

RECEIVED

2:03 pm, Apr 11, 2008

Alameda County
Environmental Health

19449 Riverside Drive, Suite 230, Sonoma, California 95476 Telephone: 707:935-4850 Facsimile: 707:935-6649 www.CRAworld.com

April 10, 2008

Mr. Robert Weston Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Re: Dispenser Replacement Soil Sampling Report

Shell-branded Service Station 999 San Pablo Avenue Albany, California SAP Code 135037 ACHCSA Case No. RO0000121

Dear Mr. Weston:

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document field activities performed during the removal and replacement of the three dispensers and the associated under dispenser containments (UDCs) at this site. CRA followed the scope of work outlined in our November 29, 2007 Amended Sampling and Over-Excavation Work Plan, and performed soil sampling in accordance with Alameda County Department of Environmental Health (ACDEH) and San Francisco Bay Regional Water Quality Control Board (RWQCB) guidelines. Presented below are the results of the soil sampling activities.

SITE LOCATION AND DESCRIPTION

The subject site is located on the northeast corner of the intersection of San Pablo Avenue and Marin Avenue in Albany, California (Figure 1). The station layout includes two gasoline fuel underground storage tanks (USTs), three fuel dispensers, a station building and a car wash (Figure 2). The area surrounding the site is primarily commercial use, with an operating ARCO station located across Marin Avenue south of the site.

SAMPLING ACTIVITIES AND SAMPLE ANALYSIS

Paradiso Mechanical, Inc. (Paradiso) removed the three dispensers and associated UDCs during December of 2007 under contract to Shell. CRA did not observe the dispenser or UDC removal activities but was onsite to collect soil samples beneath these features on December 6, 2007.

Equal Employment Opportunity Employer

Personnel Present:

- Robert Weston, ACDEH
- Carmen Rodriquez and Peter Schaefer, CRA
- Mike Ciretto, Paradiso

Under Dispenser Sampling: Under the direction and approval of ACDEH staff, CRA collected one soil sample beneath each of the three former dispensers (samples D-1, D-2, and D-3a) from 4.5, 4.5, and 4.0 feet below grade (fbg), respectively. Based on field observations and photo-ionization detector (PID) readings, which indicated impacted soil in the vicinity sample D-3a, an additional soil sample was collected from below sample D-3a (sample D-3b at 5.5 fbg) to assess vertical attenuation of the impacts in this vicinity. In addition, field observations and PID readings also indicated impacted soil was present near the south wall of the small excavation associated with dispenser #3; consequently, two additional soil samples were collected from the floor in this vicinity (D-3c and D-3d), from 3.0 and 5.5 fbg, respectively, to assess the conditions and vertical attenuation in this area. The sample locations are shown on Figure 2.

Chemical Analyses: State-certified laboratory TestAmerica (TA) of Sacramento, California analyzed the soil samples for:

- Total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tertiary-butyl ether (MTBE), ethyl tertiary-butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary-amyl methyl ether (TAME), tertiary-butanol (TBA), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), and ethanol by EPA Method 8260B;
- Total lead by EPA Method 6010B.

The laboratory report is included in Attachment A.

Soil Disposal: The soil and pea gravel generated during the field activities was stockpiled on-site and was sampled by CRA to profile the material for disposal. On January 18, 2008, Paradiso transported the approximately 19.54 tons of soil and pea gravel to Altamont Landfill & Resource Recovery Facility of Livermore, California for disposal. The disposal confirmation and laboratory analytical report are included in Attachment B.

ANALYTICAL RESULTS

A total of six soil samples were collected during the field activities and the soil analytical results are presented in Table 1. TPHg was detected in all of the soil samples, except sample D-2, at concentrations ranging from 7.8 to 1,200 milligrams per kilogram (mg/Kg). Benzene was detected in sample (D-3c) at a

060118 2

concentration of 0.063 mg/Kg. Ethylbenzene was detected in three of the six samples at concentrations ranging from 0.014 to 4.5 mg/Kg. Total xylenes were detected in three samples at concentrations ranging from 0.0079 to 0.35 mg/Kg. MTBE was detected in all of the samples except sample D-2 at concentrations ranging from 0.015 to 0.31 mg/Kg. TBA was detected in two of the samples at concentrations of 0.021 and 0.14 mg/Kg. Total lead was reported in all six samples at concentrations ranging from 5.5 to 51 mg/Kg. No toluene, DIPE, ETBE, TAME, 1,2-DCA, EDB, or ethanol were detected in any of the soil samples.

CONCLUSIONS

CRA collected three native soil samples (D-1, D-2, and D-3a) beneath the former dispensers, and a fourth soil sample (D-3c) from the floor of the south wall of the small cavity associated with dispenser #3. Two additional samples were collected from below samples D-3a and D-3c (samples D-3b and D-3d, respectively) in order to assess vertical attenuation at these locations.

Residual concentrations of petroleum hydrocarbon constituents and/or total lead were reported in each of the six samples collected. Data from samples D-3b and D-3d confirm that the petroleum hydrocarbons constituents attenuate at depth at these locations, or remain at low level residual concentrations. During subsequent discussions with ACDEH, it was agreed that no additional soil excavation was warranted, and that the hydrocarbon impacts reported in the soils at this site were not likely associated with a new release, thus no new Underground Storage Tank Unauthorized release (Leak)/Contaminant Site Report was required to be submitted for the site.

The site is currently under the oversight of the Alameda County Health Care Services Agency (ACHCSA) as an active environmental investigation and the site's groundwater conditions are being monitored and evaluated.

CLOSING

If you have any questions regarding the contents of this document, please call Dennis Baertschi at (707) 268-3813.

Sincerely,

Conestoga-Rovers & Associates

Dennis Baertschi Project Manager

Joe W. Neely, PG

Attachments:

Figure 1.

Vicinity Map

Figure 2.

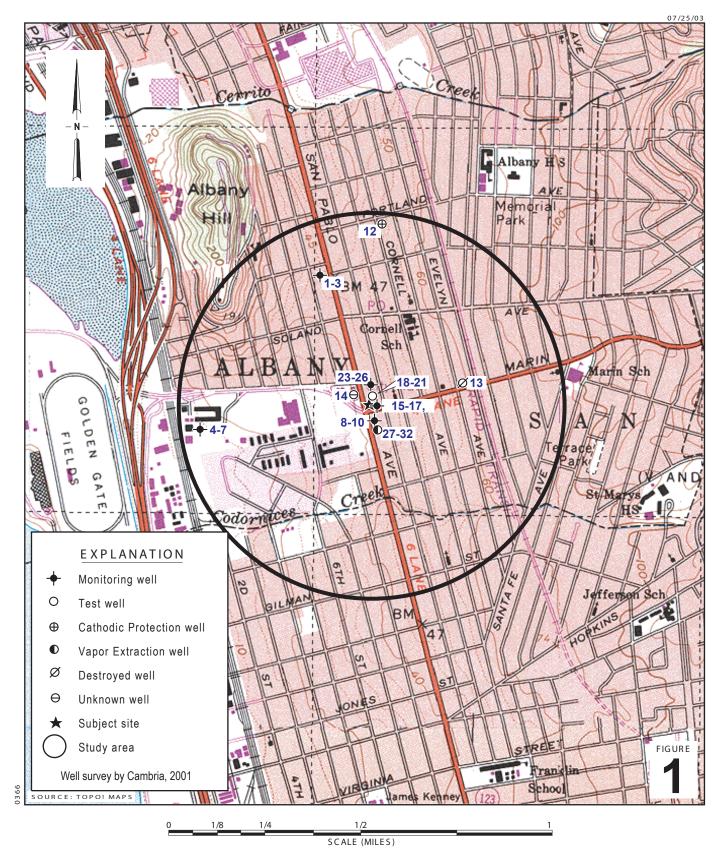
Soil Sample Location Map

Table 1.

Soil Analytical Data

Attachment A. Analytical Laboratory Reports

Attachment B. Disposal Documentation


cc:

Bill Merchant, Shell Oil US Denis Brown, Shell Oil US Jerry Wickham, ACHCSA

Greg Biggs, 3640 Valley Road, Casper, WY 82604

Conestoga-Rovers & Associates (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

I:\Sonoma.Shell\Albany 999 San Pablo Ave\REPORTS\Dec 07 Disp Sampling\999 Albany UDC Replacement Sampling Report.doc

Shell-branded Service Station

999 San Pablo Avenue Albany, California

Vicinity Map (1/2-Mile Radius)

Shell-branded Service Station

999 San Pablo Avenue Albany, California

Soil Sample Location Map

December 6, 2007

Table 1. Soil Anaytical Data, Shell-branded Service Station, 999 San Pablo Ave, Albany

Sample ID	Depth (fbg)	Date	TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)	Lead (mg/kg)
	•	·	•					,							·	
D-1	4.5	06-Dec-07	290	<0.005	<0.005	0.014	0.0079	0.015	<0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.10	51
D-2	4.5	06-Dec-07	<0.10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.10	6.3
D-3a	4.0	06-Dec-07	15	<0.005	<0.005	<0.005	<0.005	0.029	0.021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.10	5.5
D-3b	5.5	06-Dec-07	7.8	<0.005	<0.005	<0.005	<0.005	0.27	0.14	<0.005	<0.005	<0.005	<0.005	<0.005	<0.10	6.0
D-3c	3.0	06-Dec-07	1,200	0.063	<0.05	4.5	0.05	0.31	<5.0	< 0.025	< 0.025	<0.025	< 0.025	< 0.025	<10	9.6
D-3d	5.5	06-Dec-07	430	<0.25	<0.25	3.0	0.35	0.17	<25	<0.12	<0.12	<0.12	<0.12	<0.12	<50	11.0

Notes and Abbreviations:

fbg = feet below grade

< x =Not detected at detection limit x

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B or equivalent

Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B

MTBE = methyl tertiary butyl ether analyzed by EPA Method 8260B

TBA= tert-Butyl alcohol analyzed by EPA Method 8260B

DIPE=di-isopropyl ether analyzed by EPA Method 8260B

ETBE= Ethyl tert butyl ether analyzed by EPA Method 8260B

TAME= tert amyl methyl ether analyzed by EPA Method 8260B

1,2 DCA = 1,2-dichloroethane, analyzed by EPA Method 8260B.

EDB = Ethylene dibromide, analyzed by EPA Method 8260B.

Ethanol = analyzed by EPA Method 8260B.

Lead analyzed by EPA Method 6010B

Attachment A Analytical Laboratory Reports

11 December, 2007

Dennis Beartschi Conestoga-Rovers & Assoc. - Emeryville [Shell] 5900 Hollis Street Suite A Emeryville, CA 94608

RE: 999 San Pablo Ave, Albany

Work Order: MQL0222

Enclosed are the results of analyses for samples received by the laboratory on 12/06/07 17:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Leticia Reyes Project Manager

CA ELAP Certificate # 1210

Leticio Rujes

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

For Volatile Analysis a trip blank is required to be provided. If trip blank results are not included in the report, then either the trip blank was not submitted or requested to be analyzed.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
D-3a	MQL0222-01	Soil	12/06/07 09:40	12/06/07 17:30
D-2	MQL0222-02	Soil	12/06/07 09:48	12/06/07 17:30
D-1	MQL0222-03	Soil	12/06/07 09:56	12/06/07 17:30
D-3b	MQL0222-04	Soil	12/06/07 11:02	12/06/07 17:30
D-3c	MQL0222-05	Soil	12/06/07 12:00	12/06/07 17:30
D-3d	MQL0222-06	Soil	12/06/07 12:45	12/06/07 17:30

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D-3a (MQL0222-01) Soil Sampled: 12/0	06/07 09:40	Received: 12/	06/07 17:30)					
Gasoline Range Organics (C4-C12)	15000	1000	ug/kg	10	7L08002	12/08/07	12/08/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		96 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		126 %	60-12	25	"	"	"	"	ZX
Surrogate: Dibromofluoromethane		104 %	50-13	35	"	"	"	"	
Surrogate: Toluene-d8		102 %	70-12	20	"	"	"	"	
D-2 (MQL0222-02) Soil Sampled: 12/00	5/07 09:48	Received: 12/0	6/07 17:30						
Gasoline Range Organics (C4-C12)	ND	100	ug/kg	1	7L08002	12/08/07	12/08/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		87 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91 %	60-12	25	"	"	"	"	
Surrogate: Dibromofluoromethane		90 %	50-13	35	"	"	"	"	
Surrogate: Toluene-d8		99 %	70-12	20	"	"	"	"	
D-1 (MQL0222-03) Soil Sampled: 12/00	5/07 09:56	Received: 12/0	6/07 17:30						
Gasoline Range Organics (C4-C12)	290	2.5	mg/kg	1	7L08005	12/08/07	12/08/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		94 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		120 %	60-12	25	"	"	"	"	
Surrogate: Dibromofluoromethane		85 %	50-13	35	"	"	"	"	
Surrogate: Toluene-d8		99 %	70-12	20	"	"	"	"	
D-3b (MQL0222-04) Soil Sampled: 12/0	06/07 11:02	Received: 12/	06/07 17:30)					
Gasoline Range Organics (C4-C12)	7800	100	ug/kg	1	7L07002	12/07/07	12/07/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		91 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		170 %	60-12	25	"	"	"	"	ZX
Surrogate: Dibromofluoromethane		100 %	50-13	35	"	"	"	"	
Surrogate: Toluene-d8		108 %	70-12	20	"	"	"	"	

