RECEIVED

By dehloptoxic at 9:01 am, Oct 24, 2006

ERAS 1533 B Street

Environmental, Inc. Hayward, CA 94541

(510) 247-9885 Facsimile: (510) 886-5399

info@eras.biz

GROUNDWATER MONITORING REPORT, QUARTER 3 2005, 4919 Tidewater Avenue Oakland, California ERAS Project Number 05-001-01A

Prepared for:

Mr. Bob Lawlor RWL Investments 4919 Tidewater Avenue Oakland, CA 94601

Prepared by:

ERAS Environmental

October 23, 2006

TABLE OF CONTENTS

1.0 BACKGROUND 1 1.1 HYDROGEOLOGY 1 1.1.1 REGIONAL HYDROGEOLOGY 1 1.1.2 SITE HYDROGEOLOGY 1 2.0 QUARTERLY GROUNDWATER MONITORING 2 2.1 FIELD WORK PERFORMED 2 2.2 RESULTS OF MONITORING 2	CERTIFICATION	П
1.1 HYDROGEOLOGY		
1.1.1 REGIONAL HYDROGEOLOGY	I.O BACKGROUND	. 1
1.1.1 REGIONAL HYDROGEOLOGY	1.1	
1.1.2 SITE HYDROGEOLOGY 2.0 QUARTERLY GROUNDWATER MONITORING 2.1 FIELD WORK PERFORMED 2.2 RESULTS OF MONITORING		
2.0 QUARTERLY GROUNDWATER MONITORING		
2.1 FIELD WORK PERFORMED	1.1.2 SITE HYDROGEOLOGY	1
2.1 FIELD WORK PERFORMED		
2.2 RESULTS OF MONITORING	2.0 QUARTERLY GROUNDWATER MONITORING	. 2
2.2 RESULTS OF MONITORING	6.4. FIELD WORK PEDEODMED	_
A A A DESCRIPTA OF ADALMATED FRENCHIAN MANUTADINA		
2.2.1 RESULTS OF GROUNDWATER ELEVATION MONITORING2	2.2.1 RESULTS OF GROUNDWATER ELEVATION MONITORING	. 2
2.2.2 ANALYTICAL RESULTS		

FIGURES

- 1 Site Location Map
- 2 Groundwater Elevation Map July 12, 2006

TABLES

- 1 Groundwater Elevation Data
- 2 Analytical Results for Monitoring Well Groundwater Samples

APPENDICES

- A Standard Operating Procedures
- B Field Data Forms
- C Laboratory Report and Chain-of-Custody FormD GeoTracker Upload Confirmation Forms

CERTIFICATION

This **Groundwater Monitoring Report for Quarter 3, 2006,** for 4919 Tidewater Avenue in Oakland, California, has been prepared by ERAS Environmental, Inc. (ERAS) under the professional supervision of the Registered Geologist whose signature appears hereon.

This report was prepared in general accordance with the accepted standard of practice that exists in Northern California at the time the investigation was performed. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted professional practices within the area at the time of our investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

This report may be used only by the client and only for the purposes stated within a reasonable time from its issuance. Land use, site conditions (both on-site and off-site) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify ERAS of such intended use. Based on the intended use of report, ERAS may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release ERAS from any liability resulting from the use of this report by any unauthorized party.

Respectfully submitted,

Gail M. Jones

California Registered Geologist 5725

October 23, 2006

1.0 BACKGROUND

This report pertains to the environmental conditions at the Heitz Trucking (formerly DiSalvo Trucking) facility at 4919 Tidewater Avenue (the Property) located in Oakland, California as shown on **Figure 1**.

The current layout of the Property is shown on **Figure 2**. The Property contains a large concrete warehouse and loading dock building, an office trailer and maintenance building. Outside yard areas are located along the northwest side of the building and a much larger outside yard area

The current owner of the Property, Mr. Charles Lawlor, is planning to demolish the current buildings and after the required remediation, the Property is planned to be redeveloped for residential purposes.

The Property is listed as a fuel leak case and is being overseen by the Alameda County Environmental Health Department (ACEHD).

1.1 HYDROGEOLOGY

1.1.1 REGIONAL HYDROGEOLOGY

The Property is in the southwestern part of Oakland, located at the eastern edge of San Francisco Bay, on the Bay Plain. The sediments in the vicinity of the Property are fine-grained alluvial sediments that represent distal deposits of alluvial fans that were deposited by rivers draining upland surfaces to the west and east of the Property. These sediments were deposited in a low energy environment on the margins of San Francisco Bay. At shallow depths beneath these sediments are a series of Recent-age (<10,000 years) blue clay layers that become increasingly thicker toward San Francisco Bay. These clay layers are known as the Bay Mud and were deposited in San Francisco Bay during higher stands of sea level. In the vicinity of the Property it is likely that several hundred feet of these sediments overlie sandstone and serpentine sedimentary and metamorphic rocks of the Jurassic-aged Franciscan Formation bedrock.

The Property is at an elevation of approximately five feet above Mean Sea Level according to the United States Geological Survey (USGS) Oakland East Quadrangle California 7.5 Minute Series topographic map. Regionally, topography in the area of the Property slopes down to the west toward San Francisco Bay. However, the area of the Property is very flat with little topographic change.

The regional groundwater flow follows the topography, moving from areas of higher elevation to areas of lower elevation. The regional groundwater flow direction in the area of the Property is estimated to be to the west toward San Francisco Bay. However, the groundwater gradient in this area is likely to vary due to tidal influences and there may not be a dominant groundwater gradient.

1.1.2 SITE HYDROGEOLOGY

Soil borings drilled on the Property indicate the area of the Property was likely filled to create land and lift the surface roughly 5 feet above the high tide line (Gen-Tech, 1994). The Property is underlain by artificial fill comprised of gravel and sand, which may contain debris such as concrete or asphalt as well as silt and clay. The fill is underlain by and peat with thin interbeds of organic

silt and clay. The peaty material is underlain by black Bay Mud. The thickness of the fill increases to the northeast, varying from less than 3 feet near the southern corner of the Property to greater than 9 feet along Tidewater Avenue.

Top of groundwater has been measured in the monitoring wells from 0.30 to 6.10 feet below top-of-casing. Groundwater appears to be unconfined. Given historical variable groundwater flow direction results and the close proximity of the Tidal Canal and San Leandro Bay, the groundwater is appears to be under tidal influence with daily fluctuations in groundwater flow direction.

2.0 QUARTERLY GROUNDWATER MONITORING

2.1 FIELD WORK PERFORMED

The quarterly groundwater monitoring was conducted on July 12, 2006. The locations of all the monitoring wells associated with the subject site are shown on **Figure 2**

At each monitoring well, the well cap was removed and the water level in the well was allowed to equilibrate to atmospheric pressure. Static water level was measured using an electronic water-level probe. The probe was decontaminated between wells using a non-phosphate detergent and rinsed with purified water. The standard operating procedures for groundwater sampling are included as **Appendix A.** The field records of water-level measurements are included in **Appendix B.**

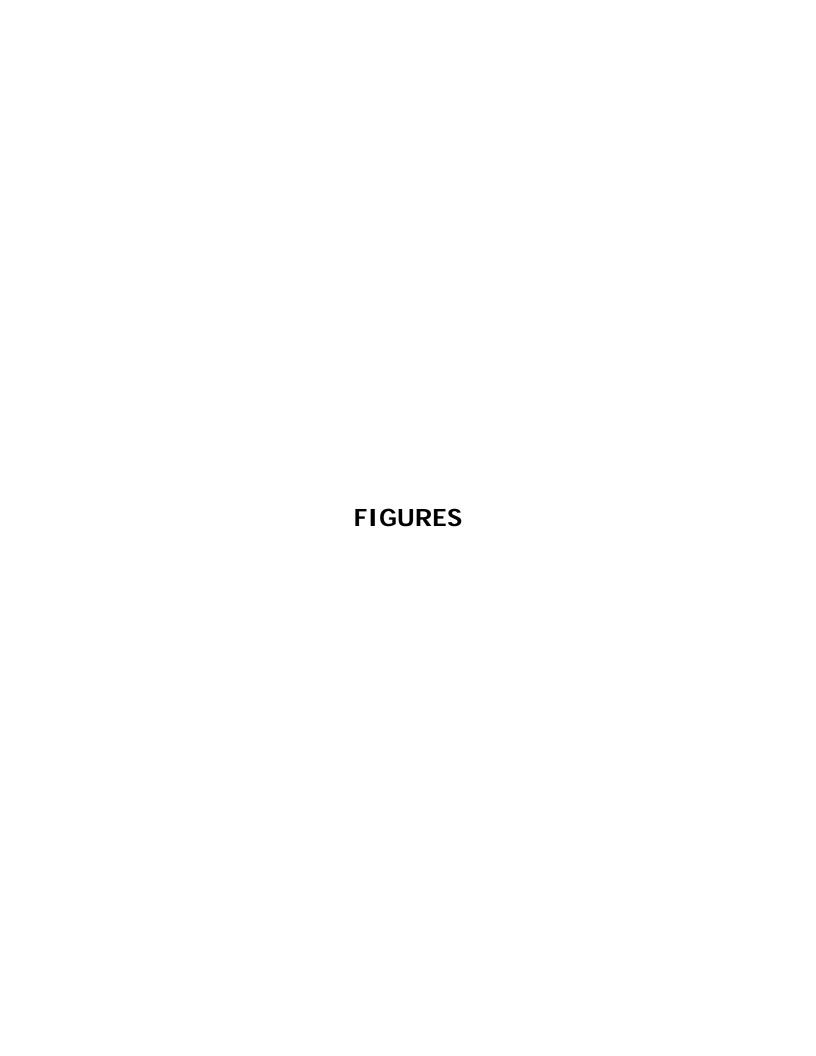
All four monitoring wells were sampled for TPH-D, TPH-G, BTEX, and MTBE. Groundwater was purged using a new disposable bailer and transferred to appropriate containers using a VOC-tip. The well purging and sampling forms are included in **Appendix B**. The sample containers were labeled and stored in a cooler with blue-ice, to be transported under chain-of-custody documentation to the State certified analytical laboratory. The chain-of-custody forms are included in **Appendix C**.

