RECEIVED

10:06 am, Jan 14, 2009

Alameda County Environmental Health

January 13, 2008

Mr. Paresh Khatri Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Fourth Quarter 2008 - Groundwater Monitoring Report

SITE: 1532 Peralta Street, Oakland, CA 94607 ACHCSA Fuel Leak Case Site No. RO0000177 GGTR Project 8757

Dear Mr. Khatri:

On behalf of Mr. James Tracy, Golden Gate Tank Removal, Inc. (GGTR) is pleased to submit the enclosed Fourth Quarter 2008 *Groundwater Monitoring Report* presenting the findings and conclusions of the December 11, 2008, quarterly groundwater monitoring and sampling activities performed at 1532 Peralta Street in Oakland, California. GGTR uploaded an electronic copy of the report to the State Water Resources Control Board's GeoTracker Database System.

Should you have any questions, please contact us at your earliest convenience at (415) 512-1555. In my absence from the office, I may be reached by cellular service at (415) 686-8846.

Sincerely, Golden Gate Tank Removal, Inc.

s. uls

Brent A. Wheeler Project Manager

Enclosure/1

cc: Mr. James Tracy, 878 Hayden Court, Alpine, UT 84004

3730 Mission Street - San Francisco, CA 94110 - Tel.: 415.512.1555 Fax: 415.512.0964 General Engineering Contractors License No. 616521

GROUNDWATER MONITORING REPORT

LBJ's Automotive Repair 1532 Peralta Street Oakland, CA 94607

ACHCSA Fuel Leak Case No. RO0000177

Prepared For:

Mr. James Tracy 878 Hayden Court Alpine, UT 84004

GGTR Project No. 8757 Sampling Date: December 11, 2008 Report Date: January 13, 2009

L.UM

Brent Wheeler Project Manager

Golden Gate Tank Removal, Inc. 3730 Mission Street, San Francisco, California Ph (415) 512-1555 Fx (415) 512-0964

GROUNDWATER MONITORING REPORT

1532 Peralta Street, Oakland, CA 94607

TABLE OF CONTENTS

INTRODUCTION	1
	1
SITE DESCRIPTION	1
PROJECT HISTORY	2
GROUNDWATER MONITORING & SAMPLING: September 2008	5
RESULTS	7
RECOMMENDATIONS	8
REPORT DISTRIBUTION	9
LIMITATIONS	9

FIGURES

- 1 Site Location Map
- 2 Site Map
- 3 Groundwater Potentiometric Map
- 4 Groundwater Analytical Data Diagram
- 5 Groundwater MTBE Concentration Map

TABLE

Historical Groundwater Monitoring & Analytical Results

ATTACHMENT

- A Fluid-Level Monitoring Data Form Well Purging/Sampling Data Sheets
- B Laboratory certificate of Analysis
 Chain of Custody Form
 GeoTracker Upload Confirmation Forms
 Solid and Liquid Waste Manifests

GROUNDWATER MONITORING REPORT

LBJ's Automotive Repair 1532 Peralta Street, Oakland, CA 94607

INTRODUCTION

This report presents the results and findings of the December 11, 2008 quarterly groundwater monitoring and sampling activities conducted by Golden Gate Tank Removal, Inc. (GGTR) at the commercial property located at 1532 Peralta Street in Oakland, California (the Site). The Alameda County Health Care Services Agency (ACHCSA) designated the Site as Fuel Leak Case No RO0000117.

This monitoring event (Fourth Quarter 2008) represents the twelfth consecutive quarterly monitoring event for the six on Site monitoring wells, MW-1 through MW-6, since the well installation and initial sampling event in February/March 2004. Figure 1 "*Site Location Map*" depicts the location of the Site. Figure 2 "*Site Map*" depicts the approximate location of the former underground fuel storage tanks (USTs), the approximate lateral limits of UST over excavation, historical soil borings, and existing groundwater monitoring wells. Figure 3 "*Groundwater Potentiometric Map*" shows the approximate groundwater flow direction and hydraulic gradient across the Site. Figure 4 "*Groundwater Analytical Data Diagram*" presents a summary of the groundwater samples analytical results. Figure 5 "*Groundwater MTBE Concentration Map*" depicts the concentration of the historical groundwater fluid level monitoring data and laboratory analytical results.

SITE DESCRIPTION

The Site is located at the southeast corner of Peralta Street and 16th Street in Oakland, California (Alameda County). The Site lies approximately one mile south of the San Francisco Bay. The elevation of the Site is approximately 13 feet above Mean Sea Level (MSL, Figure 1) occupying 6,356 square feet (0.15 acre) in area. Mr. Orobo Osagie previously owned the Site from May 1998 to early 2006, at which time Mr. James Tracy of Alpine Rentals took claim as the new responsible party for the Site (Alameda County Assessor Parcel 5-370-1). The Site is currently leased to LBJ's Automotive Repair for the service of automobiles. The Site operated as a gasoline service station prior to 1998. The nearby property, located to the northeast, across 16th Street (1600 Peralta Street), was a former gasoline service station and car repair garage (Figure 2).

The Site is relatively flat with the topographic relief generally directed towards the northwest in the general direction of the San Francisco Bay (Figure 1). A single-story divided structure, approximately 1,175 square feet in area, lies on the southeast side of the Site and is currently used as an automobile service garage. The flooring in the service garage and office space is paved with concrete. The majority of the Site is paved throughout with asphalt.

Soil beneath the Site described during the February 2004 soil boring/well installation, was predominately clayey, silty, fine-grained sand to a total depth of 16 feet below ground surface (bgs). Granulometric analysis of the soil collected during the soil boring activities was not performed. The geologic map also indicates that the Site is situated approximately 4 miles southwest and 14 miles northeast of the Hayward and San Andreas Fault Zones, respectively. The Site is located within the East Bay Plain Groundwater Basin that contains a significant drinking water resource. However, groundwater at the Site is apparently designated as "other groundwater" considered not used for drinking water.

The regional groundwater flow direction in the vicinity of the Site is approximately toward the north-northwest, in the general direction of the San Francisco Bay and decreasing topographic relief. The nearest surface water body is the Oakland Outer Harbor of the San Francisco Bay, located approximately 1.03 miles northwest of the subject property (Figure 1). The groundwater flow direction calculated from groundwater elevations in the onsite monitoring wells has been consistent and is directed northward.

PROJECT HISTORY

Underground Tank Removal - December 1999: In December 1999, GGTR removed five USTs from the Site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction, and contents:

Designation	Construction	Diameter	Length	Volume	Contents
		(Feet)	(Feet)	(Gallons)	
UST #1	Steel	6	10	2,000	diesel
UST #2	Steel	4	7	675	gasoline
UST #3	Steel	4	7	675	gasoline
UST #4	Steel	5	7	1,000	gasoline
UST #5	Steel	5	7	1,000	diesel

GGTR subsequently collected soil samples from each excavation between 7 and 12.5 feet below grade surface (bgs). These samples contained maximum concentrations of TPH-G (TPH-G 2,600 milligrams per kilogram [mg/kg; parts per million]), TPH as diesel (TPH-D 8,100 mg/kg), and benzene (9.1 mg/kg). UST removal and sampling activities were conducted under the supervision of Mr. Hernan Gomez of the City of Oakland Fire Prevention Bureau (OFPB). Laboratory results of the soil samples collected after the tank removal are presented in the report entitled *Tank Closure Report, GGTR December 15*, 1999 and Site Characterization and Groundwater Monitoring Report, GGTR September 14, 2006. Following sampling, the excavations were backfilled with the excavated soil stockpiles. The volume of the USTs was replaced with imported soil. Based on analytical results of the excavation soil sample analysis, Mr. Gomez requested a work plan of over-excavation activities to assess the extent of hydrocarbon-affected soil and potential impact to groundwater in the vicinity of the former USTs.

Over-Excavation & Disposal - January and February 2000: On January 3, 2000, GGTR submitted the requested work plan, which was approved by the OFPB in a letter dated January 25, 2000. In January and February 2000, in accordance with the proposed work plan activities, GGTR over-excavated the former UST cavities up to approximately 11 ft bgs, and to the approximate lateral limits shown in Figure 2. GGTR collected soil samples from the sidewalls (7.5 ft bgs.) and from the bottom (12 ft bgs.) of the over-excavated cavities. Groundwater accumulated within the excavations and was subsequently purged prior to sampling.

After groundwater stabilized within each excavation at approximately 8 ft bgs, GGTR collected a groundwater sample from each excavation. GGTR performed the sampling activities under the direction of Mr. Gomez of the OFPB. Approximately 194 tons of petroleum hydrocarbon impacted soil were excavated from the Site and disposed of at Forward, Inc. in Manteca, California. The excavation was subsequently backfilled and the pavement was replaced with concrete and asphalt, respectively. Significant concentrations of TPH-G, TPH-D, benzene, and MTBE (in groundwater only) were reported for each sample. Sampling activities and soil and groundwater laboratory results are presented in the document entitled *Remedial Activity Report*, GGTR March 8, 2000.