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D-3c (MQL0222-05) Soil Sampled: 12/06	6/07 12:00	Received: 12/0	06/07 17:30)					
Gasoline Range Organics (C4-C12)	1200	25	mg/kg	10	7L08005	12/08/07	12/10/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		100 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		132 %	60-12	25	"	"	"	"	ZX
Surrogate: Dibromofluoromethane		100 %	50-13	35	"	"	"	"	
Surrogate: Toluene-d8		102 %	70-12	20	"	"	"	"	
D-3d (MQL0222-06) Soil Sampled: 12/06	5/07 12:45	Received: 12/	06/07 17:30)					
Gasoline Range Organics (C4-C12)	430	12	mg/kg	5	7L08005	12/08/07	12/10/07	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		97 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		120 %	60-12	25	"	"	"	"	
Surrogate: Dibromofluoromethane		93 %	50-13	35	"	"	"	"	
Surrogate: Toluene-d8		98 %	70-12	20	"	"	"	"	

Total Metals by EPA 6000/7000 Series Methods TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D-3a (MQL0222-01) Soil	Sampled: 12/06/07 09:40	Received: 12/0	06/07 17:3	0					
Lead	5.5	5.0	mg/kg	1	7L07016	12/07/07	12/07/07	EPA 6010B	
D-2 (MQL0222-02) Soil	Sampled: 12/06/07 09:48	Received: 12/00	5/07 17:30						
Lead	6.3	5.0	mg/kg	1	7L07016	12/07/07	12/07/07	EPA 6010B	
D-1 (MQL0222-03) Soil	Sampled: 12/06/07 09:56	Received: 12/00	5/07 17:30						
Lead	51	5.0	mg/kg	1	7L07016	12/07/07	12/07/07	EPA 6010B	
$D\text{-}3b \; (MQL0222\text{-}04) \; Soil$	Sampled: 12/06/07 11:02	Received: 12/0	06/07 17:3	0					
Lead	6.0	5.0	mg/kg	1	7L07016	12/07/07	12/07/07	EPA 6010B	
D-3c (MQL0222-05) Soil	Sampled: 12/06/07 12:00	Received: 12/0	6/07 17:3	0					
Lead	9.6	5.0	mg/kg	1	7L07016	12/07/07	12/07/07	EPA 6010B	
$\textbf{D-3d} \; (\textbf{MQL0222-06}) \; \textbf{Soil}$	Sampled: 12/06/07 12:45	Received: 12/0	06/07 17:3	0					
Lead	11	5.0	mg/kg	1	7L07016	12/07/07	12/07/07	EPA 6010B	

Volatile Organic Compounds by EPA Method 8260B TestAmerica Morgan Hill

		D (
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D-3a (MQL0222-01) Soil Sampled:	12/06/07 09:40	Received: 12/0	06/07 17:30)					
Benzene	ND	5.0	ug/kg	1	7L07002	12/07/07	12/07/07	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	29	5.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	5.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	5.0	"	"	"	"	"	"	
tert-Butyl alcohol	21	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		89 %	50-13	35	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		80 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		353 %	60-12	25	"	"	"	"	ZX
D-2 (MQL0222-02) Soil Sampled: 1	2/06/07 09:48	Received: 12/0	6/07 17:30						
Benzene	ND	5.0	ug/kg	1	7L07002	12/07/07	12/07/07	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	5.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	5.0	"	"	"	"	"	"	
tert-Butyl alcohol	ND	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	50-13	35	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		94 %	65-13	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	60-12	25	"	"	"	"	

Volatile Organic Compounds by EPA Method 8260B TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D-1 (MQL0222-03) Soil Sampled: 12	2/06/07 09:56 Re	ceived: 12/0	6/07 17:30)					
Benzene	ND	5.0	ug/kg	1	7L07002	12/07/07	12/07/07	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	14	5.0	"	"	"	"	"	"	
Xylenes (total)	7.9	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	15	5.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	5.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	5.0	"	"	"	"	"	"	
tert-Butyl alcohol	ND	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		89 %	50-	135	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		87 %	65-	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		353 %	60-	125	"	"	"	"	ZX
D-3b (MQL0222-04) Soil Sampled: 1	12/06/07 11:02 R	eceived: 12/	06/07 17:	30					
Benzene	ND	5.0	ug/kg	1	7L07002	12/07/07	12/07/07	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	270	5.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	5.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	5.0	"	"	"	"	"	"	
tert-Butyl alcohol	140	20	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Ethanol	ND	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	50-	135	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91 %	65-	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		170 %	60-	125	"	"	"	"	ZX

Volatile Organic Compounds by EPA Method 8260B TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
D-3c (MQL0222-05) Soil Sampled	: 12/06/07 12:00	Received: 12/0	06/07 17:30						
Benzene	0.063	0.050	mg/kg	1	7L08005	12/08/07	12/08/07	EPA 8260B	
Toluene	ND	0.050	"	"	"	"	"	"	
Ethylbenzene	4.5	0.050	"	"	"	"	"	"	
Xylenes (total)	0.050	0.050	"	"	"	"	"	"	
Methyl tert-butyl ether	0.31	0.025	"	"	"	"	"	"	
Di-isopropyl ether	ND	0.025	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	0.025	"	"	"	"	"	"	
tert-Amyl methyl ether	ND	0.025	"	"	"	"	"	"	
tert-Butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.025	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.025	"	"	"	"	"	"	
Ethanol	ND	10	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		90 %	50-13	5	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		94 %	65-13	5	"	"	"	"	
Surrogate: Toluene-d8		98 %	70-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		362 %	60-12	5	"	"	"	"	ZX
D-3d (MQL0222-06) Soil Sampled	l: 12/06/07 12:45	Received: 12/	06/07 17:30						
Benzene	ND	0.25	mg/kg	5	7L08005	12/08/07	12/10/07	EPA 8260B	
Toluene	ND	0.25	"	"	"	"	"	m .	
Ethylbenzene	3.0	0.25	"	"	"	"	"	m .	
Xylenes (total)	0.35	0.25	"	"	"	"	"	"	
Methyl tert-butyl ether									
	0.17	0.12	"	"	"	"	"	"	
Di-isopropyl ether	0.17 ND	0.12 0.12	"	"	"	"	"	"	
Di-isopropyl ether Ethyl tert-butyl ether			"					n n	
	ND	0.12		"	"	"	"	" " " " " " " " " " " " " " " " " " " "	
Ethyl tert-butyl ether	ND ND	0.12 0.12		"	"	"	"	" " " " " " " " " " " " " " " " " " " "	
Ethyl tert-butyl ether tert-Amyl methyl ether	ND ND ND	0.12 0.12 0.12	"	"	"	"	" "	" " " " " " " " " " " " " " " " " " " "	
Ethyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol	ND ND ND ND	0.12 0.12 0.12 25	" "	" "	" "	" " "			
Ethyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol 1,2-Dichloroethane	ND ND ND ND ND	0.12 0.12 0.12 25 0.12	" " "	" " "	n n n	" " " " " " " " " " " " " " " " " " " "	" " " " "	"	
Ethyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol 1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND ND ND ND ND	0.12 0.12 0.12 25 0.12 0.12	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n n n	" "	
Ethyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol 1,2-Dichloroethane 1,2-Dibromoethane (EDB) Ethanol	ND ND ND ND ND	0.12 0.12 0.12 25 0.12 0.12 50	" " " " " " " " " " " " " " " " " " " "	" " " " 5	11 11 11 11	11 11 11 11		" "	
Ethyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol 1,2-Dichloroethane 1,2-Dibromoethane (EDB) Ethanol Surrogate: Dibromofluoromethane	ND ND ND ND ND	0.12 0.12 0.12 25 0.12 0.12 50 93 %	" " " " 50-13	" " " " 5	" " " " " " " " " "	11 11 11 11 11	" " " " " " " "	11 11 11	

RPD

Conestoga-Rovers & Assoc. - Emeryville [Shell] Project: 999 San Pablo Ave, Albany MQL0222 Project Number: [none] 5900 Hollis Street Suite A Reported: Project Manager: Dennis Beartschi Emeryville CA, 94608 12/11/07 10:10

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica Morgan Hill

Spike

Source

Reporting

		Reporting		Spike	Bource		/0 KLC		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7L07002 - EPA 5030B P/T / L	UFT GCMS									
Blank (7L07002-BLK1)				Prepared	& Analyz	ed: 12/07/	07			
Gasoline Range Organics (C4-C12)	ND	100	ug/kg		-					
Surrogate: 1,2-Dichloroethane-d4	4.42		"	5.00		88	65-135			
Surrogate: 4-Bromofluorobenzene	3.94		"	5.00		79	60-125			
Surrogate: Dibromofluoromethane	4.56		"	5.00		91	50-135			
Surrogate: Toluene-d8	4.54		"	5.00		91	70-120			
Laboratory Control Sample (7L07002-B	3S2)			Prepared	& Analyz	ed: 12/07/	07			
Gasoline Range Organics (C4-C12)	714	100	ug/kg	1000		71	60-120			
Surrogate: 1,2-Dichloroethane-d4	4.36		"	5.00		87	65-135			
Surrogate: 4-Bromofluorobenzene	4.76		"	5.00		95	60-125			
Surrogate: Dibromofluoromethane	4.48		"	5.00		90	50-135			
Surrogate: Toluene-d8	4.82		"	5.00		96	70-120			
Laboratory Control Sample Dup (7L070	002-BSD2)			Prepared	& Analyz	ed: 12/07/	07			
Gasoline Range Organics (C4-C12)	749	100	ug/kg	1000		75	60-120	5	40	
Surrogate: 1,2-Dichloroethane-d4	4.36		"	5.00		87	65-135			
Surrogate: 4-Bromofluorobenzene	4.68		"	5.00		94	60-125			
Surrogate: Dibromofluoromethane	4.54		"	5.00		91	50-135			
Surrogate: Toluene-d8	4.86		"	5.00		97	70-120			
Matrix Spike (7L07002-MS1)	Source: M	QL0233-01		Prepared	& Analyz	ed: 12/07/	07			
Gasoline Range Organics (C4-C12)	21200	100	ug/kg	1100	79300	0	50-135			E, MHA, R
Surrogate: 1,2-Dichloroethane-d4	4.44		"	5.00		89	65-135			
Surrogate: 4-Bromofluorobenzene	14.3		"	5.00		286	60-125			Z^{\prime}
Surrogate: Dibromofluoromethane	4.90		"	5.00		98	50-135			
Surrogate: Toluene-d8	5.38		"	5.00		108	70-120			
Matrix Spike Dup (7L07002-MSD1)	Source: M	QL0233-01		Prepared	& Analyz	ed: 12/07/	07			
Gasoline Range Organics (C4-C12)	13000	100	ug/kg	1100	79300	0	50-135	48	40	E, MHA
Surrogate: 1,2-Dichloroethane-d4	4.32		"	5.00		86	65-135			
Surrogate: 4-Bromofluorobenzene	9.08		"	5.00		182	60-125			Z^{2}
Surrogate: Dibromofluoromethane	5.02		"	5.00		100	50-135			
Surrogate: Toluene-d8	5.26		"	5.00		105	70-120			

%REC

RPD

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02225900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi12/11/07 10:10

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica Morgan Hill

Reporting

Spike

Source

%REC

		reporting		Spike						
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7L08002 - EPA 5030B P/T	/ LUFT GCMS									
Blank (7L08002-BLK1)				Prepared of	& Analyze	ed: 12/08/0	07			
Gasoline Range Organics (C4-C12)	ND	100	ug/kg							
Surrogate: 1,2-Dichloroethane-d4	4.52		"	5.00		90	65-135			
Surrogate: 4-Bromofluorobenzene	4.48		"	5.00		90	60-125			
Surrogate: Dibromofluoromethane	4.50		"	5.00		90	50-135			
Surrogate: Toluene-d8	4.84		"	5.00		97	70-120			
Laboratory Control Sample (7L0800	2-BS2)			Prepared of	& Analyz	ed: 12/08/0	07			
Gasoline Range Organics (C4-C12)	796	100	ug/kg	1000		80	60-120			
Surrogate: 1,2-Dichloroethane-d4	4.52		"	5.00		90	65-135			
Surrogate: 4-Bromofluorobenzene	4.88		"	5.00		98	60-125			
Surrogate: Dibromofluoromethane	4.50		"	5.00		90	50-135			
Surrogate: Toluene-d8	5.12		"	5.00		102	70-120			
Laboratory Control Sample Dup (7L	08002-BSD2)		Prepared & Analyzed: 12/08/07							
Gasoline Range Organics (C4-C12)	734	100	ug/kg	1000		73	60-120	8	40	
Surrogate: 1,2-Dichloroethane-d4	4.28		"	5.00		86	65-135			
Surrogate: 4-Bromofluorobenzene	4.92		"	5.00		98	60-125			
Surrogate: Dibromofluoromethane	4.48		"	5.00		90	50-135			
Surrogate: Toluene-d8	5.02		"	5.00		100	70-120			
Batch 7L08005 - EPA 5030B/5035	5A MeOH / LUF	Γ GCMS								
Blank (7L08005-BLK1)				Prepared of	& Analyz	ed: 12/08/0	07			
Gasoline Range Organics (C4-C12)	ND	2.5	mg/kg							
Surrogate: 1,2-Dichloroethane-d4	0.00246		"	0.00250		98	65-135			
Surrogate: 4-Bromofluorobenzene	0.00234		"	0.00250		94	60-125			
Surrogate: Dibromofluoromethane	0.00223		"	0.00250		89	50-135			
Surrogate: Toluene-d8	0.00242		"	0.00250		97	70-120			

