.6	6.1	2.0	41	1.3	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.
	5/15/2009	890	6.0	17	27	110	1.8	ND<0.50	ND<0.50	ND<0.50	3.9	ND<0.50	ND<0.
	8/13/2009	2,000	17	23	73	350	2.1	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.
	2/23/2010	3,200	31	<u>-</u> 20 77	120	810	3.9	ND<1.7	ND<1.7	ND<1.7	ND<6.7	ND<1.7	ND<1
	8/12/2010	1,300	13	16	40	280	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<4.0	ND<1.0	ND<1

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L
MW-2	11/7/1999	6,000	1,300	92	50	400	6,800	NA	NA	NA	NA	NA	NA
	3/8/2001	41,000	8,100	870	2,000	4,100	26,000	NA	NA	NA	NA	NA	NA
	11/17/2001	18,000	3,700	180	610	640	16,000	NA	NA	NA	NA	NA	NA
	3/31/2002	32,000	6,500	270	1,700	2,700	19,000	NA	NA	NA	NA	NA	NA
	9/9/2003	24,000	4,600	ND	1,200	440	19,000	NA	NA	NA	NA	NA	NA
	12/9/2003	31,000	6,200	170	1,600	2,700	19,000	NA	NA	NA	NA	NA	NA
	2/19/2004	21,000	4,600	120	970	2,000	15,000	NA	NA	NA	NA	NA	NA
	5/24/2004	1,200	120	3	63	67	1,900	ND	ND	ND	ND	ND	ND
	9/3/2004	2,300	120	ND	51	70	1,700	ND	ND	26	ND	ND	ND
	11/2/2004	530	35	ND	17	30	520	ND	ND	28	100	NA	NA
	2/17/2005	18,000	2,100	31	800	680	20,000	ND	ND	1,000	ND	NA	NA
	5/24/2005	22,000	3,200	52	1,400	1,700	16,000	ND	ND	NS	NS	ND	ND
	8/15/2005	2,000	66	ND	46	47	2,400	ND	ND	95	880	ND	ND
	11/17/2005	760	19	0.64	15	13	1,000	ND	ND	26	810	ND	ND
	2/8/2006	10,000	1,500	8	660	380	4,300	ND	ND	120	2,800	ND	ND
	5/5/2006	15,000	1,800	ND	1,200	1,200	5,800	ND	ND	150	4,300	ND	ND
	8/18/2006	360	11	ND	13	9.7	160	ND	ND	4.6	600	ND	ND
	12/1/2006	11,000	1,000	ND	990	910	2,100	ND	ND	87	2,000	ND	ND
	2/23/2007	3,200	210	ND	270	85	900	ND	ND	33	1,400	ND	ND
	5/10/2007	590	31	ND	39	22	200	ND	ND	5.9	250	ND	ND
	8/16/2007	650	49	ND	71	49	100	ND	ND	3.5	82	ND	ND
	11/8/2007	110	1.6	ND	1.9	1.6	23	ND	ND	0.64	48	ND	ND
	2/14/2008	350	24	ND	12	5.9	190	ND	ND	7.7	320	ND	ND
	5/15/2008	81	0.59	ND<0.50	0.71	0.66	38	ND<0.50	ND<0.50	1.4	54	ND<0.50	ND<0.50
	9/10/2008	150	6.4	ND<0.50	8.4	5.1	14	ND<0.50	ND<0.50	0.55	38	ND<0.50	ND<0.50
	11/18/2008	420	25	0.70	46	47	29	ND<0.50	ND<0.50	1.3	60	ND<0.50	ND<0.50
	2/17/2009	460	23	0.96	51	37	26	ND<0.50	ND<0.50	1.4	61	ND<0.50	ND<0.50
	5/15/2009	220	13	0.93	26	13	21	ND<0.50	ND<0.50	0.87	60	ND<0.50	ND<0.50
	8/13/2009	110	7.0	ND<0.50	13	5.0	7.7	ND<0.50	ND<0.50	ND<0.50	26	ND<0.50	ND<0.50
	2/23/2010	170	9.4	0.65	27	5.6	14	ND<0.50	ND<0.50	ND<0.50	36	ND<0.50	ND<0.50
	8/12/2010	ND<50	1.1	ND<0.50	1.8	0.63	3.7	ND<0.50	ND<0.50	ND<0.50	6.3	ND<0.50	ND<0.50

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
MW-3	11/7/1999	43,000	860	70	ND	65	120,000	NA	NA	NA	NA	NA	NA
	3/8/2001	90,000	1,800	ND	ND	ND	210,000	NA	NA	NA	NA	NA	NA
	11/17/2001	110,000	1,600	ND	ND	ND	300,000	NA	NA	NA	NA	NA	NA
	3/31/2002	130,000	2,400	670	300	390	300,000	NA	NA	NA	NA	NA	NA
	9/9/2003	190,000	1,600	ND	ND	ND	420,000	NA	NA	NA	NA	NA	NA
	12/9/2003	170,000	2,000	ND	ND	ND	4,500,000	NA	NA	NA	NA	NA	NA
	2/19/2004	86,000	1,800	630	ND	ND	160,000	NA	NA	NA	NA	NA	NA
	5/24/2004	120,000	2,200	ND	180	220	400,000	ND	ND	15,000	ND	ND	ND
	9/3/2004	180,000	2,000	ND	ND	ND	510,000	ND	ND	14,000	ND	ND	ND
	11/2/2004	150,000	1,700	ND	ND	ND	350,000	ND	ND	31,000	140,000	NA	NA
	2/17/2005	130,000	2,100	420	210	730	290,000	ND	ND	11,000	ND	NA	NA
	5/24/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/15/2005	110,000	1,500	ND	ND	ND	260,000	ND	ND	21,000	25,000	ND	ND
	11/17/2005	200,000	2,400	ND	ND	ND	580,000	ND	ND	24,000	49,000	ND	ND
	2/8/2006	470,000	3,800	660	ND	790	490,000	ND	ND	26,000	49,000	ND	ND
	5/5/2006	400,000	3,300	ND	ND	ND	590,000	ND	ND	21,000	86,000	ND	ND
	8/18/2006	310,000	1,800	ND	ND	ND	440,000	ND	ND	23,000	79,000	ND	ND
	12/1/2006	270,000	ND	ND	ND	ND	290,000	ND	ND	11,000	90,000	ND	ND
	2/23/2007	220,000	ND	ND	ND	ND	260,000	ND	ND	15,000	33,000	ND	ND
	5/10/2007	140,000	ND	ND	ND	ND	180,000	ND	ND	7,100	80,000	ND	ND
	8/16/2007	69,000	ND	ND	ND	ND	85,000	ND	ND	3,400	180,000	ND	ND
	11/8/2007	34,000	ND	ND	ND	ND	38,000	ND	ND	1,400	140,000	ND	ND
	2/14/2008	41,000	ND	ND	ND	ND	44,000	ND	ND	1,900	110,000	ND	ND
	5/15/2008	43,000	ND<100	ND<100	ND<100	ND<100	62,000	ND<100	ND<100	1,100	200,000	ND<100	ND<100
	9/10/2008	1,600	14	8.6	7.7	23	21,000	ND<1,000	ND<1,000	ND<1,000	290,000	ND<1,000	ND<1,00
	11/18/2008	4,500	86	150	100	590	29,000	ND<1,000	ND<1,000	ND<1,000	290,000	ND<1,000	ND<1,00
	2/17/2009	2,500	45	53	35	160	16,000	ND<1,000	ND<1,000	ND<1,000	190,000	ND<1,000	ND<1,00
	5/15/2009	2,000	15	21	13	35	13,000	ND<1,000	ND<1,000	ND<1,000	260,000	ND<1,000	ND<1,00
	8/13/2009	1,300	10	11	4.1	14	7,900	ND<1,200	ND<1,200	ND<1,200	250,000	ND<1,200	ND<1,20
	2/23/2010	1,700	22	21	11	38	4,700	ND<1,700	ND<1,700	ND<1,700	260,000	ND<1,700	ND<1,70
	8/12/2010	1,600	5.8	16	5.8	16	4,200	ND<1,200	ND<1,200	ND<1,200	250,000	ND<1,200	ND<1,200