Remedial Activity Plan - October 2000 to May 2002: Following review of the Remedial Activity Report, the ACHCSA, in letters dated May 19 and May 25, 2000, identified elevated levels of residual gasoline and diesel-range hydrocarbons in the soil and groundwater in the vicinity of the former USTs and requested a work plan to evaluate the lateral and vertical extent of contamination at the Site.

On October 6, 2000, DECON Environmental Services, Inc. (DECON) of Hayward, California prepared the requested work plan *(Remedial Activity Plan, October 2000)*, which was subsequently approved by Mr. Larry Seto of the ACHCSA. After further review of DECON's work plan, representatives of both the ACHCSA and State Water Resources Control Board UST Cleanup Fund concurred that the work plan required additional content and requested that it be revised and resubmitted to the ACHCSA for review and approval. In February 2002, GGTR prepared the revised work plan for soil and groundwater investigation activities at the subject property.

Preliminary Soil Sampling / Monitoring Well Installation (MW-1 through MW-6): February 2004 - In February 2004 and in collaboration with Gregg Drilling, Inc., GGTR advanced eleven direct-push soil borings (B1 through B11) to a depth of 12 to 16 feet bgs. Six of the borings, B2, B4, B6, B9, B10, and B11, were converted to pre-packed ³/₄"-diameter monitoring wells MW-1 through MW-6, respectively. Groundwater was encountered between 2 and 4 feet bgs and stabilized in the wells at approximately 2 to 3 feet bgs. The investigation objective was to define the extent of petroleum hydrocarbon impact to soil and groundwater. On April 13, 2006, Virgil Chavez Land Surveying of Vallejo California, surveyed the top of casings of all six monitoring wells at the Site. Permits, boring logs, well sampling field sheets, and the laboratory analytical reports for soil and groundwater are presented in the report entitled *Site Characterization and Groundwater Monitoring Report, GGTR September 14, 2006*.

Work Plan / Site Conceptual Model – January to March 2007: Based upon review of the September 2006 Site Characterization and Groundwater Monitoring Report, the ACHCSA in their letter dated November 29, 2006, concurred that a work plan including a conduit survey, historical research and initial Site conceptual model be prepared for the fuel leak investigation at the subject property. On January 31, 2007, GGTR prepared its Soil and Water Delineation Work Plan. The ACHCSA, in their letter dated February 15, 2007, requested an addendum to address additional investigation of suspect conduits and other issues. On March 20, 2007, GGTR submitted the Addendum to the Soil and Water Delineation Work Plan, modifying the procedures in the submitted work plan and proposing additional investigation activities for delineating the lateral extent of soil and water contamination in the vicinity of the Site. On May 1, 2008, the ACHCSA conditionally approved the subject work plan and addendum.

Additional Site Characterization Implementation - August 2008: On August 20 & 22, 2008, GGTR implemented a portion of the field activities of the approved soil and water delineation activities, which included additional soil and groundwater characterization in the vicinity of the former fuel dispenser island and subsurface product piping. Future activities at the Site to complete the proposed additional work include source remedial soil excavation activities and additional monitoring well installations; once implemented, the results and findings of the additional soil and groundwater investigation will be presented in a separate report.

Groundwater Monitoring Program (MW-1 to MW-6) - March 2006 to Present: GGTR has conducted quarterly groundwater monitoring and sampling events at the Site on a consecutive basis since March 2006. Groundwater sample analytical results and associated groundwater level monitoring data for each event are summarized in the attached Table. Details of each event are provided in respective Groundwater Monitoring Reports prepared by GGTR. The results of the Fourth Quarter 2008 monitoring and sampling event are presented in the following sections.

GROUNDWATER MONITORING & SAMPLING: September 2008

The scope of work covered in this report includes the following:

- Groundwater level monitoring of six monitoring wells (MW-1 to MW-6)
- Groundwater purging and sampling of five monitoring wells (MW-1, MW-2, MW3, MW-4, and MW-6)
- Laboratory analysis of groundwater samples
- Waste Management
- Data interpretation and report preparation
- GeoTracker Upload

Groundwater Sampling Field Procedures: GGTR conducted the Fourth Quarter 2008 groundwater monitoring and sampling activities at the Site on December 11, 2008. Prior to purging and sampling monitoring wells MW-1 to MW-6, GGTR measured and recorded the depth to groundwater using an electronic interface water/oil level meter. Groundwater levels were measured to the nearest 0.01 foot.

GGTR then purged groundwater from wells MW-1, MW-2, MW-3, MW-4, and MW-6 using a low-flow peristaltic pump and disposable polyethylene tubing. Purge rates varied in each well between 300 to 400 milliliters per minute (ml/min), minimizing drawdown of the groundwater table. GGTR purged three casing volumes from wells MW-1 to MW-4 and MW-6 or until three consecutive parameter readings of pH, temperature and specific conductivity varied by less than 0.1, 10%, and 3%, respectively, in general accordance with ASTM Designation D6771-02 (Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Groundwater Quality Investigations). The purge water was transferred directly to a 55-gallon D.O.T.- approved steel drum. After purging the wells, GGTR collected a groundwater sample from MW-1, MW-2, MW-3, MW-4, and MW-6 using a peristaltic pump and clean dedicated polyethylene tubing. Each sample was collected at a significantly lower pumping rate, with the sample intake just below the water level in each well casing. Each sample was transferred directly into the appropriate laboratory sample containers. All volatile organic analysis (VOA) vials were sealed with a threaded cap, inverted, and checked to ensure that no entrapped air was present. Well MW-5 was not sampled or purged due to an insufficient volume of water within the well casing. Attachment A includes a copy of the Well Purging/Sampling Data Sheets.

Following sampling activities, the groundwater samples were labeled and immediately stored in a cooler chilled to 4° centigrade. GGTR submitted the samples to a California-Certified analytical laboratory under formal chain-of-custody protocol. Between each well location, all downhole monitoring and purging equipment were decontaminated using an Alconox wash solution and double rinsed with clean, potable water. GGTR transferred the wash and rinse water to a 55-gallon D.O.T. approved steel drum, which was labeled and temporarily stored onsite in a secure area pending final disposal at a licensed facility.

Groundwater Sample Analysis: On December 12, 2008, GGTR submitted the groundwater samples under formal chain of custody command to Curtis & Tompkins Analytical Labs, Ltd. (CA ELAP #01107) in Berkeley, California for laboratory analysis of the following constituents:

- TPH-D by EPA Method 8015B
- TPH-G by EPA Method 8260B
- VOC (BTEX and Fuel Oxygenates) by EPA Method 8260B

Curtis & Tompkins performed all volatile analyses in conformance with the maximum 14-day holding time for these analyses. Attachment B includes a copy of the Laboratory Certificate of Analysis and associated Chain of Custody form.

GeoTracker Electronic Submittal: GGTR directed Curtis & Tompkins to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGTR uploaded the analytical data as well as the Groundwater-Level Monitoring Data (GEO_WELL) to the State Water Resources Control Board's GeoTracker Database System. GGTR also uploaded a copy of this report in Portable Data Format (PDF) to the GeoTracker Upload Confirmation Form.

Groundwater Waste Management: The well purge water and equipment wash and rinse water generated during the December 11, 2008 monitoring and sampling event (approximately 10 gallons), was transferred to a 55-gallon D.O.T.-approved steel drum, appropriately labeled and temporarily stored onsite in a secure area awaiting final disposal at a licensed facility. On November 26, 2008, Clearwater Environmental pumped the purge and wash/rinse water from the drum generated during previous groundwater monitoring sampling event and transported the *Hazardous Waste Liquid* (@ 45 gallons) under Non-Hazardous Waste Manifest No. 6326, to the Alviso Independent Oil Facility in Alviso, California. Clearwater Environmental also transported a drum containing 30 pounds of Non-Hazardous soil generated during the additional site characterization conducted by GGTR in August 2008. Clearwater Environmental transported the soil under Non-Hazardous Waste Manifest No. 6326, to the Alviso Independent Oil Facility in Alviso, California. A copy of the solid and liquid waste manifest is presented in Attachment B.

RESULTS

Results of Groundwater Measurements: The groundwater levels measured in wells MW-1, MW-2 and MW-3 during the December 11, 2008 monitoring event were used to calculate the groundwater elevation across the site relative to the MSL. GGTR used the groundwater elevation to calculate the groundwater flow direction and hydraulic gradient across the Site. Figure 3 depicts the groundwater equipotential contour lines, flow direction and hydraulic gradient. The attached Table presents the historical groundwater elevation data for the Site since installation of the six existing groundwater monitoring wells. Documentation of the monitoring, purging and sampling activities performed during this event is presented in Attachment A.

