RECEIVED

2:02 pm, Apr 22, 2008

Alameda County Environmental Health

April 22, 2008

Mr. Barney Chan Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: First Quarter 2008 - Groundwater Monitoring Report

SITE: 1532 Peralta Street, Oakland, California ACHCSA Fuel Leak Case Site No. RO0000177 GGTR Project 8757

Dear Mr. Chan:

On behalf of Mr. James Tracy, Golden Gate Tank Removal, Inc. (GGTR) is pleased to submit the enclosed First Quarter 2008 *Groundwater Monitoring Report* presenting the findings and conclusions of the March 11, 2008, quarterly groundwater monitoring and sampling activities performed at 1532 Peralta Street in Oakland, California. GGTR uploaded an electronic copy of the report to the State Water Resources Control Board's GeoTracker Database System.

Should you have any questions, please contact us at your earliest convenience at (415) 512-1555. In my absence from the office, I may be reached by cellular service at (415) 686-8846.

Sincerely, Golden Gate Tank Removal, Inc.

1. UM

Brent A. Wheeler Project Manager

Enclosure/1

cc: Mr. James Tracy, 878 Hayden Court, Alpine, UT 84004

GROUNDWATER MONITORING REPORT

Automobile Repair Garage 1532 Peralta Street Oakland, California

ACHCSA Fuel Leak Case No. RO0000177

Prepared For:

Mr. James Tracy 878 Hayden Court Alpine, UT 84004

GGTR Project No. 8757 Sampling Date: March 11, 2008 Report Date: April 22, 2008

1 UM

Brent Wheeler Project Manager

AL GER UGENIO DIAZ 7696 ogist

Golden Gate Tank Removal, Inc. 3730 Mission Street, San Francisco, California Ph (415) 512-1555 Fx (415) 512-0964

GROUNDWATER MONITORING REPORT

1532 Peralta Street, Oakland, California

TABLE OF CONTENTS

INTRODUCTION	1
INTRODUCTION	. I
SITE DESCRIPTION	. 1
PROJECT HISTORY	. 2
GROUNDWATER MONITORING & SAMPLING: March 2008	. 4
RESULTS	. 6
RECOMMENDATIONS	. 7
REPORT DISTRIBUTION	. 9
LIMITATIONS	. 9

FIGURES

- 1 Site Location Map
- 2 Site Map
- 3 Groundwater Potentiometric Map
- 4 Groundwater Analytical data Diagram
- 5 Groundwater TPH-G Isoconcentration Map
- 6 Groundwater MTBE Isoconcentration Map

TABLE

Historical Groundwater Monitoring & Analytical Results

ATTACHMENT

- A Fluid-Level Monitoring Data Form Well Purging/Sampling Data Sheets
- B Laboratory certificate of Analysis Chain of Custody Form GeoTracker Upload Confirmation Forms

GROUNDWATER MONITORING REPORT

Automobile Repair Garage 1532 Peralta Street, Oakland, California

INTRODUCTION

This report presents the results and findings of the March 11, 2008 quarterly groundwater monitoring and sampling activities conducted by Golden Gate Tank Removal, Inc. (GGTR) at the commercial property located at 1532 Peralta Street in Oakland, California (the Site). The Alameda County Health Care Services Agency (ACHCSA) designated the Site as Fuel Leak Case No RO0000117.

This monitoring event (First Quarter 2008) represents the ninth consecutive quarterly monitoring event for the six on Site monitoring wells, MW-1 through MW-6, since the well installation and initial sampling event in February/March 2004. Figure 1 "*Site Location Map*" depicts the location of the Site. Figure 2 "*Site Map*" depicts the approximate location of the former underground fuel storage tanks (USTs), the approximate limits of UST over excavation, historical soil borings, and existing groundwater monitoring wells. Figure 3 "*Groundwater Potentiometric Map*" shows the approximate groundwater flow direction and hydraulic gradient across the Site. Figure 4 "*Groundwater Analytical Data Diagram*" presents a summary of the groundwater samples analytical results. Figure 5 "*Groundwater TPH-G Isoconcentration Map*" and Figure 6 "*Groundwater MTBE Isoconcentration Map*" depict the concentration and approximate horizontal extent of the total petroleum hydrocarbon as gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE) plumes, respectively. The attached Table presents a summary of the historical groundwater fluid level monitoring data and laboratory analytical results.

SITE DESCRIPTION

The Site is located at the southeast corner of Peralta Street and 16th Street in Oakland, California (Alameda County). The Site lies approximately one mile south of the San Francisco Bay. The elevation of the Site is approximately 13 feet above Mean Sea Level (MSL, Figure 1) occupying 6,356 square feet (0.15 acre) in area. Mr. Orobo Osagie previously owned the Site from May 1998 to early 2006, at which time Mr. James Tracy of Alpine Rentals took claim as the new responsible party for the Site (Alameda County Assessor Parcel 5-370-1). The Site is currently leased to LBJ's Automotive Repair for the service of automobiles. The Site operated as a gasoline service station prior to 1998. The nearby property, located to the northeast, across 16th Street (1600 Peralta Street), was a former gasoline service station and car repair garage (Figure 2).

The Site is relatively flat with the topographic relief generally directed towards the northwest in the general direction of the San Francisco Bay (Figure 1). A single-story divided structure, approximately 1,175 square feet in area, lies on the southeast side of the Site and is currently used as an automobile service garage. The flooring in the service garage and office space is paved with concrete. The majority of the Site is paved throughout with asphalt.

Soil beneath the Site described during the February 2004 soil boring/well installation, was predominately clayey, silty, fine-grained sand to a total depth of 16 feet below ground surface (bgs). Granulometric analysis of the soil collected during the soil boring activities was not performed. The geologic map also indicates that the Site is situated approximately 4 miles southwest and 14 miles northeast of the Hayward and San Andreas Fault Zones, respectively. The Site is located within the East Bay Plain Groundwater Basin that contains a significant drinking water resource. However, groundwater at the Site is apparently designated as "other groundwater" considered not used for drinking water.

The regional groundwater flow direction in the vicinity of the Site is approximately toward the north-northwest, in the general direction of the San Francisco Bay and decreasing topographic relief. The nearest surface water body is the Oakland Outer Harbor of the San Francisco Bay, located approximately 1.03 miles northwest of the subject property (Figure 1). The groundwater flow direction calculated from groundwater elevations in the onsite monitoring wells has been consistent and is directed northward.

PROJECT HISTORY

Underground Tank Removal - December 1999: In December 1999, GGTR removed five USTs from the Site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction, and contents:

Designation	Construction	Diameter (Feet)	Length (Feet)	Volume (Gallons)	Contents
UST #1	Steel	6	10	2,000	diesel
UST #2	Steel	4	7	675	gasoline
UST #3	Steel	4	7	675	gasoline
UST #4	Steel	5	7	1,000	gasoline
UST #5	Steel	5	7	1,000	diesel

GGTR subsequently collected soil samples from each excavation between 7 and 12.5 feet bgs. These samples contained maximum concentrations of TPH-G (TPH-G 2,600 milligrams per kilogram [mg/kg; parts per million]), TPH as diesel (TPH-D 8,100 mg/kg), and benzene (9.1 mg/kg). UST removal and sampling activities were conducted under the supervision of Mr. Hernan Gomez of the City of Oakland Fire Prevention Bureau (OFPB). Laboratory results of the soil samples collected after the tank removal are presented in the report entitled *Tank Closure Report, GGTR December 15, 1999 and*

Site Characterization and Groundwater Monitoring Report, GGTR September 14, 2006. Following sampling, the excavations were backfilled with the excavated soil stockpiles. The volume of the USTs was replaced with imported soil. Based on analytical results of the excavation soil sample analysis, Mr. Gomez requested a work plan of overexcavation activities to assess the extent of hydrocarbon-affected soil and potential impact to groundwater in the vicinity of the former USTs.

Over-Excavation & Disposal - January and February 2000: On January 3, 2000, GGTR submitted the requested work plan, which was approved by the OFPB in a letter dated January 25, 2000. In January and February 2000, in accordance with the proposed work plan activities, GGTR over-excavated the former UST cavities up to approximately 11 ft bgs, and to the approximate lateral limits shown in Figure 2. GGTR collected soil samples from the sidewalls (7.5 ft bgs.) and from the bottom (12 ft bgs.) of the over-excavated cavities. Groundwater accumulated within the excavations and was subsequently purged prior to sampling.

After groundwater stabilized within each excavation at approximately 8 ft bgs, GGTR collected a groundwater sample from each excavation. GGTR performed the sampling activities under the direction of Mr. Gomez of the OFPB. Approximately 194 tons of petroleum hydrocarbon impacted soil were excavated from the Site and disposed of at Forward, Inc. in Manteca, California. The excavation was subsequently backfilled and the pavement was replaced with concrete and asphalt, respectively. Significant concentrations of TPH-G, TPH-D, benzene, and MTBE (in groundwater only) were reported for each sample. Sampling activities and soil and groundwater laboratory results are presented in the document entitled *Remedial Activity Report*, GGTR March 8, 2000.

Remedial Activity Plan - October 2000 to May 2002: Following review of the Remedial Activity Report, the ACHCSA, in letters dated May 19 and May 25, 2000, identified elevated levels of residual gasoline and diesel-range hydrocarbons in the soil and groundwater in the vicinity of the former USTs and requested a work plan to evaluate the lateral and vertical extent of contamination at the Site.

On October 6, 2000, DECON Environmental Services, Inc. (DECON) of Hayward, California prepared the requested work plan *(Remedial Activity Plan, October 2000)*, which was subsequently approved by Mr. Larry Seto of the ACHCSA. After further review of DECON's work plan, representatives of both the ACHCSA and State Water Resources Control Board UST Cleanup Fund concurred that the work plan required additional content and requested that it be revised and resubmitted to the ACHCSA for review and approval. In February 2002, GGTR prepared the revised work plan for soil and groundwater investigation activities at the subject property.

Preliminary Soil Sampling / Monitoring Well Installation (MW-1 through MW-6): February 2004 - In February 2004 and in collaboration with Gregg Drilling, Inc., GGTR advanced eleven direct-push soil borings (B1 through B11) to a depth of 12 to 16 feet bgs. Six of the borings, B2, B4, B6, B9, B10, and B11, were converted to pre-packed ³/₄"-diameter monitoring wells MW-1 through MW-6, respectively. Groundwater was encountered between 2 and 4 feet bgs and stabilized in the wells at approximately 2 to 3 feet bgs. The investigation objective was to define the extent of petroleum hydrocarbon impact to soil and groundwater. On April 13, 2006, Virgil Chavez Land Surveying of Vallejo California, surveyed the top of casings of all six monitoring wells at the Site. Permits, boring logs, well sampling field sheets, and the laboratory analytical reports for soil and groundwater are presented in the report entitled *Site Characterization and Groundwater Monitoring Report, GGTR September 14, 2006*.

Work Plan / Site Conceptual Model – January to March 2007: Based upon review of the September 2006 Site Characterization and Groundwater Monitoring Report, the ACHCSA in their letter dated November 29, 2006, concurred that a work plan including a conduit survey, historical research and initial Site conceptual model be prepared for the fuel leak investigation at the subject property. On January 31, 2007, GGTR prepared its Soil and Water Delineation Work Plan. The ACHCSA, in their letter dated February 15, 2007, requested an addendum to address additional investigation of suspect conduits and other issues. On March 20, 2007, GGTR submitted the Addendum to the Soil and Water Delineation Work Plan; the purpose of this addendum is to modify procedures in the submitted work plan and propose additional investigation activities for delineating the lateral extent of soil and water contamination in the vicinity of the Site. To date, the addendum has not been approved by the ACHCSA.

Groundwater Monitoring (MW-1 to MW-6) - March 2006 to Present: GGTR has conducted quarterly groundwater monitoring and sampling events at the Site on a consecutive basis since March 2006. Sample analytical results and associated fluid level monitoring data for each event are summarized in the attached Table. Details of each event are provided in respective Groundwater Monitoring Reports prepared by GGTR.

