RECEIVED

1:24 pm, Oct 30, 2009

Alameda County Environmental Health

October 27, 2009 ACEH Fuel Leak Case RO0000117

Mr. James Tracy, Alpine Rental 878 West Hayden Court Alpine Utah 84004

Paresh C. Khatri, Hazardous Materials Specialist Alameda County Health Care Services - Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda California 94502-6577

Subject:

Feasibility Study / Corrective Action Plan 1532 Peralta Street, Oakland, California

Dear Mr. Khatri:

Upon my authorization, Golden Gate Tank Removal, Inc. has prepared a Feasibility Study / Corrective Action Plan for the above-referenced property. This document presents GGTR's preliminary findings, opinions, conclusions, and proposed methodology regarding the environmental conditions at the Site. Should you have any questions, please contact Mr. Brent Wheeler, Project Engineer of GGTR (415) 512-1555 at your convenience.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Respectfully Submitted,

Mr. James Tracy, Alpine Rental

Distribution: (1) Addressee

FEASIBILITY STUDY / CORRECTIVE ACTION PLAN

Fuel Leak Case RO0000117 1532 Peralta Street, Oakland, California 94607

Prepared For:

Mr. James Tracy, Alpine Rental 878 West Hayden Court Alpine Utah 84004

Submitted To:

Paresh C. Khatri, Hazardous Materials Specialist

Alameda County Health Care Services - Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda California 94502-6577

Prepared By:

Golden Gate Tank Removal, Inc

3730 Mission Street, San Francisco, CA 94110

GGTR Project No. 8757 October 27, 2009

TABLE OF CONTENTS

Feasibility Study / Corrective Action Plan 1532 Peralta Street, Oakland, California

TITLE PAGE
TABLE OF CONTENTS
ABBREVIATIONS & ACRONYMS

1.	INTR	ODUCTION & PURPOSE	1
2.	SITE	DESCRIPTION	1
	2.1	Site Location and Identification	1
	2.2	Physical Setting	
	2.3	Description & Current Use of Property	
	2.4	Current Uses of Adjoining Properties	3
	2.5	Conduit Study	
3.	SITE	HISTORY	6
	3.1	Aerial Photographs	e
	3.2	Sanborn Fire Insurance Maps	
	3.3	City Telephone Directory	
	3.4	Topographical Maps	
	3.5	Environnemental Database Information	
	3.6	Oakland Fire Prevention Bureau	. 11
	3.7	Summary of Historical Property Uses	
	3.8	Summary of Adjoining Property Uses	. 13
4.	ENVI	RONMENTAL HISTORY	. 14
	4.1	Underground Tank Removal in 1999	. 14
	4.2	Over-Excavation of USTs in 2000	. 14
	4.3	Soil & Groundwater Investigation in 2004	. 15
	4.4	Groundwater Monitoring	. 16
5.	SOIL	& WATER DELINEATION ACTIVITIES	.16
	5.1	Drilling, Sampling and Well Installation August 2008 – May 2009	. 16
	5.2	Monitor Well Development	. 18
	5.3	Second Quarter 2009 Groundwater Monitoring – April 2009	. 18
	5.4	Monitor Well Survey	
	5.5	GeoTracker Electronic Submittal	. 19
6.	SITE	CONCEPTUAL MODEL	. 19
	6.1	Regional Geology	. 20
	6.2	Regional Groundwater	
	6.3	Local Soil & Groundwater Conditions	. 22
	6.4	Summary of Site Conditions	. 23
	6.5	Residual Constituents of Concern	. 25
	6.6	Sensitive Receptors	
	6.7	Potential Exposure Pathways	
	6.8	Removal Action Goals	. 27
7.	FEAS	SIBILITY STUDY	. 28
	7.1	No Action	
	7.2	Monitored Natural Attenuation	. 29

7		iologic Attenuation		
7	'.4 Groundw	vater Extractionvater Extraction	30	
7	'.5 Dual Pha	se Extraction Technology	30	
7	7.6 Source Area Soil Excavation			
7	7.7 Alternative Evaluation & Selection			
8.	CORRECTIVE	ACTION PLAN	33	
8	.1 Pre-Field	l Work Activities	34	
8	.2 Work Pla	n for Soil Excavation	34	
8	3.3 Monitorin	ng Well Installation	39	
8	3.4 Monitorin	ng Well Development	39	
8	3.5 Confirma	ation Monitoring & Sampling Program	39	
8		ory Analyses of Samples		
8	3.7 Waste Ma	anagement	41	
8	3.8 Soil Was	te Transportation	43	
8	3.9 GeoTracl	ker Upload	45	
9.	SCHEDULE, R	EPORT PREPARATION & DISTRIBUTION	45	
10.		S		
11.		OF PROFESSIONAL CERTIFICATION		
	STATEMENT	OF THOSE COSTONAL CENTIFICATION	47	
FIG	URES			
	Figure 1	Site Location Map		
	Figure 2	Site Vicinity Map		
	Figure 3	Site Plan		
	Figure 4	Site Photographs		
	Figure 5	Site Photographs		
	Figure 6	Subsurface Utility Map		
	Figure 7	Well Survey Radius Map		
	Figure 8	Historic 1931 Aerial Photograph		
	Figure 9	Historic 1965 Aerial Photograph		
	Figure 10	Historic 1912 Sanborn Fire Insurance Map		
	Figure 11	Historic 1951 Sanborn Fire Insurance Map		
	Figure 12	Historic 1970 Sanborn Fire Insurance Map		
	Figure 13	Soil Over-Excavation Data		
	Figure 14	Soil Sampling Results		
	Figure 15	Grab Groundwater Analytical Data		
	Figure 16	CPT Plot Boring B12		
	Figure 17	Geologic Map		
	Figure 18	Cross Section A-A'		
	Figure 19	Cross Section B-B'		
	Figure 20	Cross Section C-C'		
	Figure 21	Map of TPH in Soil at 3-4.5 Feet		
	Figure 22	Map of TPH in Soil at 6-7.5 Feet		
	Figure 23	Map of TPH in Soil at 10.5-12 Feet		
	Figure 24	Map Showing TPH-Gasoline in Groundwater		
	Figure 25	Map Showing Benzene in Groundwater		
	Figure 26	Map Showing MTBE in Groundwater		
	•	Groundwater Gradient & Flow Direction		
	Figure 27	Groundwaler Gradient & Flow Diffelion		

Figure 28 Proposed Work Figure 29 Well Constructio

Well Construction Diagram

TABLES & CHARTS

Table 1	Soil Sample Analytical Data – August 2008 & April 2009
Table 2	Grab Groundwater Sampling Analytical Data – August 2008
Table 3	Historical Groundwater Monitoring & Analytical Results
Chart 1	TPH Gasoline in Groundwater
Chart 2	Benzene in Groundwater
Chart 3	MTBE in Groundwater
Chart 4	Groundwater Elevations versus TPH Gasoline

APPENDIX A – REGULATORY CORRESPONDENCE

ACEH Letter dated January, 2009

APPENDIX B - SOIL & WATER DELINEATION DOCUMENTS

ACPWA Water Resources Well Permit City of Oakland Encroachment & Excavation Permits Boring Logs/Well Construction Diagrams **DWR Well Completion Reports** Well Development Field Data Sheets Well Monitoring & Purge/Sample Data Sheets (2Q09 GWM) Laboratory Analytical Reports Well Survey Reports GeoTracker Upload Confirmation Forms

ABBREVIATIONS & ACRONYMS

ACEH Alameda County Environmental Health

ACHCSA Alameda County Health Care Services Agency BAAQMD Bay Area Air Quality Management District

bgs below ground surface
CAP Corrective Action Plan
CPT Cone Penetration Testing

CEQA California Environmental Quality Act
CHHSL California Human Health Screening Level

COC contaminant of concern

COPC Contaminant of potential concern

DTSC California Department of Toxic Substances Control

EPA U.S. Environmental Protection Agency

ESL Environmental Screening Level (Regional Water Quality Control Board)

Fbg Feet below grade FS Feasibility Study

J&E Johnson & Ettinger Model HASP Health and Safety Plan

HERD Human and Ecological Risk Division (Cal/EPA)

HSC California Health and Safety Code

HVOC Halogenated volatile organic compounds

LOP Local Oversight Program

LUST Leaking Underground Storage Tank

MTBE Methyl tert butyl ether mg/kg milligrams per kilogram mg/L milligrams per liter mean sea level

PCE Perchloroethylene, Tetrachloroethene or Tetrachloroethylene (Perc)
PRG Preliminary Remediation Goal (U.S. Environmental Protection Agency)

QA/QC quality assurance/quality control QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act RWQCB Regional Water Quality Control Board

SBT Soil Behavior Type used in logs of CPT borings

SWRCB State Water Resources Control Board TCLP Toxicity characteristic leaching procedure

TOC Top of casing in monitor wells

TPHg total petroleum hydrocarbons as gasoline total petroleum hydrocarbons as diesel

USA Underground Service Alert
UST Underground storage tank

µg/m³ micrograms per cubic meter

µg/kg micrograms per kilogram

µg/L Micrograms per liter

VOC Volatile organic compounds

FEASIBILITY STUDY / CORRECTIVE ACTION PLAN

ACEH Fuel Leak Case RO0000117
1532 Peralta Street, Oakland, California 94607

1. INTRODUCTION & PURPOSE

On behalf of Alpine Rental and Mr. James Tracy, Golden Gate Tank Removal, Inc. (GGTR) is pleased to submit this Feasibility Study / Corrective Action Plan for the commercial property located at 1532 Peralta Street in Oakland, California (Site). Previous site characterization reveals that shallow groundwater contamination is a significant concern at the Site. In their letter dated January 16, 2009, Alameda County Environmental Health (ACEH) requested a Feasibility Study / Corrective Action Plan (FS/CAP) in accordance with Title 23, California Code of Regulations Section 2725. A copy of the January 16, 2009, ACEH letter is attached to this document in Appendix A.

The Feasibility Study (FS) evaluates cost effective remedial approaches having a likelihood of attaining site cleanup objectives. A Corrective Action Plan (CAP) presents a comprehensive summary of the findings of site assessment and characterization activities, identifies existing and potential receptors, proposes site specific cleanup goals, presents a remedial technology feasibility study, and proposes a remedial plan. A CAP is a comprehensive approach to remediate the effects of an unauthorized release from an underground storage tank (UST) system in a cost effective manner. The purpose of this document is to determine further remedial action activities for addressing groundwater contamination at the Site. The ACEH will review the proposed CAP and provide concurrence if the implementation of the CAP will adequately protect public health / safety and the environment, and will restore or protect current or potential beneficial uses of groundwater.

This document also includes the findings of the Soil and Water Delineation Activities performed at the subject property between August 2008 and May 2009. As part of this soil and water delineation, additional borings and groundwater monitoring wells were installed at the Site to further assess the vertical and lateral extent of contamination in soil and groundwater in the vicinity of the former diesel and gasoline USTs. Findings of the Second Quarter 2009 groundwater monitoring and sampling event are presented herein.

2. SITE DESCRIPTION

2.1 Site Location and Identification

The Site is located on Peralta Street in a mixed commercial and residential neighborhood in West Oakland. Figure 1, Site Location Map, shows the general location of the Site. Location and identification information for the Site is presented in the following table.

Site Address: 1532 Peralta Street, Oakland, California, Alameda County

Site Location: Southeast corner of Peralta and 16th Streets

Neighborhood: West Oakland

Postal Zip Code: 94607

General Setting: Mixed-use commercial and residential

Assessor's Office: APN 5-370-1 Property Type: Commercial

Lot Description: Approximately 0.15-acre irregular-shaped lot has a 68 foot

frontage on 16th Street, about 82 foot frontage on Peralta Street,

79 foot east boundary, and about 92 foot south boundary. One single-story commercial auto repair building & sheds

Number of Buildings: One single-story commercial auto repair building & sheds

Owner: Mr. Orobo Osagie previously owned the site from May 1998

to early 2006, at which time Mr. James Tracy of Alpine

Rentals became the responsible party.

2.2 Physical Setting

The Site lies approximately one mile south of the San Francisco Bay. Figure 1, Site Location Map, shows a portion of a topographic map that shows the Site and vicinity. The immediate neighborhood contains mixed-use commercial and residential neighborhoods as shown on Figure 2, Site Vicinity Map. The Site is flat with the regional topographic relief gently sloping towards the northwest and San Francisco Bay. West Oakland occupies a broad alluvial plain formed by streams flowing from the Oakland Hills to the San Francisco Bay. GGTR reviewed the United States Geological Survey (USGS) topographic quadrangle map Oakland West dated 1980 for physical features. GGTR also reviewed the GeoCheck® – Physical Setting Source Addendum provided by Environmental Data Resources, Inc. (EDR). The documents show surrounding ground surface elevations ranging from sea level to 25 feet. The specific elevation of the property is about 10 feet. The area of the subject property can be depicted as dense urban development.

2.3 Description & Current Use of Property

The subject property is occupied by a single-story commercial structure approximately 1,175 square feet in area situated along the southeast margin of the Site. Figure 3 – Site Plan, shows additional detail of the Site layout. The building is currently used as a small-scale automobile service garage with no fueling facilities. Figures 4 and 5, Site Photographs, show conditions at the facility as of August 2008. The Site is paved throughout with asphalt or concrete. The flooring in the service garage building is paved with concrete. The property also contains a small detached storage shed, wash pad, and office / restroom shed.

Building Type: Commercial – wood frame building (1,175 square feet)

Basement: None observed

Interior Layout: Open repair shop layout

Walls: wood exterior walls with wood framing

Floor: concrete slab

HVAC: none observed

Source of Water: Municipal – East Bay MUD – 100% imported surface water

Sewage Disposal: Municipal to sewage treatment plant

Storm water Catch basin drains to storm line under 16th Street that presumably

discharges to San Francisco Bay

Solid Waste Disposal: Municipal Year of Construction: circa 1950s

Occupant Automotive Repair – 100% Access to Property: Driveway from 16th Street

The Site is currently 100% occupied by Granny Sue's Auto Repair, an automobile repair shop.

2.4 Current Uses of Adjoining Properties

The immediate neighborhood was briefly observed to determine the land use of adjoining property as shown on Figure 2, Site Vicinity Map, and Figure 3, Site Plan. The field reconnaissance was limited to the observations that could be made from the public roadways or sidewalks and did not involve entering private property.

Compass Direction from Site Description of Adjoining Land Use

North Across 16th Street contains a vacant lot at 1600 Peralta

Street (former gasoline station). Partially vacant commercial building beyond with convenience store at south corner of

Peralta Street-Center Street-17th Street.

Northwest Large brick older (pre-1930s) industrial-style warehouse

building at northwest corner of Peralta Street and 16th Street – possibly vacant with residential-commercial

properties beyond.

Northeast Small apartment building and garage at northwest corner of

16th Street and Center Street with residential-commercial

properties beyond.

East New Bethel Missionary Baptist Church at southeast corner

of 16th Street and Center Street abuts subject building along

east wall. Residential buildings beyond.

Southeast Single-family residences along Center Street.

South Restaurant facility on ground floor with residential

apartments on second floor. Single-family residences

beyond along Peralta Street.

Southwest Single-family residences along Peralta Street.

West Commercial property with industrial-style machine shop

building and parking lot at southwest corner of Peralta Street and 16th Street with residential-commercial properties beyond.

The obvious adjoining property of concern is the former McKinney gasoline station and auto repair facility (1600 Peralta Street) located across 16th Street to the north.

2.5 Conduit Study

The purpose of the conduit study is to locate potential migration pathways-conduits and determine the probability of the plume encountering preferential pathways-conduits that could spread the contamination. Of particular concern is the identification of abandoned wells and improperly-destroyed wells that can act as conduits to deeper water bearing zones. The conduit study details the potential migration pathways and potential conduits (utilities, storm drains, etc.) that may be present in the vicinity of the Site.

Subsurface Utility Survey

Figure 6, Subsurface Utility Map, shows the onsite subsurface utility lines and adjacent utility corridors. The map shows potential migration pathways and conduits. On-site utilities consist of water and sewer connections to the restroom located on the south property line. The water pipe is believed to cross the former fuel dispenser island area at a depth of 15 inches below surface grade (bsg) and connect to the water main along the west side of Peralta Street. Several attempts to trace the bathroom sewer line failed and the sewer connection is believed to run along the south property line at a shallow depth (<24") and connect to the 12" sanitary sewer main that runs along the centerline of Peralta Street at a flow-line depth of 5.61 feet bsg. This sewer main line flows northward toward 16th Street. No gas line connections to the Site were identified. Because of their shallow installation depth and based on the results of groundwater monitoring, the onsite utility corridors to not appear to be preferential pathways for groundwater flow.

A historical EBMUD Water Main servicing fire hydrants runs along 16th Street at a presumed depth of 42" bsg. A storm catch basin is located at the southeast corner of Peralta Street and 16th Street adjacent to the Site. The catch basin drainage pipe is located 5.07 feet bsg. The catch basin drainage pipe connects to the 12"-diameter storm main beneath 16th Street at an invert depth of 5.47 feet bsg. The storm main flows eastward to a larger line under Center Street with an invert that is 8.77 feet bsg. The PG&E gas line runs along the eastern margin of Peralta Street at a depth of 36 inches then turns eastward down 16th Street at a depth of about 29 inches. An AT&T utility corridor is located along the north margin of 16th Street. As the stabilized groundwater table has been measured on the Site varying from 1.74-5.23 feet bsg, the utility lines under Peralta and 16th Streets have the potential to provide preferential pathways for groundwater down-gradient from the Site. Utility locations and depths were confirmed by Cruz Brothers Locators in January 2007. As discussed in other sections of this document, investigation along the 16th Street utility corridor has not identified significant contamination cross-gradient from the Site along 16th Street or down-gradient from the Site along Peralta Street.

Detailed Well Survey

Figure 7, Well Survey Radius Map, shows the location of wells disclosed on State Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA) records. The well completion reports provided (January 2007) by the DWR and ACPWA indicate eleven properties have registered wells within an approximately 1,250 foot radius of the subject property as described on the following table:

Map ID #	# Wells	Address	Name	Depth feet	Туре
1	10	1340 Cypress St	Coca-Cola Enterprises	<30	Monitoring Extraction
2	1	1708 Wood Street	Roadway Services	15	Boring
3	1	20 & Campbell St	Pacific Gas & Electric	120	Cathodic Protection
4	2	1800 Peralta St	Architectural Emphasis	25	Monitoring
5	172	1310 14 th Street	Carnation Dairy Facility	<57	Monitoring Extraction Recovery
6	1	1614 Campbell	General Electric	200	Industrial
7	1	1705 14 St	Right Way Cleaner	0	Abandoned
8	6	1399 Wood St 14 th & Wood	Southern Pacific	<18	Monitoring Test
9	9	1769 13 th Street Wood St. & 15 th Street	Taylor Roof Structures	<34	Piezometer Monitoring Boring
10	3	1545 Willow St	Western Properties Broker	<13	Monitoring
11	1	19 th & Cypress	?	212	Historical 1913

No active domestic and/or irrigation wells are reported within the 1250-feet survey radius. One cathodic protection well (120 feet deep) is reported approximately 500-feet and downgradient from the Site. Cathodic protection wells are typically installed to protect metallic objects (i.e., buried petroleum, natural gas, and water pipelines) in contact with the ground or subsurface environment from electrolytic corrosion and no water production is involved. One industrial production well is reported about 200 feet cross gradient from the Site. One historic (1913) municipal-industrial well (212 feet deep) is shown approximately ¼-mile down-gradient of the Site. The majority of the reported wells are related to environmental cleanup actions including numerous monitoring wells, abandoned monitoring wells, and extraction wells. No active domestic or irrigation wells are reported within the search radius. Because of the distance from the subject property and small area of known impacted groundwater at the Site, it appears unlikely that the reported cathodic protection, industrial, historic, and environmental wells will act as potential receptors or vertical conduits for contaminant migration.

3. SITE HISTORY

3.1 Aerial Photographs

GGTR examined historical aerial photographs provided by Environmental Data Resources, Inc. (EDR) in their "EDR Aerial Photo Decade Package" dated January 9, 2007, for land forms, features, structures, and tonal differences that might give an indication of the past land use of the Site and surrounding neighborhood. The following table summarizes the pertinent features observed on each aerial photograph:

Date	Obvious Features Observed on Aerial Photographs
1931	This aerial photo displays good detail of the Site. The Site has the appearance of an active gasoline station. A fuel island canopy is present at a location different from the dispenser location in photos from subsequent years. The small office, water closet and storage structures are present along the south property line. The existing auto repair garage building is not shown in this photo. The surrounding neighborhood is mixed-use residential, commercial and light-industrial with many of the buildings still existing. The adjoining property at 1600 Peralta Street (across the street) appears to be an active gasoline station.
1939	Indistinct photograph that appears similar to the 1931 photograph.
1946	Indistinct photograph that appears similar to the 1931-1939 photographs.
1958	Indistinct photograph with conditions different than previous photographs. The Site is an active gasoline station. However, the Site is in the existing configuration without a canopy and a new garage building. The adjoining gasoline station at 1600 Peralta Street is still active.
1965	This aerial photo displays good detail of the Site. The Site has the appearance of an active gasoline station. The Site is present in existing configuration without a canopy over a new dispenser island location. The adjoining gasoline station at 1600 Peralta Street appears active. The adjoining property at the southwest corner of 16 th Street and Peralta Street appears as a recently graded vacant lot (now a parking lot).
1982	Indistinct photograph that appears similar to the 1965 photograph.
1993	Indistinct photograph that appears similar to the 1965-1982 photographs.
1998	The Site and vicinity is present in its existing configuration. The Site appears as an active gasoline station with the dispenser island visible. The surrounding neighborhood is mixed-use residential, commercial and light-industrial. The adjoining gasoline station at 1600 Peralta Street appears vacant.

A portion of the 1931 aerial photograph is shown in Figure 8 – Historic 1931 Aerial Photograph. The enlarged aerial photo shows detail of the Site with an obvious canopy present over a historic location of a fuel dispenser island. Figure 9 – Historic 1965 Aerial Photograph shows the Site with a repair garage but without a canopy over what appears as a new location for the fuel dispenser island.

3.2 Sanborn Fire Insurance Maps

Sanborn fire insurance maps have been prepared on a regular basis for the San Francisco Bay area since 1866. They may identify the location of infrastructure, major structures and their uses, and other related land use information. GGTR examined the EDR "Sanborn Map Report" dated January 9, 2007, for features, structures, and labels that might give an indication of the past land use of the Site. The following maps were examined and pertinent features summarized below:

October 27, 2009

Page 7 of 47

Date	Observations of Aerial Photograph Pertinent to Subject Property
1902	The map shows the Site with a small dwelling and several small sheds. The purpose of the small sheds is not indicated on the map. The Site is surrounded by small dwellings and vacant lots. Dwellings located south of the site display elevated backyard water tanks suggesting residential water wells. No water tanks / windmills are on the subject property.
1912	The map shows the Site with a small dwelling on the northern portion. The dwelling has an address of 1453-1455 16 th Street. The Site is surrounded by small dwellings, scattered vacant lots and a store building across Peralta Street to the west. Backyard water tanks are no longer shown on dwellings south of the Site. No water tanks / windmills are on the subject property.
1951	The map shows the Site address of 1532 Peralta Street in its existing property boundaries. A canopy is shown at the historic dispenser island location. The Site is labeled "Gas & Oil" with the existing garage building labeled "Grease." Small structures along the south property line are labeled "office", "wc" (water closet) and "oil." A store building is shown to the east at 1451 16 th Street. A restaurant building is shown on the south at 1524 Peralta Street. A machine shop building, dwelling and restaurant building are shown across Peralta Street to the west.
1952	Similar to the 1951 map
1957	Similar to the 1951 map
1958	The map shows the Site address of 1532 Peralta Street in its existing configuration. The Site is labeled "Gas & Oil" with the existing building labeled "Grease." The smaller buildings along the south margin of the Site are labeled "office", "wc" (water closet) and "oil." A church building is shown adjoining the Site to the east at 1451 16 th Street. A 3-story restaurant building is shown adjacent to the Site on the south at 1524 Peralta Street. A machine shop building, dwelling and commercial building are shown across Peralta Street to the west. The location of USTs or dispensers is not shown on this map.
1961	The map is very similar to the 1958 map discussed above.
1967	The map is very similar to the 1958 map discussed above.
1970	The map is very similar to the 1958 map discussed above.

Figure 10 – Historic 1912 Sanborn Fire Insurance Map shows the former residential use of the Site. A portion of the 1951 Sanborn fire insurance map for the Site is shown in Figure 11 – Historic 1951 Sanborn Fire Insurance Map. The enlarged map shows detail of the Site with an obvious canopy present over the historic location of the fuel dispenser island. Figure 12 – Historic 1970 Sanborn Fire Insurance Map shows the existing configuration of the Site.

The 1902 and 1912 Sanborn Fire Insurance Maps depict a small residential dwelling on the northern portion of the property. Associated with the dwelling on the 1902 map are two small sheds located on the northwest corner of the Site. The purpose of the sheds is unknown but may have been a water closet, poultry shed or shallow well shed. The 1912 Sanborn map also shows several residential properties located about 100 feet south of the Site with what appear to be elevated water tanks presumably associated with backyard water wells. As discussed above, backyard water wells were common in the Merritt sand outcrop of West Oakland during the early 1900s. Reportedly, shallow groundwater quality was declining at this time due to septic system contamination and by the 1930s the backyard wells were no longer in use as domestic water supply. The dwelling was demolished by 1931 when a gasoline station is shown on the Site.

3.3 City Telephone Directory

Historical telephone directory listings of the subject property and surrounding neighborhood were provided by Environmental Data Resources, Inc. in their "EDR-City Directory Abstract" dated January 9, 2007. GGTR examined the listings for businesses that might give an indication of the past land use of the Site. The following maps were examined and pertinent features summarized below. The Site address is not listed in the EDR report for the years 1920 through 1940. The Site appears to have operated under the address of 1550 Peralta Street in the 1933 directory. The current Site address of 1532 Peralta Street first appears in the year 1943. The following listings are shown in the EDR report for the Site addresses:

Date of Listing	Description in Telephone Directory
1933	PIMBO ANTHONY P IRENE GAS STA (1550)
1943	PIMBO ANTHONY P IRENE GAS STA (1532)
1950	DEPOT SERVICE STATION (1532)
1955	GENERAL PETROLEUM CORP (1532)
1962	MOBIL SERVICE STN DIRS (1532)
	PHILLIPS JERRY MOBIL SERV STN DIRS (1532)
1967	JERRYS MOBILE SERVICE (1532)
1970	JERRY S MOBIL SERVICE (1532)
	MOBIL SERVICE STN DLRS (1532)
1975	JERRY S MOBIL SERVICE (1532)
1980	JERRY S MOBIL SERVICE (1532)
	MOBIL SERVICE STN DLRS (1532)
1991	GAS STOP (1532)
1992	GAMEZ TIRE REPAIR (1532)
	GAS STOP (1532)
1996	GAS STOP AUTO REPAIR (1532)

GAUCHAO TRUCK STOP (1532) 2000 PERALTA AUTO CARE CENTER (1532)

The historic telephone directories mainly list individuals living in the predominantly residential neighborhood. The following is the historical listings for the adjoining gasoline station at 1600 Peralta Street and other businesses of interest:

Date of Listing	Description in Telephone Directory
1933	PAGANI GEO (MINNIE) GAS STA (1600)
1943	SEABROOKS WILLIE GAS STA (1600)
1945	FORD S SERVICE (1600)
1950	MC KINNEY SERVICE STATION (1600)
	CHICAGO CLEANERS (1524)
	HOWARD CLEANERS (1622)
1955	MCKINNEY SERVICE STN (1600)
1960	MCKINNEY SERVICE STN (1600)
1967	MCKINNEYS RICHFIELD SERVICE (1600)
1970	MCKINNEY SERVICE STN (1600)
	DU FRANE MACHINE & ENGINE WORKS (1525)
1980	MCKINNEY SERVICE STN (1600)
	DU FRANE MACHINE & ENGINE WORKS (1525)
1986	MCKINNEY SERVICE STN (1600)
	DU FRANE MACHINE & ENGINE WORKS (1525)
1991	MCKINNEY SERVICE STN (1600)
	DU FRANE MACHINE & ENGINE WORKS (1525)
1992	MCKINNEY SERVICE STN (1600)
	T & I ENGINE & MACHINE (1525)
1996	MCKINNEY SERVICE STN (1600)
	DU FRANE MACHINE & ENGINE WORKS (1525)
2000	MCKINNEY SERVICE STN (1600)

The adjoining property (1600 Peralta Street) across 16th Street to the north is listed in the 1933 through 2000 directories as a gasoline station and/or auto repair shop. Potential dry cleaner facilities are located both to the south of the Site (adjacent property – 1524 Peralta Street) and to the north across 16th Street (1622 Peralta Street), as presented in the 1950 directories. An auto repair shop-machine shop is located west of the Site at 1525 Peralta Street in the 1970 through 1996 directories.

3.4 Topographical Maps

Historical topographic maps showing the Site and surrounding neighborhood were provided by Environmental Data Resources, Inc. in their "EDR Historical Topographic Map Report" dated January 9, 2006. GGTR examined the maps for the years 1980, 1973, 1968, 1959, 1949, 1948 and 1915 for features that might give an indication of the past land use of the Site. The Site is shown within a shaded area of urban developed land on the 1958 through 1980 maps. No individual structures are indicated on these maps for the Site location or surrounding neighborhood.

The Site is shown on the 1915 map as possibly containing a visible structure (although the map is indistinct at high magnification) presumed to be the small dwelling shown on Sanborn fire insurance maps for this time period. Existing buildings are shown to the north, east and west of the Site in 1948 through 1980 maps. No obvious indications of environmental concern were noted on the topographic maps.

3.5 Environnemental Database Information

EDR provided a computerized database search report of state and federal database records for reported properties within a one mile radius of the Site dated January 9, 2007. The following table summarizes the properties listed in the EDR report within 500 feet of the Site.

Facility/Address	Direction & Elevation	Map ID No.	Databases Listed
DR OROBO OSAGIE	TARGET		LUST, HAZNET,
1532 PERALTA ST	13 FEET ELEV.	A1-3	Preliminary Site
MAANINIY OFDY (OFO) MOKININEY OA O	407 FFFT NINE		Assessment
MANNY SERVICES/MCKINNEY GAS 1600 PERALTA	127 FEET NNE 13 FEET ELEV.	A4-5	ENVIROSTOR, CERC- NFRAP
ALBERT S GARAGE	305 FEET SW		Historical Auto Station
1418 PERALTA ST	15 FEET	6	1967
THIST EIGHEIT OF	(HIGHER)	J	1307
DEL MAR CLEANERS INC	397 FEET SOUTH		Historical Cleaners 1967
	16 FEET	B7	
	(HIGHER)		
CANEPA GLENN	435 FEET NE	8	Historical Auto Station
1700 CENTER ST	12 FEET (LOWER)		1933 and 1943
WITT & MARTIN	456 FEET SW		Historical Auto Station
1501 14 TH AVE	15 FEET	9	1944 and 1943
	(HIGHER)		
NEW OAKLAND FIRE STATION #3	470 FEET SOUTH		Voluntary Cleanup
CENTER / 14 TH STREET	17 FEET	B10	
	(HIGHER)		
RELIANCE PRODUCTS INC	478 FEET NW	.	Small Quantity Generator,
1614 CAMPBELL ST	12 FEET (LOWER)	C11-12	FINDS, HAZNET, SLIC,
			VCP, ENVIROSTOR
OAKLAND FIRE SERVICES AGENCY	481 FEET SOUTH		Small Quantity Generator,
1445 14 TH ST	17 FEET	B13-14	FINDS, HAZNET
	(HIGHER)		
NELSON EMMA MRS	480 FEET WEST	15	Historical Cleaner 1933
1652 15 TH AVE	13 FEET (EQUAL)		
SIMAS W J	511 FEET SSE	D.4.0	Historical Auto Station
1429 14 TH AVE	17 FEET	B16	1933 and 1943
	(HIGHER)		

The Site address is listed in the records for a Leaking Underground Storage Tank (LUST) case and hazardous materials storage. The leaking UST created a contamination problem that impacted groundwater and is the subject of this document. The adjoining property at 1600 Peralta Street is listed in the EDR report for a 1997 preliminary site assessment that

concluded this property was not a CERCLA eligible site. The property is listed with aliases of McKinney Gas, J & J Garage, and Johnny Crower Auto Repair. Historical dry cleaners and auto stations exist within the neighborhood dating from the 1930s and 1940s.

3.6 Oakland Fire Prevention Bureau

GGTR requested a file review at the City of Oakland Fire Department, Fire Prevention Bureau for the Site address and adjacent property address of 1600 Peralta Street. The Fire Prevention Bureau is the local regulatory agency that regulates hazardous substances and underground storage tank removals in Oakland. On January 12, 2007, Mark Youngkin reviewed the file for the property at the Fire Prevention Bureau office in Oakland under the supervision of Vibhor Jain. The files contain historical documentation concerning underground gasoline storage tank (UST) removals at both properties and inspection reports for the operation of automotive repair shops. Selected information from the files is summarized below.

1532 Peralta Street

A 1996 UST permit was issued to Gauchao Truck Stop. The file contains documents pertaining to the December 8, 1999, removal of five USTs at the subject property by Golden Gate Tank Removal, Inc. A letter dated May 22, 2000, from the ACEH, indicates the gasoline station at the Site ceased operation in December 1998 with the expiration of the business license and UST permits. On May 19, 2000, following over-excavation of soil at the Site and discovery of groundwater contamination, the City of Oakland transferred the contamination case to the ACEH local oversight program.

The file contains a Hazardous Materials Inspection Report dated July 16, 2003, for Peralta Auto Care. The form indicates that Peralta Auto Care has operated at the site since March 1, 2003. The report records five violations that require correction within 30 days. The violations were for failure to retain waste receipts, lack of drip pans under engines and parts, lack of drum labels, no EPA ID#, and failure to keep the lot clean.

The file contains a Hazardous Materials Inspection Reports dated June 24, 2004, and June 23, 2006, for LBJ Auto Service. The form indicates that LBJ Auto Service has operated at the Site since March 2004. The report records six violations that require correction within 30 days. The violations were for failure to retain waste receipts, lack of drip pans under engines and parts, lack of drum labels, no EPA ID#, no lids on containers, and failure to cover oil coated parts. The June 23, 2006 report indicates there was a complaint for oil streaming into a storm drain but no evidence of such oil streaming was observed by the inspector.

1600 Peralta Street

The file contains documents pertaining to McKinney Service at 1600 Peralta Street (adjoining and down-gradient property). The service station is listed as being constructed in 1946. The file contains an inspection report from Alameda County dated March 24, 1986, for Harry McKinney gasoline station. The report lists a waste oil UST under the sidewalk, no leak detection on USTs, and petroleum naphtha used as a solvent. A letter from the ACEH

dated April 26, 1996, required removal of abandoned underground storage tanks (USTs) from the non-operating gasoline station.

The file contains a U.S. EPA Preliminary Assessment dated September 25, 2001, for Manny Service at 1600 Peralta Street. According to the document, in 1997 this property contained an operating auto repair garage (J&J Garage) and an abandoned gas station called Manny Service. The property also contained a small residence. On July 19, 2001, Weston conducted a CERCLA Preliminary Assessment drive-by inspection. J&J Garage was no longer in operation and the gas station remained closed. A small apartment building was located on the property. Weston concluded the property does not qualify for CERCLA action.

On August 24, 2006, the file indicates that four USTs were removed from the adjoining property at 1600 Peralta Street. The USTs consisted of three 1000-gallon gasoline tanks and one 500-gallon waste oil tank. The report indicates a leak was suspected due to obvious odors and evidence of contaminated soil / groundwater in the UST excavations. The file contains no documentation that investigation or remedial action had started.

3.7 Summary of Historical Property Uses

Sanborn fire insurance maps from 1902 and 1912 show the Site as mainly a vacant lot with a small dwelling / several small sheds along the northern margin at 16th Street. The Site is surrounded by other dwellings and vacant lots. A store building occurs across Peralta Street to the west in the 1912 map. After the 1906 earthquake, West Oakland experienced rapid growth and by the 1930s was a thriving commercial-residential neighborhood.

The 1931 aerial photograph shows a gasoline station with a fuel island canopy along Peralta Street and small office & storage building along the south boundary. The 1933 and 1943 telephone directories list "Pimbo Anthony P Irene Gas Sta" at the Site addresses of 1532 and 1550 Peralta Street. The 1939 and 1946 aerial photographs show similar configurations with a developing mixed-use residential, commercial and light-industrial neighborhood. The 1950 telephone directory lists "Depot Service Station" at the Site address.

The 1951-1952 Sanborn maps show the Site in basically its existing configuration. The auto repair garage building has been added and the canopy-dispenser island appears to have been shifted to the west along Peralta Street. A store building is present to the east of the Site. The 1955 telephone directory lists "General Petroleum Corp." at the Site address. The 1957-1961 maps show the Site in its existing configuration without the fuel island canopy shown in the earlier photos and maps. The store building to the east is now labeled a church.

The 1958 aerial photograph shows the Site in its existing configuration. The 1962 telephone directory lists "Mobil Service Stn" and "Phillips Jerry Mobil Serv Stn" at the Site address. The 1965 aerial photograph appears to show the Site as an active gasoline station. The 1967 and 1970 Sanborn maps show the Site in its existing configuration.

The 1967 through 1980 telephone directories list "Jerry's Mobil Service" at the Site address. The 1982 through 1998 aerial photos show the Site in its existing configuration. The 1991 telephone directory lists "Gas Stop" at the Site address. The 1992 telephone directory lists "Gas Stop" and "Gamez Tire Repair" at the Site address. The 1996 telephone directory lists "Gas Stop Auto Repair" and "Gauchao Truck Stop" at the Site address. Oakland Fire Prevention Bureau records indicate the gasoline station at the Site ceased operation in 1998. The 2000 telephone directory lists "Peralta Auto Care Center" at the Site address. Oakland Fire Prevention Bureau records indicate LBJ's Auto Service occupied the site in 2004-2007. Granny Sue's Auto Repair currently occupies the Site.

3.8 Summary of Adjoining Property Uses

The adjoining and down-gradient property at 1600 Peralta Street has a long history of gasoline station / auto repair shop activities since at least the 1940s. This gasoline station was inactive in 1997 and the USTs were removed in August 2006 with evidence of groundwater contamination. Also present adjoining this property is a small apartment building.

The commercial building adjoining the Site on the east was originally constructed as a store building and converted to a church in the 1950s. A two-story building adjacent to the Site on the south has a long history as a restaurant on the ground floor and residential flats above. The neighborhood to the south and southwest of the Site is predominantly residential with an engine machine shop at 1525 Peralta Street. This machine shop has a long historical history of engine repair activity. Historical cleaners were located in the Site vicinity during the 1930s to 1940s.

On the northwest corner of Peralta Street and 16th Street is a large older brick warehouse building constructed prior to the 1930s. Across Peralta Street to the west is a commercial building with a long history of steel truss fabrication and machine shop activities. On the southwest corner of Peralta and 16th Street, former stores and dwellings were demolished for the existing parking lot.

4. ENVIRONMENTAL HISTORY

4.1 Underground Tank Removal in 1999

In December 1999, GGTR removed five USTs from the Site at the locations shown on Figure 3 - Site Plan. UST removal and sampling activities were conducted under the supervision of Mr. Hernan Gomez of the City of Oakland Fire Prevention Bureau (OFPB). The following table presents a summary of the tank designations, size, volume, type of construction, and reported contents:

Designation	Construction	Diameter	Length	Volume	Contents
		(Feet)	(Feet)	(Gallons)	
UST #1	Steel	6	10	2,000	diesel
UST #2	Steel	4	7	675	gasoline
UST #3	Steel	4	7	675	gasoline
UST #4	Steel	5	7	1,000	gasoline
UST #5	Steel	5	7	1,000	diesel

Following removal, GGTR recovered soil samples from the excavations at 7.5 and 12.5 feet bsg. The soil samples contained maximum concentrations of total petroleum hydrocarbons (TPH) as gasoline at 2,600 mg/kg, TPH as diesel at 8,100 mg/kg, and benzene at 9.1 mg/kg. Tank removal procedures and the laboratory analysis results are presented in the GGTR report titled *Tank Closure Report*, dated December 15, 1999. Following soil sampling, the excavations were backfilled with the excavated overburden soil and imported fill soil. Based on the results of the tank removal soil sampling, Mr. Gomez requested a work plan for over-excavation of hydrocarbon-affected soil surrounding the former USTs.

4.2 Over-Excavation of USTs in 2000

On January 3, 2000, GGTR submitted a work plan for over-excavation of the UST cavities, which was approved by the OFPB in a letter dated January 25, 2000. In February 2000, GGTR over-excavated the former UST cavities to a maximum depth of 11 ft bsg and to the approximate lateral limits shown in Figure 13 – UST Over-Excavation Data. Approximately 194 tons of petroleum hydrocarbon impacted soil was excavated from the former UST cavities and transported for off-site disposal at Forward, Inc. in Manteca, California. GGTR collected soil samples from the excavation sidewalls at 7.5 ft bsg. Soil samples were recovered from the excavation bottom beneath UST #2 & #3 at 7.5 bsg, and from the excavation bottom of UST #4 at 12 ft bsg. Groundwater accumulated within the open excavations and was subsequently purged prior to sampling.

GGTR recovered a grab water sample from each excavation using a clean disposable bailer. GGTR performed the grab water sampling activities under the observation of Mr. Gomez of the OFPB. The excavations were backfilled with imported material and the pavement was replaced with concrete or asphalt. The laboratory reported significant concentrations of TPH-G, TPH-D, benzene, and methyl tertiary-butyl ether (groundwater only) in the soil and grab

water samples. Sampling activities and laboratory analysis results are presented in the GGTR document titled *Remedial Activity Report* dated March 8, 2000. Following review of this report, the ACEH, in letters dated May 19 and May 25, 2000, requested a work plan to evaluate the extent of soil and groundwater contamination at the Site.

4.3 Soil & Groundwater Investigation in 2004

On October 6, 2000, DECON Environmental Services, Inc. (DECON) of Hayward, California prepared the requested work plan (Remedial Activity Plan, October 2000), which was subsequently approved by Mr. Larry Seto of the ACEH. After further review of DECON's work plan, representatives of both the ACEH and State Water Resources Control Board UST Cleanup Fund concurred that the work plan required additional content and requested that it be revised and resubmitted to the ACEH for further review and approval. On February 28 2002, GGTR submitted its *Work Plan for Soil & Groundwater Investigation*, proposing the advancement of 8 preliminary direct push soil borings B1 to B8 to assess the extent of soil and groundwater impact in the vicinity of the former UST excavation areas.

The ACEH, in their letter dated March 11, 2002 approved GGTR's February 2002 Work Plan, based on the following conditions:

- Three additional borings are to be advanced within the excavation limits of former UST #4, UST #5, and between USTs #2 and #3; the borings should not be closed following sampling, but should be secured and sampled the following quarter to demonstrate plume stability.
- The borings proposed in the work plan should also not be closed following sampling, and converted to temporary well points, surveyed, and monitored periodically to verify groundwater gradient flow direction; the ACEH suggested installing pre-pack small diameter wells in lieu of slotted casing only, based on groundwater sample quality and cost considerations.
- A revised site plan should be submitted indicating the new boring locations.

All preliminary site investigation activities were postponed until October 2003, due to unrelated litigation activities. In facsimile correspondence dated February 11, 2004, GGTR notified the ACEH of the scheduled drilling dates and proposed work scope, and provided a copy of the revised site plan showing the locations of the newly-proposed borings/temporary monitor wells.

On February 23 & 24, 2004, GGTR in collaboration with Gregg Drilling, Inc. advanced eleven direct-push soil borings (B1 through B11) to a depth of 12-16 feet bsg (Figure 3 - Site Plan). Borings B2, B4, B6, B9, B10, and B11 were converted to temporary monitoring wells MW-1 through MW-6, respectively. Each temporary well borehole was 2"-diameter and constructed of pre-packed 3/4" well screen. Groundwater was encountered between 2 and 4 feet bsg and stabilized in the wells at approximately 2 to 3 feet bsg. The investigation

objective was to define the extent of petroleum hydrocarbon impact to soil and groundwater. Figure 14, Soil Sampling Results, summarizes the results of laboratory analysis of soil samples recovered during the 2004 investigation.

On April 13, 2006, Virgil Chavez Land Surveying surveyed the latitude/longitude, coordinates, and top of casing and rim elevations of all six temporary monitor wells. After a lengthy delay due to redevelopment planning issues and ownership transfer, details of the field activities for the boring and well installation were documented in a GGTR report titled *Site Characterization and Groundwater Monitoring Report* dated September 14, 2006. Permits, boring logs, well sampling field sheets, and the laboratory analytical reports for soil and groundwater are presented in the 2006 report. In their letter dated November 29, 2006, the ACEH requested a work plan for lateral and vertical contamination delineation and a conduit study to be included in the work plan.

4.4 Groundwater Monitoring

GGTR conducted an initial groundwater monitoring event at the Site on March 5, 2004 (wells MW-1 to MW-6) and subsequently conducted quarterly groundwater monitoring from March 27, 2006 through April 17, 2009. Monitoring wells MW-7 to MW-9 were installed in April 2009 and initially sampled on April 17, 2009 (See Section 5). Groundwater sample analytical results and associated fluid level monitoring data for each event are summarized in the attached Table 3. The attached Figure 27, Groundwater Gradient & Flow Direction, depicts the groundwater data for the monitoring events. The flow direction data collected to date is relatively consistent for measurements of this type with groundwater flow generally towards the north-northeast. The attached charts illustrate the results of historical groundwater monitoring at the Site. No free petroleum product is observed during the recent monitoring events. Groundwater monitoring indicates significant gasoline contamination of the shallow groundwater. The charts illustrate that the gasoline concentrations are steadily decreasing and the plume appears stable. However, the rate of natural attenuation is slow and the timeline to reach acceptable levels appears greater than 10 years.

5. SOIL & WATER DELINEATION ACTIVITIES

5.1 Drilling, Sampling and Well Installation August 2008 – May 2009

On January 31, 2007, GGTR submitted the Soil and Water Delineation Work Plan including findings/results of the conduit study. In their February 15, 2007 letter, the ACEH provided technical comments and requested a work plan addendum. The investigation objective was to further define the lateral and vertical extent of petroleum impact to soil and groundwater. In August 2008, GGTR in collaboration with John Carver Civil Engineering advanced ten direct-push soil borings (B13-B19 and CB1-CB3) to a depth of 10-16 feet bsg (see Figure 3 – Site Plan). On August 21, 2008, GGTR in collaboration with Gregg Drilling, Inc. advanced exploratory sounding boring B-12 using a CPT drilling rig to a depth of 40 feet to investigate the area of a potential historic backyard water well, as well as assess potential vertical

migration of hydrocarbon contamination. Figure 14, Soil Sampling Results, shows a summary of the results of laboratory analysis of soil samples recovered during the 2008 investigation. Figure 15, Grab Groundwater Analytical Data – August 2008, summarizes the results of laboratory analysis of grab groundwater samples collected during the August 2008 event. Tables 1 and 2 present the soil and grab groundwater analytical data, respectively, for the samples collected during the August 2008 field activities.

GGTR submitted the results of the August 2008 investigation in an email letter report to the ACEH dated October 8, 2008. In their letter dated January 16, 2009, the ACEH approved the proposed installation of three new groundwater monitoring wells at the Site. Borings CB1, CB2 and CB3 were drilled adjacent to the utility corridor in the center line of 16th Street to detect the presence of contaminant migration along the corridor. No evidence of significant petroleum migration was discovered at the utility corridor. Permits, boring logs, and the soil and groundwater sample laboratory analytical reports are presented as attachments in Appendix B.

Figure 17 shows the results of CPT logging of lithology beneath the Site to a depth of 40 feet. As shown on Figure 17, the soil conditions beneath the Site consist of a sand-silty sand lens from 5-7 feet underlain by lenses of sandy silt, clayey silty, silty sand and sensitive fine-grained soils to a depth of 18 feet. From about 18 feet to 35 feet is a layered sequence of sand, silty sand and gravel. At 35 feet, sand and consolidated layers were encountered to a depth of 40 feet where drilling was terminated due to the consolidated subsurface conditions. Following CPT logging, four discrete grab groundwater samples were collected using Hydropunch equipment at 15, 26.5, 33 and 38 feet from sand lenses. Relatively low concentrations of TPH as gasoline and MTBE were detected in the deeper groundwater samples. Results of the investigation are summarized on the attached tables.

On April 9, 2009, GGTR in collaboration with Gregg Drilling Inc. advanced three auger borings B20, B21 and B22 to a total depth of 10 feet bsg and completed each as new 2-inch-diameter monitor wells MW-8, MW-9 and MW-7, respectively. Gregg drilled each new well using a truck-mounted drilling rig equipped with 8-inch diameter hollow-stem augers. Discrete soil samples were collected in B20 and B21 between 3 and 5 feet bgs. Soil samples were not collected from B22. Figure 14, Soil Sampling Results, includes a summary of the results of laboratory analysis of soil samples collected during this event. Table 1 attached, includes the soil analytical data for the samples collected during the April 2009 event.

Each monitor well was constructed of 2-inch diameter schedule 40 polyvinyl chloride (PVC) blank casing and 0.010-inch slotted screen. The screen interval extended from 2 to 10 feet bgs and the filter pack, consisting of number three silica sand extended from 1.5 to 10 feet bgs. Hydrated bentonite chips were placed above the filter pack sand between 1 and 1.5 feet bgs. A 6-inch-diameter, traffic-rated, well box was installed flush to grade in concrete. Above grade monuments were not required at this time. The well was sealed using a locking expansion cap. A completed soil boring log/well construction diagram and Department of Water Resources Well Completion Report for each newly-installed well is included in Appendix B.

5.2 Monitor Well Development

On April 13, 2009, GGTR developed the new monitoring wells MW-7, MW-8 and MW-9. Prior to purging the well, GGTR surged the entire groundwater column length of the screened portion of the well with a 2-inch diameter surge block for approximately 20 minutes. Then, using a either a peristaltic or submersible pump, GGTR purged a minimum of ten casing volumes from each well and simultaneously measured the pH, temperature, and specific conductivity of the purge water. The purge water was transferred to a 55-gallon D.O.T.-approved steel drum and temporarily stored onsite in a secure area. Appendix B includes the Well Development Data Sheets for this event.

5.3 Second Quarter 2009 Groundwater Monitoring – April 2009

On April 17, 2009, GGTR conducted 2nd Quarter 2009 groundwater monitoring and sampling activities at the Site. The 1st Quarter 2009 event scheduled in late March 2009 was postponed to incorporate monitoring and sampling of the newly-installed wells MW-7, MW-8 and MW-9. As recommended in GGTR's January 2009 Groundwater Monitoring Report (4th Quarter 2008 activities), well MW-3 was not sampled during this event. Prior to purging and sampling each well, GGTR measured and recorded the depth to groundwater in the well relative to the top of well casing using an oil/water interface meter. All fluid-level measurements were recorded to the nearest 0.01-foot. A copy of the Fluid-Level Monitoring Data Form for this event is included in Appendix B.

Using a peristaltic pump and clean polyethylene tubing, GGTR purged (@ 400-800 milliliters/minute) three casing volumes of groundwater from the monitor wells and simultaneously measured the pH, temperature, and specific conductivity of the purge water. The purge water was transferred to a 55-gallon D.O.T.-approved steel drum and temporarily stored onsite in a secure area. After sufficient recharge of the groundwater column in the well, GGTR collected a groundwater sample using a peristaltic pump and clean dedicated tubing. GGTR initially checked for the presence of surface sheen and then carefully decanted each sample from the end of the tubing into the appropriate laboratory sample containers. All volatile organic analysis (VOA) vials were sealed with a threaded cap, inverted, and checked to insure that no entrapped air was present.

Appendix B includes the Well Purging/Sampling Data Sheets for this event. The groundwater samples were appropriately labeled and immediately stored in a cooler chilled to approximately 4°C. On April 21, 2009, GGTR submitted the samples to Torrent Laboratory, Inc. (Torrent) of Milpitas, California under formal chain-of-custody protocol.

The well groundwater samples were analyzed using the following EPA approved methods:

TPH-D by EPA Method SW8015M TPH-G by EPA Method SW8260B BTEX by EPA Method SW8260B

Fuel Oxygenates, including MTBE by EPA Method SW8260B

Groundwater samples collected from MW-7, MW-8 and MW-9 were additionally analyzed for Volatile Organic Compounds (VOC) by EPA Method SW8260B. GGTR requested that all associated laboratory analytical reports be reported in Electronic Deliverable Format (EDF) in general accordance with the State Water Resources Control Board's GeoTracker Database System.

Maximum TPH-G concentrations ranging between 920 and 4,700 μ g/l were measured in wells MW-4, MW-5, MW-6 and MW-8, situated in the direct vicinity and down gradient of former UST excavation areas. TPH-G at a maximum concentration of 430 μ g/l was detected in perimeter wells MW-1, MW-2, MW-7 and MW-9. TPH-D was detected in well MW-6 at a concentration of 0.242 μ g/l and displaying an atypical chromatogram pattern. Significant concentrations Benzene and MTBE were measured in wells MW-5 and MW-6 at 683 & 1140 μ g/l, and 1140 & 967 μ g/l, respectively. The groundwater sample collected in well MW-8 contained 1040 μ g/l MTBE. Figures 24, 25 and 26 present the analytical data and respective maps showing TPH-G, Benzene, and MTBE concentrations in groundwater. Table 3 presents a summary of the historical groundwater monitoring and analytical results. Appendix B includes the laboratory certificate of analysis and chain of custody record for this event.

5.4 Monitor Well Survey

On May 18, 2008, Virgil Chavez Land Surveying of Vallejo, California surveyed the wellhead elevation and latitude, longitude, and coordinates of each newly re-installed groundwater monitoring well. The bench mark for this survey was a Cal Trans control point No. AB1041, being a set PK Nail & Cal Trans Shiner near the centerline of Goss between Wood & Willow Streets. A copy of the survey data report is included in Appendix B.

5.5 GeoTracker Electronic Submittal

GGTR directed Curtis & Tompkins and Torrent to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGTR uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO_WELL), Wellhead Elevation Data (GEO_Z) & Coordinate Data (GEO_XY) to the State Water Resources Control Board's GeoTracker Database System. GGTR also uploaded all soil boring and well construction logs (GEO_BORE) and a revised Site Plan (GEO_MAP) in PDF format to the GeoTracker Database. A copy of each associated GeoTracker Upload Confirmation Form is presented in Appendix B.

6. SITE CONCEPTUAL MODEL

GGTR developed a Site Conceptual Model (SCM) by identifying the Site's physical characteristics, geology, hydrogeology, residual contamination sources, transport and

exposure pathways, representative concentrations, and potential future use of the land. The Site layout including building, former UST locations, over-excavation area, soil borings, monitoring wells, dissolved-phase plumes and the adjoining former gasoline station, are shown in the attached figures. The attached tables and charts summarize the historical soil and groundwater sampling data for the Site.

6.1 Regional Geology

Geologic information for the area is provided in the "Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, 2000, by R.W. Graymer, U.S. Geological Survey Misc. Field Studies MF-2342. See Figure 16, Geologic Map, for a portion of this geologic map showing the Site and immediate vicinity. The subsurface geology and hydrogeology of the surrounding area is discussed in the document by the California Regional Water Quality Control Board San Francisco Bay Region (RWQCB) Groundwater Committee report dated June 1999 and titled "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA. The Site is located on a broad sloping alluvial plain along the margin of San Francisco Bay.

According to the documents, the Site is situated on Pleistocene and Holocene windblown sand deposits called the Merritt sand (Qms). The deposits are fine-grained, very well sorted, well-drained, wind-blown sands found in western Alameda County. The Merritt sand outcrops in three large areas in Oakland and Alameda. The Merritt sand forms large sheets of shallow sand that ranges between 0 to 60 feet thick. Historically, the very shallow Merritt sand was extensively used prior to 1930 for residential backyard water wells. Prior to the 1930s, shallow water quality declined apparently due to widespread use of septic systems and the Merritt sand was abandoned as a residential water supply.

The Merritt sand is part of a larger formation known as the Alameda Formation. For discussion purposes, shallow groundwater-bearing units are defined as the units above the Yerba Buena Mud called the Alameda Formation including the Merritt sand. Deeper groundwater-bearing units are defined as the units below the Yerba Buena Mud called the Santa Clara Formation. The early Pleistocene Santa Clara formation is continental in origin and includes alluvial fans deposits inter-fingered with lake, swamp, river channel, and flood plain deposits. The formation may be between 300 to 500 feet thick in the Site vicinity. Historically, deeper municipal wells were completed in the Santa Clara formation. This formation is currently of interest to EBMUD for a proposed aquifer storage program.

Beneath the Santa Clara Formation is Franciscan Complex bedrock of ancient Cretaceous-Jurassic age (shown as fc, fg, KJfs, Kfgm, Kfn and KJfm on the map). This bedrock is exposed at the surface east of the Site in the vicinity of the Hayward Fault. The bedrock consists of mélange (sheared rock), sandstone, greenstone, Serpentenite, and quartz diorite. The bedrock is not known to contain extensive water bearing resources. The depth of the Franciscan Complex bedrock below the Site is shown in the East Bay Plain Groundwater

Basin Beneficial Use Evaluation Report's Figure 11, Structural Contact Map on Bedrock, at a depth to bedrock between 500 and 518 feet bsg in the vicinity of the Site.

6.2 Regional Groundwater

The regional groundwater flow direction in the vicinity of the Site is estimated to be toward the north in the general direction of the San Francisco Bay and decreasing topographic relief. The depth to groundwater at the Site measured in the monitoring wells is between 1.74 and 5.23 ft bsg. The nearest surface water body is the Oakland Outer Harbor of the San Francisco Bay, located approximately 1.03 miles northwest of the subject property. The following discussion was excerpted from the document by the California Regional Water Quality Control Board San Francisco Bay Region (RWQCB) Groundwater Committee report dated June 1999 and titled "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

According to the RWQCB document, the Site is within the East Bay Plain groundwater basin and Oakland Sub-Area basin. Existing and potential beneficial uses as designated in the San Francisco Bay Basin Water Quality Control Plan for this regional basin include municipal and domestic water supply, industrial service water supply, industrial process water supply, and agricultural water supply. The Oakland Sub-Area basin generally contains a sequence of alluvial fan deposits. The basement rock is deep and the alluvial fill is thick (about 500 feet at the Site). The document states that there are no well-defined aquitard such as estuarine mud within the Oakland Sub-Area. The largest and deepest wells in the Oakland Sub-Area historically pumped 1 to 2 million gallons per day at a depth greater than 200 feet (apparently from the Santa Clara Formation). Overall, sustainable yields are low due to low recharge potential.

Most groundwater in Oakland is currently designated as a potential source of drinking water. Until the 1930s, the East Bay Plain Groundwater Basin was historically used for drinking water, industrial, and agricultural supply. However, because of the lack of an adequate and dependable supply for a growing population, the East Bay now relies on imported surface water to satisfy nearly all drinking water and industrial demands. By far the most frequent current use of groundwater is for irrigation from "backyard" private shallow wells. The surrounding area of the Site is known to contain numerous private shallow wells dating from the early 1900s. The only known permitted drinking water system in Oakland is located in the Oakland Hills above the East Bay Plain Groundwater Basin.

The shallow Merritt Sand outcrop in west Oakland was an important part of the early water supply for Oakland. Single family residences historically relied on the Merritt Sand for water supply during the late 1880s and early 1900s. Contamination from septic systems and some saltwater intrusion resulted in abandonment of the Merritt sand as a water supply. However, groundwater in the area of the Site is designated as Zone A – a significant drinking water resource. Within Zone A, remedial strategies are focused on actively maintaining or restoring groundwater quality to drinking water quality objectives. According to the document, these areas historically supported a municipal beneficial use prior to the 1930's

and likely could again with proper management, be used as a limited municipal source of drinking water in the future.

6.3 Local Soil & Groundwater Conditions

Local conditions beneath the Site are illustrated on the attached figures including Figure 16 - CPT Plot Boring B12; Figure 18 – Cross Section A-A'; Figure 19 – Cross Section B-B'; and Figure 20 – Cross Section C-C'. The location of these cross sections is shown on Figure 3, Site Plan. Figure 17 shows the results of CPT logging of lithology beneath the Site to a depth of 40 feet. As shown on Figure 17, the soil conditions beneath the Site consist of a sand-silty sand lens from 5-7 feet underlain by other lenses of sandy silt, clayey silty, silty sand and sensitive fine-grained soils to a depth of 18 feet where a consolidated layer exists (potential hardpan). From about 18 feet to 35 feet is a layered sequence of sand, silty sand and gravel. At 35 feet, sand and consolidated layers were encountered to a depth of 40 feet where drilling was terminated due to the consolidated subsurface conditions. Following CPT logging, four discrete grab groundwater samples were collected using Hydropunch equipment at 15, 26.5, 33 and 38 feet from identified sand lenses. Although residual gasoline contamination was detected in deeper groundwater, the concentrations are relatively low and do not appear to represent a significant concern at this time.

The following table summarizes the survey data for existing monitoring wells:

Well Number	TOC Elevation (msl)	Northing	Easting
MW-1	9.87	2123268.15	6043826.01
MW-2	8.66	2123315.93	6043842.34
MW-3	8.29	2123315.62	6043780.64
MW-4	9.74	2123289.04	6043794.52
MW-5	9.4	2123298.15	6043808.28
MW-6	9.02	2123300.74	6043820.86
MW-7	10.19	2123234.30	6043787.32
MW-8	8.16	2123320.76	6043809.86
MW-9	8.49	2123362.95	6043840.83

Fourteen groundwater monitoring events have occurred at the Site between 2004 and April 17, 2009. The depth to groundwater measured in the monitor wells ranges between approximately 1.74 to 5.23 feet below surface. For consistency, the historic flow direction and gradient values were re-calculated using the EPA On-line Tools for Site Assessment Calculation – Hydraulic Gradient Calculation. The tool calculates a best fit for a plane through the groundwater elevation data for each event. Calculations from 2004 through 2008 used data from six monitor wells. The latest calculation dated April 17, 2009, uses groundwater elevation data from all nine existing monitor wells. The following table summarizes the re-calculation of groundwater flow direction and gradient for the Site.

Date	Average groundwater elevation (msl)	Gradient in ft/ft	Flow direction In degrees
March 5, 2004	6.47	0.01755	21
March 27, 2006	6.88	0.01363	5
June 22, 2006	6.15	0.0096	4

September 25, 2006	5.24	0.0059	22
	*·= ·		
December 21, 2006	5.62	0.0057	6
March 12, 2007	6.12	0.0112	355
June 28, 2007	5.24	0.0058	11
September 25, 2007	4.6	0.0054	22
December 17, 2007	4.89	0.0052	37
March 11, 2008	6.05	0.0107	16
June 12, 2008	5.21	0.0056	33
September 11, 2008	4.57	0.0046	24
December 11, 2008	4.4	0.0044	25
April 17, 2009	5.78	0.0049	358

The groundwater flow direction measured during the monitoring events is directed northward (ranging from 355 to 37 degrees) with a gradient ranging from 0.004 to 0.018 ft/ft. Figure 27 shows a rose diagram and map illustrating the estimated flow direction across the Site.

6.4 Summary of Site Conditions

The accompanying figures and charts attached to this document illustrate the following summary. The Site had a long history of gasoline fueling station activity from the 1930s through the 1990s. Gasoline fueling stopped at the Site by 1998 and the USTs / dispensers were removed in 1999. The Site has recently been used for commercial auto repair activities. The immediate down-gradient properties consist of an apparently vacant industrial warehouse and former gasoline station at 1600 Peralta Street. A small residential building exist cross- / down-gradient to the former UST locations. The apartment building occurs adjacent to the former service station at 1600 Peralta Street. Recent groundwater sampling at monitor well MW-9 does not indicate significant groundwater contamination in the direction of the apartment building.

Because the bottom of the former USTs was installed below the water table, the UST cavities were in the saturated zone. In March 2000, over-excavation of the UST cavities occurred with a total of approximately 194 tons of soil removed for disposal at Forward, Inc. landfill in Manteca, California. Confirmation soil sampling indicates residual contamination remains along the excavation sidewalls and bottom. Saturated zone soil is contaminated to a known depth of 12 feet bsg beneath the former USTs #2-3 and 7.5 feet beneath the former UST #4 and former dispenser locations. Soil samples do not contain significant MTBE concentrations and the MTBE source in groundwater appears to be former gasoline UST #4. Significant gasoline contamination also remains beneath historic fuel dispenser islands and associated product piping.

Groundwater occurs within fine-grained sands-silts of the Merritt sand. The ground water flows north-northeast toward 16th Street and an abandoned former gasoline station at 1600 Peralta Street. The nearest surface water is over one mile from the Site at San Francisco Bay. Groundwater gradients are relatively shallow and show seasonal variation typical of an unconfined aquifer. No free petroleum product was observed in monitoring wells during the last groundwater monitoring episode on April 17, 2009. In general, the Site has historically not displayed free product except for a small amount in one well during the September 2006

monitoring event. A dissolved gasoline plume exists at the Site with maximum concentrations centered on the former location of USTs #2, 3 & 4. The source of the plume appears to be residual gasoline LNAPL contained in saturated zone soils surrounding the former UST and beneath former dispenser locations. Based on the recent sampling of new monitor well MW-9, the down-gradient margin of the groundwater plume is located beneath 16th Street.

The shallow water-bearing sediments are not currently used for domestic water supply. No local domestic or irrigation wells or sensitive receptors are known to occur within 1000 feet of the Site except for a school located cross-gradient to the site several blocks to the west. However, the surrounding area is known to have been extensively used prior to 1930 for backyard residential water wells and a historical shallow conduit may exist on the northern portion of the Site. Vertical groundwater profiling in boring B12 reveals elevated gasoline contamination at 15 feet. At 26.5 feet, the TPH as gasoline concentration was below the ESL value at 93 μ g/L and MTBE was 4.9 μ g/L. No detectable TPH as gasoline was reported in the groundwater sample from 33 feet while MTBE was 5.7 μ g/L. The groundwater sample from 38 feet revealed TPH as gasoline at 290 μ g/L with MTBE at 8.2 μ g/L.

GGTR plotted historical data from monitor wells for TPH as gasoline, benzene and MTBE versus time and the charts demonstrate decreasing trend lines for these constituents reflecting the 1999 source removal at the Site. GGTR also plotted historical groundwater elevation data versus TPH as gasoline for well MW-6 illustrating the seasonal variation in contaminant concentrations. Within the area of former UST locations, petroleum concentrations in groundwater have shown seasonal increases suggesting that residual hydrocarbon material within the fluctuating saturated zone (smear zone) provides mass to the dissolved hydrocarbon plume. Natural attenuation of the petroleum contamination appears to be occurring at the Site. However, the time line for natural attenuation processes to achieve ESL screening values appears greater than 10 years.

The main area of residual soil & groundwater contamination is beneath the paved parking lot at the northwest corner of the Site. Previous investigation does not indicate significant contaminant migration along utility corridors or potential historic backyard water well. Recent groundwater monitoring does not indicate a vapor intrusion problem beneath the repair garage building or down-gradient apartment building. Because of the commercial land use of the Site (automobile repair garage) and asphalt-concrete cover, the residual soil and groundwater contamination does not appear to pose a significant risk to mechanics and customers at this time. However, the concentrations of residual petroleum hydrocarbon in shallow groundwater appear to pose a significant risk to any future residential land use at the Site through vapor intrusion. The primary reason for the elevated future risk is the inhalation of indoor air containing chemicals of potential concern. Residual groundwater contamination appears to present a potential risk to the future beneficial use of the groundwater resource.

6.5 Residual Constituents of Concern

The following is a summary of maximum residual contaminant concentrations in saturated zone soil (3.5-6 feet):

```
2,200 mg/Kg TPH-G (excavation sidewall sample) – collected in 2000 3,100 mg/Kg TPH-D (excavation sidewall sample) – collected in 2000 15 mg/Kg Benzene (excavation sidewall sample) – collected in 2000 0.4 mg/Kg MTBE (B10-3.5) – collected in 2000
```

The following is a summary of maximum contaminant concentrations measured in grab groundwater samples:

```
787 µg/L MTBE (B5-W) – collected in 2004 72,300 µg/L TPH-D (B1-W) – collected in 2004 118,000 µg/L TPH-G (B1-W) – collected in 2004 5,460 µg/L benzene (B5-W) – collected in 2004
```

The following is a summary of maximum contaminant concentrations measured in historical monitoring well groundwater samples:

```
2,250 \mug/L MTBE (MW-5) – collected in 2004 8,400 \mug/L TPH-G (M-6) – collected in 2006 2,600 \mug/L benzene (MW-6) – collected in 2006
```

The following is a summary of maximum contaminant concentrations in the most recent groundwater monitoring samples (April 17, 2009):

```
967 μg/L MTBE (MW-5)
4,700 μg/L TPH-G (M-6)
1,430 μg/L benzene (MW-6)
```

Elevated concentrations of TPH as diesel were detected in borings B1, B7, and B8 and USTs #1 & #5 formerly containing diesel fuel. However, recent groundwater samples collected from the onsite monitor wells do not reveal significant long chain hydrocarbons. The most recent groundwater monitoring concentrations were compared to the California Regional Water Quality Control Board — San Francisco Bay Region "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final" dated November 2007. The residual fuel hydrocarbons in groundwater exceed the environmental screening levels by significant margins. Groundwater is considered a potential drinking water resource and a deeper groundwater aquifer exists beneath the Site. The groundwater contamination may pose a risk to future commercial and residential use of the Site. Volatile constituents of the groundwater in residual fuel hydrocarbons and benzene exceed screening levels for potential vapor intrusion into future onsite buildings. Because groundwater is known to rise to within 1.74 feet below ground surface, all soil samples at the Site were collected from the saturated or smear zone and ESL values do not apply to saturated zone soil.

6.6 Sensitive Receptors

GGTR searched available government records for evidence of sensitive receptors within 1000 feet of the Site. A review of well completion records at Alameda County Public Works Agency and the Department of Water Resources (DWR) revealed that no active domestic, municipal or irrigation wells exist within a ¼-mile radius of the Site. Apparently, there is no surface water within the immediate vicinity of the Site. The Willow Manor School is shown on topographic maps about one to two blocks west of the Site. This school location is crossgradient to the Site and does not appear to be impacted at this time. Figure 7, Well Survey Radius Map, summarizes the results of the well survey and the location of nearby schools.

A residential apartment building is located across 16th Street to the northeast of the Site. The small building does not appear to have a basement. The apartment building is located adjacent to an abandoned gasoline station at 1600 Peralta Street. According to the known groundwater flow direction, the apartment building is down / cross-gradient to the former UST locations. Groundwater monitoring data and grab groundwater sampling data indicates the groundwater plume from the subject property has not impacted this apartment building.

6.7 Potential Exposure Pathways

The exposure pathways considered for this assessment are (1) ingestion of contaminated groundwater or soil, (2) vapor migration of MTBE and hydrocarbon vapors from soil or groundwater into the commercial garage building on the site, (3) migration of hydrocarbon vapors from shallow groundwater into the residential apartment building across 16th Street, (4) inhalation of hydrocarbon vapors from shallow soil by construction workers, and (5) direct contact with contaminated soil or groundwater by occupants or construction workers.

Ingestion Pathway

Incidental soil ingestion for Site trespassers or onsite mechanics is considered unlikely because the Site is completely covered with asphalt / concrete and security fenced. Since dissolved-phase MTBE and gasoline have been detected in groundwater beneath the Site, groundwater ingestion is a primary exposure pathway. Groundwater directly beneath the Site is not currently used as a drinking water resource (no domestic or irrigation wells). Regulatory agency records do not reveal municipal water wells within 1,000 feet of the Site. Ingestion for groundwater by humans has not been considered as an exposure pathway because of the lack of currently active domestic or irrigation wells. Future development of the Merritt sand aquifer is a potential long-term beneficial use issue not related to immediate public health concerns.

Inhalation Pathway

Due to elevated soil and groundwater concentrations within the area of former USTs and fuel dispensers, inhalation of residual petroleum hydrocarbons and volatile chemicals is considered a primary exposure pathway. The existing garage building is located cross-

gradient from the main area of residual contamination. Exploratory borings B2, B13 and B19 indicate that significant soil and groundwater contamination is not expected beneath the garage building. The garage building has a concrete floor and the building remains open during work hours for automobile repair ventilation. Recent groundwater monitoring of well MW-1 adjacent to the garage does not reveal concentrations indicative of potential vapor intrusion. Because of these conditions, vapor intrusion is not considered a significant risk to existing commercial use of the building. For protection of potential future residents from inhalation of outdoor and indoor air, inhalation is considered to be a complete pathway. Inhalation of vapor in indoor areas is believed to be the most significant exposure pathway at the Site under a future re-development scenario involving residential construction.

Directly down-gradient from the main area of residual contamination is a vacant lot (former gasoline station at 1600 Peralta Street). Also, down and cross-gradient is a residential apartment building at the northwest corner of 16th Street and Center Street. Recent groundwater monitoring of down-gradient monitor well MW-9 does not reveal gasoline concentrations indicative of potential vapor intrusion concern in the vicinity of this apartment building.

Direct Contact Pathway

Direct contact with chemicals in soil is assumed to occur during outdoor activities. However, the likelihood of contacting outdoor surface soil is unlikely since the Site and adjacent street is covered by asphalt and concrete. Nonetheless, the possibility of direct contact with chemicals in soil is considered for construction workers. To address the possibility of future short-term but intensive exposures to chemicals in subsurface soil, a construction worker is assumed to have skin contact with chemicals in soil ranging from the surface to ten feet bsg. Direct contact with chemicals of concern in groundwater is also possible for construction workers. Construction workers engaged in utility installation or future grading activities could also be exposed to petroleum vapor related to residual soil and groundwater contamination at the Site. The duration of exposure would be a one-time event and relatively brief. In general, brief exposure to petroleum products and vapor by construction workers is not considered a significant hazard.

6.8 Removal Action Goals

Removal action goals are proposed that are protective of human health and the environment. The removal action goals have been selected from: (1) information obtained during prior investigations at the Site; and (2) risk management decisions based upon the current and proposed future use of the Site. The proposed removal action goals will achieve risk levels for soil, groundwater and soil vapor that are acceptable for unrestricted or residential land use. The U.S. Environmental Protection Agency (U.S. EPA) consider acceptable levels of risk to be a hazard index of 1 for non-carcinogenic health effects and an excess cancer risk of 1x10-6 to 1x10-4 for carcinogenic health effects. The proposed removal action goals for gasoline constituents are based on the Regional Water Quality Control Board's residential Environmental Screening Level (ESL) for shallow soils where groundwater is used for

drinking water. The following tables present the proposed removal action goals for soil and groundwater at the Site:

Table Summarizing Acceptable Soil Concentrations

Medium	Screening Level	Contaminant	Acceptable Concentration
Soil	RWQCB ESL	TPH as gasoline	83 mg/kg
Soil	RWQCB ESL	Benzene	0.044 mg/kg
Soil	RWQCB ESL	Ethylbenzene	3.3 mg/kg
Soil	RWQCB ESL	Toluene	2.9 mg/kg
Soil	RWQCB ESL	Xylenes	2.3 mg/kg
Soil	RWQCB ESL	MTBE	0.023 mg/kg

Table Summarizing Acceptable Groundwater Concentrations

Medium	Screening Level	Contaminant	Acceptable Concentration
Water	RWQCB ESL	TPH as gasoline	100 μg/l
Water	RWQCB ESL	Benzene	1 μg/l
Water	RWQCB ESL	Ethylbenzene	30 μg/l
Water	RWQCB ESL	Toluene	40 μg/l
Water	RWQCB ESL	Xylenes	20 μg/l
Water	RWQCB ESL	MTBE	5 μg/l

7. FEASIBILITY STUDY

Historical groundwater and soil sampling data indicate that current Site conditions will require remedial action. The elevated concentrations of gasoline-range hydrocarbons present in the groundwater in the vicinity of well MW-6, specifically TPH-G, benzene and MTBE will cause the Site to remain an open case unless additional action is performed. UST regulations require that a soil and groundwater investigation phase be implemented to assess the nature of the release and to determine a method of cleanup. Sufficient investigation has been performed to formulate a conceptual site model as presented in preceding sections.