The groundwater elevation, flow direction and hydraulic gradient calculated during the December 2008 monitoring event varied from the September 2008 monitoring event. The December 11, 2008 measurements indicate that the general groundwater flow direction beneath the Site changed to 20 degrees towards the northwest (N20°W) under an hydraulic gradient of 0.025 ft/ft. During the September monitoring, the general groundwater flow direction beneath the Site was 18 degrees towards the northeast (N18°E) under an hydraulic gradient of 0.004 ft/ft. The groundwater elevations calculated during this monitoring event ranged from 3.93 feet above MSL in well MW-3, to 5.40 feet above MSL in MW-1. The December 2008 measurements represent late winter weather conditions with the mean groundwater elevation at 0.6 feet deeper than that measured in September 2008 during summer weather conditions.

Results of Groundwater Sampling and Laboratory Analysis: The attached Table presents a summary of the groundwater fluid levels monitoring data and laboratory analytical results of monitoring wells MW-1 to MW-6. Attachment A includes copies of the field documentation of the monitoring, purging and sampling activities performed during this event. Attachment B includes a copy of the Laboratory Certificate of Analysis and the associated Chain-of-Custody Form.

Again, the maximum TPH-G concentration was detected in the groundwater sample collected from monitoring well MW-6, at 1,900 ug/l. This value was above its respective Environmental Screening Level (ESL). However, the laboratory report indicates that the TPH-G concentration in the sample exhibits chromatographic pattern that does not resemble the standard. TPH-G concentrations have fluctuated in this well since March 2004, ranging between 2,200 ug/l in September 2007 and 8,400 ug/l in December 2006. TPH-G was also detected above its ESL in monitoring wells MW-1 and MW-4 at concentrations of 180 and 830 ug/l, respectively. The laboratory report however indicates that the concentration of TPH-G in these wells exhibits chromatographic pattern that does not resemble the standard. TPH-G was again not detected in the sample collected from wells MW-2 and MW-3. TPH-G has not been detected in MW-2 and MW-3 since June 2006, and December 2006, respectively. Benzene continues to significantly exceed its ESL in well MW-6 (510 ug/l), located in the direct proximity of the former gasoline UST #'s 2 to 4 (Figure 2). Benzene appears to show a general decreasing trend in MW-6 since March 2004. Concentrations of Toluene, Ethylbenzene, and Xylenes detected in MW-6

were all below their respective ES. BTEX were not detected or detected below the laboratory reporting limits in wells MW-1, MW-2, MW-3, and MW-4.

Concentrations of TPH-D were detected above its ESL in groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, MW-4 and MW-6 at 710 ug/l, 150 ug/l, 630 ug/l, 4,500 ug/l, and 7,300 ug/l, respectively. The laboratory report indicated that the concentrations of TPH-D in MW-1, MW-2, and MW-3 exhibit chromatographic patterns that do not resemble the standard.

MTBE concentrations exceeding its applicable ESL were detected in the groundwater samples collected from MW-1, MW-4, and MW-6 at levels of 25 ug/l, 10 ug/l, and 540 ug/l, respectively. Maximum concentrations of MTBE have historically been detected in MW-5 and MW-6, ranging between 730 and 2,250 ug/l (MW-5), and 450 and 1,440 (MW-6), respectively. MTBE has shown a general decreasing trend in both wells since March 2004. (MW-5 could not be sampled during this quarter due to an insufficient water supply in the well). Concentrations of MTBE were detected below its ESL in monitoring wells MW-2 and MW-3. The compound Methyl tert-Amyl Ether (TAME) was detected in well MW-1 at 1.6 ug/l. The ESL for TAME has not yet been established. Tert-butanol (TBA) was detected in the groundwater sample collected in MW-4 at 20 ug/l. According to the new ESL standards released in November 2007, the ESL for TBA has been removed and it is assumed as not established.

The results of historical groundwater monitoring and laboratory analyses performed to date are summarized on the attached Table. Figure 4 presents the TPH-G, TPH-D, BTEX, and MTBE concentrations detected in each sampled well during this monitoring and sampling event. Figure 5 depicts a *Groundwater MTBE Concentration Map*, representing the residual extent of MTBE in the groundwater beneath the Site. Attachment B includes copies of the Laboratory Certificate of Analysis and the associated Chain-of-Custody Form.

RECOMMENDATIONS

Based on the results of the Fourth Quarter 2008 Groundwater Monitoring and Sampling Event, GGTR recommends continuing the groundwater monitoring and sampling program at the Site. That is, quarterly groundwater monitoring and sampling of wells MW-1, MW-2, MW-4, MW-5, and MW-6; and quarterly groundwater level monitoring and semi-annual sampling of MW-3.

Groundwater samples collected from monitoring wells MW-1 to MW-6 should continue to be analyzed for TPH-G by EPA Method 8260B, TPH-D by EPA Method 8015B, and VOC (BTEX & Fuel Oxygenates) by EPA Method 8260B. The First Quarter 2009 groundwater sampling activities are tentatively scheduled at the Site in March 2009.

REPORT DISTRIBUTION

A copy of this quarterly groundwater monitoring report is submitted to the following Site representatives:

Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 *Attn: Mr. Paresh Khatri*

(*1Electronic Copy via ACGOV FTP*) (*1Electronic Copy via GeoTracker*)

Mr. James Tracy 878 W. Hayden Court Alpine, Utah 84004

(1 Copy; Bound)

LIMITATIONS

This report has been prepared in accordance with generally accepted environmental practices exercised by professional geologists, scientists, and engineers. No warranty, either expressed or implied, is made as to the professional advice presented herein. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon Site conditions, as they existed at the time of the investigation, and are subject to change.

The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user.

Golden Gate Tank Removal, Inc.

	AREA		G = Gasoline D = Diesel PL Property Line Approximate Limit of Former UST Excavation			
GOLDEN GATE TAN	IK REMOVAL, INC.	SIT	Scale in Feet (1" = 20') 0 10 20			
3730 Mission Street, Sa Ph (415) 512-1555	n Francisco, CA 94110 Fx (415) 512-0964	1532 Peralta Street Oakland, CA 94607				
GGTR Project No. 8757	Fn: 8757_4Q08GWM_F2	Edited by: T.Ferrick (01/09)	Figure 2			

	AREA					
			\oplus	Soil Boring		
			ft, MSL	Feet Above Mean Sea Level		
			UST	Underground Storage Tank		
		Scale in Feet	G	Gasoline		
		(1" = 20')	D	Diesel		
		0 10 20	PL	Property Line		
				Approximate Limit of Former UST Excavation		
GOLDEN GATE TAN 3730 Mission Street, Sai Ph (415) 512-1555	IK REMOVAL, INC. n Francisco, CA 94110 Fx (415) 512-0964	GROUNDWATER POTENTIOMETRIC MAP 1532 Peralta Street Oakland, CA 94607				
GGTR Project No. 8757	Fn:8757_4Q08GWM_F3	Edited by: T.Ferrick (01/09)		Figure 3		

GGTR Project No. 8757	Fn: 8757_4Q08GWM_F4	Edited by: T.Fei	rrick (01/09)		Figure 4
GOLDEN GATE TAN 3730 Mission Street, Sa Ph (415) 512-1555	IK REMOVAL, INC. n Francisco, CA 94110 Fx (415) 512-0964	GROUNI	DWATER ANA 1532 Pe Oakland	LYTICA eralta St I, CA 94	L DATA DIAGRAM reet 607
	RESIDENTIAL AREA	Scal (1 0	le in Feet " = 20') 10 20	NA	Approximate Limit of Former UST Excavation Not Analyzed
				⊕ ₩a∓	Soil Boring
				ND	Not Detected above the Laboratory reporting Limit
Z Z	* = Atypica	l pattern		MTBE	Methyl Tertiary-Butyl Ether

	AREA		\oplus	Soil Boring
/			MTBE	Methyl Tertiary-Butyl Ether
			G	Gasoline
			D	Diesel
			ug/l	Micrograms per liter
		Scale in Feet	UST	Underground Storage Tank
		(1" = 20')	PL	Property Line
		0 10 20		Approximate Limit of Former UST Excavation
GOLDEN GATE TAN 3730 Mission Street, Sa Ph (415) 512-1555	I K REMOVAL, INC. n Francisco, CA 94110 Fx (415) 512-0964	GROUNDWATER MTE 1532 Pe Oakland	E CONCE eralta Stree I, CA 9460	ENTRATION MAP et)7
GGTR Project No. 8757	Fn:8757_4Q08GWM_F5	Edited By: T.Ferrick (01/09)		Figure 5