GROUNDWATER MONITORING & SAMPLING: March 2008

The scope of work covered in this report includes the following:

- Monitoring, purging and sampling six monitoring wells (MW-1 to MW-6)
- Laboratory analysis of groundwater samples
- Waste Management
- Data interpretation and report preparation
- GeoTracker Upload

Groundwater Sampling Field Procedures: GGTR conducted the most recent quarterly groundwater monitoring and sampling activities at the Site on March 11, 2008. Prior to purging and sampling each of the six monitoring wells, GGTR measured and recorded the depth to groundwater using an electronic water level meter. Groundwater levels were measured to the nearest 0.01 foot. Attachment A includes a copy of the *Fluid-Level Monitoring Data Form.*

GGTR then purged groundwater from each well using a low-flow peristaltic pump and disposable polyethylene tubing. Purge rates varied in each well between 250 to 400 milliliters per minute (ml/min). The wells were purged until three consecutive parameter readings of pH, specific conductivity and temperature were measured within a range of +/- 0.1, 10%, and 3%, respectively, in general accordance with ASTM Designation D6771-02 (*Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Groundwater Quality Investigations*). The purge water was transferred directly to a 55-gallon D.O.T.- approved steel drum. After purging the wells, GGTR collected a groundwater sample from each well using a peristaltic pump and clean polyethylene tubing. Each sample was collected at a significantly lower pumping rate, with the sample intake just below the water level in each well casing. Each sample was transferred directly into the appropriate laboratory sample containers. All volatile organic analysis (VOA) vials were sealed with a threaded cap, inverted, and checked to ensure that no entrapped air was present. Attachment A includes a copy of the *Well Purging/Sampling Data Sheets*.

Following sampling activities, the groundwater samples were labeled and immediately stored in a cooler chilled to 4° centigrade. GGTR submitted the samples to a California-Certified analytical laboratory under formal chain-of-custody protocol. Between each well location, all downhole monitoring and purging equipment were decontaminated using an Alconox wash solution and double rinsed with clean, potable water. GGTR transferred the wash and rinse water to a 55-gallon D.O.T. approved steel drum, which was labeled and temporarily stored onsite in a secure area pending final disposal at a licensed facility.

Groundwater Sample Analysis: On March 12, 2008, GGTR submitted the groundwater samples under formal chain of custody command to Entech Analytical Labs, Inc. (CA ELAP #2346) in Santa Clara, California for laboratory analysis of the following constituents:

- TPH-D by EPA Method 3510C / 8015B(M)
- TPH-G by EPA Method 5030B/ GC/MS
- Volatile Organic Compounds (VOC) by EPA Method 5030B / 8260B

Entech performed all volatile analyses in conformance with the maximum 14-day holding time for these analyses. Attachment B includes a copy of the Laboratory Certificate of Analysis and associated Chain of Custody form.

GeoTracker Electronic Submittal: GGTR directed Entech to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGTR uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO_WELL) to the State Water Resources Control Board's GeoTracker Database System. GGTR also uploaded a copy of this report in Portable Data Format (PDF) to the GeoTracker Database. Attachment B includes a copy of each associated GeoTracker Upload Confirmation Form. **Groundwater Waste Management:** The well purge water and equipment wash and rinse water generated during the March 11, 2008 monitoring event (approximately 20 gallons), was transferred to a 55-gallon D.O.T.-approved steel drum, appropriately labeled and temporarily stored onsite in a secure area for use with future monitoring event(s).

RESULTS

Results of Groundwater Measurements: The groundwater levels measured in wells MW-1, MW-2 and MW-3 during the March 11, 2008 monitoring event were used to calculate the groundwater elevation relative to the MSL. GGTR used the groundwater elevation to determine the groundwater flow direction and hydraulic gradient across the Site. Figure 3 depicts the groundwater equipotential contour lines, flow direction and hydraulic gradient. The attached Table presents the historical groundwater elevation data for the Site since installation of the six existing groundwater monitoring wells. Documentation of the monitoring, purging and sampling activities performed during this event is presented in Attachment A.

The groundwater elevation, flow direction and hydraulic gradient calculated during the March 2008 monitoring event are generally similar to that from the December 2007 monitoring event. The March 11, 2008 measurements indicate that the general groundwater flow direction beneath the Site is 5 degrees towards the northeast (N5°E) under an hydraulic gradient of 0.009 ft/ft. The groundwater elevations calculated during this monitoring event ranged from 5.76 feet above MSL in well MW-2, to 6.35 feet above MSL in MW-4. The March 2008 measurements represent late winter conditions with the mean groundwater elevation at 1.16 feet higher than that measured in December 2008 during late autumn weather conditions.

Results of Groundwater Sampling and Laboratory Analysis: The attached Table presents a summary of the groundwater fluid levels monitoring data and laboratory analytical results of monitoring wells MW-1 to MW-6. Attachment A includes copies of the field documentation of the monitoring, purging and sampling activities performed during this event. Attachment B includes a copy of the Laboratory Certificate of Analysis and the associated Chain-of-Custody Form.

Again, the maximum TPH-G and benzene concentrations were detected in groundwater samples collected from monitoring well MW-6, at 4,700 ug/l and 690 ug/l, respectively. Both of these values were above their respective Environmental Screening Level (ESL). TPH-G concentrations have fluctuated in this well since March 2004, ranging between 2,200 ug/l in September 2007 and 8,400 ug/l in December 2006, and benzene has also fluctuated in this well with concentrations ranging between 240 ug/l in June 2007 and 2,600 ug/l in December 2006. TPH-G was also detected above its ESL in monitoring wells MW-1, MW-4, and MW-5 at concentrations of 240, 940, and 2,300 ug/l, respectively. TPH-G was again not detected in the groundwater sample collected from monitoring wells MW-2 and MW-3, which is consistent with a general decreasing trend

in concentration for these wells. Benzene continues to significantly exceed its ESL in wells MW-5 (140 ug/l) and MW-6 (690 ug/l), both located in the direct proximity of the former gasoline UST #'s 2 to 4 (Figure 2). Concentrations of benzene were also detected above its ESL in monitoring well MW-4. Benzene had not been detected in this well since March 2007. Concentrations of benzene were not detected in monitoring wells MW-1 to MW-3 during this event.

MTBE concentrations exceeding its applicable ESL were detected in the groundwater samples collected from MW-1, MW-4, MW-5 and MW-6 at levels of 33 ug/l, 8.3 ug/l, 930 ug/l and 740 ug/l, respectively. Concentrations of MTBE were not detected or were insignificant in monitoring wells MW-2 and MW-3. Tert-butanol (TBA) was again detected in the groundwater samples collected MW-4 at 13 ug/l. According to the new ESL standards released in November 2007, the ESL for TBA has been removed and it is assumed as not established.

Concentrations of TPH-D were detected above its ESL in groundwater samples collected from monitoring wells MW-4, MW-5 and MW-6 at levels of 490 ug/l, 440 ug/l, and 1,300 ug/l, respectively. However, the laboratory report indicated that these values represent an atypical diesel pattern; higher boiling gasoline compounds were present in the Diesel range (C10-C36). Concentrations of TPH-D were either insignificant or below the laboratory reporting limit in groundwater samples collected from monitoring wells MW-1, MW-2 and MW-3.

The results of historical groundwater monitoring and laboratory analyses performed to date are summarized on the attached Table. Figure 4 presents the TPH-G, TPH-D, BTEX, and MTBE concentrations detected in each well during this sampling event. Figures 5 and 6 depict *Groundwater TPH-G and MTBE Isoconcentration Maps*, respectively, estimating the residual extent of gasoline-range hydrocarbons in groundwater at the Site. Attachment B includes copies of the Laboratory Certificate of Analysis and the associated Chain-of-Custody Form.

RECOMMENDATIONS

Based on the results of the First Quarter 2008 Groundwater Monitoring and Sampling Event, GGTR recommends continued groundwater monitoring and sampling at the Site. Because TPH, BTEX, and MTBE sample concentrations have been non-detect or insignificant in monitoring well MW-3 since March 2006, GGTR recommends that the sampling frequency for this well be decreased to a semi-annual basis. Although similar gasoline-range hydrocarbons have also been non-detect or insignificant in MW-2 since March 2006, it should continue to be sampled on a quarterly basis. This well is located generally down-gradient of the former USTs and MW-6.

Groundwater samples collected from monitoring wells MW-1to MW-6 should continue to be analyzed for TPH-G by EPA Method 5030B/GC/MS, TPH-D by EPA Method

3510C/8015B(M), and VOC by EPA Method 5030B/8260B. Second Quarter 2008 groundwater sampling activities are tentatively scheduled at the Site in June 2008.

Again, GGTR requests that the ACHCSA expedite review of the aforementioned March 20, 2007 Work Plan Addendum, which was prepared to modify procedures in the January 2007 Soil and Water Delineation Work Plan, and propose additional investigation activities for delineating the lateral extent of soil and water contamination in the vicinity of the Site. Upon regulatory approval, GGTR recommends implementation of the additional work plan activities.

