




# Geo/Resource Consultants, Inc.

GEOLOGISTS / ENGINEERS / ENVIRONMENTAL SCIENTISTS 505 BEACH STREET, SAN FRANCISCO, CALIFORNIA 94133

August 28, 1992 1689-019-00 Page 4 of 20

Vinyl (PVC). The annular space was filled with No. 2/12 RMW sand to a depth of 3 feet bgs and bentonite pellets were placed to a depth of approximately 1.5 feet bgs. The remainder of the annular space was filled with cement grout and an underground locking monument well box was cemented into place.

The monitoring wells were developed on June 30, 1992 using the surge and bail technique. Approximately 50 gallons of water were purged from each well during development. Well development logs are included in Appendix C.

The monitoring wells were sampled on July 1, 1992. Prior to sampling, the water level was measured and each well was subsequently purged of 15 gallons of water. The ground-water parameters of pH, electrical conductivity, and temperature were measured on samples obtained during purging. Water sampling logs are included in Appendix C.

Development water and purge water were disposed of in 55-gallon U.S. DOT approved drums.

#### THOMAS A. SHORT COMPANY 2.2

On June 23 and 25, 1992, four soil borings (TSC/B-1, TSC/B-2, TSC/H-1, and TSC/W-1 were drilled near the existing USTs using a drill rig equipped with 8-inch diameter hollow-stem augers. In addition, two borings (TSA-1 and TSA-2) were drilled using a hand auger near the existing sump. The locations of the borings are Borings TSC/B-1 and TSC/B-2 were terminated shown in Figure 3. at 14 feet bgs. Boring TSC/H-1 was terminated at 18 feet bgs and Borings TSA-1 and boring TSC/W-1 was terminated at 20 feet bgs. TSA-2 were terminated at 1.8 and 3.5 feet bgs, respectively. Soil samples were collected generally at 2.0, 5.0, 8.0, and 14feet bgs for borings TSC/B-1, TSC/B-2, TSC/H-1, and TSC/W-1. Α soil sample was collected at 1 foot bgs in TSA-1 and at 1.0 and 3.0 feet bgs in TSA-2. Specific sampling locations are depicted in the lithologic logs included in Appendix B.

One ground-water sample was collected from boring TSC/H-1 at a depth of approximately 18 feet using the "Hydropunch" technique.

August 28, 1992
1689-019-00
Page 5 of 20

Upon completion of the soil and ground-water sampling, all borings, with the exception of TSC/W-1, were backfilled with cement grout and the cuttings were disposed of in 55-gallon U.S. DOT approved drums.

A 2-inch-diameter monitoring well was constructed at boring TSC/W-1. The well was screened between 5 feet and 20 feet bgs and was constructed of 0.020-inch slotted Polychloride Vinyl (PVC). The annular space was filled with No. 3 Monterey sand to a depth of 3 feet bgs and bentonite pellets were placed to a depth of approximately 1.5 feet bgs. The remainder of the annular space was filled with cement grout and an underground locking monument well box was cemented into place.

The monitoring well was developed on June 30, 1992, using the surge and bail technique. Approximately 50 gallons of water were purged from the well during development. Well development logs are included in Appendix C.

The monitoring well was sampled on July 1, 1992. Prior to sampling, the water level was measured and the well was subsequently purged of 15 gallons of water. Ground-water parameters including pH, electrical conductivity, and temperature were measured during purging. Water sampling logs are included in Appendix C.

Development water and purge water were disposed of in 55-gallon U.S. DOT approved drums.

#### 2.3 AT & SF RAILROAD PROPERTY

On June 24 1992, nine soil borings (ATSF/B-1, ATSF/B-2, ATSF/B-3, ATSF/B-4, ATSF/B-5, ATSF/B-6, ATSF/B-7, ATSF/B-8, and ATSF/B-9) were drilled using a drill rig equipped with 8-inch diameter, hollow-stem augers. The locations of the borings are shown in Figure 4. Borings were generally terminated at 5.0 feet bgs. Soil samples were generally collected at 1.5, 3.0, and 5.0 feet bgs. Specific sampling locations are depicted in lithologic logs included in Appendix B.

C-

Seo/Resource Consultants, Inc.

August 28, 1992 1689-019-00 Page 7 of 20

#### 3.0 FINDINGS

This section describes subsurface conditions encountered during the field investigation, as well as analytical findings.

#### 3.1 SUBSURFACE CONDITIONS

Subsurface conditions at each site were evaluated from visual observations, lithologic logs, water level measurements and photoionization detector (PID) readings from the on-site HnU meter. These data are included in Appendices B and C.

#### 3.1.1 Sutta Recycling

The area investigated at Sutta is underlain by light brown to gray silty sands, sands, silt/sand/gravel mixtures, silty clay, and sandy silty clay (See Appendix B). Clay-dominated materials were generally encountered at depths greater than 5 feet. Material overlying the clay was interpreted to be fill.

Ground water, as estimated by apparent saturated auger cuttings, was encountered at approximately 5 feet below ground surface. Water level readings collected on July 2, 1992, confirmed groundwater levels at 2.9 feet bgs at SR/W-1 and 14.0 at SR/W-2. These two readings were taken twice and the reason for the variance is not known.

HnU readings were obtained from each of the soil samples collected. Hydrocarbons vapors were measured at levels of 10 ppm or less for each sample tested.

#### 3.1.2 Thomas A. Short Company

The area investigated at Thomas Short is underlain predominantly by light brown to black silty clay with the exception of TSC/A-1 and TSC/A-2 where gravelly sandy clay was encountered from the surface to the termination depth (See Appendix B). Soils contained rock fragments and debris at each boring location. The

ත

August 28, 1992 1689-019-00 Page 8 of 20

presence of the rock fragments and debris at depth suggests that the material within the area of investigation is fill.

Wet soil conditions were generally observed at approximately 7 feet bgs. Free-standing ground water was measured in TSC/W-1 on July 1, 1992, at 12.7 feet bgs. Saturated soils were not observed in borings TSC/A-1 and TSC/A-2.

HnU readings were less than 10 ppm for all samples collected from TSC/W-1, TSC/H-1, TSC/A-1, and TSC/A-2. HnU readings peaked at 180 and 200 ppm for soil samples from TSC/B-1 and TSC/B-2, respectively. These levels were from soils collected at a depth of 14 feet bqs.

#### 3.1.3 AT & SF Railroad

The area investigated at the AT & SF site is underlain by light brown to black gravel, sand, silty sand, and silty clay (See The majority of the soils encountered was Appendix B). interpreted to be fill.

During drilling, free-standing ground water was observed at approximately 4 to 5 feet bqs.

HnU readings indicated no levels above 0 ppm for all of samples screened.

#### 3.2 ANALYTICAL FINDINGS

Soil and ground-water samples were submitted to CKY, Inc. (CKY) for chemical analyses based on site background and suspected contaminants. The analytical results are summarized on Tables 1, 2, and 3 and are included in Appendix  $D_{1}$ The findings are briefly described below.

#### 3.2.1 Sutta Recycling

Soil borings SR/B-1, SR/B-2, SR/B-3, SR/B-4, SR/W-1, and SR/W-2 were drilled to depths ranging from 4.5 to 18.0 feet bgs. Two to three soil samples were collected from the vadose zone at each boring location for a total of sixteen samples. Soil samples

3EPD2:1689A5

Seo/Resource Consultants, Inc.

Ð

August 28, 1992
1689-019-00
Page 10 of 20

#### Ground Water

Ground-water samples collected from SR/W-1 and SR/W-2 revealed some metals above State Action levels and MCLs but these samples were not filtered prior to analysis and probably represent metals within suspended solids rather than dissolved metals. Analysis SR/W-2, SR/W-1 and volatile organics for for TRPH and or below detection revealed concentrations at respectively, limits.

#### 3.2.2 Thomas A. Short Company

Soil borings TSC/B-1, TSC/B-2, TSC/H-1, and TSC/W-1 were drilled to depths ranging from 14 to 20 feet bgs. Hand-auger borings TSA-1 and TSA-2 were completed to depths ranging from 1.8 to 3.5 feet bgs. One to three soil samples were collected from the unsaturated zone at each boring location for a total of fifteen samples. Soil samples from TSA-1 and TSA-2 were chemically analyzed for TRPH (EPA Method 418.1), Title 26 metals (EPA method 6010), and volatile organic compounds (EPA Method 8240). All other soil samples were chemically analyzed for TPH-G and TPH-D (8015 modified), Title 26 metals (EPA Method 6010), and BTEX (EPA Method 8020).

A "grab" ground-water sample was collected from TSC/H-1 and a ground-water sample was collected from monitoring well TSC/W-1 (for a total of two samples). The ground-water samples were chemically analyzed for TPH-G, TPH-D and BTEX.

#### <u>Soils</u>

Concentrations of TRPH and volatile organics were detected in all the hand-auger soil samples. The most significant concentration of TRPH and volatile organics was found to be associated with the sample collected from TSA-1 at 1 foot bgs (6,600 mg/kg TRPH, 200 microgram/kilogram (ug/kg) acetone; 63 ug/kg benzene; 220 ug/kg chlorobenzene, 25 ug/kg ethyl benzene; 14 ug/kg toluene, and 55 ug/kg xylene)

Seo/Resource Consultants, Inc.

