

EAST BAY

Shell Oil Company

P.O. Box 4023 Concord, CA 94524 (415) 676-1414

July 16, 1990

Mr. Gil Wistar County of Alameda Department of Environmental Health Hazardous Materials Division 80 Swan Way, Room 200 Oakland, California 94621

SUBJECT: SHELL SERVICE STATION 999 SAN PABLO AVENUE ALBANY, CALIFORNIA

Dear Mr. Wistar:

Enclosed is a of copy of the Well Installation Report dated June 28, 1990 which documents the installation of two off-site ground-water monitoring wells at the subject location.

The installation of two additional off-site monitoring wells to further evaluate the extent of contamination is proposed in the report.

If you should have any questions or comments regarding this project please do not hesitate to call me at (415) 676-1414 ext. 127.

Very truly yours,

Diane M. Lundqy ist District Environmental Engineer

cc: Mr. Tom Callaghan, Regional Water Quality Control Board Mr. John Werfal, Gettler-Ryan Inc.

WELL INSTALLATION REPORT

Shell Service Station 999 San Pablo Avenue Albany, California

Report No. 7666-3

June 28, 1990

R ECHIVAD

GeoStrategies Inc. 2140 WEST WINTON AVENUE

HAYWARD, CALIFORNIA 94545

(775) (1777) (17 13 (1777) (1799) (1777) (1777) 18 (1778) (1777) (1778) (1778) (1778) 18 (1778) (1778) (1778) (1778) 18 (1778) (1778) (1778) (1778) 18 (1778) (1778) (1778) (1778) (1778) 18 (1778) (1

June 28, 1990

Gettler-Ryan Inc. 2150 West Winton Avenue Hayward, California 94545

Attn: Mr. John Werfal

Re: WELL INSTALLATION REPORT Shell Service Station 999 San Pablo Avenue Albany, California

Gentlemen:

performed the field activities bv This report summarizes GeoStrategies Inc. (GSI) and presents the results of ground-water sampling conducted by Gettler-Ryan Inc. (G-R) at the above referenced Two exploratory soil borings were drilled and location (Plate 1). completed as ground-water monitoring wells, S-4 and S-5, on April 16, The monitoring network was sampled on May 1, 1990 (Plate 2). 1990. was conducted in accordance with current of State Field work California Water Resources Control Board (SWRCB) guidelines. GSI and Gettler-Ryan Inc. (G-R) Field Methods and Procedures are presented in Appendix A.

SITE BACKGROUND

During January 1990, GSI drilled ten exploratory soil borings (S-A through S-G and S-1, S-2, and S-3) and completed three of these as ground-water monitoring wells (S-1 through S-3). These borings were drilled to characterize site soil conditions prior to replacement of the underground storage tanks (UGSTs). Results of this investigation are presented in the GSI report dated, March 23, 1990. The tank replacement is scheduled to take place during 1990.

The site is located on the northeast corner of San Pablo Avenue and Marin Avenue. An automotive repair shop is north of the site and a service station is located across Marin Avenue. Residential property is adjacent to the site along Marin Avenue. There are three on-site monitoring wells, S-1 through S-3, and three corrugated, galvanized, 6-inch-diameter steel wells which appear to be located within the tank backfill area.

Report No. 7666-3

Gettler-Ryan Inc. June 28, 1990 Page 2

FIELD PROCEDURES

Two exploratory soil borings (S-4 and S-5) were drilled using a truck-mounted hollow-stem auger drilling rig. The soil borings were drilled to depths of 20.5 feet below ground surface. Wells S-4 and S-5 were installed at off-site locations on Marin Avenue in the suspected cross-gradient and up-gradient direction.

Soils were sampled at approximately five-foot depth intervals Soil using a Modified California collected split-spoon samples were sampler fitted with precleaned brass tube liners. A GSI geologist the drilling, described soil samples using the Unified supervised Classification System, and Munsell Soil Color Chart. and Soil prepared lithologic logs for each boring. Exploratory boring logs are presented in Appendix B.

A 4-inch long brass tube of soil from each sampled interval was used to perform head-space analysis in the field for the presence of Volatile Organic Compounds (VOCs). Head-space analysis involved transferring soil from the brass liner into a clean glass jar and immediately covering the jar with aluminum foil secured under a ring-type threaded lid. After approximately 20 minutes, the foil was pierced and head-space within the jar was tested for VOCs measured in parts per million (ppm) using an Organic Vapor Monitor (OVM) photoionization detector. Head-space analyses are presented on each boring log in Appendix B.

Soil samples retained for chemical analyses were collected in clean brass liners, covered on both ends with aluminum foil and sealed with The samples were labeled, entered onto a plastic end caps. with blue ice, Chain-of-Custody form, placed in a cooler and transported to International Technology (IT) Analytical Services, a State-certified environmental laboratory located in San Jose, California.

Gettler-Ryan Inc. June 28, 1990 Page 3

HYDROGEOLOGY

The subsurface lithology consists primarily of silt and clay to the total depth explored of 20.5 feet below grade. A silty clay was encountered from 1 to 12 feet below ground surface. Underlying this clay was a saturated claycy gravel layer approximately 2 feet thick. This clayey gravel zone in underlain by a sandy silt to the total depth explored. The thickness of this unit is not known but appears to be at least 10 feet based on drilling information. The silt was not saturated, however, in Boring S-5 the silt contained detectable levels of hydrocarbons.

The thin clayey gravel zone is interpreted to be the uppermost water-bearing strata. A rise in ground-water levels when this unit was penetrated during drilling suggests that the clayey gravel aquifer is semi-confined or confined. The relatively low moisture content in the silt underlying the gravel zone may indicate the shallow aquifer is a perched zone, with underlying silt locally acting as a basal aquitard. Cross-sections were prepared using boring logs from this investigation and the previous GSI investigation (Plates 5 and 6). The cross-sections show that the thin gravel zone changes laterally to silty sand and sand, however, this more permeable zone was encountered throughout the site at approximately the same depth.

Monitoring Well Design and Construction

Monitoring wells S-4 and S-5 were installed to total depths of 14 and 16 feet, respectively. The wells were constructed using 3-inch diameter Schedule 40 PVC well casing and 0.020-inch factory slotted well screen. The well screen was placed from the bottom of the casing to approximately one to two feet above static water level. Lonestar #2/12 graded sand was placed in the annular space along the entire screened interval, including one foot above the top of the screen. A one-foot thick bentonite seal followed by a cement grout seal to approximately one foot below grade was placed above the sand pack. Each well was completed at ground surface with a locking cap and lock, secured underneath a traffic-rated Christy box. Monitoring well construction details are presented with the boring logs in Appendix B. Gettler-Ryan Inc. June 28, 1990 Page 4

Potentiometric Data

Static ground-water levels were measured on April 27, 1990, using an electronic oil-water interface probe. Water levels were measured from the surveyed top of well box and recorded to the nearest ± 0.01 foot (Table 1). Ground-water elevation data, referenced to Mean Sea Level, were used to prepare a potentiometric contour map (Plate 3). apparent ground-water divide which trends 3 indicates an Plate Groundwater flow direction beneath the site. northeast-southwest varies from southeast to northwest along the ground-water divide The hydraulic gradient in the uppermost water-bearing zone was axis. calculated to be 0.033.

Floating Product Data

Field measurements for floating product were made in each monitoring well using an electronic oil-water interface probe. Readings were recorded to the nearest ± 0.01 foot. Each well was also checked with a clean, clear, acrylic bailer to visually confirm interface probe results and to check for the presence of a product sheen. Floating product was observed in Well S-5 at 0.64 feet in measured thickness (Table 1). Product sheens were not observed in any of the wells.

CHEMICAL ANALYTICAL DATA

Soil Analytical Data

Soil samples were analyzed for Total Petroleum Hydrocarbons calculated as Gasoline (TPH-Gasoline) according to EPA Method 8015 (Modified) and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) according to EPA Method 8020.

TPH-Gasoline and BTEX were not detected in the two analyzed soil samples from Boring S-4. The analyzed samples were collected from the 5- and 9-foot depth intervals.

TPH-Gasoline and BTEX were not detected in the sample collected from the 5-foot depth interval from Boring S-5. The samples collected from the 12- and 15-foot depth intervals contained 25 and 130 ppm TPH-Gasoline, respectively. BTEX compounds were also detected in the 12 and 15-foot soil samples (Table 2). The IT Analytical Services certified analytical report is presented in Appendix C.

Gettler-Ryan Inc. June 28, 1990 Page 5

Ground-water Analytical Data

Ground-water samples were collected from Wells S-1 through S-4 on May I, 1990. A ground-water sample was not collected from Well S-5 due to the presence of floating product.

Samples were analyzed for TPH-Gasoline according to EPA Method 8015 (Modified) and BTEX according to EPA Method 8020 at IT Analytical Services.

TPH-Gasoline concentrations were detected in Wells S-1 through S-3 ranging from 2 to 11 ppm (Table 1). Benzene was also detected in these wells at concentrations ranging from 0.018 to 2.3 ppm. The current concentrations in Wells S-1 through S-3 exceed benzene Regional Water Quality Control Board (RWQCB) Maximum Contaminant The sample from Well S-4 did not contain detectable Levels (MCL). levels of TPH-Gasoline or BTEX. Chemical analytical data are plotted on Plate 4.

The IT Analytical Services certified analytical report is presented with the G-R Groundwater Sampling Report in Appendix D.

SUMMARY

A summary of site activities and findings is presented below:

- o Two exploratory soil borings, S-4 and S-5, were drilled to total depths of 20.5 feet and completed as ground-water monitoring wells.
- TPH-Gasoline and BTEX Analyses identified in soil 0 samples collected from the 12and 15-foot depth No detectable levels in Boring U-5. interval of hydrocarbons were identified in soil samples from Boring S-4.

Gettler-Ryan Inc. June 28, 1990 Page 6

- o Soil boring drillings identified a thin, clayey gravel aquifer at a depth of approximately 8.5 feet below ground surface. The aquifer may be a perched water zone which exhibits semi-confined to confined conditions.
- Ground-water samples collected from Wells S-1 through S-3 contained detectable levels of TPH-Gasoline and benzene. The sample from Well S-4 was reported as ND. Well S-5 contained 0.62 feet of floating product and was not sampled. Benzene concentrations in Wells S-1 through S-3 exceed the current RWQCB MCL.
- Potentiometric surface data indicate the existence of a 0 ground-water "mound" between the existing Shell underground storage tanks (UGSTs) and Well S-5. Floating product has not been observed in Wells S-2 and S-3 which are located between the Shell UGSTs and Well S-5. At this time, the available data do not conclusively show the Shell facilities to be the source of floating product observed in Well S-5. Additional hydrogeologic and geologic information will be required to assess the migration pathways and source of the floating product.

PLANNED SITE ACTIVITIES

The following activities will be conducted at this site to further delineate the extent of hydrocarbons in the subsurface:

- o Ground-water samples will be collected from site monitoring wells on a quarterly schedule. The samples will be analyzed for TPH-Gasoline and BTEX. Water-level and floating product data will be collected on a weekly schedule.
- o Two additional monitoring wells will be installed, one on San Pablo Avenue, downgradient from the UGSTs, and one on Marin Avenue, between Wells S-3 and S-5 (Plate 2).