TABLE
HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D	В	Т	E	Х	MTBE	Other Fuel Oxygenates
	Date	Elevation	GW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	03/05/04		3.18	6.69	571	220	4.1	1.6	0.6	5.8	53.2	NA
	03/27/06		2.72	7.15	520	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	61	11(TBA)
	06/22/06		3.53	6.34	790	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	27	11(TBA)
	09/25/06		4.54	5.33	500	ND<50	2.4	ND<0.5	ND<0.5	ND<0.5	31	17(TBA)
	12/21/06		4.05	5.82	90	ND<46	1.6	ND<0.5	ND<0.5	ND<0.5	28	15(TBA)
	03/12/07		3.51	6.36	350	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	47	19(TBA)
MW-1	06/28/07	9.87	4.37	5.50	420	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	43	ND <u><</u> 10
141 44 -1	09/25/07	2.07	5.23	4.64	190	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	29	ND <u><</u> 10
	12/17/07		4.92	4.95	130	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	28	ND <u><</u> 10
	03/11/08		3.69	6.18	240	50^{-1}	ND<0.5	ND<0.5	ND<0.5	ND<0.5	33	ND <u><</u> 10
	06/12/08		4.60	5.27	350 ²	870 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	21	1.3 (TAME)
	09/11/08		5.24	4.63	210 ²	870	ND<0.5	ND<0.5	ND<0.5	ND<0.5	21	1.3 (TAME)
	12/11/08		5.40	4.47	180 ²	710 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	25	1.6(TAME)
	03/05/04		2.73	5.93	109	ND<50	3.9	ND<0.5	ND<0.5	ND<1.0	6.9	NA
	03/27/06		2.11	6.55	30	ND<62	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2	ND
	06/22/06		2.73	5.93	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	09/25/06		3.60	5.06	ND<25	ND<50	0.9	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	12/21/06		3.16	5.50	ND<25	ND<46	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	03/12/07		2.76	5.90	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
MW-2	06/28/07	8.66	3.46	5.20	ND<25	ND<50	ND<0.5	0.76	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	09/25/07		4.24	4.42	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	12/17/07		3.92	4.74	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	03/11/08		2.90	5.76	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	06/12/08		3.64	5.02	ND<50	140^{-2}	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.68	ND <u><</u> 10
	09/11/08		4.24	4.42	ND<50	52 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.59	ND <u><</u> 10
	12/11/08		4.39	4.27	ND<50	150 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.52	ND <u><</u> 10
CRWQCB ESL, November 2007				100	100	1	40	30	20	5	TBA & TAME = NE	

1532 Peralta Street, Oakland, CA

Notes in following page:

TABLE (Continued) HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D	В	Т	Е	Х	MTBE	Other Fuel Oxygenates
	Date	Elevation	GW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	03/05/04		2.10	6.19	185	200	1	1	ND<0.5	1.3	2.5	NA
	03/27/06		1.74	6.55	ND<25	ND<72	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	06/22/06		2.38	5.91	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	09/25/06		3.12	5.17	44	ND<50	1.4	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	12/21/06		2.71	5.58	ND>25	ND<46	3.2	ND<0.5	ND<0.5	ND<0.5	1.2	ND <u><</u> 10
	03/12/07		2.51	5.78	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.0	ND <u><</u> 10
MW-3	06/28/07	8.29	2.95	5.34	ND<25	ND<50	ND<0.5	0.64	ND<0.5	ND<0.5	1.8	ND <u><</u> 10
	09/25/07		3.80	4.49	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.3	ND <u><</u> 10
	12/17/07		3.40	4.89	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.1	ND <u><</u> 10
	03/11/08		2.48	5.81	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.4	ND <u><</u> 10
	06/12/08		3.11	5.18	ND<50	470^{-2}	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.1	ND <u><</u> 10
	09/11/08		3.78	4.51	NA	NA	NA	NA	NA	NA	NA	NA
	12/11/08		3.93	4.36	ND<50	630 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3	ND <u><</u> 10
	03/05/04		2.85	6.89	1,110	370	3.2	3.9	1	3.3	8.5	NA
	03/27/06		2.64	7.10	2,000	ND<50	ND<1.0	1	ND<1.0	1.1	9.3	33 (TBA)
	06/22/06		3.43	6.31	430	NA	ND<1.0	1	ND<0.5	1.3	11	28 (TBA)
	09/25/06		4.38	5.36	700	ND<50	ND<1.0	ND<0.5	ND<0.5	ND<0.5	12	34 (TBA)
	12/21/06		4.09	5.65	1,300	ND<47	1.7	ND<1.0	ND<1.0	ND<1.0	9.8	33 (TBA)
	03/12/07		3.47	6.27	1,200	ND<50	1.2	ND<1.0	ND<1.0	ND<1.0	9.8	27 (TBA)
	06/28/07	0.54	4.20	5.54	900	570^{-1}	ND<1.0	ND<1.0	ND<1.0	ND<1.0	14	28 (TBA)
MW-4	09/25/07	9.74	5.00	4.74	850	ND<48 ¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	11	45 (TBA)
	12/17/07		4.71	5.03	630	300 ¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	8.9	27 (TBA)
	03/11/08		3.39	6.35	940	490 ¹	3.3	ND<0.5	0.52	ND<0.5	8.3	13 (TBA)
	06/12/08		4.41	5.33	820 ²	6,400	ND<0.5	ND<0.5	ND<0.5	ND<0.5	9.4	18 (TBA)
	09/11/08		5.08	4.66	1,000 ²	5,500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	12	20 (TBA)
	12/11/08		5.25	4.49	830 ²	4,500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	10	20(TBA)
	CRWQC	CB ESL, Nov	ember 2007		100	100	1	40	30	20	5	TBA & TAME = NE

1532 Peralta Street, Oakland, CA

Notes in following page:

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D	В	Т	Е	Х	MTBE	Other Fuel Oxygenates
	Date	Elevation	ĠW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	03/05/04		2.83	6.57	1,660	NA	650	7.6	1.6	7.1	2,250	NA
	03/27/06		2.41	6.99	1,600	ND<50	89	5.6	ND<5.0	8.7	1,200	170 (TBA)
	06/22/06		3.17	6.23	2000	NA	240	11	ND<10	ND<10	1,100	ND <u><</u> 200
	09/25/06		4.14	5.26	2,200	ND<50	160	ND<10	ND<10	ND<10	1,200	ND <u><</u> 200
	12/21/06		3.79	5.61	1,700	ND<47	120	ND<10	ND<10	ND<10	1,000	ND <u><</u> 200
	03/12/07		3.22	6.18	1,300	ND<48	99	5.3	ND<5.0	ND<5.0	770	ND <u><</u> 100
MW 5	06/28/07	0.40	4.96	4.44	1,900	470^{-1}	230	11	ND<10	ND<10	1,400	ND <u><</u> 200
IVI VV-5	09/25/07	9.40	4.74	4.66	1,200	ND<48 ¹	90	ND<10	ND<10	ND<10	840	ND <u><</u> 200
	12/17/07		4.50	4.90	2,000	540 ¹	170	ND<10	ND<10	11	920	ND <u><</u> 200
	03/11/08		3.28	6.12	2,300	440^{-1}	140	ND<10	ND<10	10	930	ND <u><</u> 200
	06/12/08		4.12	5.28	ND<500	10,000	120	ND<5	ND<5	7.6	700	ND <u><</u> 100
	09/11/08		4.77	4.63	ND<500	8,800	120	6.5	ND<5	8.5	730	ND <u><</u> 100
	12/11/08		4.98	4.42	NA	NA	NA	NA	NA	NA	NA	NA
	03/05/04		2.50	6.52	6,450	800	1,950	29.6	52.7	54.6	1,440	NA
	03/27/06		2.08	6.94	4,800	ND<50	820	14	12	22	1,100	180 (TBA)
	06/22/06		2.85	6.17	5,200	NA	630	12	14	13	1,100	ND <u><</u> 200
	09/25/06		3.79	5.23	3,700	ND<50	430	ND<10	ND<10	ND<10	920	ND <u><</u> 200
	12/21/06		3.41	5.61	8,400	ND<250	2,600	ND<25	32	ND<25	550	ND <u><</u> 500
	03/12/07		2.82	6.20	7,400	ND<49	1,200	17	23	13	680	ND <u><</u> 200
MW-6	06/28/07	9.02	3.59	5.43	3,600	1,300	240	8.6	ND<5.0	10	890	ND <u><</u> 100
101 00 -0	09/25/07	9.02	4.40	4.62	2,200	ND<48 ¹	430	7.7	6.6	5.2	580	ND <u><</u> 100
	12/17/07		4.21	4.81	2,400	950 ¹	440	9.0	6.5	8.6	450	ND <u><</u> 100
	03/11/08		2.96	6.06	4,700	1,300 ¹	690	13.0	7.6	19	740	ND <u><</u> 100
	06/12/08		3.82	5.20	1,800 ²	9,500	290	6.4	3.7	11.7	820	55 (TBA), 1.1 (1,2-DCA)
	09/11/08		4.45	4.57	3,200 ²	9,700	510	9.6	8.3	10	670	ND <u><</u> 100
	12/11/08		4.65	4.37	1900 ²	7,300	590	14.0	7.8	7.4	540	ND <u><</u> 100
CRWQCB ESL, November 2007		100	100	1	40	30	20	5	TBA = NE, 1,2-DCA = 0.5			