August 28, 1992 1689-019-00 Page 11 of 20

TPH-G , TPH-D, and/or BTEX were detected in at least one soil boring sample from all of the soil borings. The most significant hydrocarbon concentrations were detected as TPH-G at 5 feet in TSC/B-1 (1,500 mg/kg), at 2 feet in TSC/B-2 (14,000 mg/kg) and at 13.5 feet in TSC/B-2 (1,700 mg/kg). Relatively high BTEX concentrations were also present in these samples. Additionally, TPH-D was detected at 510 mg/kg and 700 mg/kg in TSC/B-1 at 5 feet bgs and TSC/B-2 at 5 feet bgs, respectively.

In general, metals were detected within background concentrations However, the sample expected within an alluvial environment. collected from 1 foot at TSC/A-1 contained 2,400 mg/kg. Several sample results exceeded ten times the STLC including copper in TSA-1 at 1 foot (560 mg/kg; STLC of 25 mg/kg) and lead at TSA-2 at 3 feet (210 mg/kg, STLC of 5 mg/l). Other elevated results include barium in TSA-1 at 1 foot at a concentration of 980 mg/kg foot at 1 a 100 mg/kg) and cadmium in TSA-1 at (STLC Based on the concentration of 9.2 mg/kg (STLC 1.0 mg/kg). aforementioned concentrations of barium, cadmium, lead, and copper, the corresponding samples were re-submitted for STLC Test results showed that lead exceeded the minimum analysis. STLC limit in the soil sample from TSA-2 at 3 feet with a concentration limit of 21 mg/l. All the other re-submitted test samples showed metal concentrations below STLC.

#### Ground Water

A "grab" ground-water sample collected from "Hydropunch" TSC/H-1 contained 16 mg/l TPH-G, 320 ug/l benzene, 100 ug/l toluene, 380 ug/l ethyl benzene, and 380 ug/l xylenes. TPH-D was not detected. Detectable concentrations of TPH-G, benzene, toluene, and xylenes were also found associated with the monitoring well ground-water sample from TSC/W-1 at 1.3 mg/l, 80 mg/l, 6 ug/l, non detectable (ND), and 15 ug/l, respectively. The lower concentration within the monitoring well probably represents the effects of purging prior to sampling.

3EPD2:1689A5

Seo/Resource Consultants, Inc.

August 28, 1992 1689-019-00 Page 14 of 20

The following metals detected in ground water sample SR/W-1 are determined to be in excess of their respective MCLs for drinking arsenic, barium, cadmium, lead, and mercury. Only the water: concentration of cadmium was found be in excess of the MCL for ground-water sample SR/W-2. However, it should be noted that the ground-water samples were not filtered prior to analysis and the results probably represent suspended solids.

#### THOMAS A. SHORT COMPANY 4.2

#### Soil

Concentrations of TRPH, TPH-G and TPH-D detected in soil borings TSA-1, TSA-2, TSC/B-1, and TSC/B-2 at Thomas Short may be considered hazardous waste (greater than 1,000 mg/kg) by the RWOCB.

Elevated concentrations of barium, cadmium, copper, and lead were detected in hand-auger soil samples. The measured lead value in TSA/A-2 at 3 feet was in excess of the STLC of 5.0 mg/l. The concentration of lead in sample TSA-1 at 1 foot exceeded the TTLC.

#### Ground Water

TPH-G/D was detected in ground water at Thomas Short in soil boring TSC/H-1 and monitoring well sample TSC/W-1 at 16.0 and 1.3 relative significance of this respectively. The mg/l, concentration, as viewed by CalEPA and RWQCB, is not known.

BTEX concentrations were detected in ground water at Thomas Benzene and toluene concentrations from TSC/W-1 and the Short. Benzene concentration from TSC/H-1 were in excess of MCLs.

#### 4.3 AT & SF RAILROAD COMPANY

#### Soil

¢

The concentration of TRPH found in soil boring ATSF/B-1 at the site classifies the material as a hazardous waste (greater than 1,000 mg/kg) by the RWQCB.

August 28, 1992 1689-019-00 Page 17 of 20

#### Ground Water

Hydrocarbons in ground water occur at low concentrations, thus, remediation of ground water is not anticipated. However, it is possible that one ground-water monitoring well will be required by Alameda County to monitor ground-water quality over a period of at least four quarters. The monitoring well installed during this investigation could be used for that purpose.

#### THOMAS A. SHORT COMPANY 5.2

Soil in proximity to the USTs at Thomas Short were found to contain elevated concentrations of TPH-G and TPH-D, as well as associated fuel additives of benzene, toluene, ethyl benzene, and Concentrations of TPH-G, benzene, toluene, ethyl xylenes. benzene, and xylenes were detected in ground water. Soils in proximity to the sump tank and former steam cleaning operation were found to contain elevated concentrations of TRPH and volatile organics, as well as metals.

#### Soil

Soil contamination exceeded 1,000 mg/kg in borings TSC/B-1 and TSC/B-2. Hydrocarbon concentrations are highest at 5 feet bgs in TSC/B-1 (14,000 mg/kg TPH-G) and at 5 feet and 13.5 feet bgs at TSC/B-1 (1,500 mg/kg and 1,700 mg/kg, respectively). However, ND or very low hydrocarbon concentrations were detected in borings Based on the location of these borings TSC/H-1 and TSC/W-1. relative to the USTs, and the occurrence of hydrocarbons with depth, it is not clear where leakage is occurring although leakage appears to be most prevalent on the south side of the tanks.

Based on the limited data available, potential soil contamination within the vadose zone is suspected to extend to at least the extent of the property in the west direction. For lack of additional data points, soil contamination is assumed to extend approximately 10 feet to the north and south. The existing building may inhibit remedial actions in the east direction. The depth of soil contamination within the vadose zone is estimated at 13 feet bqs. Based on these dimensions, approximately 3,460 August 28, 1992 1689-019-00 Page 18 of 20

cubic yards (4,500 tons) could require disposal at either a Class II landfill or recycling facility.

In addition, hazardous levels of lead were detected at both hand auger locations within the sump area. To determine the extent of contamination, additional data points are required. However, assuming that soil contamination is limited to the general sump area, an extent of 20 feet X 20 Feet X5 feet deep is assumed. Therefore, approximately 75 cubic yards (100 tons) may require disposal at a Class I landfill or recycling facility.

#### Ground Water

Hydrocarbons in ground water occur at relatively high concentrations, thus remediation and quarterly monitoring of ground water may be required by Alameda County near the UST locations. Due to the limited data points, it is not possible to delineate plume boundaries at this time.

#### 5.3 <u>AT & SF RAILROAD PROPERTY</u>

Low levels of TRPH were detected in soil samples from eight of nine borings (non detect to 24 mg/kg). Elevated levels of TRPH, decreasing with depth, were found to be associated with boring ATSF/B-1. Elevated levels (close to or exceeding the STLC) of several metals, especially lead, were found to be associated with nine borings. No TTLCs for any metal analyzed was exceeded.

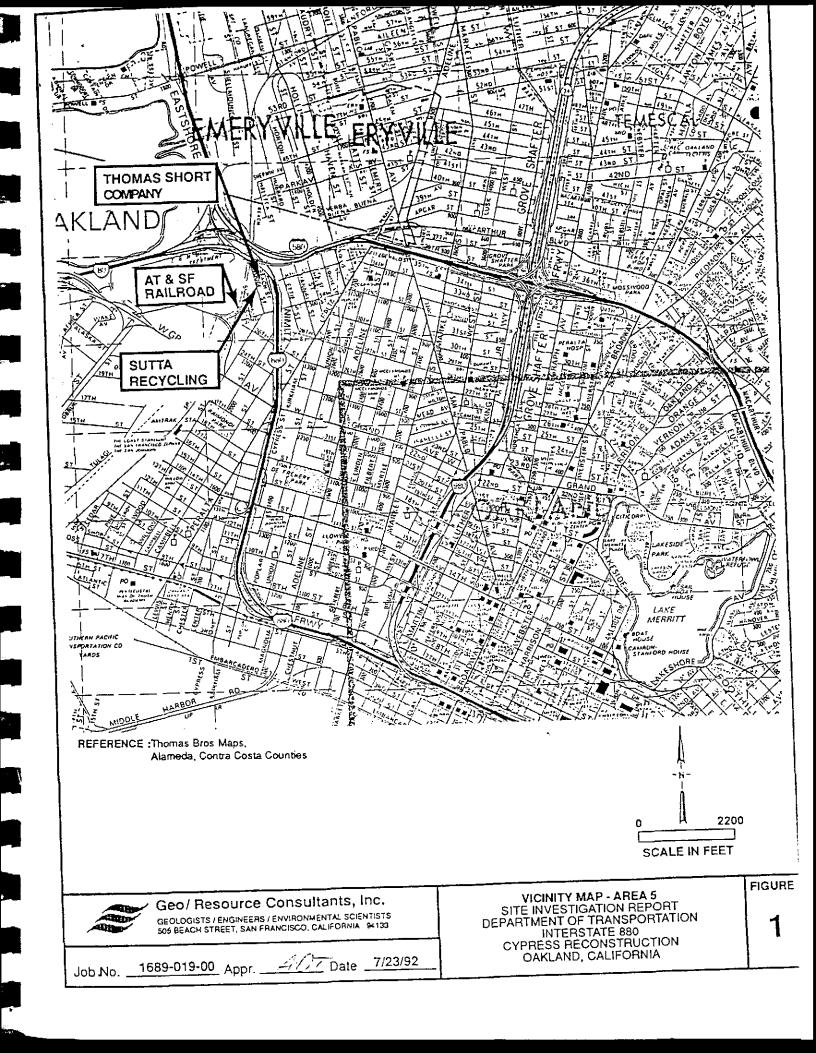
Based on limited TRPH data, potential soil contamination is suspected to extend approximately 10 feet in each direction from the ATSF/B-1 location. Depth to ground water is estimated at 5 feet bgs. Thus, 20 cubic yards (25 tons) could require disposal at either a Class II landfill or recycling facility. Until the results of the WET are known, it is unknown whether Class I disposal will be required at this location.