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7L08005 - EPA 5030B/5035A MeOH / LUFT GCMS

Laboratory Control Sample (7L08005	5-BS2)			Prepared & Ana	alyzed: 12/08/	07			
Gasoline Range Organics (C4-C12)	58.4	2.5	mg/kg	50.0	117	60-120			
Surrogate: 1,2-Dichloroethane-d4	0.00249		"	0.00250	100	65-135			
Surrogate: 4-Bromofluorobenzene	0.00251		"	0.00250	100	60-125			
Surrogate: Dibromofluoromethane	0.00242		"	0.00250	97	50-135			
Surrogate: Toluene-d8	0.00247		"	0.00250	99	70-120			
Laboratory Control Sample Dup (7L)	08005-BSD2)			Prepared & Ana	alyzed: 12/08/	07			
Gasoline Range Organics (C4-C12)	57.6	2.5	mg/kg	50.0	115	60-120	1	40	
Surrogate: 1,2-Dichloroethane-d4	0.00252		"	0.00250	101	65-135			
Surrogate: 4-Bromofluorobenzene	0.00252		"	0.00250	101	60-125			
Surrogate: Dibromofluoromethane	0.00236		"	0.00250	94	50-135			
Surrogate: Toluene-d8	0.00244		"	0.00250	98	70-120			

RPD

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project:999 San Pablo Ave, AlbanyMQL02225900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi12/11/07 10:10

Total Metals by EPA 6000/7000 Series Methods - Quality Control TestAmerica Morgan Hill

Reporting

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7L07016 - EPA 3050B / EPA	6010B									
Blank (7L07016-BLK1)				Prepared	& Analyz	ed: 12/07/	07			
Lead	ND	5.0	mg/kg	·		·	·	·		
Laboratory Control Sample (7L07016-B	S1)			Prepared	& Analyz	ed: 12/07/	07			
Lead	42.6	5.0	mg/kg	50.0		85	80-120			
Matrix Spike (7L07016-MS1)	Source: MQ	L0229-01		Prepared	& Analyz	ed: 12/07/	07			
Lead	118	50	mg/kg	50.0	63.4	108	80-120			·
Matrix Spike Dup (7L07016-MSD1)	Source: MQ	L0229-01		Prepared	& Analyz	ed: 12/07/	07			
Lead	138	50	mø/kø	50.0	63.4	150	80-120	16	35	M

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7L07002 - EPA 5030B P/T / EPA 8	260B											
Blank (7L07002-BLK1) Prepared & Analyzed: 12/07/07 Benzene ND 5.0 ug/kg												
Benzene	ND	5.0	ug/kg									
Toluene	ND	5.0	"									
Ethylbenzene	ND	5.0	"									
Xylenes (total)	ND	5.0	"									
Methyl tert-butyl ether	ND	5.0	"									
Di-isopropyl ether	ND	5.0	"									
Ethyl tert-butyl ether	ND	5.0	"									
tert-Amyl methyl ether	ND	5.0	"									
tert-Butyl alcohol	ND	20	"									
1,2-Dichloroethane	ND	5.0	"									
1,2-Dibromoethane (EDB)	ND	5.0	"									
Ethanol	ND	100	"									
Surrogate: Dibromofluoromethane	4.56		"	5.00	91	50-135						
Surrogate: 1,2-Dichloroethane-d4	4.42		"	5.00	88	65-135						
Surrogate: 4-Bromofluorobenzene	3.94		"	5.00	79	60-125						
Laboratory Control Sample (7L07002-BS1)				Prepared & Analy	zed: 12/07/	707						
Benzene	18.4	5.0	ug/kg	20.0	92	75-125						
Toluene	18.4	5.0	"	20.0	92	75-135						
Ethylbenzene	19.3	5.0	"	20.0	96	75-130						
Xylenes (total)	59.7	5.0	"	60.0	99	75-135						
Methyl tert-butyl ether	18.4	5.0	"	20.0	92	60-140						
Di-isopropyl ether	19.3	5.0	"	20.0	97	60-140						
Ethyl tert-butyl ether	18.9	5.0	"	20.0	94	65-140						
tert-Amyl methyl ether	19.2	5.0	"	20.0	96	65-145						
tert-Butyl alcohol	360	20	"	400	90	70-125						
1,2-Dichloroethane	16.0	5.0	"	20.0	80	70-135						
1,2-Dibromoethane (EDB)	18.0	5.0	"	20.0	90	75-140						
Ethanol	307	100	"	400	77	45-150						
Surrogate: Dibromofluoromethane	4.58		"	5.00	92	50-135						
Surrogate: 1,2-Dichloroethane-d4	4.36		"	5.00	87	65-135						
Surrogate: 4-Bromofluorobenzene	4.70		"	5.00	94	60-125						

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (7L07002-MS1)	Source: MQ	L0233-01		Prepared a	& Analyze	ed: 12/07	07			
Benzene	18.2	5.0	ug/kg	20.0	28.7	0	65-145			M
Toluene	18.8	5.0	"	20.0	ND	94	65-140			
Ethylbenzene	20.1	5.0	"	20.0	354	0	75-140			E, MHA
Xylenes (total)	59.2	5.0	"	60.0	29.5	50	70-145			M
Methyl tert-butyl ether	42.5	5.0	"	20.0	162	0	60-150			MHA
Di-isopropyl ether	18.2	5.0	"	20.0	ND	91	65-145			
Ethyl tert-butyl ether	19.5	5.0	"	20.0	ND	98	65-150			
tert-Amyl methyl ether	20.7	5.0	"	20.0	ND	104	65-140			
tert-Butyl alcohol	362	20	"	400	64.1	74	70-130			
1,2-Dichloroethane	16.4	5.0	"	20.0	ND	82	60-140			
1,2-Dibromoethane (EDB)	20.3	5.0	"	20.0	ND	102	60-150			
Ethanol	282	100	"	400	ND	71	35-150			
Surrogate: Dibromofluoromethane	4.90		"	5.00		98	50-135			
Surrogate: 1,2-Dichloroethane-d4	4.44		"	5.00		89	65-135			
Surrogate: 4-Bromofluorobenzene	14.3		"	5.00		286	60-125			Z
Matrix Spike Dup (7L07002-MSD1)	Source: MQ	L0233-01		Prepared a	& Analyze	ed: 12/07	07			
Benzene	19.3	5.0	ug/kg	20.0	28.7	0	65-145	6	25	M2
Toluene	20.5	5.0	"	20.0	ND	103	65-140	9	25	
Ethylbenzene	21.4	5.0	"	20.0	354	0	75-140	7	30	E, MHA
Xylenes (total)	64.6	5.0	"	60.0	29.5	59	70-145	9	30	M2
Methyl tert-butyl ether	36.6	5.0	"	20.0	162	0	60-150	15	25	MHA
Di-isopropyl ether	19.4	5.0	"	20.0	ND	97	65-145	6	40	
Ethyl tert-butyl ether	20.8	5.0	"	20.0	ND	104	65-150	6	30	
tert-Amyl methyl ether	23.0	5.0	"	20.0	ND	115	65-140	10	25	
tert-Butyl alcohol	382	20	"	400	64.1	79	70-130	5	25	
1,2-Dichloroethane	17.3	5.0	"	20.0	ND	86	60-140	5	25	
1,2-Dibromoethane (EDB)	20.7	5.0	"	20.0	ND	103	60-150	2	30	
Ethanol	295	100	"	400	ND	74	35-150	4	30	
Surrogate: Dibromofluoromethane	5.02		"	5.00		100	50-135			
Surrogate: 1,2-Dichloroethane-d4	4.32		"	5.00		86	65-135			
Surrogate: 4-Bromofluorobenzene	9.08		"	5.00		182	60-125			ZX

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 7L08005 - EPA 5030B/5035A MeOH / EPA	8260B
--	-------

Blank (7L08005-BLK1)				Prepared & Ana	alyzed: 12/08/	07	
Benzene	ND	0.050	mg/kg				
Toluene	ND	0.050	"				
Ethylbenzene	ND	0.050	"				
Xylenes (total)	ND	0.050	"				
Methyl tert-butyl ether	ND	0.025	"				
Di-isopropyl ether	ND	0.025	"				
Ethyl tert-butyl ether	ND	0.025	"				
tert-Amyl methyl ether	ND	0.025	"				
tert-Butyl alcohol	ND	5.0	"				
1,2-Dichloroethane	ND	0.025	"				
1,2-Dibromoethane (EDB)	ND	0.025	"				
Ethanol	ND	10	"				
Surrogate: Dibromofluoromethane	0.00223		"	0.00250	89	50-135	
Surrogate: 1,2-Dichloroethane-d4	0.00246		"	0.00250	98	65-135	
Surrogate: Toluene-d8	0.00242		"	0.00250	97	70-120	
Surrogate: 4-Bromofluorobenzene	0.00234		"	0.00250	94	60-125	
Laboratory Control Sample (7L08	005-BS1)			Prepared & Ana	alyzed: 12/08/	07	
Benzene	1.02	0.050	mg/kg	1.00	102	75-125	
Toluene	0.957	0.050	"	1.00	96	75-135	
Ethylbenzene	1.05	0.050	"	1.00	105	75-130	
Xylenes (total)	3.17	0.050	"	3.00	106	75-135	
Methyl tert-butyl ether	0.982	0.025	"	1.00	98	60-140	
Di-isopropyl ether	1.01	0.025	"	1.00	101	60-140	
Ethyl tert-butyl ether	1.04	0.025	"	1.00	104	65-140	
tert-Amyl methyl ether	1.09	0.025	"	1.00	109	65-145	
tert-Butyl alcohol	18.0	5.0	"	20.0	90	70-125	
1,2-Dichloroethane	1.06	0.025	"	1.00	106	70-135	
1,2-Dibromoethane (EDB)	1.03	0.025	"	1.00	103	75-140	
Ethanol	13.9	10	"	20.0	69	45-150	
Surrogate: Dibromofluoromethane	0.00244		"	0.00250	98	50-135	
Surrogate: 1,2-Dichloroethane-d4	0.00259		"	0.00250	104	65-135	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	0.00259 0.00243		"	0.00250 0.00250	104 97	65-135 70-120	
·							

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7L08005 - EPA 5030B/5035A MeOH / EPA 8260B

Laboratory Control Sample Dup (7L	08005-BSD1)		Prepared & An						
Benzene	1.20	0.050	mg/kg	1.00	120	75-125	16	25	
Toluene	1.12	0.050	"	1.00	112	75-135	15	25	
Ethylbenzene	1.24	0.050	"	1.00	124	75-130	16	30	
Xylenes (total)	3.74	0.050	"	3.00	125	75-135	16	30	
Methyl tert-butyl ether	1.16	0.025	"	1.00	116	60-140	16	25	
Di-isopropyl ether	1.14	0.025	"	1.00	114	60-140	12	40	
Ethyl tert-butyl ether	1.18	0.025	"	1.00	118	65-140	13	30	
tert-Amyl methyl ether	1.27	0.025	"	1.00	127	65-145	15	25	
tert-Butyl alcohol	21.0	5.0	"	20.0	105	70-125	16	25	
1,2-Dichloroethane	1.20	0.025	"	1.00	120	70-135	13	25	
1,2-Dibromoethane (EDB)	1.19	0.025	"	1.00	119	75-140	14	30	
Ethanol	16.6	10	"	20.0	83	45-150	18	30	
Surrogate: Dibromofluoromethane	0.00240		"	0.00250	96	50-135			
Surrogate: 1,2-Dichloroethane-d4	0.00242		"	0.00250	97	65-135			
Surrogate: Toluene-d8	0.00247		"	0.00250	99	70-120			
Surrogate: 4-Bromofluorobenzene	0.00253		"	0.00250	101	60-125			

Notes and Definitions

77	D 41-	4: CC 4 -	41		1::4-
$L\lambda$	The to sample	· mamx enects	the surrogate recovery w	as outside the acceptat	ice iimiis
	Due to sumpre	mann checks	, the surrogate recovery w	as outside the acceptai	ice illinis.

R2 The RPD exceeded the acceptance limit.

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See

Blank Spike (LCS).