Report No. 7666-3

Gettler-Ryan Inc. June 28, 1990 Page 7

If you have any questions please call.

GeoStrategies by:

latthew & fanourisk

Matthew J. Janowiak Geologist

Jellow L. Peterson/emp

Jeffrey L. Peterson Senior Hydrogeologist R.E.A. 1021

Dalme

Christopher M. Palmer C.E.G. 1262, R.E.A. 285

MJJ/JLP/mlg

- Plate 1. Vicinity Map
- Plate 2. Site Plan
- Plate 3. Potentiometric Map
- Plate 4. TPH-G/Benzene Concentration Map

Appendix A. Field Methods and Procedures

- Appendix B. Boring Logs and Well Construction Details
- Appendix C. Soil Analytical Report
- Appendix D. G-R Groundwater Sampling Report

TABLE 1

========				==========	==========						
						GROUND-WATER	ANALYSIS [ATA			
WELL NO	SAMPLE DATE	ANALYSIS DATE	ТРН (РРМ)	BENZENE (PPM)	TOLUENE (PPM)	ETHYLBENZENE (PPM)	XYLENES (PPM)	WELL ELEV (FT)	STATIC WATER ELEV (FT)	PRODUCT THICKNESS (FT)	DEPTH TO WATER (FT)
s-1	01-May-90	08-May-90	4.2	0.023	<0.0025	0.116	0.32	42.73	34.52		8.21
s-2	01-May-90	08-May-90	11.	2.3	0.082	0.409	0.77	40.73	32.71		8.02
s-3	01 -M ay-90	08-May-90	2.0	0.018	<0.0025	0.024	0.008	41.46	33.82		7.64
s-4	01-May-90	08-May-90	<0.05	<0.0005	<0.0005	<0.0005	<0.001	41.10	33,44		7.66
S-5	01-May-90							39.99	29.76	0.64	10.74
TB	01-May-90	08-May-90	<0.05	<0.0005	<0.0005	<0.0005	<0.001				

CURRENT REGIONAL WATER QUALITY CONTROL BOARD MAXIMUM CONTAMINANT LEVELS Benzene 0.001 ppm Xylenes 1.750 ppm Ethylbenzene 0.68 ppm CURRENT DHS ACTION LEVELS Toluene 0.100 ppm

- TPH = Total Petroleum Hydrocarbons as Gasoline
- PPM = Parts Per Million
- TB = Trip Blank

Note: 1. All data shown as <x are reported as ND (none detected).

2. Water Level Elevations referenced to mean sea level (MSL). Elevations are corrected for free product using a correction factor of 0.8

3. Water levels were measured on April 27, 1990.

4. DHS Action Levels and MCLs are subject to change pending State review.

=======================================	 *****************	*******************

SOIL ANALYSIS DATA

SAMPLE NO	SAMPLE DATE	ANALYSIS DATE	TPH (PPM)	BENZENE (PPM)	TOLUENE (PPM)	ETHYLBENZENE (PPM)	XYLENES (PPM)
			********		122222211	************	
S-4-5	16-Apr-90	26-Apr-90	<2.5	<0.025	<0.025	<0.025	<0.05
\$-4-9	16-Apr-90	26-Apr-90	<2.5	<0.025	<0.025	<0.025	<0.05
s-5-5	16-Apr-90	26-Apr-90	<2.5	<0.025	<0.025	<0.025	<0.05
s-5-12	16-Apr-90	26-Apr-90	25	0.30	0.12	0.51	1.2
s-5-15	16-Apr-90	26-Apr-90	130	1.9	7.5	3.3	18

TPH = Total Petroleum Hydrocarbons as Gasoline

•

Note: 1. All data shown as <x are reported as ND (none detected).

Report No. 7666-3

TABLE 2

•

•

•

•

•

۲

•

0

Ì

FIELD METHODS AND PROCEDURES

EXPLORATION DRILLING

<u>Mobilization</u>

Prior to any drilling activities, GeoStrategies Inc. (GSI) will verify that necessary drilling permits have been secured.

Utility locations will be located and drilling will be conducted so as not to disrupt activities at a project site. GSI will obtain and review available public data on subsurface geology and if warranted, the location of wells within a half-mile of the project site will be identified. Drillers will be notified in advance so that drilling equipment can be inspected prior to performing work.

Drilling

The subsurface investigations are typically performed to assess the lateral and vertical extent of petroleum hydrocarbons present in soils and groundwater. Drilling methods will be selected to optimize field data requirements as well as be compatible with known or suspected subsurface geologic conditions.

Monitoring wells are installed using a truck-mounted hollow-stem auger drill rig or mud-rotary drill rig. Typically, the hollow-stem rig is used for wells up to 100 feet, if subsurface conditions are Wells greater than 100-feet deep are typically drilled favorable. using mud-rotary techniques. When mud rotary drilling is used, an electric log will be performed for additional lithological Also during mud rotary drilling, precautions will be information. taken to prevent mud from circulating contaminants by using a conductor casing to seal off contaminated zones. Samples will be collected for lithologic logging by continuous chip, and where needed by drive sample or core as specified by the supervising geologist.

Soil Sampling

Shallow soil borings will be drilled using a truck-mounted hollow-stem auger drilling rig, unless site conditions favor a different drilling method. Drilling and sampling methods will be consistent with ASTM Method D-1452-80. The auger size will be a minimum 6-inch nominal outside-diameter (O.D). No drilling fluids will be used during this drilling method. The augers and other tools used in the bore hole will be steam cleaned before use and between borings to minimize the possibilities of cross-contamination between borings.

Soil samples are typically collected at 5-foot intervals as a minimum from ground surface to total depth of boring. Additional soil samples will be collected based on significant lithologic changes and/or potential chemical content. Soil samples from each sampling interval will be lithologically described by a GSI geologist (Figure 1). Soil colors will be described using the Munsell Color Chart. Rock units will be logged using appropriate lithologic terms, and colors described by the G.S.A. Rock Color Chart.

Head-space analyses will be performed to check for the evidence of volatile organic compounds. Head-space analyses will be performed using an organic vapor analyzer; either an OVA, HNU, or OVM. Organic vapor concentrations will be recorded on the GSI field log of boring (Figure 1). The selection of soil samples for chemical analysis are typically based on the following criteria:

- 1) Soil discoloration
- 2) Soil odors
- 3) Visual confirmation of chemical in soil
- 4) Depth with respect to underground tanks (or existing grade)
- 5) Depth with respect to ground water
- 6) OVA reading

Soil samples (full brass liners) selected for chemical analysis are immediately covered with aluminum foil and the liner ends are capped to prevent volatilization. The samples are labeled and entered onto a Chain-of-Custody form, and placed in a cooler on blue ice for transport to a State-certified analytical laboratory.

Soil cuttings are stockpiled on-site. Soils are sampled and analyzed for site-specific chemical parameters. Disposition of soils is dependent of chemical analytical results of the samples. Soil Sampling - cont.

Soil borings not converted to monitoring wells will be backfilled (sealed) to ground surface using either a neat cement or cement-bentonite grout mixture. Backfilling will be tremied by. continuously pumping grout from the bottom to the top of the boring where depth exceeds 20' or as required by local permit requirements.

All field and office work, including exploratory boring logs, are prepared under the direction of a registered geologist.

Monitoring Well Installation

Monitoring well casing and screen will be constructed of Schedule 40, flush-joint threaded polyvinylchloride (PVC). The well screen will be factory mill-slotted unless additional open area is required (eg. conversion to an extraction well in a low-yield aquifer). The screen length will be placed adjacent to the aquifer material to a minimum of 2-feet above encountered water. No screen shall be placed in a borehole that potentially creates hydraulic interconnection of two or more aquifer units. Screen slot size and well sand pack will be compatible with encountered aquifer materials, as confirmed by sieve analysis.

Monitoring wells will be completed below grade (Figure 2) unless special conditions exist that require above-grade completion design. In the event a monitoring well is required in an aquifer unit beneath an existing aquifer, the upper aquifer will be sealed off by installing a steel conductor casing with an annular neat cement or cement-bentonite grout seal. This seal will be continuously tremie pumped from the bottom of the annulus to ground surface.

The monitoring well sand pack will be placed adjacent to the entire screened interval and will extend a recommended minimum distance of 2-feet above the top of the screen. No sand pack will be placed that interconnects two or more aquifer units. A minimum 2-foot bentonite pellet or bentonite slurry seal will be placed above the sand pack. Sand pack, bentonite, and cement seal levels will be confirmed by sounding the annulus with a calibrated weighted tape. The remaining annular space above the bentonite seal will be grouted with a bentonite-cement mixture and will be tremie-pumped from the bottom of the annular space to the ground surface. The bentonite content of the grout will not exceed 5 percent by weight. A field log of boring and a field well completion form will be prepared by GSI for each well installed.

Decontamination of drilling equipment before drilling and between wells will consist of steam cleaning, and/or Alconox wash.

Well Development

All newly installed wells will be properly developed within 48 hours of completion. No well will be developed until the well seal has set a minimum of 12 hours. Development procedures will include one or more of the methods described below:

Bailing

Bailing will be used to remove suspended sediments and drilling fluids from the well, where applicable. The bailer will be raised and lowered through the column of water in the well so as to create a gentle surging action in the screened interval. This technique may be used in conjunction with other techniques, such as pumping, and may be used alone if the well is of low yield.

Pumping

Pumping will be used in conjunction with bailing or surging. The pump will be operated in such a manner as to gently surge the entire screened interval of the well. This may involve operating the pump with a packer type mechanism attached and slowly raising and lowering the pump, or by cycling the pump off and on to allow water to move in and out of the screened interval. Care will be used not to overpump a well.

Surging

Surging will be performed on wells that are screened in known or suspected high yield formations and/or on larger diameter (recovery) wells. A surge block will be raised and lowered through the entire screened interval, forcing water in and out of the well screen and sand pack. Pumping or air lifting will be used in conjunction with this method of development to remove any sediment brought into the well during surging.

<u>Air Lifting</u>

Air lifting will be used to remove sediment from wells as an alternative to pumping under certain conditions. When appropriate, a surge block designed for use with air lifting will be used to agitate the entire screened interval and water will be lifted out of the well using forced air. When air lifting is performed, the air source will be either nitrogen or filtered air and the procedure will be performed gently to prevent any damage to the well screen or casing and to insure that discharged water is contained. Well Development - cont.

All well developing equipment will be thoroughly decontaminated prior to development using a steam cleaner and/or Alconox detergent wash and clean water rinse. During development procedures, field parameters (temperature, specific conductance and pH) will be monitored and recorded on well development forms (Figure 3). Equilibration requirements consist of a minimum of three readings with the following accuracy standards:

pH	<u>+</u> 0.1 pH units
Specific Conductance	\pm 10% of full scale reading
Temperature	± 0.5 degrees Celsius

The wells will be developed until water is visibly clear and free of sediment, and well purging parameters stabilized. A minimum of 8 to 10 well volumes will be purged from each well, if feasible. If well purging parameters have not stabilized before 10 casing volumes have been removed, well development will continue until purging parameters have stabilized and formation water is being drawn into the well. The adequacy of well development will be judged by the field technician performing the well development and based on known formation conditions.