 TABLE (Continued)

 HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

 1532 Peralta Street Oakland CA

Notes in following page:

TABLE (continued) HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

1532 Peralta Street, Oakland, CA

NOTES

TOC = Top of Casingft MSL = Feet Above Mean Sea Level ft BTOC = Feet Below Top Of Casing GW = Groundwater TPH-G = Total Petroleum Hydrocarbons as Gasoline TPH-D = Total Petroleum Hydrocarbons as Diesel B, T, E, X = Benzene, Toluene, Ethylbenzene, and Total Xylenes MTBE = Methyl Tertiary-Butyl Ether ug/l = micrograms per Liter or parts per billion (ppb) TBA = tert-ButanolTAME = Methyl tert-Amyl Ether 1,2-DCA = 1,2-Dichloroethane ND = Not Detected or less than the laboratory reporting limit NA = Not analyzed 1 = Atypical Diesel pattern. Higher boiling gasoline compounds in the Diesel range. 2 = Sample exhibits chromatographic pattern which does not resemble standard. NE = Not Established CRWQCB ESL = California Regional Water Quality Control Board - Environmental Screening Levels

CRWQCB ESL = Camolina Regional water Quarty Control Board - Environmental Screening Levels CRWQCB ESL = November 2007 Interim Final CRWQCB Tier 1 ESL where groundwater *IS* a current or potential source of drinking water.

ATTACHMENT A

FLUID - LEVEL MONITORING DATA FORM WELL PURGING / SAMPLING DATA SHEETS

Golden Gate Tank Removal, Inc.

FLUID-LEVEL MONITORING DATA

Project No:	87	57			Date:	12	111	2008	
Project/Site Lo	cation:	532	PERALTA	ST.	0	AKLA	ND	- CA	
Technician:	TSF	ED		Inst	trument:	GROU	ND	METER	•

Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
MW-1	5.40	ND	ND	14.40	e 9:50
MW-2	4.39	ND	ND	13.90	@ 7:47
MW - 3	3.93	ND	100	13.90	@ 7:50 WATER IN WELL
MW-4	5,25	NO	NO	11.00	3 9:52
MW-5	4.98	NO	NO	5.20	e 9:54
MW-6	4.65	ND	ND	14.30	@ 9:55
		······			
Measurem	ents reference	ved to: /	TOC	J Grade.	Page 1 of 1

Golden Gate Tan WELL PURGING/S	k Removal, Inc. AMPLING DATA
Project Number: <u>8757</u>	Date: 12/11/08
Project / Site Location: 1532 PERALT	A ST. OAKLAND - CA
Sampler/Technician: TSF/ED	2/2 //2 //10 6/10 6/12
Casing/Borehole Diameter (inches) 0.75/1.75 Casing/Borehole Volumes (gallons/foot) 0.02/0.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cushing Bolenoire Volumer (genoine root)	think 2
Well No. <u>MW – I</u>	Well No. <u>MW-2</u>
A. Total Well DepthIU.40Ft.(toc)B. Depth To Water5.40Ft.C. Water Height (A-B)9.00Ft.D. Well Casing DiameterIIn.E. Casing Volume Constant (from above table)0.05F. Three (3) Casing or Borehole Volumes (CxEx3)1.25G. 80% Recharge Level5.25B. (Dr.Col)5.25	A. Total Well Depth13.40Ft.(toc)B. Depth To Water9.61Ft.C. Water Height (A-B)9.61Ft.D. Well Casing Diameter1In.E. Casing Volume Constant (from above table)0.05F. Three (3) Casing or Borehole Volumes (CxEx3)1.43Gals.1.43Gals.1.87Ft.1.87Ft.1.87
Purge Event #1 Start Time: Finish Time: Purge Volume: GAL Recharge #1 Depth to Water: Time Measured: 1::21 1::23	Purge Event #1 Start Time: Finish Time: Purge Volume: Purge Volume: Constraint Purge Volume: Purg
<u>Purge Event #2</u> Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:	<u>Purge Event #2</u> Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:
Well Fluid Parameters: 0.45 0.22 (Casing or Borehole Volumes) 0 1.5 2 2.5 Time $1:00$ $1:05$ $1:09$ $1:05$ $1:09$ $1:16$ $11:16$ $1:05$ $1:07$ $1:16$ $11:16$ $1:05$ $1:07$ $1:05$ $1:07$ $1:05$ $1:05$ $1:07$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:16$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$ $1:05$	Well Fluid Parameters: 0.47 0.24 (Casing or Borehole Volumes)1 0 1 1.5 2 2.5 3 1 6.27 6.43 7.48 8.53 8.59 9.64 pH 6.69 7.24 7.18 7.24 7.22 7.23 T (°C) 18.2 15.7 16.0 16.2 16.4 Cond. 553 541 546 556 563
DO ORP Summary Data: Total Gallons Purged: 1 GAL Purge Rate (ml/min.): 300 Purge device: PERISTALTIC PUMP Sampling Device: PERISTALTIC PUMP Sample Collection Time: 11:25 Sample Appearance: ODOR SNOCH COLOR	DO ORP Summary Data: Total Gallons Purged: 1 GAL Purge Rate (ml/min.): 350 Purge device: PERIGALTIC PUMP Sampling Device: PERIGALTIC PUMP Sample Collection Time: 9:15 Sample Appearance: NO SHEEN (NO ODOR
Drums Remaining Onsite: I otal Volume:	Guis. (Snow Location on Site Fluin)
BDocs/FForms/PS Data Page	l of <u>3</u> GGT

WELL PURGING/S	<i>k Removal, Inc.</i> Ampling data
Project Number: <u>8757</u>	Date: 12/11/08
Project / Site Location: 1532 PERA	lta st
OAKLAND, CA	1
Sampler/Technician: TSF/ED	
Casing/Borehole Diameter (inches) 0.75/1.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Casing/Borehole Volumes (gallons/foot) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.8 1.3/2.2 1.3/3.1
Well No. <u>MW-3</u>	Well No. MW-4
A. Total Well Depth13.90Ft.(toc)B. Depth To Water3.03Ft.C. Water Height (A-B)9.91Ft.D. Well Casing Diameter1In.E. Casing Volume Constant1In.(from above table)0.05F. Three (3) Casing or Borehole Volumes (CxEx3)1.5G. 80% Recharge Level [B+(ExC)]1.5Ft.	A. Total Well Depth11.000Ft.(toc)B. Depth To Water5.25Ft.C. Water Height (A-B)5.75Ft.D. Well Casing Diameter1In.E. Casing Volume Constant (from above table)0.05F. Three (3) Casing or Borehole Volumes (CXEx3)0.05G. 80% Recharge Level [B+(ExC)]5.53Ft.
Purge Event #1 Start Time: 9:43 Finish Time: 10:27 Purge Volume: 0.6 GAL Recharge #1 Depth to Water: Time Measured:	Purge Event #1Start Time: $1:50$ Finish Time: $2:02$ Purge Volume: 1.05 Example 41 1.05 Depth to Water: 5.31 5.40 $12:04$ Time Measured: $12:04$
Purge Event #2Start Time:Finish Time:Purge Volume:Recharge #2Depth to Water:Time Measured:	<u>Purge Event #2</u> Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:
Well Fluid Parameters: 0.5 0.25 (Casing or Borehole Volumes) 0 1 1.5 2 2.5 3 Time 9:40 $9:58$ $10:06$ $10:15$ $10:21$ $10:27$ pH 6.76 7.40 7.56 7.69 7.74 7.81 T (°C) 19.4 17.0 17.0 17.0 17.0 17.2 17.3 17.2 Cond. 600 623 621 624 520 610 DO ORP 523 621 624 520 610 DO ORP 520 626 646 646 646 Purge Rate (ml/min.): 4000 920	Well Fluid Parameters: $0, 28$ 0.14 (Casing or Borehole Volumes) 0 1 1.5 2 2.5 3 Time [1:52 11:55 11:58 12:00 12:01 12:00 pH 7.00 6.97 6.97 6.97 7.00 7.01 T (°C) 17.1 18.1 18.2 18.3 6.3 19.2 Cond. 650 612 618 625 624 624 DO ORP Summary Data: Total Gallons Purged: 1.05 $6AL$ Purge Rate (ml/min.): 400 Purge device: $PERISTALTIC$ $PUMP$ Sampling Device: $PERISTALTIC$ $PUMP$ Sample Collection Time: $12:10$