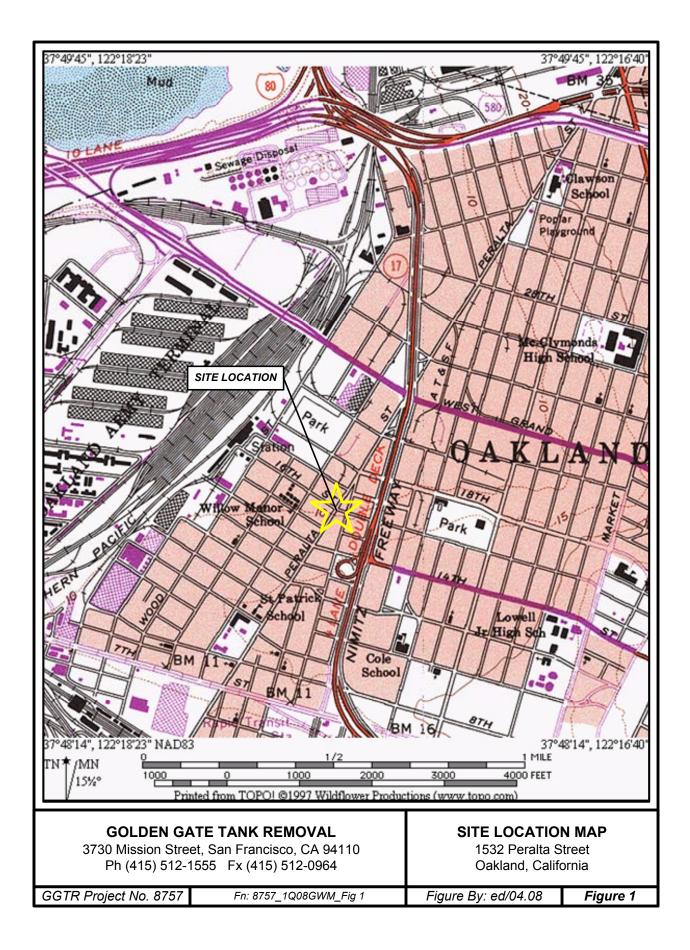
REPORT DISTRIBUTION

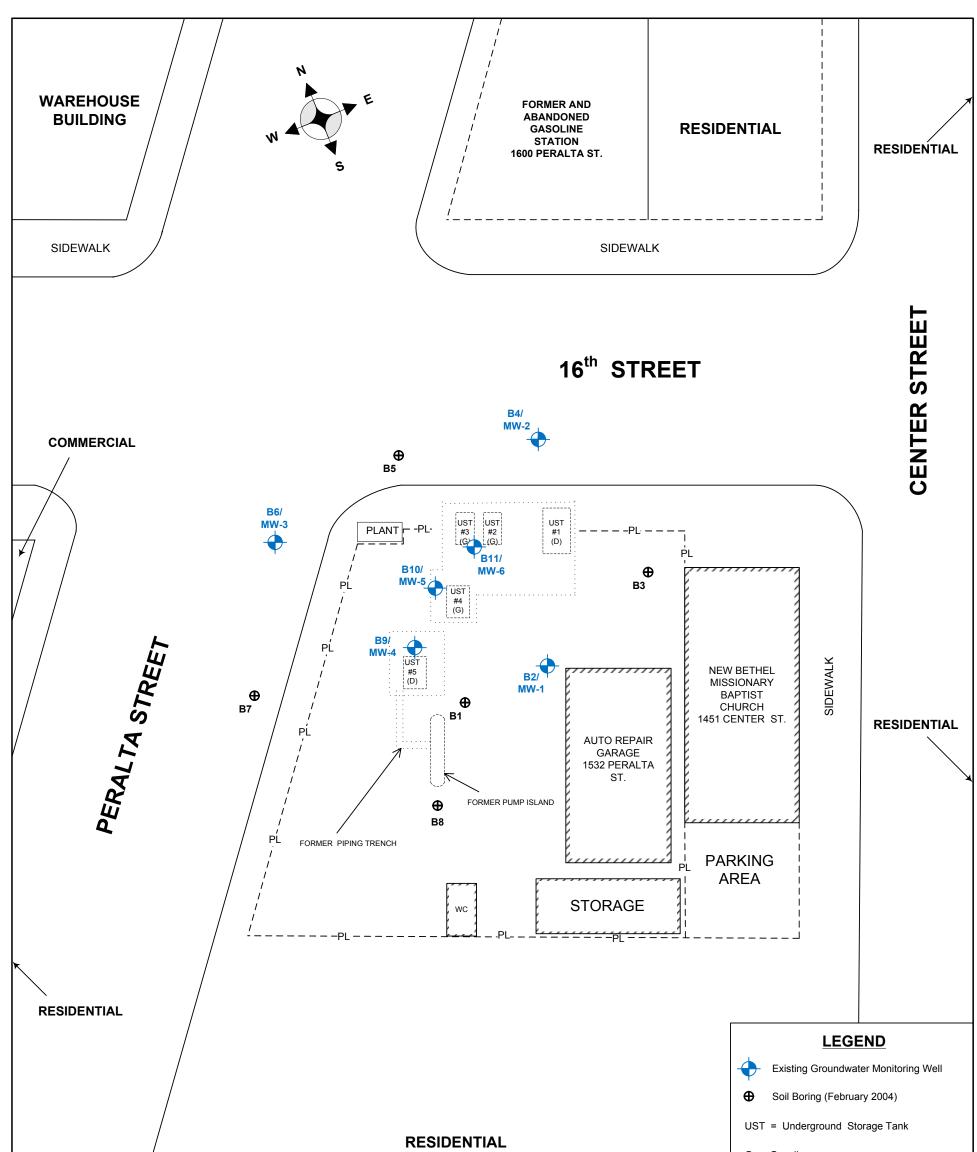
A copy of this quarterly groundwater monitoring report is submitted to the following Site representatives:

Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 *Attn: Mr. Barney Chan*

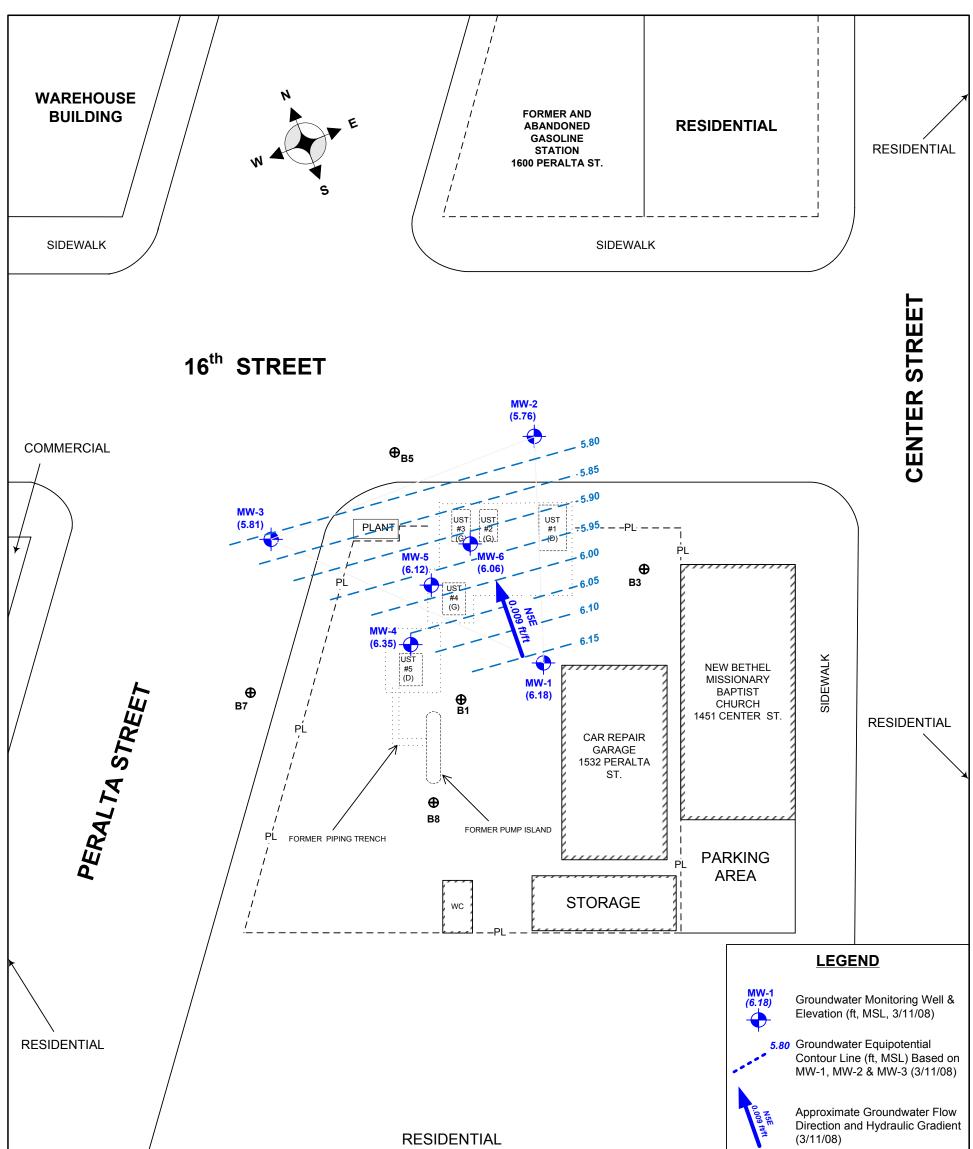
(*1Electronic Copy via ACGOV FTP*) (*1Electronic Copy via GeoTracker*)

Mr. James Tracy 878 W. Hayden Court Alpine, Utah 84004

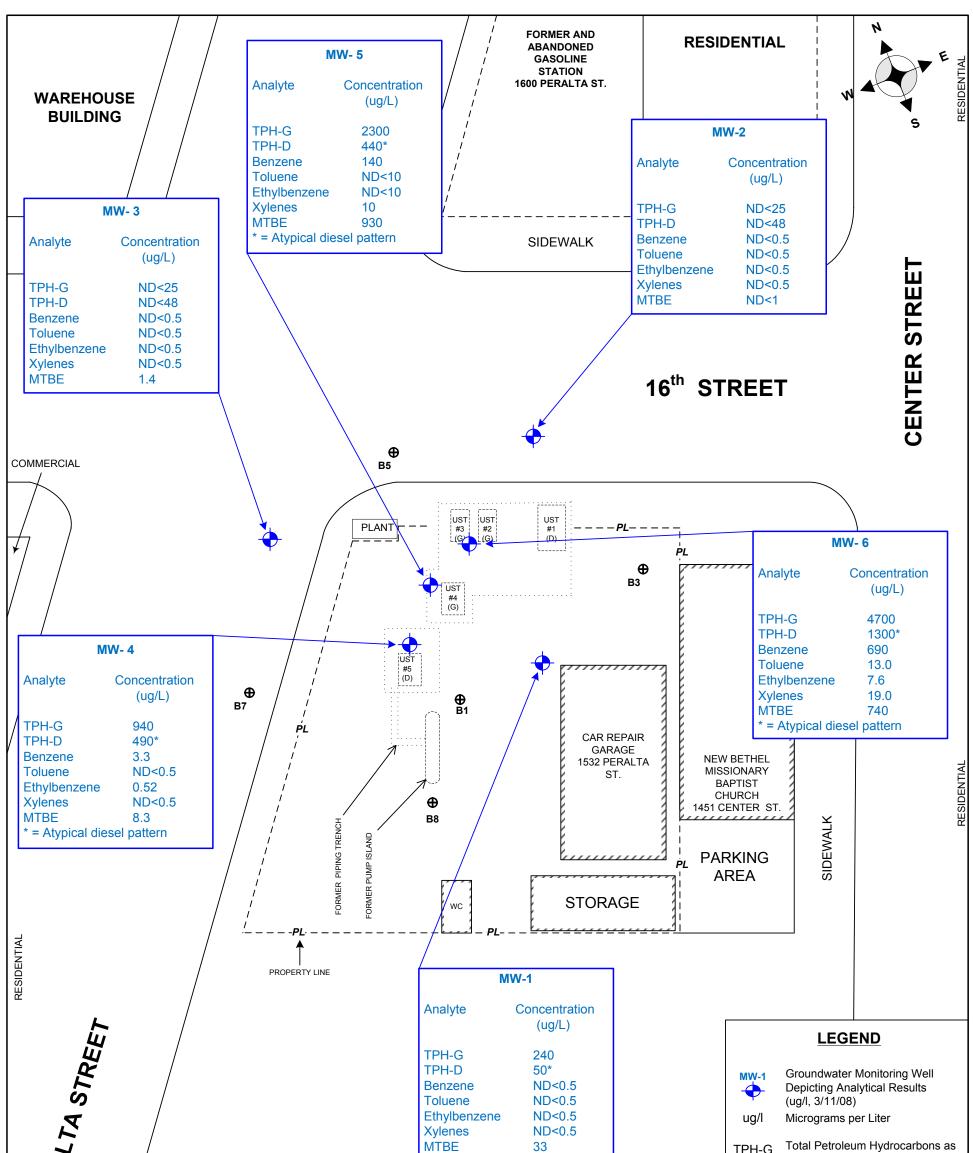

(1 Copy; Bound)