Well Surveying

Monitoring wells will be surveyed to obtain top of box elevations to the nearest ± 0.01 foot. Water level measurements will be recorded to the nearest ± 0.01 foot and referenced to Mean Sea Level (MSL). If additional wells are required, then existing and newly installed wells are surveyed relative to MSL.

GROUND-WATER SAMPLING AND ANALYSIS

Quality Assurance/Quality Control Objectives

The sampling and analysis procedures employed by Gettler-Ryan Inc. (G-R) for ground-water sampling and monitoring follow specific Quality Assurance/Quality Control (QA/QC) guidelines. Quality Assurance objectives have been established by G-R to develop and implement procedures for obtaining and evaluating water quality and field data in an accurate, precise, and complete manner so that sampling procedures and field measurements provide information that is comparable and representative of actual field conditions. Quality Control (QC) is maintained by G-R by using specific field protocols and requiring the analytical laboratory to perform internal and external QC checks. It is the goal of G-R to provide data that are accurate, precise, complete, comparable, and representative. The definitions for accuracy, precision, completeness, comparability, and representativeness are as follows:

- <u>Accuracy</u> the degree of agreement of a measurement with an accepted referenced or true value.
- <u>Precision</u> a measure of agreement among individual measurements under similar conditions. Usually expressed in terms of the standard deviation.
- <u>Completeness</u> the amount of valid data obtained from a measurement system compared to the amount that was expected to meet the project data goals.
- <u>Comparability</u> expresses the confidence with which one data set can be compared to another.
- <u>Representativeness</u> a sample or group of samples that reflects the characteristics of the media at the sampling point. It also includes how well the sampling point represents the actual parameter variations which are under study.

As part of the G-R QA/QC program, applicable federal, state, and local reference guidance documents are followed. The procedures outlined in these regulations, manuals, handbooks, guidance documents, and journals are incorporated into the G-R sampling procedures to assure that; (1) ground-water samples are properly collected, (2) ground-water samples are identified, preserved, and transported in a manner such that they are representative of field conditions, and (3) chemical analysis of samples are accurate and reproducible.

Page 6

Guidance and Reference Documents Used to Collect Groundwater Samples

These documents are used to verify G-R sampling procedures and are consistent with current regulatory guidance. If site specific work and sampling plans are required, those plans will be developed from these documents, and newly received applicable documents.

U.S.E.P.A 330/9-51-002	NEIC Manual for Groundwater/Subsurface Investigation at Hazardous Waste Sites
U.S.E.P.A 530/SW611	Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities (August, 1977)
U.S.E.P.A 600/4-79-020	Methods for Chemical Analysis of Water and Wastes (1983)
U.S.E.P.A 600/4-82-029	Handbook for Sampling and Sample Preservation of Water and Wastewater (1982)
U.S.E.P.A 600/4-82-057	Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater (July, 1982)
U.S.E.P.A SW-846#, 3rd Edition	Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (November, 1986)
40 CFR 136:3e, Table II (Code of Federal Regulations)	Required Containers, Preservation Techniques, and Holding Times
Resources Conservation and Recover Act (OSWER 9950.1)	Groundwater Monitoring Technical Enforcement Guidance Document (September, 1986)
California Regional Water Quality Control Board (Central Valley Region)	A Compilation of Water Quality Goals (September, 1988); Updates (October, 1988)
California Regional Water Quality Control Board (North Coast, San Francisco Bay, and Central Valley)	Regional Board Staff Recommendations for Initial Evaluations and Investigation of Underground Tanks: Tri-Regional Recommendations (June, 1988)

Guidance and Reference Documents Used to Collect Groundwater Samples (cont.)

Regional Water Quality Control Board (Central Valley Region)

State of California Department of Health Services

State of California Water Resources Control Board

State of California Water Resources Control Board

Alameda County Water District

American Public Health Association

Analytical Chemistry (journal)

Napa County

Santa Clara Valley Water District

Memorandum: Disposal, Treatment, and Refuse of Soils Contaminated with Petroleum Fractions (August, 1986)

Hazardous Waste Testing Laboratory Certification List (March, 1987)

Leaking Underground Fuel Tank (LUFT) Field Manual (May, 1988), and LUFT Field Manual Revision (April, 1989)

23, (Register Title #85.#33-8-17-85), Subchapter 16: Underground Tank Regulations; Article 3, Sections 2632 and 2634; Article 4, Sections 2645, 2646, 2647, and 2648; Article 7. Sections 2670. 2671. and 2672 (October, 1986: including 1988 Amendments)

Groundwater Protection Program: Guidelines for Groundwater and Soil Investigations at Leaking Underground Fuel Tank Sites (November, 1988)

Standard Methods for the Examination of Water and Wastewaters, 16th Edition

Principles of Environmental Analysis, Volume 55, Pages 2212-2218 (December, 1983)

Napa County Underground Storage Tank Program: Guidelines for Site Investigations; February 1989.

Guidelines for Preparing or Reviewing Sampling Plans for Soil and Groundwater Investigation of Fuel Contamination Sites (January, 1989)

Guidance and Reference Documents Used to Collect Groundwater Samples (cont.)

Santa Clara Valley Water District

Santa Clara Valley Water District American Petroleum Institute

American Petroleum Institute

American Petroleum Institute

Site Specific (as needed)

Investigation and Remediation at Fuel Leak sites: Guidelines for Investigation and Technical Report Preparation (March 1989)

Revised Well Standards for Santa Clara County (July 18, 1989) Groundwater Monitoring & Sample Bias; API **Publication** 4367, Environmental Affairs Department, June 1983

A Guide to the Assessment and Remediation of Underground Petroleum Releases; API Publication 1628, February 1989

Literature Summary: Hydrocarbon Solubilities and Attenuations Mechanisms, API Publication 4414, August 1985

General and specific regulatory documents as required.

Because ground-water samples collected by G-R are analyzed to the parts per billion (ppb) range for many compounds, extreme care is exercised to prevent contamination of samples. When volatile or semi-volatile organic compounds are included for analysis, G-R sampling crew members will adhere to the following precautions in the field:

- 1. A clean pair of new, disposable gloves are worn for each well being sampled.
- 2. When possible, samples are collected from known or suspected wells that are least contaminated (i.e. background) followed by wells in increasing order of contamination.
- 3. Ambient conditions are continually monitored to maintain sample integrity.

When known or potential organic compounds are being sampled for, the following additional precautions are taken:

- I. All sample bottles and equipment are kept away from fuels and solvents. When possible, gasoline (used in generators) is stored away from bailers, sample bottles, purging pumps, etc.
- 2. Bailers are made of Teflon or Stainless Steel. Other materials such as plastic may contaminate samples with phthalate esters which interfere with many Gas Chromatography (GC) analyses.
- 3. Volatile organic ground-water samples are collected so that air passage through the sample does not occur or is minimal (to prevent volatiles from being stripped from the samples): sample bottles are filled by slowly running the sample down the side of the bottle until there is a positive convex meniscus over the neck of the bottle; the Teflon side of the septum (in cap) is positioned against the meniscus, and the cap screwed on tightly; the sample is inverted and the bottle lightly tapped. The absence of an air bubble indicates a successful seal; if a bubble is evident, the cap is removed, more sample is added, and the bottle is resealed.
- 4. Extra Teflon seals are brought into the field in case seals are difficult to handle and/or are dropped. Dropped seals are considered contaminated and are not used. When replacing seals or if seals become flipped, care is taken to assure that the Teflon seal faces down.

Sample analysis methods, containers, preservatives and holding times are shown on Table 1.

gettler — ryan inc. (415) 783-7500 general and environmental contractors

Laboratory and field handling procedures of samples are monitored by including QC samples for analysis with every submitted sample lot from a project site. QC samples may include any combination of the following:

- A. <u>Trip Blank</u>: Used for purgeable organic compounds only; QC samples are collected in 40 milliliter (ml) sample vials filled in the analytical laboratory with organic-free water. Trip blanks are sent to the project site, and travel with project site samples. Trip blanks are <u>not</u> opened, and are returned from a project site with the project site samples for analysis.
- B. <u>Field Blank</u>: Prepared in the field using organic-free water. These QC samples accompany project site samples to the laboratory and are analyzed for specific chemical parameters unique to the project site where they were prepared.
- C. <u>Duplicates</u>: Duplicated samples are collected "second samples" from a selected well and project site. They are collected as either split samples or second-run samples collected from the same well.
- D. <u>Equipment Blank</u>: Periodic QC sample collected from field equipment rinsate to verify decontamination procedures.

The number and types of QC samples are determined as follows:

- A. Up to 2 wells Trip Blank Only
- B. 2 to 5 Wells 1 Field Blank and 1 Trip Blank
- C. 5 to 10 Wells I Field blank, 1 Trip Blank, and 1 Duplicate
- D. More than 10 Wells 1 Field Blank, 1 Trip Blank, and 1 Duplicate per each 12 wells
- E. If sampling extends beyond one day, quality control samples will be collected for each day.

Additional QC is performed through ongoing and random reviews of duplicate samples to evaluate the precision of the field sampling procedures and analytical laboratory. Precision of QC data is accomplished by calculating the Relative Percent Difference (RPD). The RPD is evaluated to assess whether values are within an acceptable range (typically \pm 20% of duplicate sample).

SAMPLE COLLECTION

This section describes the routine procedures followed by G-R while collecting ground-water samples for chemical analysis. These procedures include decontamination, water-level measurements, well purging, physical parameter measurements; sample collection, sample preservation, sample handling, and sample documentation. Critical sampling objectives for G-R are to:

- 1. Collect ground-water samples that are <u>representative</u> of the sampled matrix and,
- 2. Maintain sample integrity from the time of sample collection to receipt by the analytical laboratory.

Sample analyses methods, containers, preservation, and holding times are presented in Table 1.

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. Any sampling equipment surfaces or parts that might absorb specific contaminants, such as plastic pump valves, impellers, etc., are cleaned in the same manner.

Sample bottles, bottle caps, and septa used for sampling volatile organics are thoroughly cleaned and prepared in the laboratory. Sample bottles, bottle caps, and septa are protected from all potential chemical contact before actual usage at a sample location.

During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well. The equipment are decontaminated by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Water-Level Measurements

Prior to purging and sampling a well, the static-water levels are measured in all wells at a project site using an electric sounder and/or calibrated portable oil-water interface probe (Figure 4). Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape.

gelller — ryan inc. (415) 783-7500 general and environmental contractors

<u>Water-Level Measurements</u> (continued)

The monofilament line used to lower the bailer is replaced between wells with new line to preclude the possibility of Field observations (e.g. well integrity, product cross-contamination. color, turbidity, water color, odors, etc.) are noted on the G-R Well Sampling Field Data Sheet shown in Figure 4. Before and after each sounder, interface probe the electric use. and bailer are decontaminated by washing with Alconox or equivalent detergent followed by rinsing with deionized water to prevent cross-contamination.