Table 3, 6211 San Pablo Avenue	, Oakland, CA	- AEI Project # 280346
--------------------------------	---------------	------------------------

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Date	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L
MW-4	11/17/2001	64,000	960	1,400	360	1,600	140,000	NA	NA	NA	NA	NA	NA
	3/31/2002	78,000	4,400	4,700	690	2,700	150,000	NA	NA	NA	NA	NA	NA
	9/6/2007	49,000	710	840	ND	10,000	3,600	ND	ND	510	32,000	ND	ND
	11/8/2007	64,000	1,300	2,600	1,000	8,500	1,500	ND	ND	360	14,000	ND	ND
	2/14/2008	60,000	390	460	230	2,000	52,000	ND	ND	2,000	58,000	ND	ND
	5/15/2008	22,000	670	130	740	2,700	3,300	ND<5.0	ND<5.0	340	35,000	ND<5.0	ND<5.0
	9/10/2008	16,000	500	150	730	2,500	2,000	ND<250	ND<250	ND<250	65,000	ND<250	ND<250
	11/18/2008	24,000	820	190	1,200	5,000	1,400	ND<50	ND<50	260	9,300	ND<50	ND<50
	2/17/2009	17,000	350	170	620	2,600	360	ND<10	ND<10	82	2,100	ND<10	ND<10
	5/15/2009	32,000	300	190	880	3,200	470	ND<10	ND<10	95	380	ND<10	ND<10
	8/13/2009	29,000	320	250	980	3,400	350	ND<50	ND<50	61	10,000	ND<50	ND<50
	2/23/2010	15,000	250	77	580	2,200	180	ND<5.0	ND<5.0	41	400	ND<5.0	ND<5.0
	8/12/2010	17,000	200	47	580	1,400	150	ND<10	ND<10	28	1,800	ND<10	ND<10
MW-5	11/17/2001	210	15	12	11	23	4.8	NA	NA	NA	NA	NA	NA
	3/31/2002	120	11	7.4	6.1	16	4.2	NA	NA	NA	NA	NA	NA
	9/9/2003	ND	1.5	ND	ND	ND	1.7	NA	NA	NA	NA	NA	NA
	12/9/2003	130	32	ND	2.6	0.57	5	NA	NA	NA	NA	NA	NA
	2/19/2004	ND	ND	ND	ND	ND	1.5	NA	NA	NA	NA	NA	NA
	5/24/2004	ND	ND	ND	ND	ND	0.55	ND	ND	ND	ND	ND	ND
	9/3/2004	100	6.4	ND	ND	0.79	4.2	ND	ND	ND	ND	ND	ND
	11/2/2004	ND	2.6	ND	1.7	0.87	1	ND	ND	ND	ND	ND	ND
	2/17/2005	51	0.74	ND	0.94	ND	1.5	ND	ND	ND	ND	ND	ND
	5/24/2005	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	8/15/2005	ND	ND	ND	ND	ND	0.88	ND	ND	ND	ND	ND	ND
	11/17/2005	71	0.81	ND	1.1	ND	1.4	ND	ND	ND	ND	ND	ND
	2/8/2006	50	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	5/5/2006	ND	ND	ND	ND	ND	0.93	ND	ND	ND	ND	ND	ND
	8/18/2006	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	12/1/2006	ND	0.69	ND	ND	0.52	0.97	ND	ND	ND	ND	ND	ND
	2/23/2007	73	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND
	5/10/2007	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	8/16/2007	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	11/8/2007	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	2/14/2008	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	5/15/2008	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.7	ND<0.50	ND<0.50	ND<0.50	ND<20	ND<0.50	ND<0.50
	9/10/2008	480	17	1.8	2.7	0.59	12	ND<0.50	ND<0.50	ND<0.50	4.4	ND<0.50	ND<0.50

Sample ID	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
Sample ID	Dute	μg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-5	11/18/2008	130	2.3	1.6	ND<0.50	ND<0.50	7.3	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
(cont.)	2/17/2009	170	ND<0.50	2.7	ND<0.50	ND<0.50	4.2	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	5/15/2009	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	7.6	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	8/13/2009	380	19	2.1	3.8	0.88	11	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	2/23/2010	ND<50	ND<0.50	0.87	ND<0.50	ND<0.50	1.9	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	8/12/2010	120	1.5	2.9	0.74	3.5	13	ND<0.50	ND<0.50	ND<0.50	3.0	ND<0.50	ND<0.50
MW-6	11/17/2001	3,500	160	260	95	420	1,500	NA	NA	NA	NA	NA	NA
	3/31/2002	3,200	410	170	82	280	3,000	NA	NA	NA	NA	NA	NA
	9/9/2003	800	49	ND	7.4	ND	1,700	NA	NA	NA	NA	NA	NA
	12/9/2003	970	150	9.9	31	83	1,200	NA	NA	NA	NA	NA	NA
	2/19/2004	1,900	280	58	17	160	2,700	NA	NA	NA	NA	NA	NA
	9/3/2004	1,100	27	ND	14	27	2,200	ND	ND	85	ND	ND	ND
	11/2/2004	1,800	32	ND	5	11	4,100	ND	ND	170	270	ND	ND
	2/17/2005	5,600	190	34	41	110	10,000	ND	ND	780	2,000	ND	ND
	8/15/2005	1,800	27	ND	6	23	3,800	ND	ND	300	3,500	ND	ND
	11/17/2005	1,100	30	ND	4	9	2,400	ND	ND	190	9,500	ND	ND
	2/8/2006	3,600	220	43	66	160	2,700	ND	ND	180	7,800	ND	ND
	5/5/2006	1,600	130	21	37	65	1,400	ND	ND	53	3,100	ND	ND
	8/18/2006	270	27	ND	3	4	240	ND	ND	11	2,400	ND	ND
	12/1/2006	1,700	ND	ND	ND	ND	1,700	ND	ND	92	800	ND	ND
	2/23/2007	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	5/10/2007	ND	3.0	ND	ND	1.9	26	ND	ND	2	48	ND	ND
	8/16/2007	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND
	11/8/2007	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND
	2/14/2008	ND	ND	ND	ND	ND	11	ND	ND	0.94	220	ND	ND
	5/15/2008	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	13	ND<0.50	ND<0.50	1.0	130	ND<0.50	ND<0.50
	9/10/2008	78	1.4	0.60	0.94	1.3	71	ND<1.0	ND<1.0	6.2	160	ND<1.0	ND<1.0
	11/18/2008	ND<50	2.4	ND<0.50	ND<0.50	0.70	72	ND<1.2	ND<1.2	7.2	180	ND<1.2	ND<1.2
	2/17/2009	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	5/15/2009	53	3.2	ND<0.50	ND<0.50	1.7	44	ND<1.0	ND<1.0	4.3	89	ND<1.0	ND<1.0
	8/13/2009	74	5.9	0.57	0.97	5.0	27	ND<0.50	ND<0.50	2.2	140	ND<0.50	ND<0.50
	2/23/2010	ND<50	0.66	ND<0.50	ND<0.50	0.57	5.7	ND<0.50	ND<0.50	ND<0.50	15	ND<0.50	ND<0.50
	8/12/2010	92	7.5	0.94	ND<0.50	1.0	32	ND<1.0	ND<1.0	2.7	180	ND<1.0	ND<1.0