A feasibility analysis of possible remedial techniques is presented in the ensuing discussion. The feasibility study is based on data available at the time of this writing and any additional data may require re-evaluation of the feasibility analysis. The remedial alternatives are screened based on effectiveness, implementation, and cost. To identify applicable technologies, key site conditions must be considered. These conditions were outlined in the Summary of Site Conditions discussed above.

7.1 No Action

As required by EPA guidelines, the No Action alternative has been included to provide a baseline for comparisons among other removal action alternatives. The No Action alternative would not require implementing any measures and no costs would be incurred. This action

includes no institutional controls, no treatment of soil, and no monitoring. The no action alternative would rely on the natural attenuation of petroleum. Natural attenuation is defined as naturally-occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of the contaminants of concern in soil and groundwater. Typically regulatory agencies will not consider the No Action Alternative for impacted sites unless steps have been taken to remove contaminants from soil and ground water source areas to the extent that is feasible and/or cost effective. In this case, feasible removal actions have not yet been taken to address the gasoline-impacted soil and groundwater.

7.2 Monitored Natural Attenuation

Natural attenuation is naturally-occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of the petroleum in soil and groundwater. In monitored natural attenuation (MNA) the natural biological activity, as well as the other attenuation mechanisms such as adsorption, dilution, and convection is monitored carefully to predict and evaluate the reduction in concentrations of petroleum hydrocarbons in groundwater. Of these processes, degradation of chemicals is generally the most important, since chemical mass is being removed from the system. The key step for demonstrating natural attenuation is to show that the chemicals of potential concern are attenuating at rates sufficient to be protective of human health and the environment. We presume that natural attenuation of hydrocarbons in shallow groundwater is occurring at the margins of the groundwater plume based upon the general decreasing trend of gasoline-range hydrocarbons. High petroleum concentrations like those reported in monitor well MW-6 promotes reducing conditions not conducive to rapid aerobic biodegradation of hydrocarbons. High concentrations observed in saturated zone soil and grab groundwater samples suggest that immobile gasoline LNAPL may be present within the saturated zone. The groundwater monitoring performed to date indicates that natural attenuation is proceeding at a slow rate. Natural degradation would likely take more than 10 years to degrade the residual gasoline to acceptable concentrations.

7.3 In-Situ Biologic Attenuation

At petroleum release sites, enhanced biologic attenuation may involve the addition of oxygen or nutrients to facilitate or accelerate biological activity in the subsurface. Indigenous soil bacteria present at petroleum impacted sites will acclimate to the presence of the hydrocarbons and utilize the carbon source in their metabolic processes. Adding oxygen to the subsurface by introducing various oxygen releasing compounds (ORC) into the subsurface is needed for a successful in-situ bioremediation program. In this method, the groundwater contamination is addressed directly through the addition of oxygen releasing compound into the saturated groundwater zone. The key to successful enhancement is delivering the oxygen and other additives (if used) throughout the impacted zone so that it is available to the soil microbes. The microbes cannot consume LNAPL directly, but will degrade hydrocarbons dissolved in groundwater and adsorbed on soil particles. In this case,

ORC would be used as an accelerator of the natural bioremediation process within the saturated zone of the contaminant plume. ORC is a proprietary formulation of magnesium peroxide powder that is designed to provide increased oxygen to the groundwater on a timed release basis. ORC is applied by mixing with water for slurry injection into the saturated zone utilizing Geoprobe[®] drilling technology or mixed within the excavation backfill material within the saturated zone. Even though this alternative has the potential to be faster than natural attenuation, the difficulty in delivering oxygen through the very shallow groundwater may limit its effectiveness. The degradation process can be slow and concentrations may rebound in subsequent years. The track record for success of these in-situ treatment technologies in providing a cost effective solution and cleanup is mixed in the literature. Groundwater monitoring is used to document the effectiveness of the treatment and evaluate the need for additional treatment.

7.4 Groundwater Extraction

Groundwater extraction is a remediation technology designed to physically remove contaminated groundwater. Groundwater is pumped from the subsurface using extraction wells or trenches placed at and/or hydraulically down gradient of source areas for maximum effectiveness. This alternative involves extracting groundwater to depress the groundwater levels in the vicinity of an extraction well to increase the pressure gradient and therefore the flow of groundwater / residual LNAPL towards the extraction wells. A groundwater pump-&-treat system is installed whereby groundwater is automatically pumped out of the extraction well(s) via submersible pumps, and conveyed via piping to an on-site treatment system, then discharged to the sanitary sewer. An equipment enclosure would be installed that includes all equipment, pumps and pneumatic controls. The pumps would discharge groundwater and LNAPL into an oil water separator. The water would then be treated with granular activated carbon canisters and discharged to the sanitary sewer under a permit from the local sewage treatment plant. Installation and operation of a pump-and-treat system would impose less disruption than remedial excavation over the short term. However, equipment enclosures, subsurface piping and O&M can disrupt on-site operations over the long term. Pump and pilot pump testing would be performed to verify that site conditions are suitable for this method. Pump-&-treat systems can be costly due to high capital and long term O&M costs. The timeline for pump and treat application can be very long to achieve the removal action goals at this site.

7.5 Dual Phase Extraction Technology

Dual Phase Extraction (DPE) involves the simultaneous extraction of soil vapor, LNAPL, and groundwater through a central extraction well and the application of vacuum to individual vapor extraction wells. The implementation scenario for DPE includes the installation of groundwater extraction and vapor extraction wells. A portable equipment trailer would be connected to groundwater and vapor extraction wells. The portable equipment trailer would include all required compressors, pneumatic controls, and the vacuum blower with granulated activated charcoal or other treatment method. Vacuum

extraction is applied to well points to extract soil vapor from the impacted area. Groundwater extraction lowers the water table and prevents excessive mounding enhancing the effectiveness of vapor extraction and smear zone contaminant removal. An air sparging component can also be added resulting in the lifting of the water table in the vicinity of the well causing a reduction in head at the well location with water flowing back towards the well. All of these different components can be integrated and installed in a four-inch (minimum) groundwater extraction well. Groundwater would be extracted from the vicinity of well MW-6, which is located near the center of the contaminated groundwater plume. This technique can result in the extraction of large volumes of groundwater that must be treated before disposal. This method is complex and the results difficult to predict. A Pilot testing program using temporary DPE equipment would be required to further evaluate the suitability of site conditions for DPE. Since this alternative accelerates the removal of groundwater and LNAPL through the application of vacuum at the extraction wellheads, more than one application period may be involved.

7.6 Source Area Soil Excavation

This alternative considers mass reduction by excavating saturated soil containing residual petroleum hydrocarbon and/or residual LNAPL and disposing of the contaminated soil offsite at an appropriate disposal facility. An excavation would remove contaminated saturated zone soils to an estimated depth of 12 feet below grade. The estimated volume of gasoline-impacted soil to be excavated for offsite disposal is approximately 360 cubic yards. Excavation will effectively remove immobile LNAPL in the smear zone within the excavation limits and remove the majority of the hydrocarbon mass in saturated soil that provides a continuing source of groundwater impact. Shoring of excavation sidewalls may be required along the Peralta and 16th Street frontages. The cost of excavation is greatly influenced by lead concentrations and the cost of landfill disposal. During the 1999 UST removal sampling activities, 14 soil samples were analyzed for total lead with a maximum detected concentration of 81 mg/kg. During the 2008 investigation, a total of 23 discrete soil samples were submitted for laboratory analysis of total lead with a maximum concentration of 33 mg/kg. Based on the laboratory analysis of 37 soil samples, lead does not appear to be a significant issue at the Site and should not be an issue in the landfill disposal of the gasoline contaminated soil. GGTR proposes to add oxygen releasing compound (ORC) to excavation backfill within the saturated zone. ORC would be distributed uniformly within the saturated zone across the total aerial limits of the remedial excavation. The addition of ORC will theoretically provide timed release oxygen to the saturated zone and down-gradient groundwater. Groundwater monitoring is used to document the effectiveness of the treatment and evaluate the need for additional action.

7.7 Alternative Evaluation & Selection

The following table summarizes the remedial alternative strategies for cleanup of the gasoline groundwater plume at the subject property and presents the advantages and disadvantages of each of the alternative strategies.

Advantages and Disadvantages of Alternative Strategies

Corrective Action Alternative Strategy	Advantages	Disadvantages		
	 Least disruptive to on-site operations as only existing monitor wells are utilized Least disruption to site activities Least impact to community and adjacent neighbors Lowest capital cost as only groundwater monitoring is performed 	 Core area of immobile LNAPL may persist for many years Long term monitoring costs can be expensive if longer than 10 years Unacceptable to local regulatory agencies Longest estimated project duration Land use control likely required 		
In-Situ Remediation	 Injection of ORC can be accomplished with minimal site disturbance Multiple injections can be performed to adjust to Site conditions Intermediate cost compared to groundwater extraction Minimal disruption to community and adjacent neighbors 	 Very shallow groundwater may inhibit effectiveness of injected ORC Long term monitoring required to evaluate effectiveness Track record shows method is often unreliable Bench-pilot testing required to determine application Contamination may rebound Injection may push LNAPL off site 		
Source Area Soil Excavation	 Short project duration Will remove source soil contamination to allow unrestricted land use Most likely to rapidly decrease groundwater plume concentrations Cost effective Technologically simple 	 Greatest short term disturbance of on-site operations Greatest impact on neighborhood due to noise, dust and truck traffic Offsite disposal required at licensed landfill 		
Groundwater Extraction	 Directly removes impacted groundwater from source area Hydraulically controls spread of dissolved plume 	 Long time period of extraction required May cause ground subsidence Generates large quantities of 		

- Less short term disruption to site activities
- Minimal impact to community from noise, dust and truck traffic
- groundwater for disposal
- Pilot and pump testing required to determine system design and effectiveness
- Generally the most expensive alternative based on long time of operation

Dual-Phase Extraction

- Short project duration
- Likely will decrease dissolved-phase hydrocarbon concentrations
- Temporary installation with minimal site disturbance
- One of the least expensive alternatives based on short duration of operation

- May require repeated application
- Most complicated of alternative techniques
- Very shallow groundwater conditions may not be favorable
- Pilot and pump testing required to determine system design and effectiveness
- May push LNAPL off site

The monitored natural attenuation and in-situ remediation alternatives are not considered effective on their own because of the long timeframe involved with the dissolution of the suspected immobile LNAPL into groundwater. Groundwater pump and treat generally takes many years to implement with high operation and maintenance costs and is also eliminated. Limited groundwater extraction is considered in conjunction with other methods such as Dual Phase Extraction (DPE) / air sparging. Conditions at the Site may not be favorable for DPE considering the very shallow groundwater. The success of DPE is uncertain and extensive pilot testing is required to design appropriate remedial systems. DPE is eliminated due to the complexity inherent in the method.

Based on a process of elimination, GGTR recommends that the most appropriate, cost effective and feasible alternatives for Site remediation is source area excavation to remove hydrocarbon impacted saturated zone from 3-12 feet bsg in the immediate area of former USTs and dispenser islands. Following the completion of source area excavation, GGTR proposes to add oxygen releasing compound (ORC) to excavation backfill within the saturated zone. One year of groundwater monitoring would be performed to assess plume stability.

8. CORRECTIVE ACTION PLAN

The purpose of this Corrective Action Plan is to describe the procedures used to conduct remedial action activities at the Site. GGTR proposes the following scope of work that addresses the gasoline contamination problem at the Site:

• Pre-field work activities

- Destruction of monitor wells MW-4, MW-5 & MW-6
- Remedial excavation of source area and off-site disposal
- Pumping of contaminated groundwater from open excavation
- Backfilling with addition of ORC in saturated zone
- Re-surfacing with asphalt-concrete
- Replacement of monitor wells MW-4 and MW-6
- Evaluation of data and submittal of report
- Confirmation groundwater monitoring to demonstrate plume stability

The following sections provide details of the proposed scope of work.

8.1 Pre-Field Work Activities

Upon approval of this work plan by the ACEH, GGTR will obtain drilling permits from the Alameda County Public Works Agency (ACPWA) for the abandonment of monitoring wells MW-4, MW-5 and MW-6. GGTR will prepare and submit traffic control plans to the City of Oakland, should partial or complete closure of the parking lane and/or sidewalks along the 16th Street frontage be warranted during the work. At least 72 hours before commencing overall field activities, GGTR will visit the Site and outline the proposed work areas in white surface paint and subsequently notify Underground Service Alert (USA) to locate and mark any subsurface utilities extending through the designated work areas.

GGTR will notify all property owners and tenants as well as the ACEH of all scheduled work activities at least 72 hours prior to field work. A site-specific Health and Safety Plan (HASP) exists for the Site as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120). The document will be amended to reflect the current scope of work, reviewed and signed by all personnel and subcontractors performing work at the Site. GGTR will update the site-specific Health & Safety Plan as needed during the course of work and conduct a tailgate safety meeting prior to the initiation of daily field work.

8.2 Work Plan for Soil Excavation

The objective of this project is to reduce potential risks to water quality, the environment, and human health associated with the residual petroleum hydrocarbons at the Site. The goal of the source removal (i.e., excavation) is to remove the soil containing petroleum hydrocarbons that is located within the saturated zone, which is believed to be the source of continuing groundwater contamination. To this end, the primary source area of petroleum hydrocarbons will be excavated from the former USTs and fuel dispenser areas. The estimated lateral extent of the planned excavation is shown on Figure 28, Proposed Work. The following sections present the procedures to be utilized during the proposed removal action.

Mobilization and Pre-Field Work Planning

GGTR will obtain appropriate approvals / permits and complete required notifications to proceed with the proposed removal action. GGTR will modify the existing site-specific Health and Safety Plan including dust control before starting any field work. The health and safety plan will describe anticipated hazards and describe safety procedures / precautions for the scope of work to be performed. The work area is already secured behind 6-foot high security fencing providing a staging area for temporary soil stockpiles. Appropriate warning signs (English and Spanish), including California State Proposition 65 notification shall be posted by GGTR at conspicuous locations. Prior to mobilization for excavation activities, GGTR will destroy existing monitor wells MW-4, MW-5, MW-6. GGTR will obtain permits for the well abandonment from the ACPWA. The wells will be abandoned by a licensed well driller through over-drilling and the boreholes grouted to surface grade with Portland cement. GGTR will also divert or turn off water service to the Site as the water line crossing the proposed excavation will be encountered during excavation activities.

Proposed Extent of Excavation

The proposed excavation area and depth were estimated using the data presented on Figures 21 through 23. The proposed excavation is divided into four separate sub-excavations labeled as Excavations A, B, C and D on Figure 28, Proposed Work. The proposed sub-excavation dimensions, areas, and volumes are tabulated below.

Sub-	Length	Width	Area	Depth	Total In-Situ	Total Excavated
Excavation	(Feet)	(Feet)	(Square	(Feet)	Volume	Volume
ID			Feet)		(Cubic Feet)	(Cubic Feet)
A	25	18	450	12	200	300
В	25	18	450	8	130	195
C	20	27.5	550	8	165	245
D	20	30	600	8	175	265

Excavation A encompasses the primary source area for groundwater contamination surrounding well MW-6. Over-excavation of the former UST cavity was shallow in this area and residual soil contamination exists from a depth of 7 to 12 fbg and in native soil along the former sidewalls. Excavation A will have a total depth of 12 feet for an estimated in-situ (unexcavated) volume of 200 cubic yards, and an excavated volume of approximately 300 cubic yards, using a conservative multiplier of 1.5 to account for soil expansion or swell. Of this total, approximately 175 cubic yards may be back fill suitable for re-use as determined from the February 2000 over-excavation activities. We estimate approximately 125 cubic yards of petroleum contaminated soil will be removed for off-site disposal from Excavation A.

Excavation B surrounds the former UST #4 with an estimated total excavation depth of 8 fbg for total in-situ/excavated volumes of approximately 130/195 cubic yards, respectively. Of the total excavated volume, we estimate approximately 75 cubic yards is back fill and 120 cubic yards will be excavated for off-site disposal. Excavation C is the historic dispenser

island location with an estimated excavation depth of 8 fbg, with total in-situ/excavated volumes of 165/245 cubic yards. Of this total excavated volume, we estimate approximately 90 cubic yards is back fill and approximately 155 cubic yards of petroleum contaminated soil will be removed for offsite disposal. Excavation D is the former dispenser island-product piping area with a total estimated excavation depth of 8 feet. Based on contamination reported throughout this entire depth, we estimate approximately 265 cubic yards of petroleum contaminated soil will be removed for offsite disposal. No overburden soil from Excavation D is proposed for back fill material. Upon completion of excavation activities, we estimate approximately 665 cubic yards (@ 1,000 to 1,200 tons) of impacted soil will be removed and transported for offsite disposal.

Soil Excavation Procedures

The excavation of soil will proceed in four stages corresponding to the four proposed sub-excavation areas. The work will be performed in stages to minimize the requirement for soil stockpiling, allow adequate work room for safe operations, and minimize dust/gasoline vapor emissions. The sidewalk along 16th Street will be closed to foot traffic during the excavation of area A and during the loading of soil into trucks. Shoring will be employed as needed along the Peralta and 16th Street frontages. Excavation shoring with use of steel sheet piles as well as excavation de-watering will be assessed and considered prior to initiating all field activities. Soil stockpiles will be stored within the fenced perimeter of the Site and the gate closed-locked each night.

GGTR will remove concrete and asphalt covering each excavation area. The concrete and asphalt will be transported off-site for recycling. The excavation will be performed with small-scale construction equipment, including excavators, backhoes, and small loaders. Two stockpile areas will be prepared to allow for temporary storage of the excavated soil. The soil will be segregated into a "clean" and "impacted" stockpile type of material and field observations. Pre-existing back fill is believed to be suitable for re-use as post excavation backfill.

Using mechanical backhoe equipment, GGTR will initially pothole within the center of each proposed sub-excavation, to approximately 8 feet bgs in Excavation A and approximately 5 feet bgs in Excavations A to C. GGTR will collect two discrete soil samples from each of the four locations. One sample collected at approximately 4 feet bgs in Excavation A and one sample collected at approximately 2 feet bgs from Excavations A to C will be submitted for laboratory composition (4 to 1) and analysis. One sample collected at total depth of each pothole excavation will be submitted for analysis as a discrete sample. All soil samples will be submitted under proper chain of custody command with an expedited analysis and reporting turnaround time. Upon receipt, GGTR will submit composite sample results and waste profile documentation for waste acceptance approval to a State-licensed Class II landfill facility. Should laboratory analysis of discrete samples reveal the backfill material is suitable for re-use onsite, GGTR will submit a letter request to the ACEH to re-use the material as backfill. The excavated material from each pothole will be stockpiled and the individual excavations will be temporarily secured with plywood sheeting and steel barricades.

GGTR will excavate the backfill material within the former excavations and stockpile this material separately for soil sampling and laboratory analysis. GGTR's onsite representative will assess the excavated soil (principally by vapor readings and/or staining) to verify which stockpile area the soil shall be placed. Any soil with obvious evidence of contamination will be placed in the contaminated soil stockpile. Stockpiles will be sprayed with potable water to reduce fugitive dust emissions. All native saturated zone soil within the excavation areas are presumed to be contaminated with gasoline and will placed in the impacted soil stockpile or directly placed in trucks for transport to an appropriate disposal facility. If stockpiled, the soil will be placed on and covered with plastic sheeting with a minimum thickness of 10 mils. A soil berm will be constructed surrounding the stockpiled soil to manage water that may drain from the soil. Soil stockpiles will be covered to prevent any rainwater contacting the soil. A sump pump (or equivalent) will be used (if needed) to recover water that may weep from the soil and accumulate in the stockpile area. The water will be drained back into the open excavation until the excavation is evacuated by a pump truck and the water removed from the Site.

As conditions in the field may vary from known conditions, it may become necessary to implement minor modifications to soil excavation activities as presented in this work plan. Based on the field conditions encountered, it is anticipated that the excavation limits may be adjusted by several feet. Field personnel will notify the ACEH project manager when deviations from this work plan are necessary. Variances from the work plan will be discussed with ACEH prior to any action being taken except for emergencies (when an immediate response is required). The ACEH will be notified if an emergency response is implemented. The field variances will be documented in the removal action completion report prepared for the project.

Confirmation Soil Sampling Activities

To verify that the proposed removal action is complete, this work plan proposes to utilize confirmation soil sampling and laboratory analysis. GGTR will collect confirmation soil samples from the excavation sidewalls with the help of the excavation equipment. Soil samples will be collected from the center of the sidewalls of the excavation at depths of approximately 4 and 8 feet bsg. Two soil samples will also be recovered from the bottom limit of each excavation area. Samples will be collected from approximately 1 foot into the excavation sidewall and bottom using the excavator bucket. The soil samples will be analyzed for total petroleum hydrocarbons as gasoline (TPHg), BTEX and MTBE by a Statecertified analytical laboratory.

Soil samples will be collected using a brass tube-lined, 2-inch-diameter remote sampler (3- to 6-inch length) driven by a 15 pound slide hammer into relatively undisturbed soil, then sealed with Teflon® sheeting and plastic end caps, labeled, and transferred to a cooler chilled to approximately 4°C. Soil extracted from the shoe of the core sampler will be screened for soil vapor concentration (parts per million) using an OVA. GGTR will record the exact location, depth, and collection time of each sample. If a confirmation soil sample exhibits obvious evidence of hydrocarbon contamination, GGTR may elect to continue the excavation

at that location and recover another soil sample for confirmation sampling. All down-hole drilling and sampling equipment will be cleaned between each sample location using a non-phosphate Alconox® solution and double rinsed using clean, potable water. Equipment wash and rinse water will be transferred to an onsite storage container.

Dewatering, ORC Application, and Backfilling

The excavation will extend into saturated soil by up to 10 feet to a maximum depth of 12 feet fbg. GGTR anticipates that groundwater will accumulate in the open excavations. Previous excavation at the Site indicates that groundwater recharge is not prohibitive to excavation activities. GGTR will likely utilize shoring along the Peralta and 16th Street frontages to facilitate the removal of soil and prevent sidewall collapse from undermining the sidewalk or street pavement. GGTR also may elect to use steel sheet piles throughout the excavation activities to minimize the potential for groundwater recharge into the excavation areas. Following the completion of excavation activities, GGTR will dewater each excavation using a pump truck and hose to remove contaminated groundwater. The decision of whether or not to dewater the excavation will be made in the field. More than one dewatering episode may be utilized if significant free petroleum product recharges the open excavation.

The excavation will be backfilled and compacted following the conclusion of excavation and dewatering activities. The existing overburden material (if determined to be clean as described above) will be used as backfill material if suitable. Any additional soil needed to complete the backfilling of the excavation will be imported to the Site (commercially-available class II base rock). Within the saturated zone of each sub-excavation, imported sand or gravel backfill will be placed in loose lifts, approximately 8 inches thick, moisture-conditioned (if needed for optimum moisture), and compacted to a minimum relative compaction of 90 percent.

GGTR proposes to add oxygen releasing compound (ORC) or other chemical oxidant to the excavation backfill within the saturated zone. After consultation with the ORC manufacturer, proposed amounts of ORC would be distributed uniformly within the saturated zone backfill material across the total aerial limits of the remedial excavation areas. The addition of ORC will theoretically provide timed release oxygen to the saturated zone and down-gradient groundwater. The ORC would be applied in mixed batches of ORC and clean water and slurry mix sprayed uniformly throughout the saturated zone of the excavation using a high volume/low pressure pump. The ORC/water slurry mix is generally 20% ORC solids by weight. If such application techniques are not available or suitable for the Site, the ORC will be placed along the base of the excavation and thoroughly mixed with the saturated zone import backfill (sand or pea gravel) using a mechanical backhoe or excavator. The upper portion of the excavation cavity can then be filled with the clean overburden soil and additional clean, imported commercially available class II base rock material, and subsequently compacted for re-surfacing.

8.3 Monitoring Well Installation

GGTR is proposing to install two monitor wells MW-4 and MW-6 to replace abandoned monitoring wells at the locations shown on Figure 28, Proposed Work. The well locations were selected to address the areas of highest potential down-gradient residual dissolved hydrocarbon concentration. Because the original three monitor wells were closely spaced, GGTR is proposing to only re-install two monitor wells in the same area. Based on prior monitoring results, groundwater will be encountered between 1.74 to 5.23 fbg. Prior to beginning field work, well installation permits will be obtained from the ACPWA. A Statelicensed drilling contractor will drill and install the proposed monitoring wells. Because the new wells will be installed within the excavation areas, soil samples are not planned to be recovered for laboratory analysis during the drilling activities.

Each well will be drilled to total depth of 6 feet using a truck-mounted drilling rig equipped with 8-inch diameter hollow-stem augers. Screened well casing will extend from approximately 1 to 6 fbg. The well will be constructed using 2-inch diameter schedule 40 polyvinyl chloride (PVC) blank casing and 0.010-inch slotted screen following the well construction details presented in Figure 29, Well Construction Diagram. A sand filter pack will be placed within the annulus of the well from the bottom of the boring to approximately one foot above the top of the well screen. The annulus of the well will be sealed with one foot of Portland cement on top of the sand. A 10-inch-diameter, traffic-rated, watertight street box will be installed to protect each well from surface traffic. The well will be sealed using a locking expansion cap.

8.4 Monitoring Well Development

At least 48 hours following completion of the monitoring well installation activities, GGTR will develop each well to improve the groundwater hydraulic conductivity between the newly introduced sand filter pack and the native soil surrounding each well casing. GGTR will initially monitor and record the depth to groundwater in each well and subsequently surge each well along the entire water column interval for approximately 20 minutes, using a 2-inch-diameter surge block. Well development will continue by purging up to approximately 10 casing volumes of groundwater from each well using a diaphragm or submersible pump and polyethylene tubing, and continuing until the well water is relatively free of turbidity and suspended fines (generally only until slightly cloudy). GGTR will transfer the well purge water to 55-gallon, DOT-approved, steel drums and temporarily store them onsite pending transport and disposal to a licensed facility.

8.5 Confirmation Monitoring & Sampling Program

Because the new re-installed wells are not needed for measurement of the groundwater gradient, GGTR is not proposing to survey the wellhead elevations, latitude, longitude and coordinates of the new replacement wells. Existing wells MW-1, MW-2, MW-3, MW-7, MW-8 and MW-9 will be utilized for the future measurement of groundwater gradient.

GGTR is proposing to add the new monitor wells to the groundwater monitoring program and reinstate quarterly groundwater monitoring following the completion of excavation activities. To confirm that source removal has been effective, GGTR is proposing four additional quarters of groundwater monitoring to demonstrate that the groundwater plume is stable and decreasing significantly in concentration. Based on the concentrations detected at the end of four quarters of groundwater monitoring, GGTR would evaluate the Site for case closure as a low risk groundwater case or continue groundwater monitoring.

Approximately 72 hours following development activities, GGTR will measure and record the depth to groundwater and presence of sheen or free product in each newly-installed well using a Keck® oil/water interface probe. GGTR will obtain all measurements relative to the approximate north side of the TOC, with an accuracy of 0.01 foot.

GGTR will purge approximately three casing volumes of groundwater from each well and simultaneously monitor the pH, temperature and conductivity of the purge water to evaluate groundwater stabilization. GGTR will purge each well using a low-flow peristaltic pump and transfer the purge water to a 55-gallon storage drum. If floating product is present in any well, GGTR will remove the product using a disposable bailer and reduce it to a sheen prior to purging and sampling.

GGTR will then collect a groundwater sample from each well using either a factory-sealed, disposable, clear acrylic bailer or a peristaltic pump with dedicated tubing. The volatile water samples will be poured directly into laboratory cleaned 40-milliliter volatile organic analysis (VOA) vials to prevent loss of any volatile constituents. The vials will be filled slowly and in such a manner that the meniscus extends above the top of the VOA vial. After the vials are filled and capped, they will be inverted to insure there is no headspace or entrapped air bubbles. All groundwater samples will be labeled and placed in a cooler chilled to approximately 4°C.

8.6 Laboratory Analyses of Samples

Soil Sample Analysis

A Chain-of-Custody form will be initiated by GGTR personnel at the time of sampling and will accompany the soil samples to Torrent Laboratory Inc. (a State-certified environmental laboratory CA ELAP # 1991) using California Department of Health Services approved analytical methods. Soil samples will be analyzed using the following California Department of Health Services approved methods:

- Total Petroleum Hydrocarbons as Gasoline (EPA 8260B)
- Total Petroleum Hydrocarbons as Diesel (EPA 8015M)
- Benzene, Toluene, Ethylbenzene and Total Xylenes (VOCs: EPA 8260B)
- Methyl Tertiary-Butyl Ether (VOCs: EPA 8260B)

Selected soil samples will also be analyzed for total lead, soluble lead and other analytical methods necessary to pre-characterize the excavated soil for off-site solid waste disposal or on-site reuse as backfill.

Groundwater Sample Analysis

A Chain-of-Custody form will be initiated by GGTR personnel at the time of sampling and will accompany the soil samples to Torrent Laboratory Inc. (a State-certified environmental laboratory CA ELAP # 1991) using California Department of Health Services approved analytical methods. The groundwater samples obtained from new monitor wells will be analyzed using the following California Department of Health Services approved methods:

- Total Petroleum Hydrocarbons as Gasoline (EPA 8260B)
- Total Petroleum Hydrocarbons as Diesel (EPA 8015M)
- Benzene, Toluene, Ethylbenzene and Total Xylenes (VOCs: EPA 8260B)
- Methyl Tertiary-Butyl Ether (VOCs: EPA 8260B)

GGTR will request that all associated laboratory analytical reports be reported in Electronic Deliverable Format in general accordance with the State Water Resources Control Board's GeoTracker Database System.

8.7 Waste Management

All waste soil cuttings or soil sample waste generated during soil sample collection and monitoring well installation activities will be will be transferred to the soil stockpile or a 55-gallon, D.O.T.-approved steel drum(s) for temporary storage onsite within the secure staging area. GGTR will collect a four point composite soil sample from the drummed soil for analysis and waste disposal characterization. Pending receipt of the composite soil sample analysis, GGTR will subsequently profile and transport the waste to an appropriate licensed disposal facility under uniform waste manifest.

Equipment wash, development/purge water, and rinse water generated from the decontamination of soil boring equipment and groundwater generated during well installation, development and purging operations will be transferred to 55-gallon, D.O.T.-approved liquid steel drum(s), labeled, and stored onsite within the secure staging area. The liquid waste will be profiled for disposal/recycling under uniform waste manifest following receipt of the laboratory results of groundwater sample analysis.

Waste Profiling

GGTR estimates approximately 665 cubic yards (@ 1,000 to 1,200 tons) of contaminated soil will be generated during the excavation activities for offsite disposal. Soil sampling for waste profiling and facility acceptance (pre-approval) will be performed prior to excavation activities, as discussed in Section 7.2 above. Alternatively, if required by the ACEH, following completion of soil excavation and stockpiling activities at each proposed sub-excavation area, soil samples will be collected from the stockpiled soil at a frequency of

approximately one discrete sample per approximately 150 cubic yards. The sample compositing will be performed by the laboratory and the composite samples will be analyzed for analyses required by the disposal facility. Analyses of the soil samples will be performed by a State-certified laboratory in conformance within required sample analysis holding times.

Waste Disposal

All removed asphalt, concrete and excavated soil will be shipped off-site for proper disposal or recycling. Excavated soil will likely be a mixture of non-hazardous and hazardous waste materials, based on composite sample analytical results. Segregation will be used to minimize or avoid such a waste mixture to the extent feasible. Additional documentation will be provided to the ACEH pertaining to waste disposal profiles and waste disposal acceptance prior to any offsite shipments of waste.

If sample results and other waste characteristics exhibit that the soil generated from the Site is not considered a hazardous waste, than the soil is not subject to applicable RCRA or state requirements, and may be transported to a to a proper Class II or III waste management facility, based on facility waste acceptance criteria. The designated waste facility(s) will prepare waste manifests that will be signed prior to transport off-site. Soils that are classified as hazardous waste will be accompanied by a Uniform Hazardous Waste Manifest and soil that is classified as non-hazardous will be accompanied by a bill of lading and/or non-hazardous waste manifest to track shipment. Soils will be dewatered, if needed, before being transported off-site.

Following facility waste acceptance, a licensed contractor will transport the soil waste to an appropriate State-permitted disposal facility under uniform waste manifest. Trucks will not enter the work-staging area but remain on the 16th or Peralta Street right-of-ways for loading and covering. No decontamination of trucks will be required. Any soil spilled onto the street surface will be recovered and returned to the soil stockpile. Copies of the waste disposal documentation will be included in the removal action completion report submitted to the ACEH.

8.8 Soil Waste Transportation

Total petroleum hydrocarbons (TPH) were detected in the soil at the Site at maximum concentrations of 2,200 mg/kg TPH as gasoline and 3,100 mg/kg TPH as diesel. As a hazardous waste generator, Mr. Tracy currently has established a permanent EPA ID number from U.S. EPA Department of Toxic Substances Control for soil/liquid to be disposed as a RCRA hazardous waste, if applicable. Compliance with the DTSC requirements of hazardous waste generation, temporary onsite storage, transportation and disposal is required. Any container used for onsite storage will be properly labeled.

Depending on individual facility waste acceptance criteria/approval, excavated soil will likely be classified as non hazardous waste and will be transported to Allied Waste's Newby Island Class III Sanitary Landfill facility in Milpitas, California or Allied Waste's Forward, Inc. Class II Landfill Facility in Manteca, California, under a non-hazardous waste manifest and/or bill-of-lading.

http://www.alliedwastescco.com/facilities.cfm

Truck Transportation

Based on the proposed excavation limits, we presume that no more than 1,200 tons of soil will be removed from the Site. Assuming each truck carries 20 tons, up to 60 trucks will be needed to transport the impacted soil. All permitted disposal facilities operate a certified weight station at their facility. As such, each truck will be weighed before offloading its payload. Weight tickets or bills of lading will be provided to the removal action subcontractor after all the soil has been shipped off-site. Below is a summary of the truck route from the Site to the disposal facilities listed above:

The non-hazardous waste soil will be transported to Allied Waste's Newby Island Class II/III Sanitary Landfill facility in Milpitas, California, using 20-ton end-dump trucks and possibly 10-wheeler dump trucks. Approximately 60 dump trucks will be loaded in the parking lanes of 16th and Peralta Streets, out of traffic right-of-ways. The trucks will exit the Site heading southwest on Peralta Street and turn left onto 14th Street (International Drive). The trucks will turn right onto Mandela Parkway and continue southwest for approximately 0.4 mile, and turn left onto 7th Street. The trucks will continue on 7th Street for 0.3 mile and turn right onto Adeline Street. The trucks will then merge onto Interstate 880 South toward San Jose, and travel southeast on I-880 for approximately 32 miles. The trucks will take the Dixon Landing Road West exit (Exit 10). The trucks will travel approximately 0.5 mile and turn right onto Dixon Landing Road (landfill entrance).

Address: 1601 Dixon Landing Road, Milpitas

Phone #: (408) 945-2800

Contact Name: TBD
Distance: @ 33 miles

Landfill Hours: 8AM-4PM (Monday-Friday)

If an event or accident results in the spillage of soil from a truck, the driver will first contact the appropriate accident response personnel, police or medical personnel, if needed. These can be reached by calling 911. The driver will also secure the event or accident scene with traffic cones or caution tape to keep the public away from the spilled soil. The driver will then call the project health and Safety Officer / Site Manager. This individual will be identified in the Health and Safety Plan and at the start of the field construction activities. The driver will stay in the truck until law enforcement or other assistance arrives. All drivers will be provided with a copy of the Health and Safety Plan, which contains detailed instructions on emergency procedures, as well as telephone numbers of emergency personnel, the health and safety officer, and the project manager.

Before leaving the Site, each truck driver will be instructed to notify the Site Manager. Each truck driver will be provided with Non-Hazardous Waste Manifest and/or bill-of-lading and the cellular phone number for the Site Manager. It will be the responsibility of the Site Manager to notify DTSC of any unforeseen incidences. Each truck driver will be instructed to use the freeway Call Box System (if available), a cellular telephone, and/or their radio dispatch system to call for roadside assistance and report roadside emergencies.

Traffic Control

During soil transport activities, trucks will arrive at the site along the 16th Street property frontage from Mandela Parkway. A flag person, if needed, will assist the truck drivers to safely enter the parking lanes of 16th and Peralta Streets. Transportation will be coordinated in such a manner that at any given time, on-site trucks will be in communication with the Site Manager. In addition, all vehicles within the direct vicinity of the Site will be required to maintain slow speeds (i.e., less than 5 mph) for safety and for dust control purposes.

Prior to exiting the Site, the vehicle will be swept to remove any extra soil from areas not covered or protected. This cleanup/decontamination area will be set up as close to the loading area as possible so as to minimize spreading the impacted soil. Prior to the off-site transport, the Site Manager will be responsible for inspecting each truck to ensure that the payloads are adequately covered with a tarp, the trucks are cleaned of excess soil and properly placarded, and that the truck's manifest has been completed and signed by the generator (or its agent) and the transporter. As the trucks leave the Site, a flag person, if needed, will assist the truck drivers so that they can safely merge with traffic heading southwest on Peralta Street. Worksite traffic controls and warning sign placement must conform to the requirements of the State Department of Transportation's *California Manual on Uniform Traffic Control Devices for Streets and Highways, September 26, 2006* (Title 8, Sections 1598 & 1599).

8.9 GeoTracker Upload

Following receipt of all electronic laboratory analytical reports, GGE will upload the sample results to the State GeoTracker Database System. Also, pursuant to the SWRCB Guidance (January 1, 2005) for GeoTracker electronic submission, groundwater monitoring data (GEO_WELL), and wellhead elevation (GEO_Z) and coordinate (GEO_XY) data (if applicable), as well as all boring logs, a revised site plan showing new excavation/monitoring well locations, and the technical report (PDF format) will be uploaded to the GeoTracker database. Upload confirmation reports will be included in the report of findings.

9. SCHEDULE, REPORT PREPARATION & DISTRIBUTION

Following approval of this work plan by the ACEH, GGTR anticipates beginning the additional field activities within two to three weeks of receiving client authorization to proceed. Additional time may be required depending upon drilling contractor availability. The aforementioned report should be available within 30-45 days following receipt of all soil and groundwater analytical results. Following the completion of all field work and receipt of all analytical data, GGTR will review all field / analytical data and prepare a technical report as required by the ACEH. The report will discuss the activities and findings of the investigation then present conclusions and recommendations. The report will be submitted to the State Water Resources Control Board's GeoTracker Database System and ACEH's FTP website for regulatory review and comment on additional environmental action required at the Site.

A copy of this document is submitted to the following representatives:

Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Attn: Paresh C. Khatri (1 Electronic Copy via ACGOV FTP) (1 Electronic Copy via GeoTracker)

Alpine Rentals Mr. James Tracy 878 W. Hayden Court Alpine, Utah 84004

(1 Copy; Bound)

10. LIMITATIONS

Due to budget and time constraints and the limited amount of soil sampling, water sampling and subsurface investigation, GGTR cannot have complete knowledge of the Site conditions. The findings conclusions, and recommendations contained in this document are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon Site conditions as they existed at the time of the investigation, and are subject to change. The conclusions presented in this document are professional opinions based solely upon visual observations of the subject property and vicinity, and interpretation of available information as described in this report. The findings are strictly applicable to the status of environmental regulations and the property conditions existing when GGTR performs the work.

The opinions expressed herein are subject to revisions in light of new information. GGTR neither expresses nor implies any warranties concerning the environmental impairment at the site. GGTR warrants only that our services conform to generally accepted and existing environmental practices. Our liability is limited to the dollar amount of the work performed. The scope of services conducted in execution of this investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at sole risk of said user. All figures, plates, maps, photographs, and diagrams in this report are considered sketches or schematic drawings that are provided for illustrative purposes only. GGTR does not warranty the accuracy of these drawings and the drawings are not suitable for engineering, appraisal, remodeling or construction-related purposes whatsoever.

11. STATEMENT OF PROFESSIONAL CERTIFICATION

California Business and Professions Code Section 7835 specifies that all geologic plans, specifications, reports, or documents shall be prepared by a professional geologist or registered specialty geologist, or by a subordinate employee under his or her direction. In addition, they shall be signed by the professional geologist or registered specialty geologist or stamped with his or her seal, either of which shall indicate his or her responsibility for them.

This Feasibility Study / Corrective Action Plan was prepared in accordance with the California Business and Professions Code Section 7835 by a "professional geologist" as defined in the Geologist and Geophysicist Act (California Business and Professions Code commencing with Section 7800).

MARK
YOUNGKIN
No. 1380
CERTIFIED
NGINEERING
GEOLOGIST

Golden Gate Tank Removal, Inc.

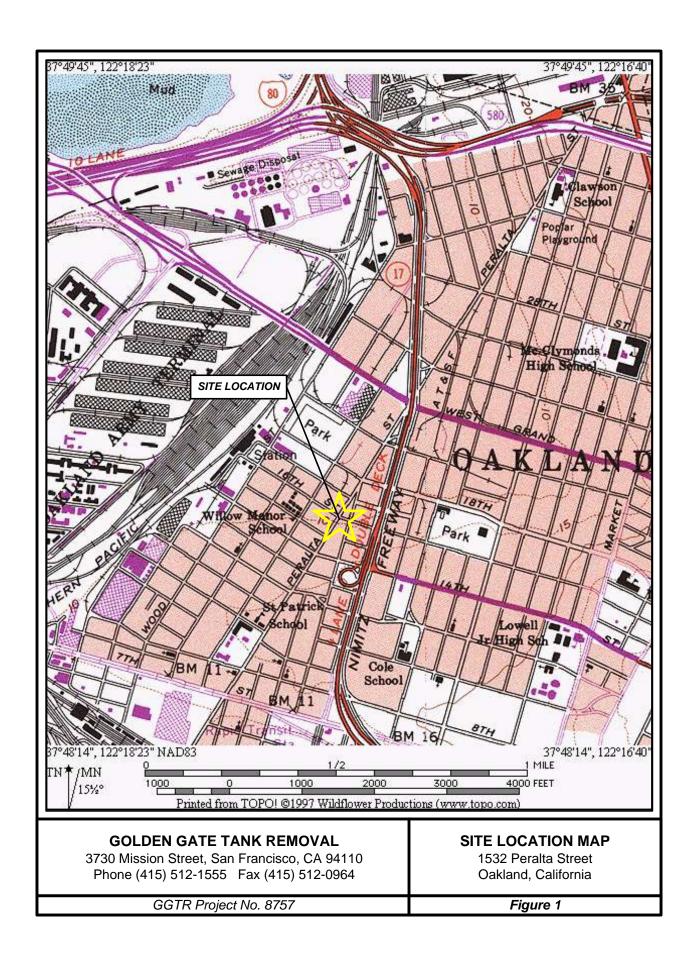
SOLD NO.

Mark Youngkin

Registered Geologist, CEO No.1380

Brent A. Wheeler

Project Engineer



FEASIBILITY STUDY / CORRECTIVE ACTION PLAN

1532 Peralta Street, Oakland, California GGTR Project #8757

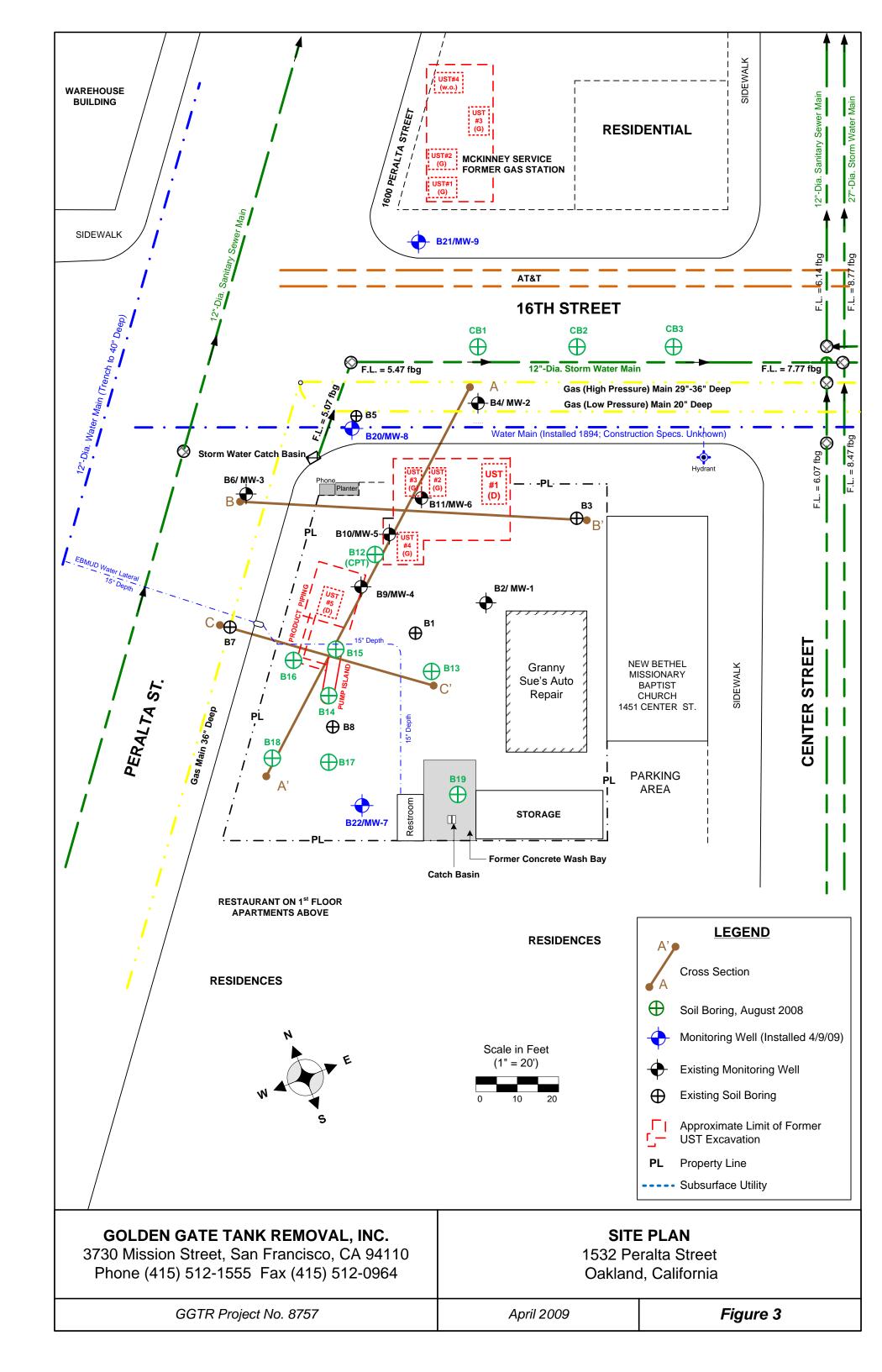
FIGURES

- 1) Site Location Map
- 2) Site Vicinity Map
- 3) Site Plan
- 4) Site Photographs
- 5) Site Photographs
- 6) Subsurface Utility Map
- 7) Well Survey Radius Map
- 8) Historic 1931 Aerial Photograph
- 9) Historic 1965 Aerial Photograph
- 10) Historic 1912 Sanborn Fire Insurance Map
- 11) Historic 1951 Sanborn Fire Insurance Map
- 12) Historic 1970 Sanborn Fire Insurance Map
- 13) Soil Over-Excavation Data
- 14) Soil Sampling Results
- 15) Grab Groundwater Analytical Data
- 16) Geologic Map
- 17) CPT Plot Boring B12
- 18) Cross Section A-A'
- 19) Cross Section B-B'
- 20) Cross Section C-C'
- 21) Map of TPH in Soil at 3-4.5 Feet
- 22) Map of TPH in Soil at 6-7.5 Feet
- 23) Map of TPH in Soil at 10.5-12 Feet
- 24) Map Showing TPH-Gasoline in Groundwater
- 25) Map Showing Benzene in Groundwater
- 26) Map Showing MTBE in Groundwater
- 27) Groundwater Gradient & Flow Direction
- 28) Proposed Work
- 29) Well Construction Diagram

Base Map from Google Maps, 2009, at a scale of about 1"=100 feet with North to top of map.

GOLDEN GATE TANK REMOVAL, INC.

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964


SITE VICINITY MAP

1532 Peralta Street, Oakland, California

GGTR Project No. 8757

June 2009

FIGURE 2

Photograph No. 1 - view of subject property and auto repair building from driveway at 16th Street. Auto repair building on left side of photo. Commercial-residential structures adjoin property at south and east boundaries. Small building at rear of property is bathroom with adjacent former wash pad area. Small storage building at rear boundary.

Photograph No. 2 - view of two-bay vehicle repair building and small storage building operated by Granny Sue's Auto Repair. Residence on adjoining property to south.

Preparing for drilling activities on August 21, 2008.

Photograph No. 3 - view southeast of subject property from intersection of 16th Street and Peralta Street. Auto repair building at center of photo with church and residences behind. Photo shows drilling of exploratory borings within 16th Street.

GOLDEN GATE TANK REMOVAL, INC.

3730 Mission Street, San Francisco, CA 94110 Ph (415) 512-1555 Fx (415) 512-0964

SITE PHOTOGRAPHS

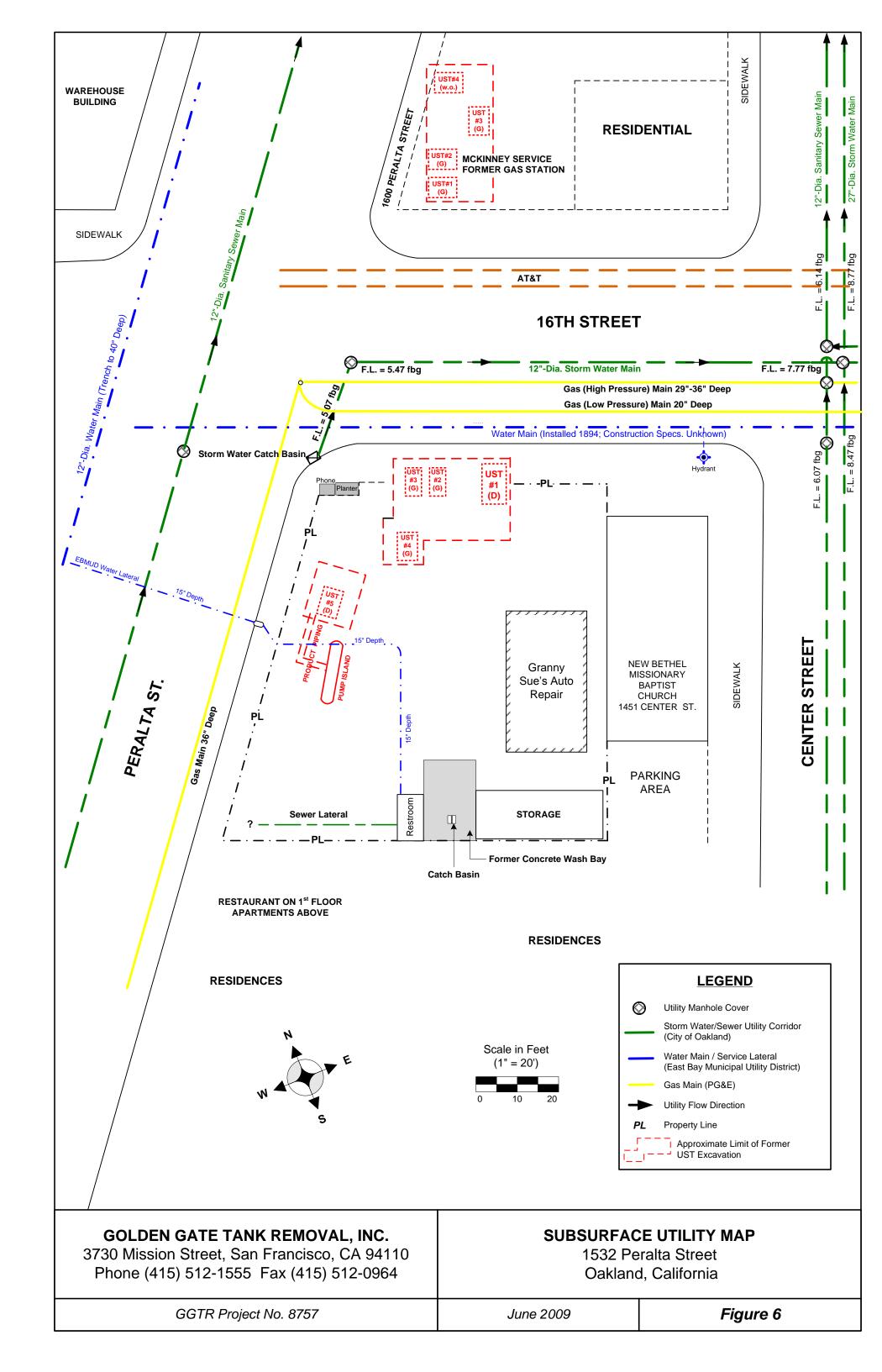
1532 Peralta Street, Oakland, California

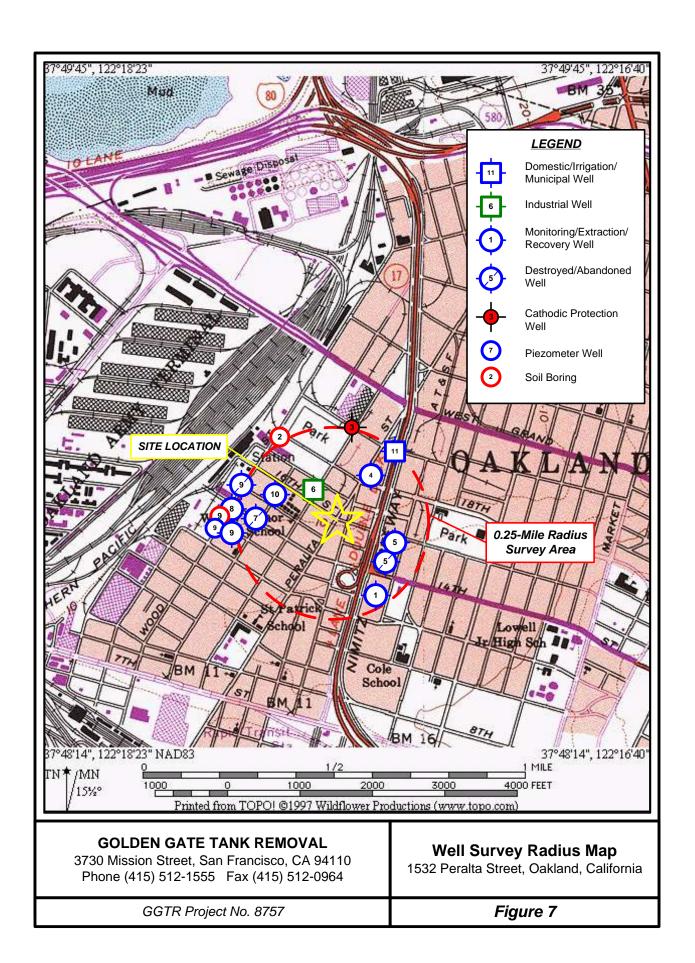
GGTR Project No. 8757 June 2009 **Figure 4**

Photograph No. 4 - view northwest of former dispenser island and UST locations. Location of boring B14 is shown in foreground at south end of former dispenser island. Photo shows drilling of boring B16 at bend in underground product piping. Large warehouse building shown in background is at the northwest corner of 16th Street and Peralta Street.

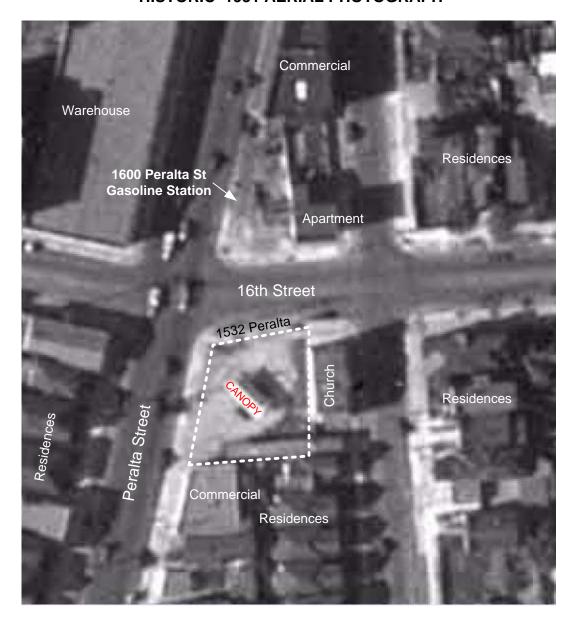
Photograph No. 5 - view northeast of vacant lot at northeast corner of 16th Street and Peralta Street - former McKinney Service gasoline station. Residence shown on right side of photo and commercial building in background. Drilling and installation of monitor well MW-9 in sidewalk of 16th Street.

Photograph No. 6 - view north of subject property showing location of truck-mounted CPT drill rig at boring location B12 adjacent to former location of UST No. 4.


GOLDEN GATE TANK REMOVAL, INC.

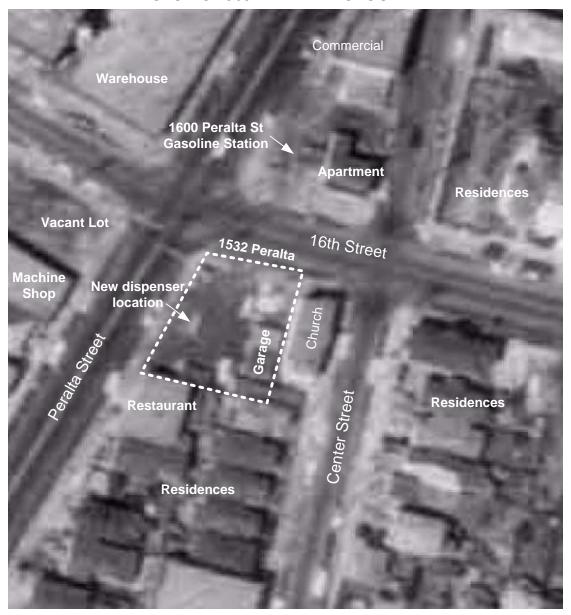

3730 Mission Street, San Francisco, CA 94110 Ph (415) 512-1555 Fx (415) 512-0964

SITE PHOTOGRAPHS


1532 Peralta Street, Oakland, California

GGTR Project No. 8757 June 2009 Figure 5

HISTORIC 1931 AERIAL PHOTOGRAPH

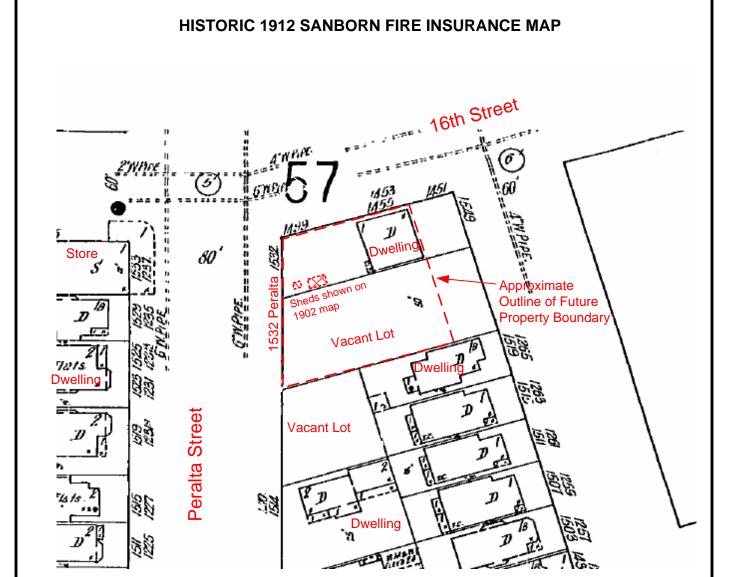

Enlarged portion of 1931 aerial photograph at an original scale of 1"=266 feet (Fairchild). North is to top of photograph. Subject property at 1532 Peralta St. is shown by dashed outline. Fueling station canopy present over location of dispenser island with office, rest room and oil storage building present along south margin of Site. Former gasoline station at 1600 Peralta St. is present in this 1931 aerial photo. Much of the surrounding neighborhood is similar to existing conditions. Aerial photo from The EDR Aerial Photo Decade Package dated January 9, 2007.

GOLDEN GATE TANK REMOVAL, INC.

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964 **HISTORIC 1931 AERIAL PHOTOGRAPH** 1532 Peralta Street, Oakland, California

GGTR Project No. 8757

HISTORIC 1965 AERIAL PHOTOGRAPH

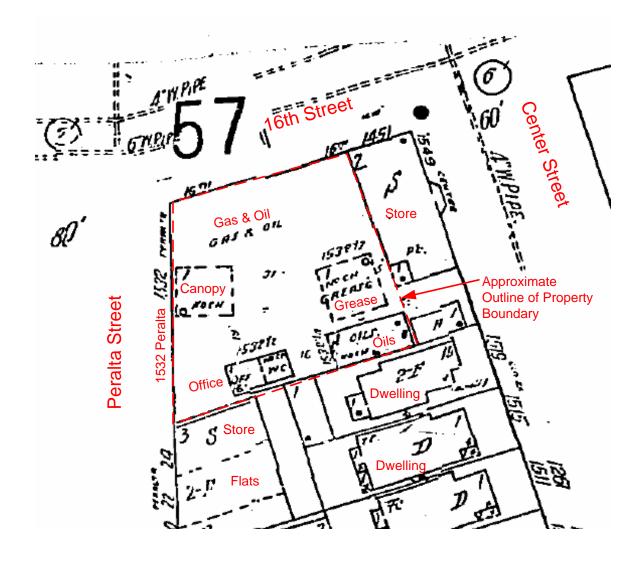

Enlarged portion of 1965 aerial photograph at an original scale of 1"=333 feet (Fairchild). North is to top of photograph. Subject property at 1532 Peralta St. is shown by dashed outline. No canopy present over new location of dispenser island displaced farther to the west to make room for new garage building. Existing office, rest room and oil storage building present along south margin of Site. Former gasoline station at 1600 Peralta St. appears active in this photo. Much of the surrounding neighborhood is similar to existing conditions. Aerial photo from The EDR Aerial Photo Decade Package dated January 9, 2007.

GOLDEN GATE TANK REMOVAL, INC.

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964 HISTORIC 1965 AERIAL PHOTOGRAPH

1532 Peralta Street, Oakland, California

GGTR Project No. 8757

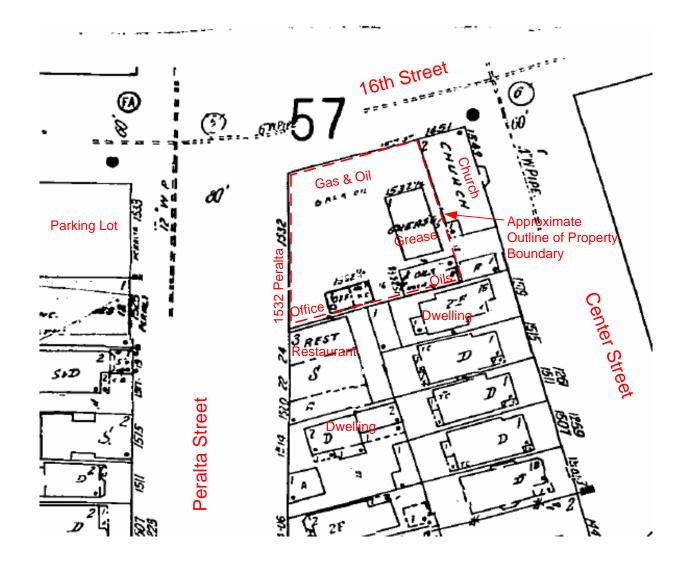

Enlarged and annotated portion of historic Sanborn fire insurance map dated 1912. North is to top of map. Subject property at 1532 Peralta St. is shown in historical configuration with small dwelling on northern portion of future site. Vacant lot along south portion of future Site. Much of the surrounding neighborhood is residential with a store across Peralta Street to the west. Map from The EDR Sanborn Map Report dated January 9, 2007. Two small sheds shown on 1902 Sanborn Map are also shown on this figure on the northwest corner of the Site.

GOLDEN GATE TANK REMOVAL, INC.

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964 HISTORIC 1912 SANBORN FIRE INSURANCE MAP 1532 Peralta Street, Oakland, California

GGTR Project No. 8757

HISTORIC SANBORN FIRE INSURANCE MAP 1951

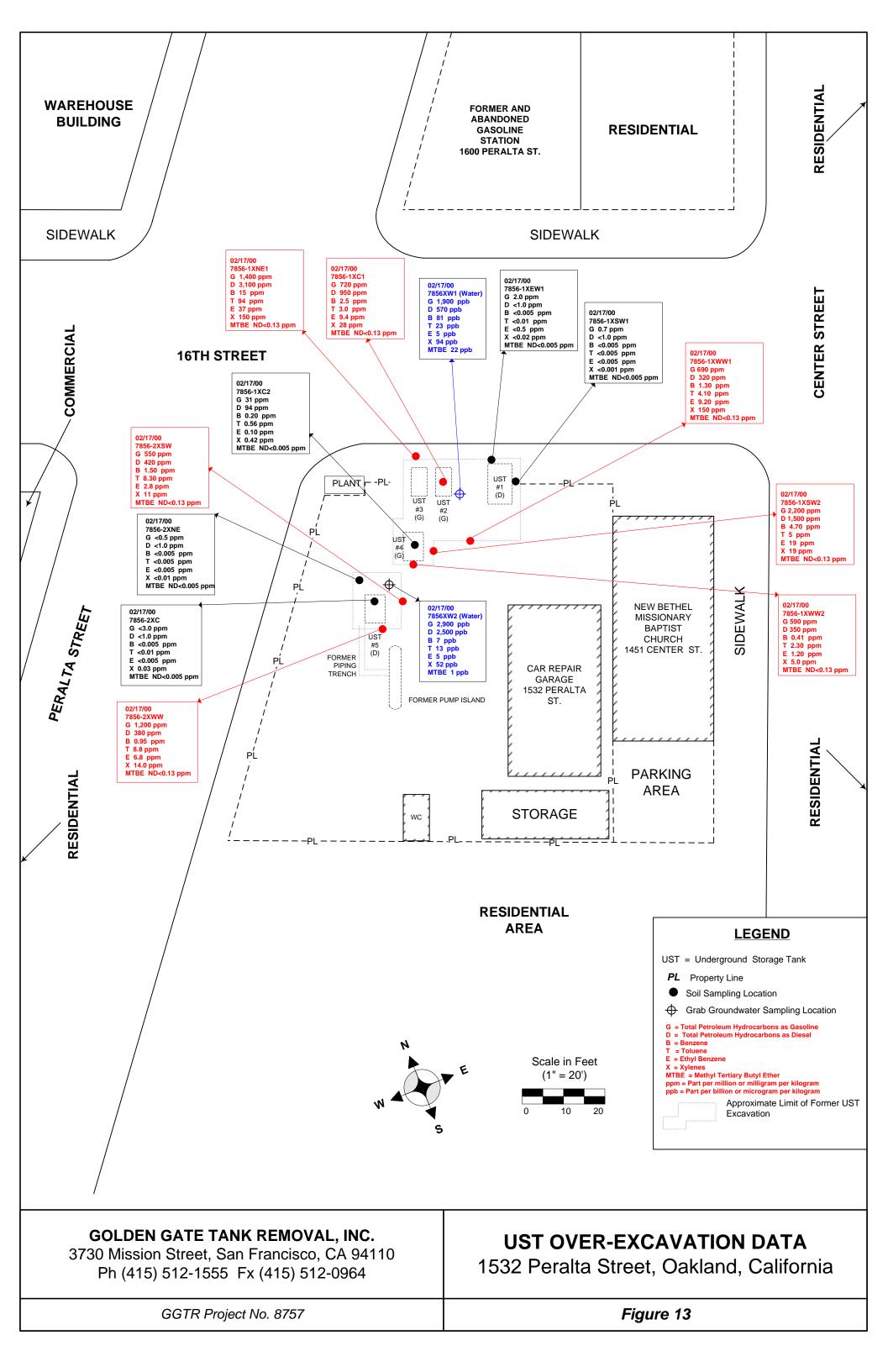

Enlarged and annotated portion of historic Sanborn fire insurance map dated 1951. North is to top of map. Subject property at 1532 Peralta St. is shown in largely existing configuration with exception of what appears to be a canopy over location of dispenser island along Peralta Street. Office, rest room and oil storage building present along south margin of site. Much of the surrounding neighborhood is similar to existing conditions. Map from The EDR Sanborn Map Report dated January 9, 2007.

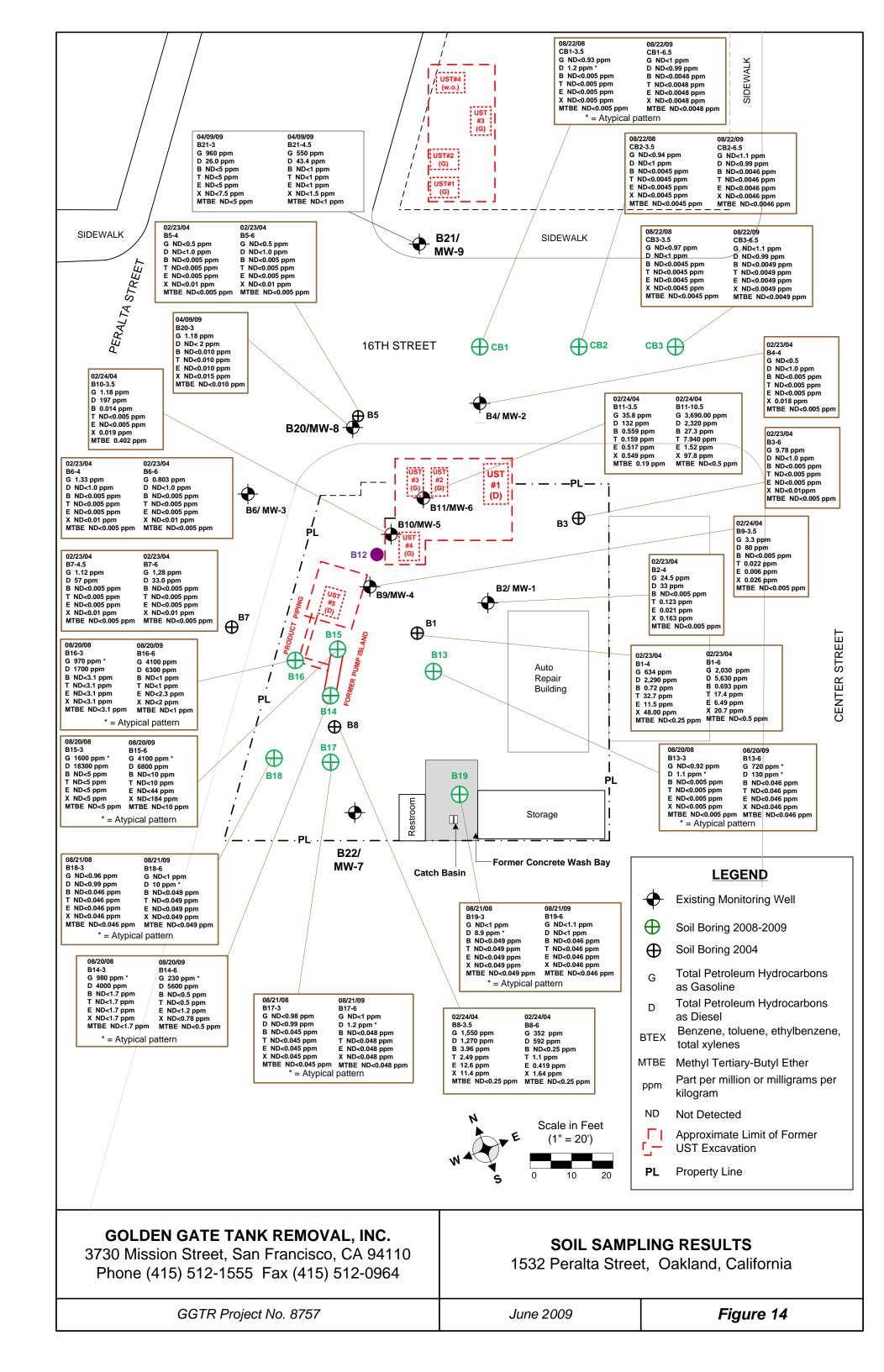
3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964 HISTORIC SANBORN FIRE INSURANCE MAP 1951

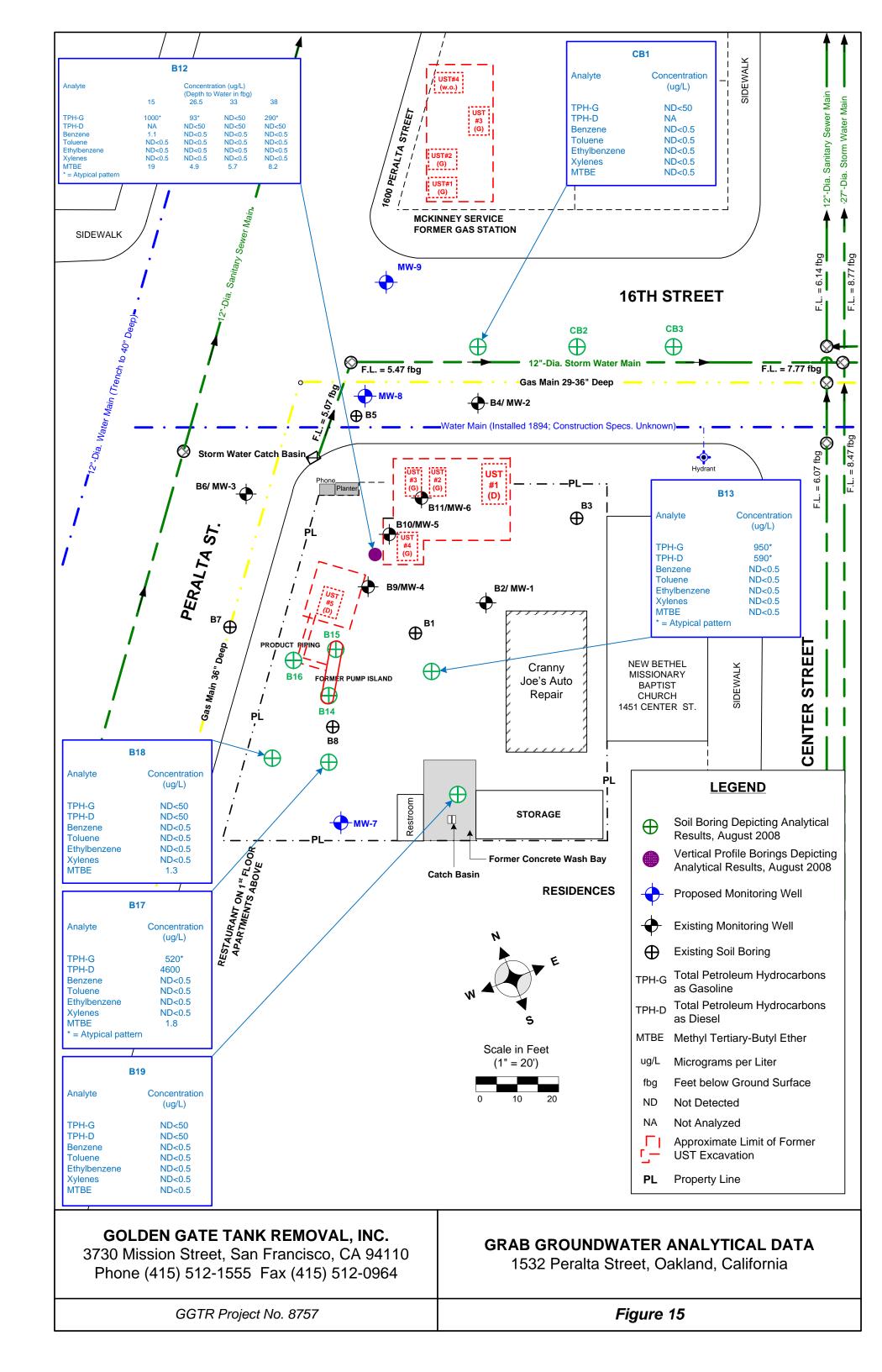
1532 Peralta Street, Oakland, California

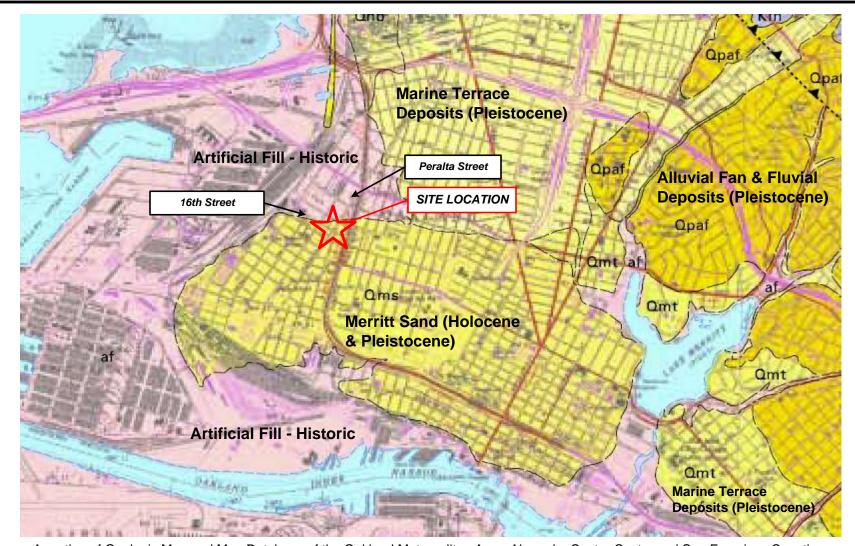
GGTR Project No. 8757

HISTORIC 1970 SANBORN FIRE INSURANCE MAP




Enlarged and annotated portion of historic Sanborn fire insurance map dated 1970. North is to top of map. Subject property at 1532 Peralta St. is shown in largely existing configuration with exception of canopy over recent location of dispenser island. Office, rest room and oil storage building present along south margin of site. Much of the surrounding neighborhood is similar to existing conditions. Map from The EDR Sanborn Map Report dated January 9, 2007.