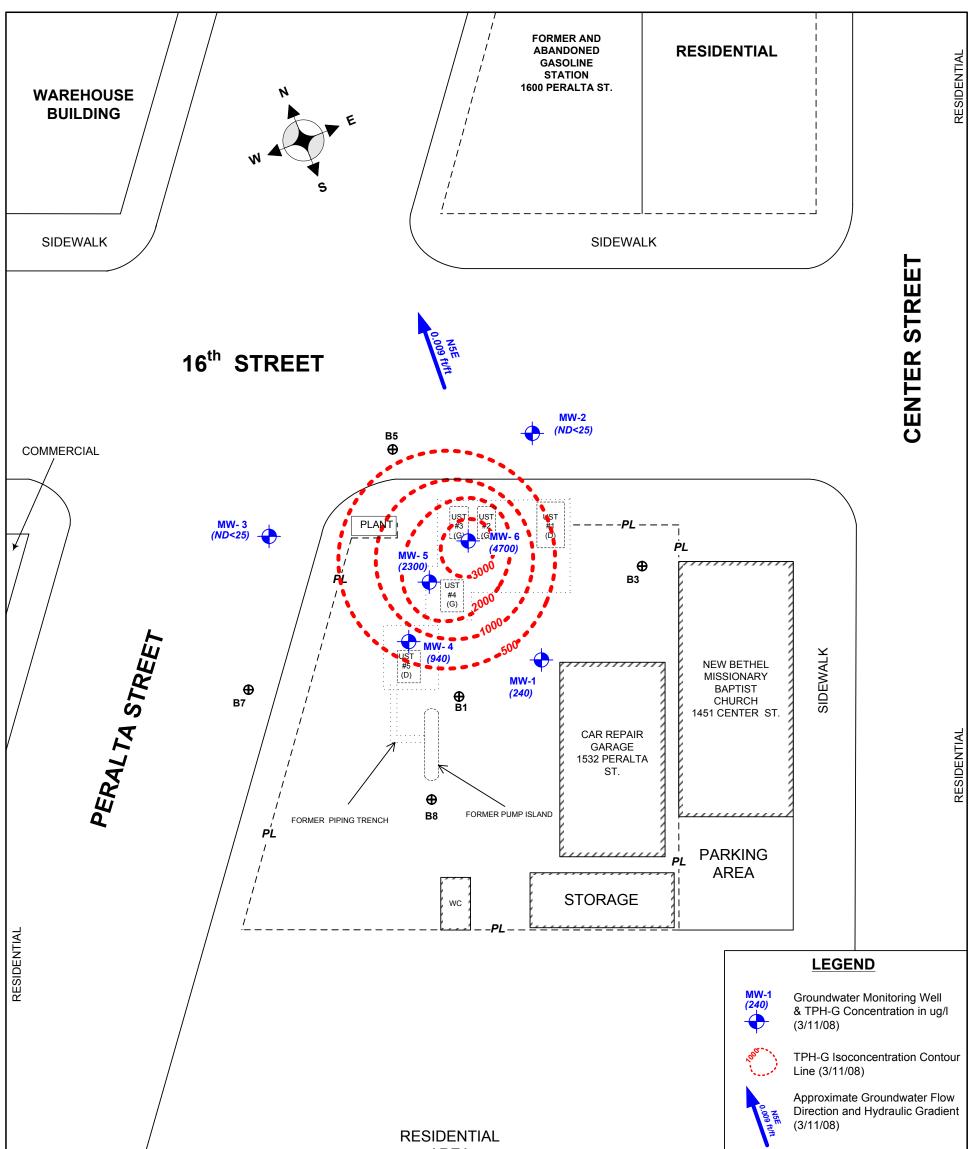

LIMITATIONS

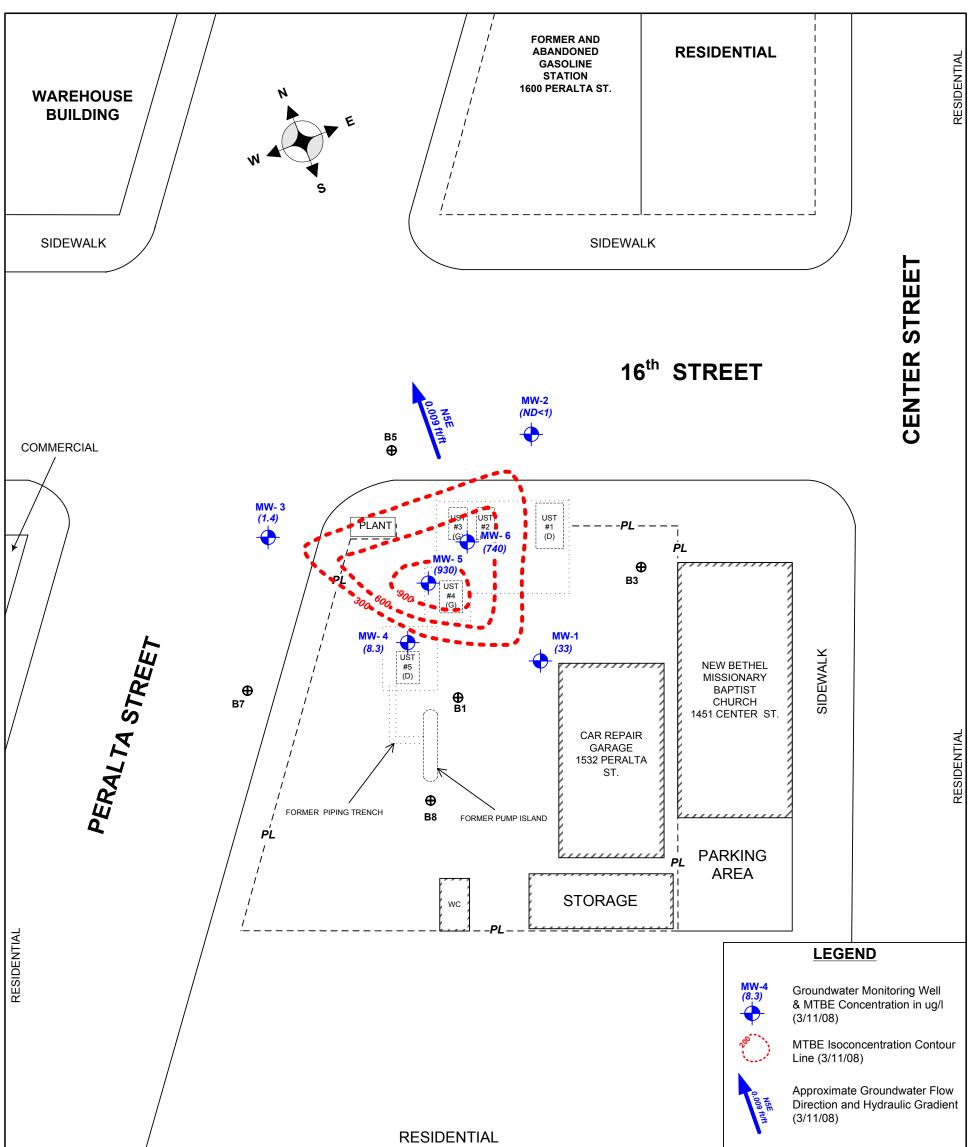
This report has been prepared in accordance with generally accepted environmental practices exercised by professional geologists, scientists, and engineers. No warranty, either expressed or implied, is made as to the professional advice presented herein. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon Site conditions, as they existed at the time of the investigation, and are subject to change.


The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user.

Golden Gate Tank Removal, Inc.




	AREA		G = Gasoline D = Diesel PL Property Line Approximate Limit of Former US Excavation Scale in Feet (1" = 20')	
GOLDEN GATE TAN 3730 Mission Street, Sa Ph (415) 512-1555	n Francisco, CA 94110	1532 F	(1 = 20) 0 10 20 ITE MAP Peralta Street nd, California	
GGTR Project No. 8757	Fn: 8757_1Q08GWM_F2	Figure By: ed Figure 2		


	AREA			
			\oplus	Soil Boring
			ft, MSL	Feet Above Mean Sea Level
			UST	Underground Storage Tank
		Scale in Feet	G	Gasoline
		(1" = 20')	D	Diesel
		0 10 20	PL	Property Line
				Approximate Limit of Former UST Excavation
GOLDEN GATE TAN 3730 Mission Street, Sa Ph (415) 512-1555	n Francisco, CA 94110		OTENTIO eralta Stre d, Californ	et
GGTR Project No. 8757	Fn:8757_1Q08GWM_F3	Figure By: ed		Figure 3

AL /	MTBE * = Atypical d	33 liesel pattern	TPH-G Total Petroleum Hydrocarbons a Gasoline
PERA			TPH-D Total Petroleum Hydrocarbons a Diesel
4 /			MTBE Methyl Tertiary-Butyl Ether
			ND Not Detected above the Laboratory reporting Limit
	RESIDENTIAL	Scale in Feet	Soil Boring
	AREA	(1" = 20')	UST Underground Storage Tank
		0 10 20	Approximate Limit of Former UST Excavation
GOLDEN GATE TAN 3730 Mission Street, Sa Ph (415) 512-1555	n Francisco, CA 94110	1532 P	ALYTICAL DATA DIAGRAM Peralta Street nd, California
GGTR Project No. 8757	Fn: 8757_1Q08GWM_F4	Figure By: ed	Figure 4

	AREA		•	Soil Boring
			TPH-G	Total Petroleum Hydrocarbon as Gasoline
			ug/l	Micrograms per liter
			D	Diesel
/			G	Gasoline
		Scale in Feet	UST	Underground Storage Tank
/		(1" = 20')	PL	Property Line
		0 10 20		Approximate Limit of Former UST Excavation
GOLDEN GATE TAN 3730 Mission Street, Sau Ph (415) 512-1555	n Francisco, CA 94110		ISOCON eralta Stree d, Californi	et
GGTR Project No. 8757	Fn:8757_1Q08GWM_F5	Figure By: ed	Figure 5	

	AREA		\oplus	Soil Boring
			MTBE	Methyl Tertiary-Butyl Ether
			G	Gasoline
			D	Diesel
			ug/l	Micrograms per liter
/		Scale in Feet	UST	Underground Storage Tank
		(1" = 20')	PL	Property Line
		0 10 20		Approximate Limit of Former UST Excavation
GOLDEN GATE TAN 3730 Mission Street, Sa Ph (415) 512-1555	n Francisco, CA 94110		ISOCON eralta Stree d, Californi	et
GGTR Project No. 8757	Fn:8757_1Q08GWM_F6	Figure By: ed	Figure 6	

TABLE
HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D (ug/l)	В	Т	Е	Х	MTBE	Other Fuel
	Date	Elevation	ĜW	Elevation	(ug/l)		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Oxygenates
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	03/05/04		3.18	6.69	571	220	4.1	1.6	0.6	5.8	53.2	NA
	03/27/06		2.72	7.15	520	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	61	11(TBA)
	06/22/06		3.53	6.34	790	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	27	11(TBA)
	09/25/06		4.54	5.33	500	ND<50	2.4	ND<0.5	ND<0.5	ND<0.5	31	17(TBA)
MW 1	12/21/06	9.87	4.05	5.82	90	ND<46	1.6	ND<0.5	ND<0.5	ND<0.5	28	15(TBA)
MW-1	03/12/07	9.87	3.51	6.36	350	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	47	19(TBA)
	06/28/07		4.37	5.50	420	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	43	ND<10(TBA)
	09/25/07		5.23	4.64	190	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	29	ND<10(TBA)
	12/17/07		4.92	4.95	130	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	28	ND<10 (TBA)
	03/11/08		3.69	6.18	240	50 ¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	33	ND<10 (TBA)
	03/05/04		2.73	5.93	109	ND<50	3.9	ND<0.5	ND<0.5	ND<1.0	6.9	NA
	03/27/06		2.11	6.55	30	ND<62	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2	ND
	06/22/06		2.73	5.93	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	09/25/06		3.60	5.06	ND<25	ND<50	0.9	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
MW-2	12/21/06	8.66	3.16	5.50	ND<25	ND<46	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
101 00 -2	03/12/07	0.00	2.76	5.90	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	06/28/07		3.46	5.20	ND<25	ND<50	ND<0.5	0.76	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	09/25/07		4.24	4.42	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	12/17/07		3.92	4.74	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	03/11/08		2.90	5.76	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	03/05/04		2.10	6.19	185	200	1	1	ND<0.5	1.3	2.5	NA
	03/27/06		1.74	6.55	ND<25	ND<72	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	06/22/06		2.38	5.91	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	09/25/06		3.12	5.17	44	ND<50	1.4	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
MW-3	12/21/06	8.29	2.71	5.58	ND>25	ND<46	3.2	ND<0.5	ND<0.5	ND<0.5	1.2	ND<10 (TBA)
	03/12/07		2.51	5.78	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.0	ND<10 (TBA)
	06/28/07		2.95	5.34	ND<25	ND<50	ND<0.5	0.64	ND<0.5	ND<0.5	1.8	ND<10 (TBA)
	09/25/07		3.80	4.49	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.3	ND<10 (TBA)
	12/17/07		3.40	4.89	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.1	ND<10 (TBA)
	03/11/08		2.48	5.81	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.4	ND<10 (TBA)
	CRWQCB ESL, November 2007				100	100	1	40	30	20	5	NE (TBA)