Sample ID	Date	TPHg μg/L	Benzene µg/L	Toluene μg/L	Ethylbenzene µg/L	Xylenes µg/L	MTBE μg/L	DIPE μg/L	ETBE μg/L	TAME μg/L	TBA μg/L	1,2-DCA μg/L	EDB μg/L
MW-7	2/23/2010	29,000	410	380	2,100	6,100	410	ND<10	ND<10	19	1,500	ND<10	ND<10
	8/12/2010	2,000	26	17	140	250	2,400	ND<50	ND<50	75	9,600	ND<50	ND<50
MW-8	2/23/2010	690	3.5	2.8	29	40	1,600	ND<100	ND<100	ND<100	24,000	ND<100	ND<100
	8/12/2010	260	4.1	1.4	6.9	7.2	2,100	ND<170	ND<170	ND<170	25,000	ND<170	ND<170
MW-9	2/23/2010	ND<50	ND<0.50	0.70	ND<0.50	ND<0.50	260	ND<10	ND<10	ND<10	1,600	ND<10	ND<10
	8/12/2010	ND<50	ND<0.50	1.6	ND<0.50	ND<0.50	85	ND<10	ND<10	ND<10	880	ND<10	ND<10
MW-10	2/23/2010	1,300	ND<0.50	11	3.1	2.6	2.8	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50
	8/12/2010	61	ND<0.50	0.72	ND<0.50	ND<0.50	39	ND<0.50	ND<0.50	1.8	ND<2.0	ND<0.50	ND<0.50
EX-1	2/19/2004	120,000	9,500	4,300	840	3,900	150,000	NA	NA	NA	NA	NA	NA
	2/14/2008	84,000	2,300	4,900	1,800	14,000	3,900	ND	ND	610	10,000	ND	ND
	5/15/2008	24,000	2,100	750	640	2,100	1,800	ND<0.50	ND<0.50	380	11,000	ND<0.50	ND<0.50
	9/10/2008	9,200	1,000	160	300	1,000	780	ND<100	ND<100	180	22,000	ND<100	ND<100
	11/18/2008	8,900	1,400	290	360	1,300	840	ND<100	ND<100	230	20,000	ND<100	ND<100
	2/17/2009	70,000	2,700	3,600	1,900	13,000	1,400	ND<25	ND<25	480	1,500	ND<25	ND<25
	5/15/2009	18,000	1,400	250	530	1,700	640	ND<25	ND<25	200	5,500	ND<25	ND<25
	8/13/2009	10,000	1,100	150	410	940	520	ND<25	ND<25	120	5,200	ND<25	ND<25
	2/23/2010	39,000	1,300	1,100	1,100	7,700	880	ND<25	ND<25	250	670	ND<25	ND<25
	8/12/2010	12,000	1,000	160	470	1,200	660	ND<17	ND<17	160	1,000	ND<17	ND<17

Groundwater Analytical Data

Notes:

TPHg = total petroleum hydrocarbons as gasoline using EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B

MTBE = methyl-tertiary butyl ether using EPA Method 8021B; EPA Method 8260B Beginning in May 2008

TBA = tert-butyl alcohol using EPA Method 8260B

TAME = tert-amyl methyl ether using EPA Method 8260B

DIPE = diisopropyl ether using EPA Method 8260B

ETBE = ethyl tert-butyl ether using EPA Method 8260B

1,2-DCA = 1,2-dichloroethane using EPA Method 8260B

EDB = Ethylene dibromide using EPA Method 8260B

 $\mu g/L{=}\ micrograms\ per\ liter$

ND = non detect at respective reporting limit

NA - not analyzed

APPENDIX A

GROUNDWATER MONITORING WELL FIELD SAMPLING FORMS

Monitoring Well Number: MW-1R

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)		36.67			
Depth of Well		22.75			
Depth to Water (from top of casing)	8.74				
Water Elevation (feet above msl)	27.93				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.7				
Actual Volume Purged (gallons)	8.0				
Appearance of Purge Water	Initially black, clearing by 2 gallons				
Free Product Present?	No Thickness (ft):				

	GROUNDWATER SAMPLES						
Number of Samp	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
12:54	1	22.82	7.44	508	7.08	256.7	Black
12:55	2	20.08	7.06	488	4.56	222.8	Clear
12:56	3	19.95	6.97	477	3.12	205.8	Clear
12:56	4	19.93	6.94	475	2.59	198.3	Clear
12:56	5	19.78	6.89	472	1.94	187.2	Clear
12:57	6	19.63	6.86	469	1.58	179.0	Clear
12:58	7	19.51	6.84	466	1.46	173.5	Clear
12:58	8	19.41	6.82	463	1.44	169.0	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Hydrocarbon odors noted during purging

Monitoring Well Number: MW-2

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"			
Wellhead Condition	OK –				
Elevation of Top of Casing (feet above msl)	36.33				
Depth of Well		20.70			
Depth to Water (from top of casing)		7.70			
Water Elevation (feet above msl)	28.63				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.2				
Actual Volume Purged (gallons)	8.0				
Appearance of Purge Water	Milky Brown				
Free Product Present?	No Thickness (ft):				