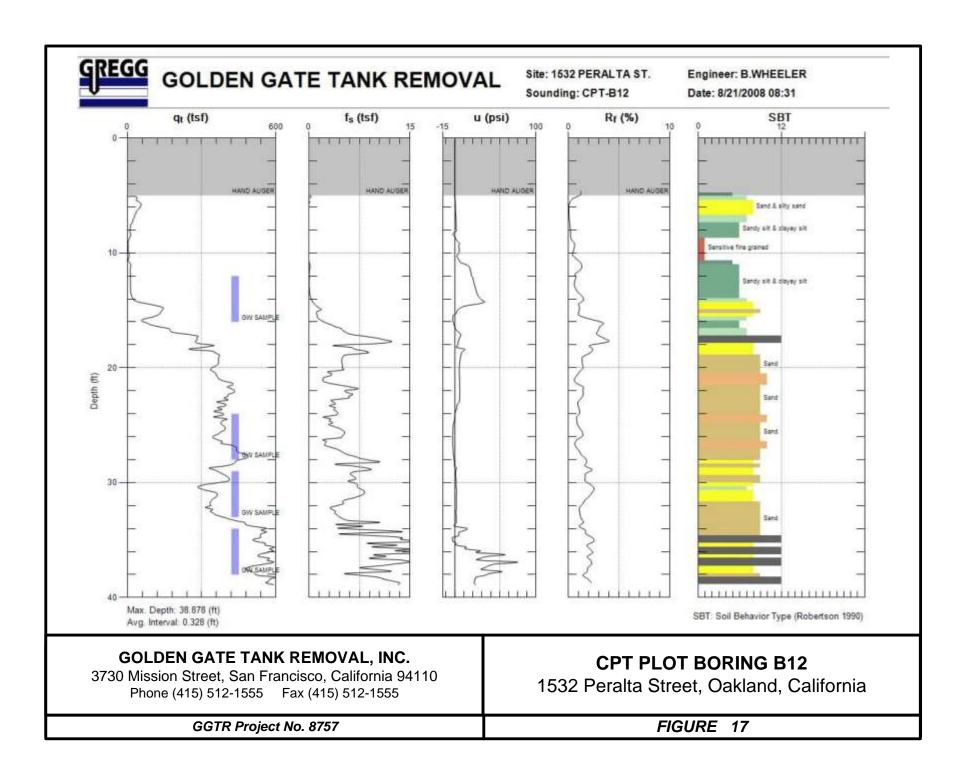

GOLDEN GATE TANK REMOVAL, INC.

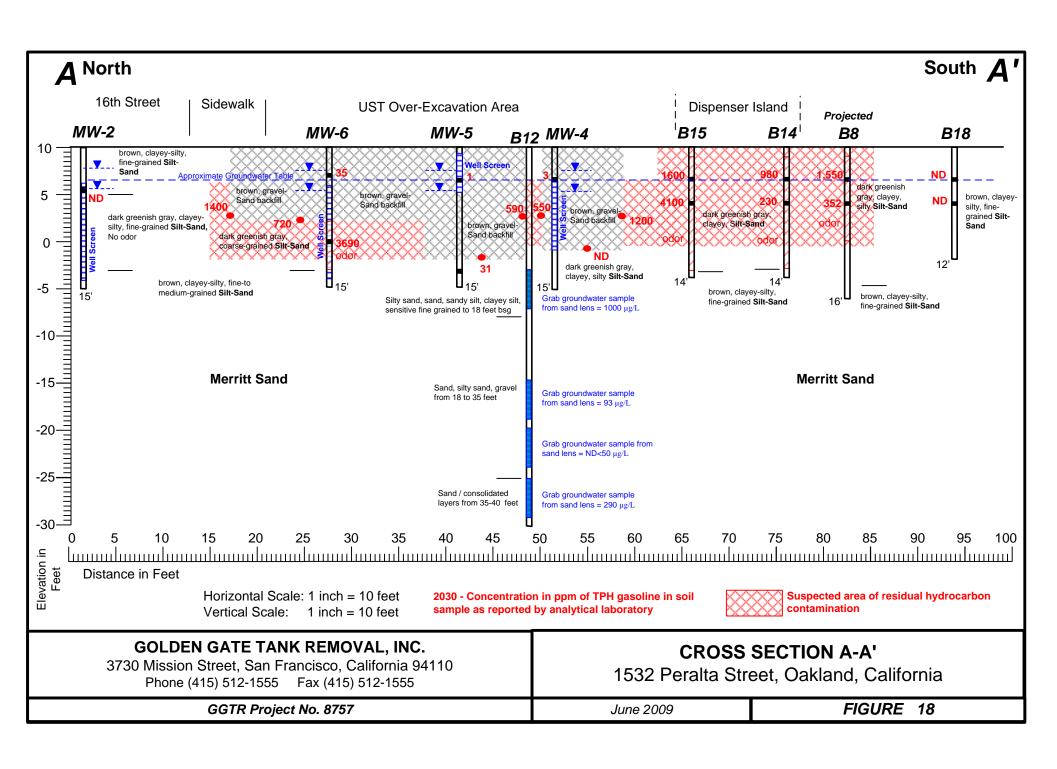

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964 HISTORIC 1970 SANBORN FIRE INSURANCE MAP 1532 Peralta Street, Oakland, California

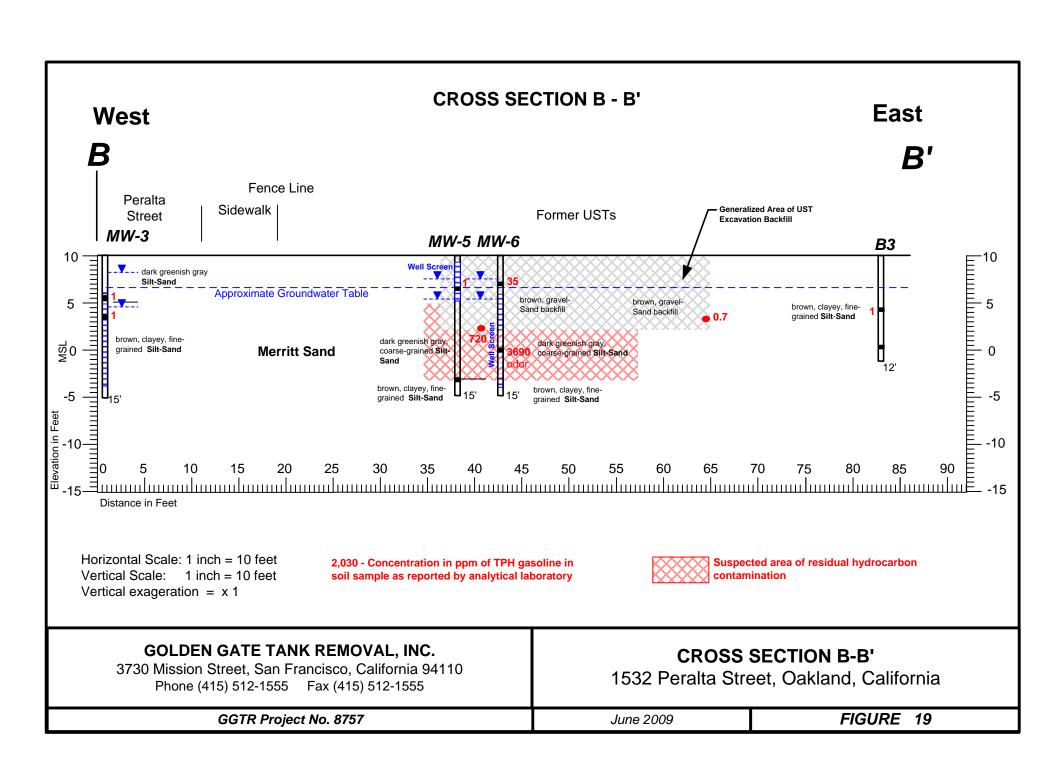
GGTR Project No. 8757

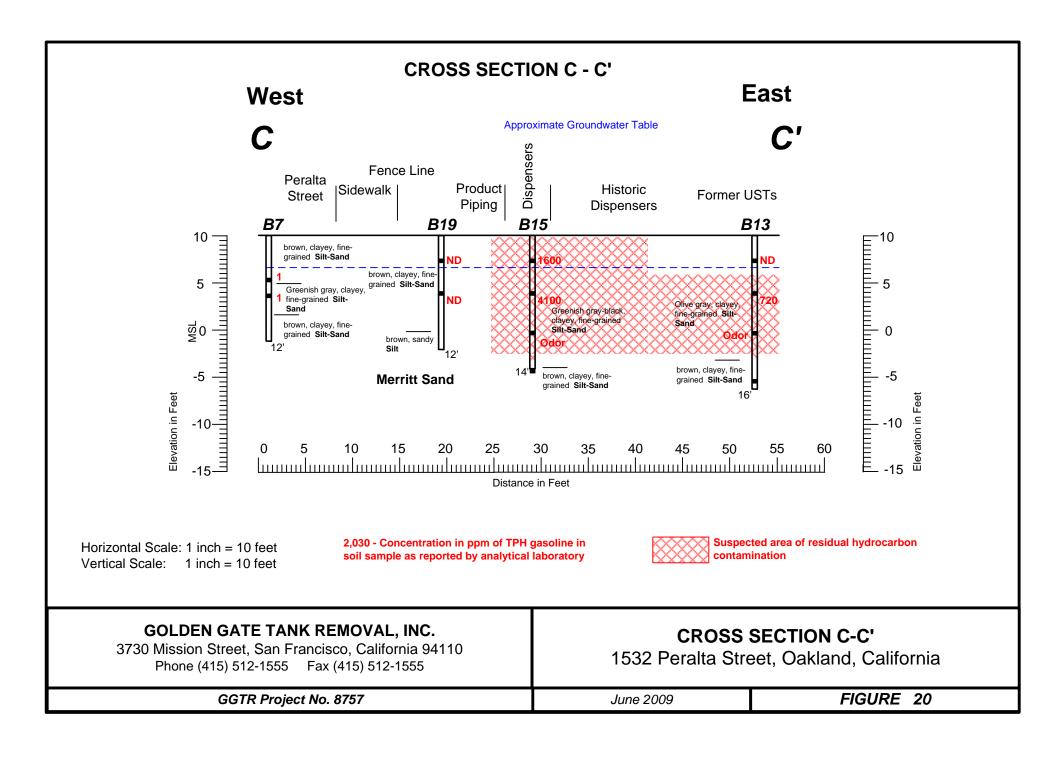
A portion of Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, 2000, by R.W. Graymer, U.S. Geological Survey Misc. Field Studies MF-2342; North to top; See report text for explanation of geologic units shown on map; Scale about 3 inches per mile.

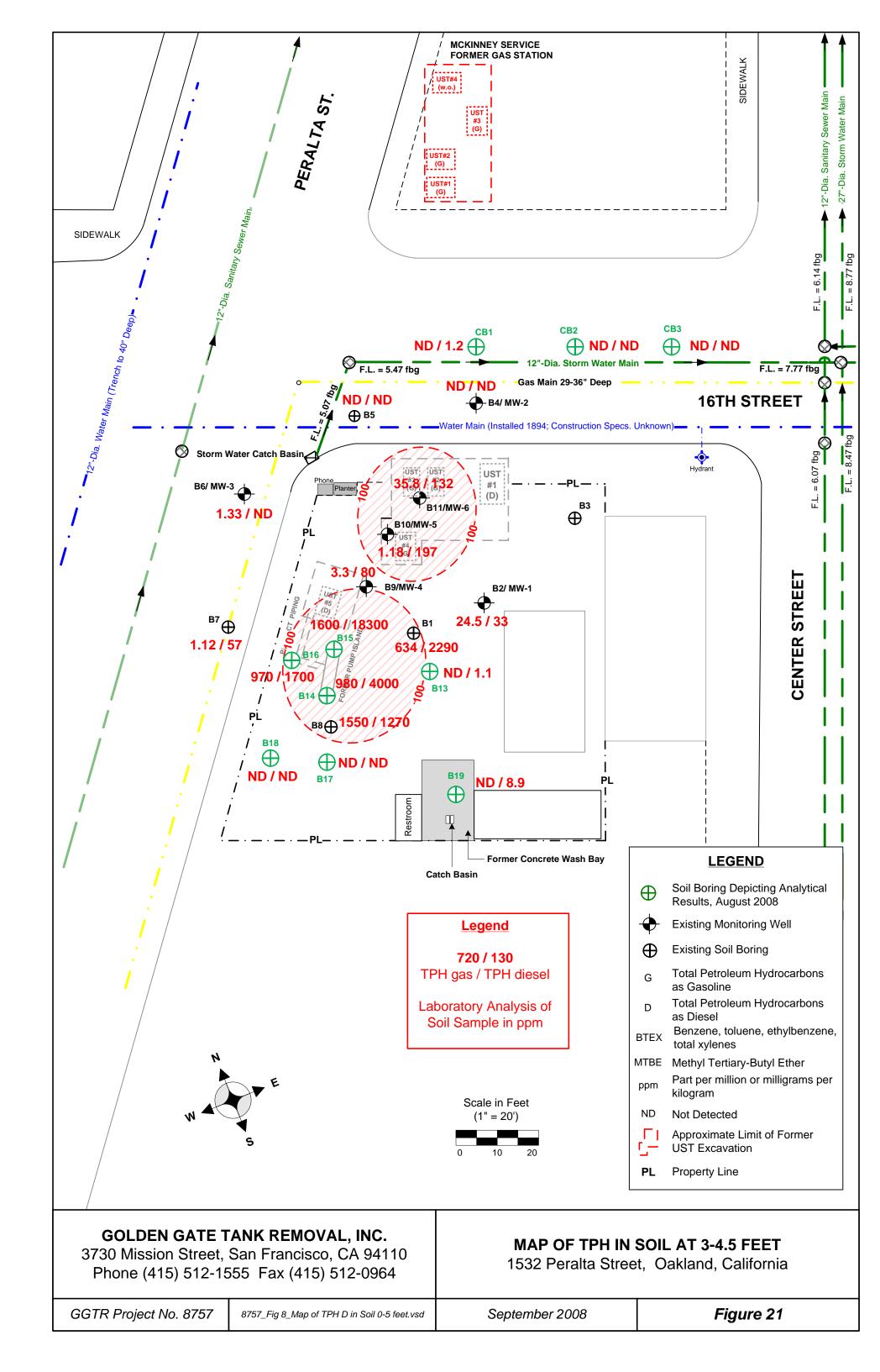
GOLDEN GATE TANK REMOVAL, INC.

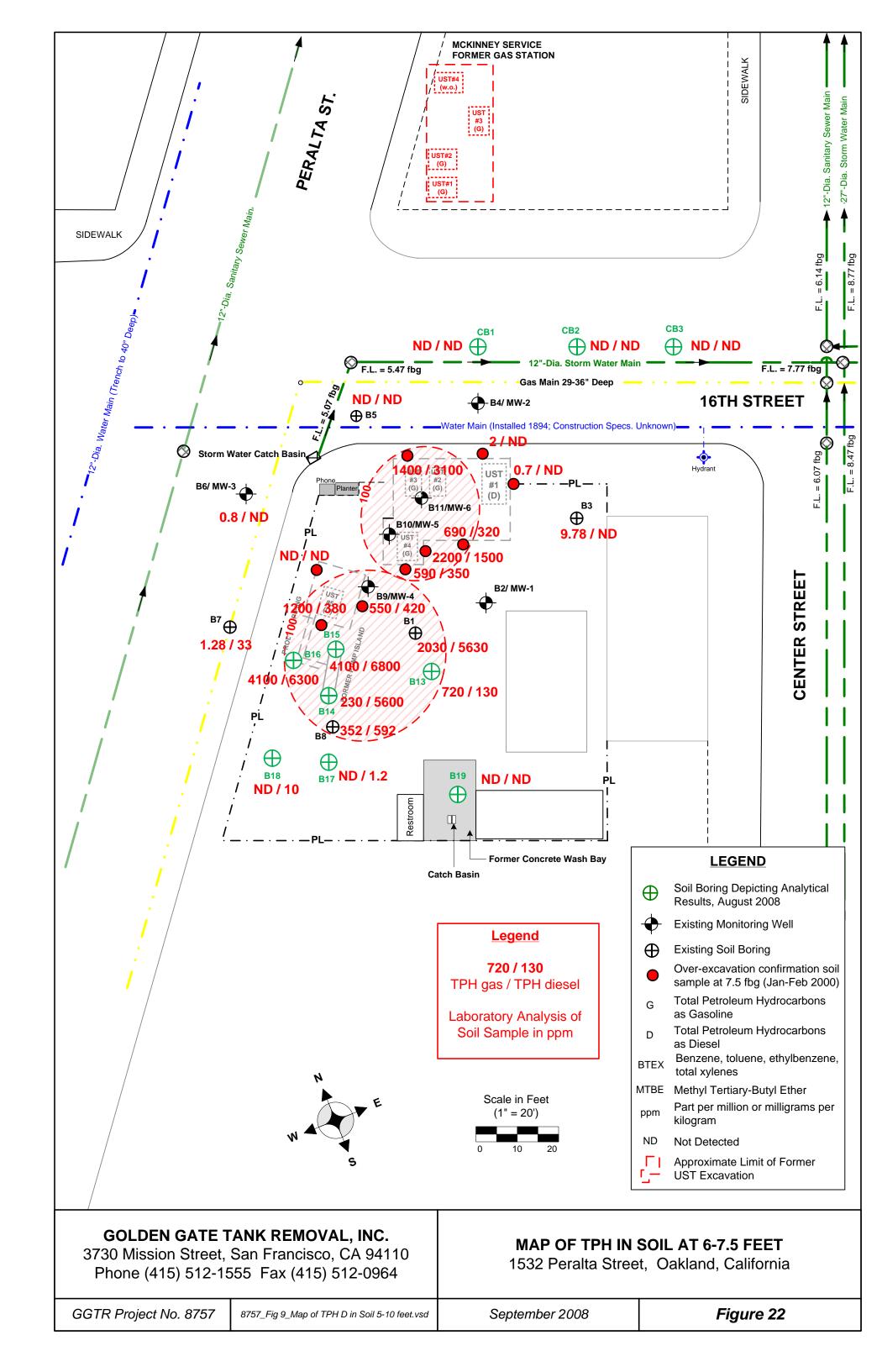

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964

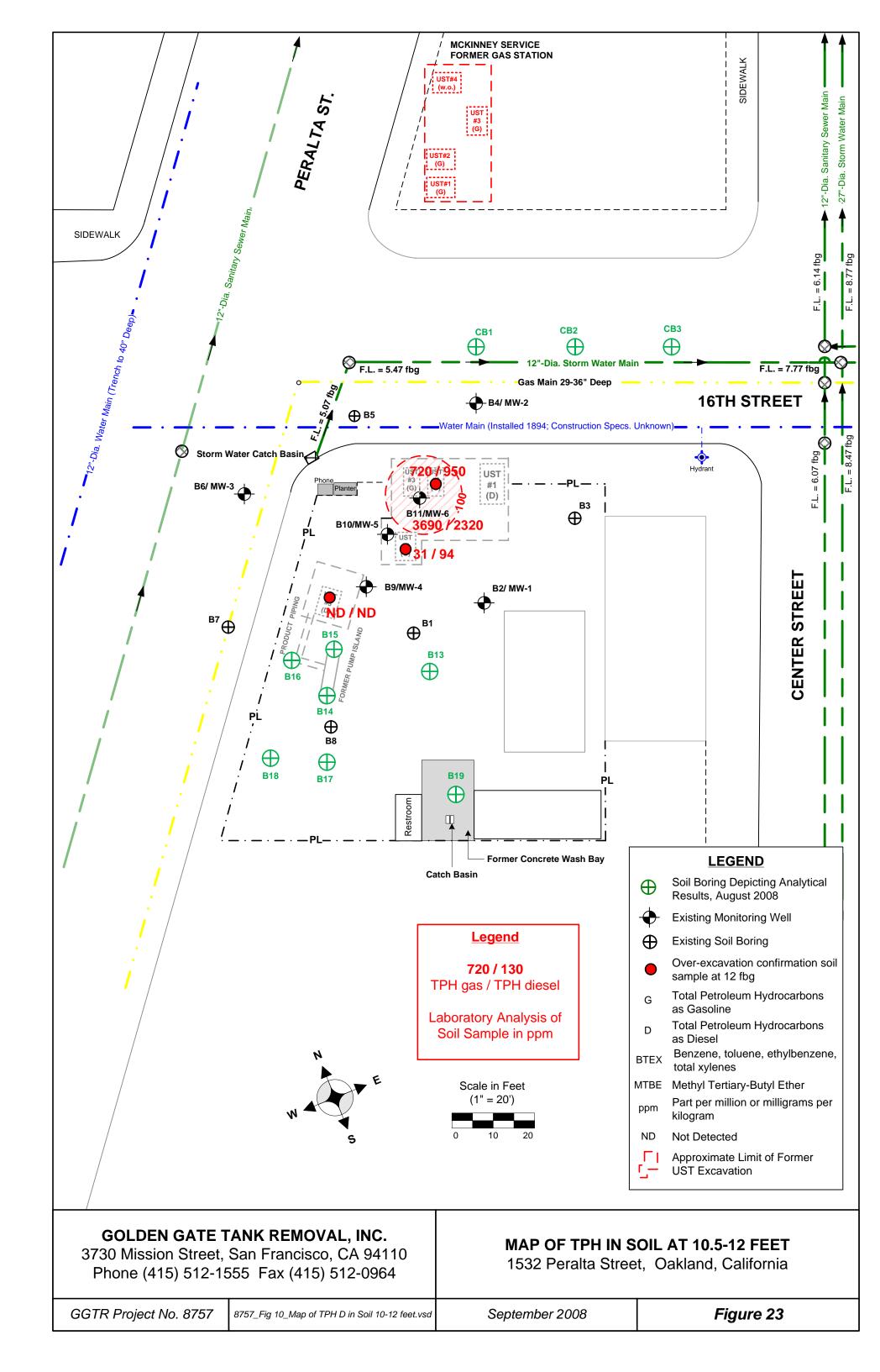

GEOLOGIC MAP

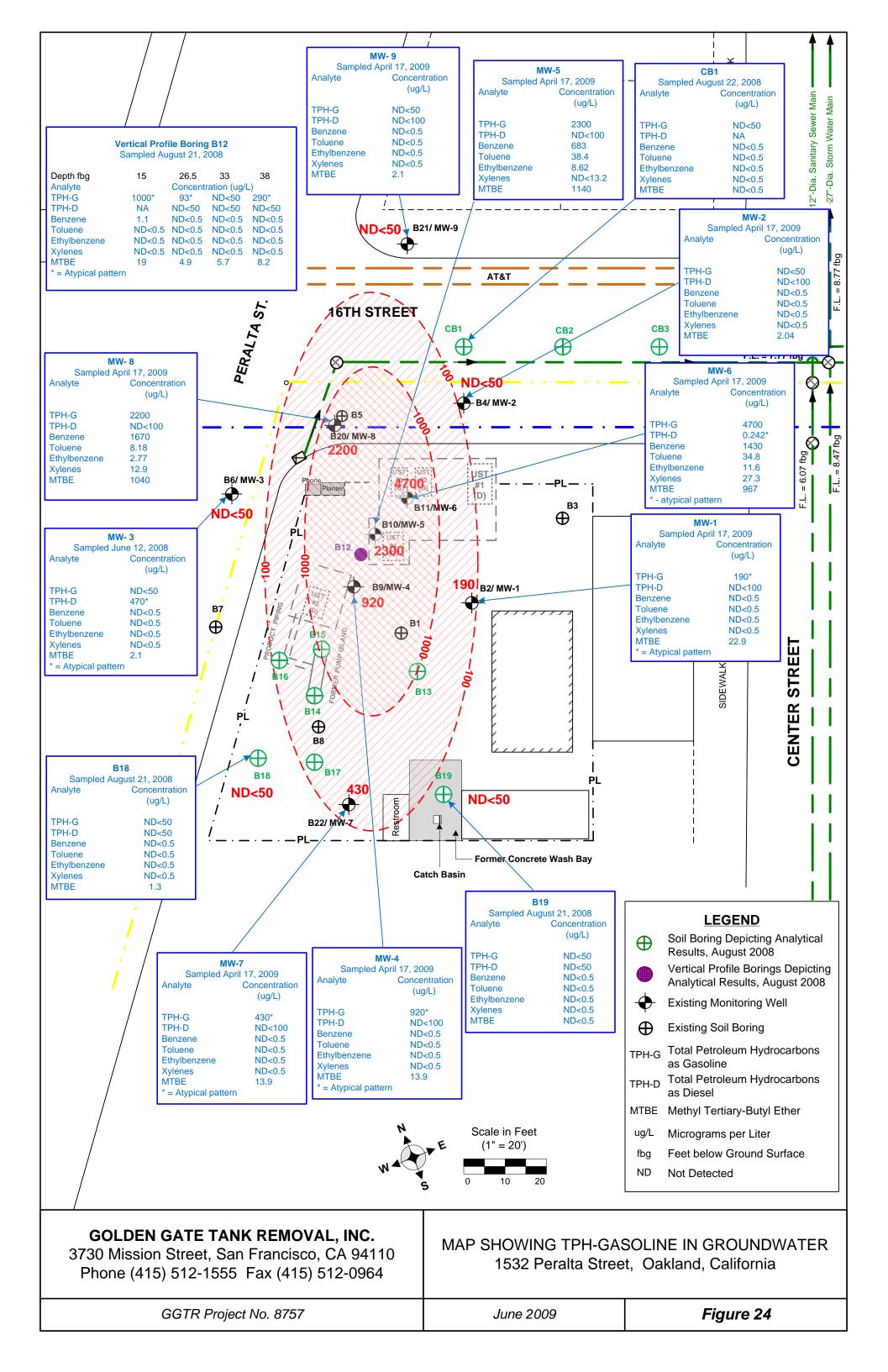

1532 Peralta Street, Oakland, California

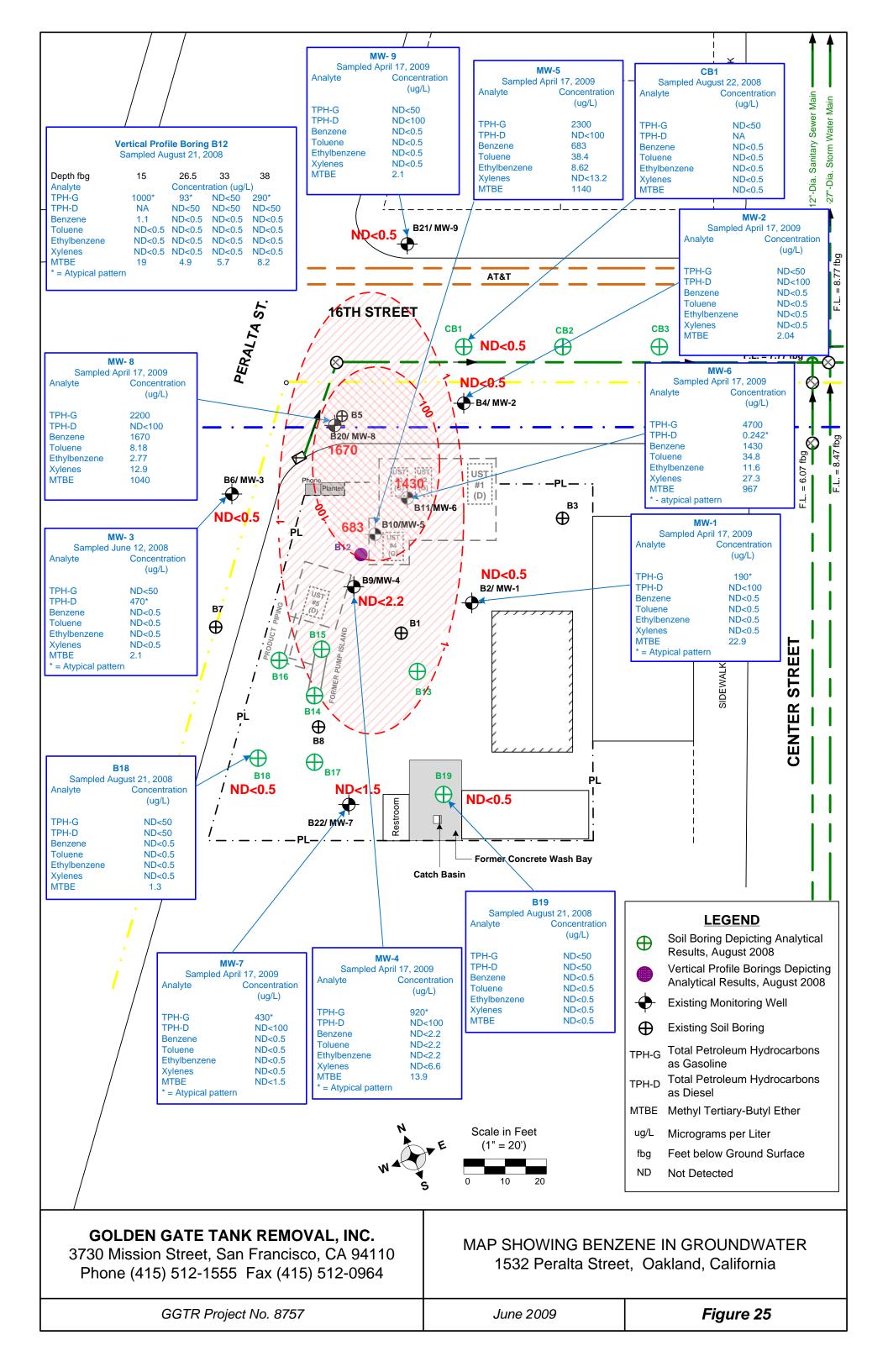

GGTR Project No. 8757

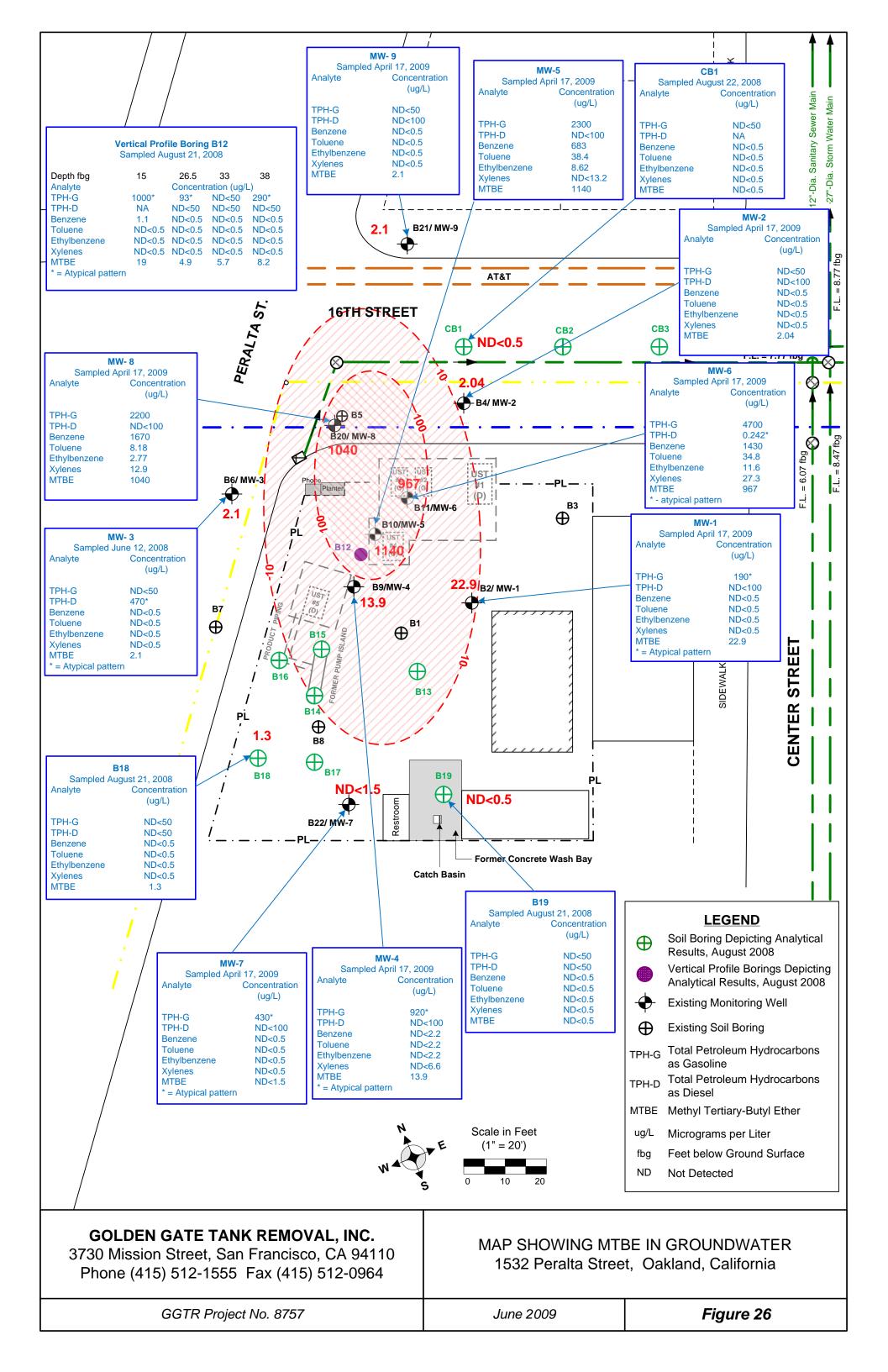

June 2009

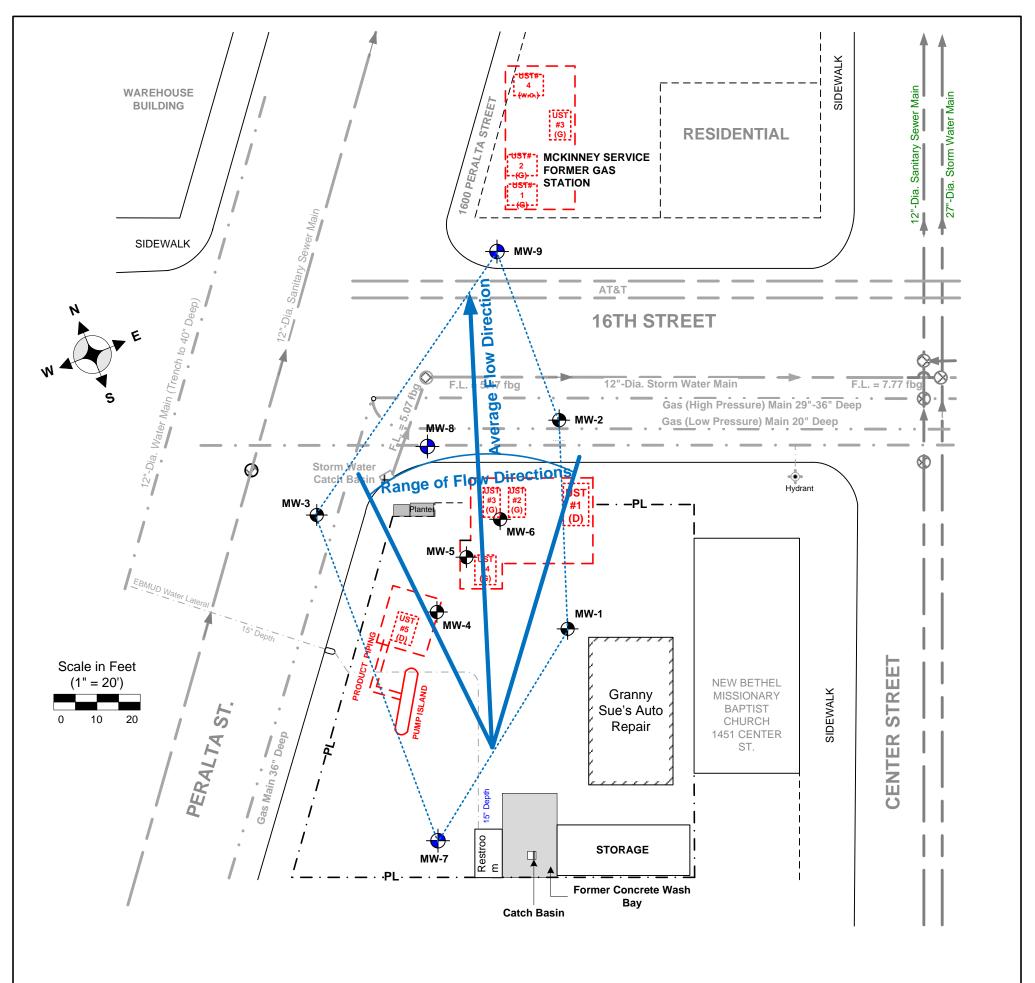


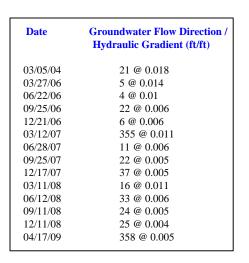


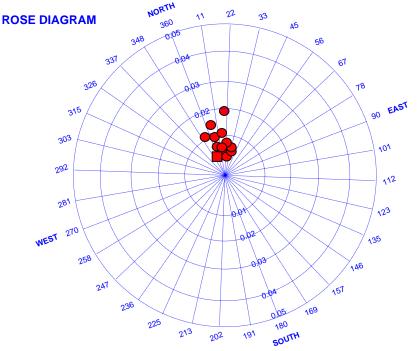












Wells MW-1 : MW-6 = ● Wells MW-1 : MW-9 = ■

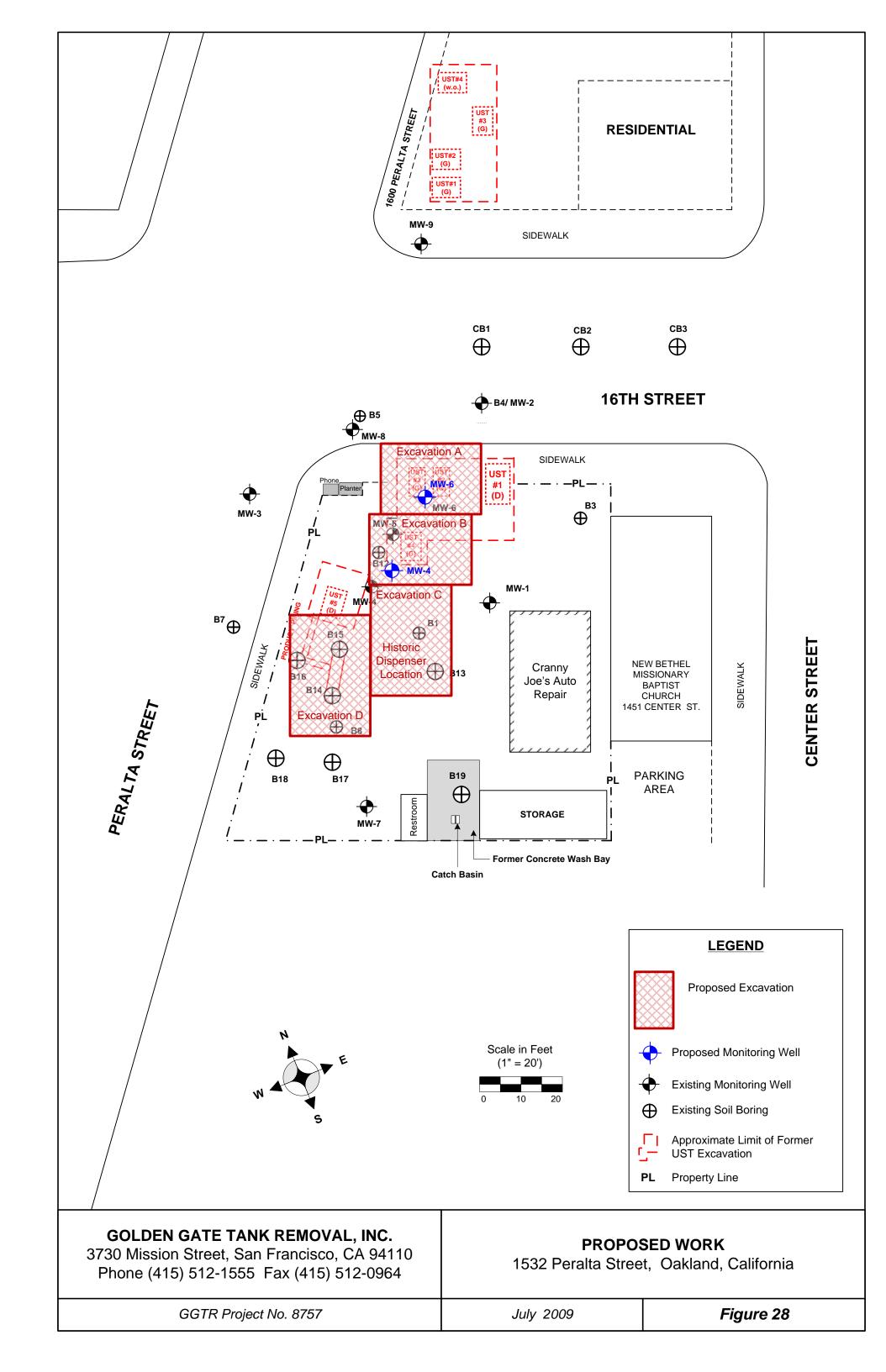
Rose diagram showing historic flow direction & gradient. Circles show historic data from six wells MW-1 to MW-6. Square shows most recent data from April 2009 using nine onsite monitor wells. Average of 14 flow direction measurements is approximately 16 degrees east of north.

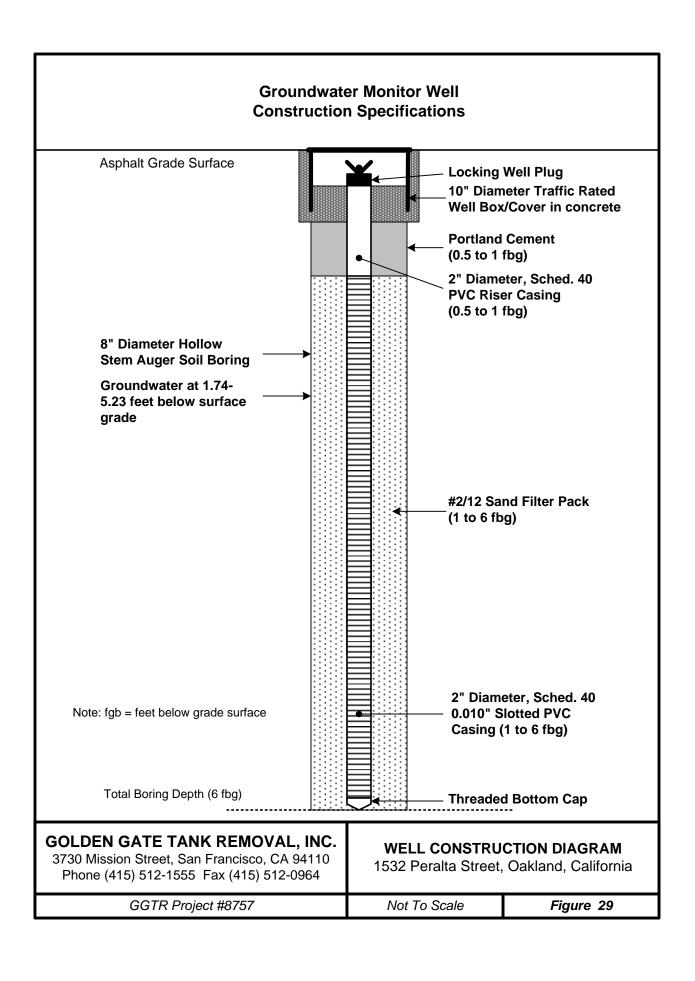
LEGEND

- Soil Boring, August 2008
- Monitoring Well (Installed 4/9/09)
- Existing Monitoring Well
- Existing Soil Boring
- Approximate Limit of Former UST Excavation
- PL Property Line
- Subsurface Utility

GOLDEN GATE TANK REMOVAL, INC.

3730 Mission Street, San Francisco, CA 94110 Phone (415) 512-1555 Fax (415) 512-0964


GROUNDWATER GRADIENT & FLOW DIRECTION


1532 Peralta Street, Oakland, California

GGTR Project No. 8757

June 2009

Figure 27

FEASIBILITY STUDY / CORRECTIVE ACTION PLAN

1532 Peralta Street, Oakland, California GGTR Project #8757

TABLES

- 1) Soil Sample Analytical Data August 2008 & April 2009
- 2) Grab Groundwater Sampling Analytical Data August 2008
- 3) Historical Groundwater Monitoring & Analytical Results

CHARTS

- 1) TPH Gasoline in Groundwater
- 2) Benzene in Groundwater
- 3) MTBE in Groundwater
- 4) Groundwater Elevation Versus TPH Gasoline

TABLE 1
Soil Sample Analytical Results

Additional Site Characterization - August 2008 & April 2009

1532 Peralta Street, Oakland, CA

	Sample Date	Sample ID		TPH-G	TPH-D	В	T	Е	X	MTBE	Acetone	IPB	PB	1,3,5-TMB	1,2,4-TMB	sec-BB	para-IPT	n-BB	Naphthalene
ID		(fbg)	Depth (fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		. 0/	3	ND<0.92	1.1 ¹	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.03	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
B13		B13-3																	
		B13-6	6	720 ¹	130 ¹	ND<0.046	ND<0.046	ND<0.046	ND<0.046	ND<0.046	ND<0.23	0.088	0.15	ND<0.046	ND<0.046	0.28	0.14	0.34	ND<0.046
B14		B14-3	3	980 ¹	4000	ND<1.7	ND<1.7	ND<1.7	ND<1.7	ND<1.7	ND<8.3	ND<1.7	2.3	ND<1.7	ND<1.7	ND<1.7	ND<1.7	4.3	9.9
D14	08/20/08	B14-6	6	230 ¹	5600	ND<0.5	ND<0.5	1.2	0.78	ND<0.5	ND<2.5	ND<0.5	1.3	1.1	1.2	0.56	0.57	1.9	4
D15	06/20/08	B15-3	3	1600 ¹	18000	ND<5	ND<5	ND<5	ND<5	ND<5	ND<25	ND<5	11	ND<5	ND<5	ND<5	ND<5	14	ND<5
B15		B15-6	6	4100 ¹	6800	ND<10	ND<10	44	150	ND<10	ND<50	11	33	52	190	ND<10	ND<10	31	87
B16		B16-3	3	970 ¹	1700	ND<3.1	ND<3.1	ND<3.1	ND<3.1	ND<3.1	ND<16	ND<3.1	4	ND<3.1	ND<3.1	ND<3.1	ND<3.1	5.8	13
D10		B16-6	6	4100	6300	ND<1	ND<1	2.3	2	ND<1	ND<5	ND<1	1.8	2	7	ND<1	ND<1	1.8	4.6
D15		B17-3	3	ND<0.98	ND<0.99	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045	0.043	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045	ND<0.0045
B17		B17-6	6	ND<1	1.2 1,2	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.024	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048
B18	08/21/08	B18-3	3	ND<0.96	ND<0.99	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.023	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046
D19	06/21/06	B18-6	6	ND<1	10 1, 2	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.025	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049
B19		B19-3	3	ND<1	8.9 1,2	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.025	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049	ND<0.0049
Б19		B19-6	6	ND<1.1	ND<1	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.023	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046	ND<0.0046
CB1		CB1-3.5	3.5	ND<0.93	1.2 1	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
СВІ		CB1-6.5	6.5	ND<1	ND<0.99	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.024	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048
CB2	08/22/08	CB2-3.5	3.5	ND<0.94	ND<0.99	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.025	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
CD2		CB2-6.5	6.5	ND<1.1				ND<0.0046									ND<0.0046		
CB3		CB3-3.5	3.5	ND<0.97	ND<1		ND<0.0045	- 1 1010010					ND<0.0045			ND<0.0045			ND<0.0045
D20		CB3-6.5 B20-3	6.5	ND<1.1 ND<2.0	ND<0.99 ND<1	ND<0.0049 ND<0.01	ND<0.0049 ND<0.01	ND<0.0049 ND<0.01	ND<0.0049 ND<0.015	ND<0.0049 ND<0.01	ND<0.025 ND<0.01	ND<0.0049 ND<0.01	ND<0.0049				ND<0.0049 ND<0.01	ND<0.0049 ND<0.01	ND<0.0049 ND<0.02
B20	4 10 10000	B20-3 B21-3	3	960 ¹	26.0 ¹	ND<0.01	ND<0.01	ND<0.01	ND<0.015	ND<0.01	ND<0.01	ND<0.01	ND<0.01 7.2	ND<0.01 ND<0.01	ND<0.01 ND<0.01	ND<0.01 ND<0.01	ND<0.01	ND<0.01	ND<0.02 ND<0.02
B21	4/9/2009		l .			ND<0.01	ND<0.01	ND<0.01	ND<0.015	ND<0.01	ND<0.01		2.4		ND<0.01	ND<0.01	1	1.7	
		B21-4.5	4.5	550 1	43.4							ND<0.01		ND<0.01			1		3.5
SC	10/2/2008	COMP(,	6.4	ND<0.94	ND<0.047	ND<0.047	ND<0.047	ND<0.047	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SC	4/9/2009	SC(1	-4)	6.4 1	ND<2.0	ND<0.01	ND<0.01	ND<0.01	ND<0.015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
_ `	ESL, Reside			83	83	0.044	2.9	3.3	2.3	0.023	2.1	NE	NE	NE	NE	NE	NE	NE	1.3
CRWQCB	ESL, Comn	nercial		83	83	0.044	2.9	3.3	2.3	0.023	2.1	NE	NE	NE	NE	NE	NE	NE	2.8
Notes on Fe	otes on Following Page:																		

Notes on Following Page:

TABLE 2 Grab Groundwater Sample Analytical Results Additional Site Characterization - August 2008

1532 Peralta Street, Oakland, CA

Boring/Sample ID	Sample	Sample	TPH-G	TPH-D	В	T	Е	X	MTBE	Acetone	IPB	PB	tert-BB	sec-BB	para-IPT	n-BB	Naphthalene	CD
	Date	Depth	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		(fbg)																
B12-15-W		15.00	1000 1, 2	NA	1.1	ND<0.5	ND<0.5	ND<0.5	19	11	1.9	2.1	ND<0.5	0.6	ND<0.5	0.6	ND<2	ND<0.5
B12-26.5-W	08/21/08	26.50	93 1,2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4.9	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2	ND<0.5
B12-33-W	06/21/06	33.00	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	5.7	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2	ND<0.5
B12-38-W		38.00	290 1,2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	8.2	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2	ND<0.5
B13-W	08/20/08	6.33	950 ¹	590 ¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<10	10	16	0.5	6.1	2.6	7.1	7.2	ND<0.5
B17-W	08/21/08	5.60	520 ¹	4600	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.8	ND<10	ND<0.5	1.2	ND<0.5	2.2	ND<0.5	1.6	ND<2	0.8
B18-W	08/21/08	6.17	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.3	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2	ND<0.5
B19-W	08/21/08	6.25	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2	ND<0.5
CB1-W	08/22/08	9.30	ND<50	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	32	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2	ND<0.5
CRWQCB ES	CRWQCB ESL, Nov. 2007		100	100	1	40	30	20	5	6300	NE	NE	NE	NE	NE	NE	17	NE

Notes:

GW = Groundwater

 $fbg = Feet \ below \ ground \ surface$

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

B, T, E, X = Benzene, Toluene, Ethylbenzene, and Total Xylenes

 $MTBE = Methyl \ Tertiary\text{-}Butyl \ Ether$

IPB = Isopropylbenzene

PB = Propylbenzene

tert-BB = tert-butylbenzene

sec-BB = sec-butylbenzene

para-IPT = para-Isopropyl Toluene

n-BB = n-Butylbenzene

CD = Carbon Disulfide

ug/l = micrograms per liter

NA = Not Analyzed

ND = Not Detected or less than the laboratory reporting limit

¹ = Sample exhibits chromatographic pattern which does not resemble standard.

 2 = Sample exhibits unknown single peak or peaks.

NE = Not Established

CRWQCB - ESL = California Regional Water Quality Control Board - Environmental Screening Levels

CRWQCB - ESL = November 2007 Interim Final CRWQCB Tier 1 ESL where groundwater IS a current or potential source of drinking

TABLE 3 HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

1532 Peralta Street, Oakland, CA

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D	В	T	Е	X	MTBE	Other Fuel
	Date	Elevation	GW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Oxygenates
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	3/5/2004		3.18	6.69	571	220	4.1	1.6	0.6	5.8	53.2	NA
	3/27/2006		2.72	7.15	520	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	61	11(TBA)
	6/22/2006		3.53	6.34	790	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	27	11(TBA)
	9/25/2006		4.54	5.33	500	ND<50	2.4	ND<0.5	ND<0.5	ND<0.5	31	17(TBA)
	12/21/2006		4.05	5.82	90	ND<46	1.6	ND<0.5	ND<0.5	ND<0.5	28	15(TBA)
	3/12/2007		3.51	6.36	350	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	47	19(TBA)
	6/28/2007		4.37	5.50	420	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	43	ND≤10
MW-1	9/25/2007	9.87	5.23	4.64	190	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	29	ND≤10
	12/17/2007		4.92	4.95	130	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	28	ND <u>≤</u> 10
	3/11/2008		3.69	6.18	240	50 ¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	33	ND≤10
	6/12/2008		4.60	5.27	350 ²	870 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	21	1.3 (TAME)
	9/11/2008		5.24	4.63	210 2	870	ND<0.5	ND<0.5	ND<0.5	ND<0.5	21	1.3 (TAME)
	12/11/2008		5.40	4.47	180^{2}	710^{2}	ND<0.5	ND<0.5	ND<0.5	ND<0.5	25	1.6(TAME)
	4/17/2009		3.83	6.04	190 ²	ND<0.1	ND<0.5	ND<0.5	ND<0.5	ND<1.5	22.9	1.93(TAME
	3/5/2004		2.73	5.93	109	ND<50	3.9	ND<0.5	ND<0.5	ND<1.0	6.9	NA
	3/27/2006		2.11	6.55	30	ND<62	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2	ND
	6/22/2006		2.73	5.93	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	9/25/2006		3.60	5.06	ND<25	ND<50	0.9	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	12/21/2006		3.16	5.50	ND<25	ND<46	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND≤10
	3/12/2007		2.76	5.90	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND≤10
	6/28/2007		3.46	5.20	ND<25	ND<50	ND<0.5	0.76	ND<0.5	ND<0.5	ND<1.0	ND <u>≤</u> 10
MW-2	9/25/2007	8.66	4.24	4.42	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u>≤</u> 10
	12/17/2007		3.92	4.74	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u>≤</u> 10
	3/11/2008		2.90	5.76	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u>≤</u> 10
	6/12/2008		3.64	5.02	ND<50	140 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.68	ND <u>≤</u> 10
	9/11/2008		4.24	4.42	ND<50	52 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.59	ND≤10
	12/11/2008		4.39	4.27	ND<50	150 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.52	ND≤10
	4/17/2009		3.09	5.57	ND<50	ND<0.1	ND<0.5	ND<0.5	ND<0.5	ND<1.5	2.04	ND<10
	CRWQCB	ESL, Nove	mber 2007		100	100	1	40	30	20	5	TBA & TAME =

Notes on following page:

TABLE 3 (Continued) HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

1532 Peralta Street, Oakland, CA

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D	В	T	Е	X	MTBE	Other Fuel
	Date	Elevation	ĠW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Oxygenates
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	3/5/2004		2.10	6.19	185	200	1	1	ND<0.5	1.3	2.5	NA
	3/27/2006		1.74	6.55	ND<25	ND<72	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	6/22/2006		2.38	5.91	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	9/25/2006		3.12	5.17	44	ND<50	1.4	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND <u><</u> 10
	12/21/2006		2.71	5.58	ND>25	ND<46	3.2	ND<0.5	ND<0.5	ND<0.5	1.2	ND≤10
	3/12/2007		2.51	5.78	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.0	ND≤10
MW-3	6/28/2007	8.29	2.95	5.34	ND<25	ND<50	ND<0.5	0.64	ND<0.5	ND<0.5	1.8	ND≤10
	9/25/2007	0.29	3.80	4.49	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.3	ND≤10
	12/17/2007		3.40	4.89	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.1	ND≤10
	3/11/2008		2.48	5.81	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.4	ND≤10
	6/12/2008		3.11	5.18	ND<50	470 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.1	ND≤10
	9/11/2008		3.78	4.51	NA	NA	NA	NA	NA	NA	NA	NA
	12/11/2008		3.93	4.36	ND<50	630 ²	ND<0.5	ND<0.5	ND<0.5	ND<0.5	3	ND≤10
	4/17/2009		2.65	5.64	NA	NA	NA	NA	NA	NA	NA	NA
	3/5/2004		2.85	6.89	1,110	370	3.2	3.9	1	3.3	8.5	NA
	3/27/2006		2.64	7.10	2,000	ND<50	ND<1.0	1	ND<1.0	1.1	9.3	33 (TBA)
	6/22/2006		3.43	6.31	430	NA	ND<1.0	1	ND<0.5	1.3	11	28 (TBA)
	9/25/2006		4.38	5.36	700	ND<50	ND<1.0	ND<0.5	ND<0.5	ND<0.5	12	34 (TBA)
	12/21/2006		4.09	5.65	1,300	ND<47	1.7	ND<1.0	ND<1.0	ND<1.0	9.8	33 (TBA)
	3/12/2007		3.47	6.27	1,200	ND<50	1.2	ND<1.0	ND<1.0	ND<1.0	9.8	27 (TBA)
	6/28/2007		4.20	5.54	900	570 ¹	ND<1.0	ND<1.0	ND<1.0	ND<1.0	14	28 (TBA)
MW-4	9/25/2007	9.74	5.00	4.74	850	ND<48 1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	11	45 (TBA)
	12/17/2007		4.71	5.03	630	300 ¹	ND<0.5	ND<0.5	ND<0.5	ND<0.5	8.9	27 (TBA)
	3/11/2008		3.39	6.35	940	490 ¹	3.3	ND<0.5	0.52	ND<0.5	8.3	13 (TBA)
	6/12/2008		4.41	5.33	820 ²	6,400	ND<0.5	ND<0.5	ND<0.5	ND<0.5	9.4	18 (TBA)
	9/11/2008		5.08	4.66	1,000 ²	5,500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	12	20 (TBA)
	12/11/2008		5.25	4.49	830 ²	4,500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	10	20(TBA)
	4/17/2009		3.65	6.09	920 ²	ND<0.1	ND<0.5	ND<0.5	ND<0.5	ND<1.5	13.9	ND<10
												TBA &
	CRWQCB	ESL, Nove	mber 2007		100	100	1	40	30	20	5	TAME =
												NE

Notes on following page:

TABLE 3 (Continued) HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

1532 Peralta Street, Oakland, CA

Well ID	Sample	TOC	Depth to	GW	TPH-G	TPH-D	В	T	Е	X	MTBE	Other Fuel
	Date	Elevation	GW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Oxygenates
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
	3/5/2004		2.83	6.57	1,660	NA	650	7.6	1.6	7.1	2,250	NA
	3/27/2006		2.41	6.99	1,600	ND<50	89	5.6	ND<5.0	8.7	1,200	170 (TBA)
	6/22/2006		3.17	6.23	2000	NA	240	11	ND<10	ND<10	1,100	ND≤200
	9/25/2006		4.14	5.26	2,200	ND<50	160	ND<10	ND<10	ND<10	1,200	ND <u><</u> 200
	12/21/2006		3.79	5.61	1,700	ND<47	120	ND<10	ND<10	ND<10	1,000	ND≤200
	3/12/2007		3.22	6.18	1,300	ND<48	99	5.3	ND<5.0	ND<5.0	770	ND≤100
3.5337.5	6/28/2007	0.40	4.96	4.44	1,900	470 1	230	11	ND<10	ND<10	1,400	ND <u><</u> 200
MW-5	9/25/2007	9.40	4.74	4.66	1,200	ND<48 1	90	ND<10	ND<10	ND<10	840	ND≤200
	12/17/2007		4.50	4.90	2,000	540 ¹	170	ND<10	ND<10	11	920	ND≤200
	3/11/2008		3.28	6.12	2,300	440 1	140	ND<10	ND<10	10	930	ND≤200
	6/12/2008		4.12	5.28	ND<500	10,000	120	ND<5	ND<5	7.6	700	ND≤100
	9/11/2008		4.77	4.63	ND<500	8,800	120	6.5	ND<5	8.5	730	ND≤100
	12/11/2008		4.98	4.42	NA	NA	NA	NA	NA	NA	NA	NA
	4/17/2009		4.37	5.03	2,300	ND<0.1	683	38.4	8.62	ND<1.5	1,140	ND<10
	3/5/2004		2.50	6.52	6,450	800	1,950	29.6	52.7	54.6	1,440	NA
	3/27/2006		2.08	6.94	4,800	ND<50	820	14	12	22	1,100	180 (TBA)
	6/22/2006		2.85	6.17	5,200	NA	630	12	14	13	1,100	ND≤200
	9/25/2006		3.79	5.23	3,700	ND<50	430	ND<10	ND<10	ND<10	920	ND≤200
	12/21/2006		3.41	5.61	8,400	ND<250	2,600	ND<25	32	ND<25	550	ND≤500
	3/12/2007		2.82	6.20	7,400	ND<49	1,200	17	23	13	680	ND≤200
	6/28/2007		3.59	5.43	3,600	1,300 1	240	8.6	ND<5.0	10	890	ND≤100
MW-6	9/25/2007	9.02	4.40	4.62	2,200	ND<48 1	430	7.7	6.6	5.2	580	ND≤100
	12/17/2007		4.21	4.81	2,400	950 ¹	440	9.0	6.5	8.6	450	ND≤100
	3/11/2008		2.96	6.06	4,700	1,300 1	690	13.0	7.6	19	740	ND≤100
	6/12/2008		3.82	5.20	$1,800^{\ 2}$	9,500	290	6.4	3.7	11.7	820	55 (TBA), 1.1 (1,2-
	9/11/2008		4.45	4.57	2 200 2	9,700	510	9.6	8.3	10	670	DCA) ND<100
					3,200 2	· ·						<u> </u>
	12/11/2008		4.65	4.37	1900 ²	7,300	590	14.0	7.8	7.4	540	ND≤100
	4/17/2009		3.20	5.82	4,700	0.242 2	1430	34.8	11.6	27.3	967	3.04(TAME)
	CRWQCB	ESL, Nove	ember 2007		100	100	1	40	30	20	5	TBA = NE, 1,2-DCA = 0.5

Notes on following page:

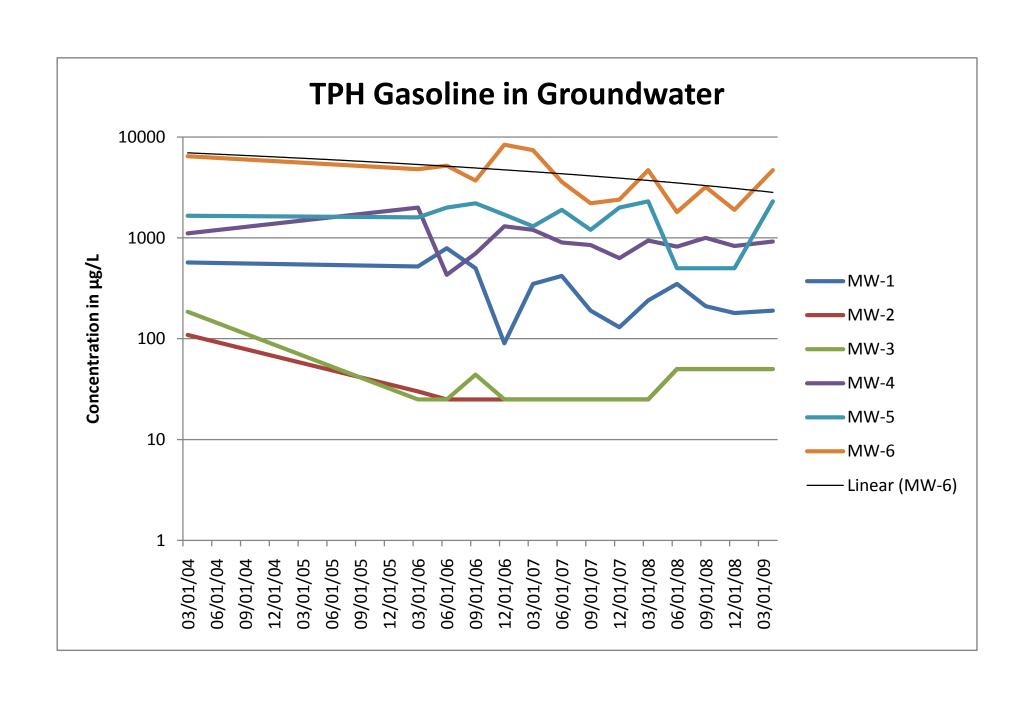
TABLE 3 (Continued) HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

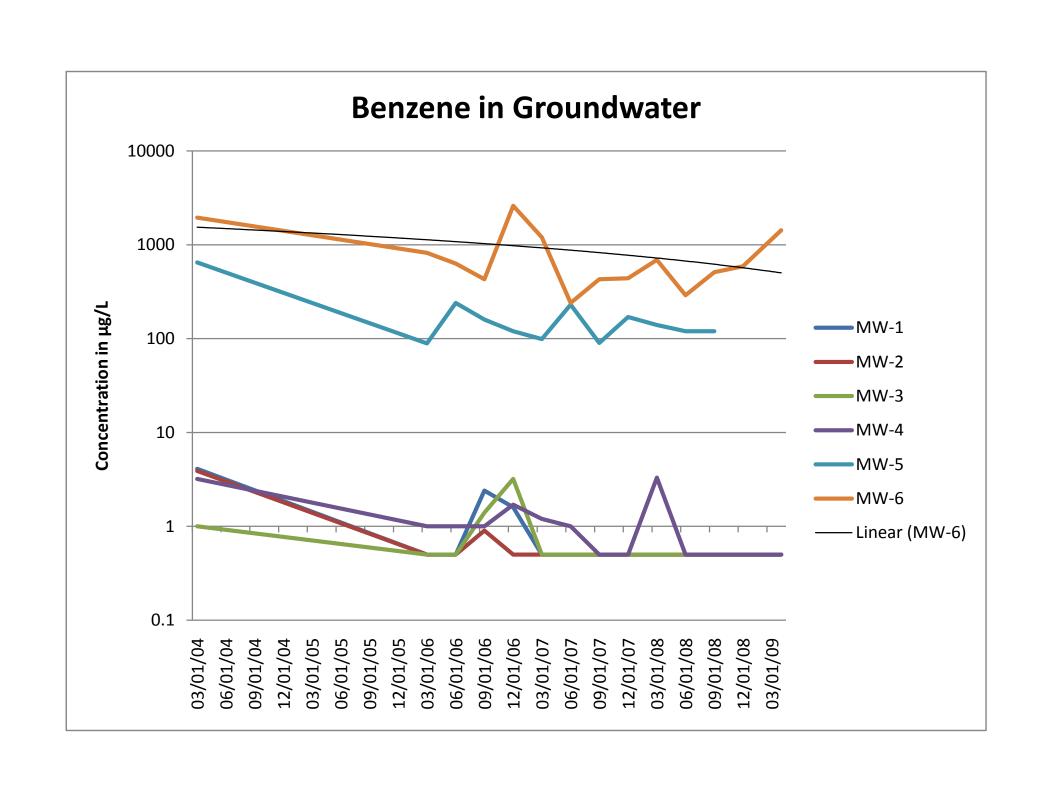
1532 Peralta Street, Oakland, CA

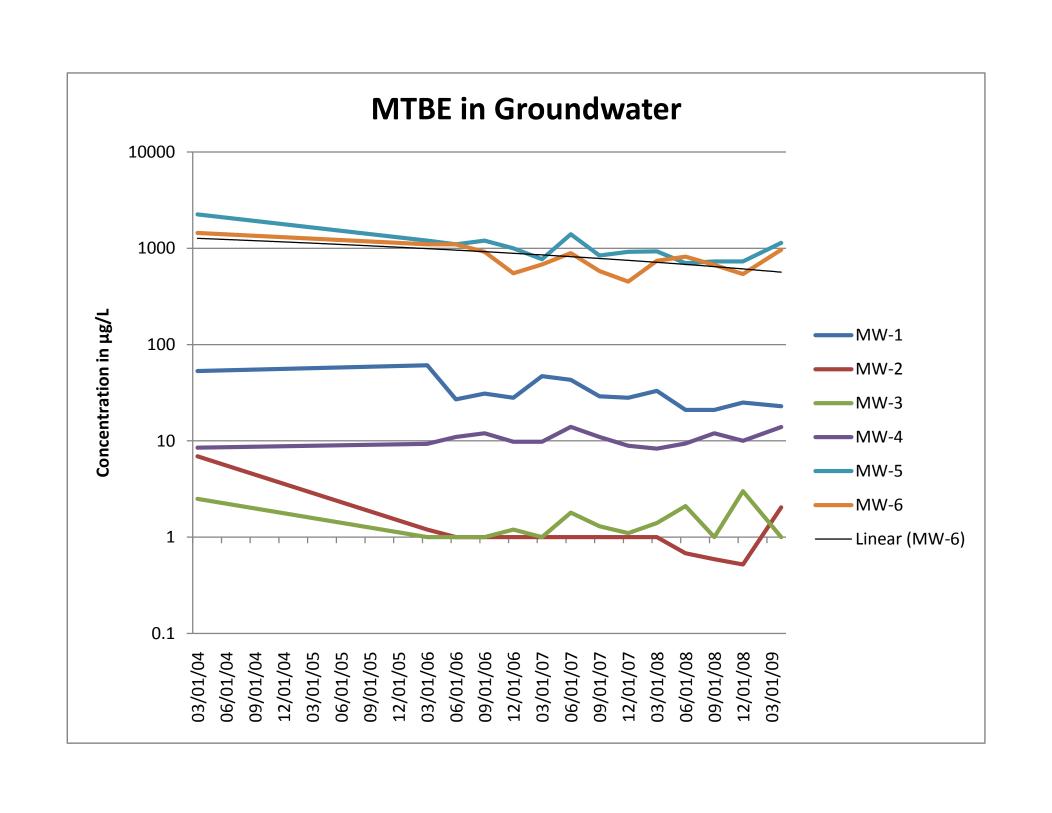
Well ID	Sample Date	TOC	Depth to	GW	TPH-G	TPH-D	В	T	Е	X	MTBE	Other Fuel Oxygenates
		Elevation	GW	Elevation	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
		(ft MSL)	(ft BTOC)	(ft MSL)								(ug/l)
MW-7	4/17/2009	10.19	3.91	6.28	0.242 3	ND<0.1	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	NA
MW-8	4/17/2009	8.16	2.3	5.86	2200	ND<0.1	1670	8.18	2.77	12.9	1040	3.12(TAME)
MW-9	4/17/2009	8.49	2.77	5.72	ND<50	ND<0.1	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	NA
CRWQCB ESL, November 2007					100	100	1	40	30	20	5	TBA & TAME = NE

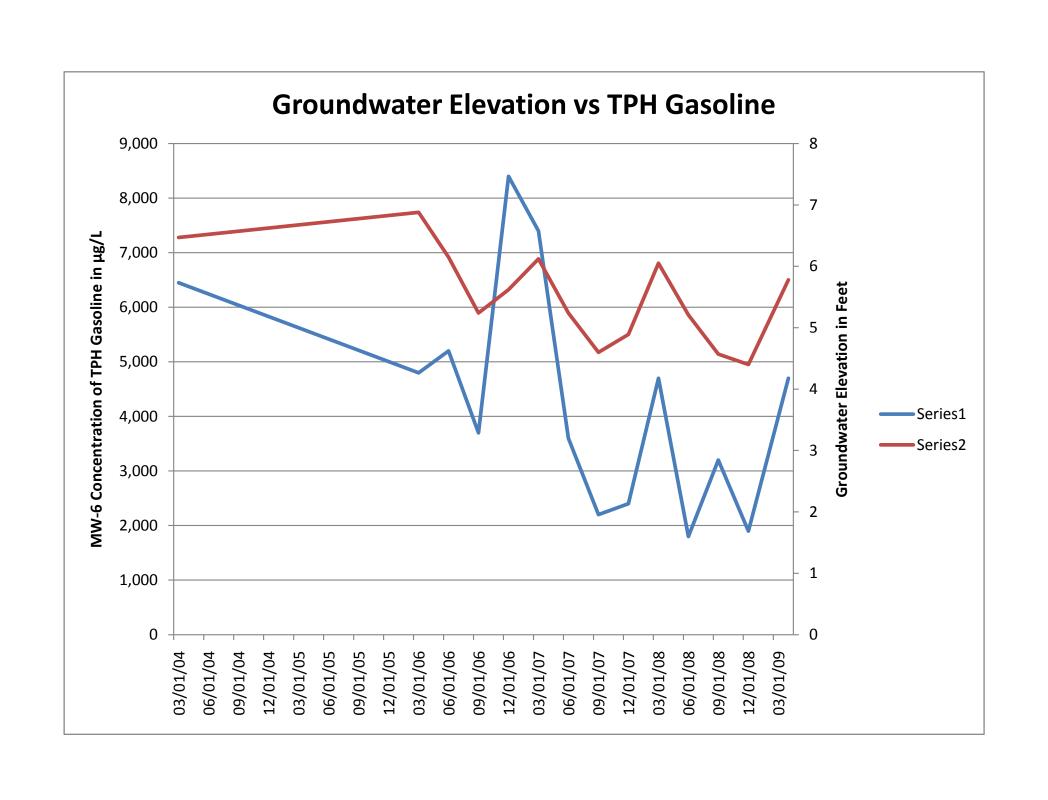
Table Notes:

 $ND = Not \ Detected \ or \ less \ than \ the \ laboratory \ reporting \ limit$


NA = Not analyzed


- ¹ = Atypical Diesel pattern. Higher boiling gasoline compounds in the Diesel range.
- ² = Sample exhibits chromatographic pattern which does not resemble standard.
- ³ = Hydrocarbons within range C5-C12 quantified as gasoline, but pattern does not resemble standard (possibly heavily aged gas or heavier fuel).


NE = Not Established


CRWQCB ESL = California Regional Water Quality Control Board - Environmental Screening Levels

CRWQCB ESL = November 2007 Interim Final CRWQCB Tier 1 ESL where groundwater IS a current or potential source of drinking water.