1532 Peralta Street, Oakland, CA

Notes in following page:

Well ID	Samula	TOC	Depth to	GW	TPH-G	TPH-D	в	Т	Е	Х	MTBE	Other Fuel
well ID	Sample Date	Elevation	GW	Elevation				-				
	Date		(ft BTOC)	(ft MSL)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Oxygenates
	03/05/04	(ft MSL)	2.85	(ILMSL) 6.89	1,110	370	3.2	3.9	1	3.3	8.5	(ug/l) NA
	03/03/04 03/27/06				·	370 ND<50	5.2 ND<1.0		ND<1.0			
	03/27/06 06/22/06		2.64 3.43	7.10 6.31	2,000 430	ND<50 NA	ND<1.0 ND<1.0	1	ND<1.0 ND<0.5	1.1 1.3	9.3 11	33(TBA) 28(TBA)
	08/22/08 09/25/06		5.43 4.38	5.36	430 700	NA ND<50	ND<1.0 ND<1.0	1 ND<0.5	ND<0.5 ND<0.5	1.5 ND<0.5	11	28(TBA) 34(TBA)
	12/21/06		4.38	5.65	1,300	ND<30 ND<47	1.7	ND<0.3 ND<1.0	ND<0.3 ND<1.0	ND<0.3 ND<1.0	9.8	33(TBA)
MW-4	03/12/07	9.74	4.09 3.47	6.27	1,300	ND < 50	1.7	ND<1.0	ND<1.0	ND<1.0	9.8	27(TBA)
	06/28/07	2.71	4.20	5.54	900	570 ¹	ND<1.0	ND<1.0	ND<1.0	ND<1.0	14	28(TBA)
	09/25/07		5.00	4.74	850	ND<48 ⁻¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	11	45(TBA)
	12/17/07		4.71	5.03	630	300 ⁻¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	8.9	27 (TBA)
	03/11/08		3.39	6.35	940	490 ¹	3.3	ND<0.5	0.52	ND<0.5	8.3	13 (TBA)
	03/05/04		2.83	6.57	1,660	NA	650	7.6	1.6	7.1	2,250	NA
	03/27/06		2.41	6.99	1,600	ND<50	89	5.6	ND<5.0	8.7	1,200	170(TBA)
	06/22/06		3.17	6.23	2000	NA	240	11	ND<10	ND<10	1,100	ND<200 (TBA)
	09/25/06		4.14	5.26	2,200	ND<50	160	ND<10	ND<10	ND<10	1,200	ND<200 (TBA)
	12/21/06		3.79	5.61	1,700	ND<47	120	ND<10	ND<10	ND<10	1,000	ND<200 (TBA)
MW-5	03/12/07	9.40	3.22	6.18	1,300	ND<48	99	5.3	ND<5.0	ND<5.0	770	ND<100 (TBA)
	06/28/07		4.96	4.44	1,900	470^{-1}	230	11	ND<10	ND<10	1,400	ND<200 (TBA)
	09/25/07		4.74	4.66	1,200	ND<48 ¹	90	ND<10	ND<10	ND<10	840	ND<200 (TBA)
	12/17/07		4.50	4.90	2,000	540 ¹	170	ND<10	ND<10	11	920	ND<200 (TBA)
	03/11/08		3.28	6.12	2,300	440 ¹	140	ND<10	ND<10	10	930	ND<200 (TBA)
	03/05/04		2.50	6.52	6,450	800	1,950	29.6	52.7	54.6	1,440	NA
	03/27/06		2.08	6.94	4,800	ND<50	820	14	12	22	1,100	180(TBA)
	06/22/06		2.85	6.17	5,200	NA	630	12	14	13	1,100	ND<200 (TBA)
	09/25/06		3.79	5.23	3,700	ND<50	430	ND<10	ND<10	ND<10	920	ND<200 (TBA)
MW-6	12/21/06	9.02	3.41	5.61	8,400	ND<250	2,600	ND<25	32	ND<25	550	ND<500 (TBA)
IVI VV -0	03/12/07	9.02	2.82	6.20 5.42	7,400	ND<49	1,200	17	23	13	680 800	ND<200 (TBA)
	06/28/07		3.59	5.43	3,600	1,300 1	240	8.6	ND<5.0	10	890	ND<100 (TBA)
	09/25/07		4.40	4.62	2,200	ND<48 ¹	430	7.7	6.6	5.2	580	ND<100 (TBA)
	12/17/07		4.21	4.81	2,400	950 ⁻¹	440	9.0	6.5	8.6	450	ND<100 (TBA)
	03/11/08		2.96	6.06	4,700	1,300 ¹	690	13.0	7.6	19	740	ND<100 (TBA)
	CRWQC	B ESL, Nov	ember 2007		100	100	1	40	30	20	5	NE (TBA)

 TABLE (Continued)

 HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

 1532 Peralta Street, Oakland, CA

Notes in following page:

TABLE (continued) HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS 1532 Peralta Street, Oakland, CA

NOTES

TOC = Top of Casing ft MSL = Feet Above Mean Sea Level ft BTOC = Feet Below Top Of Casing GW = Groundwater TPH-G = Total Petroleum Hydrocarbons as Gasoline TPH-D = Total Petroleum Hydrocarbons as Diesel B, T, E, X = Benzene, Toluene, Ethylbenzene, and Total Xylenes MTBE = Methyl Tertiary-Butyl Ether ug/l = micrograms per Liter or parts per billion (ppb) TBA = tert-Butanol ND = Not Detected or less than the laboratory reporting limit NA = Not analyzed ¹ = Atypical Diesel pattern. Higher boiling gasoline compounds in the Diesel range. NE = Not Established CRWQCB ESL = California Regional Water Quality Control Board - Environmental Screening Levels

CRWQCB ESL = November 2007 Interim Final CRWQCB Tier 1 ESL where groundwater *IS* a current or potential source of drinking water.

ATTACHMENT A

FLUID - LEVEL MONITORING DATA FORM WELL PURGING / SAMPLING DATA SHEETS

Golden Gate Tank Removal, Inc.

FLUID-LEVEL MONITORING DATA

Project No: 8757	Date: 3/11/08
Project/Site Location: 1532 PeroHa S	t. (Oakland)
Technician: Troy	Instrument: O; / Water Level Indicator

Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
MW-1	3,64	ND	ND	14,43	09:20
MW-Z	2.90	ND	ND	13.43	@9:00 Hzo above well @9:10 Hzo above well @9:10 Eusing
MW-3	2.48	ND	ND	14,43	09:10 HzO above well
MW-4	3,34	ND	ND	10.96	@A:36
MW-5	3,28	ND	ND	5,14	@9:4Z
MW-6	2,46	ND	ND	14.28	©9:42 Hz0 above well casing ©9:50
· · ·		-			
: :					
	<u> </u>				
				-	
,				-	
Measurem	I ents reference	ced to:	TOC	Grade.	Page \ of \

		ak Removal, Inc. SAMPLING DATA	
Project Number: <u>875</u>	7	Date: 3/11/08	
Project / Site Location: 15	32 Peral-	ta St., Oak	-land
Sampler/Technician:	~		
Casing/Borehole Diameter (incl	es) 0.75/1.75	2/8 4/8 4/10	6/10 6/12
Casing/Borehole Volumes (gall	ons/foot) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.6	1.5/2.2 1.5/3.1
Well No. <u>MW-1</u>		Well No. MW-Z	
 A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Three (3) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)] Purge Event #1 Start Time: \2: \2: \2 Finish Time: \2: \2 Purge Volume: 1.5 Recharge #1 	[4.43 Ft.(toc) 3.69 Ft. (0.74 Ft. 1 In. .05 1.611 Gals. 4.227 Ft. 350 m/min	 A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Three (3) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)] Purge Event #1 Start Time: 0:20 Finish Time: \0:40 Purge Volume: 7,00	
Depth to Water: 12,70 Time Measured: 12:3 Purge Event #2	6→10.48 4→12:36	Depth to Water:\7.C Time Measured: 10;	
Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:		Purge Event #2Start Time:Finish Time:Purge Volume:Recharge #2Depth to Water:Time Measured:	
Well Fluid Parameters:		Well Fluid Parameters:	-
(Casing or Bore 0] .5 11 1.5 Time 12:10 12:14 12:18 12:22 pH 7.56 7.35 7.33 7.31 T (°F) 16.2 15.4 15.4 15.5 Cond.58.4 51.8 48.2 46.5 DO NM ORP NM Summary Data: Total Gallons Purged: 1.5 Purge Rate (Liters/Min.): 35C Purge device: Existentic Inta	$\frac{2}{7:26} \frac{2.5}{130} \frac{3}{7} \frac{3}{7}$	0 5 1 1.5 Time 10:20 10:24 10:28 10:32 pH 8:41 7.48 7.78 7.67 T (°F) 6:6 16:1 16:7 17.0 Cond.127.1 1864 56.4 74.1 DO NM ORP NM 5 56.4 74.1 Summary Data: Total Gallons Purged: 2 2 2 Purge Rate (Liters/Min.): 400 Purge device: 6 6 16.2	ake Depth: 13ff
Sampling Device: Peristalti		Sampling Device: Bristalt	
Sample Collection Time: 12:40		Sample Collection Time: 10:4	6711:00
Sample Appearance: Clear With Drums Remaining Onsite:	Total Volume:	Sample Appearance: <u>Clear</u> , 19,5 Gals. (Show Location on	