Purge water was temporarily stored onsite until transport to an appropriate facility.

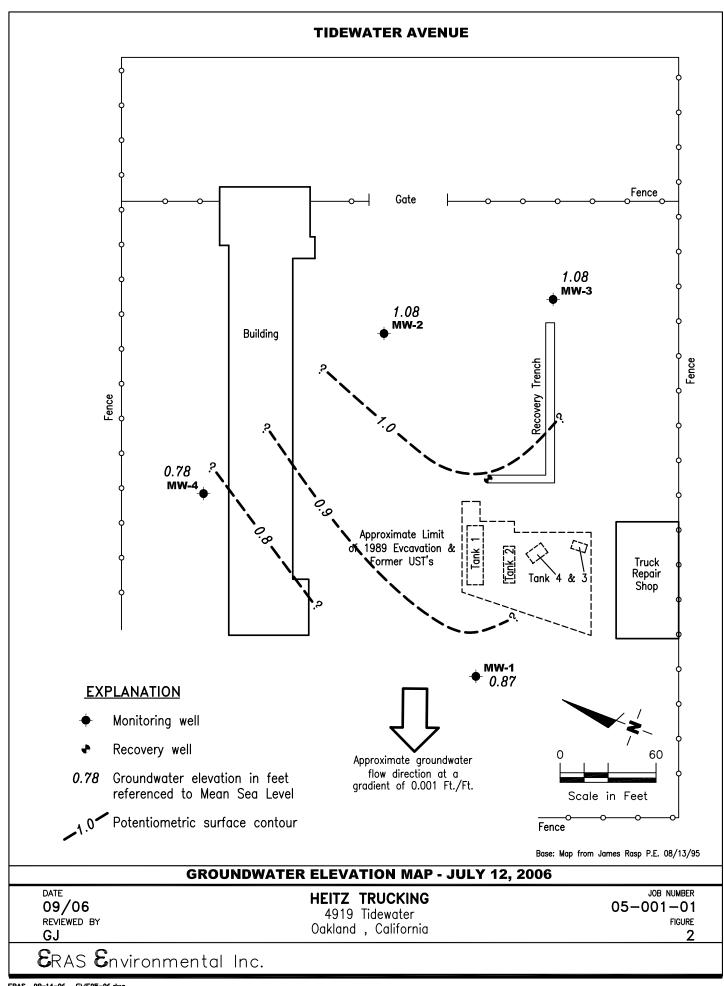
2.2 RESULTS OF MONITORING

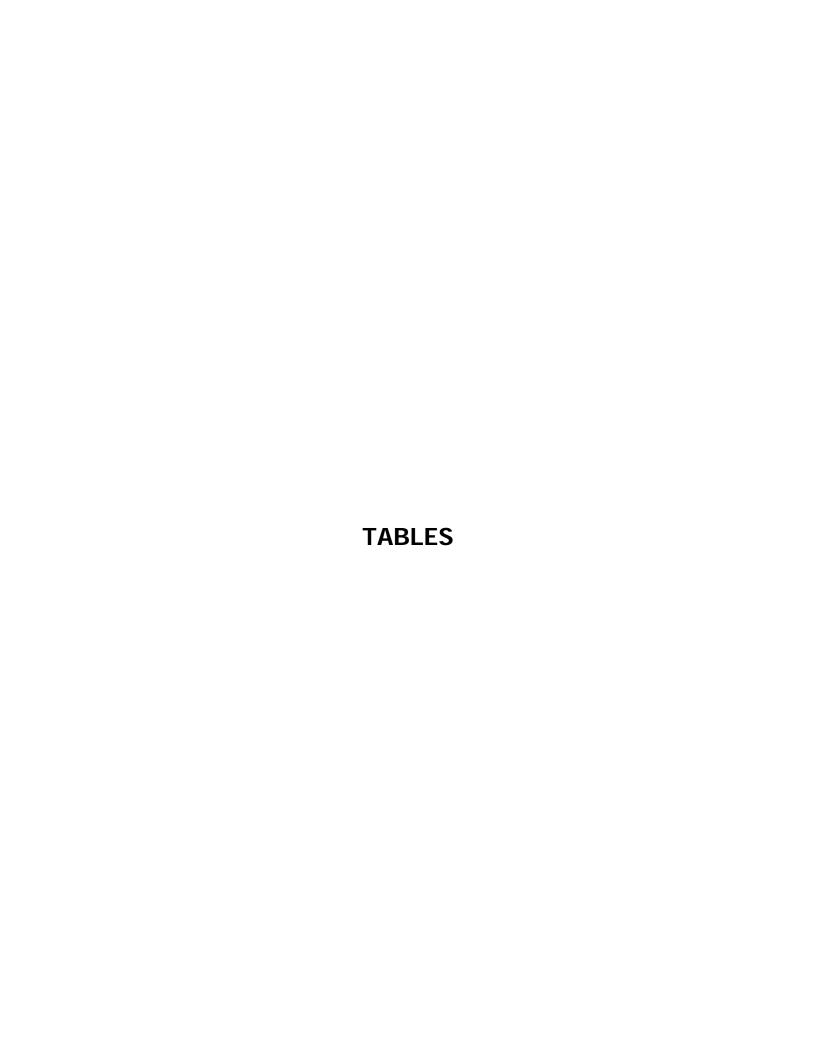
2.2.1 RESULTS OF GROUNDWATER ELEVATION MONITORING

Depth to liquid measurements collected on July 12, 2006 were used to calculate the groundwater elevation data shown in **Table 1**. The depth-to-water data was uploaded to State Water Board's GeoTracker internet database site. The upload confirmation page is included in **Appendix D**. LNAPL was not detected during this groundwater monitoring event.


Figure 2 shows groundwater flow to the southwest, toward the tidal canal, at a relatively flat gradient of 0.001 foot/foot. This result indicates that the tide was going out at the time that the depth to groundwater was measured.


2.2.2 ANALYTICAL RESULTS


Groundwater samples were analyzed for TPH-D and TPH-G by EPA Method 8015, and for BTEX and MTBE by EPA Method 8260. The analytical results are presented on **Table 2**. The laboratory reports and chain-of custody forms are included as **Appendix C**.


Concentrations of TPH-D above the ESL of $640\mu g/L$ (aquatic habitat) were detected in three of the four samples collected from the site (MW-2, MW-3, and MW-4), and ranged from 5,200 $\mu g/L$ in crossgradient well MW-4 to 16,000 $\mu g/L$ in well MW-3 located in east-central portion of the site. No other concentrations above the ESLs for aquatic habitat were reported.

The analytical results were uploaded to GeoTracker. The upload confirmations are included in **Appendix D**.

TABLE 1 GROUNDWATER ELEVATION DATA

4919 Tidewater Avenue Oakland

Well	Date	Top of Casing	Depth to	Depth to	LNAPL	Groundwater
Number	Monitored	Elevation	Liquid	Water	Thickness	Elevation
		(ft amsl)	(feet)	(feet)	(feet)	(ft amsl)
MW-1	14-Apr-94	2.68		1.26	,	1.42
	17-Nov-94	2.68		3.88		-1.20
	13-Aug-95	2.68		3.09		-0.41
	23-Aug-99	2.68		2.17		0.51
	26-May-99	2.68		2.29		0.39
	26-Apr-01	2.68		1.14		1.54
	5-Sep-02	2.68		2.15		0.53
	18-Aug-05	2.68	2.54	2.54	0	0.14
	19-Aug-05	2.68	6.1	6.10	0	-3.42
	25-Jan-06	2.68	2.02	2.02	0	0.66
	9-May-06	2.68	0.30	0.30	0	2.38
	12-Jul-06	2.68	1.81	1.81	0	0.87
MW-2	14-Apr-94	3.5		1.92		1.58
	18-Nov-94	3.5		1.78		1.72
	13-Aug-95	3.5		2.95		0.55
	23-Aug-99	3.5		2.89		0.61
	26-May-99	3.5		2.96		0.54
	26-Apr-01	3.5		1.74		1.76
	5-Sep-02	3.5		3.06		0.44
	18-Aug-05	3.5	2.62	2.62	0	0.88
	19-Aug-05	3.5	2.62	2.62	0	0.88
	25-Jan-06	3.5	1.27	1.27	0	2.23
	12-Jul-06	3.5	2.42	2.42	0	1.08
MW-3	14-Apr-94	2.9		1.33		1.57
	18-Nov-94	2.9		1.23		1.67
	13-Aug-95	2.9		2.18		0.72
	23-Aug-99	2.9		2.18		0.72
	26-May-99	2.9		2.50		0.40
	26-Apr-01	2.9		1.29		1.61
	5-Sep-02	2.9	0.04	2.34	0.04	0.56
	18-Aug-05	2.9	2.04	2.08	0.04	0.85
	19-Aug-05	2.9	2.07	2.10	0.03	0.82
	25-Jan-06	2.9	0.97	0.97	0	1.93
B 43 A / 4	12-Jul-06	2.9	1.82	1.82	0	1.08
MW-4	13-Aug-95	3.87		3.33		0.54
	26-May-99	3.87		3.31		0.56
	26-Apr-01	3.87		1.69		2.18
	5-Sep-02	3.87	2.27	3.31	0	0.56
	18-Aug-05	3.87	3.37	3.37	0	0.50
	19-Aug-05	3.87	3.46	3.46	0	0.41
	25-Jan-06	3.87	2.5	2.5	0	1.37
NOTEC	12-Jul-06	3.87	3.09	3.09	0	0.78

NOTES

ft amsl = feet above mean sea level

Depth to water measured in feet below top of casing survey point.