As mentioned previously, water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

Well Purging

Before sampling occurs, well casing storage water and interstitial water in the artificial sand pack will be purged using (1) a positive displacement bladder pump constructed of inert, non-wetting, Teflon and stainless steel, (2) a pneumatic-airlift pumping system, (3) a centrifigal pumping system, or (4) a Teflon or Stainless steel bailer (Figure 5). Methods of purging will be assessed based on well size, location, accessibility, and known chemical conditions. Individual well purge volumes are calculated from borehole volumes which take into account the sand packed interval in the well annular space. As a general rule, a minimum of 3 and a maximum of 10 borehole volumes will be purged. Wells which dewater or demonstrate slow recharge periods (i.e. low-yield wells) during purging activities may be sampled after fewer purging cycles. If a low-yield (low recovery) well is to be sampled, sampling will not take place until at least 80 percent of the previously measured water column has been replaced by recharge, or as per local requirements. Physical parameter measurements (temperature, pH, and specific conductance) are closely monitored throughout the well purging process and are used by the G-R sampling crew as indicators for assessing sufficient purging. Purging is continued until all three physical parameters have stabilized. Specific conductance (conductivity) meters are read to the nearest ±10 umhos/cm, and are calibrated daily. pH meters are read to the nearest ± 0.1 pH units and are calibrated daily. Temperature is read to the nearest 0.1 degree F. Calibration of physical parameter meters will follow manufacturers specifications. Monitoring wells will be purged according to the protocol presented in Figure 5. Collected field data during purging activities will be entered on the G-R Well Sampling Field Data Sheet shown in Figure 4. Copies of the G-R Field Data Sheets will be reviewed by the G-R Sampling Manager for accuracy and completeness.

general and environmental contractors

DOCUMENTATION

Sample Container Labels

Each sample container will be labeled by an adhesive label, noted in permanent ink immediately after the sample is collected. Label information will include:

Sample point designation (i.e. well number or code)

Sampler's identification

Project number

Date and time of collection

Type of preservation used

Well Sampling Data Forms

In the field, the G-R sampling crew will record the following information on the Well Sampling Data Sheet for each sample collected:

Project number

Client

Location

Source (i.e. well number)

Time and date

Well accessibility and integrity

Pertinent well data (e.g. depth, product thickness, static water-level, pH, specific conductance, temperature)

Calculated and actual purge volumes

Page 14

Chain-of-Custody

A Chain-of-Custody record (Figure 6) shall be completed and accompany every sample and every shipment of samples to the analytical laboratory in order to establish the documentation necessary to trace sample possession from time of collections. The record will contain the following information:

- Sample or station number or sample identification (ID)
- Signature of collector, sampler, or recorder
- Date and time of collection
- Place of collection
- Sample type
- Signatures of persons involved in chain of possession
- Inclusive dates of possession

Samples shall <u>always</u> be accompanied by a Chain-of-Custody record. When transferring the samples, the individual relinquishing and receiving the samples will sign, date, and note the time on the Chain-of-Custody record. G-R will be responsible for notifying the laboratory coordinator when and how many samples will be sent to the laboratory for analysis, and what types of analyses shall be performed.

Page 15

SAMPLE ANALYSIS METHODS, CONTAINERS, PRESERVATIONS, AND HOLDING TIMES

Parameter	Analytical Method	Reporting Units	Container	Preservation	Maximum Holding Time
<u></u>	<u>He triog</u>				
Total Petroleum	EPA 8015	mg/l	40 ml. vial	cool, 4 C	
Hydrocarbons (gasoline)	(modified)	ug/l	glass, Teflon	KC1 to pH<2	14 days (maximum)
Senzene	EPA 8020	mg/l	50 ml, vial	cool, 4 C	7 days (w/o preservative)
Toluene		ug/l	glass, Teflon	HC1 to pH<2	14 days (w preservative)
Ethylbenzene			lined septum		
Xylenes (BTEX)		mg/l	1 l glass, Teflon		
Oil & Grease	SM 503E	ug/l	lined septum	H2SO4 to pH <z< td=""><td>28 days (maximum)</td></z<>	28 days (maximum)
Total Petroleum	EPA 8015	mg∕l	40 ml. vial	cool, 4 C	
Hydrocarbons	(modified)	ug/l	glass, Teflon		14 days (maximum)
(Diesel)			lined septum		
Halogented	8010	mg∕t	40 ml. vial	cool, 4 C	
Volatile Organics		ug/l	glass, Teflon		14 days (maximum)
(chlorinated solvents)			lined septum		
Non chlorinated	8020	mg/l	40 ml. vial	cool, 4 C	
solvents		ug/l	glass, Teflon	HCL to pH<2	14 days (maximum)
			lined septum		
Volatile Organics	8240	mg/l	40 ml. vial	cool, 4 C	14 days (maximum)
		ug/l	glass, Teflon		
			lined septum		
Semi-Volatile	8270	mg∕l	40 ml. vial	cool, 4 C	14 days (maximum)
Organics		ug/l	glass, Teflon lined septum		
Specific		umhos/cm			
Conductance					
(Field test)					
pH (Field test)		p∦units			
Temperature		Deg F			
(Field test)					

.

FIELD EXPLORATORY BORING LOG

FIGURE 1

Sampie	Depth (ft.)	Weil	Soli Group Symbol (USCS)	Client: Location: City: Logged by: Casing installatio Top of Box Eleva Water Level Time Date	in data; tion: Descrip	ller: Datum:	Sheet of
Sample	Depth (tt.)	Weil	Soli Group Symbol (USCS)	Location: City: Logged by: Casing installatio Top of Box Eleva Water Level Time Date	Dri n data; tion: Descrip	ller: Datum:	Sheet of
Sample	Depth (ft.)	Weil	Soli Group Symbol (USCS)	City: Logged by: Casing installatio Top of Box Eleva Water Level Time Date	Dril n data: tion: Descrip	ller: Datum:	Sheet of
Sample	Depth (ft.)	Weil	Solt Group Symbol (USCS)	Logged by: Casing installatio Top of Box Eleva Water Level Time Date	Dri n data; tion: Descrip	Datum:	
Sample	Depth (ft.)	Veil	Soft Group Symbol (USCS)	Casing installatio Top of Box Eleve Water Level Time Date	n data; tion: Descrip	Datum;	
Sample	Depth (ft.)	Weil	Solt Group Symbol (USCS)	Top of Box Eleve Water Level Time Date	tion:	Datum:	
Sample	Depth (ft.)	Weil	Soli Group Symbol (USCS)	Top of Box Eleva Water Level Time Date	tion: Descrip	Datum:	
Sample	Depth (ft.)	Weil	Soli Group Symbol (USCS)	Water Level Time Date	Descrip	tion	
Sample	Depth (#)	Veil Veil	Soli Group Symbol (USCS)	Time Date	Descrip	tion	
Samp	Depth	Vei	Soli Gr Symbol USC	Date	Descrip	tion	
			568		Descrip	tion	
					Descrip	tion	
					· · · · · · · · · · · · · · · · · · ·		······
			1		· · · · · · · · · · · · · · · · · · ·		
		1					
		-			<u></u>	· · · · · · · · · · · · · · · · · · ·	
		-					
				· · · · · · · · · · · · · · · · · · ·	<u></u>		
		7					
· · ·		7					
		-1					
	 	-{					
		-					
	!	_					
		_	1				
		٦					
		7		· · · · · · · · · · · · · · · · · · ·			
{		-					
		-					
	<u>├</u>	-	1				
		4					
	<u> </u>						····-
	Ĺ	4	1				
		1					·······
		1					
1		-	1				
		-					
	1	1	L				

WELL DEVELOPMENT FORM

-

•

F	IG	U	RE	3
---	----	---	----	---

				Page	of
(to be filled	out in offi	 ce)			تر چند و ید و خ بن ان ک ۵ ۵ ۵ ۵ ۵ و و و و و
Client	S	s#		Job#	
Name		Location	·		
Well#		_ Screened	Interval		Depth
Aquifer Materi	.al	·····	Installa	tion Date _	·
Drilling Metho	od		Borehole	Diameter_	
Comments regar	ding well i	nstallation:_			
				unuuuu seet	
(to be filled	out in the	field)	Name		
Date		Developm	ent Method_		
Total Depth		Depth to liq	uid	= WaterCo	lumn
Total Depth Product thickn		Depth to liq	uid	= WaterCo	lumn
Total Depth Product thickn Water Column Purge Start	x	Depth to liq x r (in.) Stop	uid x 0 #Vol.	= WaterCo	lumngal gan
Total Depth Product thickn Water Column Purge Start Gallons	x Diamete Time	Depth to liq x r (in.) Stop Clarity	uid x 0 #Vol. Temp.	= WaterCo .0408 = Rate pH	lumngal gpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0	ness X Diamete: Time	Depth to liq r (in.) Stop Clarity	uid x 0 #Vol. Temp.	= WaterCo.	lumngal gpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0	ness X Diamete: Time 	Depth to liq x r (in.) Stop Clarity 	uid x 0 #Vol. Temp.	= WaterCo	lumngal gpm gpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0	Time	Depth to liq	x 0 #Vol. Temp. 	= WaterCo	lumngal gpm gpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0 	Time	Depth to liq	x 0 #Vol. Temp. 	= WaterCo	lumngal gpm gpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0 	Time	Depth to liq x r (in.) Stop Clarity 	x 0 #Vol. x 0	= WaterCo	lumngal gpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0	Time	Depth to liq	x 0 #Vol x 0	= WaterCo	lumngal gpm gpm gpm
Total Depth Product thickn Water Column Purge Start Gallons 0 Gallons 0 Gallons 0 Gallons 0 Total gallons	removed	Depth to liq	x 0 #Vol. x 0 Developme	= WaterCo	lumngal egpm Conductivity
Total Depth Product thickn Water Column Purge Start Gallons 0 Gallons	removed	Depth to liq	x 0 #Vol. x 0 Developmo (time)	= WaterCo	lumngal gpm gpm gpm
Total Depth Product thickn Water Column Purge Start Gallons 0 Gallons 0 Gallons 0 Gallons 0 Gallons 0 Gallons 0 Gallons 0 Gallons 0 Gallons 0 Gallons	removed	Depth to liq	x 0 #Vol x 0 x 0	= WaterCo	lumngal egpm Conductivity ime

	neral and Environ	mental Contractors	WELL SAM FIELD DATA	IPLING SHEET FIGUI
COMPANY			JOB #	
LOCATION	·····		DATE	
CITY			TIME	
Well ID.		Well Condit	ion	
Well Diameter		in. Hydrocarbo	n Thickness	
Total Depth Depth to Liquid-		ft. Volume 2" Factor 3" (VF) 4"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12" = 5.8
(# of casing volumes)	x	x(VF)	=(Estimated Purge Volume	{
Starting Time (Estimated) (_Purge	gal. /(Pu	Purging Flow	Rate	g <u>ı</u>
Starting Time (Estimated) Purge Volume) Time	gal. /(Pu	Purging Flow riging Flow Rate Conductivity	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time	gal. / (^P)	Purging Flow riging Flow Rate Conductivity	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time	gal. / (^P 	Purging Flow rging Flow Rate Conductivity	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time	gal. / (^P	Purging Flow rging Flow g Conductivity	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time Did well dewater?_	gal. / (^P	Purging Flow Irging Rate Conductivity Include	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time Did well dewater? Sampling Time	gal. / (^P	Purging Flow Irging Rate Conductivity Conductivity If yes, time Weather Conditi	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time Did well dewater?_ Sampling Time Analysis	gal. /(^P	Purging Flow Irging Flow Conductivity Conductivity If yes, time Bottles	Rate	gi m Volume
Starting Time (Estimated Purge Volume) Time Did well dewater?_ Sampling Time Analysis Chain of Custody	gal. / (^P	Purging Flow Irging Flow Conductivity Conductivity If yes, time Bottles	Rate	gi Wolume

Monitoring Well Sampling Protocol Schematic Sampling Crew Reviews Project Sampling Requirements/Schedule Field Decontamination and Instrumentation Calibration Check Integrity of Well (Inspect for Well Damage) Measure and Record Depth to Water and Total Well Depth (Electric Well Sounder) Check for Floating Product (Oil/Water Interface Probe) Floating Product Present Floating Product Not Present Confirm Product Thickness **Purge Volume Calculation** (Acrylic or PVC Bailer) V =7 (r/12) h(_% vol)(7.48)=___/gallons Collect Free-Product Sample V = Purge volume (gallons) $\pi = 3.14159$ Dissolved Product Sample Not h = Height of Water Column (feet) Required r = Borehole radius (inches) Record Data on Field Data form Evacuate water from well equal to the calculated purge volume while monitoring groundwater stabilization indicator parameters (pH, conductivity, temperature) at intervals of one casing volume. Well Dewaters after One Purge Volume Well Readily Recovers (Low yield well) Well Recharges to 80% of Initial Record Groundwater Stability Indicator Measured Water Column Height in Parameters from each Additional Purge Volume Feet within 24 hrs. of Evacuation. Stability indicated when the following Criteria are met: Measure Groundwater Stability Indicator ± 0.1 pH units pH : Parameters (pH, Temperature, Conductivity) Conductivity: ± 10% Temperature: 1.0 degrees F Collect Sample and Complete Groundwater Stability Achieved Groundwater Stability Not Achieved Chain-of-Custody Collect Sample and Complete Continue Purging Until Stability Chain-of-Custody is Achieved Preserve Sample According to Required Preserve Sample According Collect Sample and complete Chemical Analysis to Required Chemical Analysis Chain-of-Custody

Transport to Analytical Laboratory

Transport to Analytical Laboratory

Transport to Analytical Laboratory

Chemical Analysis

Preserve Sample According to Required

Gettler - R	yan Inc	EN	Chain of Custody FIGURE 6		
COMPANY				J	OB NO
JOB LOCATION		,,,,,			
CITY				PHONE N	0
AUTHORIZED			DATE	P.O. NO.	
SAMPLE	NO. OF CONTAINERS	SAMPLE MATRIX	DATE/TIME SAMPLED	ANALYSIS REQUIRED	SAMPLE CONDITION LAB ID
•					
•				•.	· · · · · · · · · · · · · · · · · · ·
·					
)					
	·····		·		
•	<u>.</u>				·
RELINQUISHED BY:		<u></u>	RECEI	VED BY:	<u></u>
RELINQUISHED BY:			RECEI	VED BY:	
RELINQUISHED BY:		······	RECE	VED BY LAB:	
ESIGNATED LABO	RATORY:			DHS #:	
REMARKS:					
•					
			FOREN	IAN	N

	MAJOR DIVIS	SIONS			TYPICAL NAMES
Ke			GW		WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
). 200 SIE	GRAVELS	OR NO FINES	GP		POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
D SOILS THAN NC	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM		SILTY GRAVELS, SILTY GRAVELS WITH SAND
GRAINE		OVER 15% FINES	GC		CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
DARSE-(CLEAN SANDS	sw		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
E THAN H	SANDS MORE THAN HALF	OR NO FINES	SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
MOR	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE			ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
ILS VNO. 200	SILTS AN LIQUID LIMIT	ND CLAYS 50% OR LESS			INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
NED SO			OL		ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
LE-GRAI			мн		INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FIN THAN HA	SILTS AN LIQUID LIMIT GRE	ID CLAYS EATER THAN 50%	СН		INOFIGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE			он		ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORG	BANIC SOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS
				1	
Perm	- Permeability				- No Soil Sample Recoverd
Consol	- Consolidation				- "Undisturbed" Sample
LL	- Liquid Limit (%	5)			- Bulk or Classification Sample
Pl	 Plastic Index (%)		ΙŸ	- First Encountered Ground Water Level
Gs	- Specific Gravit	lγ		₹	- Piezometric Ground Water Level
MA	- Particle Size A	nalysis			
2.5 YR 6	5/2 • Soil Color acco Munsell Soil C	ording to olor Charts (1975 Edit lor Chart	ion)	Per	netration - Sample drive hammer weight - 140 pounds failing 30 inches. Blows required to drive sampler 1 foot are indicated on the logs
U U U U U					

GSI GeoStrategies Inc.

•

0

•

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

Image: Project fee: 10000 10000 <t< th=""><th>location of</th><th>f horing</th><th></th><th></th><th></th><th></th><th></th><th>Project No.</th><th>7666</th><th>Dete:</th><th>04/16/00</th><th>Boring No</th></t<>	location of	f horing						Project No.	7666	Dete:	04/16/00	Boring No
(See Plate 2) Location: Definition: Definition: Bayland of the second seco		i ooning:						Client:	7000 Shell Oil Co		04/10/90	
Content is 39 Sail Fail Around Sail Fail Fail Around Sail Faile Around Sail Fail Around Sail Fail Around Sail Fail A		10	Coo Dioto	2)				Location'	000 Can Da	hin Avenue		- S-4
Vitiling method: Holiow Stem Auger Office: Bayland of Ideal grade by: M.J. Driller: MSL Mathematical grade by: Ideal grade by: M.S. Mathematical grade by: Mathematical grade by: <t< td=""><td></td><th>(5</th><td>bee mate</td><td>: 2)</td><td></td><td></td><td></td><td>City:</td><td></td><td>uiu Aveliiue</td><td>u</td><td>Sheet 4</td></t<>		(5	bee mate	: 2)				City:		uiu Aveliiue	u	Sheet 4
Image method: Hollow Stem Auger cle diameter: 8-Inches 0 diameter: 8-Inches 125 S&H 126 8-Inches 127 S&H 128 8-Inches 120								City.	Albany, Cal	Driller	Royland	
Iting method: Holicow Stem Auger Classing installation data: De diameter: 8-Inches Top of Box Elevation: 41.10 Deturn: MSL Q (g) <					·			Logged by:	M.J.J.		Dayland	1 0 2
Top of Box Elevation: 41.10 Datum: MSL Ge diameter: 8-Inches 0 g g g g g g g g g g g g g g g g g g g		h 14-11						Casing Insta	Nation data:			
Unit memory 0-ITC/TES Import Dox Envention 1,10 Detorm Detorm MSL Q G G G G G G Import Dox Envention 1,10 Detorm MSL Q G G G G G Import Dox Envention 1,10 Description Import Dox Envention 0 Import Dox Envention 1,10 Description Import Dox Envention 0 Import Dox Envention Description Import Dox Envention 0 Import Dox Envention Description Import Dox Envention 0 Import Dox Envention Description Import Dox Envention 1 Import Dox Envention Import Dox Envention Import Dox Envention Import Dox Envention 1 Import Dox Envention Import Dox Envention Import Dox Envention Import Dox Envention Import Dox Envention 1 Import Dox Envention Import Dox Envention 1 Import Dox Envention Import Dox Envention Import Dox Envent(Import Dox Envent(Import Dox Envention) Import Dox	ng method:	Hollow	Stem Au	ger				Ton of Pour f	Hevetice: 41	10	Datum: 140	21
Q G u do set of the	ulameter:	8-inches	s	1	T	1				10	Datom: MS	>L
8 model 8 model 8 model 8 model 8 model 8 model 9 model 13:50 Date	بة 10 ي	(bsi)	0 ۲	2			Sol e	vvater Level	11.0	<u> </u>		+
^a <u>s</u> ^b <u>s</u> ^c s ^c s	(mq(or une (o ed Mdw	du	Ĕ	- Mu	Velt etail	ê Ž	Time	13:50	 	+	
6 Description 0 0 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 125 S&H 0.5 200 125 S&H 0.5 200 125 S&H 100 S&H 7 6 100 S&H 0.8 250 100 S&H 300 S&H 9 3 300 S&H 101 10 400 11 12 12	NB K	Ser 1	S.₹	<u>ک</u>	ð) ² 0	is șe	Date	04/16/90	L		<u> </u>
0 PAVEMENT SECTION - 1.5 feet 1 2 3 3 3 3 1 2 3 3 1 2 3 3 125 S&H 0.5 200 push S-4-5 350 6 7 6 9 350 100 S&H 0.8 250 9 300 300 S&H 11 2 200 11 200 100 100 S&H 7 0dor. 100 S&H 9 300 11 2 12 10 13 11 14 14	<u> </u>	<u> </u>			 	 	ଣ		<u></u>	Description		
0 1 1 1 2 2 3 3 1 2 3 3 125 S&H 0.5 200 0.5 200 100 S&H 0.8 250 350 6 100 S&H 0.8 200 100 S&H 0.8 200 100 S&H 11 2 12 350 11 2 12 350 11 2 12 350 13 11 11 2 12 11 13 11 14 14			<u> </u>			4						
1 1 2 3 3 3 3 3 125 S&H 0.5 200 9 6 100 S&H 0.8 250 300 S&H 0.8 250 300 S&H 0.8 2000 11 2 125 S&H 100 S&H 100 S&H 11 2 12 300 100 S&H 11 2 12 300 11 2 12 311 13 14				0		4						 .
1 1 2 2 3 3 1 2 3 3 125 S&H 0.5 200 125 S&H 0.5 200 125 S&H 0.5 200 100 S&H 100 S&H 0.8 250 9 300 300 S&H 0.8 250 9 300 100 S&H 110 2 120 11 110 2 111 2 12 11 111 2 12 11 12 11 13 14			<u> </u>		<u> </u>	4		PAVEN	AENT SECTION	ד- אוכ. <u>ר</u> אונ		
2 3 3 3 3 3 125 5&H 0.5 200 9 6 100 5&H 0.8 250 9 3 300 5&H 0.8 250 9 3 11 2 2 3 125 5 350 6 100 5&H 0.8 250 9 300 100 5&H 100 5 11 2 2 11 2 12 300 5&H 10 11 2 11 2 12 300 5&H 10 11 2 5 31 12 32 5 33 12 34 14				1	<u> </u>	4					· · · , · · · · · · · ·	
2 3 3 3 3 3 125 S&H 0.5 200 push S-4-5 350 6 6 6 100 S&H 0.8 250 9 5 300 S&H 0.8 300-400 400 11 400 11 12 SILTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium sand; 15% silt; trace coase sand; 10% clay; no chemical odor. 100 S&H 0.8 300-400 11 2 12 SILTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coase sand; 10% clay; no chemical odor. 11 2 12 SILTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium dense, saturated; 50% medium sand; 11 12 SILTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium dense, saturated; 50% medium sand; 11 14 14			<u> </u>	-	<u> </u>	4						
3 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 5 350 6 350 6 1 7 100 5&H 0.8 250 100 5&H 350 7 100 5&H 0.8 250 100 5&H 0.8 250 9 5 300 5.4-7 8 9 300 5.4-10 10 11 400 11 12 5/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa 12 5/4), medium dense, saturated; 50% medium sand; 13 14			<u> </u>	2	<u> </u>	4		·		<u> </u>		<u> </u>
3 3 125 S&H 0.5 200 126 S&H 0.5 200 100 S&H 100 S&H 100 S&H 0.8 250 100 S&H 0.8 250 9 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine to coarse sand; 10% clay; no chem 0.8 300-400 push S-4-7 9 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 11 2 12 SiLTY SAND with GRAVEL (SM) - light olive brown (5/4), medium dense, saturated; 50% medium sand; 13 14			<u> </u>			4				1	0 PL 11	()
125 S&H 0.5 200 125 S&H 0.5 200 125 S&H 125 S&H 0.5 200 125 S&H 125 S&H 125 S&H 125 S&H 125 S&H 100 S&H 100 S&H 100 S&H 100 S&H 0.8 250 9 9 300 S&H 0.8 300-400 11 V 12 SILTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 11 V 12 SILTY SAND with GRAVEL (SM) - light olive brown (5/4), medium dense, saturated; 50% medium sand; 13 14				3	<u> </u>	4		SILT W	IIN SAND (MI		WIT (2.5Y 4/4	+), meaium
125 S&H 0.5 200 push S-4-5 350 6 100 S&H 0.8 250 push S-4-7 350 7 0dor. 100 S&H 0dor. 110 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 400 11 SiLTY SAND with GRAVEL (SM) - light olive brown (5/4), medium dense, saturated; 50% medium sand; 13 11 14 14			<u> </u>			4		stiff, me	DIST, IOW Plast	licity; 70% S	III; 15% TINE	to mealum
125 S&H Staining; very smail rootnoles; no chemical door. 0.5 200 push S-4-5 350 6 GRAVELLY SiLT with SAND (ML) - olive brown (2.5) 4/4), medium stiff, damp, low plasticity; 50% silt; 20% gravel; 20% fine to coarse sand; 10% clay; no chemical odor. 100 S&H 7 0.8 250 push S-4-7 350 9 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium 300 S&H 0 0.8 300-400 push S-4-10 400 11 2 12 11 2 13 13 14		- <u>C</u>	<u> </u>	4		4		sano; 1	5% clay; trac	e coarse sa	and to tine gr	aver; Iron
0.3 200 pusiti 5-4-5 5 350 6 4/4), medium stiff, damp, low plasticity; 50% silt; 20% 9 7 100 S&H 0.8 250 push S-4-7 350 7 5 5 350 7 6 9 300 S&H 0 5 0.8 300-400 push S-4-10 10 400 11 2 11 2 5 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 11 2 5 SiLTY SAND with GRAVEL (SM) - light olive brown (5/4), medium dense, saturated; 50% medium sand; i 5/4), medium dense, saturated; 50% medium sand; i 12 13 14	<u> </u>		CAF	-		-		stainin	y, very small	roomoles; r	io chemical (
330 GHAVELLY SiL1 with SAND (wit) - Give brown (2.5' 4/4), medium stiff, damp, low plasticity; 50% silt; 20' gravel; 20% fine to coarse sand; 10% clay; no chem 0.8 250 350 9 350 9 300 S&H 0.8 300-400 9 10 400 11 11 2 12 SILTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 12 13 4	<u>5 200</u>	pusn	3-4-5	- >		4				H CAND /M		un /0 EV
4/4), medium stm, damp, low plasticity; 50% slit; 20 9 100 S&H 0.8 250 350 9 350 9 300 S&H 0.8 300-400 400 11 12 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa 11 ⊻ 12 SiLTY SAND with GRAVEL (SM) - light olive brown (13 14		J			-	-				IN) URIAG IN	L/ - UIVE DIO	nilt: 200/ fin
100 S&H 7 100 S&H 0.8 0.8 250 push S-4-7 350 9 300 S&H 0.8 300-400 push S-4-10 10 400 11 2 SILTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa SILTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium dense, saturated; 50% medium sand; 400 11 2 SILTY SAND with GRAVEL (SM) - light olive brown (2.5V 4/4), medium dense, saturated; 50% medium sand; 11 12 12 13 4 14				, p	<u> </u>	4		4/4), m		amp, iow pla	100/ alour -	on, 20% iiii
100 S&H 0.8 250 push S-4-7 8 350 9 9 9 9 300 S&H 9 10 9 0.8 300-400 push S-4-10 10 400 11 11 11 11 11 512 SILTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 400 11 11 11 11 11 11 12 11 12 11 12 12 13 14 14			┨────	-	<u> </u>	4		gravel;	20% IINe to t	Juarse sanu	, 10% clay; f	io chemical
100 S&RT 0.8 250 push S-4-7 8 350 9 9 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium 300 S&H 0.8 300-400 push S-4-10 400 11 ✓ SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium 400 11 ✓ Sand; no chemical odor. 50 11 ✓ SiLTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium sand; in a chemical odor. 11 ✓ SiLTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium sand; in a chemical odor. 11 ✓ SiLTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium sand; in a chemical odor. 12 12 13 13 14 14	100	0 0011		{ 1	-	4		odor.				
0.0 2.50 push 5-4-7 5 350 9 SiLTY SAND (SM) - olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 0.8 300-400 push S-4-10 400 11 2 SiLTY SAND with GRAVEL (SM) - light olive brown (2.5Y 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. 400 11 2 12 12 13 14	Q 050		647	0		4			lling at 6 0 for			
300 S&H 0.8 300-400 push S-4-10 10 11 In 400 11 In 11 In In 12 In In 13 In In 14 In In 14 In In	0 200	<u>, pusn</u>	3-4-7	l °		\mathbf{I}		son an	ining at 0.0 tet	JL.		
300 S&H 0.8 300-400 400 11 11 ✓ SILTY SAND (Sivi) - Give brown (2.57 4/4), medium dense, saturated; 70% fine sand; 30% silt; trace coa sand; no chemical odor. SILTY SAND with GRAVEL (SM) - light olive brown (11 ✓ SILTY SAND with GRAVEL (SM) - light olive brown (12 13 4 14						-{		CII TV	SAND (SM)	alive brown	(25V A/A)	nodium
0.8 300-400 push S-4-10 10 400 11 Image: Salurated, 70% mile salur, 60% silt, trace clas Sill TY SAND with GRAVEL (SM) - light olive brown (<u> </u>	3		{			eaturated: 70	% fine canc	1:30% eilt: tr	
400 11 Image: Started in the oriented at cool. 11 Image: Started in the oriented at cool. SiLTY SAND with GRAVEL (SM) - light olive brown (12 Image: Silter in the oriented at cool. Silter in the oriented at cool. 12 Image: Silter in the oriented at cool. Silter in the oriented at cool. 12 Image: Silter in the oriented at cool. Silter in the oriented at cool. 13 Image: Silter in the oriented at cool. Silter in the oriented at cool. 4 14 Image: Silter in the oriented at cool.	8 300.40		5-4-10	10		-		eand r	o chemical o	dor		
11 Image: Sile of the second seco	<u></u>) 	10-7-10	1.01		1			io onemical u			··· •• ••
Image: Sile of the second s		.	<u> </u>	144		-						
12 12 13 14			+	''		¥			SAND with G	RAVEL (SM) - light olive	brown (2.5Y
13 14			<u>+</u>	12	<u> </u>	1	 	5/4) m	edium dense	saturated	50% medium	n sand: 35%
			<u> </u>	1'-		1	1111	fine or	vel: 15% silt	trace clav:	no chemical	odor.
			+	13		1	1111					
			+	1		1						······································
			<u> </u>	14		4						•
	4		+	1.1		1			<u></u>	·····		<u>,</u>
0.8 6 S&H S-4-15 15 SANDY SILT (ML) - light grav (2.5Y 7/2), stiff, damp:	8 6	S&H	S-4-15	15		1		SAND	(SILT (ML) -	light grav (2	.5Y 7/2). stift	f. damp: 70%
12 silt: 30% fine sand: trace clay: no chemical odor.	12		<u> </u>	1.		1		silt: 30	% fine sand: 1	trace clav: r	o chemical o	odor.
			<u> </u>	16	-	1						
				1	<u> </u>	1						
	<u> </u>		<u> </u>	17	\vdash	1						
			┼╍╌╼╌	1 .		1		<u> </u>				
				18		1				· · · · · ·		
				1	<u> </u>	1					а	
			<u> </u>	19	<u> </u>	1		,			· · · ·	
	arks;	· · .	<u></u>		<u> </u>	I		L				
	2000 gama							Dari	·····			
Log of Boring Bo	Ge	eoStraten	lies Inc.				LOG OF	Boring				BUHING N
	i SI ~~											C./
												3-4
									Patro -			
166 (1) We can be neviced at the neviced with the neviced			(ILLA M	erna/ es D	uni Uni				04/90	INE V		TRENDED UNIE

Field loca	tion of b	oring: (S	see Plate	2)	* .			Project No.: Client: Location: City: Logged by:	7666 Shell Oil Ci 999 San Pa Albany, Ca	Date: Dmpany ablo Avenue lifornia Driller:	04/16/90 Bayland	Boring No: S-4 Sheet 2 of 2
Drilling m Hole dian	ethod: neter:	Hollow S	Stem Au	ger				Casing instal	lation data:		Datum:	4~
	5				<u> </u>		ନ	Water Level				
٥Ê	12×11 19	e of	eid Ded	(J)	eld	teij Eeij	dnor (USC)	Time				
<u>د ک</u>	Biov C Bissu	d, [‡] ys	Nun Aun	Dept	Sen	≷≵	Soil O	Date				
	<u>.</u>						Å.		CAND (CM)	Description		5/9) modius
0.8	4.	58H	5-4-20	20				dense	SAND (SIVI)	- yellowish b 5% fine sand	1.35% silt tr	oro), meulur ace clay: no
	13		0-4-20	20				chemic	al odor.	o /o milo oum		abb olay, no
				21			<u>*** 6 h.</u>					
								Bottom	of boring at	20.5 feet.		
				22				Bottom	of sample a	t 20.5 feet.		
		ļ		~	 			04/16/9	0			
				23	 							
		l [24	<u> </u>			[
			<u> </u>									
		<u> </u>	1	25								
				26								
			<u> </u>	~-								,
				27								
				28								
										•		
			 	29								
			ļ 	30								
				0.4						- 11 - 1		
				31								
				32								· · · · · · · · · · · · · · · · · · ·
			· ·····	0							<u></u>	
				33								***************************************
				34	L					· · · · · · · · ·	· · ·	
				25	┝							
				30	┣				<u>.</u>			
				36								
		1										
				37								
											<u> </u>	
				38								
		ļ		20				, <u>.</u>	·····			
Remarks:		1	1	28	L		<u> </u>	[· · · ·		
		· · · · ·					Loa of	Borina				BORING
GS	Geo	Strateg	ies Inc.									S-4
DB NUMBER	1			BY RG/	CEG				DATE 04/00	8EV	/ISED DATE	REVISED DATE