FEASIBILITY STUDY / CORRECTIVE ACTION PLAN

1532 Peralta Street, Oakland, California GGTR Project #8757

APPENDIX A REGULATORY CORRESPONDENCE

ACEH LETTER - January 16, 2009

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

January 16, 2009

Dr. Orobo Osagie Amenex Organization, Inc. P.O. Box 426695 San Francisco, CA 94142-6695

Mr. James Tracy 878 West Hayden Court Alpine, UT 84004-2504

Subject: Monitoring Well Construction Approval and Feasibility Study/Corrective Action Plan for Fuel Leak Case No. RO0000117 and GeoTracker Global ID T0600191668, Osagie Property, 1532 Peralta Street, Oakland, CA 94607

Dear Dr. Osagie and Mr. Tracy:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site including the recently submitted electronic (e) mail entitled, "Continued Site Investigation Activities - 1532 Perlata [sic] Street, Oakland (ACEH Fuel Leak Case No. RO0000117)" dated October 27, 2008, which was prepared by Golden Gate Tank Removal (GGTR) for the subject site. In the e-mail, GGTR proposed above-grade monitoring well construction at the site due to the shallow water table and proposed an interim remedial excavation of approximately 20 feet by 28 feet by 10 feet in depth to remove hydrocarbon impacted soil in the vicinity of the former USTs and dispenser islands.

ACEH generally concurs with the proposed monitoring well construction. However, the interim remedial action scope of work does not appear to address the extent of soil contamination identified at the site and illustrated on Figures 8 and 9 attached to the above-mentioned e-mail. Therefore, ACEH requests that you address the following technical comments, perform the proposed work, and send us the technical reports described below.

TECHNICAL COMMENTS

- Monitoring Well Construction GGTR proposes to install three groundwater monitoring
 wells at the site, of which selected wells may be completed above grade so that the screened
 interval intersects the shallow water bearing zone. Based on the site conditions, the
 proposed monitoring well construction appears appropriate. Please complete the fieldwork
 activities and submit a report due by the date specified below.
- 2. Feasibility Study/Corrective Action Plan GGTR proposed additional source removal, consisting of a 20 feet by 28 feet by 10 feet deep excavation in the vicinity of the former USTs and dispenser islands as an interim remedial action. The extent of soil contamination identified at the site, illustrated on Figures 8 and 9 attached to the above-mentioned e-mail, is nearly twice the size of the proposed remedial excavation. ACEH is skeptical that the proposed remedial excavation will adequately reduce the residual source area to positively affect the site. Please be aware the site characterization and/or site cleanup is not contingent

upon receiving reimbursement monies from the UST Cleanup Fund. A Feasibility Study, prepared in accordance with California Code of Regulations, Title 23, Division 3, Chapter 16, §2725(f), which evaluates cost effective remedial approaches having likelihood of attaining site cleanup objectives has not been submitted. The UST Cleanup Fund typically reimburses costs associated with the most cost-effective remedial alternative. Since it has not been determined that over-excavation is the most cost-effective remedial approach, the UST Cleanup Fund may not fully reimburse all costs associated with the proposed remedial excavation. Therefore, it is recommended that a Feasibility Study/Corrective Action Plan (FS/CAP) prepared in accordance with Title 23, California Code of Regulations, Section 2725 is prepared once the site is adequately characterized.

The FS/CAP must include a concise background of soil and groundwater investigations performed in connection with this case and an assessment of the residual impacts of the chemicals of concern (COCs) for the site and the surrounding area where the unauthorized release has migrated or may migrate. The FS/CAP should also include, but not limited to, a detailed description of site lithology, including soil permeability, and most importantly, contamination cleanup levels and cleanup goals, in accordance with the San Francisco Regional Water Quality Control Board Basin Plan and consider appropriate ESL guidance for all COCs and for the appropriate groundwater designation. Please note that soil cleanup levels should ultimately (within a reasonable timeframe) achieve water quality objectives (cleanup goals) for groundwater in accordance with San Francisco Regional Water Quality Control Board Basin Plan. Please propose appropriate cleanup levels and cleanup goals in accordance with 23 CCR Section 2725, 2726, and 2727 in the FS/CAP.

As mentioned above, the FS/CAP must evaluate at least three viable alternatives for remedying or mitigating the actual or potential adverse effects of the unauthorized release(s) besides the "no action" and "monitored natural attenuation" remedial alternatives. Each alternative shall be evaluated for cost-effectiveness, time to achieve cleanup levels and cleanup goals, and the Responsible Party must propose the most cost-effective corrective action. Please submit an FS/CAP due by the date specified below.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork including routine groundwater sampling.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

- January 30, 2009 Quarterly Monitoring Report (4th Quarter 2008)
- March 17, 2009 Soil and Water Investigation Report
- April 16, 2009 FS/CAP

- April 30, 2009 Quarterly Monitoring Report (1st Quarter 2009)
- July 30, 2009 Quarterly Monitoring Report (2nd Quarter 2009)
- October 30, 2009 Quarterly Monitoring Report (3rd Quarter 2009)

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature,

Dr. Osagie and Mr. Tracy RO0000117 January 16, 2009, Page 4

and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri

Hazardous Materials Specialist

Donna L. Drogos, PE

Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

CC:

Mark Youngkin, Golden Gate Tank Removal, 3730 Mission Street, San Francisco, CA 94110 Brent Wheeler, Golden Gate Tank Removal, 3730 Mission Street, San Francisco, CA 94110 Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032

Donna Drogos, ACEH Paresh Khatri, ACEH

File

FEASIBILITY STUDY / CORRECTIVE ACTION PLAN

1532 Peralta Street, Oakland, California GGTR Project #8757

APPENDIX B SOIL & WATER DELINEATION DOCUMENTS

ACPWA Water Resources Well Permit
City of Oakland Encroachment & Excavation Permits
Boring Logs/Well Construction Diagrams
DWR Well Completion Reports
Well Development Field Data Sheets
Well Monitoring & Purge/Sample Data Sheets (2Q09 GWM)
Laboratory Analytical Reports
Well Survey Report
Geotracker Upload Confirmation Forms

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/06/2008 By jamesy Permit Numbers: W2008-0559 to W2008-0562

Permits Valid from 08/20/2008 to 09/30/2008

Application Id: 1218054249146 City of Project Site:Oakland

Site Location: Commercial Property

1532 Peralta Street

Project Start Date: 08/20/2008 Completion Date:09/30/2008

Requested Inspection: 08/21/2008

Scheduled Inspection: 08/21/2008 at 1:00 PM (Contact your inspector, Ron Smalley at (510) 670-5407, to confirm.)

09/15/2008 at 12:00 PM (Contact your inspector, Vicky Hamlin at (510) 670-5443, to confirm.)

Applicant: Golden Gate Tank Removal, Inc. - Brent Phone: 415-512-1555

Wheeler

3730 Mission Street, San Francisco, CA 94110

Property Owner: James Tracy Phone: --

878 West Hayden Court, Alpine, UT 84004
Client: ** same as Property Owner **

Contact: Brent Wheeler Phone: 415-512-1555

Cell: 415-686-8846

Total Due: \$1265.00

Receipt Number: WR2008-0282 Total Amount Paid: \$1265.00

Payer Name : Brent A. Wheeler Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 9 Boreholes

Driller: GGTR & John Carver Civil Engineering (CB1-CB3, B13-B16, B20 & B21) - Work Total: \$230.00

Lic #: 407379 - Method: DP

Specifications

Permit Issued Dt Expire Dt # Hole Diam Max Depth
Number Boreholes

Nulliber Borelloles

W2008- 08/06/2008 11/18/2008 9 2.00 in. 25.00 ft

0559

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

- 5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Well Construction-Monitoring-Monitoring - 3 Wells

Driller: Gregg Drilling (B12, B17-B19) - Lic #: 485165 - Method: other Work Total: \$1035.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2008- 0560	08/06/2008	11/18/2008	MW-7	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2008- 0561	08/06/2008	11/18/2008	MW-8	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2008- 0562	08/06/2008	11/18/2008	MW-9	8.00 in.	2.00 in.	5.00 ft	15.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with

appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/06/2008 By jamesy Permit Numbers: W2008-0559 to W2008-0562

Permits Valid from 03/21/2009 to 04/10/2009

Application Id: 1218054249146 City of Project Site: Oakland

Site Location: Commercial Property

1532 Peralta Street

Project Start Date: 08/20/2008 Completion Date: 09/30/2008

Assigned Inspector: Contact Ron Smalley at (510) 670-5407 or ronaldws@acpwa.org

Extension End Date: 04/10/2009 Extension Start Date: 03/21/2009 **Extension Count:** Extended By: vickyh1

Applicant: Golden Gate Tank Removal, Inc. - Brent Phone: 415-512-1555

3730 Mission Street, San Francisco, CA 94110

James Tracy Phone: --**Property Owner:**

878 West Hayden Court, Alpine, UT 84004 Client: ** same as Property Owner

Brent Wheeler Contact: Phone: 415-512-1555

Cell: 415-686-8846

Total Due: \$1265.00 \$1265.00 Receipt Number: WR2008-0282 Total Amount Paid:

PAID IN FULL Payer Name: Brent A. Wheeler Paid By: VISA

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 9 Boreholes

Driller: GGTR & John Carver Civil Engineering (CB1-CB3, B13-B16, B20 & B21) -Work Total: \$230.00

Lic #: 407379 - Method: DP

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	08/06/2008	11/18/2008	9	2.00 in.	25.00 ft

0559

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

- 5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Well Construction-Monitoring-Monitoring - 3 Wells

Driller: Gregg Drilling (B12, B17-B19) - Lic #: 485165 - Method: other Work Total: \$1035.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2008- 0560	08/06/2008	11/18/2008	MW-7	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2008- 0561	08/06/2008	11/18/2008	MW-8	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2008- 0562	08/06/2008	11/18/2008	MW-9	8.00 in.	2.00 in.	5.00 ft	15.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with

appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

NO FEE DOCUMENT PURSUANT TO GOVERNMENT CODE SECTION 6103

recording requested by:

CITY OF OAKLAND

when recorded mail to:

City of Oakland
CEDA - Building Services
Dalziel Administration Building
250 Ogawa Plaza - 2nd Floor
Oakland, CA 94612
Attn: City Engineer

-- space above for Recorder's use only -

INDENTURE AGREEMENT

Address 1532 Peralta Street

permit no. ENMI 09104

parcel no. <u>005 -0370-001-00</u>

authorities Municipal Code Section 12.08.080

description

Allow four (4) monitoring wells in Public Right of Way; one (1) on Peralta; three (3) on 16th St

RECITAL

The owner subscribed below of fee simple interest in the property referenced above and described in Exhibit B attached hereto, is hereby granted, for an indeterminate period of time, the revocable permit referenced above allowing the temporary encroachment described above and delineated in Exhibit C, attached hereto, and limiting the use, exercise, and operation of the encroachment with the requirements and restrictions set forth in Exhibit A, attached hereto, and the associated permit. The owner agrees by and between themselves to be bound by the general and special conditions in Exhibit A and to comply with these conditions faithfully and fully at all times. The conditions of this agreement and associated permit shall equally bind all agents, heirs, successors, and assigns of the owner.

ACKNOWLEDGEMENT OF PROPERTY OWNER

(notarization of signature required)

Date 4-6-09

ATTACHMENTS

Exhibit A - Conditions of encroachment

James Frances Tracy

Exhibit B - Description of privately owned parcel

Exhibit C - Limits of encroachment

date

CITY OF OAKLAND

a municipal corporation

WALTER S. COHEN

Director

Signature

RAYMOND M. DERANIA

City Engineer

Community and Economic Deve

ACKNOWLEDGMENT

State of UTAL County of UTAL On this CITY day of CAA 220 0 9

On this 6th day of Asil 2009 Hames + Nance personally appeared before me,

X who is personally known to me.

_whose identity I verified on the basis of _____ _whose identity I verified on the oath/affirmation of .

whose identity I verified on the oath/ a credible witness,

to be the signer of the foregoing document, and he/she acknowledged that he/she signed it. Hance H. Williams

My Commission Expires: 6/05/20/2

JANIS H. WILLIAMS

NOTARY PUBLIC-STATE OF UTAH

GOMMISSION# 574502

COMM. EXP. 6-5-2012

EXCAVATION PERMIT

CIVIL ENGINEERING

TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

PAGE 2 of 2

Permit valid for 90 days from date of issuance.

PERMIT NUMBER X 0 8 0 1 5 4 0 SITE ADDRESS/LOCATION STEADTRESS/LOCATION STEADTRESS/LOC
APPROX. START DATE APPROX. END DATE 24-HOUR EMERGENCY PHONE NUMBER 975 - 3/3 - 5850 (Permit not valid without 24-Hour number) 4/5 - 5/7 - 1555
CONTRACTOR'S LICENSE # AND CLASS CITY BUSINESS TAX #
485165 585033
ATTENTION: 1- State law requires that the contractor/owner call Underground Service Alert (USA) two working days before excavating. This permit is not valid unless applicant has secured an inquiry identification number issued by USA. The USA telephone number is 1-800-642-2444. Underground Service Alert (USA) #
2- 48 hours prior to starting work, you MUST CALL (510) 238-3651 to schedule an inspection.
3- 48 hours prior to re-paving, a compaction certificate is required (waived for approved slurry backfil!).
OWNER/BUILDER I hereby affirm that I am exempt from the Contractor's License Law for the following reason (Sec. 7031.5 Business and Professions Code: Any city or county which requires a permit to construct, after, improve, demolish, or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the construct, after, improve, demolish, or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the constructor's License law Chapter 9 (commencing with Sec. 7000) of Division 3 of the Business and Professions Code, or that he is exempt therefrom and the basis for the provisions of the Contractor's License law days applicant for a permit subjects the applicant to a civil penalty of not more than \$5001: alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subject to a civil penalty of not more than \$5001: alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subject to a civil penalty of not more than \$5001: alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subject to a civil penalty of not more than \$5001: alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subject to a complete subject to a complete subject of the subject of the property, and the structure is not intended or offered for sale. (Sec. 7044, Business and the subject of the property, and exclusively contractor is the property, and exclusively contractor is the above due to:
WORKER'S COMPENSATION
I hereby affirm that I have a certificate of consent to self-insure, or a certificate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code).
Policy # State Company Name I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Worker's Compensation Laws of California (not required for work valued at one hundred dollars (\$100) or less).
NOTICE TO APPLICANT: If, after making this Certificate of Exemption, you should become subject to the Worker's Compression provisions of the Labor Code, you must forthwith comply with such provisions or this permit shall be deemed revoked. This permit is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is granted upon the express condition that the permittee shall be responsible for all claims and liabilities arising out of work performed under the permit or arising out of permittees to greated upon the express condition that the permittee shall be responsible for all claims and liabilities arising out of work performed under the permit or arising out of permittees to defend, indemnify, save and hold harmless the City, its officers perform the obligations with respect to street maintenance. The permittee shall, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers and employees, from and against any and all suits, claims, or actions brought by any person for or on account of any hodily injuries, disease or illness or damage to persons anal/or property and employees, from and against any and all suits, claims, or actions brought by any person for or on account of any hodily injuries, disease or illness or damage to persons anal/or property and employees, from and against any and all suits, claims, or actions brought by any person for or on account of any hodily injuries, disease or illness or damage to persons anal/or property and employees, from and against any and all suits, claims, or actions brought by any person for or on account of any hodily injuries, disease or illness or damage to persons anal/or property and employees, from and against any and all suits, claims, or actions brought by any person for or on account of any hodily injuries, disease or illness or damage to persons anal/or property and employees, from any account of the obligations with respect to street maintenance. The permit of the obligations
I hereby affirm that I am licensed under provisions of Chapter 9 of Division 3 of the Business and Professions Code and my license is in full force and effect (if contractor), that I have read this permit and agree to its requirements, and that the above information is true and correct under penalty of law.
75 d. Cell 8/18/08
Signature of Pennitte
ISSUED BY DATE ISSUED

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Appl# X0900394

Job Site 1532 PERALTA ST

Parcel# 005 -0370-001-00

Descr Excavation for wells on 16th St

Permit Issued 04/07/09

Allow four (4) wells: one (1) on Peralta; three (3) on 16th

Allow four (4) wells: one (1) on Peralta; three (3) on 16th

Work Type EXCAVATION-PRIVATE P

USA #

Util Co. Job # Util Fund #:

Acctg#:

(415)512-1555

Applent Phone# Lic# --License Classes--

Owner TRACY JAMES F Contractor GREGG DRILLING & TESTING, INC. X

(925)313-5800 485165 C57

Arch/Engr

Agent GOLDEN GATE TANK/ B WHEELER

(415)512-1555

Applic Addr 950 HOWE RD, MARTINEZ, CA., 94553

JOB SITE

\$419.99 TOTAL FEES PAID AT ISSUANCE

\$66.00 Applic \$300.00 Permit

\$.00 Process

\$34.77 Rec Mgmt \$.00 Invstg

\$.00 Gen Plan

\$.00 Other

\$19.22 Tech Enh

_____ Date: _____ Permit Issued By _____

Date: Finaled By

CITY OF OAKLAND . Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired. Page 2 of 2 Parcel #: 005 -0370-001-00 Permit No. X0900394 1532 PERALTA ST Project Address: Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect. Construction Lending Agency Declaration I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency. Address_ Lender Workers' Compensation Declaration I hereby affirm under penalty of perjury one of the following declarations: [] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. [] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. CARRIER: POLICY NO. shich this permit is issued, I [] I certify that in the performance ubject to the workers' shall not employ any person in any compensation laws of California, frome subject to the ode I shall forthwith workers' compensation provisions comply with those provisions. COVERAGE IS UNL WARNING: FAILURE TO SECURE WORKER TINES UP TO ONE HUNDRED THOUSAND SUBJECT AN EMPLOYER TO CRIMINAL PENA DOLLARS, IN ADDITION TO THE COST OF COMPENSATION PROVIDED FOR IN SECTION DAMAGES AS 3707 OF THE LABOR CODE, INTERES Hazardous Materials Declaration I hereby affirm that the intended occupancy // WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous materials. (Checking "WILL" acknowledges that Sections 25505, 25533 & 25534 of the Health & Safety Code, as well as filing instructions, were made available vou.) I HEREBY CERTIFY THE FOLLOWING: That !! have bead this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for

the owner

inspection. Is this permit

inspection. I am fully authorized b

CITY OF OAKLAND . Community and Economic Development Agency

250 Frank H. Ogawa Piaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Appl# X0900395

Job Site 1532 PERALTA ST

Parcel# 005 -0370-001-00

Descr Excavation for wells on Peralta St

Permit Issued 04/07/09

Allow four (4) wells: one (1) on Peralta; three (3) on 16th

Allow four (4) wells: one (1) on Peralta; three (3) on 16th

Work Type EXCAVATION-PRIVATE P

USA #

Util Co. Job # Util Fund #:

Acctq#:

(415)512-1555

Applcnt Phone# Lic# --License Classes--

Owner TRACY JAMES F

(925)313-5800 485165 C57

Arch/Engr

Contractor GREGG DRILLING & TESTING, INC. X

(415) 512-1555

Agent GOLDEN GATE TANK/ B WHEELER

Applic Addr 950 HOWE RD, MARTINEZ, CA., 94553

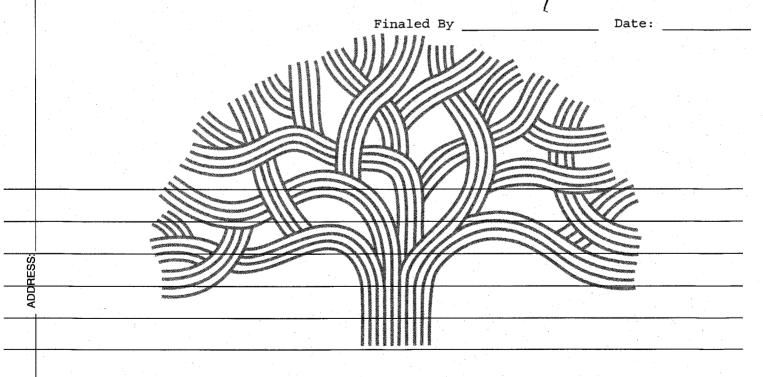
\$419.99 TOTAL FEES PAID AT ISSUANCE

\$66.00 Applic \$300.00 Permit

\$.00 Process

\$34.77 Rec Mgmt

\$.00 Gen Plan


\$.00 Invstq

\$.00 Other

\$19.22 Tech Enh

Permit Issued By ____

Date: ____

CITY OF OAKLAND . Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X0900395 Parcel #: 005 -0370-001-00 Page 2 of 2
Project Address: 1532 PERALTA ST

Licensed Contractors' Declaration
I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration
I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No

for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.	
LenderAddress	
Workers' Compensation Declaration	
I hereby affirm under penalty of perjury one of the following declarations:	
[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.	
[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued	ed
CARRIER:POLICY NO	
[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any marker so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Service 3700 of the Mahor Code, I shall forthwith comply with those provisions.	
WARNING: FAILURE TO SECURE WORKERS! COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO EXIMINAL PENALTIES AND CLVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY IS FEED.	

Hazardous Materials Declaration

I hereby affirm that the intended occupancy // WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous maverials. (Checking "WHLL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

Date

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Appl# OB090252

Job Site 1532 PERALTA ST

Parcel# 005 -0370-001-00

Excavation for wells on Peralta St OB NO FEE per X0900395

Permit Issued 04/07/09

Allow four (4) wells: one (1) on Peralta; three (3) on 16th

Allow four (4) wells: one (1) on Peralta; three (3) on 16th

NON-CONSECUTIVE DAYS

Nbr of days: 3

Effective: 04/09/09

Linear feet: 50

Expiration:

04/13/09

SHORT TERM NON-METERED

Owner TRACY JAMES F

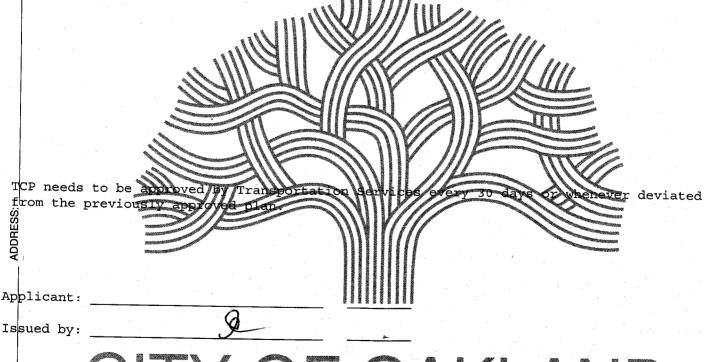
Contractor GREGG DRILLING & TESTING, INC. X

Phone# Lic# --License Classes--(415)512-1555

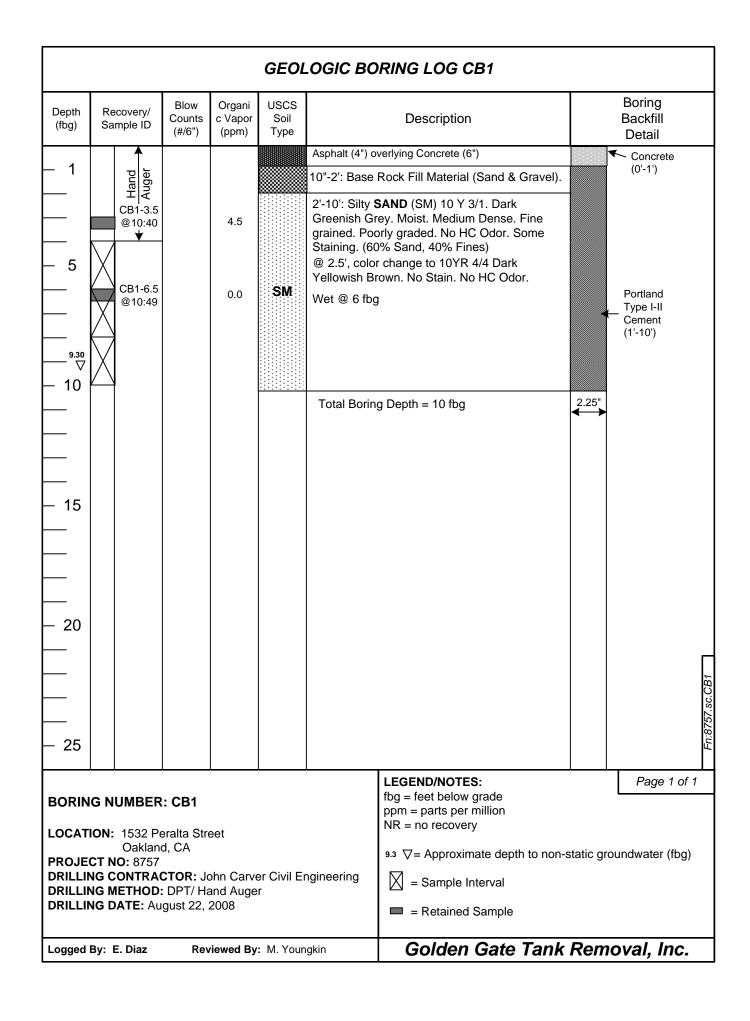
Applent

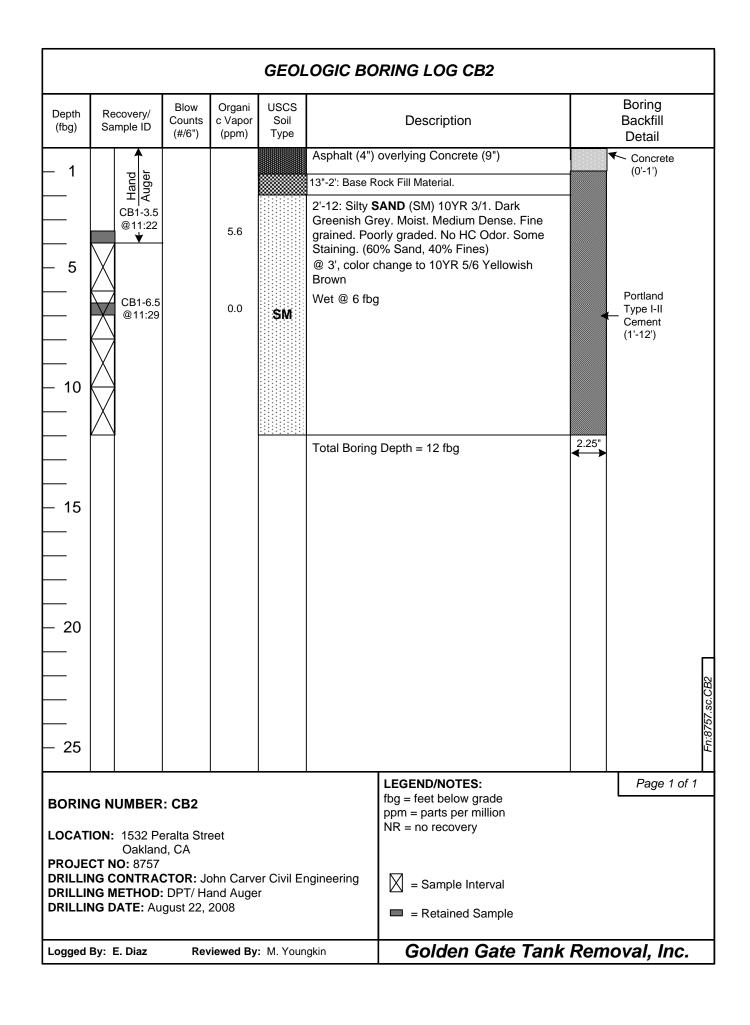
(925)313-5800 485165 C57

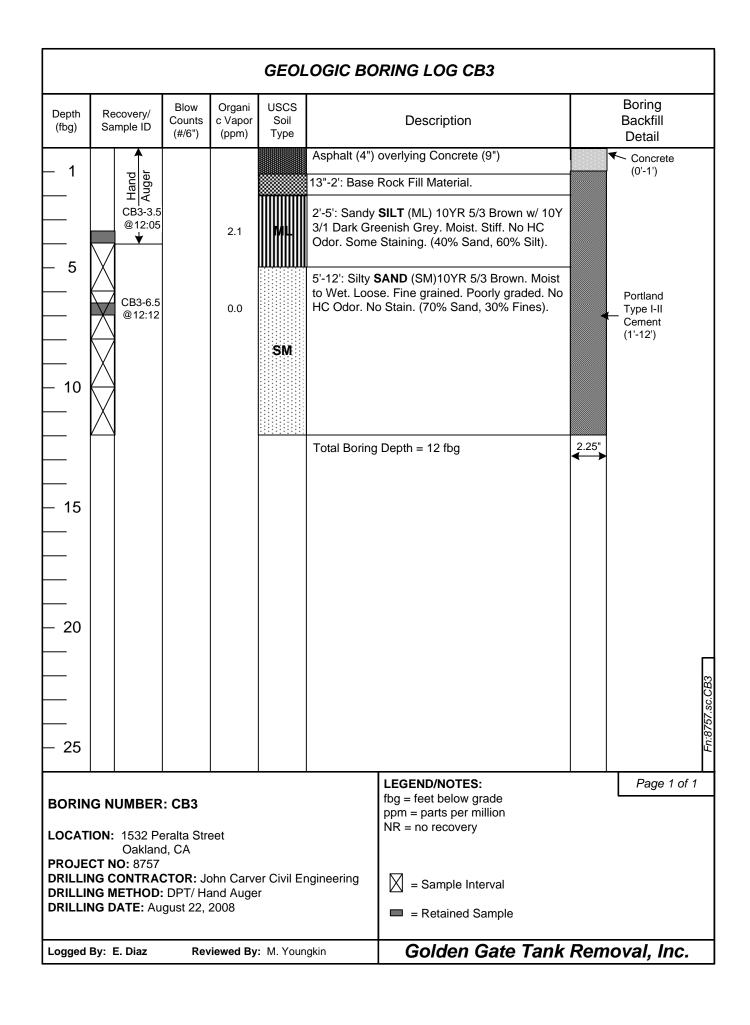
Arch/Engr

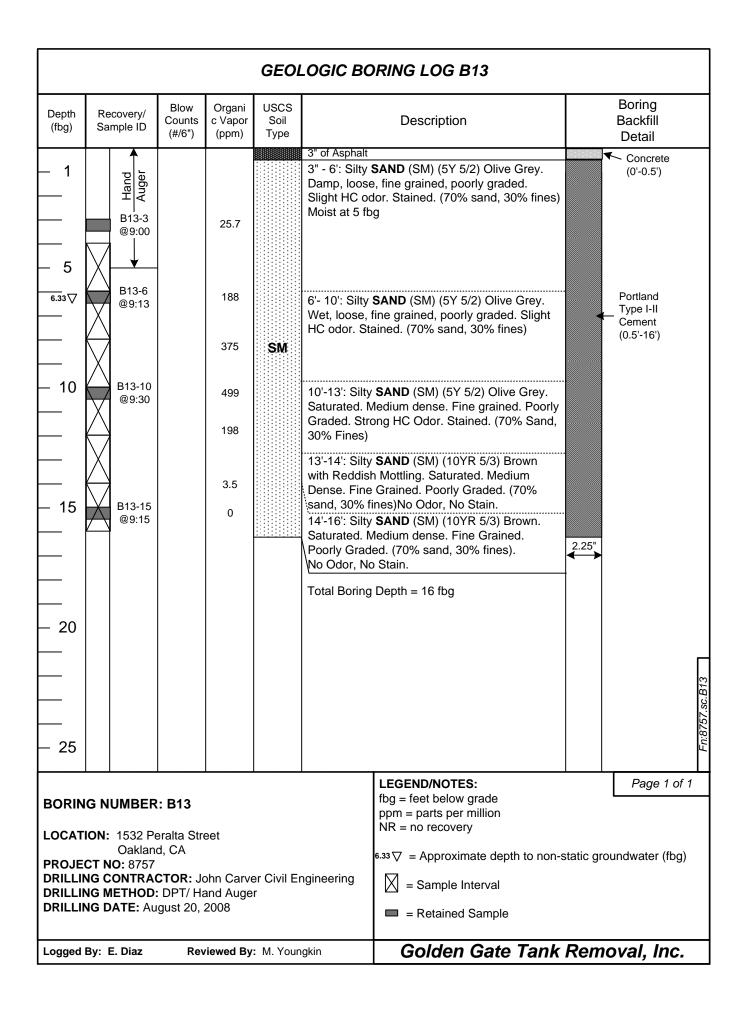

Agent GOLDEN GATE TANK/ B WHEELER

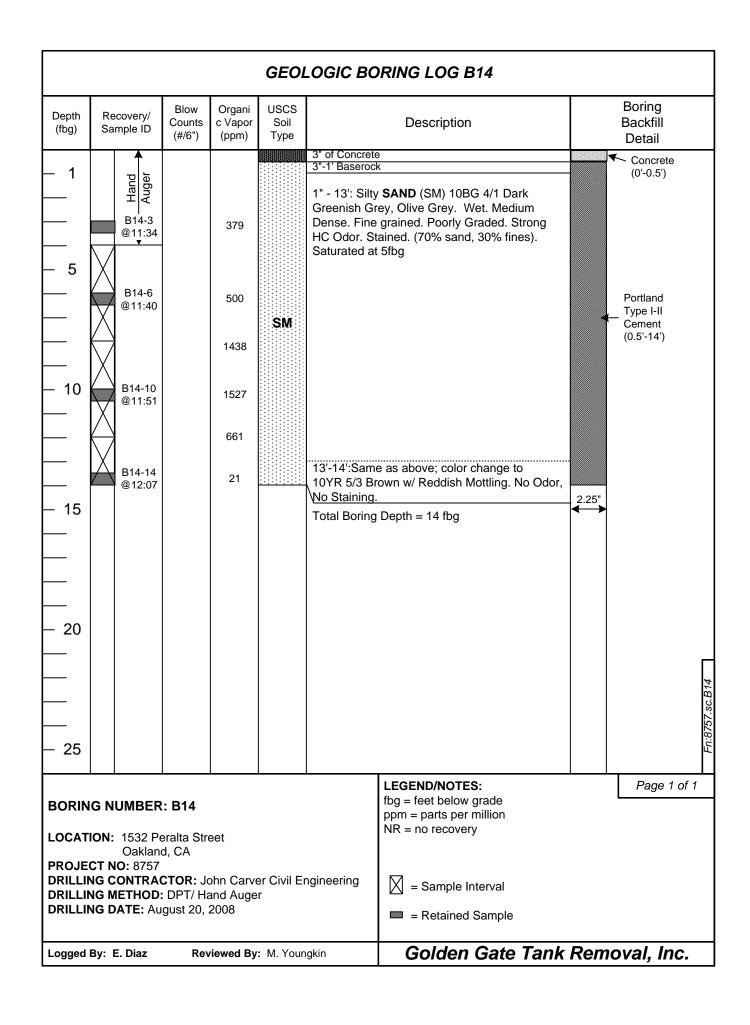
(415)512-1555

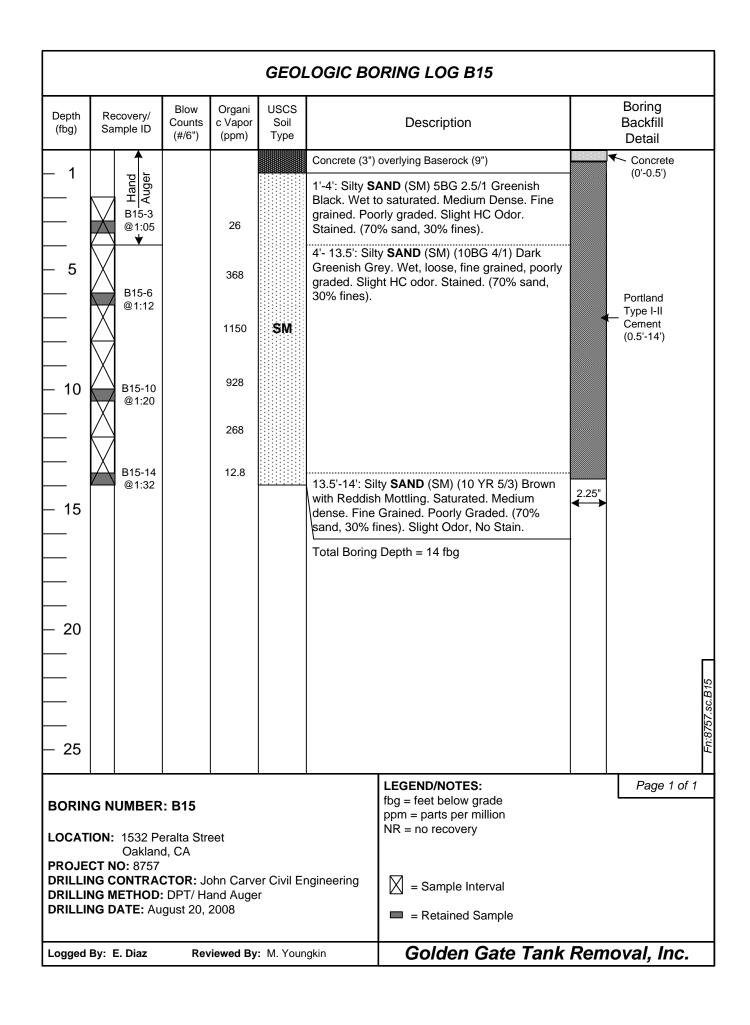

Applic Addr 950 HOWE RD, MARTINEZ, CA., 94553

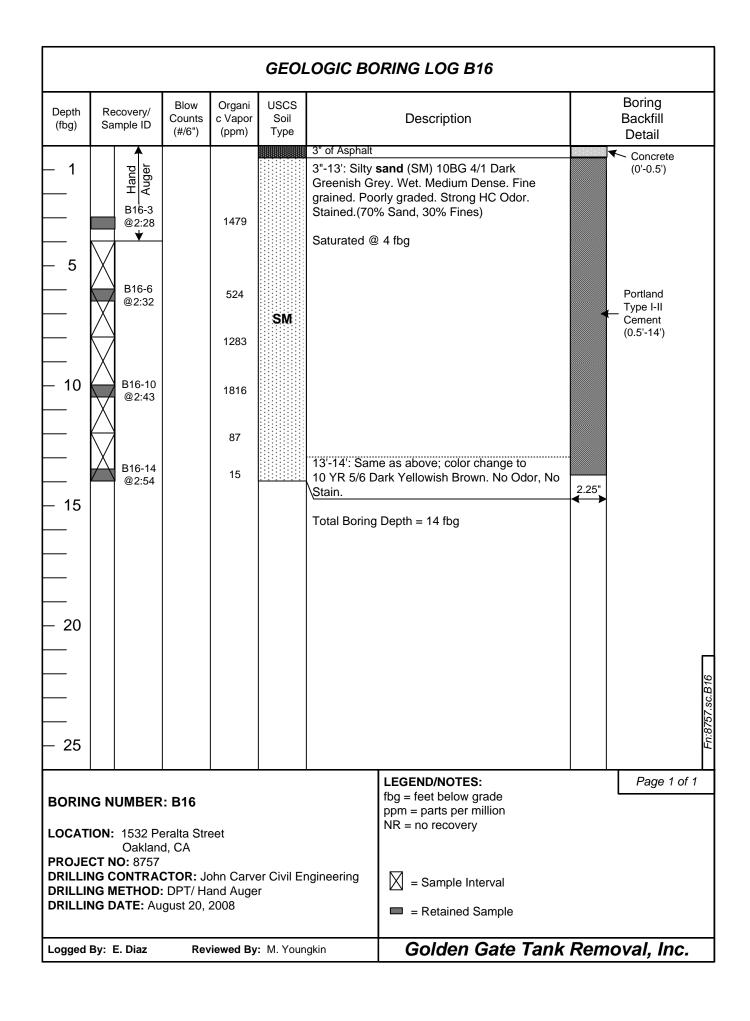

NO FEE PROJECT AT ISSUANCE

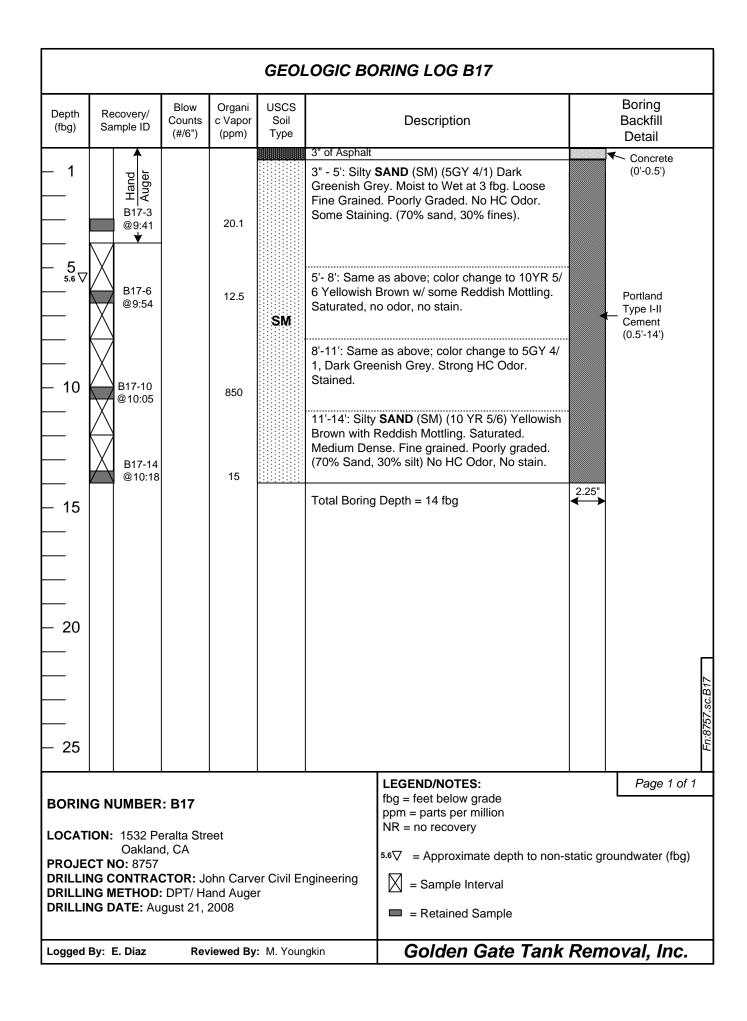

JOB SITE

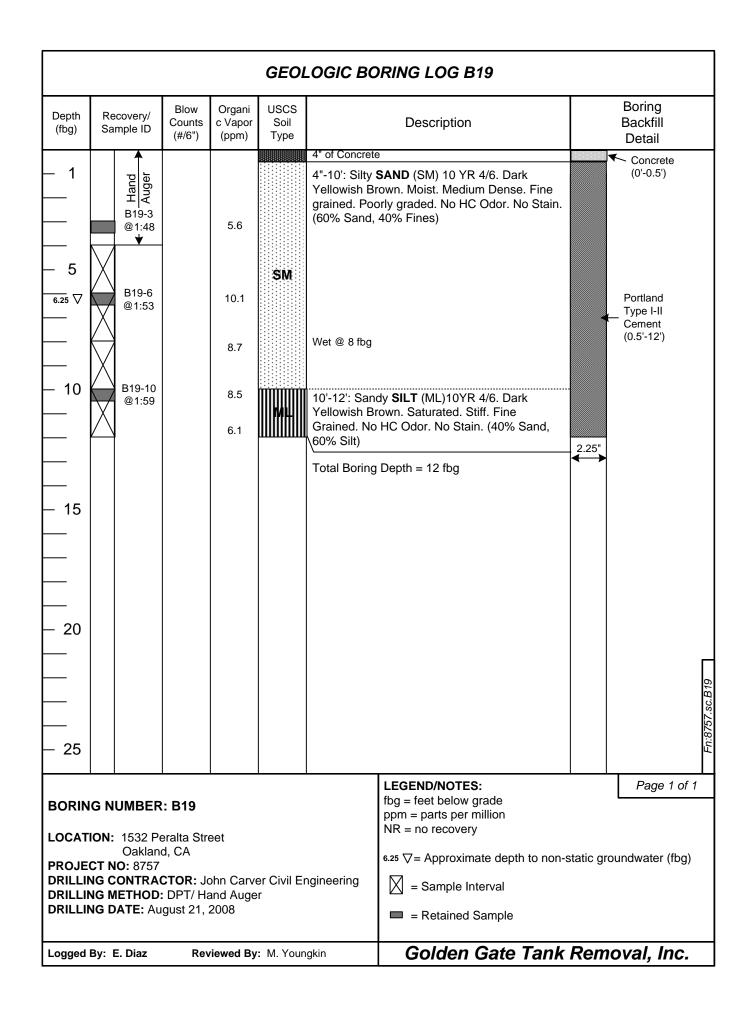


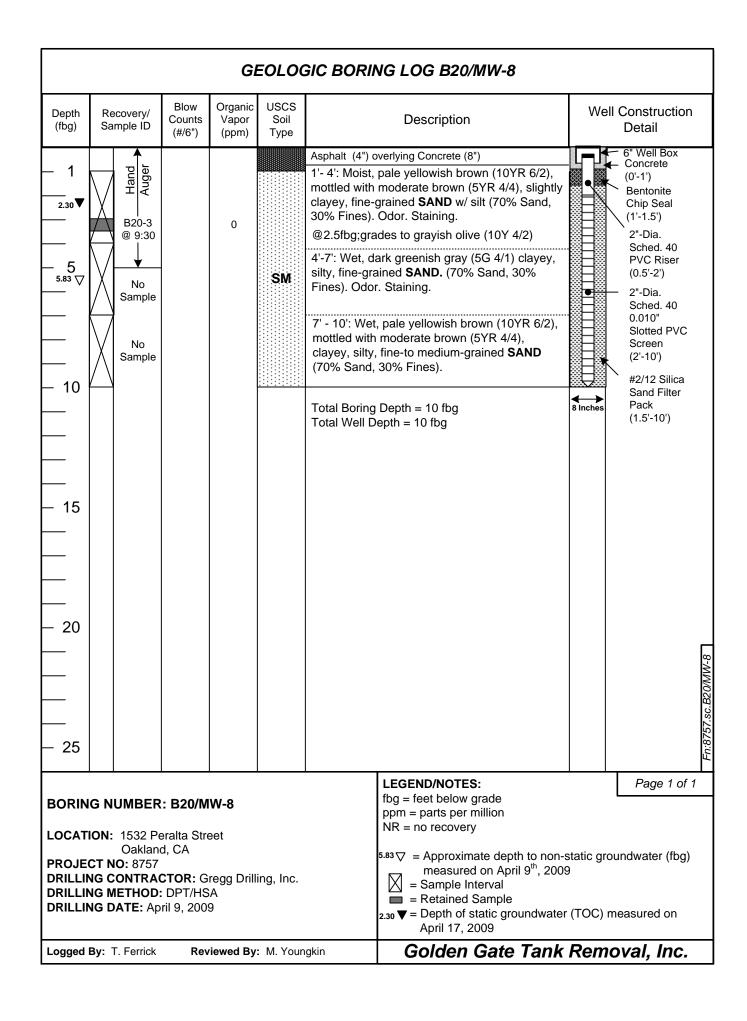

CITY OF OAKLA

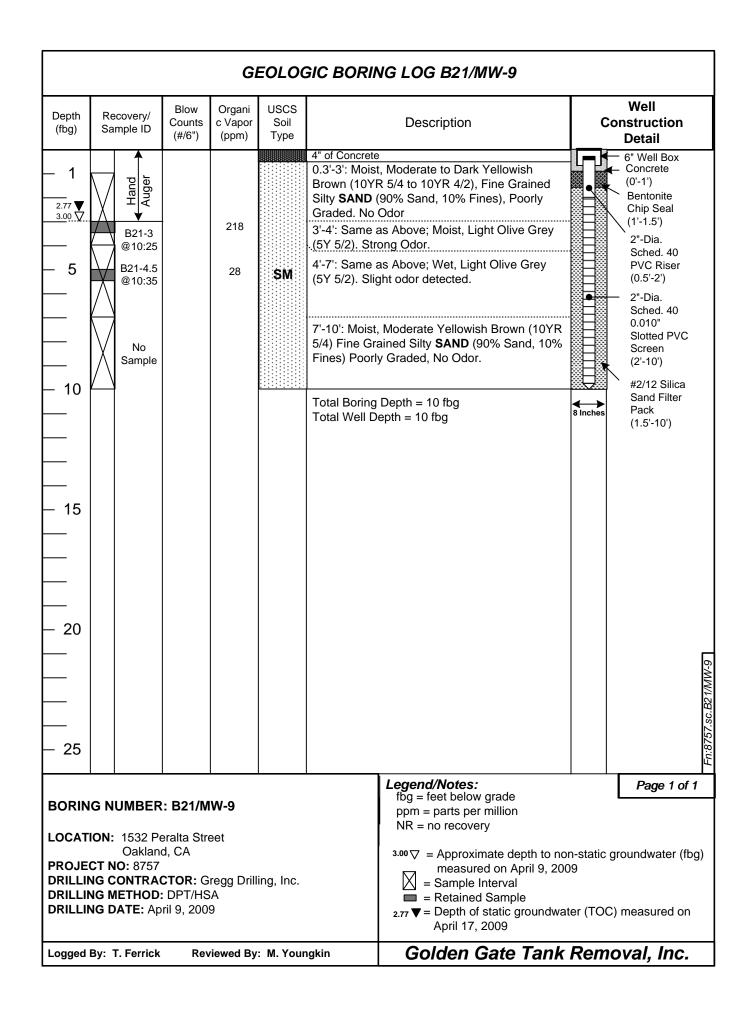


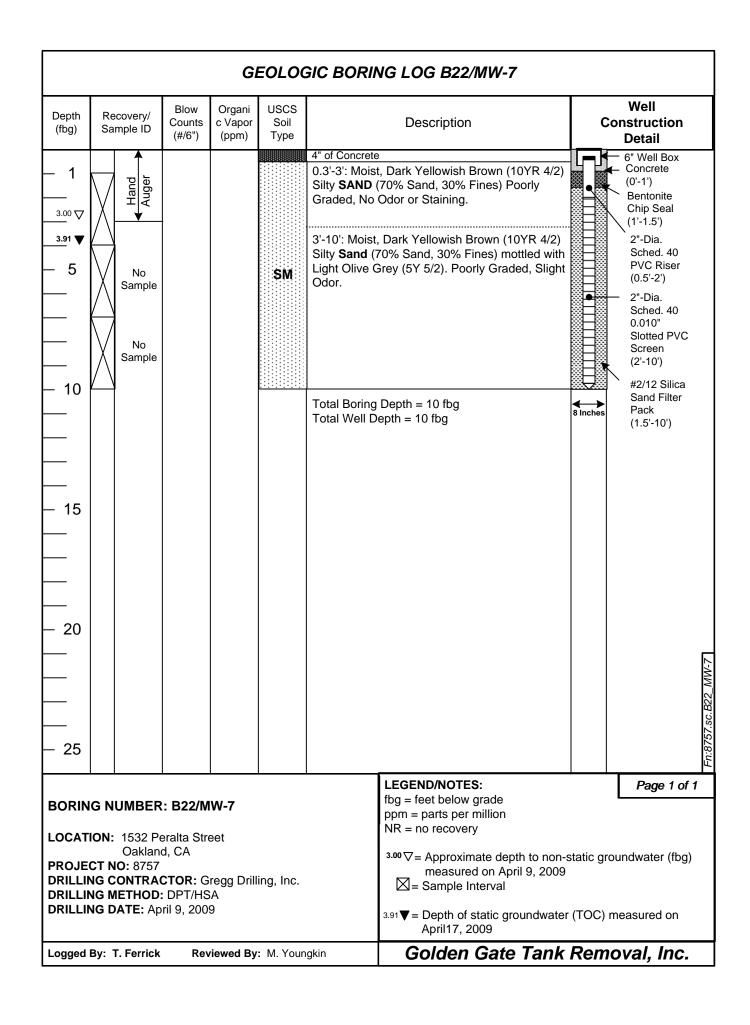












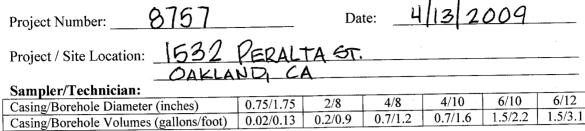
CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)


REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

WELL DEVELOPMENT DATA

Casing/Borehole Volumes (gallons/foot) 0.02/0.13	
Well No. MW - Ч	Well No. MW-8
Well No. MW-9	Well No.
A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Ten (10) Casing or Borehole Volumes (CxEx10) G. 80% Recharge Level [B+(ExC)] Ft.(toc) 2.12 Ft. 1.10 Ft. 2 In.	A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Ten (10) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)] G. 90 Ft.(toc) 2.2b Ft. 7.54 Ft. 2 In. 5.0 Gals.
Start Time: Q:53 Finish Time: Q:08 Purge Event #1 Start Time: 12:25 1000 ml/min Finish Time: 1:15 Purge Volume:	Start Time: O: 10 Finish Time: O: 25

WELL DEVELOPMENT DATA

· · · · · · · · · · · · · · · · · · ·								
Project Number: 8757	Date: 4/13/2009							
Project / Site Location: 1632 PERALTA ST OAKLAND, CA								
Sampler/Technician:	· .							
Casing/Borehole Diameter (inches) 0.75/1.75	2/8 4/8 4/10 6/10 6/12							
Casing/Borehole Volumes (gallons/foot) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1							
Cubing 20,000 (Cubing								
Well No. MW-7	Well No.							
A. Total Well Depth 9.86 Ft.(toc)	A. Total Well Depth Ft.(toc)							
B. Depth To Water 3.83 Ft.	B. Depth To Water Ft.							
C. Water Height (A-B) b.03 Ft.	C. Water Height (A-B) Ft.							
D. Well Casing Diameter In.	D. Well Casing Diameter In.							
E. Casing Volume Constant	E. Casing Volume Constant							
(from above table) <u>0.2</u>	(from above table)							
F. Ten (10) Casing or	F. Ten (10) Casing or							
Borehole Volumes (CxEx10) 12.06 Gals.	Borehole Volumes (CxEx3) Gals.							
G. 80% Recharge Level [B+(ExC)] 5.03 Ft.	G. 80% Recharge Level [B+(ExC)] Ft.							
[B+(ExC)] <u>5.03</u> Ft.	[B+(Exc)]							
Surge Event #1	Surge Event #1							
Start Time: 10:30	Start Time:							
Finish Time: 10:45	Finish Time:							
Purge Event #1	Purge Event #1							
Start Time: 1:49	Start Time:							
Finish Time: 3:04	Finish Time:							
Purge Volume: 12.5 GAL	Purge Volume:							
Purge Event #2	Purge Event #2							
Start Time:	Start Time:							
Finish Time:	Finish Time:							
Purge Volume:	Purge Volume:							
Recharge #1 (After Final Purge)	Recharge #1(After Final Purge)							
Depth to Water: 8.03 7.93	Depth to Water:							
Time Measured: 3:04 3:06	Time Measured:							
Recharge #2 Depth to Water:	Recharge #2 Depth to Water:							
TP' 3.6 1	Time Measured:							
Well Fluid Parameters: 1.2 2.4	Well Fluid Parameters:							
(Casing or Borehole Volumes)	(Casing or Borehole Volumes)							
<u>0</u> <u>2</u> <u>4</u> <u>6</u> <u>8</u> <u>10</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
PH 7,73 7.58 7.48 7.33 7.23 7.21	pH							
T (°F) 14.8 15.5 14.8 15.9 15.5 16.6	T (°F)							
Cond. 997 963 1020 1000 1023 1019	Cond.							
DO Turkidity 2:04 2:19 2:34 2:49 3:04	DO Turbidita							
Turbidity 2.54 2.44 3.64 ORP	Turbidity ORP							
Summary Data:	Summary Data:							
Surge Time: 15 MIN	Surge Time:							
Total Gallons Purged: 12.5 GAL	Total Gallons Purged:							
Purge device: GEO PUMP	Purge device:							
Recharge Rate: 0.05 (ft/min)	Recharge Rate: (ft/min)							
Drums Remaining Onsite: Total Volume:	Gals. (Show Location on Site Plan)							

Page ___ of ___

FLUID-LEVEL MONITORING DATA

Project No:	8	757	,	Date:	4/17/09
Project/Site	e Location: _	1532 f	ERALTA	ST, OA	KLAND
Technician	: TOM	FERR	ICK	Instrument	
Boring/	Depth to	Depth to	Product	Total Well	Comments

Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
5 MW 1	3.83	NO	ND	14.65	a 10:51
MW 2	3.04	NO	ND	14.15	@ 10:37
2 MW 3	3 2.65	ND	ND	14.13	e 10:40
0 MW 4	3.65	NO	ND	11.18	@ 10:58
1 MW S	3.47	ND	ND	5.40	@ 11:02
8 MW 6	0.00	ND	ND	14.49	@ 1:12 (GREAGE ! WELL)
H MM		NO	ND	9.82	@ 10:47
9 MM 8	9	ND	No	9.80	@11:14
3 MW 9		ND	ND	9.97	@ 10:44
		*			
Measure	ments reference	ced to:	TOC	Grade.	Page of

WELL PURGING/SAMPLING DATA

Date: 4/17/09 8767 Project Number: Project / Site Location: 1532 PERALTA ST, OAKLAND Sampler/Technician: T FERRICK Casing/Borehole Diameter (inches) 4/8 4/10 6/10 6/12 0.75/1.75 2/8 Casing/Borehole Volumes (gallons/foot) 0.02/0.13 0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1 Well No. MW-Well No. MW-2 A. Total Well Depth 14.65 Ft.(toc) A. Total Well Depth 4.15 Ft.(toc) B. Depth To Water B. Depth To Water **09** Ft. .83 Ft. C. Water Height (A-B) 10.82 Ft. C. Water Height (A-B) D. Well Casing Diameter 0.75 In. D. Well Casing Diameter E. Casing Volume Constant E. Casing Volume Constant (from above table) 0.02 (from above table) 0.02 F. Three (3) Casing or F. Three (3) Casing or Borehole Volumes (CxEx3) 0.65 Gals. 0.66 Gals. Borehole Volumes (CxEx3) G. 80% Recharge Level G. 80% Recharge Level 331 Ft. 4.04 Ft. [B+(ExC)][B+(ExC)]Purge Event #1 Purge Event #1 Start Time: 11:30 Start Time: 1:25 Finish Time: 1:37 Finish Time: 11:42 Purge Volume: | GAL Purge Volume: \ 6AL Recharge #1 Recharge #1 Depth to Water: 11.80 Depth to Water: Time Measured: Time Measured: 11: 42 Purge Event #2 Purge Event #2 Start Time: Start Time: Finish Time: Finish Time: Purge Volume: Purge Volume: Recharge #2 Recharge #2 Depth to Water: Depth to Water: Time Measured: Time Measured: Well Fluid Parameters: Well Fluid Parameters: 0,22 0.21 (Casing or Borehole Volumes) (Casing or Borehole Volumes) 0.5 0.5 1.5 Time 1): 30 [11:32]1:34 Time |: 25| 1:27 11:36 11:38 11:40 1:29 1:31 1:33 1:35 1:37 рН **6.58** pH 7.02 7.01 6.81 6.84 7.17 7.31 7.27 T(°C) 17.8 17.1 T(°C) 17.多 Cond. 6081617 Cond. **621** DO \overline{DO} ORP ORP **Summary Data: Summary Data:** Total Gallons Purged: | GAL Total Gallons Purged: | GAL Purge Rate (ml/min.): 500 Purge Rate (ml/min.): 600 Purge device: Purge device: Sampling Device: Sampling Device: Sample Collection Time: 1:40 Sample Collection Time: 11:45 Sample Appearance: No SUE EN Sample Appearance: No ODOR SHEEN Total Volume: 25 Gals. (Show Location on Site Plan)

Drums Remaining Onsite:

WELL PURGING/SAMPLING DATA

Date: 4/17/09 Project Number: Project / Site Location: 1532 PERALTA ST, OAKLAND Sampler/Technician: T. FERIZICK 6/12 4/8 4/10 6/10 Casing/Borehole Diameter (inches) 0.75/1.75 2/8 1.5/2.2 1.5/3.1 Casing/Borehole Volumes (gallons/foot) 0.02/0.13 0.2/0.9 0.7/1.2 0.7/1.6 Well No. MW-5 Well No. MW-4 **5.40** Ft.(toc) A. Total Well Depth A. Total Well Depth Ft.(toc) 3.47 Ft. .65 Ft. 53 Ft. B. Depth To Water B. Depth To Water 1.93 Ft. C. Water Height (A-B) C. Water Height (A-B) D. Well Casing Diameter 0.75 In. D. Well Casing Diameter E. Casing Volume Constant E. Casing Volume Constant 0.02 (from above table) (from above table) F. Three (3) Casing or F. Three (3) Casing or 0.2 Gals. 0.45 Gals. Borehole Volumes (CxEx3) Borehole Volumes (CxEx3) G. 80% Recharge Level G. 80% Recharge Level 3.49 Et [B+(ExC)][B+(ExC)]Purge Event #1 Purge Event #1 Start Time: 2:22 Start Time: 1:63 Finish Time: 2:28 Finish Time: 2:05 Purge Volume: | 641 Purge Volume: Recharge #1 Recharge #1 Depth to Water: 3.50 Depth to Water: Time Measured: 2:39 Time Measured: 2:15 Purge Event #2 Purge Event #2 Start Time: Start Time: Finish Time: Finish Time: Purge Volume: Purge Volume: Recharge #2 Recharge #2 Depth to Water: Depth to Water: Time Measured: Time Measured: Well Fluid Parameters: Well Fluid Parameters: 0,00 0.15 (Casing or Borehole Volumes) (Casing or Borehole Volumes) <u>2.5</u> Time 1:53 1:55 1:57 1:59 2:01 pH 803 7.61 7.30 7.35 7.31 T(°C) 16.9 16.3 16.1 16.2 16.1 Time 2:22 2:23 pH 4.52 4.53 T(°C) | 7.1 | 17.2 2:24 2:25 2:26 2:27 2:28 4.69 4.70 9.70 9.71 9.70 Cond. 613 528 510 DO DO ORP ORP **Summary Data: Summary Data:** Total Gallons Purged: GAL Total Gallons Purged: | GAL Purge Rate (ml/min.): 400 Purge Rate (ml/min.): 400 Purge device: Purge device: Sampling Device: 3 Sampling Device: Sample Collection Time: 2:35 Sample Collection Time: 24 Sample Appearance: NO SHEEN OPOR Sample Appearance: SHEEN ODOR Drums Remaining Onsite: Total Volume: 25 Gals. (Show Location on Site Plan)

WELL PURGING/SAMPLING DATA

Date: 417/09 Project Number: Project / Site Location: 1632 REPALTA OF OAKLAND Sampler/Technician: T. FEIZIZI CK Casing/Borehole Diameter (inches) 2/8 4/8 4/10 6/10 6/12 0.75/1.75 Casing/Borehole Volumes (gallons/foot) 0.02/0.13 0.2/0.9 0.7/1.2 0.7/1.61.5/2.2 1.5/3.1Well No. MW - 7 Well No. MW-6 44 Ft.(toc) .82 Ft.(toc) A. Total Well Depth A. Total Well Depth B. Depth To Water B. Depth To Water 3.20 Ft. 11.29 Ft. C. Water Height (A-B) C. Water Height (A-B) D. Well Casing Diameter 0.75 In. D. Well Casing Diameter E. Casing Volume Constant E. Casing Volume Constant 0.02 (from above table) (from above table) F. Three (3) Casing or F. Three (3) Casing or **0.66** Gals. 3.5 Gals. Borehole Volumes (CxEx3) Borehole Volumes (CxEx3) G. 80% Recharge Level G. 80% Recharge Level **5.04** Ft. [B+(ExC)][B+(ExC)]Purge Event #1 Purge Event #1 Start Time: **2:50** Start Time: 12:53 Finish Time: 3:02 Finish Time: 1:05 Purge Volume: 3.6 GAL Purge Volume: Recharge #1 Recharge #1 Depth to Water: Depth to Water: Time Measured: Time Measured: Purge Event #2 Purge Event #2 Start Time: Start Time: Finish Time: Finish Time: Purge Volume: Purge Volume: Recharge #2 Recharge #2 Depth to Water: Depth to Water: Time Measured: Time Measured: 0.22 Well Fluid Parameters: 1,8 Well Fluid Parameters: (Casing or Borehole Volumes) (Casing or Borehole Volumes) Time | 2:53 | 2:55 | 2:57 | 12:59 | 1:01 | 1:03 | 1:05 ph 8.00 7.62 | 7.60 7.59 | 7.54 7.60 7.44 | 7.6 Cond. 876 777 772 801 DO $\overline{\text{DO}}$ ORP ORP **Summary Data: Summary Data:** Total Gallons Purged: | SAL Total Gallons Purged: 3.6 GAL Purge Rate (ml/min.): Purge Rate (ml/min.): 400 Purge device: Purge device: Sampling Device: Sampling Device: Sample Collection Time: 3:10 Sample Collection Time: Sample Appearance: SHEEN/ SHEHT O TOPE Sample Appearance: 0002/54

Total Volume: 25 Gals. (Show Location on Site Plan)

Drums Remaining Onsite: __

WELL PURGING/SAMPLING DATA

Date: 41709 Project Number: <u>8757</u> Project / Site Location: 1532 PERALTA ST, OAKLAND Sampler/Technician: T. FERRICK 4/10 6/10 6/12 4/8 Casing/Borehole Diameter (inches) 0.75/1.75 2/8 1.5/3.1 1.5/2.2 0.7/1.6 Casing/Borehole Volumes (gallons/foot) 0.02/0.13 0.2/0.9 0.7/1.2 Well No. MW-9 Well No. MW-8 A. Total Well Depth 7 Ft.(toc) **.90** Ft.(toc) A. Total Well Depth B. Depth To Water B. Depth To Water C. Water Height (A-B) C. Water Height (A-B) **7.60** Ft. D. Well Casing Diameter D. Well Casing Diameter E. Casing Volume Constant E. Casing Volume Constant (from above table) (from above table) F. Three (3) Casing or F. Three (3) Casing or 4.5 Gals. 4.32 Gals. Borehole Volumes (CxEx3) Borehole Volumes (CxEx3) G. 80% Recharge Level G. 80% Recharge Level 4.17 Ft. [B+(ExC)][B+(ExC)]Purge Event #1 Purge Event #1 Start Time: 12:06 Start Time: 3:15 Finish Time: 12:30 Finish Time: Purge Volume: 1.5 SAL Purge Volume: 5 6AL Recharge #1 Recharge #1 Depth to Water: 8.95 | 8.13 Depth to Water: Time Measured: 12: 30 12: 32 Time Measured: Purge Event #2 Purge Event #2 Start Time: Start Time: Finish Time: Finish Time: Purge Volume: Purge Volume: Recharge #2 Recharge #2 Depth to Water: Depth to Water: Time Measured: Time Measured: Well Fluid Parameters: Well Fluid Parameters: 1.5 (Casing or Borehole Volumes) (Casing or Borehole Volumes) 0.5 1.5 Time 12:06 | 12:10 | 12:14 | 12:18 | 12:22 | 12:26 pH 7:37 7.19 7.24 7.19 7.14 7:19 Time 3:18 | 9:21 | 3:24 | 3:27 | 3:30 | 3:33 | 3:36 | 7.90 | 7.86 | 7.52 | 7.33 | 7.26 | 7.22 | 7.16 7.37 7.19 0)19.4 18.8 T (°C) 19.4 T(°C) 19.8 18.3 DO DO ORP **ORP** Summary Data: **Summary Data:** Total Gallons Purged: 1.5 OAL Total Gallons Purged: SGAL Purge Rate (ml/min.): 800 Purge Rate (ml/min.): 700 Purge device: Purge device: Sampling Device: Sampling Device: Sample Collection Time: 12:35 Sample Collection Time: 3:40 Sample Appearance: NO ODOR! NO SHEEN Sample Appearance: ODOR SHEEN

Drums Remaining Onsite: Total Vo Total Volume: 25 Gals. (Show Location on Site Plan)

Page 4 of 4

Drums Remaining Onsite:

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8015B

 Matrix:
 Soil
 Batch#:
 141833

 Units:
 mg/Kg
 Received:
 08/25/08

Units: mg/Kg Received: 08/25 Basis: as received

Field ID: B13-3 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/20/08
Lab ID: 205565-001 Analyzed: 08/26/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 0.92

Surrogate%RECLimitsTrifluorotoluene (FID)11055-151Bromofluorobenzene (FID)12655-153

Field ID: B13-6 Diln Fac: 20.00 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-002 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 720 Y
 20

Surrogate %REC Limits
Trifluorotoluene (FID) 207 * 55-151
Bromofluorobenzene (FID) 260 * 55-153

Field ID: B14-3 Diln Fac: 50.00 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-005 Analyzed: 08/27/08

Analyte Result RL
Gasoline C7-C12 980 Y 50

Surrogate %REC Limits
Trifluorotoluene (FID) 146 55-151
Bromofluorobenzene (FID) 159 * 55-153

Field ID: B14-6 Diln Fac: 50.00 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-006 Analyzed: 08/27/08

Analyte Result RL
Gasoline C7-C12 230 Y 50

Surrogate%RECLimitsTrifluorotoluene (FID)11155-151Bromofluorobenzene (FID)12155-153

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8015B

 Matrix:
 Soil
 Batch#:
 141833

 Units:
 mg/Kg
 Received:
 08/25/08

Basis: as received

Field ID: B15-3 Diln Fac: 100.0 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-009 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 1,600 Y
 100

Surrogate%RECLimitsTrifluorotoluene (FID)14755-151Bromofluorobenzene (FID)158 * 55-153

Field ID: B15-6 Diln Fac: 250.0 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-010 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 4,100
 250

Surrogate %REC Limits
Trifluorotoluene (FID) 136 55-151
Bromofluorobenzene (FID) 137 55-153

Field ID: B16-3 Diln Fac: 50.00 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-013 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 970 Y
 50

Surrogate%RECLimitsTrifluorotoluene (FID)12755-151Bromofluorobenzene (FID)155 * 55-153

Field ID: B16-6 Diln Fac: 200.0 Type: SAMPLE Sampled: 08/20/08 Lab ID: 205565-014 Analyzed: 08/28/08

AnalyteResultRLGasoline C7-C124,100200

Surrogate %REC Limits
Trifluorotoluene (FID) 173 * 55-151
Bromofluorobenzene (FID) 168 * 55-153

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8015B

 Matrix:
 Soil
 Batch#:
 141833

 Units:
 mg/Kg
 Received:
 08/25/08

Basis: as received

Field ID: B17-3 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/21/08
Lab ID: 205565-017 Analyzed: 08/27/08

Analyte Result RL
Gasoline C7-C12 ND 0.98

Surrogate%RECLimitsTrifluorotoluene (FID)10955-151Bromofluorobenzene (FID)11955-153

Field ID: B17-6 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/21/08
Lab ID: 205565-018 Analyzed: 08/26/08

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 110 55-151
Bromofluorobenzene (FID) 119 55-153

Field ID: B18-3 Diln Fac: 1.000 Type: SAMPLE Sampled: 08/21/08 Lab ID: 205565-021 Analyzed: 08/26/08

Analyte Result RL
Gasoline C7-C12 ND 0.96

Surrogate%RECLimitsTrifluorotoluene (FID)10855-151Bromofluorobenzene (FID)11755-153

Field ID: B18-6 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/21/08
Lab ID: 205565-022 Analyzed: 08/26/08

AnalyteResultRLGasoline C7-C12ND1.0

Surrogate%RECLimitsTrifluorotoluene (FID)10755-151Bromofluorobenzene (FID)11755-153

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8015B

 Matrix:
 Soil
 Batch#:
 141833

 Units:
 mg/Kg
 Received:
 08/25/08

Basis: as received

Field ID: B19-3 Diln Fac: 1.000 Type: SAMPLE Sampled: 08/21/08 Lab ID: 205565-024 Analyzed: 08/26/08

Lab 1D. 205565-024 Analyzed. 08/26/08

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)11155-151Bromofluorobenzene (FID)11655-153

Field ID: B19-6 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/21/08
Lab ID: 205565-025 Analyzed: 08/27/08

Analyte Result RL
Gasoline C7-C12 ND 1.1

Surrogate%RECLimitsTrifluorotoluene (FID)10855-151Bromofluorobenzene (FID)11555-153

Field ID: CB1-3.5 Diln Fac: 1.000 Type: SAMPLE Sampled: 08/22/08 Lab ID: 205565-027 Analyzed: 08/26/08

Analyte Result RL
Gasoline C7-C12 ND 0.93

Surrogate%RECLimitsTrifluorotoluene (FID)10755-151Bromofluorobenzene (FID)11655-153

Field ID: CB1-6.5 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/22/08
Lab ID: 205565-028 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)11155-151Bromofluorobenzene (FID)11455-153

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: EPA 5030B Project#: 8757 Analysis: EPA 8015B

 Matrix:
 Soil
 Batch#:
 141833

 Units:
 mg/Kg
 Received:
 08/25/08

Basis: as received

Field ID: CB2-3.5 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/22/08
Lab ID: 205565-029 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 0.94

Surrogate%RECLimitsTrifluorotoluene (FID)10855-151Bromofluorobenzene (FID)11455-153

Field ID: CB2-6.5 Diln Fac: 1.000 Type: SAMPLE Sampled: 08/22/08 Lab ID: 205565-030 Analyzed: 08/27/08

Analyte Result RL
Gasoline C7-C12 ND 1.1

Surrogate%RECLimitsTrifluorotoluene (FID)11055-151Bromofluorobenzene (FID)12055-153

Field ID: CB3-3.5 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/22/08
Lab ID: 205565-031 Analyzed: 08/27/08

Analyte Result RL
Gasoline C7-C12 ND 0.97

Surrogate %REC Limits
Trifluorotoluene (FID) 108 55-151
Bromofluorobenzene (FID) 118 55-153

Field ID: CB3-6.5 Diln Fac: 1.000
Type: SAMPLE Sampled: 08/22/08
Lab ID: 205565-032 Analyzed: 08/27/08

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 1.1

Surrogate%RECLimitsTrifluorotoluene (FID)10855-151Bromofluorobenzene (FID)11455-153

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Volatile Hydrocarbons Location: 1532 Peralta St. Osagie Property Prep: EPA 5030B Lab #: 205565 Client: Golden Gate Tank Removal Analysis: EPA 8015B Batch#: 14 Project#: 8757 141833 Matrix: Soil mg/Kg Received: 08/25/08 Units: Basis: as received

BLANK Diln Fac: 1.000 Type: Lab ID: QC457426 Analyzed: 08/26/08

Analyte	Result	RL	
Gasoline C7-C12	ND	1.0	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	105	55-151
Bromofluorobenzene (FID)	113	55-153

^{*=} Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Batch QC Report

Total Volatile Hydrocarbons						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	. 5030B			
Project#:	Project#: 8757 Analysis: EPA 8015B					
Type:	LCS	Basis:	as received			
Lab ID:	QC457427	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141833			
Units:	mg/Kg	Analyzed:	08/26/08			

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	5.189	104	78-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	120	55-151
Bromofluorobenzene (FID)	116	55-153

Page 1 of 1 3.0

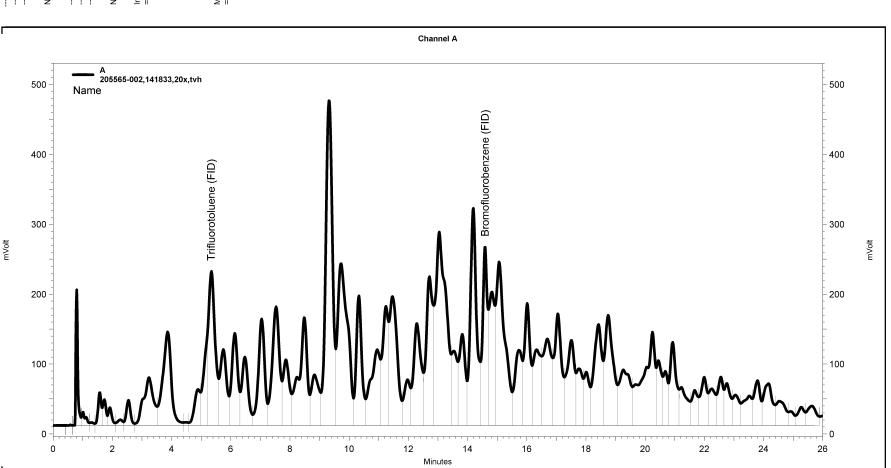
Batch QC Report

Total Volatile Hydrocarbons						
Lab #:	205565	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: EPA 5030B				
Project#:	8757	Analysis: EPA 8015B				
Field ID:	CB1-3.5	Diln Fac: 1.000				
MSS Lab ID:	205565-027	Batch#: 141833				
Matrix:	Soil	Sampled: 08/22/08				
Units:	mg/Kg	Received: 08/25/08				
Basis:	as received	Analyzed: 08/26/08				

Type: MS Lab ID: QC457428

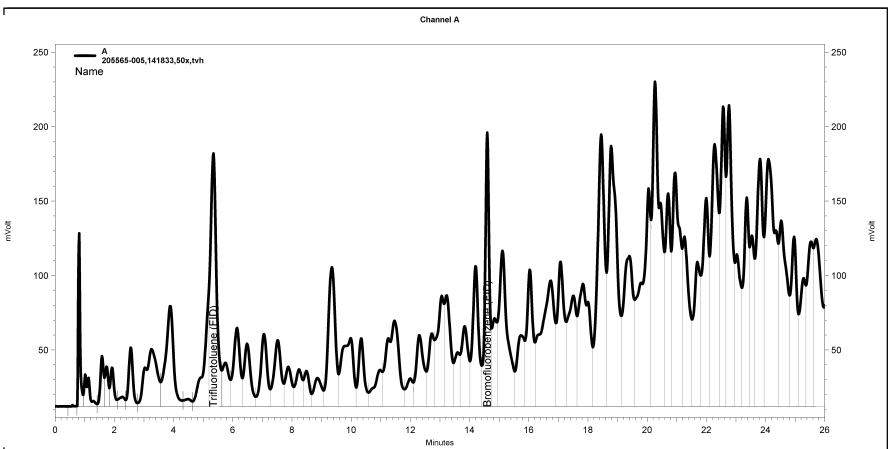
Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.09528	10.64	10.62	99	29-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	136	55-151
Bromofluorobenzene (FID)	124	55-153


Type: MSD Lab ID: QC457429

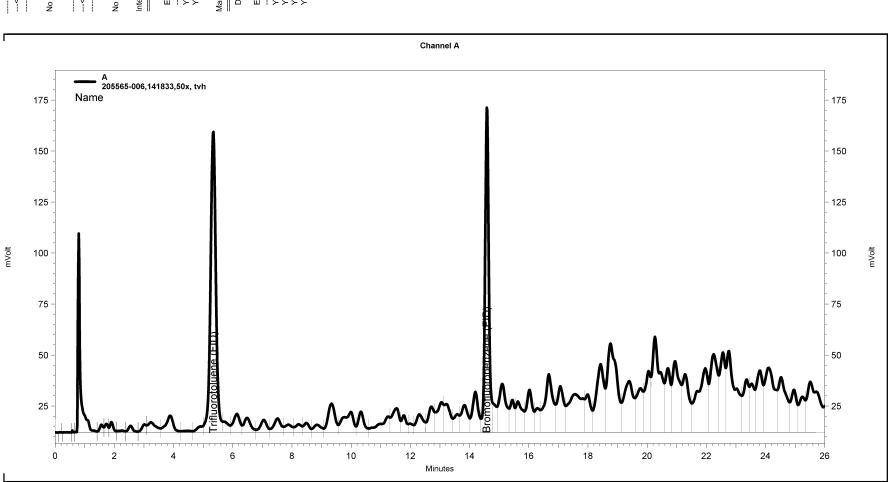
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.42	10.07	96	29-120	3	34

Surrogate	%REC	Limits
Trifluorotoluene (FID)	134	55-151
Bromofluorobenzene (FID)	121	55-153


Sequence File: NLims\gdrive\ezchrom\Projects\GC07\Sequence\239.seq
Sample Name: 205565-002,141833,20x,tvh
Data File: \Lims\gdrive\ezchrom\Projects\GC07\Data239_050
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})

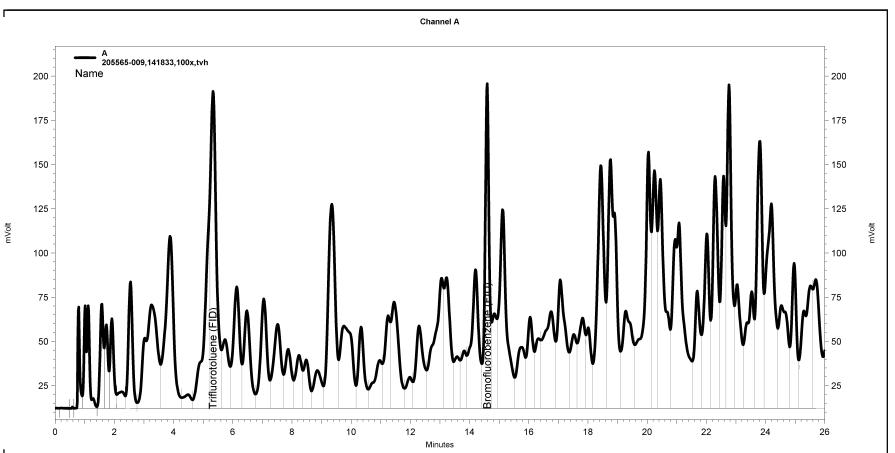
Value Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\239_050 \\Start Stop \\(\text{Minutes} \) \text{Value} \(\text{Minutes} \) \text{Value} \(\text{Value} \) 0 Stop (Minutes) (Minutes) 0 26.017 0 0 0.2 Software Version 3.1.7 Run Date: 8/27/2008 4:10:02 PM Analysis Date: 8/28/2008 7:12:11 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a 100 0 Lowest Point Horizontal Baseli Split Peak 5.217 Start ---< General Method Parameters >-No items selected for this section No items selected for this section Manual Integration Fixes Enabled Event Type Width Threshold Integration Events

Software Version 3.1.7 Run Date: 8/27/2008 4:46:46 PM Analysis Date: 8/28/2008 7:12:16 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a


< General Method Parameters >-	neters >		
No items selected for this section	section		
< A >			
No items selected for this section	section		
Integration Events			
Enabled Event Type	Start St (Min	Stop (Minutes) (Minutes)	Value
Yes Width Yes Threshold	0	0 0.2 0 50	
Manual Integration Fixes			
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\239_051	szchrom\Project	s\GC07\Data\239	9_051
Enabled Event Type	otari (Mint	Stop (Minutes) (Minutes)	Value
Yes Lowest Point Horizontal Baseli Yes Split Peak 5.20	izontal Baseli 5.205	0 26.017 0 0	0

Sequence File: NLims\gdrive\ezchrom\Projects\GC07\Sequence\239.seq
Sample Name: 205565-006,141833,50x, tvh
Data File: \Lims\gdrive\ezchrom\Projects\GC07\Data239_052
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})

Software Version 3.1.7 Run Date: 8/27/2008 5:23:29 PM Analysis Date: 8/28/2008 7:12:21 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a


Value Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\239_052 Start Stop Start Stop (Minutes) \\ Value 26.017 0 0 0 Stop (Minutes) (Minutes) 0.2 0.601 0 0 Lowest Point Horizontal Baseli 0 Split Peak 5.004 Split Peak 5.647 Split Peak 14.773 0 Start ---< General Method Parameters >-No items selected for this section No items selected for this section Manual Integration Fixes Enabled Event Type Width Threshold Integration Events

Sequence File: NLims\gdrive\ezchrom\Projects\GC07\Sequence\239.seq
Sample Name: 205565-009,141833,100x,tvh
Data File: \Lims\gdrive\ezchrom\Projects\GC07\Data239_055
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})

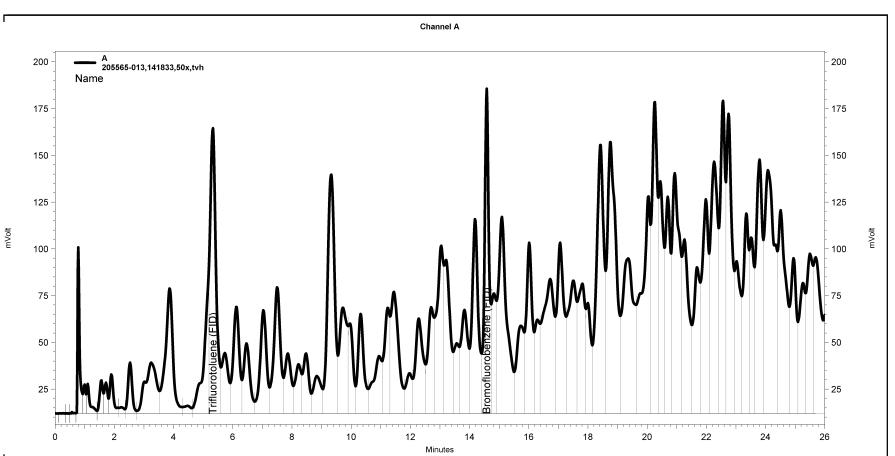
Software Version 3.1.7 Run Date: 8/27/2008 7:13:59 PM Analysis Date: 8/28/2008 7:12:33 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

Value 0 Stop (Minutes) (Minutes) 0 26.017 0 0 0.2 100 0 0 Lowest Point Horizontal Baseli Split Peak 5.225 Start ---< General Method Parameters >-No items selected for this section No items selected for this section Manual Integration Fixes Enabled Event Type Width Threshold Integration Events

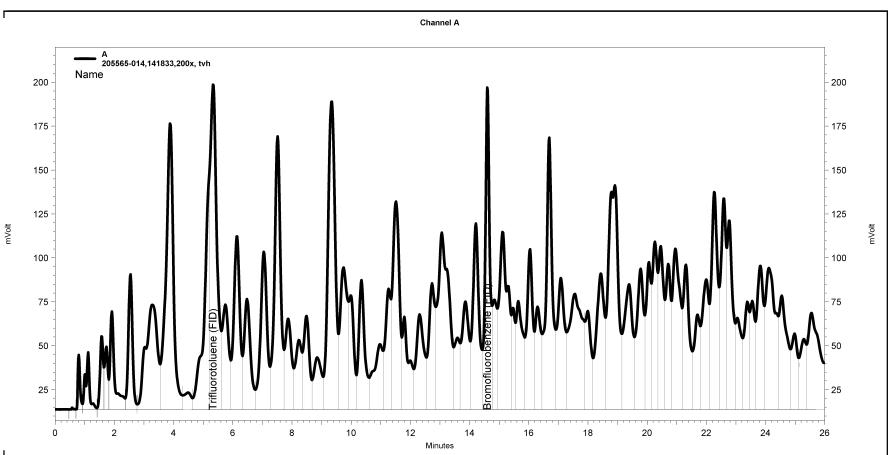


Tompkins Ltd.