Groundwater Elevation reported in feet above mean sea level.

TABLE 2 ANALYTICAL RESUTLS FOR MONITORING WELL GROUNDWATER SAMPLES

4919 Tidewater Avenue Oakland, California

Well Number	TPH-D	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample Date			all resul	ts in microgr	ams per liter		
MW-1							
14-Apr-94	ND	ND	ND	ND	ND	ND	NA
17-Nov-94	ND	ND	ND	ND	ND	ND	1,100
13-Aug-95	ND	ND	ND	ND	ND	ND	NA
26-May-99	ND	60	0.6	ND	8.0	1.9	ND
23-Aug-99	ND	NA	ND	ND	ND	ND	NA
16-Oct-00	150	<50	<0.5	<0.5	<0.5	<0.5	NA
26-Apr-01	1,300	<50	<0.5	<0.5	<0.5	< 0.5	NA
5-Sep-02	<50	NA	<0.5	<0.5	<0.5	<1	9.8
18-Aug-05	410(x)	<50	<1	<1	<1	<1	6.0
25-Jan-06*	3,600	<50	2.3	<0.5	<0.5	1.2	11.0
12-Jul-06	100	<50	<0.5	<0.5	<0.5	<1	6.2
MW-2							
14-Apr-94	FP	FP	FP	FP	FP	FP	NA
17-Oct-94	28,000	ND	ND	ND	ND	ND	NA
13-Aug-95	180	ND	ND	ND	ND	ND	NA
26-May-99	120	ND	ND	ND	ND	ND	ND
23-Aug-99	61	NA	ND	ND	ND	ND	NA
16-Oct-00	3,400	570	<0.5	<0.5	<0.5	<0.5	NA
26-Apr-01	57,000	2,400	<0.5	<0.5	<0.5	<0.5	NA
5-Sep-02	27,100	NA	<0.5	<0.5	<0.5	<1	5.1
18-Aug-05	13,300	<50	<10	<10	<10	<10	<30
25-Jan-06*	110,000	1,200	<10	<10	<10	<20	<10
12-Jul-06	5,900	330	<0.5	<0.5	<0.5	<1	3.6
MW-3							
14-Apr-94	7,700	250	ND	ND	ND	1.2	NA
17-Oct-94	160,000	ND	ND	ND	ND	ND	NA
13-Aug-95	1,500	ND	ND	ND	ND	ND	NA
26-May-99	1,100	160	1.6	1.1	16	54.00	ND
23-Aug-99	84	NA	ND	ND	ND	ND	NA
16-Oct-00	42,000	130	0.52	<0.5	< 0.5	<0.5	NA
26-Apr-01	21,000	310	<0.5	<0.5	<0.5	<0.5	NA
5-Sep-02	1,990	NA	<0.5	<0.5	<0.5	<1	31.1
18-Aug-05	FP	FP	FP	FP	FP	FP	FP
25-Jan-06*	21,000	440	<2.5	<2.5	<2.5	<5.0	29
12-Jul-06	16,000	280	<0.5	<0.5	<0.5	<1	47
MW-4							
13-Aug-95	ND	450	2.1	0.7	4.1	13	NA
26-May-99	100	600	0.7	ND	ND	5.8	ND
23-Aug-99	180	NA	ND	ND	ND	ND	NA
16-Oct-00	75,000	890	<0.5	<0.5	<0.5	11	NA
26-Apr-01	24,000	2,100	<0.5	<0.5	<0.5	<0.5	NA
5-Sep-02	17,000	2,100 NA	<0.5	<0.5	<0.5	<1	1.2
18-Aug-05	6,200	<50	<1	<1	<1	<1	<3
25-Jan-06	8,200	110	2.0	0.87	<0.5	2.3	4.5
12-Jul-06	5,200	250	<0.5	<0.5	<0.5	2.3 <1	0.93
ESL							
Aquatic Habitat	640	500	46	130	290	100	8,000

NOTES

TPH-D = Total petroleum hydrocarbon quantitated as diesel.

TPH-G = Total petroleum hydrocarbon quantitated as gasoline.

MTBE = Methyl tertiary butyl ether.

FP=Floating Product, monitoring well sample not collected

NA = Not analyzed.

<50 = Analyte not detected above the laboratory method reporting limit indicated.

ND = Analyte not detected above the laboratory method reporting limit indicated.

(x) = Chromatogram does not resemble the typical diesel pattern.

ESL = Environmental Screening Levels for groundwater that is not potential groundwater

^{* =} Q1 06 TPH-D sample collected on 2-Feb-06

APPEMDIX A: STANDARD OPERATING PROCEDURES --- GROUNDWATER SAMPLING

Prior to groundwater sampling, a measurement is made of the static water level using a water level probe. At sites where the presence of separate-phase hydrocarbons is suspected, a product bailer or an interface probe is used to measure product thickness. The water level probe is cleaned with non-phosphate detergent and rinsed with de-ionized (DI) water between wells.

STANDARD PURGE PROCEDURES

The static water level and well depth are used to calculate the well casing volume. A minimum of 4 well casing volumes of water are purged from the well prior to sampling in order to obtain a representative sample of the groundwater from the formation surrounding the well. Wells should be purged and sampled in order of least to highest suspected concentrations.

Standard purging equipment is a new disposable bailer for each well. Alternatively, purging and sampling systems may be a stainless steel bailers; HDPE tubing with a foot-valve, or low-flow purging using a peristaltic pumps. Appropriate personal protective equipment is worn during purging. The well is purged until the clarity, pH, and conductivity of the discharged water has stabilized. "Stabilized" is defined as three consecutive readings within 10% of one another.

These parameters are measured and recorded initially, after every well casing volume is removed, and after the sample is collected. In some localities, turbidity, Eh, and dissolved oxygen measurements may also be required. If the well is purged dry prior to the removal of three or four casing volumes of water, the water level is allowed to recover to 80% of the static level before sampling. Whenever possible, samples will be collected within 24 hours after purging. Ideally, samples will be collected immediately after purging to minimize volatilization of aromatic hydrocarbons.

The standard sampling equipment will be inert polyethylene disposable bailers. New sampling gloves are worn during each sample collection. Sample containers typically consist, depending on the analysis, 40 milliliter volatile organic analysis (VOA) vials with Teflon septa, 1 liter amber glass bottles, or plastic bottles. HCI or other preservative are added to the sample containers as appropriate by the laboratory prior to sampling. The groundwater sample is decanted into each VOA vial to form a meniscus at the top to eliminate air bubbles when capped. The sample is labeled with date, time, sample number, project number and analysis. The samples are stored in a cooler with blue ice or ice, and delivered under chain-of-custody to the state-certified analytical laboratory. For quality control purposes, duplicate samples, trip blanks, and equipment blanks may also be collected. The duplicate sample is given a different number than the original sample from the same well. Trip blanks are prepared by the laboratory using DI water and remain in the cooler. Equipment blanks are collected from sampling equipment using DI water after the equipment has been decontaminated and rinsed.

All non-dedicated purging and sampling equipment is washed in non-phosphate detergent solution and double rinsed with DI water after use in every well to avoid cross-contamination. Purge water will be properly disposed or temporarily contained in labeled steel barrels pending chemical analysis to determine proper disposal procedure.

Appendix B

FIELD DATA FORMS

Groundwater Level Summary

Project Location:	·	4919 T	FOCWAT	Date:	5	9.06		
Project Number:		3-00	<i>l</i>	Inspector:	1			
Meter Type (WLM	VIFP)	ω		Measure F	Point (TOC o	or other)		
Well Number	Time Open	Time Measured	Time Sample (NP only)	Total Depth (Standard Purge only)	Depth to LNAPL	Depth to Water	Comments	
							APPLANS D	
MW-1	9:37	10:10		6-74		.03	BE FLORITAL KNOW	ic i
OB-5	9:41	10:12				396		
						·		
			·				1	
							UATERAPPEARS SE PERCOLATER WELL CAP (G	
						か、	SE PERCOLATE	VG.
			,			THM	WELL CAP (G	rour
3 (4)								
Walter Committee of the								<u>.</u>
	<u> </u>							
	1							-
			 					-
		<u> </u>						
				1]

GROUNDWATER SAMPLE DATA

Well #	MW-1		_				
Project #	05-00	1	Project Location	4819 7	FOONA	77	
Purge Date	5-9-0	6	Personnel	150	100011		
Purge Method	5-9-C DTSP.BA	fun	Purge Rate (pump only)				
Parameter Meter	OALT		_				
Depth to Bottom	- Depth to Water	= Casing volume	* Volum 0.75"=.023 4"=(= Gallons per CV		
6:074	300	6.77	.17		1.09		
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН		NOTES	
10:19	SMNT	13/1					
10:23	I	1 01	20.5	6-99			
10:25	DEWAT	n					
						· · · · · · · · · · · · · · · · · · ·	
						7700-740	
	776/						
77.						<u> </u>	
							7900
Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing \	ol removed				
V	1		<i>[</i>				
			\		_		
Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers			
1110)	5^6	11.00	DFSP	1/.	Wall #	MALL	