	(See Plate 2)							Location: City: Logged by: Casing installa	999 San Pat Albany, Calit M.J.J. ation data:	olo Avenue fornia Driller:	Bayland	Sheet
rilling n	nethod:	Hollow-	Stem Au	ger						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Deture: \$40	
ole dia	meter:	8-inches	5			<u> </u>		Top of Box El	evalion: 39.9	99	Datum: MS	<u>>L</u>
	1. (in the second se		• >	Ę.		_	SCS SCS	Water Level	10.07	13:50		
Chenge Den	ows/	ed/	dwa	Ър Бр	Idma	Vell	50	Dete	04/16/00	04/16/00		
3	10 10	ፍወ	σž	å	đ		ið Sei	Date	04/10/30	Description		
		+	<u> </u>			<u>├</u>					_	
		<u> </u>		0		1				r		
								PAVEM	ENT SECTIC	N - 1.25 fee	t	
		<u> </u>		1		ļ						
		<u> </u>				1) light olive	brown (2 E	
				2		-		SILIWI	n SAND (ML	.) - ilgni Olive modium plac	ticity: 60%	r 5/4),
				2		-		eand: 20	Sun, uamp, i	a coarsa sa	nd: no cher	nical odo
	<u> </u>	<u> </u>		5		ł		Sanu, 20	vio viay, irau			
		<u> </u>		4		1				<u> </u>		<u> </u>
	500	S&H		·		1			<u> </u>			
1.1	500	push	S-5-5	5]		increasi	ng clay at 5.0) feet.		
	500											
				6]						
·		ļ				Ϋ́.						
			<u> </u>	7					<u> </u>			
				0		-						
	450	SEH		0		4		increasi	no sand at 8.	0 feet.		
460	450	oush	S-5-8	9		1	╽ <u>┧</u> ┼╻		3			
	300				7	1						
				10]		SILTY G	RAVEL (GW	/) - dark gray	yish brown (2.5Y 4/2)
]	HITT	medium	dense, satu	rated; 65% f	ine gravel; 2	25% silt; *
	3			11		Σ		fine to c	oarse sand;	trace clay; s	strong chem	nical odor
836	8	S&H	S-5-12			-		CANDY (araaniah ara		otiff me
	14			12		ł		SANUY	$\frac{\text{SILI}(\text{IVIL})}{\text{tight}}$	greenish gra	eand: 5% c	l, sun, mu lav: mode
				13		-		chemics	al odor	nc, 40 /0 nne	Sand, 070 0	ay, mou
								hard dril	lling at 12.5 f	eet.		
		1		14		1						
	6			ĺ								
796	20	S&H	S-5-15	15								
	37	<u> </u>	ļ			1		COLOR	CHANGE a	14.0 feet - y	yellowish bro	own (10Y
		 		16		-		5/8)			_	
				4-		-		nard oril	Ing at 16.01	<u>eel.</u>		
<u> </u>				17	<u> </u>	4		moueral	e chemical			
				18		-		<u> </u>		· · · ·		
												
				19		1						
emarks						<u> </u>					<u> </u>	
			<u>. </u>									
			line Inc				Log of	Boring				BOF
55		oonaley	ncə iliç.								,	C
											,	୍ <u>ପ୍</u>

Field loci	ation of 1	boring:		·			··			Project No.:	7666	Date:	04/16/90	Boring No:
										Client:	Shell Oil C	ompany		Q_5
		(S	See Plate	2)					[Location:	999 San P	ablo Avenue		
										City:	Albany, Ca	alifornia		Sheet 2
					•					Logged by:	M.J.J.	Driller:	Bayiand	of 2
-		6 J 13							_[Casing insta	llation data:			
Drilling r Hole dia	method: meter:	Hollow :	Stem Au	ger					_	Top of Box I	Elevation:		Datum:	
			<u> </u>		1		ł	ମ		Water Level		· · · · ·		
٥Ê	وي مينيد مينيد	je e	pe pe	Ê	elq	Ē		d SS		Time				
je g		Sam 2	wes Engl		Sam	₹₹		Soil G		Date				
	č		<u> </u>		Ì		<u> </u>	Ğ	;			Description	<u> </u>	
	9					-				15% gi	ravel at 19.0	feet; no che	mical odor.	···
46.7	20	S&H	S-5-20	20					11					
	32		·	24					늬					
				21		ł				Bottor	of boring a	t 20 5 feet.		
	<u> </u>			22	<u> </u>				ł	Bottom	of sample a	at 20.5 feet.	· • •	
				1		í			ŀ	04/16/9				
	 	1]	23]			ŀ			, , , , , ,		
]]	1			· · · · · ·				
				24										
				-	ļ								.	<u></u>
	 			25		1			ł			<u></u>		
				200					-					
			+	20		1			ł					
	+- -			27	<u> </u>	1			ł			· · -· · · · · · · · · · · · · · · · ·		
			+	1-1	<u> </u>	1			ł					
		-		28	<u> </u>				Ì					
			1]			Ī					
				29]								
	1					ł			-					<u> </u>
			1	30		ł								
			1	24		1			ŀ					
	+	·-{		31		{			ł	<u> </u>				<u> </u>
			+	32								· ·		······
											· · · · · · · · · · · · · · · · · · ·			
	<u> · · ·</u>			33		-								
]										
				34										
				35									. .	
				00	<u> </u>		1							
			-	30										
			<u> </u>	37	- -	1								
				1	├	ł								
			1	38		1								
]		1								
				39										
⊰emarks	^{s:} Water	observe	d recharç	ging	bore	ehole fro	om s	side	ewa	all above 1	1.0'.			
<u></u>							Lo	00	of F	Borina		<u> </u>		BORING
GS	S Ge	oStrateg	jies Inc.					3	b					S-,
B NUMBE	 R		REVIEWED	BY FIG,	CEG						DATE	RE	VISED DATE	REVISED DATE
'666			Unfie	414	12						04/90			

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

Shell Oil Company Gettler-Ryan 2150 West Winton Hayward, Ca. 94545 John Werfal	Date: 05/04/90
Work Order: T0-04-182 This is the Certificate of Anal	P.O. Number: MOH 880-021
Client Work ID: GR7666, Date Received: 04/18/90 Number of Samples: 5 Sample Type: solid	999 San Pablo, Albany

TABLE OF CONTENTS FOR ANALYTICAL RESULTS

PAGES	LABORATORY #	SAMPLE IDENTIFICATION
2	T0-04-182-01	s-4-5
з .	T0-04-182-02	S-4-9
4	T0-04-182-03	S-5-5
5	T0-04-182-04	s-5-12
6	T0-04-182-05	S-5-15

Reviewed and Approved: Suzanne Meaudry Project Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/04/90 Client Work ID: GR7666, 999 San Pablo, Albany

Work Order: T0-04-182

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-4-5 SAMPLE DATE: 04/16/90 LAB SAMPLE ID: T004182-01 SAMPLE MATRIX: Solid RECEIPT CONDITION: Cool

•

•

		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020	04/22/90	04/26/90
Low Boiling Hydrocarbons	8015	04/22/90	04/26/90

PARAMETER	DETECTION LIMIT	DETECTED		
Low Boiling Hydrocarbons				
calculated as Gasoling	2.5	, None		
BTEX				
Benzene	0.025	None		
Toluene	0.025	None		
Ethylbenzene	0.025	None		
Xylenes (total)	0.05	None		

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/04/90 Client Work ID: GR7666, 999 San Pablo, Albany

Work Order: T0-04-182

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-4-9 SAMPLE DATE: 04/16/90 LAB SAMPLE ID: T004182-02 SAMPLE MATRIX: Solid RECEIPT CONDITION: Cool

• .

63

		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020	04/22/90	04/26/90
Low Boiling Hydrocarbons	8015	04/22/90	04/26/90

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons	<u> </u>	
calculated as Gasoline	2.5	None
BTEX		ł
Benzene	0.025	None
Toluene	0.025	None
Ethylbenzene	0.025	None
Xylenes (total)	0.05	None

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/04/90 Client Work ID: GR7666, 999 San Pablo, Albany

Work Order: T0-04-182

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-5-5 SAMPLE DATE: 04/16/90 LAB SAMPLE ID: T004182-03 SAMPLE MATRIX: Solid RECEIPT CONDITION: Cool

•

.

	-	EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020	04/22/90	04/26/90
Low Boiling Hydrocarbons	8015	04/22/90	04/26/90

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons		
calculated as Gasoline	2.5	, None
BTEX		
Benzene	0.025	None
Toluene	0.025	None
Ethylbenzene	0.025	None
Xylenes (total)	0.05	None

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/04/90 Client Work ID: GR7666, 999 San Pablo, Albany

Work Order: T0-04-182

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-5-12 SAMPLE DATE: 04/16/90 LAB SAMPLE ID: T004182-04 SAMPLE MATRIX: Solid RECEIPT CONDITION: Cool

		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020	04/22/90	04/26/90
Low Boiling Hydrocarbons	8015	04/22/90	04/26/90

PARAMETER	DETECTION LIMIT	DEI	TECTED
Low Boiling Hydrocarbons calculated as Gasoline	2.5		25.
RTFY		i	
Benzene	0.025		A 20
Meluene .	0.025		0.30
Tordene	0.025		0.12
Ethylbenzene	0.025		0.51
Xylenes (total)	0.05		1.2

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/04/90 Client Work ID: GR7666, 999 San Pablo, Albany

Work Order: T0-04-182

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-5-15 SAMPLE DATE: 04/16/90 LAB SAMPLE ID: T004182-05 SAMPLE MATRIX: Solid RECEIPT CONDITION: Cool

۲

۲

		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020	04/22/90	04/26/90
Low Boiling Hydrocarbons	8015	04/22/90	04/26/90

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons calculated as Gasoline	7.8	130.
BTEX		
Benzene	0.08	1.9
Toluene	0.08	7.5
Ethylbenzene	0.08	3.3
Xylenes (total)	0.2	18.

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/04/90 Client Work ID: GR7666, 999 San Pablo, Albany

Work Order: T0-04-182

×,

í.

TEST CODE TPHVB TEST NAME TPH Gas, BTEX by 8015/8020

The method of analysis for low boiling hydrocarbons is taken from EPA Methods 8015, 8020 and 5030. The sample is examined using the purge and trap technique. Final detection is by gas chromatography using a flame ionization detector as well as a photoionization detector. The result for total low boiling hydrocarbons is calculated as gasoline and includes benzene, toluene, ethylbenzene and xylenes.

TO-04-182 ENVIRONMENTAL DIVISION Gettler - Ryan Inc.____ **Chain of Custody** COMPANY___SHELL _____ јов NO. 7666 JOB LOCATION _____999 SAN PABLO AVE. term for al-terment transmission or a second second to the termination CITY____ALBANY _____ PHONE NO. _____ AUTHORIZED J. WERFAL DATE 4-16-90 P.O. NO. SAMPLE NO. OF SAMPLE DATE/TIME SAMPLE CONDITION CONTAINERS ANALYSIS REQUIRED MATRIX SAMPLED LAB ID ID 5-4-5 1 SOIL 4/10/90 TPH-GUS, BTEX Coollate 6 5-4-9 1 5-5-5 1 5-5-1012 1 5-5-15 WIC 204-0079-0109 AFE EXP ENG Djane Lundquist RELINQUISHED B) RECEIVED BY: Mallour - 4-18-90 07:30 IQUISHED BY: RECEIVED BY: 4-16 90 18:50 RELINQUISHED BY: **RECEIVED BY LAB:** 4/18/90 1850 br #3 DESIGNATED LABORATORY: M (SCV DHS #: 2 weels) REMARKS: NORMOL . DATE COMPLETED FOREMAN _____

~----

May 22, 1990

GROUNDWATER SAMPLING REPORT

Referenced Site:	Shell Service Station
	999 San Pablo Ave/Marin Ave
	Albany, California

Sampling Date: May 1, 1990

This report presents the results of the quarterly groundwater sampling and analytical program conducted by Gettler-Ryan Inc. on May 1, 1990 at the referenced location. The site is occupied by an operating service station located on the northeast corner of San Pablo Avenue and Marin Avenue. The service station has underground storage tanks which contain leaded, unleaded and super unleaded gasoline products.

There are currently five groundwater monitoring wells on or near the site at the locations shown on the attached site map. Recently installed wells S-4 and S-5 were monitored and sampled during this event. Well development took place April 25 and 26, 1990. Product thicknesses and depth readings were monitored by using an electronic interface probe. A clean acrylic bailer was used to visually confirm or detect the presence and thickness of separate phase product. Groundwater depths ranged from 7.56 to 10.73 feet below grade. Separate phase product was observed in well S-5.

Well that did not contain separate phase product were purged and sampled. The purge water was contained in drums for proper disposal. Standard sampling procedure calls for a minimum of four case volumes to be purged from each well. Each well was purged while pH, temperature, and conductivity measurements were monitored for stability. Details of the final well purging results are presented on the attached Table of Monitoring Data. In cases where a well dewatered or less than four case volumes were purged, groundwater samples were obtained after the physical parameters had stabilized. Under such circumstances the sample may not represent actual formation water due to low flow conditions.

Samples were collected, using Teflon bailers, in properly cleaned and laboratory prepared containers. All sampling equipment was thoroughly cleaned after each well was sampled and steam cleaned upon completion of work at the site. The samples were labeled, stored on blue ice, and transported to the laboratory for analysis. A trip blank, supplied by the laboratory, was included and analyzed to assess quality control. Analytical results for the trip blank are included in the Certified Analytical Report (CAR's). Chain of custody records were established noting sample identification numbers, time, date, and custody signatures.

Report 3666-2

1992 national avenue • hayward, california 94545-1787 • (415) 783-7500

The samples were analyzed at International Technology Corporation - Santa Clara Valley Laboratory located at 2055 Junction Avenue, San Jose, California. The laboratory is assigned a California DHS-HMTL Certification number of 137. The results are presented as a Certified Analytical Report, a copy of which is attached to this report.

Tom Paulson Sampling Manager

attachments

TABLE OF MONITORING DATA GROUNDWATER WELL SAMPLING REPORT

WELL I.D.	S-1	S-2	S-3	S-4	S-5
Casing Diameter (inches)	3	3	3	3	3
Total Well Depth (feet)	11.8	12.2	12.2	14.1	
Depth to Water (feet)	8.23	8.11	7.64	7.56	10.73
Free Product (feet)	none	none	none	none	0.62 **
Reason Not Sampled					free product
Calculated 4 Case Vol.(gal.)	5.6	6.0	6.8	10.0	
Did Well Dewater?	yes	yes	yes	yes	
Volume Evacuated (gal.)	3.0	3.0	5.0	5.5	
Purging Device	Bailer	Bailer	Bailer	Bailer	
Sampling Device	Bailer	Bailer	Bailer	Bailer	
Time	11:58	11:52	12:15	12:31	
Temperature (F)*	60.8	63.1	63.8	63.5	
PH*	6.93	6.82	6.81	6.94	
Conductivity (umhos/cm)*	865	1040	840	695	

ς.

* Indicates Stabilized Value

** Not corrected for the presence of free product

Report 3666-2

PAGE 3

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

Shell Oil Company	Date: 05/18/90
Gettler-Ryan	
2150 West Winton	
Hayward, CA 94545	
Tom Paulson	
 Work Order: IO-05-019	P.O. Number: MOH 880-021
This is the Certificate of	Analysis for the following samples:
Client Work ID: GR36	66, 999 San Pablo Ave.
Date Received: 05/02	/90

TABLE OF CONTENTS FOR ANALYTICAL RESULTS

PAGES	LABORATORY #	SAMPLE IDENTIFICATION
2	T0-05-019-01	S-1
3	T0-05-019-02	S-2
4	TO-05-019-03	5-3
5	T0-05-019-04	S-4
6	T0-05-019-05	Trip Blank

Reviewed and Approved: Suzanne Veaudry Project Manager

Number of Samples: 5 Sample Type: aqueous

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT ANALYTICAL SERVICES SAN JOSE, CA

Work Order: T0-05-019

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-1 SAMPLE DATE: 05/01/90 LAB SAMPLE ID: T005019-01 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:

A

9

0

		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020		05/08/90
Low Boiling Hydrocarbons	Mod 8015		05/08/90

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons		
calculated as Gasoline	0.25	4.2
BTEX		
Benzene	0.0025	0.023
Toluene	0.0025	None
Ethylbenzene	0.0025	0.116
Xylenes (total)	0.005	0.32

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/18/90 Client Work ID: GR3666, 999 San Pablo Ave.

Work Order: T0-05-019

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: S-2 SAMPLE DATE: 05/01/90 LAB SAMPLE ID: T005019-02 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:

۲

		EXTRACTION	ANALISIS
	METHOD	DATE	DATE
BTEX	8020		05/08/90
Low Boiling Hydrocarbons	Mod 8015		05/08/90

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons		
calculated as Gasoline	2.5	11.
BTEX	,	
Benzene	0.025	2.3
Toluene	0.025	0.082
Ethylbenzene	0.025	0.409
Xylenes (total)	0.05	0.77

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/18/90 Client Work ID: GR3666, 999 San Pablo Ave.

Work Order: T0-05-019

TEST NAME: Petroleum Hydrocarbons

0

0

SAMPLE ID: S-3 SAMPLE DATE: 05/01/90 LAB SAMPLE ID: T005019-03 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:

			EXTRACTION	ANALYSIS
		METHOD	DATE	DATE
BTE:	x	8020		05/08/90
Low	Boiling Hydrocarbons	Mod 8015		05/08/90

PARAMETER	DETECTION LIMIT DETECTED		
Low Boiling Hydrocarbons			
calculated as Gasoline	0.25	2.0	
BTEX			
Benzene	0.0025	0.018	
Toluene	0.0025	None	
Ethylbenzene	0.0025	0.024	
Xylenes (total)	0.005	0.008	

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/18/90 Client Work ID: GR3666, 999 San Pablo Ave.

Work Order: T0-05-019

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 5-4 SAMPLE DATE: 05/01/90 LAB SAMPLE ID: T005019-04 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:

0

		EXTRACTION	ANALYSIS
•	METHOD	DATE	DATE
BTEX	8020		05/08/90
Low Boiling Hydrocarbons	Mod 8015		05/08/90

PARAMETER	DETECTION LIMIT DETEC	
Low Boiling Hydrocarbons calculated as Gasoline	0.05	None
BTEX		
Benzene	0.0005	None
Toluene	0.0005	None
Ethylbenzene	0.0005	None
Xylenes (total)	0.001	None

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company Date: 05/18/90 Client Work ID: GR3666, 999 San Pablo Ave.

Work Order: T0-05-019

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: Trip Blank SAMPLE DATE: not spec LAB SAMPLE ID: T005019-05 SAMPLE MATRIX: aqueous RECEIPT CONDITION: Cool pH < 2

RESULTS in Milligrams per Liter:

0

0

_		EXTRACTION	ANALYSIS
	METHOD	DATE	DATE
BTEX	8020		05/08/90
Low Boiling Hydrocarbons	Mod 8015		05/08/90

PARAMETER	DETECTION LIMIT	DETECTED
Low Boiling Hydrocarbons calculated as Gasoline	0.05	None
BTEX		
Benzene	0.0005	None
Toluene	0.0005	None
Ethylbenzene	0.0005	None
Xylenes (total)	0.001	None

Company: Shell Oil Company Date: 05/18/90 Client Work ID: GR3666, 999 San Pablo Ave.

e

IT ANALYTICAL SERVICES SAN JOSE, CA

Work Order: T0-05-019

TEST CODE TPHVB TEST NAME TPH Gas, BTEX by 8015/8020

The method of analysis for low boiling hydrocarbons is taken from EPA Methods 8015, 8020 and 5030. The sample is examined using the purge and trap technique. Final detection is by gas chromatography using a flame ionization detector as well as a photoionization detector. The result for total low boiling hydrocarbons is calculated as gasoline and includes benzene, toluene, ethylbenzene and xylenes.

;	Gettier - R	yan Inc		0-05-0	<u>>19</u> ~ 01	215 Chain of Custody
•	COMPANY	Shell O	il_Com	48my		JOB NO
	JOB LOCATION	999_S	an Pabl	& Ave		
	CITY	Alban	, (A		PHON	IE NO. (4.5) 783.710
		John_U	Verfal	DATE	5-1-90 PO.	10. 3666
•	SAMPLE	NO. OF CONTAINERS	SAMPLE MATRIX		ANALYSIS REQUIRED	SAMPLE CONDITION
	<u>S-1</u>	3	Liquid	5-1-90/11:58	THE (gas) BTX	E Could @
	<u>S-2</u>			1 11:52	~~~~	
	<u><u><u> </u> </u></u>			1 12:15		
-	5-4	<u> </u>		1 12:31		
•	try black	<u> </u>		42190 -	V	E
	<u> </u>		·			
•					•	<u> </u>
			·····		·····	
					<u> </u>	·····
		<u> </u>				<u> </u>
-	RELINQUISHED BY	: . / /)	AFC	FIVERAY 1 11	
•		adami	mel 5	-1-90	Halk	5-2-90 07:20
	RELINQUISHED BY	all E.	2-00	AEC AEC	EIVED BY:	
_	RELINQUISHED BY			REC		
x		*			5	12/20 1900
	DESIGNATED LABO	BATORY:	r <u>s</u>		DHS #:(3	7-
1	REMARKS:		······································	WIC #	204-0079-01	09
				AFE :	086683	
	Norma	<u>x jat</u>		Ex/ :	5440	
	<u>*</u>	·		Enc:	Lundquist	
•	DATE COMPLETED	5-1-	10	FORE	MAN Guadaly	re Sucher
					•	
	-				.1	
		• • • • • • • • • • • • • • • • • • • •		Cargary		· · · · · · · · · ·

· · · · ·

•

ì