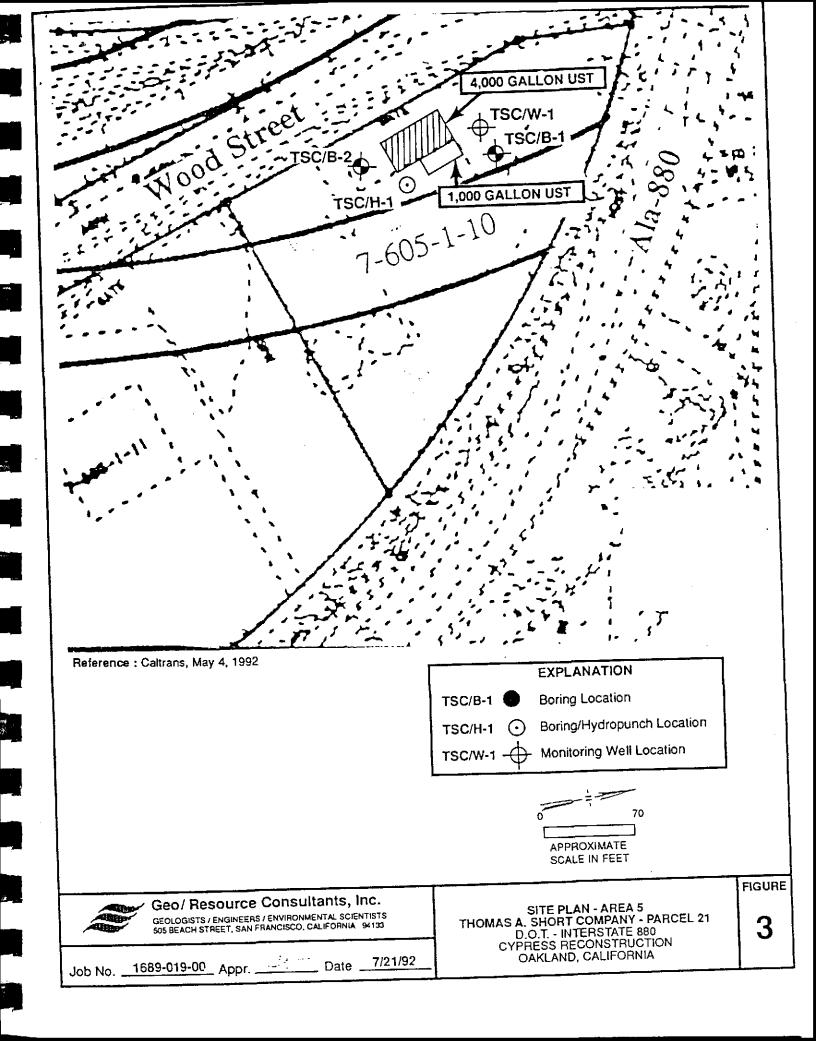
Seo/Resource Consultants, Inc.

August 28, 1992 1689-019-00 Page 19 of 20

#### 6.0 CONCLUSIONS

Four soil borings and two monitoring wells were drilled at Sutta to investigate potential leakage from a removed UST and potential contamination within the area of a proposed footing. Relatively low hydrocarbon and metal concentrations were detected in soil Therefore, remedial samples collected from all the borings. actions at this site do not appear necessary, based on the limited data.


Four soil borings, including one "Hydropunch" boring and one monitoring well, were drilled at Thomas Short to investigate potential leakage from two existing USTs and from the sump area Relatively high TRPH and lead behind the main building. concentrations were reported near the sump area. Relatively high TPH-G and TPH-D concentrations were reported in the area of the existing USTs, particularly to the south of the tanks. Based on the limited data available, volumes of soil requiring Class I or Class II landfill disposal is estimated for both the sump area and the UST area, respectively.


BTEX constituents occur at concentrations significantly over Therefore, it is likely that ground-water remediation MCLs. would be required at this site. Due to the limited data points, it is not possible to derive a volume of water requiring remediation.

3EPD2:1689A5

盈







## TABLE 1 **AREA 5**

#### DOT - CYPRESS SUMMARY OF ANALYTICAL RESULTS - SOIL GENERAL

|                                                    | тярн       | TPH-G       | трн-д        | BENZENE    | TOLUENE     | ETHYL<br>BENZENE | XYLENES     | VOLATILE       |
|----------------------------------------------------|------------|-------------|--------------|------------|-------------|------------------|-------------|----------------|
| LINITS                                             | mg/kg      | mg/kg       | mg/kg        | ug/kg      | ug/kg       | ug/kg            | ug/kg       | ug/kg<br>9240  |
| EPA No.                                            | 418.1      | 8015m       | <u>6015m</u> | 8020       | 8020        | 6020             | B020        | 02AU           |
|                                                    | •.         |             |              |            |             |                  |             |                |
| HOMAS A. SHORT                                     | CO.        |             |              |            |             |                  |             |                |
| Hand Auger                                         | ·          | · · · ·     |              |            |             |                  |             | •              |
| TSC/A-1-1                                          | 6,600(150) |             | -            |            |             |                  |             |                |
| TSC/A-2-1.5                                        | 66         |             |              | -          |             | -                |             |                |
| TSC/A-2-3                                          | 180        | -           |              |            | •           | •                |             |                |
| Boring                                             | ·          | T           |              |            |             |                  | 0.400/5000  |                |
| TSC/B-1-5                                          | -          | 1,500(500)  | 520          | 1,400(500) | 2,400(500)  | 4,500(500)       | 8,400(500)  | <br>           |
| TSC/8-1-8                                          | -          | ND          | ND           | 35         | 7           | ND               | ND .        |                |
| TSC/B1-13.5                                        | -          | ND          | ND           | 20         | 7           | 10               | 30          |                |
| TSC/B-2-5                                          | -          | 14,000(500) | 700          | 500(500)   | 10,000(500) | 8,000(500)       | 60,000(500) |                |
| TSC/B-2-B                                          | -          | ND          | ND           | 210        | 5           | ND               | ND          | . <del>.</del> |
| TSC/B-2-13.5                                       | -          | 1,700(500)  | ND           | 1,000(500) | 1.500(500)  | 8,300(500)       | 36,000(500) | •              |
| Hydropunch                                         |            |             |              |            |             |                  |             |                |
| TSC/H-1-2                                          | -          | ND          | ND           | ND         | ND          | ND               | ND          | <u> </u>       |
| TSC/H-1-5                                          | - {        | ND          | ND           | ND         | ND          | ND               | ND          |                |
| TSC/H-1-8                                          | -          | 6           | ND           | 230        | 60          | 200              | 420         | -              |
| -Well                                              |            |             |              |            |             |                  | · · · ·     |                |
| TSC/W-1-5                                          | -          | ND          | NĎ           | 10         | ND          | 15               | ND          |                |
| TSC/W-1-8                                          | -          | ND          | ND           | ND         | ND          | ND               | ND          | •              |
| TSC/W-1-14                                         | -          | 24          | ND           | 10         | 7           | 70               | 110         |                |
| SUTTA RECYCLING                                    |            |             |              | ·••···     | ,           | <del>.</del>     | ······      |                |
| SR/B-1-1.5                                         | 34         | -           |              |            |             |                  |             | ND             |
| SR/8-1-5                                           | θ          | -           | •            | <u> </u>   |             |                  |             | ND             |
| SR/8-2-1.5                                         | 270        | <u> </u>    | <u> </u>     | · -        |             | · · ·            |             | ND             |
| SR/8-2-4                                           | ND         | <u> </u>    |              |            |             | · ·              |             | ND             |
| SR/8-3-1.5                                         | -          | -           | ND           | ND         | 90          | 180              | 700         |                |
| SR/8-3-3                                           | -          | · ·         | ND           | ND         | ND          | ND               | 20          |                |
| SR/B-3-7.5                                         | -          | -           | ND           | ND         | ND          | ND               | ND          |                |
| SR/8-4-1.5                                         | -          | -           | ND           | ND         | ND          | ND               | ND          |                |
| SR/8-4-4                                           | -          | -           | ND           | ND         | ND          | ND               | ND ND       |                |
| SR/8-4-7.5                                         | -          | <u> </u>    | ND           | ND_        | 10          | 8                | 40          |                |
|                                                    |            |             | <u> </u>     |            |             | <del>_</del>     |             | · · · · · ·    |
| -Welt                                              | 1          | -           | ND           | ND         | ND          | ND               | ND          |                |
| -Well<br>SR/W-1-1.5                                | •          |             |              | 1          | ND          | ND               | ND          | -              |
|                                                    | -          | -           | ND           | ND         |             |                  |             |                |
| SR/W-1-1.5                                         | -+         |             | ND<br>ND     | ND<br>ND   | ND          | ND               | ND          | -              |
| SR/W-1-1.5<br>SR/W-1-4                             |            |             |              | ~          | ND          | ND<br>-          |             | ND             |
| SR/W-1-1.5<br>SR/W-1-4<br>SR/W-1-7,5               | -          | -           | ND           | ND         |             |                  |             | +              |
| SR/W-1-1.5<br>SR/W-1-4<br>SR/W-1-7.5<br>SR/W-2-1.5 | 210        |             | ND<br>-      | ND         |             | -                | -           | ND             |