GROUNDWATER SAMPLE DATA

	Well #	08-5	GROUNL	WATER SA	AMPLL DA					
	Project #	05-001		Project Location	4919	TFour	MAREN	-		
	Purge Date Purge Method Parameter	5-9.60 DDS. BA		Personnel Purge Rate (pump only)	lec					
	Meter	OALLTO	<u>~</u>					13.41×.	v = 10).72
	Depth to Bottom	- Depth to Water	= Casing volume	* Volume 0.75"=.023 4"=0		Gallons per CV	٠	13.41×·	, 8 - 10	, –
13.4	15.00	396	1	. !	7		1.6			
,	Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН		NOTES			
	10:38	smi								
	10:40	DEWATE	R 1,25	GAR	M					
	10:42	125600	on							
	16:00	其Re	COUCT	eg 11-	0					
	11:15	DOPTH	WS	AMPLE	10	-95				
	11:17	Stul (6							
	,						AND AND A STORY OF THE STORY OF		ALCOHOL PROPERTY OF THE CONTROL OF T	
•										
				c						
	Well Dewatered (Y/N)	Total Volume Removed (gal)		Vol removed						
	Y	1.25		1]					
	Depth to									
	Water at Sampling	Date Sampled	Time Sampled	1	#/type containers					
	10.45	5-9-06	16:17	BAFUER	LAN	Well #	01	3-5		

Groundwater Level Summary

Project Location:		4919 T700WAR Date: 7.12.06									
Project Number:	:	05-00	OS-001-01A Inspector: LAC								
Meter Type (WLM/IFP) ————————————————————————————————————											
Well Number	Time Open	Time Measured	Time Sample (NP only)	Total Depth (Standard Purge only)	Depth to LNAPL	Depth to Water	Comments				
MW-1	Care	6		6-74		1.81					
110-1	9:15	/·))		6-17		1.01					
Mw-2	9-16	10:10		7.21		2.45?	(0:20-2.42)				
MW-3.	9:18	10:15		7.05		182					
MW-2/	9:25	(0:00		7.40		3-05					
		}									
		<u> </u>									
-											

GROUNDWATER SAMPLE DATA

Well #	MW-1					
	75-001-0	1 A	Project Location	4919	TOW A IM	
Purge Date	7-12-0		Personnel	Ice		
Purge Method	PASP BAR		Purge Rate (pump only)			
Parameter Meter	CALFOR	\				
Depth to Bottom	- Depth to Water	= Casing volume	* Volume 0.75"=.023 4"=0	2=0.17	= Gallons per CV	
6-74	1.81	#	.17	7	. 83	
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES
10:23	STAR	7				
10:25		968	243	7.00	U	
10:30	DEWAT	En			; 	
12:20	SAMPLE	6				
12:45	SAMPLE	- TPT(Ø		Ų	
				· · · · · · · · · · · · · · · · · · ·		
	<u> </u>	I		1		
Well Dewatered (Y/N)	Total Volume Removed (gal)		Vol removed			
Y						
Depth to Water at	Date Sampled	Time Sampled	Sample Method	#/type containers	·. 	
Sampling		12:20	DFSP	4 luon	Well#	Mw -1
	7-12.06	12:25-TANG	BAFCIR	1/4from	-	- / · · · · · · · · · · · · · · · · · ·

Well #	# MW-2								
Purge Date Purge	05-001-0 7-12-0 DISP. BAFO OAKON	1A 6	Project Location Personnel Purge Rate (pump only)	4919 7 Le	FREWATE				
Depth to Bottom	- Depth to Water	= Casing volume	* Volume 0.75"=.023 4"=0	(2"=0.17)	= Gallons per CV	REDO			
1.21	2.42	4.79		7	.8				
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES			
10:15	SMIS								
(4:15	1	5.47	25.2	6.82	Y				
10:21	2	510	24.4	6-78					
10:26	3	521	24×	6-77	Ÿ	A TOTAL OF THE STATE OF THE STA			
14:30	6 Ample								
10:35	SAMPLE	-TPHÌ)						
The control of the co									
				1 201					
Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing \	/ol removed						
M	3	3							
Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers					
	7.12-06	1130 1135-TPH	DFSP. BAFTER	2/4/201	Well#	MW-2			

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers	
	7.12-06	(૧૩૦) ૧૧૩૬–૧૧૫	DFSP. BAFTER	4/00A	

GROUNDWATER SAMPLE DATA

Well #	MW-3						
Project #	05-001-0	OLA	Project Location	4919	TFOUWA Tom		
Purge Date	7.12.0		Personnel	14C			
Purge Method	Disp. B	Airon	Purge Rate -(pump only)				
Parameter Meter	OAKTO	<u>ال</u>					
Depth to Bottom	- Depth to Water	= Casing volume	* Volume 0.75"=.02(4"=0	2"=0.17	= Gallons per CV		
7.05	1.82	5.23			.88		
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES	,
11:55	5 14127				4		
11:57		646	25 f	699	1		
12:00	2	603	25-5	7.05			
12:03	3	589	25-4	7.33	4		
12:16	SAMPLE		W-7/				
12:15	SAMPLE	-TPr	W .				
				and the state			
	1	l	L	<u> </u>			
	1	T		1			

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed
N	J	3

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
	7.12.06	12:10 12:15-TPH	DFSP. Britisia	4/vor

Well# MW - 3

GROUNDWATER SAMPLE DATA Well# Project Project # TFDEWATER Location -001-01A Purge Date Personnel 140 12.06 Purge Method Purge Rate (pump only) Parameter CALTON Meter

Depth to Bottom	- Depth to Water	= Casing volume	* Volume Factor 0.75"=.023 2"=0.17 4"=0.66	= Gallons per CV
7.40	3.05	4.31	. 17	.73

Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES
10:-36	STAN					DIESEZ SMORE
10:40		1124	22-7	7.06	4	
10:44	2	1119	21.5	7.08		
10:47	_3	1147	21.4	7.13		
10:50	SAMPO	:E				
10:55	54mple	=-TP.	MD		1	

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed
N	3	3

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
	7.12.06	10:50 10:55-19	DASP. BAFTOR	4/1015 2/47m

Well#

MW-Y

Appendix C

LABORATORY REPORT AND CHAIN OF CUSTODY FORM

ANALYTICAL REPORT

Job Number: 720-3609-1

Job Description: 4919 Tidewater

For: ERAS Environmental, Inc. 1533 B Street Hayward, CA 94541

Attention: Mr. Dave Siegel

Melissa Brewer
Project Manager I
mbrewer@stl-inc.com
05/17/2006
Revision: 1

Project Manager: Melissa Brewer

Case Narrative for job: 720-J3609-1

Client: ERAS Environmental, Inc.

Date: 05/17/2006

Semi Volatiles GC Analysis

Sample surrogate recovery out of control, matrix interference is evident.

Surrogate recovery for 3609#2 below the control limits . All other calibration and QC criteria were met.

Affected Items 720-3609-A-2-D

720-9004 Batch:

Method: 720-8015B_DRO

METHOD SUMMARY

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Description		Lab Location	Method	Preparation Method
Matrix:	Water			
Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)		STL-SF	SW846 8015	3
	Separatory Funnel Liquid-Liquid Extraction	STL-SF		SW846 3510C
	Silica Gel Cleanup	STL-SF		SW846 3630C

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-3609-1	MW-1	Water	05/09/2006 1129	05/10/2006 1515
720-3609-2	OB-5	Water	05/09/2006 1117	05/10/2006 1515

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-3609-1
 Date Sampled:
 05/09/2006
 1129

 Client Matrix:
 Water
 Date Received:
 05/10/2006
 1515

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-8826 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-8773 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL Date Analyzed: 05/13/2006 0553 Final Weight/Volume: 1 mL

Date Prepared: 05/11/2006 0633 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] 2200 50

Surrogate %Rec Acceptance Limits

o-Terphenyl 93 60 - 130

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-3609-1
 Date Sampled:
 05/09/2006
 1129

 Client Matrix:
 Water
 Date Received:
 05/10/2006
 1515

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-9014 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-8933 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 234 mL Date Analyzed: 05/16/2006 1031 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 1224 Injection Volume:

Column ID: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Diesel Range Organics [C10-C28]
 740
 53

 Surrogate
 %Rec
 Acceptance Limits

 o-Terphenyl
 78
 60 - 130

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Client Sample ID: OB-5

 Lab Sample ID:
 720-3609-2
 Date Sampled:
 05/09/2006
 1117

 Client Matrix:
 Water
 Date Received:
 05/10/2006
 1515

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-9004 Instrument ID: HP DRO3
Preparation: 3510C Prep Batch: 720-8910 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL Date Analyzed: 05/15/2006 1639 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 0527 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] 4200 50

Surrogate %Rec Acceptance Limits

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Client Sample ID: OB-5

 Lab Sample ID:
 720-3609-2
 Date Sampled:
 05/09/2006
 1117

 Client Matrix:
 Water
 Date Received:
 05/10/2006
 1515

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-9014 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-8933 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL Date Analyzed: 05/16/2006 1207 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 1224 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] 2000 50

Surrogate %Rec Acceptance Limits

DATA REPORTING QUALIFIERS

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Lab Section	Qualifier	Description
GC Semi VOA		
	*	LCS, LCSD, MS, MSD, MD, or Surrogate exceeds the control limits

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC Semi VOA				
Prep Batch: 720-8773				
LCS 720-8773/2-A	Lab Control Spike	Water	3510C	
LCSD 720-8773/3-A	Lab Control Spike Duplicate	Water	3510C	
MB 720-8773/1-A	Method Blank	Water	3510C	
720-3609-1	MW-1	Water	3510C	
Prep Batch: 720-8910				
LCS 720-8910/2-A	Lab Control Spike	Water	3510C	
LCSD 720-8910/3-A	Lab Control Spike Duplicate	Water	3510C	
MB 720-8910/1-A	Method Blank	Water	3510C	
720-3609-2	OB-5	Water	3510C	
Prep Batch: 720-8933				
LCS 720-8933/2-B	Lab Control Spike	Water	3510C	
LCSD 720-8933/3-B	Lab Control Spike Duplicate	Water	3510C	
MB 720-8933/1-B	Method Blank	Water	3510C	
720-3609-1	MW-1	Water	3510C	
720-3609-2	OB-5	Water	3510C	
Analysis Batch:720-8826				
LCS 720-8773/2-A	Lab Control Spike	Water	8015B	720-8773
LCSD 720-8773/3-A	Lab Control Spike Duplicate	Water	8015B	720-8773
MB 720-8773/1-A	Method Blank	Water	8015B	720-8773
720-3609-1	MW-1	Water	8015B	720-8773
Analysis Batch:720-9004				
LCS 720-8910/2-A	Lab Control Spike	Water	8015B	720-8910
LCSD 720-8910/3-A	Lab Control Spike Duplicate	Water	8015B	720-8910
MB 720-8910/1-A	Method Blank	Water	8015B	720-8910
720-3609-2	OB-5	Water	8015B	720-8910
Analysis Details 700 0044				
Analysis Batch:720-9014 LCS 720-8933/2-B	Lab Control Spike	Water	8015B	720-8933
LCSD 720-8933/3-B	Lab Control Spike Duplicate	Water	8015B	720-8933
MB 720-8933/1-B	Method Blank	Water	8015B	720-8933
720-3609-1	MW-1	Water	8015B	720-8933
720-3609-2	OB-5	Water	8015B	720-8933
	- · -			. = 2 2000

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Surrogate Recovery Report

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Client Matrix: Water

Lab Sample ID	Client Sample	(OTPH) (%Rec)		
720-3609-1	MW-1	93		
720-3609-2	OB-5	2 *		
LCS 720-8773/2-A		93		
LCS 720-8910/2-A		86		
LCS 720-8933/2-B		83		
LCSD 720-8773/3-A		95		
LCSD 720-8910/3-A		84		
LCSD 720-8933/3-B		82		
MB 720-8773/1-A		82		
MB 720-8910/1-A		84		
MB 720-8933/1-B		77		
Surrogate		Acceptance Limits		
(OTPH) o-Terphenyl		60 - 130		

Quality Control Results

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Method Blank - Batch: 720-8773 Method: 8015B Preparation: 3510C

Lab Sample ID: MB 720-8773/1-A Analysis Batch: 720-8826 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-8773 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

Date Analyzed: 05/11/2006 1611 Final Weight/Volume: 1 mL

Date Prepared: 05/11/2006 0633 Injection Volume:

Column ID: PRIMARY

Analyte Result Qual RL

Diesel Range Organics [C10-C28] ND 50

Surrogate % Rec Acceptance Limits

o-Terphenyl 82 60 - 130

Laboratory Control/ Method: 8015B
Laboratory Control Duplicate Recovery Report - Batch: 720-8773 Preparation: 3510C

LCS Lab Sample ID: LCS 720-8773/2-A Analysis Batch: 720-8826 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-8773 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

Date Analyzed: 05/11/2006 1236 Final Weight/Volume: 1 mL

Date Prepared: 05/11/2006 0633 Injection Volume:

Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-8773/3-A Analysis Batch: 720-8826 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-8773 Lab File ID: N/A

Dilution: 1.0 Units:ug/L Initial Weight/Volume: 250 mL Date Analyzed: 05/11/2006 1303 Final Weight/Volume: 1 mL

Date Prepared: 05/11/2006 0633 Final Weight/Volume: 1 mL Injection Volume:

Column ID: PRIMARY

<u>% Rec.</u>

LCS **RPD** RPD Limit LCS Qual LCSD Qual Analyte LCSD Limit Diesel Range Organics [C10-C28] 99 99 60 - 130 0 30 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 60 - 130 93 o-Terphenyl 95

Quality Control Results

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Method Blank - Batch: 720-8910 Method: 8015B Preparation: 3510C

Lab Sample ID: MB 720-8910/1-A Analysis Batch: 720-9004 Instrument ID: HP DRO3

Client Matrix: Water Prep Batch: 720-8910 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL
Date Analyzed: 05/15/2006 1231 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 0527 Injection Volume:

Column ID: PRIMARY

Analyte Result Qual RL

Diesel Range Organics [C10-C28] ND 50

Surrogate % Rec Acceptance Limits

o-Terphenyl 84 60 - 130

Laboratory Control/ Method: 8015B
Laboratory Control Duplicate Recovery Report - Batch: 720-8910 Preparation: 3510C

LCS Lab Sample ID: LCS 720-8910/2-A Analysis Batch: 720-9004 Instrument ID: HP DRO3

Client Matrix: Water Prep Batch: 720-8910 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

Date Analyzed: 05/15/2006 1258 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 0527 Injection Volume:

Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-8910/3-A Analysis Batch: 720-9004 Instrument ID: HP DRO3

Client Matrix: Water Prep Batch: 720-8910 Lab File ID: N/A

Dilution: 1.0 Units:ug/L Initial Weight/Volume: 250 mL Date Analyzed: 05/15/2006 1326 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 0527 Injection Volume:

Column ID: PRIMARY

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Diesel Range Organics [C10-C28] 75 72 60 - 130 5 30

Surrogate LCS % Rec LCSD % Rec Acceptance Limits
o-Terphenyl 86 84 60 - 130

PRIMARY

PRIMARY

Column ID:

Job Number: 720-3609-1 Client: ERAS Environmental. Inc.

Method Blank - Batch: 720-8933 Method: 8015B Preparation: 3510C

Lab Sample ID: MB 720-8933/1-B Analysis Batch: 720-9014 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-8933 Lab File ID: N/A

Units: ug/L Dilution: 1.0 Initial Weight/Volume: 250 mL Date Analyzed: 05/16/2006 1004 Final Weight/Volume: 1 mL

Date Prepared: 05/15/2006 1224 Injection Volume:

Qual Analyte Result RL

Diesel Range Organics [C10-C28] ND 50

Surrogate % Rec Acceptance Limits

o-Terphenyl 77 60 - 130

Laboratory Control/ Method: 8015B Laboratory Control Duplicate Recovery Report - Batch: 720-8933 Preparation: 3510C

LCS Lab Sample ID: LCS 720-8933/2-B Analysis Batch: 720-9014 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-8933 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

05/16/2006 1004 Final Weight/Volume: Date Analyzed: 1 mL Date Prepared: 05/15/2006 1224 Injection Volume:

Column ID:

83

LCSD Lab Sample ID: LCSD 720-8933/3-B Analysis Batch: 720-9014 HP DRO5 Instrument ID:

Client Matrix: Water Prep Batch: 720-8933 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

Date Analyzed: 05/16/2006 1031 Final Weight/Volume: 1 mL Date Prepared: 05/15/2006 1224 Injection Volume:

Column ID: **PRIMARY**

% Rec.

LCS **RPD** RPD Limit LCS Qual LCSD Qual Analyte LCSD Limit Diesel Range Organics [C10-C28] 82 81 60 - 130 2 30 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 60 - 130

82

o-Terphenyl

STL Sacramento

880 Riverside Parkway

West Sacramento, CA 95605

40909

phone 916-373-5600 fax 916-372-1059																			<u> </u>	Severn Trent Laboratories,	Inc.
Client Contact	Project Manager: Dave Siegel				Site Contact: Bob Lawlor Date:)ate:					COC No:						
ERAS Environmental, Inc	Tel/Fax:			Lab Contact: Carri				Carrier:					of COCs								
1533 B Street		Analysis T	`urnaround	Time		П		Т												Job No.	
Hayward, CA 94541	Calendar	(C) or Wor	k Days (W)	,	w	$\ \ $:												
510.247.9885	17/	XT if different f	rom Below																		
510.886.5399		2	weeks]]											SDG No.	
Project Name: 4919 Tidewater	Ι <u>Υ</u>	1	week					_	.								ŀ				
Site: 4919 Tidewater		:	2 days			ll		၂ ဒီ												1	
P O # 05-001-01B	1 \square		l day			ם		silca													
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered Sar	TPHD	TPHD with silca Gel												Sample Specific Notes:	
						П			П												
MW-1	5.9.06	11:29	Liter	w	1	П	х	х													
OB-5	5.9.06	11:17	Liter	W	1		Х	х													
						Ш															
						Ц															
						Ц															
						Ц											Ш				
			,			Ц															
						Ц											Ш				
						Ц															
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4;	4=HNO3; 5	5=NaOH; 6	= Other																		
Possible Hazard Identification Non-Hazard Flammable	Ebio Irritant		oiron P	□ _U ,	· Iras carras				lispos urn To						ed if al By l					ed longer than 1 month) ve For Months	
Special Instructions/QC Requirements & Commer						eed				Cilei	n		DI	sposa	пруг	au			AICHN	re For Wioritis	
Special ribit dectors QC requirements & Comme	iiii GEGE	ALID: 10	000100421	W 12 W1	n aiso n	ccu	a LDI	air	ii Di.												
., 1				50	0-0	6														Tong 20C	
Tel/Inquished by:	Company:	-<		Date/Tir			Receive	ed b	y:						Comp	any:	. ()	<u> </u>	· · · · · · ·	Date/Time: 5/10/06 0855 Date/Time: 5/10/06 15/5	
Retinquished by:	En m Company:		,	Date/Tir	ne:		Receive	ed b		R		1/	•		Comp	any:	<u></u> /	· ·		Date/Time:	
Relinquished by:	1	ンンア		Date/Tit		_				1	ull		1		Com	570	ٔ سرا	21		19/06 1915	
nomiquiance of.	Company:			Date/111	irc.		Receive	cu o	у.						Comp	any:				Date/Time.	

LOGIN SAMPLE RECEIPT CHECK LIST

Client: ERAS Environmental, Inc. Job Number: 720-3609-1

Login Number: 3609

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-4574-1

Job Description: 4919 Tidewater

For: ERAS Environmental, Inc. 1533 B Street Hayward, CA 94541

Attention: Mr. Dave Siegel

Melissa Brewer Project Manager I mbrewer@stl-inc.com 07/26/2006

Project Manager: Melissa Brewer

EXECUTIVE SUMMARY - Detections

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-4574-1	MW-1				
MTBE		6.2	0.50	ug/L	8260B
Diesel Range Orga	nics [C10-C28]	100	50	ug/L	8015B
720-4574-2	MW-2				
MTBE		3.6	0.50	ug/L	8260B
	ganics (GRO)-C5-C12	330	50	ug/L	8260B
Diesel Range Orga	nics [C10-C28]	5900	50	ug/L	8015B
720-4574-3	MW-3				
MTBE		47	0.50	ug/L	8260B
	ganics (GRO)-C5-C12	280	50	ug/L	8260B
Diesel Range Orga		16000	250	ug/L	8015B
720-4574-4	MW-4				
MTBE		0.93	0.50	ug/L	8260B
	ganics (GRO)-C5-C12	250	50	ug/L	8260B
Diesel Range Orga		5200	50	ug/L	8015B
5 - 5-				J	

METHOD SUMMARY

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Description		Lab Location	Method	Preparation Method
Matrix: Wa	ater			
Volatile Organic C	Compounds by GC/MS	STL-SF	SW846 82	260B
Purge	e-and-Trap	STL-SF		SW846 5030B
Nonhalogenated (Range Organics)	Organics using GC/FID -Modified (Diesel	STL-SF	SW846 80)15B
•	ratory Funnel Liquid-Liquid Extraction Gel Cleanup	STL-SF STL-SF		SW846 3510C SW846 3630C

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Lab Sample ID	Client Sample ID	ient Sample ID Client Matrix		Date/Time Received
720-4574-1	MW-1	Water	07/12/2006 1220	07/13/2006 1545
720-4574-2	MW-2	Water	07/12/2006 1030	07/13/2006 1545
720-4574-3	MW-3	Water	07/12/2006 1210	07/13/2006 1545
720-4574-4	MW-4	Water	07/12/2006 1050	07/13/2006 1545

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-4574-1
 Date Sampled:
 07/12/2006
 1220

 Client Matrix:
 Water
 Date Received:
 07/13/2006
 1545

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-11178 Instrument ID: Saturn 3900B

Preparation: 5030B Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/19/2006 2103 Final Weight/Volume: 10 mL

Date Prepared: 07/19/2006 2103

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
MTBE	6.2		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	%Rec		Acceptance Limits
Toluene-d8	98		77 - 121
1,2-Dichloroethane-d4	73		73 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-4574-2
 Date Sampled:
 07/12/2006 1030

 Client Matrix:
 Water
 Date Received:
 07/13/2006 1545

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Preparation: 5030B Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/20/2006 1922 Final Weight/Volume: 40 mL

Date Prepared: 07/20/2006 1922

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
MTBE	3.6		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	330		50
Surrogate	%Rec		Acceptance Limits
Toluene-d8	102		77 - 121
1,2-Dichloroethane-d4	116		73 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-4574-3
 Date Sampled:
 07/12/2006
 1210

 Client Matrix:
 Water
 Date Received:
 07/13/2006
 1545

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Preparation: 5030B Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/20/2006 1948 Final Weight/Volume: 40 mL

Date Prepared: 07/20/2006 1948

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
MTBE	47		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	280		50
Surrogate	%Rec		Acceptance Limits
Toluene-d8	100		77 - 121
1,2-Dichloroethane-d4	108		73 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-4574-4
 Date Sampled:
 07/12/2006 1050

 Client Matrix:
 Water
 Date Received:
 07/13/2006 1545

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-11178 Instrument ID: Saturn 3900B

Preparation: 5030B Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Initial Weight/Volume: 10 mL Date Analyzed: 07/19/2006 2221 Final Weight/Volume: 10 mL

Date Prepared: 07/19/2006 2221

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
MTBE	0.93		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	250		50
Surrogate	%Rec		Acceptance Limits
Toluene-d8	96		77 - 121
1,2-Dichloroethane-d4	77		73 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-4574-1
 Date Sampled:
 07/12/2006
 1220

 Client Matrix:
 Water
 Date Received:
 07/13/2006
 1545

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-11123 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-10954 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL Date Analyzed: 07/17/2006 1632 Final Weight/Volume: 1 mL

Date Prepared: 07/14/2006 0855 Injection Volume:

Column ID: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Diesel Range Organics [C10-C28]
 100
 50

 Surrogate
 %Rec
 Acceptance Limits

 o-Terphenyl
 84
 60 - 130

STL San Francisco Page 9 of 25 07/26/2006

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-4574-2
 Date Sampled:
 07/12/2006 1030

 Client Matrix:
 Water
 Date Received:
 07/13/2006 1545

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-11123 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-10954 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 07/17/2006 1700 Final Weight/Volume: 1 mL

Date Prepared: 07/14/2006 0855 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] 5900 50

Surrogate %Rec Acceptance Limits

o-Terphenyl 79 60 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-4574-3
 Date Sampled:
 07/12/2006
 1210

 Client Matrix:
 Water
 Date Received:
 07/13/2006
 1545

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-11123 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-10954 Lab File ID: N/A

Dilution: 5.0 Initial Weight/Volume: 250 mL
Date Analyzed: 07/17/2006 1728 Final Weight/Volume: 1 mL

Date Prepared: 07/14/2006 0855 Injection Volume:

Column ID: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Diesel Range Organics [C10-C28]
 16000
 250

 Surrogate
 %Rec
 Acceptance Limits

 o-Terphenyl
 0
 D
 60 - 130

RL

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Client Sample ID: MW-4

Analyte

Lab Sample ID: 720-4574-4 Date Sampled: 07/12/2006 1050 Client Matrix: Date Received: Water 07/13/2006 1545

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

HP DRO5 Method: 8015B Analysis Batch: 720-11123 Instrument ID: Preparation: Prep Batch: 720-10954 N/A 3510C Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 250 mL 1 mL

Qualifier

Final Weight/Volume: Date Analyzed: 07/17/2006 1755 Date Prepared: 07/14/2006 0855

Injection Volume: Column ID: **PRIMARY**

Result (ug/L) Diesel Range Organics [C10-C28] 5200 50

Surrogate %Rec Acceptance Limits

80 60 - 130 o-Terphenyl

DATA REPORTING QUALIFIERS

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Lab Section	Qualifier	Description
GC Semi VOA		
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-111	178			
LCS 720-11178/12	Lab Control Spike	Water	8260B	
LCSD 720-11178/11	Lab Control Spike Duplicate	Water	8260B	
MB 720-11178/13	Method Blank	Water	8260B	
720-4574-1	MW-1	Water	8260B	
720-4574-4	MW-4	Water	8260B	
720-4574-4MS	Matrix Spike	Water	8260B	
720-4574-4MSD	Matrix Spike Duplicate	Water	8260B	
Analysis Batch:720-112	208			
LCS 720-11208/20	Lab Control Spike	Water	8260B	
LCSD 720-11208/19	Lab Control Spike Duplicate	Water	8260B	
MB 720-11208/21	Method Blank	Water	8260B	
720-4574-2	MW-2	Water	8260B	
720-4574-3	MW-3	Water	8260B	
720-4599-A-13 MS	Matrix Spike	Water	8260B	
720-4599-A-13 MSD	Matrix Spike Duplicate	Water	8260B	
GC Semi VOA				
Prep Batch: 720-10954				
LCS 720-10954/2-B	Lab Control Spike	Water	3510C	
LCSD 720-10954/3-B	Lab Control Spike Duplicate	Water	3510C	
MB 720-10954/1-B	Method Blank	Water	3510C	
720-4574-1	MW-1	Water	3510C	
720-4574-2	MW-2	Water	3510C	
720-4574-3	MW-3	Water	3510C	
720-4574-4	MW-4	Water	3510C	
Analysis Batch:720-111	123			
LCS 720-10954/2-B	Lab Control Spike	Water	8015B	720-10954
LCSD 720-10954/3-B	Lab Control Spike Duplicate	Water	8015B	720-10954
MB 720-10954/1-B	Method Blank	Water	8015B	720-10954
720-4574-1	MW-1	Water	8015B	720-10954
720-4574-2	MW-2	Water	8015B	720-10954
720-4574-3	MW-3	Water	8015B	720-10954
720-4574-4	MW-4	Water	8015B	720-10954
. 20 7017 7	14144 ユ	vvaloi	30100	720 10007

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Surrogate Recovery Report

8260B Volatile Organic Compounds by GC/MS

Client Matrix: Water

Lab Sample ID		Client Sample		(12DCE) (%Rec)	(TOL) (%Rec)
720-4574-1		MW-1		73	98
720-4574-2		MW-2		116	102
720-4574-3		MW-3		108	100
720-4574-4		MW-4		77	96
720-4574-4MS		MW-4		79	96
720-4574-4MSI	D	MW-4		73	98
720-4599-A-13	MS			96	103
720-4599-A-13	MSD			95	101
LCS 720-11178	3/12			76	99
LCS 720-11208	3/20			95	107
LCSD 720-1117	78/11			75	99
LCSD 720-1120	08/19			98	97
MB 720-11178/	MB 720-11178/13			77	100
MB 720-11208/	21			104	104
Surrogate				ı	Acceptance Limits
(12DCE) (TOL)	1,2-Dichlord Toluene-d8				73 - 130 77 - 121

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Surrogate Recovery Report

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Client Matrix: Water

Lab Sample ID	Client Sample	(OTPH) (%Rec)	
720-4574-1	MW-1	84	
720-4574-2	MW-2	79	
720-4574-3	MW-3	0 D	
720-4574-4	MW-4	80	
LCS 720-10954/2-B		69	
LCSD 720-10954/3-B		73	
MB 720-10954/1-B		82	
Surrogate		Acceptance Limits	
(OTPH) o-Terph	enyl	60 - 130	

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Method Blank - Batch: 720-11178

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-11178/13

Client Matrix: Water Dilution: 1.0

Date Analyzed: 07/19/2006 2033 Date Prepared: 07/19/2006 2033 Analysis Batch: 720-11178

Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 3900B

Lab File ID: c:\saturnws\data\200607\07

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
MTBE	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	% Rec	Acceptance Lir	nits
Toluene-d8	100	77 - 121	
1,2-Dichloroethane-d4	77	73 - 130	

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Laboratory Control/ Method: 8260B
Laboratory Control Duplicate Recovery Report - Batch: 720-11178 Preparation: 5030B

Date Prepared:

07/19/2006 1941

LCS Lab Sample ID: LCS 720-11178/12 Analysis Batch: 720-11178 Instrument ID: Saturn 3900B

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\0

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL Date Analyzed: 07/19/2006 1941 Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-11178/11 Analysis Batch: 720-11178 Instrument ID: Saturn 3900B

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\071

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL Date Analyzed: 07/19/2006 2007 Final Weight/Volume: 10 mL Date Prepared: 07/19/2006 2007

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit Benzene 115 112 69 - 129 3 25 Toluene 128 126 70 - 130 2 25 **MTBE** 113 130 65 - 165 14 25 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 99 99 77 - 121 Toluene-d8 1,2-Dichloroethane-d4 76 75 73 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-11178 Preparation: 5030B

MS Lab Sample ID: 720-4574-4 Analysis Batch: 720-11178 Instrument ID: Saturn 3900B

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\(

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/19/2006 2247 Final Weight/Volume: 10 mL Date Prepared: 07/19/2006 2247

MSD Lab Sample ID: 720-4574-4 Analysis Batch: 720-11178 Instrument ID: Saturn 3900B

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/19/2006 2313 Final Weight/Volume: 10 mL Date Prepared: 07/19/2006 2313

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Benzene	95	102	69 - 129	7	20	
Toluene	109	121	70 - 130	10	20	
MTBE	110	113	65 - 165	3	20	
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits
Toluene-d8		96	98		77	7 - 121
1,2-Dichloroethane-d4		79	73		73	3 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Method Blank - Batch: 720-11208 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-11208/21 Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/20/2006 1052 Final Weight/Volume: 40 mL Date Prepared: 07/20/2006 1052

Analyte	Result	Qual	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
MTBE	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	% Rec	Acceptance Li	imits
Toluene-d8	104	77 - 121	
1,2-Dichloroethane-d4	104	73 - 130	

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Laboratory Control/ Method: 8260B
Laboratory Control Duplicate Recovery Report - Batch: 720-11208 Preparation: 5030B

LCS Lab Sample ID: LCS 720-11208/20 Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/20/2006 0932 Final Weight/Volume: 40 mL

Date Analyzed: 07/20/2006 0932 Final Weight/Volume: 40 mL Date Prepared: 07/20/2006 0932

LCSD Lab Sample ID: LCSD 720-11208/19 Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\072

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/20/2006 0959 Final Weight/Volume: 40 mL

Date Prepared: 07/20/2006 0959

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit Benzene 92 97 69 - 129 6 25 Toluene 100 70 - 130 25 101 1 **MTBE** 95 65 - 165 25 110 14 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 107 97 77 - 121 Toluene-d8 1,2-Dichloroethane-d4 95 98 73 - 130

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-11208 Preparation: 5030B

MS Lab Sample ID: 720-4599-A-13 MS Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\(

Dilution: 5.0 Initial Weight/Volume: 40 mL

Date Analyzed: 07/20/2006 1146 Final Weight/Volume: 40 mL Date Prepared: 07/20/2006 1146

MSD Lab Sample ID: 720-4599-A-13 MSD Analysis Batch: 720-11208 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200607\07

Dilution: 5.0 Initial Weight/Volume: 40 mL

Date Analyzed: 07/20/2006 1213 Final Weight/Volume: 40 mL Date Prepared: 07/20/2006 1213

% Rec. MS MSD RPD **RPD** Limit MS Qual MSD Qual Analyte Limit Benzene 102 100 69 - 129 2 20 Toluene 106 108 70 - 130 1 20 **MTBE** 105 105 65 - 165 0 20 Surrogate MS % Rec MSD % Rec Acceptance Limits Toluene-d8 103 101 77 - 121 1,2-Dichloroethane-d4 96 95 73 - 130

60 - 130

Job Number: 720-4574-1 Client: ERAS Environmental. Inc.

Method Blank - Batch: 720-10954 Method: 8015B Preparation: 3510C

Lab Sample ID: MB 720-10954/1-B Analysis Batch: 720-11123 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-10954 Lab File ID: N/A

Units: ug/L Initial Weight/Volume: 250 mL Dilution: 1.0 Date Analyzed: 07/14/2006 2339 Final Weight/Volume: 1 mL

Date Prepared: 07/14/2006 0855 Injection Volume:

Column ID: **PRIMARY**

Result Qual RL Analyte Diesel Range Organics [C10-C28] ND 50

Surrogate % Rec Acceptance Limits

o-Terphenyl 82 60 - 130

Laboratory Control/ Method: 8015B Laboratory Control Duplicate Recovery Report - Batch: 720-10954 Preparation: 3510C

LCS Lab Sample ID: LCS 720-10954/2-B Analysis Batch: 720-11123 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-10954 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

07/14/2006 2312 Date Analyzed: Final Weight/Volume: 1 mL Date Prepared: 07/14/2006 0855 Injection Volume:

Column ID:

69

PRIMARY

LCSD Lab Sample ID: LCSD 720-10954/3-B Analysis Batch: 720-11123 Instrument ID: HP DRO5

Prep Batch: 720-10954 Client Matrix: Water Lab File ID: N/A Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

Date Analyzed: 07/14/2006 2339 Final Weight/Volume: 1 mL

Injection Volume: Date Prepared: 07/14/2006 0855

Column ID: **PRIMARY**

% Rec. LCS **RPD** RPD Limit LCS Qual LCSD Qual Analyte LCSD Limit Diesel Range Organics [C10-C28] 83 84 60 - 130 1 30 Surrogate LCS % Rec LCSD % Rec Acceptance Limits

73

Calculations are performed before rounding to avoid round-off errors in calculated results.

o-Terphenyl

STL Sacramento

880 Riverside Parkway

720-4574 Chain of Custody Record

SEVERN STL

TRENT STL

Severn Trent Laboratories, Inc.

West Sacramento, CA 95605

,, 000	.,			
	016 373	5600	fax 916	-372-1059

phone 916-373-5600 fax 916-372-1059																						Severn Trent Laboratories, Inc.
Client Contact	Project Ma	anager: Da	ve Siegel			Sit	te Cr	ontac	t: Bo	b Lav	vlor			D	ate:	7.1	2.06					COC No:
ERAS Environmental, Inc	Tel/Fax:					La	ıb C	ontac	et:					C	arrie	r:						of COCs
1533 B Street		Analysis T	urnaround '	Time		П																Job No.
Hayward, CA 94541	Calendar (C) or Wor	k Days (W)	\	W							1						-				
510.247.9885	T٨	AT if different fi	rom Below				8		ļ													OD O M
510.886.5399		2	weeks				y 82															SDG No.
Project Name: 4919 Tidewater		1	week			Ш	BEb											i				
Site:	. □		2 days			۽	MT									İ						
P O # 05-001-01A			l day	T 1		- Jul	TEX															
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered 9	TPHG/BTEX/MTBE by 8260	TPHD														Sample Specific Notes:
MW-1	7.12.06	12:20	Water	VOA-2	4		Х															
MW-1	7.12.06	12:25	Water	Liter	1			х											\perp	\perp	$oldsymbol{\perp}$	
MW-2	7.12.06	10:30	Water	VOA-2	4		х							_	1				\perp	\perp	\perp	
MW-2	7.12.06	10:35	Water	Liter	2			x					┸	\perp					\perp	$oldsymbol{\perp}$	\perp	
MW-3	7.12.06	12:10	Water	VOA-2	4		х	Ш		╧						_	Ш	_	\perp	$oldsymbol{\perp}$	ot	
MW-3	7.12.06	12:15	Water	Liter	2		L	х		_	Щ		\perp		\perp	L		_	\perp	\perp	$oldsymbol{\perp}$	
MW-4	7.12.06	10:50	Water	VOA-2	4		х		_		Ш		_						\bot	\perp	\perp	
MW-4	7.12.06	10:55	Water	Liter	2		L	х			Ш		_				Ц	\perp	\downarrow	\perp	$oldsymbol{\perp}$	
							L	\sqcup		<u> </u>	Ш								\perp	\perp	$oldsymbol{\perp}$	
							L	Ш		\perp			\perp					_	\perp	┸	ot	
								Ш							_		Ц	\perp	\perp	ot	$oldsymbol{\perp}$	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4;	4=HNO3;	5=NaOH; (6= Other				L								丄				丄		1_	
Possible Hazard Identification																			s are	_		d longer than 1 month)
Non-Hazard Flammable	Skin Irritani	<u>, </u>	Poison B		nknown				Returr		Clien	<u> </u>		_ D	spos	al B	y Lab			Ai	rchiv	re For Months
Special Instructions/QC Requirements & Comme PLEASE NOTE: This invoice is to billed directly	ents: GLOF to Bob Lav	3AL ID: T(vlor; 4919 T)600100451 Fidewater, U	WE w Init B, O.	ill also akland	need	dat	EDF a	and P	DF.												
BEAGE																	167	z i D		ンド		
11				15/ a	13,0	طا	Jar.		d b												<u>_</u> .	Date/Time: '
Rel/Inquished by:	Company:	A		Date/II	.me: / ≥ 2.5	<u> </u>	l Red	St	d by:	1						C01	mpany	7	57	_		Date/Time: 7/13/06 1125
Reininguished by:	Company:	100		Date/Ti	ime:	45	Red	ceive	by:	6	ß	7	//		•	Cor	mpany S	y: /		į.		Date/Time:
Dalla Pakad bu	Company:	<u>~>1</u>		///3/0 Date/Ti	ime:		Re	ceive	d by:	-/	15	M	Įl.	_		+	mpany			<u>/</u>	—	0ate/Time:
Relinquished by:	Company.								•													1

LOGIN SAMPLE RECEIPT CHECK LIST

Client: ERAS Environmental, Inc. Job Number: 720-4574-1

Login Number: 4574

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

07/26/2006

Appendix D

GEOTRACKER UPLOAD CONFIRMATION FORMS

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 2635346055

Date/Time of Submittal: 10/19/2006 12:12:57 PM

Facility Global ID: T0600100451

Facility Name: DI SALVO TRUCKING

Submittal Title: 4919 - resample Q2.06 - EDF

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

DI SALVO TRUCKING Regional Board - Case #: 01-0495 SAN FRANCISCO BAY RWQCB (REGION 2) 4919 TIDEWATER AV E OAKLAND, CA 94601 Local Agency (lead agency) - Case #: 3687

ALAMEDA COUNTY LOP - (BC)

CONF# **TITLE QUARTER** 2635346055 4919 - resample Q2.06 - EDF Q2 2006

SUBMITTED BY **SUBMIT DATE** STATUS

PENDING REVIEW Kasey Cordoza 10/19/2006

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED 2 2 # FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 2 SAMPLE MATRIX TYPES WATER

METHOD QA/QC REPORT

METHODS USED SW8015B TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED:

- SW8015B REQUIRES MTBE TO BE TESTED
- SW8015B REQUIRES ETBE TO BE TESTED
- SW8015B REQUIRES TAME TO BE TESTED
- SW8015B REQUIRES DIPE TO BE TESTED
- SW8015B REQUIRES TBA TO BE TESTED
- SW8015B REQUIRES DCA12 TO BE TESTED
- SW8015B REQUIRES EDB TO BE TESTED
- SW8015B REQUIRES BZ TO BE TESTED
- SW8015B REQUIRES BZME TO BE TESTED
- SW8015B REQUIRES EBZ TO BE TESTED
- SW8015B REQUIRES XYLENES TO BE TESTED

LAB NOTE DATA QUALIFIERS

Υ

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS 0 METHOD HOLDING TIME VIOLATIONS 0

1 of 2 10/19/2006 12:13 PM

			1
LAB BLANK DETECTIONS A	ABOVE REPORTING DETECTION LI	MIT	0
LAB BLANK DETECTIONS			0
DO ALL BATCHES WITH TH	HE 8021/8260 SERIES INCLUDE TH	HE FOLLOWING?	
- LAB METHOD BLANK			Υ
- MATRIX SPIKE			N
- MATRIX SPIKE DUPLICA	ATE		N
- BLANK SPIKE			Υ
- SURROGATE SPIKE - I	NON-STANDARD SURROGATE USE	D	Υ
WATER SAMPLES FOR	8021/8260 SERIES		
	SPIKE DUPLICATE(S) % RECOVERY	' BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX S	SPIKE DUPLICATE(S) RPD LESS TH	AN 30%	n/a
SURROGATE SPIKES % RE	COVERY BETWEEN 85-115%		Υ
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY BE	TWEEN 70-130%	Υ
SOIL SAMPLES FOR 80	21/8260 SERIES		
MATRIX SPIKE / MATRIX S	SPIKE DUPLICATE(S) % RECOVERY	' BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX S	SPIKE DUPLICATE(S) RPD LESS TH	AN 30%	n/a
SURROGATE SPIKES % RE	COVERY BETWEEN 70-125%		n/a
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY BE	TWEEN 70-130%	n/a
FIELD QC SAMPLES			
<u>SAMPLE</u>	COLLECTED	DETECTIONS >	REPDL
QCTB SAMPLES	N	0	
QCEB SAMPLES	N	0	
QCAB SAMPLES	N	0	

Logged in as eras (AUTH_RP)

CONTACT SITE <u>ADMINISTRATOR</u>.

2 of 2 10/19/2006 12:13 PM

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

4919 - resample Q2.06 -**Submittal Title:**

Geo_well

Submittal Date/Time: 10/19/2006 12:09:02 PM

Confirmation

Number:

3531039178

Back to Main Menu

Logged in as eras (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

10/19/2006 12:09 PM 1 of 1

0

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 7583021223

Date/Time of Submittal: 9/21/2006 1:32:21 PM

Facility Global ID: T0600100451

Facility Name: DI SALVO TRUCKING

Submittal Title: 4919 - Q3.06 - EDF - 9.21.06

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

DI SALVO TRUCKING

4919 TIDEWATER AV E

OAKLAND, CA 94601

Regional Board - Case #: 01-0495

SAN FRANCISCO BAY RWQCB (REGION 2)

Local Agency (lead agency) - Case #: 3687

ALAMEDA COUNTY LOP - (BC)

 CONF #
 TITLE
 QUARTER

 7583021223
 4919 - Q3.06 - EDF - 9.21.06
 Q3 2006

SUBMITTED BY SUBMIT DATE STATUS

Kasey Cordoza 9/21/2006 PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED 4
FIELD POINTS WITH DETECTIONS 4

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 3

SAMPLE MATRIX TYPES WATER

METHOD QA/QC REPORT

METHODS USED SW8015B,SW8260B

TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED:

- SW8015B REQUIRES ETBE TO BE TESTED
- SW8015B REQUIRES TAME TO BE TESTED
- SW8015B REQUIRES DIPE TO BE TESTED
- SW8015B REQUIRES TBA TO BE TESTED
- SW8015B REQUIRES DCA12 TO BE TESTED
- SW8015B REQUIRES EDB TO BE TESTED
- SW8260B REQUIRES ETBE TO BE TESTED
- SW8260B REQUIRES TAME TO BE TESTED
- SW8260B REQUIRES DIPE TO BE TESTED
- SW8260B REQUIRES TBA TO BE TESTED
- SW8260B REQUIRES DCA12 TO BE TESTED
- SW8260B REQUIRES EDB TO BE TESTED

SWOZOOD REGORNES EDD TO DE TESTE

LAB NOTE DATA QUALIFIERS Y

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS

1 of 2 9/21/2006 1:34 PM

METHOD HOLDING TIME V	VIOLATIONS		0				
LAB BLANK DETECTIONS	ABOVE REPORTING DETECTION	LIMIT	0				
LAB BLANK DETECTIONS			0				
DO ALL BATCHES WITH T	HE 8021/8260 SERIES INCLUDE	THE FOLLOWING?					
- LAB METHOD BLANK			Υ				
- MATRIX SPIKE			N				
- MATRIX SPIKE DUPLIC	ATE		N				
- BLANK SPIKE			Υ				
- SURROGATE SPIKE -	NON-STANDARD SURROGATE U	JSED	Υ				
WATER SAMPLES FOR	8021/8260 SERIES						
	SPIKE DUPLICATE(S) % RECOVE	ERY BETWEEN 65-135%	Υ				
	SPIKE DUPLICATE(S) RPD LESS		Υ				
SURROGATE SPIKES % RI	ECOVERY BETWEEN 85-115%		N				
BLANK SPIKE / BLANK SP	IKE DUPLICATES % RECOVERY	BETWEEN 70-130%	Υ				
SOIL SAMPLES FOR 80	121/8260 SERIES						
	SPIKE DUPLICATE(S) % RECOVE	ERY BETWEEN 65-135%	n/a				
	SPIKE DUPLICATE(S) RPD LESS		n/a				
	ECOVERY BETWEEN 70-125%		n/a				
BLANK SPIKE / BLANK SP	IKE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a				
FIELD QC SAMPLES							
SAMPLE	<u>COLLECTED</u>	DETECTIONS >	REPDL				
OCTD CAMPLEC	QCTB SAMPLES N 0						
QCTB SAMPLES							
QCEB SAMPLES	N	0					

Logged in as eras (AUTH_RP)

CONTACT SITE <u>ADMINISTRATOR</u>.

2 of 2 9/21/2006 1:34 PM

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

. 4919 - Q3.06 - Geo_well -

Submittal Title: 9.21.06

Submittal Date/Time: 9/21/2006 1:26:59 PM

<u>Confirmation</u>

Number:

7176701426

Back to Main Menu

Logged in as eras (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

1 of 1 9/21/2006 1:30 PM