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LAB: TA						SH	EL	L (Ch	ain	ı C)f (Cus	stc	dy	r R	ec	or	d			-	· Prz			
☐ TA - Morgan Hill, California	NAME OF PERS	ON TO	BILL:	Bill Mer	chant				Î y	÷. 						;	64 E	. IN	CIDE	NT #	(ES	ONL	Y)			
☐ TA - Sacramenta, California	ENVIRONMENTAL SEF	***********			-				х то v		IF NO	INCID	ENT#	APPLI	ES	:									D	ate: 12/06/07
☐ TA - Nashville, Tennesee	☑ NETWORK DEV./ FE		□ви	CONSULTA	NT .						PO#	•							SA	P or	CRM	Т#			١ _	
Other	COMPLIANCE		Пкит	/CRMT				201,204,7,									diametric	1	3	5	0	3	7		P.	AGE: of
SAMPLING COMPANY:		LOG CODE	- 1987 - 1987 - 1987		ক্রেজ			- "	reet an					<u> </u>			State				AL ID N				.l	
Conestoga-Rovers & Asso ADDRESS:	ciates (CRA)	CRAW			r en reger	999 EDF DI	Sa LIVERA	n P	able	O AV	Cffice L	Alba ocation)	iny		PHONE	NO.	CA			TO60		277				CONSULTANT PROJECT NO.:
5900 Hollis St, Suite A, En							r								707		200					u -		سماسك		
Dennis Baertschi	port to):					SAME	ER NA	ME(S) (F	a, CR	A, 50	nom	ıa			707	933 2	360			sono	maec	исе	rawo		_	[060118-001 FONLY
TELEPHONE: 707 268 3813	FAX: 707 268 8180	E-MAIL: dbaerts	chi@cra	world.com	1	l c	arm	en F	Rodr	inue	27						÷							V	lo!	L0222
TAT (STD IS 10 BUSINESS DAY	S / RUSH IS CALENDAR D/	AYS):		RESULTS NE	*	Ť	21111	O11 1	tou.	iguc	,,,,									NIA! S	/CIC			1 252 135	(s) V	
☐ STD ☐ 5 DAY ☐ 3 E		4 HOURS	(ON WEEKE	ND	<u> </u>	,						,			RE	:QUI	-516	:DAI	NAL'	7515			,		
☐ LA - RWQCB REPORT FORMA		*																								
SPECIAL INSTRUCTIONS OR NO	· <u>-</u>	EDD NOT		ATE APPLIES							_		8260					260)		n, Ni	270	_		hed)		FIELD NOTES:
			IMB RATE		,	8	(8015M)				ETBE)		8 suc		(a)	(809)		1ts (8		Cr, Pb, Zn, Ni	ote 8	160.		attached)		Container/Preservative or PID Readings
	Į.	RECEIPT	VERIFICATI	ION REQUES	TED	(826					OE) AME.	9070	carb		8 (82	le (82		olve			reos	lids				or Laboratory Notes
		3				aple	ctable	_			s (826 IPE, T	EPA	ydor	1082	than	romic	(g)	ted S	010B	ls Cd	NAs (og pa	108)	Disposal (see	-	
; 						Purgeable (8260 B)	Extra	260B	3260E	(8260B)	nate: BA, D	asaa.	ated !	EDC 8082	loroe	qip	(826	orina) ad (6	17 Metals Cd,	ď,	Nos	Iron (6010B)	Disp		
No partial lab reports, send final	Identification	SAM	PLING	MATRIX	NO. OF	TPH g- I	TPHd - Extractable	BTEX (8260B)	MTBE (8260B)	TBA (82	5 Oxygenates (8260B) (MTBE, TBA, DIPE, TAN	Oil & Greese EPA 9070	Chlorinated hydorcarbons	EDB & E	1,2-dichloroethane (8260B)	Ethylene dibromide (8260B)	Ethanol (8260B)	Full Chlorinated Solvents (8260)	Total Lead (6010B)	Cam 17	PCB, PCP, PNAs Creosote 8270	Total Desoived Solids (160.1)	Total Irc	Test for		TEMPERATURE ON RECEIPT C°
ONLY		DATE	TIME		CONT.		#		Σ	<u>"</u>		Ö	ਹੋ	固				正	-	ర	ă	<u> </u>	٤	۳		
01 P-3a		7	940	DRIVE SO	ļ	X		X			X				X	X	X		X						ļ	Rush TAT
62 D-Z			948		ļ	\perp				`															<u> </u>	arranged with
03 D-1	원 동국	ųši	956																							arranged with Leticia Rever
3 か 3 よ		Ψ	1102				l Y	\$ 5	A.	*		-		* .	1											,
05 D-3c	:		1200			П				-	1		Ħ		Π		П									
06 D-3 d	7	1	1245	1/		IJ		V			. /	r.			V		V									
						Ť									V	-6/			•							
	. Z.+175.										i.														-	
(S) (S)						_												-							<u> </u>	
Relinquished by: (Signaturb)				Received 6	y: k (Signature	<u> </u>		,	<u> </u>	لِـا									Date:						Time	
arm Roder	i.,	:		X	Deins	W V-)	1	MA	#)								Ì	27	٦6.	-0	7			1445
Relinquished by: (Signifular)	O			Received b	<u> </u>)				•• /									Date:						Time	
Relinquished by: (8 ghature)	· <u>~~</u> .			Received 5	(Signature)							·····	······					Date:	10	v	v	<u> </u>		Time	

TEST AMERICA SAMPLE RECEIPT LOG

REC. BY (PRINT) DV.		DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	TIME REC'D AT LAB: \730		07			For Regulatory Purposes? DRINKING WATER WASTE WATER OTHER		
CIRCLE THE APPROPRIATE RESP	PONSE LAB SAMPLE#	CLIENT ID	CONTAINER DESCRIPTION	1 1	рН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)		
Custody Seal(s) Present / Abs								7		
Intact / Broke										
2. Chain-of-Custody Present / Abs	sent*									
3. Traffic Reports or										
Packing List: Present / Abs					ļ					
4. Airbill: Airbill / Sticke										
Present / Aps	sent)	ş.						<u> </u>		
5. Airbill #:										
6. Sample Labels: Present / Abs	sent						`			
7. Sample IDs: Listed / Not L	isted					7//		₩.		
on Chain-of-C	Custody		*							
8. Sample Condition: Intact// Broke	∍n* /		*	l k	\sim					
Leaking*		•	1 9	101	7					
9. Does information on chain-of-custo	ody,		- -	(//						
traffic reports and sample labels		•		/.						
agree? Yes/II	No*		1 P	7				i		
10. Sample received within			\ \ /			*				
hold time? Yes / I	No*		29.							
11. Adequate sample volume			0/							
received? Yes / 1	No*			7			•			
12. Proper preservatives used? Yes / I	No*			<i>y</i>						
13. Trip Blank / Temp Blank Received?				"						
(circle which, if yes) Yes /(No)									
14. Read Temp: <u> </u>		-						,		
Correction Factor: -\0°										
Corrected Temp: 2.2										
Is corrected temp. 0-6°C? (Yes) 1	No**	15								
**Exception (if any): Metals / Perchlorat	te									
DFF on Ice or Problem COC			-							

*IF CIRCLED, CONTACT PROJECT MANAGER AND ATTACH RECORD OF RESOLUTION.

Attachment B Disposal Documentation

WEIGHMASTER-Altamont Landfill &Resource Recovery 10840 Altamont Pass Road Livermore, CA, 94551

Carrier

Vehicle#

Container

License#

Billing #

Gen EPA ID

DEN BEBEESTE 8

Original Ticket# 779908

Volume

Ph: (925)455-7300

Customer Name Shell999SanPabloAv Shell/999

01/18/2008 Ticket Date

Credit Account Payment Type

Manual Ticket# Hauling Ticket#

Route

State Waste Code waf Manifest

Destination

P0

65897

Profile

55469500 ("*Class II Disposal/Shell Oil Products, US Shell Oil Products, US

164-ShellOil999 Shell Oil Products, US(999 San Pablo Avenue-Albany) Generator

Time

Scale

Deputy WeighmasterInbound

Gross

43660 lb

ľπ

01/18/2008 13:26:22 Scale1 Inboun rmontoya

Tare Net

Total Tax Total Ticket

GEN Altamont Generic

CP31279

0387624

30580 lb

Out 01/18/2008 13:26:22

rmontoya

13080 lb

Tons

6.54

Commerits

p	roduct	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1	C2 Disp SPW-Tons-W	100	6.54	Tons	***************************************	a manakan dalamba dalamba sebabah pirantis dari dang peladah dalamba dariah radi	an annu de vie viete i fores e trans e trans anti si di pri a trans proce. Trans e trans	Albany
- 2	Trans by Ton-Trans	100	6.54	Tons				Albany

DRIVER:

Weighmaster Certificate

THIS IS TO CERTIFY that the following described commodity was weighed, measured or counted by a weighmaster, whose signature is on this certificate, who is a recognized authority of accuracy, as prescribed by Chapter 7 (commencing with section 12700) of Division 5 of the California Business and Professions Code, administered by the Division of Measurement Standards of the California Department of Food and Agriculture.

404WMCA

<u> </u>	NON-HAZARDOUS	1. Generator ID Number	2. Page 1 c	f 3. E	nergency Response	Phone	4. Waste Ti	racking Numi	ber	
	waste Manifest 5. Generator's Name and Mailir	on Address		Gene	erator's Site Address	(if different t	han malling addre	ess)		
	•	Equilon Enterprises LLC of 6520 Corporate Dr.	ba Shell Oil Products				. •	,		
	Generator's Phone:	Indianapolis, IN 46278 Attn: Tobias Schroeder		<u> </u>			U.S. EPA ID	Number		· · · · · ·
	6. Transporter 1 Company Nam	16					U.S. EFA ID	. AOIMON		·
	7. Transporter 2 Company Ner	Dankecte					U.S. EPA ID	Number		
I	8. Designated Facility Name an	Don Beste d Site Address ridfill					U.S. EPA ID	Number		-
11	Triminotic Dir	ndfill ont Pass Road								
	Livermore, C		9				C	AD98138	82732	
lŀ	9. Waste Shipping Nam				10. Contai		11. Total	12. Unit		
	1.	o una posoription			No.	Туре	Quantity	Wt./Vol.	4-3	
GENERATOR		soline (Non-hazardous nor	n-regulated)		01	DT	18	Y		
ÄENE	2.	3,000,000		-						1
Ĭ		. B	· · · · · · · · · · · · · · · · · · ·						100	
	3.								33	
	4.		· · · · · · · · · · · · · · · · · · ·						17 34 <u>15</u> 24 34 34	
						 ~			gradien.	,
	13. Special Handling Instruction	ons and Additional Information								ACC.
	Profile #: a)	55469500 RIPR#65897						,		
	·	PPE When Handling Mat	erial.							
	999 San Pab		in the second					•		
	Albany., CA	CATION: I certify the materials described	above on this manifest are not sub	ject to f	ederal regulations for	reporting pr	oper disposal of	Hazardous W	aste.	
	Generator's/Offeror's Printed/1	vped Name		Signatu	re T		1	. 4	Month	Day Year
∀ ;	Jessica (c	iwanza on beha	Whot Shell	• • \	Jess	(a	Le	m		17/08
INT	15. International Shipments	Import to U.S.	Export fro	m U.S.	Port of er Date leav			<u> </u>		
	Transporter Signature (for exp 16. Transporter Acknowledgm	ons only): ent of Receipt of Materials			Date leav	miy U.S				
FTE	Transporter 1 Printed/Typed N			Signatu	re				Month I	Day Year
SPC	Transporter 2 Printed/Typed N	lama ^	<u> </u>	Signatu	re		<u> </u>		Month	Day Year_
TRANSPORTER	Sim	lame Den Ber Kurce	ste	Janaca	lem 2	fer	y ca			18/08
 	17. Discrepancy 17a. Discrepancy Indication S	pace Quantity	Птуре	<i>f</i>	Residue		Partial F	Rejection		Full Rejection
			· · · · · · · · · · · · · · · · · · ·		Manifest Reference	Number:				
≧	17b. Alternate Facility (or Ger	nerator)			-		U.S. EPA I	D Number		
Ş							i		÷	
U.	Facility's Phone: 17c. Signature of Alternate Fa	acility (or Generator)							Month	Day Year
NATE										
DESIGNATED FACILITY		gen til			100 B.C.	4	ja:			
1					and to the state		A STATE OF THE STA			9
	18. Designated Facility Owner Printed/Typed Name	r or Operator: Certification of receipt of m	aterials covered by the manifest e	signat					Month	Day Year
V	i intew typed realite	Kudu M	on towa 1			2	<u> </u>			$[X \mid X]$
16	9-BLC-O 6 10498 (Re	v. 8/06)				1-1-	DESIGNA	TED FAC	CILITY TO	GENERATOR

WEIGHMASTER-Altamont Landfill &Resource Recovery 10840 Altamont Pass Road Livermore, CA, 94551 Ph: (925)455-7300

Ticket# 779870

Volume

Customer Name Shell999SanPabloAv Shell/999

Ticket Uate 01/18/2008

Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route

State Waste Code

Manifest 2222

Destination

 p_0

65897

Profile

55469500 (~*Class II Disposal/Shell Oil Products, US Shell Oil Products, US

Generator

164-ShellOil999 Shell Oil Products, US(999 San Pablo Avenue-Albany)

Carrier

Vehicle#

Container

License#

Billing #

Gen EPA ID

DEN BEBEESTE 8

GEN Altamont Generic

CP31279

0387624

Time Scale Deputy WeighmasterInbound Gross 57240 lb
In 01/18/2008 10:15:05 Scale1 Inboun ken jr Tare 31240 lb
Out 01/18/2008 10:39:55 Scale2 Outbou ken jr Net 26000 lb
Tons 13.00

Comments

	Product	LD*	Qty	UOM	Rate	Tax	Amount	Origin
1	C2 Disp SPW-Tons-W	100	13.00	Tons			•	Albany
2	Trans by Ton-Trans	100	13.00	Tons				Albany

DRIVER:

tore

Total Tax Total Ticket

Weighmaster Certificate

THIS IS TO CERTIFY that the following described commodity was weighed, measured or counted by a weighmaster, whose signature is on this certificate, who is a recognized authority of accuracy, as prescribed by Chapter 7 (commencing with section 12700) of Division 5 of the California Business and Professions Code, administered by the Division of Measurement Standards of the California Department of Food and Agriculture.

