

RECEIVED

10:38 am, Dec 23, 2011

Alameda County Environmental Health

December 21, 2011

Mr. Jerry Wickham Alameda County Environmental Health Department Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject: Additional Soil Investigation Report

Dear Mr. Wickham

Please find enclosed the Additional Soil Investigation Report, dated December 21, 2011, for the Pacific Gas and Electric (PG&E) Oakland General Construction Yard at 4930 Coliseum Way, Oakland, California. This Investigation Report was prepared by AMEC Geomatrix, Inc. on behalf of PG&E.

Please contact me at (925) 415-6381 if you have any questions about this Investigation Report.

Sincerely,

anne Conner

Anne Conner Sr. Remediation Project Manager Pacific Gas and Electric Company

Enclosure: Additional Soil Investigation Report

Anne P. Conner Remediation Project Manager Environmental Remediation 3401 Crow Canyon Rd. San Ramon, CA 94583

(925) 415-6381 (925) 415-6852 apb1@pge.com

DECLARATION:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached Additional Soil Investigation Report are true and correct to the best of my knowledge.

anna Conver

Anne Conner Pacific Gas and Electric Company

Additional Soil Investigation Report Pacific Gas and Electric Company Oakland Construction Yard 4930 Coliseum Way Oakland, California

> Prepared for: Pacific Gas and Electric Company San Ramon, California

> > Prepared by: AMEC, Oakland, California

> > > December 21, 2011

Project 0130450007.0000F

December 21, 2011

Project 13045.007F

Anne Conner Senior Remediation Project Manager Pacific Gas and Electric Company 3401 Crow Canyon Road San Ramon, CA 94583

Subject: Additional Soil Investigation Report Pacific Gas and Electric Company, Oakland Construction Yard 4930 Coliseum Way, Oakland, California

Dear Ms. Conner:

AMEC Geomatrix, Inc. (AMEC) is pleased to provide the enclosed Additional Soil Investigation Report for PG&E's Oakland Construction Yard.

Please contact either of the undersigned at (510) 663-4100 with any questions.

Sincerely yours, AMEC Geomatrix, Inc. Yemia Hashimoto, CHG #782 Susan Gallardo, PE #C38154 Senior Hydrogeologist Principal Engineer

YH/SG/jh \\oad-fs1\deptdata\project\13000\13045.007.f\4000\add'I soil sampling report\text\amec cover ltr.docx

Enclosure: Additional Soil Investigation Report

AMEC Environment & Infrastructure 2101 Webster Street, 12th Floor Oakland, California 94612-3066 USA Tel: (510) 663-4100 Fax: (510) 663-4141 amec.com

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0		
	2.1 SITE DESCRIPTION AND SETTING2.2 SITE LITHOLOGY AND HYDROGEOLOGY	
	2.2 SITE LITHOLOGY AND HYDROGEOLOGY 2.3 PREVIOUS INVESTIGATION AND REMEDIATION ACTIVITIES	
	2.3.1 Historical Investigation and Remediation Activities	
	2.3.2 Investigation Objectives	
	2.3.3 Modification to the Work Plan	
3.0	SITE INVESTIGATION ACTIVITIES	4
0.0	3.1 Pre-Field Activities	
	3.2 SOIL SAMPLING METHODOLOGY	
	3.3 LABORATORY ANALYSES	
	3.4 QUALITY ASSURANCE AND QUALITY CONTROL	
	3.5 INVESTIGATION-DERIVED WASTE MANAGEMENT	6
4.0	RESULTS AND DISCUSSION	6
	4.1 SOIL SAMPLING OBSERVATIONS	6
	4.2 LEAD SOIL SAMPLE RESULTS	
	4.2.1 0- to 0.5-Foot Depth Interval	
	4.2.2 1.5- to 2.0-Foot Depth Interval	
	4.2.3 4.5- to 5.0-Foot Depth Interval	1
5.0	CONCLUSIONS	8
6.0	REFERENCES	8

TABLES

Table 1 Analytical Results of Lead in Sol	Table 1	Analytical Results of Lead in Soil
---	---------	------------------------------------

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Sampling Locations
- Figure 4 Lead in Soil, 0 to 0.5 Feet
- Figure 5 Lead in Soil, 1.5 to 2.0 Feet
- Figure 6 Lead in Soil, 4.5 to 5.0 Feet

TABLE OF CONTENTS (Continued)

APPENDICES

Appendix A Appendix B Appendix C Permit

ETIC Boring Logs

Quality Assurance/Quality Control Review and Analytical Laboratory Reports

ADDITIONAL SOIL INVESTIGATION REPORT Pacific Gas and Electric Company Oakland Construction Yard 4930 Coliseum Way Oakland, California

1.0 INTRODUCTION

On behalf of Pacific Gas and Electric (PG&E), AMEC Geomatrix, Inc. (AMEC), has prepared this Additional Soil Investigation Report ("report") for the PG&E Oakland Construction Yard site located at 4930 Coliseum Way in Oakland, California ("site"; see Figures 1 and 2). Lead is present in site soils as a result of sandblasting paint from a former aboveground low-pressure natural-gas holder tank ("former GHT"; Figure 2), and later dismantling and removing the tank in May 1990. The area was covered with an asphalt cap in 1993 after sample analysis indicated lead in soil at concentrations greater than 250 milligrams per kilogram (mg/kg).

This report presents the investigation rationale and methods used to further define the lateral and vertical extent of lead in soil in the vicinity of the former GHT. The report presents the results of an investigation conducted in November 2011 to address data gaps identified in the March 2011 *Soil Investigation Report*, which reported the results of a soil investigation conducted in October 2010 (AMEC, 2011a). The data from both reports will be used to determine a final remedy to address lead-impacted soil at the site. The scope of this investigation was described in the July 5, 2011, work plan submitted to the Alameda County Environmental Health Services Agency (ACEHS; AMEC, 2011b); the agency approved the work plan in a letter dated August 4, 2011.

Site conditions presented in this report are specifically related to potential chemical impacts in soil in the area of the former GHT. Previous investigations and remediation activities related to former underground storage tanks (USTs) and impacts attributed to off-site sources are contained in a number of reports for the site; these activities are summarized in the February 5, 2010, letter from PG&E and AMEC to ACEHS titled *Request to Discontinue Groundwater Monitoring* (AMEC, 2010a).

The following sections of the report present background information related to the site, a summary of previous sampling and remediation activities, the objectives of the investigation, the sampling methodology, and a summary of the investigation results and conclusions. The data collected from this investigation are intended to supplement the data presented in the *Soil Investigation Report*. Together, the data presented in this report and the *Soil Investigation Report*. Together, the data collected from previous investigations.

\\Oad-fs1\doc_safe\13000s\13045.007.F\4000\Add Soil Smp Rpt\1-Txt\Text.docx

2.0 BACKGROUND

This section provides a brief description of the site and setting, site lithology and hydrogeology, and investigation and remedial activities conducted at the site to date.

2.1 SITE DESCRIPTION AND SETTING

The approximately 5-acre site is bounded by Coliseum Way to the south, 50th Avenue to the southeast, and industrial properties to the north (Figures 1 and 2). The surrounding area is composed primarily of commercial and light industrial businesses. The site has been operated by PG&E as a natural-gas distribution center and equipment storage facility from at least the late 1930s until 1990, when the former GHT was removed. Since 1990, the site has been used as an equipment and vehicle storage facility. Full-time PG&E personnel occupy a small office on site. The office facilities are connected to the municipal water supply.

2.2 SITE LITHOLOGY AND HYDROGEOLOGY

The site is located approximately ¼ mile east of the margin of San Leandro Bay on a plain gently sloping toward San Francisco Bay. According to lithologic logs developed by others from investigations at the site, the uppermost portion of the site subsurface is underlain by interbedded deposits of clays, sands, and gravels to approximately 19 feet below ground surface (ft bgs), the maximum depth drilled. Based on depth-to-groundwater measurements collected from three monitoring wells during the most recent groundwater monitoring event (January 2011), groundwater depth ranged from approximately 2 to 3 ft bgs at the site. These depths to groundwater are consistent with previous depth-to-groundwater measurements, which have been documented as between 3.5 and 8 ft bgs. Groundwater flow direction was toward the south-southwest, with a hydraulic gradient of approximately 0.003 foot per foot; this flow direction and gradient is consistent with that previously documented.

2.3 PREVIOUS INVESTIGATION AND REMEDIATION ACTIVITIES

This section describes the results of historical (pre-2011) site investigation activities related specifically to lead in soil. A more comprehensive discussion of these and other site investigation activities is presented in previously submitted documents by AMEC (2010a, 2010b, and 2011a) and Aqua Resources, Inc. (ARI; 1992).

2.3.1 Historical Investigation and Remediation Activities

ARI conducted investigations at the site in 1990 and 1991 to delineate the lateral and vertical extent of lead in soil. ARI noted that 72 cubic yards of soil was excavated and stockpiled during the removal of the former GHT in 1990 and this soil was sampled by ARI in 1991 for off-

site disposal. However, as stated in the ARI report, two excavated areas of the site¹ may have been backfilled with on-site material affected by lead (ARI, 1992). PG&E conducted additional sampling and analysis for lead in 1992. These investigations provided a basis for the investigation conducted by AMEC in October 2010. The data collected during the 2010 soil investigation conducted by AMEC supersede those data provided from investigations completed by ARI and PG&E in 1990 through 1992. Analytical results from the AMEC 2010 investigation were reported to ACEHS in May 2011, and the results for lead are presented in Table 1. Figure 3 shows soil sampling locations for depth intervals between 0 and 8 ft bgs. The highest concentrations of lead in soil are detected in the surface samples collected from 0 to 0.5 ft bgs. Soil samples collected at depths below 4.5 ft bgs did not exceed the California Human Health Screening Level (CHHSL) for lead in soil for commercial/industrial land-use scenarios. At those locations where vertical sampling was conducted, lead concentrations in soil samples typically decrease with sample depth (see Figures 4 through 6).

Whereas the vertical distribution of lead appears to be defined in the vicinity of the former GHT (no concentrations of lead above industrial CHHSLs were detected in samples collected at 4.5 ft bgs), the lateral distribution of lead in shallow soil was not fully defined. Within the area of the 2010 investigation, the distribution of lead is not continuous, suggesting that mechanisms in addition to sandblasting, such as reworking of soil and laydown of the former GHT components during dismantling, may have contributed to a larger distribution of lead at the site beyond the immediate perimeter (within 30 feet) of the former GHT. The lateral extent of lead in soil in the near surface (0 to 0.5 ft bgs) and depth interval of 1 to 4.5 ft bgs was not defined o the southwest and northwest of the former GHT.

2.3.2 Investigation Objectives

The specific sampling objectives of the November 2011 soil investigation to address the data gaps identified in the work plan were as follows:

- Define the lateral extent of lead in soil in the near surface (0 to 0.5 ft bgs) to the south and north of the former GHT.
- Define the vertical extent of lead in soil within the depth interval of 1 to 5 ft bgs in areas south and north of the former GHT.

2.3.3 Modification to the Work Plan

The sampling approach provided in the work plan included extending the former grid of the area used in the 2010 soil investigation beyond the asphalt cap; specifically, an area of 10,800 square feet to the southwest and an area of 3,600 square feet to the northwest of the former GHT (AMEC, 2011b) were targeted for additional sampling. Samples were to be

¹ In addition to these 72 cubic yards, 2,000 cubic yards of soil containing petroleum hydrocarbons was excavated and off-hauled in November and December 1991. This soil was present in a former UST area, unrelated to the former GHT.

^{\\}Oad-fs1\doc_safe\13000s\13045.007.F\4000\Add Soil Smp Rpt\1-Txt\Text.docx

collected in 30-by-30-foot nodes, or approximately 16 sampling locations outside the former GHT cap footprint. Samples from nodes adjacent to the 2010 sample grid (J0, K0, BB9, C10, D11, E11, F11, F12, and G12) were to be analyzed, and samples collected from nodes beyond those (J00, K00, BB10, C11, D12, and E12) were to be placed on hold pending the results from the first sample set. Soil samples were to be collected from depths of 0.5, 2, and 5 feet. The samples collected from the first two depths were to be analyzed for lead. The samples collected at 5 feet were put on hold pending the results from the shallower depths.

The following items are variations from the work plan:

- Baker tanks for PG&E's hydrostatic testing program are currently staged over proposed locations C10, C11, D11, E11, and F11; soil samples were not collected at these five locations.
- The 5-foot-depth soil sample at location G13 was not collected because the sampling equipment could not retain the saturated soil.
- Additional soil borings were advanced at three locations (D14, E14, and G14).

3.0 SITE INVESTIGATION ACTIVITIES

AMEC retained ETIC Engineering of Pleasant Hill, California, to assist with the soil investigation. From November 1 through November 3, 2011, 17 soil borings were advanced at the site (Figure 3) by PeneCore Drilling of Woodland, California, using an air knife and hand augers.

3.1 PRE-FIELD ACTIVITIES

Before beginning field activities, AMEC and ETIC completed the following:

- Procured a drilling permit from Alameda County Public Works Agency, Water Resources (provided in Appendix A).
- Coordinated work with local PG&E personnel and subcontractors.
- Marked the proposed drilling locations.
- Contacted Underground Service Alert (USA), a private utility locator, and PG&E to identify whether subsurface utilities exist in the vicinity of the planned boring locations.

3.2 SOIL SAMPLING METHODOLOGY

PeneCore advanced 17 soil borings to define the lateral extent of lead in the near surface (0 to 0.5 ft bgs) and at a depth interval of 1 to 5 ft bgs to the southwest and northwest of the former GHT. Boring locations are shown on Figure 3.

A continuous core and a lithologic log were prepared for each boring by an ETIC field geologist under the supervision of a California Professional Geologist using visual-manual procedures of the American Society for Testing and Materials (ASTM) Standard D2488-00 for

guidance, which is based on the Unified Soil Classification System. Select soil sample intervals were screened for volatile organic vapors with a photoionization detector (PID) fitted with a 10.6-electron-volt lamp. The PID was calibrated daily using a 100 parts-per-millionvolume (ppmv) isobutylene standard. The PID was used to measure headspace concentrations of volatile organic compounds in plastic resealable bags containing aliquots of soil from the target lithologic unit. Lithologic logs, which include PID readings, are provided in Appendix B.

Soil borings were advanced with a hand auger. Soil samples were collected by advancing the hand auger to the desired sampling depth, and a slide-hammer fitted with stainless steel sleeves was used to collect the sample. Soil samples were sealed with Teflon sheets and plastic end caps.

All soil samples were labeled with unique sample identifiers designating the locations and depths; for example, E12-2.0+22 designates the sample collected from boring location E12 at a depth interval of 1.5 to 2.0 feet below 22 inches of asphalt surface and underlying subgrade materials. Samples were packed in resealable plastic bags, placed in ice-cooled chests, and shipped via courier under AMEC chain-of-custody procedures to TestAmerica Laboratories in San Francisco, a California-certified environmental laboratory.

Prior to and between coring and sampling at each borehole, nondedicated downhole equipment was decontaminated by PeneCore using a three-stage rinse with Alconox soap and potable water. After samples were collected, the boreholes were destroyed with Portland Type I-II neat cement grout placed from total depth to ground surface.

3.3 LABORATORY ANALYSES

Soil samples were analyzed for lead by TestAmerica using U.S. Environmental Protection Agency (U.S. EPA) Method 6010B.

3.4 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance and quality control (QA/QC) procedures during the investigation included adhering to protocols for field sampling and decontamination procedures.

The laboratory data generated during this investigation were subjected to a data completeness check of each data package and a review of all laboratory reporting forms. QA/QC samples included laboratory method blanks, laboratory control sample/laboratory control sample duplicate (LCS/LCSD) samples; and matrix spike/matrix spike duplicate (MS/MSD) samples. The data review (completeness, precision check, hold time, and analysis of blank results) was conducted in accordance with the *U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (U.S. EPA, 2010).

Based on the QA/QC review, the data are complete and usable. A discussion of the data QA/QC review is included in Appendix C.

3.5 INVESTIGATION-DERIVED WASTE MANAGEMENT

Soil and decontamination water generated during the investigation were temporarily stored on site pending profiling, transportation, and off-site disposal or recycling at an appropriate facility. The soil cuttings and purge water were stored in separate Department of Transportation– approved 55-gallon drums. The drums were clearly labeled with generator contact and phone number, drilling location(s), and date of generation and then placed in the PG&E-designated area pending disposal.

4.0 RESULTS AND DISCUSSION

The results for the soil investigation are summarized and discussed by depth in the following sections. Soil analytical results for lead are summarized in Table 1 and shown on Figures 4 through 6. In the table and on the figures, the analytical results are compared to health-based risk screening criteria. Specifically, concentrations of lead in soil were compared its CHHSL assuming a commercial/industrial site use of 320 mg/kg (Cal/EPA, 2005). CHHSLs are conservative screening levels that correspond to an acceptable risk level and reflect varying combinations of site characteristics, including both residential and industrial land use. Concentrations of chemicals detected below corresponding screening levels can be assumed to not pose a significant threat to human health relative to the associated land use. Conversely, an exceedance of the corresponding screening level does not necessarily indicate that adverse health effects will occur.

4.1 SOIL SAMPLING OBSERVATIONS

The soil boring logs provided in Appendix B document the subsurface observations. Section 3.2 above describes the PID measurement technique and the standard by which soil properties were described. PID readings for each boring log are presented in Appendix B. A hydrocarbon odor was reported in soil borings BB9, BB10, E12, E13, and J0 at varying depths. Staining was not observed in any of the borings. In one isolated soil boring, K00, a tar-like material with a hydrocarbon odor was observed in soil from approximately 2.0 to 2.5 feet below aggregate base. These differentiations are not considered significant to the investigation.

4.2 LEAD SOIL SAMPLE RESULTS

Soil samples were collected for the analysis of lead at 17 boring locations to the north and south of the former GHT to address data gaps remaining after the 2010 investigation.

4.2.1 0- to 0.5-Foot Depth Interval

Soil samples were collected and analyzed from the 0- to 0.5-foot depth interval at 13 borings (Figure 4). Of these 13 shallow soil samples, 3 samples collected south of the former GHT (sample locations C12, E12, and G13) contained lead at concentrations above the commercial/industrial CHHSL of 320 mg/kg; however, these exceedances are delineated laterally. The lateral extent of lead in soil in the 0 to 0.5 ft bgs depth is defined at the site to the north and southwest of the former GHT for commercial/industrial land-use scenarios as follows:

- Soil samples collected 30 feet beyond the former GHT perimeter in areas to the north (sample locations J0 and K0) did not contain lead at concentrations greater than the commercial/industrial CHHSL. These results bound elevated concentrations of lead in shallow soil that were detected during the October 2010 investigation (sample locations J1, K1, M2, and M3).
- Soil samples collected 120 feet beyond the former GHT perimeter in areas to the southwest (sample locations BB9 and BB10) did not contain lead concentrations exceeding commercial/industrial CHHSLs. Lead is present in soil samples collected north of these sample locations.

4.2.2 1.5- to 2.0-Foot Depth Interval

Soil samples were collected and analyzed from the 1.5- to 2.0-foot depth interval from 12 borings (Figure 5). Of these 12 shallow soil samples, 4 samples collected south of the former GHT (sample locations D12, F12, G12, and G13) contained lead at concentrations above the commercial/industrial CHHSL. The lateral distribution of lead in soil to the south of the former GHT is defined by sample locations D13 and G14. The lateral extent of lead in soil in the 1.5 to 2.0 ft bgs depth is defined at the site to the north and south of the former GHT for commercial/industrial land-use scenarios, as follows:

- Lead is not detected at concentrations exceeding the commercial/industrial CHHSL in soil samples collected from 1.5 to 2 ft bgs north of the former GHT.
- Soil samples collected 120 feet beyond the former GHT perimeter in areas to the southwest (sample locations BB9 and BB10), south (sample locations C12, D13 and E12), and southeast (G14) did not contain lead concentrations exceeding commercial/industrial CHHSLs.

4.2.3 4.5- to 5.0-Foot Depth Interval

Soil samples collected from sample locations south of the former GHT (D12, F12, and G12) were analyzed from the 4.5- to 5.0-foot depth interval to delineate the vertical extent of lead impacts from the former GHT (Figure 6). All the sample results are below the commercial/industrial CHHSL.

5.0 CONCLUSIONS

The lateral and vertical distributions of lead are defined relative to its industrial CHHSL, except at shallow location C12. The elevated detections of lead in shallow soil are bounded by other soil sample results, except to the west of sample location C12. West of this location is the street, which is paved; as noted in the work plan (AMEC, 2011b), the paved surface would have prevented the aerial deposition of lead west of C12. As such, the presence of lead at concentrations greater than the commercial/industrial CHHSL is considered defined to the edge of the unpaved surface.

The purpose of this additional soil investigation was to further define the lateral and vertical extent of lead in soil outside the asphalt cap boundary of the former GHT in order to evaluate a final remedy to address lead-impacted soil at the site. Based on the analytical results reported herein, the investigation purpose is achieved. Immediately around the former GHT and most of the facility is covered with asphalt. The existing asphalt cap serves as the interim remedy for much of the site; the asphalt cap was installed specifically to limit contact with lead in soil, and it has been intact, inspected, and repaired for nearly two decades. Potential final remedial alternatives will be evaluated and may include the measure currently in place (asphalt cap). Remedial alternatives will consider the data generated during this investigation, future use of the site, and relative risk.

6.0 REFERENCES

- AMEC Geomatrix (AMEC), 2010a, Request to Discontinue Groundwater Monitoring, PG&E Oakland Construction Yard, 4950 Coliseum Way, Oakland, California, February 5.
- AMEC, 2010b, Soil Investigation Work Plan, PG&E Oakland Construction Yard, 4950 Coliseum Way, Oakland, California, September 16.
- AMEC, 2011a, Soil Investigation Report, PG&E Oakland Construction Yard, 4950 Coliseum Way, Oakland, California, March 17.
- AMEC, 2011b, Additional Soil Investigation Work Plan, PG&E Oakland Construction Yard, 4950 Coliseum Way, Oakland, California, July 5.
- Aqua Resources, Inc. (ARI), 1992, Preliminary Site Assessment and Work Plan for Additional Investigation, PG&E, ENCON-GAS Transmission and Distribution Construction Yard, Former GHT Area, 4930 Coliseum Way, Oakland, California, March 6.
- California Environmental Protection Agency (Cal/EPA), 2005, California Human Health Screening Levels for Soil and Comparison to Other Potential Environmental Concerns: Table 1 in Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties guidance document, January.
- Office of Environmental Health Hazard Assessment (OEHHA), 2010, Soil-Screening Numbers—Updated Table, http://www.oehha.ca.gov/risk/chhsltable.html, September 23.
- U.S. EPA, 2010, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review: USEPA-540-R-10-011, January.

ANALYTICAL RESULTS OF LEAD IN SOIL¹

PG&E Oakland—General Construction Yard

Oakland, California

All concentrations reported in units of milligrams per kilogram

Sample Location			Sample Date ²	Lead		
BB9	0.5	BB9-0.5+13	11/2/2011	6.8 J ³		
	2.0	BB9-2.0+13	11/2/2011	27 J		
BB10	0.5	BB10-0.5+16	11/2/2011	30 J		
	2.0	BB10-0.5+16	11/2/2011	45 J		
C2	0.5	C2-0.5+13	10/25/2010	14 J+ ⁴		
	2.0	C2-2.0+13	10/25/2010	40 J+		
C4	0.5	C-4-0.5+15	10/25/2010	240		
	2.0	C-4-2.0+15	10/25/2010	35 J+		
C6	0.5	C6-0.5+18	10/26/2010	310		
	2.0	C6-2.0+18	10/26/2010	18 J+		
C8	0.5	C8-0.5+24	10/26/2010	180		
	2.0	C8-2.0+24	10/26/2010	14 J+		
C7	0.5	C-7-0.5+24	10/26/2010	36 J+		
	2.0	C-7-2.0+24	10/26/2010	34 J+		
C9	0.5	C-9-0.5+23	10/26/2010	340 ⁵		
	2.0	C-9-2.0+23	10/26/2010	11 J+		
C12	0.5	C12-0.5+21	11/2/2011	1800 J		
	2.0	C12-2.0+21	11/2/2011	42 J		
D2	0.5	D-2-0.5+10	10/25/2010	9.7 J+		
	2.0	D-2-2.0+10	10/25/2010	220		
	5.0	D-2-5.0+10	10/25/2010	6.0 J+		
D3	0.5	D-3-0.5+10	10/25/2010	70 J+		
	2.0	D-3-2.0+10	10/25/2010	18 J+		
D4	0.5	D4-0.5+13	10/25/2010	290		
	2.0	D4-2.0+13	10/25/2010	26 J+		
D5	0.5	D5-0.5+12	10/25/2010	330		
D5R	0.5	D5R-0.5+13	10/25/2010	2400		
	2.0	D5R-2.0+13	10/25/2010	57 J+		
D6	0.5	D6-0.5+18	10/25/2010	320		
	2.0	D6-2.0+18	10/25/2010	14 J+		
D7	0.5	D-7-0.5+28	10/26/2010	110		
	2.0	D-7-2.0+28	10/26/2010	9.6 J+		
D8	0.5	D-8-0.5+20	10/26/2010	150		
	2.0	D-8-2.0+20	10/26/2010	16 J+		
D9	0.5	D9-0.5+18	10/26/2010	24 J+		
	2.0	D9-2.0+18	10/26/2010	25 J+		
D10	0.5	D10-0.5+24	10/26/2010	620		
	2.0	D10-2.0+24	10/26/2010	210		
	5.0	D10-5.0+24	10/26/2010	5.0 J+		

ANALYTICAL RESULTS OF LEAD IN SOIL¹

PG&E Oakland—General Construction Yard

Oakland, California

All concentrations reported in units of milligrams per kilogram

Sample Location	Sample Depth (ft bas)	Sample ID	Sample Date ²	Lead
D12	0.5	D12-0.5+21	11/2/2011	32 J
	2.0	D12-2.0+21	11/2/2011	360 J
	5.0	D12-5.0+21	11/2/2011	5.3
D13	0.5	D13-0.5+21	11/3/2011	31 J
	2.0	D13-2.0+21	11/3/2011	61 J
E2	0.5	E2-0.5+10	10/25/2010	110
	2.0	E2-2.0+10	10/25/2010	41 J+
E3	0.5	E-3-0.5+12	10/25/2010	1300
	2.0	E-3-2.0+12	10/25/2010	120
	5.0	E-3-5.0+12	10/25/2010	3.8 J+
E4	0.5	E-4-0.5+10	10/25/2010	1400
	2.0	E-4-2.0+10	10/25/2010	14 J+
E5	0.5	E-5-0.5+15	10/25/2010	8700
	2.0	E-5-2.0+15	10/25/2010	2200
	5.0	E-5-5.0+15	10/25/2010	6.1 J+
E6	0.5	E6-0.5+24	10/26/2010	57 J+
	2.0	E6-2.0+24	10/26/2010	130
	5.0	E6-5.0+24	10/26/2010	4.6 J+
E7	0.5	E7-0.5+24	10/26/2010	36 J+
	2.0	E7-2.0+24	10/26/2010	140
	5.0	E7-5.0+24	10/26/2010	4.3 J+
E8	0.5	E8-0.5+24	10/26/2010	42 J+
	2.0	E8-2.0+24	10/26/2010	420
	5.0	E8-5.0+24	10/26/2010	6.8 J+
E9	0.5	E9-0.5+26	10/26/2010	50 J+
	2.0	E9-2.0+26	10/26/2010	53 J+
E10	0.5	E-10-0.5+24	10/26/2010	220
	2.0	E-10-2.0+24	10/26/2010	460
	5.0	E-10-5.0+24	10/26/2010	4.7 J+
E12	0.5	E12-0.5+22	11/2/2011	2600 J
	2.0	E12-2.0+22	11/2/2011	18 J
E13	0.5	E13-0.5+12	11/3/2011	25
F1	0.5	F1-0.5+11	10/25/2010	11 J+
	2.0	F1-2.0+11	10/25/2010	100
	5.0	F1-5.0+11	10/25/2010	8.8 J+
F2	0.5	F2-0.5+13	10/25/2010	150 ⁶
	0.5	F2-0.5+13	10/25/2010	130
	2.0	F2-2.0+13	10/25/2010	55 ⁶
	2.0	F2-2.0+13	10/25/2010	57 J+
	2.0	122.0110	10/20/2010	0101

F

ANALYTICAL RESULTS OF LEAD IN SOIL¹

PG&E Oakland—General Construction Yard

Oakland, California

All concentrations reported in units of milligrams per kilogram

Sample Location	Sample Depth (ft bas)	Sample ID	Sample Date ²	Lead
F8	0.5	F-8-0.5+20	10/26/2010	4400 ⁶
	0.5	F-8-0.5+20	10/26/2010	9800
	2.0	F-8-2.0+20	10/26/2010	730 ⁶
	2.0	F-8-2.0+20	10/26/2010	200
	5.0	F-8-5.0+20	10/26/2010	4.8 J+
F9	0.5	F-9-0.5+24	10/26/2010	540
10	2.0	F-9-2.0+24	10/26/2010	120
	5.0	F-9-5.0+24	10/26/2010	5.5 J+
F10	0.5	F10-0.5+18	10/26/2010	4700
	2.0	F10-2.0+18	10/26/2010	160
	5.0	F10-5.0+18	10/26/2010	6.8 J+
F12	0.5	F12-0.5+12	11/3/2011	170 J
	2.0	F12-2.0+12	11/3/2011	530 J
	5.0	F12-5.0+12	11/3/2011	17
G1	0.5	G1-0.5+10	10/25/2010	72 J+
	2.0	G1-2.0+10	10/25/2010	5.0 J+
G8	0.5	G8-0.5+24	10/27/2010	2500
	2.0	G8-2.0+24	10/27/2010	140
	5.0	G8-5.0+24	10/27/2010	7.6 J+
	6.0	G8-6.0+24	10/27/2010	6.7 J+
	8.0	G8-8.0+24	10/27/2010	11 J+
G9	0.5	G-9-0.5+22	10/27/2010	21 J+
	2.0	G-9-2.0+22	10/27/2010	170
	5.0	G-9-5.0+22	10/27/2010	5.3 J+
G10	0.5	G-10-0.5+24	10/27/2010	230
	2.0	G-10-2.0+24	10/27/2010	16 J+
G11	0.5	G-11-0.5+20	10/27/2010	500
	2.0	G-11-2.0+20	10/27/2010	6.2 J+
G12	0.5	G12-0.5+16	11/2/2011	190 J
	2.0	G12-2.0+16	11/2/2011	680 J
	5.0	G12-5.0+16	11/2/2011	6.8
G13	0.5	G13-0.5+12	11/2/2011	340 J
	2.0	G13-2.0+12	11/2/2011	590 J
G14	0.5	G14-0.5+14	11/3/2011	47
	2.0	G14-2.0+14	11/3/2011	51
H9	0.5	H-9-0.5+15	10/28/2010	14.0 J+
H9R	0.5	HR9-0.5+19	10/28/2010	69 J+
	2.0	HR9-2.0+19	10/28/2010	55 J+
H10	0.5	H10-0.5+12	10/27/2010	110 J+
	2.0	H10-2.0+12	10/27/2010	70 J+

ANALYTICAL RESULTS OF LEAD IN SOIL¹

PG&E Oakland—General Construction Yard

Oakland, California

All concentrations reported in units of milligrams per kilogram

Sample Location	Sample Depth (ft bas)	Sample ID	Sample Date ²	Lead
H11	0.5	H11-0.5+12	10/27/2010	24 ⁶
	0.5	H11-0.5+12	10/27/2010	20 J+
	2.0	H11-2.0+12	10/27/2010	6.1 ⁶
	2.0	H11-2.0+12	10/27/2010	3.9 J+
H12	0.5	H-12-0.5+9	10/27/2010	150
H12R	0.5	H12R-0.5+6	10/27/2010	660
	2.0	H12R-2.0+6	10/27/2010	53 J+
19	0.5	19-0.5+24	10/28/2010	660
	2.0	19-2.0+24	10/28/2010	210
	5.0	19-5.0+24	10/28/2010	7.1 J+
I10R	0.5	I-10R-0.5+15	10/28/2010	2600
	2.0	I-10R-2.0+15	10/28/2010	9.3 J+
I10	0.5	I-10-0.5+15	10/27/2010	24 J+
	2.0	I-10-2.0+15	10/27/2010	320
	refusal	NA	NIA	NA
	at 5.0	NA	NA	NA
l11	0.5	l11-0.5+15	10/27/2010	22 J+
	2.0	l11-2.0+15	10/27/2010	350
	5.0	l11-5.0+15	10/27/2010	6.9 J+
JO	0.5	J0-0.5+21	11/1/2011	21 J
	2.0	J0-2.0+21	11/1/2011	51 J
J1	0.5	J1-0.5+16	10/29/2010	550
	2.0	J1-2.0+16	10/29/2010	110 J+
	5.0	J1-5.0+16	10/29/2010	8.5 J+
	6.0	J1-6.0+16	10/29/2010	11 J+
	8.0	J1-8.0+16	10/29/2010	8.8 J+
J9	0.5	J-9-0.5+24	10/27/2010	1200
	2.0	J-9-2.0+24	10/27/2010	1200
	5.0	J-9-5.0+24	10/27/2010	7.7 J+
J10	0.5	J10-0.5+16	10/27/2010	21 J+
	2.0	J10-2.0+16	10/27/2010	220
	5.0	J10-5.0+16	10/27/2010	5.1 J+
J11	0.5	J11-0.5+15	10/27/2010	6.5 J+
	2.0	J11-2.0+15	10/27/2010	210
	5.0	J11-5.0+15	10/27/2010	7.0 J+
J12	0.5	J-12-0.5+9	10/27/2010	94
	2.0	J-12-2.0+9	10/27/2010	43 J+
K0	0.5	K0-0.5+20	11/1/2011	110 J
	2.0	K0-2.0+20	11/1/2011	24 J

ANALYTICAL RESULTS OF LEAD IN SOIL¹

PG&E Oakland—General Construction Yard

Oakland, California

All concentrations reported in units of milligrams per kilogram

Sample	Sample Depth	Sample	Sample	
Location	(ft bas)	ID	Date ²	Lead
K1	0.5	K1-0.5+17	10/29/2010	1200
	2.0	K1-2.0+17	10/29/2010	5.4 J+
K10	0.5	K10-0.5+18	10/27/2010	16 J+
	2.0	K10-2.0+18	10/27/2010	290
	5.0	K10-5.0+18	10/27/2010	9.4 J+
K11	0.5	K11-0.5+15	10/27/2010	15 J+
	2.0	K11-2.0+15	10/27/2010	330
	5.0	K11-5.0+15	10/27/2010	7.5 J+
K12	0.5	K-12-0.5+9	10/27/2010	220
	2.0	K-12-2.0+9	10/27/2010	240
	5.0	K-12-5.0+9	10/27/2010	7 J+
L1	0.5	L1-0.5+15	10/28/2010	180
	2.0	L1-2.0+15	10/28/2010	6.0 J+
	5.0	L1-5.0+15	10/28/2010	9.7 J+
L8	0.5	L8-0.5+24	10/28/2010	120 ⁶
	0.5	L8-0.5+24	10/28/2010	16 J+
	2.0	L8-2.0+24	10/28/2010	6 ⁶
	2.0	L8-2.0+24	10/28/2010	92 J+
	5.0	L8-5.0+24	10/28/2010	7.1 J+
L9R	0.5	L9R-0.5+24	10/28/2010	300
	2.0	L9R-2.0+24	10/28/2010	6.4 J+
L10	0.5	L-10-0.5+15	10/27/2010	7.4 J+
	2.0	L-10-2.0+15	10/27/2010	130
	5.0	L-10-5.0+15	10/27/2010	7.5 J+
L11	0.5	L11-0.5+12	10/27/2010	84 J+
	2.0	L11-2.0+12	10/27/2010	210
	5.0	L11-5.0+12	10/27/2010	9.3 J+
L12	0.5	L-12-0.5+9	10/27/2010	530
	2.0	L-12-2.0+9	10/27/2010	610
	5.0	L-12-5.0+9	10/27/2010	5.2 J+
M1	0.5	M1-0.5+12	10/29/2010	43 J+
	2.0	M1-2.0+12	10/29/2010	11 J+
M2	0.5	M2-0.5+16	10/29/2010	450 ⁶
	0.5	M2-0.5+16	10/29/2010	1100
	2.0	M2-2.0+16	10/29/2010	49 J+ ⁶
	2.0	M2-2.0+16	10/29/2010	9.7 J+

F

ANALYTICAL RESULTS OF LEAD IN SOIL ¹

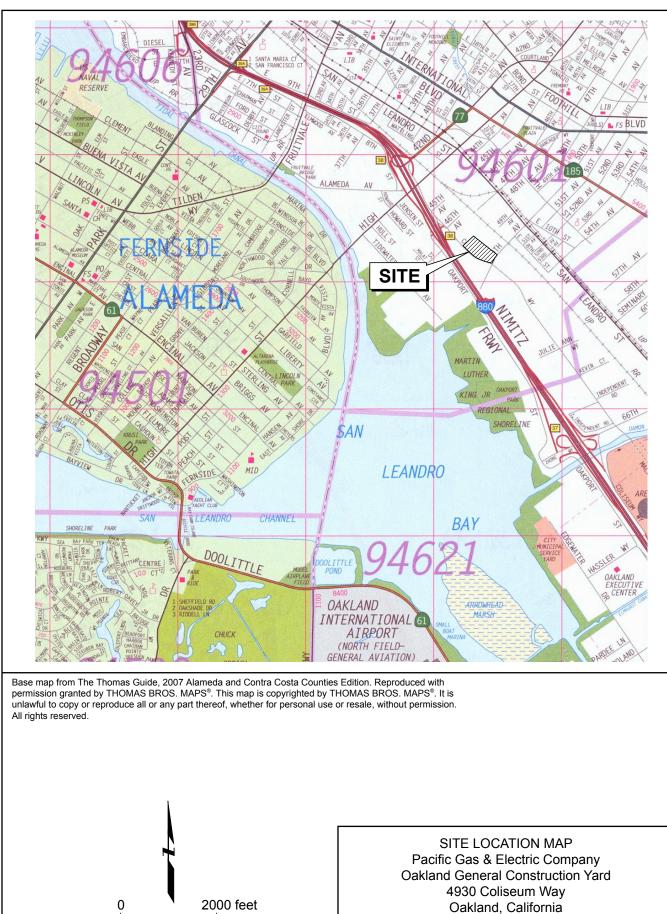
PG&E Oakland—General Construction Yard

Oakland, California

All concentrations reported in units of milligrams per kilogram

Sample Location	Sample Depth (ft bas)	Sample ID	Sample Date ²	Lead	
M3	0.5	M3-0.5+14	10/28/2010	730	
	2.0	M3-2.0+14	10/28/2010	5.8 J+	
	5.0	M3-5.0+14	10/28/2010	8.5 J+	
	6.0	M3-6.0+14	10/28/2010	6.1 J+	
	8.0	M3-8.0+14	10/28/2010	10 J+	
M4	0.5	M-4-0.5+15	10/28/2010	120 J+	
	2.0	M-4-2.0+15	10/28/2010	170	
M5	0.5	M5-0.5+22	10/28/2010	220	
	2.0	M5-2.0+22	10/28/2010	4.8 J+	
M6	0.5	M-6-0.5+20	20 J+		
	2.0	M-6-2.0+20	10/28/2010	240	
	5.0	M-6-5.0+20	10/28/2010	5.0 J+	
M7	0.5	M-7-0.5+22	10/28/2010	21 J+	
	2.0	M-7-2.0+22	10/28/2010	9.6 J+	
M9	0.5	M-9-0.5+12	1100		
	CHHSLs Industri	al/Commercial 7,8		320	

Notes


- Soil samples were collected by ETIC Engineering of Pleasant Hill, California, and analyzed by TestAmerica for lead and other Title 22 metals using U.S. EPA Method 6010B, and for mercury using U.S. EPA Method 7470A.
- 2. Gray shading indicates the samples were collected in November 2011.
- 3. J indicates the result is an estimated quantity.
- 4. J+ indicates the result is an estimated quantity, but the result may be biased high.
- 5. Bold type indicates constituent detected above the commercial CHHSL.
- 6. The laboratory analyzed the sample for lead twice. Due to soil matrix heterogeneities, the lead values differ.
- 7. Office of Environmental Health Hazard Assessment (OEHHA), 2005, Soil-Screening Numbers (mg/kg soil) for Nonvolatile Chemicals Based on Total Exposure to Contaminated Soil: Inhalation, Ingestion and Dermal Absorption: Table 5 in Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil, January.
- 8. Office of Environmental Health Hazard Assessment (OEHHA), 2009, Revised California Human Health Screening Levels for Lead, http://www.oehha.ca.gov/risk/pdf/LeadCHHSL091709.pdf.

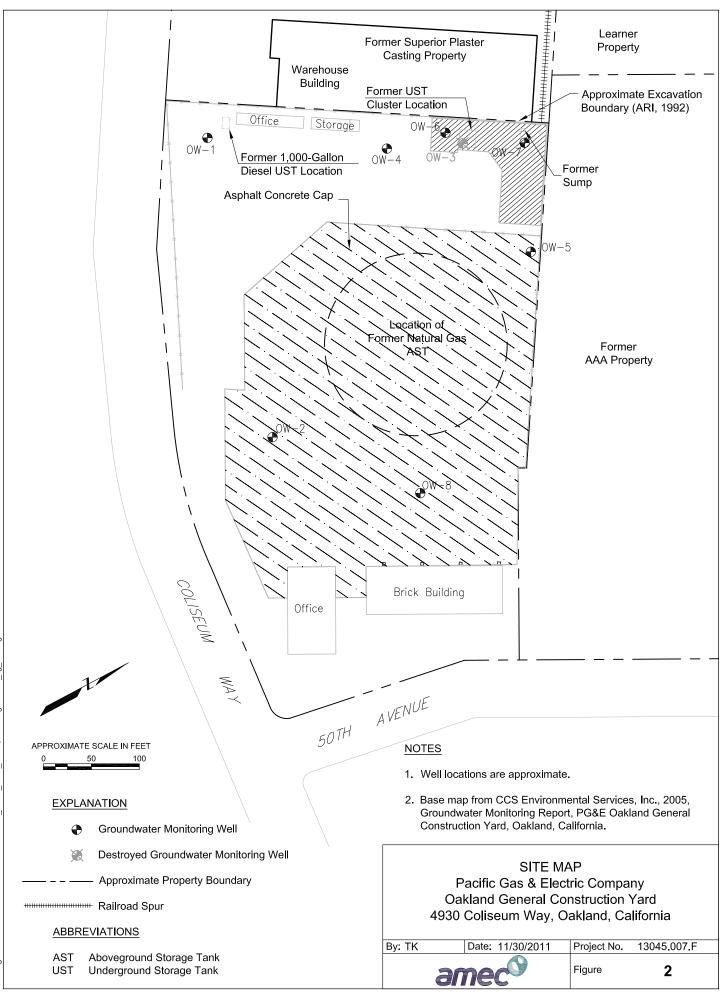
Abbreviations

- ft bas= feet below asphalt subgrade
- U.S. EPA = United States Environmental Protection Agency NA = not applicable

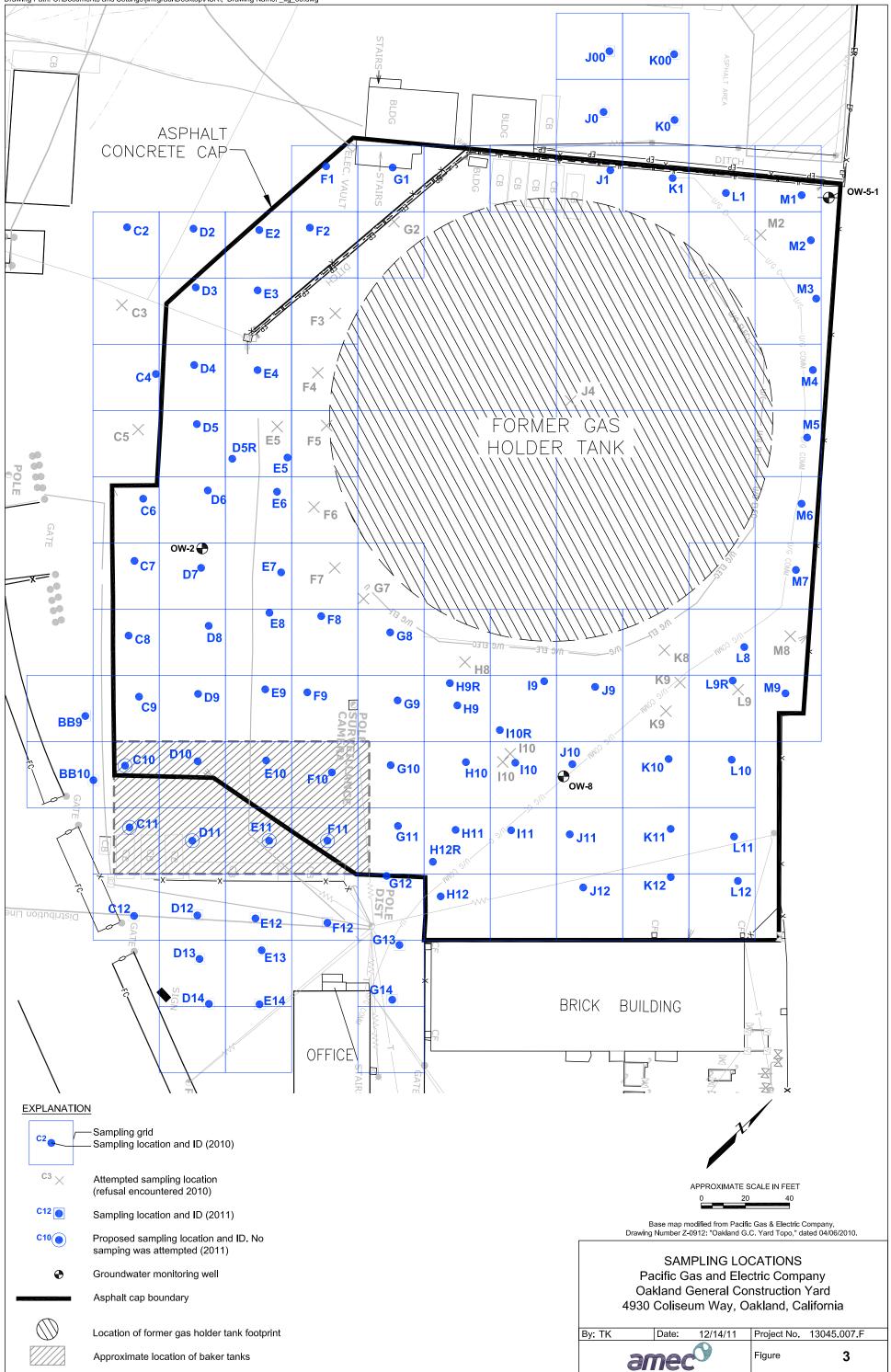
FIGURES

Date: 11/30/2011

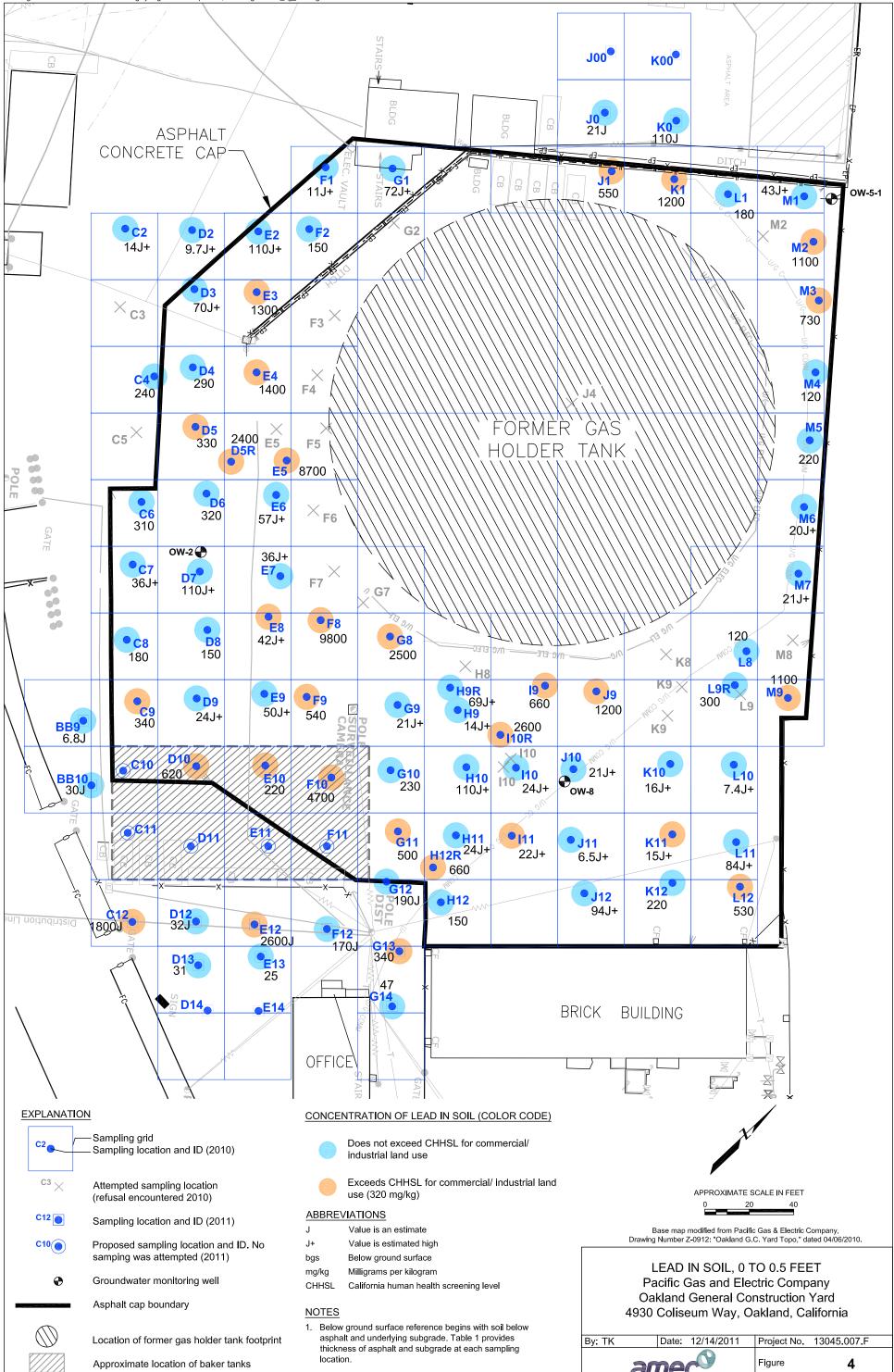

ame

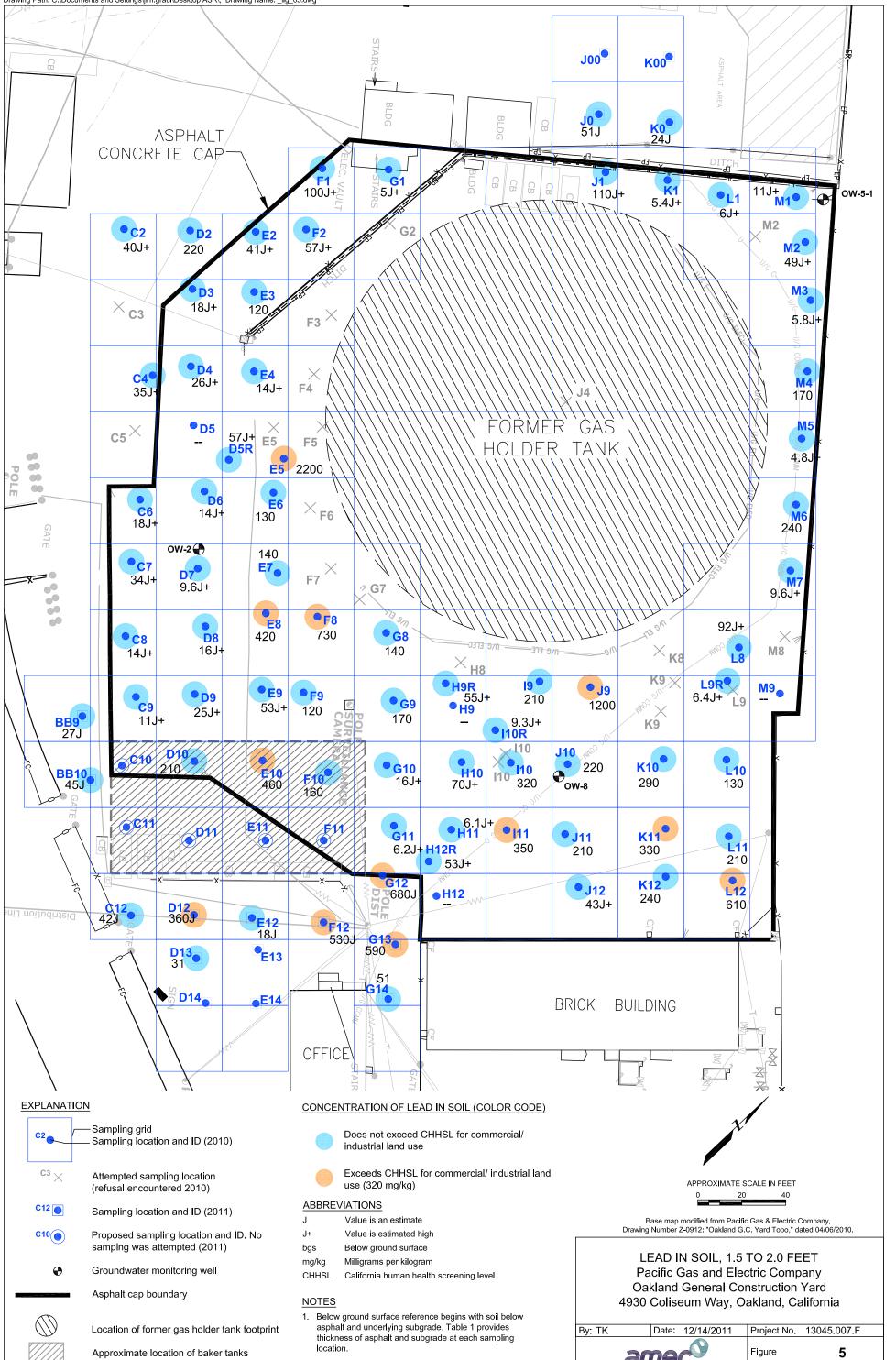

Project No.

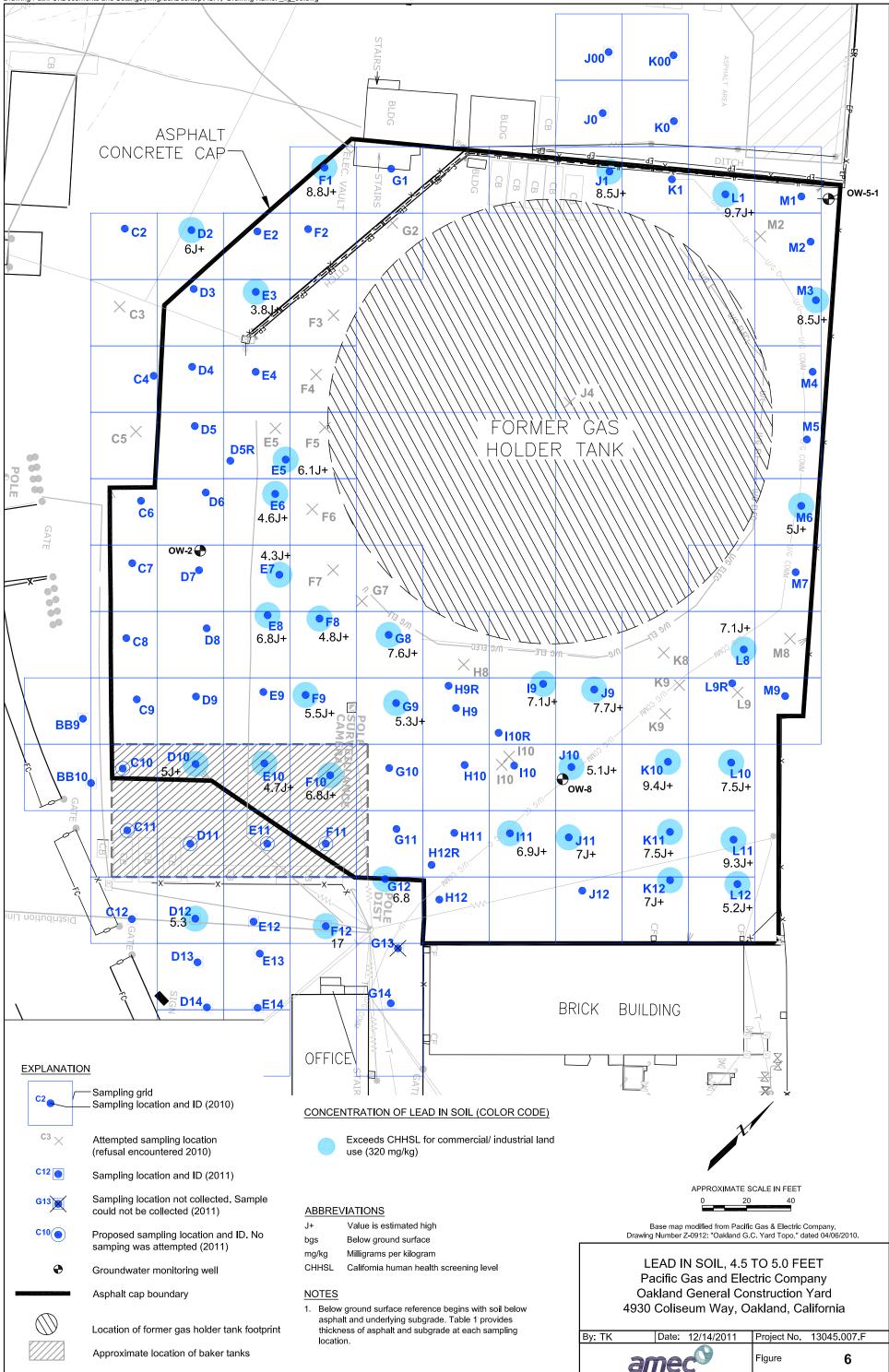
Figure


13045.007.F 1

By: TK




Plot Date: 11/30/11 - 10:50am, Plotted by: kristin.uber Drawing Path: S:\13000\13045\13045.007.F\task_02\11_1108_ASIR\, Drawing Name: _fig_02.dwg Plot Date: 12/14/11 - 3:07pm, Plotted by: jim.graul Drawing Path: C:\Documents and Settings\jim.graul\Desktop\ASR\, Drawing Name: _fig_03.dwg


Plot Date: 12/14/11 - 3:09pm, Plotted by: jim.graul Drawing Path: C:\Documents and Settings\jim.graul\Desktop\ASR\, Drawing Name: _fig_04.dwg

Plot Date: 12/14/11 - 3:09pm, Plotted by: jim.graul Drawing Path: C:\Documents and Settings\jim.graul\Desktop\ASR\, Drawing Name: _fig_05.dwg

Plot Date: 12/14/11 - 3:10pm, Plotted by jim graul Drawing Path: C:\Documents and Settings\jim.graul\Desktop\ASR\, Drawing Name: _fig_06.dwg

APPENDIX A

Permit

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(5					
Application Approved	d on: 10/19/2011 By jamesy	Permit Numbers: W2011-0647 Permits Valid from 11/01/2011 to 11/03/2011				
Application Id:	1318281525109	City of Project Site: Oakland				
Site Location: Project Start Date: Assigned Inspector:	4930 Coliseum Way, Oakland, California 11/01/2011 Contact Steve Miller at (510) 670-5517 or stever	Completion Date:11/03/2011 vem@acpwa.org				
Applicant:	AMEC Geomatrix - Rupeet Malhotra	Phone: 510-663-4185				
Property Owner:	2101 Webster Street, 12th Floor, Oakland, CA 9 Pacific Gas and Electric	Phone:				
Client:	3401 Crow Canyon Road, San Ramon, CA 945 ** same as Property Owner **	83				
	Receipt Number: WR2011-0305 Payer Name : AMEC					

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 16 Boreholes Driller: PeneCore Drilling - Lic #: 906899 - Method: Hand

Work Total: \$265.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2011-	10/19/2011	01/30/2012	16	4.00 in.	5.00 ft
0647					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and

Alameda County Public Works Agency - Water Resources Well Permit

coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

ETIC Boring Logs

SETIC										CLIENT AMEC/PG&E		E NUMBER	Y-02	LC	CATION 4930 Colise Oakland	eum Way d, CA	
										DRILLING AND SAMPLING METHODS Hand augered to approximately 6 feet below aggregate base (bAB). Collected soil samples at 0.5, 2, 5, and 6 feet bAB in 2" X 6" s.s. liners.							
	COORDI	NATES: N2	2105363.95	5007 :E606	5845.9727	72				WATER LEVEL							
	ELEVATION TOP OF CASING:									TIME					START TIME	FINISH TIME	
	CASING BELOW SURFACE: DRILLING COMPANY: PeneCore Drilling									DATE				-	1250 DATE	1440 DATE	
		SE NUN								REFERENCE					11/2/11	11/2/11	
		HES I HÉ	"9/ I.R	0		ш		U U	SU		enholt ()" Agaraga	to Roce		lock		
	DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAMPL	IL SAMP	GRAPHIC LOG		ESCRIPTION BY:)" Aggrega	Review	न म स्त्री	by: II	.0 0	
	<u> </u>		8 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1			AIR	NO II	53			<u> </u>	uko Mamiya		•••	3. Th	Theef	
	72	72		8.7 4.8	0-		X	CL	1	" ASPHALT AND 9" AGG ILTY CLAY - dark grayish			plasticity, n	noist	t.	\bigcirc	
				3.2	1-				Ċ	strong hydrocarbon odor.						n	
					2-		Х		0	dor.							
				-	3			ĊĹ									
									-	with little sand, fine grained sand.							
				41.0	4-		∇	//CL//	S	diminishing in sand conte ILTY CLAY WITH TRACE		ck (2.5Y 2.5/1),	soft, low pl	lastic	city, fine graine	ed	
				2.8	5			CL	s	and, very moist to wet. ILTY CLAY - very dark gr ydrocarbon odor.	ayish brown	(10YR 3/2), stiff	f, low plasti	icity,	moist, slight		
					6		X] - B	becoming olive gray (5Y 4/2), with trace sand, find grained. Boring terminated at approximately 6 feet below aggregate base rock. Boring filled and sealed with neat cement and capped with concrete to existing grade.							
					7-				S	ealed with neat cement ar	id capped w	th concrete to e	xisting grad	de.			
				-	8-			_									
					0							ERED G	EOIO				
			•		9			-				N /					
					10—			-			a	THOMAS E.	NEELT V	4			
2/1/11					11—			-				No: 76					
GDT 1					10						Ň	TRO	-OF				
ETIC.					12							OF CAL		Q			
W.GPJ					13—						,	2	S HLOP	\sim	T		
GS-NE					14—			-						\sim			
NGLO					15—												
<u>Y_BOR</u>					40												
ND GC					16												
DAKLAI					17—												
RING (18											, I	
OIL BOI					19—												
LOG OF SOIL BORING OAKLAND GCY BORING LOGS-NEW. GPJ ETIC. GDT 12/1/11																	
ğ					20												

		-		\sim						CLIENT	SIT	E NUMBER		LO	CATION	al 1	
										AMEC/PG&E		AM-OAKGC	Y-02		4930 Colise Oakland		
		6144	JUNELI							DRILLING AND SAMPLING METHOD	Hand a	ugered to appro Collected soil s	ximately (6 fee	et below agg	regate base	
L	OG	OF SC	DIL BO	RING:		E	BB	10			2" X 6"	s.s. liners.	ampies a	10.5	, z, 5, anu 6	IEEL DAD III	
		NATES NO	2105346.69	9945 :E606	5869 641	94				WATER LEVEL							
			F CASING			54				TIME					START TIME	FINISH TIME	
c	CASING	BELOW SI	JRFACE:							DATE					1340	1430	
				: PeneC		lling	J			REFERENCE					DATE 11/2/11	DATE 11/2/11	
				57-9068	99				Is	URFACE CONDITIONS							
	1		BLOWS / 6" SAMPLER	OING	д	APLE	SAMPLE	HIC	1		sphalt, 1	3" Aggrega	ate Bas	ie F	Rock		
	DRIVEN	RECOVER	BLOW	OVA READING	DEPTH (feet)	AIR SAM	WATER SOIL SA	GRAPHIC	3 D	ESCRIPTION BY:	· · · · · · · · · · · · · · · · · · ·	ruko Mamiya	Renk	ied'	NE: Col	Meel.	
					0-					3" ASPHALT AND 13" AG						\sim	
	72	72	-	15.3			Å			SILTY CLAY - black (2.5Y odor.	2.5/1), stiff,	low plasticity, sli	ghtly moist	t, slig	ght hydrocarbo	on	
				2.9	1					- increasing in silt content,	becoming d	ark grayish brow	n (2.5Y 4/2	2).			
					2		Å			CLAYEY SILT WITH TRAC	E SAND - d	ark grayish brow	/n (2.5Y 4/2	2), st	tiff, low plastic	ity,	
_					3			ML		ine grained sand, moist, slight hydrocarbon odor.							
										SILTY CLAY WITH LITTLE sand, very moist to wet.	SAND - bla	ck (2.5Y 2.5/1),	soft, low pl	lastic	city, fine graine	ed	
				1.5	5					CLAY WITH LITTLE SILT -	- olive gray (5Y 4/2), stiff, lov	v plasticity,	moi	st.		
\vdash				1.5	6		Х			Boring terminated at approximately 6 feet below aggregate base rock. Boring filled and sealed with neat cement and capped with concrete to existing grade.							
					7			- ·	8								
					8			_				DE	DGEO				
					9—			-				197		ςΟ.	7		
					10			-				THOM	AS E. NEE 1.≥0.1	aN.			
-					10—							Exp	1.30.1	≤			
12/1/1					11—			-				No.). 765 2	k	, /		
C.GDT					12—							STATE OF	CALLEO	Ŋ	/		
					10			-					10		;		
EW.GP					13							\mathcal{S}	7 11	se)	\bigvee		
N-SSC					14									0			
NGLO					15—										·		
BOR								-									
					16												
AKLAN					17—			-									
0 9N					18—			1									
BORI								-									
LOG OF SOIL BORING OAKLAND GCY_BORING LOGS-NEW.GPJ ETIC.GDT 12/1/1/					19—			-									
000					20			1									

Image: State of the intervention of the interventis of the interventis of the intervention of the intervention of t	FINISH TIME 1120 DATE 11/2/11								
COORDINATES: N2105317.95265 :EB065327.04887 ELEVATION TOP OF CASING: CASING BELOW SURFACE: DRILLING COMPANY: PeneCore Drilling LICENSE NUMBER: C57-906899 INCHES TOTO TOTO SURFACE DRILLING COMPANY: PeneCore Drilling LICENSE NUMBER: C57-906899 INCHES TOTO	TIME 1120 DATE								
ELEVATION TOP OF CASING: TIME TIME CASING BELOW SURFACE: DATE 1045 DRILLING COMPANY: PeneCore Drilling DATE DATE LICENSE NUMBER: C57-906899 SURFACE CONDITIONS ATE NICHES SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock DESCRIPTION BY: Yuko Mamiya Yuko Mamiya 60 60 0.9 1 1 0.6 2 4" Asphalt, 17" Aggregate Base Rock DESCRIPTION BY: Yuko Mamiya Yuko Mamiya 60 60 0.9 1 1 0.6 2 4" Asphalt, TAND 17" Aggregate Base Rock SILTY CLAY WITH TRACE SAND - black (2.5Y 2.5/1), soft, low plasticity, fine graind sand, moist SLTY CLAY WITH TRACE SAND - black (2.5Y 2.5/1), soft, low plasticity, fine graind sand, moist SILTY CLAY WITH LITTLE CLAY - very dark grayish brown (10YR 3/2), soft, low plasticity, fine graind sand, moist SLTY CLAY WITH TRACE SAND - black (2.5Y 2.5/1), soft, low plasticity, moist. - - - - - - - - - - - - - - - - - -	TIME 1120 DATE								
DRILLING COMPANY: PeneCore Drilling DATE LICENSE NUMBER: C57-906899 REFERENCE DATE INCHES \$	DATE								
LICENSE NUMBER: C57-906899 REFERENCE 11/2/11 INCHES 3 SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value SURFACE CONDITIONS 4" Asphalt, 17" Aggregate Base Rock INCHES Value Surface and most. Surface and most. INCHES 0.6 - - - INCHES 2 - - - INCHES 2 - - - - INCHES -									
INCHES Surface CONDITIONS Image: Surface Conditions Image: Surface	I need								
Interview iso kit with the second	1 Need								
60 60 - 0.9 - 4" ASPHALT AND 17" AGGREGATE BASE ROCK SILTY CLAY WITH TRACE SAND - black (2.5Y 2.5/1), soft, low plasticity, fine grained sand, moist. A 0.6 2- -<	1 Need								
60 60 - 0.9 - 4" ASPHALT AND 17" AGGREGATE BASE ROCK SILTY CLAY WITH TRACE SAND - black (2.5Y 2.5/1), soft, low plasticity, fine grained sand, moist. A 0.6 2- -<	-0								
60 60 - 0.9 1 0.6 - 0.6 2 SLTY CLAY WITH TRACE SAND - black (2.5Y 2.5/1), soft, low plasticity, fine graine sand, moist. SAND WITH LITTLE CLAY - very dark grayish brown (10YR 3/2), medium dense, fit to coarse grained sand, moist. SLTY CLAY WITH TRACE SAND - very dark grayish brown (10YR 3/2), soft, low plasticity, fine grained sand, moist. 1 - - - 3 - - - 4 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 <td< td=""><td>\sim</td></td<>	\sim								
SAND WITH LITTLE CLAY - very dark grayish brown (10YR 3/2), medium dense, fit to coarse grained sand, moist. SILTY CLAY WITH TRACE SAND - very dark grayish brown (10YR 3/2), soft, low plasticity, fine grained sand, moist to very moist.	ed								
to coarse grained sand, moist. SILTY CLAY WITH TRACE SAND - very dark grayish brown (10YR 3/2), soft, low plasticity, fine grained sand, moist to very moist. - increasing in silt content, wet CLAY WITH LITTLE SILT - very dark grayish brown (10YR 3/2), stiff, low plasticity, moist. Boring terminated at approximately 5 feet below aggregate base rock. Boring filled a sealed with neat cement and capped with concrete to existing grade.									
3 3 3 Image: plasticity, fine grained sand, moist to very moist. - increasing in silt content, wet - increasing in silt content, wet CLAY WITH LITTLE SILT - very dark grayish brown (10YR 3/2), stiff, low plasticity, moist. 0.7 5 5 6 0.7 5 6 6 0.7 7 6 6 0.7 7 6 6 0.7 7 6 6 0.7 7 6 6 0.7 8 6 6 0.7 7 6 6 0.7 7 7 6 0.7 8 6 6 0.7 7 6 6 0.7 7 6 6 0.7 8 6 6 0.7 7 6 6 0.7 7 7 6 0.7 8 6 6 0.7 7 7 7 0.7 7 7 7 0.7 8 6	ine								
4 0.7 5 moist. 6 6 6 6 7 7 6 6 8 8 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
5 5 X 6 6 6 7 7 8 6 8 6 1 1 </td <td></td>									
sealed with neat cement and capped with concrete to existing grade.	and								
7- 8- 8- 10- 10- 10- 10- 10- 10- 10- 10									
8- 8- CONTRACTOR OF CONTRACTON									
Exp. <u><u><u><u><u><u></u></u></u><u><u><u><u></u></u><u><u><u></u></u><u><u><u></u></u><u><u><u></u></u><u><u></u></u><u><u></u><u><u></u></u></u></u></u></u></u></u></u></u></u>									
10- 10- No. 7652									
11- 12- 13- 14- 14- 15- 16- 16- 18- 18- 18- 19- 19- 19- 19- 19- 19- 19- 10- 10- 10- 10- 10- 10- 10- 10									

		-	~						CLIENT		SITE	NUMBER		LOCATIC			
			ING						AMEC/PG&E		AN	I-OAKGC	Y-02	4930 O	Colise aklan	eum Way d, CA	
LOG	OF SC				Ľ)1 :	2		DRILLING AND SAMPLING METHODSHand augered to approximately 5 feet below aggregate base (bAB). Collected soil samples at 0.5, 2, and 5 feet bAB in 2" X 6" s.s. liners.								
COOPD	INATES: N2	0105338 06	ORA ·FROR	5946 5492	07				WATER LEVEL								
	ION TOP C								TIME					STA TIME		FINISH TIME	
	BELOWS								DATE				-		10	1600	
	ING COI				ling				REFERENCE					— DATE 11/2		DATE 11/2/11	
	HES	1						S	URFACE CONDITIONS							1	
		BLOWS / 6" SAMPLER	DNG	۲.	MPLE SAMPLE	TERED	HIC		2" As	spha	alt, 19	" Aggrega	te Bas	Rock			
DRIVEN	RECOVER	BLOV SAMF	OVA READING	DEPTH (feet)	AIR SAI	SOIL S/	GRAPHIC LOG	D	ESCRIPTION BY:		Yu	ko Mamiya	Review	ex by:	H	4 Med	
60	60		1.2	0-		X		(ASPHALT AND 19" AGGREGATE BASE ROCK LAYEY SILT WITH LITTLE SAND - dark grayish brown (2.5Y 4/2), soft, low plasticity, the grained sand, moist.								
			1.3	1		- increasing in silt content, dark greenish gray (GLEY1 4/10Y), soft.											
				2-		\triangle											
				3-					becoming very moist. ILTY CLAY WITH LITTLE SAND - black (2.5Y 2.5/1), soft, low plasticity, fine to								
			medium grained sand, very moist.														
			1.7	4-				8	- diminishing in sand content, caliche nodules.								
			-	5				2 F	oring terminated at approximately 5 feet below aggregate base rock. Boring filled and ealed with neat cement and capped with concrete to existing grade.								
				6		10		5	sealed with neat cement ar	id cap	oped with	concrete to e	xisting gra	ae.			
				- - -		H											
				7								ERE	DGEC				
				8-										6			
				9-									1.70.1				
				10		$ $. 7652	_1.1			
_				10								(FI)					
2				11—				- - - - -				OF	CALIF	~			
				12—								STER OF	M	rel			
				13									•	\mathcal{O}			
				14													
				15													
	1			16-													
				17—													
				18—													
				19													
5																	
3	1	i		20—	11												

		TI	\sim						CLIENT		SITE	NUMBER			ATION	
	<u>></u>		ING						AMEC/PG&E		AN	/I-OAKGC`	Y-02	4	930 Colise Oakland	
LOG	OF SC					21	3		DRILLING AND SAMPLING METHOD	S (b/	and auge AB). Co X 6" s.s	ered to appro pliected soil s . liners.	ximately amples a	5 feet l t 0.5, 2	below aggr 2, and 5 fee	egate base et bAB in
COORDI	NATES: N2	2105326.17	262 :E6065	5961.5756	37				WATER LEVEL							
ELEVAT	ION TOP C	F CASING	:						TIME						<u>START</u> IME	FINISH TIME
	BELOW S								DATE						0745 ATE	0835 DATE
	ING CO SE NUN				lling				REFERENCE						11/3/11	11/3/11
INC	HES				Π.		1	S	URFACE CONDITIONS							
	RECOVER	BLOWS / 6" SAMPLER	DING	폰	MPLE	AMPLE	SHIC		3" As	spha	alt, 18	" Aggrega	ate Bas	e Ro	ock	
DRIVEN	RECO	BLOV SAMF	OVA READING	DEPTH (feet)	AIR SAM	SOIL SI	GRAPHIC	D	ESCRIPTION BY:		Yu	ko Mamiya	Revie	wed!	لت "روط	Mal
60	60	-	0.2	0		X	 ML	1	3" ASPHALT AND 18" AG SANDY SILT WITH LITTLI ine grained sand, moist.	GREG E CLA	ATE BA Y - dark	SE ROCK grayish brown	(2.5Y 4/2)), soft, l	low plasticit	, C
			0.1	2-		X		// f	SANDY CLAY WITH LITTL ine grained sand, moist. becoming wet.	.E SIL	.T - dark	grayish brown	(2.5Y 4/2)), soft, l	low plasticit	у,
			-	3				-	becoming very dark grayi	sh bro	wn (10Y	R 3/2), wet, m	edium grai	ined sa	and.	
			0.0	4—				6	CLAY WITH LITTLE SILT	- dark	grayish l	brown (2.5Y 4/	2), stiff, lo	w plast	licity, moist.	
			0.0	5		Х			Boring terminated at appro	ximate	ely 5 feet	below aggreg	ate base r	ock. Bo	oring filled a	nd
				6				5	sealed with neat cement ar	nd cap	ped with	concrete to e	kisting gra	de.		
				7—												
				8								1.51	DGEC	$\langle \rangle$	\	
				9									AS E. NEI		<u>-</u>	
				10									. 7652	た		
				11—			-					TROF	CALIF	SRI'		
				12—			-					STITUCE	H.			
				13		-								$\overset{a}{\frown}$)	
				14—			-							\bigcirc		
				15—			-									
				16												
				17												
				18— 19—												
				19												
				20		1		1								

		► ►		С						CLIENT AMEC/PG&E			NUMBER /I-OAKGC`	Y-02	LO	CATION 4930 Colise Oakland	um Way I, CA
	LOG		gineër Dil Bo			[D1	4		DRILLING AND SAMPLING METHOD	S (b/	and auge AB). Co X 6" s.s	llected soil s	ximately amples a	5 fee t 0.5	et below aggr 5, 2, and 5 fee	regate base et bAB in
	COORDI	NATES: N2	2105315.29	139 :E6065	5979.3038	39				WATER LEVEL							
	ELEVATI	ON TOP O	FCASING	:						TIME						START TIME	FINISH TIME
Ļ		BELOW SU		Dana		lina				DATE						1300 DATE	1340 DATE
			MPANY: 1BER: C			ung				REFERENCE						11/3/11	11/3/11
	INCI	HES	50			L	4		SL	JRFACE CONDITIONS				L			·
	/EN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	H_	AMPLE	SAMPLE	GRAPHIC LOG		2" A:	spha	alt, 21	" Aggrega	ate Bas	e F	Rock	
	DRIVEN	REC	BLO	OVA REA	DEPTH (feet)	AIR SAM	SOIL SA	GRA LOG	DE	ESCRIPTION BY:		Yu	ko Mamiya	Kenn	2018L	they: I	JAR
LOG OF SOIL BORING OAKLAND GCY_BORING LOGS-NEW.GPJ ETIC.GDT 12/1/11	60	60		0.0	0				- C fill B	" ASPHALT AND 21" AG ILTY CLAY - very dark gr with little sand, fine grained becoming very moist. ELAY WITH LITTLE SILT ne grained sand, slightly r ioring terminated at appro- ealed with neat cement ar	- olive noist t ximate	(5Y 4/3) to moist.	, stiff, low plas below aggreg concrete to ex	ticity, calic ate base r kisting grad D. GEC AS E. NEI	che n rock. de.	nodules, lense Boring filled a	
					16—												
OAKLAN					17—												
					18												
OG OF SO					19— 20—												

ELEVATION OF 0F 05 BARS: TIME		EN								CLIENT AMEC/PG&E		E NUMBER	Y-02	LOCATION 4930 Colise Oakland	
OUDSTRUCT START FINE CONSIDERATION DRY OF CASHIC DATE DATE DRILLING COMPANY: PeneCore Drilling DATE DATE DRILLING COMPANY: PeneCore Drilling DATE DATE ILCENSE NUMBER: C57-96699 Start Fine TIME NOCHES Start Fine TIME TIME Start Fine DATE DATE DATE NOCHES Start Fine DATE DATE Start Fine Start Fine DATE DATE NOCHES Start Fine DATE DATE Start Fine Start Fine Cashid DATE CAV Start Fine Start Fine DATE Start Fine <td< td=""><td>LOG</td><td>OF SC</td><td>DIL BO</td><td>RING:</td><td></td><td>I</td><td>E1</td><td>2</td><td></td><td></td><td>S (bAB), (</td><td>Collected soil s</td><td>oximately (samples at</td><td>5 feet below agg 0.5, 2, and 5 fee</td><td>egate base et bAB in</td></td<>	LOG	OF SC	DIL BO	RING:		I	E1	2			S (bAB), (Collected soil s	oximately (samples at	5 feet below agg 0.5, 2, and 5 fee	egate base et bAB in
ELEVAND TOP OF CASHS: TIME TIME <t< td=""><td>COORDI</td><td>NATES: N</td><td>2105358.20</td><td>)241 :E606</td><td>5965.5766</td><td>64</td><td></td><td></td><td></td><td>WATER LEVEL</td><td></td><td></td><td></td><td></td><td></td></t<>	COORDI	NATES: N	2105358.20)241 :E606	5965.5766	64				WATER LEVEL					
CARNEE BLOW SURFACE DRILLING COMPANY: PeneCore Drilling DRUELING COMPANY: PeneCore Drilling ILCENSE NUMBER: C57-906899 INCHES TO SUFFACE CONDITIONS ILCENSE NUMBER: C57-906899 ILCENSE NUMBER:	ELEVATI	ON TOP C	OF CASING							TIME					FINISH
LICENSE NUMBER: CS7-906899 REFERENCE 11/2/11 11/2 NOHES by grad gr										DATE				1610	1700
INCHES Support						lling				REFERENCE					DATE 11/2/11
generalized generalized <thgeneralized< th=""> <thgeneralized< th=""></thgeneralized<></thgeneralized<>				 	1	T ,			SL						
60 60 1.0 1 0.7 2- 3- 2- 0.7 2- 3- 0.1 0.8 5- 4- 0.8 0.8 5- 4- 0.8 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.8 5- 4- 0.8 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0- 0- 100 1- 1- 0- 11- 12- 13- 14- 12- 13- 14- 14- 12- 13- 14- 14- 12- 13- 14- 14- 13- 14- 14- 14	1		/S / 6" LER	ING	L I	PLE	MPLE	HC			sphalt, 2	0" Aggrega	ate Bas	e Rock	
60 60 1.0 1 0.7 2- 3- 2- 0.7 2- 3- 0.1 0.8 5- 4- 0.8 0.8 5- 4- 0.8 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.8 5- 4- 0.8 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0.8 5- 0.9 1- 0- 0- 100 1- 1- 0- 11- 12- 13- 14- 12- 13- 14- 14- 12- 13- 14- 14- 12- 13- 14- 14- 13- 14- 14- 14	ORIVE	RECO	SAMP	DVA	DEPT feet)	IR SAN	OIL SA	SRAP	DE						1. Mal
60 60 1.0 - <td><u> </u></td> <td>EL.</td> <td><u>ш</u>о</td> <td></td> <td></td> <td></td> <td>≤ ŵ ¤</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>uko Mamiya</td> <td></td> <td></td> <td></td>	<u> </u>	EL.	<u>ш</u> о				≤ ŵ ¤				<u> </u>	uko Mamiya			
Image: Second	60	60	-	1.0			X	///// //sc//	1 \$	SAND WITH SOME GRAV	EL AND LIT	TLE CLAY - da	rk grayish b	prown (2.5Y $4/2$),	brick
- with little sand, fine grained, very moist to wet. - becoming moist, diminishing in sand content. - becoming moist, dimini				0.7	1) fr	agments up to 1" in diame	eter, moist, s	light hydrocarbo	on odor.		
- with ittle sand, the grained, very moist to wet. - becoming moist, diminishing in sand content. - becoming moist, diminish					2		Х				sun grupio		, , , , , , , , , , , , , , , , , , , ,	in plaoaoity, moise.	
- with ittle sand, the grained, very moist to wet. - becoming moist, diminishing in sand content. - becoming moist, diminish					2										
CLAY WITH LITTLE SILT - olive gray (5Y 4/2), very stiff, low plasticity, moist. Boring terminated at approximately 5 feet below aggregate base rock. Boring filled and sealed with neat cement and capped with concrete to existing grade.					3				1						
CLAY WITH LITTLE SILT - olive gray (5Y 4/2), very stiff, low plasticity, moist. Boring terminated at approximately 5 feet below aggregate base rock. Boring filled and sealed with neat cement and capped with concrete to existing grade.					4-				-	becoming moist, diminishi	ing in sand d	iontent.			
Boring terminately 5 feet below aggregate base rock. Boring filled and sealed with neat cement and capped with concrete to existing grade.				0.8	5		X	//////////////////////////////////////	c	LAY WITH LITTLE SUIT -	olive grav (TY 4/2) venu stif	f low plast	icity moiet	
6 7 8 9 9 10 10 11 11 12 12 13 13 14 16 16 17 17								-	B	oring terminated at approx	kimately 5 fe	et below aggrec	iate base ro	ock. Boring filled a	nd
8- 9- 10- 10- 11- 12- 13- 14- 15- 16- 16- 16- 16- 16- 16- 16- 16					6		-	-			a capped m		Albung grac		
8- 9- 10- 10- 11- 12- 13- 14- 15- 16- 16- 16- 16- 16- 16- 16- 16					7										
9 10 10 11 11 12 12 13 14 15 16 16 16 17 17 17 17 17 17 17 17 17 17												ERE	DGEO	\mathbf{X}	
9- 10- 10- 11- 12- 12- 13- 14- 16- 16- 16- 16- 17- 17- 17- 17- 17- 17- 17- 17					8				•			13			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					``. 9—						· .	THOM	AS E. NEE	115	
11- 12- 13- 14- 16- 16- 17- 17- 10- 11- 12- 13- 14- 15- 16- 17- 17- 17- 17- 17- 17- 17- 17					-								and the second se		
12 13 14 14 16 16 17 17 12 12 13 14 14 15 16 17 17 17 17 17 12 12 13 13 14 14 15 17 17 17 17 17 17 17 17 17 17					10							No.); 7 652	131	
12 13 14 14 16 16 17 17 12 12 13 14 14 15 16 17 17 17 17 17 12 12 13 13 14 14 15 17 17 17 17 17 17 17 17 17 17					11—								CITEO		
		~										\sim	CAL		
					12—								/ //	les	
					13—									$\langle \rangle$	
														\sim	·
					15										
					16										
					17—										
					18—										
					19										
20 20 20 20 20 20 20_					20										

.

	E	TIC							CLIENT AMEC/PG&E			NUMBER 1-OAKGC	Y-02	LO	CATION 4930 Colise Oakland	
LOG		DIL BO			E	E1	3		DRILLING AND SAMPLING METHOD	S (b/	nd auge AB). Co X 6" s.s	ered to appro ellected soil s . liners.	ximately amples a	5 fee t 0.5	et below agg , 2, and 5 fe	regate base et bAB in
COORDI	NATES: N	2105349.32	635 ·F606	5978.024	51				WATER LEVEL							
1		FCASING							TIME						START TIME	FINISH TIME
CASING	BELOW S	URFACE:							DATE						0835	0905
					ling				REFERENCE						DATE 11/3/11	DATE 11/3/11
	HES	IBER: C	57-9060	599				SI	JRFACE CONDITIONS							
		IS / 6" LER	ÐNI	L I	PLE SAMPLE	MPLE	일		2" As	spha	alt, 10'	" Aggrega	ate Bas	e Ę	Rock	
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAN	SOIL SA	GRAPHIC LOG	DI	ESCRIPTION BY:		Yul	ko Mamiya	Revie	inili	tby:-P	Andred
				0-			77.7.77		" ASPHALT AND 10" AG	2PEC						2
60	60		0.5			Å			SAND WITH SOME GRAV	EL AN	ND LITTL arse gra	_E CLAY - dar ined sand, sul	bangular g	rave	y (GLEY1 I up to 2" dia	meter.
			0.1	- 1				t	rick fragments up to 1" in	diame	ter, mois	st, slight hydro	carbon od	or.		,
				- 2		X	ML	5 P	SANDY SILT WITH LITTLE lasticity, fine to coarse gra	E CLA	Y - very o sand, few	dark grayish b v brick fragme	rown (10Y nts up to 1	'R 3/2 /2" ii	2), soft, low n diameter, m	oist.
				3-												
				4-			CL/	2	SILTY CLAY - very dark gr	-	-	-	, low plast	icity,	very moist.	
			0.1			X	CL/	Ċ	with trace sand, fine grain CLAY WITH LITTLE SILT -	olive	gray (5Y	4/2), very stif	f, low plast	ticity	, moist.	
				- 5				E	Boring terminated at appro- ealed with neat cement ar	kimate Id cap	ely 5 feet ped with	below aggreg	ate base r xisting gra	ock. de.	Boring filled a	and
		· · · ·		6-							p					
				7												
				'								ERE	DGEO	>		
				8								13/		\$	2	
				9							1	<i>щ</i> тном	AS E. NEE	:IN	57	
													1.20.1	3		
				10—								No No	. 7652	Ľ	√	
				11								V/F OF	CALLEC	Ň	/	
2													CALIFO		0	
				12-								J	$\langle \mathcal{M} \rangle$	le	et	
				13									. د		U	
				14—												
200				14												
				15—												ŗ
ă 5				16												
						$ $ $ $										
				17—												
				18												
				19												
§				20—												

	-		\sim						CLIENT		SITE	NUMBER		LO	CATION	
	E		ING						AMEC/PG&E		AN	I-OAKGC	Y-02		4930 Colise Oakland	um Way I, CA
	EIN	JINEEK	ING						DRILLING AND	Ha	nd aug	ered to appro ollected soil s	ximately 5	5 fee	et below aggi	egate base
	OF SC	DIL BO	RING		E	E1	4		SAMPLING METHOD	3 (D/ 2"	X 6" s.s	s. liners.	ampies at	0.5	, 2, and 5 let	
	0, 00		1.110.		_		-									
COORD	NATES: N2	2105331.77	:E6065995	5.25434					WATER LEVEL						START	FINISH
ELEVAT	ION TOP O	F CASING	:						TIME						TIME	TIME
CASING	BELOW SI	JRFACE:							DATE						1120	1200
	ING COI				lling				REFERENCE						DATE 11/3/11	DATE 11/3/11
	SE NUN	IBER: C	57-9068 	399 		TT			SURFACE CONDITIONS						11/0/11	11/0/11
	HES	:/6" ER	ŋ		LE		2 2			spha	alt. 21	" Aaareaa	te Bas	e F	Rock	
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAMP	IL SAM	GRAPHIC		ESCRIPTION BY:			" Aggrega	- 628	4.84	ed by	A O
<u>Б</u>	R	8 8 8	<u>65</u>	E E	AIR	0 S L C S L C S L C S L C S L C S L C S L C S L S S S S	2 5	3 6			Yu	ko Mamiya				y They
60	60		0.1	- 0-		X	M		2" ASPHALT AND 21" AG CLAYEY SILT WITH LITTI				brown (10)	YR 3	3/2) soft low	\bigcirc
	00	-	0.1	1-					plasticity, fine grained sand SILTY CLAY - very dark gi	d, sligh	tly mois	t.	low plasti	icity	moiet	
			0.0			$\overline{\mathbf{X}}$		\mathcal{I}	SAND WITH LITTLE SILT		CLAY -	verv dark gree	nish arav (
				- 2-					medium dense, fine to coa CLAY WITH LITTLE SILT	rse gra - very (ained sa dark gra	nd, very moist. y (5Y 3/1), ver	y stiff, low	plas	ticity, moist.	
				3-												
							//ci									
			0.0	4	1				- becoming olive (5Y 4/3),	hard, c	aliche n	odules, slightly	/ moist.			
			0.0	5-		Д			Boring terminated at appro	vimate	alv 5 faat	t below angreg	ate hase ri	ock	Boring filled a	nd
									sealed with neat cement a	nd cap	ped with	concrete to ex	kisting grad	de.	Doring miled a	
				6-												
				7-			-							_		
						-	-					STERE	DGEO	ン	\	
				8-								13/100		X	2	
				9-		-	-					Le THOM	NEE NEE	S TA	57	
							1						. 7652		•	
				10								171		尽	<u>\$</u>	
				11—			-					E OF	CALIFO			
							1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 1	1	2	
				12—								Y	V MV	eg/	4	
				13-			-						~	\langle	\mathcal{L}	
NEW						╞										
20				14—												
				15			-									
		:					-									
29				16—												
				17—		-	-									
5							1									
OKIN				18	1]									
				19		-										
5							1									
3				20—	11		1									1

.

	E	TI	C						CLIENT AMEC/PG&E	\$		NUMBER /I-OAKGC`	Y-02	LO	OCATION 4930 Colise Oakland	eum Way 1, CA
LOG	OF SC	DIL BO	ing Ring:			F1	2		DRILLING AND SAMPLING METHOD	S (bAB	3). Čo	ered to appro bliected soil s a. liners.	oximately amples a	5 fee at 0.5	et below agg 5, 2, and 5 fee	regate base et bAB in
COORDI	NATES: N2	2105379.54	855 :E606	5989.437:	39				WATER LEVEL							
ELEVAT	ION TOP C	F CASING	:						TIME						START TIME	FINISH TIME
	BELOW S								DATE						0915	0945
	ING COI ISE NUN				lling				REFERENCE			-			DATE 11/3/11	DATE 11/3/11
	HES					y	1	SI	JRFACE CONDITIONS	I			I			I
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	LT O	AMPLE	SAMPLE SAMPLE	GRAPHIC LOG		2" A:	sphalt	i, 10	" Aggrega	ate Bas	se F	Rock	
DRI	REC	BLO SAN	OVP REA	DEPTH (feet)	AIR SAM	SOIL SA	L GR	D	ESCRIPTION BY:		Yu	ko Mamiya	1 (21 2	~~~	TC ice .	5 News
	60		0.1	1			SM	pp Sfi - c Sfi - C B	SANDY SILT WITH LITTLE lasticity, fine to coarse gra SILTY SAND WITH LITTLE ine to coarse grained sand becoming dark olive gray increasing in sand conten- thips. SILTY CLAY WITH LITTLE ine grained sand, moist to wet. CLAY WITH LITTLE SILT - Boring terminated at appro- ealed with neat cement ar	ained sar E CLAY - d, moist. (5Y 3/2) at, becom E SAND - very moi - very dat ximately	nd, slig - dark , incre ning ve - dark ist. rk gra 5 feet	ghtly moist. greenish gray asing in silt co ery dark green grayish brown y (5Y 3/1), ver below aggreg concrete to er	(GLEY1 4 ontent. ish gray (C (2.5Y 4/2) y stiff, low ate base r xisting gra D GEC AS E. NEI	I/10Y GLEN), sof plas rock. Ide.	(), medium der Y1 3/10Y), few ft, low plasticity sticity, moist. Boring filled a	wood y,
				11— 12—								THON T	CALIFC		rel	
				13),	'	v (J	
				14 15												
			· :													
				16												
5				19		H										
				18 19												
				20—												

S E	TIC				CLIENT AMEC/PG&E		NUMBER VI-OAKGCY		LOCATION 4930 Colise Oaklan	eum Way d, CA
LOG OF SOI	L BORING);	G1	2	DRILLING AND SAMPLING METHOD	Hand aug DS (bAB). Co 2" X 6" s.s	ollected soil sa	ximately 5 amples at (feet below agg 0.5, 2, and 5 fe	regate base et bAB in
COORDINATES: N21	05413.65876 :E60	65992.338	54		WATER LEVEL					
ELEVATION TOP OF					TIME				TIME	FINISH TIME
CASING BELOW SUF		Core Dril	lling		DATE				0915 DATE	1005 DATE
LICENSE NUME			inng		REFERENCE				11/2/11	11/2/11
DRIVEN RECOVER	BLOWS / 6" SAMPLER OVA READING	 E	MPLE S SAMPLE AMPLE	GRAPHIC LOG	SURFACE CONDITIONS 2" A	sphalt, 14	" Aggrega	te Base	Rock	
DRIVEN	BLOV SAMF OVA REAL	DEPTH (feet)	AIR SAM WATER (SOIL SAN	GRAI	DESCRIPTION BY:	Yu	ko Mamiya	Revent	CE reals	Reel
60 60	- 0.7 - 0.5 - 0.5 - 0.7	- 0- - 1- - 2- - 3- - 4- - 5- - 6-			2" ASPHALT AND 14" AG SANDY CLAY - very dark sand, angular fragments o CLAYEY SILT WITH LITT plasticity, fine grained san - wet. SILTY CLAY - very dark g Boring terminated at appro sealed with neat cement a	GREGATE BA grayish brown of bricks and gr LE SAND - ver d, few wood ch rayish brown (poximately 5 fee	SE ROCK (10YR 3/2), stif avel up to 4" in y dark grayish t ips, very moist. 10YR 3/2), very t below aggrega	diameter, n prown (10YI stiff, low pla	noist. R 3/2), soft, low asticity, moist. ck. Boring filled a	
		- 7- - 8- - 9- - 10- - 11 - 12- - 13 - 13 - 14- - 15- - 16 - 17 - 18 - 19- - 20-			·		HOMA	S E. NEEL		

			TI							CLIENT	SI		NUMBER		LOCATION 4930 Co	liseum Way
			GINEER	ING						AMEC/PG&E		٨N	1-OAKGC`	Y-02	Oakl	and, CA
	LOG	OF SC				C	31	3		DRILLING AND SAMPLING METHOD	S base (bAE	ered to appro i). Collected . liners.	ximately 2 soil samp	2.5 fee t below les at 0 .5 and	aggregate 2 feet bAB in
	COORDI	NATES: N2	2105396.41	777 :E6066	5019.091					WATER LEVEL						
		ON TOP O								TIME					TIME	FINISH TIME
		BELOW SI								DATE					0810	
		NG COI SE NUN				ling				REFERENCE					DATE 11/2/1	DATE 1 11/2/11
		HES	R6"	(7)		PLE	що	0	SL	JRFACE CONDITIONS		40		(- D		
	DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	SAMPLE TER SAM	L SAMPL	GRAPHIC LOG		2" AS	sphalt,	10	' Aggrega	Review		
	DR	RE	SAL	S R S		AIR	SOI	53	DE			Yul	ko Mamiya	ales ics.		2 they
	30	30		0.5	0		X		s	" ASPHALT AND 10" AGO ANDY CLAY - very dark g	ravish bro	wn (10YR 3/2), sti	ff, low plas	ticity, fine to co	oarse 🔾
				0.4	1-			ĊĹ	gi	rained sand, occasional a	ngular gra	velu	ip to 3" in dian	ieter, mois	it.	
					2		Х	ML	S	ANDY SILT WITH LITTLE	E CLAY - v	ery o	lark grayish b	own (10YF	R 3/2), soft, low	1
					3—				B	lasticity, fine to medium gr oring terminated at appro: et soil. Boring filled and so	ximately 2	.5 fe	et below aggre	egate base	rock due to slu	umping xisting
					4					rade.						Juonny
					5								STE	ED G	20	
					6								Le THO	IMAS E. N		
					7								. (Exp.	9.30		
					8—									No. 7652		
					9								Sal Carl	FCAL	FOR	
													L	N		
5					10								$\underline{\mathcal{P}}$	7 1	Ner Y	
r 12/1/					11										\bigcirc	
TIC.GD					12		Н									
LOG OF SOIL BORING OAKLAND GCY BORING LOGS-NEW.GPJ ETIC.GDT 12/1/11					13—											
S-NEW.					14											
G LOG																
BORIN					15—											
					16											
AKLAN					17—		H									
RING C					18—		F									
DIL BOF					19		H									
3 OF S(F					H									
ğ[20		П									