ND = Not Detected at Detection Limit on Laboratory Data Sheets

- = Not analyzed

( ) = Detection Limit

\* = All Volatile Organics Not Detected, except Acetone (200 ug/kg), Benzene (63 ug/kg), Chlorobenzene (220 ug/kg),

Ethylbenzene (25 ug/kg), Toluene (14 ug/kg) ,Xylene (55 ug/kg), 1,2-DCB (260 ug/kg), 1,3-DCB (29 ug/kg) and 1,4-DCB (37 ug/kg) \*\* = All Volatile Organics Not Defected, except Benzene (7 ug/kg) and Chlorobenzene (33 ug/kg)

\*\*\* = All Volalile Organics Not Detected, except Senzene (52 ug/kg), Chicrobenzene (24 ug/kg),

Ethylbenzene (43 ug/kg), Toluene (12 un/kg) and Xylene (100 ug/kg)

Laboratory Analyses performed by CKY



متر. متر

aver USTO

TABLE 2 AREA 5 DOT - CYPRESS ÷

SUMMARY OF ANALYTICAL RESULTS - SOIL

METALS

|              | ANTIMONY    | ARSENIC                               | BARIUM        | BEAYLLIUM                                    | CADMIUM        | CHROMIUM | COBALT   | COPPER                                | LEAD                                           | MERCURY       | MOLYBOENUM  | NICKEL   | SELENIUM       | SILVER   | THALLIUM | VANADIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ZINC         |
|--------------|-------------|---------------------------------------|---------------|----------------------------------------------|----------------|----------|----------|---------------------------------------|------------------------------------------------|---------------|-------------|----------|----------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|              |             |                                       |               |                                              |                | TOTAL    |          |                                       |                                                | an a flam     | mg/kg       | mgikg    | mg/kg          | mo/kg    | mg/kg    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/log       |
| UNITS        | mg/kg       | mg/kg                                 | mg/kg         | mg/kg                                        | mg/kg          | mg/kg    | mg/kg    | mg/kg                                 | mg/kg                                          | mg/kg<br>5010 | 6010        | 6010     | 6010           | 6010     | 6010     | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6010         |
| EPD No.      | 6010        | 6010                                  | 6010          | 6010                                         | 6010           | 6010     | 6010     | 6010                                  | 5010                                           |               |             |          |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|              |             |                                       |               |                                              |                |          |          |                                       |                                                |               |             |          |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| THOMAS A. SH | ORT CO.     |                                       |               |                                              |                |          |          |                                       |                                                |               |             |          |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Hand Auger   | <del></del> |                                       |               |                                              | 1              | <u> </u> |          |                                       |                                                | 0.00          | 6.3         | 65       | ND             | ND       | ND       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,600        |
| T\$C/A-1-1   | 11          | 28                                    | 980           | 0.73                                         | 9.2            | 57       | 12       | 560                                   | 2,400**                                        | 0.28          | 0.3         | •        | -              |          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| WET          | · · ·       |                                       | 8.6(0.05)mg/l | -                                            | 0.12{0.01}mg/l |          | •        | 0.03 <u>(0.01)mg/l</u>                |                                                | 0,09          | 0.80        | 20       | ND             | ND       | 18       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62           |
| TSC/A-2-1.5  | ND          | 15                                    | 530           | 0.69                                         | 4.2            | 17       | 11       | 21                                    | 49                                             |               |             |          | ND             |          | ND       | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 550          |
| TSC/A-2-3    | 7           | 18                                    | 18            | 0.82                                         | 8.3            | 47       | 19       | 48                                    | 210                                            | 0.26          | 0.70        | 66       | NO             | -        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|              |             |                                       | <u> </u>      | -                                            |                | <u> </u> | <u> </u> | ·                                     | 21(0.10)mg/l                                   | -             | <b></b> , • | -        | 1              |          | 1        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|              |             |                                       |               |                                              |                |          |          |                                       |                                                |               |             |          |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| SUTTA RECYCL | LING        |                                       |               |                                              |                |          |          |                                       |                                                |               |             |          |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -Boring      |             |                                       |               |                                              |                |          | <b>.</b> | ·                                     | <b>r</b> · · · · · · · · · · · · · · · · · · · |               | 1           |          |                |          | 14       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40           |
| SR/8-1-1.5   | ND          | ND                                    | 43            | ND                                           | 0.60           | 30       | 5        | 13                                    | 41                                             | 0.10          | 1.6         | 28       | NO             | ND ND    |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79           |
| \$R/8-1-5    | ND          | 24                                    | 99            | ND                                           | 2.1            | 28       | 6.4      | 23                                    | 53*                                            | 0.07          | 2.4         | 28       | ND             | ND       | 19       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1          |
| WET          |             | -                                     | -             | -                                            | -              | •        | -        | · .                                   | 0.15(0.10)mg/l                                 | •             | · · · ·     |          | • • •          | -        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| SR/8-2-1.5   | ND          | 10                                    | 26            | ND                                           | 0.75           | 34       | 5        | 10                                    | ND                                             | ND            | 1.7         | 26       | NÖ             | ND       | 25       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18           |
| SR/8-2-4     | ND          | 32                                    | 59            | ND                                           | 3              | 59       | 10       | 30                                    | 12                                             | 0.26          | 3.6         | 52       | ND             | ND       | 22       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>60</u>    |
| SR/0-3-1.5   | ND          | 19                                    | 50            | ND                                           | 1.9            | 44       | 11       | 15                                    | 9.8                                            | 0.05          | 2.9         | 48       | ND             | ND       | 23       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37           |
| SR/8-3-3     | ND          | 10                                    | 23            | ND                                           | 0.69           | 29       | 4.4      | 7.8                                   | ND                                             | NÐ            | 1           | 21       | ND             | ND       | 18       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15           |
| SR/8-3-7.5   | ND          | 26                                    | 26            | ND                                           | 0,61           | 41       | 7.3      | 18                                    | ND                                             | 0.07          | 2.8         | 39       | ND             | ND       | 17       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42           |
| 5R/B-4+1.5   | ND          | 20                                    | 150           | ND /                                         | 3.3            | 55       | 11       | 30                                    | NO                                             | 80.0          | 3           | 62       | ND             | ND       | 48       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52           |
|              | ND          | 28                                    | 110           | ND                                           | 2.2            | 28       | 9        | 36                                    | 34                                             | 0.08          | 3.9         | 44       | ND             | ND       | 28       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 50         |
| SR/B-4-4     |             | 25                                    | 40            | ND                                           | ND             | 38       | 6.5      | 18                                    | ND                                             | 0,06          | 2.4         | 32       | ND             | ND       | 22       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37           |
| SR/B-4-7.5   | ND          | 25                                    | 40            |                                              | 1              | ·        |          | · · · · · · · · · · · · · · · · · · · |                                                |               |             | _        |                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>,</del> |
| -Well        |             |                                       |               | ND                                           | 3.6            | 47       | 12       | 38                                    | ND                                             | 0.07          | 3.3         | 45       | ND             | ND       | 45       | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63           |
| SR/W-1-1.5   | <u>ND</u>   | 33                                    | 210           | ND                                           | 3.7            | 44       | 11       | 33                                    | ND                                             | 0,10          | 4           | 50       | 11             | ND       | 39       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _60          |
| SR/W-1-4     | ND          | 34                                    | 140           | <u> </u>                                     | 4.1            | 52       | 14       | 42                                    | ND                                             | 0.06          | 3.6         | 57       | 11             | ND       | 55       | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75           |
| \$R/W-1-7.\$ | ND          | 35                                    | 250           | 0.59                                         | 1              | -        |          |                                       |                                                | -             |             | - 1      | 0.28(0.20)mg/l | -        | -        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>     |
| WET          |             | <b>↓</b>                              |               |                                              |                |          | 4.1      | 9,1                                   | ND                                             | 0.05          | 1.3         | 21       | ND             | ND       | ND       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15           |
| SR/W-2-1.5   | ND .        |                                       | 49            | ND                                           | 0.5            | 36       |          | 15                                    | ND                                             | 0.09          | 2           | 31       | ND             | ND       | 11       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30           |
| SR/W-2-4     | NO          | 23                                    | 99            | ND                                           | 0.72           | 40       | 7.8      | <u> </u>                              | ND                                             | 0.05          | 3           | 43       | ND             | ND       | 18       | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44           |
| \$R/W-2-7.5  | ND          | 24                                    | 30            | ND                                           | ND             | 41       | 7.5      | 18                                    | 1 10                                           | 1 0.05        | **          | <u> </u> | ····           | A        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|              |             | · · · · · · · · · · · · · · · · · · · |               | <u>,                                    </u> | - <u>1</u>     | ·        | <u> </u> | T                                     |                                                |               | 3,500       | 2,000    | 100            | 500      | 700      | 2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00         |
| TTLC(mg/kg)  | 500         | 500                                   | 10.000        | 75                                           | 100            | 2,500    | B,000    | 2,500                                 | 1,000                                          | 20            |             | 2,000    | 1.0            | 5        | 7.0      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250          |
| STLC(mg/L)   | 15          | 5.0                                   | 100           | 0.75                                         | 1.0            | 560      | 80       | 25                                    | 5.0                                            | 0.2           | 350         |          | 1.7            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| Delection    |             |                                       |               |                                              |                |          |          |                                       |                                                | 1             |             | 1        | 10             | 0.50     | 10       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50         |
| Limit        | 5.0         | 10                                    | 2.5           | 0.50                                         | 0.50           | 0.50     | 1.0      | 0.50                                  | 5.0                                            | 0.05          | 0.50        | 2.5      |                | <u>1</u> |          | 9 - 1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (19 | <u></u>      |

