RECEIVED

1:06 pm, May 20, 2009

Alameda County Environmental Health

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, CA 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

20 May 2009

Re: Soil & Ground-Water Investigation Report Atlantic Richfield Company Station No. 2035 1001 San Pablo Avenue Albany, California ACEH Case No. RO0000100

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

Tail Supple

Paul Supple Environmental Business Manger

Prepared for:

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

SOIL & GROUND-WATER INVESTIGATION REPORT

Atlantic Richfield Company Station No. 2035 1001 San Pablo Avenue Albany, California ACEH Case No. RO0000100

Prepared by:

BROADBENT & ASSOCIATES, INC. ENGINEERING, WATER RESOURCES & ENVIRONMENTAL

1324 Mangrove Ave., Suite 212 Chico, California 95926 (530) 566-1400 <u>www.broadbentinc.com</u>

20 May 2009

Project No. 06-88-610

BROADBENT & ASSOCIATES, INC ENVIRONMENTAL, WATER RESOURCES & ENGINEERING Project No. 06-88-610

20 May 2009

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re: Soil & Ground-Water Investigation Report, Atlantic Richfield Company Station No.2035, 1001 San Pablo Avenue, Albany, California; ACEH Case #RO0000100

Dear Mr. Supple:

Broadbent & Associates, Inc. (BAI) is pleased to submit this *Soil & Ground-Water Investigation Report* for Atlantic Richfield Company Station #2035 (herein referred to as Station No.2035) located at 1001 San Pablo Avenue, Albany, California (Site). This report presents a description of field activities conducted and results obtained from the advancement of three soil borings and subsequent installation of ground-water monitoring wells at the Site on 25 and 26 March 2009. This work was conducted in accordance with the *Work Plan for Soil & Water Investigation* (BAI, 5 January 2009), as approved by Alameda County Environmental Health (ACEH) in their letter dated 19 February 2009.

Should you have questions or require additional information, please do not hesitate to contact us at (530) 566-1400.

Sincerely, BROADBENT & ASSOCIATES, INC.

Paul S. Green Staff Geologist

The

Thomas A. Venus, P.E. Senior Engineer

Enclosures

- No. 54698 CO Expires (2-31-09)
- cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

SOIL & GROUND-WATER INVESTIGATION REPORT

Atlantic Richfield Company Station No.2035 1001 San Pablo Avenue Albany, California

TABLE OF CONTENTS

<u>No.</u>	<u>Section</u>	Page							
1.0	Introduction	1							
2.0	Site Background	1							
3.0	Site Geology and Hydrogeology								
4.0	Field Activities Performed	2							
	4.1 Preliminary Field Activities	3							
	4.2 Soil Boring Advancement and Soil Sampling	3							
	4.3 Monitoring Well Construction	4							
	4.4 Well Development and Surveying	4							
	4.5 Investigation-Derived Residuals Management	4							
5.0	Results of Investigation	5							
6.0	Conclusions	5							
7.0	Recommendations	6							
8.0	Closure	6							
9.0	References	7							

ATTACHMENTS

Drawing 1	Site Vicinity Map
Drawing 2	Site Layout Plan with Soil Boring Locations

APPENDICES

- Appendix A Recent Regulatory Correspondence
- Appendix B Stratus Soil Boring Data Package (Includes Field Data Sheets, Boring Logs, Drilling Permit, Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)
- Appendix C GeoTracker Upload Confirmation Reports

SOIL & GROUND-WATER INVESTIGATION REPORT

Atlantic Richfield Company Station No.2035 1001 San Pablo Avenue Albany, California

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company, RM – a BP affiliated company, Broadbent & Associates, Inc. (BAI) has prepared this *Soil & Ground-Water Investigation Report* for additional soil and ground-water characterization at the Atlantic Richfield Company Station No.2035, located at 1001 San Pablo Avenue, Albany, California (Site). This on-site soil investigation was completed to evaluate the effectiveness of the remediation system that operated between 1997 and 2004 by assessing the presence of residual petroleum hydrocarbon-impacted soil, and construction of new, more-appropriately screened monitoring wells. Investigation dated 5 January 2009, as approved with additional comments by the Alameda County Environmental Health (ACEH) in their response letter dated 19 February 2009. A copy of this letter is provided in Appendix A. This report includes discussions on the Site Background, Site Geology and Hydrogeology, Field Activities Performed, Results of the Investigation, Conclusions and Recommendations.

2.0 SITE BACKGROUND

The Site is an active ARCO-brand retail gasoline service station located on the southeastern corner of San Pablo Avenue and Marin Avenue in Albany, California (Drawing 1 and Drawing 2). The land use in the immediate vicinity of the Site is mixed commercial and residential. Development at the Site consists of a service station building with four gasoline underground storage tanks (USTs) with associated piping, and four pump dispensers on two dispenser islands. The Site is primarily covered with asphalt or concrete surfacing.

Numerous subsurface investigations and remedial activities have been conducted on-site since 1989. A comprehensive Site history can be found within the *Work Plan for Soil & Water Investigation* prepared by BAI dated 5 January 2009. Section 4.0 of this report details the most recent subsurface investigation field activities conducted as requested by ACEH.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the northwestern portion of the Berkeley Sub-Area in the East Bay Plain of the San Francisco Basin. The Berkeley Sub-Area contains a series of alluvial fans deposited on a west sloping bedrock surface. The alluvial deposits range from 10 to 300 feet deep, averaging 100 to 200 feet deep. According to this document, there is no historical evidence that ground-water supplies are sufficient for municipal use (primarily due to low recharge rates) and that there are no reported clay units that function as major aquitards. However, in the Berkeley Sub-Area the first encountered ground water is frequently reported as being semi-confined, particularly in West Berkeley.

Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of ground water flow is from east to west or from the Hayward Fault to the San Francisco Bay. Ground-water flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east-west direction. The nearest surface water drainage is Cordornices Creek, located approximately 1,100 feet south of the Site. The overall general flow direction of Cordornices Creek is from east to west.

The Site elevation is approximately 45 feet above mean sea level. The water table fluctuates seasonally and over time with recorded static depths to water in monitor wells at the Site ranging between a historic minimum depth below top of casing measuring points of 5.69 feet (MW-3 on 1 February 2000) and maximum of 20.61 feet (RW-1 on 8 November 1991). Historically, depth-to-water measurements have typically ranged between approximately seven and 12 feet. Ground-water flow direction during the fourth quarter 2008 monitoring event on 24 November 2008 was to the west at a gradient of 0.02 ft/ft, typical according to the monitoring record.

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, the majority of East Bay Plain Cities (except the City of Hayward) do not have "any plans to develop local ground-water resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." The SFRWQCB's basin plan denotes existing beneficial uses of municipal and domestic supply (MUN), industrial process supply (PROC), industrial service supply (IND), and agricultural supply (AGR) for the East Bay Plain ground-water basin.

Geologic data derived from on-site borings generally indicates fine-grained silty and gravelly clay to silty and gravelly sand layer between approximately one and ten feet below ground surface (bgs). A coarser-grained clayey to silty sand and sandy gravel water-bearing zone underlies the sand and clay layer between approximately eight and 15 feet bgs. A clayey to gravelly sand layer is present between approximately 15 and 30 feet bgs. Silty clays were observed in several borings beyond 30 feet bgs.

4.0 FIELD ACTIVITIES PERFORMED

This on-site soil investigation was completed to evaluate the effectiveness of the remediation system that operated between 1997 and 2004 by assessing the presence of residual petroleum hydrocarbon-impacted soil, and construction of new, more-appropriately screened monitoring wells. On 25 and 26 March 2009, Stratus oversaw RSI Drilling, Inc. advance three hollow-stem auger soil borings (identified as B-28, B-29, and B-30) at the Site. Soil boring B-28 (completed as well MW-7) was located in the general vicinity of the previously collected soil sample S-10-B16, approximately 17 feet west-southwest of well MW-1 and approximately five feet southeast of well VW-3 (S-10-B16 sample location). Soil boring B-29 (completed as well MW-8) was located in the general vicinity of previously collected soil sample S-1-PL4, approximately seven feet east-southeast of well MW-2 and approximately 18 feet west of well VW-5. Soil boring B-30 (completed as well MW-9) was located in the general vicinity of the former waste oil tank, approximately 18 feet southeast of well MW-3 and approximately 23 feet

north-northwest of well MW-5. The soil boring locations from this investigation are shown in Drawing 2.

4.1 Preliminary Field Activities

Prior to initiating field activities, Stratus obtained the necessary well drilling permits from the Alameda County Public Works Agency (See Appendix B), prepared a site health and safety plan specific to the work scope; and cleared the Site for subsurface utilities. The utility clearance included notifying Underground Service Alert of the work a minimum of 48 hours prior to initiating the field investigation, and additionally securing the services of Cruz Brothers, a private utility locating company to confirm the absence of underground utilities at the boring location. Boreholes were physically cleared to 6.5 ft bgs using an air knife rig on 25 March 2009.

4.2 Soil Boring Advancement and Soil Sampling

On 26 March 2009, Stratus field personnel observed RSI Drilling (RSI) of Woodland, California advance three soil borings (B-28, B-29, and B-30). RSI utilized a CME-75 hollow-stem auger drill rig to collect depth-discrete samples at the soil boring locations to a maximum depth of 19 ft bgs. Physical soil samples were collected at specific depths for laboratory analysis based on field observations and recommendations from ACEH. Ground-water monitoring wells were installed in each soil boring.

Soil boring B-28 was advanced to a total depth of 16 ft bgs. Soil samples were collected from boring B-28 at 8, 13, 14, and 15 ft bgs. Reportedly, no obvious visual contamination was observed. Screening with the photo-ionization detector (PID) found contamination by volatile organic compounds (VOCs) between approximately 13 and 15 ft bgs, with up to 1,143 parts per million (ppm) at 14 ft bgs. Sandy clay was observed from approximately 6.5 to eight ft bgs, and from approximately 15 to 16 ft bgs, the total depth explored to. Clay was observed from approximately 9.5 to 11 ft bgs. Sandy clay with gravel was observed from approximately 11 to 13 ft bgs. Silty sand was encountered from approximately 13 to 14 ft bgs. Following completion of soil boring advancement and collection of samples, well installation activities began for well MW-7.

Soil boring B-29 was advanced to a total depth of 19 ft bgs. Soil samples were collected from boring B-29 at 11, 13, 16, and 19 ft bgs. Reportedly, no obvious visual contamination was observed. Screening with the PID found contamination by VOCs between approximately 13 and 16 ft bgs, with up to 2,158 ppm at 13 ft bgs. Sandy clay with gravel was observed between approximately 6.5 and 11 ft bgs, 12 ft bgs to 14 ft bgs, and 15 ft bgs to 16.5 ft bgs. Clay was encountered from approximately 11 to 12 ft bgs and 14 to 15 ft bgs. Clayey sand was observed from approximately 16.5 to 18 ft bgs. Sandy clay sand was encountered from approximately 18 to 19 ft bgs, the total depth explored to. Following completion of soil boring advancement and collection of samples, well installation activities began for well MW-8.

Soil boring B-30 was advanced to a total depth of 16 ft bgs. Soil samples were collected from boring B-30 at 8, 9, 11, and 13 ft bgs. Reportedly, no obvious visual contamination was

observed. Screening with the PID found contamination by VOCs between approximately seven and 12 ft bgs, with up to 149 ppm at seven ft bgs. Sandy clay with gravel was observed between approximately 6.5 and eight ft bgs, nine ft bgs to 10.5 ft bgs, and 11.5 ft bgs to 16 ft bgs, the total depth explored to. Clay was encountered from approximately eight to nine ft bgs. Silty sand with clay was encountered from approximately 10.5 to 11.5 ft bgs. Following completion of soil boring advancement and collection of samples, well installation activities began for well MW-9.

4.3 Monitoring Well Construction

Monitoring wells MW-7 (B-28), MW-8 (B-29), and MW-9 (B-30) were constructed using flushthreaded, four-inch diameter Schedule 40 PVC pipe. The factory-slotted 0.010-inch screen interval extends from six ft bgs to 16 ft bgs in wells MW-7 and MW-9, and from six ft bgs to 19 ft bgs in well MW-8. The filter pack surrounding the screen intervals consists of silica sand from four ft bgs to 16 ft bgs in wells MW-7 and MW-9, and from four ft bgs to 19 ft bgs in well MW-8. Each well was sealed with bentonite from two ft bgs to four ft bgs and with Portland cement grout from ground surface to two ft bgs. Each wellhead was secured with a locking well cap, and protected by a traffic-rated well vault set flush with the local ground surface. Additional details of well construction are provided in the field notes, lithologic boring logs and well construction logs provided in Appendix B. Well construction information was uploaded to the GeoTracker AB2886 database. Copies of GeoTracker upload confirmation reports are provided within Appendix C.

4.4 Well Development and Surveying

Monitor wells MW-7, MW-8 and MW-9 were developed on 1 April 2009. Well development activities for each well consisted of surging and bailing the well until relatively silt-free water was removed. Each well was then purged using a submersible pump. Each well ran dry after approximately 3.5 of the targeted 10 wetted casing volumes were purged. After allowing each well to recharge, an additional three well casing volumes were purged from each well.

The site was resurveyed, incorporating new wells MW-7, MW-8, and MW-9, by Wood Rodgers of Sacramento, California on 20 April 2009. The survey map from Wood Rodgers is provided within Appendix B. The well survey information was uploaded to the GeoTracker AB2886 database. Copies of the GeoTracker upload confirmation reports (GEO_MAP, GEO_XY, and GEO_Z files) are provided within Appendix C.

Ground-water samples were collected during the second quarter ground-water monitoring event and will be reported under a separate cover.

4.5 Investigation-Derived Residuals Management

Residual solids and liquids generated during the Site investigation activities were stored temporarily onsite in Department of Transportation-approved 55-gallon drums pending analytical results and profiling. Following characterization and profiling, Belshire Environmental Services was scheduled to transport the investigation-derived residuals to an Atlantic Richfield Company-approved facility for treatment or disposal.

5.0 **RESULTS OF INVESTIGATION**

Soil samples were shipped to Calscience Environmental Laboratories, Inc. (Garden Grove), a California State-certified laboratory, under chain-of-custody protocol. Samples were analyzed for Gasoline Range Organics (GRO, hydrocarbon chain lengths between C6-C12) by EPA Method 8015B; and for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether (DIPE), Tert-Butyl Alcohol (TBA), 1,2-Dichloroethane (1,2-DCA), and 1,2-Dibromoethane (EDB) using EPA Method 8260B. During the GRO analyses, the laboratory noted an unknown hydrocarbon(s) in samples MW-9 8', MW-9 9', and MW-9 11'. No other significant irregularities were reported during laboratory analysis of the soil boring samples. Soil laboratory analytical results are also summarized in tabular format below.

Well ID	GRO	В	Т	Ε	X	1,2-DCA	MTBE	TBA
MW-7 8'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010
MW-7 13'	200	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<1.0
MW-7 14'	860	< 0.10	< 0.10	1.9	0.10	< 0.10	< 0.10	<1.0
MW-7 15'	5.2	< 0.0010	< 0.0010	0.024	0.020	< 0.0010	< 0.0010	< 0.010
MW-8 11'	4.1	0.51	< 0.10	0.29	1.2	< 0.10	< 0.10	<1.0
MW-8 13'	74	1.8	1.7	4.3	20	< 0.10	< 0.10	<1.0
MW-8 16'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0021	0.0013	0.068
MW-8 19'	< 0.50	0.0011	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0074	0.021
MW-9 8'	11	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010
MW-9 9'	110	< 0.0010	0.0013	< 0.0010	0.0010	< 0.0010	< 0.0010	< 0.010
MW-911'	61	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010
MW-9 13'	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010

Laboratory Analytical Results of Soil Boring Samples (milligrams per kilogram, mg/kg)

Petroleum hydrocarbon concentrations above the various laboratory method reporting limits are represented with bold-typed font. The tested analytes were not detected above their respective reporting limits in two of the 12 soil samples collected (MW-7 8' and MW-9 13'). Concentrations of EDB, DIPE, ETBE, and TAME are not included in the above table as the results for these constituents were below their respective laboratory reporting limits for each sample. A copy of the laboratory analytical report with chain-of-custody documentation is provided in Appendix B. Laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation pages are provided in Appendix C.

6.0 CONCLUSIONS

On behalf of the Atlantic Richfield Company, RM – a BP affiliated company, BAI prepared this Soil & Water Investigation Report for Station No.2035, located at 1001 San Pablo Avenue,

Albany, California. Investigation activities were conducted in accordance with the BAI *Work Plan for Soil & Water Investigation* dated 5 January 2009, as approved with comments by the ACEH in their response letter dated 19 February 2009. Based on the information obtained and presented in this soil and ground-water investigation report, BAI concludes the following:

- No petroleum hydrocarbons were detected in the soil samples collected at eight ft bgs from boring B-28/MW-7 or at 13 ft bgs from boring B-30/MW-9.
- Up to 860 mg/kg GRO was detected in the soil samples collected from boring B-28/MW-7 in the vicinity of historic soil sample S-10-B16, which previously had contained Total Petroleum Hydrocarbons in the gasoline range (TPH-g) at 4,300 mg/kg (RESNA, 30 November 1992).
- Up to 1.8 mg/kg Benzene was detected in the soil samples collected from boring B-29/MW-8 in the vicinity of historic soil sample S-1-PL4, which previously had contained Benzene at 36 mg/kg (RESNA, 6 March 1991).
- The above listed concentrations indicate that the residual hydrocarbons in on-site soil have significantly decreased since the operation of a soil vapor extraction (SVE) system between 1997 and 2004.
- Well screen intervals for wells MW-7, MW-8, and MW-9 are inclusive of minimum and maximum ranges of depth to ground-water levels at the Site, in lieu of wells MW-1, MW-2, and MW-3, respectively, which routinely had submerged well screen intervals.

7.0 RECOMMENDATIONS

Based on the information obtained and presented in this soil and ground-water investigation report, BAI makes the following recommendations:

- Based on the analytical results obtained, the soil vapor extraction remediation system should be permanently shut down. Ground-water treatment should continue by monitored natural attenuation.
- The current ground-water monitoring and sampling schedules should be maintained with new monitoring wells MW-7, MW-8, and MW-9 replacing wells MW-1, MW-2, and MW-3.

8.0 CLOSURE

This document has been prepared for the exclusive use of Atlantic Richfield Company. The findings presented in this report are based upon the observations of Stratus field personnel, points of investigation and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Services were performed in accordance with the generally accepted standard of practice at the time this report was written. No warranty, expressed or implied, is intended. It is possible that variations in the soil or ground-water

conditions could exist beyond the points explored in this investigation. Also, changes in site conditions could occur at some time in the future due to variations in rainfall, temperature, regional water usage or other factors.

9.0 **REFERENCES**

- ACEH, 19 February 2009. Fuel Leak Case No. RO 0000100 and GeoTracker Global ID T0600100081, ARCO #02035, 1001 San Pablo Ave., Albany, CA 94706. Letter from Mr. Paresh Khatri (ACEH) to Mr. Paul Supple (Atlantic Richfield Company) approving work plan with technical comments.
- Broadbent & Associates, Inc., 5 January 2009. Work Plan for Soil & Water Investigation, Atlantic Richfield Company Station No. 2035, 1001 San Pablo Ave., Albany, CA, ACEH Case No. R00000100.
- California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee, June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda County and Contra Costa Counties, CA.
- RESNA, 6 March 1991. Subsurface Environmental Investigation and Pump Test, ARCO Station #2035, 1001 San Pablo Avenue, Albany, CA.
- RESNA, 30 November 1992. Additional Subsurface Environmental Investigation and Vapor Extraction Test, ARCO Station #2035, 1001 San Pablo Avenue, Albany, CA.

APPENDIX A

RECENT REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

February 19, 2009

Paul Supple Atlantic Richfield Company (A BP Affiliated Company) P.O. Box 1257 San Ramon, CA 94583

RECEIVED FEB 27 2009 BY

Subject: Fuel Leak Case No. RO0000100 and GeoTracker Global ID T0600100081, ARCO #02035, 1001 San Pablo Avenue, Albany, CA 94706

Dear Mr. Supple:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the abovereferenced site including the recently submitted document entitled, "Work Plan for Soil and Ground-Water Investigation," dated January 5, 2009, which was prepared by Broadbent & Associates (BAI) for the subject site. BAI proposes advancing three borings to characterize subsurface soil following the soil vapor extraction system operation and installing three 4-inch diameter groundwater monitoring wells to collect representative groundwater samples at the site. Boring B-28 is proposed in the general vicinity of sample S-10-B16 and well MW-1, approximately 15 feet west-southwest of well MW-1 and five feet east of well VW-3 (S-10-B16 sample location). Boring B-29 is proposed in the general vicinity of sample S-1-PL4, approximately five feet eastsoutheast of well MW-2 and five feet northwest of the eastern dispenser islands. Boring B-30 is proposed in the general vicinity of existing well MW-3 in order to install supplemental well MW-9.

ACEH generally concurs with the proposed scope of work and requests that you address the following technical comments, perform the proposed work, and send us the technical reports described below.

TECHNICAL COMMENTS

 Monitoring Well Construction and Hydrogeologic Setting – A review of the boring logs indicate that a sandy, gravelly unit is encountered at approximately 8 to 14 feet bgs in several borings installed across the site. BAI proposes to construct groundwater monitoring wells with screened intervals from 6 to 20 feet bgs. The 14 feet screened interval appears lengthy for site conditions considering that the wells may penetrate through a less permeable unit (i.e. clay) encountered from approximately 15 to 18 feet bgs, which is underlain by a more permeable sandy unit. This appears evident in boring logs for B-1, B-2, B-3, B-5, B-8, B-10, B-12, B-14, and B-15, to name a few. Therefore, in an interest to obtain representative water samples from the first water-bearing zone, it is recommended that the monitoring well screened intervals be limited or modified based on site conditions encountered. Additionally, based on the boring logs, it appears that multiple water-bearing zones may be present at the site. Therefore, it may be advantageous to collect depth discrete groundwater samples or install multi-level monitoring wells, monitoring well clusters, or systems capable of monitoring Mr. Supple RO0000100 February 19, 2009, Page 2

> multiple depths for verification, if it is determined that multiple water-bearing units exists. Preparation of cross-sections may aid in depicting and evaluating hydro-geologic conditions at the site. Please include a detailed discussion of the hydro-geologic conditions encountered and rationale for well construction in the soil and groundwater investigation report due by the date specified below.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

- May 20, 2009 Soil and Water Investigation Report
- July 30, 2009 Quarterly Monitoring Report (2nd Quarter 2009)
- January 30, 2010 Quarterly Monitoring Report (4th Quarter 2009)

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml.

Mr. Supple RO0000100 February 19, 2009, Page 3

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist

Donna L. Drogos, PE Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

Mr. Supple RO0000100 February 19, 2009, Page 4

> cc: Tom Venus, Broadbent & Associates, Inc., 1324 Mangrove Ave., Ste 212, Chico, CA 95926 Donna Drogos, ACEH Paresh Khatri, ACEH GeoTracker File

APPENDIX B

STRATUS SOIL BORING DATA PACKAGE (Includes Field Data Sheets, Boring Logs, Drilling Permit, Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

May 6, 2009

Mr. Tom Venus Broadbent & Associates, Inc. 1324 Mangrove Avenue Chico, California 95926

Re: Monitoring Well Installation and Development Data Package, Former ARCO Service Station No. 2035, located at 1001 San Pablo Avenue, Albany, California (field activities performed March 12th through April 1st, 2009)

General Information

Data Submittal Prepared / Reviewed by: Collin Fischer & Scott Bittinger / Jay Johnson Phone Number: (530) 676-2062 / (530) 676-6000

Date: March 12, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Health and safety meeting with utility locating subcontractor (Cruz Brothers Locators). Clear 3 boring locations and sketch utility locations on site map, per ground disturbance permit requirements. Mark site for Underground Service Alert (USA) clearance.

Variations from Work Scope: The location of well boring MW-7 was moved 6 feet south-southeast of the location presented in the Broadbent and Associates work plan in order to avoid a remediation trench. The location of well boring MW-9 was moved 6 feet south-southeast of the location presented in the Broadbent and Associates work plan in order to avoid an underground gas line.

Date: March 23, 2009

On-Site Supplier Representative: Levi Ford

Scope of Work Performed: Complete Health and Safety forms. Check USA markings and update site map and USA tracking sheet, per ground disturbance procedure requirement.

Variations from Work Scope: None noted

Date: March 25, 2009 On-Site Supplier Representative: Collin Fischer Scope of Work Performed: Health and safety meeting with air knife subcontractor (RSI Drilling). Air knife 3 boring locations (MW-7, MW-8, and MW-9) to 6.5 feet bgs. Variations from Work Scope: None noted Mr. Tom Venus, Broadbent & Associates, Inc. Monitoring Well Installation & Development Data Package ARCO Station No. 2035, Albany, California Page 2

Date: March 26, 2009

On-Site Supplier Representative: Collin Fischer and Levi Ford

Scope of Work Performed: Health and safety meeting with drilling subcontractor (RSI Drilling). Set up exclusion zone. Drill and install 1 monitoring well (MW-8) to 19' bgs., and 2 monitoring wells (MW-7 and MW-9) to 16' bgs.

Variations from Work Scope: Well depths and screening intervals were adjusted slightly from work plan, as appropriate, based on soil types encountered and to meet Alameda County Health Care Agency's request in the work plan approval letter for this scope of work.

Date: April 1, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Complete health & safety forms. Developed 3 monitoring wells (MW-7, MW-8, and MW-9).

Variations from Work Scope: Less than 10 well casing volumes were purged from the wells due to slow groundwater recharge rates. Initially, approximately 3.5 well casing volumes were removed from each well. After allowing each well to recharge, an additional 3 well casing volumes were purged from the each well.

This submittal presents data collected in association with the installation and development of three monitoring wells. The attachments include field data sheets, soil boring logs, DWR well completion reports, a drilling permit, a site plan, an underground utility location map, standard field procedures for well development work, certified analytical results, and chain-of-custody records. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations.

Mr. Tom Venus, Broadbent & Associates, Inc. Monitoring Well Installation & Development Data Package ARCO Station No. 2035, Albany, California Page 3

Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Satt BALy

Scott G. Bittinger, P.G. Project Geologist

Attachments:

- Field Data Sheets
- Soil Boring logs
- DWR Well Completion Reports
- Drilling permit
- Site Plan
- Underground Utility Location Map
- Field Procedures for Well Development
- Certified Analytical Results
- Chain-of-Custody Records

cc: Paul Supple, BP/ARCO

son, P.G. bjec**r** Manager

May 6, 2009

A210 2035

1300 -> ONSITE, SAFETS MEETING 13 15 -> BEGIN LOCATE ALL MASOF WILLITIES O SITE (WE CARS, The BURG COMM, Sound) & MARKE ON MARE. 1445 -> MW-7 & MW-9 MOST BE MOVED DUE TO CONFLUES multip moved not sse MUNH MINTE US SER IS WAI in other walls us located is make take as were.

1500 -> OFFSITE

Allin Fin-STRATUS ENU., W.C.

Field Data Sheet
Site: ARCO 2035 Date: 3/23/2009
Personnel on site: Levi Ford
Weather Conditions: Sunny, Clear
Notes:
- 100 -> Onsite, fill out Safety Paperwork
- urgate uson tracking sheet & mark
on Site PLAN PER GROUND DISTUBANCE Procedure
1230-> 04451TE
1 East
$E \cdot 1019$
Stlatus ENV., LNC.

Field Data Sheet Site: ALCO 2035 Date: 325 09 Personnel on site: Collin Foreswere, USI Philling Weather Conditions: Swwy, Cleare Notes: 0800 -> orsul, success marging 0930-2 SET UP ON (MU-7) & BEBIN AIR EMENS. JACKETHAMMER & CHARE FILLE. 1045-> (MW-7) Cleanes TO 6.5' BOS By 14" DUAMETER. 2SI OFFSURE TO GET BACKFILL SHND. 1145-> ONSUTE, UNIONO SAND, FILL (MW-7) & PATCH SURFICE 1215 -> Move TO (MU-9), JACTIMUMER & START CLEARING. 1230 - 1300 -> aug BOO -> KESUME CLUMMING (MW-q); TO 6-5' Bgs. 14170-> the ? ~ 6'395, Clarkso TO 6.51395 But the tens Latilling 1415 -> BACEFUL & PATCH SURPACE 1440 -7 Marrie to (MW-8), Jactolymmer & Stant Cleaseng. 1600 -> (Mew-3) (161440 6.51 × 14", F.11 & P4+CM 1630-> Earth TANK INTO DEWAS, LABEL DEWAS & Clissing. 1=15 -> Secure Sote 1230 -> offsate A ALE F Sthatus Bury, WC.

Field Data Sheet Date: 3/26/09 Site: ALCO 2035 Personnel on site: CollinFormer, Liber Ferer LSI Weather Conditions: Summer, Cleare. Notes: 1700 -S ONSITE, SHREETS NEWTING, SOTE WALE, SET uP and (MW-B). SET UP DELINEATORS & BACINERON ZONE. 0800 -> Towar we to they a Der Hung. 0830 - S NO COMP, LECONAR W 1St SAMELY TRY SALE STOON TO RETAINANT GAMPLE -5 NO SHUFLE FROM 6-5-9, STANT SALAT STAND OF TO TELEMENTICAT. 0945-5 CAR SLOTT DILL' TELLS ONE TO PROCEED 0450-5 cm 7 17.5 CAM 'd 17.5', TOLD TO PROCEED TO 19' 219' CAN OFFICE 1015 - 3 SET WER A MI B35 MW-8 Screen 6-la BENT 2-4 GROWT 0-2 1100 -> BENONDE ANDER, PULL FUNER ALMOREN & CLEARING. 110 -> MOBE HO TO (MW-7) 3 SET WR. 1315-> STAKET SETTING WELL 2 16 Bass. (Men-7 SCREW 6-16 SAM 4-16 2.36. ----1430 -S Dave WI (MW-7), MOVE TO (MW-9). cheerer 0-2 Ver Certon 1500 -> START DEILING @ (MW-9) APTER SET UP 1600 -> () DEPHY, SET WELL () 16 Bys (Mw-q) SURW-6-16 SIAND 4-16 1700 -> well SET TOWER PAIN & DECON. PERT 2 - 1 Gena 0-71 1730-> CLEAN UP SUTE & SET WED BOTES & GROUT -> FUNK DECON & CLEANUP. 1830 -> Seeme Sure 1845-> OFFSITE In Fi STLATUS ENV, WC.

Site Address	1001 SAN RABID WARRANE
City	Albanis PA.
Sampled by:	<u>C</u>
Signature	Chellist and

Site Number <u>Marco 2035</u> Project Number <u>Project PM</u> Project PM <u>Schustan</u>

DATE AVION

	V.	later Level E	Data		Purge Volume Calculations												
		Depth to	Doplh to	1				Cinations		<u> </u>	Purge	e Metho	od	S	ample Rec	ord	Field Dat
Well ID	Time	Product (feet)	Water (feet)	Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged	No Purge	Bailer	Pump	other	DTW al sample lime	Sample I.C	Sample	DO
MW-7-	1416		6.35	15.20	8.85	1.1 "	2	18	(gallons)	 			Ð	<u>(feet)</u>		1 THE	(mgn.)
<u>(1)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	1235		9.31	19.60	0.21	10CASTUSS	26.67-2	59-51	Met Day	ere	finil	anis	PALE	Weges	Puro	llons TO 21	5.87
Min-9	1510		8.70	15.20	65	DCASINOS"	26-67	-68->	125-91	Gr	1/25	1 PEG	BALLE	105-	ZDGu	uons	7.75
					<u> 18 J. C. 400</u>	10 (11511-93)=	16.67-2	13	(15) Par 0	bG	K Nons	K	BALL	1(10-1	Begula	15	6.75
							·····					1.01			Ritugo	E 10(1)	5 holla
· · · · · · · · · · · · · · · · · · ·													-				
																1997 - 1999 - 19	
	······································			[[
······································	······································	······				- -											
······																	
														i			
	ta and a second s						·····								······		
tulliplior																	

 $2^{\circ} = 0.5 \ 3^{\circ} = 1.0 \ 4^{\circ} = 2.0 \ 6^{\circ} = 4.4$

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10

DO Meter - Oakton 300 Series (DO is always measured before purge)

CALIBRATION DATE pH Conductivity DO F (

		1.	ł	í		
purge stop time		/iime				
Weillid MW-7-		lpugre stop ti	me			
Durde start time 187.0	·····		$\omega - 8$			
		purge start ti	ne 1240	5		
	ond galic	ns	- Tamp		 u	
1115 V 20 14-9 7-50 71	80	time (17, 4)	E 21.1			na (gail
111110 1430 14-217,40 70	48 7	time 1375	5 10 7		20 -2	<u>6 (</u>
10me 1470 17.4 7.30 58	32-14	time 124	× 118-1	- 1 e	43 65	0 15
time 1515 17. 1 7.45 56	4/21	time Nul Re	e lin i	F13 5	11 60	917
purge stop time		Durse at a li	110.1	2 4	7.613	2 2
Well ID W.W-9			8			
Durge start time						
	.	purge start time	÷	_		
time 1545 II (IZ (IZ (C) II) (C)	id Igalion:	s	<u> </u>	Hc	l enne	i celler
time 1565 17 2 12 2: 115	610	time		1	1 00.10	
ime 11-720 10 2 1-1020 -10	16	time				· u
ima 11/14 1- 11/1- 11/15	5112	time		<u> </u>		<u> </u>
1110 16-10 11 to 4 17.34 L/62	2115	time				- <u> </u>
unge stop time		purge stop fime				
Vell ID		Well ID				
urge start time						
Temp C pH cond	Callons	perge start time	1 1			
ne			Temp C	_Hc	cond	gallons
ne		ime				
ne		ime				
)⊖	t	me				
		mə			<u> </u>	
Aa Srob time						

÷

SOIL BORING LOG Borin						Boring	No. M	W-7	Sheet: 1 of 1				
Client ARCO 2035						Date			March 26, 2009				
Add	ress	1001	San Pa	blo Ave	enue	e	Dr	illing Co.	RSI Drilling rig type: CME-75				
		Alban	y, CA				Dr	iller	Ramiro				
Proj	ect No.	E203	5				Me	ethod	Hollow Stem Auger Hole Diameter: 10 inches				
Log	ged By:	Collin	Fischer	r		Sampler:			18-inch length split spoon				
Wel	l Pack	sand:	4 ft. to	16 ft			Well	Construction	n Casing Material: Schedule 40 PVC Screen Interval: 6 ft. to 16 ft.				
		bent.:	2 ft. to	4 ft.		-	_		Casing Diameter: 4 in. Screen Slot Size: 0.010-in.				
		grout:	0 ft. to	2 ft.			D	epth to GW	r: V first encountered: 10' bgs. static ▼				
		_			_								
	Sample	e Blow Sample					Donth						
Туре	No.	Count	Time	Recov.		Details	Scale	Column	Descriptions of Materials and Conditions	(PID (PPM)			
					1				Cleared to 6.5' bgs. with air knife				
			+			[1] (11) [1] (12) [1] (12)	'						
			 				_2						
							— ,						
			<u> </u>		1		_ °						
	ļ				/		_4						
		1					—						
		·	<u>+</u>	+			'						
		_	ļ				6	1					
						Ξ	— ₇						
		2					_ ′		Sandy clay, CL, dark brown, moist, medium stiff, medium plasticity				
S	MW-7 8'	5	1200	100			8	~	80% clay, 20% fine grained sand	<u> </u>			
		5					a	CL	Clay, CL, dark grayish brown, moist, stiff, medium plasticity				
		5											
		4					10	$\vee_{\rm sc}$		0			
		1					11	30	60% fine to medium grained sand 40% clay				
		3		*		Ξ							
		10					12	CI	Sandy clay with gravel CL, dark gravith brown, moist hard law planticity	0			
s	MW-7 13'	23	1225	100		Ξ	13	5	50% clay, 30% coarse grained sand, 20% fine gravel	898			
c	NALA 7 4 41	3	1045	100			.	CM					
3	10100-7 14	5 15	1240	100		Ξ	14	SIVI	Silty sand, SM, dark gray, wet, loose, 90% medium grained sand, 10% silt	1143			
S	MW-7 15'	34	1255	100			15			136			
	:	50/6"				Ξ	- 10	CL	Sandy clay, CL, dark yellowish brown, moist, hard, low plasticity				
					£•∶4 	_:	/ 10						
						.	17						
							1 8						
								İ		•••			
							19						
ĺ							- ₂₀						
									· · · · · · · · · · · · · · · · · · ·				
				Recove	ery]		Comments:				
				Sample	; -								
									STRATUS				
									ENVIRONMENTAL, INC.				

SC	DIL BORI	NG LC	G		Bo	oring	No. M	W-8	Sheet: 1 of 1				
Clie	lient ARCO 2035						Da	te	March 26, 2009				
Ado	iress	1001	San Pa	ibio Avei	านอ	e Drilling Co.			RSI Drilling rig type: CME-75				
		Alban	y, CA				- Dri	ller	Ramiro				
Pro	ject No.	E2035	5				- Me	thod	Hollow Stem Auger Hole Diameter: 10 inches				
Log	ged By:	Collin	Fische	r			Sa	mpler:	18-inch length split spoon				
We	ll Pack	sand:	4 ft. to	19 ft			Well (Construction	Casing Material: Schedule 40 PVC Screen Interval: 6 ft. to 19 ft				
		bent.:	2 ft. to	94 ft.			•		Casing Diameter: 4 in. Screen Slot Size: 0.010-in				
		grout:	0 ft. to	2 ft.			Di	epth to GW:	∇ first encountered: 16.5' bas. static				
				·····									
	Sample		Sa	mple									
Тур	e No.	- Blow Count	Time	Recov.	ו	Well etails	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PDM)			
							_		Cleared to 6.5' bgs. with air knife				
							1						
							2						
		1	1	1									
			ļ				³						
ļ							4	-					
	1	1		1			_						
							_ ⁵		{ 				
							— ₆						
		1					_		······································				
	+						_7						
							— ₈						
~~~				11									
						E	/ 9						
		4							Sandy clay with gravel, CL, dark brown, moist, stiff, medium plasticity				
S	MW-8 11'	7	0840	100			11 Zl		75% clay, 30% medium to coarse grained sand	0			
		11					12		100% clay				
		15							Sandy clay with gravel, CL, dark grayish brown, moist, hard, low plasticity				
S	MW-8 13'	24	0845	100			13	CL	50% clay, 30% coarse grained sand, 20% fine gravel	2158			
		13					— 14						
		17		[[		E		ľ	Clay, CL, dark grayish brown, moist, hard, medium plasticity	••••			
		21					¹⁵		100% clay	136			
s	MW-8 16'	21	0912	100			16		50% clay, 30% coarse grained sand, 20% fine gravel	85			
*******		13		[		E		$\nabla$	XXX				
		14		ŧ			17	ec	Clavey sand SC dark vollowish brown wet mading damage	0			
		6					18	00	65% fine to medium grained sand, 35% clay				
		9							Sandy clay, CL, dark yellowish brown, moist to wet, very stiff				
S	MW-8 19'	13	0955	100			19	CL	medium plasticity, 60% clay, 40% fine to medium grained sand	0			
						(							
	••••••	·····		·····-									
				Recover	У —			1	Comments:				
				Sample									
									STRATIIS				
									ENVIRONMENTAL, INC.				

SOIL BORING LOG				Bo	ring	No. M	W-9	Sheet: 1 of 1					
Client ARCO 2035					Da	ite	March 26, 2009						
Add	Address 1001 San Pablo Ave		blo Ave	enue		Dri	illing Co.	RSI Drilling rig type: CME-75					
		Albany	, CA		Driller				Ramiro				
Proj	ect No.	E2035	i				Me	ethod	Hollow Stem Auger Hole Diameter: 10 inches				
Log	Logged By: Collin Fischer		r			Sa	mpler:	18-inch length split spoon					
Wei	l Pack	sand:	4 ft. to	16 ft			Well (	Constructior	Casing Material: Schedule 40 PVC Screen Interval: 6 ft. to 16 ft.				
		bent.:	2 ft. to	4 ft.			_		Casing Diameter: 4 in. Screen Slot Size: 0,010-in.				
		grout:	0 ft. to	2 ft.			_ D	epth to GW	: Vfirst encountered: 10' bgs. static				
					-			-r	T				
	Sample	Blow	Sa	mple	- w	ell	Depth	Lithologic		PID			
Тура	No.	Count	Time	Recov.	De	tails	Scale	Column	Descriptions of Materials and Conditions	(PPM			
							1		Cleared to 6.5' bgs. with air knite				
		1		********		ingi .							
*****					1	11	2						
					$\mathcal{O}$		3						
	5					$\mathbb{V}$							
					11		− ⁴						
							5						
							— _						
				+	til∃								
		16					7						
s	MW-9.8'	20	1510	100			8		50% clay, 30% coarse grained sand, 20% fine gravel	149			
 ^		18						CL	Clay, CL, dark grayish brown, moist, very stiff, medium plasticity				
<u> </u>	MW-9 9'	12 14	1520	100			9		100% clay				
		22		<u> </u>			10	$\bigtriangledown$	50% clay, 30% coarse grained sand, 20% fine gravel	55			
c		2	1520	100									
	10100-311	12	1000					SM	Silty sand with clay, SM, dark gravish brown, wet, medium dense	+			
		20					12		70% medium grained sand, 20% silt, 10% clay	15			
s	MW-9 13'	29 31	1540	100			13			0			
		29							Sandy clay with gravel, CL, dark yellowish brown, dry to moist, hard	+ ³			
		34					14	CL	medium plasticity, 50% clay, 30% coarse grained sand, 20% medium gravel				
		28					15			0			
		30							Sandy clay with gravel, CL, dark yellowish brown, dry to moist, hard				
		- 3/		+	:: <u>1</u>	·]::::	16		medium plasticity, 50% clay, 30% coarse grained sand, 20% coarse gravel	0			
							17						
							<b>1</b> 8						
	**						'`						
							— ¹⁹			<b> </b>			
							20						
	/			Recover					Commonte				
				RECOVE	ту ——		-		Comments.				
				_									
				Sample			]						
									المعدين المسيد الم المسيد المسيد				
									STRATUS				
									ENVIRONMENTAL, INC.				
										ļ			

# CONFIDENTIAL

# STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

# REMOVED

# CONFIDENTIAL

# STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

# REMOVED

# CONFIDENTIAL

# STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

# REMOVED

# Alameda County Public Works Agency - Water Resources Well Permit

Public Works	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(5	95 10)782-1939				
Application Approved	on: 03/12/2009 By jamesy	Permit Numb Permits Val	ers: W2009-0234 id from 03/26/20	4 to W2009-0236 09 to 03/27/2009		
Application Id:	1236807180079	City of Project Site:Albany				
Site Location: Project Start Date: Assigned Inspector:	03/26/2009 Contact Vicky Hamlin at (510) 670-5443 or vicky	Completion Date:03/27/2009 or vickyh@acpwa.org				
Applicant:	Stratus Envr Scott Bittinger		Phone: 530-676	5-2062		
Property Owner:	BP/ ARCO	A 90082	Phone: 925-27	5-3801		
Client:	6 Centerpointe Dr, La Palma, CA 90623 ** same as Property Owner **					
	Receipt Number: WR2009-0099 Payer Name : Stratus	Total Due: Total Amount Paid By: CHEC	Paid:	\$1035.00 \$1035.00 PAID IN FULL		

Work Total: \$1035.00

#### Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells Driller: RSI - Lic #: 802334 - Method: auger

#### Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2009- 0234	03/12/2009	06/24/2009	MW-7	10.00 in.	4.00 in.	5.00 ft	20.00 ft
W2009- 0235	03/12/2009	06/24/2009	MW-8	10.00 in.	4.00 in.	5.00 ft	20.00 ft
W2009- 0236	03/12/2009	06/24/2009	MW-9	10.00 in.	4.00 in.	5.00 ft	20.00 ft

#### **Specific Work Permit Conditions**

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with

# Alameda County Public Works Agency - Water Resources Well Permit

appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.




## ATTACHMENT FIELD PROCEDURES FOR WELL DEVELOPMENT

The procedures typically used for development of monitoring or remediation wells are contained in this appendix.

#### Subjective Analysis of Groundwater and Well Condition

Following installation of a monitoring or remediation well, a minimum of approximately 48 to 72 hours is allotted to allow for curing of liquid neat cement placed in the upper portion of the borehole annulus around the well casing. Upon return to the site to complete development of the well, Stratus personnel will measure depth to groundwater within the well casing and the total depth of the well. These data will be compared with well construction information recorded at the time that the well is installed. If groundwater levels and well depths correspond to construction information, well development will proceed. If the water levels and well depths differ significantly from construction information, personnel developing the well will contact the project manager to discuss the situation prior to proceeding with development activities. Using the well depth and water level measurement, the volume of water situated within the well casing is calculated.

Prior to development, a sample of groundwater is collected from the well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating liquid petroleum hydrocarbons (LPH) and the appearance of a LPH sheen. If measureable LPH is present within the well, the field representative completing the work will discuss with the project manager whether or not to proceed with development of the well.

#### Well Development

Monitoring and remediation wells are typically developed by surging and bailing, followed by groundwater pumping. Stratus personnel typically develop small diameter wells (2-inch to 4-inch) by manually raising and lowering a bailer or surge block across the screened interval of the well. Wells larger than 4-inches in diameter are typically developed using a truck mounted well development rig to complete surging and bailing activities. This well surging activity forces water movement through the filter pack sand placed around the well screen. Following surging of the well, water from the well is bailed in order to recover sediment that may have settled near the base of the well casing.

Once the surging and bailing activities have been completed, a submersible pump is placed inside of the well casing to allow for pumping of groundwater. Groundwater pumping is typically continued until the water removed from the well appears free of suspended sediment. A minimum of 10 well casing volumes are typically extracted from the well during development. However, less water may be removed from the well if insufficient recharge only allows for intermittent groundwater pumping.

Groundwater generated during development is containerized and transported off-site for disposal at an appropriate facility.

#### **Equipment Cleaning**

All reusable equipment used in well development is cleaned using phosphate-free detergents and rinsed with de-ionized water following use at each specific well.



April 03, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-03-2417 Client Reference: ARCO 2035

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/27/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Richard Villey)

Calscience Environmental Laboratories, Inc. Richard Villafania Project Manager

CA-ELAP ID: 1230

 I230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

Stratus Environmental, inc.	Date Rec	ceived:	03/27/09						
3330 Cameron Park Drive, Suite 550			Work Order No:				09-03-2417		
Cameron Park, CA 95682-886	1		Preparati	ion:			EPA 3050E		
			Method:				E	PA 6010B	
Project: ARCO 2035							Pa	ige 1 of 1	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
swc		09-03-2417-1-A	03/26/09 14:45	Solid	ICP 5300	04/01/09	04/02/09 11:05	090401L01	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
Lead	7.01	0.500	1		mg/kg				
Method Blank		097-01-002-12,161	N/A	Solid	ICP 5300	04/01/09	04/02/09 10:31	090401L01	
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>				
Lead	ND	0.500	1		ma/ka				

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan



Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2417
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)
Project: ARCO 2035		Page 1 of 1

								_
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
swc		09-03-2417-1-A	03/26/09 14:45	Solid	GC 1	03/28/09	03/28/09 14:33	090328B01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	87	42-126						
Method Blank		099-12-697-95	N/A	Solid	GC 1	03/28/09	03/28/09 12:25	090328B01
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	90	42-126						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM



Stratus Environmental,	inc.				Date Rec	eived:				(	03/27/09
3330 Cameron Park Dr	ive, Suite <del>(</del>	550	Work Order No:						09-03-2417		
Cameron Park, CA 956	82-8861				Preparati	on:				EP.	A 5030B
- · · · · · · · · · · · · · · · · · · ·					Method	-					N 8260P
					Linite:						na/ka
					Offito.					_	myrky
Project: ARCO 2035										Pag	ge 1 of 1
Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	lime zed	QC Batch ID
SWC			09-03-	2417-1-A	03/26/09 14:45	Solid	GC/MS Z	03/31/09	03/31 17:2	/09 28	090331L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RI.	DF	Qual
Benzene	0.032	0.0010	1		Xylenes (total)			0.015	0.0010	1	
Ethylbenzene	0.0069	0.0010	1		Methyl-t-Butyl 8	Ether (MTBE	E)	ND	0.0010	1	
Toluene	0.0022	0.0010	1			•					
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		Qual
Dibromofluoromathane	101	<u>Limits</u> 75 141			1.2 Dichloroeth	ana d4		117			
Toluene-d8	95	87-111			1,4-Bromofluor	obenzene		91	71-113		
Method Blank			099-12	-709-118	N/A	Solid	GC/MS Z	03/31/09	03/31 13:5	/09 50	090331L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Xvienes (total)				0.0010		400
Ethvibenzene	ND	0.0010	1		Methvi-t-Butvl E	Ether (MTBE	3	ND	0.0010	1	
Toluene	ND	0.0010	1			····· (····	· /			•	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	97	75-141			1,2-Dichloroeth	ane-d4		108	73-151		
Toluene-d8	95	87-111			1,4-Bromofluor	obenzene		95	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers



Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2417
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

#### Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
09-03-2429-3	Solid	ICP 5300	04/01/09		04/02/09	090401S01	
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
Lead	104	104	75-125	0	0-20		

RPD - Relative Percent Difference, CL - Control Limit



# alscience aboratories, Inc.

### 

Date Received	03/27/09
Work Order No:	09-03-2417
Preparation:	EPA 3050B
Method:	EPA 6010B
	Date Received Work Order No: Preparation: Method:

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date	Analyzed	PDS/PDSD Batch Number	
09-03-2429-3	Solid	ICP 5300	04/01/09	04/02/09		090401S01	
Parameter	PDS %REC	PDSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Lead	92	95	75-125	2	0-20		

RPD - Relative Percent Difference, CL - Control Limit



### *Calscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.*

Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2417
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

#### Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
SWC	Solid	GC 1	03/28/09		03/28/09	090328501	
Parameter	<u>MS %REC</u>	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
Gasoline Range Organics (C6-C12)	105	98	42-126	7	0-25		

RPD - Relative Percent Difference , CL - Control Limit



Date Received:	03/27/09
Work Order No:	09-03-2417
Preparation:	EPA 5030B
Method:	EPA 8260B
	Date Received: Work Order No: Preparation: Method:

Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-03-2418-4	Solid	GC/MS Z	03/31/09		03/31/09	090331S01
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	98	96	78-114	2	0-14	
Chloroform	96	95	80-120	1	0-20	
1,1-Dichloroethane	94	90	80-120	5	0-20	
1,2-Dichloroethane	104	106	80-120	1	0-20	
1,1-Dichloroethene	97	96	73-127	1	0-21	
Ethanol	85	91	45-135	6	0-29	
Tetrachloroethene	70	66	80-120	6	0-20	
Toluene	93	93	74-116	0	0-16	
Trichloroethene	92	94	74-122	2	0-17	
Methyl-t-Butyl Ether (MTBE)	95	92	69-123	3	0-18	

RPD - Relative Percent Difference, CL - Control Limit

MM

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2417
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instru	ment	Date Prepared	Da 1 Anal	ite yzed	LCS/LCSD Batc Number	h
097-01-002-12,161	Solid	ICP 5	300	04/01/09	04/02	2/09	090401L01	
Parameler	LCS	<u>6REC</u>	LCSD %F	REC	%REC CL	RPD	<u>RPD CL</u>	Qualifiers
Lead	106	i	105		80-120	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

MM

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2417
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instr	ument	Da Prepa	le ared	Da Anal	ite yzed	LCS/LCSD Bate Number	sh
099-12-697-95	Solid	G	C 1	03/28	/09	03/28	8/09	090328B01	
Parameter	LCS	<u>%REC</u>	LCSD %	REC	<u>%R</u>	<u>EC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	105	õ	104		70	-118	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

MM



#### **Quality Control - LCS/LCS Duplicate**

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

	Date Received:	N/A
uite 550	Work Order No:	09-03-2417
61	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	Date LCS/LCSD Batch alyzed Number		Batch r
099-12-709-118	Solid	GC/MS Z	03/31/09	03/31/	/09	090331L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	105	102	84-114	79-119	2	0-7	
Bromobenzene	104	105	80-120	73-127	1	0-20	
Bromochloromethane	93	95	80-120	73-127	2	0-20	
Bromodichloromethane	100	100	80-120	73-127	0	0-20	
Bromoform	98	98	80-120	73-127	1	0-20	
Bromomethane	103	97	80-120	73-127	5	0-20	
n-Butylbenzene	100	102	77-123	69-131	2	0-25	
sec-Butylbenzene	102	103	80-120	73-127	1	0-20	
tert-Butylbenzene	105	105	80-120	73-127	0	0-20	
Carbon Disulfide	99	95	80-120	73-127	4	0-20	
Carbon Tetrachloride	103	100	69-135	58-146	3	0-13	
Chlorobenzene	96	96	85-109	81-113	0	0-8	
Chloroethane	88	83	80-120	73-127	6	0-20	
Chloroform	141	95	80-120	73-127	38	0-20	
Chloromethane	95	95	80-120	73-127	0	0-20	
2-Chlorotoluene	99	97	80-120	73-127	2	0-20	
4-Chlorotoluene	102	102	80-120	73-127	0	0-20	
Dibromochloromethane	97	95	80-120	73-127	1	0-20	
1,2-Dibromo-3-Chloropropane	96	98	80-120	73-127	2	0-20	
1,2-Dibromoethane	97	99	80-120	73-127	2	0-20	
Dibromomethane	99	97	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	98	100	80-110	75-115	2	0-10	
1,3-Dichlorobenzene	97	99	80-120	73-127	2	0-20	
1,4-Dichlorobenzene	98	99	80-120	73-127	1	0-20	
Dichlorodifluoromethane	111	112	80-120	73-127	0	0-20	
1,1-Dichloroethane	95	93	80-120	73-127	3	0-20	
1,2-Dichloroethane	108	107	80-120	73-127	1	0-20	
1,1-Dichloroethene	101	100	83-125	76-132	0	0-10	
c-1,2-Dichloroethene	88	86	80-120	73-127	3	0-20	
t-1,2-Dichloroethene	92	88	80-120	73-127	4	0-20	
1,2-Dichloropropane	97	96	79-115	73-121	1	0-25	
1,3-Dichloropropane	97	97	80-120	73-127	0	0-20	
2,2-Dichloropropane	97	94	80-120	73-127	4	0-20	
1,1-Dichloropropene	102	102	80-120	73-127	0	0-20	
c-1,3-Dichloropropene	96	97	80-120	73-127	2	0-20	
t-1,3-Dichloropropene	99	102	80-120	73-127	3	0-20	
Ethylbenzene	99	97	80-120	73-127	2	0-20	
Isopropylbenzene	103	102	80-120	73-127	2	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Mulmu



#### **Quality Control - LCS/LCS Duplicate**

Stratus Environmental, inc.
3330 Cameron Park Drive, Suite 550
Cameron Park, CA 95682-8861

N/A
09-03-2417
EPA 5030B
EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date         LCS/LCSD           Analyzed         Numb           9         03/31/09         090331		LCS/LCSD Numbe	Batch r
099-12-709-118	Solid	GC/MS Z	03/31/09			090331L01	
Parameler	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	RPD	RPD CL	Qualifiers
p-Isopropyitoluene	102	102	80-120	73-127	0	0-20	
Methylene Chloride	94	94	80-120	73-127	0	0-20	
Naphthalene	85	88	80-120	73-127	4	0-20	
n-Propylbenzene	100	100	80-120	73-127	1	0-20	
Styrene	101	99	80-120	73-127	2	0-20	
Ethanol	93	105	50-134	36-148	12	0-23	
1,1,1,2-Tetrachloroethane	101	100	80-120	73-127	1	0-20	
1,1,2,2-Tetrachloroethane	98	98	80-120	73-127	1	0-20	
Tetrachloroethene	91	95	80-120	73-127	4	0-20	
Toluene	97	98	79-115	73-121	1	0-8	
1,2,3-Trichlorobenzene	99	101	80-120	73-127	2	0-20	
1,2,4-Trichlorobenzene	98	99	80-120	73-127	1	0-20	
1,1,1-Trichloroethane	99	97	80-120	73-127	1	0-20	
1,1,2-Trichloroethane	91	92	80-120	73-127	1	0-20	
Trichloroethene	99	101	87-111	83-115	1	0-7	
Trichlorofluoromethane	107	104	80-120	73-127	2	0-20	
1,2,3-Trichloropropane	97	102	80-120	73-127	5	0-20	
1,2,4-Trimethylbenzene	106	107	80-120	73-127	1	0-20	
1,3,5-Trimethylbenzene	102	102	80-120	73-127	0	0-20	
Vinyl Acetate	106	95	80-120	73-127	<b>1</b> 1	0-20	
Vinyl Chloride	93	92	72-126	63-135	2	0-10	
p/m-Xylene	98	98	80-120	73-127	0	0-20	
o-Xylene	100	98	80-120	73-127	1	0-20	
Methyi-t-Butyl Ether (MTBE)	94	93	75-129	66-138	1	0-13	
Tert-Butyl Alcohol (TBA)	94	94	66-126	56-136	0	0-24	
Diisopropyl Ether (DIPE)	104	103	77-125	69-133	1	0-13	
Ethyl-t-Butyl Ether (ETBE)	94	94	72-132	62-142	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	99	77-125	69-133	2	0-10	

Total number of LCS compounds : 66 Total number of ME compounds : 0 Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

> RPD - Relative Percent Difference, CL - Control Limit





M

#### **Glossary of Terms and Qualifiers**



Work Order Number: 09-03-2417

<u>Qualifier</u>	Definition
AX	Sample too dilute to quantify surrogate.
AZ	Surrogate recovery outside of acceptance limits due to matrix interference.
BA, AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG, AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH, AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM, AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN, AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.

<u>Qualifier</u>	Definition
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RA	RPD exceeds limit due to matrix interf.; % recovs. within limits.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.

Atlantic	
Richfield	
Company	ĺ

~

Ξ

Laboratory Management Program LaMP Chain of Custody Record

190423 Page 6417 n.

<u> </u>	Company	BP/ARC Pr BP/ARC Fa	oject Name: Icility No:	A	-R-C	<u>(0</u>	2	-03	5						Req Lab	Due Wor	e Date 'k Ore	e (mn der N	n/dd/yy); umber:		C	417	$\overline{\boldsymbol{\mathcal{I}}}$	Rush	TAT: Y€		No	X
Lab Na	me: CALSCIENCE			BP/	/ARC	C Faci	ility A	ddres	s: <b> </b> 0	100	<	5 MA	n9 c		s A	UE			Consultar	t/Contr	actor:	<u></u>	247					
Lab Ad	dress: 7440 Luncol With	CARDID	CA.	City	y, Ste	ale, Z	IP Co	ode:	j	ME	AN	<u>ц</u>	. 0	<u> </u>	<u> </u>				Consultar	t/Contr	actor P	roject N/	0: F	-70	2 8-			
Lab PM	" FICHMED VILLAF	INIA		Lea	ad Re	egulat	tory A	\gency	۲ : N	464	m	ip	<u>,                                    </u>	C	ww	5	5		Address:	333	800			8.44	~-	the c		
Lab Ph	one:			Cal	liforni	ia Glo	bai li	D No.:	T	06	<u>00</u>	16	000	01					Consultan	t/Contr	actor P	M: ~	<u>-un</u>	The	- VA-	<u>+</u> 5	.50	
Lab Sh	pping Acont: 9255			Ënf	os Pi	ropos	al No	p: <b>(</b>	200	pa	<u> </u>	00	०प						Phone:	~	30 6	) )		<u></u>	1~30	~		
Lab Bo	ttle Order No:			Acc	ount	ing M	lode:		Pro	visior	1 - 1	00	C-BU		_ 00	C-RM	1		Email ED(		<u>ור '</u>	AFF?	2 5	-R.A	TIAS N	~~~		
Other Ir	nfo:			Sta	ge: (	09	en	472	A	clivity	: 4	#lr	G	LAR	KT1	417	47	ICN	Invoice To		BP//	$\frac{1}{1}$	$\frac{2}{1}$	Cont	ractor	<u> </u>	<u> </u>	
BP/AR(	CEBM: PHUL Supple	2			Ma	atrix		N	o. Co	ntair	ners /	Pres	ervat	ive	Γ			Regu	ested An	alvses			<u> </u>	Reno	t Type /	- 2 0 C I	evol	_
EBM P	none:											1	I	1			Τ								Standau			
EBM Er	nail: PANL - SUPPLE	BP.	.com					ontainers										CA CA CA			l			Full Da	ta Packag	le	-	
Lab No.	Sample Description	Date	Time	Sail / Salid	Water / Liquid	Air / Vapor	-	Total Number of Co	Unpreserved	H ₂ SO4	HNO ₃	HO	Methanol		950	BETEN	WT BE	TOTALL					Note: Sam; and i	: If sample ple* in con nifial any r	Comme not collect nments anc preprinted e	ed, indic I single-s ample d	ate "No trike out escriptior	1.
$\vdash$	<u></u>	726/09	1445	14	<u> </u>			$\left  \right $	Ł						14	+	1	K					_					
	<u> </u>	-	<b> </b>				<u> </u>												<u> </u>									
	<u></u>	-	<b>-</b>	┢	-										┝─┤								<u> </u>					
			<u> </u>												<b> </b>													
	<u> </u>	-			┝		<b></b>					 											1			<u>    .                                </u>		
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		<u> </u>												┝─┼								<u> </u>					
╞━╂			<u>}</u>												┝┈┥							_	<b>_</b>					
																				_			<u> </u>					
							·																<b>↓</b>	<u> </u>				
Sampler	sName: Collin Frei	<u> </u>	I			LR	letin	nuist	ed B		filiat	ion	ŀ										<u> </u>					┛
Sampler	s Company: C-HIATUS	A CARCE	<u>.</u>			7	7	2-	L						34 J	te	111	ne		Acce	pted E	3y / Affi	iliatior	1		ate	Time	<u>،</u>
Shipmen	t Method: (250	Ship Date: 3	24/00		_6		a	*	[=						14	9	1+0	$\circ$			11				_ <u> </u> _			
Shipmen	t Tracking No:	061612	35	-									,								HA.	ht a	<u>KT</u>		3/2	<u>7</u> 09	1000	2
Special	Instructions:		<u>,                                    </u>	I																	~ /							
	"HIS LINE - LAB USE ONLY: Custo	ody Seals In Plac	e: Yes / No	<u>г</u>	Temn	) Blan	ık: Ye	s / No			nder T	omo r	n Pas				00.0	·										
		, e iau		1					1			omp c	- rec	eihr: ⁻			_1+/C		Trip Blani	c Yes /	No	MS	3/MSD S	Sample §	Submitted	: Yes / I	No	9

Sample Receip	T FORM DATE	Cooler _ <u>: 03                                   </u>	1_of_1_ 27/09
STRATUS         STRATURE: $(Criteria: 0.0 °C - 6.0 °C, not frozen)$ Temperature $(-4) °C - 0.2 °C (CF) = 1 .2$ Sample(s) outside temperature criteria (PM/APM contacted but	DATI	=: <u>03   2</u>	7/09
<b>TEMPERATURE:</b> (Criteria: $0.0^{\circ}C - 6.0^{\circ}C$ , not frozen) Temperature <u>1.4</u> ${}^{\circ}C - 0.2^{\circ}C$ (CF) = <u>1.2</u> Sample(s) outside temperature criteria (PM/APM contacted by:	- °C ☑ Blan		
<ul> <li>Sample(s) outside temperature criteria but received on ice/chilled</li> <li>Received at ambient temperature, placed on ice for transplaced on i</li></ul>	on same day of sar	k □ Sam 1pling.	ple
Ambient Temperature:	PCBs Only	lnit	ial: <u></u>
CUSTODY SEALS INTACT:         Cooler       Image: No (Not Intact)         Sample       Image: No (Not Intact)	t Present □ N/ t Present	A Init Init	ial: <u>IP</u> ial: <u>KV</u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	······ 🗹		
COC document(s) received complete	······ ····· ······ ··················		
Collection date/time, matrix, and/or # of containers logged in based on sa	ample labels.		
COC not relinquished. Li No date relinquished. Li No time relinqui	ished.		
Sample container label(a) consistent with COC			
Sample container label(s) consistent with COC			
Correct containers and volume for analyses requested	······································		
Analyses received within holding time			
Proper preservation noted on COC or sample container		L.)	
$\Box$ Unpreserved vials received for Volatiles analysis	EM SINT		9
Volatile analysis container(s) free of headspace		m	
Tedlar bag(s) free of condensation	·····		
CONTAINER TYPE:	·····	L	<u> </u>
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ⊠Śleeve □EnC4	ores [®] □TerraCo	ores [®] □1	ent
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGB	h □125AGBpo₄		1AGBna ₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □	1PB 0500PB	⊒500PBna	□250PB
□250PBn □125PB □125PBznna □100PBsterile □100PB	na ₂ 🗌 🔰		7
Air: □Tedlar [®] □Summa [®] □ Sludge/Other: □	Check	ed/l abeled b	v: Eul
Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na:NaOH p:H ₃ PO ₄ s:H ₂ SO ₄ zr	ma:ZnAc ₂ +NaOH	Reviewed b Scanned b	y: <u>YL</u> y: <u>YL</u>
		SOP T10	090 (03/13/09)
	l f ) 12) -	- 2	:



April 07, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-03-2418 Client Reference: ARCO 2035

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/27/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Richard Villes)

Calscience Environmental Laboratories, Inc. Richard Villafania Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 A A 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501



Stratus Environmental, inc.			Date Received: 0						
3330 Cameron Park Drive, Se	uite 550		Work Ord	der No:			09	-03-2418	
Cameron Park, CA 95682-88	61		Preparati	on:			EF	PA 5030B	
			Method:				EPA 8	8015B (M)	
Project: ARCO 2035							Pa	age 1 of 4	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-8 11'		09-03-2418-1-A	03/26/09 08:40	Solid	GC 1	03/28/09	03/28/09 17:45	090328B01	
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>				
Gasoline Range Organics (C6-C12)	4.1	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	97	42-126							
MW-8 13'		09-03-2418-2-A	03/26/09 08:45	Solid	GC 1	03/28/09	03/30/09 14:19	090330B01	
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Units			ANNO 2001 1 1	
Gasoline Range Organics (C6-C12)	74	12	25		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Quai</u>					
1,4-Bromofluorobenzene	101	42-126							
MW-8 16'		09-03-2418-3-A	03/26/09 09:12	Solid	GC 1	03/28/09	03/28/09 18:48	090328B01	
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		***		

<u>REC (%)</u> Control Limits Surrogates: 1,4-Bromofluorobenzene 92 42-126 MW-8 19' 09-03-2418-4-A 03/26/09 09:55 Parameter Result <u>RL</u> <u>DF</u>

ND

ND

Surrogates: REC (%) Control Limits 1,4-Bromofiuorobenzene 88 42-126

1

1

<u>Qual</u>

Solid

Qual

Qual

mg/kg

GC 1

<u>Units</u>

mg/kg

03/28/09

03/28/09

19:20

090328B01

RL - Reporting Limit , DF - Dilution Factor

Qual - Qualifiers ,

0.50

0.50



Gasoline Range Organics (C6-C12)

Gasoline Range Organics (C6-C12)



MW-7 15'		09-03-2418-8-A	03/26/09 12:55	Solid	GC 1	03/28/09	03/28/09 20:56	090328B01			
1,4-Bromofluorobenzene	106	42-126									
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
Gasoline Range Organics (C6-C12)	860	120	250		mg/kg						
Parameter	<u>Result</u>	RL	DF	Qual	Units						
MW-7 14'		09-03-2418-7-A	03/26/09 12:45	Solid	GC 1	03/28/09	03/29/09 00:07	090328B02			
1,4-Bromofluorobenzene	98	42-126									
Surrogates:	<u>REC (%)</u>	Control Limits		Qual							
Gasoline Range Organics (C6-C12)	200	62	125		mg/kg						
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>						
MW-7 13'		09-03-2418-6-A	03/26/09 12:25	Solid	GC 1	03/28/09	03/29/09 23:35	090328B02			
1,4-Bromofiuorobenzene	88	42-126									
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg						
Parameter	Result	RL	<u>DF</u>	Qual	Units						
MW-7 8'		09-03-2418-5-A	03/26/09 12:00	Solid	GC 1	03/28/09	03/28/09 19:52	090328B01			
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
Project: ARCO 2035							Pa	age 2 of 4			
Cameron Park, CA 95682-88	61		Preparat Method:	ion:			EF EPA 8	PA 5030B 3015B (M)			
3330 Cameron Park Drive, Su	uite 550		Work Or	der No:			09-03-2418				
Stratus Environmental, inc.			Date Received: 03/27/09								

Parameter <u>Result</u> <u>RL</u> <u>DF</u> Qual <u>Units</u> Gasoline Range Organics (C6-C12) 5.2 0.50 1 mg/kg Surrogates: REC (%) Control Limits <u>Qual</u> 1,4-Bromofluorobenzene 104 42-126

RL - Reporting Limit , DF - Dilution Factor ,

or , Qual - Qualifiers



N

ulum____

Stratus Environmental, inc. 3330 Cameron Park Drive, Su Cameron Park, CA 95682-886	uite 550 51	nna <u>phi</u> tean ann	Date Received: Work Order No: Preparation:				03/27/09 09-03-2418 EPA 5030B			
			Method:				EPA 8	8015B (M)		
Project: ARCO 2035							Pa	ige 3 of 4		
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
MW-9 8'		09-03-2418-9-A	03/26/09 15:10	Solid	GC 1	03/28/09	03/28/09 21:28	090328B01		
Comment(s): -LW = Quantitation of	f unknown hydr	ocarbon(s) in sample	based on gase	oline.						
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>					
Gasoline Range Organics (C6-C12)	11	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	110	42-126								
MW-9 9'		09-03-2418-10-A	03/26/09 15:20	Solid	GC 1	03/28/09	03/30/09 14:51	090330B01		
Comment(s): -LW = Quantitation o Parameter	f unknown hydr <u>Result</u>	ocarbon(s) in sample <u>RL</u>	based on gasc <u>DF</u>	line. <u>Qual</u>	Units					
Gasoline Range Organics (C6-C12)	110	12	25		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		Qual						
1,4-Bromofluorobenzene	114	42-126								
MW-9 11'		09-03-2418-11-A	03/26/09 15:30	Solid	GC 1	03/28/09	03/30/09 15:23	090330B01		
Comment(s): -LW = Quantitation of Parameter	f unknown hydro Result	carbon(s) in sample l RI	based on gaso	line. Qual	Linits					
Gasoline Range Organics (C6-C12)	61	6.2	12.5	<u>quan</u>	mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		Qual						
1,4-Bromofluorobenzene	116	42-126								
MW-9 13'		09-03-2418-12-A	03/26/09 15:40	Solid	GC 1	03/28/09	03/29/09 23:03	090328B01		
Parameter	<u>Result</u>	RL	DF	Qual	Units					
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	_					
1,4-Bromofluorobenzene	91	42-126								
Rí - Reporting Límit DF - I	Dilution Factor	Qual - Qualifiers								

Page 4 of 4



#### **Analytical Report**

Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

#### Project: ARCO 2035

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank		099-12-697-95	N/A	Solid	GC 1	03/28/09	03/28/09 12:25	090328B01	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	90	42-126							
Method Blank		099-12-697-96	N/A	Solid	GC 1	03/28/09	03/28/09 14:01	090328B02	_
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
Gasoline Range Organics (C6-C12)	ND	5.0	10		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	86	42-126							
Method Blank	· ·	099-12-697-97	N/A	Solid	GC 1	03/28/09	03/30/09 13:47	090330B01	1
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>				
Gasoline Range Organics (C6-C12)	ND	5.0	10		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	90	42-126							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MMM



Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	03/27/09
Work Order No:	09-03-2418
Preparation:	EPA 5030B
Method:	EPA 8260B
Jnits:	mg/kg
	Page 1 of 6

Project: ARCO 2035

Client Sampie Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy	Time /zed	QC Batch ID
MW-8 11'			09-03-	2418-1-A	03/26/09 08:40	Solid	GC/MS Z	03/31/09	03/31 17:	1/09 59	090331L02
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter		and a	Result	RL	DF	Qual
Benzene	0.51	0.10	100		Methyl-t-Butyl (	Ether (MTB	E)	ND	0.10	10	 IO
1,2-Dibromoethane	ND	0.10	100		Tert-Butyl Alco	hol (TBA)	,	ND	1.0	10	0
1,2-Dichloroethane	ND	0.10	100		Diisopropyl Eth	er (DIPE)		ND	0.20	10	0
Ethylbenzene	0.29	0.10	100		Ethyl-t-Butyl Et	her (ETBE)		ND	0.20	10	0
Toluene	ND	0.10	100		Tert-Amyi-Meth	hyl Ether (T	AME)	ND	0.20	10	0
Xylenes (total)	1.2	0.10	100		-		,				
Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	93	75-141			1,2-Dichloroeth	nane-d4		111	73-151		
Toluene-d8	97	87-111			1,4-Bromofluor	obenzene		96	71-113		
MW-8 13'			09-03-2	2418-2-A	03/26/09 08:45	Solid	GC/MS Z	03/31/09	03/31 18:3	/09 30	090331L02
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter		**************************************	Result	RL	DF	Qual
Benzene	1.8	0.10	100		Methyl-t-Butyl E	Ether (MTB	E)	ND	0.10	10	0
1,2-Dibromoethane	ND	0.10	100		Tert-Butyl Alcol	hol (TBA)		ND	1.0	10	0
1,2-Dichloroethane	ND	0.10	100		Diisopropyl Eth	er (DIPE)		ND	0.20	10	0
Ethylbenzene	4.3	0.10	100		Ethyl-t-Butyl Et	her (ETBE)		ND	0.20	10	0
Toluene	1.7	0.10	100		Tert-Amyl-Meth	yl Ether (T/	AME)	ND	0.20	10	0
Xylenes (total)	20	0.10	100		-		-			-	-
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	99	75-141			1,2-Dichloroeth	iane-d4		110	73-151		
Toluene-d8	99	87-111			1,4-Bromofluor	obenzerie		97	71-113		
MW-8 16'			09-03-2	2418-3-A	03/26/09 09:12	Solid	GC/MS Z	03/31/09	03/31 19:0	/09 )1	090331L01
Parameter	Result	RL	DF	Qual	Parameter			<u>Result</u>	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl E	Ether (MTBE	=)	0.0013	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alcol	hol (TBA)		0.068	0.010	1	
1,2-Dichloroethane	0.0021	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Eti	her (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	yl Ether (TA	AME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	106	75-141			1,2-Dichloroeth	ane-d4		113	73-151		
Toluene-d8	95	87-111			1,4-Bromofluoro	obenzene		94	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	03/27/09
Work Order No:	09-03-2418
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg
	Page 2 of 6

Project: ARCO 2035

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ d Anal	Time vzed	QC Batch ID
MW-8 19'			09-03	-2418-4-A	03/26/09 09:55	Solid	GC/MS Z	03/31/09	03/3 14:	1/09 21	090331L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	0.0011	0.0010	1		Methyl-t-Butyl	Ether (MTB	E)	0.0074	0.0010		
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alco	hol (TBA)	_,	0.021	0.0010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	ner (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Et	ther (ETBE	)	ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amvi-Meti	hvi Ether (T	AME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1			J (.	,		0,0020	'	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Límits		Qual
Dibromofluoromethane	98	75-141			1,2-Dichloroeth	nane-d4		109	73-151		
Toluene-d8	96	87-111			1,4-Bromofiuor	obenzene		96	71-113		
MW-7 8'			09-03-	2418-5-A	03/26/09 12:00	Solid	GC/MS Z	04/01/09	04/0 21:	1/09 48	090401L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl f	Ether (MTB	F۱	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butvl Alco	hol (TBA)	-/	ND	0.0010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	iyl Ether (T.	AME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1		•		,				
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	104	75-141			1,2-Dichloroeth	ane-d4		124	73-151		
Toluene-d8	94	87-111			1,4-Bromofluor	obenzene		99	71-113		
MW-7 13'			09-03-	2418-6-A	03/26/09 12:25	Solid	GC/MS Z	04/02/09	04/02 20:1	2/09 12	090402L02
Comment(s): -BH											
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.10	100		Methyl-t-Butyl E	Ether (MTB	E)	ND	0.10	10	 ז
1,2-Dibromoethane	ND	0.10	100		Tert-Butyl Alcol	hol (TBA)	,	ND	1.0	10	้า
1,2-Dichloroethane	ND	0.10	100		Diisopropyl Eth	er (DIPE)		ND	0.20	10	ן ו
Ethylbenzene	ND	0.10	100		Ethyl-t-Butyl Etl	her (ETBE)		ND	0.20	10	5
Toluene	ND	0.10	100		Tert-Amyl-Meth	yl Ether (T/	AME)	ND	0.20	100	)
Xylenes (total)	ND	0.10	100		-		•				-
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		<u> </u>	<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	99	75-141			1,2-Dichloroeth	ane-d4		115	73-151		
Toluene-d8	92	87-111			1,4-Bromofiuore	obenzene		89	71-113		

RL - Reporting Limit ,

, DF - Dilution Factor , Qual -

Qual - Qualifiers





Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 
 Date Received:
 03/27/09

 Work Order No:
 09-03-2418

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 3 of 6

Project: ARCO 2035

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/ d Anal•	Time vzed	QC Batch ID
MW-7 14'			09-03-	2418-7-A	03/26/09 12:45	Solid	GC/MS Z	03/31/09	03/3 ⁻ 20:	1/09 35	090331L02
Parameter	<u>Result</u>	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.10	100		Methyl-t-Butyl	Ether (MTB	E)	ND	0.10	10	0
1,2-Dibromoethane	ND	0.10	100		Tert-Butyl Alco	phol (TBA)	_,	ND	1.0	10	0
1,2-Dichloroethane	ND	0.10	100		Diisopropyl Eth	ner (DIPE)		ND	0.20	10	0
Ethylbenzene	1.9	0.10	100		Ethyl-t-Butyl E	ther (ETBE)	)	ND	0.20	10	)0 10
Toluene	ND	0.10	100		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.20	10	0
Xylenes (total)	0.10	0.10	100				····-,		0.20		.0
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	104	75-141			1,2-Dichloroeti	hane-d4		114	73-151		
Toluene-d8	98	87-111			1,4-Bromofluo	robenzene		109	71-113		
MW-7 15'			09-03-	2418-8-A	03/26/09 12:55	Solid	GC/MS Z	04/02/09	04/02 20:4	2/09 43	090402L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl I	Ether (MTB	E)	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alco	ho! (TBA)	,	ND	0.010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		NÐ	0.0020	1	
Ethylbenzene	0.024	0.0010	1		Ethyl-t-Butyl Et	ther (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	hyl Ether (T	AME)	ND	0.0020	1	
Xylenes (total)	0.020	0.0010	1		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u> Limits		Qual
Dibromofiuoromethane	97	75-141			1,2-Dichloroeth	nane-d4		97	73-151		
Toluene-d8	102	87-111			1,4-Bromofluor	obenzene		101	71-113		
MW-9 8'			09-03-2	2418-9-A	03/26/09 15:10	Solid	GC/MS Z	03/31/09	03/31 21:3	/09 37	090331L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl (	Ether (MTBI	E)	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alco	hol (TBA)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	nyl Ether (T/	AME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		ļ	REC (%)	<u>Control</u> <u>Limits</u>		Quai
Dibromofluoromethane	106	75-141			1,2-Dichloroeth	ane-d4		120	73-151		
Toluene-d8	98	87-111			1,4-Bromofluor	obenzene		103	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 
 Date Received:
 03/27/09

 Work Order No:
 09-03-2418

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 4 of 6

Project: ARCO 2035

Client Sample Number			Ļ	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prenare	/Date d Analy	Time zed	QC Batch ID
MW-9 9'	99-96444 - Arrinne Berner, 2000 - 2000		09-03	2418-10-A	03/26/09 15:20	Solid	GC/MS Z	03/31/09	03/3	1/09 08	090331L01
Parameter	Result	RL	DE	<u>Qual</u>	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl i	Ether (MTB	E)	ND	0 0010	1	· ····································
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alco	hol (TBA)	_,	ND	0.0010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethvi-t-Butvi Et	ther (ETBE)		ND	0.0020	1	
Toluene	0.0013	0.0010	1		Tert-Amvl-Meth	hvl Ether (T/	ME)	ND	0.0020	1	
Xylenes (total)	0.0010	0.0010	1			,	····-,		0,0020	,	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Límits		Qual
Dibromofluoromethane	100	75-141			1,2-Dichloroeth	nane-d4		117	73-151		
Toluene-d8	97	87-111			1,4-Bromofluor	obenzene		78	71-113		
MW-9 11'			09-03-	2418-11-A	03/26/09 15:30	Solid	GC/MS Z	03/31/09	03/31 22:3	/09 39	090331L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl F	-	-)	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alco	hol (TBA)	-,	ND	0.0010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0120	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amvl-Meth	nyl Ether (TA	ME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1		,	, , , , , , , , , , , , , , , , , , ,	,		0.0020	•	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u>		Qual
Dibromofluoromethane	76	75-141			1.2-Dichloroeth	ane-d4		119	73-151		
Toluene-d8	99	87-111			1,4-Bromofluor	obenzene		104	71-113		
MW-9 13'			09-03-:	2418-12-A	03/26/09 15:40	Solid	GC/MS Z	04/01/09	04/01 21:1	/09 7	090401L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl E	Ether (MTBE	.)	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alcol	hol (TBA)	,	ND	0.010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Eti	her (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	yl Ether (TA	ME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		Ī	<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	103	75-141			1,2-Dichloroeth	ane-d4		115	73-151		
Toluene-d8	96	87-111			1,4-Bromofluor	obenzene		95	71-113		

Rt. - Reporting Limit , DF - Dilution Factor ,

or , Qual - Qualifiers





Stratus Environmental, inc. Date Received:								(	)3/27/09		
3330 Cameron Park Drive, Suite 550					Work Ord	der No:			09-03-2418		
Cameron Park, CA 956	82-8861			Preparation:					EPA 5030B		
,					Method				1		
					Lipite:				ł	= P/	4 8260B
Designate ADOO 0005					Offits.					_	пу/кд
Project. ARCO 2035										Jag	ge 5 of 6
Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir I Analyze	ne ed	QC Batch ID
Method Blank			099-12	2-709-118	N/A	Solid	GC/MS Z	03/31/09	03/31/0 13:50	9	090331L01
Parameter	Result	RL	DF	Qual	Parameter			Result		DE	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl I	Ether (MTB	E)	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alco	hol (TBA)	-/	ND	0.010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Eth	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	iyl Ether (T/	AME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1	<b>.</b> .							
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>		Qual
Dibromofluoromothano	07	Limits			1.0 Diablassath	ana de		400	<u>Limits</u>		
Toluene-d8	97	70-141 87-111			1,2-Dichloroeth	ane-04		108	73-151		
		07-111			1,4-DI011011001	ODENZENE		90	71-113	_	
метпод Віалк			099-12	-709-119	N/A	Solid	GC/MS Z	03/31/09	03/31/0 13:19	9	090331L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.10	100		Methyl-t-Butyl E	Ether (MTBE	-)	ND	0.10	100	)
1,2-Dibromoethane	ND	0.10	100		Tert-Butyl Alcol	hol (TBA)	-,	ND	10	100	)
1,2-Dichloroethane	ND	0.10	100		Diisopropyl Eth	er (DIPE)		ND	0.20	100	, )
Ethylbenzene	ND	0.10	100		Ethyl-t-Butyl Etl	her (ETBE)		ND	0.20	100	)
Toluene	ND	0.10	100		Tert-Amyl-Meth	yl Ether (TA	ME)	ND	0.20	100	)
Xylenes (total)	ND	0.10	100								
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:		!	<u>REC (%)</u>	Control		Qual
Dibromofluoromethane	99	75-141			1.2-Dichloroeth	hh.anc		109	<u>Limits</u> 72 151		
Toluene-d8	98	87-111			1.4-Bromofluor	obenzene		96	73-131		
Method Blank			099-12-	-709-120	N/A	Solid	GC/MS Z	04/01/09	04/01/09	Э	090401L01
	Desuit										
Perzene	<u>Result</u>		<u>Ur</u>	<u>Qual</u>	<u>Harameter</u>	·		<u>Kesull</u>	<u>KL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	.)	ND	0.0010	1	
1.2 Dichlerosthane		0.0010	1		Diagonage Letter			NU	0.010	1	
r,z-Dichioloethane Ethylhenzene		0.0010	1 4		Ethyle Down Ctr	er (DIPE)			0.0020	1	
Toluono		0.0010	ן א		Tort-Amyl Meth	iel (⊏IBE) vi Ethor (TA	MEN		0.0020	1	
Xvlenes (total)	ND	0.0010	1		ren-Anny-wein	yi⊑anei (TA	avic.)	ND	0.0020	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u>	,	Qual	Surrogates:		<u> </u>	REC (%)	<u>Control</u>		Qual
Dibromofluoromethane	102	75-141			1.2-Dichloroeth	ane-d4		120	<u>LIIIIIS</u> 73-151		
Toluene-d8	101	87-111			1,4-Bromofluoro	benzene		92	71-113		

RL - Reporting Limit ,

g Limit , DF - Dilution Factor , Q

, Qual - Qualifiers

Mulhan_



Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	03/27/09
Work Order No:	09-03-2418
Preparation:	EPA 5030B
Viethod:	EPA 8260B
Jnits:	mg/kg
	Page 6 of 6

Project: ARCO 2035

Client Sample Number			La N	b Sample Number	Date/Time Collected	Matrix	Instrumen	Date Prepared	Date/Ti Analyz	me ed	QC Batch ID
Method Blank			099-12	-709-122	N/A	Solid	GC/MS Z	04/02/09	04/02/ 17:00	09 S	090402L01
Parameter	<u>Result</u>	RL	DF	Quai	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	Ξ)	ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Tert-Butyl Alcoh	iol (TBA)	,	ND	0.010	1	
1,2-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
Ethylbenzene	ND	0.0010	1		Ethyl-t-Butyl Eth	ner (ETBE)		ND	0.0020	1	
Toluene	ND	0.0010	1		Tert-Amyl-Meth	yl Ether (TA	AME)	ND	0.0020	1	
Xylenes (total)	ND	0.0010	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							<u>Limits</u>		
Dibromofluoromethane	105	75-141			1,2-Dichloroetha	ane-d4		110	73-151		
Toluene-d8	97	87-111			1,4-Bromofluoro	benzene		84	71-113		
Method Blank			099-12-	709-123	N/A	Solid	GC/MS Z	04/02/09	04/02/0 16:35	)9 ;	090402L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.10	100		Methyl-t-Butyl E	ther (MTBE	-)	ND	0.10	100	
1,2-Dibromoethane	ND	0.10	100		Tert-Butyl Alcoh	ol (TBA)	-,	ND	10	100	
1,2-Dichloroethane	ND	0.10	100		Diisopropyl Ethe	r (DIPE)		ND	0.20	100	
Ethylbenzene	ND	0.10	100		Ethyl-t-Butyl Eth	er (ETBE)		ND	0.20	100	
Toluene	ND	0.10	100		Tert-Amyl-Methy	/I Ether (TA	ME)	ND	0.20	100	
Xylenes (total)	ND	0.10	100				,				
<u>Surrogates:</u>	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	105	75-141			1,2-Dichloroetha	ine-d4		101	73-151		
Toluene-d8	98	87-111			1,4-Bromofluoro	benzene		94	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers



## *alscience nvironmental* Quality Control - Spike/Spike Duplicate *aboratories, Inc.*

Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

#### Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-03-2417-1	Solid	GC 1	03/28/09		03/28/09	090328S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	105	98	42-126	7	0-25	

RPD - Relative Percent Difference , CL - Control Limit



# alscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-8 19'	Solid	GC/MS Z	03/31/09		03/31/09	090331S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	98	96	78-114	2	0-14	
Chioroform	96	95	80-120	1	0-20	
1,1-Dichloroethane	94	90	80-120	5	0-20	
1,2-Dichloroethane	104	106	80-120	1	0-20	
1,1-Dichloroethene	97	96	73-127	1	0-21	
Ethanol	85	91	45-135	6	0-29	
Tetrachloroethene	70	66	80-120	6	0-20	
Toluene	93	93	74-116	0	0-16	
Trichloroethene	92	94	74-122	2	0-17	
Methyl-t-Butyl Ether (MTBE)	95	92	69-123	3	0-18	

RPD - Relative Percent Difference , CL - Control Limit

hM

# alscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-03-2183-4	Solid	GC/MS Z	04/01/09		04/01/09	090401S01
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	105	98	78-114	7	0-14	
Chloroform	115	116	80-120	1	0-20	
1,1-Dichloroethane	113	114	80-120	1	0-20	
1,2-Dichloroethane	129	124	80-120	4	0-20	LM,AY
1,1-Dichlorcethene	110	115	73-127	4	0-21	
Ethanol	109	107	45-135	2	0-29	
Tetrachloroethene	74	71	80-120	4	0-20	
Toluene	103	94	74-116	9	0-16	
Trichloroethene	96	100	74-122	4	0-17	
Methyl-t-Butyl Ether (MTBE)	100	105	69-123	5	0-18	

RPD - Relative Percent Difference, CL - Control Limit

him

# alscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Stratus Environmental, inc.	Date Received:	03/27/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
09-03-2574-5	Solid	GC/MS Z	04/02/09		04/02/09	090402S01	
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	87	78	79-115	11	0-13	LN,AY	
Carbon Tetrachloride	85	84	55-139	1	0-15		
Chlorobenzene	90	83	79-115	9	0-17		
1,2-Dibromoethane	96	86	70-130	11	0-30		
1,2-Dichlorobenzene	78	78	63-123	1	0-23		
1,1-Dichloroethene	87	84	69-123	4	0-16		
Ethylbenzene	93	86	70-130	8	0-30		
Toluene	87	87	79-115	1	0-15		
Trichloroethene	84	91	66-144	8	0-14		
Vinyl Chloride	74	81	60-126	8	0-14		
Methyl-t-Butyl Ether (MTBE)	88	85	68-128	3	0-14		
Tert-Butyl Alcohol (TBA)	73	87	44-134	17	0-37		
Diisopropyl Ether (DIPE)	58	55	75-123	3	0-12	LN,AY	
Ethyl-t-Butyl Ether (ETBE)	94	88	75-117	7	0-12		
Tert-Amyl-Methyl Ether (TAME)	94	87	79-115	8	0-12		
Ethanol	80	85	42-138	6	0-28		

RPD - Relative Percent Difference , CL - Control Limit

MM

### *Calscience nvironmental quality Control - LCS/LCS Duplicate aboratories, Inc.*

Date Received:	N/A
Work Order No:	09-03-2418
Preparation:	EPA 5030B
Method:	EPA 8015B (M)
	Date Received: Work Order No: Preparation: Method:

Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrum	Di ent Prer	Date Prepared		te /zed	LCS/LCSD Bate Number	:h
099-12-697-96	Solid	GC 1	03/2	8/09	03/28	/09	090328B02	
Parameter	LCS ?	6REC	LCSD %REC	<u>%R</u> I	EC CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	105	i	104	70	-118	1	0-20	

RPD - Relative Percent Difference , CL - Control Limit



Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da I Anal	ite yzed	LCS/LCSD Bate Number	h
099-12-697-97	Solid	GC 1	03/28/09	03/3(	)/09	090330B01	
Parameter	LCS %	6REC LCSD	%REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	101	107		70-118	6	0-20	

RPD - Relative Percent Difference, CL - Control Limit


## alscience nvironmental Quality Control - LCS/LCS Duplicate aboratories, Inc.

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrume	Da Int Prep	ate bared	Dat Analy	e zed	LCS/LCSD Batc Number	h
099-12-697-95	Solid	GC 1	03/2	8/09	03/28/	/09	090328B01	
Parameter	LCS	<u>6REC L</u>	CSD %REC	<u>%R</u> I	C CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	105	i	104	70	-118	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit





Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Control Sample ID Matrix Ins		Instrument Prepared		ite yzed	LCS/LCSD I Numbe	Batch r
099-12-709-118	Solid	GC/MS Z	03/31/09	03/31/	09	090331L(	D1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	105	102	84-114	79-119	2	0-7	
Bromobenzene	104	105	80-120	73-127	1	0-20	
Bromochloromethane	93	95	80-120	73-127	2	0-20	
Bromodichloromethane	100	100	80-120	73-127	0	0-20	
Bromoform	98	98	80-120	73-127	1	0-20	
Bromomethane	103	97	80-120	73-127	5	0-20	
n-Butylbenzene	100	102	77-123	69-131	2	0-25	
sec-Butylbenzene	102	103	80-120	73-127	1	0-20	
tert-Butylbenzene	105	105	80-120	73-127	0	0-20	
Carbon Disulfide	99	95	80-120	73-127	4	0-20	
Carbon Tetrachloride	103	100	69-135	58-146	3	0-13	
Chlorobenzene	96	96	85-109	81-113	0	0-8	
Chloroethane	88	83	80-120	73-127	6	0-20	
Chloroform	141	95	80-120	73-127	38	0-20	
Chloromethane	95	95	80-120	73-127	0	0-20	
2-Chlorotoluene	99	97	80-120	73-127	2	0-20	
4-Chiorotoluene	102	102	80-120	73-127	0	0-20	
Dibromochloromethane	97	95	80-120	73-127	1	0-20	
1,2-Dibromo-3-Chloropropane	96	98	80-120	73-127	2	0-20	
1,2-Dibromoethane	97	99	80-120	73-127	2	0-20	
Dibromomethane	99	97	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	98	100	80-110	75-115	2	0-10	
1,3-Dichlorobenzene	97	99	80-120	73-127	2	0-20	
1,4-Dichlorobenzene	98	99	80-120	73-127	1	0-20	
Dichlorodifluoromethane	111	112	80-120	73-127	0	0-20	
1,1-Dichloroethane	95	93	80-120	73-127	3	0-20	
1,2-Dichloroethane	108	107	80-120	73-127	1	0-20	
1,1-Dichloroethene	101	100	83-125	76-132	0	0-10	
c-1,2-Dichloroethene	88	86	80-120	73-127	3	0-20	
t-1,2-Dichloroethene	92	88	80-120	73-127	4	0-20	
1,2-Dichloropropane	97	96	79-115	73-121	1	0-25	
1,3-Dichloropropane	97	97	80-120	73-127	0	0-20	
2,2-Dichloropropane	97	94	80-120	73-127	4	0-20	
1,1-Dichloropropene	102	102	80-120	73-127	0	0-20	
c-1,3-Dichloropropene	96	97	80-120	73-127	2	0-20	
t-1,3-Dichloropropene	99	102	80-120	73-127	3	0-20	
Ethylbenzene	99	97	80-120	73-127	2	0-20	
Isopropylbenzene	103	102	80-120	73-127	2	0-20	

RPD - Relative Percent Difference , CL - Control Limit

hM



Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

N/A
09-03-2418
EPA 5030E
EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 03/31/09		LCS/LCSD Numbe	Batch r
099-12-709-118	Solid	GC/MS Z	03/31/09			090331L01	
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
p-Isopropyltoluene	102	102	80-120	73-127	0	0-20	
Methylene Chloride	94	94	80-120	73-127	0	0-20	
Naphthalene	85	88	80-120	73-127	4	0-20	
n-Propylbenzene	100	100	80-120	73-127	1	0-20	
Styrene	101	99	80-120	73-127	2	0-20	
Ethanol	93	105	50-134	36-148	12	0-23	
1,1,1,2-Tetrachloroethane	101	100	80-120	73-127	1	0-20	
1,1,2,2-Tetrachloroethane	98	98	80-120	73-127	1	0-20	
Tetrachloroethene	91	95	80-120	73-127	4	0-20	
Toluene	97	98	79-115	73-121	1	0-8	
1,2,3-Trichlorobenzene	99	101	80-120	73-127	2	0-20	
1,2,4-Trichlorobenzene	98	99	80-120	73-127	1	0-20	
1,1,1-Trichloroethane	99	97	80-120	73-127	1	0-20	
1,1,2-Trichloroethane	91	92	80-120	73-127	1	0-20	
Trichloroethene	99	101	87-111	83-115	1	0-7	
Trichlorofluoromethane	107	104	80-120	73-127	2	0-20	
1,2,3-Trichloropropane	97	102	80-120	73-127	5	0-20	
1,2,4-Trimethylbenzene	106	107	80-120	73-127	1	0-20	
1,3,5-Trimethylbenzene	102	102	80-120	73-127	0	0-20	
Vinyl Acetate	106	95	80-120	73-127	11	0-20	
Vinyl Chloride	93	92	72-126	63-135	2	0-10	
p/m-Xylene	98	98	80-120	73-127	0	0-20	
o-Xylene	100	98	80-120	73-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	94	93	75-129	66-138	1	0-13	
Tert-Butyl Alcohol (TBA)	94	94	66-126	56-136	0	0-24	
Diisopropyt Ether (DIPE)	104	103	77-125	69-133	1	0-13	
Ethyl-t-Butyl Ether (ETBE)	94	94	72-132	62-142	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	99	77-125	69-133	2	0-10	

Total number of LCS compounds : 66 Total number of ME compounds : 0 Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit





Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	N/A
Work Order No:	09-03-2418
Preparation:	EPA 5030B
Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Date Matrix Instrument Prepared		Date Analyzed		Date Analyzed		LCS/LCSD I Numbe	Batch r
099-12-709-119	Solid	GC/MS Z	03/31/09	03/31/09		03/31/09 03/31/0		090331L(	02
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers		
Benzene	105	102	84-114	79-119	2	0-7			
Bromobenzene	104	105	80-120	73-127	1	0-20			
Bromochloromethane	93	95	80-120	73-127	2	0-20			
Bromodichloromethane	100	100	80-120	73-127	0	0-20			
Bromoform	98	98	80-120	73-127	1	0-20			
Bromomethane	103	97	80-120	73-127	5	0-20			
n-Butylbenzene	100	102	77-123	69-131	2	0-25			
sec-Butylbenzene	102	103	80-120	73-127	1	0-20			
tert-Butylbenzene	105	105	80-120	73-127	0	0-20			
Carbon Disulfide	99	95	80-120	73-127	4	0-20			
Carbon Tetrachloride	103	100	69-135	58-146	3	0-13			
Chlorobenzene	96	96	85-109	81-113	0	0-8			
Chloroethane	88	83	80-120	73-127	6	0-20			
Chloroform	141	95	80-120	73-127	38	0-20			
Chloromethane	95	95	80-120	73-127	0	0-20			
2-Chlorotoluene	99	97	80-120	73-127	2	0-20			
4-Chlorotoluene	102	102	80-120	73-127	0	0-20			
Dibromochloromethane	97	95	80-120	73-127	1	0-20			
1,2-Dibromo-3-Chloropropane	96	98	80-120	73-127	2	0-20			
1,2-Dibromoethane	97	99	80-120	73-127	2	0-20			
Dibromomethane	99	97	80-120	73-127	3	0-20			
1,2-Dichlorobenzene	98	100	80-110	75-115	2	0-10			
1,3-Dichlorobenzene	97	99	80-120	73-127	2	0-20			
1,4-Dichlorobenzene	98	99	80-120	73-127	1	0-20			
Dichlorodifluoromethane	111	112	80-120	73-127	0	0-20			
1,1-Dichloroethane	95	93	80-120	73-127	3	0-20			
1,2-Dichloroethane	108	107	80-120	73-127	1	0-20			
1,1-Dichloroethene	101	100	83-125	76-132	0	0-10			
c-1,2-Dichloroethene	88	86	80-120	73-127	3	0-20			
t-1,2-Dichloroethene	92	88	80-120	73-127	4	0-20			
1,2-Dichloropropane	97	96	79-115	73-121	1	0-25			
1,3-Dichloropropane	97	97	80-120	73-127	0	0-20			
2,2-Dichloropropane	97	94	80-120	73-127	4	0-20			
1,1-Dichloropropene	102	102	80-120	73-127	0	0-20			
c-1,3-Dichloropropene	96	97	80-120	73-127	2	0-20			
t-1,3-Dichloropropene	99	102	80-120	73-127	3	0-20			
Ethylbenzene	99	97	80-120	73-127	2	0-20			
Isopropylbenzene	103	102	80-120	73-127	2	0-20			

RPD - Relative Percent Difference, CL - Control Limit

Mulum



Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	N/A
Work Order No:	09-03-2418
Preparation:	EPA 5030E
Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 03/31/09		LCS/LCSD Numbe	Batch r
099-12-709-119	Solid	GC/MS Z	03/31/09			090331L02	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
p-Isopropyltoluene	102	102	80-120	73-127	0	0-20	
Methylene Chloride	94	94	80-120	73-127	0	0-20	
Naphthalene	85	88	80-120	73-127	4	0-20	
n-Propylbenzene	100	100	80-120	73-127	1	0-20	
Styrene	101	99	80-120	73-127	2	0-20	
Ethanol	93	105	50-134	36-148	12	0-23	
1,1,1,2-Tetrachloroethane	101	100	80-120	73-127	1	0-20	
1,1,2,2-Tetrachloroethane	98	98	80-120	73-127	1	0-20	
Tetrachloroethene	91	95	80-120	73-127	4	0-20	
Toluene	97	98	79-115	73-121	1	0-8	
1,2,3-Trichlorobenzene	99	101	80-120	73-127	2	0-20	
1,2,4-Trichlorobenzene	98	99	80-120	73-127	1	0-20	
1,1,1-Trichloroethane	99	97	80-120	73-127	1	0-20	
1,1,2-Trichloroethane	91	92	80-120	73-127	1	0-20	
Trichloroethene	99	101	87-111	83-115	1	0-7	
Trichlorofluoromethane	107	104	80-120	73-127	2	0-20	
1,2,3-Trichloropropane	97	102	80-120	73-127	5	0-20	
1,2,4-Trimethylbenzene	106	107	80-120	73-127	1	0-20	
1,3,5-Trimethylbenzene	102	102	80-120	73-127	0	0-20	
Vinyl Acetate	106	95	80-120	73-127	11	0-20	
Vinyl Chloride	93	92	72-126	63-135	2	0-10	
p/m-Xylene	98	98	80-120	73-127	0	0-20	
o-Xylene	100	98	80-120	73-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	94	93	75-129	66-138	1	0-13	
Tert-Butyl Alcohol (TBA)	94	94	66-126	56-136	0	0-24	
Diisopropyl Ether (DIPE)	104	103	77-125	69-133	1	0-13	
Ethyl-t-Butyl Ether (ETBE)	94	94	72-132	62-142	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	99	77-125	69-133	2	0-10	
Total number of LCS compounds : 66							

Total number of ME compounds : 0 Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

~ AI



Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	N/A
Work Order No:	09-03-2418
Preparation:	EPA 5030B
Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	nent Prepared		ate yzed	LCS/LCSD I Numbe	Batch r		
099-12-709-120	Solid	Solid GC/MSZ 04/01/09 04/01/09		04/01/09		04/01/09 04/01/09		090401L01	
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers		
Benzene	105	103	84-114	79-119	2	0-7			
Bromobenzene	113	113	80-120	73-127	0	0-20			
Bromochloromethane	105	109	80-120	73-127	4	0-20			
Bromodichloromethane	110	108	80-120	73-127	2	0-20			
Bromoform	111	115	80-120	73-127	3	0-20			
Bromomethane	119	120	80-120	73-127	1	0-20			
n-Butylbenzene	101	90	77-123	69-131	12	0-25			
sec-Butylbenzene	102	101	80-120	73-127	2	0-20			
tert-Butylbenzene	107	103	80-120	73-127	3	0-20			
Carbon Disulfide	104	108	80-120	73-127	4	0-20			
Carbon Tetrachloride	107	109	69-135	58-146	1	0-13			
Chlorobenzene	99	96	85-109	81-113	4	0-8			
Chloroethane	96	97	80-120	73-127	1	0-20			
Chloroform	107	108	80-120	73-127	2	0-20			
Chloromethane	110	109	80-120	73-127	1	0-20			
2-Chlorotoluene	100	101	80-120	73-127	1	0-20			
4-Chlorotoiuene	100	100	80-120	73-127	0	0-20			
Dibromochloromethane	107	106	80-120	73-127	1	0-20			
1,2-Dibromo-3-Chloropropane	101	106	80-120	73-127	5	0-20			
1,2-Dibromoethane	100	97	80-120	73-127	3	0-20			
Dibromomethane	98	102	80-120	73-127	4	0-20			
1,2-Dichlorobenzene	104	92	80-110	75-115	13	0-10			
1,3-Dichlorobenzene	103	104	80-120	73-127	0	0-20			
1,4-Dichlorobenzene	105	106	80-120	73-127	1	0-20			
Dichlorodifluoromethane	111	118	80-120	73-127	7	0-20			
1,1-Dichloroethane	106	111	80-120	73-127	5	0-20			
1,2-Dichloroethane	114	118	80-120	73-127	4	0-20			
1,1-Dichloroethene	108	110	83-125	76-132	1	0-10			
c-1,2-Dichloroethene	91	90	80-120	73-127	1	0-20			
t-1,2-Dichloroethene	98	99	80-120	73-127	1	0-20			
1,2-Dichloropropane	101	107	79-115	73-121	6	0-25			
1,3-Dichloropropane	99	94	80-120	73-127	5	0-20			
2,2-Dichloropropane	106	108	80-120	73-127	2	0-20			
1,1-Dichloropropene	95	93	80-120	73-127	2	0-20			
c-1,3-Dichloropropene	102	100	80-120	73-127	3	0-20			
t-1,3-Dichloropropene	102	97	80-120	73-127	5	0-20			
Ethylbenzene	99	99	80-120	73-127	0	0-20			
İsopropylbenzene	105	107	80-120	73-127	1	0-20			

RPD - Relative Percent Difference , CL - Control Limit

hM



Quality Control -	LCS/LCS Duplicate
-------------------	-------------------

Stratus Environmental, inc. Date Received: 3330 Cameron Park Drive, Suite 550 Work Order No: Cameron Park, CA 95682-8861 Preparation: Method:

09-03-2418 EPA 5030B EPA 8260B

N/A

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe	Batch r
099-12-709-120	Solid	GC/MS Z	04/01/09	04/01	/09	090401L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
p-isopropyltoluene	103	101	80-120	73-127	2	0-20	
Methylene Chloride	95	99	80-120	73-127	4	0-20	
Naphthalene	88	90	80-120	73-127	3	0-20	
n-Propylbenzene	103	104	80-120	73-127	1	0-20	
Styrene	105	106	80-120	73-127	1	0-20	
Ethanol	108	115	50-134	36-148	6	0-23	
1,1,1,2-Tetrachloroethane	105	109	80-120	73-127	4	0-20	
1,1,2,2-Tetrachloroethane	102	104	80-120	73-127	2	0-20	
Tetrachloroethene	85	91	80-120	73-127	7	0-20	
Toluene	102	99	79-115	73-121	3	0-8	
1,2,3-Trichlorobenzene	108	113	80-120	73-127	4	0-20	
1,2,4-Trichlorobenzene	110	109	80-120	73-127	1	0-20	
1,1,1-Trichloroethane	98	101	80-120	73-127	3	0-20	
1,1,2-Trichloroethane	95	93	80-120	73-127	3	0-20	
Trichloroethene	103	108	87-111	83-115	5	0-7	
Trichlorofluoromethane	121	128	80-120	73-127	5	0-20	
1,2,3-Trichloropropane	101	107	80-120	73-127	5	0-20	
1,2,4-Trimethylbenzene	102	103	80-120	73-127	0	0-20	
1,3,5-Trimethylbenzene	104	106	80-120	73-127	2	0-20	
Vinyl Acetate	115	115	80-120	73-127	0	0-20	
Vinyi Chloride	99	97	72-126	63-135	2	0-10	
p/m-Xylene	101	101	80-120	73-127	0	0-20	
o-Xylene	100	100	80-120	73-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	95	97	75-129	66-138	3	0-13	
Tert-Butyl Alcohol (TBA)	94	95	66-126	56-136	2	0-24	
Diisopropyl Ether (DIPE)	106	110	77-125	69-133	3	0-13	
Ethyl-t-Butyl Ether (ETBE)	95	102	72-132	62-142	7	0-12	
Tert-Amyl-Methyl Ether (TAME)	90	93	77-125	69-133	4	0-10	

Total number of LCS compounds : 66 Total number of ME compounds : 1 Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

> RPD - Relative Percent Difference , CL - Control Limit





Quality	Control -	LCS/LCS	Duplicate
---------	-----------	---------	-----------

1.11

Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date strument Prepared		ate yzed	LCS/LCSD I Numbe	3atch r
099-12-709-122	Solid	GC/MS Z	04/02/09	04/02	/09	090402L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
Benzene	103	102	84-114	79-119	1	0-7	
Bromobenzene	96	93	80-120	73-127	2	0-20	
Bromochloromethane	98	86	80-120	73-127	13	0-20	
Bromodichloromethane	106	94	80-120	73-127	12	0-20	
Bromoform	94	97	80-120	73-127	3	0-20	
Bromomethane	114	86	80-120	73-127	28	0-20	
n-Butylbenzene	103	98	77-123	69-131	5	0-25	
sec-Butylbenzene	103	100	80-120	73-127	4	0-20	
tert-Butylbenzene	100	112	80-120	73-127	11	0-20	
Carbon Disulfide	103	91	80-120	73-127	12	0-20	
Carbon Tetrachloride	100	93	69-135	58-146	8	0-13	
Chlorobenzene	104	98	85-109	81-113	6	0-8	
Chloroethane	108	96	80-120	73-127	12	0-20	
Chloroform	101	88	80-120	73-127	13	0-20	
Chloromethane	96	88	80-120	73-127	9	0-20	
2-Chlorotoluene	102	100	80-120	73-127	1	0-20	
4-Chlorotoluene	100	94	80-120	73-127	6	0-20	
Dibromochloromethane	99	102	80-120	73-127	2	0-20	
1,2-Dibromo-3-Chloropropane	95	93	80-120	73-127	3	0-20	
1,2-Dibromoethane	94	93	80-120	73-127	0	0-20	
Dibromomethane	106	96	80-120	73-127	10	0-20	
1,2-Dichlorobenzene	96	93	80-110	75-115	3	0-10	
1,3-Dichlorobenzene	97	94	80-120	73-127	4	0-20	
1,4-Dichlorobenzene	97	97	80-120	73-127	0	0-20	
Dichlorodifluoromethane	103	91	80-120	73-127	13	0-20	
1,1-Dichloroethane	106	93	80-120	73-127	13	0-20	
1,2-Dichloroethane	101	99	80-120	73-127	2	0-20	
1,1-Dichloroethene	107	94	83-125	76-132	13	0-10	
c-1,2-Dichloroethene	96	87	80-120	73-127	9	0-20	
t-1,2-Dichloroethene	99	88	80-120	73-127	13	0-20	
1,2-Dichloropropane	105	107	79-115	73-121	2	0-25	
1,3-Dichloropropane	95	95	80-120	73-127	1	0-20	
2,2-Dichtoropropane	102	95	80-120	73-127	8	0-20	
1,1-Dichloropropene	102	89	80-120	73-127	14	0-20	
c-1,3-Dichloropropene	106	96	80-120	73-127	10	0-20	
t-1,3-Dichloropropene	102	99	80-120	73-127	2	0-20	
Ethylbenzene	99	99	80-120	73-127	0	0-20	
Isopropylbenzene	103	104	80-120	73-127	2	0-20	

RPD - Relative Percent Difference , CL - Control Limit

MM



Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	te /zed	LCS/LCSD I Numbe	Batch r
099-12-709-122	Solid	GC/MS Z	04/02/09	04/02/	09	090402L	)1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
p-Isopropyitoluene	102	101	80-120	73-127	2	0-20	
Methylene Chloride	105	97	80-120	73-127	7	0-20	
Naphthalene	91	92	80-120	73-127	1	0-20	
n-Propylbenzene	97	96	80-120	73-127	1	0-20	
Styrene	106	97	80-120	73-127	8	0-20	
Ethanol	109	90	50-134	36-148	19	0-23	
1,1,1,2-Tetrachloroethane	92	97	80-120	73-127	5	0-20	
1,1,2,2-Tetrachloroethane	92	92	80-120	73-127	0	0-20	
Tetrachloroethene	108	89	80-120	73-127	20	0-20	
Toluene	105	91	79-115	73-121	14	0-8	RB
1,2,3-Trichlorobenzene	93	73	80-120	73-127	23	0-20	
1,2,4-Trichlorobenzene	94	99	80-120	73-127	5	0-20	
1,1,1-Trichloroethane	103	93	80-120	73-127	9	0-20	
1,1,2-Trichloroethane	96	95	80-120	73-127	0	0-20	
Trichloroethene	110	102	87-111	83-115	7	0-7	
Trichlorofluoromethane	104	92	80-120	73-127	13	0-20	
1,2,3-Trichloropropane	103	104	80-120	73-127	1	0-20	
1,2,4-Trimethylbenzene	102	102	80-120	73-127	0	0-20	
1,3,5-Trimethylbenzene	107	107	80-120	73-127	0	0-20	
Vinyl Acetate	101	92	80-120	73-127	9	0-20	
Vinyl Chloride	96	90	72-126	63-135	6	0-10	
p/m-Xylene	98	102	80-120	73-127	3	0-20	
o-Xylene	107	94	80-120	73-127	13	0-20	
Methyl-t-Butyl Ether (MTBE)	102	91	75-129	66-138	11	0-13	
Tert-Butyl Alcohol (TBA)	89	91	66-126	56-136	2	0-24	
Diisopropyl Ether (DIPE)	99	90	77-125	69-133	10	0-13	
Ethyl-t-Butyl Ether (ETBE)	109	102	72-132	62-142	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	96	77-125	69-133	1	0-10	

Total number of LCS compounds : 66 Total number of ME compounds : 0 Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

> RPD - Relative Percent Difference, CL - Control Limit





Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument Prepared		Date Analyzed		LCS/LCSD Numbe	Batch r
099-12-709-123	Solid	GC/MS Z	04/02/09	04/02	/09	090402L	02
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	103	102	84-114	79-119	1	0-7	
Bromobenzene	96	93	80-120	73-127	2	0-20	
Bromochloromethane	98	86	80-120	73-127	13	0-20	
Bromodichloromethane	106	94	80-120	73-127	12	0-20	
Bromoform	94	97	80-120	73-127	3	0-20	
Bromomethane	114	86	80-120	73-127	28	0-20	
n-Butylbenzene	103	98	77-123	69-131	5	0-25	
sec-Butylbenzene	103	100	80-120	73-127	4	0-20	
tert-Butylbenzene	100	112	80-120	73-127	11	0-20	
Carbon Disulfide	103	91	80-120	73-127	12	0-20	
Carbon Tetrachloride	100	93	69-135	58-146	8	0-13	
Chlorobenzene	104	98	85-109	81-113	6	0-8	
Chloroethane	108	96	80-120	73-127	12	0-20	
Chloroform	101	88	80-120	73-127	13	0-20	
Chloromethane	96	88	80-120	73-127	9	0-20	
2-Chlorotoluene	102	100	80-120	73-127	1	0-20	
4-Chlorotoluene	100	94	80-120	73-127	6	0-20	
Dibromochloromethane	99	102	80-120	73-127	2	0-20	
1,2-Dibromo-3-Chloropropane	95	93	80-120	73-127	3	0-20	
1,2-Dibromoethane	94	93	80-120	73-127	0	0-20	
Dibromomethane	106	96	80-120	73-127	10	0-20	
1,2-Dichlorobenzene	96	93	80-110	75-115	3	0-10	
1,3-Dichlorobenzene	97	94	80-120	73-127	4	0-20	
1,4-Dichlorobenzene	97	97	80-120	73-127	0	0-20	
Dichlorodifluoromethane	103	91	80-120	73-127	13	0-20	
1,1-Dichloroethane	106	93	80-120	73-127	13	0-20	
1,2-Dichloroethane	101	99	80-120	73-127	2	0-20	
1,1-Dichloroethene	107	94	83-125	76-132	13	0-10	
c-1,2-Dichloroethene	96	87	80-120	73-127	9	0-20	
t-1,2-Dichloroethene	99	88	80-120	73-127	13	0-20	
1,2-Dichloropropane	105	107	79-115	73-121	2	0-25	
1,3-Dichloropropane	95	95	80-120	73-127	1	0-20	
2,2-Dichloropropane	102	95	80-120	73-127	8	0-20	
1,1-Dichloropropene	102	89	80-120	73-127	14	0-20	
c-1,3-Dichloropropene	106	96	80-120	73-127	10	0-20	
t-1,3-Dichloropropene	102	99	80-120	73-127	2	0-20	
Ethylbenzene	99	99	80-120	73-127	0	0-20	
Isopropyibenzene	103	104	80-120	73-127	2	0-20	

RPD - Relative Percent Difference , CL - Control Limit

MM



Stratus Environmental, inc.	Date Received:	N/A
3330 Cameron Park Drive, Suite 550	Work Order No:	09-03-2418
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

#### Project: ARCO 2035

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 04/02/09		LCS/LCSD Batch Number	
099-12-709-123	Solid	GC/MS Z	04/02/09			090402L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
p-Isopropyltoluene	102	101	80-120	73-127	2	0-20	
Methylene Chloride	105	97	80-120	73-127	7	0-20	
Naphthalene	91	92	80-120	73-127	1	0-20	
n-Propylbenzene	97	96	80-120	73-127	1	0-20	
Styrene	106	97	80-120	73-127	8	0-20	
Ethanol	109	90	50-134	36-148	19	0-23	
1,1,1,2-Tetrachloroethane	92	97	80-120	73-127	5	0-20	
1,1,2,2-Tetrachloroethane	92	92	80-120	73-127	0	0-20	
Tetrachloroethene	108	89	80-120	73-127	20	0-20	
Toluene	105	91	79-115	73-121	14	0-8	RB
1,2,3-Trichlorobenzene	93	73	80-120	73-127	23	0-20	
1,2,4-Trichlorobenzene	94	99	80-120	73-127	5	0-20	
1,1,1-Trichloroethane	103	93	80-120	73-127	9	0-20	
1,1,2-Trichloroethane	96	95	80-120	73-127	0	0-20	
Trichloroethene	110	102	87-111	83-115	7	0-7	
Trichlorofluoromethane	104	92	80-120	73-127	13	0-20	
1,2,3-Trichloropropane	103	104	80-120	73-127	1	0-20	
1,2,4-Trimethylbenzene	102	102	80-120	73-127	0	0-20	
1,3,5-Trimethylbenzene	107	107	80-120	73-127	0	0-20	
Vinyl Acetate	101	92	80-120	73-127	9	0-20	
Vinyl Chloride	96	90	72-126	63-135	6	0-10	
p/m-Xylene	98	102	80~120	73-127	3	0-20	
o-Xylene	107	94	80-120	73-127	13	0-20	
Methyl-t-Butyl Ether (MTBE)	102	91	75-129	66-138	11	0-13	
Tert-Butyl Alcohol (TBA)	89	91	66-126	56-136	2	0-24	
Diisopropyl Ether (DIPE)	99	90	77-125	69-133	10	0-13	
Ethyl-t-Butyl Ether (ETBE)	109	102	72-132	62-142	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	96	77-125	69-133	1	0-10	
Total number of LCS compounds : 66							

Total number of ME compounds : 0

Total number of ME compounds allowed : 3

LCS ME CL validation result : Pass

RPD - Relative Percent Difference , CL - Control Limit

Mulum



NMM.

M

#### **Glossary of Terms and Qualifiers**

Work Order Number: 09-03-2418

<u>Qualifier</u>	Definition
AX	Sample too dilute to quantify surrogate.
AZ	Surrogate recovery outside of acceptance limits due to matrix interference.
BA, AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG, AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH, AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM, AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN, AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.

<u>Qualifier</u>	Definition
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RA	RPD exceeds limit due to matrix interf.; % recovs. within limits.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Atlantic Richfield Company OABP affiliated company	Labora BP/ARC Pr BP/ARC Fa	nag A	ger	ner ,0	nt P	ro	gra 35	m 1	Lal	ЛР	Ch	ain -	Of ( Red Lat	Cu: q Du o Wo	s <b>to</b> e Dat rk Or	d <b>y i</b> e (mi der N	Rec m/dd/ tumb	ord /yy): er:	1 (	9 Zi	04	2:	1 )	Pa sh TAT	ige : Yes	_of	
Lab Name: CALSUBUCE			BP/	/ARC	Facili	ity Ado	fress	: L(	100	SA	N	PAB	10	AN	8			Cor	isultan	/Contr	actor	· < +					
Lab Address: 7440LW CONWA, GARDEN FRANE.					City, State, ZIP Code: ALBANG CIA								Consultant/Contractor Project New Const														
Lab PM: RICHARD VILLAF	AD PM: RICHARD VILLA-FUNIA					Lead Regulatory Agency: Alytuep A ( DUN'									Address: 2220 Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Address - Ad												
Lab Phone:					California Global ID No.: Tob polone									Consultant/Contractor DAL								<u>+</u> 5	-550				
Lab Shipping Accent: 92-55			Enfos Proposal No; COD Da - CODU											Phone E24 COM Sing Jith Son													
Lab Botlle Order No;	·····	·······	Acc	ounti	ng Mo	ode:	~	Pro	vision	<u>, X</u>	<u> </u>		<u> </u>	00					ne: <	<u>&gt; 20</u>		+4	61	<u>\$*•0</u>			
Other Info:			Stad	ae: K	908	207		Α	ctivity	<u> </u>						"		Ema		10:	4	lufi	<u>Fra</u>	V STRA	ttus (	NC.N	ET
BP/ARCEBM: PAUL SUPE	210			Ma	<u>UT 16</u> atriv	1			nto:-	<u> </u>		- 04	UAK	T		ZATI	ON	invo	Invoice To: BP/ARC Contractor								
EBM Phone:	UE	·· ····	-	T					Tam	iers /	Pre	serva	tive		1		Req	ueste	d Ana	lyses	; ,			Rep	ort Ty	pe & QC	Level
	CRD		-				ers						-										[		Sta	ndard 🗲	
(mile - Surne		T	4				ntain																	Full (	Data Pac	ckage	_
Lab No. Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor		Total Number of Co	Unpreserved	H ₂ SO4	HNO3	HCI	Methanol		Gieo	Beter	* 50t	EDB	liz pun						Note: If sam Sample" in c and initial ar	Con ple not a comments	nments pliected, ind s and single ted sample	icate "No -strike out
I MW-B II'	3/26/09	0840	K				I	X						1	1-1	11	X	X						CTr. 1		Co sample	description.
2 MW-8 13'		0845										1	Í –	TÌ	T	††	T	Τ					-	507	52	KAR NAR	<u>e</u>
3 MW-8161		09.12	$\prod$											11-		$\square$			-		-+					pcP4	L
4 MW-8 191		0155					Ħ				·	<b>_</b>		┢╋	$\square$	╞┼		╎╎┈						··		TAN	ĸ
S MW-7 81		1200					Ħ					<u> </u>		┠┼╴	$\mathbb{H}$		$\square$						$\dashv$	<u> </u>	<u> </u>	194	+- 
6 MW-7 131		1225						+					<u> </u>													•	
7 MW-2 [4]		1245	┠┼┤		-						···			$\mathbb{H}$		$\square$							$\dashv$				
8 mw-# 151		1285			-+	╧	H								+-						-+						
9 MW - B		1510				<u> </u>	$\mathbb{H}$							┝┼┤	-		-										
II MW-9 H		1570					H														1		╡				
Sampler's Name:		1540	W.					<b>V</b>						Y	Y	V	Y	V					<u>-</u>				
Sampler's Company:					Actiliation							Date Time Accepted By / Affiliation							Date	Time							
Shipment Method: A c A ship Data:				allow for								u	વ્ય	. 1760								G					
Shipment Tracking No:												<u> </u>									M	<u>I</u>	a	At .	ŀ	127/09	1000
Special Instructions:	0555															-	_		_	/							
THIS LINE - LAB USE ONLY - Custody	Seals In Diaw	Yar INa		o pr -	DI- 1	<u> </u>		1			-		·														
		2 100/ NU	14	emp	Diank:	res/	INO		Coc abore	oler To atory (	emp o	on Rec	eipt:			°F/C		Trip	Blank:	Yes /	No	Ν	vis/iv	/ISD Sample	Submit	ted: Yes /	No I

......

÷ ----

F100. -

·413- 41 . A

1

Calacience	WORK ORDER #:	. 09-0	3-247	1 B
Laboratories, Inc. SAMPLE F	RECEIPT FOR	RM	cooler <u> </u> of	<u> </u>
CLIENT: <u>STRATUS</u>		DATE:	03/27/0	29
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not fr	ozen)			
Temperature $\underline{l} \cdot \underline{\mu} \circ \mathbf{C} - 0.2 \circ \mathbf{C}$ (CF)	= <u>1.2</u> °C	Blank	Sample	
Sample(s) outside temperature criteria (PM/APM)	contacted by:).			
Sample(s) outside temperature criteria but receive	d on ice/chilled on same d	lay of sampl	ing.	
Received at ambient temperature, placed on	ice for transport by Co	ourier.		
Ambient Temperature: 🗆 Air 🛛 🗆 Filter 🗇 M	etals Only 🛛 PCBs 🤅	Only	Initial:	1p
	act) In Not Present	LI N/A	Initial: 1	P_
	acty Li Not Present			<u> </u>
SAMPLE CONDITION:	· · · · · · · · · · · · · · · · · · ·	Yes	No N/	A
Chain-Of-Custody (COC) document(s) received wit	h samples	. 🗳		
COC document(s) received complete	•••••••	. 🗠 🛛		
Collection date/time, matrix, and/or # of containers logge	d in based on sample labels.			
COC not relinquished.	] No time relinquished.			
Sampler's name indicated on COC		B		
Sample container label(s) consistent with COC	••••			
Sample container(s) intact and good condition	•••••••			
Correct containers and volume for analyses reques	ted			
Analyses received within holding time	· · · · · · · · · · · · · · · · · · ·			
Proper preservation noted on COC or sample conta	iner			
Unpreserved vials received for Volatiles analysis		_		
Volatile analysis container(s) free of headspace	• • • • • • • • • • • • • • • • • • • •			
CONTAINER TYPE:				
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ସS	;eeve □EnCores [®] , □	TerraCore	s® □_ <del>_kA_</del> _	
Water: DVOA DVOAh DVOAna ₂ D125AG	3 □125AGBh □125A	GBpo₄ □	1AGB □1AGBn	$a_2$
□1AGBs □500AGB □500AGBs □250CGB □	]250CGBs □1PB □5	00 <b>PB</b> 🗆 5	00PBna □250F	РΒ
□250PBn □125PB □125PBznna □100PBster	ile □100PBna₂ □	□_		
Air: □Tedlar [®] □Summa [®] □ Sludg	୬/Other: □	Checked	/Labeled by: <u>と</u> べ	
Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar E	Bottle	R	eviewed by: <u> </u>	
Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na:NaOH p:H ₃ P	O₄ s:H₂SO₄ znna:ZnAc₂+Na	OH	Scanned by: $\underline{\chi}$	<u>د</u>

SOP T100_090 (03/13/09)

`

#### **APPENDIX C**

#### GEOTRACKER UPLOAD CONFIRMATION REPORTS

#### UPLOADING A GEO_MAP FILE

IP Address:

Submittal Date/Time:

**Confirmation Number:** 

# SUCCESSYour GEO_MAP file has been successfully submitted!Submittal Type:GEO_MAPFacility Global ID:T0600100081Facility Name:ARCO #02035File Name:1001 San Pablo Ave_2009-04-20.pdfUsername:Broadbent & Associates, Inc.Username:BROADBENT-C

67.118.40.90

7606560826

5/15/2009 4:45:30 PM

#### UPLOADING A GEO_BORE FILE

#### SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: Facility Global ID: Field Point: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_BORE T0600100081 MW-7 ARCO #02035 GEO_BORE MW-7.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 5/15/2009 4:52:55 PM 8416628181

#### UPLOADING A GEO_BORE FILE

#### SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: Facility Global ID: Field Point: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_BORE T0600100081 MW-8 ARCO #02035 GEO_BORE MW-8.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 5/15/2009 4:53:25 PM 8744457423

#### UPLOADING A GEO_BORE FILE

#### SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: Facility Global ID: Field Point: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_BORE T0600100081 MW-9 ARCO #02035 GEO_BORE MW-9.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 5/15/2009 4:53:52 PM 8699388802

#### UPLOADING A GEO_XY FILE

SUCCESS							
Processing is complete. No errors were found!							
Your fi	e has been successfully submitted!						
Submittal Type:	GEO_XY						
Submittal Title:	GEO_XY MW-1 to 9, VW-1 to 9, AS-1, AS-2, RW-1						
Facility Global ID:	T0600100081						
Facility Name:	ARCO #02035						
File Name:	GEO_XY.zip						
Organization Name:	Broadbent & Associates, Inc.						
<u>Username:</u>	BROADBENT-C						
IP Address:	67.118.40.90						
Submittal Date/Time:	5/15/2009 4:37:25 PM						
Confirmation Number:	4156978785						

#### UPLOADING A GEO_Z FILE

	SUCCESS
Processing	g is complete. No errors were found!
four me	has been successfully submitted!
Submittal Type:	GEO_Z
Submittal Title:	GEO_Z MW-1 to 9, VW-1 to 9, AS-1, AS-2, RW-
Facility Global ID:	T0600100081
Facility Name:	ARCO #02035
File Name:	GEO_Z.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	5/15/2009 4:44:14 PM
Confirmation Number:	8861299812

#### UPLOADING A EDF FILE

SUCCESS							
Processing is Your file ha	Processing is complete. No errors were found! Your file has been successfully submitted!						
Submittal Type:	EDF - Soil and Water Investigation Report						
Submittal Title:	SWC						
Facility Global ID:	T0600100081						
Facility Name:	ARCO #02035						
File Name:	09032417.zip						
Organization Name:	Broadbent & Associates, Inc.						
<u>Username:</u>	BROADBENT-C						
IP Address:	67.118.40.90						
Submittal Date/Time:	5/19/2009 3:46:22 PM						
Confirmation Number:	9150314807						
VIEW QC REPORT							
VIEW DETECTIONS REPORT							

#### UPLOADING A EDF FILE

SUCCESS							
Processing is Your file ha	Processing is complete. No errors were found! Your file has been successfully submitted!						
Submittal Type:	EDF - Soil and Water Investigation Report						
Submittal Title:	Soil Sampling MW-7, 8, 9						
Facility Global ID:	T0600100081						
Facility Name:	ARCO #02035						
File Name:	09032418 fix.zip						
Organization Name:	Broadbent & Associates, Inc.						
Username:	BROADBENT-C						
IP Address:	67.118.40.90						
Submittal Date/Time:	5/19/2009 4:17:30 PM						
Confirmation Number:	9888683497						
	VIEW QC REPORT						
VIEW DETECTIONS REPORT							