Golden Gate Tan WELL PURGING/S	<i>k Removal, Inc.</i> Ampling data						
Project Number: <u>8757</u>	Date: 12/11/08						
Project / Site Location: 1532 PERAL	a st						
Sampler/Technician: TSE/ED							
Casing/Borehole Diameter (inches) 0.75/1.75	2/8 4/8 4/10 6/10 6/12						
Casing/Borehole Volumes (gallons/foot) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1						
Well No. <u>MW - 5</u>	Well No. MW-6						
A. Total Well Depth 5.20 Ft.(toc)B. Depth To Water 1.92 Ft.C. Water Height (A-B) 0.222 Ft.D. Well Casing Diameter 1 In.E. Casing Volume Constant (from above table) 0.05 F. Three (3) Casing or Borehole Volumes (CxEx3) 0.15 G. 80% Recharge Level [B+(ExC)] 4.99 Ft.	A. Total Well Depth14.30 Ft.(toc)B. Depth To Water1.05 Ft.C. Water Height (A-B)9.66 Ft.D. Well Casing Diameter1E. Casing Volume Constant1(from above table)0.05F. Three (3) Casing or1.45 Gals.Borehole Volumes (CXEx3)1.45 Gals.G. 80% Recharge Level5.13 Ft.						
Purge Event #1 Start Time: Finish Time: Purge Volume: Recharge #1 Depth to Water: Time Measured:	Purge Event #1 Start Time: 2:53 Finish Time: 1:22 Purge Volume: 5:25 Recharge #1 Depth to Water: 5:45 Time Measured: 1:15 1:17						
<u>Purge Event #2</u> Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:	<u>Purge Event #2</u> Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:						
Well Fluid Parameters: 0.01 0.005 (Casing or Borehole Volumes) 0 1 1.5 2 2.5 3 Time pH T (°C) Cond. DO	Well Fluid Parameters: 0.48 0.24 (Casing or Borehole Volumes) $1 \\ (Casing or Borehole Volumes)$ 1						
ORP Summary Data: Total Gallons Purged: Purge Rate (ml/min.): Purge device: PEQISTALTIC PUMP Sampling Device: PEQISTALTIC PUMP Sample Collection Time: Sample Appearance: Durge Remaining Option of Table 1	ORP Summary Data: Total Gallons Purged: 1.52 GAL Purge Rate (ml/min.): 300 Purge device: PERISTALTIC PUMP Sampling Device: PERISTALTIC PUMP Sample Collection Time: 1:18 Sample Appearance: SHEEN/ ODOR						

ATTACHMENT B

LABORATORY CERTIFICATES OF ANALYSIS CHAIN OF CUSTODY RECORD GEOTRACKER UPLOAD CONFIRMATION FORMS SOLID AND LIQUID WASTE MANIFESTS

and setting to the

H

Laboratory Job Number 208593 ANALYTICAL REPORT

Golden Gate Tank RemovalProject3730 Mission StreetLocationSan Francisco, CA 94110Level	: : :	: 8757 : 1532 Peralta St. Osagie Property : II	
--	-------------	--	--

<u>Sample ID</u>	<u>Lab ID</u>
MW-1	208593-001
MW-2	208593-002
MW-3	208593-003
MW-4	208593-004
MW-5	208593-005
MW-6	208593-006

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

MRJLJ Project Manager Signature:

Signature:

FLAC

Senior Program Manager

Date: <u>12/23/2008</u>

Date: <u>12/24/2008</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 208593 Golden Gate Tank Removal 8757 1532 Peralta St. Osagie Property 12/12/08 12/12/08

This data package contains sample and QC results for five water samples, requested for the above referenced project on 12/12/08. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for bromofluorobenzene in a number of samples; no associated target analytes were detected in the sample. No other analytical problems were encountered.

Curtis & Tompkins Analytical Laboratory Sind	s, Ltd. ce 1878	CH	AIN OF CUSTODY										1	Page _	1	of_	1	
2323 Fifth Street Berkeley, CA 9471 (510) 486-0900 Pho (510) 486-0532 Fa	0 ne x	C & T L	login #:208593						Analy					sis				
076-	7	Sample	er: -	<u>r. Fr</u>	ERRICK	/E.	DI	AZ		5	ES 01	HAL						
Project No.: 015	2	Report	To:	BR	ENT WH	IEEL	ER	2		0	IAI	Щ						
Project Name: 1532	VERALTA GT	Compa	ny:	66	TR						Ĩ	Ę						
Project P.O.:	E TROVERTY	Telepho	one:	416	-512-	- 155	55			Ū	ž	X						
Turnaround Time: らつ	ANDARD	Fax:	415	-5	12-04	164				7155	ы С	219 5						
GLOBAL ID: TO	060019166	8	N	latrix		·····	Pres	ervati	ve	I	Ê	D D D						
Lab Sample I No.	D. Sampl	ing Date ime	Soil	Wate	# of Contair	ners I	H₂SO₄	HNO [®]		HDT	8260	1774						
1 MW-1	12/11/0	3		<	31-11	-+A 🗡		×		\square	X							
Z MW - Z	12/11/0	8	>	<u> </u>	3V+1L	+A×				\bigotimes	X		+ +					+
$\frac{1}{4}$ NIV - 2	12/11/0	8 8		2	$\frac{3\sqrt{+1}}{3\sqrt{+1}}$	<u>+ A X</u> + A X	•		+	\bigcirc	X							
5 MW - 5	12/11/0	8	5	2	MANH II	(++1)/>					Ŷ	·						+
6 MW - 6	12/11/0	8	Ž	Ś	3V + 11	+ A ×		×		X	×							
														_			_	
Notes:	SAMPL	ERECEIPT	REL		SHED BY:		<u> </u>	<u>. </u>		RF			⊥ ⊥ 3Y:	l			1	
PROVIDE POF A		Cold	TH	OM	AB FER	pra	< 1		2:49 E / TIME		luk.	l			~	12/12 DA	2/078 NTE /	1236 TIME
	, Preservat	ive Correct?						DAT	e / Time		/					DA	TE /	TIME
SIG	VATUBE							DATI	e / Time	=						DA	TE /	TIME

3 of 28

CURTIS & TOMPKINS, LTD. BERKELEY

LOGIN CHANGE FORM

Reason	for	change:
--------	-----	---------

___X___ Client Request

By: Brent Wheeler Data Review Date/Time: <u>12/15/08 12:22</u> Initials: MRS Client: <u>GGTR</u>

Lab ID	Client ID	Matrix	Add/Cancel	Analysis	Duedate
208593-005	MW-5	Water	Cancel	MSTVH	12/19/2008
		· · · ·			

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Lt
Login # $\frac{208593}{GGTR}$ Date Received $\frac{12}{12}$ D& Client GGTR Project 1532	Number of coolers PER ALTA ST OSAG1-
Date Opened 12/12/09By (print) <u>Dhecoug</u> (sign Date Logged in 12/13/08By (print) M.VILLOWEVD (sign	PROPERTY) De Ce V Mattali
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How many Name	on samples NO DateYES NO N/A YES NO YES NO YES NO op of form)_YES NO
 Bubble Wrap Foam blocks Bags Cloth material Cardboard Styrofoam 7. Temperature documentation: 	NonePaper towels
Type of ice used: Wet Blue/Gel None	Temp(°C)
Samples Received on ice & cold without a temperature	hlank
Samples received on ice directly from the field. Cooling	nrooos had have
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES YES
 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 	YES NO YES NO YES NO YES NO YES NO
14. Are the samples appropriately preserved?	VES NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES NO N/A
If YES, Who was called? By	YES NO Date:
COMMENTS MW-5 has I VOA W/ BUBE	LIZ
	•
SOP Volume: Client Services	

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Total Extractable Hydrocarbons											
Lab #: Client: Project#:	208593 Golden Gate 8757	Tank Ren	noval	Location: Prep: Analysis:	1532 Peralta EPA 3520C EPA 8015B	St. Osagie Property					
Matrix: Units: Diln Fac:	Water ug/L 1.000			Sampled: Received: Prepared:	12/11, 12/12, 12/17,	/08 /08 /08					
	NILI 1				14615	a					
Type: Lab ID:	MW-1 SAMPLE 208593-001			Analyzed:	12/19,	* /08					
Ana	lyte		Result		RL						
Diesei Ciu-C24		0.5.50	710 1		50						
Hexacosane	ogate	93	58-127								
Field ID: Type: Lab ID:	MW-2 SAMPLE 208593-002			Batch#: Analyzed:	146154 12/19,	4 / 08					
Ana Diesel C10-C24	lyte		Result		RL						
Surr	ogate	<u>%</u> ₽ፑሮ	Limite								
Hexacosane		99	58-127								
Field ID: Type: Lab ID:	MW-3 SAMPLE 208593-003			Batch#: Analyzed:	146154 12/19,	4 / 08					
Ana	lyte		Result		RL 50						
		%DEC	Timita		50						
Hexacosane	ogale	118	58-127								
Field ID: Type: Lab ID:	MW-4 SAMPLE 208593-004			Batch#: Analyzed:	146154 12/19,	1 / 0 8					
Ana Diesel C10-C24	lyte		Result 4,500		RL 50						
Surr	ogate	%REC	Limits								
Hexacosane	-	91	58-127								