ND = Not Detected at Detection Limit on Laboratory Data Sheets NOTES:

() = Detection Limit

t) = Detection Limit
TTLC = Total Threshold Lomit Concentration (mg/kg)
STLC = Soluble Threshold Limit Concentration (mg/l)
\* a Concentration values greater than 10x STLC values, according to CCR Title 22
\*\* = Concentration values greater than TTLC values, according to CCR Title 22
Laboratory Analyses performed by CKY

# TABLE 3 AREA 5

## DOT - CYPRESS

# SUMMARY OF ANALYTICAL RESULTS - GROUND WATER

|                                        | EPD No. | TSC/H-1 | TSC/W-1       | SR/W-1 | SR/W-2 | DETECTION LIMIT | MCLs  |
|----------------------------------------|---------|---------|---------------|--------|--------|-----------------|-------|
|                                        |         |         |               |        |        |                 |       |
| Antimony                               | 6010    | -       | · _           | 0.21   | ND     | 0.10            | NA    |
| Arsenic                                | 6010    | -       | -             | 0.76   | ND     | 0.20            | 0.050 |
| Barium                                 | 6010    | -       | -             | 8.3    | 0.93   | 0.05            | 1.0   |
| Beryllium                              | 6010    | -       | -             | 0.02   | ND     | 0.01            | NA    |
| Cadmium                                | 6010    | -       | -             | 0.26   | 0.02   | 0.01            | 0.010 |
| Chromium                               | 6010    | -       | -             | 1.B    | 0.17   | 0.01            | NA    |
| Cobalt                                 | 6010    | -       | -             | 0.42   | 0.04   | 0.02            | NA    |
| Соррег                                 | 6010    | -       | -             | 0.84   | 0.13   | 0.01            | 1,0   |
| Lead                                   | 6010    | -       | -             | 0.89   | ND     | 0.10            | 0.005 |
| Mercury                                | 6010    | -       | -             | 0.003  | ND     | 0.0002          | 0.00  |
| Molybdenum                             | 6010    | -       | -             | 0.10   | 0.08   | 0.01            | NA    |
| Nickel                                 | 6010    | -       | -             | 2      | 0.23   | 0.05            | NA    |
| Selenium                               | 6010    | -       | -             | ND     | ND     | 0.20            | 0.010 |
| Silver                                 | 6010    | -       | -             | ND     | ND     | 0.01            | 0.05  |
| Thallium                               | 6010    | -       | -             | 0.54   | ND     | 0.20            | NA    |
| Vanadium                               | 6010    | -       | -             | 1.6    | 0.18   | 0.02            | NA    |
| Zinc                                   | 6010    | -       | -             | 3.2    | 0.24   | 0.01            | NA    |
|                                        | L       | •       |               |        |        |                 |       |
| TPH-G (mg/L)                           | 8015m   | 16      | 1.3           | -      | -      | 1.0             | NA    |
| TPH-D (mg/L)                           | 8015m   | ND      | ND(1.0 mg/kg) | -      | -      | 5.0 mg/kg       | NA    |
| Benzene (ug/L)                         | 602     | 320     | 80            | ND     | -      | 11              | 1     |
| Toluene (ug/L)                         | 602     | 100     | 6             | ND     | -      | 1               | 100   |
| Ethyl Benzene (ug/L)                   | 602     | 380     | ND            | ND     | -      | 1               | 680   |
| Xylenes (ug/L)                         | 602     | 380     | 15            | ND     | -      | 1               | 175   |
| Volatile Organics (ug/L)               | 624     | -       | -             | -      | NĎ     | 1 - 10          | NL    |
| ······································ |         |         |               |        |        |                 |       |

NOTES: ND = Not Detected at Detection Limit on Laboratory Data Sheets

- = Not analyzed

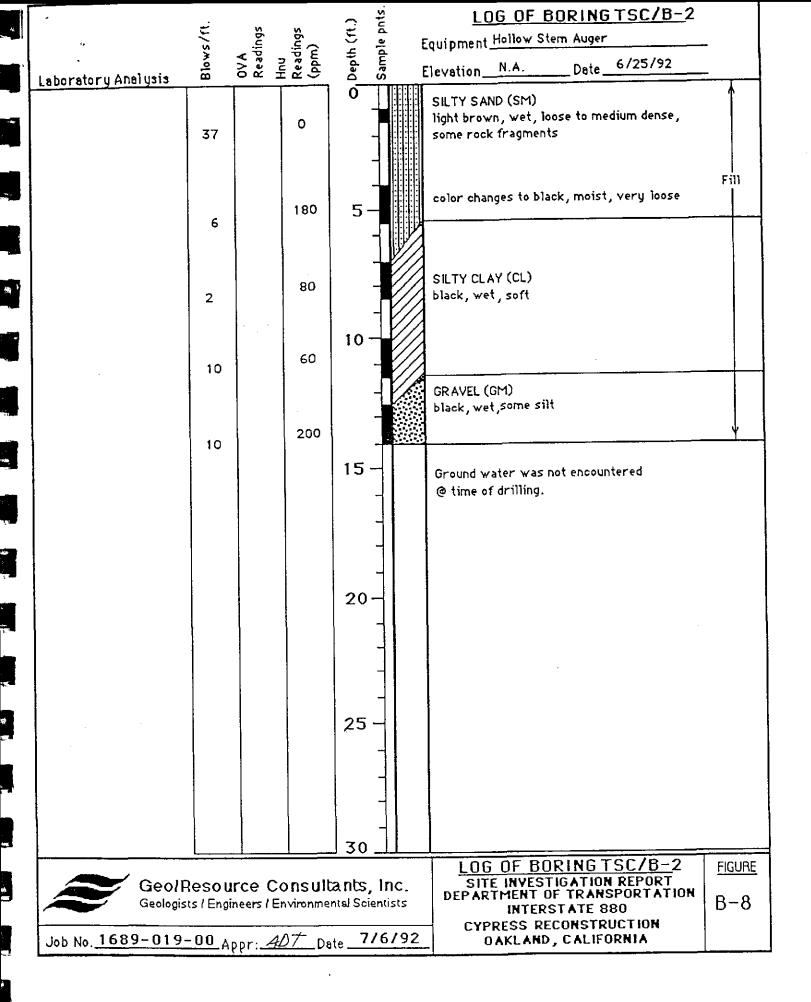
TRPH = Total Recoverable Petroleum Hydrocarbons

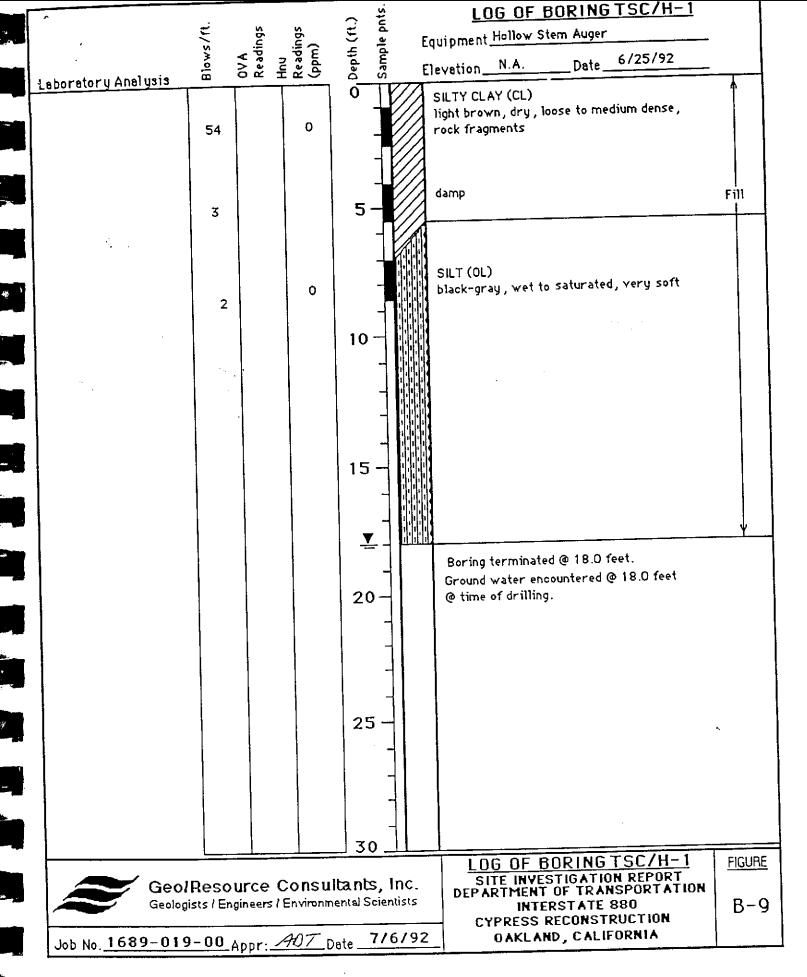
TPH-G = Total Petroleum Hydrocarbons as Gasoline