Sequence File: NLims\gdrive\ezchrom\Projects\GC07\Sequence\239.seq
Sample Name: 205565-010.141833,250x,tvh
Data File: \Lims\gdrive\ezchrom\Projects\GC07\Data239_056
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})
Method Name: \Lims\gdrive\ezchrom\Projects\GC07\Method\that{k})


Software Version 3.1.7 Run Date: 8/27/2008 7:50:40 PM Analysis Date: 8/28/2008 7:12:38 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

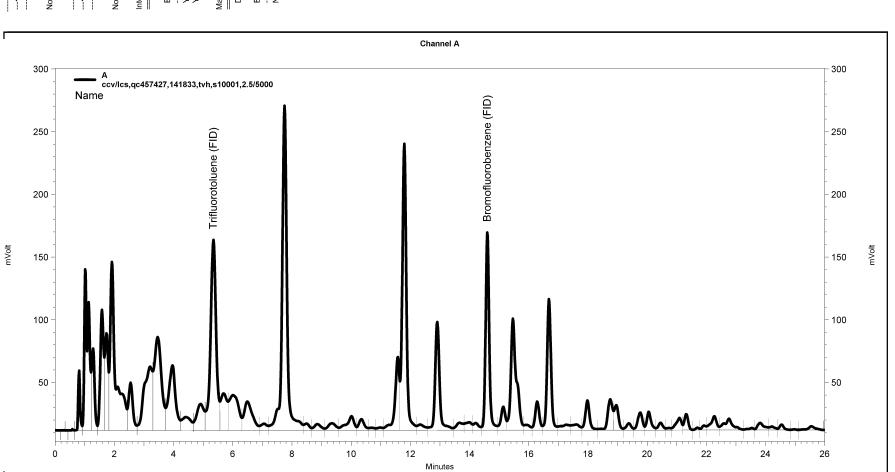
Value Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\239_056 Start Stop \\(\text{Storp}\) Enabled Event Type \(\text{(Minutes) (Minutes) Value}\) 0 Stop (Minutes) (Minutes) 26.017 0 0.2 0 000 100 Lowest Point Horizontal Baseli Split Peak 5.2 Split Peak 14.741 0 Start ---< General Method Parameters >-No items selected for this section No items selected for this section Manual Integration Fixes Enabled Event Type Width Threshold Integration Events


Software Version 3.1.7 Run Date: 8/27/2008 6:00:21 PM Analysis Date: 8/28/2008 7:12:25 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

Value Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\239_053 \\Start Stop \\(\text{Minutes} \) \ \text{Enabled Event Type} \\ \text{(Minutes) (Minutes) Value} \) 0 Stop (Minutes) (Minutes) 0 26.017 0 0 0.2 100 0 Lowest Point Horizontal Baseli Split Peak 5.202 Start ---< General Method Parameters >-No items selected for this section No items selected for this section Manual Integration Fixes Enabled Event Type Width Threshold Integration Events

Software Version 3.1.7
Run Date: 8/28/2008 7:51:59 AM
Analysis Date: 8/28/2008 8:22:42 AM
Sample Amount: 1 Multiplier: 1
Vial & pH or Core ID: a

No items selected for this section	< A >	Start Stop Start Stop Winutes Value Winutes Value Winutes Value Ves Width 0 0.2 Ves Threshold 0 0.50 Start Stop Start Start Stop Value Val	Manual Integration Fixes Total File: \(\text{Lims\gardrive\)}\) Start Stop Enabled Event Type \(\text{(Minutes)}\) Value	Lowest Point Horizontal Baseli 0 26.017 0 Split Peak 5.216 0 0
s selected fo	s selected fo	ed Event Ty Width Threshold	Integration F	Lowest Po Split Peak
No item	No items	Enabl Yes Yes	Manual ———— Data I Enabl	Yes



& Tompkins Ltd.

Sequence File: NLims\gdrive\ezchrom\Projects\GC07\Sequence\239.seq
Sample Name: ccv\lcs,qc457427,141833,tvh,s10001,2.5\5000
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data239_008
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\that{k})
Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\that{k}\that{k})
Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\that{k}\that{k}\that{k}\that{k} = 24.met

Software Version 3.1.7
Run Date: 8/26/2008 2:09:33 PM
Analysis Date: 8/27/2008 7:35:09 AM
Sample Amount: 1 Multiplier: 1
Vial & pH or Core ID: {Data Description}

Value Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\239_008 \\ Start Stop \\ Enabled Event Type \\ \text{(Minutes) (Minutes) Value} Stop (Minutes) (Minutes) 0.2 0 0 Start ---< General Method Parameters >-No items selected for this section No items selected for this section Manual Integration Fixes Enabled Event Type Width Threshold Integration Events ... A

Tompkins Ltd.

Ø

Total Extractable Hydrocarbons

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Prep: SHAKER TABLE Golden Gate Tank Removal EPA 8015B Project# 8757 Analysi

Matrix: Soil Basis: as received

08/25/08 Units: ma/Ka Received

Field ID: B13-3 08/20/08 Sampled: Type: SAMPLE Prepared: 08/28/08 Analyzed: Lab ID: 205565-001 08/29/08 Diln Fac: 1.000 EPA 3630C Cleanup Method:

Batch#: 141940

Analyte Result Diesel C10-C24 1.0 1.1 Y

Surrogate %REC Limits

98 46-130 Hexacosane

Field ID: B13-6 Sampled: 08/20/08 SAMPLE Prepared: Type: 08/28/08 Lab ID: 205565-002 Analyzed: 08/29/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141940

Analyte Result RT. Diesel C10-C24 130 Y 1.0

Surrogate Limits & DEC

46-130 Hexacosane

Field ID: 08/20/08 B14-3Sampled: 08/28/08 Type: SAMPLE Prepared: 08/29/08 205565-005 Analyzed: Lab ID: Diln Fac: 50.00 Cleanup Method: EPA 3630C

Batch#: 141940

Analyte Result RLDiesel C10-C24 4,000 50

Surrogate %REC Limits

Hexacosane DO 46-130

ND= Not Detected

^{*=} Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

RL= Reporting Limit

Total Extractable Hydrocarbons

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: SHAKER TABLE Project#: 8757 Analysis: EPA 8015B

Matrix: Soil Basis: as received Units: mg/Kg Received: 08/25/08

Field ID: B14-6 Sampled: 08/20/08 Type: SAMPLE Prepared: 08/28/08 08/29/08 Lab ID: 205565-006 Analyzed: Diln Fac: 50.00 Cleanup Method: EPA 3630C

Batch#: 50.00

 Analyte
 Result
 RL

 Diesel C10-C24
 5,600
 50

Surrogate %REC Limits

Hexacosane DO 46-130

Field ID: B15-3 Sampled: 08/20/08 Type: SAMPLE Prepared: 08/28/08 Lab ID: 205565-009 Analyzed: 09/02/08 Diln Fac: 100.0 Cleanup Method: EPA 3630C

Batch#: 141940

 Analyte
 Result
 RL

 Diesel C10-C24
 18,000
 100

Surrogate %REC Limits

Hexacosane DO 46-130

Field ID: B15-6 Sampled: 08/20/08 Type: SAMPLE Prepared: 08/28/08 Lab ID: 205565-010 Analyzed: 08/29/08 Diln Fac: 50.00 Cleanup Method: EPA 3630C

Batch#: 141940

 Analyte
 Result
 RL

 Diesel C10-C24
 6,800
 50

Surrogate %REC Limits

Hexacosane DO 46-130

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 2 of 7

Total Extractable Hydrocarbons

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: SHAKER TABLE

Project#: 8757 Analysis: EPA 8015B

Matrix: Soil Basis: as received Units: mg/Kg Received: 08/25/08

Field ID: B16-3Sampled: 08/20/08 Type: SAMPLE Prepared: 08/28/08 08/29/08 Lab ID: 205565-013 Analyzed: Diln Fac: 20.00 Cleanup Method: EPA 3630C

Batch#: 141940

 Analyte
 Result
 RL

 Diesel C10-C24
 1,700
 20

Surrogate %REC Limits
Hexacosane DO 46-130

Field ID: B16-6 Sampled: 08/20/08 Type: SAMPLE Prepared: 08/28/08 Lab ID: 205565-014 Analyzed: 08/29/08 20.00 Diln Fac: Cleanup Method: EPA 3630C

Batch#: 20.00

 Analyte
 Result
 RL

 Diesel C10-C24
 6,300
 20

Surrogate %REC Limits
Hexacosane DO 46-130

Field ID: B17-3 Sampled: 08/21/08

Type: SAMPLE Prepared: 08/28/08
Lab ID: 205565-017 Analyzed: 08/29/08
Diln Fac: 1.000 Cleanup Method: EPA 3630C
Batch#: 141940

%REC Limits

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

Diesel C10-C24 ND 0.99

Hexacosane 101 46-130

Surrogate

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 3 of 7

Total Extractable Hydrocarbons

Lab #: 205565 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal Prep: SHAKER TABLE

Project#: 8757 Analysis: EPA 8015B

Matrix: Soil Basis: as received Units: mg/Kg Received: 08/25/08

08/21/08 Field ID: B17-6 Sampled: Type: SAMPLE Prepared: 08/28/08 08/29/08 Lab ID: 205565-018 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 1.2 Y Z
 0.99

Surrogate %REC Limits

Hexacosane 95 46-130

Field ID: B18-3 Sampled: 08/21/08 Type: SAMPLE Prepared: 08/28/08 Lab ID: 205565-021 Analyzed: 09/02/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141940

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

Surrogate %REC Limits

Hexacosane 95 46-130

Field ID: B18-6 Sampled: 08/21/08 Type: SAMPLE Prepared: 08/29/08 Lab ID: 205565-022 Analyzed: 09/01/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141975

 Analyte
 Result
 RL

 Diesel C10-C24
 10 Y Z
 1.0

Surrogate %REC Limits
Hexacosane 110 46-130

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons Lab #: 205565 Location: 1532 Peralta St. Osagie Property Client: Golden Gate Tank Removal SHAKER TABLE Prep: Project#: 8757 Analysis: EPA 8015B

Basis: Matrix: Soil

as received 08/25/08 Units: mg/Kg Received:

08/21/08 Field ID: B19 - 3Sampled: Type: SAMPLE Prepared: 08/29/08 09/01/08 Lab ID: 205565-024 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 141975

Analyte Result Diesel C10-C24 8.9 0.99 Y 7.

Surrogate %REC Limits Hexacosane 119 46-130

Field ID: B19-6 Sampled: 08/21/08 Type: SAMPLE Prepared: 08/29/08 Lab ID: 205565-025 Analyzed: 09/01/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141975

Analyte Result RLDiesel C10-C24 ND 1.0

%REC Limits Surrogate Hexacosane

Field ID: CB1-3.5 Sampled: 08/22/08 Type: SAMPLE Prepared: 08/29/08 Lab ID: 205565-027 Analyzed: 09/01/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141975

Analyte Result RLDiesel C10-C24 1.0

Surrogate %REC Limits Hexacosane

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 5 of 7

Total Extractable Hydrocarbons

Lab #: 205565 Location: 1532 Peralta St. Osagie Property
Client: Golden Gate Tank Removal Prep: SHAKER TABLE
Project#: 8757 Analysis: EPA 8015B

Matrix: Soil Basis: as received Units: mg/Kg Received: 08/25/08

Field ID: CB1-6.5 Sampled: 08/22/08 Type: SAMPLE Prepared: 08/29/08 09/01/08 Lab ID: 205565-028 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

Surrogate %REC Limits
Hexacosane 127 46-130

Field ID: CB2-3.5 Sampled: 08/22/08 Type: SAMPLE Prepared: 08/29/08 Lab ID: 205565-029 Analyzed: 09/01/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 1.000

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

Surrogate %REC Limits
Hexacosane 81 46-130

Field ID: CB2-6.5 Sampled: 08/22/08 Type: SAMPLE 08/29/08 Prepared: Lab ID: 205565-030 Analyzed: 09/01/08 Diln Fac: 1.000 EPA 3630C Cleanup Method:

Batch#: 141975

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

Surrogate %REC Limits
Hexacosane 93 46-130

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

EPA 3630C

Total Extractable Hydrocarbons

Lab #: 205565 Location: 1532 Peralta St. Osagie Property

Client: Golden Gate Tank Removal Prep: SHAKER TABLE Project#: 8757 Analysis: EPA 8015B

Matrix: Soil Basis: as received Units: mg/Kg Received: 08/25/08

Field ID: CB3-3.5 Sampled: 08/22/08 Type: SAMPLE Prepared: 08/29/08 Lab ID: 205565-031 Analyzed: 09/01/08

Diln Fac: 1.000 Batch#: 141975

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 1.0

Cleanup Method:

Surrogate %REC Limits

Hexacosane 75 46-130

Field ID: CB3-6.5 Sampled: 08/22/08 Type: SAMPLE 08/29/08 Prepared: Lab ID: 205565-032 Analyzed: 09/02/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141975

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

Surrogate %REC Limits

Hexacosane 87 46-130

Type: BLANK Prepared: 08/28/08
Lab ID: QC457918 Analyzed: 08/28/08
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141940

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 1.0

Diesel C10-C24 ND 1.0

Surrogate %REC Limits
Hexacosane 131 * 46-130

Type: BLANK Prepared: 08/29/08 Lab ID: QC458063 Analyzed: 09/01/08 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 141975

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 1.0

 Surrogate
 %REC
 Limits

 Hexacosane
 107
 46-130

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 7 of 7

Total Extractable Hydrocarbons						
Lab #:	205565	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE				
Project#:	8757	Analysis: EPA 8015B				
Type:	LCS	Diln Fac: 1.000				
Lab ID:	QC457919	Batch#: 141940				
Matrix:	Soil	Prepared: 08/28/08				
Units:	mg/Kg	Analyzed: 08/29/08				
Basis:	as received					

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.71	48.25	97	51-123

Surrogate	%REC	Limits
Hexacosane	106	46-130

Page 1 of 1 7.0

Total Extractable Hydrocarbons					
Lab #:	205565	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE			
Project#:	8757	Analysis: EPA 8015B			
Field ID:	B13-3	Batch#: 141940			
MSS Lab ID:	205565-001	Sampled: 08/20/08			
Matrix:	Soil	Received: 08/25/08			
Units:	mg/Kg	Prepared: 08/28/08			
Basis:	as received	Analyzed: 08/29/08			
Diln Fac:	1.000				

Lab ID: MS Cleanup Method: EPA 3630C

QC457920

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	1.078	49.71	50.74	100	38-140

Surrogate	%REC	Limits
Hexacosane	102	46-130

Type: MSD Lab ID: QC457921 Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.97	52.15	102	38-140	2	49

Surrogate %REC Limi
xacosane 112 46-1

Total Extractable Hydrocarbons					
Lab #:	205565	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE			
Project#:	8757	Analysis: EPA 8015B			
Type:	LCS	Diln Fac: 1.000			
Lab ID:	QC458064	Batch#: 141975			
Matrix:	Soil	Prepared: 08/29/08			
Units:	mg/Kg	Analyzed: 09/01/08			
Basis:	as received				

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.90	42.38	85	51-123

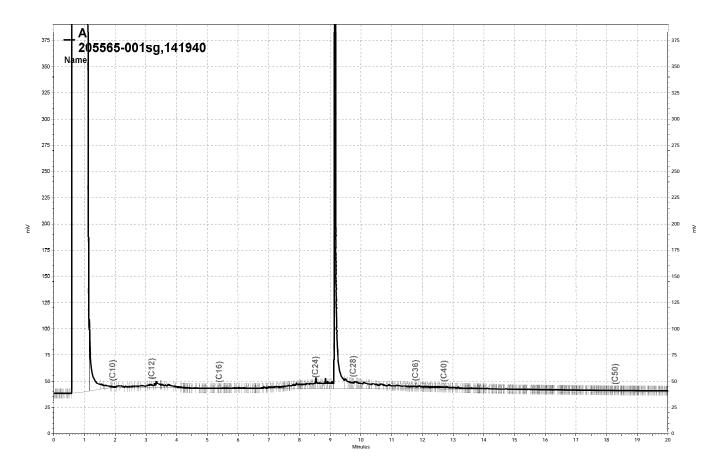
Surrogate	%REC	Limits
Hexacosane	91	46-130

Page 1 of 1 9.0

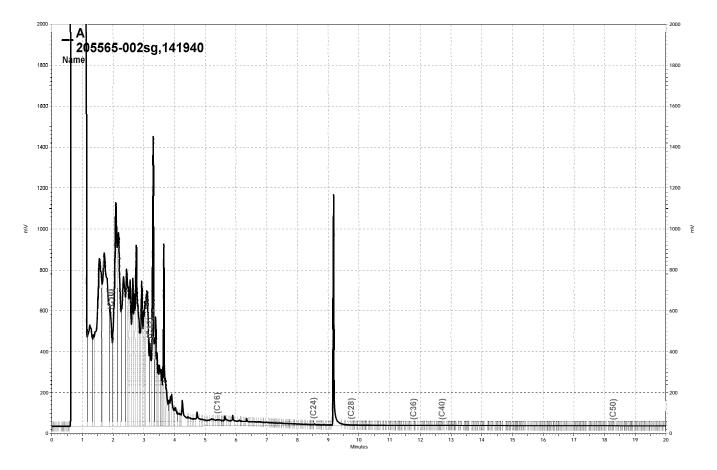
Total Extractable Hydrocarbons					
Lab #:	205565	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE			
Project#:	8757	Analysis: EPA 8015B			
Field ID:	ZZZZZZZZZZ	Batch#: 141975			
MSS Lab ID:	205578-001	Sampled: 08/21/08			
Matrix:	Soil	Received: 08/26/08			
Units:	mg/Kg	Prepared: 08/29/08			
Basis:	as received	Analyzed: 09/01/08			
Diln Fac:	1.000				

Lab ID: MS Cleanup Method: EPA 3630C

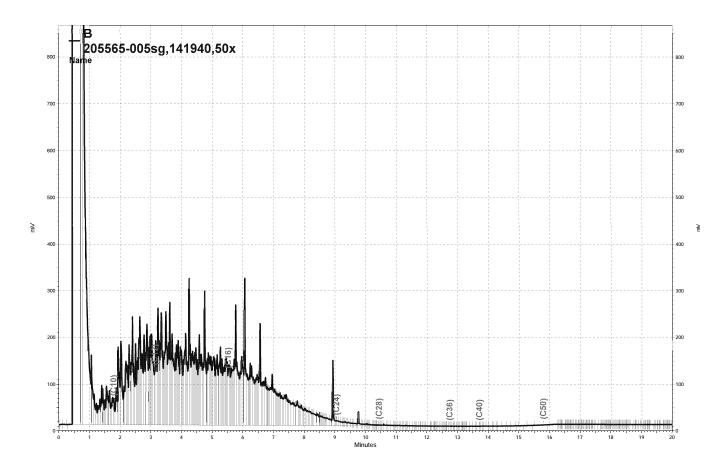
QC458065

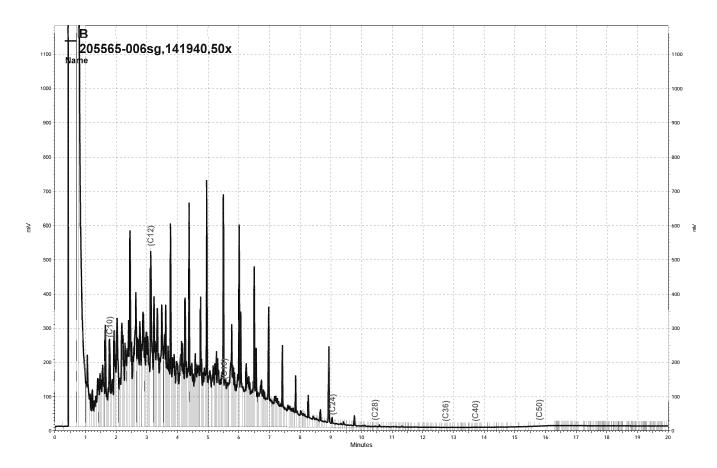

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	9.392	49.91	45.94	73	38-140

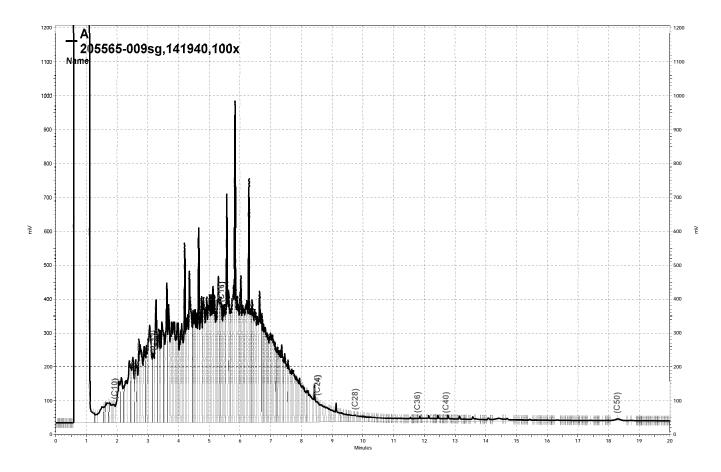
Surrogate	%REC	Limits
Hexacosane	71	46-130

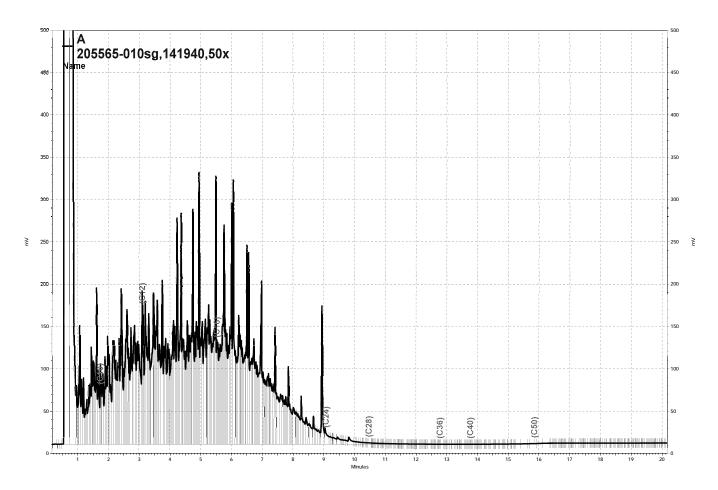

Type: MSD Lab ID: QC458066 Cleanup Method: EPA 3630C

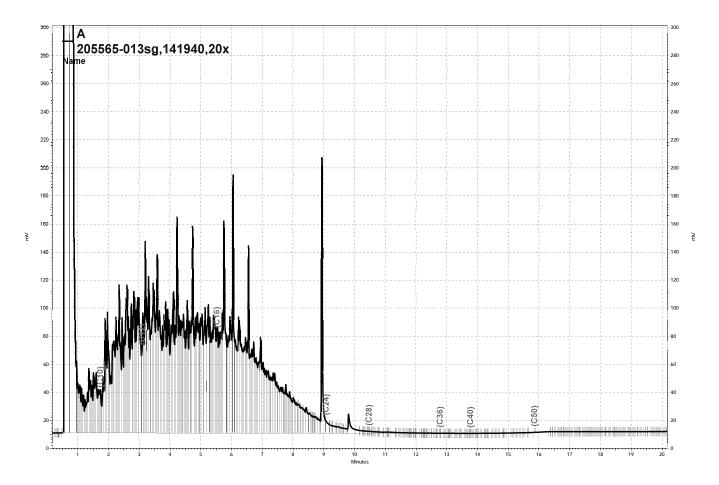
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.85	36.32	54	38-140	23	49

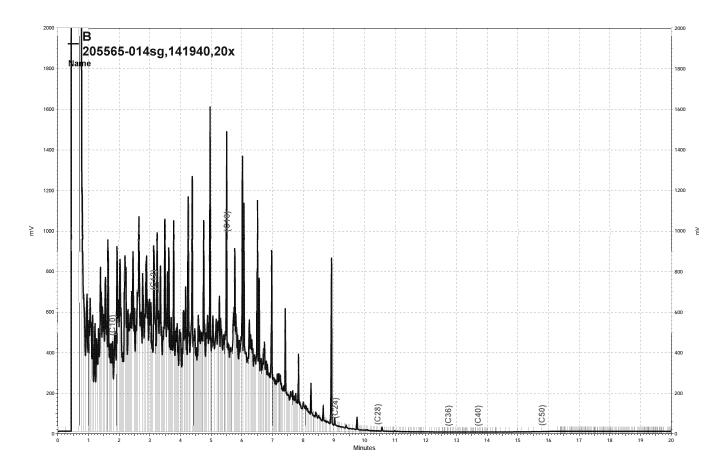

Surrogate %REC	Limits
cogane 64	46-1

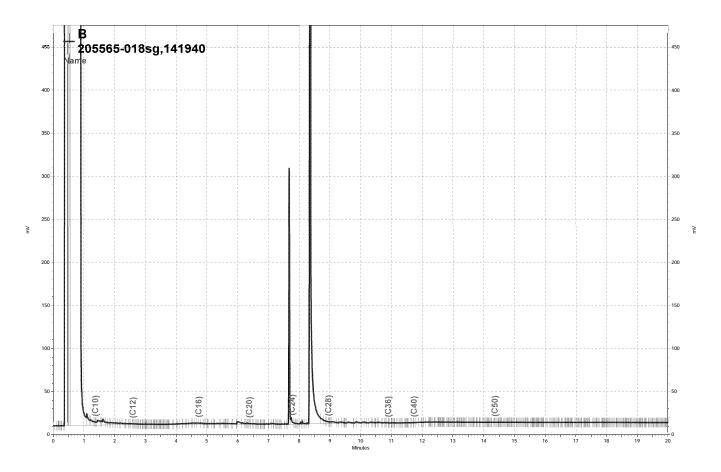

\Lims\gdrive\ezchrom\Projects\GC11A\Data\241a029, A

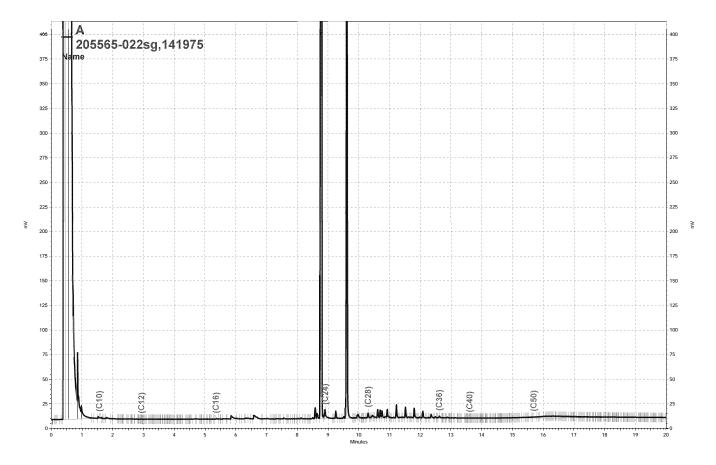

\Lims\gdrive\ezchrom\Projects\GC11A\Data\241a032, A

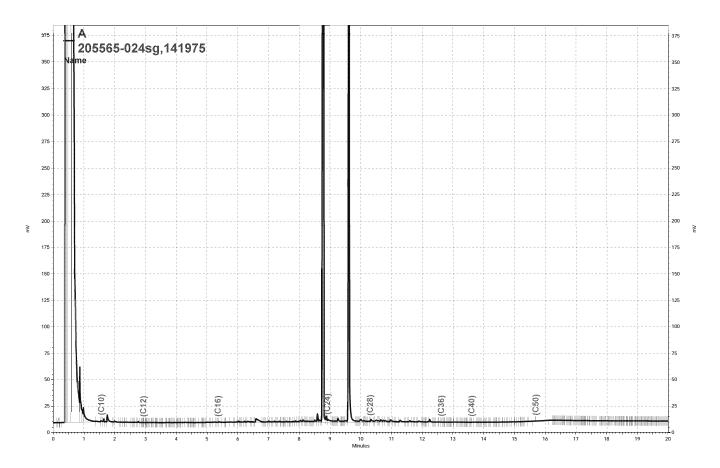

\\Lims\gdrive\ezchrom\Projects\GC26\Data\242b010, B

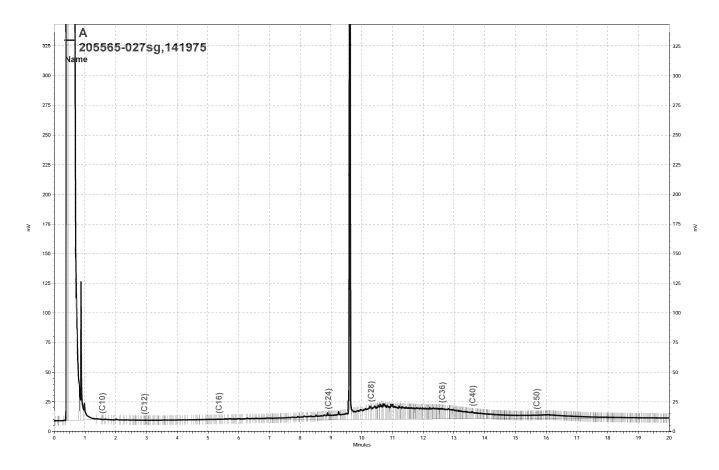

\\Lims\gdrive\ezchrom\Projects\GC26\Data\242b009, B

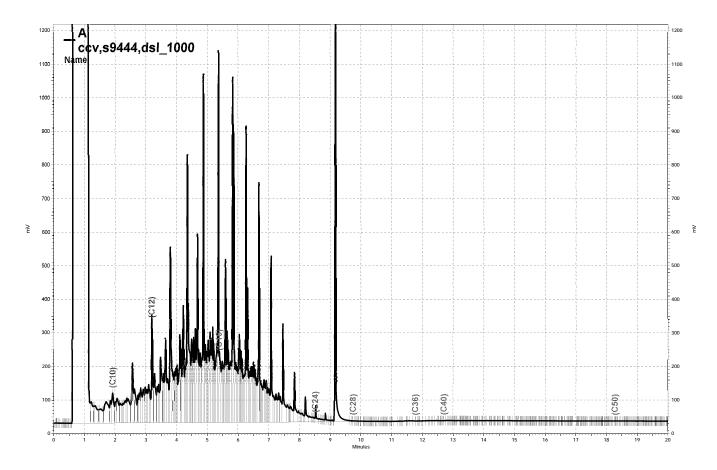

\Lims\gdrive\ezchrom\Projects\GC11A\Data\245a038, A


\Lims\gdrive\ezchrom\Projects\GC26\Data\242a009, A


\\Lims\gdrive\ezchrom\Projects\GC26\Data\242a010, A


\\Lims\gdrive\ezchrom\Projects\GC26\Data\242b011, B


\\Lims\gdrive\ezchrom\Projects\GC14B\Data\241b037, B


\\Lims\gdrive\ezchrom\Projects\GC26\Data\245a013, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\245a010, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\245a015, A

\Lims\gdrive\ezchrom\Projects\GC11A\Data\241a024, A

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	B13-3	Diln Fac:	0.9940
Lab ID:	205565-001	Batch#:	141855
Matrix:	Soil	Sampled:	08/20/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Analyte	Result	RL	
Freon 12	ND ND	9.9	
Chloromethane	ND	9.9	
Vinyl Chloride	ND	9.9	
Bromomethane	ND	9.9	
Chloroethane	ND	9.9	
Trichlorofluoromethane	ND	5.0	
Acetone	30	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND ND	5.0	
2-Butanone	ND ND	9.9	
cis-1,2-Dichloroethene		9.9 5.0	
	ND	5.0	
2,2-Dichloropropane	ND		
Chloroform Bromochloromethane	ND	5.0	
	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	9.9	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	9.9	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B13-3	Diln Fac:	0.9940	
Lab ID:	205565-001	Batch#:	141855	
Matrix:	Soil	Sampled:	08/20/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	75-129	
1,2-Dichloroethane-d4	91	74-133	
Toluene-d8	97	80-120	
Bromofluorobenzene	106	79-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Purgeable On	rganics by GC/	/MS
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B
Project#:	8757	Analysis: EPA	A 8260B
Field ID:	B13-6	Diln Fac:	9.259
Lab ID:	205565-002	Batch#:	141952
Matrix:	Soil	Sampled:	08/20/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/29/08

Analyte	Result	RL	
Freon 12	ND	93	
Chloromethane	ND	93	
Vinyl Chloride	ND	93	
Bromomethane	ND	93	
Chloroethane	ND	93	
Trichlorofluoromethane	ND	46	
Acetone	ND	230	
Freon 113	ND	46	
1,1-Dichloroethene	ND	46	
Methylene Chloride	ND	190	
Carbon Disulfide	ND	46	
MTBE	ND	46	
trans-1,2-Dichloroethene	ND	46	
Vinyl Acetate	ND	460	
1,1-Dichloroethane	ND	46	
2-Butanone	ND	93	
cis-1,2-Dichloroethene	ND	46	
2,2-Dichloropropane	ND	46	
Chloroform	ND	46	
Bromochloromethane	ND	46	
1,1,1-Trichloroethane	ND	46	
1,1-Dichloropropene	ND	46	
Carbon Tetrachloride	ND	46	
1,2-Dichloroethane	ND	46	
Benzene	ND	46	
Trichloroethene	ND	46	
1,2-Dichloropropane	ND	46	
Bromodichloromethane	ND	46	
Dibromomethane	ND	46	
4-Methyl-2-Pentanone	ND	93	
cis-1,3-Dichloropropene	ND	46	
Toluene	ND	46	
trans-1,3-Dichloropropene	ND	46	
1,1,2-Trichloroethane	ND	46	
2-Hexanone	ND	93	
1,3-Dichloropropane	ND	46	
Tetrachloroethene	ND	46	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B		
Project#:	8757	Analysis: EPA	8260B		
Field ID:	B13-6	Diln Fac:	9.259		
Lab ID:	205565-002	Batch#:	141952		
Matrix:	Soil	Sampled:	08/20/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/29/08		

Analyte	Rest	ult RL
Dibromochloromethane	ND	46
1,2-Dibromoethane	ND	46
Chlorobenzene	ND	46
1,1,1,2-Tetrachloroethane	ND	46
Ethylbenzene	ND	46
m,p-Xylenes	ND	46
o-Xylene	ND	46
Styrene	ND	46
Bromoform	ND	46
Isopropylbenzene	8	88 46
1,1,2,2-Tetrachloroethane	ND	46
1,2,3-Trichloropropane	ND	46
Propylbenzene	15	50 46
Bromobenzene	ND	46
1,3,5-Trimethylbenzene	ND	46
2-Chlorotoluene	ND	46
4-Chlorotoluene	ND	46
tert-Butylbenzene	ND	46
1,2,4-Trimethylbenzene	ND	46
sec-Butylbenzene	28	80 46
para-Isopropyl Toluene	14	40 46
1,3-Dichlorobenzene	ND	46
1,4-Dichlorobenzene	ND	46
n-Butylbenzene	34	40 46
1,2-Dichlorobenzene	ND	46
1,2-Dibromo-3-Chloropropane	ND	46
1,2,4-Trichlorobenzene	ND	46
Hexachlorobutadiene	ND	46
Naphthalene	ND	46
1,2,3-Trichlorobenzene	ND	46

Surrogate	%REC	Limits	
Dibromofluoromethane	108	75-129	
1,2-Dichloroethane-d4	120	74-133	
Toluene-d8	102	80-120	
Bromofluorobenzene	109	79-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: EPA 5030B				
Project#:	8757	Analysis: EPA 8260B				
Field ID:	B14-3	Diln Fac: 333.3				
Lab ID:	205565-005	Batch#: 141853				
Matrix:	Soil	Sampled: 08/20/08				
Units:	ug/Kg	Received: 08/25/08				
Basis:	as received	Analyzed: 08/27/08				

Freen 12	Analyte	Result	RL	
Vinyl Chloride	Freon 12	ND	3,300	
Bromomethane	Chloromethane	ND	3,300	
Chloroethane	Vinyl Chloride	ND	3,300	
Trichlorofluoromethane	Bromomethane	ND	3,300	
Acetone	Chloroethane	ND	3,300	
Freon 113	Trichlorofluoromethane	ND	1,700	
Freon 113	Acetone	ND		
Methylene Chloride ND 6,700 Carbon Disulfide ND 1,700 MTBE ND 1,700 trans-1,2-Dichloroethene ND 1,700 Vinyl Acetate ND 17,000 1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 I,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 1,2-Dichloroethane ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700	Freon 113	ND		
Methylene Chloride ND 6,700 Carbon Disulfide ND 1,700 MTBE ND 1,700 trans-1,2-Dichloroethene ND 1,700 Vinyl Acetate ND 17,000 1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 I,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 1,2-Dichloroethane ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700	1,1-Dichloroethene	ND	•	
Carbon Disulfide ND 1,700 MTBE ND 1,700 trans-1,2-Dichloroethene ND 1,700 Vinyl Acetate ND 17,000 1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 Chloroformethane ND 1,700 1,1-Trichloroethane ND 1,700 1,1-Trichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 1,2-Dichloropropane ND 1,700 Benzene ND 1,700 Trichloroethane ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4		ND		
MTBE ND 1,700 trans-1,2-Dichloroethene ND 1,700 Vinyl Acetate ND 17,000 1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloroethene ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloropropane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloropropene ND 1,700 4-Methyl-2-Pentanone ND 1,700 Toluene ND 1,700 <td< td=""><td></td><td></td><td></td><td></td></td<>				
trans-1,2-Dichloroethene ND 1,700 Vinyl Acetate ND 17,000 1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1-Trichloroethane ND 1,700 1,1-Trichloropropene ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
Vinyl Acetate ND 17,000 1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 Bromochloropropene ND 1,700 1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Eenzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloropropene ND 1,700 Hethyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700	_			
1,1-Dichloroethane ND 1,700 2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloropropane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700	l .			
2-Butanone ND 3,300 cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700	4 .			
cis-1,2-Dichloroethene ND 1,700 2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 1,2-Dichloroethane ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
2,2-Dichloropropane ND 1,700 Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
Chloroform ND 1,700 Bromochloromethane ND 1,700 1,1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700	1			
Bromochloromethane ND 1,700 1,1,1-Trichloroethane ND 1,700 1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 Trichloropropane ND 1,700 Bromodichloromethane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 A-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 Toluene ND 1,700 Toluene ND 1,700				
1,1,1-TrichloroethaneND1,7001,1-DichloropropeneND1,700Carbon TetrachlorideND1,7001,2-DichloroethaneND1,700BenzeneND1,700TrichloroetheneND1,7001,2-DichloropropaneND1,700BromodichloromethaneND1,700DibromomethaneND1,7004-Methyl-2-PentanoneND3,300cis-1,3-DichloropropeneND1,700TolueneND1,700trans-1,3-DichloropropeneND1,700				
1,1-Dichloropropene ND 1,700 Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 Dibromomethane ND 1,700 Cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 Toluene ND 1,700 Toloopropene ND 1,700				
Carbon Tetrachloride ND 1,700 1,2-Dichloroethane ND 1,700 Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 A-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
1,2-DichloroethaneND1,700BenzeneND1,700TrichloroetheneND1,7001,2-DichloropropaneND1,700BromodichloromethaneND1,700DibromomethaneND1,7004-Methyl-2-PentanoneND3,300cis-1,3-DichloropropeneND1,700TolueneND1,700trans-1,3-DichloropropeneND1,700			•	
Benzene ND 1,700 Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700			•	
Trichloroethene ND 1,700 1,2-Dichloropropane ND 1,700 Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700	l :			
1,2-DichloropropaneND1,700BromodichloromethaneND1,700DibromomethaneND1,7004-Methyl-2-PentanoneND3,300cis-1,3-DichloropropeneND1,700TolueneND1,700trans-1,3-DichloropropeneND1,700				
Bromodichloromethane ND 1,700 Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
Dibromomethane ND 1,700 4-Methyl-2-Pentanone ND 3,300 cis-1,3-Dichloropropene ND 1,700 Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
4-Methyl-2-PentanoneND3,300cis-1,3-DichloropropeneND1,700TolueneND1,700trans-1,3-DichloropropeneND1,700				
cis-1,3-DichloropropeneND1,700TolueneND1,700trans-1,3-DichloropropeneND1,700				
Toluene ND 1,700 trans-1,3-Dichloropropene ND 1,700				
trans-1,3-Dichloropropene ND 1,700				
	_			
/-Trich Oroethane				
2-Hexanone ND 3,300				
1,3-Dichloropropane ND 1,700				
Tetrachloroethene ND 1,700				
Dibromochloromethane ND 1,700				
1,2-Dibromoethane ND 1,700	,			
Chlorobenzene ND 1,700				
1,1,1,2-Tetrachloroethane ND 1,700				
Ethylbenzene ND 1,700				
m,p-Xylenes ND 1,700				
o-Xylene ND 1,700	4			
Styrene ND 1,700				
Bromoform ND 1,700				
Isopropylbenzene ND 1,700	Isopropylbenzene			
1,1,2,2-Tetrachloroethane ND 1,700	1,1,2,2-Tetrachloroethane		•	
1,2,3-Trichloropropane ND 1,700	1,2,3-Trichloropropane		1,700	
Propylbenzene 2,300 1,700	Propylbenzene	2,300		
Bromobenzene ND 1,700	Bromobenzene		1,700	
1,3,5-Trimethylbenzene ND 1,700	1,3,5-Trimethylbenzene	ND		
2-Chlorotoluene ND 1,700		ND		

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: EPA 5030B				
Project#:	8757	Analysis: EPA 8260B				
Field ID:	B14-3	Diln Fac: 333.3				
Lab ID:	205565-005	Batch#: 141853				
Matrix:	Soil	Sampled: 08/20/08				
Units:	ug/Kg	Received: 08/25/08				
Basis:	as received	Analyzed: 08/27/08				

Analyte	Result	RL	
4-Chlorotoluene	ND	1,700	
tert-Butylbenzene	ND	1,700	
1,2,4-Trimethylbenzene	ND	1,700	
sec-Butylbenzene	ND	1,700	
para-Isopropyl Toluene	ND	1,700	
1,3-Dichlorobenzene	ND	1,700	
1,4-Dichlorobenzene	ND	1,700	
n-Butylbenzene	4,300	1,700	
1,2-Dichlorobenzene	ND	1,700	
1,2-Dibromo-3-Chloropropane	ND	1,700	
1,2,4-Trichlorobenzene	ND	1,700	
Hexachlorobutadiene	ND	1,700	
Naphthalene	9,900	1,700	
1,2,3-Trichlorobenzene	ND	1,700	

Surrogate	%REC	Limits
Dibromofluoromethane	82	75-129
1,2-Dichloroethane-d4	77	74-133
Toluene-d8	96	80-120
Bromofluorobenzene	98	79-127
Trifluorotoluene (MeOH)	DO	55-147

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 2

14.2

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B			
Project#:	8757	Analysis: EPA	A 8260B			
Field ID:	B14-6	Diln Fac:	100.0			
Lab ID:	205565-006	Batch#:	141954			
Matrix:	Soil	Sampled:	08/20/08			
Units:	ug/Kg	Received:	08/25/08			
Basis:	as received	Analyzed:	08/29/08			

Analyte	Result	RL	
Freon 12	ND	1,000	
Chloromethane	ND	1,000	
Vinyl Chloride	ND	1,000	
Bromomethane	ND	1,000	
Chloroethane	ND	1,000	
Trichlorofluoromethane	ND	500	
Acetone	ND	2,500	
Freon 113	ND	500	
1,1-Dichloroethene	ND	500	
Methylene Chloride	ND	2,000	
Carbon Disulfide	ND	500	
MTBE	ND	500	
trans-1,2-Dichloroethene	ND	500	
Vinyl Acetate	ND	5,000	
1,1-Dichloroethane	ND	500	
2-Butanone	ND	1,000	
cis-1,2-Dichloroethene	ND	500	
2,2-Dichloropropane	ND	500	
Chloroform	ND	500	
Bromochloromethane	ND	500	
1,1,1-Trichloroethane	ND	500	
1,1-Dichloropropene	ND	500	
Carbon Tetrachloride	ND	500	
1,2-Dichloroethane	ND	500	
Benzene	ND	500	
Trichloroethene	ND	500	
1,2-Dichloropropane	ND	500	
Bromodichloromethane	ND	500	
Dibromomethane	ND	500	
4-Methyl-2-Pentanone	ND	1,000	
cis-1,3-Dichloropropene	ND	500	
Toluene	ND	500	
trans-1,3-Dichloropropene	ND	500	
1,1,2-Trichloroethane	ND	500	
2-Hexanone	ND	1,000	
1,3-Dichloropropane	ND	500	
Tetrachloroethene	ND	500	

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B			
Project#:	8757	Analysis: EPA	A 8260B			
Field ID:	B14-6	Diln Fac:	100.0			
Lab ID:	205565-006	Batch#:	141954			
Matrix:	Soil	Sampled:	08/20/08			
Units:	ug/Kg	Received:	08/25/08			
Basis:	as received	Analyzed:	08/29/08			

Analyte	Result	RL	
Dibromochloromethane	ND	500	
1,2-Dibromoethane	ND	500	
Chlorobenzene	ND	500	
1,1,1,2-Tetrachloroethane	ND	500	
Ethylbenzene	1,200	500	
m,p-Xylenes	780	500	
o-Xylene	ND	500	
Styrene	ND	500	
Bromoform	ND	500	
Isopropylbenzene	ND	500	
1,1,2,2-Tetrachloroethane	ND	500	
1,2,3-Trichloropropane	ND	500	
Propylbenzene	1,300	500	
Bromobenzene	ND	500	
1,3,5-Trimethylbenzene	1,100	500	
2-Chlorotoluene	ND	500	
4-Chlorotoluene	ND	500	
tert-Butylbenzene	ND	500	
1,2,4-Trimethylbenzene	1,200	500	
sec-Butylbenzene	560	500	
para-Isopropyl Toluene	570	500	
1,3-Dichlorobenzene	ND	500	
1,4-Dichlorobenzene	ND	500	
n-Butylbenzene	1,900	500	
1,2-Dichlorobenzene	ND	500	
1,2-Dibromo-3-Chloropropane	ND	500	
1,2,4-Trichlorobenzene	ND	500	
Hexachlorobutadiene	ND	500	
Naphthalene	4,000	500	
1,2,3-Trichlorobenzene	ND	500	

Surrogate %1	REC	Limits
Dibromofluoromethane 95)	75-129
1,2-Dichloroethane-d4 103	2	74-133
Toluene-d8 103	1	80-120
Bromofluorobenzene 10)6	79-127
Trifluorotoluene (MeOH) 10	7	55-147

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532 Peralta St. Osagie Pro	operty			
Client:	Golden Gate Tank Removal	Prep: EPA 5030B				
Project#:	8757	Analysis: EPA 8260B				
Field ID:	B15-3	Diln Fac: 1,000				
Lab ID:	205565-009	Batch#: 141954				
Matrix:	Soil	Sampled: 08/20/08				
Units:	ug/Kg	Received: 08/25/08				
Basis:	as received	Analyzed: 08/29/08				

Analyte	Result	RL	
Freon 12	ND	10,000	
Chloromethane	ND	10,000	
Vinyl Chloride	ND	10,000	
Bromomethane	ND	10,000	
Chloroethane	ND	10,000	
Trichlorofluoromethane	ND	5,000	
Acetone	ND	25,000	
Freon 113	ND	5,000	
1,1-Dichloroethene	ND	5,000	
Methylene Chloride	ND	20,000	
Carbon Disulfide	ND	5,000	
MTBE	ND	5,000	
trans-1,2-Dichloroethene	ND	5,000	
Vinyl Acetate	ND	50,000	
1,1-Dichloroethane	ND	5,000	
2-Butanone	ND	10,000	
cis-1,2-Dichloroethene	ND	5,000	
2,2-Dichloropropane	ND	5,000	
Chloroform	ND	5,000	
Bromochloromethane	ND	5,000	
1,1,1-Trichloroethane	ND	5,000	
1,1-Dichloropropene	ND	5,000	
Carbon Tetrachloride	ND	5,000	
1,2-Dichloroethane	ND	5,000	
Benzene	ND	5,000	
Trichloroethene	ND	5,000	
1,2-Dichloropropane	ND	5,000	
Bromodichloromethane	ND	5,000	
Dibromomethane	ND	5,000	
4-Methyl-2-Pentanone	ND	10,000	
cis-1,3-Dichloropropene	ND	5,000	
Toluene	ND	5,000	
trans-1,3-Dichloropropene	ND	5,000	
1,1,2-Trichloroethane	ND	5,000	
2-Hexanone	ND	10,000	
1,3-Dichloropropane	ND	5,000	
Tetrachloroethene	ND	5,000	
Dibromochloromethane	ND	5,000	
1,2-Dibromoethane	ND	5,000	
Chlorobenzene	ND	5,000	
1,1,1,2-Tetrachloroethane	ND	5,000	
Ethylbenzene	ND	5,000	
m,p-Xylenes	ND	5,000	
o-Xylene	ND	5,000	
Styrene	ND	5,000	
Bromoform	ND	5,000	
Isopropylbenzene	ND	5,000	
1,1,2,2-Tetrachloroethane	ND	5,000	
1,2,3-Trichloropropane	ND	5,000	
Propylbenzene	11,000	5,000	
Bromobenzene	ND	5,000	
1,3,5-Trimethylbenzene	ND	5,000	
2-Chlorotoluene	ND	5,000	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 5030B			
Project#:	8757	Analysis: EPA 8260B			
Field ID:	B15-3	Diln Fac: 1,000			
Lab ID:	205565-009	Batch#: 141954			
Matrix:	Soil	Sampled: 08/20/08			
Units:	ug/Kg	Received: 08/25/08			
Basis:	as received	Analyzed: 08/29/08			

Analyte	Result	RL	
4-Chlorotoluene	ND	5,000	
tert-Butylbenzene	ND	5,000	
1,2,4-Trimethylbenzene	ND	5,000	
sec-Butylbenzene	ND	5,000	
para-Isopropyl Toluene	ND	5,000	
1,3-Dichlorobenzene	ND	5,000	
1,4-Dichlorobenzene	ND	5,000	
n-Butylbenzene	14,000	5,000	
1,2-Dichlorobenzene	ND	5,000	
1,2-Dibromo-3-Chloropropane	ND	5,000	
1,2,4-Trichlorobenzene	ND	5,000	
Hexachlorobutadiene	ND	5,000	
Naphthalene	ND	5,000	
1,2,3-Trichlorobenzene	ND	5,000	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	75-129	
1,2-Dichloroethane-d4	96	74-133	
Toluene-d8	102	80-120	
Bromofluorobenzene	102	79-127	
Trifluorotoluene (MeOH)	DO	55-147	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 2

16.1

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 5030B			
Project#:	8757	Analysis: EPA 8260B			
Field ID:	B15-6	Diln Fac: 2,000			
Lab ID:	205565-010	Batch#: 141954			
Matrix:	Soil	Sampled: 08/20/08			
Units:	ug/Kg	Received: 08/25/08			
Basis:	as received	Analyzed: 08/29/08			

Analyte	Result	RL	
Freon 12	ND	20,000	
Chloromethane	ND	20,000	
Vinyl Chloride	ND	20,000	
Bromomethane	ND	20,000	
Chloroethane	ND	20,000	
Trichlorofluoromethane	ND	10,000	
Acetone	ND	50,000	
Freon 113	ND	10,000	
1,1-Dichloroethene	ND	10,000	
Methylene Chloride	ND	40,000	
Carbon Disulfide	ND	10,000	
MTBE	ND	10,000	
trans-1,2-Dichloroethene	ND	10,000	
Vinyl Acetate	ND	100,000	
1,1-Dichloroethane	ND	10,000	
2-Butanone	ND	20,000	
cis-1,2-Dichloroethene	ND	10,000	
2,2-Dichloropropane	ND	10,000	
Chloroform	ND	10,000	
Bromochloromethane	ND	10,000	
1,1,1-Trichloroethane	ND	10,000	
1,1-Dichloropropene	ND	10,000	
Carbon Tetrachloride	ND	10,000	
1,2-Dichloroethane	ND	10,000	
Benzene	ND	10,000	
Trichloroethene	ND	10,000	
1,2-Dichloropropane	ND	10,000	
Bromodichloromethane	ND	10,000	
Dibromomethane	ND	10,000	
4-Methyl-2-Pentanone	ND	20,000	
cis-1,3-Dichloropropene	ND	10,000	
Toluene	ND	10,000	
trans-1,3-Dichloropropene	ND	10,000	
1,1,2-Trichloroethane	ND	10,000	
2-Hexanone	ND	20,000	
1,3-Dichloropropane	ND	10,000	
Tetrachloroethene	ND	10,000	
Dibromochloromethane	ND	10,000	
1,2-Dibromoethane	ND	10,000	
Chlorobenzene	ND	10,000	
1,1,1,2-Tetrachloroethane	ND	10,000	
Ethylbenzene	44,000	10,000	
m,p-Xylenes	140,000	10,000	
o-Xylene	10,000	10,000	
Styrene	ND	10,000	
Bromoform	ND	10,000	
Isopropylbenzene	11,000	10,000	
1,1,2,2-Tetrachloroethane	ND	10,000	
1,2,3-Trichloropropane	ND	10,000	
Propylbenzene	33,000	10,000	
Bromobenzene	ND	10,000	
1,3,5-Trimethylbenzene	52,000	10,000	
2-Chlorotoluene	ND	10,000	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 5030B			
Project#:	8757	Analysis: EPA 8260B			
Field ID:	B15-6	Diln Fac: 2,000			
Lab ID:	205565-010	Batch#: 141954	ļ		
Matrix:	Soil	Sampled: 08/20/08			
Units:	ug/Kg	Received: 08/25/08			
Basis:	as received	Analyzed: 08/29/08			

Analyte	Result	RL	
4-Chlorotoluene	ND	10,000	
tert-Butylbenzene	ND	10,000	
1,2,4-Trimethylbenzene	190,000	10,000	
sec-Butylbenzene	ND	10,000	
para-Isopropyl Toluene	ND	10,000	
1,3-Dichlorobenzene	ND	10,000	
1,4-Dichlorobenzene	ND	10,000	
n-Butylbenzene	31,000	10,000	
1,2-Dichlorobenzene	ND	10,000	
1,2-Dibromo-3-Chloropropane	ND	10,000	
1,2,4-Trichlorobenzene	ND	10,000	
Hexachlorobutadiene	ND	10,000	
Naphthalene	87,000	10,000	
1,2,3-Trichlorobenzene	ND	10,000	

Surrogate	%REC	Limits	
Dibromofluoromethane	96	75-129	
1,2-Dichloroethane-d4	99	74-133	
Toluene-d8	101	80-120	
Bromofluorobenzene	106	79-127	
Trifluorotoluene (MeOH)	DO	55-147	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 2

	_	Organics by	
Lab #:	205565	Location:	1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep:	EPA 5030B
Project#:	8757	Analysis:	EPA 8260B
Field ID:	B16-3	Diln Fac:	625.0
Lab ID:	205565-013	Batch#:	141954
Matrix:	Soil	Sampled:	08/20/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/29/08

Freen 12	Analyte	Result	RL	
Vinyl Chloride				
Bromomethane	Chloromethane			
Chioroethane	Vinyl Chloride			
Trichlorofluoromethane				
Acetone ND				
Freen 113	Trichlorofluoromethane		3,100	
1.1-pichloroethene				
Methylene Chloride				
Carbon Disulfide ND 3,100 MTBE ND 3,100 trans-1,2-Dichloroethene ND 3,100 Vinyl Acetate ND 3,100 1,1-Dichloroethane ND 3,100 2-Butanone ND 6,300 cis-1,2-Dichloroethene ND 3,100 2,2-Dichloropropane ND 3,100 Chloroform ND 3,100 Chloroform ND 3,100 Bromochloromethane ND 3,100 1,1,1-Trichloroethane ND 3,100 Carbon Tetrachloride ND 3,100 1,2-Dichloropropene ND 3,100 1,2-Dichloroethane ND 3,100 Benzene ND 3,100 Trichloroethene ND 3,100 1,2-Dichloropropane ND 3,100 Bromodichloromethane ND 3,100 Bromodichloropropene ND 3,100 Trichloroethane ND 3,100 Tetra				
MTBE ND 3,100				
trans-1,2-Dichloroethene ND 3,100 1,1-Dichloroethane ND 3,100 2-Butanone ND 6,300 cis-1,2-Dichloroethene ND 3,100 2,2-Dichloropropane ND 3,100 2,2-Dichloropropane ND 3,100 Chloroform ND 3,100 Bromochloromethane ND 3,100 1,1,1-Trichloroethane ND 3,100 1,1,1-Trichloropropene ND 3,100 Carbon Tetrachloride ND 3,100 1,2-Dichloropropene ND 3,100 Benzene ND 3,100 Trichloroethene ND 3,100 1,2-Dichloropropane ND 3,100 Bromodichloromethane ND 3,100 Hethyl-2-Pentanone ND 3,100 cis-1,3-Dichloropropene ND 3,100 trains-1,3-Dichloropropene ND 3,100 trains-1,2-Trichloroethane ND 3,100 trains-1,3-Dichloropropane ND<				
Vinyl Acetate				
1,1-Dichloroethane				
2-Butanone	■ •			
cis-1,2-Dichloroethene ND 3,100 2,2-Dichloropropane ND 3,100 Chloroform ND 3,100 Bromochloromethane ND 3,100 1,1,1-Trichloroethane ND 3,100 Carbon Tetrachloride ND 3,100 Carbon Tetrachloride ND 3,100 Benzene ND 3,100 Benzene ND 3,100 Trichloroethane ND 3,100 Bromodichloromethane ND 3,100 Bromodichloromethane ND 3,100 Polibromomethane ND 3,100 Polibromomethane ND 3,100 Cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 Toluene ND 3,100 Toluene ND 3,100 2-Hexanone ND 3,100 1,2-Trichloroethane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane </td <td></td> <td></td> <td></td> <td></td>				
2,2-Dichloropropane				
Chloroform	I :		•	
Bromochloromethane				
1,1-Trichloroethane				
1,1-pichloropropene				
Carbon Tetrachloride ND 3,100 1,2-Dichloroethane ND 3,100 Benzene ND 3,100 Trichloroethene ND 3,100 1,2-Dichloropropane ND 3,100 Bromodichloromethane ND 3,100 4-Methyl-2-Pentanone ND 3,100 4-Methyl-2-Pentanone ND 3,100 cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 1,2-Dibromoethane ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Chlorobenzene ND 3,100 m,p-Xylene ND 3,100				
1,2-Dichloroethane				
Benzene				
Trichloroethene ND 3,100 1,2-Dichloropropane ND 3,100 Bromodichloromethane ND 3,100 Dibromomethane ND 3,100 4-Methyl-2-Pentanone ND 6,300 cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 1,2-Dibromoethane ND 3,100 1,2-Dibromoethane ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100				
1,2-Dichloropropane ND 3,100 Bromodichloromethane ND 3,100 Dibromomethane ND 3,100 4-Methyl-2-Pentanone ND 6,300 cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Tetrachloroethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
Bromodichloromethane ND 3,100 Dibromomethane ND 3,100 4-Methyl-2-Pentanone ND 6,300 cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 1,1,2-Tetrachloroethane ND 3,100 Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,2,2-Tetrachloroethane ND 3,100				
Dibromomethane ND 3,100 4-Methyl-2-Pentanone ND 6,300 cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 1,2-Dibromoethane ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100				
4-Methyl-2-Pentanone ND 6,300 cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,2,2-Tetrachloroethane ND 3,100 1,2,2-Trichloropropane ND 3,100				
cis-1,3-Dichloropropene ND 3,100 Toluene ND 3,100 trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 3,100 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
Toluene			•	
trans-1,3-Dichloropropene ND 3,100 1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 6,300 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,2-Tetrachloropropane ND 3,100				
1,1,2-Trichloroethane ND 3,100 2-Hexanone ND 6,300 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
2-Hexanone ND 6,300 1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 Chlorobenzene ND 3,100 1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 1,2,2-Tetrachloroethane ND 3,100 1,2,2-Tetrachloropropane ND 3,100			- ,	
1,3-Dichloropropane ND 3,100 Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
Tetrachloroethene ND 3,100 Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100	_			
Dibromochloromethane ND 3,100 1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
1,2-Dibromoethane ND 3,100 Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
Chlorobenzene ND 3,100 1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
1,1,1,2-Tetrachloroethane ND 3,100 Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
Ethylbenzene ND 3,100 m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
m,p-Xylenes ND 3,100 o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
o-Xylene ND 3,100 Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
Styrene ND 3,100 Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100	0-Yylene			
Bromoform ND 3,100 Isopropylbenzene ND 3,100 1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100				
IsopropylbenzeneND3,1001,1,2,2-TetrachloroethaneND3,1001,2,3-TrichloropropaneND3,100				
1,1,2,2-Tetrachloroethane ND 3,100 1,2,3-Trichloropropane ND 3,100			•	
1,2,3-Trichloropropane ND 3,100			3,100	
Teropy (penzene 4.000 5.100	Propylbenzene	4,000	3,100	
Bromobenzene ND 3,100			•	
1,3,5-Trimethylbenzene ND 3,100				
2-Chlorotoluene ND 3,100				

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	205565		Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 50			
Project#:	8757	Analysis: EPA 82	260B		
Field ID:	B16-3	Diln Fac:	625.0		
Lab ID:	205565-013	Batch#:	141954		
Matrix:	Soil	Sampled:	08/20/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/29/08		

Analyte	Result	RL	
4-Chlorotoluene	ND	3,100	
tert-Butylbenzene	ND	3,100	
1,2,4-Trimethylbenzene	ND	3,100	
sec-Butylbenzene	ND	3,100	
para-Isopropyl Toluene	ND	3,100	
1,3-Dichlorobenzene	ND	3,100	
1,4-Dichlorobenzene	ND	3,100	
n-Butylbenzene	5,800	3,100	
1,2-Dichlorobenzene	ND	3,100	
1,2-Dibromo-3-Chloropropane	ND	3,100	
1,2,4-Trichlorobenzene	ND	3,100	
Hexachlorobutadiene	ND	3,100	
Naphthalene	13,000	3,100	
1,2,3-Trichlorobenzene	ND	3,100	

Surrogate	%REC	Limits
Dibromofluoromethane	95	75-129
1,2-Dichloroethane-d4	101	74-133
Toluene-d8	105	80-120
Bromofluorobenzene	105	79-127
Trifluorotoluene (MeOH)	DO	55-147

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B16-6	Diln Fac:	200.0	
Lab ID:	205565-014	Batch#:	141954	
Matrix:	Soil	Sampled:	08/20/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/29/08	

Analyte	Result	RL	
Freon 12	ND	2,000	
Chloromethane	ND	2,000	
Vinyl Chloride	ND	2,000	
Bromomethane	ND	2,000	
Chloroethane	ND	2,000	
Trichlorofluoromethane	ND	1,000	
Acetone	ND	5,000	
Freon 113	ND	1,000	
1,1-Dichloroethene	ND	1,000	
Methylene Chloride	ND	4,000	
Carbon Disulfide	ND	1,000	
MTBE	ND	1,000	
trans-1,2-Dichloroethene	ND	1,000	
Vinyl Acetate	ND	10,000	
1,1-Dichloroethane	ND	1,000	
2-Butanone	ND	2,000	
cis-1,2-Dichloroethene	ND	1,000	
2,2-Dichloropropane	ND	1,000	
Chloroform	ND	1,000	
Bromochloromethane	ND	1,000	
1,1,1-Trichloroethane	ND	1,000	
1,1-Dichloropropene	ND	1,000	
Carbon Tetrachloride	ND	1,000	
1,2-Dichloroethane	ND	1,000	
Benzene	ND	1,000	
Trichloroethene	ND	1,000	
1,2-Dichloropropane	ND	1,000	
Bromodichloromethane	ND	1,000	
Dibromomethane	ND	1,000	
4-Methyl-2-Pentanone	ND	2,000	
cis-1,3-Dichloropropene	ND	1,000	
Toluene	ND	1,000	
trans-1,3-Dichloropropene	ND	1,000	
1,1,2-Trichloroethane	ND	1,000	
2-Hexanone	ND	2,000	
1,3-Dichloropropane	ND	1,000	
Tetrachloroethene	ND	1,000	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B	
Project#:	8757	Analysis: EPA	A 8260B	
Field ID:	B16-6	Diln Fac:	200.0	
Lab ID:	205565-014	Batch#:	141954	
Matrix:	Soil	Sampled:	08/20/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/29/08	

Analyte	Result	RL	
Dibromochloromethane	ND	1,000	
1,2-Dibromoethane	ND	1,000	
Chlorobenzene	ND	1,000	
1,1,1,2-Tetrachloroethane	ND	1,000	
Ethylbenzene	2,300	1,000	
m,p-Xylenes	2,000	1,000	
o-Xylene	ND	1,000	
Styrene	ND	1,000	
Bromoform	ND	1,000	
Isopropylbenzene	ND	1,000	
1,1,2,2-Tetrachloroethane	ND	1,000	
1,2,3-Trichloropropane	ND	1,000	
Propylbenzene	1,800	1,000	
Bromobenzene	ND	1,000	
1,3,5-Trimethylbenzene	2,000	1,000	
2-Chlorotoluene	ND	1,000	
4-Chlorotoluene	ND	1,000	
tert-Butylbenzene	ND	1,000	
1,2,4-Trimethylbenzene	7,000	1,000	
sec-Butylbenzene	ND	1,000	
para-Isopropyl Toluene	ND	1,000	
1,3-Dichlorobenzene	ND	1,000	
1,4-Dichlorobenzene	ND	1,000	
n-Butylbenzene	1,800	1,000	
1,2-Dichlorobenzene	ND	1,000	
1,2-Dibromo-3-Chloropropane	ND	1,000	
1,2,4-Trichlorobenzene	ND	1,000	
Hexachlorobutadiene	ND	1,000	
Naphthalene	4,600	1,000	
1,2,3-Trichlorobenzene	ND	1,000	

Surrogate	%REC	Limits
Dibromofluoromethane 9	95	75-129
1,2-Dichloroethane-d4 9	95	74-133
Toluene-d8	102	80-120
Bromofluorobenzene 1	100	79-127
Trifluorotoluene (MeOH) 1	106	55-147