Total Extractable Hydrocarbons										
Lab #: Client: Project#:	208593 Golden Gate 8757	Tank Rem	oval	Location: Prep: Analysis:	1532 Pe EPA 352 EPA 801	ralta St. OC 5B	Osagie Property			
Matrix: Units: Diln Fac:	Water ug/L 1.000			Sampled: Received: Prepared:		12/11/08 12/12/08 12/17/08				
Field ID: Type: Lab ID:	MW-6 SAMPLE 208593-006			Batch#: Analyzed:		146148 12/22/08				
Analy	vte		Result		RI.					
Diesel C10-C24			7,300		50					
Surrog	gate	%REC	Limits							
Type:	BLANK	92	50-127	Batch#:		146148				
Lab ID:	QC476065			Analyzed:		12/22/08				
Analy	yte		Result		RL					
Diesel C10-C24		ND)		50					
Surro g Hexacosane	gate	% REC 101	Limits 58-127							
Type: Lab ID:	BLANK QC476094			Batch#: Analyzed:		146154 12/18/08				
Analy	yte		Result		RL					
Diesel C10-C24		ND)		50					
Surrog	gate	%REC	Limits							
Hexacosane		115	58-127							

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 2\ of\ 2}$

		Total 1	Extracta	ble Hydro	ocarbon	S			
Lab #:	208593			Location:	1532 Pe	eralta St. Osa	gie Prop	erty	
Client:	Golden Gate	e Tank Rer	noval	Prep:	EPA 352	20C			
Project#:	8757			Analysis:	EPA 801	.5B			
Matrix:	Water			Batch#:		146148			
Units:	ug/L			Prepared:		12/17/08			
Diln Fac:	1.000			Analyzed:		12/22/08			
Туре:	BS			Lab ID:		QC476066			
Analyte			Spiked		Result	%REC	Limits		
Diesel C10-C24			2,500		2,159	86	52-120		
Surrog	gate	%REC	Limits						
Hexacosane		87	58-127						
Type:	BSD			Lab ID:		QC476067			
Anal	yte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C10-C24			2,500		2,661	106	52-120	21	30
Surrog	gate	%REC	Limits						
Hexacosane		118	58-127						

Total Extractable Hydrocarbons						
Lab #:	208593	Location: 1532 P	eralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 35	20C			
Project#:	8757	Analysis: EPA 80	15B			
Туре:	LCS	Diln Fac:	1.000			
Lab ID:	QC476095	Batch#:	146154			
Matrix:	Water	Prepared:	12/17/08			
Units:	ug/L	Analyzed:	12/18/08			

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,500	2,416	97	52-120	

Surrogate	%REC	Limits
Hexacosane	107	58-127

		Total 1	Extracta	able Hydro	carbon	IS				
Lab #:	208593			Location:	1532 Pe	eralta St.	Osagie	Prop	erty	
Client:	Golden Gate	Tank Rem	noval	Prep:	EPA 352	20C				
Project#:	8757			Analysis:	EPA 801	15B				
Field ID:	ZZZZZZZZZZ			Batch#:		146154				
MSS Lab ID:	208578-008			Sampled:		12/10/08				
Matrix:	Water			Received:		12/12/08				
Units:	ug/L			Prepared:		12/17/08				
Diln Fac:	1.000			Analyzed:		12/18/08				
Type:	MS	MGG Doc] <i>+</i>	Lab ID:		QC476096		%DFC	Timi	+ 9
	.е 	MSS Kes				2 4E0	0		42 1	21
Diesei Ciu-C24		<14	.90	2,500		2,450	9	0	43-1	21
Surro	ogate	%REC	Limits							
Hexacosane		124	58-127							
Туре:	MSD			Lab ID:		QC476097				
Anal	lyte		Spiked		Result	%R	REC Li	mits	RPD	Lim
Diesel C10-C24			2,500		2,354	94	43	-121	4	36

Surrogate	%REC	Limits
Iexacosane	106	58-127

\Lims\gdrive\ezchrom\Projects\GC26\Data\353a039, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\353a040, A

-\\Lims\gdrive\ezchrom\Projects\GC26\Data\353a041, A

- \\Lims\gdrive\ezchrom\Projects\GC26\Data\353a042, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\357a009, A

\Lims\gdrive\ezchrom\Projects\GC14B\Data\356b047, B

Gasoline by GC/MS Lab #: 208593 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal EPA 5030B Prep: Project#: Analysis: EPA 8260B 8757 Field ID: MW-1Batch#: 146136 Lab ID: 208593-001 Sampled: 12/11/08 Matrix: Received: Water 12/12/08 Units: Analyzed: 12/17/08 ug/L Diln Fac: 1.000

Result	RL
180 Y	50
ND	10
ND	0.50
ND	0.50
1.6	0.50
25	0.50
ND	0.50
	180 Y ND ND 1.6 25 ND ND ND ND ND ND ND ND

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-125
1,2-Dichloroethane-d4	91	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	123 *	80-122

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1

Gasoline by GC/MS Lab #: 208593 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8260B Field ID: MW-2 Batch#: 146136 Lab ID: 208593-002 Sampled: 12/11/08 Matrix: Received: Water 12/12/08 Units: ug/L Analyzed: 12/17/08 Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	0.52	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	imits	
Dibromofluoromethane	93	0-125	
1,2-Dichloroethane-d4	94	0-137	
Toluene-d8	100	0-120	
Bromofluorobenzene	126 *	0-122	

*= Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 1

Gasoline by GC/MS Lab #: 208593 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8260B Field ID: MW-3 Batch#: 146136 Lab ID: 208593-003 Sampled: 12/11/08 Matrix: Received: Water 12/12/08 Units: ug/L Analyzed: 12/17/08 Diln Fac: 1.000

50 10 0.50 0.50
10 0.50 0.50
0.50 0.50
0.50
0.50
3.0 0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-125
1,2-Dichloroethane-d4	94	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	130 *	80-122

*= Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 1

12/17/08

Gasoline by GC/MS Lab #: 208593 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: Analysis: EPA 8260B 8757 Field ID: MW-4Batch#: 146136 Lab ID: 12/11/08 208593-004 Sampled: Matrix: Received: Water 12/12/08

Units:

Diln Fac:

ug/L

1.000

Analyte	Result	RL	
Gasoline C7-C12	830 Y	50	
tert-Butyl Alcohol (TBA)	20	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	10	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Analyzed:

Surrogate	%REC	Limits	
Dibromofluoromethane	94	80-125	
1,2-Dichloroethane-d4	93	80-137	
Toluene-d8	100	80-120	
Bromofluorobenzene	111	80-122	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1

Gasoline by GC/MS Lab #: 208593 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: Analysis: EPA 8260B 8757 Field ID: MW-6 Batch#: 146136 Lab ID: 208593-006 Sampled: 12/11/08 Matrix: Received: Water 12/12/08 Units: Analyzed: 12/18/08 ug/L Diln Fac: 10.00

Analyte	Result	RL
Gasoline C7-C12	1,900 Y	500
tert-Butyl Alcohol (TBA)	ND	100
Isopropyl Ether (DIPE)	ND	5.0
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Methyl tert-Amyl Ether (TAME)	ND	5.0
MTBE	540	5.0
1,2-Dichloroethane	ND	5.0
Benzene	590	5.0
Toluene	14	5.0
1,2-Dibromoethane	ND	5.0
Ethylbenzene	7.8	5.0
m,p-Xylenes	7.4	5.0
o-Xylene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	122	80-122

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1

Gasoline by GC/MS						
Lab #:	208593	Location: 1532 H	Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 50	030B			
Project#:	8757	Analysis: EPA 82	260B			
Туре:	BLANK	Diln Fac:	1.000			
Lab ID:	QC476024	Batch#:	146136			
Matrix:	Water	Analyzed:	12/17/08			
Units:	ug/L					

Analyte	Result	RL
Gasoline C7-C12	ND	50
tert-Butyl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-125
1,2-Dichloroethane-d4	92	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	130 *	80-122

*= Value outside of QC limits; see narrative
ND= Not Detected
RL= Reporting Limit
Page 1 of 1

Gasoline by GC/MS						
Lab #: Client: Project#:	208593 Golden Gate Tank Removal 8757	Location: 1532 Peralta St. Osagie Property Prep: EPA 5030B Analysis: EPA 8260B				
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: 146136 Analyzed: 12/17/08				