1

WELL PURGING/SAMPLING DATAProject Number: $$$757$Date: $$ 1 08$Project / Site Location; 1532Perolect A St.OaklandSampler/Technician: 1532Perolect A St.OaklandCasing/Borehole Diameter (inclys)0.75/1.752/84/84/106/106/12Casing/Borehole Diameter (inclys)0.75/1.752/84/84/106/106/12Casing/Borehole Volumes (gallons/foot)0.02/0.130.2/0.90.7/1.20.7/1.61.5/2.21.5/3.1Well No. MW-4A. Total Well Depth10.46Ft.B. Depth To Water2.478Ft.C. Water Height (A-B)11.45Ft.D. Well Casing DiameterIn.E. Casing Volume Constant(from above table).05F. Three (3) Casing orBorehole Volumes (CXEX3)1.1355 Gals.G. 80% Recharge Level[B+(ExC)]3.0775 Ft.Purge Event #1*100 m*/minMoinStart Time: 11:15Finish Time: 11:35Purge Volume: 1, 78 -> 13.006Time Measured: 1:37 -> 11:34Purge Volume: 1, 78 -> 13.006Time Measured: 1:32 -> 1:34$
Project / Site Location: 1532 Resulta St. OaklandSampler/Technician: TroyCasing/Borehole Diameter (inclys) $0.75/1.75$ $2/8$ $4/8$ $4/10$ $6/10$ $6/12$ Casing/Borehole Volumes (gallons/foot) $0.02/0.13$ $0.2/0.9$ $0.7/1.2$ $0.7/1.6$ $1.5/2.2$ $1.5/3.1$ Well No. $MW - 3$ A. Total Well Depth $ 4/.4/3$ Ft.(toc)B. Depth To Water 2.475 Ft.C. Water Height (A-B) 11.95 Ft.D. Well Casing DiameterIn.E. Casing Volume Constant (from above table) $.0.5$ F. Three (3) Casing or Borehole Volumes (CxEx3) 1.7425 Gals.G. 80% Recharge Level [B+(ExC)] 3.0775 Ft.Purge Event #1Start Time: $1/:15$ Finish Time: $1/:35$ Purge Volume: $1/:35$ Purge Volume: $1/:35$ Purge Volume: $1/:35$ Purge Volume: $1/:35$ Purge Volume: $1/:35$ 3.75 mL/minRecharge #1 3.75 mL/minRecharge #1 10.6 m/min
Casing/Borehole Diameter (incl\chicks) $0.75/1.75$ $2/8$ $4/8$ $4/10$ $6/10$ $6/12$ Casing/Borehole Volumes (gallons/foot) $0.02/0.13$ $0.2/0.9$ $0.7/1.2$ $0.7/1.6$ $1.5/2.2$ $1.5/3.1$ Well No. $MLJ - 3$ Well No. $MLJ - 4$ A. Total Well Depth $14,43$ Ft. (toc)A. Total Well Depth $10,96$ Ft. (toc)B. Depth To Water $2,478$ Ft.B. Depth To Water $3,3.9$ Ft.C. Water Height (A-B) $11,95$ Ft.D. Well Casing DiameterIn.In.E. Casing Volume Constant (from above table) $.0.5$ F. Three (3) Casing or Borehole Volumes (CxEx3) $.0.5$ F. Three (3) Casing or Borehole Volumes (CxEx3) $.0.5$ B. Now Recharge Level [B+(ExC)] $3,0775$ Ft.Ft. $.0.5$ Ft.Purge Event #1 Start Time: \\1:15 Finish Time: \\1:35 Purge Volume: 55 Purge Volume: 55 Purge Volume: 55 Purge Volume: 55 Purge Volume: 55 $.0.75$ Ft.Purge Event #1 Recharge #1 375 m/L/min Purge Volume: 50 Purge Volume: 50 $.0.5$ $.0.5$
Casing/Borehole Volumes (gallons/foot) $0.02/0.13$ $0.2/0.9$ $0.7/1.2$ $0.7/1.6$ $1.5/2.2$ $1.5/3.1$ Well No. $MLU - 3$ Well No. $MLU - 4$ A. Total Well Depth $14,43$ Ft.(toc)B. Depth To Water $2,45$ Ft.C. Water Height (A-B) 11.95 Ft.D. Well Casing DiameterIn.E. Casing Volume Constant (from above table) $.05$ F. Three (3) Casing or Borehole Volumes (CxEx3) 1.7925 Gals.G. 80% Recharge Level [B+(ExC)] 3.0775 Ft.Purge Event #1 Start Time: 1/:15 Finish Time: 1/:35 Purge Volume: 1, 55 3.75 Purge Volume: 1, 55 Purge Volume: 1, 55 3.75 Purge Volume: 1, 55 Purge Volume: 1, 55 3.75 Purge Volume: 1, 55 Purge Volume: 1, 55 3.75 Recharge #1 3.0775 Finish Time: 1/:35 Purge Volume: 1, 55 <td< td=""></td<>
Well No. $M \sqcup -3$ Well No. $M \sqcup -4$ A. Total Well Depth $ 4, 4, 3]$ Ft.(toc)A. Total Well Depth $ 0, 9/6$ Ft.(toc)B. Depth To Water $2, 48$ Ft.B. Depth To Water $3, 39$ Ft.C. Water Height (A-B) 11.95 Ft.B. Depth To Water $3, 39$ Ft.D. Well Casing Diameter 10.96 Ft.In.D. Well Casing Diameter 10.96 Ft.E. Casing Volume Constant 10.96 Ft.In.D. Well Casing Diameter 10.96 Ft.F. Three (3) Casing or 0.05 F. Three (3) Casing or 0.05 Borehole Volumes (CxEx3) 1.7925 Gals. 0.80% Recharge Level 0.5 B+(ExC)] 3.0775 Ft. 0.6% Recharge Level 3.0775 Ft.Purge Event #1 3.0775 Ft. 9.0% Recharge Level 3.0775 Ft.Purge Event #1 3.75 M $4/m$ 3.0775 Ft.Purge Volume: $1/535$ 3.0775 Ft. 9.0% Recharge 1.0% Recharge #1 3.0775 M $4/m$ 9.0% Purge Volume: 2.0%
A. Total Well Depth $ 4.4.3]{4.4.3}$ Ft.(toc)A. Total Well Depth $ 0.96]{4.6}$ Ft.(toc)B. Depth To Water 2.48 Ft.B. Depth To Water 3.39 Ft.C. Water Height (A-B) 1.195 Ft.C. Water Height (A-B) 7.57 Ft.D. Well Casing DiameterIn.D. Well Casing DiameterIn.E. Casing Volume Constant (from above table).05F. Three (3) Casing or Borehole Volumes (CxEx3).05F. Three (3) Casing or Borehole Volumes (CxEx3)1.7925Gals05G. 80% Recharge Level [B+(ExC)]3.0775 Ft.Purge Event #13.0775 Ft.Purge Event #1 Start Time: 11:15 Finish Time: 11:35 Purge Volume: 1.553.75 mL/minPurge Event #1 Start Time: 11:35 Purge Volume: 1.553.0775 Ft.Purge Volume: 1.55 Recharge #13.75 mL/minPurge Event #1 Start Time: 11:30 Purge Volume: 1.553.0775 Ft.
B. Depth To Water $2,48$ Ft. C. Water Height (A-B) 11.95 Ft. D. Well Casing Diameter 1 In. E. Casing Volume Constant (from above table) $.0.5$ F. Three (3) Casing or Borehole Volumes (CxEx3) 1.7925 Gals. G. 80% Recharge Level [B+(ExC)] 3.0775 Ft. Purge Event #1 Start Time: 11:15 Finish Time: 11:15 Purge Volume: 1,53 Purge Volume: 1,53 Recharge #1 B. Depth To Water 3.39 Ft. C. Water Height (A-B) 7.57 Ft. D. Well Casing Diameter 1 In. E. Casing Volume Constant (from above table) $.05$ F. Three (3) Casing or Borehole Volumes (CxEx3) 1.7925 Gals. G. 80% Recharge Level [B+(ExC)] 3.0775 Ft. Purge Event #1 Start Time: 11:15 Purge Volume: 1,53 Purge Volume: 1,54 Recharge #1 B. Depth To Water 3.39 Ft. B. Depth To Water 3.39 Ft. C. Water Height (A-B) 7.57 Ft. D. Well Casing Diameter 1 In. E. Casing Volume Constant (from above table) $.05$ F. Three (3) Casing or Borehole Volumes (CxEx3) 1.1355 Gals. G. 80% Recharge Level [B+(ExC)] 3.7685 Ft. Purge Event #1 Start Time: 1::30 Purge Volume: 2:03 Recharge #1
Time Measured: (327) $(1:34)$ Time Measured: (327) (37)
Purge Event #2Purge Event #2Start Time:Start Time:Finish Time:Finish Time:Purge Volume:Purge Volume:Recharge #2Recharge #2Depth to Water:Depth to Water:Time Measured:Time Measured:
Well Fluid Parameters: (Casing or Borehole Volumes) $0 .5 1 $ $1.5 2 $ $2.5 3 $ Timel1:15 1:19 1:23 1:27 1:31 1:25 $0 .5 1 $ $1.5 2 .26 1:30$ pH 7.58 7.48 7.43 7.24 7.14 7.19 7.19 7.19 T (°F)17.7 7.7 18.0 17.8 7.4 7.4 7.4 $17.9 $ $7.9 $ Cond. 71.666.562.061.3 61.2 61.2 1.2 12.4 1.79 1.5.1 1.5.0 1.5.0 1.5.

Golden Gate Tar	
WELL PURGING/	SAMPLING DATA
Project Number: <u>8757</u>	Date: 3/11/08
Project / Site Location: 1532 Percelt	a St., Oakland
Sampler/Technician: Troy	
Casing/Borehole Diameter (inches)0.75/1.75Casing/Borehole Volumes (gallons/foot)0.02/0.13	2/8 4/8 4/10 6/10 6/12 0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1
(cashig/borehole volumes (ganons/1001) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1
Well No. MW-S	Well No. MW-B
A. Total Well Depth5, 19Ft.(toc)B. Depth To Water3, 28Ft.C. Water Height (A-B)1, 91Ft.D. Well Casing Diameter1In.E. Casing Volume Constant (from above table).05F. Three (3) Casing or Borehole Volumes (CxEx3).2865G. 80% Recharge Level [B+(ExC)]3,375.5Ft.	A. Total Well Depth14.78Ft.(toc)B. Depth To WaterZ.46Ft.C. Water Height (A-B)11.32Ft.D. Well Casing DiameterIn.E. Casing Volume ConstantIn.(from above table)55F. Three (3) Casing orBorehole Volumes (CxEx3)Borehole Volumes (CxEx3)I.698Gals.Gals.G. 80% Recharge Level3.556[B+(ExC)]3.556
Purge Event #1 2.50 mVmin Start Time: 2:00Finish Time: 2:16Purge Volume: 19Purge Volume: 19Recharge #1Depth to Water: 5, 07 \rightarrow 4.75Time Measured: 2:18 \rightarrow 2:20	Purge Event #1 Start Time: 2:40 Finish Time: 2:53 Purge Volume: 1,59 <u>Recharge #1</u> Depth to Water: 14,06 ->13.42 Time Measured: 2:58 -> 3:00
<u>Purge Event #2</u> Start Time: Finish Time: Purge Volume: <u>Recharge #2</u> Depth to Water: Time Measured:	Purge Event #2 Start Time: Finish Time: Purge Volume: Recharge #2 Depth to Water: Time Measured:
Well Fluid Parameters:	Well Fluid Parameters:
(Casing or Borehole Volumes) $0 \cdot 5 \cdot 1 \cdot 1 \cdot 5 \cdot 2 \cdot 2 \cdot 5 \cdot 3$ Time 7:00 7:04 7:08 7:12 7:16 pH 8,10 8,40 8,38 8:34 8:33 T (°F)16,5 15,9 15,8 15,8 15,8 15,8 Cond. 76,7 102.6 108 A 109.1 109.1 DO NM ORP N M Summary Data:	(Casing or Borehole Volumes) 0 + 5 + 1 + 1.5 + 2 + 2.5 + 3 Time Z: 40 2: 44 7: 48 2: 52 2: 56 + 7.76 pH $3, 25 + 7.44 7.81 + 7.76 + 7.776 + 7.7$
Total Gallons Purged: 19 Purge Rate (Liters/Min.): 250 mL Purge device: Peristant ic Intake Depth: 557	Total Gallons Purged: 1,59 Purge Rate (Liters/Min.): 400 Purge device: Peristal C Intake Depth: 14 ft
Sampling Device: Peristattic Sample Collection Time: 2:25 72:35	Sampling Device: Bristolfic Sample Collection Time: 3:05-73:15
Sample Appearance: Clear, No Sheen, No Odor	Sample Appearance: Clear/White, No Sheen, 2005
Drums Remaining Onsite: Total Volume:	14,5 Gals. (Show Location on Site Plan)

1. T

Page <u>3</u> of <u>3</u>

ł

ATTACHMENT B

LABORATORY CERTIFICATES OF ANALYSIS CHAIN OF CUSTODY RECORD GEOTRACKER UPLOAD CONFIRMATION FORMS

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Brent Wheeler Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland Lab Order Number: C0174 Issued: 03/18/2008

Global ID: T0600191668

Certificate of Analysis - Final Report

On March 12, 2008, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

 Matrix
 Test / Comments

 Liquid
 VOCs: EPA 5030B / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

 Electronic Deliverables for Geotracker
 TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

 TPH-Extractable: EPA 3510C / EPA 8015B(M)

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). Subcontracted work is the responsibility of the subcontract laboratory, this includes turn-around-time and data quality. If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