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B	
Project#:	8757	Analysis: EPA	A 8260B	
Field ID:	B17-3	Diln Fac:	0.9042	
Lab ID:	205565-017	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Freon 12	ND	9.0	
Chloromethane	ND	9.0	
Vinyl Chloride	ND	9.0	
Bromomethane	ND	9.0	
Chloroethane	ND	9.0	
Trichlorofluoromethane	ND	4.5	
Acetone	43	23	
Freon 113	ND	4.5	
1,1-Dichloroethene	ND	4.5	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.5	
MTBE	ND	4.5	
trans-1,2-Dichloroethene	ND	4.5	
Vinyl Acetate	ND	45	
1,1-Dichloroethane	ND	4.5	
2-Butanone	9.2	9.0	
cis-1,2-Dichloroethene	ND	4.5	
2,2-Dichloropropane	ND	4.5	
Chloroform	ND	4.5	
Bromochloromethane	ND	4.5	
1,1,1-Trichloroethane	ND	4.5	
1,1-Dichloropropene	ND	4.5	
Carbon Tetrachloride	ND	4.5	
1,2-Dichloroethane	ND	4.5	
Benzene	ND	4.5	
Trichloroethene	ND	4.5	
1,2-Dichloropropane	ND	4.5	
Bromodichloromethane	ND	4.5	
Dibromomethane	ND	4.5	
4-Methyl-2-Pentanone	ND	9.0	
cis-1,3-Dichloropropene	ND	4.5	
Toluene	ND	4.5	
trans-1,3-Dichloropropene	ND	4.5	
1,1,2-Trichloroethane	ND	4.5	
2-Hexanone	ND	9.0	
1,3-Dichloropropane	ND	4.5	
Tetrachloroethene	ND	4.5	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B	
Project#:	8757	Analysis: EPA	A 8260B	
Field ID:	B17-3	Diln Fac:	0.9042	
Lab ID:	205565-017	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Dibromochloromethane	ND	4.5	
1,2-Dibromoethane	ND	4.5	
Chlorobenzene	ND	4.5	
1,1,1,2-Tetrachloroethane	ND	4.5	
Ethylbenzene	ND	4.5	
m,p-Xylenes	ND	4.5	
o-Xylene	ND	4.5	
Styrene	ND	4.5	
Bromoform	ND	4.5	
Isopropylbenzene	ND	4.5	
1,1,2,2-Tetrachloroethane	ND	4.5	
1,2,3-Trichloropropane	ND	4.5	
Propylbenzene	ND	4.5	
Bromobenzene	ND	4.5	
1,3,5-Trimethylbenzene	ND	4.5	
2-Chlorotoluene	ND	4.5	
4-Chlorotoluene	ND	4.5	
tert-Butylbenzene	ND	4.5	
1,2,4-Trimethylbenzene	ND	4.5	
sec-Butylbenzene	ND	4.5	
para-Isopropyl Toluene	ND	4.5	
1,3-Dichlorobenzene	ND	4.5	
1,4-Dichlorobenzene	ND	4.5	
n-Butylbenzene	ND	4.5	
1,2-Dichlorobenzene	ND	4.5	
1,2-Dibromo-3-Chloropropane	ND	4.5	
1,2,4-Trichlorobenzene	ND	4.5	
Hexachlorobutadiene	ND	4.5	
Naphthalene	ND	4.5	
1,2,3-Trichlorobenzene	ND	4.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	75-129	
1,2-Dichloroethane-d4	91	74-133	
Toluene-d8	96	80-120	
Bromofluorobenzene	108	79-127	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B17-6	Diln Fac:	0.9615	
Lab ID:	205565-018	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Freon 12	ND	9.6	
Chloromethane	ND	9.6	
Vinyl Chloride	ND	9.6	
Bromomethane	ND	9.6	
Chloroethane	ND	9.6	
Trichlorofluoromethane	ND	4.8	
Acetone	ND	24	
Freon 113	ND	4.8	
1,1-Dichloroethene	ND	4.8	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.8	
MTBE	ND	4.8	
trans-1,2-Dichloroethene	ND	4.8	
Vinyl Acetate	ND	48	
1,1-Dichloroethane	ND	4.8	
2-Butanone	ND	9.6	
cis-1,2-Dichloroethene	ND	4.8	
2,2-Dichloropropane	ND	4.8	
Chloroform	ND	4.8	
Bromochloromethane	ND	4.8	
1,1,1-Trichloroethane	ND	4.8	
1,1-Dichloropropene	ND	4.8	
Carbon Tetrachloride	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Trichloroethene	ND	4.8	
1,2-Dichloropropane	ND	4.8	
Bromodichloromethane	ND	4.8	
Dibromomethane	ND	4.8	
4-Methyl-2-Pentanone	ND	9.6	
cis-1,3-Dichloropropene	ND	4.8	
Toluene	ND	4.8	
trans-1,3-Dichloropropene	ND	4.8	
1,1,2-Trichloroethane	ND	4.8	
2-Hexanone	ND	9.6	
1,3-Dichloropropane	ND	4.8	
Tetrachloroethene	ND	4.8	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B17-6	Diln Fac:	0.9615	
Lab ID:	205565-018	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Dibromochloromethane	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Chlorobenzene	ND	4.8	
1,1,1,2-Tetrachloroethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	
Styrene	ND	4.8	
Bromoform	ND	4.8	
Isopropylbenzene	ND	4.8	
1,1,2,2-Tetrachloroethane	ND	4.8	
1,2,3-Trichloropropane	ND	4.8	
Propylbenzene	ND	4.8	
Bromobenzene	ND	4.8	
1,3,5-Trimethylbenzene	ND	4.8	
2-Chlorotoluene	ND	4.8	
4-Chlorotoluene	ND	4.8	
tert-Butylbenzene	ND	4.8	
1,2,4-Trimethylbenzene	ND	4.8	
sec-Butylbenzene	ND	4.8	
para-Isopropyl Toluene	ND	4.8	
1,3-Dichlorobenzene	ND	4.8	
1,4-Dichlorobenzene	ND	4.8	
n-Butylbenzene	ND	4.8	
1,2-Dichlorobenzene	ND	4.8	
1,2-Dibromo-3-Chloropropane	ND	4.8	
1,2,4-Trichlorobenzene	ND	4.8	
Hexachlorobutadiene	ND	4.8	
Naphthalene	ND	4.8	
1,2,3-Trichlorobenzene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	75-129	
1,2-Dichloroethane-d4	93	74-133	
Toluene-d8	97	80-120	
Bromofluorobenzene	106	79-127	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B18-3	Diln Fac:	0.9158	
Lab ID:	205565-021	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Freon 12	ND	9.2	
Chloromethane	ND	9.2	
Vinyl Chloride	ND	9.2	
Bromomethane	ND	9.2	
Chloroethane	ND	9.2	
Trichlorofluoromethane	ND	4.6	
Acetone	ND	23	
Freon 113	ND	4.6	
1,1-Dichloroethene	ND	4.6	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.6	
MTBE	ND	4.6	
trans-1,2-Dichloroethene	ND	4.6	
Vinyl Acetate	ND	46	
1,1-Dichloroethane	ND	4.6	
2-Butanone	ND	9.2	
cis-1,2-Dichloroethene	ND	4.6	
2,2-Dichloropropane	ND	4.6	
Chloroform	ND	4.6	
Bromochloromethane	ND	4.6	
1,1,1-Trichloroethane	ND	4.6	
1,1-Dichloropropene	ND	4.6	
Carbon Tetrachloride	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Trichloroethene	ND	4.6	
1,2-Dichloropropane	ND	4.6	
Bromodichloromethane	ND	4.6	
Dibromomethane	ND	4.6	
4-Methyl-2-Pentanone	ND	9.2	
cis-1,3-Dichloropropene	ND	4.6	
Toluene	ND	4.6	
trans-1,3-Dichloropropene	ND	4.6	
1,1,2-Trichloroethane	ND	4.6	
2-Hexanone	ND	9.2	
1,3-Dichloropropane	ND	4.6	
Tetrachloroethene	ND	4.6	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B18-3	Diln Fac:	0.9158	
Lab ID:	205565-021	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Dibromochloromethane	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Chlorobenzene	ND	4.6	
1,1,1,2-Tetrachloroethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	
Styrene	ND	4.6	
Bromoform	ND	4.6	
Isopropylbenzene	ND	4.6	
1,1,2,2-Tetrachloroethane	ND	4.6	
1,2,3-Trichloropropane	ND	4.6	
Propylbenzene	ND	4.6	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	75-129	
1,2-Dichloroethane-d4	95	74-133	
Toluene-d8	97	80-120	
Bromofluorobenzene	109	79-127	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B18-6	Diln Fac:	0.9881	
Lab ID:	205565-022	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Freon 12	ND	9.9	
Chloromethane	ND	9.9	
Vinyl Chloride	ND	9.9	
Bromomethane	ND	9.9	
Chloroethane	ND	9.9	
Trichlorofluoromethane	ND	4.9	
Acetone	ND	25	
Freon 113	ND	4.9	
1,1-Dichloroethene	ND	4.9	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	4.9	
MTBE	ND	4.9	
trans-1,2-Dichloroethene	ND	4.9	
Vinyl Acetate	ND	49	
1,1-Dichloroethane	ND	4.9	
2-Butanone	ND	9.9	
cis-1,2-Dichloroethene	ND	4.9	
2,2-Dichloropropane	ND	4.9	
Chloroform	ND	4.9	
Bromochloromethane	ND	4.9	
1,1,1-Trichloroethane	ND	4.9	
1,1-Dichloropropene	ND	4.9	
Carbon Tetrachloride	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Trichloroethene	ND	4.9	
1,2-Dichloropropane	ND	4.9	
Bromodichloromethane	ND	4.9	
Dibromomethane	ND	4.9	
4-Methyl-2-Pentanone	ND	9.9	
cis-1,3-Dichloropropene	ND	4.9	
Toluene	ND	4.9	
trans-1,3-Dichloropropene	ND	4.9	
1,1,2-Trichloroethane	ND	4.9	
2-Hexanone	ND	9.9	
1,3-Dichloropropane	ND	4.9	
Tetrachloroethene	ND	4.9	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B	
Project#:	8757	Analysis: EPA	A 8260B	
Field ID:	B18-6	Diln Fac:	0.9881	
Lab ID:	205565-022	Batch#:	141855	
Matrix:	Soil	Sampled:	08/21/08	
Units:	ug/Kg	Received:	08/25/08	
Basis:	as received	Analyzed:	08/27/08	

Analyte	Result	RL	
Dibromochloromethane	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Chlorobenzene	ND	4.9	
1,1,1,2-Tetrachloroethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	
Styrene	ND	4.9	
Bromoform	ND	4.9	
Isopropylbenzene	ND	4.9	
1,1,2,2-Tetrachloroethane	ND	4.9	
1,2,3-Trichloropropane	ND	4.9	
Propylbenzene	ND	4.9	
Bromobenzene	ND	4.9	
1,3,5-Trimethylbenzene	ND	4.9	
2-Chlorotoluene	ND	4.9	
4-Chlorotoluene	ND	4.9	
tert-Butylbenzene	ND	4.9	
1,2,4-Trimethylbenzene	ND	4.9	
sec-Butylbenzene	ND	4.9	
para-Isopropyl Toluene	ND	4.9	
1,3-Dichlorobenzene	ND	4.9	
1,4-Dichlorobenzene	ND	4.9	
n-Butylbenzene	ND	4.9	
1,2-Dichlorobenzene	ND	4.9	
1,2-Dibromo-3-Chloropropane	ND	4.9	
1,2,4-Trichlorobenzene	ND	4.9	
Hexachlorobutadiene	ND	4.9	
Naphthalene	ND	4.9	
1,2,3-Trichlorobenzene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	107	75-129	
1,2-Dichloroethane-d4	91	74-133	
Toluene-d8	96	80-120	
Bromofluorobenzene	107	79-127	

RL= Reporting Limit

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	B19-3	Diln Fac:	0.9823
Lab ID:	205565-024	Batch#:	141855
Matrix:	Soil	Sampled:	08/21/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Preon 12	Analyte	Result	RL	
Chloromethane				
Vinyl Chloride ND 9.8 Bromomethane ND 9.8 Chloroethane ND 9.8 Trichlorofluoromethane ND 4.9 Acetone ND 25 Freon 113 ND 4.9 1,1-Dichloroethene ND 4.9 Methylene Chloride ND 4.9 Carbon Disulfide ND 4.9 MTBE ND 4.9 Trans-1,2-Dichloroethene ND 4.9 Vinyl Acetate ND 4.9 1,1-Dichloroethane ND 4.9 1,1-Dichloroethane ND 4.9 2,-Butanone ND 4.9 cis-1,2-Dichloroethane ND 4.9 2,2-Dichloropropane ND 4.9 Promochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,2-Dichloropropane ND 4.9 2,2-Dichloroethane ND 4.9 1,2-Dichloropropane ND <t< td=""><td></td><td></td><td></td><td></td></t<>				
Bromomethane				
Chloroethane ND 4.9 Acetone ND 25 Freon 113 ND 4.9 1,1-Dichloroethene ND 4.9 Methylene Chloride ND 20 Carbon Disulfide ND 4.9 MTBE ND 4.9 Trans-1,2-Dichloroethene ND 4.9 Vinyl Acetate ND 4.9 1,1-Dichloroethane ND 4.9 2-Butanone ND 4.9 2-Butanone ND 4.9 2,2-Dichloroethane ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Promochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,1-Dichloroepopene ND 4.9 1,2-Dichloroethane ND 4.9 1,2-Dichloropopane ND 4.9 Polichloropopane ND 4.9 1,2-Dichloropopane ND 4.9 <td><u> </u></td> <td></td> <td></td> <td></td>	<u> </u>			
Trichlorofluoromethane ND 4.9 Acetone ND 25 Freon 113 ND 4.9 1,1-Dichloroethene ND 4.9 Methylene Chloride ND 20 Carbon Disulfide ND 4.9 MTBE ND 4.9 trans-1,2-Dichloroethene ND 4.9 trans-1,2-Dichloroethene ND 4.9 1,1-Dichloroethane ND 4.9 2-Butanone ND 4.9 2-Butanone ND 4.9 2,2-Dichloroethane ND 4.9 2,2-Dichloropropane ND 4.9 Promochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 Enzane ND 4.9 Trichloroethane ND 4.9 Enzane ND 4.9 Trichloropropane ND 4.9 </td <td></td> <td></td> <td></td> <td></td>				
Acetone ND 25 Freon 113 ND 4.9 1,1-Dichloroethene ND 4.9 Methylene Chloride ND 20 Carbon Disulfide ND 4.9 MTBE ND 4.9 MTBE ND 4.9 Vinyl Acetate ND 4.9 1,1-Dichloroethane ND 4.9 2-Butanone ND 4.9 2-Butanone ND 4.9 2,2-Dichloropropane ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 Pancare ND 4.9 Trichloroethane ND 4.9 Bromodichloromethane ND 4.9 Promodichloromethane ND 4.9 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Freon 113				
1,1-Dichloroethene				
Methylene Chloride ND 4.9 Carbon Disulfide ND 4.9 MTBE ND 4.9 trans-1,2-Dichloroethene ND 4.9 Vinyl Acetate ND 4.9 1,1-Dichloroethane ND 4.9 2-Butanone ND 4.9 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethane ND 4.9 Trichloropropane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 4.9 Toluene ND				
Carbon Disulfide ND 4.9 MTBE ND 4.9 trans-1,2-Dichloroethene ND 4.9 Vinyl Acetate ND 49 1,1-Dichloroethane ND 4.9 2-Butanone ND 4.9 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Bromodichloromethane ND 4.9 4-Methyl-2-Pentanone ND 4.9 cis-1,3-Dichloropropene ND 4.9 Toluene ND				
MTBE ND 4.9 trans-1,2-Dichloroethene ND 4.9 Vinyl Acetate ND 4.9 1,1-Dichloroethane ND 4.9 2-Butanone ND 4.9 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 Eenzene ND 4.9 Trichloroethene ND 4.9 Tpichloropropane ND 4.9 Bromodichloromethane ND 4.9 Bromodichloromethane ND 4.9 4-Methyl-2-Pentanone ND 4.9 5-Dichloropropene ND 4.9 7-Oluene ND 4.9 7-J.,2-Trichloroethane ND 4.9 7-J.,2-Trichloropropane ND <td>_</td> <td></td> <td></td> <td></td>	_			
trans-1,2-Dichloroethene ND 4.9 Vinyl Acetate ND 49 1,1-Dichloroethane ND 4.9 2-Butanone ND 9.8 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Promodichloromethane ND 4.9 Promodichloromethane ND 4.9 Promodichloropropene ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 Trickloropropene ND 4.9 Type-Trickloropropene ND				
Vinyl Acetate ND 49 1,1-Dichloroethane ND 4.9 2-Butanone ND 9.8 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethane ND 4.9 T,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Bromodichloromethane ND 4.9 Toluoromethane ND 4.9 4-Methyl-2-Pentanone ND 4.9 cis-1,3-Dichloropropene ND 4.9 Toluore ND 4.9 trans-1,3-Dichloroptopene ND 4.9 1,1,2-Trichloroethane				
1,1-Dichloroethane ND 4.9 2-Butanone ND 9.8 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 4.9 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
2-Butanone ND 9.8 cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 1,2-Dichloroethane ND 4.9 1,2-Dichloroethane ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Pibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 Trichloroethane ND 4.9 Toluene ND 4.9 Trichloropropene ND 4.9 Toluene ND 4.9 Trichloroethane ND 4.9 Toluene ND 4.9 Trichloropropene ND 4.9 Tol	_			
cis-1,2-Dichloroethene ND 4.9 2,2-Dichloropropane ND 4.9 Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 Trichloroethane ND 4.9 Trichloroethane ND 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4				
2,2-DichloropropaneND4.9ChloroformND4.9BromochloromethaneND4.91,1,1-TrichloroethaneND4.91,1-DichloropropeneND4.9Carbon TetrachlorideND4.91,2-DichloroethaneND4.9BenzeneND4.9TrichloroetheneND4.91,2-DichloropropaneND4.9BromodichloromethaneND4.9DibromomethaneND4.94-Methyl-2-PentanoneND4.9cis-1,3-DichloropropeneND4.9TolueneND4.9trans-1,3-DichloropropeneND4.91,1,2-TrichloroethaneND4.92-HexanoneND4.91,3-DichloropropaneND4.92-HexanoneND9.81,3-DichloropropaneND9.8				
Chloroform ND 4.9 Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 Trichloropropane ND 4.9 Bromodichloromethane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 Dibromomethane ND 4.9 Dibromomethane ND 4.9 Toluene ND 4.9				
Bromochloromethane ND 4.9 1,1,1-Trichloroethane ND 4.9 1,1-Dichloropropene ND 4.9 Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 Trichloropropane ND 4.9 Bromodichloromethane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 Dibromomethane ND 4.9 Tichloropropane ND 4.9 Tichloropropane ND 4.9 Trichloropropane ND 4.9 Trichloromethane ND 4.9 Dibromomethane ND 4.9 Toluene ND 4.9				
1,1,1-TrichloroethaneND4.91,1-DichloropropeneND4.9Carbon TetrachlorideND4.91,2-DichloroethaneND4.9BenzeneND4.9TrichloroetheneND4.91,2-DichloropropaneND4.9BromodichloromethaneND4.9DibromomethaneND4.94-Methyl-2-PentanoneND9.8cis-1,3-DichloropropeneND4.9TolueneND4.9trans-1,3-DichloropropeneND4.91,1,2-TrichloroethaneND4.92-HexanoneND9.81,3-DichloropropaneND9.81,3-DichloropropaneND4.9				
1,1-Dichloropropene ND 4.9 Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 Trichloropropane ND 4.9 Bromodichloromethane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 Cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 Trichloropropene ND 4.9 Toluene ND 4.9 Trichloropropene ND 4.9 Toluene ND 4.9 Trichloropropene ND 4.9				
Carbon Tetrachloride ND 4.9 1,2-Dichloroethane ND 4.9 Benzene ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
1,2-DichloroethaneND4.9BenzeneND4.9TrichloroetheneND4.91,2-DichloropropaneND4.9BromodichloromethaneND4.9DibromomethaneND4.94-Methyl-2-PentanoneND9.8cis-1,3-DichloropropeneND4.9TolueneND4.9trans-1,3-DichloropropeneND4.91,1,2-TrichloroethaneND4.92-HexanoneND9.81,3-DichloropropaneND9.8				
Benzene ND 4.9 Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
Trichloroethene ND 4.9 1,2-Dichloropropane ND 4.9 Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9	1 · ·			
1,2-DichloropropaneND4.9BromodichloromethaneND4.9DibromomethaneND4.94-Methyl-2-PentanoneND9.8cis-1,3-DichloropropeneND4.9TolueneND4.9trans-1,3-DichloropropeneND4.91,1,2-TrichloroethaneND4.92-HexanoneND9.81,3-DichloropropaneND4.9				
Bromodichloromethane ND 4.9 Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
Dibromomethane ND 4.9 4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
4-Methyl-2-Pentanone ND 9.8 cis-1,3-Dichloropropene ND 4.9 Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
cis-1,3-DichloropropeneND4.9TolueneND4.9trans-1,3-DichloropropeneND4.91,1,2-TrichloroethaneND4.92-HexanoneND9.81,3-DichloropropaneND4.9				
Toluene ND 4.9 trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9	_			
trans-1,3-Dichloropropene ND 4.9 1,1,2-Trichloroethane ND 4.9 2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
1,1,2-TrichloroethaneND4.92-HexanoneND9.81,3-DichloropropaneND4.9				
2-Hexanone ND 9.8 1,3-Dichloropropane ND 4.9				
1,3-Dichloropropane ND 4.9				
Tetrachloroethene ND A 0	Tetrachloroethene	ND	4.9	

RL= Reporting Limit

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	B19-3	Diln Fac:	0.9823
Lab ID:	205565-024	Batch#:	141855
Matrix:	Soil	Sampled:	08/21/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Analyte	Result	RL	
Dibromochloromethane	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Chlorobenzene	ND	4.9	
1,1,1,2-Tetrachloroethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	
Styrene	ND	4.9	
Bromoform	ND	4.9	
Isopropylbenzene	ND	4.9	
1,1,2,2-Tetrachloroethane	ND	4.9	
1,2,3-Trichloropropane	ND	4.9	
Propylbenzene	ND	4.9	
Bromobenzene	ND	4.9	
1,3,5-Trimethylbenzene	ND	4.9	
2-Chlorotoluene	ND	4.9	
4-Chlorotoluene	ND	4.9	
tert-Butylbenzene	ND	4.9	
1,2,4-Trimethylbenzene	ND	4.9	
sec-Butylbenzene	ND	4.9	
para-Isopropyl Toluene	ND	4.9	
1,3-Dichlorobenzene	ND	4.9	
1,4-Dichlorobenzene	ND	4.9	
n-Butylbenzene	ND	4.9	
1,2-Dichlorobenzene	ND	4.9	
1,2-Dibromo-3-Chloropropane	ND	4.9	
1,2,4-Trichlorobenzene	ND	4.9	
Hexachlorobutadiene	ND	4.9	
Naphthalene	ND	4.9	
1,2,3-Trichlorobenzene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	75-129	
1,2-Dichloroethane-d4	94	74-133	
Toluene-d8	97	80-120	
Bromofluorobenzene	106	79-127	

RL= Reporting Limit

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	B19-6	Diln Fac:	0.9158
Lab ID:	205565-025	Batch#:	141855
Matrix:	Soil	Sampled:	08/21/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Analyte	Result	RL	
Freon 12	ND	9.2	
Chloromethane	ND	9.2	
Vinyl Chloride	ND	9.2	
Bromomethane	ND	9.2	
Chloroethane	ND	9.2	
Trichlorofluoromethane	ND	4.6	
Acetone	ND	23	
Freon 113	ND	4.6	
1,1-Dichloroethene	ND	4.6	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.6	
MTBE	ND	4.6	
trans-1,2-Dichloroethene	ND	4.6	
Vinyl Acetate	ND	46	
1,1-Dichloroethane	ND	4.6	
2-Butanone	ND	9.2	
cis-1,2-Dichloroethene	ND	4.6	
2,2-Dichloropropane	ND	4.6	
Chloroform	ND	4.6	
Bromochloromethane	ND	4.6	
1,1,1-Trichloroethane	ND	4.6	
1,1-Dichloropropene	ND	4.6	
Carbon Tetrachloride	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Trichloroethene	ND	4.6	
1,2-Dichloropropane	ND	4.6	
Bromodichloromethane	ND	4.6	
Dibromomethane	ND	4.6	
4-Methyl-2-Pentanone	ND	9.2	
cis-1,3-Dichloropropene	ND	4.6	
Toluene	ND	4.6	
trans-1,3-Dichloropropene	ND	4.6	
1,1,2-Trichloroethane	ND	4.6	
2-Hexanone	ND	9.2	
1,3-Dichloropropane	ND	4.6	
Tetrachloroethene	ND	4.6	

ND= Not Detected RL= Reporting Limit

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	B19-6	Diln Fac:	0.9158
Lab ID:	205565-025	Batch#:	141855
Matrix:	Soil	Sampled:	08/21/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Analyte	Result	RL	
Dibromochloromethane	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Chlorobenzene	ND	4.6	
1,1,1,2-Tetrachloroethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	
Styrene	ND	4.6	
Bromoform	ND	4.6	
Isopropylbenzene	ND	4.6	
1,1,2,2-Tetrachloroethane	ND	4.6	
1,2,3-Trichloropropane	ND	4.6	
Propylbenzene	ND	4.6	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	75-129	
1,2-Dichloroethane-d4	94	74-133	
Toluene-d8	98	80-120	
Bromofluorobenzene	108	79-127	

RL= Reporting Limit

	Purgeable On	rganics by GC/	/MS
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B
Project#:	8757	Analysis: EPA	A 8260B
Field ID:	CB1-3.5	Diln Fac:	0.9940
Lab ID:	205565-027	Batch#:	141819
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/26/08

Analyte	Result	RL	
Freon 12	ND	9.9	
Chloromethane	ND	9.9	
Vinyl Chloride	ND	9.9	
Bromomethane	ND	9.9	
Chloroethane	ND	9.9	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	9.9	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	9.9	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	9.9	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

RL= Reporting Limit

	Purgeable On	rganics by GC/	/MS
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B
Project#:	8757	Analysis: EPA	A 8260B
Field ID:	CB1-3.5	Diln Fac:	0.9940
Lab ID:	205565-027	Batch#:	141819
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/26/08

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	75-129	
1,2-Dichloroethane-d4	95	74-133	
Toluene-d8	99	80-120	
Bromofluorobenzene	105	79-127	

RL= Reporting Limit

	Purgeable Or	ganics by GC/1	
Lab #:	205565	Location: 1532	Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	CB1-6.5	Diln Fac:	0.9653
Lab ID:	205565-028	Batch#:	141819
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/26/08

Analyte	Result	RL	
Freon 12	ND	9.7	
Chloromethane	ND	9.7	
Vinyl Chloride	ND	9.7	
Bromomethane	ND	9.7	
Chloroethane	ND	9.7	
Trichlorofluoromethane	ND	4.8	
Acetone	ND	24	
Freon 113	ND	4.8	
1,1-Dichloroethene	ND	4.8	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.8	
MTBE	ND	4.8	
trans-1,2-Dichloroethene	ND	4.8	
Vinyl Acetate	ND	48	
1,1-Dichloroethane	ND	4.8	
2-Butanone	ND	9.7	
cis-1,2-Dichloroethene	ND	4.8	
2,2-Dichloropropane	ND	4.8	
Chloroform	ND	4.8	
Bromochloromethane	ND	4.8	
1,1,1-Trichloroethane	ND	4.8	
1,1-Dichloropropene	ND	4.8	
Carbon Tetrachloride	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Trichloroethene	ND	4.8	
1,2-Dichloropropane	ND	4.8	
Bromodichloromethane	ND	4.8	
Dibromomethane	ND	4.8	
4-Methyl-2-Pentanone	ND	9.7	
cis-1,3-Dichloropropene	ND	4.8	
Toluene	ND	4.8	
trans-1,3-Dichloropropene	ND	4.8	
1,1,2-Trichloroethane	ND	4.8	
2-Hexanone	ND	9.7	
1,3-Dichloropropane	ND	4.8	
Tetrachloroethene	ND	4.8	

ND= Not Detected RL= Reporting Limit

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	CB1-6.5	Diln Fac:	0.9653
Lab ID:	205565-028	Batch#:	141819
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/26/08

Analyte	Result	RL	
Dibromochloromethane	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Chlorobenzene	ND	4.8	
1,1,1,2-Tetrachloroethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	
Styrene	ND	4.8	
Bromoform	ND	4.8	
Isopropylbenzene	ND	4.8	
1,1,2,2-Tetrachloroethane	ND	4.8	
1,2,3-Trichloropropane	ND	4.8	
Propylbenzene	ND	4.8	
Bromobenzene	ND	4.8	
1,3,5-Trimethylbenzene	ND	4.8	
2-Chlorotoluene	ND	4.8	
4-Chlorotoluene	ND	4.8	
tert-Butylbenzene	ND	4.8	
1,2,4-Trimethylbenzene	ND	4.8	
sec-Butylbenzene	ND	4.8	
para-Isopropyl Toluene	ND	4.8	
1,3-Dichlorobenzene	ND	4.8	
1,4-Dichlorobenzene	ND	4.8	
n-Butylbenzene	ND	4.8	
1,2-Dichlorobenzene	ND	4.8	
1,2-Dibromo-3-Chloropropane	ND	4.8	
1,2,4-Trichlorobenzene	ND	4.8	
Hexachlorobutadiene	ND	4.8	
Naphthalene	ND	4.8	
1,2,3-Trichlorobenzene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	75-129	
1,2-Dichloroethane-d4	92	74-133	
Toluene-d8	97	80-120	
Bromofluorobenzene	105	79-127	

RL= Reporting Limit

	Purgeable On	rganics by GC/	'MS
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	CB2-3.5	Diln Fac:	0.9901
Lab ID:	205565-029	Batch#:	141819
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/26/08

Analyte	Result	RL	
Freon 12	ND	9.9	
Chloromethane	ND	9.9	
Vinyl Chloride	ND	9.9	
Bromomethane	ND	9.9	
Chloroethane	ND	9.9	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	9.9	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	9.9	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	9.9	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B		
Project#:	8757	Analysis: EPA	8260B		
Field ID:	CB2-3.5	Diln Fac:	0.9901		
Lab ID:	205565-029	Batch#:	141819		
Matrix:	Soil	Sampled:	08/22/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/26/08		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	75-129	
1,2-Dichloroethane-d4	94	74-133	
Toluene-d8	99	80-120	
Bromofluorobenzene	107	79-127	

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 15	532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EI	PA 5030B		
Project#:	8757	Analysis: EI	PA 8260B		
Field ID:	CB2-6.5	Diln Fac:	0.9242		
Lab ID:	205565-030	Batch#:	141819		
Matrix:	Soil	Sampled:	08/22/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/26/08		

Analyte	Result	RL	
Freon 12	ND	9.2	
Chloromethane	ND	9.2	
Vinyl Chloride	ND	9.2	
Bromomethane	ND	9.2	
Chloroethane	ND	9.2	
Trichlorofluoromethane	ND	4.6	
Acetone	ND	23	
Freon 113	ND	4.6	
1,1-Dichloroethene	ND	4.6	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.6	
MTBE	ND	4.6	
trans-1,2-Dichloroethene	ND	4.6	
Vinyl Acetate	ND	46	
1,1-Dichloroethane	ND	4.6	
2-Butanone	ND	9.2	
cis-1,2-Dichloroethene	ND	4.6	
2,2-Dichloropropane	ND	4.6	
Chloroform	ND	4.6	
Bromochloromethane	ND	4.6	
1,1,1-Trichloroethane	ND	4.6	
1,1-Dichloropropene	ND	4.6	
Carbon Tetrachloride	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Trichloroethene	ND	4.6	
1,2-Dichloropropane	ND	4.6	
Bromodichloromethane	ND	4.6	
Dibromomethane	ND	4.6	
4-Methyl-2-Pentanone	ND	9.2	
cis-1,3-Dichloropropene	ND	4.6	
Toluene	ND	4.6	
trans-1,3-Dichloropropene	ND	4.6	
1,1,2-Trichloroethane	ND	4.6	
2-Hexanone	ND	9.2	
1,3-Dichloropropane	ND	4.6	
Tetrachloroethene	ND	4.6	

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	. 5030B		
Project#:	8757	Analysis: EPA	8260B		
Field ID:	CB2-6.5	Diln Fac:	0.9242		
Lab ID:	205565-030	Batch#:	141819		
Matrix:	Soil	Sampled:	08/22/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/26/08		

Analyte	Result	RL	
Dibromochloromethane	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Chlorobenzene	ND	4.6	
1,1,1,2-Tetrachloroethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	
Styrene	ND	4.6	
Bromoform	ND	4.6	
Isopropylbenzene	ND	4.6	
1,1,2,2-Tetrachloroethane	ND	4.6	
1,2,3-Trichloropropane	ND	4.6	
Propylbenzene	ND	4.6	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	75-129	
1,2-Dichloroethane-d4	93	74-133	
Toluene-d8	97	80-120	
Bromofluorobenzene	105	79-127	

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B		
Project#:	8757	Analysis: EPA	8260B		
Field ID:	CB3-3.5	Diln Fac:	0.9009		
Lab ID:	205565-031	Batch#:	141819		
Matrix:	Soil	Sampled:	08/22/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/26/08		

Analyte	Result	RL	
Freon 12	ND	9.0	
Chloromethane	ND	9.0	
Vinyl Chloride	ND	9.0	
Bromomethane	ND	9.0	
Chloroethane	ND	9.0	
Trichlorofluoromethane	ND	4.5	
Acetone	ND	23	
Freon 113	ND	4.5	
1,1-Dichloroethene	ND	4.5	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.5	
MTBE	ND	4.5	
trans-1,2-Dichloroethene	ND	4.5	
Vinyl Acetate	ND	45	
1,1-Dichloroethane	ND	4.5	
2-Butanone	ND	9.0	
cis-1,2-Dichloroethene	ND	4.5	
2,2-Dichloropropane	ND	4.5	
Chloroform	ND	4.5	
Bromochloromethane	ND	4.5	
1,1,1-Trichloroethane	ND	4.5	
1,1-Dichloropropene	ND	4.5	
Carbon Tetrachloride	ND	4.5	
1,2-Dichloroethane	ND	4.5	
Benzene	ND	4.5	
Trichloroethene	ND	4.5	
1,2-Dichloropropane	ND	4.5	
Bromodichloromethane	ND	4.5	
Dibromomethane	ND	4.5	
4-Methyl-2-Pentanone	ND	9.0	
cis-1,3-Dichloropropene	ND	4.5	
Toluene	ND	4.5	
trans-1,3-Dichloropropene	ND	4.5	
1,1,2-Trichloroethane	ND	4.5	
2-Hexanone	ND	9.0	
1,3-Dichloropropane	ND	4.5	
Tetrachloroethene	ND	4.5	

ND= Not Detected RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B		
Project#:	8757	Analysis: EPA	8260B		
Field ID:	CB3-3.5	Diln Fac:	0.9009		
Lab ID:	205565-031	Batch#:	141819		
Matrix:	Soil	Sampled:	08/22/08		
Units:	ug/Kg	Received:	08/25/08		
Basis:	as received	Analyzed:	08/26/08		

Analyte	Result	RL	
Dibromochloromethane	ND	4.5	
1,2-Dibromoethane	ND	4.5	
Chlorobenzene	ND	4.5	
1,1,1,2-Tetrachloroethane	ND	4.5	
Ethylbenzene	ND	4.5	
m,p-Xylenes	ND	4.5	
o-Xylene	ND	4.5	
Styrene	ND	4.5	
Bromoform	ND	4.5	
Isopropylbenzene	ND	4.5	
1,1,2,2-Tetrachloroethane	ND	4.5	
1,2,3-Trichloropropane	ND	4.5	
Propylbenzene	ND	4.5	
Bromobenzene	ND	4.5	
1,3,5-Trimethylbenzene	ND	4.5	
2-Chlorotoluene	ND	4.5	
4-Chlorotoluene	ND	4.5	
tert-Butylbenzene	ND	4.5	
1,2,4-Trimethylbenzene	ND	4.5	
sec-Butylbenzene	ND	4.5	
para-Isopropyl Toluene	ND	4.5	
1,3-Dichlorobenzene	ND	4.5	
1,4-Dichlorobenzene	ND	4.5	
n-Butylbenzene	ND	4.5	
1,2-Dichlorobenzene	ND	4.5	
1,2-Dibromo-3-Chloropropane	ND	4.5	
1,2,4-Trichlorobenzene	ND	4.5	
Hexachlorobutadiene	ND	4.5	
Naphthalene	ND	4.5	
1,2,3-Trichlorobenzene	ND	4.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	75-129	
1,2-Dichloroethane-d4	93	74-133	
Toluene-d8	98	80-120	
Bromofluorobenzene	106	79-127	

RL= Reporting Limit

	Purgeable On	rganics by GC/	/MS
Lab #:	205565	Location: 153	32 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B
Project#:	8757	Analysis: EPA	A 8260B
Field ID:	CB3-6.5	Diln Fac:	0.9823
Lab ID:	205565-032	Batch#:	141855
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Analyte	Result	RL	
Freon 12	ND ND	9.8	
Chloromethane	ND	9.8	
Vinyl Chloride	ND ND	9.8	
Bromomethane	ND	9.8	
Chloroethane	ND	9.8	
Trichlorofluoromethane	ND	4.9	
Acetone	ND	25	
Freon 113	ND	4.9	
1,1-Dichloroethene	ND ND	4.9	
Methylene Chloride	31	20	
Carbon Disulfide	ND	4.9	
MTBE	ND ND	4.9	
trans-1,2-Dichloroethene	ND	4.9	
Vinyl Acetate	ND	49	
1,1-Dichloroethane	ND ND	4.9	
2-Butanone	ND ND	9.8	
cis-1,2-Dichloroethene	ND ND	4.9	
2,2-Dichloropropane	ND ND	4.9	
Chloroform		4.9	
Bromochloromethane	ND ND	4.9	
1,1,1-Trichloroethane	ND ND	4.9	
		4.9	
1,1-Dichloropropene Carbon Tetrachloride	ND	4.9	
1,2-Dichloroethane	ND	4.9	
-	ND		
Benzene	ND	4.9	
Trichloroethene	ND	4.9	
1,2-Dichloropropane	ND	4.9	
Bromodichloromethane	ND	4.9	
Dibromomethane	ND	4.9	
4-Methyl-2-Pentanone	ND	9.8	
cis-1,3-Dichloropropene	ND	4.9	
Toluene	ND	4.9	
trans-1,3-Dichloropropene	ND	4.9	
1,1,2-Trichloroethane	ND	4.9	
2-Hexanone	ND	9.8	
1,3-Dichloropropane	ND	4.9	
Tetrachloroethene	ND	4.9	

RL= Reporting Limit

Purgeable Organics by GC/MS			
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	CB3-6.5	Diln Fac:	0.9823
Lab ID:	205565-032	Batch#:	141855
Matrix:	Soil	Sampled:	08/22/08
Units:	ug/Kg	Received:	08/25/08
Basis:	as received	Analyzed:	08/27/08

Analyte	Result	RL	
Dibromochloromethane	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Chlorobenzene	ND	4.9	
1,1,1,2-Tetrachloroethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	
Styrene	ND	4.9	
Bromoform	ND	4.9	
Isopropylbenzene	ND	4.9	
1,1,2,2-Tetrachloroethane	ND	4.9	
1,2,3-Trichloropropane	ND	4.9	
Propylbenzene	ND	4.9	
Bromobenzene	ND	4.9	
1,3,5-Trimethylbenzene	ND	4.9	
2-Chlorotoluene	ND	4.9	
4-Chlorotoluene	ND	4.9	
tert-Butylbenzene	ND	4.9	
1,2,4-Trimethylbenzene	ND	4.9	
sec-Butylbenzene	ND	4.9	
para-Isopropyl Toluene	ND	4.9	
1,3-Dichlorobenzene	ND	4.9	
1,4-Dichlorobenzene	ND	4.9	
n-Butylbenzene	ND	4.9	
1,2-Dichlorobenzene	ND	4.9	
1,2-Dibromo-3-Chloropropane	ND	4.9	
1,2,4-Trichlorobenzene	ND	4.9	
Hexachlorobutadiene	ND	4.9	
Naphthalene	ND	4.9	
1,2,3-Trichlorobenzene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	75-129	
1,2-Dichloroethane-d4	94	74-133	
Toluene-d8	96	80-120	
Bromofluorobenzene	108	79-127	

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532	Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 5	030B			
Project#:	8757	Analysis: EPA 8	260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC457369	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141819			
Units:	ug/Kg	Analyzed:	08/26/08			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	5030B			
Project#:	8757	Analysis: EPA	8260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC457369	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141819			
Units:	ug/Kg	Analyzed:	08/26/08			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate %RE	EC :	Limits
Dibromofluoromethane 99		75-129
1,2-Dichloroethane-d4 90		74-133
Toluene-d8 98		80-120
Bromofluorobenzene 106		79-127

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532 F	Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 50	030B			
Project#:	8757	Analysis: EPA 82	260B			
Matrix:	Soil	Diln Fac:	1.000			
Units:	ug/Kg	Batch#:	141819			
Basis:	as received	Analyzed:	08/26/08			

Type: BS Lab ID: QC457370

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	27.92	112	72-132
Benzene	25.00	26.00	104	80-123
Trichloroethene	25.00	24.31	97	80-125
Toluene	25.00	25.00	100	80-124
Chlorobenzene	25.00	25.78	103	80-120

Surrogate	%REC	Limits		
Dibromofluoromethane	103	75-129		
1,2-Dichloroethane-d4	83	74-133		
Toluene-d8	96	80-120		
Bromofluorobenzene	107	79-127		

Type: BSD Lab ID: QC457371

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	27.53	110	72-132	1	20
Benzene	25.00	25.60	102	80-123	2	20
Trichloroethene	25.00	23.83	95	80-125	2	20
Toluene	25.00	24.43	98	80-124	2	20
Chlorobenzene	25.00	25.40	102	80-120	2	20

Surrogate	%REC	Limits	
Dibromofluoromethane	102	75-129	
1,2-Dichloroethane-d4	82	74-133	
Toluene-d8	95	80-120	
Bromofluorobenzene	105	79-127	

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B			
Project#:	8757	Analysis: EPA	8260B			
Matrix:	Soil	Diln Fac:	1.000			
Units:	ug/Kg	Batch#:	141853			
Basis:	as received	Analyzed:	08/27/08			

Type: BS Lab ID: QC457509

Analyte	Spiked	Result	%REC	Limits
	phived	Result	∂KEC	
1,1-Dichloroethene	25.00	24.40	98	72-132
Benzene	25.00	22.92	92	80-123
Trichloroethene	25.00	25.15	101	80-125
Toluene	25.00	23.80	95	80-124
Chlorobenzene	25.00	24.55	98	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	78	75-129	
1,2-Dichloroethane-d4	77	74-133	
Toluene-d8	92	80-120	
Bromofluorobenzene	93	79-127	

Type: BSD Lab ID: QC457510

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	23.97	96	72-132	2	20
Benzene	25.00	23.28	93	80-123	2	20
Trichloroethene	25.00	25.50	102	80-125	1	20
Toluene	25.00	23.32	93	80-124	2	20
Chlorobenzene	25.00	25.13	101	80-120	2	20

Surrogate	%REC	Limits	
Dibromofluoromethane	82	75-129	
1,2-Dichloroethane-d4	81	74-133	
Toluene-d8	96	80-120	
Bromofluorobenzene	90	79-127	

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 1532	Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	5030B		
Project#:	8757	Analysis: EPA	8260B		
Type:	BLANK	Basis:	as received		
Lab ID:	QC457511	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	141853		
Units:	ug/Kg	Analyzed:	08/27/08		

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 15	532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EF	PA 5030B		
Project#:	8757	Analysis: EF	PA 8260B		
Type:	BLANK	Basis:	as received		
Lab ID:	QC457511	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	141853		
Units:	ug/Kg	Analyzed:	08/27/08		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	89	75-129	
1,2-Dichloroethane-d4	79	74-133	
Toluene-d8	92	80-120	
Bromofluorobenzene	101	79-127	

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	5030B		
Project#:	8757	Analysis: EPA	8260B		
Type:	BLANK	Basis:	as received		
Lab ID:	QC457518	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	141855		
Units:	ug/Kg	Analyzed:	08/27/08		

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA	5030B		
Project#:	8757	Analysis: EPA	8260B		
Type:	BLANK	Basis:	as received		
Lab ID:	QC457518	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	141855		
Units:	ug/Kg	Analyzed:	08/27/08		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate %RE	EC	Limits
Dibromofluoromethane 102		75-129
1,2-Dichloroethane-d4 93		74-133
Toluene-d8 97		80-120
Bromofluorobenzene 106		79-127

ND= Not Detected RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B			
Project#:	8757	Analysis: EPA	8260B			
Matrix:	Soil	Diln Fac:	1.000			
Units:	ug/Kg	Batch#:	141855			
Basis:	as received	Analyzed:	08/27/08			

Type: BS Lab ID: QC457519

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	28.35	113	72-132
Benzene	25.00	26.44	106	80-123
Trichloroethene	25.00	24.26	97	80-125
Toluene	25.00	25.17	101	80-124
Chlorobenzene	25.00	26.18	105	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	106	75-129	
1,2-Dichloroethane-d4	86	74-133	
Toluene-d8	95	80-120	
Bromofluorobenzene	107	79-127	

Type: BSD Lab ID: QC457520

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	26.81	107	72-132	6	20
Benzene	25.00	25.25	101	80-123	5	20
Trichloroethene	25.00	23.62	94	80-125	3	20
Toluene	25.00	24.04	96	80-124	5	20
Chlorobenzene	25.00	24.94	100	80-120	5	20

Surrogate	%REC	Limits	
Dibromofluoromethane	107	75-129	
1,2-Dichloroethane-d4	86	74-133	
Toluene-d8	94	80-120	
Bromofluorobenzene	105	79-127	

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B			
Project#:	8757	Analysis: EPA	A 8260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC457955	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141952			
Units:	ug/Kg	Analyzed:	08/29/08			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	1 5030B			
Project#:	8757	Analysis: EPA	A 8260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC457955	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141952			
Units:	ug/Kg	Analyzed:	08/29/08			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	106	75-129
1,2-Dichloroethane-d4	101	74-133
Toluene-d8	100	80-120
Bromofluorobenzene	122	79-127

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532 I	Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA 50	030B			
Project#:	8757	Analysis: EPA 82	260B			
Type:	LCS	Basis:	as received			
Lab ID:	QC457956	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141952			
Units:	ug/Kg	Analyzed:	08/29/08			

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	24.24	97	72-132
Benzene	25.00	23.08	92	80-123
Trichloroethene	25.00	22.93	92	80-125
Toluene	25.00	22.42	90	80-124
Chlorobenzene	25.00	21.83	87	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	107	75–129
1,2-Dichloroethane-d4	101	74-133
Toluene-d8	100	80-120
Bromofluorobenzene	111	79-127

Purgeable Organics by GC/MS					
Lab #:	205565	Location: 1532 F	Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 50)30B		
Project#:	8757	Analysis: EPA 82	260B		
Type:	LCS	Basis:	as received		
Lab ID:	QC457960	Diln Fac:	1.000		
Matrix:	Soil	Batch#:	141954		
Units:	ug/Kg	Analyzed:	08/29/08		

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	20.47	82	72-132
Benzene	25.00	23.74	95	80-123
Trichloroethene	25.00	23.25	93	80-125
Toluene	25.00	22.23	89	80-124
Chlorobenzene	25.00	22.79	91	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	101	75-129
1,2-Dichloroethane-d4	102	74-133
Toluene-d8	105	80-120
Bromofluorobenzene	100	79–127

Page 1 of 1 40.0

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	5030B			
Project#:	8757	Analysis: EPA	8260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC457961	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141954			
Units:	ug/Kg	Analyzed:	08/29/08			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	25	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: EPA	. 5030B			
Project#:	8757	Analysis: EPA	8260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC457961	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	141954			
Units:	ug/Kg	Analyzed:	08/29/08			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	99	75-129	
1,2-Dichloroethane-d4	105	74-133	
Toluene-d8	104	80-120	
Bromofluorobenzene	99	79-127	

Purgeable Organics by GC/MS						
Lab #:	205565	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: EPA 5030B				
Project#:	8757	Analysis: EPA 8260B				
Field ID:	ZZZZZZZZZZ	Batch#: 141954				
MSS Lab ID:	205648-003	Sampled: 08/28/08				
Matrix:	Soil	Received: 08/28/08				
Units:	ug/Kg	Analyzed: 09/02/08				
Basis:	as received					

Type: MS Diln Fac: 0.9416

Lab ID: QC457964

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.5100	47.08	59.20	126	54-132
Benzene	<0.1225	47.08	49.99	106	54-120
Trichloroethene	2.045	47.08	50.30	102	47-138
Toluene	<0.3259	47.08	46.64	99	50-120
Chlorobenzene	<0.4085	47.08	44.18	94	44-120

Surrogate	%REC	Limits
Dibromofluoromethane	103	75-129
1,2-Dichloroethane-d4	106	74-133
Toluene-d8	102	80-120
Bromofluorobenzene	96	79-127

Type: MSD Diln Fac: 0.8013

Lab ID: QC457965

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	40.06	46.71	117	54-132	8	29
Benzene	40.06	38.68	97	54-120	10	25
Trichloroethene	40.06	41.34	98	47-138	4	28
Toluene	40.06	36.28	91	50-120	9	28
Chlorobenzene	40.06	34.97	87	44-120	7	29

Surrogate	%REC	Limits	
Dibromofluoromethane	106	75-129	
1,2-Dichloroethane-d4	109	74-133	
Toluene-d8	105	80-120	
Bromofluorobenzene	98	79-127	

Purgeable Organics by GC/MS										
Lab #:	205565	Location: 153	2 Peralta St. Osagie Property							
Client:	Golden Gate Tank Removal	Prep: EPA	. 5030B							
Project#:	8757	Analysis: EPA	8260B							
Field ID:	ZZZZZZZZZZ	Batch#:	141952							
MSS Lab ID:	205668-001	Sampled:	08/27/08							
Matrix:	Soil	Received:	08/29/08							
Units:	ug/Kg	Analyzed:	09/02/08							
Basis:	as received									

Type: MS Diln Fac: 0.9416

Lab ID: QC458111

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.3370	47.08	48.54	103	54-132
Benzene	<0.4345	47.08	45.04	96	54-120
Trichloroethene	<0.2594	47.08	45.29	96	47-138
Toluene	<0.4703	47.08	43.64	93	50-120
Chlorobenzene	<0.3035	47.08	43.83	93	44-120

Surrogate	%REC	Limits
Dibromofluoromethane	105	75-129
1,2-Dichloroethane-d4	97	74-133
Toluene-d8	100	80-120
Bromofluorobenzene	109	79-127

Type: MSD Diln Fac: 0.9434

Lab ID: QC458112

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	47.17	50.81	108	54-132	4	29
Benzene	47.17	47.45	101	54-120	5	25
Trichloroethene	47.17	47.81	101	47-138	5	28
Toluene	47.17	45.43	96	50-120	4	28
Chlorobenzene	47.17	45.51	96	44-120	4	29

Surrogate	%REC	Limits
Dibromofluoromethane	110	75-129
1,2-Dichloroethane-d4	104	74-133
Toluene-d8	101	80-120
Bromofluorobenzene	108	79-127

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax

CHAIN OF CUSTODY

Page 1 of 3

Analysis

(510) 486-0900 Phone (510) 486-0532 Fax	C & T	LOG	in i	#: <u></u> 20	05565				•	80178	7											
	Samp	ler:	Ξ	· DI	7						G	1 1	~	.				[
Project No.: 8757	Repo	t To:	Ē	3,Z,EN	T WHEE	<u>در ک</u>	R	o		U	7	15	0									
Project Name: 1532 7000	Comp	any:	<i>l=</i>	6T)	₹			·······	- 1	F.G	(4)	108/	8			į						
Project P.O.:					-512-15					APLE	461		(,									
Turnaround Time: STAへOAス	C Fax:	413	5	-57	2-094	A	<u>_</u>			36.	Act	0	25		i							
			Ma	trix		P	rese	ervative		Ç Ç Ç	XTR	3630 6 /80	2 2	+								
Lab No. Sample ID. FIELD PAINT I.D.	Sampling Date Time	Soil			# of Containers	f	H ₂ SO ₄	1		TrH-PURGE	TPH-E		1001									
1 B13-3 /B13	8/20/08 090	2 /			1			-		X			X			\vdash						
2 R13-6 / B13	1 091	3 /	1							χ	X		X									
3 813-10 / 1313	093	0			ı									14	0	L	D					
4 13-15 / 13	190	0 -			1			-								L						
5 B14-3 / B14	113	10			1			~		X	X		X									
6 B14-6 / B14	114	0 ~	-		ı			<u>اسا</u>	[X	X		X									
7 B14-10 / B14	1112	1 -			1			-						1+	0	L	D					
8 B14-14 / B14	120	} ~			i			<u>ارا</u>				:		H	0	L	D					1
9 315-3 / 315	130_		1		1			U	[X	X		X									
10 B15-6 / B15	131		1		l.			~		X			X									
11 BIS-10 / BIS	132	0 /			l			-						F	10	L	D					
12 BIS-14 / BIS		2 ~						1						14	0	L	0					
Notes:	SAMPLE RECEIPT Intact Cold	RE	LIN	QUISH	ED BY:					RE	CE	IVE	DΒ	Y:								
GLOBAL ID #:								-		1	V			7				8/2	5/05	1	300	
T0600191668	16	EUGENIO DIAZ DATE/TIME						[k	J.	Z)		R		ンへ				DATE				
	Preservative Correct?					•		DATE / TI		(_								DATE		
kingen in								DATE / TI											[DATE	 [/T	IME

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone

CHAIN OF CUSTODY

Page Z of 3

Analysis

(510) 486-0900 Phone (510) 486-0532 Fax	C & T L	OGIN #: <u>2</u>	.05565			7										
	Sample	r: <i>E</i> の	IN ?			108/		D 4)							
Project No.: 875フ	Report *	To: おた	ENT WA	EFLE	R	7	7	<u>ا ر</u>	7							
Project Name: 1532 PEANTA S	Compar	ny: CST	7			5 79		00/2	3							
Project P.O.:	Telepho	ne: 4/5-	572-15	55		1 1	٠,١	8	+							
Turnaround Time: 5700000			z - 066			FAbl	ttA	0)							
	ſ	Matrix	<u> </u>	Preserv	/ative	Paceable	ExTEALTABL	30 3								
Lab No. Sample ID. Sample ID.	ampling Date Time	Soil Water Waste	# of Containers	HCL H ₂ SO ₄	ICE	TPH-P		(36)								
13 B16-3 / B16 8/2	0/08 1428		1			X	X	X	<u>'</u>	+-			+	+		_
14 B16-6 / B16 1	1432		1			X		X								\exists
15 B16-10 /, B16	1443	/	1						H	0	L	D				\neg
16 B16-14 / B16	4241				-				1+	0	L,	D				
17 B17-3 / B17 8/21	1/08 0941	-	1		-	X	X	又								
18 B17-6 / B17	0954	-	1			X		X	-					\dagger		\neg
19 BI7-10 / BI7	1005		1	,						0	L	9		+		\neg
20 1317-14 / 1317		+	i				-			-	L		+	+ +		
21 B18-3 / B18	1110		1			X	v	×	1	1.0	-		-	+		\dashv
22 B18-6 / B18	1130		1			X	$\frac{1}{x}$	X	 		+	 	+-	+-		\dashv
23 B18-10 / B18 V									П	0	1,	0	+	+		
0.0.1			- I			\vdash			11		-	+4	+	+	\vdash	
						-		-	+	+-		+-+	+	-		
Notes: S	AMPLE RECEIPT	RELINQUISH	IED BV:	<u> </u>	-1	DE	CEN.	/ED B			1			لـــــا	LL	
GLUBAL I.D. #;	ntact W Cold	TILLINGOISI		•		ne.		EUB			<u> </u>					,
_ , / _	On Ice Ambient	EUGENIO DAZ DATE/TIMI						,]]	7	X	/ ~			8/25/ DATE	_	- 1
	eservative Correct?															
	es No N/A				DATE / TIME									DATE	: / TI	ΜE
mye -		MATE			DATE / TIME									DATE	: / TI	ИE
SIGNATURE																

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax

CHAIN OF CUSTODY

Analysis

С	&	T	LOGIN	#:	205565

Project No.:	87	ιţ	
Project Name:	1532	PERALTA	5*

OAKLAND

Project P.O.:

Turnaround Time: StanDARD

E. DIAZ Sampler: BRENT WHEELER Report To:

GGTR Company:

112-215-1222 Telephone:

415-512-0964 Fax:

					Ma	trix			F	res	erv	ative
Lab No.	Sample ID. /	Sampling Time		Soil	Water	Waste		# of Containers	HCL	H ₂ SO ₄	Ő	ICE
	BIF W											
24	B19-3 /B19	8/21/08	1348	_				1				-
25	B19-6 /B10		1353	_				1				9
26	B19-10 / B10	7 +	1359					1				-
27	CBI-3.5 /CBI	8/22/08	1040	-				1				
28	CB1-6.5 / CB		1049					1 .				-
29	CB2-3,5 /CB	2	1122	_				1				-
30	CB2-6.5 /CB CB3-3.5 /CB	2	1129	1				ı				1
31	CB3-3.5 /CB	3	1205	_				ì				1
32	CB3-6.5 / CB	3 🔻	1212)								-
								71.0.00				
							\dashv					
Notes:	OBAL ID #	SAMPLE RE		RE	LIN	QUIS	SHE	D BY:				
	10 1911 10	On ice		/-	へ こ	G E	ועו	0 DIA2	_		ח	ΔTF /

Preservative Correct? Yes No N/A TPH-PURGEABLE Ho D RECEIVED BY: X129/18 1308 DATE / TIME DATE / TIME

10600 1916 68
5 0/).
buffen

SIGNATURE

EUGENIO DIAZ

DATE / TIME

DATE / TIME

DATE / TIME

DATE / TIME

CURTIS & TOMPKINS, LTD. BERKELEY LOGIN CHANGE FORM

Reason for change:	X Client Request	By: Brent WheelerData Review		Date/Time: Client:	8/26/2008 14:29 GGTR	Initials: MRS
Current Lab ID	Previous Client ID	New Client ID	Matrix	Add/Cancel	Analysis	Duedate
205565			Soil	confirmation	of 8260 analysis	9/3/2008
		All sample listed for VOC	by GC / 802	21B shoud be r	un as 8260 full list	·
			<u> </u>			
	·					

COOLER RECEIPT CHECKLIST

Login # 205565 Client GGTV	Date Received	8/25/08	Number of coole	ers /	
Client GGTVL	Pro	ject 1532 P	ERSIAST. C	XXIAN)	D
Date Opened <u>8/25/08</u> By (prid Date Logged in 8-26-08 By (prid	int)M.VII LAA	SURUA (sion)	Mittode	h	
1. Did cooler come with a shippin Shipping info	g slip (airbill, etc	c)?		YES	<u>ځ</u>
2A. Were custody seals present? How many 2B. Were custody seals intact upo 3. Were custody papers dry and in 4. Were custody papers filled out p 5. Is the project identifiable from 6. Indicate the packing in cooler:	YES (ci Name n arrival? tact when receiv properly (ink, sig	red? gned, etc)?	DateYES	CXES NO	C
☐ Bubble Wrap ☐ For ☐ Cloth material ☐ Car. 7. Temperature documentation:	oam blocks ardboard	Bags . Styrofoam	☐ None ☐ Paper to	wels	
Type of ice used: Wet	☐ Blue/Gel	□None	Temp(°C)		
Samples Received on ice					
☐ Samples received on ice					
8. Were Method 5035 sampling conference of YES, what time were the 9. Did all bottles arrive unbroken/u	ontainers present y transferred to t	? freezer?		YES 🚳	
 Are samples in the appropriate 	containers for in	ndicated tests?		MEC NO	
i i. Are sample labels present, in go	ood condition an	d complete?		AVEC NO	
12. Do the sample labels agree with 13. Was sufficient amount of sample.	i custody papers' le sent for tests r	? Paguastad?		YES NO	Ł
14. Are the samples appropriately p	reserved?		VEC	NO STA	\
. The phobles > offill absent in A	'OA samples' -		VEC	NO STA	`
6. Was the client contacted concer If YES, Who was called?	ning this sample	e delivery?		VEC NO	
COMMENTS					
					•

SOP Volume:

Client Services

Section:

1.1.2

Page: 1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Total Extractable Hydrocarbons Location: 1532 Peralta St. Osagie Property Prep: EPA 3520C Lab #: 205564 Client: Golden Gate Tank Removal Prep: Project#: 8757 Analysis: EPA 8015B 08/25/08 08/28/08 Matrix: Water Received: Units: ug/L Prepared: Diln Fac: 1.000 Analyzed: 09/02/08 Batch#: 141944

Field ID: B12-26.5-W Sampled: 08/21/08 Type: SAMPLE Cleanup Method: EPA 3630C Lab ID: 205564-002

Analyte Result RL
Diesel C10-C24 ND 50

Surrogate %REC Limits
Hexacosane 103 58-127

Field ID: B12-33-W Sampled: 08/21/08
Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 205564-003

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
Hexacosane 113 58-127

Field ID: B12-38-W Sampled: 08/21/08 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 205564-004

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
Hexacosane 188 * 58-127

Field ID: B13-W Sampled: 08/20/08 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 205564-005

 Analyte
 Result
 RL

 Diesel C10-C24
 590 Y
 50

Surrogate %REC Limits
Hexacosane 100 58-127

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons Location: 1532 Peralta St. Osagie Property Prep: EPA 3520C 205564 Lab #: Client: Golden Gate Tank Removal Analysis: Received: Project#: 8757 EPA 8015B Matrix: Water 08/25/08 08/28/08 Units: ug/L Prepared: 09/02/08 Diln Fac: 1.000 Analyzed: Batch#: 141944

Field ID: B17-W Sampled: 08/21/08 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 205564-006

 Analyte
 Result
 RL

 Diesel C10-C24
 4,600
 50

Surrogate %REC Limits
Hexacosane 110 58-127

Field ID: B18-W Sampled: 08/21/08 Type: SAMPLE Cleanup Method: EPA 3630C Lab ID: 205564-007

AnalyteResultRLDiesel C10-C24ND50

Surrogate %REC Limits
Hexacosane 91 58-127

Field ID: B19-W Sampled: 08/21/08
Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 205564-008

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

 Surrogate
 %REC
 Limits

 Hexacosane
 100
 58-127

Type: BLANK Cleanup Method: EPA 3630C Lab ID: QC457932

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

 Surrogate
 %REC
 Limits

 Hexacosane
 110
 58-127

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

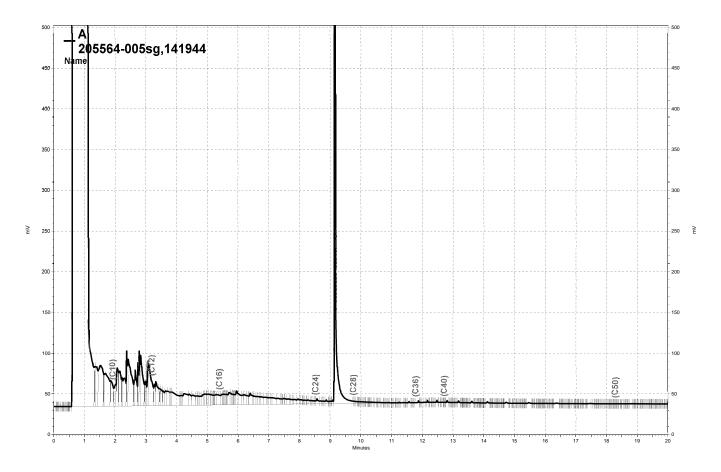
ND= Not Detected

RL= Reporting Limit

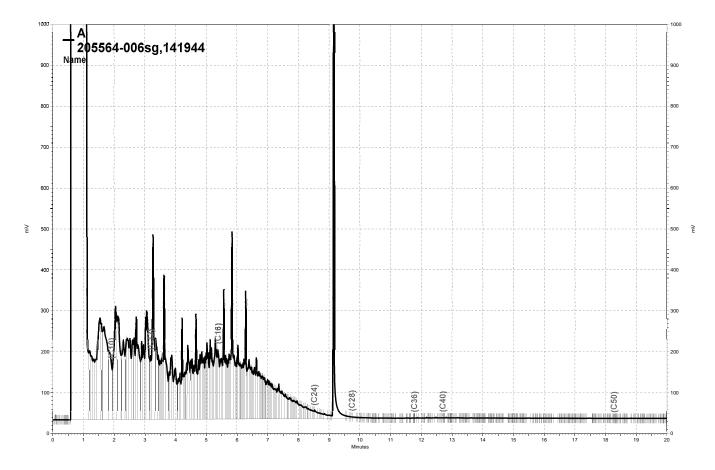
Total Extractable Hydrocarbons				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 3520C		
Project#:	8757	Analysis: EPA 8015B		
Matrix:	Water	Batch#: 141944		
Units:	ug/L	Prepared: 08/28/08		
Diln Fac:	1.000	Analyzed: 09/02/08		

Type: BS Cleanup Method: EPA 3630C

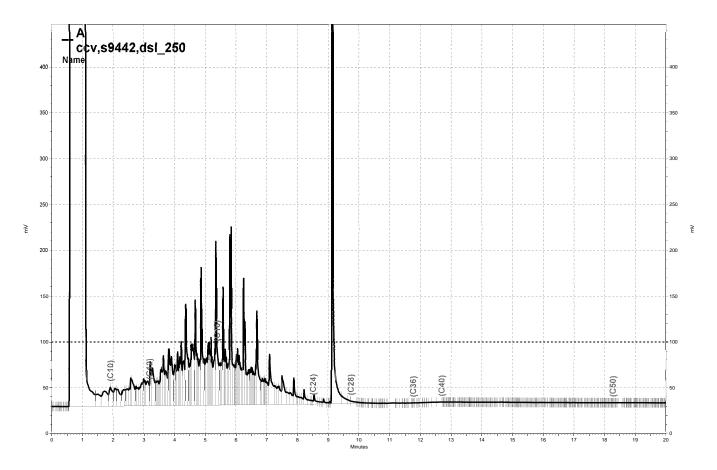
Lab ID: QC457933


Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,227	89	52-120

Surrogate	%REC	Limits
Hexacosane	102	58-127


Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC457934


Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,215	89	52-120	1	30

\Lims\gdrive\ezchrom\Projects\GC11A\Data\245a021, A

\Lims\gdrive\ezchrom\Projects\GC11A\Data\245a022, A

\Lims\gdrive\ezchrom\Projects\GC11A\Data\245a012, A

	Curtis & Tompkins Labor	ratories Analytical Report
Lab #: Client: Project#:	205564 Golden Gate Tank Removal 8757	Location: 1532 Peralta St. Osagie Property Prep: EPA 5030B Analysis: EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	B12-15-W 205564-001 Water ug/L 1.000	Batch#: 142029 Sampled: 08/21/08 Received: 08/25/08 Analyzed: 09/02/08

P			
Analyte	Result	RT.	
Gasoline C7-C12	1,000 Y Z	50	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	11	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	19	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND ND	10	
		0.5	
1,1-Dichloroethane	ND		
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	1.1	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND ND	0.5	
Chlorobenzene	ND ND	0.5	
1,1,1,2-Tetrachloroethane	ND ND	0.5	
Ethylbenzene		0.5	
ECHYLDENZENE	ND	0.5	
m,p-Xylenes	ND		
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	1.9	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	2.1	0.5	
Bromobenzene	ND	0.5	

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit

	Curtis & Tompkins Labor	atories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Field ID:	B12-15-W	Batch#: 142029
Lab ID:	205564-001	Sampled: 08/21/08
Matrix:	Water	Received: 08/25/08
Units:	ug/L	Analyzed: 09/02/08
Diln Fac:	1.000	-

Analyte	Result	RL	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	0.6	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	0.6	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-125	
1,2-Dichloroethane-d4	96	80-137	
Toluene-d8	94	80-120	
Bromofluorobenzene	107	80-122	

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 2 of 2

Curtis & Tompkins Laboratories Analytical Report			
Lab #:	205564	Location: 1532 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA 5030B	
Project#:	8757	Analysis: EPA 8260B	
Field ID:	B12-26.5-W	Batch#: 142086	
Lab ID:	205564-002	Sampled: 08/21/08	
Matrix:	Water	Received: 08/25/08	
Units:	uq/L	Analyzed: 09/03/08	
Diln Fac:	1.000	•	

Analyte	Result	RL	
Gasoline C7-C12	93	Y Z 50	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	4.		
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND ND	10	
1,1-Dichloroethane	ND ND	0.5	
2-Butanone	ND ND	10	
cis-1,2-Dichloroethene		0.5	
	ND		
2,2-Dichloropropane	ND	0.5 0.5	
Chloroform	ND		
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report			
Lab #:	205564	Location: 1532 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA 5030B	
Project#:	8757	Analysis: EPA 8260B	
Field ID:	B12-26.5-W	Batch#: 142086	
Lab ID:	205564-002	Sampled: 08/21/08	
Matrix:	Water	Received: 08/25/08	
Units:	uq/L	Analyzed: 09/03/08	
Diln Fac:	1.000	•	

Analyte	Result	RL	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	113	80-125
1,2-Dichloroethane-d4	108	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	108	80-122

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 2 of 2

	Curtis & Tompkins Labo	ratories Analytical Re	port
Lab #:	205564	Location: 1532 Peralta S	t. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B	
Project#:	8757	Analysis: EPA 8260B	
Field ID:	B12-33-W	Batch#: 142086	
Lab ID:	205564-003	Sampled: 08/21/0	8
Matrix:	Water	Received: 08/25/0	8
Units:	ug/L	Analyzed: 09/03/0	8
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Freon 12	ND	1.0	ļ
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	5.7	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	

ND= Not Detected RL= Reporting Limit

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	205564	Location: 153	2 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	5030B
Project#:	8757	Analysis: EPA	8260B
Field ID:	B12-33-W	Batch#:	142086
Lab ID:	205564-003	Sampled:	08/21/08
Matrix:	Water	Received:	08/25/08
Units:	ug/L	Analyzed:	09/03/08
Diln Fac:	1.000		

Analyte	Result	RL	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	111	80-125	
1,2-Dichloroethane-d4	113	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	106	80-122	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Curtis & Tompkins Labor	atories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Field ID:	B12-38-W	Batch#: 142086
Lab ID:	205564-004	Sampled: 08/21/08
Matrix:	Water	Received: 08/25/08
Units:	ug/L	Analyzed: 09/03/08
Diln Fac:	1.000	•

Analyte	Result	RL
Gasoline C7-C12	290 Y Z	50
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	8.2	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit

	Curtis & Tompkins Labor	atories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Field ID:	B12-38-W	Batch#: 142086
Lab ID:	205564-004	Sampled: 08/21/08
Matrix:	Water	Received: 08/25/08
Units:	uq/L	Analyzed: 09/03/08
Diln Fac:	1.000	-

Analyte	Result	RL	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate %R	EC	Limits
Dibromofluoromethane 114		80-125
1,2-Dichloroethane-d4 109		80-137
Toluene-d8 102		80-120
Bromofluorobenzene 107		80-122

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 2 of 2

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B13-W	Batch#: 142086		
Lab ID:	205564-005	Sampled: 08/20/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L	Analyzed: 09/03/08		
Diln Fac:	1.000	•		

Analyte	Result	RL
Gasoline C7-C12	950 Y	50
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND ND	0.5
2,2-Dichloropropane	ND ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND ND	0.5
1,2-Dichloroethane	ND ND	0.5
Benzene	ND	0.5
Trichloroethene	ND ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND ND	0.5
Dibromomethane	ND ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND ND	0.5
Toluene	ND ND	0.5
		0.5
trans-1,3-Dichloropropene	ND ND	0.5
1,1,2-Trichloroethane	ND	10
2-Hexanone	ND ND	= *
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	10	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	16	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B13-W	Batch#: 142086		
Lab ID:	205564-005	Sampled: 08/20/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L	Analyzed: 09/03/08		
Diln Fac:	1.000	•		

Analyte	Res	sult	RL	
2-Chlorotoluene	ND		0.5	
4-Chlorotoluene	ND		0.5	
tert-Butylbenzene		0.5	0.5	
1,2,4-Trimethylbenzene	ND		0.5	
sec-Butylbenzene		6.1	0.5	
para-Isopropyl Toluene		2.6	0.5	
1,3-Dichlorobenzene	ND		0.5	
1,4-Dichlorobenzene	ND		0.5	
n-Butylbenzene		7.1	0.5	
1,2-Dichlorobenzene	ND		0.5	
1,2-Dibromo-3-Chloropropane	ND		2.0	
1,2,4-Trichlorobenzene	ND		0.5	
Hexachlorobutadiene	ND		2.0	
Naphthalene		7.2	2.0	
1,2,3-Trichlorobenzene	ND		0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	114	80-125	
1,2-Dichloroethane-d4	111	80-137	
Toluene-d8	103	80-120	
Bromofluorobenzene	112	80-122	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\mbox{\scriptsize Page 2 of 2}}$

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B17-W	Batch#: 142086		
Lab ID:	205564-006	Sampled: 08/21/08		
Matrix:	Water	Received: 08/25/08		
Units:	uq/L	Analyzed: 09/03/08		
Diln Fac:	1.000	•		

Analyte	Res	ult	RL	
Gasoline C7-C12		20 Y	50	
Freon 12	ND		1.0	
Chloromethane	ND		1.0	
Vinyl Chloride	ND		0.5	
Bromomethane	ND		1.0	
Chloroethane	ND		1.0	
Trichlorofluoromethane	ND		1.0	
Acetone	ND		10	
Freon 113	ND		2.0	
1,1-Dichloroethene	ND		0.5	
Methylene Chloride	ND		10	
Carbon Disulfide	IND	0.8	0.5	
MTBE		1.8	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	
Vinyl Acetate	ND ND		10	
1,1-Dichloroethane	ND ND		0.5	
			10	
2-Butanone cis-1,2-Dichloroethene	ND ND		0.5	
	ND ND		0.5	
2,2-Dichloropropane Chloroform			0.5	
	ND			
Bromochloromethane	ND		0.5 0.5	
1,1,1-Trichloroethane	ND		0.5	
1,1-Dichloropropene	ND		0.5	
Carbon Tetrachloride	ND		0.5	
1,2-Dichloroethane	ND		0.5	
Benzene	ND		0.5	
Trichloroethene	ND		0.5	
1,2-Dichloropropane	ND		0.5	
Bromodichloromethane	ND		0.5	
Dibromomethane	ND		0.5	
4-Methyl-2-Pentanone	ND		10	
cis-1,3-Dichloropropene	ND		0.5	
Toluene	ND		0.5	
trans-1,3-Dichloropropene	ND		0.5	
1,1,2-Trichloroethane	ND		0.5	
2-Hexanone	ND		10	
1,3-Dichloropropane	ND		0.5	
Tetrachloroethene	ND		0.5	
Dibromochloromethane	ND		0.5	
1,2-Dibromoethane	ND		0.5	
Chlorobenzene	ND		0.5	
1,1,1,2-Tetrachloroethane	ND		0.5	
Ethylbenzene	ND		0.5	
m,p-Xylenes	ND		0.5	
o-Xylene	ND		0.5	
Styrene	ND		0.5	
Bromoform	ND		1.0	
Isopropylbenzene	ND		0.5	
1,1,2,2-Tetrachloroethane	ND		0.5	
1,2,3-Trichloropropane	ND		0.5	
Propylbenzene	112	1.2	0.5	
Bromobenzene	ND	- • 4	0.5	
1,3,5-Trimethylbenzene	ND		0.5	
1,5,5 II I I I DCII I I DCII I CIIC	IND		0.3	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B17-W	Batch#: 142086		
Lab ID:	205564-006	Sampled: 08/21/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L	Analyzed: 09/03/08		
Diln Fac:	1.000			

Analyte	Resu.	lt	RL	
2-Chlorotoluene	ND		0.5	
4-Chlorotoluene	ND		0.5	
tert-Butylbenzene	ND		0.5	
1,2,4-Trimethylbenzene	ND		0.5	
sec-Butylbenzene	2	2.2	0.5	
para-Isopropyl Toluene	ND		0.5	
1,3-Dichlorobenzene	ND		0.5	
1,4-Dichlorobenzene	ND		0.5	
n-Butylbenzene	-	1.6	0.5	
1,2-Dichlorobenzene	ND		0.5	
1,2-Dibromo-3-Chloropropane	ND		2.0	
1,2,4-Trichlorobenzene	ND		0.5	
Hexachlorobutadiene	ND		2.0	
Naphthalene	ND		2.0	
1,2,3-Trichlorobenzene	ND		0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	115	80-125	
1,2-Dichloroethane-d4	110	80-137	
Toluene-d8	104	80-120	
Bromofluorobenzene	112	80-122	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\mbox{\scriptsize Page 2 of 2}}$

