November 20, 2006 Project 5515

Mr. Jerry Wickham Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT 800 West Grand Avenue Oakland, Alameda County, California RO#00000112 TRANSMITTAL

Dear Mr. Wickham;

Enclosed is a STATUS REPORT for the subject site prepared by John Carver Consulting and dated November 20, 2006

As required the following is provided.

12.1

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

isty Mr. Greg Kelisk

2627 Lombard Street San Francisco, CA 94123 415 351 0151

JOHN CARVER CONSULTING

Environmental Consulting • Civil Engineering

November 20, 2006 Project 5515

Mr. Jerry Wickham Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT 800 West Grand Avenue Oakland, Alameda County, California RO#00000112 STATUS REPORT

Dear Mr. Wickham;

This Status Report presents a description of the various activities carried out at the site since the Publication of a Work Plan dated March 23, 2006.

INTRODUCTION

Background

The 800 West Grand Avenue site was occupied by a cleaner/dry cleaning business since the 1920s. Three underground storage tanks were permitted for removal and were removed in December, 1989. The tanks were identified as containing Stoddard Fluid, a common dry cleaning materials but were tested for gasoline and BTEX. There were indications of an unauthorized release, and a LUST case was opened. Various agency requests for further action were made but no action taken by the then owner of the business.

The property was transferred to the current owner and John Carver Consulting (JCC) contacted the Alameda County Health Care Services Agency (ACHCS). After discussions with the ACHCS, JCC published a Work Plan dated March 23, 2006. The work plan described a program of over-excavation in the area of the three removed tanks in order to remove contaminated soil and provide further information regarding the limits of contamination and to provide initial groundwater descriptions.

ACHCS approved the Work Plan in their April 6, 2006 letter.

Site Location and Description

The subject site is a roughly triangular shaped parcel located at the southwest corner of the intersection of West Grand Avenue and West Street in Oakland California. There are frontages along both West Grand Avenue and West Street. The general location of the site is shown on the Vicinity Map, Figure 1 of Appendix A. The site boundaries are shown on Figure 2 of Appendix A.

The property is currently vacant with no structure and no activities being carried out. The property is secured by a chain link fence and locked iron gate.

WORK ACCOMPLISHED

Over-excavation

On September 1, 2006, the excavation of the previously removed Leaking Underground Storage Tanks began in accordance with the JCC Work Plan of March 23, 2006.

As the excavation started, a previously unknown and unreported Underground Storage Tank was discovered below the West Street sidewalk. Figures 2 and 3 show the locations of the discovered UST.

Immediately upon the discovery of the UST, the excavation was secured and activities to contract with a Underground Storage Tank Removal Contractor were begun.

Tank Description and Removal

The Tank was a 7'-8" diameter cylindrical, single wall vertical steel tank with the bottom assuming a cone shape. Overall length of the tank was 12 feet. The tank capacity was calculated to be about 3,500 gallons. The top of the tank was approximately 3 feet below the sidewalk elevation with the bottom being at about 15 feet below the sidewalk surface.

During the removal preparation, the tank was found to be full of liquid. The liquid was sampled and analyzed and was profiled as water with residual Stoddard Fluid and was disposed of at an appropriate facility.

On November 3, 2006, the tank was removed by L&W Construction Services (L&W) under permits from the Fire Prevention Bureau of the Oakland Fire Department.

L&W published a Underground Storage Tank Removal Report dated November 13, 2006 and has submitted it to the Fire Prevention Bureau. L&W has indicated that a copy of the report has been forwarded to the ACHCS under separate cover. The Report contains all the appropriate details of the tank removal operations, including required samples and results from a California Certified Laboratory.

Soil Sampling

After the required tank removal sampling was complete, the tank removal excavation was backfilled with clean imported granular soil and the surface restored. The excavated soil over and surrounding the tank was stockpiled on site and will be profiled for disposal at an appropriate landfill. The locations of the two required soil samples from below the

tank are shown on the attached Figure 3.

After the tank was removed from the excavation, discolored soil and Stoddard odors were noted.

There was no groundwater encountered during any of the tank removal or sampling activities.

Based on the observed discoloration and odors, three additional soil samples were obtained in order to began to identify the possible extent of contamination. Sampling methods were the same as used for the tank removal samples. The locations of the three additional samples are shown on the attached Figure 3.

The samples were all analyzed for TPH-Stoddard and total Volatile Organic Compounds (VOCs). One sample was analyzed for CAM 17 metals, TPH-G and TPH-D. All of the results from the six samples are summarized on the attached Table I in Appendix B. Laboratory Certificates are attached as Appendix C.

In summary, all of the soil samples had significant levels of TPH-Stoddard. The stockpile of excavated tank overburden soil had 189 parts per million (ppm). TPH-Stoddard in the samples of the in-situ soil ranged from 970 to 5,500 ppm.

There were no VOCs detected which are associated with primary dry cleaning chemicals or chlorinated solvents.. However minor amounts of six different VOCs were detected. The source of these VOCs is assumed to additives to or derivative of the Stoddard Solvent.

CONCLUSIONS

The planned excavation of the area of the three previously removed USTs was not carried out due to the discovery of a previously unknown Underground Storage Tank (UST) containing Stoddard Solvent. There is evidence that there was an Unauthorized Release of Stoddard Solvent associated with the discovered UST.

There is no evidence that there are any chlorinated solvents or modern dry cleaning chemicals associated with the UST. There were isolated VOCs which are considered to be additives or derivatives of the Stoddard Solvent.

The release has impacted a significant and undefined portion of soil below the site and West Street sidewalk area.

15.14

No groundwater was encountered during the tank removal activities. Based on the depth of the tank, and sampling depths, groundwater is deeper than 15 feet below ground surface.

Further work is anticipated to define the limits of the impacted soil and/or to remove impacted soil. Currently, discussions with contractors, consultants and the property owner are being conducted to assess a variety of future activities.

We look forward to any comments from the ACHCS regarding the status of this site. The owner intends to continue with various activities which will lead to closure of any LUST case as well as to prepare the site for future development.

Please call me with tions. ONMENT Sincerely, EP 1 05553 NEER EGIST No. 23772 06-30-Exp. 12-31-07 John Carve Civil Engineen Registered OF CALL OF Mr. Greg Kelisk cc 2627 Lombard Street San Francisco, CA 94123

APPENDIX A

Figures 1 - 3

STATUS REPORT

800 West Grand Avenue Oakland, Alameda County, California RO#00000112

> November 20, 2006 Project 5515

JOHN CARVER CONSULTING

Project No. 5515	By: jnc	Not to scale	November 2006

Figure 2

APPENDIX B

Tabulated Results

STATUS REPORT

800 West Grand Avenue Oakland, Alameda County, California RO#00000112

> November 20, 2006 Project 5515

TABLE I

SOIL SAMPLE RESULTS Project 5515

All Results in mg/kg	(equivalent to parts	per million -ppm)
1111 1105 0105 111 1115, 115	(equivalent to parts	per minon ppm/

Analyte	26-137-A	26-137-В	SP1,2,3,4	800 Bulk	800-10-6	800-25-6		_	TTLC	STLC	PRG	RBSL
											resid	
TPH-G				ND							NE	100
TPH-D	ND	15.2	13.1	ND							NE	100
TPH-STODDARD	1100	5500	189	1,210	1,750	970					NE	Varies
VOCs	1.76 ⁽⁶⁾	2.66 ⁽⁶⁾		4.91 ⁽¹⁾	0.564 ⁽²⁾	1.42 ⁽³⁾					Varies	1.0
	$1.99^{(3)}$	5.53 ⁽¹⁾		$1.80^{(2)}$	1.15 ⁽⁵⁾	$1.80^{(4)}$						generic
	$2.69^{(4)}$	1.81 ⁽²⁾		$2.26^{(3)}$	$1.24^{(3)}$							total
		9.41 ⁽⁵⁾		$1.92^{(4)}$	1.29(4)							
		$2.64^{(3)}$										
		$2.87^{(4)}$										
BTEX	ND	ND	ND	ND	ND						varies	varies
MTBE	ND	ND	ND	ND	ND						6.2	0.028
Antimony				ND					500	15.0	310	6.3
Arsenic				ND					500	5.	220	0.39
Barium				13.9					10,000	100	5,400	750
Beryllium				ND					75	0.75	150	4.0
Cadmium				ND					100	1.0	37	1.7
Chromium				12.8					2500	560	210	750
Cobalt				4.8					8,000	80	900	40
Copper				6.1					2,500	25	3,100	225
Lead	3.9	3.6	4.8	3.3					1,000	5.0	150	200
Mercury				ND					20	0.2	23	4.7
Molybdenum				ND					3,500	350	390	40
Nickel				21.2					2,000	20	1,600	150
Selenium				ND					100	1.0	390	10
Silver				ND					500	5.0	390	20
Thallium				ND					700	7.0	5.2	1.0
Vanadium				ND					2,400	24	550	110
Zinc				18.5					5,000	250	23,000	600

TABLE I

NOTES

- (1) 1,3,5 Trimethyl benzene
- (2) p-Isopropyl toluene
- (3) sec-Butylbenzene
- ND Not detected at or above Method Detection Limit
- -- Not a part of the analyses

- (4) n-Butylbenzene
- (5) 1,2,4- Trimethyl benzene
- (6) n-Propyl benzene
- NE Not established

ESL Environmental Screening Level

Environmental Screening Levels (ESLs) are normally presented in ppm and are used by the State Water Quality Control Board in assessing risk at sites with impacted soil and groundwater. The ESLs are levels which are used in protecting the environment and particularly the groundwater resources in any given area.

Stoddard is considered a "middle distillate.

ESLs Shallow Soil < 10' Water is a current or potential source of drinking water Residential 100 ppm Commercial 100 ppm Shallow Soil < 10' Water is NOT a current or potential source of drinking water Residential 100 ppm Commercial 500 ppm

Deep Soil >10' Water is a current or potential source of drinking water Residential 100 ppm Commercial 100 ppm Deep Soil >10' Water is NOT a current or potential source of drinking water Residential 500 ppm Commercial 500 ppm

ESLsGroundwater Water is a current or potential source of drinking water100 ppbGroundwater Water is NOT a current or potential source of drinking water640 ppb

PRG Preliminary Remediation Goal

PRG is a Preliminary Remedial Goal for residential or industrial exposure published by the State EPA as a guideline for remediation clean up levels. The PRGs are mainly used to determine levels which may impact human health through ingestion, volatilization and dermal contact.

In most cases the most restrictive values are presented and are for residential use and for soils above a water table that has potential use for use as drinking water. In both cases the levels are used for screening purposes and any final clean up levels can be subject to negotiation depending on the actual site conditions.

TTLC and STLC are levels used in defining Hazardous Waste and are utilized by landfills in accepting materials for disposal.

JOHN CARVER CONSULTING Environmental Consulting • Civil Engineering

APPENDIX C

Laboratory Certificates

STATUS REPORT

800 West Grand Avenue Oakland, Alameda County, California RO#00000112

> November 20, 2006 Project 5515

JOHN CARVER CONSULTING

Mr. George Wilson L & W Construction Services, Inc. 5200 Redwood Hwy S. Petaluma, CA 94952 11/10/2006

Project Name:26-137Project Site:800 W. Grand Ave., OaklandSample Date:11/3/2006Lab Job No.:L6K010

Dear Mr. George Wilson:

Enclosed please find the analytical report for the samples received by ABC Environmental Laboratories on 11/09/06 and analyzed by the following EPA methods:

EPA 8260B (BTEX & Oxygenates) EPA 8015M (Stoddard Solvent) EPA 8015M (Diesel) EPA 7420 (Lead)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

ABC Environmental Laboratories is certified by the CA DHS (Certificate No.2584). Thank you for giving us the opportunity to serve you.

Please feel free to call me at (562) 699-7288 if our laboratory can be of further service to you.

Respectfully,

ABC Environmental Laboratories, Inc.

010

Ken Zheng, M.S. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	800 W. Grand Ave., Oakland	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Batch No.:	1109-VOCS	Date Reported:	11/9/2006

EPA 8260B (VOCs & Oxy.) by GC/MS, Page 1 of 2

		Reporting U	nit: mg/kg (I	PM)	
Date Analyzed		11/09/06	11/09/06	11/09/06	
Dilution Factor		200	200	1	
Lab Sample I.D.		L6K010-1	L6K010-2	L6K010-3	
Client Sample I.D.		26-137-A	26-137-В	SP1,2,3,4 Comp.	
Compound	RL				
Dichlorodifluoromethane	0.005	ND	ND	ND	
Chloromethane	0.005	ND	ND	ND	
Vinyl Chloride	0.005	ND	ND	ND	
Bromomethane	0.005	ND	ND	ND	
Chloroethane	0.005	ND	ND	ND	
Trichlorofluoromethane	0.005	ND	ND	ND	
1,1-Dichloroethene	0.005	ND	ND	ND	
Methyl iodide	0.005	ND	ND	ND	
Methylene chloride	0.005	ND	ND	ND	
Trans-1,2-Dichloroethene	0.005	ND	ND	ND	
1,1-Dichloroethane	0.005	ND	ND	ND	
2,2-Dichloropropane	0.005	ND	ND	ND	
Cis-1,2-Dichloroethene	0.005	ND	ND	ND	
Bromochloromethane	0.005	ND	ND	ND	
Chloroform	0.005	ND	ND	ND	
1,1,1-Trichloroethane	0.005	ND	ND	ND	
Vinyl acetate	0.005	ND	ND	ND	
Carbontetrachloride	0.005	ND	ND	ND	
1,1-Dichloropropene	0.005	ND	ND	ND	
1,2-Dichloroethane	0.005	ND	ND	ND	
Benzene	0.002	ND	ND	ND	
Trichloroethene	0.005	ND	ND	ND	
1,2-Dichlorpropane	0.005	ND	ND	ND	
Methyl methacrylate	0.005	ND	ND	ND	
Dibromomethane	0.005	ND	ND	ND	
Bromodichloromethane	0.005	ND	ND	ND	
2-Chloroethyl Vinyl Ether	0.005	ND	ND	ND	
Cis-1,3-Dichloropropene	0.005	ND	ND	ND	
Toluene	0.002	ND	ND	ND	
Trans-1,3-Dichloropropene	0.005	ND	ND	ND	
Ethylmethacrylate	0.005	ND	ND	ND	
1,1,2-Trichloroethane	0.005	ND	ND	ND	
Dibromochloromethane	0.005	ND	ND	ND	
1,2-Dibromoethane (EDB)	0.005	ND	ND	ND	
Tetrachloroethene	0.005	ND	ND	ND	
1,3-Dichloropropane	0.005	ND	ND	ND	
Chlorobenzene	0.005	ND	ND	ND	

RL=Reporting Limit; ND=Not Detected (Below Dilution Factor x RL)

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	800 W. Grand Ave., Oakland	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Batch No.:	1109-VOCS	Date Reported:	11/9/2006

EPA 8260B (VOCs & Oxy.) by GC/MS, Page 2 of 2 Reporting Unit: mg/kg (PPM)

		Reporting U	Int: Ing/kg (F	PIVI)	
Date Analyzed		11/09/06	11/09/06	11/09/06	
Dilution Factor		200	200	1	
Lab Sample I.D.		L6K010-1	L6K010-2	L6K010-3	
Client Sample I.D.		26-137-A	26-137-В	SP1,2,3,4 Comp.	
Compound	RL				
1,1,1,2-Tetrachloroethane	0.005	ND	ND	ND	
Ethylbenzene	0.002	ND	ND	ND	
Total Xylene	0.004	ND	ND	ND	
Styrene	0.005	ND	ND	ND	
Bromoform	0.005	ND	ND	ND	
Isopropyl benzene	0.005	ND	ND	ND	
Bromobenzene	0.005	ND	ND	ND	
1,2,3-Trichloropropane	0.005	ND	ND	ND	
1,1,2,2,-Tetrachloroethane	0.005	ND	ND	ND	
Trans-1,4-dichloro-2-butene	0.005	ND	ND	ND	
2-Chlorotoluene	0.005	ND	ND	ND	
n-Propyl benzene	0.005	1.76	2.66	ND	
4-Chlorotoluene	0.005	ND	ND	ND	
1,3,5-Trimethyl benzene	0.005	ND	5.53	ND	
tert-Butylbenzene	0.005	ND	ND	ND	
p-Isopropyl toluene	0.005	ND	1.81	ND	
1,2,4-Trimethyl benzene	0.005	ND	9.41	ND	
sec-Butylbenzene	0.005	1.99	2.64	ND	
1,3-Dichlorobenzene	0.005	ND	ND	ND	
1,4-Dichlorobenzene	0.005	ND	ND	ND	
1,2-Dichlorobenzene	0.005	ND	ND	ND	
n-Butylbenzene	0.005	2.69	2.87	ND	
1,2-Dibromo-3-chloropropan	0.005	ND	ND	ND	
1,2,4-Trichlorobenzene	0.005	ND	ND	ND	
Hexachlorobutadiene	0.005	ND	ND	ND	
Naphthalene	0.005	ND	ND	ND	
1,2,3-Trichlorobenzene	0.005	ND	ND	ND	
Aceton	0.050	ND	ND	ND	
2-Butanone(MEK)	0.025	ND	ND	ND	
Carbon Disulfide	0.025	ND	ND	ND	
4-Methyl-2-Pentanone (MIBK)	0.025	ND	ND	ND	
MTBE	0.005	ND	ND	ND	
Ethyl-t-butyl Ether(ETBE)	0.005	ND	ND	ND	
Diisopropyl ether (DIPE)	0.005	ND	ND	ND	
TAME	0.005	ND	ND	ND	
t-Butanol	0.020	ND	ND	ND	

RL=Reporting Limit; ND=Not Detected (Below Dilution Factor x RL)

EPA 8260B (VOCs & Oxy.) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Name:	26-137	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/09/06
Batch No.:	1109-VOAS	Date Reported:	11/10/06

LCS/LCSD Report

Unit: mg/kg									
Compound	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	%RPD	%Rec.
	Blank	Conc.			%Rec.	%Rec.		Accept	Accept
								Limit	Limit
1,1-Dichloroethene	ND	0.020	0.018	0.018	90	90	0.0	20	80-120
Benzene	ND	0.020	0.023	0.021	115	105	9.1	20	80-120
Trichloroethene	ND	0.020	0.023	0.021	115	105	9.1	20	80-120
Toluene	ND	0.020	0.024	0.021	120	105	13.3	20	80-120
Chlorobenzene	ND	0.020	0.024	0.021	120	105	13.3	20	80-120

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	800 W. Grand Ave., Oakland	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Batch No:	1109-DS	Date Reported:	11/10/2006
Batch No:	1109-GS		

EPA 8015M (TPH-Diesel & Stoddard Solvent)

Reporting Unit: mg/kg (PPM)

Client Sample ID	Lab ID	Stoddard Solvent	Diesel	
		C8-C14	C14-C28	
Reporting Limit		10	10	
26-137-A	L6K010-1	1100	ND	
26-137-В	L6K010-2	5550	15.2	
26-137 SP1,2,3,4 Comp.	L6K010-3	189	13.1	

EPA 8015M (Diesel) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Nam	126-137	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/09/06
Batch No.:	1109-DS	Date Reported:	11/10/06

LCS/LCSD Report

Unit: mg/kg

								%RPD	%Rec
Analyte	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	Accept	Accept
	Blank	Conc.			%Rec.	%rec.		Limit	Limit
TPH-D	ND	500	433	446	86.6	89.2	3.0	20	80-120

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	800 W. Grand Ave., Oakland	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Digestion Method:	3050	Date Reported:	11/10/2006
Batch No.:	1109-MTS	Date Reported:	11/10/2006

EPA 7420 Total Lead (Pb)

Report Units: mg/kg (PPM)

Element	EPA	L6K010-1	L6K010-2	L6K010-3	Report
	Method	26-137-A	26-137-В	26-137 SP1,2,3,4 Comp.	Limit
Lead (Pb)	7420	3.9	3.6	4.8	2.5

EPA 7420 Total Lead (Pb) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K010
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	800 W. Grand Ave., Oakland	Date Received:	11/9/2006
Matrix:	Soil	Date Digested:	11/9/2006
Digestion Method:	3050B	Date Analyzed:	11/9/2006
Batch No.:	1109-MTS	Date Reported:	11/10/2006

LCS/LCSD Report

		(553.6)
Unit:	mg/kg	(PPM)

	EPA	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	%RPD	%Rec.		
Element	Method	Blank	Conc.			%Rec.	%Rec.		Accept	Accept		
									Limit	Limit		
Lead (Pb)	7420	ND	5.0	5.03	4.93	101	99	2	<20	80-120		

ABC Environmental Laboratories, Inc. 3701 San Gabriel River Pkwy., Pico Rivera, CA 90660 Tel: 562-413-8343

Tel/ Fax: 562-699-7288

CONTROSTE

CHAIN OF CUSTODY

Page _	<u>/</u> of		
Lab Job	Number	. <u>16Ko</u>	[C

Client Name	LICTIC	N SOF	2V 1 COS	· >,		Analyses R				Req	equested						Turn Around Time Requested					
Address Beport Attention GCRES WILSON Project No/Name	Phone # Fax: # Project Si	$\frac{2\beta A N D}{10} A UC O A (UAND, CA)$ $\frac{10}{10} \frac{10}{10} \frac{10}{$			⊃Cs & Oxygenates)	EX & Oxygenates)	TEX & MTBE)	015B (Gasoline)	015B (Diesel)	ganochlorine Pesticides)	(Bs)	(HH)	5 (PH)	letals)	<u>s</u>	TOTAL	SPOND			Rush 8 12 X 2-3 days Sample Receipt 0 X Chilled X Sample Seals	24 Hours Normal Conditions Intact	
Client Sample ID	Sample Date	Collection Time	Matrix Type	Sample Preserve	No., type* & size of container	EPA8260B (V	EPA8260B(B1	EPA8021B (B	EPA8015M / 8	EPA8015M / 8	EPA8081A (or	EPA 8082 (PC	EPA418.1 (TF	EPA9040/904	EPA 7000s (N	CAM 17 Meta	LEAD .	ter as	N		Lab Sample ID	Remarks
26-137 - A	11/3/6	1030	35	c_{∞}	1 Hing		X			X							X	X		4	6K010-1	
26-137-B	, ,	1040	'n				Ŷ			×							X	X			46K010-2	
	×																					
																			_			
······																						
						┣—																
						<u> </u>																
		• · · · · · ·								_		-						÷			2/2/2/	
20137 51-1	11.3	11-00	55		ST		X			X							X	X		_(26K010-3	
2613151-2	11.3	11.01	<u>SS</u>		<u>ST</u>		X			X							X	$\frac{k}{r}$		4		
26157 54 3	11.3	11:01	55		ST		X			Ϋ́							7	\sum_{i}				<u>.</u>
120131314	<u> ·3</u>				>+		<u> </u>		Ш	X]		X	K.				
Relinquished By Con Relinquished By Con Barton Con Barton Con Con Con Con Con Con Con Con Con Con	mpany mpany (GNST	N.	Date 11-2 Date 11/6	-06 1- 196 1- 196 121	105 m Hecein 105 m Hecein 10 PM Recein	ved I	sy Sy	<u>e</u>	M A		bany Dany	1.4	12U 126	CTI I V	ad 133	N An	lote	Sa rei	mples	s are d un	e discarded 30 days af less other arrangemen	ter results are nts are made.
Matrix Code: CDW=Drinki GW=Grour WW=Wast SD=Solid V	ng Water nd Water e Water Vaste	SL=Sludge SS=Soil/Sec AR=Air PP=Pure Pr	liment oduct	Preserva	ative Code IC=Ic HC=I HN=I	ie HC1 HNO3			S S H	H=Na T=Na IS=H2	aOH a2S2O 2SO4	3			* S T= G S	Sampl =Tedla =Glas T= St	e Cor ar Air ss Co eel Tu	ntaine Bag ntaine Jbe	er Type er	es:	B= Brass Tube P=Plastic Bottle V=VOA Vial	E= EnCore

Mr. George Wilson L & W Construction Services, Inc. 5200 Redwood Hwy S. Petaluma, CA 94952 11/9/2006

Project Name:26-137Project Site:Grand-Oakland, CASample Date:11/3/2006Lab Job No.:L6K009

Dear Mr. George Wilson:

Enclosed please find the analytical report for the samples received by ABC Environmental Laboratories on 11/09/06 and analyzed by the following EPA methods:

EPA 8260B (VOCs & Oxygenates) EPA 8015M (Stoddard Solvent) EPA8015M (Diesel) EPA 17 CAM Metals EPA8015M (Gasoline)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

ABC Environmental Laboratories is certified by the CA DHS (Certificate No.2584). Thank you for giving us the opportunity to serve you.

Please feel free to call me at (562) 699-7288 if our laboratory can be of further service to you.

Respectfully,

ABC Environmental Laboratories, Inc.

010

Ken Zheng, M.S. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

Tel/Fax: (562)699-7288 *Tel:* (562)413-8343

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	Grand-Oakland, CA	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Batch No.:	1109-VOCS	Date Reported:	11/9/2006

EPA 8260B (VOCs & Oxy.) by GC/MS, Page 1 of 2 Paparting Unit: mg/kg (PPM)

		Reporting Un	it: mg/kg (PPN	1)	
Date Analyzed		11/09/06			
Dilution Factor		200			
Lab Sample I.D.		L6K009-1			
Client Sample I.D.		800-Bulk			
Compound	RL				
Dichlorodifluoromethane	0.005	ND			
Chloromethane	0.005	ND			
Vinyl Chloride	0.005	ND			
Bromomethane	0.005	ND			
Chloroethane	0.005	ND			
Trichlorofluoromethane	0.005	ND			
1,1-Dichloroethene	0.005	ND			
Methyl iodide	0.005	ND			
Methylene chloride	0.005	ND			
Trans-1,2-Dichloroethene	0.005	ND			
1,1-Dichloroethane	0.005	ND			
2,2-Dichloropropane	0.005	ND			
Cis-1,2-Dichloroethene	0.005	ND			
Bromochloromethane	0.005	ND			
Chloroform	0.005	ND			
1,1,1-Trichloroethane	0.005	ND			
Vinyl acetate	0.005	ND			
Carbontetrachloride	0.005	ND			
1,1-Dichloropropene	0.005	ND			
1,2-Dichloroethane	0.005	ND			
Benzene	0.002	ND			
Trichloroethene	0.005	ND			
1,2-Dichlorpropane	0.005	ND			
Methyl methacrylate	0.005	ND			
Dibromomethane	0.005	ND			
Bromodichloromethane	0.005	ND			
2-Chloroethyl Vinyl Ether	0.005	ND			
Cis-1,3-Dichloropropene	0.005	ND			
Toluene	0.002	ND			
Trans-1,3-Dichloropropene	0.005	ND			
Ethylmethacrylate	0.005	ND			
1,1,2-Trichloroethane	0.005	ND			
Dibromochloromethane	0.005	ND			
1,2-Dibromoethane (EDB)	0.005	ND			
Tetrachloroethene	0.005	ND			
1,3-Dichloropropane	0.005	ND			
Chlorobenzene	0.005	ND			

RL=Reporting Limit; ND=Not Detected (Below Dilution Factor x RL)

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	26-137	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Batch No.:	1109-VOCS	Date Reported:	11/9/2006

EPA 8260B (VOCs & Oxy.) by GC/MS, Page 2 of 2 Reporting Unit: mg/kg (PPM)

		Reporting Un	it: mg/kg (PPN	1)	
Date Analyzed		11/09/06			
Dilution Factor		200			
Lab Sample I.D.		L6K009-1			
Client Sample I.D.		800-Bulk			
Compound	RL				
1,1,1,2-Tetrachloroethane	0.005	ND			
Ethylbenzene	0.002	ND			
Total Xylene	0.004	ND			
Styrene	0.005	ND			
Bromoform	0.005	ND			
Isopropyl benzene	0.005	ND			
Bromobenzene	0.005	ND			
1,2,3-Trichloropropane	0.005	ND			
1,1,2,2,-Tetrachloroethane	0.005	ND			
Trans-1,4-dichloro-2-butene	0.005	ND			
2-Chlorotoluene	0.005	ND			
n-Propyl benzene	0.005	ND			
4-Chlorotoluene	0.005	ND			
1,3,5-Trimethyl benzene	0.005	4.91			
tert-Butylbenzene	0.005	ND			
p-Isopropyl toluene	0.005	1.80			
1,2,4-Trimethyl benzene	0.005	ND			
sec-Butylbenzene	0.005	2.26			
1,3-Dichlorobenzene	0.005	ND			
1,4-Dichlorobenzene	0.005	ND			
1,2-Dichlorobenzene	0.005	ND			
n-Butylbenzene	0.005	1.92			
1,2-Dibromo-3-chloropropan	0.005	ND			
1,2,4-Trichlorobenzene	0.005	ND			
Hexachlorobutadiene	0.005	ND			
Naphthalene	0.005	ND			
1,2,3-Trichlorobenzene	0.005	ND			
Aceton	0.050	ND			
2-Butanone(MEK)	0.025	ND			
Carbon Disulfide	0.025	ND			
4-Methyl-2-Pentanone (MIBK)	0.025	ND			
MTBE	0.005	ND			
Ethyl-t-butyl Ether(ETBE)	0.005	ND			
Diisopropyl ether (DIPE)	0.005	ND			
TAME	0.005	ND			
t-Butanol	0.020	ND			

RL=Reporting Limit; ND=Not Detected (Below Dilution Factor x RL)

EPA 8260B (VOCs & Oxy.) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Name:	26-137	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/09/06
Batch No.:	1109-VOAS	Date Reported:	11/09/06

LCS/LCSD Report

Unit: mg/kg									
Compound	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	%RPD	%Rec.
	Blank	Conc.			%Rec.	%Rec.		Accept	Accept
								Limit	Limit
1,1-Dichloroethene	ND	0.020	0.018	0.018	90	90	0.0	20	80-120
Benzene	ND	0.020	0.023	0.021	115	105	9.1	20	80-120
Trichloroethene	ND	0.020	0.023	0.021	115	105	9.1	20	80-120
Toluene	ND	0.020	0.024	0.021	120	105	13.3	20	80-120
Chlorobenzene	ND	0.020	0.024	0.021	120	105	13.3	20	80-120

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	Grand-Oakland, CA	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Batch No:	1109-DS	Date Reported:	11/9/2006
Batch No:	1109-GS		

EPA 8015M (TPH)

Reporting Unit: mg/kg (PPM)

Client Sample ID	Lab ID	Gasoline	Stoddard Solvent	Diesel	
		C4-C7	C8-C14	C14-C28	
Reporting Limit		1.0	10	10	
800-Bulk	L6K009-1	ND	1210	ND	

EPA 8015M (Diesel) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Nam	\$26-137	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/09/06
Batch No.:	1109-DS	Date Reported:	11/09/06

LCS/LCSD Report

Unit: mg/kg

								%RPD	%Rec
Analyte	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	Accept	Accept
	Blank	Conc.			%Rec.	%rec.		Limit	Limit
TPH-D	ND	500	433	579	86.6	115.8	28.9	20	80-120

EPA 8015M (Gasoline) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Nam	¢26-137	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/09/06
Batch No.:	1109-GS	Date Reported:	11/09/06

LCS/LCSD Report

Unit:	mg/kg
Unit.	mg/ng

								%RPD	%Rec
Analyte	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	Accept	Accept
	Blank	Conc.			%Rec.	%rec.		Limit	Limit
TPH-G	ND	1.0	0.85	1.01	85.0	101.0	17.2	20	80-120

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	Grand-Oakland, CA	Date Received:	11/9/2006
Matrix:	Soil	Date Analyzed:	11/9/2006
Digestion Method:	3050	Date Reported:	11/9/2006
Batch No.:	1109-MTS	Date Reported:	11/9/2006

EPA 7000 Series for Cam Metals (TTLC)

Report Units: mg/kg (PPM)

Element	EPA	L6K009-1		Report
	Method	800-Bulk		Limit
Antimony (Sb)	7040	ND		10
Arsenic (As)	7060	ND		0.5
Barium (Ba)	7080	13.9		5.0
Beryllium (Be)	7090	ND		2.5
Cadmium (Cd)	7130	ND		2.5
Chromium (Cr)	7190	12.8		2.5
Cobalt (Co)	7200	4.8		2.5
Copper (Cu)	7210	6.1		2.5
Lead (Pb)	7420	3.3		2.5
Mercury (Hg)	7471	ND		0.1
Molybdenum (Mo)	7480	ND		5.0
Nickel (Ni)	7520	21.2		2.5
Selenium (Se)	7740	ND		0.5
Silver (Ag)	7760	ND		2.5
Thallium (Tl)	7840	ND		2.5
Vanadium (V)	7910	ND		10
Zinc (Zn)	7950	18.5		2.5

EPA 7420 Total Lead (Pb) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K009
Project Name:	26-137	Date Sampled:	11/3/2006
Project Site:	Grand-Oakland, CA	Date Received:	11/9/2006
Matrix:	Soil	Date Digested:	11/9/2006
Digestion Method:	3050B	Date Analyzed:	11/9/2006
Batch No.:	1109-MTS	Date Reported:	11/9/2006

LCS/LCSD Report

			Uı	nit: mg/	kg (PPM)				
	EPA	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	%RPD	%Rec.
Element	Method	Blank	Conc.			%Rec.	%Rec.		Accept	Accept
									Limit	Limit
Antimony (Sb)	7040	ND	12.0	12.2	13.1	102	109	7	<20	80-120
Arsenic (As)	7060	ND	0.5	0.47	0.51	94	102	8	<20	80-120
Barium (Ba)	7080	ND	5.0	4.88	4.70	98	94	4	<20	80-120
Beryllium (Be)	7090	ND	2.5	2.47	2.40	99	96	3	<20	80-120
Cadmium (Cd)	7130	ND	2.5	2.58	2.47	103	99	4	<20	80-120
Chromium (Cr)	7190	ND	2.5	2.50	2.41	100	96	4	<20	80-120
Cobalt (Co)	7200	ND	2.5	2.54	2.44	102	98	4	<20	80-120
Copper (Cu)	7210	ND	2.5	2.46	2.48	98	99	1	<20	80-120
Lead (Pb)	7420	ND	5.0	5.03	4.93	101	99	2	<20	80-120
Mercury (Hg)	7471	ND	2.0	1.96	2.03	98	102	4	<20	80-120
Molybdenum (Mo)	7480	ND	12.0	11.7	13.0	98	108	11	<20	80-120
Nickel (Ni)	7520	ND	2.50	2.47	2.53	99	101	2	<20	80-120
Selenium (Se)	7740	ND	0.50	0.57	0.48	114	96	17	<20	80-120
Silver (Ag)	7760	ND	2.5	2.49	2.53	100	101	2	<20	80-120
Thallium (Tl)	7840	ND	12.0	13.4	12.6	112	105	6	<20	80-120
Vanadium (V)	7910	ND	12.0	11.2	12.9	93	108	14	<20	80-120
Zinc (Zn)	7950	ND	2.50	2.51	2.57	100	103	2	<20	80-120

.

ABC	Envira Labor	onmento atories,	al Inc.	3701 Sa Tel: 562 Tel/ Fax:	3701 San Gabriel River Tel: 562-413-8343 Tel/ Fax: 562-699-7288				r Pkwy., Pico Rivera, CA 90660 CHAIN OF CUSTODY									Page o	of er <i><u>C6K00</u></i>			
Client Name	M C	L 2002	Tim	- on <	Service	Analyses Requested									Turn Around Time Requested							
Address 5200 REDWOOD	> Heve	2.5.,	PETRO	im	$\sim \infty$	enates)	nates)		line)	()	sticides)						dard				∑ Rush 8 12 (□ 2-3 days □	24) Hours Normal
Report Attention	Phone # Fax: # 7	707-766 09-766	- 9511 - 9049	Sample	By QYV P	Oxyge	Oxyge	MTBE	(Gaso	(Diese	orine Pes						Tod				Sample Receipt	Conditions
Project No./ Name 26-137	Project Sit	te	Dal	CLAN	D, CA	VOCs &	TEX &	3TEX 8	8015B	8015B	Organoch	CBs)	RPH)	45 (PH	Metals)	als	μ	-			Chilled X Sample Seals	Intact
Client Sample ID	Sample Date	Collection Time	Matrix Type	Sample Preserve	No., type* & size of container	EPA8260B (/	EPA8260B(B	EPA8021B (I	EPA8015M /	EPA8015M /	EPA8081A (c	EPA 8082 (P	EPA418.1 (T	EPA9040/90	EPA 7000s (CAM 17 Met	E CH	· · / · »			Lab Sample ID	Remarks
800-Bulk	11/3/4	1400	55	IC	1 Lind	X			X	Ā					_	Ň,	X	c			46K009-1	
· · · · · · · · · · · · · · · · · · ·						ľ																
														<u>.</u>								
																						:
						-																
Relinquisted By Co	mpany	EUCTIO	Date 11/3 N Date 11/6	 /06 12 06 12	he Recei 377 Page he Receir COTM (ved I Ved I Ved I] Зу Лов Зу (51	14Q	Com Com Com	pany 24/S pany	TR. 11	U.C.7 9 51	<u>і</u> п <i>ісе</i> 6 П	U U 10:35	n m	lote A	: Sa re	ample porte	es ar ed ur	e discarded 30 days at nless other arrangeme	iter results are nts are made.
Matrix Code: DW=Drinki GW=Grou WW=Wast SD=Solid	ing Water nd Water e Water Waste	SL=Sludge SS=Soil/Sec AR=Air PP=Pure Pr	liment oduct	Preserv	ative Code IC=lc HC=l HN=l	ie HCI HNO3	I		S S H	SH=N ST=Na IS=H	aOH a2S2C 2SO4)3		*	* 5 T= G S	Sampl =Tedla =Glas T= St	e Cor ar Air ss Co eel Tu	ntaine Bag ntain ube	er Typ er	es:	B= Brass Tube P=Plastic Bottle V=VOA Vial	E≕ EnCore

Mr. George Wilson L & W Construction Services, Inc. 5200 Redwood Hwy S. Petaluma, CA 94952 11/7/2006

Project Name:Not SpecifiedProject Site:Not SpecifiedSample Date:11/6/2006Lab Job No.:L6K005

Dear Mr. George Wilson:

Enclosed please find the analytical report for the samples received by ABC Environmental Laboratories on 11/07/06 and analyzed by the following EPA methods:

EPA 8260B (VOCs & Oxygenates) EPA 8015M (Stoddard Solvent)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

ABC Environmental Laboratories is certified by the CA DHS (Certificate No.2584). Thank you for giving us the opportunity to serve you.

Please feel free to call me at (562) 699-7288 if our laboratory can be of further service to you.

Respectfully,

ABC Environmental Laboratories, Inc.

om _

Ken Zheng, M.S. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K005
Project Name:	Not Specified	Date Sampled:	11/6/2006
Project #:	Not Specified	Date Received:	11/7/2006
Matrix:	Soil	Date Analyzed:	11/7/2006
Batch No.:	1107-VOCS	Date Reported:	11/7/2006

EPA 8260B (VOCs & Oxy.) by GC/MS, Page 1 of 2

		Reporting Un	it: mg/kg (PPN	(N	
Date Analyzed		11/07/06	11/07/06		
Dilution Factor		100	100		
Lab Sample I.D.		L6K005-1	L6K005-2		
Client Sample I.D.		800-10-6	800-25-6		
Compound	RL				
Dichlorodifluoromethane	0.005	ND	ND		
Chloromethane	0.005	ND	ND		
Vinyl Chloride	0.005	ND	ND		
Bromomethane	0.005	ND	ND		
Chloroethane	0.005	ND	ND		
Trichlorofluoromethane	0.005	ND	ND		
1,1-Dichloroethene	0.005	ND	ND		
Methyl iodide	0.005	ND	ND		
Methylene chloride	0.005	ND	ND		
Trans-1,2-Dichloroethene	0.005	ND	ND		
1,1-Dichloroethane	0.005	ND	ND		
2,2-Dichloropropane	0.005	ND	ND		
Cis-1,2-Dichloroethene	0.005	ND	ND		
Bromochloromethane	0.005	ND	ND		
Chloroform	0.005	ND	ND		
1,1,1-Trichloroethane	0.005	ND	ND		
Vinyl acetate	0.005	ND	ND		
Carbontetrachloride	0.005	ND	ND		
1,1-Dichloropropene	0.005	ND	ND		
1,2-Dichloroethane	0.005	ND	ND		
Benzene	0.002	ND	ND		
Trichloroethene	0.005	ND	ND		
1,2-Dichlorpropane	0.005	ND	ND		
Methyl methacrylate	0.005	ND	ND		
Dibromomethane	0.005	ND	ND		
Bromodichloromethane	0.005	ND	ND		
2-Chloroethyl Vinyl Ether	0.005	ND	ND		
Cis-1,3-Dichloropropene	0.005	ND	ND		
Toluene	0.002	ND	ND		
Trans-1,3-Dichloropropene	0.005	ND	ND		
Ethylmethacrylate	0.005	ND	ND		
1,1,2-Trichloroethane	0.005	ND	ND		
Dibromochloromethane	0.005	ND	ND		
1,2-Dibromoethane (EDB)	0.005	ND	ND		
Tetrachloroethene	0.005	ND	ND		
1,3-Dichloropropane	0.005	ND	ND		
Chlorobenzene	0.005	ND	ND		

RL=Reporting Limit; ND=Not Detected (Below Dilution Factor x RL)

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K005
Project Name:	Not Specified	Date Sampled:	11/6/2006
Project #:	Not Specified	Date Received:	11/7/2006
Matrix:	Soil	Date Analyzed:	11/7/2006
Batch No.:	1107-VOCS	Date Reported:	11/7/2006

EPA 8260B (VOCs & Oxy.) by GC/MS, Page 2 of 2

		Reporting Un	it: mg/kg (PPN	A)	
Date Analyzed		11/07/06	11/07/06		
Dilution Factor		100	100		
Lab Sample I.D.		L6K005-1	L6K005-2		
Client Sample I.D.		800-10-6	800-25-6		
Compound	RL				
1,1,1,2-Tetrachloroethane	0.005	ND	ND		
Ethylbenzene	0.002	ND	ND		
Total Xylene	0.004	ND	ND		
Styrene	0.005	ND	ND		
Bromoform	0.005	ND	ND		
Isopropyl benzene	0.005	ND	ND		
Bromobenzene	0.005	ND	ND		
1,2,3-Trichloropropane	0.005	ND	ND		
1,1,2,2,-Tetrachloroethane	0.005	ND	ND		
Trans-1,4-dichloro-2-butene	0.005	ND	ND		
2-Chlorotoluene	0.005	ND	ND		
n-Propyl benzene	0.005	ND	ND		
4-Chlorotoluene	0.005	ND	ND		
1,3,5-Trimethyl benzene	0.005	ND	ND		
tert-Butylbenzene	0.005	ND	ND		
p-Isopropyl toluene	0.005	0.564	ND		
1,2,4-Trimethyl benzene	0.005	1.15	ND		
sec-Butylbenzene	0.005	1.24	1.42		
1,3-Dichlorobenzene	0.005	ND	ND		
1,4-Dichlorobenzene	0.005	ND	ND		
1,2-Dichlorobenzene	0.005	ND	ND		
n-Butylbenzene	0.005	1.29	1.80		
1,2-Dibromo-3-chloropropan	0.005	ND	ND		
1,2,4-Trichlorobenzene	0.005	ND	ND		
Hexachlorobutadiene	0.005	ND	ND		
Naphthalene	0.005	ND	ND		
1,2,3-Trichlorobenzene	0.005	ND	ND		
Aceton	0.050	ND	ND		
2-Butanone(MEK)	0.025	ND	ND		
Carbon Disulfide	0.025	ND	ND		
4-Methyl-2-Pentanone (MIBK)	0.025	ND	ND		
MTBE	0.005	ND	ND		
Ethyl-t-butyl Ether(ETBE)	0.005	ND	ND		
Diisopropyl ether (DIPE)	0.005	ND	ND		
TAME	0.005	ND	ND		
t-Butanol	0.020	ND	ND		

RL=Reporting Limit; ND=Not Detected (Below Dilution Factor x RL)

EPA 8260B (VOCs & Oxy.) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K005
Project Name:	Not Specified	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/07/06
Batch No.:	1107-VOAS	Date Reported:	11/07/06

LCS/LCSD Report

				Unit:	mg/kg				
Compound	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	%RPD	%Rec.
	Blank	Conc.			%Rec.	%Rec.		Accept	Accept
								Limit	Limit
1,1-Dichloroethene	ND	0.020	0.016	0.016	80	80	0.0	20	80-120
Benzene	ND	0.020	0.020	0.020	100	100	0.0	20	80-120
Trichloroethene	ND	0.020	0.021	0.021	105	105	0.0	20	80-120
Toluene	ND	0.020	0.021	0.021	105	105	0.0	20	80-120
Chlorobenzene	ND	0.020	0.020	0.02	100	105	4.9	20	80-120

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K005
Project Name:	Not Specified	Date Sampled:	11/6/2006
Project #:	Not Specified	Date Received:	11/7/2006
Matrix:	Soil	Date Analyzed:	11/7/2006
Batch No:	1107-DS	Date Reported:	11/7/2006

EPA 8015M (Stoddard Solvent)

Reporting Unit: mg/kg (PPM)

Client Sample ID	Lab ID	Stoddard Solvent		
		C8-C14		
Reporting Limit		10		
800-10-6	L6K005-1	1750		
800-25-6	L6K005-2	970		

EPA 8015M (Stoddard Solvent) Batch QA/QC Report

Client:	L & W Construction Services, Inc.	Lab Job No.:	L6K005
Project Name	e Not Specified	Lab Sample ID:	LCS
Matrix:	Soil	Date Analyzed:	11/07/06
Batch No.:	1107-DS	Date Reported:	11/07/06

LCS/LCSD Report

Unit: mg/kg

								%RPD	%Rec
Analyte	Method	Spike	LCS	LCSD	LCS	LCSD	%RPD	Accept	Accept
	Blank	Conc.			%Rec.	%rec.		Limit	Limit
TPH-S	ND	500	433	432	86.6	86.4	0.2	20	80-120

ABC Environmental Laboratories, Inc. 3701 San Gabriel River Pkwy., Pico Rivera, CA 90660 Tel: 562-413-8343 Tel/ Fax: 562-699-7288 CHAINO

OF CUSTODY	Page _/ of _/ Lab Job Number <u></u>
n Damaataat	

L-SO															Turn Around Time Requested						
Address						inates)	nates)		ine)	()	ticides)						N			□ Rush 8 12 □ 2-3 days □	24 Hours Normal
Report Attention	Phone # Fax: #		Sample	Sampled By			(MTBE	(Gasol	(Diese	orine Pes			_			1000			Sample Receipt	Conditions	
Project No./ Name	Project Si	te						BTEX 8	/ 8015B	/ 8015B	Organochl	oCBs)	ГЯРН)	045 (PH)	(Metals)	tals	5	5		Chilled X Sample Seals	Intact
Client	Sample	Collection	Matrix	Sample	No., type* & size of	8260B (8260B(I	8021B (8015M	8015M	8081A (8082 (1	418.1 (9040/90	7000s	1 17 Me	·H.			Lab	Remarks
Sample ID	Date	Time	туре	Fleselve	container	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAN	Þ				
800-10-6	1167	1100	55	NC	١B	X]										X			16K005-1	
800-72-6	11,	13-60	NN .		11	X											F			1 -2	
						<u> </u>													_		
														_							
																			_		
							-								-						
															-+						
						· 							-+								
		· · ·				+													-		
· · · · · · · · · · · · · · · · · · ·		×				1										-					
	-						†							_							
																			1	······	
Relingalshed B Co	ompany		Date		ne 15Ph Aecei	vedi	By	2 l	4a	Com	any Ai	S k	an c	TIA		N	lote:	Samr	les ar	e discarded 30 davs at	ter results are
Relinquisted By Co	ompany CANSTR	uction	Date 11/6/	Cos III	ne	ved I	By (\sum	133		bany	110;	7/06	8:	3.1	M		repor	ted u	nless other arrangeme	nts are made.
Matrix Code: DW=Drink GW=Grou WW=Was SD=Solid	king Water und Water ste Water Waste	SL=Sludge SS=Soil/Sec AR=Air PP=Pure Pre	liment oduct	Preserv	ative Code IC=lc HC=l HN=l	xe HCl HNO3			S S H	H=Na T=Na IS=Ha	aOH a2S2C 2SO4)3			* S T= G= ST	ampl Tedla =Glas f= St	e Conta ar Air Ba ss Conta eel Tube	ainer Ty ag ainer Ə	/pes:	B= Brass Tube P=Plastic Bottle V=VOA Vial	E= EnCore