Atlantic Richfield Company

Shannon Couch Operations Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: shannon.couch@bp.com

RECEIVED

11:33 am, Jul 31, 2012

Alameda County Environmental Health

Re: Second Quarter 2012 Monitoring Report Atlantic Richfield Company Station #2035 1001 San Pablo Avenue, Albany, California ACEH Case #RO0000100

I declare that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

July 30, 2012

Shannon Couch Operations Project Manager

Attachment

July 30, 2012

Project No. 06-88-610

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn: Ms. Shannon Couch

Re: Second Quarter 2012 Monitoring Report, Atlantic Richfield Company Station #2035, 1001 San Pablo Avenue, Albany, Alameda County, California; ACEH Case #RO0000100

Dear Ms. Couch:

Attached is the Second Quarter 2012 Monitoring Report for Atlantic Richfield Company Station #2035 located at 1001 San Pablo Avenue in Albany, Alameda County, California. This report presents the observations and results of semi-annual groundwater monitoring and sampling conducted during the Second Quarter of 2012, and a summary of recent developments at the Site.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact me at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E. Senior Engineer

Enclosures

cc: Ms. Dilan Roe, P.E., Alameda County Environmental Health (submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

SECOND QUARTER 2012 MONITORING REPORT ARCO STATION # 2035, ALBANY, CALIFORNIA

Broadbent & Associates, Inc. (Broadbent) is pleased to present this *Second Quarter 2012 Monitoring Report* on behalf of Atlantic Richfield Company (a BP affiliated company) for ARCO Station #2035 located in Albany, Alameda County, CA. Quarterly reporting is being submitted to the Alameda County Environmental Health Services Agency (ACEH) consistent with their requirements under the legal authority of the California Regional Water Quality Control Board, as codified by the California Code of Regulations Title 23, Section 2652(d). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	ARCO Station #2035/ 1001 San Pablo Avenue, Albany
Client Project Manager / Title:	Ms. Shannon Couch / Remediation Management Project Manager
Broadbent Contact:	Tom Venus, PE / (530) 566-1400
Broadbent Project No.:	06-88-610
Primary Regulatory Agency / ID No.:	ACEH Case #RO0000100
Current phase of project:	Monitoring
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in report.

WORK PERFORMED THIS QUARTER (Second Quarter 2012):

- 1. Submitted *First Quarter 2012 Status Report* (Broadbent, 4/5/2012).
- 2. Conducted groundwater monitoring/sampling for Second Quarter 2012 on June 5, 2012.

WORK SCHEDULED FOR NEXT QUARTER (Third Quarter 2012):

- 1. Submit Second Quarter 2012 Monitoring Report (contained herein).
- 2. Decommission former remediation system compound behind station building, pending removal of natural gas service by PG&E (delayed due to City of Albany permitting office issues).

QUARTERLY MONITORING PLAN SUMMARY:

Groundwater level gauging:	MW-1 through MW-9, RW-1, S-5	(2Q & 4Q)
Groundwater sample collection:	MW-4, MW-7, MW-8, MW-9,	_
	RW-1, S-5	(2Q & 4Q)
	MW-5, MW-6	(4Q)
Biodegradation indicator parameter	MW-4, MW-7, MW-8, MW-9,	
monitoring:	RW-1, S-5	(2Q & 4Q)
	MW-5, MW-6	(4Q)

QUARTERLY RESULTS SUMMARY:

LNAPL

LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	N/A	(gal)
Groundwater Elevation and		
Gradient:		
Depth to groundwater:	7.65 (MW-7) to 12.60 (MW-6)	(ft below TOC)
Gradient direction:	West	(compass direction)
Gradient magnitude:	0.02	(ft/ft)
Average change in elevation:	+0.11	(ft since last measurement)
Laboratory Analytical Data	GRO, Benzene, Toluene, and Xy	lenes were detected in MW-7,
Summary:	MW-8, RW-1, and S-5. Ethylben	zene was detected in MW-8,
	S-5, and MW-7. MTBE was dete	cted in MW-9, MW-8, and
	MW-4. TBA was detected in MW	V-8.

ACTIVITIES CONDUCTED & RESULTS:

Second Quarter 2012 groundwater monitoring was conducted at ARCO Station #2035 on June 5, 2012 by Broadbent personnel in accordance with the current monitoring plan. BlaineTech Services conducted groundwater monitoring at the adjacent Shell Station on June 5, 2012. No irregularities were noted during water level gauging at ARCO Station #2035. Light, Non-Aqueous Phase Liquid (LNAPL, or free product) was not observed in the wells monitored by Broadbent during this event. Depth to water measurements ranged from 7.65 ft at MW-7 to 12.60 ft at MW-6. Resulting groundwater surface elevations ranged from 29.71 ft at MW-6 to 35.53 ft at MW-7. Groundwater elevations are summarized in Table 1. Water level elevations yielded a potentiometric horizontal groundwater gradient to the West at approximately 0.02 ft/ft. Field methods used during groundwater monitoring are provided in Appendix A. Field data sheets for monitoring at ARCO Station #2035 are included in Appendix B. Historic groundwater elevation data is presented in Appendix C. Joint monitoring data is presented in Appendix D. A Site Location Map is presented as Drawing 1. Potentiometric groundwater elevation contours are presented in Drawing 2.

Groundwater samples were collected on June 5, 2012. No irregularities were reported during sampling with the exception that the recharge rate in well S-5 was so slow that it was decided to sample without purging the final casing volume. Samples were submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. (Garden Grove, California) for analysis of Gasoline-Range Organics (GRO, C6-C12) by EPA Method 8015M; for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether (DIPE), Tert-Butyl Alcohol (TBA), Ethanol, 1,2-Dibromomethane (EDB), and 1,2-Dichloroethane (1,2-DCA) by EPA Method 8260. No significant irregularities were encountered during analysis of the samples with the following exceptions: The laboratory noted GRO concentrations for samples from MW-7, MW-8, RW-1, and S-5 with "LW = Quantitation of unknown hydrocarbon(s) in sample based on gasoline." The laboratory analytical report, including chain-of-custody documentation, is provided in Appendix E.

Hydrocarbons in the GRO range were detected above the laboratory reporting limit in four of the wells sampled at concentrations up to 1,700 micrograms per liter (μ g/L, parts per billion, ppb) in well S-5. Benzene was detected above the laboratory reporting limit in four of the wells sampled at concentrations up to 170 μ g/L in well MW-8. Toluene was detected above the laboratory reporting limit in four of the wells sampled at concentrations up to 1.9 μ g/L in well MW-8. Ethylbenzene was detected above the laboratory reporting limit in three wells sampled at concentrations up to 92 μ g/L in well MW-8. Total Xylenes were detected above the laboratory reporting limit in four of 16 μ g/L in well MW-8. MTBE was detected above the laboratory reporting limit in four wells sampled at concentrations up to 16 μ g/L in well MW-8. MTBE was detected above the laboratory reporting limit in three wells sampled at concentrations up to 4.8 μ g/L in well MW-9. TBA was detected above the laboratory reporting limit in one well at a concentration of 38 μ g/L in well MW-8. The remaining analytes were not detected above their laboratory reporting limits in the wells sampled this last monitoring event. Groundwater monitoring laboratory analytical results are summarized in Table 1, Table 2 and Appendix C. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix F.

DISCUSSION:

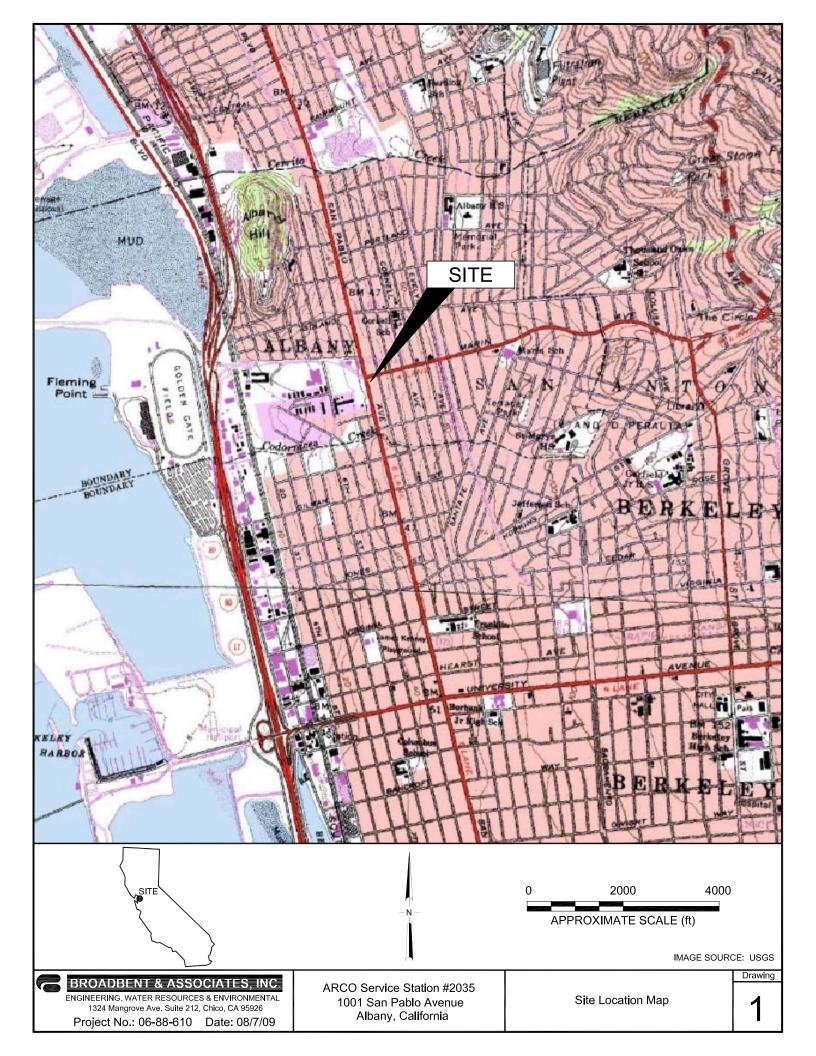
Groundwater levels were between historic minimum and maximum elevations for the monitoring wells associated with ARCO Station #2035. Groundwater elevations yielded a potentiometric horizontal groundwater gradient to the West at approximately 0.02 ft/ft, generally consistent with the historic gradient direction and magnitude data presented in Table 3.

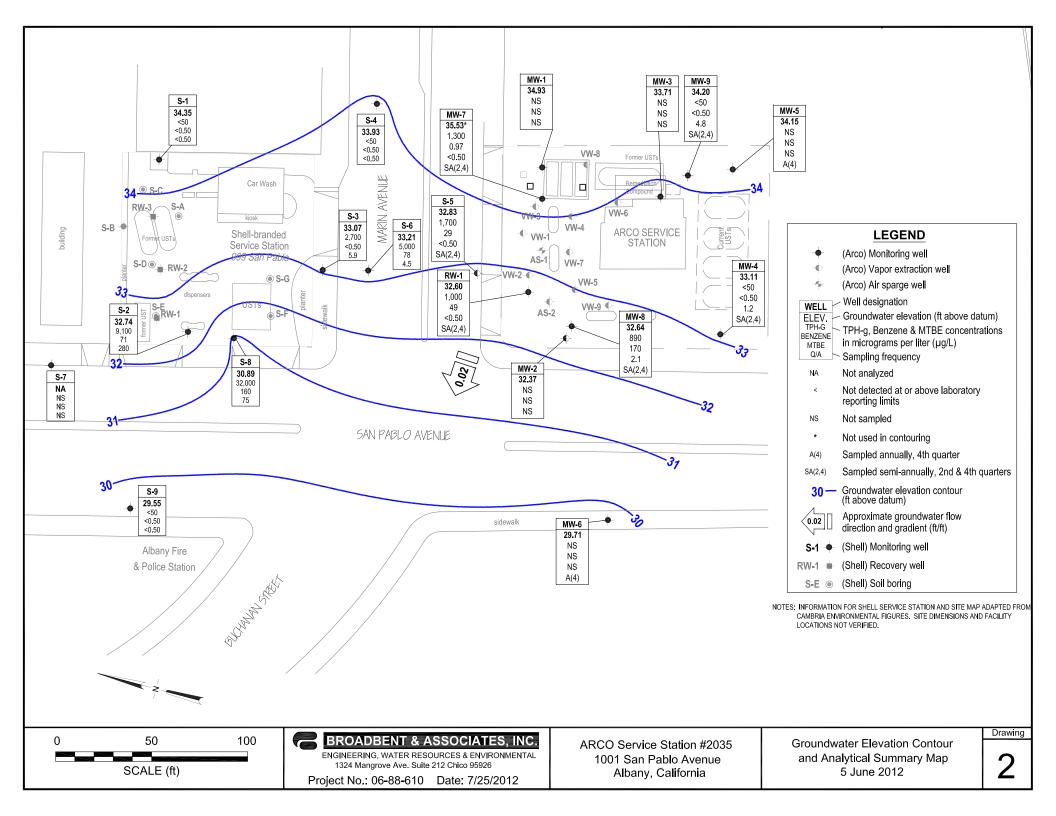
This event's detected analytical concentrations were within the historic minimum and maximum ranges recorded for each well, with the following exceptions: MW-8 had a new historic maximum concentration for MTBE of 2.1 μ g/L; and S-5 had new historic minimum concentrations for Ethylbenzene (2.1 μ g/L) and Total Xylenes (0.60 μ g/L). Recent and historic laboratory analytical results are summarized in Table 1 and Table 2.

RECOMMENDATIONS:

Groundwater monitoring and sampling is scheduled to be conducted at ARCO Station #2035 during the Fourth Quarter 2012, consistent with the current monitoring program. No sampling/monitoring is presently scheduled for Third Quarter 2012 at the Site. Broadbent is waiting upon PG&E before being able to proceed with decommissioning and removal of the remediation system behind the station building. PG&E has been unable to remove the natural gas meter that formerly served the Air Sparge/Soil Vapor Extraction remediation system due to permitting delays by the City of Albany. In the meantime, BP and Broadbent are awaiting comments from ACEH to the *Vapor Intrusion Assessment Report* (BAI, 6/13/2011) submitted in Second Quarter 2011. No other recommendations are presently proposed.

LIMITATIONS:


The findings presented in this report are based upon observations of Broadbent and other field personnel, points investigated, results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California), and our understanding of ACEH requirements. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of the Atlantic Richfield Company. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.


ATTACHMENTS:

Drawing 1: Drawing 2:	Site Location Map Groundwater Elevation Contours and Analytical Summary Map, June 5, 2012
Table 1:	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
Table 2:	Summary of Fuel Additives Analytical Data
Table 3:	Historical Groundwater Gradient – Direction and Magnitude
Appendix A:	Field Methods
Appendix B:	Field Data Sheets and Non-Hazardous Waste Data Form
Appendix C:	Historic Groundwater Data Tables
Appendix D:	Joint Monitoring Data
Appendix E:	Laboratory Report and Chain-of-Custody Documentation
Appendix F:	GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:

ACEH:	Alameda County Environmental Health	ft/ft:	feet per foot
ACPWA	A: Alameda County Public Works Agency	gal:	Gallons
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	GRO:	Gasoline-Range Organics
1,2-DCA	A: 1,2-Dichloroethane	LNAPL:	Light Non-Aqueous Phase Liquid
DIPE:	Di-Isopropyl Ether	MTBE:	Methyl Tertiary Butyl Ether
DO:	Dissolved Oxygen	NO ₃ :	Nitrate as Nitrogen
DRO:	Diesel-Range Organics	ppb:	parts per billion
EDB:	1,2-Dibromomethane	SO_4 :	Sulfate
Eh:	Oxidation Reduction Potential	TAME:	Tert-Amyl Methyl Ether
EPA:	Environmental Protection Agency	TBA:	Tertiary Butyl Ether
ETBE:	Ethyl Tertiary Butyl Ether	TOC:	Top of Casing
Fe^{2+} :	Ferrous Iron	μg/L:	micrograms per liter

		тос	Depth to	LNAPL	Water Level			Concentr	ations in µ	g/L				
Well ID and		Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-1														
4/11/2002	Р	41.41	10.73	0.00	30.68	800	360	<5.0	<5.0	<5.0	<50			
11/27/2002	Р		10.22	0.00	31.19	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	1.1		
6/3/2003			9.14	0.00	32.27	1,700	430	<5.0	24	11	8.6	1.7		
11/13/2003	Р	43.55	10.17	0.00	33.38	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.95	2.3	6.5	а
05/12/2004	Р		9.28	0.00	34.27	120	7.2	< 0.50	< 0.50	< 0.50	3.0	1.6	6.0	
12/01/2004	Р		9.16	0.00	34.39	<50	0.94	< 0.50	< 0.50	1.1	2.4	5.2	6.6	
05/02/2005	Р		8.58	0.00	34.97	1,300	390	<5.0	12	6.4	8.8	2.8	6.5	
11/16/2005	Р		9.50	0.00	34.05	<50	< 0.50	< 0.50	< 0.50	0.54	0.92	1.7	6.4	
5/31/2006	Р		7.36	0.00	36.19	850	200	<2.5	5.4	<2.5	4.0	2.4	6.5	
12/6/2006	Р		9.91	0.00	33.64	<50	0.52	< 0.50	< 0.50	< 0.50	0.72	4.50	6.99	
5/15/2007	Р		9.65	0.00	33.90	67	6.6	< 0.50	< 0.50	< 0.50	1.8	2.43	6.96	
11/29/2007	Р		9.11	0.00	34.44	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.98	4.51	6.81	
5/6/2008	Р		8.25	0.00	35.30	890	140	0.53	5.4	5.8	< 0.50	1.89	6.61	
11/24/2008	Р		10.55	0.00	33.00	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.83	6.67	
4/9/2009			9.02	0.00	34.53									d
11/24/2009			9.24	0.00	34.31									
5/26/2010			8.47	0.00	35.08									
11/30/2010			8.62	0.00	34.93									
2/16/2011	Р		8.64	0.00	34.91									
5/11/2011			8.24	0.00	35.31									
11/28/2011			9.48	0.00	34.07									
6/5/2012			8.62	0.00	34.93									
MW-2														
4/11/2002	Р	40.38	11.05	0.00	29.33	<50	< 0.50	< 0.50	< 0.50	< 0.50	24			
11/27/2002	Р		10.51	0.00	29.87	<50	< 0.50	< 0.50	< 0.50	< 0.50	5.4	2.6		
6/3/2003			9.78	0.00	30.60	<50	< 0.50	< 0.50	< 0.50	< 0.50	23	1.7		
11/13/2003	Р	42.52	10.69	0.00	31.83	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.5	2.3	6.5	а
05/12/2004	Р		10.34	0.00	32.18	<250	<2.5	<2.5	<2.5	<2.5	27	2.2	6.6	
12/01/2004	Р		10.28	0.00	32.24	<50	< 0.50	< 0.50	< 0.50	0.70	17	3.9	6.6	
05/02/2005	Р		9.50	0.00	33.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	25	3.1	6.6	

 Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

		тос	Depth to	LNAPL	Water Level			Concentr	ations in µ	g/L				
Well ID and		Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-2 Cont.														
11/16/2005	Р	42.52	10.50	0.00	32.02	<50	< 0.50	< 0.50	< 0.50	0.50	7.6	2.8	6.4	
5/31/2006	Р		10.03	0.00	32.49	<50	< 0.50	< 0.50	< 0.50	< 0.50	24	2.0	6.6	
12/6/2006	Р		10.28	0.00	32.24	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	3.72	6.91	
5/15/2007	Р		10.00	0.00	32.52	<50	< 0.50	< 0.50	< 0.50	< 0.50	44	2.90	6.69	
11/29/2007	Р		10.13	0.00	32.39	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	4.83	6.89	
5/6/2008	Р		9.55	0.00	32.97	<50	< 0.50	< 0.50	< 0.50	< 0.50	35	1.88	6.62	
11/24/2008	Р		10.70	0.00	31.82	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.3	1.83	6.74	
4/9/2009		42.57	9.68	0.00	32.89									d
11/24/2009			10.48	0.00	32.09									
5/26/2010			9.65	0.00	32.92									
11/30/2010			9.84	0.00	32.73									
2/16/2011	Р		9.39	0.00	33.18									
5/11/2011			9.68	0.00	32.89									
11/28/2011			10.12	0.00	32.45									
6/5/2012			10.20	0.00	32.37									
MW-3														
4/11/2002	Р	41.44	11.05	0.00	30.39	250	9.4	< 0.50	< 0.50	< 0.50	120			
11/27/2002	Р		10.49	0.00	30.95	<100	<1.0	<1.0	<1.0	2.5	56	2.2		
6/3/2003			9.44	0.00	32.00	130	< 0.50	< 0.50	< 0.50	< 0.50	47	4.1		
11/13/2003	Р	43.62	10.68	0.00	32.94	53	< 0.50	< 0.50	< 0.50	< 0.50	36	3.8	6.8	a
05/12/2004	Р		9.95	0.00	33.67	65	< 0.50	< 0.50	< 0.50	< 0.50	39	4.2	6.9	
12/01/2004	Р		10.32	0.00	33.30	140	< 0.50	< 0.50	< 0.50	< 0.50	37	4.3	6.9	
05/02/2005	Р		9.12	0.00	34.50	140	< 0.50	< 0.50	< 0.50	< 0.50	23	3.1	6.7	
11/16/2005	Р		10.58	0.00	33.04	<50	< 0.50	< 0.50	< 0.50	< 0.50	32	4.1	6.5	
5/31/2006	Р		9.41	0.00	34.21	<50	< 0.50	< 0.50	< 0.50	<0.50	20	4.3	6.8	
12/6/2006	Р		10.25	0.00	33.37	<50	< 0.50	< 0.50	< 0.50	< 0.50	20	2.71	7.00	
5/15/2007	Р		9.70	0.00	33.92	<50	< 0.50	< 0.50	< 0.50	< 0.50	40	5.89	7.07	
11/29/2007	Р		10.08	0.00	33.54	90	< 0.50	< 0.50	< 0.50	< 0.50	35	4.74	6.61	
5/6/2008	Р		10.02	0.00	33.60	<50	< 0.50	< 0.50	< 0.50	< 0.50	14	2.05	6.61	
11/24/2008	Р		10.80	0.00	32.82	<50	<1.0	<1.0	<1.0	<1.0	28	1.98	6.77	

		TOC	Depth to	LNAPL	Water Level			Concentr	ations in µ	g/L				
Well ID and		Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-3 Cont.														
4/9/2009		43.63	9.55	0.00	34.08									d
11/24/2009			10.29	0.00	33.34									
5/26/2010			9.76	0.00	33.87									
11/30/2010			10.15	0.00	33.48									
2/16/2011	Р		9.22	0.00	34.41									
5/11/2011			9.55	0.00	34.08									
11/28/2011			10.06	0.00	33.57									
6/5/2012			9.92	0.00	33.71									
MW-4														
4/11/2002	NP	40.33	10.81	0.00	29.52	<50	< 0.50	< 0.50	< 0.50	< 0.50	11			
11/27/2002	NP		10.09	0.00	30.24	<50	< 0.50	< 0.50	< 0.50	< 0.50	6.5	1.8		
6/3/2003			8.62	0.00	31.71	<250	<2.5	<2.5	<2.5	<2.5	120	1.1		
11/13/2003	NP	42.48	9.98	0.00	32.50	<50	< 0.50	< 0.50	< 0.50	< 0.50	20	1.3	6.2	а
05/12/2004	Р		9.48	0.00	33.00	<250	<2.5	<2.5	<2.5	<2.5	79	2.9	6.6	
12/01/2004	NP		9.60	0.00	32.88	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	1.9	6.7	
05/02/2005	NP		8.67	0.00	33.81	<50	< 0.50	< 0.50	< 0.50	< 0.50	11	2.8	6.6	
11/16/2005	NP		10.00	0.00	32.48	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.93	1.7	6.3	
5/31/2006	NP		8.52	0.00	33.96	<50	< 0.50	< 0.50	< 0.50	<0.50	2.4	1.0	7.0	
12/6/2006	NP		9.90	0.00	32.58	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.8	0.85	7.10	
5/15/2007	NP		9.18	0.00	33.30	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	1.37	6.85	
11/29/2007	NP		9.10	0.00	33.38	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1	1.81	7.14	
5/6/2008	Р		9.40	0.00	33.08	<50	< 0.50	< 0.50	< 0.50	< 0.50	10	2.61	6.91	
11/24/2008	NP		10.20	0.00	32.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.67	6.88	
4/9/2009	Р	42.51	9.00	0.00	33.51	<50	< 0.50	< 0.50	< 0.50	< 0.50	12	2.51	7.11	d
11/24/2009	Р		9.89	0.00	32.62	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	0.80	6.58	
5/26/2010	Р		8.79	0.00	33.72	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.4	0.98	6.0	
11/30/2010	Р		9.31	0.00	33.20							1.40	6.4	f
2/16/2011	Р		8.50	0.00	34.01	<50	<0.50	< 0.50	< 0.50	< 0.50	2.1	0.91	7.1	
5/11/2011	Р		8.80	0.00	33.71	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.75	1.43	6.8	
11/28/2011	Р		9.53	0.00	32.98	<50	< 0.50	0.61	< 0.50	0.69	0.67	0.75	6.8	