	GROUNDWATER SAMPLES						
Number of Sample	es/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
11:59	1	21.17	7.51	516	6.33	264.3	Milky
12:00	2	21.02	7.21	521	4.72	261.9	Slightly milky
12:00	3	21.56	6.99	540	2.90	259.7	Slightly milky
12:01	4	21.67	6.93	547	2.01	258.6	Clear
12:01	5	21.51	6.90	548	1.31	257.1	Clear
12:02	6	21.15	6.90	533	0.79	254.6	Milky
12:02	7	20.59	6.92	506	0.51	251.7	Brown
12:03	8	20.24	6.89	504	0.41	249.6	Brown

Monitoring Well Number: MW-3

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)		35.12			
Depth of Well		20.82			
Depth to Water (from top of casing)		7.40			
Water Elevation (feet above msl)	27.72				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.4				
Actual Volume Purged (gallons)	7.0				
Appearance of Purge Water	Light Brown				
Free Product Present?	PNO Thickness (ft):				

GROUNDWATER SAMPLES							
Number of Sampl	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
14:07	1	23.02	7.54	700	10.01	154.3	Brown
14:08	2	21.26	7.17	692	7.15	142.6	Light Brown
14:08	3	21.22	6.94	695	2.62	130.3	Light Brown
14:09	4	21.02	6.83	717	1.07	119.1	Light Brown
14:10	5	20.77	6.83	713	0.65	111.6	Little Milky
14:10	6	20.50	6.81	708	0.48	102.3	Little Milky
14:11	7	20.32	6.80	707	0.46	95.6	Little Milky

Monitoring Well Number: MW-4

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	34.11				
Depth of Well	19.75				
Depth to Water (from top of casing)	5.65				
Water Elevation (feet above msl)	28.46				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	6.8				
Actual Volume Purged (gallons)	8.0				
Appearance of Purge Water	Initially black, clearing at 4 gallons				
Free Product Present?	No Thickness (ft):				

	GROUNDWATER SAMPLES						
Number of Samp	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
14:33	1	24.14	7.58	604	6.94	120.5	Black
14:34	2	21.97	7.27	592	4.83	96.1	Black
14:34	3	21.97	7.15	590	2.64	74.1	Black
14:35	4	21.81	7.10	601	1.00	49.5	Clear
14:35	5	21.70	7.10	612	0.62	37.6	Clear
14:36	6	21.64	7.11	620	0.40	23.8	Clear
14:37	7	21.58	7.11	624	0.32	15.1	Clear
14:37	8	21.56	7.12	630	0.27	4.1	Clear

Monitoring Well Number: MW-5

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)		35.17		
Depth of Well		24.31		
Depth to Water (from top of casing)		6.61		
Water Elevation (feet above msl)	28.56			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	8.5			
Actual Volume Purged (gallons)	10.0			
Appearance of Purge Water	Initially brown clearing around 8 gallons			
Free Product Present?	No. Thickness (ft):			

GROUNDWATER SAMPLES							
Number of Sampl	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
11:33	1	21.79	7.80	535	7.04	255.7	Brown
11:33	2	20.29	7.56	584	5.07	255.8	Brown
11:34	3	20.16	7.32	580	3.29	255.3	Brown
11:34	4	20.14	7.24	570	2.51	254.7	Brown
11:35	5	20.12	7.18	574	1.81	254.3	Brown
11:35	6	20.10	7.14	571	1.32	253.2	Milky
11:36	7	20.06	7.10	568	0.89	252.3	Slightly Milky
11:36	8	20.01	7.07	566	0.66	251.5	Clear
11:37	9	19.98	7.05	564	0.45	250.1	Clear
11:37	10	19.97	7.05	564	0.39	249.4	Clear

Monitoring Well Number: MW-6

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
	2			
Wellhead Condition	OK	_ ▼ _		
Elevation of Top of Casing (feet above msl)		36.07		
Depth of Well		23.45		
Depth to Water (from top of casing)		7.71		
Water Elevation (feet above msl)		28.36		
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	7.6			
Actual Volume Purged (gallons)	9.0			
Appearance of Purge Water	Brown			
Free Product Present?	No Thickness (ft):			

	GROUNDWATER SAMPLES						
Number of Samp	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
12:28	1	20.89	7.63	476	6.11	263.4	Brown
12:29	2	19.96	7.30	467	5.01	260.8	Brown
12:29	3	19.56	7.21	458	3.61	257.2	Brown
12:30	4	19.35	7.08	454	2.61	253.8	Brown
12:30	5	19.24	6.99	452	1.70	250.0	Less Brown
12:31	6	19.21	6.94	451	1.23	246.5	Milky
12:31	7	19.19	6.90	450	0.84	242.1	Milky
12:32	8	19.17	6.86	450	0.63	238.8	Milky
12:33	9	19.16	6.83	450	0.52	236.7	Milky

Monitoring Well Number: MW-7

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"		
Wellhead Condition	OK	•		
Elevation of Top of Casing (feet above msl)		31.16		
Depth of Well		16.00		
Depth to Water (from top of casing)		4.14		
Water Elevation (feet above msl)	27.02			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	5.7			
Actual Volume Purged (gallons)	8.0			
Appearance of Purge Water	Brown			
Free Product Present?	PNO Thickness (ft):			

GROUNDWATER SAMPLES							
Number of Samp	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
13:40	1	24.67	7.97	802	7.88	193.8	Brown
13:41	2	22.94	7.61	719	5.93	184.3	Brown
13:41	3	23.01	7.40	718	3.44	172.4	Brown
13:42	4	23.26	7.31	710	1.92	158.1	Brown
13:42	5	23.04	7.19	702	0.90	144.0	Brown
13:43	6	22.88	7.18	695	0.59	136.7	Brown
13:44	7	22.60	7.13	714	0.37	127.4	Brown
13:44	8	22.50	7.12	712	0.32	123.5	Brown

Monitoring Well Number: MW-8

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)		30.92		
Depth of Well		15.00		
Depth to Water (from top of casing)		4.16		
Water Elevation (feet above msl)	26.76			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	5.2			
Actual Volume Purged (gallons)	7.0			
Appearance of Purge Water	Milky			
Free Product Present?	No Thickness (ft):			

	GROUNDWATER SAMPLES						
Number of Samp	les/Container S	Size		VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
13:18	1	25.48	7.47	900	7.78	200.8	Milky
13:18	2	22.74	7.08	923	5.00	194.1	Milky
13:19	3	22.81	7.01	955	2.32	189.6	Milky
13:19	4	22.66	6.97	952	1.00	183.1	Milky
13:20	5	22.41	6.95	945	0.63	179.1	Milky
13:21	6	22.10	6.92	940	0.45	175.3	Milky
13:21	7	21.76	6.91	955	0.45	173.0	Brown