C. L. Thom

C. L. Thom Laboratory Director

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland GlobalID: T0600191668

Certificate of Analysis - Data Report

Lab #: C0174-001 Sample ID: MW-1

Samples Received: 03/12/2008 Sample Collected by: client

Lab #: C0174-001	Sample ID: MW-	-1			Matrix: Liq	uid Sample I	Date: 3/11/2008	12:40 PM
TPH-Extractable: EPA 351	10C / EPA 8015B(M)							
Parameter	Result	Qual D/P-	F Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	50	0.9	6 48	μg/L	3/13/2008	WDA080313	3/14/2008	WDA080313
Not a typical pattern.	Higher boiling gasoline	compounds in	the Diesel range (C10)-C16).				
Surrogate	Surrogate Recovery	Contr	ol Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	94.9	50	- 150				Reviewed by: mtrar	1
VOCs: EPA 5030B / EPA 8	3260B for Groundwater	and Water	- EPA 624 for Wast	ewater				
Parameter	Result	Qual D/P-	F Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND	1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Toluene	ND	1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Ethyl Benzene	ND	1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Xylenes, Total	ND	1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Methyl-t-butyl Ether	33	1.0	1.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	Contr	rol Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	96.2	60	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	95.2	60	- 130					
Toluene-d8	99.3	60	- 130					

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result Qu	ual D/P-	F Detection L	imit Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	240	1.0	25	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	Contr	ol Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	90.2	60	- 130			Reviewed by: MaiChiTu		
Dibromofluoromethane	96.6	60	- 130					
Toluene-d8	97.6	60	- 130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland GlobalID: T0600191668

Certificate of Analysis - Data Report

Lab #: C0174-002 Sample ID: MW-2

Samples Received: 03/12/2008 Sample Collected by: client

Matrix: Liquid	Sample Date:	3/11/2008	10:46 AM
----------------	--------------	-----------	----------

TPH-Extractable: EPA 351 Parameter	Result	Oual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	OC Batch
TPH as Diesel	ND	Quin	0.96	48	μg/L	3/13/2008	WDA080313	3/14/2008	WDA080313
Surrogate	Surrogate Recovery	,		Limits (%)	μ <u>6</u> /Ε	3/13/2000	WD1000313	Analyzed by: JHsia	
n-Hexacosane	96.5	,		- 150				Reviewed by: mtrar	
II-HEXACOSAIIC	90.5		50	- 150				Reviewed by: Initial	1
VOCs: EPA 5030B / EPA 8	3260B for Groundwate	r and V	Water -	EPA 624 for Wastev	water				
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Toluene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Ethyl Benzene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Xylenes, Total	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Methyl-t-butyl Ether	ND		1.0	1.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butyl Ethyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butanol (TBA)	ND		1.0	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Diisopropyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Amyl Methyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dichloroethane	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dibromoethane (EDB)	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	7	Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	96.2		60 .	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	93.8		60 -	- 130					
Toluene-d8	98.2		60 ·	- 130					
TPH-Purgeable - GC/MS:]	EPA 5030B / GC/MS								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	25	μg/L	N/A	N/A	3/14/2008	WM7080314

11110	as Gasonne	ND	1.0		25	µg/L	14/	A 19/A	3/14/2000	5 VV IVI /
Su	rrogate	Surrogate Recovery	Contro	ol Li	mits (%)				Analyzed by:	Bela
4-E	Bromofluorobenzene	94.6	60	-	130				Reviewed by:	MaiChiTu
Dit	oromofluoromethane	95.2	60	-	130					
Tol	luene-d8	96.5	60	-	130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland GlobalID: T0600191668

Certificate of Analysis - Data Report

Lab # : C0174-003 Sample ID: MW-3

Samples Received: 03/12/2008 Sample Collected by: client

Matrix: Liquid Sample Date: 3/11/2008 11:44 AM

TPH-Extractable: EPA 351	0C / EPA 8015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		0.96	48	μg/L	3/13/2008	WDA080313	3/14/2008	WDA080313
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	92.9		50 -	- 150				Reviewed by: mtran	n
VOCs: EPA 5030B / EPA 8	260B for Groundwater	r and V	Vater -	EPA 624 for Waste	water				
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Toluene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Ethyl Benzene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Xylenes, Total	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Methyl-t-butyl Ether	1.4		1.0	1.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butyl Ethyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butanol (TBA)	ND		1.0	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Diisopropyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Amyl Methyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dichloroethane	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dibromoethane (EDB)	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	95.5		60 -	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	94.5		60 -	- 130					
Toluene-d8	101		60 ·	- 130					
TPH-Purgeable - GC/MS: I	EPA 5030B / GC/MS								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	25	μg/L	N/A	N/A	3/14/2008	WM7080314

TPH as Gasoline	ND	1.0	25	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	Control Lim	its (%)				Analyzed by: Bela	
4-Bromofluorobenzene	93.9	60 - 1	130				Reviewed by: Mai	ChiTu
Dibromofluoromethane	96.3	60 - 1	130					
Toluene-d8	99.2	60 - 1	130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland GlobalID: T0600191668

Matrix: Liquid Sample Date: 3/11/2008

Certificate of Analysis - Data Report

Lab # : C0174-004 Sample ID: MW-4

Samples Received: 03/12/2008 Sample Collected by: client

TPH-Extractable: EPA 351	10C / EPA 8015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	490		0.96	48	μg/L	3/13/2008	WDA080313	3/17/2008	WDA080313
Not a typical pattern (C10-C36). Higher boili	ng gaso	line comp	ounds also present in	the Dies	el range.			
Surrogate	Surrogate Recovery	7	Control	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	108		50	- 150				Reviewed by: mtrar	1
VOCs: EPA 5030B / EPA 8	3260B for Groundwate	r and V	Vater -	EPA 624 for Waster	water				
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	3.3		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Toluene	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Ethyl Benzene	0.52		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Xylenes, Total	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Methyl-t-butyl Ether	8.3		1.0	1.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butyl Ethyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butanol (TBA)	13		1.0	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Diisopropyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Amyl Methyl Ether	ND		1.0	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dichloroethane	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dibromoethane (EDB)	ND		1.0	0.50	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	7	Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	95.8		60	- 130				Reviewed by: xbian	I
Dibromofluoromethane	95.4		60	- 130					
Toluene-d8	98.1		60	- 130					

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result (Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	940		2.0	50	μg/L	N/A	N/A	3/17/2008	WM7080317
Surrogate	Surrogate Recovery		Control l	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	92.0		60 -	- 130				Reviewed by: xbian	
Dibromofluoromethane	96.8		60 -	- 130					
Toluene-d8	98.5		60 -	- 130					

1:40 PM

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland GlobalID: T0600191668

Certificate of Analysis - Data Report

Lab #: C0174-005 Sample ID: MW-5

Samples Received: 03/12/2008 Sample Collected by: client

Lab #: C0174-005	Sample ID: MW-5]	Matrix: Liq	uid Sample I	Date: 3/11/2008	2:25 PM
TPH-Extractable: EPA 351	10C / EPA 8015B(M)							
Parameter	Result Q	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	440	0.96	48	μg/L	3/13/2008	WDA080313	3/14/2008	WDA080313
Not a typical pattern (C10-C36). Higher boiling	gasoline comp	oounds also present ir	the Dies	el range.			
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	94.6	50	- 150				Reviewed by: mtran	1
VOCs: EPA 5030B / EPA 8	3260B for Groundwater a	and Water -	EPA 624 for Waste	water				
Parameter	Result Q	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	140	20	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Toluene	ND	20	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Ethyl Benzene	ND	20	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Xylenes, Total	10	20	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Methyl-t-butyl Ether	930	20	20	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butyl Ethyl Ether	ND	20	100	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butanol (TBA)	ND	20	200	μg/L	N/A	N/A	3/14/2008	WM7080314
Diisopropyl Ether	ND	20	100	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Amyl Methyl Ether	ND	20	100	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dichloroethane	ND	20	10	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dibromoethane (EDB)	ND	20	10	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	95.2	60	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	93.5	60	- 130					
Toluene-d8	96.5	60	- 130					

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result Qu	ial D/P	-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	2300	20)	500	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	Cont	rol I	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	93.6	60	-	130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	94.7	60	-	130					
Toluene-d8	94.9	60	-	130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757 Project Name: Peralta Auto Care Project Location: 1532 Peralta St., Oakland GlobalID: T0600191668

Matrix: Liquid Sample Date: 3/11/2008

Certificate of Analysis - Data Report

Lab # : C0174-006 Sample ID: MW-6

Samples Received: 03/12/2008 Sample Collected by: client

TPH-Extractable: EPA 351	IOC / EPA 8015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	1300		0.96	48	μg/L	3/13/2008	WDA080313	3/17/2008	WDA080313
Not a typical pattern (C10-C36). Higher boili	ng gasol	line comp	ounds also present in	the Dies	el range.			
Surrogate	Surrogate Recovery	7	Control 1	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	113		50 ·	- 150				Reviewed by: mtran	n
VOCs: EPA 5030B / EPA 8	3260B for Groundwate	r and W	Vater -	EPA 624 for Waster	water				
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	690		10	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
Toluene	13		10	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
Ethyl Benzene	7.6		10	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
Xylenes, Total	19		10	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
Methyl-t-butyl Ether	740		10	10	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butyl Ethyl Ether	ND		10	50	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Butanol (TBA)	ND		10	100	μg/L	N/A	N/A	3/14/2008	WM7080314
Diisopropyl Ether	ND		10	50	μg/L	N/A	N/A	3/14/2008	WM7080314
tert-Amyl Methyl Ether	ND		10	50	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dichloroethane	ND		10	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
1,2-Dibromoethane (EDB)	ND		10	5.0	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery	7	Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	92.9		60 -	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	92.7		60 -	- 130					
Toluene-d8	97.5		60 -	- 130					

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result (Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	4700		10	250	μg/L	N/A	N/A	3/14/2008	WM7080314
Surrogate	Surrogate Recovery		Control l	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	88.7		60 -	130				Reviewed by: MaiO	ChiTu
Dibromofluoromethane	92.9		60 -	130					
Toluene-d8	95.6		60 -	130					

3:05 PM

Method Blank - L QC/Prep Batch ID QC/Prep Date: 3/		able: EPA 3510	C / EPA	8015B(M)			Validated by: mtran - 03/17/08
Parameter		Result	DI	F PQ	LR	Units	
TPH as Diesel Surrogate for Blank n-Hexacosane	% Recovery Control Limi 96.4 50 - 150	ND	1	5	0	µg/L	
LCS / LCSD - Liq QC Batch ID: WD QC/Prep Date: 3/		ble: EPA 3510C /	/ EPA 8(015B(M)		Review	ed by: mtran - 03/17/08
LCS Parameter	Mathed Diank Snike	Amt SnikeDeeult	Units				Deservery Limits
TPH as Diesel	Method Blank Spike	•	µg/L	% Recovery 95.7			Accovery Limits 45 - 140
TPH as Motor Oil	<200 10		µg/L	79.7			45 - 140
Surrogate n-Hexacosane	% Recovery Control L 94.3 50 -						
LCSD Parameter TPH as Diesel TPH as Motor Oil	Method Blank Spike <50 10 <200 10	00 948	Units μg/L μg/L	% Recovery 94.8 79.9	RPD 0.98 0.24	RPD Limits 25.0 25.0	Recovery Limits 45 - 140 45 - 140
Surrogate n-Hexacosane	% Recovery Control L 95.0 50 - 1						

Method Blank - Liquid - VOCs: EPA 5030B / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater QC Batch ID: WM7080314

Validated by: MaiChiTu - 03/17/08

QC Batch Analysis Date: 3/14/2008

Parameter			Result	DF	PQLR	Units
1,2-Dibromoethane (EI	DB)		ND	1	0.50	µg/L
1,2-Dichloroethane			ND	1	0.50	µg/L
Benzene			ND	1	0.50	µg/L
Diisopropyl Ether			ND	1	5.0	µg/L
Ethyl Benzene			ND	1	0.50	µg/L
Methyl-t-butyl Ether			ND	1	1.0	µg/L
tert-Amyl Methyl Ether			ND	1	5.0	µg/L
tert-Butanol (TBA)			ND	1	10	µg/L
tert-Butyl Ethyl Ether			ND	1	5.0	µg/L
Toluene			ND	1	0.50	µg/L
Xylenes, Total			ND	1	0.50	µg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	93.3	60 - 130				
Dibromofluoromethane	90.2	60 - 130				
Toluene-d8	99.8	60 - 130				