		TOC	Depth to	LNAPL	Water Level			Concentr	ations in µ	6				
Well ID and Date Monitored	P/NP	Elevation (feet)	Water (feet)	Thickness (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	pН	Footnote
Date Monitoreu	F/INF	(leet)	(leet)	(leet)	(leet)	ITIg	Benzene	Toluelle	Benzene	Aylelles	WITE	(ing/L)	рп	Foothote
MW-4 Cont.														
6/5/2012	Р	42.51	9.40	0.00	33.11	<50	<0.50	<0.50	<0.50	<0.50	1.2	1.66	6.67	
MW-5														
4/11/2002	NP	41.84	10.63	0.00	31.21	<50	< 0.50	< 0.50	< 0.50	<0.50	<5.0			
11/27/2002	NP		10.65	0.00	31.19									
6/3/2003			8.92	0.00	32.92	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.8		
11/13/2003	NP	44.03	10.58	0.00	33.45	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.79	1.4	5.7	а
05/12/2004			9.95	0.00	34.08									
12/01/2004	NP		10.05	0.00	33.98	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.55	1.8	6.3	
05/02/2005			8.75	0.00	35.28									
11/16/2005	NP		10.37	0.00	33.66	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.3	6.2	
5/31/2006			9.07	0.00	34.96									
12/6/2006	NP		10.25	0.00	33.78	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.99	1.24	6.88	
5/15/2007			9.51	0.00	34.52									
11/29/2007	NP		9.95	0.00	34.08	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.93	6.98	
5/6/2008			9.67	0.00	34.36									
11/24/2008	NP		10.62	0.00	33.41	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.43	6.52	
4/9/2009			12.00	0.00	32.03									d
11/24/2009	Р		10.34	0.00	33.69	<50	< 0.50	1.4	< 0.50	< 0.50	0.89	0.94	6.1	
5/26/2010			9.21	0.00	34.82									
11/30/2010	Р		9.85	0.00	34.18								6.17	f
2/16/2011	Р		9.01	0.00	35.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.23	6.9	
5/11/2011			9.44	0.00	34.59									
11/28/2011	Р		10.06	0.00	33.97	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.10	6.5	
6/5/2012			9.88	0.00	34.15									
MW-6														
4/11/2002	NP	40.13	11.42	0.00	28.71	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0			
11/27/2002	NP		13.11	0.00	27.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.3		
6/3/2003			12.48	0.00	27.65	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1		
11/13/2003	NP	42.26	13.11	0.00	29.15	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	6.8	a

 Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

		тос	Depth to	LNAPL	Water Level			Concentr	ations in µ	g/L				
Well ID and		Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-6 Cont.														
05/12/2004		42.26	12.68	0.00	29.58									
12/01/2004	NP		12.68	0.00	29.58	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	7.3	
05/02/2005			12.25	0.00	30.01									
11/16/2005	NP		12.98	0.00	29.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	6.7	
5/31/2006			12.35	0.00	29.91									
12/6/2006	NP		12.98	0.00	29.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.24	6.86	
5/15/2007			12.55	0.00	29.71									
11/29/2007	NP		12.75	0.00	29.51	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		6.93	
5/6/2008			12.91	0.00	29.35									
11/24/2008	NP		13.20	0.00	29.06	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.28	7.25	
4/9/2009		42.31	12.52	0.00	29.79									d
11/24/2009	Р		12.90	0.00	29.41	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.83	6.59	
5/26/2010			12.17	0.00	30.14									
11/30/2010	Р		12.45	0.00	29.86							1.20	7.2	f
2/16/2011	Р		11.95	0.00	30.36	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.02	6.9	
5/11/2011			12.35	0.00	29.96									
11/28/2011	Р		12.62	0.00	29.69	<50	< 0.50	0.74	< 0.50	0.64	< 0.50	0.91	7.2	
6/5/2012			12.60	0.00	29.71									
MW-7														
4/9/2009	Р	43.18	6.73	0.00	36.45	4,100	5.2	1.7	21	21	< 0.50	8.41	7.79	d
11/24/2009	Р		8.31	0.00	34.87	2,700	4.1	1.1	3.3	3.0	< 0.50	0.60	6.8	с
5/26/2010	Р		6.62	0.00	36.56	1,800	1.2	0.53	2.2	0.84	< 0.50	0.71	6.6	
11/30/2010	Р		6.84	0.00	36.34							0.79	6.7	f
2/16/2011	Р		5.44	0.00	37.74	2,000	1.4	0.84	8.0	1.4	< 0.50	0.56	7.0	g
5/11/2011	Р		6.98	0.00	36.20	84	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.76	7.1	lw
11/28/2011	Р		7.13	0.00	36.05	850	0.55	1.3	< 0.50	2.5	< 0.50	0.38	7.3	lw
6/5/2012	Р		7.65	0.00	35.53	1,300	0.97	0.59	0.95	0.64	<0.50	1.95	7.04	
MW-8														
4/9/2009	Р	42.36	9.50	0.00	32.86	4,300	940	260	150	590	110	2.09	7.62	d

		тос	Depth to	LNAPL	Water Level			Concentr	ations in µ	g/L				
Well ID and		Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
MW-8 Cont.														
11/24/2009	Р	42.36	10.25	0.00	32.11	28,000	9,900	670	1,300	2,200	<100	0.64	6.48	с
5/26/2010	Р		9.25	0.00	33.11	1,400	420	<10	21	<10	<10	0.78	6.6	
11/30/2010	Р		9.68	0.00	32.68							2.26	6.6	f
2/16/2011	Р		8.95	0.00	33.41	960	270	<5.0	50	<5.0	<5.0	3.35	6.9	g
5/11/2011	Р		9.43	0.00	32.93	1,200	290	<4.0	57	4.5	<4.0	0.94	7.2	lw
11/28/2011	Р		9.85	0.00	32.51	<50	< 0.50	0.59	< 0.50	0.53	< 0.50	3.64	7.2	
6/5/2012	Р		9.72	0.00	32.64	890	170	1.9	92	16	2.1	1.31	6.99	
MW-9														
4/9/2009	Р	43.77	8.95	0.00	34.82	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.1	2.81	7.58	d
11/24/2009	Р		10.11	0.00	33.66	<50	< 0.50	< 0.50	< 0.50	< 0.50	3.8		6.3	
5/26/2010	Р		8.88	0.00	34.89	<50	< 0.50	< 0.50	< 0.50	<0.50	1.9	0.66	5.7	
11/30/2010	Р		9.56	0.00	34.21							0.64	6.3	f
2/16/2011	Р		8.65	0.00	35.12	<50	< 0.50	< 0.50	< 0.50	<0.50	3.8	0.55	6.6	
5/11/2011	Р		9.06	0.00	34.71	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.22	6.6	
11/28/2011	Р		9.75	0.00	34.02	<50	< 0.50	0.70	< 0.50	0.72	9.1	0.50	6.8	
6/5/2012	Р		9.57	0.00	34.20	<50	<0.50	<0.50	<0.50	<0.50	4.8	1.45	6.32	
RW-1														
4/11/2002	Р	40.33	9.20	0.00	31.13	15,000	750	2,000	380	2,000	1,500			
11/27/2002	Р		10.31	0.00	30.02	<2,500	720	<25	<25	<25	<25	1.8		
6/3/2003			9.54	0.00	30.79	470	78	0.97	4.3	9	48	1.4		
11/13/2003	Р	42.35	10.35	0.00	32.00	130	29	< 0.50	< 0.50	< 0.50	44	1.3	6.6	а
05/12/2004	Р		9.80	0.00	32.55	<250	66	<2.5	<2.5	<2.5	<2.5	1.9	6.9	
09/02/2004			10.42	0.00	31.93									
10/07/2004			10.36	0.00	31.99									
11/04/2004			9.93	0.00	32.42									
12/01/2004	Р		10.02	0.00	32.33	<250	96	<2.5	<2.5	<2.5	16	1.8	6.7	
05/02/2005	Р		9.20	0.00	33.15	230	100	<1.0	<1.0	<1.0	50	2.5	6.6	
11/16/2005	Р		10.96	0.00	31.39	<100	28	<1.0	<1.0	<1.0	32	1.0	6.5	
5/31/2006	Р		9.34	0.00	33.01	320	32	< 0.50	< 0.50	< 0.50	28	1.3	6.8	

		тос	Depth to	LNAPL	Water Level			Concentr	ations in µ	g/L				
Well ID and		Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	5 – Total		DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
RW-1 Cont.														
12/6/2006	Р	42.35	10.10	0.00	32.25	50	27	< 0.50	< 0.50	< 0.50	19	1.49	7.54	
5/15/2007	Р		9.42	0.00	32.93	280	32	< 0.50	< 0.50	< 0.50	18	2.61	7.10	
11/29/2007	Р		9.75	0.00	32.60	<50	14	< 0.50	< 0.50	< 0.50	18	4.86	8.14	
5/6/2008	Р		9.71	0.00	32.64	610	110	<2.5	<2.5	<2.5	2.6	2.48	6.95	
11/24/2008	Р		10.48	0.00	31.87	73	31	< 0.50	< 0.50	< 0.50	11	2.53	6.88	
4/9/2009	Р	42.23	9.46	0.00	32.77	720	36	< 0.50	1.0	1.2	4.0	2.58	7.73	d
11/24/2009	Р		10.15	0.00	32.08	<50	2.0	< 0.50	< 0.50	< 0.50	6.5	0.85	6.6	
5/26/2010	Р		9.12	0.00	33.11	90	11	< 0.50	< 0.50	< 0.50	0.94	1.46	6.4	
11/30/2010	Р		9.38	0.00	32.85							2.10	7.2	f
2/16/2011	Р		9.15	0.00	33.08	1,600	370	2.9	2.6	2.9	1.3	0.76	7.0	
5/11/2011	Р		9.56	0.00	32.67	1,600	79	<2.0	<2.0	2.0	<2.0	0.91	7.4	lw
11/28/2011	Р		9.69	0.00	32.54	<50	< 0.50	0.54	< 0.50	< 0.50	< 0.50	3.05	7.3	
6/5/2012	Р		9.63	0.00	32.60	1,000	49	1.3	<0.50	0.86	<0.50	1.43	6.75	
S-5														
4/11/2002	Р	40.33	10.17	0.00	30.16	30,000	390	1,400	410	7,400	<500			
11/27/2002	Р		9.77	0.00	30.56	55,000	1,300	450	1,400	13,000	<50	4.3		
6/3/2003			9.12	0.00	31.21	44,000	680	260	1,100	9,900	<25	1.9		
6/3/2003			9.03	0.00	31.30	44,000	680	260	1,100	9,900	<25	1.9		
6/3/2003			9.12	0.00	31.21						<25	1.4		
6/3/2003			9.03	0.00	31.30						<25	1.4		
11/13/2003	Р	41.83	9.12	0.00	32.71	31,000	520	120	690	5,900	<50	1.4	6.5	а
05/12/2004	Р		9.95	0.00	31.88	28,000	760	79	910	5,000	<50	1.9	6.6	
12/01/2004	Р		9.61	0.00	32.22	26,000	1,500	64	1,400	4,000	<25		6.5	b
05/02/2005	Р		8.80	0.00	33.03	13,000	700	18	260	1,300	<5.0	1.8	6.4	
11/16/2005	Р		9.80	0.00	32.03	15,000	1,400	25	570	850	<5.0	1.1	6.3	
5/31/2006	Р		8.89	0.00	32.94	9,800	170	<5.0	490	390	<5.0	1.4	6.6	
12/6/2006	Р		9.65	0.00	32.18	16,000	1,100	<25	1,700	970	<25	1.23	6.95	
5/15/2007	Р		8.89	0.00	32.94	10,000	140	<5.0	340	310	<5.0	3.63	7.10	
11/29/2007	Р		9.48	0.00	32.35	13,000	770	8.6	500	360	<2.5	5.42	7.28	c (Benzene)
5/6/2008	Р		9.30	0.00	32.53	7,400	320	2.8	580	130	< 0.50	3.37	6.88	

		тос	Depth to	LNAPL	Water Level	Concentrations in µg/L								
Well ID and Date Monitored	P/NP	Elevation (feet)	Water (feet)	Thickness (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	pН	Footnote
Date Monitoreu	1/191	(leet)	(leet)	(leet)	(leet)	IIIng	Delizene	Toluelle	Denzene	Aylenes	MIDE	(ing/L)	рп	Foothote
S-5 Cont.														
11/24/2008	Р	41.83	10.00	0.00	31.83	7,700	400	<10	390	14	<10	3.22	6.43	
4/9/2009	Р		8.90	0.00	32.93	7,700	230	<10	370	35	<10	3.14	7.77	
11/24/2009														e
5/26/2010														e
11/30/2010	Р		8.92	0.00	32.91							0.62	6.6	f
2/16/2011	Р		8.57	0.00	33.26	2,700	26	< 0.50	11	3.2	< 0.50	1.34	7.5	
5/11/2011	Р		8.85	0.00	32.98	1,500	19	0.58	9.7	2.2	< 0.50	0.72	6.8	lw
11/28/2011														e
6/5/2012	Р		9.00	0.00	32.83	1,700	29	0.99	2.1	0.60	< 0.50	1.44	6.68	

 Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

Symbols & Abbreviations: -- = Not analyzed/applicable/measured/available < = Not detected at or above laboratory reporting limit ft bgs = Feet below ground surface BTEX = Benzene, toluene, ethylbenzene and xylenes DO = Dissolved oxygen DTW = Depth to water in ft bgs GRO = Gasoline range organics, range C4-C12GWE = Groundwater elevation measured in ft mg/L = Milligrams per liter MTBE = Methyl tert butyl ether NP = Not purged before sampling P = Purged before sampling TOC = Top of casing measured in ftTPH-g = Total petroleum hydrocarbons as gasoline, analyzed using EPA Method 8015, Modified $\mu g/L =$ Micrograms per liter SEQ/SEQM = Sequoia Analytical/Sequoia Morgan Hill Laboratories

Footnotes:

- a = Site resurveyed by URS on 10/15/03 to NAVD '88
- b = Sheen in well
- c = Sample taken from VOA vial with air bubble >6mm
- d = Well surveyed on 4/20/09
- e = Well not monitored or sampled due to traffic control safety concerns
- f = Samples were collected on 11/30/2010 but not able to be analyzed (frozen). Subsequent re-sampling could not occur in 4Q 2010
- g = Quantitation of unknown hydrocarbon(s) in sample based on gasoline
- lw = Quantitated against gasoline

Notes:

No sampling occurs at this site during the first and third quarters of each calendar year

TPH-g analyzed using EPA Method 8015, Modified and BTEX and MTBE by EPA method 8260B

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12

Values for DO and pH were obtained through field measurements

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-1									
4/11/2002			<50						
11/27/2002			1.7						
6/3/2003	<1000	<200	8.6	<5.0	<5.0	<5.0	<5.0	<5.0	
11/13/2003	<100	<20	0.95	< 0.50	< 0.50	< 0.50			
05/12/2004	<100	<20	3.0	<0.50	<0.50	< 0.50	< 0.50	< 0.50	
12/01/2004	<100	<20	2.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
05/02/2005	<1,000	220	8.8	<5.0	<5.0	<5.0	<5.0	<5.0	
11/16/2005	<100	<20	0.92	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
5/31/2006	<1,500	<100	4.0	<2.5	<2.5	<2.5	<2.5	<2.5	a
12/6/2006	<300	<20	0.72	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/15/2007	<300	<20	1.8	<0.50	<0.50	< 0.50	< 0.50	< 0.50	
11/29/2007	<300	<20	0.98	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/6/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-2									
4/11/2002			24						
11/27/2002			5.4						
6/3/2003	<100	<20	23	< 0.50	< 0.50	< 0.50	0.94	< 0.50	
11/13/2003	<100	<20	9.5	< 0.50	< 0.50	< 0.50			
05/12/2004	<500	<100	27	<2.5	<2.5	<2.5	<2.5	<2.5	
12/01/2004	<100	<20	17	< 0.50	< 0.50	< 0.50	0.74	< 0.50	
05/02/2005	<100	75	25	<0.50	<0.50	< 0.50	< 0.50	< 0.50	
11/16/2005	<100	<20	7.6	< 0.50	< 0.50	< 0.50	0.79	< 0.50	a
5/31/2006	<300	<20	24	<0.50	<0.50	<0.50	0.66	< 0.50	a
12/6/2006	<300	<20	1.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	а
5/15/2007	<300	<20	44	<0.50	<0.50	<0.50	1.2	< 0.50	
11/29/2007	<300	<20	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/6/2008	<300	<10	35	< 0.50	< 0.50	< 0.50	0.93	< 0.50	
11/24/2008	<300	<10	4.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-3									

ARCO Service Station #2035, 1001 San I	Pablo Ave., Albai	iv, CA
--	-------------------	--------

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-3 Cont.									
4/11/2002			120						
11/27/2002			56						
6/3/2003	<100	<20	47	< 0.50	<0.50	< 0.50	<0.50	<0.50	
11/13/2003	<100	<20	36	< 0.50	< 0.50	< 0.50			
05/12/2004	<100	<20	39	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/01/2004	<100	<20	37	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
05/02/2005	<100	<20	23	< 0.50	<0.50	< 0.50	< 0.50	<0.50	
11/16/2005	<100	<20	32	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
5/31/2006	<300	<20	20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
12/6/2006	<300	<20	20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
5/15/2007	<300	<20	40	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/29/2007	<300	<20	35	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/6/2008	<300	<10	14	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2008	<600	<20	28	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-4									
4/11/2002			11						
11/27/2002			6.5						
6/3/2003	<500	<100	120	<2.5	<2.5	<2.5	<2.5	<2.5	
11/13/2003	<100	<20	20	< 0.50	< 0.50	< 0.50			
05/12/2004	<500	<100	79	<2.5	<2.5	<2.5	<2.5	<2.5	
12/01/2004	<100	<20	1.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
05/02/2005	<100	75	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/16/2005	<100	<20	0.93	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
5/31/2006	<300	<20	2.4	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	a
12/6/2006	<300	<20	7.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
5/15/2007	<300	<20	2.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/29/2007	<300	<20	9.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/6/2008	<300	<10	10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
4/9/2009	<300	<10	12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2009	<300	<10	1.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-4 Cont.									
5/26/2010	<300	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/16/2011	<300	<10	2.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/11/2011	<300	<10	0.75	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/28/2011	<300	<10	0.67	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/5/2012	<300	<10	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-5									
4/11/2002			<5.0						
6/3/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2003	<100	<20	0.79	< 0.50	< 0.50	< 0.50			
12/01/2004	<100	<20	0.55	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/16/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
12/6/2006	<300	<20	0.99	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
11/29/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2009	<300	<10	0.89	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/16/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/28/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-6									
4/11/2002			<5.0						
11/27/2002			< 0.50						
6/3/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50			
12/01/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/16/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
12/6/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	а
11/29/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/16/2011	<300	<10	< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	
11/28/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

ARCO Service Station #2035, 10	1 San Pablo Ave., Albany, CA	
--------------------------------	------------------------------	--

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-7									
4/9/2009	<300	<10	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	
11/24/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	b
5/26/2010	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	
2/16/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/11/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/28/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/5/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-8									
4/9/2009	<300	330	110	5.5	< 0.50	< 0.50	34	< 0.50	
11/24/2009	<60,000	<2,000	<100	<100	<100	<100	<100	<100	b
5/26/2010	<6,000	<200	<10	<10	<10	<10	<10	<10	
2/16/2011	<3,000	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
5/11/2011	<2,400	<80	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
11/28/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/5/2012	<300	38	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-9									
4/9/2009	<300	<10	2.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2009	<300	<10	3.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/26/2010	<300	<10	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/16/2011	<300	<10	3.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/11/2011	<300	<10	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/28/2011	<300	<10	9.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/5/2012	<300	<10	4.8	<0.50	<0.50	<0.50	<0.50	<0.50	
RW-1									
4/11/2002			1,500						
11/27/2002			<25						
6/3/2003	<100	22	48	< 0.50	< 0.50	<0.50	<0.50	<0.50	
11/13/2003	<100	<20	44	< 0.50	< 0.50	< 0.50			
05/12/2004	<500	<100	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	
12/01/2004	<500	<100	16	<2.5	<2.5	<2.5	<2.5	<2.5	

ARCO Service Station #2035, 1001 San I	Pablo Ave., Albai	iv, CA
--	-------------------	--------

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
RW-1 Cont.									
05/02/2005	<200	<40	50	<1.0	<1.0	<1.0	<1.0	<1.0	
11/16/2005	<200	<40	32	<1.0	<1.0	<1.0	<1.0	<1.0	a
5/31/2006	<300	<20	28	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
12/6/2006	<300	<20	19	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	а
5/15/2007	<300	<20	18	< 0.50	<0.50	<0.50	< 0.50	< 0.50	
11/29/2007	<300	<20	18	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/6/2008	<1,500	<50	2.6	<2.5	<2.5	<2.5	<2.5	<2.5	
11/24/2008	<300	<10	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
4/9/2009	<300	<10	4.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2009	<300	<10	6.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/26/2010	<300	<10	0.94	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/16/2011	<300	<10	1.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/11/2011	<1,200	<40	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
11/28/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/5/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
S-5									
4/11/2002			<500						
11/27/2002			<50						
6/3/2003	<5,000	<1,000	<25	<25	<25	<25	<25	<25	
6/3/2003	<5,000	<1,000	<25	<25	<25	<25	<25	<25	
6/3/2003	<5,000	<1,000	<25	<25	<25	<25	<25	<25	
6/3/2003	<5,000	<1,000	<25	<25	<25	<25	<25	<25	
11/13/2003	<10,000	<2,000	<50	<50	<50	<50			
05/12/2004	<10,000	<2,000	<50	<50	<50	<50	<50	<50	
12/01/2004	<5,000	<1,000	<25	<25	<25	<25	<25	<25	
05/02/2005	<1,000	<200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
11/16/2005	<1,000	<200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	а
5/31/2006	<3,000	<200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	a
12/6/2006	<15,000	<1,000	<25	<25	<25	<25	<25	<25	а
5/15/2007	<3,000	<200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
11/29/2007	<1,500	<100	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
S-5 Cont.									
5/6/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/24/2008	<6,000	<200	<10	<10	<10	<10	<10	<10	
4/9/2009	<6,000	<200	<10	<10	<10	<10	<10	<10	
2/16/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/11/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/5/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations: -- = Not analyzed/applicable/measured/available < = Not detected at or above the laboratory reporting limit 1,2-DCA = 1,2-Dichloroethane DIPE = Diisopropyl ether EDB = 1,2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol µg/L = Micrograms per Liter

Footnote:

a = Calibration verification for ethanol was within method limits but outside contract limits

b = Sample taken from VOA vial with air bubble > 6mm diameter

c = LW Quantitated against gasoline

Notes:

All volatile organic compounds analyzed using EPA Method 8260B

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
4/11/2002	Southwest	0.012
11/27/2002	West	0.021
6/3/2003	West	0.024
11/13/2003	West (offsite Northwest)	0.015
5/12/2004	West	0.020
12/1/2004	West	0.030
5/2/2005	West	0.02
11/16/2005	West	0.03
5/31/2006	West	0.04
12/6/2006	West	0.01
5/15/2007	West	0.02
11/29/2007	West	0.02
5/6/2008	West	0.007
11/24/2008	West	0.02
4/9/2009	West	0.02
11/24/2009	West	0.03
5/26/2010	West	0.02
11/30/2010	West-Southwest	0.02
2/16/2011	West	0.03
5/11/2011	West-Southwest	0.03
11/28/2011	West-Southwest	0.02
6/5/2012	West	0.02

Table 3. Historical Groundwater Gradient - Direction and MagnitudeARCO Service Station #2035, 1001 San Pablo Ave., Albany, CA

Notes: Site resurveyed by URS on 10/15/03 by datum NAVD '88

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 EQUIPMENT CALIBRATION

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 DEPTH TO GROUNDWATER AND LIGHT NON-AQUEOUS PHASE LIQUID MEASUREMENT

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 WELL PURGING AND GROUNDWATER SAMPLE COLLECTION

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined

volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Table 1. Chieffa for Defining Stabilizati	1011 01 Water-Quality mulcator rarameters				
Parameter	Stabilization Criterion				
Temperature	± 0.2°C (± 0.36°F)				
pH	± 0.1 standard units				
Conductivity	± 3%				
Dissolved oxygen	± 10%				
Oxidation reduction potential	$\pm 10 \text{ mV}$				
Turbidity ¹	+ 10% or 1.0 NTU (whichever is greater)				

Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

In accordance with ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

4.0 DECONTAMINATION

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

5.0 SAMPLE CONTAINERS, LABELING, AND STORAGE

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 CHAIN OF CUSTODY RECORD AND PROCEDURE

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 FIELD RECORDS

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS AND NON-HAZARDOUS WASTE DATA FORM

DAILY REPORT

r	age	ł	or	

 × Signed HASP Hard Hat > Steel Toe Boots > Safety > Safety > Steel Toe Boots > Safety > Safety > Steel Toe Boots > Safety
--

GROUNDWATER MONITORING SITE SHEET

Page ____ of __

Project:

BP 2035

Project No.: 06-83-610 Date: 6/5/12

Field Representative: J. Ramos & A. Martinez Formation recharge rate is historically:

W. L. Indicator ID #:

High Low (circle one)

Oil/Water Interface ID #: _____ (List #s of all equip used.)

Elevation:

WELL ID RECORD				W	/ELL G	AUGING	RECOR	D	LAB ANALYSES					
Well ID	Weil Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)					
MW-1		-			0724			5.62	29.68					
MW-2					1451			10,20	200 77					
MW-3					0906		·	007	290.72 32.87					
MW-4					1350			9.92	2502					<u> </u>
MW-5					1238				2434					
MW-6					0932			12.60	24,23					
RW-1					11671			9.63	22.56					
5-5			·		0621 0944			9.00	15.67					+
MW-7					11.05			7.65	15.6					
Mw-5					1454				I man I man					<u> -</u>
Mw-95		·			1241			9.72	18.53 15.14					
								10.00						
										-				
										_				÷
				:		· · · · · · · · · · · · · · · · · · ·				-				Ļ
														+
									······				·	
							<u> </u>			-				ļ
								····						<u> </u>
· · · · · · · · · · · · · · · · · · ·		·												
														. <u> </u>
* Device used to If bailer used, 1					Bailer Entry D	iameter		er Interfa	ce Meter Chamber			e one)		
Signature:			\cap					<u> </u>	Chambel	Jiam	eter _			
	ľ	~~~~	× V4		لي	·				1 - s., -		R	evision:	1/24/2012

GROUNDWATER SAMPLING DATA SHEET

Page _____ of _____

Project:	BP 2	2035			Proj	ect N	lo.:	06-86-610	Date: /	5-5-12
Field Repres	sentative:	JR/AL	М				-			
Well ID:	Mw	-4	Start Time:		En	d Ti	ne: _	Total Time	(minutes):	
PURGE EQU	JIPMENT	X	Disp. Bailer		120V	' Pump	1	Flow Cell		
	Disp. Tubing		12V Pump		Peris	taltic F	սոր	Other/ID#:		
WELL HEA	D INTEGRI	TY (cap. lock.	vault_etc.)	Comments:						
Good	Improvement		(circle one)	e e minerita.		•••••••••••••••••••••••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·	
PURGING/S	SAMPLING	METHOD	Predetermined	Well Volume	Lo	w-Flov	v (Hher:		(circle one)
F	REDETERN	MINED WEI	L VOLUME		<u> </u>		Ī	LOW-	FLOW	(un the only
)iameter Unit V					$ \Pi $		Previous Low-Flow Purge Rate:		(gpm)
l" <u> (0.04</u>)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:			. 1	Total Well Depth (a):		(ft)
(4" (0,66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a		b	Initial Depth to Water (b):		(ft)
Total Well Dept				<u>25.02 (ft)</u>	•	붬,		Pump In-take Depth = b + (a-b)/.	2:	(ft)
Initial Depth to				<u>9.40</u> (ft)			<u> </u>	Maximum Allowable Drawdown		(ft)
Water Column I				<u>5.(2</u> (ft)				Low-Flow Purge Rate:		(gpm)*
Water Column				<u> ゆ. 3 で (g</u> al)				Comments:		
-	Volumes = WC			<u>(gal)</u>						
-	/olumes = WCV	/ x 5:	5	<u>(,50 (gal)</u>		V∃		*Low-flow purge rate should be within	range of instruments	used but should not
Pump Depth (if	pump used):			(ft)	L			exceed 0.25 gpm. Drawdown should no.	exceed Maximum A	llowable Drawdown,
				ER STABILI	ZAT	ION	PAR	AMETER RECORD		
Time (24:00)	Cumulative	Temperature	pH	Conductivity		Othe	r		DTES	
1356	Volume (gal)	(° <u>C</u>) 20.9	6.39	<u>(AS)</u> 295				Odor, color, shee	n, turbidity, or otl	her
1406	0.0	19.9	6.49	200						
419	0,05	18.4		3147			··· ·			
1434	30,0	20.0	6.67	316	1					
1436	31.0	19.4	6.66	324				and the second		
1433	32.0	18.8	6.67	322						
			1							
·····				····						
					-					
						• ••				
	· · · · · · · · · · · · · · · · · · ·									
Previous Stabili	1 Zed Parameters									
	MPLETION			1			P			
I OKOB CO	MELEIIUN	RECORD		v & Parameters	Stable	: Ă	¥ 3 C	asing Volumes & Parameters Sta	ble 5 Casi	ng Volumes
			Other:							
			ECTION RE	CORD				GEOCHEMICA	AL PARAME	TERS
Depth to Water	at Sampling.	15.70	(ft)					Parameter	Time	Measurement
Sample Collect	led Via: <u>X</u>	Disp. Bailer	Dedicated	Pump Tubing				DO (mg/L)	1256	1.60
Disp. Put	np Tubing	Other:						Ferrous Iron (mg/L)		
Sample ID:	MW-4		_ Sample Colle	ction Time:	140	10,	24:00		1356	78 mV
	5		or unprese					Alkalinity (mg/L)	6.3.00	1 U mV
. ,			unprese							
	Other:							Other:		
L				Other:				Other:		
Signature:	Jan	-R_	and formation of						· · . 	Revision: 1/24/20

Revision: 1/24/2012

GROUNDWATER SAMPLING DATA SHEET

Page _____ of

Project: <u>BP 2035</u>	F3 .			
Field Representative: JR/AM	Project No		Date	6.5.12
Well ID: <u>ww-7</u> Start Time:				
PURGE EQUIPMENT	The second s	Iotal Ti	me (minutes)):
Disp. Tubing 12V Pump	120V Pump	Flow Cell		
WELL HEAD INTEGRITY	Peristaltic Pun	np Other/ID#:		
Good Improvement Needed (circle one)	ents:			
PURGING/SAMPLING	Annual Annaly - set a			
PREDETERMINED WELL VOLUME	ume/ Low-Flow	Other:		(circle one)
Casing Diameter Unit Volume (gal/ft) (circle one)		LOV	V-FLOW	
1 (0.04) 1.25" (0.08) 2" (0.17) 3" (0.38) Other:		Previous Low-Flow Purge Rate	:	(gpm)
$\frac{4^{\prime\prime}}{(0.66)}$ 6" (1.50) 8" (2.60) 12" (5.81) " (Total Well Depth (a):) a b	Total Well Depth (a):		(ft)
Initial Depth to Water (b):	(ft)	Initial Depth to Water (b): Pump In-take Depth = b + (a-b	\/ ^	(ft)
Water Column Height (WCH) = $(a - b)$:	(ft)	Maximum Allowable Drawdow	$\frac{1}{2}$	(ft)
Water Column Volume (WCV) = WCH x Unit Volume: 4.88	(ft)	Low-Flow Purge Rate:	vii ~ (a-0)/8:	(ft)
Three Casing Volumes = WCV x 3;	_(gal)	Comments:		(gpm)*
Five Casing Volumes = WCV x 5:	(ft) _(gal) _(gal) ≥(gal) ▼			
Pump Depth (if pump used):	(ft) ▼ ⊟	*Low-flow purge rate should be withi	n range of instrumen	us used but should not
GROUNDWATER STAT		exceed 0.25 gpm, Drawdown should r	ot exceed Maximum	Allowable Drawdown.
	ivity Other			
		N Odor, color, she	OTES	
11/2) 45 49 93	the second se	Suor, color, sile	en, turbidity, or c	other
103 9.0 309 900 45				
-145-13.5 2416 70	2			
1155 12 00.2 7.08 573	• • • • • • • • • • • • • • • • • • •	······		
103 13.3 18.9 7.04 524				
	••••••••••••••••••••••••••••••••••••••			
Previous Stabilized Parameters				······
			······	
Low Flow & Paramete	rs Stable 🔏 3 C	asing Volumes & Parameters Stat	le 5 Casi	ng Volumes
SAMPLE COLLECTION RECORD				
Depth to Water at Sampling:		GEOCHEMICA	L PARAME	TERS
Sample Collected Via: Disp. Bailer Dedicated Pump Tubing	· · · · · · · · · · · · · · · · · · ·	Parameter	Time	Measurement
VISU, FUIDD Lithing Others		DO (mg/L)	1110	1.95
Sample ID: <u>MW - 7</u> Sample Collection Time:	1157	Ferrous Iron (mg/L)		
Containers (#): <u>VOA</u> (<u>X</u> preserved orunpreserved)	(24:00)	Redox Potential (mV)	1110	81
Other:O	_ Litter Amber	Alkalinity (mg/L)		
Other: _		Other:		
		Other:		
Signature:				
	and the set was made and the set		R	evision: 1/24/2012
V.				

GROUNDWATER SAMPLING DATA SHEET

Page _____ of

Project:	BP	2035			D				
Field Rep	resentative:	.112	ź. A SA		Project 1	10.:	06-88-610	Date	: <u>65-</u>
Well ID:	Mw		Start Time:	:	- End Ti	me			
PURGE E	QUIPMENT	X	Dia= 0."				Iotal Tin	me (minutes)	:
	Disp. Tubing		Disp. Bailer		_ 120V Pump	,	Flow Cell		· · · · · · · · · · · · · · · · · · ·
WELL HE	AD INTEOD	PTT 7	12V Pump		Peristaltic F	սուբ			
Good	AD INTEGR	IIY (cap, lock	, vault, etc.)	Comments:					
	Improvemen		(circle one)					·······	
PURGING	/SAMPLING	METHOD	Predetermine	d Well Volume	Low-Flow				
	PREDETER	MINED WE	H VOLUM	F	LUW-F10\\		Other:		(circle one)
Casing	Diameter Unit	Volume (gal/ft)	(circle one)		4 101		LOW	V-FLOW	
1 (0.04)	1.25" (0.08)	2" ((0.17)	3" (0.38)	Other			Previous Low-Flow Purge Rate	2:	(gpn
€"_(0.66)	6" (1.50)	8" (2.60)	[2" (5.81)	" ()		Ь	Total Well Depth (a):		(f
Total Well De				<u>18.53</u> (ft)	a		Initial Depth to Water (b):		
Initial Depth to	o Water (b):			<u>9.72</u> (ft)			Pump in-take Depth = b + (a-b)/2:	(f
Water Column	Height (WCH)	= (a - b):		8.81 (ft)	1 1 1	-	Maximum Allowable Drawdov	vn = (a-b)/8;	(f
Water Column	Volume (WCV)) = WCH x Unit	Volume:	<u>5,8 (gal)</u>			Low-Flow Purge Rate:	_	(gpm)
Three Casing	g Volumes = WC	CV x 3;		<u>17.44 (gal)</u>	I H		Comments:		
Five Casing	Volumes = WCV	/ x 5:							
Pump Depth (i	f pump used):			(gal) (ft)	VЦ		*Low-flow purge rate should be within	n range of instrumen	is used but should no
		GR	DUNDWATT					ot exceed Maximum	Allowable Drawdow
Time	Cumulative	Temperature	pH	Card	LATION P	AR	AMETER RECORD		in an and an a
(24:00)	Volume (gal)	(° (C)	pii	Conductivity	Other			OTES	
1455	0.0	18.8	6.92	449			Odor, color, she	en, turbidity, or o	ther
1503	6.0	int	10018	E 4170					
1513	12.0	17.7	6.81	489				Slight a	far
1540	18.0	17-7	6.91	485				V	~
1.243	19.0	17.	6:49	476	• • •••		and the second second second		
	422-0								
· ····	· · · · · · · · · · · · · · · · · · ·								
								······	
		······							
							- 12	and the	
					······································				
revious Stabiliz						-			
PURGE CON	MPLETION	RECORD	Low Flow	Paramatan O					· · · · · · · · · · · · · · · · · · ·
			Other:	c ratameters Sta	ble 🖂 3	Cas	ing Volumes & Parameters Stab	ole 5 Casin	g Volumes
	SAM								6
epth to Water a	at Sampling	(1.30)	CTION REC	ORD			GEOCHEMICA	I. PARAMET	CDC
		11.20	<u>(ft)</u>			Τ	Parameter	1	<u> </u>
ample Collected	d Via: XDi	isp. Bailer	Dedicated Pu	mp Tubing		-	DO (mg/L)	Time	Measurement
Disp. Pump	o Tubing Ot	her:		-				1458	1.31
ample ID:			Sample Collection	on Time: 15	SA		Ferrous Iron (mg/L)		
ontainers (#): 🔇	VOA (preserved or	Invisiona-	ed) Lite	<u>20 (</u> 24:0)	끼닏	Redox Potential (mV)	1458	JÖZ
	Other:		unpreserve	cu) Lite	r Amber	4	Alkalinity (mg/L)		
	Other:		Oti				Other:		
			0łł	ner:	Girganius	6	Other:		
ignature:	A	IA .	1					l	
	- the	AL	SPACE STREET	N.,					2018년 - 11월 1888년 11월 11일 (11월 11월 11월 11월 11월 11월 11월 11월 11월 11

GROUNDWATER SAMPLING DATA SHEET

Page of

Project:	BP	2035						
Field Rep	resentative:	JK	AM		_Project N	0.: 06-08-61C	Dat	e: 6-5-1
Well ID:		w-9	Start Time	<u>.</u>	-			
PURGE F	QUIPMENT					ne: Total	Time (minutes	s):
	Disp. Tubing		🔇 Disp. Bailer		120V Pump	Flow Cell		
WELL HE	AD INTEOR) //// /	_ 12V Pump		Peristaltic Pu	mp Other/ID#:		
TGood		RITY (cap, lock		Comments:				
<u> </u>		nt Needed	(circle one)					
ronome	S/SAMPLING	J METHOD	Predetermin	ed Well Volume	Low-Flow	Other:		
Casing	PREDETER	RMINED WE	LE VOLUM	E				(circle one
1" (0.04)	1 251 L to on	t Volume (gal/ft)			1	Province 1	OW-FLOW	
4"+(0.66)	1.25" (0.08)		3" (0.38)			Previous Low-Flow Purge Total Well Depth (a):	Rate:	(
Total Well De	o ((1.50)) 8" (2.60)	12" (5.81)	<u> </u>	a	Initial Depth to Water (b):		
Initial Depth t	Water (h)			<u>IS.14</u> (ft)		Dump La (1 m	4.1.10	
Water Colum	n Height (WCH)	= (a - b).		1.57 (ft)		Maximum Allowable Draw	(a-b)/2:	
Water Columr	1 Volume (WCV	') = WCH x Unit		<u>>.57</u> (ft)		Low-Flow Purge Rate:	(a-b)/8	
Three Casin	g Volumes = W(CV x 3 [.]	volume:	<u> (gal)</u> (, 0 4 (gal)		Comments:		(gp
Five Casing	Volumes = WC	V x 5:		(gar)				
ump Depth (if pump used):			(gal)	_	*Low-flow purge rate should be v	within range of instrume	urte an aif h a h a
		GR		(ft)		exceed 0.25 gpm. Drawdown sho	ald not exceed Maximus	n Allowable Di
Time	Cumulative	Temperature	pH	Conduction	ZATION PA	RAMETER RECORD		" Anovanie Drawa
(24:00)	Volume (gal)	(°C)		Conductivity (んろ)	Other		NOTES	
1757	0	2013	6:37	300			sheen, turbidity, or	other
1300-	3,5	14.5	16.27				Oring 6	entico ide
1325	10,5	20.8	6.29	363			in Socia	2-
1335	11.5	19.6	6.79	361 396				
	12.5	• • •	6.20			and the second	· · · · · · · · · · · ·	
	· · ·	··=·						
						· · · · · · · · · · · · · · · · · · ·		
							······································	
· · · · · · · · · · · · · · · · · · ·								
vious Stabiliz	ed Parameters							
	MPLETION I							
NOL COP	MELETION I	RECORD .	Low Flow &	& Parameters Stal	ole 🕅 3 C	asing Volumes 8 p		
			Other:			asing Volumes & Parameters S	stable 5 Casii	ng Volumes
	SAM	PLE COLLE	CTION REC	CORD		T		
oth to Water a	it Sampling:	12,25	(6)			GEOCHEMI	CAL PARAME	ΓERS
ple Collected	t Via: 🗶 Di	isp. Bailer	Dedicated Put	mn Tubing		Parameter	Time	Measuremen
_ Drop. r unit	Jubing Ol	her:		mp ruonig		DO (mg/L)	17.46	1,45
	MW-9		ample Collect		18 *10mm	Ferrous Iron (mg/L)		
	<i>r</i> 1	preserved or	Phoree-	on Time: <u>13</u>)(24:00)	Redox Potential (mV)	1246	68
	G_VOA (X		unpreserve	a) Liter	Amber	Alkalinity (mg/L)		
	VOA \ X		- ·					1
nple ID: stainers (#):	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		O(ner:		Other:		
	Other:		O(ner:				

. .

GROUNDWATER SAMPLING DATA SHEET

Page ____ of ____

Project:	<u> </u>	035			Project Ma			
Field Repr			#AM			: 06-88-610	Date	:6-5-12
Well ID:	<u> </u>		Start Time:		End Time	: Total Tin	ne (minutes)	•
PURGE EC	UIPMENT		Disp. Bailer		10014 5			*
	Disp. Tubing		12V Pump	X	120V Pump	Flow Cell		
WELL HEA		ITY (cap, lock,	upult ata)	<u> </u>	Peristaltic Pum	p Other/ID#:		
Good	Improvemen	t Needed	(circle one)	Comments:				
PURGING/	SAMPLING							
		MINED WE		d Well Volume	Low-Flow	Other:		(circle one)
Casing	Diameter Unit	Volume (gal/ft)	(circle and	3		LOW	-FLOW	
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Othe		Previous Low-Flow Purge Rate	-	(gpm)
4" (0.66)	6"](1,50)	8" (2.60)	_ 12" (5.81)		Ь	Total Well Depth (a):		22,5(g (ft)
Total Well Dep	th (a):		14 (5.61)	" ()	a	Initial Depth to Water (b):	-	9.63 (ft)
Initial Depth to			<u></u>	(ft) (ft)		Pump In-take Depth = b + (a-b)	/2:	i 6, 10 (ft)
Water Column	Height (WCH)	= (a - b):				Maximum Allowable Drawdow	m = (a-b)/8:	1.6D (ft)
Water Column	Volume (WCV)	= WCH x Unit	Volume:	(ft)		Low-Flow Purge Rate:	-	0.17 (8pm)*
Three Casing	Volumes = WC	V x 3:		(gal) (gal)		Comments:		· ,
Five Casing V	/olumes = WCV	/ x 5:			」目			
Pump Depth (if	pump used);			(gal) (ft)	▼ ⊟	*Low-flow purge rate should be within	range of instrumen	is used but should not
		GRG			7.100.00.00	Creved 1 75 ann Dawners	ot exceed Maximum	Allowable Drawdown.
Time	Cumulative	Temperature	pH	Conductivity	CA HON PAI	RAMETER RECORD		
(24:00)	Volume (gal)	(° <u> </u>	P.1		Other		OTES	
0334	0.0	17.6	6.72	548	020	DO Odor, color, shee	n, turbidity, or o	ther
0337	0.5	18.0	6.73	544	97	3.21		
0340	1.0	15.0	6.75	540	<u> </u>	1.96	· · · · · · · · · · · · · · · · · · ·	
0843		17.5	6.75	535	75	1.60		
0396	20	17.5	6.75	537	72	1.43	· · · · · · · ·	
						and the second sec		
						Slight gas	20 2,0 5	
- ·					· ··· ··· ··· ··· ···			
			· · · · · · · · · · · · · · · · · · ·		···	·····		
······································								
							······	
							······································	
Previous Stabiliz								
PURGE CON	APLETION I	RECORD	Low Flow 8	2 Parameters Sta	ble 3.C			
			Other:			asing Volumes & Parameters Stab	le 5 Casir	ng Volumes
······	SAM	PLE COLLE						
Depth to Water a	t Sampling; 📿	1.84	(6)			GEOCHEMICA	L PARAME	ſERS
Sample Collected		isn Bailer	Dodises LD			Parameter	Time	Measurement
🔀 Disp. Pump) Tubino 🗠	her:	Dedicated Put	mp Lubing		DO (mg/L)	0846	1,43
Sample ID:	3.					Ferrous Iron (mg/L)		
Containers (#)	F 110.	····	Sample Collection	on Time: 🛛 🛸	48 (24:00)	Redox Potential (mV)	0846	
Containers (#): _	6_ VOA (preserved or	unpreserve	ed) Lite	r Amber	Alkalinity (mg/L)	4100	72
-	Other:		Ot	ner:		Other:		
	Other:		Oth	ier:				
Janotura	^	1				Other:		
Signature:	6	1/2						

Revision: 1/24/2012

Page _____ of

Project: \overrightarrow{BR} 2035 Project No.: $06 - 96 - 610$ Date: $6 - 5^{-1}$ Field Representative: $\Delta \notin A T A$ Total Time (minutes): PURGE EQUIPMENT Disp. Bailer 120 V Pump Flow Cell Peristatice Pump Other/DM: WeLL HEAD INTEGRITY (cap. lock, vault, etc.) Comments: Comments: Control of the control of t
Well ID: S-5 Start Time: End Time: Total Time (minutes): PURGE EQUIPMENT Disp. Bailer 120V Pump Flow Cell Disp. Tubing 12V Pump Perstaltic Pump Other/ID#: WELL HEAD INTEGRITY (cap. lock, vault, etc.) Comments: Comments: (circle one) PURGING/SAMPLING METHOD (Predetermined Welt Volume Low-Flow Other: (circle one) PURGING/SAMPLING METHOD (Predetermined Welt Volume Low-Flow Other: (circle one) PURGING/SAMPLING METHOD (Previous Low-Flow Purge Rate: Total Well Depth (a): httial Depth to Water (b): Previous Low-Flow Purge Rate: Previous Low-Flow Purge Rate: Maximum Allowable Drawdown = (a-b)/8: Total Well Depth (a): $\frac{15}{400}$ (ft) $\frac{12}{400}$
PURGE EQUIPMENT Disp. Bailer 120V Pump Flow Cell Disp. Tubing 12V Pump Peristaltic Pump Other/ID#: WELL HEAD INTEGRITY (cap, lock, vault, etc.) Comments: Comments: Comments: //Good // Improvement Needed (circle one) Peristaltic Pump Other/ID#: PURGING/SAMPLING METHOD (Predetermined Well Volume Low-Flow Other; (circle one) PURGING/SAMPLING METHOD (Predetermined Well Volume Low-Flow Other; (circle one) PURGING/SAMPLING METHOD (Predetermined Well Volume Low-Flow Purge Rate: (circle one) 1*1(0.04) 1.25* (10.08) 2*1(0.17) (3*10.38) Other: Total Well Depth (a): 1*1(0.06) 6*1(1.50) 8*1(2.60) 12*1(5.81) *1() a a Maintun Allowable Depth (a): (b (circle one) *1 Maintun Allowable Drawdown = (a-b)/2: Maintun Allowable Drawdown = (a-b)/2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Perstatic Pump Other/ID#: Other/ID#: Comments: Comments: Comments: Comments: Comments: PURGING/SAMPLING METHOD (Predetermined Well Volume Low-Flow Other: (circle one) PREDETERMINED WELL VOLUME Casing Diameter [Unit Volume (gal/ft) (circle one) Previous Low-Flow Other: (circle one) 1000 11:25° (10.08) 2° (10.17) [3° (10.38) Other: 4" (10.66) 6° (1:5.00 8° (26.60) 12° (5.81) °'(() a Total Well Depth (a): Intial Depth to Water (b): Diamp In-take Depth = b + (a-b)/2: Maximum Allowable Drawdown = (a-b)/8: Colspan="2">Colspan="2">(ft) Were Column Volumes (WCV) = WCH x Unit Volume: 2:5.3 (gal) Three Casing Volumes = WCV x 3: T.55° (gal) Time GROUNDWATER STABILIZATION PARAMETER RECORD Oder, color, sheen, turbidity, or other Q45.3 Q4:5.3 Q4:5.3 Q4:5.3 Q4:5.3 Q4:5.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
PURGING/SAMPLING METHOD (Predetermined Welt Volume (circle one PREDETERMINED WELL VOLUME (circle one) Casing Diameter Unit Volume (gal/ft) (circle one) 1" (0.04) 1.25" (0.08) 2" (0.17) [3" (10.38) Other: LOW-FLOW 4" [(0.66) 6" [(1.50) 8" [(2.60) 12" [(5.81) "]() a Image: [0.67] Image: [0.67] Image: [0.67] Image: [0.67] Image: [0.66] Image: [0.67] Image: [0.67]
PREDETERMINED WELL VOLUME(circle onCasing Diameter Unit Volume (gal/ft) (circle one)Image: Circle one (circle one)1" (0.04)1.25" (0.08)2" (0.17) $(3" (0.38) Other:4" (0.66)6" (1.50)8" (2.60)12" (5.81)" ()Total Well Depth (a):(3.5, 6.7, (ft))1" ()aInitial Depth to Water (b):(1.50, 8" (2.60) 12" (5.81)" ()Total Well Depth (a):Maximum Allowable Depth (a):(1.5, 6.7, (ft))(1.5, 6.7, (ft))Maximum Allowable Drawdown = (a-b)/8:Water Column Height (WCH) = (a - b):(a + 6.7, -1.6)(a + 6.5, -2.7, (gal))Maximum Allowable Drawdown = (a-b)/8:Three Casing Volumes = WCV x 3:(1.5, 5.6, -2.6)(1.5, -6.7, -6.6)(1.6, -6.7, -6.6)Pump Depth (if pump used):(1.6, -6.7, -6.6)(1.6, -6.7, -6.6)(1.6, -6.7, -6.6)Pump Depth (if pump used):(1.6, -6.7, -6.6)(1.6, -6.7, -6.6)TimeCumulativeTemperature(2.5, -6.6)(24:00)Volume (gal)(1.6, -6.7, -6.6)(1.6, -6.7, -6.6)(24:00)Volume (gal)(2.6, -5.2, -6.6)(1.6, -6.7, -6.6)(24:00)Volu$
Low-FLOWLOW-FLOW1" (0.04)1.25" (0.08)2" (0.17) $(3" 1(0.38))$ Other:4" (0.66)6" (1.50)8" (2.60)12" (5.81)"1()Total Well Depth (a): $(5.6-7)$ (ft) (6.67) (ft) (6.67) (ft)Initial Depth to Water (b): (1.60) (ft) (1.60) (ft) (1.60) (ft)Water Column Height (WCH) = (a - b): $(6.66, 7)$ (ft) (1.60) (gal)Water Column Volume (WCV) = WCH x Unit Volume: $(2.5, 3)$ (gal) $(2.5, 3)$ (gal)Three Casing Volumes = WCV x 3: (7.50) (gal) (1.60) (gal)Pump Depth (if pump used): (1.6) (gal) (1.60) (gal)TimeCumulativeTemperatureGROUNDWATER STABILIZATION PARAMETER RECORD049530 (17.9) (6.53 049530 (17.9) (6.53 049530 (17.9) (6.53 0455 (4.5) 02265.60 (17.1) (6.53 0236 (17.1) (6.53 0455 (16.3) 0455 (16.3) 0455 (16.3) 0455 (16.3) 0455 (16.3) 0455 (16.3) 0455 (16.3) 0455 (16.3) 0455 (17.1) (6.63 0455 (16.3) 0455 (17.1) (6.63 0455 (16.5) 0455 (16.5) 0455 (16.5) 0455 (16.5) 0455 (16.5) 0455 (16.5) 0455
$\frac{1}{1} \begin{bmatrix} 0.04 \\ 1.25^{\circ} \\ [0.08 \\ 2^{\circ} \\ [0.17 \\ 1.50 \\ 2^{\circ} \\ [0.17 \\ 1.50 \\ 2^{\circ} \\ [0.17 \\ 1.50 \\ 2^{\circ} \\ 12^{\circ} \\ [0.28 \\ 12^{\circ} \\ 12^{\circ} \\ [0.28 \\ 12^{\circ} \\ [0.28 \\ 12^{\circ} \\ 12^{\circ} \\ [0.28 \\ 12^{\circ} \\ 12^{\circ} \\ [0.28 \\ 12^{\circ} \\ [0.28 \\ 12^{\circ} \\ 12^{\circ$
4" $[0.66)$ 6" $[1.50)$ 8" $[2.60)$ 12" $[5.81]$ "1(
Total Well Depth (a): $15, 6-7$ (ft) a Initial Depth to Water (b): Initial Depth to Water (b): $9, 00$ (ft) $9, 00$ (ft) $9, 00$ (ft) Water Column Height (WCH) = (a - b): $6, c, 6, 7$ (ft) $9, 00$ (ft) $9, 00$ (ft) Water Column Volume (WCV) = WCH x Unit Volume: $2, 5, 3$ (gal) $12, 6, 5$ (gal) $12, 6, 5$ (gal) Three Casing Volumes = WCV x 3: $12, 6, 5$ (gal) $12, 6, 5$ (gal) $12, 6, 5$ (gal) Pump Depth (if pump used): (ft) $12, 6, 5$ (gal) $12, 6, 5$ (gal) Time Cumulative Temperature pH Conductivity Other Volume (gal) $17, 9$ $6, 6, 5, 5$ $14, 6, 3$ Model Model 0245 $5, 6, 6, 2$ $14, 6, 3$ $13, 6, 5, 6, 6, 2$ $14, 6, 3$ Model Model $13, 6, 6, 5, 5$ 0246 $5, 6, 6, 2$ $14, 6, 1$ $13, 6, 6, 5, 5$ $14, 6, 1$ $13, 6, 6, 5, 5$ $14, 6, 1$ $13, 6, 6, 5, 5$ $14, 6, 1$ $15, 6, 6, 5, 5$ $14, 6, 1$ $15, 6, 6, 5, 5$ $14, 6, 1$ $15, 6, 6, 5, 5$ $14, 6, 1$ $15, 6, 6, 5, 5$ $14, 6, 1$ $15, 6, 6, 5, 5$ $14, 6, 1$
Water Column Height (WCH) = (a - b): Image: Column Volume (WCV) = WCH x Unit Volume: Image: Column Volume (WCV) = WCH x Unit Volume: Image: Column Volume (WCV) = WCH x Unit Volume: Image: Column Volume (WCV) = WCH x Unit Volume: Image: Column Volume (WCV) = WCV x 3: Image: Column Volume (VCV) = WCV x 3: Image: Column
water Column Height (WCH) = (a - b): 6 $\sqrt{6.7}$ (A) 1
Introduction of instruments used but show exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw (24:00) Time Cumulative Temperature pH Conductivity Other NOTES (24:00) Volume (gal) (°C_) (PD) Other NOTES 0953 0 17.9 6e.53 16e.3 Odor, color, sheen, turbidity, or other (ASO) 2.5 18.5 6e.62 1469 Moderate 1026 5:0 17.1 6e.63 183 Wein 15 Feethoring Storing Wein 15 Feethoring in go Storing Storing Storing At
Introduction of instruments used but show exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw (24:00) Time Cumulative Temperature pH Conductivity Other NOTES (24:00) Volume (gal) (°C_) (PD) Other NOTES 0953 0 17.9 6e.53 16e.3 Odor, color, sheen, turbidity, or other (ASO) 2.5 18.5 6e.62 1469 Moderate 1026 5:0 17.1 6e.63 183 Wein 15 Feethoring Storing Wein 15 Feethoring in go Storing Storing Storing At
Introduction of instruments used but show exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw (24:00) Time Cumulative Temperature pH Conductivity Other NOTES (24:00) Volume (gal) (°C_) (PD) Other NOTES 0953 0 17.9 6e.53 16e.3 Odor, color, sheen, turbidity, or other (ASO) 2.5 18.5 6e.62 1469 Moderate 1026 5:0 17.1 6e.63 183 Wein 15 Feethoring Storing Wein 15 Feethoring in go Storing Storing Storing At
(II) exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Draw GROUNDWATER STABILIZATION PARAMETER RECORD Notes (24:00) Volume (gal) (°C) PH Conductivity Other NOTES 0453 0 17.9 6.53 463 Odor, color, sheen, turbidity, or other 0455 2.5 18.5 6.62 469 Moderate 1026 5.0 17.1 6.68 48% Wen 15 Pecharging Slowly. At
Time Cumulative Temperature pH Conductivity Other NOTES (24:00) Volume (gal) (°C) PH Conductivity Other NOTES 0453 0 17.9 6.53 163 Odor, color, sheen, turbidity, or other 0458 2.5 18.5 6.62 163 Moderate 1026 5.0 17.1 6.63 183 Moderate 1026 5.0 17.1 6.63 193 Moderate 105 cccarate 15 cccarate 193
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0953 0 179 6.53 (W) Odor, color, sheen, turbidity, or other 0458 2.5 18.5 6.62 469 Moderate 1026 5.0 17.1 6.68 483 Here over 2 35 Wen is recharging Story. At 1.5' of standing matrix
Units 2.5 18.5 6.62 469 1026 5.0 17.1 6.63 483 35 Weil is recharging slowly. At 1.5' of scanding matter
1026 5.0 17.1 6.68 483 Wen is recharging slowly. At 1.5' of scanding matter
Wen is recharging slowly. At
A STATISTICS AND A STATISTICS
A STATISTICS AND A STATISTICS
rate 0.01 ft7 min (calcumpted)
evious Stabilized Parameters
URGE COMPLETION RECORD Low Flow & Parameters Stable 3 Casing Volumes & Parameters &
Other:Other:
SAMPLE COLLECTION RECORD
epth to Water at Sampling: 13.6 ((f)
ample Collected Via: X Disp. Bailer Dedicated Pump Tubing DO (mp(1) 7 10 - 2 10
Disp. Pump Tubing Other:
Imple ID: Sample Collection Time: W 46 (24:00) Redox Potential (mV)
situation (in), G VOA (> preserved or suppresented)
Other: _
Other:
Other: Other:
gnature: And here
Revision: 1/24/2

Laboratory Management Program LaMP Chain of Custody Record

Page	of

Cc	Project Name:	I						Re	ea Di	Page Req Due Date (mm/dd/yy): Rush TAT: Yes																
Ó A	BP alfiliated company	BP/ARC F	Facility No:			·			203	35	·	·		_					Numb		-	<u> </u>	······································	Rusi	TAT: Yes	·
Lab Name:				BF	P/AR	C Fac	cility A	\ddre	ss:	10	01 Sa	n Pab	lo Aven	ue			·······	<u> </u>	Con	sultant/	`ontro	atori	Broodba			
Lab Addres	ss: 7440 Lincoln Way			Ci	ty, Si	tate, 2	ZIP Co	ode:		Alb	any,	CA	<u></u>				<u> </u>						biect No:	nt & Associates		· ·
Lab PM:	Richard Villafania			Le	ad R	legula	itory A	Agenc	cy:	AC	EH	·							Addr						510-401-1080	
.ab Phone:	714-895-5494 / 714-895-750	11 (fax)		Са	liforr	nia Gl	obal I	D No	.:	TOE	0010	0081						<u> </u>			~~~~		Tom Ven	Ste. 212, Chic	o, CA 95926	
ab Shippin	g Accnt: 9255		· · · · ·	En	fos F	Propos	sal No):		005	TK-0	004 / V	VR2456	99		·			Phon							
ab Bottle C	Order No:		·····	Acc	coun	ting N	iode:		Pr	ovisio	n X	0	OC-BU			DC-B		··		EDD T	•••••	······································		566-1401 (fax)		
ther Info:				Sta	ige:	Exe	ecute	(40)					Spend						Invoid					adbentinc.co		
P/ARC EB	M: Shannon Couch			T	М	atrix		N					servati		ŕ	ß	eaue	sted	Analys		_		×	E	ractor	
3M Phone:	925-275-3804				Τ	Τ		1	Τ						<u> </u>	T		T			╧			неро	rt Type & C	
BM Email:	Shannon.Couch@bp.cc	om		1				Jers										Î							Standard	
.ab io.	Sample Description	Date	Time	Soit / Solid	Water / Liquid	Air / Vapor		Total Number of Containers	Unpreserved	H ₂ SO4	HNO3	HCI	Methanol		GRO (8015)	BTEX (8260)	5-Oxys + EDB (8260)	1,2-DCA and Ethanol (8260)						Note: If sample Sample* in com	ments and sind	S Indicate "M
	MW-4	6.5-12	1440	0	×	×	╉	6	2	Ŧ	н	Ξ X	Σ	-+	ъ х	X					+			and initial any p	reprinted samp	le descrip
	MW-7		1157		x			6				x		-	x	x	x x	x x	<u> </u>	_ _						
	MW-8		1550		х		\dashv	6				x		┥	$\frac{\hat{x}}{x}$	×	× x	^ X		_	╋	+				<u></u>
1	MW-9		1337-		x		\dashv	6		-+		x		+	x	x	x	x		+						
	RW-1		0840		x		+	6				×		-+	x	^ x	${x}$	x				\square				
	S-5	1	1046	\neg	x		╉	6		-+		x				x	x	^ x								
						-+				\rightarrow				╉	\rightarrow			$\hat{-}$				$\left \right $				
					-	-+	╈			-+					-+						-	$\left - \right $				
					1		- -	\neg				-+		╈						+	-					
	TB-2035-120605				x			1		-	\dashv	x		╉							╢──	┝╍┼			On Hold	
pler's Nam	10: James Ba	mas				Re	linqı	ishe	ed By	/ Aff	iliati	on		╈	Date		 Tim	e			L Accer	ted B	y / Affiliatio	00	Date	Tin
ler's Company: Broadbent					1				6.6		170								Date							
ment Metho	od: <u>GSO</u> s	Ship Date: 6	6.12			Ű					<u></u>			Ť		<u> </u>										
nent Track	ing No: 10739433	9												┢		╈	w	-†-								╂──
cial Instru	uctions: Please cc results to I	opedf@broadbe	entinc.com								<u> </u>			_!				I						·····		
in the sec	S LINE - LAB USE ONLY: Custo			1	Tam	p Blar				_			on Rec					1		3lank; Y	_					

NO. 689955

NON-HAZARDOUS WASTE DATA FORM

			BESI #	
	Generator's Name and Mailing Address	Generator's Site Address (if different than mailing address)	
	BP WEST COAST PRODUCTS, LLC	RP 2035		
	P.O. BOX 80249		n Pablo Ave.	
	RANCHO SANTA MARGARITA, CA. 92688	1001 54		
		Albany,	CA	
	Generator's Phone: 949-460-5200			
	Container type removed from site:	Container type tran	sported to receiving facility:	
	Drums Di Vacuum Truck Di Roll-off Truck Dump Tr	ruck 🔲 Drums 🖵 Va	cuum Truck 🔲 Roll-off Truck	Dump Truck
	Other	C Other		
GENERATOR	Quantity 85 gallons	Quantity	Volume	
ERA	WASTE DESCRIPTION NON-HAZARDOUS WATER	GENERATING PROCE	ss_WELL PURGING / DE	CON WATER
Z	COMPONENTS OF WASTE PPM	% COMP	ONENTS OF WASTE	PPM %
G	1	-100% ₃		
5	2TPH	<1% 4		I
	Waste Profile PROPERTIE	es: pH <u>7-10</u> Solid XX	LIQUID 🔲 SLUDGE 🔲 SLURRY	OTHER
	HANDLING INSTRUCTIONS - WEAR ALL APPROPRIATE PER	TOUNAL FRUIELINE	EQUIPMENT.	
	HANDLING INSTRUCTIONS: WEAR ALL APPROPRIATE PER	RECIPCING PROTECTIVE	EQUIPMENT.	
	HANDLING INSTRUCTIONS:WEAR ALL APPROPRIATE PER	RONAL PROTECTIVE	EQUIPMENT.	
			EQUIPMENT.	Month Day Year
	Generator Printed/Typed Name Sign	ature		
	Generator Printed/Typed Name Sign Alex Martinez			Month Day Year
	Generator Printed/Typed Name Sign	ature		
~	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous	ature		
TER	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Itansporter 1 Company Name BROADBENT & ASSOCIATES, INC>	ature	Phone#	
	Generator Printed/Typed Name Sign Alex MartineZ The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name	ature Alex M ada nature	Phone#	06 08 12
	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter Acknowledgment of Receipt of Materials	ature Nex M ada	Phone# 53D-566-1400	Month Day Year
	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez	ature Alex M ada nature	Phone#	Month Day Year
	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name	ature Alex M ada nature	Phone# 53D-566-1400	Month Day Year
TRANSPORTER	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 2 Company Name	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400	06 08 12 Month Day Year 06 08 12
	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 2 Company Name	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter Acknowledgment of Receipt of Materials Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Transporter Acknowledgment of Receipt of Materials Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter Acknowledgment of Receipt of Materials Transporter 2 Printed/Typed Name Sign Itansporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC.	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter 2 Printed/Typed Name Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Insporter 2 Printed/Typed Name Sign Insporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD.	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter Acknowledgment of Receipt of Materials Transporter 2 Printed/Typed Name Sign Itansporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC.	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter 2 Printed/Typed Name Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Insporter 2 Printed/Typed Name Sign Insporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD.	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martinez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter 2 Printed/Typed Name Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Insporter 2 Printed/Typed Name Sign Insporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD.	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
TRANSPORTE	Generator Printed/Typed Name Sign Alex Martimez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter 2 Printed/Typed Name Sign Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Transporter Acknowledgment of Receipt of Materials Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD. RIO VISTA, CA 94571	ature Alex Modé nature Alex Modé	Phone# 53D-566-1400 Phone#	06 08 12 Month Day Year 06 08 12
	Generator Printed/Typed Name Sign Alex Martimez The Generator certifies that the waste as described is 100% non-hazardous Transporter 1 Company Name BROADBENT & ASSOCIATES, INC> Transporter 1 Printed/Typed Name Alex Martinez Transporter 1 Printed/Typed Name Sign Alex Martinez Transporter 2 Printed/Typed Name Sign Transporter 2 Company Name Transporter 2 Printed/Typed Name Sign Transporter 2 Printed/Typed Name Sign Transporter Acknowledgment of Receipt of Materials Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address INSTRAT, INC. 1105 AIRPORT RD. RIO VISTA, CA 94571	ature Alex Mode nature Alex Martin ature	Phone# 53D-566-1400 Phone#	Month Day Year

APPENDIX C

HISTORIC GROUNDWATER DATA TABLES

ARCO Service Station No. 2035 1001 San Pablo Avenue, Albany, California

Woll Number	TOC Elevation (ft-MSL)	Depth to Water (feet)	FP Thickness (feet)	Groundwater Elevation [1] (ft-MSL)	Date Sampled	TPHg (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	МТВЕ 8021В* (µg/L)	MTBE 8240/8260 (µg/L)	Dissolved Oxygen (mg/L)	Purged/ Not Purged (P/NP)
MW-I	41.41	6.21	0.00	35.20	03-23-91	8,800	3,600	<0	62	99				
MW-1	41.41	9.37	0.00	32.04	05-23-91	4,800	2,000	<20	52	<20				
MW-1	41.41	10.30	0.00	31.11	08-21-91	780	310	<2,5	12	<2.5	14			
MW-1	41.41	12.25	0.00	29.16	11-08-91	58	14	<0.5	<0,5	<0.5				
MW-I	41.41	9.08	0.00	32.33	02-26-92	2,700	930	12	18	32	51			
MW-1	41_41	9.11	0.00	32.30	04-21-92	2,700	1,000	<10	22	<10	<60			
MW-I	41.41	10.37	0.00	31.04	08-14-92	300	52	<0.5	0.9	<0.5	22			
MW-I	41.41	8.79	0.00	32.62	12-09-92	270	63	0.7	<0.5		25		••	
MW-I	41.41	9.80	0.00	31.61	03-26-93	1,500	610	<5	15	. 7	56			• •
MW-1	41.41	9.65	0.00	31.76	05-21-93	110	6	<0.5	<0.5	0.7	10			
MW-I	41.41	10.22	0.00	31.19	09-03-93	180	40	<0.5	1.2	0.5	26			
MW-1	41.41	10.68	0.00	30.73	11-02-93	83	8	<0.5	<0.5	<0.5	13			
MW-I	41.41	6.92	0.00	34.49	02-19-94	1,800	540	7	27	31	46			••
MW-I	41.41	9.28	0.00	32.13	05-17-94	4,500	1,300	20	57	20	<60			
MW-1	41.41	10.05	0.00	31.36	08-20-94	530	110	<5	<5	<5	400			
MW-I	41.41	10.42	0.00	30.99	10-19-94	66	9.1	<0.5	<0.5	<0.5				••
M₩-1	41.41	8.10	0.00	33.31	02-15-95	1,200	390	<5	<5	6	45		* -	
MW-1	41.41	9.53	0.00	31.88	05-23-95	1,300	600	3	13	3	26			
MW-1	41.41	10.03	0.00	31.38	08-23-95	100	21	1.3	<0.5	<0.5	8			
MW-1 MW-1	41.41	9.80	0.00	31.61	11-15-95	99	10	0.6	<0.5	<	7		0.55	P
DUP I	41.41	8.82	0.00	32.59	02-01-96	400	93	1.6	3.6	3.7	19		2.1	P
MW-I					06-20-96	416	88.4	<2.50	4.61	1.56	<5.00		1.0	P
	41.41	9.60	0.00	31.81	06-20-96	444	100	<2.50	4.15	<2.50	15.9			
MW-1	41.41	9.50	0.00	31.91	11-05-96	73.2	17.8	<0.500	<0.500	<0.500	7.80		1.7	P
MW-1	41.41	9.28	0.00	32.13	05-03-97	714	392	<5.00	<5.00	<5.00	26.1		1.04	Р
MW-I	41.41	10.50	0.00	30.91	10-02-97	<50	< 0.50	<0.50	<0.50	<0.50	20.1 <2.5			P
DUP I		* =		••	10-02-97	<50	<0.50	<0.50	<0.50	0.52	<2.5		0.59	P

.

...

ARCO Service Station No. 2035 1001 San Pablo Avenue, Albany, California

	TOC	Depth	FP	Groundwater					Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHg	Benzene	Toluenc	benzene	Xylenes	8021B*	8240/8260	Oxygen	Not Purged
Number	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(µg/L)	(µg/L)	(μg/ <u>L</u>)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(P/NP)
MW-2	40.38	6.96	0.00	33.42	03-23-91	<50	<0.5	<0.5	<0.5	<0.5			<u> </u>	
MW-2	40.38	10.02	0.00	30.36	05-23-91	Not sampled:					third onarte			
M₩-2	40.38	10.87	0.00	29.51	08-21-91	<50		<0.5	<0.5	<0.5	3			
MW-2	40.38	13.12	0.00	27.26	11-08-91	Not sampled:	weli sampla	ed semi-ann						
MW-2	40.38	10.25	0.00	30.13	02-26-92	<50		<0.5	<0.5	<0.5	<3			
MW-2	40.38	9.98	0.00	30.40	04-21-92	Not sampled:	well sample	≥d semi-ann	ually, during					
MW-2	40.38	11.10	0.00	29.28	08-14-92	<50	<0.5	<0.5	<0.5	<0.5	4			_
MW-2	40.38	10.00	0.00	30.38	12-09-92	Not sampled:	well sample	d semi-ann	ually, during					••
MW-2	40.38	10,38	0.00	30.00	03-26-93	<50		<0.5	<0.5	<0.5	12	·••		
MW-2	40.38	10.65	0.00	29.73	05-21-93	Not sampled:	well sample	d semi-ann						• •
MW-2	40.38	10.87	0.00	29.51	09-03-93	<50		<0.5	ع	<0.5	19			
MW-2	40.38	11.25	0.00	29.13	11-02-93	<50	<0.5	<0.5	<0.5	<0.5	18			
MW-2	40.38	7.69	0.00	32.69	02-19-94	<50	0.5	<0.5	<0.5	<0.5	12			
MW-2	40.38	9.88	0.00	30.50	05-17-94	<50	<0.5	<0.5	<0.5	<0.5	10			
MW-2	40.38	10.62	0.00	29.76	08-20-94	<50	<0.5	<0.5	<0.5	<0.5	3			
MW-2	40.38	11.00	0.00	29.38	10-19-94	<50	<0.5	<0.5	<0.5	<0.5	31			
MW-2	40.38	9.04	0.00	31.34	02-15-95	<50	<0.5	<0.5	<0.5	<0.5	13			
MW-2	40.38	9.90	0.00	30.48	05-23-95	0ئ>	0.6	<0.5	<0.5	<0.5	47			
MW-2	40.38	10.60	0.00	29.78	08-23-95	<50	<0.5	<0.5	<0.5	<0.5	20		0.88	 P
MW-2	40.38	10.45	0.00	29.93	11-15-95	<50	<0.5	<0.5	<0.5	<1	<3			-
MW-2	40.38	9.49	0.00	30.89	02-01-96	<50	<0.5	<0.5	<0.5	<1	59		2.5	P
MW-2	40.38	10.30	0.00	30.08	06-20-96	<50.0	< 0.500	<0.500	<0.500	<0.500	4.17		1.0	Р
MW-2	40.38	10.19	0.00	30.19	11-05-96	<50.0	< 0.500	< 0.500	<0.500	<0.500	4.17 30.6		1.5	Р
MW-2	40.38	10,15	0.00	30.23	05-03-97	<50.0	< 0.500	<0.500	<0.500	<0.500			1.27	Р
DUP				•-	05-03-97	<50.0	<0.500	<0.500	<0.500		32.7	•-	••	Р
MW-2	40.38	10.97	0.00	29.41	10-02-97	<50	<0.50	<0.50	<0.50	1.18	31.5			••
						~00	~~~~~	<0.30	<0.50	<0.50	<2.5	• -	0.63	P

٠

	TOC	Depth	FP	Groundwater					Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHg	Benzene	Toluene	benzene	Xylencs	8021B*	8240/8260	Oxygen	Not Purged
Number	(ft-MSL)	(fcci)	(feet)	(ft-MSL)	Sampled	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L.)	(µg/L)	(μg/L)	(mg/L)	(P/NP)
MW-3	41.44	7.29	0.00	34.15	03-23-91	51	0.8	<0.5	2.4	<0.5				
MW-3	41.44	9.53	0.00	31.91	05-23-91	<50	<0.5	<0.5	<0.5	<0.5		••		
MW-3	41.44	11.19	0.00	30.25	08-21-91	<50	<0.5	<0.5	<0.5	<0.5	79			
MW-3	41.44	12.77	0.00	28.67	11-08-91	<50	<0.5	<0.5	<0.5	<0.5				
MW-3	41.44	9.41	0.00	32.03	02-26-92	120	3.6	<0.5	2.2	3.7	90			
MW-3	41.44	9.63	0.00	31.81	04-21-92	<50	<0.5	<0.5	<0,5	<0.5	90			
MW-3	41.44	11.12	0.00	30.32	08-14-92	<50	<0.5	<0.5	<0.5	<0.5	54			
MW-3	41.44	10.34	0.00	31.10	12-09-92	71	<0.5	<0.5	<0.5	<0.5	130			
MW-3	41.44	10.28	0.00	31.16	03-26-93	<100	<1	<1	<1	<1	170			
MW-3	41.44	10.40	0.00	31.04	05-21-93	<100	<i< td=""><td><1</td><td><!--</td--><td><1</td><td>95</td><td></td><td></td><td>. .</td></td></i<>	<1	</td <td><1</td> <td>95</td> <td></td> <td></td> <td>. .</td>	<1	95			. .
MW-3	41.44	10.75	0.00	30.69	09-03-93	<50	<0.5	<0.5	<0.5	<0.5	37			
MW-3	41.44	11.44	0.00	30.00	11-02-93	<200	<2	2	2	<2	130			
MW-3	41.44	7.48	0.00	33.96	02-19-94	<200	~2	5	<2	8	140			
MW-3	41.44	9.87	0.00	31.57	05-17-94	<100	<1	<1	</td <td><1</td> <td>150</td> <td></td> <td></td> <td></td>	<1	150			
MW-3	41.44	10,72	0.00	30.72	08-20-94	<200	2	<2	4	<2	210			
MW-3	41.44	11.30	0.00	30.14	10-19-94	<200	2	2	2	<2	270			
MW-3	41.44	8.60	0.00	32.84	02-15-95	<500	থ	ৎ	ব	ර	700			
MW-3	41.44	9.87	0.00	31.57	05-23-95	<50	<0.5	<0,5	<0.5	<0.5	150			
MW-3	41.44	10.83	0.00	30.61	08-23-95	<50	<0.5	<0.5	<0.5	<0.5	54	71	0.41	P
MW-3	41.44	10.54	0.00	30.90	11-15-95	100	<0.5	3.3	<0.5	<1	500		6.2	P
MW-3	41.44	5.69	0.00	35.75	02-01-96	18,000	1,000	45	1,500	940	100		2.12	P
MW-3	41.44	9.99	0.00	31.45	06-20-96	90.9	1.52	<0.500	<0.500	<0.500	187		2.12	P
MW-3	41.44	10.15	0.00	31.29	11-05-96	138	2.37	<0.500	<0.500	< 0.500	216		0.47	P
MW-3	41.44	10.17	0.00	31.27	05-03-97	316	15,7	1.14	< 0.500	<0.500	178			r P
MW-3	41.44	10.99	0.00	30.45	10-02-97	120	<0.50	<0.50	< 0.50	<0.50	120		0.47	P P
										-0.00	ي) تلده		0.47	r

	TOC	Depth	FP	Groundwater					Ethyl-	Total	мтве	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHg '	Benzene	Tolucne	benzene	Xylenes	8021B*	8240/8260	Oxygen	Not Purged
Number	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(P/NP)
MW-4	40.33	5.92	0.00	34.41	03-23-91	<50	<0.5	<0.5	<0.5	<0.5				
MW-4	40.33	9.23	0.00	31.10	05-23-91	<50	<0.5	<0.5	<0.5	<0.5				
MW-4	40.33	10.61	0.00	29.72	08-21-91	<10	<0.5	<0.5	< 0.5	<0.5	99			
MW-4	40.33	11.97	0.00	28.36	11-08-91	<50	<0.5	<0.5	<0.5	<0.5		89		
MW-4	40.33	8.84	0.00	31.49	02-26-92	<50	0.8	<0.5	<0.5	<0.5	<3			
MW-4	40.33	9.15	0.00	31.18	04-21-92	Not sampled:	well sample	d annually,	during the fi		-			• -
MW-4	40.33	10.35	0.00	29.98	08-14-92	Not sampled:								
MW-4	40.33	8.70	0.00	31.63	12-09-92	Not sampled:								
MW-4	40.33	9.75	0.00	30.58	03-26-93	<5,000	<50	<50	<50		4,200		- •	* -
MW-4	40.33	9.91	0.00	30.42	05-21-93	Not sampled:	well sample	d annually,	during the fi	ist quarter				
MW-4	40.33	10.25	0.00	30.08	09-03-93	Not sampled:							••	
MW-4	40.33	10.79	0.00	29.54	11-02-93	<0	<0.5	<0.5	<0.5	- <0.5	<3			
MW-4	40.33	6.78	0.00	33.55	02-19-94	<2,000	<20	<20	<20	<20	3,300			
MW-4	40.33	9.26	0.00	31.07	05-17-94	<50	<0.5	< 0.5	<0.5	<0.5	<3			
MW-4	40.33	10.10	0.00	30.23	08-20-94	<50	<0.5	<0.5	<0.5	<0.5	9		• -	
MW-4	40.33	10.43	0.00	29,90	10-19-94	<50	<0.5	<0.5	<0.5	<0.5	17	÷ -		
M₩-4	40.33	8.56	0.00	31.77	02-15-95	<500	<5	<5	<5	ব	400			
MW-4	40.33	9.52	0.00	30.81	05-23-95	<50	<0.5	<0.5	<0.5	<0.5	10	7.6		
M\-4	40.33	9.99	0.00	30.34	08-23-95	<2,500	<25	<25	<25	<25	1,200	1,300	0.84	NP
MW-4	40.33	9.80	0.00	30.53	II-15-95	<50	<0.5	<0.5	<0.5	<1	<3		0.0	NP
MW-4	40.33	9.11	0.00	31.22	02-01-96	<50	د0>	<0.5	<0.5	<	1,200		1.0	NP
MW-4	40.33	9.60	0.00	30.73	06-20-96	<50.0	<0.500	<0.500	<0.500	<0.500	60.5		1.3	NP
MW-4	40.33	9.53	0.00	30.80	11-05-96	<50.0	<0.500	<0.500	<0.500	<0.500	14.0		0.71	
MW-4	40.33	9.21	0.00	31.12	05-03-97	<50.0	<0.500	<0.500	<0.500	<0.500	83.6			NP
MW-4	40.33	10.74	0.00	29.59	10-02-97	<50	< 0.50	<0.50	<0.50	<0.50	260		0.59	NP NP

	TOC	Depih	FP	Groundwater					Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHg	Benzene	Toluene	benzene	Xylenes	8021B*	8240/8260	Oxygen	Not Purged
Number	(ft-MSL)	(fect)	(feet)	(ft-MSL)	Sampled	(μg/L)	(µg/L)	<u>(μg/L)</u>	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(mg/L)	(P/NP)
MW-5	41.84	6.23	0.00	35.61	03-23-91	<0>	<0.5	<0.5	<0.5	<0,5				
MW-5	41.84	9.61	0.00	32.23	05-23-91	Not sampled:	well sample	ed annually.	, during the fi	irst quarter				
MW-5	41.84	11.12	0.00	30.72	08-21-91	Not sampled:								
MW-5	41.84	12.52	0.00	29.32	11-08-91	Not sampled:								
MW-5	41.84	9.52	0.00	32.32	02-26-92	<50	<0.5			. <0.5	්			
MW-5	41.84	9.44	0.00	32.40	04-21-92	Not sampled:	well sample	ed annually	, during the f	irst quarter	-			
MW-5	41.84	10.83	0.00	31.01	08-14-92	Not sampled:								
MW-5	41.84	9.20	0.00	32.64	12-09-92	Not sampled:								
MW-5	41.84	10.10	0.00	31.74	03-26-93	<50	<0.5			<0.5	3			
MW-5	41.84	10.28	0.00	31.56	05-21-93	Not sampled:	well sample	ed annually			~			
MW-5	41.84	10.73	0.00	31.11	09-03-93	Not sampled:								
MW-5	41.84	11.23	0.00	30.61	11-02-93	Not sampled:								
M₩-5	41.84	6.67	0.00	35.17	02-19-94	<50	<0.5	<0.5		<0.5	<3			
MW-5	41.84	9.61	0.00	32.23	05-17-94	Not sampled:	well sample	ed annually	, during the f	irst quarter				
MW-5	41.84	10.58	0.00	31.26	08-20-94	Not sampled:								
MW-5	41.84	10.66	0.00	31.18	10-19-94	Not sampled:								
MW-5	41.84	8.35	0.00	33.49	02-15-95	Not sampled	•		, ,					••
MW-5	41.84	9.95	0.00	31.89	05-23-95	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-5	41.84	10.51	0.00	31.33	08-23-95	<50	<0.5	<0.5	<0.5	<0.5	ං ය			•-
MW-5	41.84	10.37	0.00	31.47	11-15-95	Not sampled:							0.79	NP
MW-5	41.84	9.35	0.00	32.49	02-01-96	<50	<0.5	<0.5	<0.5	متانيول ورومين >			••	
M₩-5	41.84	10.03	0.00	31.81	06-20-96	<50.0	<0.500	<0.500	<0.500	<0.500	ک	• -	1.0	NP
MW-5	41.84	9.89	0.00	31.95	11-05-96	Not sampled:					<2.50		3.1	NP
MW-5	41.84	9,42	0.00	32.42	05-03-97	<50.0	<0.500	-0.500	00110g me so <0.500					÷ -
MW-5	41.84	10.55	0.00	31.29	10-02-97	Not sampled:				<0.500	<2.50			NP
						. or sampled	, web samp	រកប លាយដង	ay, uuring ti	ie secona qu	arter			

	TOC	Depth	FP	Groundwater		······	•		Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHg	Benzene	Toluene	benzene	Xylencs	8021B*	8240/8260	Oxygen	Not Purged
Number	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(mg/L)	(P/NP)
MW-6	40.13	9.03	0.00	31.10	03-23-91	<50	<0.5	<0.5	<0.5	<0.5				
MW-6	40.13	12.45	0.00	27.68	05-23-91	Not sampled:	well sample	d annually,	during the fi	irst quarter				
MW-6	40.13	13.32	0.00	26.81	08-21-91	Not sampled:								
MW-6	40.13	14.13	0.00	26.00	11-08-91	Not sampled:								
MW-6	40.13	11.86	0.00	28.27	02-26-92	<50	<0.5	<0.5	<0.5	<0.5	<3			••
MW-6	40.13	12.35	0.00	27.78	04-21-92	Not sampled:	well sample	d annually,	during the fi	irst quarter				• •
MW-6	40.13	13.18	0.00	26.95	08-14-92	Not sampled:								
MW-6	40.13	11.94	0.00	28.19	12-09-92	Not sampled:								•••
MW-6	40.13	13.10	0.00	27.03	03-26-93	<50	<0.5	<0.5	<0.5	<0.5	ব			
МЖ-б	40.13	13.00	0.00	27.13	05-21-93	Not sampled:	well sample	d annually.	during the fi		-		•	•-
MW-6	40,13	13.30	0.00	26.83	09-03-93	Not sampled:	well sample	ed annually,	during the fi	rst quarter				••
MW-6	40.13	13.42	0.00	26.71	11-02-93	<50	<0.5	<0.5	<0.5	<0.5	19			
MW-6	40.13	10.57	0.00	29.56	02-19-94	<100	<1	</td <td><1</td> <td><1</td> <td>95</td> <td></td> <td></td> <td></td>	<1	<1	95			
MW-6	40.13	12.64	0.00	27.49	05-17-94	<100	<1	<1	<	<1	180			
MW-6	40.13	13.13	0.00	27.00	08-20-94	<100	<1	<1	<1	<1	180			
MW-6	40.13	13.48	0.00	26.65	10-19-94	<100	<1	<1	<1	<1	180			
MW-6	40.13	11.92	0.00	28.21	02-15-95	<200	~	<2	<2	<2	200			
MW-6	40.13	12.80	0.00	27.33	05-23-95	<50	<0.5	<0.5	<0.5	<0.5	120			
MW-6	40.13	13.03	0.00	27.10	08-23-95	<50	<0.5	<0.5	<0.5	<0.5	44		0.46	NP
MW-6	40.13	12.70	0.00	27.43	11-15-95	< 0	<0.5	<0.5	<0.5	<	17	17	0.0	NP
MW-6	40.13	8.61	0.00	31.52	02-01-96	<50	<0.5	<0.5	<0.5	<	6		0.0	NP
MW-6	40.13	12.88	0.00	27.25	06-20-96	<50.0	<0.500	<0.500	<0.500	<0,500	2.57		2.8	NP
MW-6	40.13	12.74	0.00	27.39	11-05-96	<50.0	<0.500	<0.500	<0.500	<0.500	3.77		2.8 1.51	
DUP		• -	. -		11-05-96	<50.0	<0.500	<0.500	<0.500	<0.500	4.03			NP
MW-6	40.13	11.29	0.00	28.84	05-03-97	<50.0	<0.500	<0.500	<0.500	<0.500	-4.05	12.3		
MW-6	40.13	11.35	0.00	28.78	10-02-97	<50	<0.50	<0.50	<0.50	<0.500	5.8		••	NP
									~0.00	~0.30	5.8	4.8	0.61	NP

ARCO Service Station No. 2035 1001 San Pablo Avenue, Albany, California

	тос	Depth	FP	Groundwater					Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHg	Benzene	Toluene	benzene	Xylenes	8021B*	8240/8260	Oxygen	Not Purged
Number	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µይ/L)	(μg/L)	(µg/L)	(mg/L)	(P/NP)
RW-1	40.33	9.32	0.01	31.02	03-23-91	11,000	560	660	150	1.700				
RW-I	40.33	9.75	0.03	30.60	05-23-91	Not sampled:	well contain	ned floating	product					
RW-1	40.33	10.86	0.02	29.48	08-21-91	Not sampled:	well contain	ned floating	product					
RW-1	40.33	20.61	0.00	19.72	11-08-91	1,600	79	46	13	240				
RW-1	40.33	16.56	0.00	23.77	02-26-92	210	44	7.5	2.5	24	Ż9			
RW-1	40.33	9.65	0.00	30.68	04-21-92	36,000	7,400	3,700	580	3,400	<300			
RW-I	40.33	10.60	0.00	29.73	08-14-92	1,800	31	38	15	150	<30			
RW-I	40.33	8.72	0.00	31.61	12-09-92	25,000	1,900	1,000	330	3,200	<100			
RW-1	40.33	10.33	0.00	30.00	03-26-93	7,200	1,900	59	95	240	480			
RW-1	40.33	10.10	0.00	30.23	05-21-93	3,000	630	84	45	340	<60	• -		
RW-I	40.33	10.42	0.00	29.91	09-03-93	7,100	120	55	14	160	<60			
RW-I	40.33	9.10	0.00	31.23	11-02-93	<200	14	19	3	19	140			
RW-I	40.33	7.49	0.00	32.84	02-19-94	3,800	1.000	85	64	220	950			
RW-I	40.33	8.90	0.00	31.43	05-17-94	<200	45	<2	2	4	220		•-	
RW-1	40.33	11.06	0.00	29.27	08-20-94	480	200	~	<2	30	180			
RW-1	40.33	11.12	0.00	29.21	10-19-94	110	36	2.9	<0.5	4.1	5			
RW-1	40.33	7.70	0.00	32.63	02-16-95	250	61	2.5	2		94			••
RW-I	40.33	11.12	0.00	29.21	05-23-95	4,500	2,000	7	<2	180	35			÷ -
RW-1	40.33	10.15	0.00	30.18	08-23-95	2,600	1.100	б.З	2.3	100	39			
RW-I	40.33	9.95	0.00	30.38	11-15-95	1,200	2,600	16	86	41	140		0.52	NP
RW-I	40.33	11.88	0.00	28,45	02-01-96	11,000	980	230	200	1,400	38		1.4	P
RW-1	40.33	9.83	0.00	30.50	06-20-96	899	278	<2.50	B.70	8,46	56 61.1		1.0	NP
RW-1	40.33	8.45	0.00	31.88	11-05-96	156,000	3,260	28.800	4,570	25,700			1.3	NP
RW-1	40.33	8.57	0.00	31.76	05-03-97	244,000	8,420	56,000	5,660	25,700 36,200	26,200		0.63	P
RW-1	40.33	9.13	0.00	31.20	10-02-97	120,000	2,500	33,000	3,800	• • • •	23,400	11,000		Р
						2003000	2000	223000	J1000	21,000	3,300		0.38	Р

.

ARCO Service Station No. 2035 1001 San Pablo Avenue, Albany, California

	TOC	Depth	FP	Groundwater					Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Elevation	to Water	Thickness	Elevation [1]	Date	TPHE	Benzene	Toluene	benzene	Xylenes	8021B*	8240/8260	Oxygen	Not Purged
Number	(fi-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(µg/L)	(μ <u>ε</u> /Ĺ)	(µg/L)	(μg/L)	- (μg/L)	(µg/L)	(μg/L)	(mg/L)	(P/NP)
S-5					05 10 07						<u>vra</u> =/		(uBt)	(ITTT)
	* *				05-30-97	310,000	3,000	11,000	4,000	34,000	<2,500			
S-5		10.00			10-02-97	70,000	1,800	7,800	1,400	20,000	<120		0.25	NP

TOC: top of casing

ft-MSL: elevation in feet, relative to mean sea level

TPH: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

BTEX: benzene, toluene, enhylbenzene, totul xylenes by EPA method 8021B. (EPA method 8020 prior to 11/16/99).

MTBE: Methyl tert-butyl ether

µg/L: micrograms per liter

mg/L: milligroms per liter

- -: not analyzed or not applicable

<: denotes concentration not present ut or above laboratory detection limit stated to the right.

[1] = Computed by adding correction factor to groundwater elevation. Correction factor = free product thickness times 0.73 (upproximate specific gravity of gasoline).

*: EPA method 8020 prior to 11/16/99

**: For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 2035, Albany, California, (EMCON, Murch 25, 1996).

DUP: duplicate sample

Table 3 Historical Groundwater Analytical Data Petroleum Hydrocarbons and Their Constituents 1994 - Present*

ARCO Service Station 2035

_

•

1

1001 San Pablo Avenue, Albany, California

Date: 12-22-03

.

Kell Designation	Water Sample Field Dale	7/54 TPHC	Henzene 1/54 BO20	1/64 Tolucne	EPA 8020	Total Xylenes FPA 8020	лик 14 8020 Леч	1)/6# #3/6#	V SN 5520B&F	the CA1 and Grease √55 Sut 55200	7.61 and Crease 7.67 Stil 5520F	اللامط The EPA 418.1	10410 V ¹¹ LUFT Kelhod
-1 ₩-1	1 01-31-90	<50	13	<0,5	0,5	0.6							
MW-1		590	290	3.5	18	14							
ለዝ~1	07-28-90	760	280	<2,5	7.1	<2.5		*** **					
MH - 1	11-14-90	570	150	7.3	<2.5	30							
₩ ~ 1	03-23-91	8800	3600	<50	62	99							
MW 1	05-23-91	4800	2000	<20	52	<20							
WW-1	08-21-91	780	310	<2.5	12	<2.5	14						
M₩-1	11-08-91	58	14	<0.5	<0.5	<0.5							
WW 1		2700	930	12	IB	32	51						
NW- 1	04-21-9 <u>2</u>	2700	1000	<10	22	<10	<60						
	a1 11 00		-0.5										
ми-2 КЖ-2	01-31-90 04-25-90	<50	<0.5	<0.5	<0.5	<0.5							
MU-7 MA-5		<50 <50	<0.5	<0.5	<0.5	<0.5							
M₩-2		<50 <50	c0.5 c0.5	<0.5	<0.5	<0.5							
MW-2		<50	<0.5	<0.5 <0.5	<0.5	<0.5							
111-2					<0.5	<0,5							
жү-2		<50	(0.5 C	<0,5	< 0.5	< 0.5	3						
NW-2							0						
MW-2	02-26-92	<50	<0.5	< 0.5	<0.5	< 0.5	<3						
MW-2				eduled fo	r chemico	l noolveis	10						
NH-3	0131-90	<50	1.9	<0.5	2.1	<0.5				<500	<500		
	04-25-90	ሩናው	1.1	<0.5	2.4	0.9						<600	
	072890	<50	<0.5	<0.5	<0.5	<0.5						600	
10H-7	11-14-90	<50	<0.5	<0,5	<0.5	<0,5						<500	
14-7		51	0.B	<0.5	2.4	<0.5						<500	
	05-23-91	<50	<0.5	<0.5	<0.5	<0.5						<500	
<u>ж</u> ₩-3	08-21-91	<50	<0.5	<0.5	<0.5	<0.5	79					<500	
МЦ-3	11-08-91	<50	<0.5	<0.5	<0.5	<0.5						600	
HM-7	02-26-92	120	-3.6	<0.5	2.2	3.7	90					<0.5	
MM-7	04-21-92	<50	<0.5	<0.5	<0.5	<0.5	90						
MW-4	01-31-90	<50	<0.5	<0.5	<0.5	<0.5							
₩₩-4	04-25-90	<50	<0.5	<0.5	<0.5	<0.5							
W-4	07-28-90	<50	<0.5	<0.5	<0.5	<0.5							
жү-4	11-14-90	220	12	40.0 19	CU.5 0,9	su.5 39					~ -		
80-4 89-4	03-23-91	< <u>50</u>	<0.5	19 (0,5	<0.5	-19 <0.5							
KW-4	05-23-91	<50	<0.5	<0.5	<0.5 <0.5	<0.5							
KW-4	08-21-91	<50	<0.5	<0.5	<0.5	<0.5	99						
XW-4	11-08-91	<50	<0.5	(0.5	<0.5	<0.5	77	69					
4W-4	02-26-92	<50	0.8	<0.5	<0.5	<0.5	<3	03					
M77-4	04-21-92 Not						×.J						
					en gran di kali								

Table 3 Historical Groundwater Analytical Data Petroleum Hydrocarbons and Their Constituents 1994 - Present*

ARCO Service Station 2035

1001 San Pablo Avenue, Albany, California

Date: 12-22-03

Well Besinsatina	Valer Somple Field Date	7) Turi kelbod	7) EPA 8020	1, The Bogo	人名 Effyibenzenc アA 8020	Vite Tolol Xylenes Vite EPA 6020	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dil and Grease	7. SH 5520C	Var Chand Grease	EPA 418.1	TPH0 UIT Method
				<i></i>	-9/5	- 127		<i>Py/L</i>	ру/с 	<i>р</i> у/с	ну/с 	րց/լ	µg/L
MW-	-5 013190	<50	<0.5	<0.5	<0.5	<0.5							
MM-	-5 042590	c 50	<0,5	<0.5	<0.5	<0.5							
Υ.W		<50	<0.5	<0.5	<0.5	<0.5							
М₩-	5 11-14-90	<50	<0.5	<0.5	<0.5	<0,5							
ዚዝ-		<50	<0.5	<0.5	<0.5	<0.5							
Min-		Not sampl	ed: not so	heduled fo	or chemica	u analysis							
MM-	5 08-21-91	Not sampl	ed; not se	heduled fo	e chemica	i onotysis							
KU¥-		Nol sompl	ed: nol so	heduled fo	r chemica	l analysis							
М¥-		<50	<0.5	<0.5	<0.5	<0.5	<3						
WA-400	5 04-21-921	Not sompli	ed: not sc	heduled fa	r chemico	i analysis							
MW-		<50	<0.5	<0.5	<0.5	<0.5							
WW		<50	<0.5	<0.5	<0.5	<0.5							
HYI-	== ==	<50	<0.5	<0.5	<0.5	<0.5							
M#-		<50	<0.5	<0.5	<0,5	<0.5							
М₩-		<50	<0.5	₹0.5	<0.5	<0.5							
Mi¥-I													
₩₩~-i		ol sample	d: not set	ieduled foi	r chemicol	analysis							
MH-1						•							
MW-6		<50	<0,5	<0.5	<0.5	<0.5	<3						
10¥-4	6 04-21-92 N	ol sample	d: nol sch	eduied for	chemical	analysis							
Dat .	01 71 60 1												
R¥-1 R¥-1		ai somplei	1: WEH COJ	inected to	the teme	diation sys	len						
R₩-1		ol samplei	I: WEN COL	laned llo	anud blaq	uct							
R\-1		ot sompled	L WELL CON	itoineo Ito	anug blag	ucl							
R#-1		or sampler 11000											
109-1 RW-1			560	660 I-1-1-1	150	1700							
パガート 発催ー1													
RW-1	11-08-91	74 Sompled 1600											
RW-1	02~26-92	210	79 44	46 7.5	13 2.5	240							
RW-1	02-28-92	36000	99 7400	7.5 3700	2.5 580	24	29						
au1	φ121-9Z	าณาก	7400	21110	200	3400	<300						

IPHC: lotal petroleum hydrocarbons as gasoline, California DHS LUFT Melhod

Payle micrograms per liter EPA: United Statest Environmental Protection Agency NIBE: Methyl-lett-bulyl ether

SM: standard method

IRPH: Ialal recoverable petroleum hydrocarbons

IPHO: total petroleum hydrocarbons as diesel, Calitarnia DHS LUFT Method

- - : nol analyzed

* For previous historical analytical and please refer to Yourin Warter 1990 Woundwater Monutoring Program Resurts and hemetholica.

רצרמרחמתכב בימאוסוגמה הבסטון, אתנט שביתכב שומשמת משש, אוסמתי, נבאונטוא, אוסרכת בש, וששטן.

APPENDIX D

JOINT MONITORING DATA

Well ID	Date	TPHg	B	Ţ	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	TOC	Depth to Water	GW Elevation		
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(<i>mg/</i> L)
S-1	05/13/1991	1,500	20	2.6	86	74							42.73	8.24	34.49		
S-1	08/23/1991	2,900	27	<2.5	75	18							42.73	8.37	34.36		
S-1	11/07/1991	2,900	8.0	2.5	46	26							42.73	8.30	34.43		
S-1	01/28/1992	2,000	11	<2.5	60	20							42.73	7.84	34.89		
S-1	05/06/1992	1,200	5.5	<2.5	80	36							42.73	7.95	34.78		
S-1	08/26/1992	2,000	9.4	<2.5	130	<2.5							42.73	8.24	34.49		
S-1	10/28/1992	1,300	27	3.2	72	13							42.73	8.52	34.21		
S-1	01/19/1993	1,500	13	3.0	29	31							42.73	6.54	36.19		
S-1	04/29/1993	2,000	15	<2.5	82	<6.5							42.73	7.93	34.80		
S-1	07/22/1993	620	1.1	4.2	3.5	13							42.73	8.09	34.64		
S-1	10/21/1993	1,200	34	25	15	9.5							42.73	9.43	33.30		
S-1	01/04/1994	860	<2.5	<2.5	5.7	5.3							42.73	8.25	34.48		
S-1	04/13/1994												42.73	8.02	34.71		
S-1	07/25/1994	1,200	8.3	7.4	15	20							42.73	8.22	34.51		
S-1	10/10/1994												42.73	8.29	34.44		
S-1	01/26/1995	1,000	12	0.60	12	420							42.73	6.88	35.85		
S-1	04/21/1995												42.73	7.65	35.08		
S-1	07/28/1995	660	7.2	1.0	11	8.9							42.73	7.90	34.83		4
S-1	10/31/1995												42.73	7.72	35.01		
S-1	01/10/1996	1,100	3.5	7.0	5.1	9.4							42.73	8.24	34.49		7.4
S-1	04/25/1996												42.73	7.74	34.99		
S-1	07/23/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						42.73	7.92	34.81		2.7
S-1	12/10/1996												42.73	7.56	35.17		0.6
S-1	02/20/1997	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						42.73	7.95	34.78		3
S-1	05/22/1997												42.73	8.11	34.62		0.5
S-1	08/22/1997	810	18	<2.0	5.1	4.4	18						42.73	7.86	34.87		3
S-1	11/03/1997												42.73	8.35	34.38		1.1
S-1	02/20/1998	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						42.73	6.09	36.64		2.9
S-1	05/18/1998												42.73	7.69	35.04		1.1
S-1	08/20/1998	390	6.7	< 0.50	0.64	< 0.50	14						42.73	8.20	34.53		1.9
S-1	11/06/1998												42.73	8.23	34.50		
S-1	02/16/1999	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						42.73	7.47	35.26		1.5
S-1	05/28/1999												42.73	7.60	35.13		1.3
S-1	08/24/1999	72.4	< 0.500	< 0.500	< 0.500	< 0.500	<2.50						42.73	7.95	34.78		1.4
S-1	11/16/1999												42.73	7.87	34.86		1.3

Well ID	Date	TPHg	B	T (E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	TOC	Depth to Water			DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(mg/L)
S-1	02/02/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<5.00						42.73	7.26	35.47		1.4
S-1	05/09/2000												42.73	8.13	34.60		1.0
S-1	08/03/2000	209	6.42	< 0.500	< 0.500	< 0.500	<2.50						42.73	8.12	34.61		1.4
S-1	11/15/2000												42.73	8.06	34.67		1.0
S-1	02/14/2001	179	4.46	< 0.500	< 0.500	< 0.500	8.72						42.73	8.08	34.65		1.1
S-1	05/31/2001												42.73	8.05	34.68		1.0
S-1	08/15/2001	270	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					42.73	8.40	34.33		1.3
S-1	12/31/2001												42.73	7.42	35.31		0.4
S-1	02/06/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					42.73	7.60	35.13		2.2
S-1	06/04/2002												42.73	8.16	34.57		0.8
S-1	07/25/2002	230	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					42.57	7.84	34.73		0.9
S-1	11/27/2002												42.57	8.01	34.56		0.6
S-1	01/30/2003	310	< 0.50	< 0.50	3.6	1.6		<5.0					42.57	7.56	35.01		1.5
S-1	06/03/2003												42.57	7.87	34.70		1.6
S-1	08/08/2003	730	< 0.50	< 0.50	12	6.4		< 0.50					42.57	7.95	34.62		1.3
S-1	11/13/2003												42.57	7.90	34.67		0.8
S-1	02/04/2004	220	< 0.50	< 0.50	1.8	1.1		< 0.50					42.57	7.37	35.20		1.2
S-1	05/12/2004												42.57	8.05	34.52		1.1
S-1	08/23/2004	110 d	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					42.57	8.10	34.47		0.6
S-1	12/01/2004												42.57	7.84	34.73		
S-1	02/07/2005	53 d	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					42.57	7.48	35.09		0.49
S-1	05/02/2005												42.57	8.05	34.52		
S-1	08/04/2005	850	< 0.50	< 0.50	4.5	1.0		< 0.50					42.57	8.05	34.52		0.01
S-1	11/16/2005												42.57	8.19	34.38		
S-1	03/02/2006	170	< 0.50	< 0.50	2.4	0.91		< 0.50					42.57	7.58	34.99		0.32
S-1	05/31/2006												42.57	8.03	34.54		
S-1	08/29/2006	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					42.57	7.99	34.58		1.05
S-1	12/06/2006												42.57	8.07	34.50		0.4
S-1	01/30/2007	640	< 0.50	< 0.50	1.9	<1.0		< 0.50					42.57	8.32	34.25		1.20
S-1	05/15/2007												42.57	7.85	34.72		0.16
S-1	08/29/2007	980 f	0.37 g	<1.0	3.3	<1.0		<1.0	<10	<2.0	<2.0	<2.0	42.57	7.87	34.70		2.54
S-1	11/29/2007												42.57	8.18	34.39		0.28
S-1	02/21/2008	430 f	< 0.50	<1.0	<1.0	<1.0		<1.0					42.57	7.94	34.63		0.27
S-1	05/06/2008												42.57	8.00	34.57		0.1
S-1	08/27/2008	170	<0.50	<1.0	<1.0	<1.0		<1.0					42.57	8.45	34.12		0.21

Well ID	Date	TPHg	В	T	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	тос	Depth to Water	GW Elevation		
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(<i>mg/</i> L)
S-1	11/24/2008												42.57	8.49	34.08		0.06
S-1	01/28/2009	390	< 0.50	<1.0	<1.0	<1.0		<1.0					42.57	8.29	34.28		1.70
S-1	05/26/2009												42.57	8.11	34.46		
S-1	11/24/2009	230	< 0.50	<1.0	<1.0	<1.0		<1.0					42.57	8.34	34.23		1.47
S-1	05/26/2010	490	< 0.50	<1.0	1.3	2.1		<1.0					42.57	7.99	34.58		0.38
S-1	11/30/2010	220	1.7	<1.0	<1.0	<1.0		<1.0					42.57	7.98	34.59		0.65
S-1	05/11/2011	<50	< 0.50	< 0.50	< 0.50	1.0		<1.0					42.57	8.19	34.38		1.49
S-1	11/28/2011	56	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					42.57	7.97	34.60		1.62
S-1	06/05/2012	<50	<0.50	<0.50	<0.50	<1.0		<0.50					42.57	8.22	34.35		1.46
S-2	05/13/1991	23,000	3,900	230	1,100	3,200							40.73	8.50	32.23		
S-2	08/23/1991	23,000	4,400	260	1,900	2,400							40.73	8.80	31.93		
S-2	11/07/1991	40,000	4,000	160	1,020	3,400							40.73	8.61	32.12		
S-2	01/28/1992	22,000	1,600	70	420	1,700							40.73	7.80	32.93		
S-2	05/06/1992	20,000	2,600	110	860	1,900							40.73	8.10	32.63		
S-2	08/26/1992	42,000	5,000	160	1,100	3,500							40.73	8.37	32.36		
S-2	10/28/1992	34,000	4,800	330	1,600	2,900							40.73	8.64	32.09		
S-2	01/19/1993	20,000	2,300	370	660	1,300							40.73	5.82	34.91		
S-2	04/29/1993	40,000	2,000	67	900	1,900							40.73	7.70	33.03		
S-2	07/22/1993	22,000	3,000	120	1,000	1,600							40.73	8.38	32.35		
S-2 (D)	07/22/1993	17,000	3,000	110	1,000	1,500							40.73	8.38	32.35		
S-2	10/21/1993	14,000	2,800	74	870	1,100							40.73	8.58	32.15		
S-2 (D)	10/21/1993	13,000	3,200	53	960	820							40.73	8.58	32.15		
S-2	01/04/1994	21,000	2,100	67	990	770							40.73	7.70	33.03		
S-2 (D)	01/04/1994	22,000	2,000	64	910	750							40.73	7.70	33.03		
S-2	04/13/1994												40.73	7.62	33.11		
S-2	07/25/1994	43,000	2,600	490	990	1,300							40.73	7.86	32.87		
S-2	10/10/1994												40.73	8.12	32.61		
S-2	01/26/1995	21,000	790	12	290	570							40.73	6.38	34.35		5.5
S-2	04/21/1995												40.73	7.01	33.72		
S-2	07/28/1995	14,000	2,400	360	960	370							40.73	7.82	32.91		4
S-2	10/31/1995												40.73	7.57	33.16		
S-2	01/10/1996	17,000	1,400	<50	480	170							40.73	8.13	32.60		7.2
S-2	04/25/1996												40.73	7.72	33.01		
S-2	07/23/1996	16,000	2,700	69	1,100	110	9,500						40.73	8.10	32.63		2.2

Well ID	Date	TPHg	В	Т	Ε	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	тос	Depth to Water	GW Elevation	SPH Thicknes	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(mg/L)
S-2 (D)	07/23/1996	11,000	2,600	68	1,000	96	10,000	11,000					40.73	8.10	32.63		2.2
S-2	12/10/1996												40.73	8.57	32.16		0.5
S-2	02/20/1997	10,000	500	<10	90	130	6,400						40.73	8.15	32.58		4
S-2	05/22/1997												40.73	8.79	31.94		1.1
S-2	08/22/1997	23,000	1,300	65	740	290	4,500						40.73	8.05	32.68		3.2
S-2 (D)	08/22/1997	20,000	1,200	<100	630	250	3,900						40.73	8.05	32.68		3.2
S-2	11/03/1997												40.73	8.75	31.98		1.2
S-2	02/20/1998	450	28	1.3	7.4	12	35						40.73	6.34	34.39		0.4
S-2	05/18/1998												40.73	7.95	32.78		0.8
S-2	08/20/1998	22,000	290	44	420	410	7,300						40.73	7.73	33.00		1.9
S-2	11/06/1998												40.73	8.47	32.26		
S-2	02/16/1999	27,000	200	<200	770	840	5,400						40.73	7.24	33.49		1.4
S-2	05/28/1999												40.73	7.82	32.91		1.3
S-2	08/24/1999	13,400	196	<25.0	439	113	597						40.73	8.61	32.12		1.2
S-2	11/16/1999												40.73	8.17	32.56		1.1
S-2	02/02/2000	7,850	176	88.0	134	111	540						40.73	7.57	33.16		1.2
S-2	05/09/2000												40.73	7.94	32.79		1.3
S-2	08/03/2000	35,000	255	122	842	224	905	726 b					40.73	8.07	32.66		1.1
S-2	11/15/2000												40.73	8.13	32.60		1.3
S-2	02/14/2001	13,000	147	<25.0	309	54.4	581						40.73	6.39	34.34		1.4
S-2	05/31/2001												40.73	7.21	33.52		1.5
S-2	08/15/2001	15,000	67	4.1	220	33		440					40.73	8.27	32.46		0.6
S-2	12/31/2001							270					40.73	6.07	34.66		0.2
S-2	02/06/2002	15,000	53	2.8	120	31		220					40.73	7.98	32.75		1.8
S-2	06/04/2002												40.73	6.70	34.03		0.2
S-2	07/25/2002	9,000	75	4.0	180	24		460					40.63	7.67	32.96		0.9
S-2	11/27/2002												40.63	7.84	32.79		0.7
S-2	01/30/2003	15,000	26	<2.5	92	22		210					40.63	7.29	33.34		15.6
S-2	06/03/2003	17,000	<25	<25	130	<50		290					40.63	7.87	32.76		5.4
S-2	08/08/2003	4,500	<2.5	<2.5	9.4	<5.0		140					40.63	8.18	32.45		16.2
S-2	11/13/2003	10,000	18	<10	47	21		180					40.63	7.98	32.65		19.5
S-2	02/04/2004	5,700	54	<10	54	<20		270					40.63	7.21	33.42		>15
S-2	05/12/2004	8,200	18	<10	<10	<20		250					40.63	8.07	32.56		3.1
S-2	08/23/2004	4,100	<10	<10	<10	<20		84	<100	<40	<40	<40	40.63	8.52	32.11		10.7
S-2	12/01/2004	2,000	3.4	<2.5	6.2	<5.0		77					40.63	8.70	31.93		11.8

Well ID	Date	TPHg (ug/L)	B (va/I)	Т (т./Т.)	E (via/I)	X (МТВЕ 8020	МТВЕ 8260	TBA	DIPE	ETBE	TAME	TOC	Depth to Water	GW Elevation		0
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(mg/L)
S-2	02/07/2005	7,400	32	1.6	29	3.1		210					40.63	7.58	33.05		0.11
S-2	05/02/2005	8,100	84	4.9	83	5.5		320					40.63	7.45	33.18		0.6
S-2	08/04/2005	4,900	48	2.1	19	2.8		330	55	<4.0	<4.0	<4.0	40.63	7.90	32.73		0.4
S-2	11/16/2005	13,700	43.8	2.79	25.1	5.92		156					40.63	8.33	32.30		0.5
S-2	03/02/2006	5,800	44	3.2	20	5.6		190					40.63	6.74	33.89		0.63
S-2	05/31/2006	11,100	72.0	4.20	22.4	5.36		308					40.63	7.46	33.17		0.6
S-2	08/29/2006	37,400	72.1	5.08	39.6	6.89		377	46.7	< 0.500	< 0.500	< 0.500	40.63	8.02	32.61		0.70
S-2	12/06/2006	5,000	41	3.2	11	5.2		170					40.63	8.04	32.59		0.5
S-2	01/30/2007	4,200	24	1.7	5.9	2.3		140					40.63	8.08	32.55		0.11
S-2	05/15/2007	8,100 f	48	3.5	19	6.2 g		180					40.63	8.05	32.58		0.11
S-2	08/29/2007	8,400 f	60	3.8	12	4.68 g		270	64	<4.0	<4.0	<4.0	40.63	8.01	32.62		1.02
S-2	11/29/2007	4,100 f	48	4.8 h	11	12.3		280					40.63	8.25	32.38		0.55
S-2	02/21/2008	7,300 f	57	4.0	13	4.7		250					40.63	7.25	33.38		0.40
S-2	05/06/2008	8,900	42	3.1	9.8	4.1		270					40.63	6.30	34.34	0.01	0.10/2.0
S-2	08/27/2008	9,400	67	<5.0	27	6.0		240	67	<10	<10	<10	40.63	8.33	32.30		0.15
S-2	11/24/2008	7,100	55	<5.0	9.3	<5.0		210					40.63	8.43	32.20		0.7
S-2	01/28/2009	6,000	29	<5.0	6.5	<5.0		130					40.63	8.19	32.44		0.15
S-2	05/26/2009	20,000	52	3.2	13	6.0		330					40.63	7.85	32.78		0.43
S-2	11/24/2009	5,200	19	<2.0	6.8	4.7		120	80	<4.0	<4.0	<4.0	40.63	8.32	32.31		0.18
S-2	05/26/2010	7,500	78	<5.0	11	<5.0		330					40.63	7.62	33.01		0.34
S-2	11/30/2010	7,000	32	2.7	4.5	5.0		170	86	<4.0	<4.0	<4.0	40.63	7.74	32.89		0.65
S-2	05/11/2011	13,000	61	4.0	16	7.0		210					40.63	7.60	33.03		0.97
S-2	11/28/2011	4,800	31.0	2.65	5.73	7.13		143	<10.0	< 0.500	< 0.500	< 0.500	40.63	7.70	32.93		1.08
S-2	06/05/2012	9,100	71	4.6	16	8.3		280					40.63	7.89	32.74		0.88
S-3	05/13/1991	3,300	30	3.6	26	13							41.46	7.90	33.56		
S-3	08/23/1991	2,000	25	4.0	9.3	4.5							41.46	8.14	33.32		
S-3	11/07/1991	4,000	20	3.9	5.0	4.9							41.46	7.91	33.55		
S-3	01/28/1992	2,100	21	7.6	6.7	15							41.46	7.53	33.93		
S-3 (D)	01/28/1992	2,100	18	6.1	7.1	14							41.46	7.53	33.93		
S-3	05/06/1992	6,600	38	51	45	65							41.46	7.55	33.91		
S-3	08/26/1992	5,800	18	12	29	60							41.46	7.53	33.93		
S-3	10/28/1992	3,000	55	11	16	32							41.46	7.95	33.51		
S-3	01/19/1993	3,100	<5	5.1	11	16							41.46	6.12	35.34		
S-3	04/29/1993	3,000	31	22	<5	14							41.46	7.27	34.19		

Well ID	Date	TPHg	В	T	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	тос	Depth to Water			DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(<i>mg/</i> L)
S-3	07/22/1993	2,600	3.1	43	23	53							41.46	7.62	33.84		
S-3	10/21/1993	2,500	73	14	16	32							41.46	7.81	33.65		
S-3	01/04/1994	4,800	13	21	<12.5	33							41.46	7.49	33.97		
S-3	04/13/1994												41.46	7.32	34.14		
S-3	07/25/1994	2,600	6.1	4.0	3.8	12							41.46	7.66	33.80		
S-3	10/10/1994												41.46	7.49	33.97		
S-3	01/26/1995	3,600	30	6.8	5.6	19							41.46	6.50	34.96		
S-3 (D)	01/26/1995	2,200	9.9	15	14	22							41.46	6.50	34.96		
S-3	04/21/1995												41.46	6.79	34.67		
S-3	07/28/1995	3,700	27	9.3	20	34							41.46	7.28	34.18		4
S-3	10/31/1995												41.46	6.74	34.72		
S-3	01/10/1996	4,000	10	< 0.50	13	28							41.46	7.48	33.98		6.1
S-3	04/25/1996												41.46	6.90	34.56		
S-3	07/23/1996	2,100	20	< 0.50	< 0.50	< 0.50	<25						41.46	7.04	34.42		2.1
S-3	12/10/1996												41.46	7.96	33.50		0.7
S-3	02/20/1997	3,500	83	<5.0	18	16	130						41.46	7.44	34.02		3
S-3 (D)	02/20/1997	3,000	69	<5.0	14	12	70						41.46	7.44	34.02		3
S-3	05/22/1997												41.46	7.13	34.33		0.6
S-3	08/22/1997	4,700	60	12	19	21	40						41.46	6.81	34.65		2.9
S-3	11/03/1997												41.46	7.40	34.06		0.9
S-3	02/20/1998	3,400	<10	<10	14	18	85						41.46	6.55	34.91		0.8
S-3 (D)	02/20/1998	3,100	8.6	7.8	12	16	57						41.46	6.55	34.91		0.8
S-3	05/18/1998												41.46	6.81	34.65		0.7
S-3	08/20/1998	4,400	67	23	9.8	22	240						41.46	6.98	34.48		2.2
S-3	11/06/1998												41.46	6.96	34.50		
S-3	02/16/1999	2,000	6.9	6.2	3.7	4.8	47						41.46	6.93	34.53		2.0
S-3	05/28/1999												41.46	6.74	34.72		1.8
S-3	08/24/1999	4,170	54.8	14.2	6.65	13.7	43.4						41.46	9.05	32.41		1.9
S-3	11/16/1999												41.46	7.09	34.37		1.6
S-3	02/02/2000	2,410	133	112	24.9	104	46.0						41.46	6.59	34.87		1.9
S-3	05/09/2000												41.46	7.13	34.33		1.9
S-3	08/03/2000	3,890	17.2	21.9	<10.0	<10.0	166						41.46	6.82	34.64		1.8
S-3	11/15/2000												41.46	6.98	34.48		1.6
S-3	02/14/2001	2,800	35.8	5.57	3.83	2.94	1,070	1,250					41.46	6.57	34.89		1.1
S-3	05/31/2001												41.46	6.72	34.74		1.6

							MTBE	MTBE						Depth to	GW	SPH	DO
Well ID	Date	TPHg	В	Т	Ε	X	8020	8260	TBA	DIPE	ETBE	TAME	ТОС	Water	Elevation		Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(<i>mg/</i> L)
S-3	08/15/2001	2,700	2.0	0.52	< 0.50	2.0		140					41.46	7.44	34.02		0.6
S-3	12/31/2001	2,300	<2.0	<2.0	<2.0	<2.0		470					41.46	6.62	34.84		0.6
S-3	02/06/2002	2,000	2.6	1.6	4.3	7.8		170					41.46	7.22	34.24		2.2
S-3	06/04/2002	2,400	1.0	1.1	0.54	4.5		120					41.46	7.34	34.12		0.5
S-3	07/25/2002	3,100	0.86	< 0.50	< 0.50	2.0		92					41.37	6.98	34.39		1.0
S-3	11/27/2002	2,600	2.0	0.55	< 0.50	2.1		44					41.37	7.62	33.75		0.7
S-3	01/30/2003	1,200	2.1	1.3	1.6	3.4		42					41.37	7.14	34.23		13.6
S-3	06/03/2003	2,700	2.9	< 0.50	0.50	2.8		43					41.37	7.25	34.12		1.7
S-3	08/08/2003	1,400	2.4	0.71	< 0.50	2.2		32					41.37	7.67	33.70		>20
S-3	11/13/2003	5,200	5.1	2.4	<1.0	5.6		69					41.37	7.56	33.81		19.6
S-3	02/04/2004	2,800	1.9	<1.0	1.0	2.6		20					41.37	7.12	34.25		>15
S-3	05/12/2004	1,900	2.8	<1.0	<1.0	2.2		9.7					41.37	7.94	33.43		4.0
S-3	08/23/2004	1,400	7.6	1.1	<1.0	2.9		13	<10	<4.0	<4.0	<4.0	41.37	8.09	33.28		13.3
S-3	12/01/2004	950	1.9	<1.0	<1.0	<2.0		5.6					41.37	8.21	33.16		13.0
S-3	02/07/2005	1,800	1.4	<1.0	<1.0	2.1		9.9					41.37	7.69	33.68		0.25
S-3	05/02/2005	4,000	2.3	1.1	1.6	3.0		9.9					41.37	7.20	34.17		0.5
S-3	08/04/2005	3,600	2.1	<1.0	<2.0	3.6		8.5	33	<4.0	<4.0	<4.0	41.37	8.14	33.23		0.2
S-3	11/16/2005	6,000	2.24	0.800	0.660	3.35		3.83					41.37	8.39	32.98		0.6
S-3	03/02/2006	1,500	1.3	< 0.50	0.57	2.0		5.1					41.37	7.09	34.28		0.52
S-3	05/31/2006	5,560	1.71	0.730	1.24	3.89		8.01 e					41.37	7.95	33.42		0.5
S-3	08/29/2006	4,850	1.82	0.680	1.19	2.22		3.16	<10.0	< 0.500	< 0.500	< 0.500	41.37	6.35	35.02		0.88
S-3	12/06/2006	2,900	1.1	< 0.50	< 0.50	2.2		< 0.50					41.37	8.41	32.96		0.3
S-3	01/30/2007	2,100	1.0	< 0.50	0.53	1.8		5.7					41.37	8.31	33.06		0.36
S-3	05/15/2007	3,500 f	1.1	0.51 g	0.76 g	2.38 g		8.0					41.37	7.60	33.77		0.11
S-3	08/29/2007	<50 f	1.5	0.48 g	0.50 g	2.81 g		<1.0	<10	<2.0	<2.0	<2.0	41.37	8.64	32.73		0.57
S-3	11/29/2007	3,800 f	1.8	0.80 g,h	0.65 g	3.34 g		5.9					41.37	8.36	33.01		0.22
S-3	02/21/2008	2,900 f	0.60	<1.0	<1.0	1.2		5.0					41.37	7.35	34.02		0.44
S-3	05/06/2008	2,400	1.2	<1.0	<1.0	1.7		<1.0					41.37	8.00	33.37		0.2/1.4
S-3	08/27/2008	3,100	1.5	<1.0	<1.0	2.3		<1.0	<10	<2.0	<2.0	<2.0	41.37	8.56	32.81		0.13
S-3	11/24/2008	2,900	1.5	<1.0	<1.0	2.2		<1.0					41.37	8.71	32.66		0.32
S-3	01/28/2009	3,900	1.4	<1.0	<1.0	2.2		<1.0					41.37	8.22	33.15		0.48
S-3	05/26/2009	3,600	1.1	<1.0	<1.0	1.5		5.2					41.37	8.23	33.14		1.54
S-3	11/24/2009	2,200	0.98	<1.0	<1.0	1.7		<1.0	<10	<2.0	<2.0	<2.0	41.37	8.71	32.66		0.42
S-3	05/26/2010	2,800	1.0	<1.0	<1.0	2.4		7.8					41.37	7.80	33.57		0.32
S-3	11/30/2010	3,800	0.94	<1.0	<1.0	1.9		4.5	<10	<2.0	<2.0	<2.0	41.37	7.65	33.72		0.87

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Т (µg/L)	Е (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	SPH Thicknes (ft)	DO Reading (mg/L)
S-3	05/11/2011	3,000	0.77	0.51	< 0.50	1.8		7.4					41.37	8.01	33.36		0.80
S-3	11/28/2011	1,800	0.720	0.500	< 0.500	2.51		4.20	<10.0	< 0.500	< 0.500	< 0.500	41.37	7.84	33.53		0.73
S-3	06/05/2012	2,700	< 0.50	<0.50	<0.50	1.2		5.9					41.37	8.30	33.07		0.65
S-4	05/13/1991	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.44	33.66		
S-4	08/23/1991	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	8.32	32.78		
S-4	11/07/1991	260	< 0.50	< 0.50	< 0.50	< 0.50							41.10	8.32	32.78		
S-4	01/28/1992	110 d	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.40	33.70		
S-4	05/06/1992	54	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.21	33.89		
S-4	08/26/1992	67	< 0.50	< 0.50	< 0.50	< 0.50							41.10	8.13	32.97		
S-4	10/28/1992	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	8.73	32.37		
S-4	01/19/1993	86	1.2	0.70	2.7	15							41.10	5.86	35.24		
S-4	04/29/1993	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.02	34.08		
S-4 (D)	04/29/1993	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.02	34.08		
S-4	07/22/1993	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.76	33.34		
S-4	10/21/1993	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	8.53	32.57		
S-4	01/04/1994	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	7.92	33.18		
S-4	04/13/1994												41.10	7.71	33.39		
S-4	07/25/1994												41.10	7.82	33.28		
S-4	10/10/1994												41.10	8.15	32.95		
S-4	01/26/1995	<50	< 0.50	< 0.50	< 0.50	< 0.50							41.10	5.73	35.37		
S-4	04/21/1995												41.10	6.26	34.84		
S-4	07/28/1995												41.10	7.80	33.30		
S-4	10/31/1995												41.10	8.45	32.65		
S-4	01/10/1996	<50	1.0	2.8	< 0.50	2.1							41.10	8.26	32.84		2.8
S-4	04/25/1996												41.10	7.14	33.96		
S-4	07/23/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						41.10	8.18	32.92		3.8
S-4	12/10/1996												41.10	7.04	34.06		3.9
S-4	02/20/1997	<50	< 0.50	< 0.50	< 0.50	< 0.50	6.7						41.10	7.07	34.03		5
S-4	05/22/1997												41.10	6.63	34.47		0.8
S-4	08/22/1997												41.10	7.69	33.41		3.7
S-4	11/03/1997												41.10	8.26	32.84		1.3
S-4	02/20/1998	130	6.9	4.6	5.2	17	2.8						41.10	5.57	35.53		1.8
S-4	05/18/1998												41.10	7.13	33.97		1.4
S-4	08/20/1998												41.10	7.77	33.33		4.0

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Т (µg/L)	Ε (μg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	SPH Thicknes (ft)	DO Reading (mg/L)
S-4	11/06/1998												41.10	7.85	33.25		
S-4	02/16/1999	<50	< 0.50	< 0.50	< 0.50	< 0.50	23						41.10	6.51	34.59		3.6
S-4	05/28/1999												41.10	7.00	34.10		3.2
S-4	08/24/1999												41.10	9.13	31.97		1.9
S-4	11/16/1999												41.10	7.79	33.31		1.7
S-4	02/02/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<5.00						41.10	7.19	33.91		1.9
S-4	05/09/2000												41.10	7.51	33.59		1.8
S-4	08/03/2000												41.10	7.83	33.27		1.9
S-4	11/15/2000												41.10	7.69	33.41		1.5
S-4	02/14/2001	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50						41.10	6.20	34.90		1.6
S-4	05/31/2001												41.10	6.56	34.54		1.6
S-4	08/15/2001												41.10	7.90	33.20		0.6
S-4	12/31/2001												41.10	5.62	35.48		2.7
S-4	02/06/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					41.10	7.29	33.81		0.2
S-4	06/04/2002												41.10	7.45	33.65		0.6
S-4	07/25/2002												41.04	7.39	33.65		0.8
S-4	11/27/2002												41.04	7.60	33.44		
S-4	01/30/2003	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					41.04	8.45	32.59		
S-4	06/03/2003												41.04	6.82	34.22		
S-4	08/08/2003												41.04	7.36	33.68		
S-4	11/13/2003												41.04	7.56	33.48		
S-4	02/04/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					41.04	6.47	34.57		
S-4	05/12/2004												41.04	7.10	33.94		
S-4	08/23/2004												41.04	7.60	33.44		
S-4	12/01/2004												41.04	7.23	33.81		
S-4	02/07/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					41.04	6.12	34.92		
S-4	05/02/2005												41.04	6.50	34.54		
S-4	08/04/2005												41.04	7.13	33.91		
S-4	11/16/2005												41.04	7.43	33.61		
S-4	03/02/2006	<50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50					41.04	6.05	34.99		
S-4	05/31/2006												41.04	6.64	34.40		
S-4	08/29/2006												41.04	7.25	33.79		
S-4	12/06/2006												41.04	7.39	33.65		
S-4	01/30/2007	<50	< 0.50	< 0.50	< 0.50	<1.0		<0.50					41.04	7.24	33.80		
S-4	05/15/2007												41.04	6.60	34.44		

Well ID	Date	TPHg	B	Ţ	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	TOC	Depth to Water	GW Elevation		0
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(mg/L)
S-4	08/29/2007												41.04	7.42	33.62		
S-4	11/29/2007												41.04	7.22	33.82		
S-4	02/21/2008	<50 f	< 0.50	<1.0	<1.0	<1.0		<1.0					41.04	6.20	34.84		
S-4	05/06/2008												41.04	7.19	33.85		
S-4	08/27/2008												41.04	7.52	33.52		
S-4	11/24/2008												41.04	7.73	33.31		
S-4	01/28/2009	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					41.04	7.21	33.83		
S-4	05/26/2009												41.04	6.95	34.09		
S-4	11/24/2009	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					41.04	7.43	33.61		
S-4	05/26/2010												41.04	6.68	34.36		
S-4	11/30/2010	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					41.04	6.87	34.17		
S-4	05/11/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		<1.0					41.04	6.90	34.14		
S-4	11/28/2011	<50	< 0.500	< 0.500	< 0.500	< 0.500		4.76					41.04	7.00	34.04		
S-4	06/05/2012	<50	<0.50	<0.50	<0.50	<1.0		<0.50					41.04	7.11	33.93		
S-5	05/13/1991												39.99	14.60	30.57	6.48	
S-5	08/23/1991												39.99	15.14	29.25	5.50	
S-5	11/07/1991												39.99	15.10	29.17	5.35	
S-5	01/28/1992												39.99	14.05	29.86	4.90	
S-5	05/06/1992												39.99	14.31	30.21	5.66	
S-5	08/26/1992												39.99	14.26	28.77	3.80	
S-5	10/28/1992												39.99	14.22	28.82	3.81	
S-5	01/19/1993												39.99	12.36	30.80	3.96	
S-5	04/29/1993												39.99	9.64	31.07	0.90	
S-5	07/22/1993												39.99	9.55	31.16	0.90	
S-5	10/21/1993												39.99	11.23	29.34	0.73	
S-5	01/04/1994												39.99	11.69	29.82	1.90	
S-5	04/13/1994												39.99	11.42	29.87	1.62	
S-5	07/25/1994												39.99	12.01	29.41	1.79	
S-5	10/10/1994												39.99	12.05	29.38	1.80	
S-5	01/26/1995												39.99	8.42	32.95	1.72	
S-5	04/21/1995												39.99	10.03	30.90	1.17	
S-5	07/28/1995												39.99	11.42	30.07	1.87	
S-5	10/31/1995												39.99	13.21	27.21	0.54	
S-5	01/10/1996												39.99	12.05	28.04	0.13	

Well ID	Date	TPHg	В	Т	Ε	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	тос	Depth to Water	GW Elevation		0
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(<i>mg/</i> L)
S-5	04/25/1996												39.99	9.68	30.33	0.03	
S-5	07/23/1996												39.99	9.82	30.20	0.04	
S-5	12/10/1996	270,000	8,800	29,000	5,200	37,000	<2,500						39.99	9.10	30.91	0.03	
S-5 (D)	12/10/1996	400,000	9,200	32,000	7,200	50,000	<2,500						39.99	9.10	30.91	0.03	
S-5	02/20/1997	88,000	2,000	11,000	1,600	19,000	<500						39.99	8.93	31.06		5
S-5	05/22/1997												39.99	10.07	29.94	0.02	
S-5	08/22/1997												39.99	10.24	29.77	0.02	
S-5	11/03/1997												39.99	10.91	29.10	0.02	
S-5	02/20/1998												39.99	7.81	32.20	0.03	
S-5	05/18/1998												39.99	9.64	30.37	0.02	
S-5	05/31/2001												39.99	10.13	29.86		
S-6	05/13/1991	13,000	600	140	210	310							40.12	7.82	32.30		
5-6 S-6	08/23/1991	13,000 9,800	480	80	120	150							40.12	9.58	32.30 30.54		
S-6	11/07/1991	9,800 6,200	480 240	23	25	130 27							40.12 40.12	9.58 10.86	30.34 29.26		
5-6 S-6	01/28/1992	8,200 5,600	240 250	25 15	23 41	36							40.12	8.97	29.20 31.15		
3-0 S-6	01/28/1992 05/06/1992	5,000 7,100	330	13 29	110	210							40.12	8.97	31.85		
S-6	08/26/1992	13,000	240	<50	56	210 780							40.12	9.57	31.55		
5-6 S-6	10/28/1992	10,000	240 470	<50 210	58 67	780 170							40.12 40.12	9.37 8.90	32.22		
3-0 S-6	01/19/1993	4,800	100	210	27	45							40.12	8.90 4.84	35.28		
S-6	04/29/1993	4,000 7,000	430	20	<12.5	43							40.12	4.04 5.61	34.51		
S-6	07/22/1993	5,800	430 260	120	<12.5 65	42 150							40.12	6.56	33.56		
S-6	10/21/1993	5,500 5,500	200	69	120	130 140							40.12	8.73	31.39		
S-6	01/04/1994	7,100	180	58	63	62							40.12	7.14	32.98		
S-6	04/13/1994												40.12	7.21	32.90		
S-6	07/25/1994	12,000	190	52	30	39							40.12	6.85	33.27		
S-6 (D)	07/25/1994	7,200	170	32	31	34							40.12	6.85	33.27		
S-6	10/10/1994												40.12	6.20	33.92		
S-6	01/26/1995	5,800	120	23	24	44							40.12	4.89	35.23		
S-6	04/21/1995												40.12	5.61	34.51		
S-6	07/28/1995	4,400	210	23	34	60							40.12	5.30	34.82		3
S-6 (D)	07/28/1995	6,100	230	20	38	59							40.12	5.30	34.82		3
S-6	10/31/1995												40.12	4.98	35.14		
S-6	01/10/1996	6,800	170	87	35	105							40.12	5.67	34.45		2.2
S-6 (D)	01/10/1996	7,800	230	120	50	210							40.12	5.67	34.45		2.2
. ,																	

Well ID	Date	TPHg (ug/L)	Β (μg/L)	Т (µg/L)	Е (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	SPH Thicknes (ft)	DO Reading
		(µg/L)	$(\mu g/L)$	$(\mu g L)$	(µg·L)	$(\mu g L)$	$(\mu g L)$	$(\mu g'L)$	(µg/L)	$(\mu g'L)$	(µg·L)	(µg/L)	(JI MISL)	(<i>i</i> 100)	(<i>jt</i> WISL)	()()	(<i>mg/</i> L)
S-6	04/25/1996												40.12	5.23	34.89		
S-6	07/23/1996	2,600	170	< 0.50	< 0.50	8.5	<25						40.12	5.40	34.72		1.4
S-6	12/10/1996												40.12	6.68	33.44		0.7
S-6	02/20/1997	6,300	160	7.7	14	31	77						40.12	5.70	34.42		2
S-6	05/22/1997												40.12	5.49	34.63		0.9
S-6	08/22/1997	6,200	160	26	15	27	49						40.12	5.71	34.41		2.8
S-6	11/03/1997												40.12	6.15	33.97		1.4
S-6	02/20/1998	4,100	150	<10	<10	15	55						40.12	5.25	34.87		0.4
S-6	05/18/1998												40.12	5.69	34.43		0.4
S-6	08/20/1998	7,800	240	38	16	39	110						40.12	6.04	34.08		1.5
S-6 (D)	08/20/1998	8,400	270	30	19	31	130						40.12	6.04	34.08		1.5
S-6	11/06/1998												40.12	6.10	34.02		
S-6	02/16/1999	6,000	190	19	14	20	<2.5						40.12	5.84	34.28		1.7
S-6	05/28/1999												40.12	9.51	30.61		1.9
S-6	08/24/1999	6,870	193	32.1	18.8	36.4	<25.0						40.12	8.29	31.83		2.7
S-6	11/16/1999												40.12	5.93	34.19		2.6
S-6	02/02/2000	2,310	164	122	28.6	133	63.1						40.12	5.33	34.79		2.6
S-6	05/09/2000												40.12	6.41	33.71		2.4
S-6	08/03/2000	5,600	188	27.4	<10.0	25.2	174						40.12	5.84	34.28		2.7
S-6	11/15/2000												40.12	5.58	34.54		2.3
S-6	02/14/2001	6,140	126	13.2	8.01	18.0	205						40.12	5.50	34.62		1.3
S-6	05/31/2001												40.12	5.52	34.60		1.2
S-6	08/15/2001	6,000	160	9.1	5.8	24		51					40.12	6.04	34.08		0.4
S-6	12/31/2001	6,900	120	12	6.6	24		44					40.12	5.52	34.60		0.4
S-6	02/06/2002	4,300	110	7.3	4.8	18		39					40.12	6.34	33.78		0.5
S-6	06/04/2002	4,300	140	8.4	4.9	22		26					40.12	6.19	33.93		0.4
S-6	07/25/2002	3,900	140	9.0	5.5	23		31					39.92	6.05	33.87		0.7
S-6	11/27/2002	5,200	160	9.6	4.9	24		26					39.92	6.26	33.66		
S-6	01/30/2003	4,700	200	9.6	5.5	25		30					39.92	5.73	34.19		
S-6	06/03/2003	3,900	160	10	<10	25		30					39.92	5.52	34.40		
S-6	08/08/2003	2,900	150	8.8	3.6	18		18					39.92	6.14	33.78		
S-6	11/13/2003	8,300	220	19	11	35		28					39.92	5.85	34.07		
S-6	02/04/2004	7,400	310	17	10	31		30					39.92	5.51	34.41		
S-6	05/12/2004	4,000	230	10	5.5	24		21					39.92	6.10	33.82		
S-6	08/23/2004	6,000	260	16	9.0	32		19					39.92	6.38	33.54		

Well ID	Date	TPHg	В	Т	Ε	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	тос	Depth to Water	GW Elevation		DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(mg/L)
S-6	12/01/2004	9,600	280	23	11	47		24					39.92	6.41	33.51		
S-6	02/07/2005	7,100	300	14	8.4	35		21					39.92	5.94	33.98		
S-6	05/02/2005	6,100	250	12	8.1	30		16					39.92	5.90	34.02		
S-6	08/04/2005	5,200	180	13	8.0	31		15					39.92	6.67	33.25		
S-6	11/16/2005	9,950	147	15.3	9.82	32.3		10.8					39.92	6.64	33.28		
S-6	03/02/2006	2,400	72	9.2	7.0	21		6.4					39.92	5.92	34.00		
S-6	05/31/2006	9,460	182	13.6	8.80	33.5		11.4 e					39.92	6.28	33.64		
S-6	08/29/2006	8,840	108	26.6	12.4	37.7		10.1					39.92	7.19	32.73		
S-6	12/06/2006	4,900	130	17	8.2	35		9.4					39.92	7.06	32.86		
S-6	01/30/2007	4,500	100	22	12	38		8.1					39.92	6.94	32.98		
S-6	05/15/2007	6,900 f	120	9.2	6.7	27.6		6.4					39.92	6.30	33.62		
S-6	08/29/2007	9,300 f	110	30	14	52		6.4	<50	5.3 g	<10	<10	39.92	7.27	32.65		
S-6	11/29/2007	4,300 f	110	19 h	14	53		8.7					39.92	6.87	33.05		
S-6	02/21/2008	5,600 f	110	8.6	5.0	28.3		6.4					39.92	5.75	34.17		
S-6	05/06/2008	5,900	110	12	7.5	30.1		<1.0					39.92	6.60	33.32		
S-6	08/27/2008	6,200	58	15	7.0	27.9		<2.0					39.92	7.40	32.52		
S-6	11/24/2008	6,100	80	20	12	40		<2.0					39.92	7.30	32.62		
S-6	11/24/2008	6,100	80	20	12	40		<2.0					39.92	7.30	32.62		
S-6	01/28/2009	5,300	80	10	6.3	26		<1.0					39.92	6.61	33.31		
S-6	05/26/2009	6,600	130	6.6	4.4	21		4.9					39.92	6.70	33.22		
S-6	11/24/2009	6,200	69	13	8.4	32		4.5					39.92	7.03	32.89		
S-6	05/26/2010	5,100	130	8.3	4.8	27		6.1					39.92	6.24	33.68		
S-6	11/30/2010	5,500	74	10	6.2	32		5.6					39.92	6.12	33.80		
S-6	05/11/2011	8,900	73	7.8	6.8	31		4.2					39.92	6.30	33.62		
S-6	11/28/2011	3,300	74.1	7.49	5.33	30.0		4.17					39.92	6.45	33.47		
S-6	06/05/2012	5,000	78	11	8.6	38		4.5					39.92	6.71	33.21		
- -		-50	-0 50	-0 =0	-0 50	-0 50							10.10		20 54		
S-7	05/13/1991	<50	<0.50	<0.50	< 0.50	< 0.50							40.10	10.56	29.54		
S-7	08/23/1991	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	11.16	28.94		
S-7	11/07/1991	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	11.48	28.62		
S-7	01/28/1992	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.72	29.38		
S-7	05/06/1992	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.34	29.76		
S-7	08/26/1992	160	< 0.50	< 0.50	< 0.50	< 0.50							40.10	11.13	28.97		
S-7	10/28/1992	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	11.52	28.58		
S-7	01/19/1993	50	1.1	0.60	1.9	9.2							40.10	8.68	31.42		

	D .		-	-	-		MTBE	MTBE		DIDE			70.0	Depth to	GW	SPH	DO
Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	Е (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Thicknes (ft)	Reading (mg/L)
S-7	04/29/1993	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	9.90	30.20		
S-7	07/22/1993												40.10				
S-7	10/21/1993	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	11.10	29.00		
S-7	01/04/1994	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.40	29.70		
S-7	04/13/1994	<50	1.4	0.61	< 0.50	0.64							40.10	10.20	29.90		
S-7 (D)	04/13/1994	<50	1.4	0.61	< 0.50	0.66							40.10	10.20	29.90		
S-7	07/25/1994	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.48	29.62		
S-7 a	10/10/1994	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.64	29.46		
S-7	01/26/1995	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	7.75	32.35		4.6
S-7	04/21/1995	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	8.51	31.59		
S-7	07/28/1995	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.20	29.90		3
S-7	10/31/1995	<50	< 0.50	< 0.50	< 0.50	< 0.50							40.10	10.86	29.24		4.9
S-7	01/10/1996	<50	< 0.50	2.0	< 0.50	2.6							40.10	10.33	29.77		7.6
S-7	04/25/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						40.10	9.13	30.97		6.2
S-7	07/23/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	14						40.10	10.18	29.92		3.7
S-7	12/10/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						40.10	9.04	31.06		4.6
S-7	02/20/1997	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						40.10	9.60	30.50		5
S-7	05/22/1997	<50	1.3	< 0.50	< 0.50	< 0.50	5.5						40.10	10.63	29.47		0.8
S-7	08/22/1997	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						40.10	10.95	29.15		2.6
S-7	11/03/1997	<50	2.2	1.7	0.58	3.4	<2.5						40.10	11.29	28.81		2.6
S-7	02/20/1998	350	23	13	14	42	3.8						40.10	7.73	32.37		4.6
S-7	05/18/1998	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						40.10	10.29	29.81		4.4
S-7	08/20/1998												40.10	11.00	29.10		5.4
S-7	11/06/1998	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5						40.10	11.19	28.91		5.2
S-7		Well inac											40.10				
S-7	05/28/1999	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<5.00						40.10	9.76	30.34		2.7
S-7	08/24/1999	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50						40.10	10.61	29.49		2.1
S-7	11/16/1999	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	3.68						40.10	10.90	29.20		2.3
S-7	02/02/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00						40.10	10.30	29.80		2.1
S-7	05/09/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50						40.10	10.25	29.85		2.7
S-7	08/03/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50						40.10	10.65	29.45		2.5
S-7	11/15/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50						40.10	10.53	29.57		4.6
S-7	02/14/2001												40.10				
S-7	05/31/2001	<50	< 0.50	<0.50	<0.50	0.77		4.6					40.10	9.46	30.64		2.1
S-7	08/15/2001	<50	< 0.50	< 0.50	< 0.50	<0.50		<5.0					40.10	10.93	29.17		2.0

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Т (µg/L)	Е (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	SPH Thicknes (ft)	DO Reading (mg/L)
		(µgL)	(µg/L)	(µyL)	(µyL)	$(\mu g'L)$	(µg/L)	$(\mu g'L)$	(µg/L)	$(\mu g'L)$	(µg/L)	(µyL)	yı MSL)	<i>()1100)</i>	(<i>t</i> WISL)	()()	(mg/L)
S-7	12/31/2001	<50	< 0.50	< 0.50	< 0.50	< 0.50		6.0					40.10	9.14	30.96		3.0
S-7	02/06/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					40.10	8.61	31.49		3.2
S-7	06/04/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					40.10	10.41	29.69		0.9
S-7	07/25/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					39.91	10.37	29.54		1.1
S-7	11/27/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					39.91	10.52	29.39		
S-7	01/30/2003	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0					39.91	9.38	30.53		
S-7	06/03/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		0.72					39.91	10.18	29.73		
S-7	08/08/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.91	10.43	29.48		
S-7	11/13/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.91	10.39	29.52		
S-7	02/04/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.91	9.17	30.74		
S-7	05/12/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.91	10.20	29.71		
S-7	08/23/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72 c	10.53	29.19		
S-7	12/01/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	10.36	29.36		
S-7	02/07/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	8.78	30.94		
S-7	05/02/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	9.46	30.26		
S-7	08/04/2005	Well pave	ed over														
S-8	05/10/2004												40.52	10.85	29.67		
S-8	05/12/2004	<1,300	<13	<13	<13	<25		2,500					40.52	10.95	29.57		
S-8	08/23/2004	1,300	15	<13	<13	<25		2,500	570	<50	<50	<50	40.52	11.40	29.12		
S-8	12/01/2004	1,400 d	<13	<13	<13	<25		2,700					40.52	11.10	29.42		
S-8	02/07/2005	6,400	240	27	290	100		370					40.52	10.22	30.30		
S-8	05/02/2005	6,300	160	25	200	74		190					40.52	10.05	30.47		
S-8	08/04/2005	2,500	130	7.5	<6.0	14		290	92	<8.0	<8.0	<8.0	40.52	10.88	29.64		
S-8	11/16/2005	27,700	43.2	4.36	637	1,200		638					40.52	11.28	29.24		
S-8	03/02/2006	9,900	160	13	490	530		110					40.52	8.85	31.67		
S-8	05/31/2006	14,300	270	53.1	283	246		102 e					40.52	10.34	30.18		
S-8	08/29/2006	14,700	107	9.42	196	195		278	36.1	< 0.500	< 0.500	< 0.500	40.52	11.17	29.35		
S-8	12/06/2006	7,800	150	8.6	120	110		200					40.52	11.21	29.31		
S-8	01/30/2007	7,500	220	18	180	96		170					40.52	10.72	29.80		
S-8	05/15/2007	9,600 f		24	160	112		130					40.52	10.50	30.02		
S-8	08/29/2007												40.52	11.44	29.11	0.04	
S-8	08/30/2007	6,100 f	35	2.7	140	234		170	820	<4.0	<4.0	<4.0	40.52	11.37	29.25	0.13	
S-8	09/25/2007												40.52	11.56	29.22	0.32	
S-8	10/29/2007												40.52	11.23	29.50	0.26	
	. ,																

							MTBE	MTBE						Depth to	GW	SPH	DO
Well ID	Date	TPHg	В	Т	Ε	X	8020	8260	TBA	DIPE	ETBE	TAME	ТОС	Water	Elevation	Thicknes	Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(ft)	(<i>mg/</i> L)
S-8	11/29/2007												40.52	11.08	29.60	0.20	
S-8	12/11/2007												40.52	10.61	30.03	0.15	
S-8	01/24/2008												40.52	9.61	30.97	0.08	
S-8	02/21/2008												40.52	9.11	31.43	0.03	
S-8	03/20/2008												40.52	10.22	30.40	0.12	
S-8	04/30/2008												40.52	10.91	29.67	0.07	
S-8	05/06/2008												40.52	10.50	30.05	0.04	
S-8	06/04/2008												40.52	11.34	29.24	0.07	
S-8	07/29/2008												40.52	11.83	28.71	0.03	
S-8	08/27/2008												40.52	11.40	29.14	0.03	
S-8	09/30/2008												40.52	12.08	28.46	0.03	
S-8	10/31/2008												40.52	11.35	29.37	0.25	
S-8	11/24/2008												40.52	10.79	29.89	0.20	
S-8	12/30/2008												40.52	8.90	31.75	0.16	
S-8	01/14/2009												40.52	9.87	30.83	0.22	
S-8	01/28/2009												40.52	9.52	31.10	0.13	
S-8	03/31/2009												40.52	8.56	32.11	0.19	
S-8	04/21/2009												40.52	8.90	31.75	0.16	
S-8	05/26/2009												40.52	9.04	31.57	0.11	
S-8	06/30/2009												40.52	10.28	30.32	0.10	
S-8	07/23/2009												40.52	10.37	30.25	0.13	
S-8	08/31/2009												40.52	10.78	29.80	0.08	
S-8	11/24/2009												40.52	9.73	30.84	0.06	
S-8	05/26/2010	59,000	150	32	2,100	4,400		78					40.52	7.59	32.93	0.00	
S-8	11/30/2010												40.52	8.34	32.23	0.06	
S-8	02/10/2011												40.52	8.28	32.30	0.08	
S-8	05/11/2011												40.52	8.39	32.15	0.02	
S-8	08/10/2011												40.52	8.72	31.81	0.01	
S-8	11/28/2011	25,000	169	11.8	874	1,170		101	<10.0	< 0.500	< 0.500	< 0.500	40.52	8.97	31.55		
S-8	02/28/2012												40.52	8.64	31.88		
S-8	06/05/2012	32,000	160	15	600	660		75					40.52	9.63	30.89		
S-9	05/10/2004												39.72	10.34	29.38		
5-9 S-9		 <50	 <0.50	 <0.50	 <0.50	<1.0		< 0.50					39.72 39.72	10.34 10.42	29.38 29.30		
S-9 S-9	05/12/2004	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		<0.50 <0.50					39.72 39.72	10.42 11.32			
5-9	08/23/2004	< <u>50</u>	<0.50	<0.50	<0.50	<1.0		<0.50					39.72	11.32	28.40		

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 999 SAN PABLO AVENUE, ALBANY, CALIFORNIA

Well ID	Date	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	SPH Thicknes (ft)	DO Reading (mg/L)
S-9	12/01/2004	Unable to	o locate										39.72				
S-9	02/07/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	8.74	30.98		
S-9	05/02/2005	Well inac	cessible										39.72				
S-9	08/04/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	8.79	30.93		
S-9	11/16/2005	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					39.72	10.30	29.42		
S-9	03/02/2006	<50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50					39.72	5.86	33.86		
S-9	05/31/2006	<50.0	< 0.500	< 0.500	< 0.500	0.540		< 0.500					39.72	9.85	29.87		
S-9	08/29/2006	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					39.72	10.75	28.97		
S-9	12/06/2006	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	10.60	29.12		
S-9	01/30/2007	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50					39.72	10.45	29.27		
S-9	05/15/2007	61 d,f	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	10.15	29.57		
S-9	08/29/2007	71 f	< 0.50	<1.0	1.3	2.1		<1.0	<10	<2.0	<2.0	<2.0	39.72	10.96	28.76		
S-9	11/29/2007	Well inac	cessible										39.72				
S-9	02/21/2008	<50 f	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	7.36	32.36		
S-9	05/06/2008	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	10.49	29.23		
S-9	08/27/2008	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	11.19	28.53		
S-9	11/24/2008	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	10.91	28.81		
S-9	01/28/2009	Well inac	cessible										39.72				
S-9	05/26/2009	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	10.20	29.52		
S-9	11/24/2009	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	10.52	29.20		
S-9	05/26/2010	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	7.09	32.63		
S-9	11/30/2010	<50	< 0.50	<1.0	<1.0	<1.0		<1.0					39.72	7.42	32.30		
S-9	05/11/2011												39.72				
S-9	11/28/2011												39.72				
S-9	12/02/2011	<50	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					39.72	8.80	30.92		
S-9	06/05/2012	<50	<0.50	<0.50	<0.50	<1.0		<0.50					39.72	10.17	29.55		

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; prior to May 31, 2001, analyzed by EPA Method 8015 unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to May 31, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed by method noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 999 SAN PABLO AVENUE, ALBANY, CALIFORNIA

	Well ID	Date	TPHg (µg/L)	В (µg/L)	Т (µg/L)	Е (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	МТВЕ 8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	SPH Thicknes (ft)	DO Reading (mg/L)	
	TOC = Top	of casing ele	evation, in	feet rela	tive to m	ean sea le	evel												
	_	rate-phase h																	
(GW = Grou	ndwater	-																
	DO = Disso	lved oxygen	L																
	$\mu g/L = Mic$	rograms per	liter																
1	ft = Feet																		
	MSL = Mea	an sea level																	
	mg/L = Mil	lligrams per	liter																
		etected at rep	0																
		alyzed or no		e															
	(D) = Dupli	cate sample																	
	a = Sample	analyzed for	r total diss	olved so	lids (450	mg/L).													
	-	tration is an			•	0. ,	ntitation	range.											
		vered 0.19 fe				-		0											
		arbon report					ndard												

d = Hydrocarbon reported does not match the laboratory standard.

e = Secondary ion abundances were outside method requirements. Identification based on analytical judgment.

f = Analyzed by EPA Method 8015B (M).

g = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

h = Analyte was present in the associated method blank.

When SPHs are present, GW elevation is adjusted using the relation:

Corrected GW elevation = TOC - depth to water + (0.8 x hydrocarbon thickness).

Since April 2002 well S-5 has been monitored by Arco.

Prior to July 25, 2002 depth to water referenced to top of well box.

Site wells surveyed January 9, 2002 by Virgil Chavez Land Surveying

Wells S-8 and S-9 surveyed May 11, 2004 by Virgil Chavez Land Surveying

APPENDIX E

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

WORK ORDER NUMBER: 12-06-0398

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: Broadbent & Associates, Inc. Client Project Name: BP 2035 Attention: Tom Venus 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Richard Ville).)

Approved for release on 06/20/2012 by: Richard Villafania Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

40 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501 • www.calscience.com

Contents

Client Project Name: BP 2035 Work Order Number: 12-06-0398

1	Client Sample Data	3
2	Quality Control Sample Data 2.1 MS/MSD and/or Duplicate 2.2 LCS/LCSD 2.2 LCS/LCSD	
3	Glossary of Terms and Qualifiers	14
4	Chain of Custody/Sample Receipt Form	16

ACCORD ١N

Page 3 of 18

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Date Received: Work Order No: Preparation: Method:

06/07/12 12-06-0398 EPA 5030C EPA 8015B (M)

Project: BP 2035							Pa	age 1 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4		12-06-0398-1-E	06/05/12 14:40	Aqueous	GC 4	06/09/12	06/10/12 01:01	120609B03
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	71	38-134						
MW-7		12-06-0398-2-E	06/05/12 11:57	Aqueous	GC 4	06/09/12	06/10/12 02:34	120609B03
Comment(s): -LW Quantitated	•		55	a 1				
Parameter	<u>Result</u> 1300	<u>RL</u> 50	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> ug/L			
Gasoline Range Organics (C6-C12)	1300	50	I		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	74	38-134						
MW-8		12-06-0398-3-E	06/05/12 15:50	Aqueous	GC 4	06/09/12	06/10/12 03:05	120609B03
Comment(s): -LW Quantitated	against Gasoline.							
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	890	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	74	38-134						
MW-9		12-06-0398-4-E	06/05/12 13:37	Aqueous	GC 4	06/09/12	06/10/12 04:06	120609B03
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1	<u>Quu</u>	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	72	38-134						

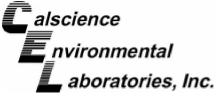
RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

Page 4 of 18

06/07/12 12-06-0398

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method:

Page 2 of 2


EPA 8015B (M)

EPA 5030C

Project: BP 2035

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
RW-1		12-06-0398-5-E	06/05/12 08:40	Aqueous	GC 4	06/09/12	06/10/12 04:37	120609B03
Comment(s): -LW Quantitated	against Gasoline.							
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	1000	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	76	38-134						
S-5		12-06-0398-6-E	06/05/12 10:46	Aqueous	GC 4	06/09/12	06/10/12 05:08	120609B03
Comment(s): -LW Quantitated	against Gasoline.							
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	1700	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	83	38-134						
Method Blank		099-12-695-1,345	N/A	Aqueous	GC 4	06/09/12	06/09/12 23:28	120609B03
Demonstra	Datali			0	11-20-			
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	72	38-134						

Broadbent & Associates, Inc.

1324 Mangrove Ave, Ste 212

Chico, CA 95926-2642

Analytical Report

Preparation:

Method:

Units:

Date Received: Work Order No:

nelac [*]
06/07/12

12-06-0398

EPA 5030C

EPA 8260B

Page 1 of 3

ug/L

Project: BP 2035


Tiejeet: BI 2000										iα	90 1 01 0
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW-4			12-06-0)398-1-A	06/05/12 14:40	Aqueous	GC/MS T	06/07/12	06/08 02:3		120607L02
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTE	BE)	1.2	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	•	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	· · ·		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	· · ·)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	•	,	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol		,	ND	300	1	
Surrogates:	REC (%)	Control	Qua	1	Surrogates:			<u>REC (%)</u>	Control	. (Qual
<u>ourrogatos.</u>	<u></u>	Limits		-				<u>, , , , , , , , , , , , , , , , , ,</u>	Limits	_	
1,4-Bromofluorobenzene	90	68-120			Dibromofluor	omethane		123	80-127		
1,2-Dichloroethane-d4	110	80-128			Toluene-d8			102	80-120		
MW-7			12-06-0)398-2-A	06/05/12	Aqueous	GC/MS T	06/07/12	06/08		120607L02
					11:57				04::	32	
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	0.97	0.50	1		Methyl-t-Buty	l Ether (MTE	BE)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	cohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	0.95	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	0.59	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	0.64	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	99	68-120			Dibromofluor	omethane		119	80-127		
1.2-Dichloroethane-d4	118	80-128			Toluene-d8			108	80-120		
MW-8			12-06-0)398-3-A	06/05/12 15:50	Aqueous	GC/MS T	06/07/12	06/08 05:0		120607L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
				<u>Quai</u>							Qua
Benzene	170	4.0	8		Methyl-t-Buty	•	se)	2.1	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	```		38 ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	· · ·	`	ND	0.50	1	
Ethylbenzene	92	4.0	8		Ethyl-t-Butyl I		,	ND	0.50	1	
Toluene	1.9	0.50	1		Tert-Amyl-Me	ernyi ⊨tner (I	AIVIE)	ND	0.50	1	
Xylenes (total)	16	0.50	1		Ethanol				300 Control	1	Qual
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>II</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	101	68-120			Dibromofluor	omethane		121	80-127		
1,2-Dichloroethane-d4	120	80-128			Toluene-d8			104	80-120		
,		-									

RL - Reporting Limit , DF - Dilution Factor

MM

ctor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Date Received:	06/07/12
Work Order No:	12-06-0398
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	ug/L

Project: BP 2035

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW-9			12-06	-0398-4-A	06/05/12 13:37	Aqueous	GC/MS T	06/07/12	06/08 05:2		120607L02
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB	E)	4.8	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Ald	cohol (TBA)	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u> ı	ual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	92	68-120			Dibromofluor	omethane		126	80-127		
1,2-Dichloroethane-d4	120	80-128			Toluene-d8			104	80-120		
RW-1			12-06	-0398-5-A	06/05/12 08:40	Aqueous	GC/MS T	06/07/12	06/08 05:		120607L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	49	1.0	2		Methyl-t-Buty	l Ethor (MTB		ND	0.50	1	
1.2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc		· L)	ND	10	1	
1.2-Dichloroethane	ND	0.50	1		Diisopropyl E	```		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	· ,)	ND	0.50	1	
Toluene	1.3	0.50	1		Tert-Amyl-Me		,	ND	0.50	1	
Xylenes (total)	0.86	0.50	1		Ethanol		,,	ND	300	1	
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits	<u>Q</u> ı	ual	Surrogates:			<u>REC (%)</u>	Control Limits	<u>(</u>	Qual
1,4-Bromofluorobenzene	95	68-120			Dibromofluor	omethane		124	80-127		
1,2-Dichloroethane-d4	124	80-128			Toluene-d8			113	80-120		
S-5			12-06	-0398-6-A	06/05/12 10:46	Aqueous	GC/MS T	06/07/12	06/08 06:2		120607L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	29	0.50	1	_	Methyl-t-Buty	l Ether (MTB	E)	ND	0.50	1	—
1.2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	•	/	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	· · ·		ND	0.50	1	
Ethylbenzene	2.1	0.50	1		Ethyl-t-Butyl	· · ·)	ND	0.50	1	
Toluene	0.99	0.50	1		Tert-Amyl-Me		,	ND	0.50	1	
Xylenes (total)	0.60	0.50	1		Ethanol	- 、		ND	300	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u> ı	ual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	97	<u>68-120</u>			Dibromofluor	omethane		123	80-127		
1.2-Dichloroethane-d4	119	80-128			Toluene-d8	Chicano		113	80-120		
.,											

RL - Reporting Limit , DF - Dilution Factor

MM

Qual - Qualifiers ,

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Page 7 of 18

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Date Received:	06/07/12
Work Order No:	12-06-0398
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	ug/L
	Page 3 of 3

Project: BP 2035

-											•
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-12 [.]	703-2,141	N/A	Aqueous	GC/MS T	06/07/12	06/08 02:1		120607L02
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	91	68-120			Dibromofluor	123	80-127				
1,2-Dichloroethane-d4	119	80-128			Toluene-d8			104	80-120		
Method Blank			099-12 [.]	-703-2,142	N/A	Aqueous	GC/MS T	06/08/12	06/08 15:2		120608L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
1,4-Bromofluorobenzene	86	68-120			Dibromofluor	omethane		119	80-127		
1,2-Dichloroethane-d4	98	80-128			Toluene-d8			101	80-120		

Return to Contents

Muhmu

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642	Date Received: Work Order No: Preparation: Method:	06/07/12 12-06-0398 EPA 5030C EPA 8015B (M)
	Metried.	

Project BP 2035

Quality Control Sample ID		Matrix	Instru	ment		ate oared	Date Analyzed		ISD Batch umber	
MW-4			Aqueous	GC 4		06/0	9/12	06/10/12	120	609S01
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	MS CONC	MS %REC	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	ND	2000	1648	82	1652	83	38-134	0	0-25	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hu

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

Broadbent & Associates, Inc.
1324 Mangrove Ave, Ste 212
Chico, CA 95926-2642

 Date Received:
 06/07/12

 Work Order No:
 12-06-0398

 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project BP 2035

Quality Control Sample ID			Matrix	Instru	iment		ate pared	Date Analyzed		ISD Batch umber
MW-4			Aqueous	GC/M	ST	06/0	7/12	06/08/12	120	607S02
Parameter	<u>SAMPLE</u> <u>CONC</u>	<u>SPIKE</u> ADDED	MS CONC	<u>MS</u> <u>%REC</u>	MSD CONC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	10.00	10.66	107	10.15	101	76-124	5	0-20	
Carbon Tetrachloride	ND	10.00	10.10	101	10.21	102	74-134	1	0-20	
Chlorobenzene	ND	10.00	10.41	104	10.31	103	80-120	1	0-20	
1,2-Dibromoethane	ND	10.00	10.30	103	10.46	105	80-120	1	0-20	
1,2-Dichlorobenzene	ND	10.00	10.45	104	10.06	101	80-120	4	0-20	
1,2-Dichloroethane	ND	10.00	11.59	116	10.12	101	80-120	14	0-20	
Ethylbenzene	ND	10.00	10.10	101	10.13	101	78-126	0	0-20	
Toluene	ND	10.00	10.46	105	10.44	104	80-120	0	0-20	
Trichloroethene	ND	10.00	9.711	97	9.579	96	77-120	1	0-20	
Methyl-t-Butyl Ether (MTBE)	1.231	10.00	12.18	110	12.29	111	67-121	1	0-49	
Tert-Butyl Alcohol (TBA)	ND	50.00	71.07	142	54.67	109	36-162	26	0-30	
Diisopropyl Ether (DIPE)	ND	10.00	10.78	108	10.99	110	60-138	2	0-45	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	11.14	111	11.37	114	69-123	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	10.13	101	9.884	99	65-120	2	0-20	
Ethanol	ND	100.0	111.2	111	108.4	108	30-180	3	0-72	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

06/07/12 12-06-0398 EPA 5030C EPA 8260B

Broadbent & Associates, Inc.	Date Received:	
1324 Mangrove Ave, Ste 212	Work Order No:	
Chico, CA 95926-2642	Preparation:	E
	Method:	I

Project BP 2035

Quality Control Sample ID			Matrix	Instru	ument		ate pared	Date Analyzed		ISD Batch umber	
12-06-0397-5			Aqueous	GC/N	IS T	06/0	8/12	06/08/12	120608S01		
Parameter	SAMPLE CONC	<u>SPIKE</u> ADDED	MS CONC	<u>MS</u> <u>%REC</u>	MSD CONC	<u>MSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers	
Benzene	ND	10.00	10.40	104	10.37	104	76-124	0	0-20		
Carbon Tetrachloride	ND	10.00	9.765	98	9.979	100	74-134	2	0-20		
Chlorobenzene	ND	10.00	10.48	105	10.46	105	80-120	0	0-20		
1,2-Dibromoethane	ND	10.00	10.34	103	10.49	105	80-120	1	0-20		
1,2-Dichlorobenzene	ND	10.00	11.12	111	11.17	112	80-120	0	0-20		
1,2-Dichloroethane	ND	10.00	9.435	94	9.561	96	80-120	1	0-20		
Ethylbenzene	ND	10.00	10.41	104	10.35	103	78-126	1	0-20		
Toluene	ND	10.00	10.95	110	10.76	108	80-120	2	0-20		
Trichloroethene	ND	10.00	10.08	101	9.972	100	77-120	1	0-20		
Methyl-t-Butyl Ether (MTBE)	1.145	10.00	11.34	102	10.82	97	67-121	5	0-49		
Tert-Butyl Alcohol (TBA)	ND	50.00	89.66	179	55.26	111	36-162	47	0-30	LM,BA,A`	
Diisopropyl Ether (DIPE)	ND	10.00	9.003	90	8.480	85	60-138	6	0-45		
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	9.250	92	8.750	88	69-123	6	0-30		
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	9.420	94	9.322	93	65-120	1	0-20		
Ethanol	ND	100.0	107.3	107	92.71	93	30-180	15	0-72		

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

Broadbent & Associates, Inc.	Date Received:	N/A
1324 Mangrove Ave, Ste 212	Work Order No:	12-06-0398
Chico, CA 95926-2642	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)

Project: BP 2035

Quality Control Sample ID	Matrix		Instrument	-	ate pared	Date Analyzed	b	LCS/LCSD Batch Number	
099-12-695-1,345	Aqueous	;	GC 4	06/	09/12	06/09/12		120609B03	
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD <u>%REC</u>	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	2000	1850	92	1795	90	78-120	3	0-20	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Return to Contents

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:N/AWork Order No:12-06-0398Preparation:EPA 5030CMethod:EPA 8260B

Project: BP 2035

Quality Control Sample ID	Matrix		Instrumen	t	Date Prepared		ate lyzed	LCS		
099-12-703-2,141	Aqueous		GC/MS T		06/07/12	06/08	B/12	1		
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	<u>LCSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>ME CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	10.00	10.13	101	10.27	103	80-120	73-127	1	0-20	
Carbon Tetrachloride	10.00	9.972	100	10.12	101	74-134	64-144	2	0-20	
Chlorobenzene	10.00	10.21	102	10.42	104	80-120	73-127	2	0-20	
1,2-Dibromoethane	10.00	9.894	99	9.672	97	79-121	72-128	2	0-20	
1,2-Dichlorobenzene	10.00	9.974	100	10.53	105	80-120	73-127	5	0-20	
1,2-Dichloroethane	10.00	9.974	100	9.890	99	80-120	73-127	1	0-20	
Ethylbenzene	10.00	10.17	102	10.57	106	80-120	73-127	4	0-20	
Toluene	10.00	10.43	104	10.75	108	80-120	73-127	3	0-20	
Trichloroethene	10.00	9.734	97	9.975	100	79-127	71-135	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	10.62	106	10.46	105	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	50.00	52.41	105	51.67	103	63-123	53-133	1	0-20	
Diisopropyl Ether (DIPE)	10.00	10.52	105	10.67	107	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	10.88	109	11.01	110	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	9.542	95	9.678	97	70-120	62-128	1	0-20	
Ethanol	100.0	105.6	106	108.3	108	28-160	6-182	3	0-57	

Total number of LCS compounds : 15 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 ·

714) 895-5494 • FAX: (714) 894-7501

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:N/AWork Order No:12-06-0398Preparation:EPA 5030CMethod:EPA 8260B

Project: BP 2035

Quality Control Sample ID	Ма	Instrumen	t	Date Prepared		ate alyzed	LCS	1		
099-12-703-2,142	Aque	Aqueous			06/08/12	06/08	8/12	1		
Parameter	<u>SPIKE</u> ADDED	LCS CONC	LCS <u>%REC</u>	LCSD CONC	<u>LCSD</u> <u>%REC</u>	<u>%REC CL</u>	<u>ME CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	10.00	10.06	101	10.06	101	80-120	73-127	0	0-20	
Carbon Tetrachloride	10.00	9.754	98	9.574	96	74-134	64-144	2	0-20	
Chlorobenzene	10.00	10.09	101	10.20	102	80-120	73-127	1	0-20	
1,2-Dibromoethane	10.00	9.853	99	10.07	101	79-121	72-128	2	0-20	
1,2-Dichlorobenzene	10.00	10.85	108	10.83	108	80-120	73-127	0	0-20	
1,2-Dichloroethane	10.00	8.996	90	9.100	91	80-120	73-127	1	0-20	
Ethylbenzene	10.00	10.23	102	10.26	103	80-120	73-127	0	0-20	
Toluene	10.00	10.51	105	10.55	105	80-120	73-127	0	0-20	
Trichloroethene	10.00	9.730	97	9.721	97	79-127	71-135	0	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	9.829	98	9.606	96	69-123	60-132	2	0-20	
Tert-Butyl Alcohol (TBA)	50.00	48.69	97	48.57	97	63-123	53-133	0	0-20	
Diisopropyl Ether (DIPE)	10.00	8.487	85	8.464	85	59-137	46-150	0	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	8.902	89	8.791	88	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	9.080	91	9.091	91	70-120	62-128	0	0-20	
Ethanol	100.0	101.8	102	100.2	100	28-160	6-182	2	0-57	

Total number of LCS compounds : 15 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

 \mathbb{A}

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Return to Contents

MM

Glossary of Terms and Qualifiers

Work Order Number: 12-06-0398

<u>Qualifier</u>	Definition
AX	Sample too dilute to quantify surrogate.
BA	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
ET	Sample was extracted past end of recommended maximum holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix
	interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix
	interference suspected.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.

Definition

Qualifier

N

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. MPN - Most Probable Number

-	Richtield			ioot Nama:					BP 2	2025						Rea	Duel	Date	(mm	/dd/yy	۱.				Rush TAT:	Yes	No
Ç	tlantic Richfield company			ject Name: ility No:					20							-				ımber							
	A BP affiliated company			-			acilit	, Addre			1001 :	San F	Pablo	Avenu	A					Consu	ltant/Co	ntracto	r:	Broadbent	& Associates, Inc. (E	Broadbent)	
Lab Na				9km-111	BP/ARC Facility Address: 1001 San Pablo Avenue City, State, ZIP Code: Albany, CA																						
	dress: 7440 Lincoln Way				Lead Regulatory Agency: ACEH 12-0						-	E		91	10	,	••••••••••••••••••••••••••••••••••••••										
Lab PN									-					-U		-U)F	10		Addre							
Lab Ph)1 (fax)						al ID No	0.:			600100081 												Tom Venus			
Lab Sh	ipping Accnt: 9255						posal													Phone					6-1401 (fax)		
Lab Bo	ttle Order No:						g Mo									000	C-RM				EDD To				dbentinc.com		
Other I	nfo:				Stag	e:	Exec	ute (40)				-		spend)				Invoic			_	x	Contractor		
BP/AR	CEBM: Shannon Couch					Mat	rix	_	No.	Con	taine	ers /	Pres	ervat	ive		Re	ques	ted A	nalys	es		rnarc	ound Time	Report Ty		
EBM P	hone: 925-275-3804								w										6							ndard <u>X</u>	
ЕВМ Е	mail: <u>Shannon.Couch@bp.c</u>	om							containers										(8260)						Full Data Pac	ckage	
Lab No.	Sample Description	ſ	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	C	ō	Unpreserved	H₂SO₄	HNO ₃	PH	Methanol		GRO (8015)	BTEX (8260)	5-Oxys + EDB (8260)	1,2-DCA and Ethanol (Con Note: If sample not co Sample" in comments and initial any preprin	s and single-si	strike out
1	MW-4	6	5-12	1440		х			6				х			х	х	x	х								
2	MW-7		1.	1157		х			6				x			х	х	x	х								
>	MW-8			1550		х			6				x			х	х	х	x								
4	MW-9			1337		x			6				x			х	х	х	×								
5	RW-1			0840		x			6				x			х	x	х	x								
6	S-5	-	T	1046		x			6				x			х	x	x	x								
7	TB-2035-120605	4.0	5.12	1000	Γ	х			1				X		- <u>-</u>										0	n Hold	
Sampl	er's Name: James P				Γ		F	elinq	uish	ed B	By / A	\ffilia	tion			D	ate	Ti	me			Acc	epted	By / Affilia	ition	Date	Time
Sampl	er's Company: Broadbent							fa	m	مق	, 1	Ro	n	-		6.1	6.12	17	Ø		Dre	m/		N= he	a	6/7/12	10:3
Shipm	ent Method: GSO	Ship	Date:	5.6.12	Γ			/				1										/		· · · · · · · · · · · · · · · · · · ·			, J
Shipm	ent Tracking No: 107394				T																						
	al Instructions: Please cc resul			thenting com	<u></u>																						

eturn to Col

6398

	Page 1	8 of 18
WORK ORDER #: 12-06	3-031	98
SAMPLE RECEIPT FORM	Cooler <u>/</u>	_of _/_
CLIENT: <u>BAI</u> DATE:	06/07	<u>r/12</u>
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen)	· ·	
Temperature $\underline{/} \cdot \underline{9} \circ C - 0.3 \circ C (CF) = \underline{/} \cdot \underline{6} \circ C \square$ Blank	Sample Sample	
□ Sample(s) outside temperature criteria (PM/APM contacted by:).		
\Box Sample(s) outside temperature criteria but received on ice/chilled on same day of sampli	ng.	
□ Received at ambient temperature, placed on ice for transport by Courier.		٦¢
Ambient Temperature: Air Filter	Initial:	<u></u>
CUSTODY SEALS INTACT:		
COSTODY SEALS INTACT:	Initial:	or
□ Sample □ □ No (Not Intact) □ Not Present □ N/A	Initial:	1
		15
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
\Box No analysis requested. \Box Not relinquished. \Box No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours \Box		
Proper preservation noted on COC or sample container		
□ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation □ CONTAINER TYPE:		B
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores [®] □Terra	Cores [®] □	
Water: □VOA ⊠VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □	∃1AGB na₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB	□1PBna □5	00PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □ □		
Air: ☐Tedlar [®] ☐Summa [®] Other: ☐ Trip Blank Lot#: 1256 A Labeled/ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope F Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +NaOH f: Filtered	Reviewed by: <u>V</u>	NSC

ł,

Return to Contents

APPENDIX F

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	GEO_WELL
Submittal Title:	2Q12 GEO_WELL 2035
Facility Global ID:	T0600100081
Facility Name:	ARCO #02035
File Name:	GEO_WELL.zip
Organization Name:	Broadbent & Associates, Inc.
<u>Username:</u>	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	6/21/2012 4:26:40 PM
Confirmation Number:	9867002129

Copyright © 2012 State of California

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	EDF - Monitoring Report - Semi-Annually
Submittal Title:	2Q12 GW Monitoring
Facility Global ID:	T0600100081
Facility Name:	ARCO #02035
File Name:	12060398.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	67.118.40.90
<u>Submittal Date/Time:</u>	6/21/2012 4:16:11 PM
Submittal Date/Time: Confirmation Number:	6/21/2012 4:16:11 PM <mark>5667648255</mark>

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California