404WMCA

æ

				in an art		2 2	22	
A	NON-HAZARDOUS * WASTE MANIFEST	1. Generator ID Number	2. Page 1 of	3. Emergency Respon	se Phone		racking Numbe	r
	5. Generator's Name and Maili	Equilon Enterprises LLC dba Shell 6520 Corporate Dr.	I Oil Products U	Generator's Site Addre	ess (if different t	han mailing add	ress)	
	Generator's Phone: 6. Transporter 1 Company Nar	Indianapolis, IN 46278 Attn: Tobias Schroeder				U.S. EPA ID) Number	
	7. Transporter 2 Company Nar	ne Dart				U.S. EPA ID) Number	
	8. Designated Facility Name at Altarmont La 10840 Altarn	id Ste Address indfill ont Pass Road				U.S. EPA ID) Number	
	Livermore, C Facility's Phone:						AD981382	2732
	9. Waste Shipping Nam	e and Description		10. Co No.	ntainers Type	11. Total Quantity	12. Unit Wt./Vol.	
GENERATOR	1. Soil with Ga	soline (Non-hazardous non-regulat	ed)	01	DT	18	Y	
- GENEF	2.							
	3.							
	4.							
C.A.	13. Special Handling Instruction	ons and Additional Information				<u> </u>		
		- ··				,		
		CATION: I certify the materials described above on this		t to federal regulations	for reporting pr	oper disposal of	Hazardous Was	te. Month Day Year
INT'L A	15. International Shipments	Ranza on behalf of		U.S. Port o	OSICE f entry/exit:	h (en	7/1/17/08
	Transporter Signature (for exp 16. Transporter Acknowledgm		· · · · · · · · · · · · · · · · · · ·	Date I	eaving U.S.:			
TRANSPORTER	Transporter 1 Printed/Typed N	25Te		gnature Di mature	Kun	le		
1	17. Discrepancy 17a. Discrepancy Indication S	pace Quantity	Туре	Residue		Partial !	Rejection	Full Rejection
- - -	17b. Alternate Facility (or Gen	erator)		Manifest Referen	ce Number:	U.S. EPA	ID Number	
DESIGNATED FACILITY	Facility's Phone: 17c. Signature of Alternate Fa	cility (or Generator)	<u> </u>				· -	Month Day Year
- DESIGN				ulti-			1984 173 - 173 174 - 174 174 - 174	
	18. Designated Facility Owner Printed/Typed Name	r or Operator: Certification of receipt of materials cover		pt as noted in Hem 7a				Month Day Year
V	1	Ken Brown	XI I		\leq	DECIONA	TED F40"	1 18 3
16	9-BLC-O 6 10498 (Re	v. 8/06)	U -		*	DESIGNA	ied facil	LITY TO GENERATOR

2 January, 2008

Dennis Beartschi Conestoga-Rovers & Assoc. - Emeryville [Shell] 5900 Hollis Street Suite A Emeryville, CA 94608

RE: 999 San Pablo Ave, Albany

Work Order: MQL0233

Enclosed are the results of analyses for samples received by the laboratory on 12/06/07 17:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Leticia Reyes Project Manager

Amended Report

CA ELAP Certificate # 2682

leticio Rujes

The Chain(s) of Custody, 6 pages, are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

For Volatile Analysis a trip blank is required to be provided. If trip blank results are not included in the report, then either the trip blank was not submitted or requested to be analyzed.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Amended Report

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-1(A-D)	MQL0233-01	Soil	12/06/07 13:00	12/06/07 17:30

Amended Report

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Total Purgeable Hydrocarbons by GC/MS (CA LUFT)

TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
SP-1(A-D) (MQL0233-01) Soil Sampled: 12/06/07 13:00 Received: 12/06/07 17:30												
Gasoline Range Organics (C4-C12)	97	2.5	mg/kg	1	7L08005	12/08/07	12/08/07	LUFT GCMS				
Surrogate: 1,2-Dichloroethane-d4		89 %	65-13	5	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		123 %	60-12	5	"	"	"	"				
Surrogate: Dibromofluoromethane		93 %	50-13	5	"	"	"	"				
Surrogate: Toluene-d8		98 %	70-12	0	"	"	"	"				

Amended Report

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Extractable Hydrocarbons by EPA 8015B

TestAmerica Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
P-1(A-D) (MQL0233-01) Soil Sampled: 12/06/07 13:00 Received: 12/06/07 17:30												
Motor Oil (C16-C36)	ND	10	mg/kg	1	7L10022	12/10/07	12/10/07	EPA 8015B-SVOA				
Diesel Range Organics (C10-C28)	42	1.0	"	"	"	"	"	"	Q1			
Surrogate: n-Octacosane		84 %	60-	150	"	"	"	"				

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project:999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-1(A-D) (MQL0233-01) Soil	Sampled: 12/06/07 13:00	Received: 12/06/0	7 17:30						
Mercury	0.071	0.020	mg/kg	1	7L12016	12/12/07	12/12/07	EPA 7471A	
Antimony	ND	10	"	2	7L10036	12/10/07	12/11/07	EPA 6010B	RL1
Arsenic	ND	10	"	"	"	"	"	"	RL1
Barium	140	10	"	"	"	"	"	"	
Beryllium	0.46	0.10	"	1	"	"	12/11/07	"	
Cadmium	ND	1.0	"	2	"	"	12/11/07	"	RL1
Chromium	50	5.0	"	1	"	"	12/11/07	"	
Cobalt	9.5	1.0	"	2	"	"	12/11/07	"	
Copper	23	4.0	"	1	"	"	12/11/07	"	
Lead	10	10	"	2	"	"	12/11/07	"	
Molybdenum	ND	1.0	"	1	"	"	12/11/07	"	
Nickel	53	10	"	2	"	"	12/11/07	"	
Selenium	ND	20	"	"	"	"	"	"	RL1
Silver	ND	1.0	"	"	"	"	"	"	RL1
Thallium	ND	10	"	"	"	"	"	"	RL1
Vanadium	38	5.0	"	1	"	"	12/11/07	"	
Zinc	44	10	"	2	"	"	12/11/07	"	

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

STLC Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-1(A-D) (MQL0233-01) Soil	Sampled: 12/06/07 13:00 R	Received: 12/06/0	7 17:30						
Chromium	0.33	0.011	mg/l	1	7L31011	12/31/07	12/31/07	EPA 6010B	

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-1(A-D) (MQL0233-01) Soil Sampled: 1	2/06/07 13:00 Rec	eived: 12/06/0	7 17:30						
Ethylbenzene	0.13	0.050	mg/kg	1	7L08005	12/08/07	12/08/07	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		89 %	65-13.	5	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		123 %	60-12.	5	"	"	"	"	
Surrogate: Dibromofluoromethane		93 %	50-135		"	"	"	"	
Surrogate: Toluene-d8		98 %	70-12	0	"	"	"	"	
Benzene	0.029	0.0050	mg/kg	1	7L07002	12/07/07	12/07/07	"	
Toluene	ND	0.0050	"	"	"	"	"	"	
Xylenes (total)	0.029	0.0050	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		96 %	50-13.	5	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		90 %	65-13.	5	"	"	"	"	
Surrogate: Toluene-d8		152 %	70-12	0	"	"	"	"	ZX
Surrogate: 4-Bromofluorobenzene		1120 %	60-12.	5	"	"	"	"	ZX

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project: 999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number: [none]Reported:Emeryville CA, 94608Project Manager: Dennis Beartschi01/02/08 13:30

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (7L07002-BLK1)				Prepared &	Analyzed:	12/07/07				
Gasoline Range Organics (C4-C12)	ND	0.10	mg/kg							
Surrogate: 1,2-Dichloroethane-d4	0.00442		"	0.00500		88	65-135			
Surrogate: 4-Bromofluorobenzene	0.00394		"	0.00500		79	60-125			
Surrogate: Dibromofluoromethane	0.00456		"	0.00500		91	50-135			
Surrogate: Toluene-d8	0.00454		"	0.00500		91	70-120			
Laboratory Control Sample (7L07002-BS2))			Prepared &	Analyzed:	12/07/07				
Gasoline Range Organics (C4-C12)	0.714	0.10	mg/kg	1.00		71	60-120			
Surrogate: 1,2-Dichloroethane-d4	0.00436		"	0.00500		87	65-135			
Surrogate: 4-Bromofluorobenzene	0.00476		"	0.00500		95	60-125			
Surrogate: Dibromofluoromethane	0.00448		"	0.00500		90	50-135			
Surrogate: Toluene-d8	0.00482		"	0.00500		96	70-120			
Laboratory Control Sample Dup (7L07002-	-BSD2)	SD2)			Analyzed:	12/07/07				
Gasoline Range Organics (C4-C12)	0.749	0.10	mg/kg	1.00		75	60-120	5	40	
Surrogate: 1,2-Dichloroethane-d4	0.00436		"	0.00500		87	65-135			
Surrogate: 4-Bromofluorobenzene	0.00468		"	0.00500		94	60-125			
Surrogate: Dibromofluoromethane	0.00454		"	0.00500		91	50-135			
Surrogate: Toluene-d8	0.00486		"	0.00500		97	70-120			
Matrix Spike (7L07002-MS1)	Source: MQL	.0233-01		Prepared &	Analyzed:	12/07/07				
Gasoline Range Organics (C4-C12)	21.2	0.10	mg/kg	1.10	79.3	0	50-135			E, MHA, R2
Surrogate: 1,2-Dichloroethane-d4	0.00444		"	0.00500		89	65-135			
Surrogate: 4-Bromofluorobenzene	0.0143		"	0.00500		286	60-125			Z
Surrogate: Dibromofluoromethane	0.00490		"	0.00500		98	50-135			
Surrogate: Toluene-d8	0.00538		"	0.00500		108	70-120			
Matrix Spike Dup (7L07002-MSD1)	Source: MQL	.0233-01		Prepared &	Analyzed:	12/07/07				
Gasoline Range Organics (C4-C12)	13.0	0.10	mg/kg	1.10	79.3	0	50-135	48	40	E, MHA
Surrogate: 1,2-Dichloroethane-d4	0.00432		"	0.00500		86	65-135			
Surrogate: 4-Bromofluorobenzene	0.00908		"	0.00500		182	60-125			Z^{λ}
Surrogate: Dibromofluoromethane	0.00502		"	0.00500		100	50-135			
Surrogate: Toluene-d8	0.00526		"	0.00500		105	70-120			

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project: 999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number: [none]Reported:Emeryville CA, 94608Project Manager: Dennis Beartschi01/02/08 13:30

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch 7L08005 - EPA 5030B/5035A MeOH / 1	LUFT	GCMS.
--	------	-------

Blank (7L08005-BLK1)		Prepared & Analy	yzed: 12/08/07						
Gasoline Range Organics (C4-C12)	ND	2.5	mg/kg						
Surrogate: 1,2-Dichloroethane-d4	0.00246		"	0.00250	98	65-135			
Surrogate: 4-Bromofluorobenzene	0.00234		"	0.00250	94	60-125			
Surrogate: Dibromofluoromethane	0.00223		"	0.00250	89	50-135			
Surrogate: Toluene-d8	0.00242		"	0.00250	97	70-120			
Laboratory Control Sample (7L08005-F	aboratory Control Sample (7L08005-BS2)								
Gasoline Range Organics (C4-C12)	58.4	2.5	mg/kg	50.0	117	60-120			
Surrogate: 1,2-Dichloroethane-d4	0.00249		"	0.00250	100	65-135			
Surrogate: 4-Bromofluorobenzene	0.00251		"	0.00250	100	60-125			
Surrogate: Dibromofluoromethane	0.00242		"	0.00250	97	50-135			
Surrogate: Toluene-d8	0.00247		"	0.00250	99	70-120			
Laboratory Control Sample Dup (7L08	005-BSD2)			Prepared & Analy	yzed: 12/08/07				
Gasoline Range Organics (C4-C12)	57.6	2.5	mg/kg	50.0	115	60-120	1	40	
Surrogate: 1,2-Dichloroethane-d4	0.00252		"	0.00250	101	65-135			
Surrogate: 4-Bromofluorobenzene	0.00252		"	0.00250	101	60-125			
Surrogate: Dibromofluoromethane	0.00236		"	0.00250	94	50-135			
Surrogate: Toluene-d8	0.00244		"	0.00250	98	70-120			