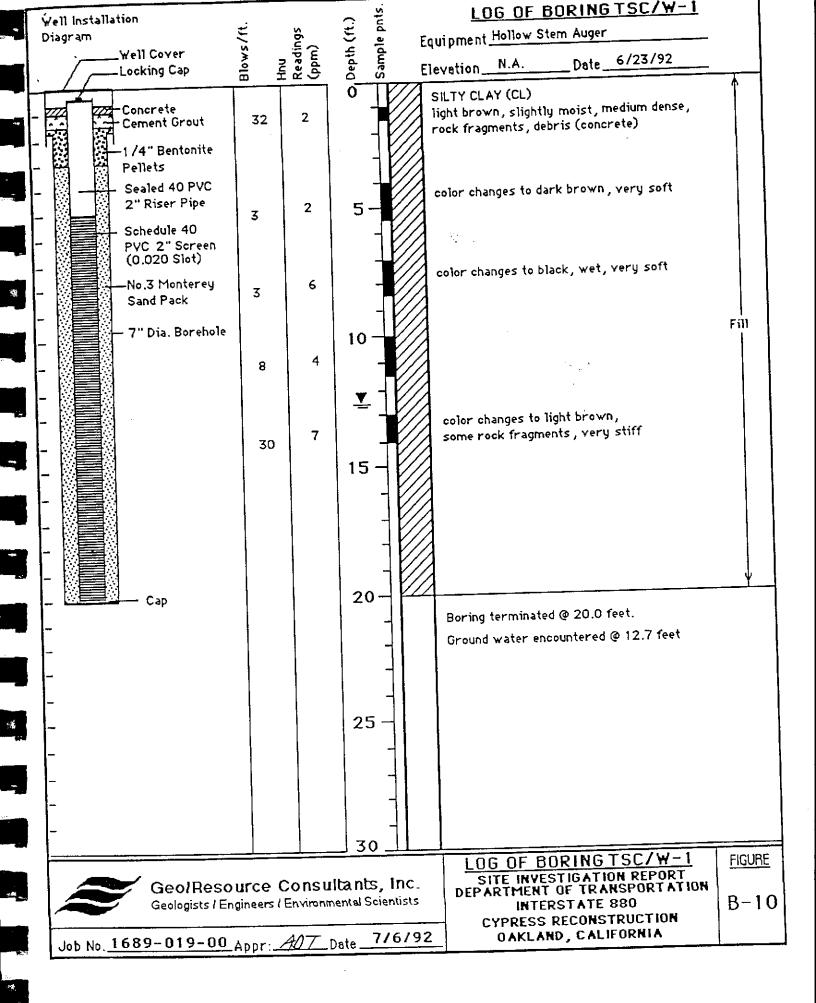
TPH-D = Total Petroleum Hydrocarbons as Diesel

MCLs = State Maximum Concentration Levels, Primary and Secondary, provided

for comparison purposes only, State Action Levels included


Laboratory Analyses performed by CKY


4


🛫 o parte a cara do se a deserva de cara de la cara de

| Laboratory Analysis Signature Signature Equipment Hollow Stem Auger   1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | IG OF BORING TSC/B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c ste           |                       |              |            |                     |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--------------|------------|---------------------|---|
| Laboratory Analysis   2     31   1     31   1     3   60     5   60     5   60     2   17     10   60     2   17     10   60     2   17     10   60     11   60     12   17     13   10     14   10     15   10     16   15     17   10     180   15     180   15     180   15     19   10     10   15     11   15     15   15     15   15     16   15     17   15     180   15     15   15     16   15     17   16     180   15     19   15     19   16     19   17 </td <td></td> <td>Hollow Stem Auger</td> <td>لتي<br/>⊆ آھ</td> <td>spr<br/>O</td> <td>νġs</td> <td>, tt.</td> <td>-<br/>-</td> <td></td> |                      | Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | لتي<br>⊆ آھ     | spr<br>O              | νġs          | , tt.      | -<br>-              |   |
| Laboratory Analysis   31   1     31   1     31   1     3   60     3   60     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | · - · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the Elev        | lnu<br>Readi<br>PPIM, | V A<br>Keadi | lo w s     |                     |   |
| 3 60 5 very soft, organics   2 17 wet   2 17 organics   10 10 organics   24 180 color changes to gray, moist to wet, trace rock fragments   24 180 15   15 Boring terminated @ 14.0 feet.   Ground water was not encountered   @ time of drilling.                                                                                                                                                                                                                                                                                                                                                             |                      | Y (CL) where the provide the second s | 0 SI            |                       |              |            | Laboratory Analysis |   |
| 2 17   10 10   24 180   24 180   15 Boring terminated @ 14.0 feet.<br>Ground water was not encountered<br>@ time of drilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fin                  | , organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 60                    |              | 3          |                     |   |
| 24 180   15 Boring terminated @ 14.0 feet.<br>Ground water was not encountered<br>@ time of drilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | 17                    |              | 2          |                     |   |
| 24<br>15 - Boring terminated @ 14.0 feet.<br>Ground water was not encountered<br>@ time of drilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                    | hanges to gray , moist to wet ,<br>ock fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       |              |            |                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | water was not encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15              | 180                   |              | 24         |                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20-             |                       |              |            |                     |   |
| 25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 -            |                       |              |            |                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |              |            |                     |   |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30              |                       |              |            |                     | 1 |
| Geo/Resource Consultants, Inc.   LOG OF BORING TSC/B-1     Geologists / Engineers / Environmental Scientists   SITE INVESTIGATION REPORT     Job No. 1689-019-00 Appr: 407 Date   7/6/92                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>FIGURE</u><br>B-7 | ITE INVESTIGATION REPORT<br>RETMENT OF TRANSPORTATION<br>INTERSTATE 880<br>(PRESS RECONSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ntal Scientists | /Environm             | gineers      | jists / En | Geolog              |   |

2







|                     |             |                                             | .)<br>nts.                       | LOG OF BORING TSA-1                                 |         |
|---------------------|-------------|---------------------------------------------|----------------------------------|-----------------------------------------------------|---------|
|                     | s/ft.       | OVA<br>Readings<br>Hnu<br>Readings<br>(ppm) | inb3 Depth (ft.)<br>Sample pnts. | pment Hand Auger                                    |         |
|                     | Blows/ft    | DV A<br>Read<br>Anu<br>Read<br>Read         | the second Elev                  | vation Date6/23/92                                  |         |
| Laboratory Analysis |             |                                             |                                  | CONCRETE P AD                                       |         |
|                     |             |                                             |                                  | AVELLY SANDY CLAY (CL)                              |         |
|                     |             |                                             |                                  | ick to dark gray, moist to wet,                     |         |
|                     |             |                                             | - 50                             | ft to firm, gravel to 6" dia.                       |         |
|                     |             |                                             |                                  | ring terminated @ 1.8 feet.                         |         |
|                     |             |                                             | 5- Gr                            | ound water was not encountered<br>time of drilling. |         |
|                     |             |                                             |                                  |                                                     |         |
|                     | ł           |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
| •                   |             |                                             |                                  |                                                     |         |
|                     |             |                                             | 10 -                             |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             | 15-                              |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             | 20-                              |                                                     |         |
|                     | ł           |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     | ļ       |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             | 25 -                             |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  |                                                     |         |
|                     |             |                                             |                                  | LOG OF BORING TSA-1                                 | FIGURE  |
|                     | Dec         | ource Consi                                 | iltants inc.                     | CITE INVESTIGATION REPORT                           |         |
| Geolo               | gists / E   | Engineers / Environ                         | mental Scientists                | DEPARTMENT OF TRANSPORTATION<br>INTERSTATE 880      | B-11    |
|                     |             |                                             |                                  | CYPRESS RECONSTRUCTION<br>OAKLAND, CALIFORNIA       | 1       |
| Job No. 1689-01     | <u>9-00</u> | Appr: AA/                                   | Date                             | Unkerine J enter et                                 | <u></u> |

----

-

. .

<u>\*</u>\_\_\_

| P                   | ./ft.<br>Ngs                 | ((ft.)                                  | inb3 Sample puts. | LOG OF BORING TSA-2                                                                                |                |
|---------------------|------------------------------|-----------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|----------------|
|                     | Blows/ft.<br>OVA<br>Readings | Hnu<br>Readings<br>(ppm)<br>Deoth (ft.) | dues Elev         | vationN.ADate6/23/92                                                                               |                |
| Laboratory Analysis |                              |                                         |                   | O" CONCRETE PAD                                                                                    |                |
|                     |                              |                                         |                   | RAVELLY SANDY CLAY (CL)<br>ark brown to black, moist to wet,<br>aft, gravel to 3" dia.             |                |
|                     |                              |                                         | 5-  G             | oring terminated @ 3.5 feet.<br>round water was not encountered<br>> time of drilling.             |                |
|                     |                              |                                         |                   |                                                                                                    |                |
|                     |                              | 1                                       |                   |                                                                                                    |                |
|                     |                              |                                         |                   |                                                                                                    |                |
|                     |                              | 1                                       | -                 |                                                                                                    |                |
|                     |                              |                                         |                   |                                                                                                    |                |
|                     |                              |                                         | 20-               |                                                                                                    |                |
|                     |                              |                                         |                   |                                                                                                    |                |
|                     |                              |                                         | 25                | ς.                                                                                                 |                |
|                     |                              |                                         |                   |                                                                                                    |                |
|                     |                              |                                         | 30                |                                                                                                    |                |
| Geol<br>Geologi     | Resource<br>ists / Engineers | Consultar                               | nts, Inc.         | LOG OF BORING TSA-2<br>SITE INVESTIGATION REPORT<br>DEPARTMENT OF TRANSPORTATION<br>INTERSTATE 880 | FIGURE<br>B-12 |
| Job No. 1689-019    | -00 Appr:                    | ADT Date                                | 7/7/92            | CYPRESS RECONSTRUCTION<br>OAKLAND, CALIFORNIA                                                      |                |

.