Monitoring Well Number: MW-9

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	_
Elevation of Top of Casing (feet above msl)		28.90
Depth of Well		15.00
Depth to Water (from top of casing)		4.53
Water Elevation (feet above msl)		24.37
Well Volumes Purged		3
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		5.0
Actual Volume Purged (gallons)		5.0
Appearance of Purge Water		Brown
Free Product Present?	No	Thickness (ft):

		G	ROUNDWA	TER SAMPL	.ES							
Number of Samp	les/Container S	Size		VOAs								
Time	Vol Removed (gal)	Temperature (deg C)	pН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments					
10:27	1	20.08	8.32	661	4.46	305.6	Brown					
10:28	2	22.19	7.80	509	1.43	294.8	Brown					
10:28	3	22.90	7.52	531	0.88	290.3	Brown					
10:28	4	22.94	7.41	554	0.85	279.7	Brown					
10:29	5	22.87	7.35	570	0.82	271.9	Brown					

Monitoring Well Number: MW-10

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"									
Wellhead Condition	ОК	-									
Elevation of Top of Casing (feet above msl)		30.28									
Depth of Well		15.00									
Depth to Water (from top of casing)		3.47									
Water Elevation (feet above msl)	26.81										
Well Volumes Purged	3										
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		5.5									
Actual Volume Purged (gallons)		8.0									
Appearance of Purge Water		Brown									
Free Product Present?	No	Thickness (ft):									

		G	ROUNDWA	TER SAMPL	.ES								
Number of Sampl	es/Container S	Size		VOAs									
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments						
11:01	1	19.17	8.20	490	5.51	274.0	Brown						
11:02	2	19.35	7.83	468	4.08	272.5	Brown						
11:03	3	19.51	7.64	464	2.86	270.7	Brown						
11:03	4	19.66	7.50	483	1.72	268.5	Brown						
11:04	5	19.72	7.42	496	1.16	266.6	Brown						
11:04	6	19.72	7.37	497	0.74	264.1	Brown						
11:05	7	19.69	7.35	494	0.54	261.7	Brown						
11:06	8	19.64	7.33	487	0.44	259.6	Brown						

Monitoring Well Number: EX-1

Project Name:	Alaska Gas	Date of Sampling: 8/12/2010
Job Number:	280346	Name of Sampler: A. Hawkins
Project Address:	6211 San Pablo Avenue, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		4"
Wellhead Condition	ОК	•
Elevation of Top of Casing (feet above msl)		33.28
Depth of Well		27.50
Depth to Water (from top of casing)		4.91
Water Elevation (feet above msl)		28.37
Well Volumes Purged		3
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		44.1
Actual Volume Purged (gallons)		15.0
Appearance of Purge Water		Initially black, clearing at 5 gallons
Free Product Present?	No	Thickness (ft):

GROUNDWATER SAMPLE	ES
--------------------	----

Number of Sample	es/Container S	ize		VOAs	-		-
Time	Vol Removed (gal) Temperature (deg C)		рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
14:54	2.5	20.62	7.17	582	2.72	53.1	Black
14:55	5	20.18	7.12	578	0.63	22.7	Clear
14:57	7.5	20.35	7.11	583	0.24	-2.9	Clear
14:59	10	20.77	7.11	589	0.25	-13.1	Clear
15:00	12.5	21.24	7.12	590	0.26	-19.9	Clear
15:01	15	21.54	7.12	592	0.27	-21.7	Clear
	COMME	NTS (i.e., sa	mple odor,	well recharg	e time & per	rcent, etc.)	

APPENDIX B

LABORATORY ANALYTICAL REPORT WITH CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Ouality"		Web: www.mccampbell.c	Road, Pittsburg, CA 945 com E-mail: main@m 52-9262 Fax: 925-25	ccampbell.com
AEI Consultants	Client Project ID: #280346;	Alaska Gas	Date Sampled:	08/13/10
2500 Camino Diablo, Ste. #200		Date Received:	08/13/10	
2500 Camino Diaolo, 510. #200	Client Contact: Jeremy Sm	Date Reported:	08/19/10	
Walnut Creek, CA 94597	Client P.O.: #WC082586		Date Completed:	08/19/10

WorkOrder: 1008440

August 19, 2010

Dear Jeremy:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #280346; Alaska Gas,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Telepho	McCAN ne: (925) 25	1534 V Pitts	L ANAI Villow Pass burg, CA 9	Road			(92		252-	926	i9							AROUN	D	TIN Yes	1E	,	RU) SH							72 H		5 DAY
Report To: Jeremy Smith Bill To: same P.O. # WC082586													_	_		An	aly	sis R	lequ	iest							Othe	r	(Com	ments		
Company: AEI Consultants																																	
	Camino Dial					_			_					4		111.0									Ó								
	ut Creek, C.	A 94597			ail: ja				onsu	ltan	ts.co	m		-			M	BE					310		010								
Tele: (925) 746-6					(925)				0					-		100	1.0	18.1 , ET					8/0		nc ((
Project #: 280346				-	t Nar	_		ska	Ga	S	_			-		10.0		BIPE		~			827		vi,zi								
Project Location:		ablo Aven	ue, Oaki	and,	Cam	orn	18	_		_		_		+		-	ICab	EDE		NL		0	525		pb,,1								
Sampler Signatur	ei	SAMP	LING		~	Г	MA	TR	ax	Т			IOD	=		10.01	0 20	MTE DCA,		3B's C		s) 827	EPA		I, Cr,	200.8							
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	Containers	Type Containers	Water			-	ler	PRE		HNO3	WTRF SI	1 3	r n - gasoune (outo) Traid Datacharas All & Canada (413-1) and Silina	Otal Felloreum O	Total Petroleum Hydrocarbons (418.1) Fuel Oxys (8260) – MTBE, DIPE, ETBE, TAME, TBA, 1,2-DCA, EDB	Nitrate/Nitrite	EPA 608 / 8080 PCB's ONLY	VOCs 8260	SVOCs (with PAHs) 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals (Cd, Cr, pb,,Ni,zinc (6010C).	Lead (field filtered 200.8)	RCI						
MW-1R			1710	#	· ·		ŝ	~	S	9				_	X Z	-	-	e e e X	Z	E	>	S	P,	U	A	Z	R	\vdash	+	+	+		
			1310	3	VOA	1,Y	4	_	-	+	X	X	-	_	_	_	+			_	_		_					\vdash	-	+	+		
MW-2			1210			4		_	1	4	1	1	_		_	X	+	X			_		_	_				\vdash	_	+	-		
MW-3			1420			#		_		4	\square				_	X	4	X										\square	_	_	-		
MW-4			1445			11							_		X 2	_	_	X										\square					
MW-5			1140			1		_							X D		_	X															
MW-6			1240												K 3			X															
MW-7			1355											2	X I	X		X															
MW-8			1330											2	X Z	X		X															
MW-9			1035						-			Л		_	K D	_		X															
MW-10			1115								11			2	X Z	X		X															
EX-1			1505	1	1	1				-				2	K 3	X	-	X			_								-	+	+		
															-														-	+	+		
Relinquished By		Date:								IC	E/t°	5	.8				P	RF	SER	VA	TIO		DAS	0&G	1	MET	ALS	OTHER					
Relinquished By: Date: Time: Received By: Date: 5:510								GO	OOD	S	ONDITIO	ENT	_		A	PPI	ROP	RI.	ATE RS_						_								
Relinquished By:	8	Date:	Times	Rec	cived/B	y:	N	7		8					DE	CH	LC	RINATEI) IN	LA	B		PE	RSE	RV	ED	IN I	LAB_					

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	52-9262					Work	Order	: 1008	440	(ClientC	ode: A	EL						
		WaterTrax	WriteOn	EDF	Ľ	Excel		Fax		🗸 Email		Harc	lCopy	🗌 Thir	dParty	J-1	flag		
Report to:							Bill to:						Req	uested	TAT:	5 c	days		
Jeremy Smi	th	Email:	jasmith@aeic	onsultants.com			De	enise M	ockel										
AEI Consult 2500 Camir	ants no Diablo, Ste. #200	cc: PO:											Date Received: 08/13/202						
Walnut Cree (925) 283-600	ek, CA 94597 00 FAX (925) 944-2895	•	#280346; Alas	ska Gas				alnut Ci nockel@	,				Dat	e Prin	ted:	08/13/2	2010		
									Req	uested	Tests (See legend below)							
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12		
1008440-001	MW-1R		Water	8/13/2010 13:10		В	Α	А											
1008440-002	MW-2		Water	8/13/2010 12:10		В	Α												
1008440-003	MW-3		Water	8/13/2010 12:20		В	Α												
1008440-004	MW-4		Water	8/13/2010 14:45		В	А												
1008440-005	MW-5		Water	8/13/2010 11:40		В	А												
1008440-006	MW-6		Water	8/13/2010 12:40		В	Α												
1008440-007	MW-7		Water	8/13/2010 13:55		В	Α												
1008440-008	MW-8		Water	8/13/2010 13:30		В	Α			1									
1008440-009	MW-9		Water	8/13/2010 10:35		В	Α			1									

Test Legend:

1008440-010

1008440-011

1	5-OXYS+PBSCV_W	2
6		7
11		12

MW-10

EX-1

G-MBTEX_W	3
	8

Water

Water

8/13/2010 11:15

8/13/2010 15:05

3	PREDF REPORT
8	

В

в

А

А

4	
9	

5			
10			

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Da	ate ar	nd Time Received:	8/13/2010	7:17:28 PM
Project Name:	#280346; Alaska	Gas				Ch	neckli	ist completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	1008440	Matrix	Water			Ca	arrier:	Rob Pringle (M	Al Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Info	rmat	ion		
Chain of custody	present?			Yes	V	No [
Chain of custody	signed when relinqui	shed and	received?	Yes	✓	No [
Chain of custody	agrees with sample I	abels?		Yes	✓	No				
Sample IDs noted	by Client on COC?			Yes	✓	No [
Date and Time of	collection noted by Cli	ent on CC	C?	Yes	✓	No [
Sampler's name ne	oted on COC?			Yes		No 🖸	/			
Sample Receipt Information										
Custody seals inta	act on shipping conta	iner/coole	er?	Yes		No [NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No [
Samples in prope	r containers/bottles?			Yes	✓	No [
Sample container	s intact?			Yes	✓	No [
Sufficient sample	volume for indicated	test?		Yes		No				
		<u>Sar</u>	nple Preser	vatior	and Ho	ld Time ((HT)	Information		
All samples receiv	ved within holding tim	e?		Yes	\checkmark	No				
Container/Temp B	Blank temperature			Coole	r Temp:	5.8°C			NA 🗆	
Water - VOA vials	s have zero headspa	ce / no bu	ubbles?	Yes	✓	No [No VOA vials subm	itted	
Sample labels che	ecked for correct pres	servation	?	Yes	✓	No				
Metal - pH accept	able upon receipt (pH	<2)?		Yes		No [NA 🗹	
Samples Receive	d on Ice?			Yes	✓	No [
			(Ice Type	e: WE	TICE))				
* NOTE: If the "N	'o" box is checked, se	e comme	ents below.		=					

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality		nc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants		Project ID: #2803	#280346; Alaska Gas Date Sampled: 08/13/10					
2500 Coming Dickle Sta #200				Date Received:	08/13/10			
2500 Camino Diablo, Ste. #200	Client	Contact: Jeremy	Smith	Date Extracted:	08/18/10			
Walnut Creek, CA 94597	Client I	P.O.: #WC08258	6	Date Analyzed:	08/18/10			
Oxygenate	d Volatile Org	anics + EDB and	1,2-DCA by P&T	and GC/MS*				
Extraction Method: SW5030B	Aı	alytical Method: SW8	260B		Work Order:	1008440		
Lab ID	1008440-001B	1008440-002B	1008440-003B	1008440-004B				
Client ID	MW-1R	MW-2	MW-3	MW-4	Reporting Limit for DF =1			
Matrix	W	W	W	W				
DF	2	1	2500	20	S	W		
Compound		Con	centration	1	ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND<1.0	ND	ND<1200	28	NA	0.5		
t-Butyl alcohol (TBA)	ND<4.0	6.3	250,000	1800	NA	2.0		
1,2-Dibromoethane (EDB)	ND<1.0	ND	ND<1200	ND<10	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<1.0	ND	ND<1200	ND<10	NA	0.5		
Diisopropyl ether (DIPE)	ND<1.0	ND	ND<1200	ND<10	NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND<1.0	ND	ND<1200	ND<10	NA	0.5		
Methyl-t-butyl ether (MTBE)	ND<1.0	3.7	4200	150	NA	0.5		
	Sur	rogate Recoveri	es (%)					
%SS1:	113	115	104	115				
Comments	a3,b1	b1	b1	b1				
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample		solid samples in mg	/kg, product/oil/non-a	queous liquid sampl	es and all TC	LP & SPL		
ND means not detected above the reportin	ng limit/method d	etection limit; N/A	means analyte not aj	oplicable to this anal	ysis.			
# surrogate diluted out of range or coelute	es with another pe	ak; &) low surrogat	e due to matrix inter	ference.				

Angela Rydelius, Lab Manager

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

a3) sample diluted due to high organic content.

b1) aqueous sample that contains greater than ~1 vol. % sediment

McCampbell An		<u>c.</u>	Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:	@mccampbell.c	om			
AEI Consultants		oject ID: #28034	#280346; Alaska Gas Date Sampled: 08/13/10						
2500 C . D: 11 C #200		Date Received:							
2500 Camino Diablo, Ste. #200	Client C	ontact: Jeremy Si	nith	Date Extracted:	08/18/10				
Walnut Creek, CA 94597	Client P.	O.: #WC082586		Date Analyzed:	08/18/10				
•••	e	nics + EDB and 1	· ·	and GC/MS*					
Extraction Method: SW5030B Lab ID	Ana 1008440-005B	lytical Method: SW826 1008440-006B	^{0В} 1008440-007В	1008440-008B	Work Order:	1008440			
Client ID	MW-5	MW-6	MW-7	MW-8	Reporting Limit for DF =1				
Matrix	W	W	W	W					
DF	1	2	100	330	S	W			
Compound		Conce	entration	ug/kg	μg/L				
tert-Amyl methyl ether (TAME)	ND	2.7	75	ND<170	NA	0.5			
t-Butyl alcohol (TBA)	3.0	180	9600	25,000	NA	2.0			
1,2-Dibromoethane (EDB)	ND	ND<1.0	ND<50	ND<170	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	ND<1.0	ND<50	ND<170	NA	0.5			
Diisopropyl ether (DIPE)	ND	ND<1.0	ND<50	ND<170	NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND	ND<1.0	ND<50	ND<170	NA	0.5			
Methyl-t-butyl ether (MTBE)	13	32	2400	2100	NA	0.5			
	Surr	ogate Recoveries	s (%)						
%SS1:	111	108	113	105					
Comments	b1	b1	b1	b1					
[*] water and vapor samples are reported in extracts are reported in mg/L, wipe sampl ND means not detected above the reporti	es in µg/wipe.					LP & SPI			
# surrogate diluted out of range or coelut %SS = Percent Recovery of Surrogate Sta DF = Dilution Factor	_	k; &) low surrogate	due to matrix interf	ference.					

Angela Rydelius, Lab Manager

a3) sample diluted due to high organic content. b1) aqueous sample that contains greater than ~1 vol. % sediment

McCampbell An		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client I	Project ID:	#28034	6; Alaska Gas	Date Sampled:	08/13/10			
			08/13/10						
2500 Camino Diablo, Ste. #200	Client	Contact: Je	08/18/10						
Walnut Creek, CA 94597	Client I	P.O.: #WC0	82586		Date Analyzed:	08/18/10			
Oxygenate	d Volatile Org	anics + EDE	B and 1,	2-DCA by P&T	and GC/MS*				
Extraction Method: SW5030B	0	alytical Method		-		Work Order:	1008440		
Lab ID	1008440-009B	1008440-	-010B	1008440-011B					
Client ID	MW-9	MW-	10	EX-1		Reporting Limit for DF =1			
Matrix	W	W		W					
DF	20	1		33		S	W		
Compound		Conce	entration		ug/kg	µg/L			
tert-Amyl methyl ether (TAME)	ND<10	1.8		160		NA	0.5		
t-Butyl alcohol (TBA)	880	ND	1	1000		NA	2.0		
1,2-Dibromoethane (EDB)	ND<10	ND		ND<17		NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<10	ND	1	ND<17		NA	0.5		
Diisopropyl ether (DIPE)	ND<10	ND		ND<17		NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND<10	ND	1	ND<17		NA	0.5		
Methyl-t-butyl ether (MTBE)	85	39		660		NA	0.5		
	Sur	rogate Rec	overies	s (%)					
%SS1:	104	109)	107					
Comments	b1	b1							
* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.									
ND means not detected above the reporting	ng limit/method d	etection limit	t; N/A m	eans analyte not ap	plicable to this anal	ysis.			
# surrogate diluted out of range or coelute	es with another pe	eak; &) low su	irrogate	due to matrix interf	erence.				
%SS = Percent Recovery of Surrogate Star DF = Dilution Factor	ndard								
a3) sample diluted due to high organic co b1) aqueous sample that contains greater		diment							

When Ouality Counts"						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants Client Project ID:					roject ID: #	#280346; Alaska Gas Date Sampled: 08/13/10							
2500 (2500 Camino Diablo, Ste. #200							Date Receiv	ed: 08/13	8/10			
2300 (200		Client C	Contact: Jer	emy Smith		Date Extract	ed: 08/16	5/10-08/	17/10		
Walnu	t Creek, CA 94597			Client P.O.: #WC082586 Date Analyzed: 08/16/10-08/17/10									
Extractio	Gan method: SW5030B	asoline I	Range (C6-C12)	-	drocarbons		e with BTEX a	and MTBE*		k Order:	1008440	
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-1R	W	1	300	ND<17	13	16	40	280	3.3	104	d1,b1	
002A	MW-2	w	I	ND	ND	1.1	ND	1.8	0.63	1	100	b1	
003A	MW-3	w	1	600	2900	5.8	16	5.8	16	10	115	d1,b1	
004A	MW-4	w	17	,000	ND<400	200	47	580	1400	33	110	d1,b1	
005A	MW-5	W	1	20	ND<20	1.5	2.9	0.74	3.5	1	113	d1,b1	
006A	MW-6	w		92	31	7.5	0.94	ND	1.0	1	110	d1,b1	
007A	MW-7	w	2	000	2300	26	17	140	250	10	107	d1,b1	
008A	MW-8	w	2	260	2200	4.1	1.4	6.9	7.2	2	118	d1,b1	
009A	MW-9	w	I	ND	69	ND	1.6	ND	ND	1	116	b1	
010A	MW-10	w		61	33	ND	0.72	ND	ND	1	106	b1	
011A	EX-1	W	12	,000	700	1000	160	470	1200	10	87	d1	
-	ting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		μg/I	J	
	eans not detected at or ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg	

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

%SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

d1) weakly modified or unmodified gasoline is significant

d2) heavier gasoline range compounds are significant (aged gasoline?)

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water							BatchID: 52501 WorkOrder 1008440				40	
EPA Method SW8260B	SW8260B Extraction SW5030B Spiked Sample ID: 1008437-0								09B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	82.5	84.7	2.73	83.3	82.7	0.665	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	73.6	75	1.87	80.1	80.8	0.874	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	85.2	87.5	2.70	91.8	89.2	2.83	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	97.1	96.9	0.222	95.8	96	0.209	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	116	117	0.983	107	108	1.03	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	96.9	98.8	1.88	97.2	98.4	1.22	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	94.9	97.2	2.36	104	104	0	70 - 130	30	70 - 130	30
%SS1:	112	25	101	102	1.21	111	110	1.20	70 - 130	30	70 - 130	30

BATCH 52501 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008440-001B	08/13/10 1:10 PM	08/18/10	08/18/10 3:03 AM	1008440-002B	08/13/10 12:10 PM	08/18/10	08/18/10 3:47 AM
1008440-003B	08/13/10 12:20 PM	08/18/10	08/18/10 9:52 PM	1008440-004B	08/13/10 2:45 PM	08/18/10	08/18/10 10:30 PM
1008440-005B	08/13/10 11:40 AM	08/18/10	08/18/10 11:08 PM	1008440-006B	08/13/10 12:40 PM	08/18/10	08/18/10 11:46 PM
1008440-007B	08/13/10 1:55 PM	08/18/10	08/18/10 7:25 AM	1008440-008B	08/13/10 1:30 PM	08/18/10	08/18/10 4:07 PM
1008440-009B	08/13/10 10:35 AM	08/18/10	08/18/10 3:29 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A QA/QC Officer

"When Ouality Counts"

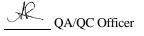
QC SUMMARY REPORT FOR SW8260B

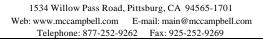
action SW	5030B					s	piked San	nole ID	1008439-0	01 A	
Onlined							Spiked Sample ID: 1008439-007				
Sample Spiked MS			MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
10	85.6	86.7	1.34	83.8	82.5	1.55	70 - 130	30	70 - 130	30	
50	79.1	85.5	7.82	75.9	73.4	3.36	70 - 130	30	70 - 130	30	
10	89	90.9	2.14	85.5	83	2.93	70 - 130	30	70 - 130	30	
10	97.6	99	1.45	97	94.8	2.29	70 - 130	30	70 - 130	30	
10	117	118	1.14	109	107	1.22	70 - 130	30	70 - 130	30	
10	99.6	101	1.65	96.8	95.6	1.26	70 - 130	30	70 - 130	30	
10	97.5	99.5	2.07	92	91.1	0.983	70 - 130	30	70 - 130	30	
25	105	104	0.404	103	105	2.26	70 - 130	30	70 - 130	30	
	10 50 10 10 10 10 10 10 10 10	10 85.6 50 79.1 10 89 10 97.6 10 117 10 99.6 10 97.5	10 85.6 86.7 50 79.1 85.5 10 89 90.9 10 97.6 99 10 117 118 10 99.6 101 10 97.5 99.5	10 85.6 86.7 1.34 50 79.1 85.5 7.82 10 89 90.9 2.14 10 97.6 99 1.45 10 117 118 1.14 10 99.6 101 1.65 10 97.5 99.5 2.07	10 85.6 86.7 1.34 83.8 50 79.1 85.5 7.82 75.9 10 89 90.9 2.14 85.5 10 97.6 99 1.45 97 10 117 118 1.14 109 10 99.6 101 1.65 96.8 10 97.5 99.5 2.07 92	10 85.6 86.7 1.34 83.8 82.5 50 79.1 85.5 7.82 75.9 73.4 10 89 90.9 2.14 85.5 83 10 97.6 99 1.45 97 94.8 10 117 118 1.14 109 107 10 99.6 101 1.65 96.8 95.6 10 97.5 99.5 2.07 92 91.1	10 85.6 86.7 1.34 83.8 82.5 1.55 50 79.1 85.5 7.82 75.9 73.4 3.36 10 89 90.9 2.14 85.5 83 2.93 10 97.6 99 1.45 97 94.8 2.29 10 117 118 1.14 109 107 1.22 10 99.6 101 1.65 96.8 95.6 1.26 10 97.5 99.5 2.07 92 91.1 0.983	10 85.6 86.7 1.34 83.8 82.5 1.55 70 - 130 50 79.1 85.5 7.82 75.9 73.4 3.36 70 - 130 10 89 90.9 2.14 85.5 83 2.93 70 - 130 10 97.6 99 1.45 97 94.8 2.29 70 - 130 10 117 118 1.14 109 107 1.22 70 - 130 10 99.6 101 1.65 96.8 95.6 1.26 70 - 130 10 97.5 99.5 2.07 92 91.1 0.983 70 - 130	10 85.6 86.7 1.34 83.8 82.5 1.55 70 - 130 30 50 79.1 85.5 7.82 75.9 73.4 3.36 70 - 130 30 10 89 90.9 2.14 85.5 83 2.93 70 - 130 30 10 97.6 99 1.45 97 94.8 2.29 70 - 130 30 10 117 118 1.14 109 107 1.22 70 - 130 30 10 99.6 101 1.65 96.8 95.6 1.26 70 - 130 30 10 97.5 99.5 2.07 92 91.1 0.983 70 - 130 30	10 85.6 86.7 1.34 83.8 82.5 1.55 70 - 130 30 70 - 130 50 79.1 85.5 7.82 75.9 73.4 3.36 70 - 130 30 70 - 130 10 89 90.9 2.14 85.5 83 2.93 70 - 130 30 70 - 130 10 97.6 99 1.45 97 94.8 2.29 70 - 130 30 70 - 130 10 117 118 1.14 109 107 1.22 70 - 130 30 70 - 130 10 99.6 101 1.65 96.8 95.6 1.26 70 - 130 30 70 - 130 10 97.5 99.5 2.07 92 91.1 0.983 70 - 130 30 70 - 130	

BATCH 52506 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008440-010B	08/13/10 11:15 AM	08/18/10	08/18/10 12:35 AM	1008440-011B	08/13/10 3:05 PM	08/18/10	08/18/10 1:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

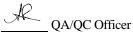
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: W			k: Water			Batch	ID: 52505	WorkOrder 1008440			
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked Sample ID: 1008437-009A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	SD Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	123	125	1.10	126	122	2.81	70 - 130	20	70 - 130	20
MTBE	ND	10	122	115	5.94	118	119	0.379	70 - 130	20	70 - 130	20
Benzene	ND	10	93.3	91.7	1.73	94.6	93.2	1.49	70 - 130	20	70 - 130	20
Toluene	ND	10	94.2	90	4.48	92.7	91.7	1.15	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	91.7	90	1.83	93.4	92.4	1.07	70 - 130	20	70 - 130	20
Xylenes	ND	30	91.8	89.8	2.18	93.4	92.1	1.33	70 - 130	20	70 - 130	20
%SS:	105	10	95	94	1.61	94	96	1.84	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 52505 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1008440-001A	08/13/10 1:10 PM	08/16/10	08/16/10 6:20 PM	1008440-002A	08/13/10 12:10 PM	08/17/10	08/17/10 3:02 AM		
1008440-003A	08/13/10 12:20 PM	08/16/10	08/16/10 6:55 PM	1008440-004A	08/13/10 2:45 PM	08/16/10	08/16/10 7:28 PM		
1008440-005A	08/13/10 11:40 AM	08/17/10	08/17/10 3:33 AM	1008440-006A	08/13/10 12:40 PM	08/17/10	08/17/10 4:05 AM		
1008440-007A	08/13/10 1:55 PM	08/16/10	08/16/10 3:27 PM	1008440-008A	08/13/10 1:30 PM	08/16/10	08/16/10 4:01 PM		
1008440-008A	08/13/10 1:30 PM	08/17/10	08/17/10 6:35 PM	1008440-009A	08/13/10 10:35 AM	08/17/10	08/17/10 4:36 AM		
1008440-010A	08/13/10 11:15 AM	08/17/10	08/17/10 5:08 AM	1008440-011A	08/13/10 3:05 PM	08/16/10	08/16/10 4:36 PM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