	E	TI(С						CLIENT AMEC/PG&E			NUMBER /I-OAKGC`	Y-02	LOCATION 4930 Colis Oaklar	
LOG	OF SC	SINEËR	ING		(G1	4		DRILLING AND SAMPLING METHOD	S (b/	and aug AB). Co X 6" s.s	llected soil s	ximately s amples at	5 feet below age t 0.5, 2, and 5 fe	gregate base eet bAB in
COORDI	INATES: N2	105377.08	618 :E6066	6034.9720)2				WATER LEVEL						
ELEVAT	ION TOP O	F CASING							TIME					START TIME	FINISH TIME
	BELOW SU		PeneCo	ore Dril	lina				DATE					1020 DATE	1100 DATE
	ISE NUN								REFERENCE					11/3/11	11/3/11
	HES				L			SI	JRFACE CONDITIONS				İ		
	RECOVER	BLOWS / 6" SAMPLER	OVA READING	H.	AMPLE R SAMPL	VERED	GRAPHIC LOG		4" A	spha	alt, 10	" Aggrega	ate Bas	e Rock	
DRIVEN	REC	BLO	OVA REA	DEPTH (feet)	AIR SAM	SOIL S	GRA	D	ESCRIPTION BY:		Yu	ko Mamiya	1287.00M	JJ.	Neel
60	60		0.0	0		X	CL	2 C	" ASPHALT AND 10" AG CLAY WITH LITTLE SILT Ingular fragments of brick	- very	dark gra	SE ROCK yish brown (10)YR 3/2), s	stiff, low plasticity	
				2—				c p	CLAYEY SILT WITH LITTI lasticity, fine grained sand	E SA	ND - ver v moist.	y dark grayish	brown (10	YR 3/2), soft, low	I
				3			ML	-	wet.						
			0.1	4		∇		c	CLAY WITH LITTLE SILT	- very	dark gra	y (5Y 3/1), ver	y stiff, low	plasticity, moist.	
				5				4 B S	Boring terminated at appro ealed with neat cement a	ximate nd cap	ely 5 feet ped with	below aggreg concrete to ex	ate base n kisting grad	ock. Boring filled de.	and
				6—			-								
				7									DGEC		
				8								LOTHOM	S E. NEE		
				9—								Exp.	. 7652		
_				10			-					XX .		AT A A A A A A A A A A A A A A A A A A	
				11—								OF	CALIFO		
				12								J	/ H	Leel,	
				13—									<u> </u>	J	
LOG0-N				14—											
				15											
				16—											
OANLA	 			17—											
	 			18			,								
				19											
ŝ				20—											

S ET	IC.					CLIENT AMEC/PG&E		NUMBER M-OAKGC		LOCATION 4930 Colise Oakland	
LOG OF SOIL	eering Boring:		J	10		DRILLING AND SAMPLING METHOD	Hand aug S (bAB). C 2'' X 6'' s	ollected soil s	oximately 5 amples at (feet below agg 0.5, 2, and 5 fe	regate base et bAB in
COORDINATES: N21057	22.55766 :E606	5807.8153	36			WATER LEVEL					
ELEVATION TOP OF CA	SING:					TIME				START TIME	FINISH TIME
CASING BELOW SURFA						DATE				1215 DATE	1300
DRILLING COMPA			ling			REFERENCE				11/1/11	DATE 11/1/11
INCHES		T	щ		s	URFACE CONDITIONS	·				1
DRIVEN RECOVER BLOWS / 6	SAMPLER OVA READING	DEPTH (feet)	SAMPLE ER SAMPI SAMPI F	GRAPHIC			sphalt, 16	3.5" Aggre	gate Ba	se Rock	
DRI BLC	SAN REV REV	DEF (fee	AIR S WATI	BE B	3 0	DESCRIPTION BY:	Y	uko Mamiya	1 Com	<u> </u>	Net
		0				4.5" ASPHALT AND 16.5" CLAY WITH LITTLE SILT slightly moist. CLAYEY SILT WITH LITTL sand, moist to very moist, s SAND WITH SOME GRAV 3/2), medium dense, fine to well graded, moist. SILTY CLAY WITH TRACE sand, moist. - very moist to wet. Boring terminated at appro sealed with neat cement ar	- dark yellowi: E SAND - bla slight hydroca EL AND TRA o coarse grain E SAND - blac ximately 5 fee nd capped wit	sh brown (10YF ack (2.5Y 2.5/1) rbon odor. CE CLAY - very led sand, subro ck (2.5Y 2.5/1), at below aggreg h concrete to e:	R 3/4), very s), soft, low pl y dark grayis bund gravel t soft, low pla hate base roo xisting grade	lasticity, fine grai sh brown (10YR up to 1/2" in diam asticity, fine grain asticity, fine grain ck. Boring filled a	ned neter, ed

		-	\sim						CLIENT		SITE	NUMBER		LO	CATION	
	E		ING						AMEC/PG&E		AN	/I-OAKGC`	Y-02		4930 Colise Oakland	eum Way d, CA
	CIN	JUNEEK	UNU						DRILLING AND	Ha	and aug	ered to appro blected soil s	ximately 5	5 fee	t below agg	regate base
LOG	OF SC	IL BO	RING:		,	JO	0		SAMPLING METHOD	3 (b/ 2"	чы). Со Х 6"s.s	liected soil s i. liners.	ampies at	. 0.5	, ∠, and 5 tee	
COORD	INATES: N2	2105743.23	779 :E6065	5789.650	39				WATER LEVEL						START	FINISH
ELEVAT	TION TOP O	F CASING	:						TIME					}	TIME	TIME
	BELOW SU								DATE						1115	1215
	ING COI				lling	I			REFERENCE						DATE 11/1/11	DATE 11/1/11
	CHES						T	Isi	JRFACE CONDITIONS							1
		S/6" LER	ŊĊ		PLE	APLE	유			sph	alt, 8''	' Aggrega	te Base	e R	ock	
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAM	VALEK SOIL SAN	GRAPHIC LOG	DE	ESCRIPTION BY:	-		ko Mamiya	Revis	jed	p. Cq	1 Nod
				0-		> 00 0		<u> </u>								<u> </u>
60	60		0.8			Х	CL) C	" ASPHALT AND 8" AGG	- very	ATE BAS dark gra	E ROCK yish brown (10)YR 3/2), v	ery s	stiff, low to	-
	· · ·	-	0.9	1			ML	C C	nedium plasticity, slightly r CLAYEY SILT WITH TRAC and, occasional subangul	noist. E SAI	ND - bla	ck (2.5Y 2.5/1)	, soft, low	plast	icity, fine grai	ned
			0.9	2—		X		c	LAY WITH LITTLE SILT							
				3				1.	lasticity, moist.	0 E/4)) ooft lo	w plasticity m	oiot			
									ILTY CLAY - black (2.5Y	2.011	<i>,</i> son, io	w plasucity, m	0151.			
			1.8	4												
				5		Å		В	oring terminated at appro	ximate	ely 5 feel	below aggreg	ate base re	ock.	Boring filled a	and
				6	$\left \right $			5	ealed with neat cement ar	ю сар	pea with	concrete to ex	kisung grad	ue.		
				7												
				1								TERED	EO			
				8—								3/	10			
				9							2	THOMAS E	0.13	5		
				10			-				10		52	:/		
1111				11							V.	No. 76	EORT)		
DT 12				1 1			-					CA		Δ		
				12			-					J	Yle	el	-	
V.GPJ				13—									(()	
SS-NEV				14—												
10100				15—												
LOG OF SOIL BORING OAKLAND GCY_BORING LOGS-NEW.GPJ ETIC.GDT 12/1/11																
				16												
				17—												
				18												
				19—												
OF SO				19-												
8				20												

	E								CLIENT AMEC/PG&E		- ·	NUMBER 1-OAKGC`	Y-02	LO	CATION 4930 Colise Oakland	
LOG		JINEER				K)		DRILLING AND SAMPLING METHOD	S (b/	and auge AB). Co X 6" s.s	llected soil s	ximately amples a	5 fee at 0.5	et below aggr 5, 2, and 5 fee	egate base et bAB in
COORDI	NATES: N2	2105743.23	779 :E6065	5832.4079	94				WATER LEVEL							
ELEVAT	ION TOP O	F CASING							TIME						START TIME	FINISH TIME
	BELOW SI								DATE						0930	1015
		MPANY: 1BER: C			ling				REFERENCE						DATE 11/1/11	DATE 11/1/11
	HES	r –			u			SI	JRFACE CONDITIONS							I
N	RECOVER	VS / 6	DING	E	MPLE SAMPI	AMPLE	UHC DHC		4.5" As	spha	alt, 15.	5" Aggre	gate B	ase	Rock	
DRIVEN	RECO	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AIR SAI WATER	SOIL S	GRAPHIC LOG	DI	ESCRIPTION BY:		Yuł	o Mamiya	Re	1.20	2 cd ba	sted
				0-		$\overline{\mathbf{X}}$	//////	4	.5" ASPHALT AND 15.5"	AGGF	REGATE	BASE ROCK				0
60	60	-	0.3	1				l s	BILTY CLAY WITH LITTLE and, moist.			•				ed
			0.5			$\overline{\mathbf{V}}$			SAND WITH SOME GRAV	EL - b Iravel	lack (2.5 up to 1" i	Y 2.5/1), medi in diameter, w	um dense ell graded	e, fine I, mo	e to coarse list.	
				2-				•								
				3				2								
								>								
			0.4	4				s	SILTY CLAY WITH LITTLE and, moist.	SAN	D - black	c (2.5Y 2.5/1),	soft, low p	plasti	icity, fine grain	ed
				5		Å		E	Boring terminated at appro	ximate	ely 5 feet	below aggreg	ate base i	rock.	Boring filled a	nd
				6				s	ealed with neat cement ar	id cap	ped with	concrete to e	xisting gra	ide.		
				7									ED GE			
				8								SIL		X	2	
				9-								/ 2/тнол	AAS E. N	E EL 1		
				J 9								Ехр	9.301	13	_]_]	
				10								13/ 1	lo. 7652			
				11—								VIC		6	۶ ۲	
						H						STATE OF	CALI		Ν	
				12—								Z	へ	1	eet	
				13										•	A	
															\bigcirc	
				14—												
				15												
1				16_												
				16—												
				17—												
				18												
				19—												
				20												

	\F								CLIENT AMEC/PG&E		SITE NUMBER AM-OAKGCY-02 AM-OAKGCY-02		um Way			
LOG	OF SC					K0	0		DRILLING AND SAMPLING METHOD	S (bAl	id aug B). Co	ered to appro	ximately	5 fe t 0.5	Oakland et below agg 5, 2, 2.5, and	egate base
COORDI	NATES: N	2105763.73	3161 :E606	5810.703 [.]	13				WATER LEVEL							
ELEVATI	ION TOP C	F CASING	c						TIME						START TIME	FINISH
	BELOW S								DATE						1020	1105
	ING CO SE NUN				lling	I			REFERENCE						DATE 11/1/11	DATE 11/1/1
INC	HES	~e"						SU	IRFACE CONDITIONS	<u> </u>					I	
DRIVEN	RECOVER	BLOWS / 6" SAMPLER	OVA READING	DEPTH (feet)	AMPLE	SAMPLE SAMPLE	GRAPHIC LOG			spha	lt, 7"	Aggrega	te Base	∍R	lock	
DRI	REC	BLC	REV	(fee	AIR S	SOIL	2 G R	DE	SCRIPTION BY:		Yu	ko Mamiya		14044	a m J	510
60	60		1.2	- 0		X		S	" ASPHALT AND 7" AGG AND WITH SOME GRAV ne to medium grained sar	EL AND	TRAC	E CLAY - blad	:k (2.5Y 2.5	5/1),	medium dens	e,
			0.7	1			sw	- 1	with little silt.	iu, suba	lingulai	graver up to i	in ulame	(ei, 1	wen graueu, m	UISL
			8.1	2—		Ř		- ł	hydrocarbon odor in tar-lil	ke mate	rial.					
			0.1	3				SI sa	ILTY CLAY WITH LITTLE and, moist to very moist.	SAND	- black	(2.5Y 2.5/1),	soft, low pl	astic	city, fine graine	ed
				4-			CL									
			0.7			X										
				5				Bo se	oring terminated at approx ealed with neat cement an	ximately 1d cappe	v 5 feet ed with	below aggreg concrete to e	ate base ro xisting grac	ock. de.	Boring filled a	nd
				6—												
				7—		-										
				- 8—								TERE	GEO	ン		
				•								WTHOM	S E. NEEL	X		
				9—								το <u>Γ</u>	.30.13		ㅋ)	
				10—								Vy No.	7652	/	:/	
				11—								VIE	ALIFO	ÿ		
				12—									ALU			
				40								Y	$^{\prime}$ \subset	1/	- Jue	
				13—											\bigvee	
				14—												
				15												
				16—												
				17—												
				18												
				19—		IН										
				20		LН										

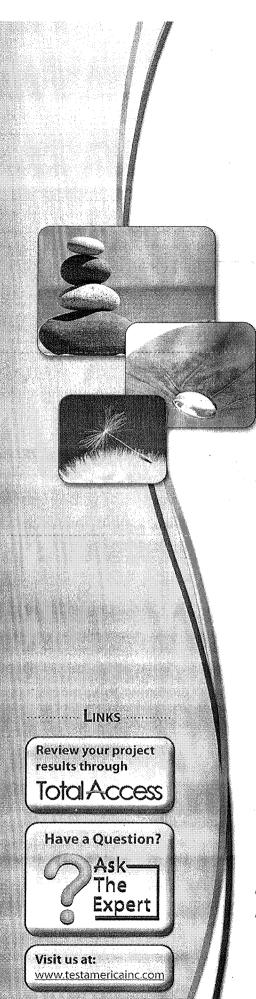
APPENDIX C

Quality Assurance/Quality Control Review and Analytical Laboratory Reports

APPENDIX C

QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PG&E Oakland—General Construction Yard Oakland, California


This section presents an evaluation of quality assurance/quality control (QA/QC) procedures applied to analysis of soil samples collected during the November 2011 sampling event. A data quality review was performed consistent with the U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.¹ The results of the data quality review are presented below and reflected in applicable tables.

QA/QC procedures applied to soil samples included the analysis of hold times, method blanks, matrix spike/matrix spike duplicate (MS/MSD) samples, surrogate recoveries, and laboratory quality control samples.

- Hold Times: All samples were analyzed within their respective hold times.
- Method Blanks: No constituents were detected in laboratory method blanks.
- **Spike Samples:** The laboratory analyzed laboratory control samples and associated duplicates (LCS/LCSD) and matrix spike samples and associated duplicates (MS/MSD). All LCS/LCSD were within laboratory control limits (QC limits). The MS/MSD results for lead were outside QC limits. In accordance with the National Functional Guidelines all associated detections of lead above laboratory reporting limits are flagged with a "J" indicating lead was detected, however the value reported is an estimate.
- **Surrogate Recoveries:** All surrogates were recovered within laboratory control limits.

\\Oad-fs1\doc_safe\13000s\13045.007.F\4000\Add Soil Smp Rpt\6-Appdx C-Laboratory Reports\01_QC Text.docx

¹ U.S. EPA, 2010, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (OSWER 9240.1-51, EPA 540-R-10-011; January 2010).

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-38517-1 Client Project/Site: AM-OAKGCY-02 Revision: 1

For:

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523

Attn: Mr. Thomas Neely

Alson for Sal

Authorized for release by: 12/9/2011 10:24:26 AM

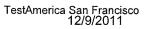
Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	10
QC Association Summary	11
Lab Chronicle	12
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	29


TestAmerica Job ID: 720-38517-1

Qualifiers

Metals		
Qualifier	Qualifier Description	
F	MS or MSD exceeds the control limits	· · · · · · · · · · · · · · · · · · ·
F	RPD of the MS and MSD exceeds the control limits	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
‡	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 720-38517-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative

Revised Report on 12/9/11. Report sample #57 and 58 in a separate report.

Comments

No additional comments.