\*

borings around USTS

EPA METHOD Mod. 8015 TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

TPH-d

| PROJECT:                                                                                                                                                     | Geo/Resource<br>Dot Cypress<br>N9206-29<br>Soil                                                                                                                                                                | DATE                                                                   | REC'D:<br>EXTRACTED:<br>ANALYZED:                                                               |                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| SAMPLE ID:                                                                                                                                                   | CONTROL NO:                                                                                                                                                                                                    | <b>RESULTS</b><br>(mg/kg)                                              | H-C RANGE                                                                                       | DETECTION<br>LIMIT                                                             |
| TSC/H-1-2<br>TSC/H-1-5<br>TSC/H-1-8<br>TSC/B-1-5<br>TSC/B-1-8<br>TSC/B-1-13.5<br>TSC/W-1-5<br>TSC/W-1-5<br>TSC/W-1-8<br>TSC/W-1-14<br>TSC/B-2-5<br>TSC/B-2-8 | N9206-29-2<br>N9206-29-3<br>N9206-29-4<br>N9206-29-6<br>N9206-29-7<br>N9206-29-8<br>N9206-29-9<br>N9206-29-10<br>N9206-29-10<br>N9206-29-11<br>N9206-29-12<br>N9206-29-13                                      | ND<br>ND<br>520<br>ND<br>ND<br>ND<br>ND<br>700<br>ND                   | N.A.<br>N.A.<br>C12-C24<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>C12-C24<br>N.A.              | 5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0             |
| TSC/B-2-13.5<br>DF/W-2-5<br>CDF/W-2-8<br>CDF/B-5-2<br>CDF/B-5-4<br>CDF/B-5-7<br>DF/B-4-3<br>DF/B-4-5<br>DF/B-4-7<br>DF/B-3-2<br>DF/B-3-4<br>DF/B-3-4         | N9206-29-14<br>N9206-29-16<br>N9206-29-16<br>N9206-29-17<br>N9206-29-18<br>N9206-29-29<br>N9206-29-20<br>N9206-29-21<br>N9206-29-22<br>N9206-29-23<br>N9206-29-24<br>N9206-29-25<br>N9206-29-25<br>N9206-29-26 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3800<br>ND<br>ND<br>ND | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>C12-C24<br>N.A.<br>N.A.<br>N.A.<br>N.A. | 5.0<br>5.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1 |

CKY INC., ENVIRONMENTAL SERVICES, 3942 Valley Ave., Suite F. Pleasanton, CA 94566 • Tel: 510-846-3188 • FAX: 510-846-1236

EPA METHOD 5030/Mod. 8015 TOTAL PETROLEUM HYDROCARBONS BY PURGE & TRAP

-TPH-9

称

|

C

. 爆

**\*** 

٩<sub>Y</sub>

繬

| =============================== |                                         | =                  |                              | ========                          |
|---------------------------------|-----------------------------------------|--------------------|------------------------------|-----------------------------------|
| PROJECT:                        | Geo/Resource<br>Dot Cypress<br>19206-29 |                    | E ANALYZED: 0                |                                   |
| SAMPLE ID:                      | CONTROL NO:                             | RESULTS<br>(mg/kg) | DET. LIMIT<br><u>(mg/kg)</u> | % <b>SURRO</b><br><u>RECOVERY</u> |
| TSC/H-1-2                       | N9206-29-2                              | ND                 | 5.0                          | 96                                |
| TSC/H-1-5                       | N9206-29-3                              | ND                 | 5.0                          | 96                                |
| TSC/H-1-8                       | N9206-29-4                              | 6                  | 5.0                          | 80                                |
| TSC/B-1-5                       | N9206-29-6                              | 1500               | 500                          | 92                                |
| TSC/B-1-8                       | N9206-29-7                              | ND                 | 5.0                          | 72                                |
| TSC/B-1-13.5                    | N9206-29-8                              | ND                 | 5.0                          | 80                                |
| TSC/W-1-5                       | N9206-29-9                              | ND                 | 5.0                          | 104                               |
| TSC/W-1-8                       | N9206-29-10                             | ND                 | 5.0                          | 75                                |
| TSC/W-1-14                      | N9206-29-11                             | 24                 | 5.0                          | 96                                |
| TSC/B-2-5                       | N9206-29-12                             | 14000              | 500                          | 92                                |
| TSC/B-2-8                       | N9206-29-13                             | ND                 | 5.0                          | 80                                |
| TSC/B-2-13.5                    | N9206-29-14                             | 1700               | 500                          | 93                                |

<u>\_\_\_\_\_</u>

A STATE OF STATE

A LAND

Second Second

-100.001.375

7

4

Gγ

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resource<br>Dot Cypress<br>N9206-29 | 2                                  |               |                       |     | := |
|------------------------------------|-----------------------------------------|------------------------------------|---------------|-----------------------|-----|----|
|                                    |                                         |                                    |               |                       |     |    |
| METHOD<br>MATRIX:                  | EPA M8015G<br>Soil                      |                                    |               |                       |     |    |
| SAMPLE ID:                         | N9206-29                                |                                    |               |                       |     |    |
| COMPOUND                           | SAMPLE<br><u>RESULTS</u><br>(mg/kg)     | AMOUNT<br><u>SPIKED</u><br>(mg/kg) | <u>% REC.</u> | DUP.<br><u>% REC.</u> | RPD |    |
| Gasoline                           | ND                                      | 2                                  | 65            | 75                    | 14  |    |

CKY INC., ENVIRONMENTAL SERVICES, 3942 Valley Ave., Suite F. Pleasanton, CA 94566 • Tel: 510-846-3188 • FAX: 510-846-1236

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resourc<br>Dot Cypress<br>N9206-29 | e<br>=========                     | ~~~~~~        |                       |            |
|------------------------------------|----------------------------------------|------------------------------------|---------------|-----------------------|------------|
| METHOD<br>MATRIX:                  | EPA M8015G<br>Soil                     |                                    |               |                       |            |
| SAMPLE ID:                         | N9206-29-10                            |                                    |               |                       |            |
| COMPOUND                           | SAMPLE<br><u>RESULTS</u><br>(mg/kg)    | AMOUNT<br><u>SPIKED</u><br>(mg/kg) | <u>% REC.</u> | DUP.<br><u>% REC.</u> | <u>RPD</u> |
| Gasoline                           | ND                                     | 2                                  | 110           | 120                   | 9          |

a an

#### EPA METHOD - 8020 BTEX

| CLIENT:<br>PROJECT:<br>CONTROL NO:                                          | Geo/Resource<br>Dot Cypress<br>N9206-29 |             |             | DATE                               | REC'D:<br>ANALYZ<br>IX TYPE | ED: 06/30/92                    |  |
|-----------------------------------------------------------------------------|-----------------------------------------|-------------|-------------|------------------------------------|-----------------------------|---------------------------------|--|
| SAMPLE ID:                                                                  | CONTROL NO:                             | <u>Benz</u> | RESI<br>Tol | U <b>LTS (ug</b><br><u>Et Benz</u> | /kg)<br>Xyls                | <pre>% SURRO<br/>RECOVERY</pre> |  |
| TSC/H-1-2                                                                   | N9206-29-2                              | ND          | ND          | ND                                 | ND                          | 96                              |  |
| TSC/H-1-5                                                                   | N9206-29-3                              | ND          | ND          | ND                                 | ND                          | 96                              |  |
| TSC/H-1-8                                                                   | N9206-29-4                              | 230         | 80          | 200                                | 420                         | 80                              |  |
| TSC/B-1-5                                                                   | N9206-29-6#                             | 1400        | 2400        | 4500                               | 8400                        | 92                              |  |
| TSC/B-1-8                                                                   | N9206-29-7                              |             | 7           | ND                                 | ND                          | 72                              |  |
| TSC/B-1-13.5                                                                |                                         |             | 7           | 10                                 | 30                          | 80                              |  |
| TSC/W-1-5                                                                   | N9206-29-9                              |             | ND          | 15                                 | ND                          | 104                             |  |
| TSC/W-1-8                                                                   | N9206-29-10                             |             | ND          | ND                                 | ND                          | 75                              |  |
| TSC/W-1-14                                                                  | N9206-29-11                             |             | 7           | 70                                 | 110                         | 96                              |  |
| TSC/B-2-5                                                                   | N9206-29-12#                            |             | 10000       | 8000                               | 60000                       | 92                              |  |
| TSC/B-2-8                                                                   | N9206-29-13                             |             | 5           | ND                                 | ND                          | 80                              |  |
|                                                                             | N9206-29-14#                            |             | 1500        | 8300                               | 36000                       | 93                              |  |
| DETECTION LIMIT 5 5 5 5<br># Detection Limit is 500 ug/kg for all compounds |                                         |             |             |                                    |                             |                                 |  |