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Extractable Hydrocarbons by EPA 8015B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7L10022	- EPA 3550B	/ EPA 8015B-SVOA
---------------	-------------	------------------

Blank (7L10022-BLK1)	Prepared & Analyzed: 12/10/07									
Motor Oil (C16-C36)	ND	10	mg/kg							
Diesel Range Organics (C10-C28)	ND	1.0	"							
Surrogate: n-Octacosane	1.58		"	1.67		95	60-150			
Laboratory Control Sample (7L10022-BS1)				Prepared &	Analyzed:	12/10/07				
Diesel Range Organics (C10-C28)	16.2	1.0	mg/kg	16.7		97	65-120			
Surrogate: n-Octacosane	1.60		"	1.67		96	60-150			
Matrix Spike (7L10022-MS1)	Source: MQL	0203-01		Prepared &	Analyzed:	12/10/07				
Diesel Range Organics (C10-C28)	12.1	1.0	mg/kg	16.7	1.49	64	15-135			
Surrogate: n-Octacosane	1.56		"	1.67		93	60-150			
Matrix Spike Dup (7L10022-MSD1)	Source: MQL	0203-01		Prepared &	Prepared & Analyzed: 12/10/07					
Diesel Range Organics (C10-C28)	12.4	1.0	mg/kg	16.7	1.49	66	15-135	3	40	
Surrogate: n-Octacosane	1.60		"	1.67		96	60-150			

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Ratch	71	10036	- EPA	3050B	/ EPA	6010R

	11/07
zed: 12/	11/07
81	80-120
83	80-120
83	80-120
83	80-120
84	80-120
84 84	
	80-120
84	80-120 80-120
84 83	80-120 80-120 80-120
84 83 83	80-120 80-120 80-120 80-120
84 83 83 86	80-120 80-120 80-120 80-120 80-120
84 83 83 86 84	80-120 80-120 80-120 80-120 80-120
84 83 83 86 84 85	80-120 80-120 80-120 80-120 80-120 80-120 80-120
84 83 83 86 84 85 83	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
84 83 83 86 84 85 83 82	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
	81 83 83

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project: 999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number: [none]Reported:Emeryville CA, 94608Project Manager: Dennis Beartschi01/02/08 13:30

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Ratch 7	T.10036 -	FPA	3050R	/ FPA	6010R

Mathematic Ma	Matrix Spike (7L10036-MS1)	Source: MQL	.0225-01		Prepared:	12/10/07 An	nalyzed: 12	2/11/07			
Barium 133 5.0 "8 500 894 88 80-120" Baryllime 44,7 0,10 " 500 0,380 87 0,80-120 Cladmium 97,8 5.0 "500 0,489 108 80-120 Clondrium 97,8 5.0 "500 0,489 108 80-120 Clondrium 97,8 5.0 "500 0,489 108 80-120 Clondrium 155,53 0,50 " 500 9,86 0,1 80-120 Clondrium 155,53 0,50 " 500 9,86 0,1 80-120 Clondrium 150,50 100 " 500 100 100 80-120 Clondrium 150,50 100 " 500 100 100 80-120 Clondrium 150,50 100 100 100 100 100 100 100 100 100 1	Antimony	11.6	5.0	mg/kg	50.0	0.690	22	80-120			M8
Beryllium	Arsenic	53.2	5.0	"	50.0	11.6	83	80-120			
Cadmium 44.8 0.50 " 50.0 0.10 89 80-120 Chromium 97.8 5.0 " 50.0 43.9 108 80-120 Cobalt 55.3 0.50 " 50.0 9.81 108 80-120 Copper 75.0 40.0 " 50.0 21.1 108 80-120 Lead 50.9 5.0 " 50.0 51.4 92 80-120 Molybedeum 39.7 1.0 " 50.0 51.4 97 80-120 Siker 121 50 " 50.0 1.24 77 80-120 Siker 121 50 " 50.0 1.25 86 80-120 Siker 44.1 0.50 " 50.0 1.25 88 80-120 Thallium 38.4 5.0 " 50.0 1.0 10.1 80-12 Amanium 10.1 50 "	Barium	133	5.0	"	50.0	89.4	88	80-120			
Chromium 97.8 5.0 " 50.0 4.3 g 10.8 g 80-120 Cobalt 55.3 0.50 " 50.0 9.8 g 91 g 80-120 Copper 75.0 4.0 " 50.0 9.8 g 91 g 80-120 Lead 50.0 5.0 " 50.0 5.14 g 92 g 80-120 Molybdenum 39.7 1.0 " 50.0 5.18 g 70 g 80-120 Silver 121 5.0 " 50.0 5.28 g 86 g 80-120 Silver 44.1 0.50 g " 50.0 8.25 g 86 g 80-120 Silver 44.1 0.50 g " 50.0 8.05 g 86 g 80-120 Silver 44.1 0.50 g " 50.0 1.05 g 80-120 10.0 Silver 101 g 5.0 " 50.0 1.05 g 80-120 10.1 3.5 M8 Aracic 10.1 5.0 " 80.0 1.0 g 80-120 11.1 3.5 <td>Beryllium</td> <td>43.7</td> <td>0.10</td> <td>"</td> <td>50.0</td> <td>0.380</td> <td>87</td> <td>80-120</td> <td></td> <td></td> <td></td>	Beryllium	43.7	0.10	"	50.0	0.380	87	80-120			
Cobalt	Cadmium	44.8	0.50	"	50.0	0.100	89	80-120			
Copper	Chromium	97.8	5.0	"	50.0	43.9	108	80-120			
Lead	Cobalt	55.3	0.50	"	50.0	9.86	91	80-120			
Molybdenum 39,7 1.0 " 50,0 1.04 77 80-120	Copper	75.0	4.0	"	50.0	21.1	108	80-120			
Nickel 121 5.0 " 50.0 57.8 127 80-120 Headen (Mark) Mark (Mark) Mark (Mark) Silver 46.0 10 " 50.0 3.25 86 80-120 Headen (Mark) Mark (Mark) % 50.0 0.235 88 80-120 Headen (Mark) Mark (Mark) % 50.0 0.235 88 80-120 Headen (Mark) Mark (Mark) % 50.0 46.0 110 80-120 Mark Mark Mark 70.0 46.0 110 80-120 Mark Mark 70.0 46.0 110 80-120 Mark Mark 70.0 50.0 54.2 105 80-120 11 35 Mark Amis Spike Dup (7L10036-MSD1) Source: MU-U-25-t1 Prepared: 17.00 46.0 10.1 80-120 11 35 Mark Arsenic 44.3 5.0 "grepared: 17.00 11.6 60 80-120 11 35 Mark Mark Mark Mark <	Lead	50.9	5.0	"	50.0	5.14	92	80-120			
Selenium	Molybdenum	39.7	1.0	"	50.0	1.04	77	80-120			M8
Silver 44.1 0.50 " 50.0 0.235 88 80-120 Thallium 38.4 5.0 " 50.0 ND 77 80-120 M8 Vanadium 101 5.0 " 50.0 46.0 110 80-120 M8 Zinc 107 5.0 " 50.0 46.0 110 80-120 M8 Matrix Spike Dup (7L10036-MSD1) Source: MVLv2t>-U Preparet: 12/10/77 Antipote 12/11/07 111 35 M8 Arsenic 44.3 5.0 mg/kg 50.0 6.09 19 80-120 11 35 M8 Barium 119 5.0 " 50.0 80-4 90 11 35 M8 Beryllium 37.4 50.0 " 50.0 80-4 90 11 35 M8 Chadmium 48.2 50.0 " 50.0 0.10 76 80-120 15 35 M8	Nickel	121	5.0	"	50.0	57.8	127	80-120			M7
Thallium 38.4 5.0 " 50.0 ND 77 80-120 M8 78 M8 78 70.0 46.0 110 80-120 M8 70 70.0 46.0 110 80-120 M8 70 70.0 50.0 54.2 105 80-120 M8 70 M8 70 80-120 11 35 M8 70 71 80-120 11 35 M8 70 80-120 11 35 M8 80 80-120 11 35 M8 80 80-120 11 35 M8 90 80-120 11 35 M8 90 10 90	Selenium	46.0	10	"	50.0	3.25	86	80-120			
Vanadium 101 5.0 " 50.0 46.0 110 80-120 Zine 107 5.0 " 50.0 54.2 105 80-120 Matrix Spike Dup (7L10036-MSD1) Source: MQL0225-U Prepared: 12/10/7 X-muret: 12/10/7 X-muret: 12/11/7 Antimony 10.4 5.0 mg/kg 50.0 0.690 19 80-120 11 35 M8 Arsenic 44.3 5.0 " 50.0 11.6 66 80-120 11 35 M8 Barium 119 5.0 " 50.0 89.4 59 80-120 11 35 M8 Beryllium 37.4 0.10 " 50.0 0.380 74 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.10 76 80-120 16 35 M8 Cobalt 45.2 0.50 " 50.0 21.1 75	Silver	44.1	0.50	"	50.0	0.235	88	80-120			
Zine 107 5.0 " 50.0 54.2 105 80-120 Matrix Spike Dup (7L10036-MSD1) Source: MQL0225-01 Prepared: 12/10/07 Prepared: 12/10/07 Nalyzed: 12/11/07 Antimony 10.4 5.0 mg/kg 50.0 0.690 19 80-120 11 35 M8 Arsenic 44.3 5.0 " 50.0 11.6 66 80-120 11 35 M8 Barium 119 5.0 " 50.0 89.4 59 80-120 11 35 M8 Cadmium 37.4 0.10 " 50.0 0.380 74 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chonium 69.6 5.0 " 50.0 9.86 71 80-120 16 35 M8 Cobalt 45.2 0.50 " 5	Thallium	38.4	5.0	"	50.0	ND	77	80-120			M8
Matrix Spike Dup (7L10036-MSD1) Source: MQL0225-01 Prepared: 12/10/07 Analyzed: 12/11/07 Analyzed: 12/11/07 Antimony 10.4 5.0 mg/kg 50.0 0.690 19 80-120 11 35 M8 Arsenic 44.3 5.0 " 50.0 11.6 66 80-120 11 35 M8 Barium 119 5.0 " 50.0 89.4 59 80-120 11 35 M8 Beryllium 37.4 0.10 " 50.0 89.4 59 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chromium 69.6 5.0 " 50.0 9.86 71 80-120 34 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 24 35 M8 Lead 43.1	Vanadium	101	5.0	"	50.0	46.0	110	80-120			
Antimony 10.4 5.0 mg/kg 50.0 0.690 19 80-120 11 35 M8 Arsenic 44.3 5.0 " 50.0 11.6 66 80-120 18 35 M8 Barium 119 5.0 " 50.0 89.4 59 80-120 11 35 M8 Beryllium 37.4 0.10 " 50.0 0.380 74 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chromium 69.6 5.0 " 50.0 43.9 52 80-120 16 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 20 35 M8 Copper 58.8 4.0 " 50.0 5.14 76 80-120 17 35 M8	Zinc	107	5.0	"	50.0	54.2	105	80-120			
Arsenic 44.3 5.0 " 50.0 11.6 66 80-120 18 35 M8 Barium 119 5.0 " 50.0 89.4 59 80-120 11 35 M8 Beryllium 37.4 0.10 " 50.0 0.380 74 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chromium 69.6 5.0 " 50.0 43.9 52 80-120 34 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 24 35 M8 Copper 58.8 4.0 " 50.0 51.4 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 57.8 64 80-120 14 35 M8 <	Matrix Spike Dup (7L10036-MSD1)	Source: MQL	.0225-01		Prepared:	12/10/07 An	nalyzed: 12	2/11/07			
Barium 119 5.0 " 50.0 89.4 59 80-120 11 35 M8 Beryllium 37.4 0.10 " 50.0 0.380 74 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chromium 69.6 5.0 " 50.0 43.9 52 80-120 34 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 20 35 M8 Copper 58.8 4.0 " 50.0 21.1 75 80-120 24 35 M8 Lead 43.1 5.0 " 50.0 5.14 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 57.8 64 80-120 30 35 M8											
Beryllium 37.4 0.10 " 50.0 0.380 74 80-120 15 35 M8 Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chromium 69.6 5.0 " 50.0 43.9 52 80-120 34 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 20 35 M8 Copper 58.8 4.0 " 50.0 21.1 75 80-120 24 35 M8 Lead 43.1 5.0 " 50.0 5.14 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 57.8 64 80-120 14 35 M8 Selenium 36.7 10 " 50.0 57.8 64 80-120 12 35 M8 <t< td=""><td>Antimony</td><td>10.4</td><td></td><td>mg/kg</td><td></td><td>0.690</td><td>19</td><td></td><td>11</td><td>35</td><td>M8</td></t<>	Antimony	10.4		mg/kg		0.690	19		11	35	M8
Cadmium 38.2 0.50 " 50.0 0.100 76 80-120 16 35 M8 Chromium 69.6 5.0 " 50.0 43.9 52 80-120 34 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 20 35 M8 Copper 58.8 4.0 " 50.0 21.1 75 80-120 24 35 M8 Lead 43.1 5.0 " 50.0 5.14 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 51.4 76 80-120 14 35 M8 Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 0.235 76 80-120 32 35 M8	, and the second		5.0		50.0			80-120			
Chromium 69.6 5.0 " 50.0 43.9 52 80-120 34 35 M8 Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 20 35 M8 Copper 58.8 4.0 " 50.0 21.1 75 80-120 24 35 M8 Lead 43.1 5.0 " 50.0 5.14 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 1.04 67 80-120 14 35 M8 Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 57.8 64 80-120 32 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8	Arsenic	44.3	5.0 5.0	"	50.0	11.6	66	80-120 80-120	18	35	M8
Cobalt 45.2 0.50 " 50.0 9.86 71 80-120 20 35 M8 Copper 58.8 4.0 " 50.0 21.1 75 80-120 24 35 M8 Lead 43.1 5.0 " 50.0 5.14 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 1.04 67 80-120 14 35 M8 Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 3.25 67 80-120 32 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8	Arsenic Barium	44.3 119	5.0 5.0 5.0	"	50.0 50.0 50.0	11.6 89.4	66 59	80-120 80-120 80-120	18 11	35 35	M8 M8
Copper 58.8 4.0 " 50.0 21.1 75 80-120 24 35 M8 Lead 43.1 5.0 " 50.0 5.14 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 1.04 67 80-120 14 35 M8 Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 3.25 67 80-120 22 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium	44.3 119 37.4	5.0 5.0 5.0 0.10	"	50.0 50.0 50.0 50.0	11.6 89.4 0.380	66 59 74	80-120 80-120 80-120 80-120	18 11 15	35 35 35	M8 M8 M8
Lead 43.1 5.0 " 50.0 51.1 76 80-120 17 35 M8 Molybdenum 34.4 1.0 " 50.0 1.04 67 80-120 14 35 M8 Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 3.25 67 80-120 22 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium	44.3 119 37.4 38.2	5.0 5.0 5.0 0.10 0.50	" "	50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100	66 59 74 76	80-120 80-120 80-120 80-120 80-120	18 11 15 16	35 35 35 35	M8 M8 M8
Molybdenum 34.4 1.0 " 50.0 1.04 67 80-120 14 35 M8 Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 3.25 67 80-120 22 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium	44.3 119 37.4 38.2 69.6	5.0 5.0 5.0 0.10 0.50 5.0	"" "" "" "" "" "" "" "" "" "" "" "" ""	50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9	66 59 74 76 52	80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34	35 35 35 35 35	M8 M8 M8 M8
Nickel 89.9 5.0 " 50.0 57.8 64 80-120 30 35 M8 Selenium 36.7 10 " 50.0 3.25 67 80-120 22 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium Cobalt	44.3 119 37.4 38.2 69.6 45.2	5.0 5.0 5.0 0.10 0.50 5.0	11 11 11 11 11 11 11 11 11 11 11 11 11	50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86	66 59 74 76 52 71	80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20	35 35 35 35 35 35	M8 M8 M8 M8 M8
Selenium 36.7 10 " 50.0 3.25 67 80-120 22 35 M8 Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	44.3 119 37.4 38.2 69.6 45.2 58.8	5.0 5.0 5.0 0.10 0.50 5.0 0.50 4.0	11 11 11 11	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1	66 59 74 76 52 71 75	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24	35 35 35 35 35 35 35 35	M8 M8 M8 M8 M8 M8
Silver 38.4 0.50 " 50.0 0.235 76 80-120 14 35 M8 Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	44.3 119 37.4 38.2 69.6 45.2 58.8 43.1	5.0 5.0 5.0 0.10 0.50 5.0 0.50 4.0 5.0	"" "" "" "" "" "" "" "" "" "" "" "" ""	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1 5.14	66 59 74 76 52 71 75 76	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24	35 35 35 35 35 35 35 35 35	M8 M8 M8 M8 M8 M8
Thallium 33.5 5.0 " 50.0 ND 67 80-120 13 35 M8 Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	44.3 119 37.4 38.2 69.6 45.2 58.8 43.1 34.4	5.0 5.0 5.0 0.10 0.50 5.0 0.50 4.0 5.0	"" "" "" "" "" "" "" "" "" "" "" "" ""	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1 5.14	66 59 74 76 52 71 75 76 67	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24 17	35 35 35 35 35 35 35 35 35 35	M8 M8 M8 M8 M8 M8 M8
Vanadium 76.4 5.0 " 50.0 46.0 61 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	44.3 119 37.4 38.2 69.6 45.2 58.8 43.1 34.4 89.9	5.0 5.0 0.10 0.50 5.0 0.50 4.0 5.0 1.0	"" "" "" "" "" "" "" "" "" "" "" "" ""	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1 5.14 1.04 57.8	66 59 74 76 52 71 75 76 67	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24 17 14 30	35 35 35 35 35 35 35 35 35 35 35	M8 M8 M8 M8 M8 M8 M8 M8
Validation 70.4 5.0 50.0 40.0 01 50-120 26 55 1910	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	44.3 119 37.4 38.2 69.6 45.2 58.8 43.1 34.4 89.9 36.7	5.0 5.0 0.10 0.50 5.0 0.50 4.0 5.0 1.0	" " " " " " " " " " " " "	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1 5.14 1.04 57.8 3.25	66 59 74 76 52 71 75 76 67 64	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24 17 14 30 22	35 35 35 35 35 35 35 35 35 35 35 35	M8 M8 M8 M8 M8 M8 M8 M8
Zinc 81.0 5.0 " 50.0 54.2 54 80-120 28 35 M8	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	44.3 119 37.4 38.2 69.6 45.2 58.8 43.1 34.4 89.9 36.7 38.4	5.0 5.0 0.10 0.50 5.0 0.50 4.0 5.0 1.0 5.0 10	11 11 11 11 11 11 11 11 11 11 11 11 11	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1 5.14 1.04 57.8 3.25 0.235	66 59 74 76 52 71 75 76 67 64 67 76	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24 17 14 30 22 14	35 35 35 35 35 35 35 35 35 35 35 35 35	M8
	Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium	44.3 119 37.4 38.2 69.6 45.2 58.8 43.1 34.4 89.9 36.7 38.4 33.5	5.0 5.0 5.0 0.10 0.50 5.0 0.50 4.0 5.0 1.0 5.0 1.0 5.0 5.0		50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	11.6 89.4 0.380 0.100 43.9 9.86 21.1 5.14 1.04 57.8 3.25 0.235 ND	66 59 74 76 52 71 75 76 67 64 67 76	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	18 11 15 16 34 20 24 17 14 30 22 14 13	35 35 35 35 35 35 35 35 35 35 35 35 35 3	M8

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Total Metals by EPA 6000/7000 Series Methods - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7L12016 - EPA 7471A / EPA 7471A										
Blank (7L12016-BLK1)				Prepared &	Analyzed:	12/12/07				
Mercury	ND	0.020	mg/kg							
Blank (7L12016-BLK2)				Prepared &	Analyzed:	12/12/07				
Mercury	ND	0.020	mg/kg							
Laboratory Control Sample (7L12016-BS1)				Prepared &	Analyzed:	12/12/07				
Mercury	0.649	0.020	mg/kg	0.667		97	80-120			
Laboratory Control Sample (7L12016-BS2)				Prepared &	Analyzed:	12/12/07				
Mercury	0.596	0.020	mg/kg	0.667		89	80-120			
Matrix Spike (7L12016-MS1)	Source: MQ	L0242-01		Prepared &	Analyzed:	12/12/07				
Mercury	0.249	0.020	mg/kg	0.667	ND	37	80-120			M8
Matrix Spike Dup (7L12016-MSD1)	Source: MQ	L0242-01		Prepared &	Analyzed:	12/12/07				
Mercury	0.365	0.020	mg/kg	0.667	ND	55	80-120	38	25	M8

RPD

Amended Report

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

STLC Metals by EPA 6000/7000 Series Methods - Quality Control TestAmerica Morgan Hill

Reporting

1 0501 111101 1011	 	

Source

%REC

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7L31011 - Title 22-STLC / EPA 6010	В									
Blank (7L31011-BLK1)				Prepared &	Analyzed:	12/31/07				
Chromium	ND	0.011	mg/l							
Laboratory Control Sample (7L31011-BS1)				Prepared &	Analyzed:	12/31/07				
Chromium	7.84	0.011	mg/l	8.00		98	80-120			
Matrix Spike (7L31011-MS1)	Source: MQK	0570-01		Prepared &	Analyzed:	12/31/07				
Chromium	8.38	0.011	mg/l	8.00	0.742	95	80-120			
Matrix Spike Dup (7L31011-MSD1)	Source: MQK	0570-01		Prepared & Analyzed: 12/31/07						
Chromium	8.19	0.011	mg/l	8.00	0.742	93	80-120	2	35	

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Blank (7L07002-BLK1)				Prepared &	Analyzed:	12/07/07		
Benzene	ND	0.0050	mg/kg					
Ethylbenzene	ND	0.0050	"					
Toluene	ND	0.0050	"					
Xylenes (total)	ND	0.0050	"					
Surrogate: Dibromofluoromethane	0.00456		"	0.00500		91	50-135	
Surrogate: 1,2-Dichloroethane-d4	0.00442		"	0.00500		88	65-135	
Surrogate: Toluene-d8	0.00454		"	0.00500		91	70-120	
Surrogate: 4-Bromofluorobenzene	0.00394		"	0.00500		79	60-125	
Laboratory Control Sample (7L07002-BS1)				Prepared &	Analyzed:	12/07/07		
Benzene	0.0184	0.0050	mg/kg	0.0200		92	75-125	
Ethylbenzene	0.0193	0.0050	"	0.0200		97	75-130	
Toluene	0.0184	0.0050	"	0.0200		92	75-135	
Xylenes (total)	0.0597	0.0050	"	0.0600		99	75-135	
Surrogate: Dibromofluoromethane	0.00458		"	0.00500		92	50-135	
Surrogate: 1,2-Dichloroethane-d4	0.00436		"	0.00500		87	65-135	
Surrogate: Toluene-d8	0.00470		"	0.00500		94	70-120	
Surrogate: 4-Bromofluorobenzene	0.00470		"	0.00500		94	60-125	
Matrix Spike (7L07002-MS1)	Source: MQ	L0233-01		Prepared &	Analyzed:	12/07/07		
Benzene	0.0182	0.0050	mg/kg	0.0200	0.0287	0	65-145	M2
Ethylbenzene	0.0201	0.0050	"	0.0200	0.354	0	75-140	MHA, E
Toluene	0.0188	0.0050	"	0.0200	ND	94	65-140	
Xylenes (total)	0.0592	0.0050	"	0.0600	0.0295	50	70-145	M2
Surrogate: Dibromofluoromethane	0.00490		"	0.00500		98	50-135	
Surrogate: 1,2-Dichloroethane-d4	0.00444		"	0.00500		89	65-135	
Surrogate: Toluene-d8	0.00538		"	0.00500		108	70-120	
Surrogate: 4-Bromofluorobenzene	0.0143		"	0.00500		286	60-125	ZX

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7L07002 - EPA 5030B P/T / EPA 8260B

Matrix Spike Dup (7L07002-MSD1)	Source: MQl		Prepared & Analyzed: 12/07/07							
Benzene	0.0193	0.0050	mg/kg	0.0200	0.0287	0	65-145	6	25	M2
Ethylbenzene	0.0214	0.0050	"	0.0200	0.354	0	75-140	7	30	MHA, E
Toluene	0.0205	0.0050	"	0.0200	ND	103	65-140	9	25	
Xylenes (total)	0.0646	0.0050	"	0.0600	0.0295	59	70-145	9	30	M2
Surrogate: Dibromofluoromethane	0.00502		"	0.00500		100	50-135			
Surrogate: 1,2-Dichloroethane-d4	0.00432		"	0.00500		86	65-135			
Surrogate: Toluene-d8	0.00526		"	0.00500		105	70-120			
Surrogate: 4-Bromofluorobenzene	0.00908		"	0.00500		182	60-125			ZX

Batch 7L08005 - EPA 5030B/5035A MeOH / EPA 8260B

Blank (7L08005-BLK1)				Prepared & Analy	yzed: 12/08/07							
Benzene	ND	0.050	mg/kg									
Ethylbenzene	ND	0.050	"									
Toluene	ND	0.050	"									
Xylenes (total)	ND	0.050	"									
Surrogate: 1,2-Dichloroethane-d4	0.00246		"	0.00250	98	65-135						
Surrogate: 4-Bromofluorobenzene	0.00234		"	0.00250	94	60-125						
Surrogate: Dibromofluoromethane	0.00223		"	0.00250	89	50-135						
Surrogate: Toluene-d8	0.00242		"	0.00250	97	70-120						
Laboratory Control Sample (7L08005-BS1)	Laboratory Control Sample (7L08005-BS1)						Prepared & Analyzed: 12/08/07					
Benzene	1.02	0.050	mg/kg	1.00	102	75-125						
Ethylbenzene	1.05	0.050	"	1.00	105	75-130						
Toluene	0.957	0.050	"	1.00	96	75-135						
Xylenes (total)	3.17	0.050	"	3.00	106	75-135						
Surrogate: 1,2-Dichloroethane-d4	0.00259		"	0.00250	104	65-135						
Surrogate: 4-Bromofluorobenzene	0.00260		"	0.00250	104	60-125						
Surrogate: Dibromofluoromethane	0.00244		"	0.00250	98	50-135						
Surrogate: Toluene-d8	0.00243		"	0.00250	97	70-120						

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number:[none]Reported:Emeryville CA, 94608Project Manager:Dennis Beartschi01/02/08 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control

TestAmerica Morgan Hill

		Reporting		Spike	Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		

Batch 7L08005 - EPA 5030B/5035A MeOH / EPA 8260B

BSD1)	Prepared & Analyzed: 12/08/07								
1.20	0.050	mg/kg	1.00	120	75-125	16	25		
1.24	0.050	"	1.00	124	75-130	16	30		
1.12	0.050	"	1.00	112	75-135	15	25		
3.74	0.050	"	3.00	125	75-135	16	30		
0.00242		"	0.00250	97	65-135				
0.00253		"	0.00250	101	60-125				
0.00240		"	0.00250	96	50-135				
0.00247		"	0.00250	99	70-120				
	1.24 1.12 3.74 0.00242 0.00253 0.00240	1.20 0.050 1.24 0.050 1.12 0.050 3.74 0.050 0.00242 0.00253 0.00240	1.20 0.050 mg/kg 1.24 0.050 " 1.12 0.050 " 3.74 0.050 " 0.00242 " 0.00253 " 0.00240 "	1.20 0.050 mg/kg 1.00 1.24 0.050 " 1.00 1.12 0.050 " 1.00 3.74 0.050 " 3.00 0.00242 " 0.00250 0.00253 " 0.00250 0.00240 " 0.00250	1.20 0.050 mg/kg 1.00 120 1.24 0.050 " 1.00 124 1.12 0.050 " 1.00 112 3.74 0.050 " 3.00 125 0.00242 " 0.00250 97 0.00253 " 0.00250 101 0.00240 " 0.00250 96	1.20 0.050 mg/kg 1.00 120 75-125 1.24 0.050 " 1.00 124 75-130 1.12 0.050 " 1.00 112 75-135 3.74 0.050 " 3.00 125 75-135 0.00242 " 0.00250 97 65-135 0.00253 " 0.00250 101 60-125 0.00240 " 0.00250 96 50-135	1.20 0.050 mg/kg 1.00 120 75-125 16 1.24 0.050 " 1.00 124 75-130 16 1.12 0.050 " 1.00 112 75-135 15 3.74 0.050 " 3.00 125 75-135 16 0.00242 " 0.00250 97 65-135 0.00253 " 0.00250 101 60-125 0.00240 " 0.00250 96 50-135	1.20 0.050 mg/kg 1.00 120 75-125 16 25 1.24 0.050 " 1.00 124 75-130 16 30 1.12 0.050 " 1.00 112 75-135 15 25 3.74 0.050 " 3.00 125 75-135 16 30 0.00242 " 0.00250 97 65-135 0.00253 " 0.00250 101 60-125 0.00240 " 0.00250 96 50-135	

Sample results reported on a dry weight basis

Relative Percent Difference

dry RPD

Amended Report

Conestoga-Rovers & Assoc. - Emeryville [Shell]Project: 999 San Pablo Ave, AlbanyMQL02335900 Hollis Street Suite AProject Number: [none]Reported:Emeryville CA, 94608Project Manager: Dennis Beartschi01/02/08 13:30

Notes and Definitions

ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
RL1	Reporting limit raised due to sample matrix effects.
R2	The RPD exceeded the acceptance limit.
Q1	Does not match typical pattern
MHA	Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
M8	The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
M2	The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR	Not Reported

Pedro Hufano

From:

Leticia Reyes

Sent:

Friday, December 21, 2007 10:23 AM

To:

Pedro Hufano

Subject:

FW: 999 San Pablo Ave., Albany FINAL Report - MQL0233

Attachments: Leticia Reyes.vcf

Please log in for STLC extraction and STLC Cr. Make the TAT ASAP to be due by Friday of next week.

LETICIA REYES

Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

885 Jarvis Drive Morgan Hill, CA 95037 Tel 408.782.8159 i Fax 408.782.6308 www.testamericainc.com www.stl-inc.com

The holiday season is upon us. TestAmerica is dedicated on maintaining the highest level of customer satisfaction. Our facility will be closed December 24th, 25th and January 1st. Please contact your project manager with your holiday scheduling needs. Thank you and Happy Holidays!

From: Baertschi, Dennis [mailto:dbaertschi@craworld.com]

Sent: Friday, December 21, 2007 10:15 AM

To: Leticia Reyes

Subject: RE: 999 San Pablo Ave., Albany FINAL Report - MQL0233

Thanks Leticia -

Please run on as fast a turn around time as you can - we need to get this soil off the site as soon as possible -Thanks for your help on this -

Dennis Baertschi Conestoga-Rovers & Associates (CRA)

408 7th Street, Suite A, Eureka, CA 95501 Phone: 707.268.3813 Fax: 707.268.8180 Cell: 707.845.8552

dbaertschi@craworld.com

Conestoga-Rovers & Associates has acquired the former Cambria Environmental Technology Visit us at www.craworld.com

From: Leticia Reyes [mailto:Leticia.Reyes@testamericainc.com]

LAB:						SH	EL	L	Ch	air	1 O	of C	Cus	sto	dv	R	ec	oro	t							
☐ TA - Irvine, California ☐ TA - Morgan Hill, California	NAME OF PERS	ON TO	RII I ·	Bill Mer				7	1						- ,					ENT	# (ES	ONL	Υ	UNITED IN		
TA - Sacramento, California		**************************************		Dill Mici	CHAIR	·			w * **	restra.	TC NO	TAICTO	- N-T 44	ADDI T			404 04440	(250.7)	Major e	-25 (2.5)		1.716%				
TA 3 Nashville, Tennesee	3							☑ CHECK BOX TO VERIFY IF NO INCIDENT # APPLIES										19441400	4						D	ATE: 12/06/07
Calscience	☑ NETWORK DEV / FE		∐ BILE	CONSULTA	T.	o wii				i jurce	PO#								SA	P or	CRM	T#	200		D	AGE:1 of1
Other	COMPLIANCE		☐ RMT/	CRMT														1	3	5	0	3	7		''	
SAMPLING COMPANY:		LOG CODE:				SITE	ADDRE	SS: S	treet an	d City	<u></u>						State			1	BAL ID N	1	I	<u>L</u>	1	
Conestoga-Rovers & Asso	ciates	CRAW				999) Sa	n P	able	Av	re, A	Alba	ny		,	Ì		CA			600	1012	277			
ADDRESS: 5900 Hollis St., Emeryville,	CA					Sample	r:								PHONE	NO.:				E-MAIL	.:					CONSULTANT PROJECT NO.:
PROJECT CONTACT (Hardcopy or POF Re								elici	a, CR	A, So	nom	a			707 9	933 2	360			sone	omae	df@c	rawoi	ld.co	m	060118-001
DENNIS BAERTSCHI						Sample	r.																	LAI	B USE	ONLY
TELEPHONE: 707 268 3813	FAX: 707 268 8180	E-MAIL:	chi@crav	vorld.com																				9000		
TAT (STD IS 10 BUSINESS DAY		.!		ESULTS NEI		REQUESTED ANALYSIS																				
☐ STD ☑ 5 DAY ☐ 3 D	AY 🗆 Z DAY 🔘 🗆	24 Hours	(ON WEEKE	ND											RE	QUE	STE	D A	NAL	YSIS					
LA - RWQCB REPORT FORMAT	UST AGENCY:																									se year
SPECIAL INSTRUCTIONS OR NO	<u></u>	EDD NOT																							-	FIELD NOTES:
] SHELL CO] STATE RE		ATE APPLIES	5			v:																a ,		Container/Preservative
				applies On reques	TEN					ſſ												101	TCLP	TCLP		or PID Readings
		_ Nucual 1	FL,101 2Q112	on negoes	,,,,,		SM)	⇔		ETBE)											G	0	0	0		or Laboratory Notes
cc: Phil Sellers at pselle	rs@craworld.com						(8015M)	360E													8270C	STLC	STLC	STLC		
and Tobias Schroeder a	at tschroeder@cra	world.co	om					e (8)		8260 E. TA						€		_	ŝ	_	by 8			Total C		
GA 5	_					15M	ctai	eabl	<u>6</u>	tes (0B)	6	(a	0B)	(B)	260E	B)	360E	8015	260E	ites	Total	Total	<u>P</u>		
MQL0233 Call composite	sample IDs and f	ield poir	nt name	SP-1		8	xtra	urg	826(enal TBA	826	2601	3260	(826	826	A (8;	2601	(82	10	8	/olat	138	0	1		
-xxxx-3222	Identification		PLING TIME	MATRIX	NO. OF CONT.	TPHmo (8015M)	TPH - Extractable	TPH - Purgeable (8260B)	BTEX (8260B)	5 Oxygenates (8260B) (MTBE, TBA, DIPE, TAME,	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)	VOCs by 8260B	Semi-Volatiles	Lead	LUFTS	CAM17		TEMPERATURE ON RECEIPT C°
SP-1A		1	71700	so	1	X	Х	X	X	47	-			-	3	ν					, , , , , , , , , , , , , , , , , , ,		Ī	X		Please call
SP-1B		1 100/6	1	so	1	X	Х	Х	Х	 										<u> </u>				Х		composite
SP-1C		+		so		Х	X	Х	Х															X		sample
5.000		t				X	X	Х	X	\vdash										<u> </u>			<u> </u>	X		SP-1
SP-1D	<u> </u>	+		SO	1	┝			\vdash							E ₂ .		ì		 	<u> </u>			 	_	Arranged rush TAT
			<u> </u>			 	ļ			 	-	ļ												<u> </u>	lacktree	with Leticia Reyes
	-					╂─	<u> </u>					<u>. </u>									 			 	╁	
						├	<u> </u>		-	-			ļ								├-		-	╂		-0
						<u> </u>	 		-	<u> </u>	ļ		<u> </u>	<u> </u>				-		<u> </u>	1	 	-	ļ	<u> </u>	
			ļ		<u> </u>	<u> </u>	 	<u> </u>	ļ	-	<u> </u>		ļ							_		<u> </u>	- /	*	1	
A						L	<u> </u>	<u>L</u>	<u> </u>	<u> </u>										<u> </u>						
Relinquished by: (Signature)	hin			Received t	oy: (Signafure) سمهس	Me	0	1	TA	W	H))						Date		-6:	0	7		Time	1445
Relinquished by: (\$ignature)				Received	y: (Signature		7			1		<u> </u>							2-6-07						Titn	
Relinquished by. (Signature)				Received	by: (Signature	are) (12-6-07 Date:						Tim							
						_	<i>-</i> /												<u></u>							05/02/06 Revision

Rev. 05-May-06

TEST AMERICA SAMPLE RECEIPT LOG

-	Shell :		DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	12/6107	For Regulatory Purposes? DRINKING WATER WASTE WATER OTHER									
CIRCLE THE APPRO	PRIATE RESPONSE	LAB SAMPLE#	CLIENT ID	CONTAINER DESCRIPTION	PRESER VATIVE	рΗ	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)					
1. Custody Seal(s)	Present / Absent	<u> </u>												
	Intact / Broken*													
2. Chain-of-Custody	Present / Absent*													
3. Traffic Reports or														
Packing List:	Present / Absent													
4. Airbill:	Airbill / Sticker							,						
	Present / Absent		÷					4						
5. Airbill #:														
6. Sample Labels:	Rresent / Absent		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
7. Sample IDs:	Listed / Not Listed								١,					
	on Chain-of-Custody			4					· · · · · · · · · · · · · · · · · · ·					
8. Sample Condition:	(Intact / Broken* /					6191								
	Leaking*		,	. *	1,5	\mathcal{A}								
9. Does information on	- ·			- : 1	2/4/57									
traffic reports and s	7/3		15											
agree?	Yes / No*			(3 ³)										
10. Sample received withi				ec ;			•							
hold time?	(Yes)/ No*			P 2/2	· .									
11. Adequate sample volu		***************************************												
received?	(Yes)/ No*				9									
12. Proper preservatives					,									
13. Trip Blank / Temp Bla	, ,	**			,									
(circle which, if yes)	Yes / No													
14. Read Temp:	3.2								,					
Correction Factor:	6.2													
Corrected Temp:	2-2	<u></u>	<u> </u>											
Is corrected temp. 0-6	°C? (es) No**		` ' ' '											
**Exception (if any): Meta	als / Perchlorate													
DFF on Ice or Probler	n COC													

*IF CIRCLED, CONTACT PROJECT MANAGER AND ATTACH RECORD OF RESOLUTION.

SAMPLERECEIPTLOG Revision 9 (10/26/07)