Method Blank - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

QC Batch ID: WM7080314

QC Batch Analysis Date: 3/14/2008

Parameter			Result	DF	PQLR	Units
TPH as Gasoline			ND	1	25	µg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	91.8	60 - 130				
Dibromofluoromethane	90.8	60 - 130				
Toluene-d8	98.1	60 - 130				

LCS / LCSD - Liquid - VOCs: EPA 5030B / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WM7080314

Reviewed by: MaiChiTu - 03/17/08

QC Batch ID Analysis Date: 3/14/2008

LCS Parameter	Method Blar	nk Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	0.0	20	23.5	µg/L	117			70 - 130
Benzene	<0.50	20	19.6	μg/L	97.9			70 - 130
Chlorobenzene	0.0	20	19.4	µg/L	97.0			70 - 130
Methyl-t-butyl Ether	<1.0	20	17.4	µg/L	86.9			70 - 130
Toluene	<0.50	20	20.2	μg/L	101			70 - 130
Trichloroethene	0.0	20	19.7	μg/L	98.4			70 - 130
Surrogate		Control Limits		P 9/ -				
4-Bromofluorobenzene	90.8	60 - 130						
Dibromofluoromethane	98.2	60 - 130						
Toluene-d8	98.1	60 - 130						
LCSD								
Parameter	Method Blar	nk Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	0.0	20	21.6	µg/L	108	8.1	25.0	70 - 130
Benzene	<0.50	20	19.4	µg/L	97.2	0.68	25.0	70 - 130
Chlorobenzene	0.0	20	19.2	µg/L	95.9	1.1	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	16.7	µg/L	83.6	3.9	25.0	70 - 130
Toluene	<0.50	20	19.9	µg/L	99.5	1.2	25.0	70 - 130
Trichloroethene	0.0	20	19.7	µg/L	98.7	0.23	25.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	91.3	60 - 130						
Dibromofluoromethane	96.6	60 - 130						
Toluene-d8	98.1	60 - 130						
LCS / LCSD - Liqu QC Batch ID: WM7 QC Batch ID Analy	7080314	-	GC/MS: EPA	5030B	/ GC/MS		Reviewed b	y: MaiChiTu - 03/17/08
LCS								
Parameter	Method Blar	nk Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
TPH as Gasoline	<25	120	117	µg/L	93.5			65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	93.4	60 - 130						
Dibromofluoromethane	96.1	60 - 130						
Toluene-d8	100.0	60 - 130						
LCSD								
Parameter	Method Blar	nk Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	120	114	µg/L	91.2	2.5	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	92.2	60 - 130						
Dibromofluoromethane	93.6	60 - 130						
Toluene-d8	100.0	60 - 130						

Method Blank - L QC Batch ID: WM QC Batch Analysi	17080317	-	· GC/MS: EP	PA 5030E	3 / GC/MS			Validated by: xbian - 03/18/08
Parameter		F	Result	DF	PQ	LR	Units	
TPH as Gasoline			ND	1	2	5	µg/L	
Surrogate for Blank	% Recovery Co	ontrol Limits						
4-Bromofluorobenzene	93.8 (50 - 130						
Dibromofluoromethane	94.2 6	50 - 130						
Toluene-d8	98.8 6	50 - 130						
LCS / LCSD - Liq QC Batch ID: WM QC Batch ID Anal LCS	17080317	-	GC/MS: EPA	5030B /	GC/MS		Review	ed by: xbian - 03/18/08
Parameter	Method Bla	ank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
TPH as Gasoline	<25	120	107	µg/L	85.5			65 - 135
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 92.5 94.4 95.3	Control Limits 60 - 130 60 - 130 60 - 130						
LCSD Parameter TPH as Gasoline	Method Bla <25	ank Spike Amt 120	SpikeResult 131	Units μg/L	% Recovery 105	RPD 20	RPD Limits 25.0	Recovery Limits 65 - 135
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 93.0 94.9 96.6	Control Limits 60 - 130 60 - 130 60 - 130						

3334 Victor Cou Santa Clara, CA	95054 (408) 588-0	201 - F	ax					0. 234															
Brent Wh.	eeler	Phone No. 415)	512-	155'	5	Purch	nase Orde	575	57			Invo	ice to: (⇒1∧	If Differer	nt) Nes	e					(Phone: 415)512	-15
Company Name: GGTR		Fax No :		0464		Projec	ct No. / I	Name:					ipany:											
Aailing Address: 3730 Miss	i'm <+	Email Add	ess:	TRica			121	/7e Å.	eralta Nest	are	<u>_</u>	Billin	ig Addre	ess: (If Dif	fferent)	*******								
مستست	4	DATA State: CA	Zip Code: 4411	SI FICO	3141	<u> </u>	ct Locati					City:										State:	Zip:	
Intech Order ID:				<u>)</u> nd Time						<u> </u>		<u> </u>	7		7	7	7	7	7	7	7			
Co	174							Circle cable		AN S	\$					÷	22		/ /		/ /	/ /		/
EDF Global ID:			me Day Day Day	0 1 Da 0 3 Da 0 5 Da	ý						61	/ /			r T		S.						/ ./	/
	0191668			Day	· /						\$		A CO		No.04	200 200			/ ,			/ /		
Sampler Sam	ple Information	1				iiners			15		/ ,		10 4 4 10 4 10 4 10 4 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1		K BILL MAN DIA 22	3.						1 a 1	š/	
		<u> </u>	1	Entech		Containers				× /		200									/ .	Croe Below	/ Ren	narks
Client ID	Field Point	Date	Time	Lab.	Matrix	5		CCORFUNLIST	The second secon			24 01.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	, Se l		19							53	Instru	ctions
						Ś	<u>s</u>	18	¥	\square		<u>\$ \$ } a</u>	<u>ë /ë</u>	<u> </u>	<u> </u>	\square	\square	\square		\square	The second	\$		
MW-1	Mw-1	3 11/02	12:40		μ	4							ĻΧ	<u> </u>	_	 	<u> </u>	ļ	 		 	 		
MW-Z	mw-Z	├ ─- ───		500		4	_	X	<u> </u>				- <u> X</u>	<u> </u>			 	<u> </u>				_		
MW-3	mw-3	┝─┟──		003		4		X					-13	·			<u> </u>	<u> </u>			┨	<u> </u>		
MW-4 NW-5	<u>mw-4</u> mw-5	 	F	004		4		X					॑₹	<u>`</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>		
nw-6	mw-6	H	3:05	006	t			X					╈		<u> </u>		<u> </u>			-		<u> </u>		
<u> </u>		<u>t - ?**</u>	000		<u>```</u>	<u></u>	1	<u>↓ </u>						1	1	1	 	1	1		1		. <u> </u>	
				L													ļ			ļ		ļ		
* no analyte			1	1			coc								<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>		 		
called Y	part whee	1 property	gardir	A an	MAR	_ کأ	pbe	ira	fred	_@þ	the	_¢ra	<u>ر م</u> لا				<u> </u>		 		 	 		
elinguished by:	Received by:	<u>K</u>	Date: 1		Ч	Lah	lice	ļ			<u> </u>	<u> </u>		L	<u> </u>	<u> </u>						F	anawaterine and a second second	
Troylaylos) 。	BILUK	$\Pi^{\mathcal{U}}$	5	au -	036.		3100	\$ <i>66</i> 0	h(u	iHa)	. 117	>			4		X			2 Q		
relinguished by	Received by:	Den 1	Date: [2]1/7] n.f	Time":	2				ILIT	Amb	ÆV €	ach	M							No.	<u></u>			
telinquisted by:	Received by:	MININA	Date:	Time:		Meta	als:	Al, As	, Sb, Ba.	Be, Bi,	B, Cd, (Ca, Cr, Co	o, Cu, I	- e, Pb, Li	i, Mg, N	/in, Hg.	Mo, Ni	i, K,Si.	Ag, Na	, Se, Ti	l, Sn, Ti	, Zn, V		
			L			<u> </u>			Plating		<u> </u>				RCRA	-8			PPM-					-17
ab Use: Samples: Iced R	· _	nperature	4.3	C			t Meth		AC				lf a	ıny N's	s, Exp	lain:								

JPLOADING A GEC	D_REPORT FILE
YOUR DOCUMENT	UPLOAD WAS SUCCESSFUL!
Facility Name:	OSAGIE PROPERTY
<u>Global ID:</u>	T0600191668
<u>Title:</u>	Groundwater Monitoring Report -1Q08 (4/22/08)
Document Type:	Monitoring Report - Quarterly
<u>Submittal Type:</u>	GEO_REPORT
Submittal Date/Time:	4/22/2008 9:58:01 AM
<u>Confirmation</u> Number:	2350324869
Clic	k here to view the document.

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

	. We give many procession over the process
Electronic Submittal Information	
Main Menu View/Add Facilities Upload EDD Check EDD	
Vour EDE file has been successfully unloaded!	
Your EDF file has been successfully uploaded!	-
Confirmation Number: 4207968652	
Date/Time of Submittal: 4/2/2008 12:05:11 PM	
Facility Global ID: T0600191668	
Facility Name: OSAGIE PROPERTY	
Submittal Title: c174:1Q08 Groundwater Analytical Data (3/1	1/08)
Submittal Type: Additional Information Report	
Click here to view the detections report for this upload.	
OSAGIE PROPERTY <u>Regional Board</u>	
1532 PERALTASAN FRANCISCO BAY RWQCB (REGION 2) - (COAKLAND, CA94607Local Agency (lead agency) - Case #: RO0000117	
ALAMEDA COUNTY LOP - (PK)	
CONF# TITLE Q	UARTER
	1 2008
SUBMITTED BY SUBMIT DATE STATUS Brent Wheeler 4/2/2008 PENDING REVIEW	
Brent Wheeler 4/2/2008 PENDING REVIEW	
SAMPLE DETECTIONS REPORT	
# FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTIONS	6 5
# FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL	4
SAMPLE MATRIX TYPES	WATER
METHOD QA/QC REPORT	
METHODS USED 8260TPH,CATPH-D,S	
TESTED FOR REQUIRED ANALYTES? MISSING PARAMETERS NOT TESTED:	N
- CATPH-D REQUIRES TPHC28C40 TO BE TESTED	
- CATPH-D REQUIRES TPHC10C28 TO BE TESTED	
- SW8260B REQUIRES EDB TO BE TESTED LAB NOTE DATA QUALIFIERS	N
QA/QC FOR 8021/8260 SERIES SAMPLES	
TECHNICAL HOLDING TIME VIOLATIONS	0
METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT	0.0
LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT	0
	-
DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?	1
- LAB METHOD BLANK - MATRIX SPIKE	Y N

- MATRIX SPIKE DUPLICA	TE		Ν
- BLANK SPIKE			Y
- SURROGATE SPIKE			Ý
WATER SAMPLES FOR	8021/8260 SERIES		
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%			Y
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%			n/a
SURROGATE SPIKES % RECOVERY BETWEEN 85-115%			
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY	BETWEEN 70-130%	Y
SOIL SAMPLES FOR 80	21/8260 <u>SERIES</u>		
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%			n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%			in/a
SURROGATE SPIKES % RE	COVERY BETWEEN 70-125%		n/a
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a
FIELD QC SAMPLES			:
SAMPLE	COLLECTED	DETECTIONS >	REPDL
QCTB SAMPLES	N	0	. —
	N	0	
QCEB SAMPLES	1.4	•	

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

246

7

UPLOADING A GEO_W	ELL FILE
	emplete. No errors were found! een successfully submitted!
Submittal Title:	Fluid -Level Monitoring Data, 3/11/08
Facility Global ID:	T0600191668
Facility Name:	OSAGIE PROPERTY
Submittal Date/Time:	4/2/2008 12:07:53 PM
<u>Confirmation</u> Number:	1946934580

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR.