Aquatic & Environmental Applications

July 9, 1999

Plemoving ORC & Dampling Showed elevated

Green to described in May 1 3 to 5

REF: 1004-2Q.99

Sheep to observed on a number gwells

Mr. Barney Chan
Environmental Health

Alameda County

1131 Harbor Bay Pkwy

Alameda, CA 94502-6577

Pedory only regative in May 3 otherwise oxidity

Conditions exect.

SUBJECT: QUARTERLY MONITORING REPORT MOTOR PARTNERS, 1234 40TH AVE., OAKLAND, CA

Dear Barney:

We have enclosed a copy of the Quarterly Monitoring report prepared for the Motor Partners site, 1234 40th Ave., Oakland, California. Groundwater sampling results are presented for the 2nd quarterly monitoring event in 1999.

The five monitoring wells at the site were sampled on June 23, 1999 for the second quarter in 1999. As requested in your letter dated April 7, 1999, the ORC filter socks were removed from the wells prior to purging and sampling. All five wells were purged before sampling.

The results showed hydrocarbon contamination in groundwater samples from all five wells. TPH-Gasoline and Benzene contamination exists in groundwater on the property with the highest concentrations reported for groundwater samples collected at MW-1, MW-3 and MW-5.

If you have any questions or comments regarding the report, please give me a call.

Sincerely,

Gary Rogers, Ph.D.

Lary Rogers

cc: Bill Owens

QUARTERLY MONITORING REPORT

2nd Quarter, 1999

PROJECT SITE:

MOTOR PARTNERS 1234 40TH AVE., OAKLAND, CALIFORNIA StID #3682

PREPARED FOR:

Mr. Bill Owens 2221 Olympic Blvd. Walnut Creek, CA 94595 510-935-3840

SUBMITTED TO:

Mr. Barney Chan Environmental Health Alameda County 1131 Harbor Bay Pkwy Alameda, CA 94502-6577

PREPARED BY:

Gary Rogers, Ph.D.

Aquatic & Environmental Applications
38053 Davy Ct.

Fremont, CA 94536
(510) 791-7157

PROJECT NO. 1004.95

TABLE OF CONTENTS

INTRODUCTION 1
Project Description
GEOLOGY AND HYDROGEOLOGY 6
GROUNDWATER MONITORING 8
Groundwater Elevation Measurement
ANALYTICAL RESULTS
Groundwater Hydraulic Conditions
SUMMARY AND RECOMMENDATIONS
LIMITATIONS
APPENDICES 24
Appendix A - Analytical Results

LIST OF FIGURES

Figure 1.	Site Location Map 2
Figure 2.	Site Layout Map
Figure 3.	Groundwater Gradient
	LIST OF TABLES
Table 1. l	Monitoring Well Construction Data
Table 2.	Groundwater Elevation Results
Table 3.	Quarterly Groundwater Sampling Results
Table 4.	Dissolved Oxygen and Redox Results
Table 5.	Results of Additional Bioremediation Parameters
Table 6.	Results of Microbiological Analyses

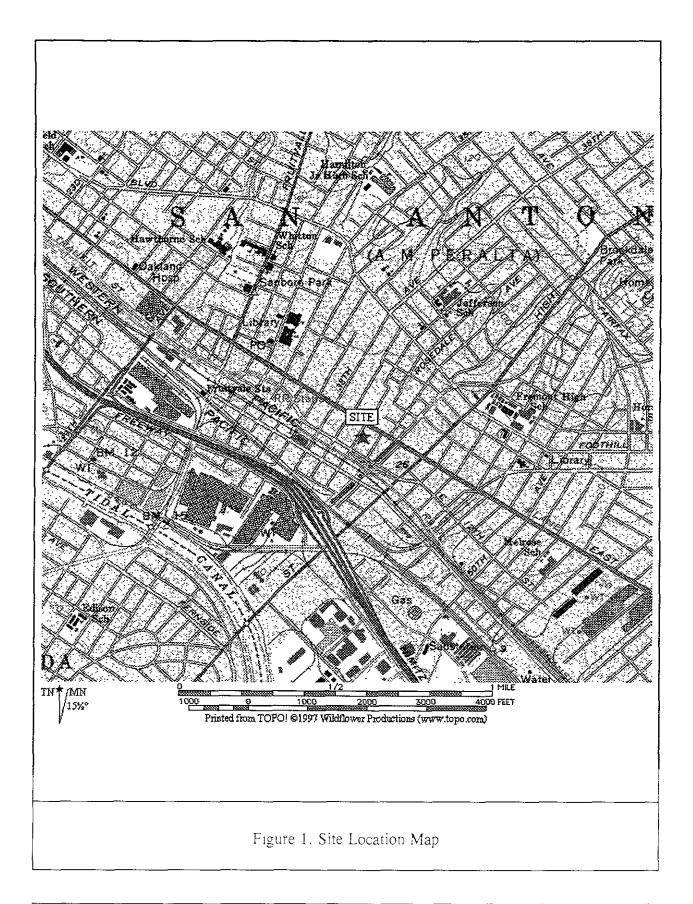
INTRODUCTION

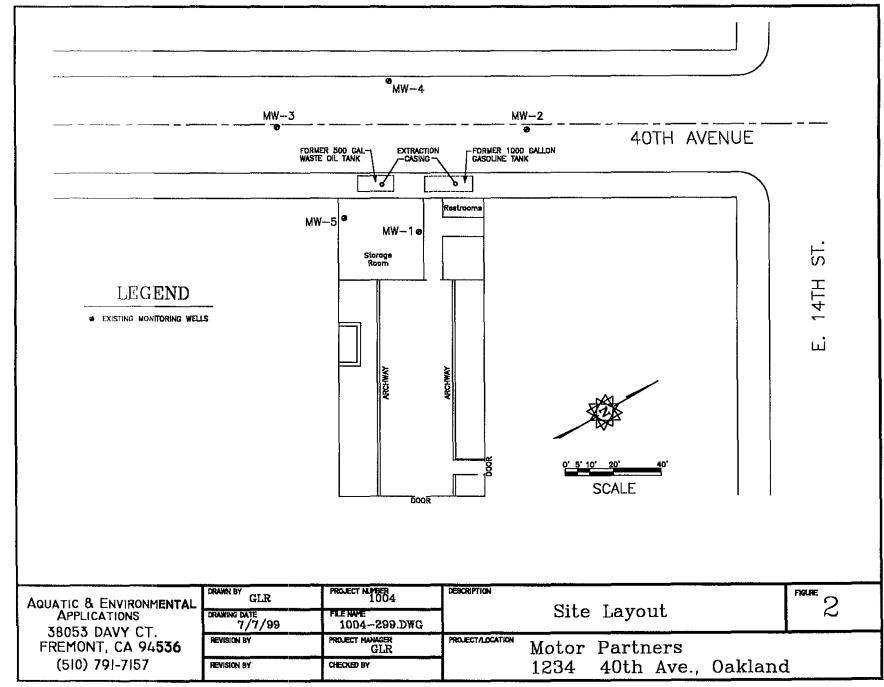
PROJECT DESCRIPTION

This report discusses the results of quarterly sampling for the second quarter in 1999 at the Motor Partners site, 1234 40th Ave., Oakland, California.

SITE LOCATION AND DESCRIPTION

The project site known as Motor Partners, 1234 40th Avenue, Oakland, California (Figure 1), is located in a commercial/light industrial area. The elevation of the site is approximately 30 feet above mean sea level.


Motor Partners is located near Nimitz Highway (880) in the Fruitvale District of Oakland, California (Figure 1). The BART rail tracks are about 500 feet west of the site and San Leandro Bay is less than one mile to the southwest.


Motor Partners utilized the site for auto repair shops. Two underground storage tanks were maintained outside the building. A 1,000-gallon underground gasoline tank and a 500-gallon underground waste oil tank were located below the sidewalk (Figure 2). No reliable records exist to determine if inventory was lost.

PREVIOUS SUBSURFACE INVESTIGATIONS

On Oct. 12, 1990, Semco, Inc. of Modesto, California removed both the 1,000-gallon gasoline tank and the 500-gallon waste oil tank. The concentration of total petroleum hydrocarbons in the gasoline range (TPH-G) below the 1,000-gallon tank was 1,600 mg/Kg. The TPH-G and TPH-D concentrations below the 500-gallon tank were 570 mg/Kg and 650 mg/Kg, respectively. There was no record of groundwater in the excavations. The excavations were backfilled to grade with original spoils.

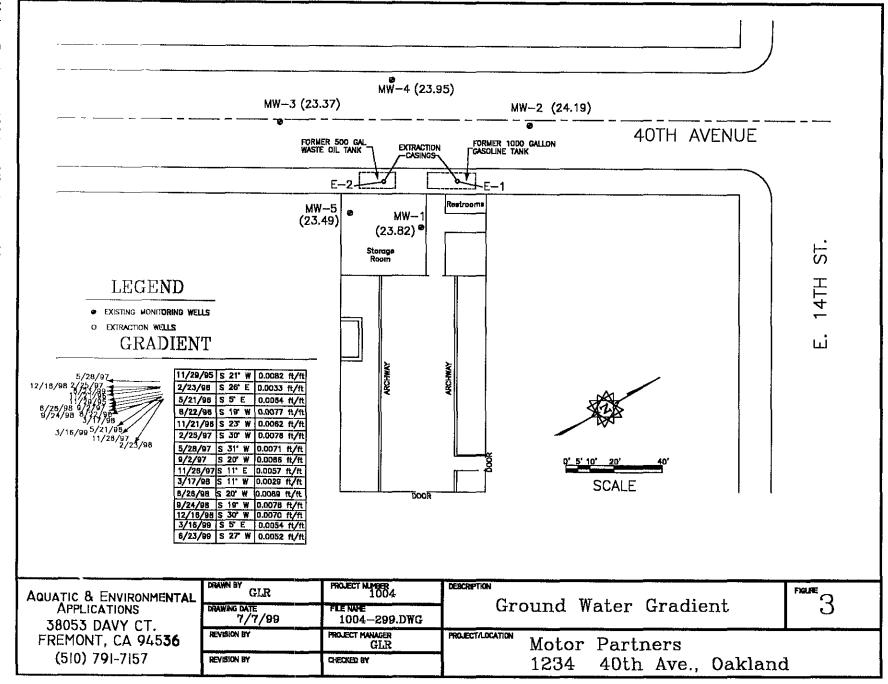
In January, 1994, SEMCO re-excavated the area to remove contaminated soil, and dispose of the contaminated backfill. During the course of over excavation, it was noted that contamination extended beneath the building and into the street. Utilities prevented further excavation. The over excavation was halted and samples taken from the sidewalls of each excavation. An extraction well casing was installed in each excavation. Clean imported soil was used to backfill the two areas and the sidewalk was resurfaced with Christy boxes housing the two extraction casings.

Sampling conducted on January 11, 1994 indicated levels of TPH-gasoline for the former waste oil tank area between 100 and 700 ppm. Levels of TPH-gasoline for the former gasoline tank area ranged from 150 to 1,200 ppm.

GROWTH Environmental completed soil borings at the property between May and June of 1994. Eleven borings were drilled and three monitoring wells were installed. Both soil and groundwater samples were collected from the borings. Soil and groundwater contamination was found in nearly every boring. Levels of TPH-D up to 2,700 ppm were observed on the west side of the building. A sample from inside the building had a TPH-D level of 520 ppm.

Groundwater samples had highest concentrations near the former tank excavations. The highest level of TPH-G was 64,000 ppb. BTEX compounds were found in groundwater samples from all the borings.

The monitoring wells were sampled on June 17, 1994 and December 7, 1994. Contamination was reported in all three wells. Levels of TPH-G were up to 17,000 ppb and Benzene levels were up to 1,200 ppb in MW-1.


A quarterly monitoring sampling event was completed on November 29, 1995. All of the wells showed increased TPH-G and BTEX levels when compared to the previous sampling event. TPH-G levels were up to 67,000 ppb in MW-1. The groundwater gradient was calculated to be in a southwesterly direction.

Additional geoprobe borings were completed along 40th Avenue between November, 1995 and February, 1996 to determine the extent of contamination.

On February 1, 1996, Bay Area Exploration drilled a soil boring across the street from the former underground storage tank excavations at the Motor Partners site (location shown in Figure 3). A two-inch groundwater monitoring well (MW-4) was installed in the boring. The monitoring well was installed according to State of California Water Resource Control Board standards to a depth of 25 feet below grade surface (bgs) and screened from 5 to 25 feet bgs.

On February 11, 1998, HK2, Inc./SEMCO drilled a soil boring inside the building and down gradient from the former underground storage tank excavations (location shown in Figure 3). A two-inch groundwater monitoring well (MW-5) was installed in the boring. The monitoring well was installed to a depth of 21 feet below grade surface (bgs) and screened from 6 to 21 feet bgs.

After purging and sampling the wells on September 24, 1998, Aquatic & Environmental Applications implemented a program of enhanced natural attenuation at the site by installing Oxygen Release Compound (ORC*) filter packs in three of the five wells. Monitoring of microbiological and chemical parameters is on-going at the site.

GEOLOGY AND HYDROGEOLOGY

REGIONAL GEOLOGY

The site is located on the East Bay Plain about 1.0 mile west of the Oakland Hills, about 1.0 mile east of the San Francisco Bay, and about 0.5 miles north of San Leandro Bay. The nearest cross street is 14th Street.

The site rests on Quaternary Deposits of various physical and compositional properties. The predominant formation is the Temescal Formation consisting of contemporaneous alluvial units of different origin, lithology, and physical properties. The material ranges from irregularly bedded clay, silt, sand and gravel to lenses of clay, silt, sand, and gravel with Claremont Chert.

The Hayward Fault is approximately 1.5 miles East of the site and is an active historic Fault. The Hayward Fault is the only active fault in the Oakland East Quadrangle.

REGIONAL HYDROGEOLOGY

The site is located within the East Bay Plain which makes up the ground water reservoir in the area. The water bearing capacity varies within the area due to the juxtaposed positions of the various types of soils and strata encountered underneath the East Bay Plain.

In general, the water bearing capacities of the Younger Alluvium range from moderately permeable to low permeable soils. Below the Younger Alluvium at a depth of approximately 70 feet lies the Older Alluvium, which yields large to small quantities of well water.

Site Geology. The site soils were characterized using the United Soil Classification System (USCS). During on-site subsurface drilling, CEC (GROWTH) encountered up to two feet of baserock (fill) followed by a 4 to 5 foot layer of dark sandy clay (CL). Below the dark clay to a depth between 7 and 15 feet, a grey sandy gravel was found. Below the sandy gravel the soil varied between a clayey sand to a sandy silty clay (SC). The gravels are poorly sorted, angular to rounded clasts ranging in size from 0.2 cm to 3.0 cm.

Site Hydrogeology. The depth of first water ranged from 8 to 10 feet below the ground surface (bgs) in the borings. Groundwater was encountered within the grey clayey sandy gravel layers.

Table 1
Monitoring Well Construction Data for Motor Partners Site
1234 40th Ave., Oakland, California

	MW-1	MW-2	MW-3	MW-4	MW-5
Date Drilled	6/15/94	6/14/94	6/14/94	2/1/96	2/11/98
Total Depth	22.5 ft.	22.0 ft.	23.0 ft.	23.0 ft.	21.0 ft.
Bore Diameter	10 inches	10 inches	10 inches	10 inches	6 inches
Casing Diameter	2 inch				
Well Seal Type	Bentonite Pellets	Bentonite Pellets	Bentonite Pellets	Bentonite Pellets	Bentonite Pellets
Well Seal Interval	5.0 - 6.0 bgs	5.0 - 6.0 bgs	5.0 - 6.0 bgs	3.0 - 4.0 bgs	4.0 - 5.0 bgs
Filter Pack Material	2/14 Lonestar Sand				
Filter Pack Interval	6.0 - 17.0 bgs	9.0 - 20.0 bgs	6.5 - 20.0 bgs	4.0 - 25.0 bgs	5.0 - 21.0 bgs
Screen Slot Size	0.020 in.	0.020 in.	0.020 in.	0.010 in.	0.020 in.
Screened Interval	7.0 - 17.0 bgs	10.0 - 20.0 bgs	7.0 - 20.0 bgs	5.0 - 25.0 bgs	6.0 - 21.0 bgs
Well Elevation ¹	31.44 ft.	31.06 ft.	31.43 ft.	31.37 ft.	31.15 ft.
			<u> </u>		

¹TOC -Top of Casing Elevations for MW-1, MW-2, MW-3, and MW-4 were surveyed on 8/22/96 by Kier & Wright Civil Engineers & Surveyors, Inc. TOC. Elevation for MW-5 surveyed on 3/20/98 by AEA.

GROUNDWATER MONITORING

GROUNDWATER ELEVATION MEASUREMENTS

The static water level was measured in all five monitoring wells (MW-1, MW-2, MW-3, MW-4 and MW-5) on June 23, 1999 and the depths were recorded to the nearest 0.01 foot using an electronic water level sounder. All of the results were recorded on Quarterly Monitoring Data Sheets presented in Appendix B.

MONITORING WELL SAMPLING

The ORC filter socks were removed from wells MW-1, MW-3, and MW-5. Prior to sampling, each of the five wells were purged by withdrawing a minimum of three casing volumes from each well using a diaphragm pump. Purging continued until the turbidity was less than 100 NTU and the temperature, conductivity, and pH were relatively stable. The turbidity, temperature, electric conductivity, dissolved oxygen and ORP levels were recorded for each well sample.

Groundwater samples were collected using a disposable teflon bailer and placed into 40-ml VOA's, 500 ml plastic containers, and a one-liter amber bottle. The samples were labeled and stored on ice until delivered under a chain of custody to the state certified laboratory. Samples from all five wells (MW-1, MW-2, MW-3, MW-4, and MW-5) were analyzed for total petroleum hydrocarbons as diesel (TPH-D), using EPA methods modified 8015; as gasoline (TPH-G) using EPA methods 8015/5030; benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA methods 8020; and methyl t-butyl ether (MTBE) using EPA method 8020.

In addition to the petroleum hydrocarbon parameters, groundwater samples from each of the wells were also submitted to a state certified laboratory for analysis of nitrate, sulfate, iron, total phosphorus, and ammonia.

ANALYTICAL RESULTS

GROUNDWATER HYDRAULIC CONDITIONS

Groundwater Elevation. The groundwater elevation data for the monitoring wells is presented in Table 2. Based on groundwater level measurements collected on June 23, 1999, the depth to groundwater in the wells ranged from 6.4 to 7.7 feet below the top of the casing. The groundwater elevations for the wells were as follows; MW-1 was 23.82 feet above mean sea level (msl), MW-2 was 24.19 feet above msl, MW-3 was 23.37 feet above msl, MW-4 was 23.95 feet above msl, and MW-5 was 24.19 feet above msl.

Groundwater Flow Direction and Gradient. Groundwater flow direction was calculated using three wells (MW-1, MW-2, and MW-3). Groundwater flow direction trended to the southwest (S 27°W) at a gradient of 0.0052 ft/ft. The flow direction and gradient are shown in Figure 3.

LABORATORY DATA

A summary of the hydrocarbon analytical results for the quarterly sampling is presented in Table 3. Table 4 presents the results of on-site sampling for dissolved oxygen and redox potential. A summary of the other bio-parameters is presented in Table 5. The additional bio-parameters included the following; nitrate, sulfate, iron, total phosphorus, and ammonia. Copies of all the analytical data sheets from McCampbell Analytical Lab are presented in Appendix A.

In addition, microbiological analyses were completed in conjunction with enhanced natural attenuation activities for the site. Total aerobic hydrocarbon degraders and total anaerobic degraders were enumerated in groundwater samples collected from each of the 5 monitoring wells. The results are summarized in Table 6. Copies of the microbiological analytical data sheets from CytoCulture are presented in Appendix A.

TPH-Gasoline and Benzene contamination exists in groundwater on the property with the highest concentrations reported for groundwater samples collected at MW-1 and MW-3. Groundwater flow direction for this sampling period was shown to be in a southwesterly direction.

Table 2
Groundwater Elevation Results at Motor Partners Site
1234 40th Ave., Oakland, California

	DATE	MW-1	MW-2	MW-3	MW-4	GRADIENT
TOC		31.44 ft	31.06 ft	30.43 ft.	30. 37 ft.	
SWL	11/29/95	10.13	9.31	9.53		S 21° W
GSE		21.31	21.75	20.90		0.0082 ft/ft
SWL	2/23/96	4.59	3.77	3.56	3.17	S 26° E
GSE		26.85	27.29	26.87	27.20	0.0033 ft/ft
SWL	5/21/96	6.04	5.24	5.29	4.68	S 5° E
GSE		25.40	25.82	25.14	25.69	0.0064 ft/ft
SWL	8/22/96	8.46	7.66	7.88	7.10	S 19° W
GSE		22.98	23.40	22.55	23.27	0.0077 ft/ft
SWL	11/21/96	8.44	7.73	7.76	7.31	S 23° W
GSE		23.00	23.33	22.67	23.06	0.0062 ft/ft
SWL	2/25/97	6.53	5.78	5.97	5.06	S 30° W
GSE		24.91	25.28	24.46	25.31	0.0076 ft/ft
SWL	5/28/97	8.08	7.38	7.53	6.94	S 31° W
GSE		23.36	23.68	22.90_	23.43	0.0071 ft/ft
SWL	9/2/97	9.08	8.24	9.26	7.84	S 20° W
GSE		22.36	22.82	21.17	22.53	0.0086 ft/ft
SWL	11/26/97	7.98	7.24	7.06	6.64	S 11° E
GSE		23.46	23.82	23.37	23.73	0.0057 ft/ft

TOC - Top of Casing Elevations for MW-1, MW-2, MW-3, and MW-4 were surveyed on 8/22/96 by Kier & Wright Civil Engineers & Surveyors, Inc.

GSE - Groundwater Surface Elevation (feet relative to mean sea level)

File No: 1004-2Q,99

SWL - Static Water Level (ft)

Table 2 (Continued) Groundwater Elevation Results at Motor Partners Site 1234 40th Ave., Oakland, California

	DATE	MW-1	MW-2	MW-3	MW-4	MW-5	GRADIENT
тос		31.44 ft	31.06 ft	30.43 ft.	30. 37 ft.	31.15 ft.	
SWL	3/17/98	5.84	5.05	5.11	4.52	5.80	S 11° W
GSE		25.60	26.01	25.32	25.85	25.35	0.0029 ft/ft
SWL	6/26/98	7.09	6.24	6.52	5.52	7.07	S 20° W
GSE		24.35	24.82	23.91	24.85	24.08	0.0089 ft/ft
SWL	9/24/98	8.74	7.94	8.13	7.23	8.76	S 19° W
GSE		22.70	23.12	22.30	23.14	22.39	0.0076 ft/ft
SWL	12/16/98	7.11	6.42	6.52	5.92	7.19	S 30° W
GSE		24.33	24.64	23.91	24.45	23.96	0.0070 ft/ft
SWL	3/16/99	5.26	4.54	4.36	4.12	5.14	S 5° E
GSE		26.18	26.52	26.07	26.25	26.01	0.0054 ft/ft
SWL	6/23/99	7.62	6.87	7.06	6.42	7.66	S 27° W
GSE		23.82	24.19	23.37	23.95	23.49	0.0052 ft/ft
SWL							
GSE			<u>.</u>				
SWL							
GSE							
SWL							
GSE							

TOC - Top of Casing Elevations for MW-1, MW-2, MW-3, and MW-4 were surveyed on 8/22/96 by Kier & Wright Civil Engineers & Surveyors, Inc. Elevation for MW-5 surveyed on 3/20/98 by AEA.

SWL - Static Water Level (ft)

GSE - Groundwater Surface Elevation (feet relative to mean sea level)

Sample I.D. Number	Date Collected	TPH-D (μg/L)	TPH-G (μg/L)	MTBE (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl Benzene (μg/L)	Total Xylenes (µg/L)
MW-1	6/17/94	2,400	17,000		1,200	220	1,000	2,600
	11/29/95	53,000	67,000		860	180	1,300	3,100
	2/23/96	25,000	16,000		360	ND	370	740
	5/21/96	650	11,000		290	37	600	1,300
	8/22/96	ND	13,000		270	51	540	1,400
	11/21/96	5,500	15,000		810	79	680	1,700
	2/25/97	3,900	15,000		430	36	760	1,200
	5/28/97	3,700	7,600		110	15	370	870
	9/2/97	8,200	18,000	ND	1,300	81	1,300	2,800
	11/26/97	14,000	24,000	81	760	75	660	2,100
	3/17/98	5,000	14,000	150	360	120	650	1,200
	6/26/98	1,200	2,500	ND	60	5,6	76	110
	9/24/98	2,200	5,100	310	220	27	300	590
	О	RC Filter S	ocks Installed	9/24/98 in	MW-1, MW	-3, and MV	V-5	
	12/16/98	450	1,400	ND	3577	3.7	42	80
	3/16/99	270	580	ND	11	1.4	8.3	11
	6/23/99	2,600	5,400	ND<10	5)	19	- 190	420 7
California Drinking V	Vater MCL	None Listed	None Listed	None Listed	1.0	1,000	680	1,750
Reporting	Limit	50	50	5	0.5	0.5	0.5	1.0

) increase

Notes: All results in $\mu g/I$ (ppb)

ND = Not DetectedNA = Not Analyzed

Sample I.D. Number	Date Collected	TPH-D (μg/L)	TPH-G (μg/L)	MTBE (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (µg/L)
MW-2	6/17/94	370	990		ND	1.3	2.3	4.4
	12/07/94	ND	170		2.1	0.70	0.60	1.7
	11/29/95	200	400		ND	ND	ND	3
	2/23/96	ND	500		ND	ND	ND	ND
	5/21/96	ND	62		ND	ND	ND	1
	8/22/96	ND	120		0.58	0.62	ND	0.62
-	11/21/96	89	89		0.60	0.78	ND	ND
	2/25/97	ND	250		1.2	1.0	ND	ND
	5/28/97	ND	ND		ND	ND	ND	ND
	9/2/97	ND	220	NĐ	ND	1.2	0.80	1.7
	11/26/97	ND	ND	ND	ND	ND	NÐ	ND
	3/17/98	ND	ND	ND	ND	ND	ND	ND
	6/26/98	170	260	ND	ND	0.86	ND	0.63
	9/24/98	130	240	ND	0.73	1.2	0.8	0.61
	0	RC Filter S	ocks Install	ed 9/24/98	in MW-1, N	/IW-3, and N	AW-5	
	12/16/98	ND	ND	ND	ND	ND	ND	ND
	3/16/99	ND	ND	ND	ND	ND	ND	ND
	6/23/99	110	220	ND	0.52	0.88	0.72	ND
California Drinking	Water MCL	None Listed	None Listed	None Listed	1.0	1,000	680	1,750
Reporting	Limit	50	50	5	0.5	0.5	0.5	1.0

Notes: All results in µg/l (ppb)

ND = Not Detected NA = Not Analyzed

Sample L.D. Number	Date Collected	TPH-D (μg/L)	TPH-G (μg/L)	MTBE (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (μg/L)
MW-3	6/17/95	2,200	9,500		330	40	100	74
	12/07/94	1,700	7,500		380	42	130	72
	11/29/95	14,000	9,000		300	49	300	16
	2/23/96	14,000	13,000		270	83	260	67
	5/21/96	350	6,600		220	48	160	66
	8/22/96	ND	4,800		120	34	44	44
	11/21/96	3,300	8,700		220	51	150	68
	2/25/97	ND	8,200		260	57	200	72
	5/28/97	1,800	7,000		140	22	44	31
	9/2/97	ND	8,100	65	240	50	170	72
	11/26/97	4,100	5,600	44	140	22	9.6	31
	3/17/98	2,100	10,000	330	270	67	260	96
	6/26/98	2,400	7,600	ND	280	56	160	73
	9/24/98	2,800	6,300	ND	260	65	130	80
	o	RC Filter S	Socks Installe	d 9/24/98 i	n MW-1, M	W-3, and M	IW-5	
	12/16/98	£600 🌶	4,500	ND	160	22	17	30
	3/16/99	1.900	8,000	ND	370	51	220	110
	6/23/99	2,200 \$		ND≤10	250	47	82	- 62
California Drinking V	Vater MCL	None Listed	None Listed	None Listed	1.0	1,000	680	1,750
Reporting	Limit	50	50	5	0.5	0.5	0.5	1.0

Notes All results in gl (ppb)

ND = Not Detected

NA = Not Analyzed

Sample LD. Number	Date Collected	TPH-D (μg/L)	TPH-G (μg/L)	MTBE (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (μg/L)
MW-4	2/23/96	3,000	6,000		58	36	6	28
	5/21/96	78	1,200		18	2.5	6.2	12
	8/22/96	ND	400		8.6	3.4	1.8	2.6
	11/21/96	87	170		3.6	1.1	1.7	2.3
·	2/25/97	ND	120		5.4	0.64	0.93	0.80
	5/28/97	55	150		5.6	0.64	4.4	8.8
	9/2/97	ND	100	ND	3.2	ND	ND	0.7
	11/26/97	ND	240	ND	6.8	ND	1.8	10
	3/17/98	200	300	8.9	4.4	5.1	5.1	20
	6/26/98	66	ND	ND	7.7	0.50	0.84	0.61
	9/24/98	84	66	ND	4.2	0.59	0.63	ND
	o	RC Filter S	ocks Installe	d 9/24/98	in MW-1, M	W-3, and M	IW-5	<u> </u>
	12/16/98	ND	ND	ND	ND	ND	ND	ND
1.	3/16/99	ND	ND	ND	2.1	ND	ND	ND
	6/23/99	86	190	ND	11	1.1	2.3	1.6
California Drinking	Water MCL	None Listed	None Listed	None Listed	1.0	1,000	680	1,750
Reporting	Limit	50	50	5	0.5	0.5	0.5	1.0

Notes: All results in $\mu g/l$ (ppb)

ND = Not Detected NA = Not Analyzed

Sample I.D. Number	Date Collected	TPH-D (μg/L)	TPH-G (μg/L)	MTBE (μg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethyl Benzene (µg/L)	Total Xylenes (μg/L)
MW-5	3/17/98	22,000	58,000	ND	320	590	790	2,300
	6/26/98	7,000	2,300	ND	54	20	14	41
	9/24/98	2,500	1,600	ND	31	10	6.3	22
	O	RC Filter S	ocks Installe	ed 9/24/98	in MW-1, M	W-3, and M	IW-5	
·	12/16/98	ND	ND	ND	ND	ND	ND	ND
	3/16/99	ND.	180	ND	22	0.52	ND	1.9
	6/23/99	8,400	3,200	ND<50	25	7.3	6.8	25
California Drinking	Water MCL	None Listed	None Listed	None Listed	1.0	1,000	680	1,750
Reporting	Limit	50	50	5	0.5	0.5	0.5	1.0

Notes: All results in μ g/l (ppb)

ND = Not Detected NA = Not Analyzed) iverei

Table 4
Dissolved Oxygen and Redox Results
Motor Partners, 1234 40th Ave., Oakland, California

Sample I.D. Number	Date Collected	Dissolved Oxygen (mg/L)	Redox Potential (mv)
MW-1	11/26/97	1.5	56
	3/17/98	0.9	-2.0
	6/26/98	1	-64
	9/24/98	1.1	-49
	12/16/98	1	-44
	3/16/99	3.2	155
	6/23/99	2.2	120
MW-2	11/26/97	3	162
	3/17/98	2.7	90
	6/26/98	4.3	144
	9/24/98	4	175
	12/16/98	6.5	205
	3/16/99	2.7	156
	6/23/99	2.1	125
MW-3	11/26/97	2	67
	3/17/98	1.5	18
	6/26/98	1.8	-72
	9/24/98	1.4	-10
	12/16/98	2.1	4
	3/16/99	1.6	-14
	6/23/99	1.5	-32

Table 4 (Continued) Dissolved Oxygen and Redox Results Motor Partners, 1234 40th Ave., Oakland, California

Sample I.D. Number	Date Collected	Dissolved Oxygen (mg/L)	Redox Potential (mv)
MW-4	11/26/97	2.4	114
	3/17/98	1.7	69
	6/26/98	2.8	99
	9/24/98	2.9	78
	12/16/98	9.2	265
	3/16/99	10.5	197
	6/23/99	5.7	175
MW-5	3/17/98	1.5	40
	6/26/98	0.9	-33
	9/24/98	1.3	-9
	12/16/98	4	194
	3/16/99	2.4	144
	6/23/99	1.7	151

Table 5. Results of Additional Bioremediation Parameters Motor Partners, 1234 40th Ave., Oakland, California

Sample I.D. Number	Date Collected	Ferrous Iron (mg/L)	Ammonia-N (mg/L)	Nitrate-N (mg/L)	Sulfate (mg/L)	Total Phosphorus (mg/L)
MW-1	11/26/97	1.2	< 0.05	< 0.05	4200	0.06
	3/17/98	2.0	0.22	< 0.05	97	0.14
	6/26/98	3.0	ND	ND	2000	ND
	9/24/98	0.25	ND	2	7	0.16
	12/16/98	3.2	ND	ND	17	0.07
	3/16/99	0.21	1.8	ND	36	ND
	6/23/99	2.4	ND	ND	35	ND
MW-2	11/26/97	ND	< 0.05	1.1	3100	0.08
	3/17/98	0.21	0.08	11	41	0.13
	6/26/98	0.087	ND	7.2	33	ND
	9/24/98	ND	ND	37	38	0.08
	12/16/98	ND	ND	44	48	0.03
	3/16/99	ND	1.3	41	42	ND
	6/23/99	0.8	ND	41	65	0.11
MW-3	11/26/97	2.8	< 0.05	< 0.05	4100	0.45
	3/17/98	0.31	0.06	< 0.05	< 2.0	0.17
	6/26/98	3.0	ND	ND	ND	ND
	9/24/98	0.11	ND	ND	ND	0.24
	12/16/98	1.3	ND	ND	9	0.16
	3/16/99	2.5	1.2	ND	ND	0.23
	6/23/99	1.9	ND	ND	34	0.12

Table 5 continued. Results of Additional Bioremediation Parameters Motor Partners, 1234 40th Ave., Oakland, California

		Pe#	NH3	Noz	yoZ	P
MW-4	11/26/97	ND	< 0.05	0.66	4900	0.16
	3/17/98	0.17	0.06	7.4	33	0.07
	6/26/98	0.21	ND	7.1	32	ND
	9/24/98	ND	ND	40	37	0.09
	12/16/98	ND	ND	44	45	0.11
	3/16/99	0.17	ND	40	37	ND
	6/23/99	0.8	ND	46	44	0.23
MW-5	3/17/98	0.49	0.06	0.83	40	0.13
	6/26/98	0.26	ND	1.7	22	ND
	9/24/98	ND	ND	5	24	0.29
	12/16/98	ND	ND	17	35	0.06
	3/16/99	ND	4.1	9	18	ND
	6/23/99	0.97	ND	8	48	0.54

Notes:

All results in mg/L (ppm)

ND = Not Detected

Table 6. Results of Microbiological Analyses Motor Partners, 1234 40th Ave., Oakland, California

Sample I.D. Number	Date Collected	Aerobic Hydrocarbon Degraders (cfu/ml)	Anaerobic Hydrocarbon Degraders (cfu/ml)
MW-1	9/24/98	<1 X 10 ¹	4.6 X 10 ²
	12/16/98	2.3 X 10 ³	3.8 X 10 ⁴
	3/16/99	3.3 X 10 ¹	8.2 X 10 ²
	6/23/99	1.1 X 10 ⁴	2.5 X 10 ⁴
MW-2	9/24/98	5.4 X 10 ²	3.4 X 10 ³
	12/16/98	4.0 X 10 ²	3.0 X 10 ³
	3/16/99	8.0 X 10 ¹	2.9 X 10 ¹
	6/23/99	2.9 X 10 ³	1.4 X 10 ⁴
MW-3	9/24/98	6.5 X 10 ²	4.3 X 10 ³
	12/16/98	6.1 X 10 ²	3.5 X 10 ⁴
	3/16/99	1.2 X 10 ³	2.6 X 10 ³
	6/23/99	4.4 X 10 ³	9.0 X 10 ³
MW-4	9/24/98	3.6 X 10 ¹	5.1 X 10 ²
	12/16/98	1.2 X 10 ³	2.0 X 10 ³
	3/16/99	5.5 X 10 ²	2.2 X 10 ³
	6/23/99	1.3 X 10 ³	7.5 X 10 ³
MW-5	9/24/98	3.9 X 10 ¹	5.1 X 10 ³
	12/16/98	6.2 X 10 ³	1.1 X 10 ⁴
	3/16/99	2.7 X 10 ²	2.3 X 10 ³
	6/23/99	6.2 X 10 ²	8.5 X 10 ³

cfu/ml = colony forming units per milliliter

SUMMARY AND RECOMMENDATIONS

The five monitoring wells at Motor Partners were sampled on June 23, 1999 for the second quarter in 1999. The results showed hydrocarbon contamination in groundwater samples from all five wells.

TPH-Gasoline and Benzene contamination exists in groundwater on the property with the highest concentrations reported for groundwater samples collected at MW-1 and MW-5. Groundwater flow direction for this sampling period was shown to be in a southwesterly direction.

It is recommended that quarterly monitoring continue at the site.

LIMITATIONS

This report has been prepared in accordance with generally accepted environmental, geological and engineering practices. No warranty, either expressed or implied is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this report are based upon site conditions as they existed at the time of the investigation and they are subject to change.

The conclusions presented in this report are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The scope of services performed in execution of this investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of the said user.

Stanley L. Klemetson Ph.D., P.E.

APPENDICES

APPENDIX A

Analytical Results

Aquatic & Environmental Applications	Client Project ID: #1004; Motor	Date Sampled: 06/23/99	
38053 Davy Court	Partners	Date Received: 06/23/99	
Fremont, CA 94536	Client Contact: Gary Rogers	Date Extracted: 06/24-06/30/99	
	Client P.O:	Date Analyzed: 06/24-06/30/99	

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g)⁺	MTBE	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
14032	MW-2	W	220,j	ND	0.52	0.88	0.72	ND	#
14033	MW-4	W	190,a	ND	11	1.1	2.3	1.6	#
14034	MW-3	w	7400,a	ND<10	250	47	82	62	120
14035	MW-1	w	5400,a(h)	ND<10	30	19	190	420	112
14036	MW-5	w	3200,a(h)	ND<50	25	7.3	6.8	25	108
			_						
otherwi	g Limit unless se stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug L

ficluttered cirromatic gram, sample peak coeffices with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their therprelation as unmodified or weakly modified gasoline is significant, by heavier gasoline range compounds are significant against an engaged compounds having broad chromatograph a peaks are significant biologically altered gasoline?, et 7PH pattern that does not appear to be derived tham gasoline? It is one to a few isolated neaks present, guittingly agad gasoline on dieselinance compounds are significant. The lighter than water immissible is teen is present, i.e., as disample that contains greater than ~5 to % sediment, i.e. accordingly a partern.

Aquatic & Environmental Applications 38053 Davy Court	Client Project ID: #1004; Motor Partners	Date Sampled: 06/23/99 Date Received: 06/23/99		
Fremont, CA 94536	Client Contact: Gary Rogers	Date Extracted: 06/23/99		
	Client P.O:	Date Analyzed: 06/25-06/29/99		
	· · · · · · · · · · · · · · · · · · ·	<u>,</u>		

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel * EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCFID(3550) or GCFID(3510) % Recovery TPH(d)⁺ Client ID Matrix Lab ID Surrogate 14032 MW-2 W 110.d 100 W 100 14033 MW-4 86,d 14034 MW-3 W 2200,d,b 101 MW-1 2600,d(h) 96 14035 W MW-5 W 97 14036 8400,d,g(h) W 50 ug/L Reporting Limit unless otherwise stated; ND means not detected above the reporting limit S 1.0 mg/kg

finwater and vapor samples are reported in ug L. wipe samples in ug wipe, so land sludge samples in mg kg. and all TCLP STLC SPLP, extracts in tig L.

Court ered commissing on resulting in cocluted sumogate and sample pecks, on surrogate peak is on elevated baseline, or sumogate has been directly on the original extract

The following descriptions of the IPH chromatogram are cursory in nature and McCumpbell Analy, can is not responsible for the rimerric ation as unmidefied or weakly modified diesel is significant, not described accommodified or weakly modified diesel is significant, not described a significant, diligaso ine range compounds are significant by modium boiling noint patient that does not match diesel (1) in one to a few isolated peaks present ignor lange commounds are significant. The jighter than water immissions sheen is present in hour sample that one are significant for a residence of the present in the sample that one are significant.

Aquatic & Environmental Applications 38053 Davy Court		Client Proje Partners	ct ID: #1004; Motor	Date Sampled: 06/23/99 Date Received: 06/23/99		
Fremont, C	A 94536		Client Conta	act: Gary Rogers	Date Extracted: 06/23/99	
			Client P.O:		Date Analyzed: 06/29/99	
EPA analytic	al methods 6010, 2	200.7	Phos	sphorus by ICP*		
Lab ID	Client ID	Matrix	Extraction°		Total Phosphorus	
14032	MW-2	W	TTLC		0.11	
14033	MW-4	w	TTLC		0.23	
14034	MW-3	w	TTLC		0.12	
14035	MW-1	w	TTLC	ND		
14036	MW-5	W	TTLC		0.54	
			-			
	_					
Reporting	g Limit unless	w	TTLC		0.1 mg/L	
otherwise st not detec	ated; ND means ted above the	S	TTLC		5.0mg/kg	
repor	tıng limit		SILC TOLP		7.5 mg 2	

^{*} water samples are leponed in mg. L. sor' and s'udge samples in mg.kg. wipes in ug.wipe and a't TCLP ISTLC ISPI Plexiculats in mg.t.

in liquid somnle that can aims greater than ~2 vol. To see mont, this see mont is exhauted with the diquid, in accordance with EPA methodologies and can significantly effect reported me alconventrations. The sechied from assumed to be equal to behaus from

TEPA extraction methods 1311/17CFPF 30-6/3020/water/TILC (x3046/lorganic matrices TTLC) 3-50/kg ics TTLC (-STTC - C-A-Title 22)

A reporting limit to sed due to matrix, interference

Aquatic & En	vironmental Application	s Clier	nt Project ID: #1004; Motor	Date Sampled: 06/23/99	
38053 Davy Court Fremont, CA 94536			ners	Date Received: 06/23/99	
Fremont, CA	94536	Clier	nt Contact: Gary Rogers	Date Extracted: 06/24/99	
		Clier	nt P.O:	Date Analyzed: 06/24/99	
EPA Method 60)10,200.7		Dissolved Iron		
Lab ID	Client ID	Matrix		Fe	
14032	MW-2	w		0.80	
14033	MW-4	W		0.80	
14034	MW-3	W		1.9	
14035	MW-1	W		2.4	
14036	MW-5	W		0.97	
,					
stated, ND mo.	mit unless otherwise	w	0.0	3 mg/L	
	paring limit	S	5.0	mg kg	
* vater kampies	ard reported in mg L. so." a	ra sludge	samples in mig kg and wipes in mig wipe		

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/24/99 Matrix: WATER

	Concent	ration	(ug/L)	% Recovery			
Analyte	Sample			Amount			RPD
	(#13885)	MS	MSD	Spiked	MS	MSD	
	.						
TPH (gas)	0.0	107.2	106.5	100.0	107.2	106.5	0.6
Benzene	0.0	9.9	9.7	10.0	99.0	97.0	2.0
Toluene	0.0	10.4	10.3	10.0	104.0	103.0	1.0
Ethyl Benzene	0.0	10.4	10.3	10.0	104.0	103.0	1.0
Xylenes	0.0	30.7	30.4	30.0	102.3	101.3	1.0
TPH(diesel)	0.0	7738	7707	7500	103	103	0.4
TRPH (oil & grease)	0	27100	26700	23700	114	113	1.5

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/25/99-06/26/99 Matrix: WATER

	Concent	ration	(ug/L)	% Recovery			
Analyte	Sample			Amount			RPD
	(#13920)	MS	MSD	Spiked	MS	MSD	
	.						
TPH (gas)	0.0	107.3	107.7	100.0	107.3	107.7	0.4
Benzene	0.0	9.8	9.4	10.0	98.0	94.0	4.2
Toluene	0.0	9.8	9.5	10.0	98.0	95.0	3.1
Ethyl Benzene	0.0	10.0	9.7	10.0	100.0	97.0	3.0
Xylenes	0.0	29.9	29.2	30.0	99.7 	97.3	2.4
TPH(diesel)	0.0	7323	6913	7500	98	92	5.8
TRPH (oil & grease)	0	23100	23200	23700	97	98	0.4

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

McCAMPBELL ANALYTICAL INC.

QC REPORT FOR ICP and/or AA METALS

Date: 06/29/99-06/30/99 Matrix: WATER

Extraction:

TTLC

	Concent	ration	(mg/L)		% Reco		
Analyte	Sample	MS	MSD	Amount	MS	MSD	RPD
Total Phosphorus Total Cadmium Total Chromium Total Nickel Total Zinc	0.00 N/A N/A N/A N/A	10.23 N/A N/A N/A N/A	10.42 N/A N/A N/A N/A	10.00 N/A N/A N/A N/A	102 N/A N/A N/A N/A	104 N/A N/A N/A N/A	1.8 N/A N/A N/A
Total Copper	N/A	N/A	N/A	 N/A 	 N/A 	N/A	N/A
Organic Lead	 N/A 	N/A	N/A	 N/A 	 N/A 	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # K175-02

Date: 7/02/99

McCampbell Analytical

110 2nd Avenue #D7

Date Rec'd: Date Started: 6/24/99 6/24/99

Pacheco CA 94553-5560

Project: 15693 AEA-Motor Partners

Date Completed: 7/02/99

PO#

Date Sampled:

6/23/99

Time: Sampler:

Sample ID	Lab ID	MDL	Method	Analyte	Results Units
MW-2	K33414	0.5 1.0 1.0	350.2 300 300	Ammonia Nitrate (NO3) Sulfate	ND mg/L 41 mg/L 65 mg/L
MW-4	K33415	0.5 1.0 1.0	350.2 300 300	Ammonia Nitrate (NO3) Sulfate	ND mg/L 46 mg/L 44 mg/L
MW-3	K33416	0.5 1.0 1.0	350.2 300 300	Ammonia Nitrate (NO3) Sulfate	ND mg/L ND mg/L 34 mg/L
MW-1	K33417	0.5 1.0 1.0	350.2 300 300	Ammonia Nitrate (NO3) Sulfate	ND mg/L ND mg/L 35 mg/L
MW-5	K33418	0.5 1.0 1.0	350.2 300 300	Ammonia Nitrate (NO3) Sulfate	ND mg/L 8 mg/L 48 mg/L

Ramiro Salgado -Chemist

Donna Keller Laboratory Director

Certification # 1157

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

Report# K175-02

QC REPORT

McCampbell Analytical 110 2nd Avenue #D7

Dates Analyzed 6/24/99

Pacheco CA 94553-5560

Analyte	Batch # Method	MS % MSD % Recovery Recovery	RPD	Blank
Ammonia	I01780 350.2	93.7 92.3	1.4	ND
litrate (NO3)	I01778 300	84.0 82.0	2.4	ND
ulfate	I01792 300	94.2 97.0	3.0	ND

Ramiro Salgado Chemist

Donna Keller Laboratory Director

Certification # 1157

400

McCAMPBELL ANALYTICAL INC. CHAIN OF CUSTODY, RECORD 110 2^{hd} AVENUE SOUTH, #D7 PACHECO, CA 94553=5560 Telephone: (725) 798=1620 Report To: Ed HAmilton Bill To: MAT Project #: 15693 Project Name: AEA-RUSH 24 HOUR 48 HOUR 5 DAY ROUTINE TURN AROUND TIME 📮 ANALYSIS REQUEST OTHER! Project Location: Motor PARTNERS EPA - Priority Pollutant Metals LEAD (7240/7421/239.2/6010) SAMPLING MATRIX **PRESERVED** COMMENTS EPA 608/8080-PCB's EPA 624/8240/8260 Nitrate Sulfate SAMPLE ID TOCATION. EPA 625/8270 EPA 601/8010 EPA 602/8020 Time Date Air Sludge Other Ice HCl HCl HNO₃ Water MW-2 MW-4 MW-3 MW-1 MW-5 500 14032 ML DOY X 14033 14034 14035 Relinquished By. Relinquished By: City Will Link (A) Relinquished By Date: 23 Received By: Time: Remarks: Time: Received By: Achman Date: Time: Received By:

75673 ZAEAI

Γ		McCAM	PBELL	ANAL	YTI	CAL	IN	C.											CF	IAI	N	OF	Cl	JS'	ГО	Ď۶	7 R	EC	OI	W		
			10 2 nd AV	ENUE SOU	UTH,#	D7								T	UR	N.	4R	OU	ND	TI	ME		_		. •	~ 4 *			, C	<u>)</u>	n	XX 5 DAY
ľ	Telephon	ie: (925) 798-	1620			Fa	x: (9	925)	798	162	2													USI	1	24 .	HOU					
	Report To Gar	y Rogers watic of		Bi	ll To:		Gai	<u> </u>	ومع	ers									Ana	lysis	Rec	jues	<u>t </u>	Т			_	_	Oth	er	15	Comments
	Company: Ag	natic of	Envir	onmen	ta/		pp	ica.	tro	nj_				.		9	-	-			-	-		1	l				-		1	
ı		コタッカンニニー	WAVY	<u> </u>										щ	l	F/B8						1	0	ŀ				ササ				
		Framont	CA	<u>945</u>	36	*. \ =		~ 0 0	<u></u>					Ę		E&	=			1			/ 831			١		1	-		1	
	Tele: (510) 79 1-	7157	/_		x: (5 oject					Pari	ł 14 m.	. C		8015) MTBE		5520	418		\Box				270,					Sul				
1	Project #: 1004 Project Location:	103//	(Inth	A	A)	a la l	<u>and</u>	1-101	CA	145	7(4	د.	_	l + l		Grease (5520 E&F/B&F)	Sign		8020		រ្ន	1	EPA 625 / 8270 / 8310			ē		أدا	4			
ŀ	Sampler Signature:	1234 MZ	oalla		, ,	Q C	4,10	-						2/802		8	jg		72	1	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		A 62			188		Ŕ	3	₹	ı	
ľ			SAMP	LING			1	TAN	RIX	, 1	ME PRE	THO SERV	D ED	Gas (602/8020	TPH as Diesel (8015)	Total Petroleum Oii &	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8080 PCB'S UNL!	3	阿田			Lead (7240/7421/239.2/6010)]	N.tate	Suver gowl	13	1	
					ξį	Type Containers	Т	T	Τ	П			Т	S SE	sel (8	Ę	Ę l	8	E)	080	2 8	07.0	PAH's / PNA's by	CAM-17 Metals	됩	742]		l t		T		
	SAMPLE ID	TOCATION			Containers	ont			۱.,					BTEX & TPH	Die	eta Ta	ğ	EPA 601 / 8010	팅	EPA 608 / 8080	% %	07.68 / 569 PE	MA.		LUFT 5 Metals	240		Anmonia	- 1	Ferrous		
			Date	Time	Į,	be C	Water	Soil	ıdgi	Other		ڮٙٳؠ	Other	X	H 8S	T F	El P	A 66	X	Ø [3	۵ ۷ ≤ ع	3 ¥	S S	3	드	Pg (F	Į	70ta/	ξ		
				ļ	#	Ę	13	S A	: :5	ğ	ន្ទគ្រ	白白	ď	BI	₽	To	£	出	H H	固月	1 E		1 2	13	ם	13	ŭ	Ý	۴	4		
Ŧ	MW-2		6.23.99	11:20			X							X	X		-	•					_ _	_	<u> </u>	<u> </u>	<u> </u>	X	시	Χ_	- -	
(س	Mw-4			11:30			X							X	X	_	,			_ -	_ _	4	_ _	<u> </u>	<u> </u>		<u> </u>	区	쓰	ᆚ	- -	
/	MW-3			11:40			X							×	χ	L				_		_ _	_	-	.	<u> </u>	<u> </u> _	X	쓰	싀	_ _	
1	MW-1			11:50			X							스	X						_	_ _	_	٠,	_	_	<u> </u>	X	시	ᅩ	_ _	•
+	MW·5		6.23.99	12:00			X							×	Х							_	_	_ _	.	_	<u> </u>	X	إكب	ΧI		<u>.</u>
•											\perp		<u> </u>			L					_ _	_ _		_	_	<u> </u>	_		1		14	4032 🚶
																<u> </u>	_				_ _	_ _	_ _	_ _	_ _	_	1		, T	. :		
															<u> </u>	_					_	_ _	_ _	- -	_	-	-	-	; ;		14	40 33
					 -		_	\rightarrow	_	-	_	_ _		-	-	 	_	-	_	-			+	-	- -	-	-	-)		14	1034
										-	_	_	-	.	-	╀	 		_				- -	- -	╢	-	┧		-	,	-	
			ļ		ļ							_	+-		├	 	 —	<u> </u>			\dashv	-		╢	╁	-	╫	-			1.4	1035
					 	 	 	_	-	-			-	-	-	-	├—	<u> </u>	 -				- -	- -	╁	-		-[/			4.7	loan
					ļ	ļ	<u> </u> _	-	+			_	+	 -	╂	1		} —						- -	- -	-		-[i i		14	1036
	l		.	<u> </u>	<u> </u>	<u> </u>	_	-	_ -	-	-	-	-	-[\vdash	\vdash	 	-	\vdash				- -	-[-	- -	+	-		-		
				Tr	<u> </u>									╀┈	<u></u>	arks	<u></u>	<u> </u>	<u> </u>							Ц.,,		1	L			
	Relinquished By		Date:	Time: 2:00	Kee S	eived E	// ٧							"	Cilli	arks	•									_						
	Relinguished By	Up	Date:	Time:	Rec	eived L	J ul la Sv:	w						11	CE/H		4				,	ከበታና	·PM /-	***	.VO	AS (7&G	META	LSIC	THER		
	Kennquisited by						,			•				G	ON	ວດັກ	ווחא	TION	•			rnt: non	ERV	W()	1				上			
	Relinquished By		Date:	Time:	Rec	ciyed I	3y:							 	EAD	SPA	CE/	NBSE	NT	<u>_</u>		ጓፖ <i>የት</i> ንበእቦ	IUPKI Taine	ait Re	لا	•		•				
																					<u>ا</u> سا	/UIT	MIL	110_	<u>_</u>							

Gary Rogers
Aquatic & Environmental Applications
38053 Davy Ct.
Fremont, CA 94536

Reporting Date: July 8, 1999

Cyto Lab #: 99-58

Project Description: Motor Partners

Project #: 1004

Fax: (510) 791-7157

SAMPLES: 5 water samples were received on 6/24/99. Aerobic and anaerobic bacteria enumeration plates were poured on the same day.

AEROBIC

Hydrocarbon-Degrading Bacteria Enumeration Assays

ANALYSIS REQUEST: Bacterial enumeration for aerobic petroleum hydrocarbon-degraders (broad range

petroleum hydrocarbons: diesel, gasoline and jet fuel).

CARBON SOURCES: Petroleum hydrocarbons were added as the sole carbon and energy sources for the

growth of hydrocarbon-degrading aerobic bacteria on agar plates. Chevron #2 Diesel gasoline, and JP-4 Jet Fuel were blended into the agar to provide dissolved

phase aliphatic and aromatic hydrocarbons in the growth matrix.

PROTOCOLS: Hydrocarbon Degraders: Sterile agar plates (100 x 15 mm) were prepared with

with 1.0 ml of sample, or a log dilution of the sample, at dilutions of 10^0 , 10^{-1} , 10^{-2} , and 10^{-3} The hydrocarbon plates were poured on 6/24/99 and counted on 7/1/99. The plate count data are reported as colony forming units (cfu) per milliliter (ml) of sample. Each bacteria population value represents a statistical average of the plate count data obtained with inoculations for at least

two of the three log dilutions tested.

AEROBIC Hydrocarbon-Degrading and Heterotrophic Bacteria Enumeration Results

CLIENT SAMPLE NUMBER	SAMPLE DATE	HYDROCARBON DEGRADERS (CFU/ML)	TOTAL HETEROTROPHS (CFU/ML)
MW-2	6/23/99	2.9×10^3	NT
MW-4	6/23/99	1.3×10^3	NT
MW-3	6/23/99	4.4×10^3	NT
MW-1	6/23/99	1.0 x 10 ⁴	NT
MW-5	6/23/99	6.2×10^2	NT
+ Control	NA	> 1 x 10 ⁸	NT

1.0 x 10¹ cfu/ml is the lowest detection level for this assay

On 6/24/99, a positive control sample was run concurrently with these samples, and the plate count results obtained were $>1 \times 10^8$ cfu/ml. The positive control sample used was a mixed culture of hydrocarbon-degrading bacteria from California groundwater sites.

ANAEROBIC Bacterial Plate Count Enumeration Assays

ANALYSIS REQUEST:

Anaerobic bacterial plate count enumerations for total petroleum hydrocarbondegraders (broad range petroleum hydrocarbons: diesel, gasoline and jet fuel).

PROTOCOLS:

Anaerobic Hydrocarbon Degraders

These assays are similar in principle to our aerobic assays, except that they are performed in the absence of oxygen. Alternate electron acceptors such as sulfate, nitrate, and ferric iron are added to the media to meet anaerobic respiration needs. A mixture of Chevron No. 2 diesel, gasoline and jet fuel is added to the media to provide the sole carbon sources. A minimal salts mixture and trace elements are added to meet growth requirements.

Triplicate plates were inoculated with sample log dilutions of 10^{-0} , 10^{-1} , 10^{-2} , and 10^{-3} . The plates were poured on 6/24/99 and counted on 7/8/99. The plate count data are reported as colony forming units (cfu) per milliliter (ml) of sample. Each microbial population value represents a statistical average of the plate count data obtained with inoculations for two of the three log dilutions tested.

A positive control sample was run concurrently with these samples, and the data obtained from this is reported with your results. The positive control sample used was a composite of anaerobic slurries obtained from hydrocarbon-contaminated San Francisco Bay sediment and a Pt. Richmond, CA soil/ wastewater mixture.

Anaerobic Hydrocarbon-Degrading and Heterotrophic Bacteria Enumeration Results

CLIENT SAMPLE NUMBER	SAMPLE DATE	HYDROCARBON DEGRADERS (CFU/ML)	TOTAL HETEROTROPHS (CFU/ML)
MW-2	6/23/99	1.4×10^4	NT
MW-4	6/23/99	7.5×10^3	NT
MW-3	6/23/99	9.0 x 10 ³	NT
MW-1	6/23/99	2.5×10^4	NT
MW-5	6/23/99	8.5 x 10 ³	NT
+ Control	NA	>8 x 10 ⁶	NT

1.0 x 10¹ cfu/ml is the lowest detection level for this assay

Bacterial enumerations were performed by Ed Steidl and Randall von Wedel. CytoCulture is available on a consulting basis to assist in the interpretation of these data and their application to bioremediation protocols in the field.

Ed Steidl

Biochemistry Technician Laboratory Services Randall von Wedel, Ph.D.

Principal Biochemist and Director of Research

Aquatic & Environmental Applications

Subcontracted Microbiology Assays performed by

CytoCulture Environmental Biotechnology

CHAIN OF CUSTODY FORM

Project Name:	Project No	0.	Purchase Order / LOG IN #:
Motor	Partners	1004	
Client Organization: Aqu	atic + Environmental	Apps.	Project Manager: Gary Rogers
Address to Send Results:	38053 Davy C+	Fremont	CA 94536
Client Fax for Sending Data	n: 510-791-715	57	Client Contact / Project Manager:
Client Tel for Follow-up:	510-791, 719	57	Client Sampler / Recorder: G. Rogers

Sample I.D.	Sampling		Matrix		Analyses Reque	sted					_			
Indicate target Hydrocarbon range	Date	Time	Soil	Water	Hydrocarbon Degrading Bacteria Plate Count	Total Heterotrophic Bacteria Plate Count	рH	DO	NH ₃	PO₄	NO ₃	SO ₄	Other Tests of Comments	r
MW-2	6-23-99	11:20		X	X								Aerobic & A	ne
MW-4	J	11:30		У×	<u> </u>						_			
MW-3		11:40		X	X								\\	
Mw-1		11:50		X	X								/	
MW-5	6-23-99	12:00		X	X								Aerobic +	And

Chain of Custody Record	Signature of this form constitutes	a firm Purchase Order for services.	Payment DUE on Reporting Date.
Relinquished by:	Date/Hr:	Received by:	Date/Hr:
Received for CytoCulture Lab by:	Date/Hr: 6.34.99 830	CytoCulture Tel: 510-233-0102 Lab Services Fax: 510-233-3777	1

APPENDIX B

Quarterly Monitoring Data Sheets

Date: 6/23/99
Project Location: Motor Partners Site

1234 40th Ave., Oakland

Sampler: <u>G. Rogers</u>

Well Diameter: 2 Inches Well ID: MW-1

Well Type: Monitoring Well

Total Depth as Built: 19 ft

Screened Interval: 7 ft to 17 ft

Water Level Data

Time Depth Sounded: 9:48 am

Measured Depth to Water: 7.62 ft

Measured Total Depth: 16.9 ft

Purge Calculation(Min 3 Casing Volumes)

gal/ft X ft = gal X 3 = gal

 $0.163 \quad X \quad 9.3 = 1.5 \quad X \quad 3 = 4.5$

Purge Data

			~ ~~ 8	0 2 4 1 4			
Time	Flowrate (gpm)	Volume (gal)	Temp (°F)	EC (μs/cm)	pН	Turbidity (NTU)	
10:44			65.5	1279	9.9	>1000	
10:46			65.0	793	9.0	689	
10:48			65.0	721	7.1	124	
10:50			64.9	709	7.0	51	

Observations/Comments:

Inside Building

Laboratory Analysis:

Sample at

Water depth -

Analyze for TPH-D, TPH-G, BTEX, and MTBE; Nitrate, Ammonia, Total Phosphorus, Ferrous Iron, Sulfate, REDOX, and Dissolved Oxygen.

Data for Volume Calculation:

1 cu. ft. = 7.48 gal = 62.4 lbs (approx)

2" well = 0.163 gal/linear ft.

4" well = 0.653 gal/linear ft

1 gal = 0.134 cu. ft. = 8.34 lbs (approx)

3" well = 0.367 gal/linear ft.

6" well = 1.469 gal/linear ft

Quarterly	Monitoring	Data	Sheet

6/23/99 Date: Project Location: Motor Partners Site 1234 40th Ave., Oakland

Well Diameter: 2 Inches Well ID: MW-2 Well Type: Monitoring Well Total Depth as Built: _____ 22 ft

Screened Interval: ____ 10 ft to 20 ft

Water Level Data

Purge Calculation(Min 3 Casing Volumes)

Time Depth Sounded: 9:25 am

Sampler: G. Rogers

Measured Depth to Water: 6.87 ft Measured Total Depth: 19.2 ft

= gal X 3 = gal gal/ft X

Purge Data

			~ ~ - B			
Time	Flowrate (gpm)	Volume (gal)	Temp (°F)	EC (μs/cm)	рН	Turbidity (NTU)
9:45		0	67.9	648	6.8	206
9:48		2	68.2	660	6.9	>1000
9:51		4	68.3	656	7.2	>1000
9:53		6	67.5	641	7.0	> 1000

Observations/Comments:

Clear and sunny

Laboratory Analysis:

Sample at

Water depth -

Analyze for TPH-D, TPH-G, BTEX and MTBE; Nitrate, Ammonia, Total Phosphorus, Ferrous Iron, Sulfate, REDOX, and Dissolved Oxygen.

Data for Volume Calculation:

1 cu. ft = 7.48 gal = 62.4 lbs (approx)

2" well = 0.163 gal/linear ft.

4" well= 0.653 gal/linear ft.

1 gal = 0.134 cu. ft. = 8.34 lbs (approx)

3" well = 0.367 gal/linear ft.

6" well = 1 469 gal linear ft.

6/23/99 Date:

Project Location: Motor Partners Site

1234 40th Ave., Oakland

Sampler: <u>G. Rogers</u>

Well Diameter: 2 Inches Well ID: MW-3 Well Type: Monitoring Well Total Depth as Built: 23 ft

Screened Interval: 7 ft to 20 ft

Purge Calculation(Min 3 Casing Volumes) Water Level Data

9:40 am Time Depth Sounded: _

Measured Depth to Water: ____7.06 ft__ Measured Total Depth: 19.6 ft

= gal X 3 = gal X gal/ft

X 12.5 = 2.0 X 3 = 6.10.163

Purge Data

			^ 4- 5			
Time	Flowrate (gpm)	Volume (gal)	Temp (°F)	EC (μs/cm)	pН	Turbidity (NTU)
10:25		0	67.9	939	8.0	500
10:27		2	66.8	903	7.2	> 1000
10:29		4	66.7	854	7.0	182
10:31		6	66.5	815	7.0	122
	ł	i				

Observations/Comments:

Clear and sunny

Laboratory Analysis:

Sample at

Water depth -

Analyze for TPH-D, TPH-G, BTEX and MTBE; Nitrate, Ammonia, Total Phosphorus, Ferrous Iron, Sulfate, REDOX, and Dissolved Oxygen.

Data for Volume Calculation:

1 cu. ft. = 7.48 gal = 62.4 lbs (approx)

2" well = 0.163 gal/linear ft.

4" well = 0 653 gal/linear ft.

1 gal = 0.134 cu. ft. = 8.34 lbs (approx)

3" well = 0.367 gal'linear ft.

6" well = 1.469 gal/linear ft.

6/23/99 Date: Project Location: Motor Partners Site 1234 40th Ave., Oakland

Water Level Data

Total Depth as Built: _____

X

Well Diameter: 2 Inches Well ID: MW-4

Well Type: Monitoring Well

25 ft 5 ft to 25 ft

Sampler: G. Rogers

Screened Interval:

Purge Calculation(Min 3 Casing Volumes)

Time Depth Sounded: 9:30 am

gal/ft

gal X 3 = gal

Measured Depth to Water: 6.42 ft Measured Total Depth: 24.6 ft

0.163 X 18.2 = 18.2 X 3 = 8.9

Purge Data

Flowrate (gpm)	Volume (gal)	Temp (°F)	EC (μs/cm)	pН	Turbidity (NTU)		
	0	67.4	769	8.3	102		
	3	66.9	796	8.7	>1000		
	6	66.9	725	8.1	282		
	9	66.8	782	8.1	244		
		(gpm) (gal) 0 3 6	Flowrate (gpm) Volume (cpm) (confidence of the confidence of the c	Flowrate (gpm) Volume (gal) Temp (°F) EC (μs/cm) 0 67.4 769 3 66.9 796 6 66.9 725	Flowrate (gpm) Volume (gal) Temp (°F) EC (μs/cm) pH 0 67.4 769 8.3 3 66.9 796 8.7 6 66.9 725 8.1		

Observations/Comments:

Clear and sunny

Laboratory Analysis:

Sample at

Water depth -

Analyze for TPH-D, TPH-G, BTEX and MTBE; Nitrate, Ammonia, Total Phosphorus, Ferrous Iron, Sulfate, REDOX, and Dissolved Oxygen.

Data for Volume Calculation:

1 cu. ft. = 7.48 gal = 62.4 lbs (approx)

2" well = 0.163 gal/linear ft.

4" well = 0 653 gal/linear ft

1 gal = 0.134 cu. ft. = 8.34 lbs (approx)

3" well = 0.367 gal/linear ft.

6" well = 1.469 gal/linear ft.

6/23/99 Date:

Project Location: Motor Partners Site

1234 40th Ave., Oakland

Sampler: G. Rogers

Well Diameter: 2 Inches Well ID: MW-5 Well Type: Monitoring Well

Total Depth as Built: 21 ft 6 ft to 21 ft Screened Interval:

Water Level Data

9:45 am Time Depth Sounded: Measured Depth to Water: 7.66 ft

20.5 ft Measured Total Depth: _

Purge Calculation(Min 3 Casing Volumes)

gal X 3 = galgal/ft X ft

0.163 X 12.8 = 12.8 X 3 = 6.3

Purge Data

Time	Flowrate (gpm)	Volume (gal)	Temp (°F)	EC (μs/cm)	рН	Turbidity (NTU)
11:00		0	65.2	748	8.7	71000
11:01	-	2	64.6	708	7.6	71000
11:03		4	64.5	728	7.4	896
11:05		6	64.5	697	7.1	725
1200						

Observations/Comments:

Inside Building

Laboratory Analysis:

Sample at

Water depth -

Analyze for TPH-D, TPH-G, BTEX and MTBE; Nitrate, Ammonia, Total Phosphorus, Ferrous Iron, Sulfate, REDOX, and Dissolved Oxygen.

Data for Volume Calculation:

1 cu. ft. = 7.48 gal = 62.4 lbs (approx)

2" well = 0.163 gal/linear ft.

4" well= 0.653 gal/linear ft.

1 gal = 0.134 cu. ft. = 8.34 lbs (approx)

3" well = 0.367 gal/linear ft.

6" well = 1.469 gal/linear ft.