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B18-W	Batch#: 142086		
Lab ID:	205564-007	Sampled: 08/21/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L	Analyzed: 09/03/08		
Diln Fac:	1.000			

Analyte	Result	RL	
Gasoline C7-C12	ND ND	50	
Freon 12	ND	1.0	
Chloromethane	ND ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND ND	1.0	
Acetone	ND	10	
Freon 113	ND ND	2.0	
1,1-Dichloroethene		0.5	
Methylene Chloride	ND		
Carbon Disulfide	ND	10 0.5	
	ND		
MTBE	1.3	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532	2 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA	5030B	
Project#:	8757	Analysis: EPA	8260B	
Field ID:	B18-W	Batch#:	142086	
Lab ID:	205564-007	Sampled:	08/21/08	
Matrix:	Water	Received:	08/25/08	
Units:	ug/L	Analyzed:	09/03/08	
Diln Fac:	1.000			

Analyte	Result	RL	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	114	80-125	
1,2-Dichloroethane-d4	109	80-137	
Toluene-d8	100	80-120	
Bromofluorobenzene	107	80-122	

RL= Reporting Limit

Page 2 of 2

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B19-W	Batch#: 142086		
Lab ID:	205564-008	Sampled: 08/21/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L	Analyzed: 09/03/08		
Diln Fac:	1.000			

Analyte	Result	RL	
Gasoline C7-C12	ND ND	50	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
	ND ND	0.5	
1,3-Dichloropropane	ND	0.5	

RL= Reporting Limit

Page 1 of 2

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	B19-W	Batch#: 142086		
Lab ID:	205564-008	Sampled: 08/21/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L	Analyzed: 09/03/08		
Diln Fac:	1.000			

Analyte	Result	RL	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	114	80-125	
1,2-Dichloroethane-d4	112	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	107	80-122	

RL= Reporting Limit

Page 2 of 2

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	CB1-W	Diln Fac: 1.000		
Lab ID:	205564-009	Sampled: 08/22/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L			

Analyte	Result	RL	Batch# Analyzed
Gasoline C7-C12	ND	50	142086 09/03/08
Freon 12	ND	1.0	142086 09/03/08
Chloromethane	ND	1.0	142086 09/03/08
Vinyl Chloride	ND	0.5	142086 09/03/08
Bromomethane	ND	1.0	142086 09/03/08
Chloroethane	ND	1.0	142086 09/03/08
Trichlorofluoromethane	ND	1.0	142086 09/03/08
Acetone	32	10	142130 09/04/08
Freon 113	ND	2.0	142086 09/03/08
1,1-Dichloroethene	ND	0.5	142086 09/03/08
Methylene Chloride	ND	10	142086 09/03/08
Carbon Disulfide	ND	0.5	142086 09/03/08
MTBE	ND	0.5	142086 09/03/08
trans-1,2-Dichloroethene	ND	0.5	142086 09/03/08
Vinyl Acetate	ND	10	142086 09/03/08
1,1-Dichloroethane	ND	0.5	142086 09/03/08
2-Butanone	ND	10	142086 09/03/08
cis-1,2-Dichloroethene	ND	0.5	142086 09/03/08
2,2-Dichloropropane	ND	0.5	142086 09/03/08
Chloroform	ND	0.5	142086 09/03/08
Bromochloromethane	ND	0.5	142086 09/03/08
1,1,1-Trichloroethane	ND	0.5	142086 09/03/08
1,1-Dichloropropene	ND	0.5	142086 09/03/08
Carbon Tetrachloride	ND	0.5	142086 09/03/08
1,2-Dichloroethane	ND	0.5	142086 09/03/08
Benzene	ND	0.5	142086 09/03/08
Trichloroethene	ND	0.5	142086 09/03/08
1,2-Dichloropropane	ND	0.5	142086 09/03/08
Bromodichloromethane	ND	0.5	142086 09/03/08
Dibromomethane	ND	0.5	142086 09/03/08
4-Methyl-2-Pentanone	ND	10	142086 09/03/08
cis-1,3-Dichloropropene	ND	0.5	142086 09/03/08
Toluene	ND	0.5	142086 09/03/08
trans-1,3-Dichloropropene	ND	0.5	142086 09/03/08
1,1,2-Trichloroethane	ND	0.5	142086 09/03/08
2-Hexanone	ND	10	142086 09/03/08
1,3-Dichloropropane	ND	0.5	142086 09/03/08
Tetrachloroethene	ND	0.5	142086 09/03/08

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report				
Lab #:	205564	Location: 1532 Peralta St. Osagie Property		
Client:	Golden Gate Tank Removal	Prep: EPA 5030B		
Project#:	8757	Analysis: EPA 8260B		
Field ID:	CB1-W	Diln Fac: 1.000		
Lab ID:	205564-009	Sampled: 08/22/08		
Matrix:	Water	Received: 08/25/08		
Units:	ug/L			

Analyte	Result	RL	Batch#	Analyzed
Dibromochloromethane	ND	0.5	142086	09/03/08
1,2-Dibromoethane	ND	0.5	142086	09/03/08
Chlorobenzene	ND	0.5	142086	09/03/08
1,1,1,2-Tetrachloroethane	ND	0.5	142086	09/03/08
Ethylbenzene	ND	0.5	142086	09/03/08
m,p-Xylenes	ND	0.5	142086	09/03/08
o-Xylene	ND	0.5	142086	09/03/08
Styrene	ND	0.5	142086	09/03/08
Bromoform	ND	1.0	142086	09/03/08
Isopropylbenzene	ND	0.5	142086	09/03/08
1,1,2,2-Tetrachloroethane	ND	0.5	142086	09/03/08
1,2,3-Trichloropropane	ND	0.5	142086	09/03/08
Propylbenzene	ND	0.5	142086	09/03/08
Bromobenzene	ND	0.5	142086	09/03/08
1,3,5-Trimethylbenzene	ND	0.5	142086	09/03/08
2-Chlorotoluene	ND	0.5	142086	09/03/08
4-Chlorotoluene	ND	0.5	142086	09/03/08
tert-Butylbenzene	ND	0.5	142086	09/03/08
1,2,4-Trimethylbenzene	ND	0.5	142086	09/03/08
sec-Butylbenzene	ND	0.5	142086	09/03/08
para-Isopropyl Toluene	ND	0.5	142086	09/03/08
1,3-Dichlorobenzene	ND	0.5	142086	09/03/08
1,4-Dichlorobenzene	ND	0.5	142086	09/03/08
n-Butylbenzene	ND	0.5	142086	09/03/08
1,2-Dichlorobenzene	ND	0.5	142086	09/03/08
1,2-Dibromo-3-Chloropropane	ND	2.0	142086	09/03/08
1,2,4-Trichlorobenzene	ND	0.5	142086	09/03/08
Hexachlorobutadiene	ND	2.0	142086	09/03/08
Naphthalene	ND	2.0	142086	09/03/08
1,2,3-Trichlorobenzene	ND	0.5	142086	09/03/08

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	112	80-125	142086	09/03/08
1,2-Dichloroethane-d4	109	80-137	142086	09/03/08
Toluene-d8	102	80-120	142086	09/03/08
Bromofluorobenzene	108	80-122	142086	09/03/08

RL= Reporting Limit

Page 2 of 2

	Curtis & Tompkins Labo	pratories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Matrix:	Water	Batch#: 142029
Units:	ug/L	Analyzed: 09/02/08
Diln Fac:	1.000	

Type: BS Lab ID: QC458242

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	27.66	111	73-133
Benzene	25.00	23.92	96	80-120
Trichloroethene	25.00	23.04	92	80-120
Toluene	25.00	24.84	99	80-120
Chlorobenzene	25.00	22.89	92	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-125	
1,2-Dichloroethane-d4	97	80-137	
Toluene-d8	104	80-120	
Bromofluorobenzene	105	80-122	

Type: BSD Lab ID: QC458243

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	27.14	109	73-133	2	20
Benzene	25.00	23.07	92	80-120	4	20
Trichloroethene	25.00	23.08	92	80-120	0	20
Toluene	25.00	24.17	97	80-120	3	20
Chlorobenzene	25.00	22.99	92	80-120	0	20

Surrogate	%REC	Limits		
Dibromofluoromethane	104	80-125		
1,2-Dichloroethane-d4	95	80-137		
Toluene-d8	103	80-120		
Bromofluorobenzene	104	80-122		

	Curtis & Tompkins Labo	oratories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Matrix:	Water	Batch#: 142029
Units:	ug/L	Analyzed: 09/02/08
Diln Fac:	1.000	

Type: BS Lab ID: QC458244

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	995.6	100	70-130

Surrogate	%REC	Limits
Dibromofluoromethane 1	104	80-125
1,2-Dichloroethane-d4	96	80-137
Toluene-d8	103	80-120
Bromofluorobenzene 1	106	80-122

Type: BSD Lab ID: QC458245

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	945.7	95	70-130	5	20

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-125	
1,2-Dichloroethane-d4	94	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	106	80-122	

	Curtis & Tompkins Labo	pratories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Type:	BLANK	Diln Fac: 1.000
Lab ID:	QC458246	Batch#: 142029
Matrix:	Water	Analyzed: 09/02/08
Units:	ug/L	

Analyte	Result	RL	
Gasoline C7-C12	ND ND	50	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
	ND ND	0.5	
1,3-Dichloropropane	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Curtis & Tompkins Labor	ratories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Type:	BLANK	Diln Fac: 1.000
Lab ID:	QC458246	Batch#: 142029
Matrix:	Water	Analyzed: 09/02/08
Units:	ug/L	

Analyte	Result	RL
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-125	
1,2-Dichloroethane-d4	98	80-137	
Toluene-d8	103	80-120	
Bromofluorobenzene	107	80-122	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Curtis & Tompkins Labo	oratories Ana	lytical Report
Lab #:	205564	Location: 153	32 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA	A 5030B
Project#:	8757	Analysis: EPA	A 8260B
Matrix:	Water	Batch#:	142086
Units:	ug/L	Analyzed:	09/03/08
Diln Fac:	1.000		

Type: BS Lab ID: QC458530

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	24.99	100	73-133
Benzene	25.00	22.56	90	80-120
Trichloroethene	25.00	21.90	88	80-120
Toluene	25.00	21.16	85	80-120
Chlorobenzene	25.00	20.89	84	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-125	
1,2-Dichloroethane-d4	110	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	103	80-122	

Type: BSD Lab ID: QC458531

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	26.01	104	73-133	4	20
Benzene	25.00	22.67	91	80-120	0	20
Trichloroethene	25.00	22.78	91	80-120	4	20
Toluene	25.00	21.31	85	80-120	1	20
Chlorobenzene	25.00	21.69	87	80-120	4	20

Surrogate	%REC	Limits	
Dibromofluoromethane	112	80-125	
1,2-Dichloroethane-d4	107	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	102	80-122	

	Curtis & Tompkins Labo	pratories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Matrix:	Water	Batch#: 142086
Units:	ug/L	Analyzed: 09/03/08
Diln Fac:	1.000	

Type: BS Lab ID: QC458532

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	914.1	91	70-130

Surrogate	%REC	Limits
Dibromofluoromethane 1	110	80-125
1,2-Dichloroethane-d4 1	108	80-137
Toluene-d8 1	101	80-120
Bromofluorobenzene 1	103	80-122

Type: BSD Lab ID: QC458533

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	881.1	88	70-130	4	20

		- 1 1.
Surrogate	%REC	Limits
Dibromofluoromethane	110	80-125
1,2-Dichloroethane-d4	108	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	102	80-122

	Curtis & Tompkins Labor	ratories Analytical Report
Lab #:	205564	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Type:	BLANK	Diln Fac: 1.000
Lab ID:	QC458534	Batch#: 142086
Matrix:	Water	Analyzed: 09/03/08
Units:	ug/L	

Analyte	Result	RL	
Gasoline C7-C12	ND ND	50	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
	ND ND	0.5	
1,3-Dichloropropane	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Curtis & Tompkins Labo	oratories Analytical Report	
Lab #:	205564	Location: 1532 Peralta St. Osagie Property	
Client:	Golden Gate Tank Removal	Prep: EPA 5030B	
Project#:	8757	Analysis: EPA 8260B	
Type:	BLANK	Diln Fac: 1.000	
Lab ID:	QC458534	Batch#: 142086	
Matrix:	Water	Analyzed: 09/03/08	
Units:	ug/L		

Analyte	Result	RL	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	112	80-125	
1,2-Dichloroethane-d4	110	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	109	80-122	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Curtis & Tompkins Labo	ratories Analytical Report
Lab #: Client:	205564 Golden Gate Tank Removal	Location: 1532 Peralta St. Osagie Property Prep: EPA 5030B
Project#:	8757	Analysis: EPA 8260B
Type: Lab ID:	BLANK	Diln Fac: 1.000
Lab ID:	QC458710	Batch#: 142130
Matrix:	Water	Analyzed: 09/04/08
Units:	ug/L	-

Analyte	Result	RL
Gasoline C7-C12	NA	
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND ND	0.5
o-Xylene	ND ND	0.5
Styrene	ND	0.5
Bromoform	ND ND	1.0
Isopropylbenzene	ND ND	0.5
1,1,2,2-Tetrachloroethane	ND ND	0.5
1,2,3-Trichloropropane	ND ND	0.5
Propylbenzene	ND ND	0.5
Bromobenzene	ND ND	0.5
1,3,5-Trimethylbenzene	ND ND	0.5
TIDID TETMECHATACHE	אוז	0.3

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 2

16.0

Batch QC Report

	Curtis & Tompkins Labo	ratories Analytical Report
Lab #: Client:	205564 Golden Gate Tank Removal 8757	Location: 1532 Peralta St. Osagie Property Prep: EPA 5030B
Project#: Type: Lab ID:	BLANK	Analysis: EPA 8260B Diln Fac: 1.000
Lab ID: Matrix: Units:	QC458710 Water ug/L	Batch#: 142130 Analyzed: 09/04/08

Analyte	Result	RL
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

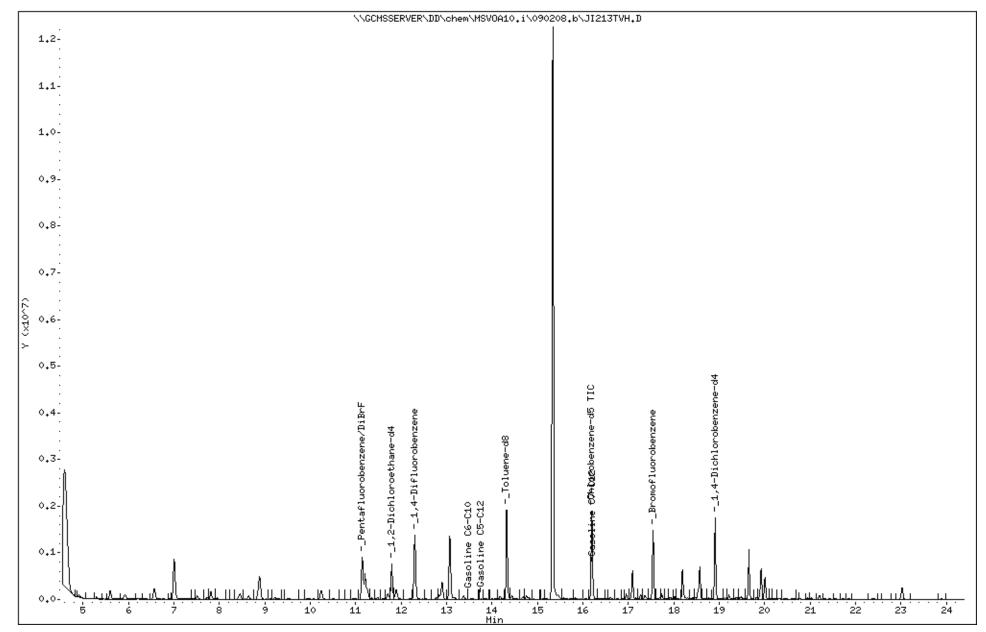
Surrogate %R	REC	Limits
Dibromofluoromethane 102	2	80-125
1,2-Dichloroethane-d4 106	5	80-137
Toluene-d8 99		80-120
Bromofluorobenzene 110)	80-122

Curtis & Tompkins Laboratories Analytical Report								
Lab #:	205564	Location: 1532 Peralta St. Osagie Property						
Client:	Golden Gate Tank Removal	Prep: EPA 5030B						
Project#:	8757	Analysis: EPA 8260B						
Type:	LCS	Diln Fac: 1.000						
Lab ID:	QC458712	Batch#: 142130						
Matrix:	Water	Analyzed: 09/04/08						
Units:	ug/L							

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	21.80	87	73-133
Benzene	25.00	23.20	93	80-120
Trichloroethene	25.00	22.53	90	80-120
Toluene	25.00	22.05	88	80-120
Chlorobenzene	25.00	25.13	101	80-120

Surrogate	%REC	imits	
Dibromofluoromethane	100	0-125	
1,2-Dichloroethane-d4	99	0-137	
Toluene-d8	99	0-120	
Bromofluorobenzene	102	0-122	

Page 1 of 1 21.0

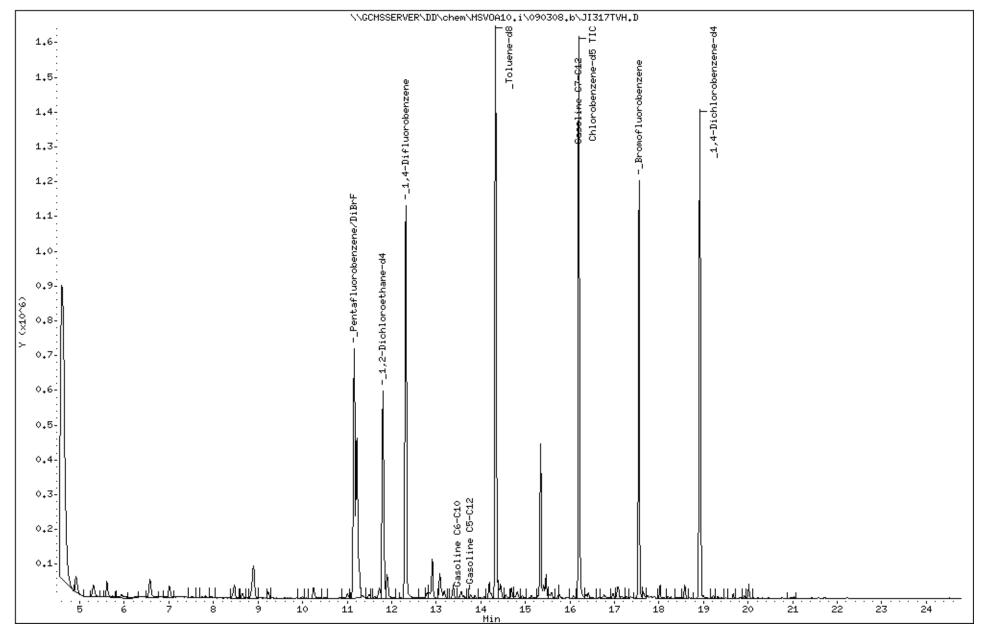

Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\090208.b\\JI213TVH.D

Date : 02-SEP-2008 15:47 Client ID: DYNA P&T Sample Info: S,205564-001

Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2,00

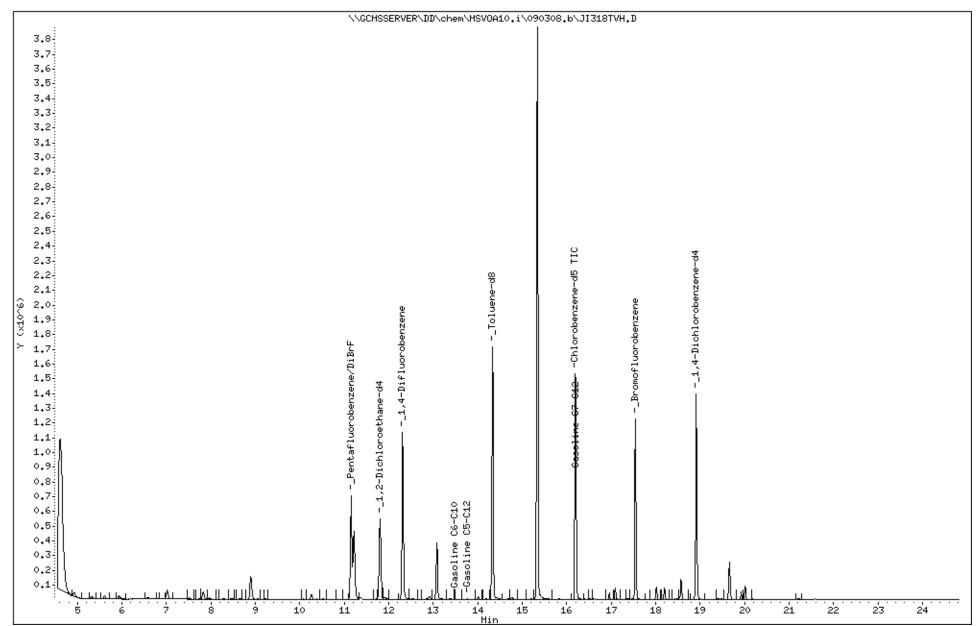

Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\090308.b\\JI317TVH.D

Date : 03-SEP-2008 19:18 Client ID: DYNA P&T Sample Info: S,205564-002

Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2.00


Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\090308.b\\JI318TVH.D

Date : 03-SEP-2008 19:54 Client ID: DYNA P&T Sample Info: S,205564-004

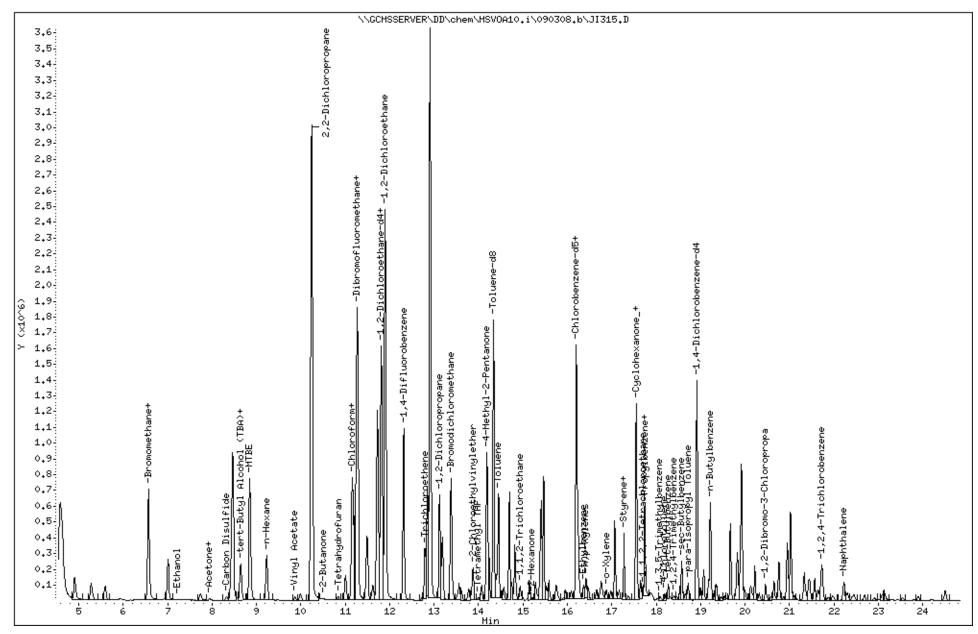
Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2,00

Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\090308.b\JI315.D

Date : 03-SEP-2008 18:08 Client ID: DYNA P&T Sample Info: S,205564-005

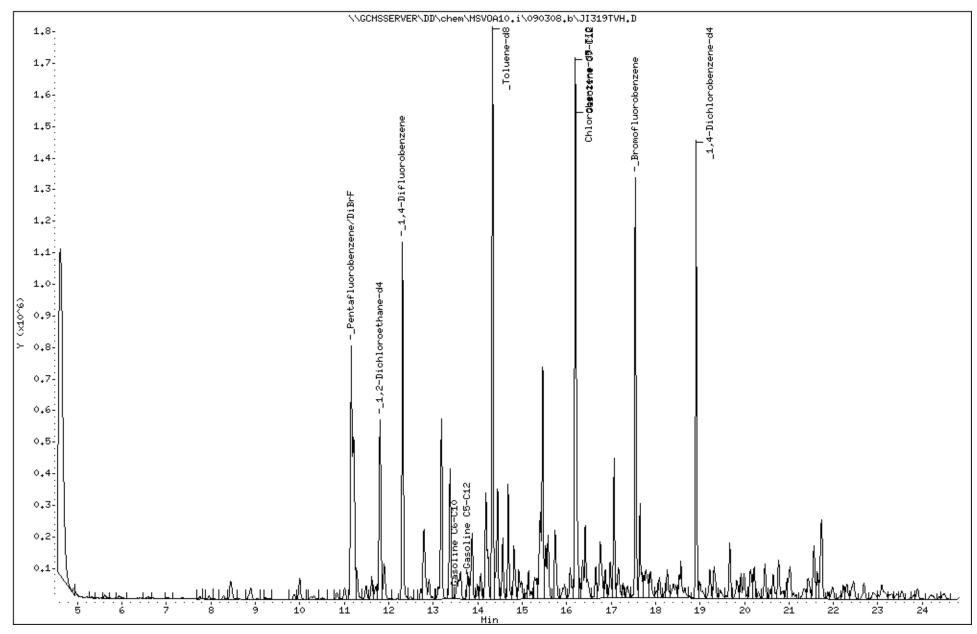

Purge Volume: 5.0

Column phase: RTx Volatiles

Instrument: MSVOA10.i

Operator: VOA

Column diameter: 0.32


Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\090308.b\\JI319TVH.D

Date : 03-SEP-2008 20:29 Client ID: DYNA P&T Sample Info: S,205564-006

Instrument: MSVOA10.i

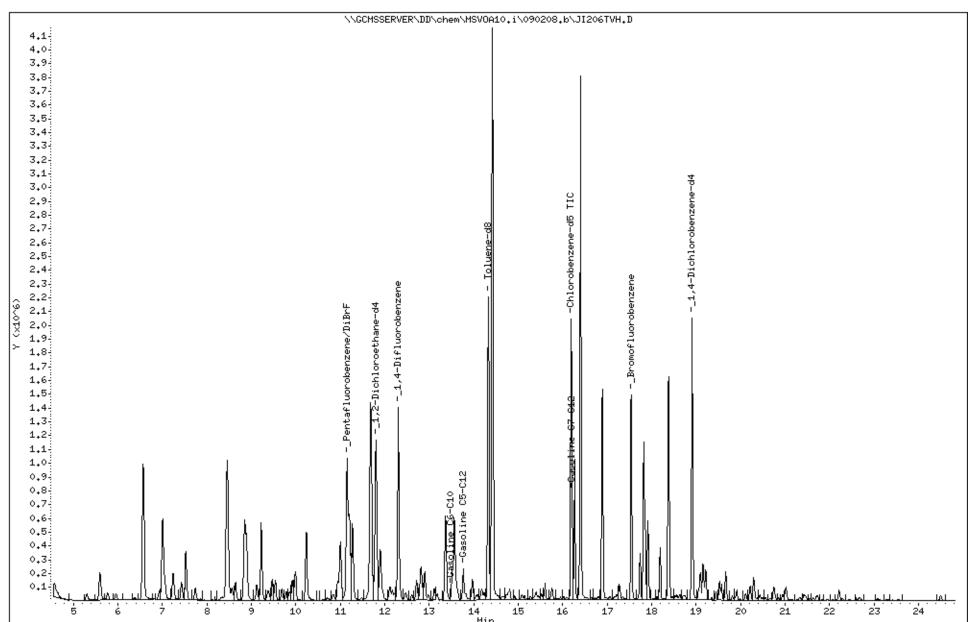
Operator: VOA

Column phase: Column diameter: 2,00

Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\090208.b\\JI206TVH.D

Date : 02-SEP-2008 12:02 Client ID: DYNA P&T

Column phase:


0---1- T-0-+ OCUUTO OCATOOAA AAOAOO OOAGA A AA

Sample Info: CCV/BS,QC458244,142029,S9460,0.01/100,

Operator: VOA

Instrument: MSVOA10.i

Column diameter: 2.00

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510) 486-0900 Phone
(510) 486-0532 Fax

CHAIN OF CUSTODY

Page ____of ___

Analysis

10/ 50CC)

800

С	&	Т	LOGIN	#:	205564
---	---	---	-------	----	--------

Project No.: 8757

Report To: BZENT WHEELER

Project Name: 1532 PERILTR ST.

Company: GGTR

Project P.O.:

Telephone: 415-512-1555

Projec	t Name: 1532 PEAGL	Comp	any:	6	67	75	<u> </u>					1	1		}							
Projec		Teleph	one	: 4	415	<u>-</u>	512-15	3-	5			6	1	2000		300						
Turnar	ound Time: STANDARD	Fax:	4	5	- 5	·/·	2-076	.4				, K	5			5	!					
				Ma	ıtrix				Pres	erv	ative	5 X0X		JX1746								
Lab No.	Sample ID. / FEELD POWT ID.	Sampling Date Time	Soil	Water	Waste		# of Containers	HCL	H ₂ SO ₄	NO ₃	ICE	1- 110-		1111	į	1365						
	312-15-W/BIZ	8/21/08 1200	<u> </u>	×			3	ע			x	X	-	-		x	-					
2	3/2-26.5-W/312	1250		*			4	X			x	X	-		_	X	+					
3	B12-33-W/B1Z	1350		×			A	X			メ	×	Ź		+	X	+-			-	-	+
4	812-38-W/BIZ	¥ 1430		X			4	У			~	×	×			X	+	1	-	\neg		
5	B13-W / B13	3/20/08 1345	1	×			4	y			×	×	7		7	X	+		\neg	+		-
	817-W / 817 88-W / BIS	8/21/08 1200		又			4	×			X	×	×	<u>'</u>	1	X				_		
		\$ 400		X		_	A	×			X	X	Z			X		\Box				
9		1500		X		_		×			X	×	×			X						
	CB1-W/CB1	8/22/08 1440		X	-		3	X			X	×	>	•	4	X				-		
						1																
				_		+						-	\vdash	+	\downarrow	-	-	1	_	_		
Notes:	BACIO II!	SAMPLE RECEIPT Intact Cold	REI	LIN	QUIS	HE	D BY:					RE	CI	 EIV	ED	BY:	<u>. </u>					
TOG	BAC ID II!	On Ice Ambient	E	\widehat{z}_{U}	GE	₽r.	ا (دار	A	2	D,	ATE / TIM	E Z	2	K,	ク	-	2	~~		_81	25/0	8 130 / TIME
		Preservative Correct? Yes No No N/A									ATE / TIM			/	_							
سركر	Le di								-	וט	TIL / LIIVI		_			-			_		DATE	/ TIME
	SIGNATURE									D/	ATE / TIM	E									DATE	/ TIME

COOLER RECEIPT CHECKLIST

Login # 205564 Date Received 8/25/08 Number of coolers Client GGTVL Project 1532 PERALIA ST. OXYLLAND
Date Opened 8/25/08 By (print) M. VILLANUFUL (sign) That Relations Date Logged in 8-26-08 By (print) F Nichols (sign)
1. Did cooler come with a shipping slip (airbill, etc)? YES Shipping info
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? YES NO 3. Were custody papers dry and intact when received? NO 4. Were custody papers filled out properly (ink, signed, etc)? NO 5. Is the project identifiable from custody papers? (If so fill out top of form) NO 6. Indicate the packing in cooler: (if other, describe)
☐ Bubble Wrap ☐ Foam blocks ☐ Bags . ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: ☐ Paper towels
Type of ice used: Wet Blue/Gel None Temp(°C)_
Samples Received on ice & cold without a temperature blank
Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? YES NO
Ate the samples appropriately preserved?
15. Are bubbles > 6mm absent in VOA samples?
COMMENTS <coc "b12-15-w="" "cb1-w="" 4="" ambers.="" as="" b12"="" be="" but="" cb1"="" did="" done="" for="" il="" mrs.<="" not="" on="" per="" requests="" samples="" send="" td="" teh="" these="" will=""></coc>

SOP Volume:

Client Services

Section: Page:

1.1.2 Lof I

Rev. 6 Number 1 of 3 Effective: 23 July 2008

F:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report									
Lab #:	206563	Location: 1532 F	Peralta St. Osagie Property						
Client:	Golden Gate Tank Removal	Prep: EPA 50	030B						
Project#:	8757								
Field ID:	COMP (A-D)	Batch#:	143242						
Matrix:	Soil	Sampled:	10/02/08						
Basis:	as received	Received:	10/02/08						
Diln Fac:	1.000								

Type: SAMPLE Analyzed: 10/04/08

Lab ID: 206563-005

Analyte	Result	RL	Units Analysis	
Gasoline C7-C12	ND	0.94	mg/Kg EPA 8015B	
Benzene	ND	4.7	ug/Kg EPA 8021B	
Toluene	ND	4.7	ug/Kg EPA 8021B	
Ethylbenzene	ND	4.7	ug/Kg EPA 8021B	
m,p-Xylenes	ND	4.7	ug/Kg EPA 8021B	
o-Xylene	ND	4.7	ug/Kg EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	98	55-151	EPA 8015B	
Bromofluorobenzene (FID)	105	55-153	EPA 8015B	
Trifluorotoluene (PID)	80	43-150	EPA 8021B	
Bromofluorobenzene (PID)	86	45-149	EPA 8021B	

Type: BLANK Analyzed: 10/03/08

Lab ID: BLANK QC463492

Analyte	Result	RL	Units	Analysis
Gasoline C7-C12	ND	0.20	mg/Kg EPA	A 8015B
Benzene	ND	1.0	ug/Kg EPA	A 8021B
Toluene	ND	1.0	ug/Kg EPA	A 8021B
Ethylbenzene	ND	1.0	ug/Kg EPA	A 8021B
m,p-Xylenes	ND	1.0	ug/Kg EPA	A 8021B
o-Xylene	ND	1.0	ug/Kg EPA	A 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	102	55-151	EPA 8015B	
Bromofluorobenzene (FID)	98	55-153	EPA 8015B	
Trifluorotoluene (PID)	88	43-150	EPA 8021B	
Bromofluorobenzene (PID)	86	45-149	EPA 8021B	

ND= Not Detected RL= Reporting Limit

Page 1 of 1 2.0

Curtis & Tompkins Laboratories Analytical Report									
Lab #:	206563	Location: 153	2 Peralta St. Osagie Property						
Client:	Golden Gate Tank Removal	Prep: EPA	5030B						
Project#:	8757								
Type:	LCS	Basis:	as received						
Lab ID:	QC463493	Diln Fac:	1.000						
Matrix:	Soil	Batch#:	143242						
Units:	mg/Kg	Analyzed:	10/03/08						

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	5.000	4.396	88	78-120	EPA 8015B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	127	55-151	EPA 8015B	
Bromofluorobenzene (FID)	107	55-153	EPA 8015B	
Trifluorotoluene (PID)	100	43-150	EPA 8021B	
Bromofluorobenzene (PID)	93	45-149	EPA 8021B	

Page 1 of 1 3.0

	Curtis & Tompkins Labo	oratories Analytical Report
Lab #:	206563	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 5030B
Project#:	8757	
Matrix:	Soil	Diln Fac: 1.000
Units:	ug/Kg	Batch#: 143242
Basis:	as received	

Type: BS Analyzed: 10/03/08

Lab ID: QC463494

Analyte	Spiked	Result	%REC	Limits	Analysis
Benzene	50.00	55.94	112	78-120	EPA 8021B
Toluene	50.00	57.02	114	78-120	EPA 8021B
Ethylbenzene	50.00	57.10	114	80-122	EPA 8021B
m,p-Xylenes	50.00	56.50	113	80-122	EPA 8021B
o-Xylene	50.00	57.26	115	79-122	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	102	55-151	EPA 8015B	
Bromofluorobenzene (FID)	100	55-153	EPA 8015B	
Trifluorotoluene (PID)	87	43-150	EPA 8021B	
Bromofluorobenzene (PID)	86	45-149	EPA 8021B	

Type: BSD Analyzed: 10/04/08

Lab ID: QC463495

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	Analysis
Benzene	150.0	137.9	92	78-120	20	20	EPA 8021B
Toluene	150.0	141.3	94	78-120	19	20	EPA 8021B
Ethylbenzene	150.0	145.9	97	80-122	16	20	EPA 8021B
m,p-Xylenes	150.0	144.9	97	80-122	16	21	EPA 8021B
o-Xylene	150.0	146.3	98	79-122	16	23	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	102	55-151	EPA 8015B	
Bromofluorobenzene (FID)	103	55-153	EPA 8015B	
Trifluorotoluene (PID)	83	43-150	EPA 8021B	
Bromofluorobenzene (PID)	87	45-149	EPA 8021B	

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	206563	Location: 1	1532 Peralta St. Osagie Property					
Client:	Golden Gate Tank Removal	Prep: E	EPA 5030B					
Project#:	8757							
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000					
MSS Lab ID:	206562-006	Batch#:	143242					
Matrix:	Soil	Sampled:	10/01/08					
Units:	mg/Kg	Received:	10/02/08					
Basis:	as received	Analyzed:	10/03/08					

Type: MS Lab ID: QC463496

Analyte	MSS Result	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	0.09784	9.259	8.312	89	29-120 E	PA 8015B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	155 *	55-151	EPA 8015B	
Bromofluorobenzene (FID)	120	55-153	EPA 8015B	
Trifluorotoluene (PID)	116	43-150	EPA 8021B	
Bromofluorobenzene (PID)	106	45-149	EPA 8021B	

Type: MSD Lab ID: QC463497

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	Analysis
Gasoline C7-C12	10.99	9.866	89	29-120	0	34 EF	PA 8015B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	149	55-151	EPA 8015B
Bromofluorobenzene (FID)	122	55-153	EPA 8015B
Trifluorotoluene (PID)	123	43-150	EPA 8021B
Bromofluorobenzene (PID)	108	45-149	EPA 8021B

Page 1 of 1 5.0

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

6.0

Total Extractable Hydrocarbons						
Lab #:	206563	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE				
Project#:	8757	Analysis: EPA 8015B				
Field ID:	COMP (A-D)	Batch#: 143264				
Matrix:	Soil	Sampled: 10/02/08				
Units:	mg/Kg	Received: 10/02/08				
Basis:	as received	Prepared: 10/04/08				
Diln Fac:	1.000	Analyzed: 10/06/08				

Type: SAMPLE Lab ID: 206563-005

Analyte	Result	RL	
Diesel C10-C24	1.1 Y	1.0	

Surrogate	%REC	Limits	
Hexacosane	83	46-130	

Type: BLANK Lab ID: QC463583

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	

Surrogate	%REC	Limits	
Hexacosane	78	46-130	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Total Extractable Hydrocarbons						
Lab #:	206563	Location: 1532 Peralta St. Osagie Property				
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE				
Project#:	8757	Analysis: EPA 8015B				
Type:	LCS	Diln Fac: 1.000				
Lab ID:	QC463584	Batch#: 143264				
Matrix:	Soil	Prepared: 10/04/08				
Units:	mg/Kg	Analyzed: 10/05/08				
Basis:	as received					

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.94	57.71	116	51-123

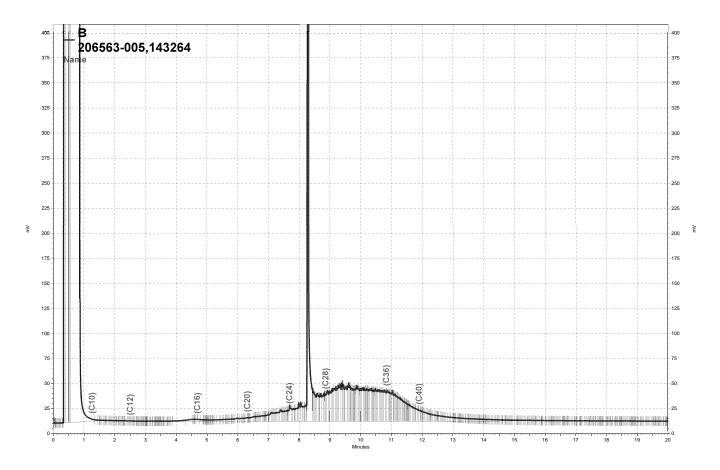
Surrogate	%REC	Limits
Hexacosane	116	46-130

Page 1 of 1 7.0

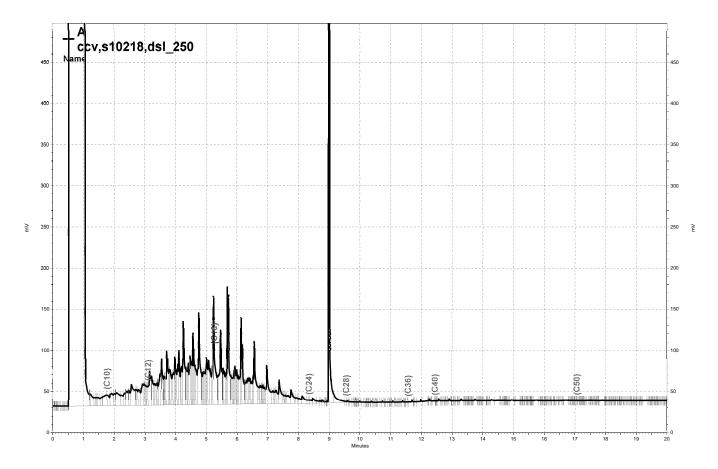
Total Extractable Hydrocarbons					
Lab #:	206563	Location: 1532 Peralta St. Osagie Property			
Client:	Golden Gate Tank Removal	Prep: SHAKER TABLE			
Project#:	8757	Analysis: EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#: 143264			
MSS Lab ID:	206482-001	Sampled: 09/29/08			
Matrix:	Soil	Received: 10/01/08			
Units:	mg/Kg	Prepared: 10/04/08			
Basis:	as received	Analyzed: 10/05/08			
Diln Fac:	1.000				

Type: Cleanup Method: EPA 3630C Lab ID: MS

QC463585


Analyte	MSS Result	Spiked	Result	%REC Limits
Diesel C10-C24	455.6	49.63	524.5	139 NM 38-140

Surrogate	%REC	Limits
Hexacosane	87	46-130


Cleanup Method: EPA 3630C

Type: MSD Lab ID: QC463586

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.61	457.5	4 NM	38-140	14	49

\Lims\gdrive\ezchrom\Projects\GC14B\Data\280b030, B

\Lims\gdrive\ezchrom\Projects\GC11A\Data\279a003, A

		Lead
Lab #:	206563	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 3050B
Project#:	8757	Analysis: EPA 6010B
Analyte:	Lead	Batch#: 143327
Field ID:	COMP (A-D)	Sampled: 10/02/08
Matrix:	Soil	Received: 10/02/08
Units:	mg/Kg	Prepared: 10/06/08
Basis:	as received	Analyzed: 10/07/08
Diln Fac:	1.000	

Type	Lab ID	Result	RL	
SAMPLE	206563-005	3.4	0.25	
BLANK	QC463857	ND	0.25	

Page 1 of 1

Batch QC Report

		Lead
Lab #:	206563	Location: 1532 Peralta St. Osagie Property
Client:	Golden Gate Tank Removal	Prep: EPA 3050B
Project#:	8757	Analysis: EPA 6010B
Analyte:	Lead	Diln Fac: 1.000
Field ID:	ZZZZZZZZZ	Batch#: 143327
MSS Lab ID:	206552-001	Sampled: 09/30/08
Matrix:	Soil	Received: 10/02/08
Units:	mg/Kg	Prepared: 10/06/08
Basis:	as received	Analyzed: 10/07/08

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC463858		100.0	96.26	96	80-120		
BSD	QC463859		100.0	96.00	96	80-120	0	20
MS	QC463860	6.233	94.34	87.72	86	50-123		
MSD	QC463861		99.01	87.98	83	50-123	4	30

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510) 486-0900 Phone
(510) 486-0532 Fay

CHAIN OF CUSTODY

Page ____of___

Analysis

	510) 486-0900 Phone (510) 486-0532 Fax	C & T I	-OG	iN i	#:_		4563						120									
Project	No.: 8757	Sample Report		()	SR.		E.DIAZ		E	LE		\$012	TEX 80	0109								
Project	Name: 1-32 Peral	ta St. Compa	ny:										5									
Project	P.O .: OSAGIE PRO	PERTY	one:	:	4	11	F- 512	_	11	-11		Sil	7	4								
Turnard	ound Time:	γς Fax:		4			· 512					w	તુ	した								
	rel ID: To 600	191668			trix]			ervativ		0	7	1								
Lab No.	Sample ID.	Sampling Date Time	Soil		Waste		# of Containers	된		HNO _s		TP#-	TPH	TOTA								
1,23,4	COMP (A-))	10/2/08 1130	~				4			-	+	X	X	×					\rightarrow	\dashv		\dashv
	PLEASE COMPOS INTO ONE SAM AND ANALYZED	PLE																				
Notos		SAMPLE RECEIPT																			土	
140162:	ProvidE PDF	Intact A Cold	RE	LIN	QUI	SHI	ED BY:					RE	CEI\	/ED	BY	•				اگ برد	, ,	2
and	I EDF Reports	On Ice Ambient	E	U	SE	- N	w Dir	 	•	DATE	E / TIME	1			7_	K	~	/ '	92	ATE /	ا د TIM	JE I
2		Preservative Correct? Yes No N/A								DATE	/ TIME			_	-				D/	ATE /	<u>′ TIN</u>	1E
/0/	SIGNATURE					·		· · · · · · ·		DATE	/ TIME	<u> </u>					 		D,	ATE /	<u>′ TIM</u>	1E

COOLER RECEIPT CHECKLIST

Login # 206563 Date Received 10/2/08 Number of coolers 1 Client GGTR Project 1532 PEROUTO ST, OSNGIE 1
Project 1532 PEROUTOST, OSKIB 1
Date Opened [0/2/08 By (print) M. VIUW & Sign) That The Date Logged in By (print) (sign)
1. Did cooler come with a shipping slip (airbill, etc)? YES Shipping info
2A. Were custody seals present? YES (circle) on cooler on samples
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form). 6. Indicate the packing in cooler: (if other, describe)
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation:
Type of ice used: Wet Blue/Gel None Temp(°C)
Samples Received on ice & cold without a temperature blank
Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? YES YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unappened?
The samples in the appropriate containers for indicated to the
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with questodes.
12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately present to
and the sample of the sample o
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this. YES NO NA
The same of the control of the contr
If YES, Who was called?ByDate:
COMMENTS

SOP Volume:

Client Services

Section: Page:

1.1.2

lofl

Rev. 6 Number 1 of 3

Effective: 23 July 2008

F:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

April 17, 2009

Brent Wheeler Golden Gate Tank Removal 3730 Mission St San Francisco, CA 94110

TEL: (415) 686-8846

FAX

RE: GGTR 8757/1532 Peralta St.Oakland

Dear Brent Wheeler:

Order No.: 0904068

Torrent Laboratory, Inc. received 4 samples on 4/10/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director

Date

Patti Sandrock

QA Officer

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Brent Wheeler

Date Received: 4/10/2009

Golden Gate Tank Removal

Date Reported: 4/17/2009

Client Sample ID: B20-3

Lab Sample ID: 0904068-001

Sample Location: 1532 Peralta St.Oakland

Date Prepared: 4/15/2009

Sample Matrix: SOIL

Date/Time Sampled 4/9/2009 9:30:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/16/2009	2	1	2.00	ND	mg/Kg	R19271
Surr: Pentacosane	SW8015B	4/16/2009	0	1	61.5-133	106	%REC	R19271

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

Client Sample ID: B20-3

1532 Peralta St.Oakland

Sample Matrix: SOIL

Sample Location:

Date/Time Sampled 4/9/2009 9:30:00 AM

Lab Sample ID: 0904068-001 **Date Prepared:** 4/15/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,1,1-Trichloroethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,1,2,2-Tetrachloroethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,1,2-Trichloroethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,1-Dichloroethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,1-Dichloroethene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,1-Dichloropropene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2,3-Trichlorobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2,3-Trichloropropane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2,4-Trichlorobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2,4-Trimethylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2-Dibromo-3-chloropropane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2-Dibromoethane (EDB)	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2-Dichlorobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2-Dichloroethane (EDC)	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,2-Dichloropropane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,3,5-Trimethylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,3-Dichlorobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
1,4-Dichlorobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
2,2-Dichloropropane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
2-Chloroethyl vinyl ether	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
2-Chlorotoluene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
4-Chlorotoluene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
4-Isopropyltoluene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Benzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Bromobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Bromochloromethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Bromodichloromethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Bromoform	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Bromomethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Carbon tetrachloride	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Chlorobenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Chloroform	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Chloromethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
cis-1,2-Dichloroethene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
cis-1,3-Dichloropropene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Dibromochloromethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Dibromomethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Dichlorodifluoromethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Ethyl tert-butyl ether (ETBE)	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Ethylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Freon-113	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Hexachlorobutadiene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

B20-3

1532 Peralta St.Oakland

Sample Location: Sample Matrix:

Client Sample ID:

SOIL

Date/Time Sampled

Surr: 4-Bromofllurobenzene

4/9/2009 9:30:00 AM

Lab Sample ID: 0904068-001 **Date Prepared:** 4/15/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropyl Ether	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Isopropylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Methyl tert-butyl ether (MTBE)	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Methylene chloride	SW8260B	4/15/2009	50	1	50	ND	μg/Kg	R19263
Naphthalene	SW8260B	4/15/2009	20	1	20	ND	μg/Kg	R19263
n-Butylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
n-Propylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
sec-Butylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Styrene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
t-Butyl alcohol (t-Butanol)	SW8260B	4/15/2009	50	1	50	ND	μg/Kg	R19263
tert-Amyl methyl ether (TAME)	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
tert-Butylbenzene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Tetrachloroethene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Toluene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
trans-1,2-Dichloroethene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
trans-1,3-Dichloropropene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Trichloroethene	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Trichlorofluoromethane	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Vinyl chloride	SW8260B	4/15/2009	10	1	10	ND	μg/Kg	R19263
Xylenes, Total	SW8260B	4/15/2009	15	1	15	ND	μg/Kg	R19263
Surr: 4-Bromofluorobenzene	SW8260B	4/15/2009	0	1	55.8-141	87.3	%REC	R19263
Surr: Dibromofluoromethane	SW8260B	4/15/2009	0	1	59.8-148	90.7	%REC	R19263
Surr: Toluene-d8	SW8260B	4/15/2009	0	1	55.2-133	89.9	%REC	R19263
TPH (Gasoline)	SW8260B(TPH)	4/16/2009	100	1	100	ND	μg/Kg	G19277

Note: S- Surrogate recovery out of limit. Matrix effect confirmed by duplicate run.

SW8260B(TPH)

4/16/2009

0

56.9-133

56.0

%REC

G19277

Report prepared for: Brent Wheeler **Date Received:** 4/10/2009

Golden Gate Tank Removal **Date Reported:** 4/17/2009

Client Sample ID: B21-3

1532 Peralta St.Oakland

Sample Matrix: SOIL

Sample Location:

Date/Time Sampled 4/9/2009 10:25:00 AM

Lab Sample ID: 0904068-002

Date Prepared: 4/16/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/16/2009	2	1	2.00	26.0x	mg/Kg	R19271
Surr: Pentacosane	SW8015B	4/16/2009	0	1	61.5-133	90.4	%REC	R19271

Note:x-Sample chromatogram does not resemble typical diesel pattern (possibly fuel lighter than diesel). Hydrocarbons within the diesel range quantitated as diesel.

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

Client Sample ID: B21-3

Sample Location: 1532 Peralta St.Oakland

Sample Matrix: SOIL

Date/Time Sampled 4/9/2009 10:25:00 AM

Lab Sample ID: 0904068-002 **Date Prepared:** 4/16/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,1,1-Trichloroethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,1,2,2-Tetrachloroethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,1,2-Trichloroethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,1-Dichloroethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,1-Dichloroethene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,1-Dichloropropene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2,3-Trichlorobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2,3-Trichloropropane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2,4-Trichlorobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2,4-Trimethylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2-Dibromo-3-chloropropane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2-Dibromoethane (EDB)	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2-Dichlorobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2-Dichloroethane (EDC)	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,2-Dichloropropane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,3,5-Trimethylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,3-Dichlorobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
1,4-Dichlorobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
2,2-Dichloropropane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
2-Chloroethyl vinyl ether	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
2-Chlorotoluene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
4-Chlorotoluene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
4-Isopropyltoluene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Benzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Bromobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Bromochloromethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Bromodichloromethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Bromoform	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Bromomethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Carbon tetrachloride	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Chlorobenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Chloroform	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Chloromethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
cis-1,2-Dichloroethene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
cis-1,3-Dichloropropene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Dibromochloromethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Dibromomethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Dichlorodifluoromethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Ethyl tert-butyl ether (ETBE)	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Ethylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Freon-113	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Hexachlorobutadiene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

Lab Sample ID: 0904068-002

Date Prepared: 4/16/2009

Client Sample ID: B21-3

Sample Location: 1532 Peralta St.Oakland Sample Matrix: SOIL

Date/Time Sampled 4/9/2009 10:25:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropyl Ether	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Isopropylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Methyl tert-butyl ether (MTBE)	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Methylene chloride	SW8260B	4/16/2009	50	500	25000	ND	μg/Kg	R19277
Naphthalene	SW8260B	4/16/2009	20	500	10000	ND	μg/Kg	R19277
n-Butylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
n-Propylbenzene	SW8260B	4/16/2009	10	500	5000	7200	μg/Kg	R19277
sec-Butylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Styrene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
t-Butyl alcohol (t-Butanol)	SW8260B	4/16/2009	50	500	25000	ND	μg/Kg	R19277
tert-Amyl methyl ether (TAME)	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
tert-Butylbenzene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Tetrachloroethene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Toluene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
trans-1,2-Dichloroethene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
trans-1,3-Dichloropropene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Trichloroethene	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Trichlorofluoromethane	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Vinyl chloride	SW8260B	4/16/2009	10	500	5000	ND	μg/Kg	R19277
Xylenes, Total	SW8260B	4/16/2009	15	500	7500	ND	μg/Kg	R19277
Surr: 4-Bromofluorobenzene	SW8260B	4/16/2009	0	500	55.8-141	77.3	%REC	R19277
Surr: Dibromofluoromethane	SW8260B	4/16/2009	0	500	59.8-148	93.0	%REC	R19277
Surr: Toluene-d8	SW8260B	4/16/2009	0	500	55.2-133	112	%REC	R19277
TPH (Gasoline)	SW8260B(TPH)	4/17/2009	100	1000	100000	960000x	μg/Kg	G19277
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/17/2009	0	1000	56.9-133	60.0	%REC	G19277

Note: x - Result reported as gasoline but sample chromatogram does not not resemble gasoline standard pattern. TPH value due to a significant amount of heavier hydrocarbons within range of C5-C12 quantified as Gasoline (possibly a mixed fuel of aged gasoline and stoddard range fuel).

Report prepared for: Brent Wheeler **Date Received:** 4/10/2009

Golden Gate Tank Removal **Date Reported:** 4/17/2009

Client Sample ID: B21-4.5

Sample Location: 1532 Peralta St.Oakland

Sample Matrix: SOIL

Date/Time Sampled 4/9/2009 10:35:00 AM

Lab Sample ID: 0904068-003

Date Prepared: 4/16/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/16/2009	2	1	2.00	43.4x	mg/Kg	R19271
Surr: Pentacosane	SW8015B	4/16/2009	0	1	61.5-133	89.2	%REC	R19271

Note:x-Sample chromatogram does not resemble typical diesel pattern (possibly fuel lighter than diesel). Hydrocarbons within the diesel range quantitated as diesel.

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

B21-4.5 **Client Sample ID:**

1532 Peralta St.Oakland

Sample Matrix: SOIL

Sample Location:

Date/Time Sampled 4/9/2009 10:35:00 AM **Lab Sample ID:** 0904068-003

Date Prepared: 4/16/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,1,1-Trichloroethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,1,2,2-Tetrachloroethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,1,2-Trichloroethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,1-Dichloroethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,1-Dichloroethene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,1-Dichloropropene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2,3-Trichlorobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2,3-Trichloropropane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2,4-Trichlorobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2,4-Trimethylbenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2-Dibromo-3-chloropropane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2-Dibromoethane (EDB)	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2-Dichlorobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2-Dichloroethane (EDC)	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,2-Dichloropropane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,3,5-Trimethylbenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,3-Dichlorobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
1,4-Dichlorobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
2,2-Dichloropropane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
2-Chloroethyl vinyl ether	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
2-Chlorotoluene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
4-Chlorotoluene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
4-Isopropyltoluene	SW8260B	4/16/2009	10	100	1000	1000	μg/Kg	R19277
Benzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Bromobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Bromochloromethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Bromodichloromethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Bromoform	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Bromomethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Carbon tetrachloride	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Chlorobenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Chloroform	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Chloromethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
cis-1,2-Dichloroethene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
cis-1,3-Dichloropropene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Dibromochloromethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Dibromomethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg μg/Kg	R19277
Dichlorodifluoromethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Ethyl tert-butyl ether (ETBE)	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg μg/Kg	R19277
Ethylbenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg μg/Kg	R19277
Freon-113	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg μg/Kg	R19277
Hexachlorobutadiene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg μg/Kg	R19277
I IEAAUIIUI UDUIAUIETIE	34402000	4/10/2009	10	100	1000	ND	µg/Ng	N 19211

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

Lab Sample ID: 0904068-003

Date Prepared: 4/16/2009

Client Sample ID: B21-4.5

Sample Location: 1532 Peralta St.Oakland

Sample Matrix: SOIL

Date/Time Sampled 4/9/2009 10:35:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropyl Ether	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Isopropylbenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Methyl tert-butyl ether (MTBE)	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Methylene chloride	SW8260B	4/16/2009	50	100	5000	ND	μg/Kg	R19277
Naphthalene	SW8260B	4/16/2009	20	100	2000	3500	μg/Kg	R19277
n-Butylbenzene	SW8260B	4/16/2009	10	100	1000	1700	μg/Kg	R19277
n-Propylbenzene	SW8260B	4/16/2009	10	100	1000	2400	μg/Kg	R19277
sec-Butylbenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Styrene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
t-Butyl alcohol (t-Butanol)	SW8260B	4/16/2009	50	100	5000	ND	μg/Kg	R19277
tert-Amyl methyl ether (TAME)	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
tert-Butylbenzene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Tetrachloroethene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Toluene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
trans-1,2-Dichloroethene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
trans-1,3-Dichloropropene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Trichloroethene	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Trichlorofluoromethane	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Vinyl chloride	SW8260B	4/16/2009	10	100	1000	ND	μg/Kg	R19277
Xylenes, Total	SW8260B	4/16/2009	15	100	1500	ND	μg/Kg	R19277
Surr: 4-Bromofluorobenzene	SW8260B	4/16/2009	0	100	55.8-141	91.0	%REC	R19277
Surr: Dibromofluoromethane	SW8260B	4/16/2009	0	100	59.8-148	98.2	%REC	R19277
Surr: Toluene-d8	SW8260B	4/16/2009	0	100	55.2-133	115	%REC	R19277
TPH (Gasoline)	SW8260B(TPH)	4/17/2009	100	400	40000	550000x	μg/Kg	G19277
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/17/2009	0	400	56.9-133	58.0	%REC	G19277

Note: x - Result reported as gasoline but sample chromatogram does not not resemble gasoline standard pattern. TPH value due to a significant amount of heavier hydrocarbons within range of C5-C12 quantified as Gasoline (possibly a mixed fuel of aged gasoline and stoddard range fuel).

Golden Gate Tank Removal

Date Received: 4/10/2009 **Date Reported:** 4/17/2009

CompositeSC(1-4)

Sample Location: 1532 Peralta St.Oakland

Sample Matrix:

Client Sample ID:

Date/Time Sampled 4/9/2009 12:40:00 PM **Lab Sample ID:** 0904068-004 **Date Prepared:** 4/14/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Lead	SW6010B	4/14/2009	1	1	1.0	20	mg/Kg	5099
TPH (Diesel)	SW8015B	4/16/2009	2	4	8.00	ND	mg/Kg	R19272
Surr: Pentacosane	SW8015B	4/16/2009	0	4	59.7-129	61.0	%REC	R19272
Note: Reporting limits increased due to p	presence of heavy hyd	Irocarbons.						
Benzene	SW8260B	4/14/2009	10	5	50	ND	μg/Kg	R19252
Ethylbenzene	SW8260B	4/14/2009	10	5	50	ND	μg/Kg	R19252
Toluene	SW8260B	4/14/2009	10	5	50	ND	μg/Kg	R19252
Xylenes, Total	SW8260B	4/14/2009	15	5	75	ND	μg/Kg	R19252
Surr: 4-Bromofluorobenzene	SW8260B	4/14/2009	0	5	55.8-141	95.9	%REC	R19252
Surr: Dibromofluoromethane	SW8260B	4/14/2009	0	5	59.8-148	89.5	%REC	R19252
Surr: Toluene-d8	SW8260B	4/14/2009	0	5	55.2-133	90.8	%REC	R19252
TPH (Gasoline)	SW8260B(TPH)	4/14/2009	100	5	500	6400x	μg/Kg	G19252
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/14/2009	0	5	56.9-133	74.0	%REC	G19252

Note: x - Result reported as gasoline but sample chromatogram does not not resemble gasoline standard pattern. TPH value due to a significant amount of heavier hydrocarbons within range of C5-C12 quantified as Gasoline (possibly a mixed fuel of aged gasoline and stoddard range fuel).

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Date: 17-Apr-09

CLIENT: Golden Gate Tank Removal

Work Order: 0904068

Project: GGTR 8757/1532 Peralta St.Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: 5099

Sample ID MB-5099 Client ID: ZZZZZ	SampType: MBLK Batch ID: 5099	TestCode: 6010B_S Units: mg/Kg TestNo: SW6010B (SW3050B)	Prep Date: 4/14/2009 Analysis Date: 4/14/2009	RunNo: 19248 SeqNo: 277913
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	ND	1.0		
Sample ID LCS-5099 Client ID: ZZZZZ	SampType: LCS Batch ID: 5099	TestCode: 6010B_S Units: mg/Kg TestNo: SW6010B (SW3050B)	Prep Date: 4/14/2009 Analysis Date: 4/14/2009	RunNo: 19248 SeqNo: 277911
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	48.45	1.0 50 0.3	96.3 67.9 118	
Sample ID LCSD-5099 Client ID: ZZZZZ	SampType: LCSD Batch ID: 5099	TestCode: 6010B_S Units: mg/Kg TestNo: SW6010B (SW3050B)	Prep Date: 4/14/2009 Analysis Date: 4/14/2009	RunNo: 19248 SeqNo: 277912
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	48.45	1.0 50 0.3	96.3 67.9 118 48.45	0 30

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Work Order: 0904068 ANALYTICAL QC SUMMARY REPORT

BatchID: G19252

Project: GGTR 8757/1532 Peralta St.Oakland

Sample ID MB_G19252	SampType: MBLK	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 4/14/2009	RunNo: 19252
Client ID: ZZZZZ	Batch ID: G19252	TestNo: SW8260B(TP	Analysis Date: 4/14/2009	SeqNo: 277929
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline) Surr: 4-Bromofllurobenzene	ND 42.00	100 0 50 0	84.0 56.9 133	
Sample ID LCS_G19252	SampType: LCS	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 4/14/2009	RunNo: 19252
Client ID: ZZZZZ	Batch ID: G19252	TestNo: SW8260B(TP	Analysis Date: 4/14/2009	SeqNo: 277930
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	844.0	100 1000 0	84.4 48.2 132	
Surr: 4-Bromofllurobenzene	45.00	0 50 0	90.0 56.9 133	
Sample ID LCSD_G19252	SampType: LCSD	TestCode: TPH_GAS_S Units: µg/Kg	Prep Date: 4/14/2009	RunNo: 19252
Client ID: ZZZZZ	Batch ID: G19252	TestNo: SW8260B(TP	Analysis Date: 4/14/2009	SeqNo: 277931
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	933.0	100 1000 0	93.3 48.2 132 844	10.0 30
Surr: 4-Bromofllurobenzene	39.00	0 50 0	78.0 56.9 133 0	0 0

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 2 of 16

GGTR 8757/1532 Peralta St.Oakland

Work Order:

Project:

0904068

ANALYTICAL QC SUMMARY REPORT

BatchID: G19277

Sample ID MB_G19277	SampType: MBLK	TestCode: TPH_GAS_S Units: μ ç	/Kg Prep Date: 4/16/2009	RunNo: 19277
Client ID: ZZZZZ	Batch ID: G19277	TestNo: SW8260B(TP	Analysis Date: 4/16/2009	SeqNo: 278343
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline) Surr: 4-Bromofllurobenzene	ND 29.00	100 0 50 0	58.0 56.9 133	
Sample ID LCS_G19277	SampType: LCS	TestCode: TPH_GAS_S Units: μο	/Kg Prep Date: 4/16/2009	RunNo: 19277
Client ID: ZZZZZ	Batch ID: G19277	TestNo: SW8260B(TP	Analysis Date: 4/16/2009	SeqNo: 278344
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	861.0	100 1000 0	86.1 48.2 132	
Surr: 4-Bromofllurobenzene	31.00	0 50 0	62.0 56.9 133	
Sample ID LCSD_G19277	SampType: LCSD	TestCode: TPH_GAS_S Units: μ ç	/Kg Prep Date: 4/17/2009	RunNo: 19277
Client ID: ZZZZZ	Batch ID: G19277	TestNo: SW8260B(TP	Analysis Date: 4/17/2009	SeqNo: 278345
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Gasoline)	855.0	100 1000 0	85.5 48.2 132 861	0.699 30
Surr: 4-Bromofllurobenzene	29.00	0 50 0	58.0 56.9 133 0	0 0

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 3 of 16

Work Order: 0904068 ANALYTICAL QC SUMMARY REPORT

BatchID: R19252

Project: GGTR 8757/1532 Peralta St.Oakland

Sample ID MB_R19252	SampType: MBLK	TestCode: 8260B_S	Units: µg/Kg	Prep Date: 4/13/2009	RunNo: 19252
Client ID: ZZZZZ	Batch ID: R19252	TestNo: SW8260B		Analysis Date: 4/13/2009	SeqNo: 278230
	Dooult			0/DEC Loudinit Highlimit DDD D-1/-	·
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	ND	10			
1,1,1-Trichloroethane	ND	10			
1,1,2,2-Tetrachloroethane	ND	10			
1,1,2-Trichloroethane	ND	10			
1,1-Dichloroethane	ND	10			
1,1-Dichloroethene	ND	10			
1,1-Dichloropropene	ND	10			
1,2,3-Trichlorobenzene	ND	10			
1,2,3-Trichloropropane	ND	10			
1,2,4-Trichlorobenzene	ND	10			
1,2,4-Trimethylbenzene	ND	10			
1,2-Dibromo-3-chloropropane	ND	10			
1,2-Dichlorobenzene	ND	10			
1,2-Dichloropropane	ND	10			
1,3,5-Trimethylbenzene	ND	10			
1,3-Dichlorobenzene	ND	10			
1,3-Dichloropropene	ND	10			
1,4-Dichlorobenzene	ND	10			
2,2-Dichloropropane	ND	10			
2-Chloroethyl vinyl ether	ND	10			
2-Chlorotoluene	ND	10			
4-Chlorotoluene	ND	10			
4-Isopropyltoluene	ND	10			
Benzene	ND	10			
Bromobenzene	ND	10			
Bromochloromethane	ND	10			
Bromodichloromethane	ND	10			
Bromoform	ND	10			
Bromomethane	ND	10			
Carbon tetrachloride	ND	10			
Chlorobenzene	ND	10			

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits $Page\ 4\ of\ 16$

Work Order: 0904068

ANALYTICAL QC SUMMARY REPORT

BatchID: R19252 **Project:** GGTR 8757/1532 Peralta St.Oakland

Result ND	PQL 10 10 10 10 10 10 10	lo: SW8260B SPK value	SPK Ref Val	%REC	Analysis Dat		RPD Ref Val	SeqNo: 278 %RPD	RPDLimit	Qual
ND ND ND ND ND ND ND	10 10 10 10 10	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ND ND ND ND ND ND	10 10 10 10									
ND ND ND ND ND	10 10 10 10									
ND ND ND ND ND	10 10 10									
ND ND ND ND	10 10									
ND ND ND	10									
ND ND										
ND										
	10									
	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	50									
ND	20									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	10									
ND	15									
40.62	0	50	0	81.2	55.8	141				
	0				59.8	148				
	0	50	0	82.0		133				
	ND ND ND ND ND ND ND	ND 10 ND 15 40.62 0 48.70 0	ND 10 ND 15 40.62 0 50 48.70 0 50	ND 10 ND 15 40.62 0 50 0	ND 10 ND 15 40.62 0 50 0 81.2 48.70 0 50 0 97.4	ND 10 ND 15 40.62 0 50 0 81.2 55.8 48.70 0 50 0 97.4 59.8	ND 10 ND 15 40.62 0 50 0 81.2 55.8 141 48.70 0 50 0 97.4 59.8 148	ND 10 ND 15 40.62 0 50 0 81.2 55.8 141 48.70 0 50 0 97.4 59.8 148	ND 10 ND 15 40.62 0 50 0 81.2 55.8 141 48.70 0 50 0 97.4 59.8 148	ND 10 ND 15 40.62 0 50 0 81.2 55.8 141 48.70 0 50 0 97.4 59.8 148

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 5 of 16

Work Order: 0904068

Project: GGTR 8757/1532 Peralta St.Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19252

Sample ID LCS_R19252	SampType: LCS	TestCod	de: 8260B_S	Units: µg/Kg		Prep Date	e: 4/13/2 0	009	RunNo: 19 2	252	
Client ID: ZZZZZ	Batch ID: R19252	TestN	No: SW8260B			Analysis Date	e: 4/13/2 0	009	SeqNo: 27 8	8231	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	57.65	10	50	0	115	53.7	139				
Benzene	56.65	10	50	0	113	66.5	135				
Chlorobenzene	43.03	10	50	0	86.1	57.5	150				
Toluene	40.54	10	50	0	81.1	56.8	134				
Trichloroethene	42.13	10	50	0	84.3	57.4	134				
Surr: 4-Bromofluorobenzene	42.63	0	50	0	85.3	55.8	141				
Surr: Dibromofluoromethane	51.54	0	50	0	103	59.8	148				
Surr: Toluene-d8	40.88	0	50	0	81.8	55.2	133				
Sample ID LCSD_R19252	SampType: LCSD	TestCod	de: 8260B_S	Units: µg/Kg		Prep Date	e: 4/13/2 0	009	RunNo: 19	252	
Sample ID LCSD_R19252 Client ID: ZZZZZ	SampType: LCSD Batch ID: R19252		de: 8260B_S No: SW8260B	Units: µg/Kg		Prep Date Analysis Date			RunNo: 19 2 SeqNo: 27 3		
_			_		%REC	Analysis Date	e: 4/13/2 0				Qual
Client ID: ZZZZZ	Batch ID: R19252	TestN	No: SW8260B			Analysis Date	e: 4/13/2 0	009	SeqNo: 27	8232	Qual
Client ID: ZZZZZ Analyte	Batch ID: R19252 Result	TestN PQL	No: SW8260B SPK value	SPK Ref Val	%REC	Analysis Date	e: 4/13/20 HighLimit	RPD Ref Val	SeqNo: 278	8232 RPDLimit	Qual
Client ID: ZZZZZ Analyte 1,1-Dichloroethene	Batch ID: R19252 Result 58.28	TestN PQL 10	SPK value	SPK Ref Val	%REC	Analysis Date LowLimit 53.7	e: 4/13/20 HighLimit 139	RPD Ref Val 57.65	SeqNo: 27 6 %RPD 1.09	RPDLimit 30	Qual
Client ID: ZZZZZ Analyte 1,1-Dichloroethene Benzene	Batch ID: R19252 Result 58.28 57.85	PQL 10 10	SPK value 50 50	SPK Ref Val 0 0	%REC 117 116	Analysis Date LowLimit 53.7 66.5	e: 4/13/20 HighLimit 139 135	RPD Ref Val 57.65 56.65	SeqNo: 27 6 %RPD 1.09 2.10	8232 RPDLimit 30 30	Qual
Client ID: ZZZZZ Analyte 1,1-Dichloroethene Benzene Chlorobenzene	Batch ID: R19252 Result 58.28 57.85 45.45	PQL 10 10 10	SPK value 50 50 50	SPK Ref Val 0 0 0	%REC 117 116 90.9	LowLimit 53.7 66.5 57.5	HighLimit 139 135 150	RPD Ref Val 57.65 56.65 43.03	SeqNo: 276 %RPD 1.09 2.10 5.47	RPDLimit 30 30 30 30	Qual
Client ID: ZZZZZ Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene	Batch ID: R19252 Result 58.28 57.85 45.45 40.75	PQL 10 10 10 10	SPK value 50 50 50 50	SPK Ref Val 0 0 0 0	%REC 117 116 90.9 81.5	Analysis Date LowLimit 53.7 66.5 57.5 56.8	HighLimit 139 135 150 134	57.65 56.65 43.03 40.54	SeqNo: 276 %RPD 1.09 2.10 5.47 0.517	8232 RPDLimit 30 30 30 30 30	Qual
Client ID: ZZZZZ Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	Batch ID: R19252 Result 58.28 57.85 45.45 40.75 56.70	PQL 10 10 10 10 10 10	SPK value 50 50 50 50 50 50	SPK Ref Val 0 0 0 0 0 0	%REC 117 116 90.9 81.5 113	Analysis Date LowLimit 53.7 66.5 57.5 56.8 57.4	HighLimit 139 135 150 134 134	57.65 56.65 43.03 40.54 42.13	SeqNo: 276 %RPD 1.09 2.10 5.47 0.517 29.5	8232 RPDLimit 30 30 30 30 30 30 30	Qual

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 6 of 16

Work Order: 0904068

ANALYTICAL QC SUMMARY REPORT

BatchID: R19263

Project: GGTR 8757/1532 Peralta St.Oakland

Sample ID MB_R19263	SampType: MBLK	TestCode: 8	8260B_S	Units: µg/Kg		Prep Da	te: 4/15/2 0	009	RunNo: 192	263	
Client ID: ZZZZZ	Batch ID: R19263	TestNo:	SW8260B			Analysis Da	te: 4/15/2 0	009	SeqNo: 278	3249	
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	10									
1,1,1-Trichloroethane	ND	10									
1,1,2,2-Tetrachloroethane	ND	10									
1,1,2-Trichloroethane	ND	10									
1,1-Dichloroethane	ND	10									
1,1-Dichloroethene	ND	10									
1,1-Dichloropropene	ND	10									
1,2,3-Trichlorobenzene	ND	10									
1,2,3-Trichloropropane	ND	10									
1,2,4-Trichlorobenzene	ND	10									
1,2,4-Trimethylbenzene	ND	10									
1,2-Dibromo-3-chloropropane	ND	10									
1,2-Dibromoethane (EDB)	ND	10									
1,2-Dichlorobenzene	ND	10									
1,2-Dichloroethane (EDC)	ND	10									
1,2-Dichloropropane	ND	10									
1,3,5-Trimethylbenzene	ND	10									
1,3-Dichlorobenzene	ND	10									
1,3-Dichloropropene	ND	10									
1,4-Dichlorobenzene	ND	10									
2,2-Dichloropropane	ND	10									
2-Chloroethyl vinyl ether	ND	10									
2-Chlorotoluene	ND	10									
4-Chlorotoluene	ND	10									
4-Isopropyltoluene	ND	10									
Benzene	ND	10									
Bromobenzene	ND	10									
Bromochloromethane	ND	10									
Bromodichloromethane	ND	10									
Bromoform	ND	10									
Bromomethane	ND	10									