Type: BS			Lab ID:	QC	476025	
Analyte		Spiked		Result	%REC	Limits
tert-Butyl Alcohol (TBA)		100.0		91.45	91	59-152
Isopropyl Ether (DIPE)		20.00		23.92	120	67-126
Ethyl tert-Butyl Ether (ETBE)		20.00		21.53	108	69-127
Methyl tert-Amyl Ether (TAME)		20.00		21.67	108	80-122
MTBE		20.00		18.11	91	70-125
1,2-Dichloroethane		20.00		18.55	93	78-132
Benzene		20.00		21.35	107	80-120
Toluene		20.00		19.13	96	80-120
1,2-Dibromoethane		20.00		18.60	93	80-120
Ethylbenzene		20.00		19.01	95	80-122
m,p-Xylenes		40.00		36.17	90	80-126
o-Xylene		20.00		17.87	89	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	94	80-125				
1,2-Dichloroethane-d4	90	80-137				
Toluene-d8	99	80-120				
Bromofluorobenzene	115	80-122				

Type: BSD	Lab ID	: QC476	026			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	100.0	86.11	86	59-152	6	20
Isopropyl Ether (DIPE)	20.00	23.89	119	67-126	0	20
Ethyl tert-Butyl Ether (ETBE)	20.00	21.71	109	69-127	1	20
Methyl tert-Amyl Ether (TAME)	20.00	22.55	113	80-122	4	20
MTBE	20.00	18.24	91	70-125	1	20
1,2-Dichloroethane	20.00	18.18	91	78-132	2	20
Benzene	20.00	21.75	109	80-120	2	20
Toluene	20.00	19.93	100	80-120	4	20
1,2-Dibromoethane	20.00	19.74	99	80-120	б	20
Ethylbenzene	20.00	18.71	94	80-122	2	20
m,p-Xylenes	40.00	36.62	92	80-126	1	20
o-Xylène	20.00	18.16	91	80-120	2	20
Surrogate	%REC Limits					
Dibromofluoromethane	93 80-125					

Surroyate %REC	LIMICS	
Dibromofluoromethane 93	80-125	
1,2-Dichloroethane-d4 91	80-137	
Toluene-d8 101	80-120	
Bromofluorobenzene 110	80-122	

	Gasoline	by GC/MS
Lab #:	208593	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Matrix:	Water	Batch#: 146136
Units:	ug/L	Analyzed: 12/17/08
Diln Fac:	1.000	

Type:

BS

Lab ID: QC476027

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	700.0	681.6	97	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-125
1,2-Dichloroethane-d4	93	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	117	80-122

Туре:	BSD			Lab ID:	QC4	476028			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline (C7-C12		700.0		659.4	94	80-120	3	20
	Surrogate	%REC	Limits						
Dibromofl	uoromethane	93	80-125						
1,2-Dichlo	oroethane-d4	85	80-137						
Toluene-da	8	101	80-120						
Bromofluo	robenzene	120	80-122						

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\121708.b\HLH19TVH.D Date : 17-DEC-2008 21:55 Client ID: DYNA P&T Sample Info: S,208593-001

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

Column phase:

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\121708.b\HLH22TVH.D Date : 17-DEC-2008 23:41 Client ID: DYNA P&T Sample Info: S,208593-004

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

Page 2

26 of 28

Column phase:

Data File: \\Gomsserver\DD\chem\MSVOA08.i\121708.b\HLH28.D Date : 18-DEC-2008 03:13 Client ID: DYNA P&T Sample Info: S,208593-006 Purge Volume: 5.0 Column phase: RTX 624

Instrument: MSVOA08.i

Operator: voc

Column diameter: 0,25

		\\Gems:	server\DD\chem\MSVOA08.	i\121708.b\HLH28.D		
2.9-		L4 5	Γŧ	њ +		
2,8-		Ŭ Ň e e	e e	μ		
2.7-		s the second s	Š.	Š.		
2.6-		I to	lor	hlo		
2.5		bif Dif	lich			
2.4-		Di C	I-M	ę	1 2 4	
2.3-			τ υ	- us	e e	
2.2-			i.	ą	Denz	
2.1-		± 1		Inot	а 10	
2.0-		zenz		de la	chi	
1.9-		ç e		-Bro		
1.8-		or of		i i	ν. τ	
1.7-		aflu	l l			
1.6-		ent				
Q 1 5	ш	<u></u> н П				
	MTB					
×	1					
4 2			1			
1+2-		e l				
1.1-	ê	8				
1.0-	t s	è l				
0.0	we under the second sec	ere hillo		teger and the second seco		
×+0-		eth Bate 10 ×		eth	Č.	
0.6	e j j	10 2,2- Dide to 2,2-	ane one ane	oro oro		
V+0-	E et		ਦੇ ਇਹ ਤੋਂ ਦੇ ਪ	Polchard Contraction (1997)	chlo Chlo	
0.0	ut u	[[] [] [] [] [] [] [] [] [] [] [] [] []		Area Area Area Area Area Area Area Area		
V+4-		프 [응답충][뉴쉬] [[응 편 [응답호][]뉴쉬] [[[응	ich]	and the second s	ene on But	
0.3-			T lether	Huttoni 2 a a a a a a a a a a a a a a a a a a	-n- -hall hall	
0.2-						
0,1-				արութվարիկանությունը Հայերեն կանություն	ана т т т	
	5 6 7 8	9 10 11 12	13 14 1	i 16 17 1	18 19 20 21	22 23 24 25

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\121708.b\HLH06TVH.D
Date : 17-DEC-2008 14:28
Client ID: DYNA P&T
Sample Info: CCV/BS,QC476027,146136

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

28 of 28

Column phase:

STATE WATER RESOURCES CONTROL BOARD

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	EDF - Monitoring Report - Quarterly
Submittal Title:	4Q08 Ground Water Sample Analytical Results
Facility Global ID:	T0600191668
Facility Name:	OSAGIE PROPERTY
File Name:	4Q08 GWM EDF Report_208593.zip
Organization Name:	Golden Gate Tank Removal
Username:	GGTR
IP Address:	75.55.192.158
Submittal Date/Time:	1/7/2009 2:24:41 PM
Confirmation Number:	9018559336
	VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submitt <u>al Type:</u>	GEO_WELL
Submittal Title:	4Q08 Ground Water Monitoring Data
Facility Global ID:	T0600191668
Facility Name:	OSAGIE PROPERTY
File Name:	GEO_WELL.zip
Organization Name:	Golden Gate Tank Removal
Username:	GGTR
IP Address:	75.55.192.158
Submittal Date/Time:	1/7/2009 2:23:13 PM
Confirmation Number:	3096398472

Copyright © 2008 State of California

				2 Pana 1	3 Docume	vument Number			
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.		of	U. LOCUME	6326			
	4. Generator's Name and Mailing Address Tames Tracy 878 Hayden Ct Alpine, UT 84004-2405	.	Site: 1532 Pe Oakland,	Site: 1532 PeraltaSt Oakland, CB 94607.2020					
	Generator's Phone SO - 201 - 2000								
	5. Transporter Company Name	7. Transporte	Transporter Phone						
	CLEARWATER ENVIRONMENTAL	1	CAR000007013	(!	(510) 476-1740				
	8. Designated Facility Name and Site Address	9.	US EPA ID Number	10. Facility's	Phone				
	ALVISO INDEPENDENT OIL 5002 ARCHER STREET	1	CAL000161743	(5	10) 476-1	740			
E	11. Waste Shipping Name and Description			12.0	Containers	13.	14.		
N E				N	о. Туре	Quantity	Wt/Vol		
R A T O	a. Non-Hazardous waste			001	DM	45	<u>د</u>		
	D. Now-HAZ WASTE Sola	5		60	, Dr	30,0	R		
	15. Special Handling Instructions and Additional In	nformation		Handling Co	Handling Codes for Wastes Listed Above				
	Wear PPE			11	8	115	•		
	Emergency Contact								
	(510) 476-1740 Attn: Kirk Hayward	•							
	16 GENERATOR'S CERTIFICATION: Learling the	a materials described above on th	is manifest are not subject to sta	te or federal regulations fo	or reporting pro	oper disposal of Haza	ardous Waste.		
	, Printed/Typed Name		Signature	<u> </u>					
TRAN	EUGENIO .	DIAZ	Enfe	2		Month	Day Year 2608		
	17. Transporter Acknowledgement of Receipt of N	Materials	Signature	<u>\</u>					
CH1WH	Greeboey Thompson	>	Arecom	Thomps	ه م	Month	Day Year Zlo 08		
	18. Discrepancy Indication Space		\sim 1 (۱. ۱					
		waint of waste materials on ve	red by this manifest except as	s noted in Item 18.					
	Printed/Typed Name	Weipt of Hable Haldidio COVE	Signature			<u></u>			
	Charles Sector		all	10	2	Month			
L				~~~~~					

WHITE - ORIGINAL (Return to Generator)

YELLOW -TSDF (Retain Copy)