CKY INC., ENVIRONMENTAL SERVICES, 3942 Valley Ave., Suite F. Pleasanton, CA 94566 • Tel: 510-846-3188 • FAX: 510-846-1236

| CLIENT:<br>PROJECT:<br>CONTROL NO:            | Geo/Resource<br>Dot Cypress<br>N9206-29 |                                    |                        |                        |                     |
|-----------------------------------------------|-----------------------------------------|------------------------------------|------------------------|------------------------|---------------------|
| METHOD<br>MATRIX:                             | EPA 8020<br>Soil                        |                                    |                        |                        |                     |
| SAMPLE ID:                                    | N9206-29-2                              |                                    |                        |                        |                     |
| COMPOUND                                      | SAMPLE<br><u>RESULTS</u><br>(ug/kg)     | AMOUNT<br><u>SPIKED</u><br>(ug/kg) | <u>% REC.</u>          | DUP.<br><u>%</u> REC.  | RPD                 |
| Benzene<br>Toluene<br>Ethyl Benzene<br>Xylene | ND<br>ND<br>ND<br>ND                    | 20<br>20<br>20<br>40               | 105<br>85<br>95<br>110 | 115<br>95<br>75<br>100 | 9<br>11<br>24<br>10 |
|                                               |                                         |                                    |                        |                        |                     |

ł

Gy

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resourc<br>Dot Cypress<br>N9206-29 | e                                  |               |                       |            |
|------------------------------------|----------------------------------------|------------------------------------|---------------|-----------------------|------------|
| METHOD<br>MATRIX:                  | EPA 8020<br>Soil                       |                                    |               |                       |            |
| SAMPLE ID:                         | N9206-29-10                            |                                    |               |                       |            |
| <u>COMPOUND</u>                    | SAMPLE<br><u>RESULTS</u><br>(ug/kg)    | AMOUNT<br><u>SPIKED</u><br>(ug/kg) | <u>% REC.</u> | DUP.<br><u>% REC.</u> | <u>RPD</u> |
| Benzene                            | ND                                     | 20                                 | 120           | 110                   | 9          |
| Toluene                            | ND                                     | 20                                 | 80            | 85                    | 6          |
| Ethyl Benzene                      | ND                                     | 20                                 | 80            | 80                    | 0          |
| Xylene                             | ND                                     | 40                                 | 103           | 93                    | 10         |
|                                    |                                        | *******                            |               |                       |            |

Gy

## EPA METHOD 5030/Mod. 8015 TOTAL PETROLEUM HYDROCARBONS BY PURGE & TRAP

MHT J

|                                    |                                          | *================ |               |                                                                    |
|------------------------------------|------------------------------------------|-------------------|---------------|--------------------------------------------------------------------|
| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Reosource<br>Dot Cypress<br>N9207-03 |                   | ANALYZED:     | 07/02/92<br>07/06/92<br>ter<br>=================================== |
|                                    |                                          |                   |               |                                                                    |
|                                    |                                          | RESULTS           | DET. LIMIT    | % SURRO                                                            |
| SAMPLE ID:                         | CONTROL NO:                              | (mg/L)            | <u>(mg/L)</u> | RECOVERY                                                           |
| TSC-W-1                            | N9207-03-1                               | 1.3:/             | 1.0           | 80                                                                 |
| Peroco, c. z                       |                                          |                   |               |                                                                    |

CKY INC., ENVIRONMENTAL SERVICES, 3942 Valley Ave., Suite F. Pleasanton, CA 94566 • Tel: 510-846-3188 • FAX: 510-846-1236

.

# EPA METHOD Mod. 8015 TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

| SAMPLE ID:CONTROL NO:RESULTSTSC-W-1N9207-03-1NI                                                     | ····································· |
|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| N9207-03-1 NI                                                                                       | H-C RANGE                             |
| TSC-W-1     N9207-03-2     N       FS-W-1     N9207-03-2     N       PP800/0-1     N9207-03-2     N | 17 To:                                |

DETECTION LIMIT: 1.0 mg/kg

### EPA METHOD 5030/Mod. 8015 TOTAL PETROLEUM HYDROCARBONS BY PURGE & TRAP

|                                    |                                         |                   |                      | ========                          |
|------------------------------------|-----------------------------------------|-------------------|----------------------|-----------------------------------|
| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resource<br>Dot Cypress<br>N9206-29 |                   | ANALYZED: C          |                                   |
| SAMPLE ID:                         | CONTROL NO:                             | RESULTS<br>(mg/L) | DET. LIMIT<br>(mg/L) | <b>% SURRO</b><br><u>RECOVERY</u> |
| TSC/H-1                            | N9206-29-5                              | 16                | 1.0                  | 96                                |
|                                    |                                         |                   |                      |                                   |

CKY INC., ENVIRONMENTAL SERVICES, 3942 Valley Ave., Suite F. Pleasanton, CA 94566 • Tel: 510-846-3188 • FAX: 510-846-1236

1. J. J.

# EPA METHOD Mod. 8015 TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

| CLIENT:<br>PROJECT:<br>CONTROL NO:<br>MATRIX: | Geo/Resource<br>Dot Cypress<br>N9206-29<br>Water | DATE REC'D: 06/26/92<br>DATE EXTRACTED:07/01/92<br>DATE ANALYZED: 07/01/92 |
|-----------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|
|                                               |                                                  | RESULTS H-C RANGE                                                          |
| SAMPLE ID:                                    | CONTROL NO:                                      | <u>(mg/L)</u>                                                              |
| TSC/H-1                                       | N9206-29-5                                       | ND N.A.                                                                    |
| DETECTION LI                                  | MIT: 5.0 mg/kg                                   |                                                                            |

1

100

an yadida

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resourc<br>Dot Cypress<br>N9206-29 |                                   |                      | #=*===                |     |
|------------------------------------|----------------------------------------|-----------------------------------|----------------------|-----------------------|-----|
|                                    |                                        |                                   |                      |                       |     |
| METHOD<br>MATRIX:                  | EPA M8015D<br>Water                    |                                   |                      |                       |     |
| SAMPLE ID:                         | Blank                                  |                                   |                      |                       |     |
| COMPOUND                           | SAMPLE<br><u>RESULTS</u><br>(mg/L)     | AMOUNT<br><u>SPIKED</u><br>(mg/L) | <u>%</u> <u>REC.</u> | DUP.<br><u>% REC.</u> | RPD |
| Diesel                             | ND                                     | 500                               | 98                   | 96                    | 2   |

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resourc<br>Dot Cypress<br>N9206/29 | e                                 |               |                       |            |
|------------------------------------|----------------------------------------|-----------------------------------|---------------|-----------------------|------------|
|                                    |                                        |                                   |               |                       |            |
| METHOD<br>MATRIX:                  | EPA M8015G<br>Water                    |                                   |               |                       |            |
| SAMPLE ID:                         | Blank                                  |                                   |               |                       |            |
| COMPOUND                           | SAMPLE<br><u>RESULTS</u><br>(mg/L)     | AMOUNT<br><u>SPIKED</u><br>(mg/L) | <u>≹ REC.</u> | DUP.<br><u>% REC.</u> | <u>RPD</u> |
| Gasoline                           | ND                                     | 2                                 | 80            | 70                    | 13         |

·

#### EPA METHOD - 8020 BTEX

\_\_\_\_

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resource<br>Dot Cypress<br>N9206/29 | DATE REC'D: 06/26/92<br>DATE ANALYZED: 06/29/92<br>MATRIX TYPE: Water |            |                             |                     |                   |
|------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|------------|-----------------------------|---------------------|-------------------|
| SAMPLE ID:                         | CONTROL NO:                             | <u>Benz</u>                                                           | RES<br>Tol | ULTS (ug/<br><u>Et Benz</u> | <b>L) %</b><br>Xyls | SURRO<br>RECOVERY |
| TSC/H-1                            | N9206-29-5                              | 320                                                                   | 100        | 380                         | 380                 | 96                |
| DETECTION LIMIT 1 1 1 1            |                                         |                                                                       |            |                             |                     |                   |

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resourc<br>Dot Cypress<br>N9206-29 | e                                  |                  |                       |     |
|------------------------------------|----------------------------------------|------------------------------------|------------------|-----------------------|-----|
| METHOD<br>MATRIX:                  | EPA 8020<br>Water                      |                                    |                  |                       |     |
| SAMPLE ID:                         | Blank                                  |                                    |                  |                       |     |
| COMPOUND                           | SAMPLE<br><u>RESULTS</u><br>(ug/kg)    | AMOUNT<br><u>SPIKED</u><br>(ug/kg) | <u> </u>         | DUP.<br><u>% REC.</u> | RPD |
| Benzene                            | ND                                     | 20                                 | 85               | 75                    | 13  |
| Toluene                            | ND                                     | 20                                 | 70               | 75                    | 7   |
| Ethyl Benzene                      | ND                                     | 20                                 | 85               | 80                    | 6   |
| Xylene                             | ND<br>=============                    | 40<br>==========                   | 98<br>========== | 98                    | 0   |

#### EPA METHOD - 8020 BTEX

| CLIENT:<br>PROJECT:<br>CONTROL NO: | Geo/Resource<br>Dot Cypress<br>N9207-03 | DATE REC'D: 07/02/92<br>DATE ANALYZED: 07/06/92<br>MATRIX TYPE: Water |   |                                     |              |                   |
|------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|---|-------------------------------------|--------------|-------------------|
| SAMPLE ID:                         | CONTROL NO:                             | <u>Benz</u>                                                           |   | UL <b>TS (ug/</b><br><u>Et Benz</u> | L) %<br>Xyls | SURRO<br>RECOVERY |
| TSC-W-1                            | N9207-03-1                              | 80                                                                    | 6 | ND                                  | 15           | 80                |
| DETECTION LIMIT 1 1 1 1            |                                         |                                                                       |   |                                     |              |                   |