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 7 of 16

Work Order: 0904068 ANALYTICAL QC SUMMARY REPORT

BatchID: R19263

Project: GGTR 8757/1532 Peralta St.Oakland

Sample ID MB_R19263	SampType: MBLK	TestCode: 8260	B_S Units: μg/Kg	Prep Date: 4/15/2009	RunNo: 19263
Client ID: ZZZZZ	Batch ID: R19263	TestNo: SW8	260B	Analysis Date: 4/15/2009	SeqNo: 278249
Analyte	Result	PQL SPK v	alue SPK Ref Val	%REC LowLimit HighLimit RPD Ref	Val %RPD RPDLimit Qual
Carbon tetrachloride	ND	10			
Chlorobenzene	ND	10			
Chloroform	ND	10			
Chloromethane	ND	10			
cis-1,2-Dichloroethene	ND	10			
cis-1,3-Dichloropropene	ND	10			
Dibromochloromethane	ND	10			
Dibromomethane	ND	10			
Dichlorodifluoromethane	ND	10			
Ethyl tert-butyl ether (ETBE)	ND	10			
Ethylbenzene	ND	10			
Freon-113	ND	10			
Hexachlorobutadiene	ND	10			
Isopropyl Ether	ND	10			
Isopropylbenzene	ND	10			
Methyl tert-butyl ether (MTBE)	ND	10			
Methylene chloride	ND	50			
Naphthalene	ND	20			
n-Butylbenzene	ND	10			
n-Propylbenzene	ND	10			
sec-Butylbenzene	ND	10			
Styrene	ND	10			
t-Butyl alcohol (t-Butanol)	ND	50			
tert-Amyl methyl ether (TAME)	ND	10			
tert-Butylbenzene	ND	10			
Tetrachloroethene	ND	10			
Toluene	ND	10			
trans-1,2-Dichloroethene	ND	10			
trans-1,3-Dichloropropene	ND	10			
Trichloroethene	ND	10			
Trichlorofluoromethane	ND	10			

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 8 of 16

Analyte detected below quantitation limits

Work Order: 0904068

Project: GGTR 8757/1532 Peralta St.Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19263

Sample ID MB_R19263	SampType: MBLK	TestCo	de: 8260B_S	Units: µg/Kg		Prep Da	te: 4/15/2 0	009	RunNo: 19263				
Client ID: ZZZZZ	Batch ID: R19263	Test	No: SW8260B			Analysis Da	te: 4/15/2 0	009	SeqNo: 278249				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Va			%RPD	RPDLimit	Qual		
Vinyl chloride	ND	10											
Xylenes, Total	ND	15											
Surr: 4-Bromofluorobenzene	49.42	0	50	0	98.8	55.8	141						
Surr: Dibromofluoromethane	49.22	0	50	0	98.4	59.8	148						
Surr: Toluene-d8	47.70	0	50	0	95.4	55.2	133						
Sample ID LCS_R19263	SampType: LCS	TestCo	de: 8260B_S	Units: µg/Kg		Prep Da	te: 4/15/2 0	RunNo: 192	263				
Client ID: ZZZZZ	Batch ID: R19263	Test	No: SW8260B			Analysis Da	te: 4/15/2 0	SeqNo: 278	3250				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
1,1-Dichloroethene	42.14	10	50	0	84.3	53.7	139						
Benzene	43.90	10	50	0	87.8	66.5	135						
Chlorobenzene	40.20	10	50	0	80.4	57.5	150						
Toluene	36.96	10	50	0	73.9	56.8	134						
Trichloroethene	46.56	10	50	0	93.1	57.4	134						
Surr: 4-Bromofluorobenzene	45.29	0	50	0	90.6	55.8	141						
Surr: Dibromofluoromethane	50.32	0	50	0	101	59.8	148						
Surr: Toluene-d8	41.27	0	50	0	82.5	55.2	133						
Sample ID LCSD_R19263	SampType: LCSD	TestCo	de: 8260B_S	Units: µg/Kg		Prep Da	te: 4/15/2 (009	RunNo: 192	263			
Client ID: ZZZZZ	Batch ID: R19263	Test	No: SW8260B			Analysis Da	te: 4/15/2 0	009	SeqNo: 278	3251			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
1,1-Dichloroethene	49.19	10	50	0	98.4	53.7	139	42.14	15.4	30			
Benzene	50.81	10	50	0	102	66.5	135	43.9	14.6	30			
Chlorobenzene	43.68	10	50	0	87.4	57.5	150	40.2	8.30	30			
Toluene	37.34	10	50	0	74.7	56.8	134	36.96	1.02	30			
Trichloroethene	43.90	10	50	0	87.8	57.4	134	46.56	5.88	30			
Surr: 4-Bromofluorobenzene	41.42	0	50	0	82.8	55.8	141	0	0	0			
Surr: Dibromofluoromethane	52.27	0	50	0	105	59.8	148	0	0	0			
Surr: Toluene-d8	41.85	0	50	0	83.7	55.2	133	0	0	0			

Qualifiers: Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 9 of 16

Work Order: 0904068

Project: GGTR 8757/1532 Peralta St.Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19263

Sample ID 0904068-001A MS	SampType: MS	TestCod	de: 8260B_S	Units: µg/Kg		Prep Date	e: 4/15/20	009	RunNo: 19263			
Client ID: B20-3	Batch ID: R19263	TestN	lo: SW8260B			Analysis Date	e: 4/15/2 0	009	SeqNo: 278255			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1-Dichloroethene	43.02	10	50	0	86.0	53.7	139					
Benzene	43.64	10	50	0	87.3	66.5	135					
Chlorobenzene	42.02	10	50	0	84.0	57.5	150					
Toluene	38.35	10	50	0	76.7	56.8	134					
Trichloroethene	42.13	10	50	0	84.3	57.4	134					
Surr: 4-Bromofluorobenzene	43.05	0	50	0	86.1	55.8	141					
Surr: Dibromofluoromethane	49.68	0	50	0	99.4	59.8	148					
Surr: Toluene-d8	44.60	0	50	0	89.2	55.2	133					
Sample ID 0904068-001A MSD	SampType: MSD	TestCod	de: 8260B_S	Units: µg/Kg		Prep Date	e: 4/16/20	009	RunNo: 19	263		
Sample ID	SampType: MSD Batch ID: R19263		de: 8260B_S No: SW8260B	Units: µg/Kg		Prep Date Analysis Date			RunNo: 19 2 SeqNo: 27 8			
·			lo: SW8260B	Units: µg/Kg	%REC	Analysis Date	e: 4/16/20				Qual	
Client ID: B20-3	Batch ID: R19263	TestN	lo: SW8260B			Analysis Date	e: 4/16/20	009	SeqNo: 278	8256	Qual	
Client ID: B20-3 Analyte	Batch ID: R19263 Result	TestN PQL	No: SW8260B SPK value	SPK Ref Val	%REC	Analysis Date	e: 4/16/20 HighLimit	RPD Ref Val	SeqNo: 278	RPDLimit	Qual	
Client ID: B20-3 Analyte 1,1-Dichloroethene	Batch ID: R19263 Result 40.80	TestN PQL 10	SPK value	SPK Ref Val	%REC 81.6	Analysis Date LowLimit 53.7	: 4/16/20 HighLimit 139	RPD Ref Val 43.02	SeqNo: 27 8 %RPD 5.30	RPDLimit 30	Qual	
Client ID: B20-3 Analyte 1,1-Dichloroethene Benzene	Batch ID: R19263 Result 40.80 42.45	PQL 10 10	SPK value 50 50	SPK Ref Val 0 0	%REC 81.6 84.9	Analysis Date LowLimit 53.7 66.5	HighLimit 139 135	RPD Ref Val 43.02 43.64	SeqNo: 27 8 %RPD 5.30 2.76	8256 RPDLimit 30 30	Qual	
Client ID: B20-3 Analyte 1,1-Dichloroethene Benzene Chlorobenzene	Batch ID: R19263 Result 40.80 42.45 48.72	PQL 10 10 10	SPK value 50 50 50	SPK Ref Val 0 0 0	%REC 81.6 84.9 97.4	Analysis Date LowLimit 53.7 66.5 57.5	HighLimit 139 135 150	RPD Ref Val 43.02 43.64 42.02	SeqNo: 27 6 %RPD 5.30 2.76 14.8	RPDLimit 30 30 30 30	Qual	
Client ID: B20-3 Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene	Batch ID: R19263 Result 40.80 42.45 48.72 40.02	TestN PQL 10 10 10 10	SPK value 50 50 50 50	SPK Ref Val 0 0 0 0	%REC 81.6 84.9 97.4 80.0	Analysis Date LowLimit 53.7 66.5 57.5 56.8	HighLimit 139 135 150 134	RPD Ref Val 43.02 43.64 42.02 38.35	SeqNo: 276 %RPD 5.30 2.76 14.8 4.26	RPDLimit 30 30 30 30 30 30	Qual	
Client ID: B20-3 Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	Result 40.80 42.45 48.72 40.02 47.16	PQL 10 10 10 10 10	SPK value 50 50 50 50 50 50	SPK Ref Val 0 0 0 0 0 0	%REC 81.6 84.9 97.4 80.0 94.3	Analysis Date LowLimit 53.7 66.5 57.5 56.8 57.4	HighLimit 139 135 150 134 134	A3.02 43.64 42.02 38.35 42.13	SeqNo: 276 5.30 2.76 14.8 4.26 11.3	RPDLimit 30 30 30 30 30 30 30 30	Qual	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page~10~of~16

Work Order: 0904068

Project:

ANALYTICAL QC SUMMARY REPORT BatchID: R19271 GGTR 8757/1532 Peralta St.Oakland

Sample ID SDSG090415A-MB	SampType: MBLK	TestCode: TPHDSG_S Units: mg/Kg	Prep Date: 4/15/2009	RunNo: 19271
Client ID: ZZZZZ	Batch ID: R19271	TestNo: SW8015B	Analysis Date: 4/16/2009	SeqNo: 278305
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Diesel-SG) Surr: Pentacosane	ND 2.841	2.00 0 3.3 0	86.1 61.5 133	
Sample ID SDSG090415A-LCS	SampType: LCS	TestCode: TPHDSG_S Units: mg/Kg	Prep Date: 4/15/2009	RunNo: 19271
Client ID: ZZZZZ	Batch ID: R19271	TestNo: SW8015B	Analysis Date: 4/16/2009	SeqNo: 278306
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Diesel-SG)	25.07	2.00 33.33 0	75.2 50.8 111	
Surr: Pentacosane	2.723	0 3.3 0	82.5 61.5 133	
Sample ID SDSG090415A-LCS	SampType: LCSD	TestCode: TPHDSG_S Units: mg/Kg	Prep Date: 4/15/2009	RunNo: 19271
Client ID: ZZZZZ	Batch ID: R19271	TestNo: SW8015B	Analysis Date: 4/16/2009	SeqNo: 278307
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
TPH (Diesel-SG)	26.49	2.00 33.33 0	79.5 50.8 111 25.07	5.52 30
Surr: Pentacosane	2.969	0 3.3 0	90.0 61.5 133 0	0 0

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page~11~of~16

Work Order: 0904068

Project: GGTR 8757/1532 Peralta St.Oakland

ND Not Detected at the Reporting Limit

ANALYTICAL QC SUMMARY REPORT

BatchID: R19272

Spike Recovery outside accepted recovery limits
Page 12 of 16

Sample ID SD090416A-MB	SampType:	MBLK	TestCod	e: TPHD_S	Units: mg/Kg		Prep Dat	te: 4/16/2 0	09	RunNo: 192	272	
Client ID: ZZZZZ	Batch ID:	R19272	TestN	o: SW8015B			Analysis Da	te: 4/16/2 0	09	SeqNo: 278	8311	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)		ND	2.00									
Surr: Pentacosane		2.925	0	3.3	0	88.6	59.7	129				
Sample ID SD090416A-LCS	SampType:	LCS	TestCoo	e: TPHD_S	Units: mg/Kg		Prep Da	te: 4/16/2 0	09	RunNo: 192	272	
Client ID: ZZZZZ	Batch ID:	R19272	TestN	o: SW8015B			Analysis Da	te: 4/16/2 0	09	SeqNo: 278	8312	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)		26.92	2.00	33.33	0	80.8	52.7	115				
Surr: Pentacosane		2.805	0	3.3	0	85.0	59.7	129				
Sample ID SD090416A-LCSD	SampType:	LCSD	TestCoo	e: TPHD_S	Units: mg/Kg		Prep Dat	te: 4/16/2 0	09	RunNo: 192	272	
Client ID: ZZZZZ	Batch ID:	R19272	TestN	o: SW8015B			Analysis Da	te: 4/16/2 0	09	SeqNo: 278	8313	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)		23.78	2.00	33.33	0	71.4	52.7	115	26.92	12.4	30	
Surr: Pentacosane		2.549	0	3.3	0	77.2	59.7	129	0	0	0	
Sample ID SD090416A-MB	SampType:	MBLK	TestCod	e: TPHDO_S	Units: mg/Kg		Prep Dat	te: 4/16/2 0	09	RunNo: 19 2	272	
Client ID: ZZZZZ	Batch ID:	R19272	TestN	o: SW8015B			Analysis Da	te: 4/16/2 0	09	SeqNo: 278	8449	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)		ND	2.00									
Surr: Pentacosane		2.925	0	3.3	0	88.6	59.7	129				
Sample ID SD090416A-LCS	SampType:	LCS	TestCoo	le: TPHDO_S	Units: mg/Kg		Prep Da	te: 4/16/2 0	09	RunNo: 192	272	
Client ID: ZZZZZ	Batch ID:	R19272	TestN	o: SW8015B			Analysis Da	te: 4/16/2 0	09	SeqNo: 278	8450	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)		26.92	2.00	33.33	0	80.8	52.7	115				
Surr: Pentacosane		2.805	0	3.3	0	85.0	59.7	129				

RPD outside accepted recovery limits

Work Order: 0904068

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R19272 GGTR 8757/1532 Peralta St.Oakland

Sample ID SD090416A-LCSD SampType: LCSD			de: TPHDO_S		Prep Da	te: 4/16/2 0	009	RunNo: 19272			
Client ID: ZZZZZ	Batch ID: R19272	TestN	No: SW8015B			Analysis Da	te: 4/16/2 0	SeqNo: 278451			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel)	23.78	2.00	33.33	0	71.4	52.7	115	26.92	12.4	30	
Surr: Pentacosane	2.549	0	3.3	0	77.2	59.7	129	0	0	0	

RPD outside accepted recovery limits

Work Order: 0904068 ANALYTICAL QC SUMMARY REPORT

BatchID: R19277

Project: GGTR 8757/1532 Peralta St.Oakland

Sample ID MB_R19277	SampType: MBLK	TestCode: 8260B_	S Units: μg/Kg	Prep Date: 4/16/2009	RunNo: 19277
Client ID: ZZZZZ	Batch ID: R19277	TestNo: SW8260	В	Analysis Date: 4/16/2009	SeqNo: 278336
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	ND	10			
1,1,1-Trichloroethane	ND	10			
1,1,2,2-Tetrachloroethane	ND	10			
1,1,2-Trichloroethane	ND	10			
1,1-Dichloroethane	ND	10			
1,1-Dichloroethene	ND	10			
1,1-Dichloropropene	ND	10			
1,2,3-Trichlorobenzene	ND	10			
1,2,3-Trichloropropane	ND	10			
1,2,4-Trichlorobenzene	ND	10			
1,2,4-Trimethylbenzene	ND	10			
1,2-Dibromo-3-chloropropane	ND	10			
1,2-Dibromoethane (EDB)	ND	10			
1,2-Dichlorobenzene	ND	10			
1,2-Dichloroethane (EDC)	ND	10			
1,2-Dichloropropane	ND	10			
1,3,5-Trimethylbenzene	ND	10			
1,3-Dichlorobenzene	ND	10			
1,3-Dichloropropene	ND	10			
1,4-Dichlorobenzene	ND	10			
2,2-Dichloropropane	ND	10			
2-Chloroethyl vinyl ether	ND	10			
2-Chlorotoluene	ND	10			
4-Chlorotoluene	ND	10			
4-Isopropyltoluene	ND	10			
Benzene	ND	10			
Bromobenzene	ND	10			
Bromochloromethane	ND	10			
Bromodichloromethane	ND	10			
Bromoform	ND	10			
Bromomethane	ND	10			

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page 14 of 16

Work Order: 0904068

ANALYTICAL QC SUMMARY REPORT

BatchID: R19277

Project: GGTR 8757/1532 Peralta St.Oakland

Sample ID MB_R19277	SampType: MBLK	TestCode: 8260B_S	Units: µg/Kg	Prep Date: 4/16/2009 RunNo: 19277
Client ID: ZZZZZ	Batch ID: R19277	TestNo: SW8260	3	Analysis Date: 4/16/2009 SeqNo: 278336
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Carbon tetrachloride	ND	10		
Chlorobenzene	ND	10		
Chloroform	ND	10		
Chloromethane	ND	10		
cis-1,2-Dichloroethene	ND	10		
cis-1,3-Dichloropropene	ND	10		
Dibromochloromethane	ND	10		
Dibromomethane	ND	10		
Dichlorodifluoromethane	ND	10		
Ethyl tert-butyl ether (ETBE)	ND	10		
Ethylbenzene	ND	10		
Freon-113	ND	10		
Hexachlorobutadiene	ND	10		
Isopropyl Ether	ND	10		
Isopropylbenzene	ND	10		
Methyl tert-butyl ether (MTBE)	ND	10		
Methylene chloride	ND	50		
Naphthalene	ND	20		
n-Butylbenzene	ND	10		
n-Propylbenzene	ND	10		
sec-Butylbenzene	ND	10		
Styrene	ND	10		
t-Butyl alcohol (t-Butanol)	ND	50		
tert-Amyl methyl ether (TAME)	ND	10		
tert-Butylbenzene	ND	10		
Tetrachloroethene	ND	10		
Toluene	ND	10		
trans-1,2-Dichloroethene	ND	10		
trans-1,3-Dichloropropene	ND	10		
Trichloroethene	ND	10		
Trichlorofluoromethane	ND	10		

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page~15~of~16

Work Order: 0904068

Project:

GGTR 8757/1532 Peralta St.Oakland

ANALYTICAL QC SUMMARY REPORT

BatchID: R19277

Sample ID MB_R19277	SampType: MBLK	TootCo	de: 8260B_S	Units: µg/Kg		Prep Dat	te: 4/16/2 0	nna	RunNo: 19 2	277	
· ·			_			·					
Client ID: ZZZZZ	Batch ID: R19277	Test	No: SW8260B			Analysis Da	te: 4/16/2 0	009	SeqNo: 278336		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	ND	10									
Xylenes, Total	ND	15									
Surr: 4-Bromofluorobenzene	43.96	0	50	0	87.9	55.8	141				
Surr: Dibromofluoromethane	46.70	0	50	0	93.4	59.8	148				
Surr: Toluene-d8	52.92	0	50	0	106	55.2	133				
Sample ID LCS_R19277	SampType: LCS	TestCo	de: 8260B_S	Units: µg/Kg		Prep Dat	te: 4/16/2 0	009	RunNo: 192	277	
Client ID: ZZZZZ	Batch ID: R19277	Test	No: SW8260B		Analysis Date: 4/16/2009			SeqNo: 27 8	8337		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	46.87	10	50	0	93.7	53.7	139				
Benzene	48.46	10	50	0	96.9	66.5	135				
Chlorobenzene	60.33	10	50	0	121	57.5	150				
Toluene	47.55	10	50	0	95.1	56.8	134				
Trichloroethene	56.04	10	50	0	112	57.4	134				
Surr: 4-Bromofluorobenzene	44.68	0	50	0	89.4	55.8	141				
Surr: Dibromofluoromethane	47.97	0	50	0	95.9	59.8	148				
Surr: Toluene-d8	46.22	0	50	0	92.4	55.2	133				
Sample ID LCSD_R19277	SampType: LCSD	TestCo	de: 8260B_S	Units: µg/Kg		Prep Dat	te: 4/16/2 0	009	RunNo: 19	277	
Client ID: ZZZZZ	Batch ID: R19277	Test	No: SW8260B			Analysis Da	te: 4/16/2 0	009	SeqNo: 278	8338	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	46.96	10	50	0	93.9	53.7	139	46.87	0.192	30	
Benzene	48.49	10	50	0	97.0	66.5	135	48.46	0.0619	30	
Chlorobenzene	57.59	10	50	0	115	57.5	150	60.33	4.65	30	
Toluene	44.65	10	50	0	89.3	56.8	134	47.55	6.29	30	
Trichloroethene	48.85	10	50	0	97.7	57.4	134	56.04	13.7	30	
Surr: 4-Bromofluorobenzene	45.49	0	50	0	91.0	55.8	141	0	0	0	
Surr: Dibromofluoromethane	49.59	0	50	0	99.2	59.8	148	0	0	0	
Surr: Toluene-d8	45.28	0	50	0	90.6	55.2	133	0	0	0	

Qualifiers: Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page~16~of~16

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 RESET FAX: 408.263.8293 www.torrentlab.com

CHAIN OF CUSTODY

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

LAB WORK ORDER	NO
0904068	-

Compan	y Name: Golden Gate Tank	Removal, Inc.			Locati	on of S	ampling	g: 1532	Peral	ta Street	Oaklaı	ıd		
Address:	3730 Mission Street				Purpo	se: So	il & G	roundy	vater D	elineatio	n			
City: Sai	n Francisco Sta	ate: CA	Zip Code	94110	Specia	al Instru	uctions	/ Comm	nents: (Global II): T060	0191668	; See Re	marks Section for
Telephor	ne: 415-512-1555 FAX	£ 415-512-0964			Field	Point l	Ds						**************************************	***************************************
REPORT	TO: Brent Wheeler	SAMPLER: Tom	Ferrick		P.O. #	#: GG	TR 87	57		EN	IAIL: b.	wheele	@ggtr.co	om
TURNAR 10 Work 7 Work 5 Work	C Days 2 Work Days 2 - 8 Hou	Masta Water	Air Other	QC Le		TPH-GAS+VOCS	TPH-GAS+BTEX	TPH-D W/SGCU	TOTAL LEAD	TPH-DIESEL				ANALYSIS REQUESTED
LAB ID	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	TP	TP	TPI	TO,	TPI				REMARKS
001A	B20-3	040909/9:30	Soil	1	ВТ	✓		✓						Field Point ID: B20
OZA	B21-3	040909/10:25	Soil	1	ВРТ	✓		✓						Field Point ID: B21
03A	B21-4.5	040909/10:35	Soil	1	ВРТ	✓		· 🗸						Field Point ID: B21
04 E	SC(1-4)	040909/12:40	Soil	4	ВРТ		✓		✓	1			-	Field Point ID:SC
							ŧ.						-	
					*			į						
)-				Ter	up 4	f C
									***************************************				9	ant-
													1/2	1-10-09
					···									
1 -		Date: 4/10/20		8:00 AM		Receiv	TO B	ر کن	50	Print: D), A2		te: -/D - C	
2 Relini	unished By: Print:	Diaz Date:	6-04	Time:		Receiv	ر کر ed By:	Lad		Print:		Da	te:	09 14: 15 pm
NOTE: S	mples Received in Good Condition? samples are discarded by the labor.	oratory 30 days from da	nte of receipt	unless othe	er arrange	-ment	ts are ma	ade.	<u> </u>	Λί ζ Date	1	<u>√</u> Samp		tact? Yes NO N/A

May 07, 2009 (Revision 1)

Brent Wheeler Golden Gate Tank Removal 3730 Mission St San Francisco, CA 94110

TEL: (415) 686-8846

FAX

RE: 8757/1532 Peralta St - Per client request, revised to report TPH as Gasoline data for samples-006 - 008.

Dear Brent Wheeler: Order No.: 0904122

Torrent Laboratory, Inc. received 8 samples on 4/21/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director

Date

Patti Sandrock

Torrent Laboratory, Inc.

CLIENT: Golden Gate Tank Removal **Project:** GGTR 8757/1532 Peralta St

Lab Order: 0904122

CASE NARRATIVE

Date: 07-May-09

Report revised to include TPH as Gasoline results for sample 0904122-006 - 008.

Rev 1 (5/7/09)

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Brent Wheeler

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

Client Sample ID: MW-1

Sample Location:

Sample Matrix:

1532 Peralta St

GROUNDWATER

Date/Time Sampled 4/17/2009 1:40:00 PM

Lab Sample ID: 0904122-001 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	105	%REC	R19362
Benzene	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Toluene	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Ethylbenzene	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/23/2009	0.5	1	0.500	22.9	μg/L	W19355
Diisopropyl ether (DIPE)	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
tert-Amyl methyl ether (TAME)	SW8260B	4/23/2009	0.5	1	0.500	1.93	μg/L	W19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/23/2009	10	1	10.0	ND	μg/L	W19355
Xylenes, Total	SW8260B	4/23/2009	1.5	1	1.50	ND	μg/L	W19355
Surr: Dibromofluoromethane	SW8260B	4/23/2009	0	1	61.2-131	113	%REC	W19355
Surr: 4-Bromofluorobenzene	SW8260B	4/23/2009	0	1	64.1-120	106	%REC	W19355
Surr: Toluene-d8	SW8260B	4/23/2009	0	1	75.1-127	110	%REC	W19355
TPH (Gasoline)	SW8260B(TPH)	4/23/2009	50	1	50	190x	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/23/2009	0	1	58.4-133	100	%REC	G19355

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Reported TPH value due to light-end non-target hydrocarbons within range of C5-C12 quantified as gasoline.

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

Client Sample ID: MW-2

1532 Peralta St

Sample Location: Sample Matrix:

GROUNDWATER

Date/Time Sampled

4/17/2009 11:45:00 AM

Lab Sample ID: 0904122-002 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	99.0	%REC	R19362
Benzene	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Toluene	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Ethylbenzene	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/23/2009	0.5	1	0.500	2.04	μg/L	W19355
Diisopropyl ether (DIPE)	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
tert-Amyl methyl ether (TAME)	SW8260B	4/23/2009	0.5	1	0.500	ND	μg/L	W19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/23/2009	10	1	10.0	ND	μg/L	W19355
Xylenes, Total	SW8260B	4/23/2009	1.5	1	1.50	ND	μg/L	W19355
Surr: Dibromofluoromethane	SW8260B	4/23/2009	0	1	61.2-131	111	%REC	W19355
Surr: 4-Bromofluorobenzene	SW8260B	4/23/2009	0	1	64.1-120	102	%REC	W19355
Surr: Toluene-d8	SW8260B	4/23/2009	0	1	75.1-127	107	%REC	W19355
TPH (Gasoline)	SW8260B(TPH)	4/23/2009	50	1	50	ND	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/23/2009	0	1	58.4-133	89.4	%REC	G19355

Golden Gate Tank Removal

Date Received: 4/21/2009

Date Reported: 5/7/2009

Client Sample ID: MW-4

Sample Location: 1532 Peralta St

Sample Matrix: GROUNDWATER **Date/Time Sampled** 4/17/2009 2:10:00 PM

Lab Sample ID: 0904122-003 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	96.0	%REC	R19362
Benzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
Toluene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
Ethylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/23/2009	0.5	4.4	2.20	13.9	μg/L	W19355
Diisopropyl ether (DIPE)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
tert-Amyl methyl ether (TAME)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/23/2009	10	4.4	44.0	ND	μg/L	W19355
Xylenes, Total	SW8260B	4/23/2009	1.5	4.4	6.60	ND	μg/L	W19355
Surr: Dibromofluoromethane	SW8260B	4/23/2009	0	4.4	61.2-131	110	%REC	W19355
Surr: 4-Bromofluorobenzene	SW8260B	4/23/2009	0	4.4	64.1-120	88.6	%REC	W19355
Surr: Toluene-d8	SW8260B	4/23/2009	0	4.4	75.1-127	110	%REC	W19355
TPH (Gasoline)	SW8260B(TPH)	4/23/2009	50	4.4	220	920x	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/23/2009	0	4.4	58.4-133	95.1	%REC	G19355

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Reported TPH value due to significant amount of non-target hydrocarbons within range of C5-C12 quantified as gasoline (possiblyheavily aged gasoline).

Golden Gate Tank Removal

Date Received: 4/21/2009

Date Reported: 5/7/2009

Client Sample ID: MW-5

Sample Location: 1532 Peralta St

Sample Matrix: GROUNDWATER **Date/Time Sampled** 4/17/2009 2:35:00 PM

Lab Sample ID: 0904122-004 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	106	%REC	R19362
Benzene	SW8260B	4/23/2009	0.5	8.8	4.40	683	μg/L	W19355
Toluene	SW8260B	4/23/2009	0.5	8.8	4.40	38.4	μg/L	W19355
Ethylbenzene	SW8260B	4/23/2009	0.5	8.8	4.40	8.62	μg/L	W19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/23/2009	0.5	8.8	4.40	1140	μg/L	W19355
Diisopropyl ether (DIPE)	SW8260B	4/23/2009	0.5	8.8	4.40	ND	μg/L	W19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/23/2009	0.5	8.8	4.40	ND	μg/L	W19355
tert-Amyl methyl ether (TAME)	SW8260B	4/23/2009	0.5	8.8	4.40	ND	μg/L	W19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/23/2009	10	8.8	88.0	ND	μg/L	W19355
Xylenes, Total	SW8260B	4/23/2009	1.5	8.8	13.2	ND	μg/L	W19355
Surr: Dibromofluoromethane	SW8260B	4/23/2009	0	8.8	61.2-131	99.0	%REC	W19355
Surr: 4-Bromofluorobenzene	SW8260B	4/23/2009	0	8.8	64.1-120	93.8	%REC	W19355
Surr: Toluene-d8	SW8260B	4/23/2009	0	8.8	75.1-127	119	%REC	W19355
TPH (Gasoline)	SW8260B(TPH)	4/23/2009	50	8.8	440	2300	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/23/2009	0	8.8	58.4-133	75.3	%REC	G19355

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

MW-6 **Client Sample ID:**

1532 Peralta St

Sample Location: Sample Matrix:

GROUNDWATER

Date/Time Sampled

4/17/2009 3:10:00 PM

Lab Sample ID: 0904122-005 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	0.242x	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	92.0	%REC	R19362
Note:x-Sample chromatogram does quantitated as diesel.	not resemble typical diese	el pattern (possibl	y fuel lighte	r than diesel)	. Hydrocarbo	ns within the d	liesel range	
Benzene	SW8260B	4/24/2009	0.5	22	11.0	1430	μg/L	W19355
Toluene	SW8260B	4/23/2009	0.5	4.4	2.20	34.8	μg/L	W19355
Ethylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	11.6	μg/L	W19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/24/2009	0.5	22	11.0	967	μg/L	W19355
Diisopropyl ether (DIPE)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	W19355
tert-Amyl methyl ether (TAME)	SW8260B	4/23/2009	0.5	4.4	2.20	3.04	μg/L	W19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/23/2009	10	4.4	44.0	ND	μg/L	W19355
Xylenes, Total	SW8260B	4/23/2009	1.5	4.4	6.60	27.3	μg/L	W19355
Surr: Dibromofluoromethane	SW8260B	4/24/2009	0	22	61.2-131	99.5	%REC	W19355
Surr: Dibromofluoromethane	SW8260B	4/23/2009	0	4.4	61.2-131	117	%REC	W19355
Surr: 4-Bromofluorobenzene	SW8260B	4/24/2009	0	22	64.1-120	97.7	%REC	W19355
Surr: 4-Bromofluorobenzene	SW8260B	4/23/2009	0	4.4	64.1-120	108	%REC	W19355
Surr: Toluene-d8	SW8260B	4/24/2009	0	22	75.1-127	103	%REC	W19355
Surr: Toluene-d8	SW8260B	4/23/2009	0	4.4	75.1-127	108	%REC	W19355
TPH (Gasoline)	SW8260B(TPH)	4/23/2009	50	4.4	220	4700	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/23/2009	0	4.4	58.4-133	91.5	%REC	G19355

Golden Gate Tank Removal

Date Received: 4/21/2009

Date Reported: 5/7/2009

Client Sample ID: MW-7

Sample Location: 1532 Peralta St

Sample Matrix: GROUNDWATER Date/Time Sampled

4/17/2009 1:10:00 PM

Lab Sample ID: 0904122-006

Date Prepared: 4/24/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	95.0	%REC	R19362

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

MW-7 **Client Sample ID:**

1532 Peralta St

Sample Location: Sample Matrix: GROUNDWATER Date/Time Sampled 4/17/2009 1:10:00 PM **Lab Sample ID:** 0904122-006 **Date Prepared:** 4/24/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,1,1-Trichloroethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,1,2,2-Tetrachloroethane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,1,2-Trichloroethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,1-Dichloroethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,1-Dichloroethene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,1-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2,3-Trichlorobenzene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,2,3-Trichloropropane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,2,4-Trichlorobenzene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,2,4-Trimethylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dibromo-3-chloropropane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dibromoethane (EDB)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dichlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dichloroethane (EDC)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dichloropropane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,3,5-Trimethylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,3-Dichlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,3-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,4-Dichlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
2,2-Dichloropropane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
2-Chloroethyl vinyl ether	SW8260B	4/24/2009	6	1	6.00	ND	μg/L	R19355
2-Chlorotoluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
4-Chlorotoluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
4-Isopropyltoluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Acetone	SW8260B	4/24/2009	10	1	10.0	ND	μg/L	R19355
Benzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromochloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromodichloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromoform	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Bromomethane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Carbon tetrachloride	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Chlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Chloroform	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Chloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
cis-1,2-Dichloroethene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
cis-1,3-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Dibromochloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Dibromomethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Dichlorodifluoromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Diisopropyl ether (DIPE)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
,							. •	

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

Lab Sample ID: 0904122-006

Date Prepared: 4/24/2009

Client Sample ID: MW-7

1532 Peralta St

Sample Location: Sample Matrix:

GROUNDWATER

Date/Time Sampled

4/17/2009 1:10:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Ethylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Freon-113	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Hexachlorobutadiene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Isopropylbenzene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Methylene chloride	SW8260B	4/24/2009	5	1	5.00	ND	μg/L	R19355
Naphthalene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
n-Butylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
n-Propylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
sec-Butylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Styrene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/24/2009	5	1	5.00	ND	μg/L	R19355
tert-Amyl methyl ether (TAME)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
tert-Butylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Tetrachloroethene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Toluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
trans-1,2-Dichloroethene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
trans-1,3-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Trichloroethene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Trichlorofluoromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Vinyl chloride	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Xylenes, Total	SW8260B	4/24/2009	1.5	1	1.50	ND	μg/L	R19355
Surr: Dibromofluoromethane	SW8260B	4/24/2009	0	1	61.2-131	104	%REC	R19355
Surr: 4-Bromofluorobenzene	SW8260B	4/24/2009	0	1	64.1-120	100	%REC	R19355
Surr: Toluene-d8	SW8260B	4/24/2009	0	1	75.1-127	101	%REC	R19355
TPH (Gasoline)	SW8260B(TPH)	4/24/2009	50	1	50	430x	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/24/2009	0	1	58.4-133	96.6	%REC	G19355

Note: x - Hydrocarbons within range of C5-C12 quantified as Gasoline but pattern does not match gasoline standard (possibly heavily aged gasoline or fuel heavier than gasoline).

Golden Gate Tank Removal

Date Received: 4/21/2009

Date Reported: 5/7/2009

Client Sample ID: MW-8

Sample Location: 1532 Peralta St

Sample Matrix: GROUNDWATER **Date/Time Sampled** 4/17/2009 3:40:00 PM

Lab Sample ID: 0904122-007

Date Prepared: 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/24/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/24/2009	0	1	64.2-123	106	%REC	R19362

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

MW-8 **Client Sample ID:**

1532 Peralta St

Sample Location: Sample Matrix: GROUNDWATER Date/Time Sampled 4/17/2009 3:40:00 PM **Lab Sample ID:** 0904122-007 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,1,1-Trichloroethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,1,2,2-Tetrachloroethane	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,1,2-Trichloroethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,1-Dichloroethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,1-Dichloroethene	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,1-Dichloropropene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,2,3-Trichlorobenzene	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,2,3-Trichloropropane	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,2,4-Trichlorobenzene	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,2,4-Trimethylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,2-Dibromo-3-chloropropane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,2-Dibromoethane (EDB)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,2-Dichlorobenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,2-Dichloroethane (EDC)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,2-Dichloropropane	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
1,3,5-Trimethylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	3.12	μg/L	R19355
1,3-Dichlorobenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,3-Dichloropropene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
1,4-Dichlorobenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
2,2-Dichloropropane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
2-Chloroethyl vinyl ether	SW8260B	4/23/2009	6	4.4	26.4	ND	μg/L	R19355
2-Chlorotoluene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
4-Chlorotoluene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
4-Isopropyltoluene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Acetone	SW8260B	4/23/2009	10	4.4	44.0	ND	μg/L	R19355
Benzene	SW8260B	4/24/2009	0.5	22	11.0	1670	μg/L	R19359
Bromobenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Bromochloromethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Bromodichloromethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Bromoform	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
Bromomethane	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
Carbon tetrachloride	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
Chlorobenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Chloroform	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Chloromethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
cis-1,2-Dichloroethene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
cis-1,3-Dichloropropene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Dibromochloromethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L μg/L	R19355
Dibromomethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L μg/L	R19355
Dichlorodifluoromethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L μg/L	R19355
Diisopropyl ether (DIPE)	SW8260B	4/23/2009	0.5	4.4	2.20	ND		R19355
Susopropyr etrier (DIFE)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L μg/L	R19355

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

Client Sample ID: MW-8

Sample Location: 1532 Peralta St

Sample Matrix: GROUNDWATER **Date/Time Sampled** 4/17/2009 3:40:00 PM

Lab Sample ID: 0904122-007 **Date Prepared:** 4/23/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Ethylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	2.77	μg/L	R19355
Freon-113	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
Hexachlorobutadiene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Isopropylbenzene	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
Methyl tert-butyl ether (MTBE)	SW8260B	4/24/2009	0.5	22	11.0	1040	μg/L	R19359
Methylene chloride	SW8260B	4/23/2009	5	4.4	22.0	ND	μg/L	R19355
Naphthalene	SW8260B	4/23/2009	1	4.4	4.40	ND	μg/L	R19355
n-Butylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
n-Propylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
sec-Butylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Styrene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
t-Butyl alcohol (t-Butanol)	SW8260B	4/23/2009	5	4.4	22.0	ND	μg/L	R19355
tert-Amyl methyl ether (TAME)	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
tert-Butylbenzene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Tetrachloroethene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Toluene	SW8260B	4/23/2009	0.5	4.4	2.20	8.18	μg/L	R19355
trans-1,2-Dichloroethene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
trans-1,3-Dichloropropene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Trichloroethene	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Trichlorofluoromethane	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Vinyl chloride	SW8260B	4/23/2009	0.5	4.4	2.20	ND	μg/L	R19355
Xylenes, Total	SW8260B	4/23/2009	1.5	4.4	6.60	12.9	μg/L	R19355
Surr: Dibromofluoromethane	SW8260B	4/23/2009	0	4.4	61.2-131	112	%REC	R19355
Surr: Dibromofluoromethane	SW8260B	4/24/2009	0	22	61.2-131	103	%REC	R19359
Surr: 4-Bromofluorobenzene	SW8260B	4/23/2009	0	4.4	64.1-120	95.8	%REC	R19355
Surr: 4-Bromofluorobenzene	SW8260B	4/24/2009	0	22	64.1-120	85.5	%REC	R19359
Surr: Toluene-d8	SW8260B	4/24/2009	0	22	75.1-127	108	%REC	R19359
Surr: Toluene-d8	SW8260B	4/23/2009	0	4.4	75.1-127	104	%REC	R19355
TPH (Gasoline)	SW8260B(TPH)	4/23/2009	50	4.4	220	2200	μg/L	G19355
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	4/23/2009	0	4.4	58.4-133	94.8	%REC	G19355

Note: x - TPH value due to individual peaks within range of C5-C12 quantified as Gasoline (see 8260 results).

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

Golden Gate Talik Kelilova

Lab Sample ID: 0904122-008

Date Prepared: 4/24/2009

Client Sample ID: MW-9

Sample Location:

1532 Peralta St

Sample Matrix:
Date/Time Sampled

GROUNDWATER 4/17/2009 12:35:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	4/25/2009	0.1	1	0.100	ND	mg/L	R19362
Surr: Pentacosane	SW8015B	4/25/2009	0	1	64.2-123	99.0	%REC	R19362

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

MW-9 **Client Sample ID:**

1532 Peralta St

Sample Location: Sample Matrix:

GROUNDWATER

Date/Time Sampled

4/17/2009 12:35:00 PM

Lab Sample ID: 0904122-008 **Date Prepared:** 4/24/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,1,1-Trichloroethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,1,2,2-Tetrachloroethane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,1,2-Trichloroethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,1-Dichloroethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,1-Dichloroethene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,1-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2,3-Trichlorobenzene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,2,3-Trichloropropane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,2,4-Trichlorobenzene	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,2,4-Trimethylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dibromo-3-chloropropane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dibromoethane (EDB)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dichlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dichloroethane (EDC)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,2-Dichloropropane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
1,3,5-Trimethylbenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,3-Dichlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,3-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
1,4-Dichlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
2,2-Dichloropropane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
2-Chloroethyl vinyl ether	SW8260B	4/24/2009	6	1	6.00	ND	μg/L	R19355
2-Chlorotoluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
4-Chlorotoluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
4-Isopropyltoluene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Acetone	SW8260B	4/24/2009	10	1	10.0	ND	μg/L	R19355
Benzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromochloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromodichloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Bromoform	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Bromomethane	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Carbon tetrachloride	SW8260B	4/24/2009	1	1	1.00	ND	μg/L	R19355
Chlorobenzene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Chloroform	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Chloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
cis-1,2-Dichloroethene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
cis-1,3-Dichloropropene	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Dibromochloromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Dibromomethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Dichlorodifluoromethane	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Diisopropyl ether (DIPE)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355
Ethyl tert-butyl ether (ETBE)	SW8260B	4/24/2009	0.5	1	0.50	ND	μg/L	R19355

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Golden Gate Tank Removal

Date Received: 4/21/2009 **Date Reported:** 5/7/2009

Client Sample ID: MW-9

Sample Location: 1532 Peralta St

Sample Matrix: GROUNDWATER **Date/Time Sampled** 4/17/2009 12:35:00 PM

Lab Sample ID: 0904122-008 **Date Prepared:** 4/24/2009

Ethylbenzene SW8260B 4/24/2009 0.5 1 Freon-113 SW8260B 4/24/2009 1 1 Hexachlorobutadiene SW8260B 4/24/2009 0.5 1 Isopropylbenzene SW8260B 4/24/2009 1 1 Methyl tert-butyl ether (MTBE) SW8260B 4/24/2009 0.5 1 Methylene chloride SW8260B 4/24/2009 5 1 Naphthalene SW8260B 4/24/2009 1 1 n-Butylbenzene SW8260B 4/24/2009 0.5 1 n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 0.5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1 <t< th=""><th>0.50 1.00</th><th>ND</th><th></th><th></th></t<>	0.50 1.00	ND		
Hexachlorobutadiene SW8260B 4/24/2009 0.5 1 Isopropylbenzene SW8260B 4/24/2009 1 1 Methyl tert-butyl ether (MTBE) SW8260B 4/24/2009 0.5 1 Methylene chloride SW8260B 4/24/2009 5 1 Naphthalene SW8260B 4/24/2009 1 1 n-Butylbenzene SW8260B 4/24/2009 0.5 1 n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	1.00		μg/L	R19355
SW8260B	1.00	ND	μg/L	R19355
Methyl tert-butyl ether (MTBE) SW8260B 4/24/2009 0.5 1 Methylene chloride SW8260B 4/24/2009 5 1 Naphthalene SW8260B 4/24/2009 1 1 n-Butylbenzene SW8260B 4/24/2009 0.5 1 n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
Methylene chloride SW8260B 4/24/2009 5 1 Naphthalene SW8260B 4/24/2009 1 1 n-Butylbenzene SW8260B 4/24/2009 0.5 1 n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	1.00	ND	μg/L	R19355
Naphthalene SW8260B 4/24/2009 1 1 n-Butylbenzene SW8260B 4/24/2009 0.5 1 n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
n-Butylbenzene SW8260B 4/24/2009 0.5 1 n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	5.00	ND	μg/L	R19355
n-Propylbenzene SW8260B 4/24/2009 0.5 1 sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	1.00	ND	μg/L	R19355
sec-Butylbenzene SW8260B 4/24/2009 0.5 1 Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
Styrene SW8260B 4/24/2009 0.5 1 t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
t-Butyl alcohol (t-Butanol) SW8260B 4/24/2009 5 1 tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
tert-Amyl methyl ether (TAME) SW8260B 4/24/2009 0.5 1 tert-Butylbenzene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
tert-Butylbenzene SW8260B 4/24/2009 0.5 1	5.00	ND	μg/L	R19355
•	0.50	ND	μg/L	R19355
Tetrachloroethene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
	0.50	ND	μg/L	R19355
Toluene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
trans-1,2-Dichloroethene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
trans-1,3-Dichloropropene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
Trichloroethene SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
Trichlorofluoromethane SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
Vinyl chloride SW8260B 4/24/2009 0.5 1	0.50	ND	μg/L	R19355
Xylenes, Total SW8260B 4/24/2009 1.5 1	1.50	ND	μg/L	R19355
Surr: Dibromofluoromethane SW8260B 4/24/2009 0 1	61.2-131	100	%REC	R19355
Surr: 4-Bromofluorobenzene SW8260B 4/24/2009 0 1	64.1-120	106	%REC	R19355
Surr: Toluene-d8 SW8260B 4/24/2009 0 1	75.1-127	108	%REC	R19355
TPH (Gasoline) SW8260B(TPH) 4/24/2009 50 1	50	ND	μg/L	G19355
Surr: 4-Bromofllurobenzene SW8260B(TPH) 4/24/2009 0 1	58.4-133	125	%REC	G19355

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

Date: 07-May-09

CLIENT: Golden Gate Tank Removal

Work Order: 0904122

GGTR 8757/1532 Peralta St **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: G19355

Sample ID MB_G19355	SampType: MBLK	TestCode: TPH_GAS	s_W Units: μg/L		Prep Dat	e: 4/23/2009)	RunNo: 19355			
Client ID: ZZZZZ	Batch ID: G19355	TestNo: SW8260B	(TP		Analysis Dat	e: 4/23/2009)	SeqNo: 279572			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline) Surr: 4-Bromofllurobenzene	ND 11.74	50 0 11.36	0	103	58.4	133					
Sample ID LCS_G19355	SampType: LCS	TestCode: TPH_GAS	i_W Units: μg/L		Prep Dat	e: 4/24/2009)	RunNo: 193	355		
Client ID: ZZZZZ	Batch ID: G19355	TestNo: SW8260B	(TP		Analysis Dat	e: 4/24/2009)	SeqNo: 27 9	9573		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)	265.0	50 227	24	106	52.4	127					
Surr: 4-Bromofllurobenzene	12.84	0 11.36	0	113	58.4	133					
Sample ID LCSD_G19355	SampType: LCSD	TestCode: TPH_GAS	s_W Units: μg/L		Prep Dat	e: 4/24/2009)	RunNo: 193	355		
Client ID: ZZZZZ	Batch ID: G19355	TestNo: SW8260B	(TP		Analysis Dat	e: 4/24/2009)	SeqNo: 27 9	9574		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)	272.0	50 227	24	109	52.4	127	265	2.61	20		
Surr: 4-Bromofllurobenzene	12.52	0 11.36	0	110	58.4	133	0	0	0		

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 1 of 9

Work Order: 0904122

Project: GGTR 8757/1532 Peralta St

ANALYTICAL QC SUMMARY REPORT

BatchID: R19355

Sample ID MB_R19355	SampType: MBLK	TestCode: 8260B_W Units: µg/L Prep Date: 4/23/2009						109	RunNo: 193	355	_
Client ID: ZZZZZ	Batch ID: R19355	TestNo	o: SW8260B			Analysis Dat	te: 4/23/2 0	109	SeqNo: 27 9	7549	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.00									
1,1,1-Trichloroethane	ND	0.500									
1,1,2,2-Tetrachloroethane	ND	1.00									
1,1,2-Trichloroethane	ND	0.500									
1,1-Dichloroethene	ND	1.00									
1,1-Dichloropropene	ND	0.500									
1,2,3-Trichlorobenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	1.00									
1,2,4-Trimethylbenzene	ND	0.500									
1,2-Dibromo-3-chloropropane	ND	0.500									
1,2-Dibromoethane (EDB)	ND	0.500									
1,2-Dichlorobenzene	ND	0.500									
1,2-Dichloroethane (EDC)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
1,3,5-Trimethylbenzene	ND	0.500									
1,3-Dichlorobenzene	ND	0.500									
1,4-Dichlorobenzene	ND	0.500									
2,2-Dichloropropane	ND	0.500									
2-Chloroethyl vinyl ether	ND	6.00									
2-Chlorotoluene	ND	0.500									
4-Chlorotoluene	ND	0.500									
4-Isopropyltoluene	ND	0.500									
Acetone	ND	10.0									
Benzene	ND	0.500									
Bromobenzene	ND	0.500									
Bromochloromethane	ND	0.500									
Bromodichloromethane	ND	0.500									
Bromoform	ND	1.00									
Bromomethane	ND	1.00									
Carbon tetrachloride	ND	1.00									

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 2 of 9

Analyte detected below quantitation limits

Work Order:

0904122

Project: GGTR 8757/1532 Peralta St

ANALYTICAL QC SUMMARY REPORT

BatchID: R19355

Sample ID MB_R19355	SampType: MBLK	TestCod	e: 8260B_W	Units: µg/L		Prep Da	ite: 4/23/2 0	009	RunNo: 19355			
Client ID: ZZZZZ	Batch ID: R19355	TestN	o: SW8260B			Analysis Da	ite: 4/23/20	009	SeqNo: 27 5	9549		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chlorobenzene	ND	0.500										
Chloroform	ND	0.500										
Chloromethane	ND	0.500										
cis-1,2-Dichloroethene	ND	0.500										
cis-1,3-Dichloropropene	ND	0.500										
Dibromochloromethane	ND	0.500										
Dibromomethane	ND	0.500										
Dichlorodifluoromethane	ND	0.500										
Diisopropyl ether (DIPE)	ND	0.500										
Ethyl tert-butyl ether (ETBE)	ND	0.500										
Ethylbenzene	ND	0.500										
Freon-113	ND	1.00										
Hexachlorobutadiene	ND	0.500										
Isopropylbenzene	ND	1.00										
Methyl tert-butyl ether (MTBE)	ND	0.500										
Methylene chloride	ND	5.00										
Naphthalene	ND	1.00										
n-Butylbenzene	ND	0.500										
n-Propylbenzene	ND	0.500										
sec-Butylbenzene	ND	0.500										
Styrene	ND	0.500										
t-Butyl alcohol (t-Butanol)	ND	5.00										
tert-Amyl methyl ether (TAME)	ND	0.500										
tert-Butylbenzene	ND	0.500										
Tetrachloroethene	ND	0.500										
Toluene	ND	0.500										
trans-1,2-Dichloroethene	ND	0.500										
trans-1,3-Dichloropropene	ND	0.500										
Trichloroethene	ND	0.500										
Trichlorofluoromethane	ND	0.500										
Vinyl chloride	ND	0.500										

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 3 of 9

Work Order: 0904122

GGTR 8757/1532 Peralta St **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R19355

Sample ID MB_R19355	SampType: M	IBLK	LK TestCode: 8260B_W Units: μg/L Prep Date: 4/23/2009						009	RunNo: 19 3	355	
Client ID: ZZZZZ	Batch ID: R	19355	TestN	lo: SW8260B			Analysis Dat	e: 4/23/20	009	SeqNo: 27 9	9549	
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Xylenes, Total		ND	1.50									
Surr: Dibromofluoromethane	•	12.39	0	11.36	0	109	61.2	131				
Surr: 4-Bromofluorobenzene	•	11.09	0	11.36	0	97.6	64.1	120				
Surr: Toluene-d8	•	13.00	0	11.36	0	114	75.1	127				
Sample ID LCS_R19355	SampType: Lo	cs	TestCoo	de: 8260B_W	Units: µg/L		Prep Dat	e: 4/23/20	009	RunNo: 193	355	
Client ID: ZZZZZ	Batch ID: R	19355	TestN	lo: SW8260B			Analysis Dat	e: 4/23/20	009	SeqNo: 279550		
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	,	19.49	1.00	17.04	0	114	61.4	129				
Benzene	2	20.17	0.500	17.04	0	118	66.9	140				
Chlorobenzene		18.48	0.500	17.04	0	108	73.9	137				
Toluene		19.36	0.500	17.04	0	114	76.6	123				
Trichloroethene		18.17	0.500	17.04	0	107	69.3	144				
Surr: Dibromofluoromethane		13.53	0	11.36	0	119	61.2	131				
Surr: 4-Bromofluorobenzene		10.97	0	11.36	0	96.6	64.1	120				
Surr: Toluene-d8	•	12.39	0	11.36	0	109	75.1	127				
Sample ID LCSD_R19355	SampType: Lo	CSD	TestCoo	de: 8260B_W	Units: µg/L		Prep Dat	e: 4/23/20	009	RunNo: 193	355	
Client ID: ZZZZZ	Batch ID: R	19355	TestN	lo: SW8260B			Analysis Dat	e: 4/23/20	009	SeqNo: 27 9	9551	
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	•	19.85	1.00	17.04	0	116	61.4	129	19.49	1.83	20	
Benzene		19.88	0.500	17.04	0	117	66.9	140	20.17	1.45	20	
Chlorobenzene		17.92	0.500	17.04	0	105	73.9	137	18.48	3.08	20	
Toluene		17.09	0.500	17.04	0	100	76.6	123	19.36	12.5	20	
Trichloroethene		17.69	0.500	17.04	0	104	69.3	144	18.17	2.68	20	
Surr: Dibromofluoromethane		11.65	0	11.36	0	103	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene		11.06	0	11.36	0	97.4	64.1	120	0	0	0	
Surr: Toluene-d8		12.80	0	11.36	0	113	75.1	127	0	0	0	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 4 of 9

Work Order: 0904122

Project: GGTR 8757/1532 Peralta St

ANALYTICAL QC SUMMARY REPORT

BatchID: R19359

Sample ID MB_R19359	SampType: MBLK	TestCod	le: 8260B_W	Units: µg/L		Prep Da	ite: 4/24/20	009	RunNo: 19359			
Client ID: ZZZZZ	Batch ID: R19359	TestN	o: SW8260B			Analysis Da	ite: 4/24/2 0	009	SeqNo: 27	9654		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1,2-Tetrachloroethane	ND	1.00										
1,1,1-Trichloroethane	ND	0.500										
1,1,2,2-Tetrachloroethane	ND	1.00										
1,1,2-Trichloroethane	ND	0.500										
1,1-Dichloroethene	ND	1.00										
1,1-Dichloropropene	ND	0.500										
1,2,3-Trichlorobenzene	ND	1.00										
1,2,3-Trichloropropane	ND	1.00										
1,2,4-Trichlorobenzene	ND	1.00										
1,2,4-Trimethylbenzene	ND	0.500										
1,2-Dibromo-3-chloropropane	ND	0.500										
1,2-Dibromoethane (EDB)	ND	0.500										
1,2-Dichlorobenzene	ND	0.500										
1,2-Dichloroethane (EDC)	ND	0.500										
1,2-Dichloropropane	ND	1.00										
1,3,5-Trimethylbenzene	ND	0.500										
1,3-Dichlorobenzene	ND	0.500										
1,4-Dichlorobenzene	ND	0.500										
2,2-Dichloropropane	ND	0.500										
2-Chloroethyl vinyl ether	ND	6.00										
2-Chlorotoluene	ND	0.500										
4-Chlorotoluene	ND	0.500										
4-Isopropyltoluene	ND	0.500										
Acetone	ND	10.0										
Benzene	ND	0.500										
Bromobenzene	ND	0.500										
Bromochloromethane	ND	0.500										
Bromodichloromethane	ND	0.500										
Bromoform	ND	1.00										
Bromomethane	ND	1.00										
Carbon tetrachloride	ND	1.00										

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 5 of 9

Analyte detected below quantitation limits

Work Order: 0904122 ANALYTICAL QC SUMMARY REPORT

Project:	GGTR 8757/1532 Peralta St	BatchID:	R19359
----------	---------------------------	----------	--------

Sample ID MB_R19359	SampType: MBLK	TestCode	e: 8260B_W	Units: µg/L		Prep Date	: 4/24/20	009	RunNo: 19	359	
Client ID: ZZZZZ	Batch ID: R19359	TestNo	o: SW8260B			Analysis Date	: 4/24/20	009	SeqNo: 27	9654	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.500									
Chloroform	ND	0.500									
Chloromethane	ND	0.500									
cis-1,2-Dichloroethene	ND	0.500									
cis-1,3-Dichloropropene	ND	0.500									
Dibromochloromethane	ND	0.500									
Dibromomethane	ND	0.500									
Dichlorodifluoromethane	ND	0.500									
Diisopropyl ether (DIPE)	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
Ethylbenzene	ND	0.500									
Freon-113	ND	1.00									
Hexachlorobutadiene	ND	0.500									
Isopropylbenzene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	0.500									
Methylene chloride	ND	5.00									
Naphthalene	ND	1.00									
n-Butylbenzene	ND	0.500									
n-Propylbenzene	ND	0.500									
sec-Butylbenzene	ND	0.500									
Styrene	ND	0.500									
t-Butyl alcohol (t-Butanol)	ND	5.00									
tert-Amyl methyl ether (TAME)	ND	0.500									
tert-Butylbenzene	ND	0.500									
Tetrachloroethene	ND	0.500									
Toluene	ND	0.500									
trans-1,2-Dichloroethene	ND	0.500									
trans-1,3-Dichloropropene	ND	0.500									
Trichloroethene	ND	0.500									
Trichlorofluoromethane	ND	0.500									
Vinyl chloride	ND	0.500									

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 6 of 9

Work Order: 0904122

GGTR 8757/1532 Peralta St **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R19359

Sample ID MB_R19359	SampType: MBLK	BLK TestCode: 8260B_W Units: μg/L Prep Date: 4/24/2009						009	RunNo: 19 3	359	
Client ID: ZZZZZ	Batch ID: R19359	Testl	No: SW8260B			Analysis Dat	e: 4/24/2 0	009	SeqNo: 27 9	9654	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	12.09	0	11.36	0	106	61.2	131				
Surr: 4-Bromofluorobenzene	11.54	0	11.36	0	102	64.1	120				
Surr: Toluene-d8	11.45	0	11.36	0	101	75.1	127				
Sample ID LCS_R19359	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 4/24/2 0	009	RunNo: 193	359	
Client ID: ZZZZZ	Batch ID: R19359	Testl	No: SW8260B			Analysis Dat	e: 4/24/2 0	009	SeqNo: 279655		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	16.41	1.00	17.04	0	96.3	61.4	129				
Benzene	16.26	0.500	17.04	0	95.4	66.9	140				
Chlorobenzene	15.35	0.500	17.04	0	90.1	73.9	137				
Toluene	15.37	0.500	17.04	0	90.2	76.6	123				
Trichloroethene	14.44	0.500	17.04	0	84.7	69.3	144				
Surr: Dibromofluoromethane	11.43	0	11.36	0	101	61.2	131				
Surr: 4-Bromofluorobenzene	11.28	0	11.36	0	99.3	64.1	120				
Surr: Toluene-d8	12.87	0	11.36	0	113	75.1	127				
Sample ID LCSD_R19359	SampType: LCSD	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 4/25/2 0	009	RunNo: 19	359	
Client ID: ZZZZZ	Batch ID: R19359	Testl	No: SW8260B			Analysis Dat	e: 4/25/2 0	009	SeqNo: 27 9	9656	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	16.46	1.00	17.04	0	96.6	61.4	129	16.41	0.304	20	
Benzene	17.21	0.500	17.04	0	101	66.9	140	16.26	5.68	20	
Chlorobenzene	14.40	0.500	17.04	0	84.5	73.9	137	15.35	6.39	20	
Toluene	16.02	0.500	17.04	0	94.0	76.6	123	15.37	4.14	20	
Trichloroethene	14.53	0.500	17.04	0	85.3	69.3	144	14.44	0.621	20	
Surr: Dibromofluoromethane	11.46	0	11.36	0	101	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	12.44	0	11.36	0	110	64.1	120	0	0	0	
Surr: Toluene-d8	12.36	0	11.36	0	109	75.1	127	0	0	0	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 7 of 9

Work Order: 0904122

GGTR 8757/1532 Peralta St **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R19362

Sample ID WDSG090423A-MB	SampType:	MBLK	TestCode	e: TPHDSG _	W Units: mg/L		Prep Dat	te: 4/23/20	009	RunNo: 19 3	362	
Client ID: ZZZZZ	Batch ID:	R19362	TestNo	o: SW8015B			Analysis Dat	te: 4/23/20	009	SeqNo: 27 5	9715	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)		ND	0.100									
Surr: Pentacosane		0.1040	0	0.1	0	104	64.2	123				
Sample ID WDSG090423A-LCS	SampType:	LCS	TestCode	e: TPHDSG _	W Units: mg/L		Prep Dat	te: 4/23/20	009	RunNo: 19	362	
Client ID: ZZZZZ	Batch ID:	R19362	TestNo	o: SW8015B			Analysis Dat	te: 4/23/20	009	SeqNo: 27	9716	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)		0.7960	0.100	1	0	79.6	34.5	95.6				
Surr: Pentacosane		0.1010	0	0.1	0	101	64.2	123				
Sample ID WDSG090423A-LCS	SampType:	LCSD	TestCode	e: TPHDSG _	W Units: mg/L		Prep Dat	te: 4/23/20	009	RunNo: 19 :	362	
Client ID: ZZZZZ	Batch ID:	R19362	TestNo	o: SW8015B			Analysis Dat	te: 4/23/20	009	SeqNo: 27 9	9717	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Diesel-SG)		0.8640	0.100	1	0	86.4	34.5	95.6	0.796	8.19	30	
Surr: Pentacosane		0.1060	0	0.1	0	106	64.2	123	0	0	0	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 8 of 9

Work Order: 0904122

GGTR 8757/1532 Peralta St **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: W19355

Sample ID MB_R19355	SampType: MBLK	TestCod	de: 8260B_W	_PE Units: μg/L		Prep Da	te: 4/23/2 0	009	RunNo: 19 :	355	
Client ID: ZZZZZ	Batch ID: W19355	TestN	lo: SW8260B	;		Analysis Da	te: 4/23/2 0	009	SeqNo: 28	0046	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.500									
Toluene	ND	0.500									
Ethylbenzene	ND	0.500									
Methyl tert-butyl ether (MTBE)	ND	0.500									
Diisopropyl ether (DIPE)	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
tert-Amyl methyl ether (TAME)	ND	0.500									
t-Butyl alcohol (t-Butanol)	ND	10.0									
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	12.39	0	11.36	0	109	61.2	131				
Surr: 4-Bromofluorobenzene	11.09	0	11.36	0	97.6	64.1	120				
Surr: Toluene-d8	13.00	0	11.36	0	114	75.1	127				

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 9 of 9

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 RESET FAX: 408.263.8293

www.torrentlah.com

CHAIN OF CUSTODY

LAB WORK ORDER NO

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

State CA Zip Code 94110 Special Instructions / Comments: Global ID #:T0600191668; Field Point ID=Sample ID		www.tonendab.com	•											
State CA Zip Code 94110 Special Instructions / Comments Global ID #:19600191668; Field Point ID-Sample ID	Company Name: Golden Gate Tan	k Removal, Inc.			Locati	ion of S	ampling	: 1532 I	Peralta Str	eet				
REPORT TO: Brent Wheeler	Address: 3730 Mission Street				Purpo	Purpose: Quarterly Groundwater Monitoring								
REPORT TO: Brent Wheeler SAMPLER: Tom Ferrick P.O. #: GGTR 8757 EMAIL: b.wheeler@gtr.com	City: San Francisco State: CA Zip Code: 94110			Specia	Special Instructions / Comments: Global ID #:T0600191668; Field Point ID=Sample ID									
TURNAROUND TIME: SAMPLE TYPE: SOM	Telephone: 415-512-1555 F/	X: 415-512-0964												
Sometime	REPORT TO: Brent Wheeler	SAMPLER: Tom]	Ferrick		P.O. 1	D. #: GGTR 8757 EMAIL: b.wheeler@ggtr.cc						gtr.com	· · · · · · · · · · · · · · · · · · ·	
Sometime	TURNAROUND TIME:	SAMPLE TYPE	:	REPORT	FORMAT:		xy						.,	1
Sometime	_	ours Waste Water Ground Water	Other	☑ EDF		ID w/ SGCU	I-G, BTEX,O	Cs (Full List)						
0024 MW-2	LAB ID CLIENT'S SAMPLE I.D.		MATRIX			TPF	TPF	NO						REMARKS
Note: Samples Received in Good Condition? Yes NO Samples on loc? Yes NO Note: Samples Received by Date: Log in Reviewed by Date: Log in Rev	-001A MW-1	041709/1340	GW	4	Voa/AB	✓	✓							
OO OO OO OO OO OO OO O	0024 MW-2	041709/1145	GW	4	Voa/AB	✓	✓							
Note: Samples are discarded by the laboratory 30 days from date of receipt unless other arrange Date: Log In Reviewed By: Date: Date: Log In Reviewed By: Date: Log In Reviewed By: Date: Date: Log In Reviewed By: Date: Date: Log In Reviewed By: Date: Da	003A MW-4	041709/1410	GW	4	Voa/AB	✓	✓							
Note: Samples Received in Good Condition? Yes NO Note: Samples are discarded by the laboratory 30 days from date of receipt unless other arrange Log in Reviewed By: Date: Date: Log in Reviewed By: Date:	004A MW-5	041709/1435	GW	4	Voa/AB	✓	✓							
Note: Samples Received in Good Condition? Yes No Samples on Ice? Yes No Method of Shipment Note: Samples are discarded by the laboratory 30 days from date of receipt unless other arrange Log In Reviewed By: Date:	005AMW-6	041709/1510	GW	4	Voa/AB	✓	✓						-	
Relinquished By: Print: Date: Time: Received By: Print: Date: Time: Print: Print: Date: Print:	00 6A-MW-7	041709/1310	GW	4	Voa/AB	✓		✓						
Relinquished By: Print: Date: Frint: Print:	007A MW-8	041709/1540	GW	4	Voa/AB	✓		✓						
Relinquished By: Print: Date: Time: Received By: Print: Date: Time: Print: Date: Time: Print: Date: Print: Print: Date: Print: Print	-008/3mw-9	041709/1235	GW	4	Voa/AB	✓		✓						
Relinquished By: Print: Date: Timer Samples Received By: Print: Date: Time: 4-21-09 Sample seals intact? Yes NO NOTE: Samples Note Not											,	Tem	p 4°	C 39
Relinquished By: Print: Date: Timer Samples Received By: Print: Date: Time: 4-21-09 Sample seals intact? Yes NO NOTE: Samples Note Not		_												4-21
Received By: Print: Date: Time: 4-21-09 Time	1 Relinquished By: Print:	WADDOR 4/21/	109	Time:	- -	Recei	Pd By	200	Print	103) iAz	Date:	5-09	Time: 3 / 23
Were Samples Received in Good Condition?		Date:		Times 1	50	Receiv	red By:	1	Print L - D	:		Date:		Time:
Log In By: Date: Date: Date:	Were Samples Received in Good Condition?			ce? 🔲 Ye	s 🔲 NO	Method	d of Ship	ment			s	ample se	als intact?	Yes NO NA
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			. *	-men	ts are ma	ide.	·	Jate.			Page _	1 of 1
	Log in by.	Date.		Log in Nevie	.wed by	ر د (م. ا		21	- ;+	₩. ≠.			•	

Change Order Form

Date: 4 29 0	9	Time:	
Client: Golden Crate	Tark.	Order ID:	
Project Number: 0904122		Project Name:	1532 Peralta St
Order Taken By: Nutan		Ordered By:	Brent Wheeler.
Laboratory ID (water)	Client ID	Cha	nge Requested
904122-006A 1 -007A	MW-7		TPH gas
10 +008A	19 W-C		TPH gas
		Ī. <u> —</u>	
Remarks:	7	TPH gas	4 1 4 2
Seemples of	FOO ABC	A & 00	8A. Pls analyze
on de Sto	reported	for the	se samples

Test(s) Added By:

Note: Original to be placed in client file (electronic and/or hardcopy)

Date Test(s) Added: 4 \29\09

Current Folder: Inbox

Compose Addresses Folders Options Search Help Calendar Fetch

Subject: Re: Report for 1532 Peralta St (0904122) **From:** "Brent Wheeler" <b.wheeler@ggtr.com>

Date: Wed, April 29, 2009 9:57 am

To: "Torrent Laboratory, Inc." <pm@torrentlab.com>

Options: View Full Header | View Printable Version | View as plain text | Download this as a file

Patti,

Upon review of results, I neglected to request TPH-G (8260) on associated COC for Lab IDs -006, -007, & -008. If possible, please report TPH-G from the exisiting 8260 run, and revise report & invoice accordingly. Let me know if possible. Thanks.

Brent

From: "Torrent Laboratory, Inc." <pm@torrentlab.com>

To: b.wheeler@ggtr.com

Sent: Tuesday, April 28, 2009 5:04:24 PM **Subject:** Report for 1532 Peralta St (0904122)

Hi Brent,

Here is the report for our WO# 0904122. EDF to follow.

Thanks!

Warm regards,

Project Management Team
Torrent Laboratory, Inc.
483 Sinclair Frontage Rd
Milpitas, CA 95035
PH:(408)263-5258; Nutan x209, Patti x208, Stacy 707-206-0216
Fax:(408)263-8293
Email: pm@torrentlab.com
www.torrentlab.com

Visit us at our newly re-developed website!! www.torrentlab.com

The contents of this message are confidential and are bound by law from disclosure,

April 20, 2006 Project No.: 2540-04

Brent Wheeler Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Subject: Monitoring Well Survey

1532 Peralta St. Oakland, Ca

Dear Brent:

This is to confirm that we have proceeded at your request to survey the ground water monitoring wells located at the above referenced location. The survey was completed on April 13, 2006. The benchmark for this survey was a Cal Trans control point no. AB 1041, being a set PK Nail & Cal Trans Shiner near centerline of Goss between Wood & Willow Sts.. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83). Benchmark Elevation = 12.03 feet (NGVD 29).

<u>Latitude</u>	<u>Longitude</u>	<u>Northing</u>	Easting	Elev.	Desc.
				10.15	RIM MW-1
37.8124906	-122.2927178	2123268.15	6043826.01	9.87	TOC MW-1
				9.06	RIM MW-2
37.8126227	-122.2926644	2123315.93	6043842.34	8.66	TOC MW-2
				8.54	RIM MW-3
37.8126186	-122.2928779	2123315.62	6043780.64	8.29	TOC MW-3
				9.92	RIM MW-4
37.8125463	-122.2928281	2123289.04	6043794.52	9.74	TOC MW-4
				9.60	RIM MW-5
37.8125721	-122.2927811	2123298.15	6043808.28	9.40	TOC MW-5
				9.29	RIM MW-6
37.8125798	-122.2927377	2123300.74	6043820.86	9.02	TOC MW-6

Sincerely,

Virgil D. Chavez, PLS 6323

May 26, 2009 Project No.: 2540-04

Brent Wheeler Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110

Subject: Monitoring Well Survey

1532 Peralta St. Oakland, Ca

Dear Brent:

This is to confirm that we have proceeded at your request to survey the new ground water monitoring wells located at the above referenced location. The survey was completed on May 18, 2009. The benchmark for this survey was a Cal Trans control point no. AB 1041, being a set PK Nail & Cal Trans Shiner near centerline of Goss between Wood & Willow Sts.. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83). Benchmark Elevation = 12.03 feet (NGVD 29).

<u>Latitude</u>	<u>Longitude</u>	<u>Northing</u>	Easting	Elev.	Desc.
				10.61	RIM MW-7
37.8123956	-122.2928494	2123234.30	6043787.32	10.19	TOC MW-7
				8.56	RIM MW-8
37.8126342	-122.2927772	2123320.76	6043809.86	8.16	TOC MW-8
				8.98	RIM MW-9
37.8127517	-122.2926727	2123362.95	6043840.83	8.49	TOC MW-9

Virgil D. Chavez, PLS 6323

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - CAP/RAP - Feasibility Study Report

Submittal Title:

205565_Soil Results_B12-B19, CB1-CB3

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

205565.zip

Organization Name:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:33:56 AM

Confirmation Number:

7834976673

VIEW QC REPORT

VIEW DETECTIONS REPORT

Geotracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - CAP/RAP - Feasibility Study Report

Submittal Title:

205564_Grab GW Results_B12-B19, CB1

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

205564.zip

Organization Name:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/27/2009 2:50:14 PM

Confirmation Number:

6653413176

VIEW QC REPORT

VIEW DETECTIONS REPORT

Ueo i racker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - CAP/RAP - Feasibility Study Report

Submittal Title:

206563_Composite Soil Sample Results (Borehole/Well Cuttings)

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

Soil Comp Results_206563.zip

Organization Name:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/27/2009 2:54:27 PM

Confirmation Number:

8816255867

VIEW QC REPORT

VIEW DETECTIONS REPORT

Geotracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - CAP/RAP - Feasibility Study Report

Submittal Title:

0904068_Soil Results_B20/MW-8, B21/MW-9, & Composite Drill Cuttings

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

0904068.zip

Organization Name:

Golden Gate Tank Removal

<u>Username:</u>

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 1:36:59 PM

Confirmation Number:

9800467252

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - CAP/RAP - Feasibility Study Report

Submittal Title:

2Q09 Groundwater Sample Results (4/17/09 Activities)

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name: **Organization Name:** 0904122.zip **Golden Gate Tank Removal**

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 1:40:12 PM

Confirmation Number:

5355752408

VIEW QC REPORT

VIEW DETECTIONS REPORT

Occurrance ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD GEOTRACKER ES

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO WELL

Submittal Title:

Well Development (4/13/09) & 2Q09 Groundwater Monitoring (4/17/09) Data

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

GEO_WELL.zip

Organization Name:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 1:57:47 PM

Confirmation Number:

7345551848

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_XY FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_XY

Submittal Title:

Latitude, Longitude, Coordinates MW-7, -8, -9 (5/18/09)

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

GEO_XY.zip

Organization Name:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/27/2009 3:09:44 PM

Confirmation Number:

5737860441

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_Z FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_Z

Submittal Title:

Wellhead Elevation Data_MW-7, -8, -9 (05/18/2009)

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

GEO_Z.zip

Organization Name:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/27/2009 3:11:09 PM

Confirmation Number:

3409857511

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_MAP FILE

SUCCESS

Your GEO_MAP file has been successfully submitted!

Submittal Type:

GEO_MAP

Facility Global ID:

T0600191668

Facility Name:

OSAGIE PROPERTY

File Name:

8757_Fig 3_Site Plan (October 2009).pdf

<u>Username:</u>

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:48:52 AM

Confirmation Number:

7110491096

STATE WATER RESOURCES CONTROL BOARD GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B13

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B13.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:37:00 AM

Confirmation Number:

5131990730

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B14

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B14.pdf

<u>Username:</u>

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:37:38 AM

Confirmation Number:

8713421046

Geo Fracker ESI

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B15

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B15.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:38:14 AM

Confirmation Number:

5714456021

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B16

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B16.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:38:41 AM

Confirmation Number:

6241563200

STATE WATER RESOURCES CONTROL BOARD GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B17

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B17.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:39:12 AM

Confirmation Number:

7403850734

STATE WATER RESOURCES CONTROL BOARD GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B18

Facility Name:

OSAGIE PROPERTY Visio-8757 - B18.pdf

File Name:

Golden Gate Tank Removal

Username: Username:

GGTR

IP Address:

75,55,192,158

Submittal Date/Time:

10/28/2009 10:39:44 AM

Confirmation Number:

2265847623

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B19

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B19.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:40:32 AM

Confirmation Number:

9220690071

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B20

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B20_MW-8.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:42:14 AM

Confirmation Number:

5081701993

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO BORE

Facility Global ID:

T0600191668

Field Point:

B21

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B21_MW-9.pdf

<u>Username:</u>

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:42:46 AM

Confirmation Number:

9353265225

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600191668

Field Point:

B22

Facility Name:

OSAGIE PROPERTY

File Name:

Visio-8757 - B22_MW-7.pdf

Username:

Golden Gate Tank Removal

Username:

GGTR

IP Address:

75.55.192.158

Submittal Date/Time:

10/28/2009 10:43:18 AM

Confirmation Number:

3213555753