Receipt

Sample ID - J0-2.0+21, COC list time as 1240, sample has time of 11:40, loggerd per COC. Received sample not listed on COC- Sample ID K00*-2.5+12 @ 1110, logged and placed on hold.

All other samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following volatiles sample 720-38517-58 was diluted due to foaming at the time of purging during the original sample analysis: D2-W (720-38517-58). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

GC Semi VOA

Method(s) 8015B: Due to the level of dilution required for the following sample(s), surrogate recoveries are not reported: D1-A,B,C and D (720-38517-57).

No other analytical or quality issues were noted.

Metals

Method(s) 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for prep batch 102606 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

TestAmerica San Francisco 12/9/2011

TestAmerica Job ID: 720-38517-1

TestAmerica Job ID: 720-38517-1

Client Sample ID: K0-0.5+20						Lab	Sample I	D: 720-38517-1
Analyte	Pocult	Qualifier	RL	MDI	Unit	Dil Fac D	-	
Lead	110 Nesult		1.9		mg/Kg	Jii Fac D 4	6010B	Prep Type Total/NA
Client Sample ID: K0-2.0+20						Lab	Sample I	D: 720-38517-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	24	J	1.8		mg/Kg	4	6010B	Total/NA
Client Sample ID: J0-0.5+21						Lab	Sample ID	: 720-38517-10
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	21	J	1.9		mg/Kg	4	6010B	Total/NA
Client Sample ID: J0-2.0+21						Lab	Sample ID	: 720-38517-11
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	51	J	2.0		mg/Kg	4	6010B	Total/NA
Client Sample ID: G12-0.5+16	·					Lab	Sample ID	: 720-38517-15
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	190	J	1.9		mg/Kg	4.	6010B	Total/NA
Client Sample ID: G12-2.0+16		·				Lab	Sample ID	: 720-38517-16
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Ргер Туре
Lead	680	J	1.9		mg/Kg	4	6010B	Total/NA
Client Sample ID: C12-0.5+21	ra La seconda	1 1 1 1010011111 1010 101				Lab	Sample ID	: 720-38517-18
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	1800	J	1.8		mg/Kg	4	6010B	Total/NA
Client Sample ID: C12-2.0+21			······································			Lab S	Sample ID	: 720-38517-19
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	42	J	1.9	•	mg/Kg	4	6010B	Total/NA
Client Sample ID: BB9-0.5+13						Lab S	Sample ID	: 720-38517-21
Analyte	Result	Qualifier	RL	MDL.	Unit	Dil Fac D	Method	Prep Type
Lead	6.8	J	2.0		mg/Kg	4	6010B	Total/NA
Client Sample ID: BB9-2.0+13						Lab S	Sample ID	: 720-38517-22
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Ргер Туре
Lead	27	J	1.9		mg/Kg	4	6010B	Total/NA
Client Sample ID: BB10-0.5+16						Lab S	Sample ID	: 720-38517-24
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	30	J	1.9		mg/Kg	4	6010B	Total/NA
Client Sample ID: BB10-2.0+16						Lab S	Sample ID	: 720-38517-25

TestAmerica San Francisco 12/9/2011

Detection Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

TestAmerica Job ID: 720-38517-1

5

Client Sample ID: BB10-2.0+16 (Continued)	•		Lab Sample ID	720-38517-25
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	45 J	1.9	mg/Kg	4 6010B	Total/NA
Client Sample ID: D12-0.5+21	· · ··· · · · · · ·		•	Lab Sample ID	720-38517-29
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	32 J	1.8	mg/Kg	4 6010B	Total/NA
Client Sample ID: D12-2.0+21				Lab Sample ID:	720-38517-30
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	³⁶⁰ J	1.9	mg/Kg	4 6010B	Total/NA
Client Sample ID: E12-0.5+22		· ·		Lab Sample ID:	720-38517-32
Analyte	Result Qualifier	RL	MDL. Unit	Dil Fac D Method	Prep Type
Lead	2600 J	1.9	mg/Kg	4 6010B	Total/NA
Client Sample ID: E12-2.0+22	· · · · · · · · · · · · · · · · · · ·			Lab Sample ID:	720-38517-33
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	¹⁸ J	1.9	mg/Kg	4 6010B	Total/NA
Client Sample ID: F12-0.5+12	· · · · · · · · · · · · · · · · · · ·			Lab Sample ID:	720-38517-41
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	170 J	1.9	mg/Kg	4 6010B	Total/NA
Client Sample ID: F12-2.0+12				Lab Sample ID:	720-38517-42
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Ргер Туре
Lead	530 J	1.9	mg/Kg	4 6010B	Total/NA

530 J 1.9 mg/Kg 6010B Total/NA 4

TestAmerica Job ID: 720-38517-1

Method: 6010B - Metals (ICP)	·						
Client Sample ID: K0-0.5+20 Date Collected: 11/01/11 09:45 Date Received: 11/04/11 13:30					Lab Sa	imple ID: 720 Matri	-38517-1 ix: Solid
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	110 J	1.9	mg/Kg			11/11/11 11:14	4
Client Sample ID: K0-2.0+20					Lab Sa	mple ID: 720-	38517-2
Date Collected: 11/01/11 10:05					•	Matri	ix: Solid
Date Received: 11/04/11 13:30							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	24 J	1.8	mg/Kg		·····	11/11/11 11:22	4
Client Sample ID: J0-0.5+21					Lab San	nple ID: 720-3	8517-10
Date Collected: 11/01/11 12:35						Matri	ix: Solid
Date Received: 11/04/11 13:30							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	21 J	1.9	mg/Kg		11/09/11 13:50	11/11/11 11:26	4
Client Sample ID: J0-2.0+21					Lab San	nple ID: 720-3	8517-11
Date Collected: 11/01/11 11:40			· · · · ·			Matri	x: Solid
Date Received: 11/04/11 13:30		19					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	51 (J	2.0	mg/Kg		-	11/11/11 11:30	. 4
Client Sample ID: G12-0.5+16					Lab San	nple ID: 720-3	
Date Collected: 11/02/11 09:25						Matri	x: Solid
Date Received: 11/04/11 13:30							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	190 J	1.9	mg/Kg		11/09/11 13:50	11/11/11 11:43	4
Client Sample ID: G12-2.0+16					Lab San	nple ID: 720-3	8517-16
Date Collected: 11/02/11 09:30							x: Solid
Date Received: 11/04/11 13:30							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	680 J	1.9	mg/Kg			11/11/11 11:47	4
·	v		<u> </u>				
Client Sample ID: C12-0.5+21					Lab San	nple ID: 720-3	
Date Collected: 11/02/11 10:50						Matri	x: Solid
Date Received: 11/04/11 13:30							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	1800 J	1.8	mg/Kg		11/09/11 13:50	11/11/11 11:52	4

TestAmerica Job ID: 720-38517-1

Method: 6010B - Metals (ICP)			·	
Client Sample ID: C12 2 0+21					Lob Sampla ID: 730 28547 40
Client Sample ID: C12-2.0+21 Date Collected: 11/02/11 11:00					Lab Sample ID: 720-38517-19 Matrix: Solid
Date Received: 11/04/11 13:30					
					•
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared Analyzed Dil Fac
Lead	42 J	1.9	mg/Kg		11/09/11 13:50 11/11/11 11:56 4
Client Sample ID: BB9-0.5+13					Lab Sample ID: 720-38517-21
Date Collected: 11/02/11 12:55					Matrix: Solid
Date Received: 11/04/11 13:30					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared Analyzed Dil Fac
Lead	6.8	2.0	mg/Kg		11/09/11 13:50 11/11/11 12:00 4
Client Sample ID: BB9-2.0+13					Lab Sample ID: 720-38517-22
Date Collected: 11/02/11 13:10					Matrix: Solid
Date Received: 11/04/11 13:30					· ·
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared Analyzed Dil Fac
Lead	27	1.9	mg/Kg		11/09/11 13:50 11/11/11 12:04 4
Client Sample ID: BB10-0.5+16					Lab Sample ID: 720-38517-24
Date Collected: 11/02/11 13:45					Matrix: Solid
Date Received: 11/04/11 13:30			1. T		•
Analyte	Result Qualifier	RL	MDL Unit	D	Bronovod Auchined Dil For
Lead	30 T	RL 1.9	mg/Kg	U	Prepared Analyzed Dil Fac 11/09/11 13:50 11/11/11 12:08 4
					· · · · · · · · · · · · · · · · · · ·
Client Sample ID: BB10-2.0+16					Lab Sample ID: 720-38517-25
Date Collected: 11/02/11 13:55					Matrix: Solid
Date Received: 11/04/11 13:30					
Analyte	Result Qualifier	RL	MDL Unit	Ð	Prepared Analyzed Dil Fac
Lead	45 J	1.9	mg/Kg		11/09/11 13:50 11/11/11 12:13 4
Client Sample ID: D12-0.5+21 Date Collected: 11/02/11 15:30					Lab Sample ID: 720-38517-29 Matrix: Solid
Date Received: 11/04/11 13:30		•			Wattik. Soliu
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared Analyzed Dil Fac
Lead	32 J	1.8	mg/Kg		11/09/11 13:50 11/11/11 12:46 4
Client Sample ID: D12-2.0+21					Lab Sample ID: 720-38517-30
Date Collected: 11/02/11 15:45					Matrix: Solid
Date Received: 11/04/11 13:30					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared Analyzed Dil Fac
Lead	360 J	1.9	mg/Kg		11/09/11 13:50 11/11/11 12:42 4
Client Sample ID: E12-0.5+22					Lab Sample ID: 720-38517-32
Date Collected: 11/02/11 16:30					Matrix: Solid
Date Received: 11/04/11 13:30					
		•			
Analyte	Result Qualifier	• RL	MDL Unit	D	Prepared Analyzed Dil Fac
Lead	2600	1.9	mg/Kg		11/09/11 13:50 11/11/11 12:38 4

Client Sample ID: E12-2.0+22 Date Collected: 11/02/11 16:40 Date Received: 11/04/11 13:30

T	estAmerica	.lob	ID	720	-385	17.	-1
	esuminenca	200	ω.	120	-000	17.	- 1

Lab Sample ID: 720-38517-33 Matrix: Solid

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	18J	1.9	mg/Kg		11/09/11 13:50	11/11/11 12:34	4
Client Sample ID: F12-0.5+12					Lab Sa	ample ID: 720-3	38517-41
Date Collected: 11/03/11 09:25 Date Received: 11/04/11 13:30						Matr	ix: Solid
Date Received. 11/04/11 15:50							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	170 J	1.9	mg/Kg		11/09/11 13:50	11/11/11 12:17	4
Client Sample ID: F12-2.0+12	•				Lab Sa	ample ID: 720-3	38517-42
Date Collected: 11/03/11 09:30	• .					Matr	ix: Solid
Date Received: 11/04/11 13:30						• •	
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	530 J	1.9	mg/Kg		11/09/11 13:50	11/11/11 12:21	4

Method: 6010B - Metals (ICP)

7

Lab Sample ID: MB 720-102606	/1-A								Client Sa	ample ID: N	lethod	Blanl
Matrix: Solid										Prep Ty	pe: To	otal/NA
Analysis Batch: 102765										Prep B	atch: 1	10260
	*	MB MB										
Analyte	R	esult Qualifier		RL	М	IDL Unit		D	Prepared	Analyze	d ·	Dil Fa
Lead		ND		0.50		mg/Kg		11/	09/11 13:50	11/11/11 1	0:53	
Lab Sample ID: LCS 720-10260	6/2-A							Clien	t Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid										Prep Ty	pe: To	otal/NA
Analysis Batch: 102765										Prep B	atch: 1	10260
			Spike		LCS	LCS				%Rec.		
Analyte			Added		Result	Qualifier	Unit	1	D %Rec	Limits		
Lead			50.0		47.8		mg/Kg		96	80 - 120		
Lab Sample ID: LCSD 720-1026	06/3-A						Clie	ent Sar	nple ID: L	ab Control	Samp	le Duj
Matrix: Solid										Prep Ty	pe: To	tal/N/
Analysis Batch: 102765										Prep B	atch: 1	0260
			Spike		LCSD	LCSD				%Rec.		RPI
Analyte			Added		Result	Qualifier	Unit	I	D %Rec	Limits	RPD	Limi
Lead			50.0		47.1		mg/Kg		94	80 - 120	1	2
Lab Sample ID: LCSSRM 720-1	02606/25-A							Clien	t Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid										Prep Ty	pe: To	tal/NA
Analysis Batch: 102765										Prep B	atch: 1	02600
			Spike	Ĺ	CSSRM	LCSSRM				%Rec.		
Analyte			Added		Result	Qualifier	Unit	I	O %Rec	Limits		
Lead		•	181		149		mg/Kg		83	62 - 113		
Lab Sample ID: 720-38517-1 MS	5					_			Clier	t Sample I	D: K0-	0.5+2(
Matrix: Solid										Prep Ty	pe: To	tal/NA
Analysis Batch: 102765										Prep B		
•	Sample	Sample	Spike		MS	MS				%Rec.		
Analyte	Result	Qualifier	Added		Result	Qualifier	Unit	́ н) %Rec	Limits		
Lead	110		47.2		306	F	mg/Kg		407	75 - 125		
Lab Sample ID: 720-38517-1 MS	D								Clier	It Sample I	D: K0-	0.5+2(
Matrix: Solid										Prep Ty		
Analysis Batch: 102765										Prep B	•	
	Sample	Sample	Spike		MSD	MSD				%Rec.		RPE
A	Pocult	Qualifier	Added		Posult	Qualifier	Unit	,) %Rec	Limits	RPD	Limi
Analyte	Nesuk	Quaimer	Audeu		reaute	Quanner	Quint	1	J /01/CC	Linna	10.02	6

TestAmerica San Francisco 12/9/2011

Metals

Prep Batch: 102606

8

Frep Batch. 102006					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-38517-1	K0-0.5+20	Total/NA	Solid	3050B	
720-38517-1 MS	K0-0.5+20	Total/NA	Solid	3050B	
720-38517-1 MSD	K0-0.5+20	Total/NA	Solid	3050B	
720-38517-2	K0-2.0+20	Total/NA	Solid	3050B	
720-38517-10	J0-0.5+21	Total/NA	Solid	3050B	
720-38517-11	J0-2.0+21	Total/NA	Solid	3050B	
720-38517-15	G12-0.5+16	Total/NA	Solid	3050B	
720-38517-16	G12-2.0+16	Total/NA	Solid	3050B	
720-38517-18	C12-0.5+21	Total/NA	Solid	3050B	
720-38517-19	C12-2.0+21	Total/NA	Solid	3050B	
720-38517-21	BB9-0.5+13	Total/NA	Solid	3050B	
720-38517-22	BB9-2.0+13	Total/NA	Solid	3050B	
720-38517-24	BB10-0.5+16	Total/NA	Solid	3050B	
720-38517-25	BB10-2.0+16	Total/NA	Solid	3050B	
720-38517-29	D12-0.5+21	Total/NA	Solid	3050B	
720-38517-30	D12-2.0+21	Total/NA	Solid	3050B	
720-38517-32	E12-0.5+22	Total/NA	Solid	3050B	
720-38517-33	E12-2.0+22	Total/NA	Solid	3050B	
720-38517-41	F12-0.5+12	Total/NA	Solid	3050B	
720-38517-42	F12-2.0+12	Total/NA	Solid	3050B	
LCS 720-102606/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-102606/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-102606/25-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-102606/1-A	Method Blank	Total/NA	Solid	3050B	
					· · · · · ·

Analysis Batch: 102765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-38517-1	K0-0.5+20	Total/NA	Solid	6010B	102606
720-38517-1 MS	K0-0.5+20	Total/NA	Solid	6010B	102606
720-38517-1 MSD	K0-0.5+20	Total/NA	Solid	6010B	102606
720-38517-2	K0-2.0+20	Total/NA	Solid	6010B	102606
720-38517-10	J0-0.5+21	. Total/NA	Solid	6010B	102606
720-38517-11	J0-2.0+21	Total/NA	Solid	6010B	102606
720-38517-15	G12-0.5+16	Total/NA	Solid	6010B	102606
720-38517-16	G12-2.0+16	Total/NA	Solid	6010B	102606
720-38517-18	C12-0.5+21	Total/NA	Solid	6010B	102606
720-38517-19	C12-2.0+21	Total/NA	Solid	6010B	102606
720-38517-21	BB9-0.5+13	Total/NA	Solid	6010B	102606
720-38517-22	BB9-2.0+13	Total/NA	Solid	6010B	102606
720-38517-24	BB10-0.5+16	Total/NA	Solid	6010B	102606
720-38517-25	BB10-2.0+16	Total/NA	Solid	6010B	102606
720-38517-29	D12-0.5+21	Total/NA	Solid	6010B	102606
720-38517-30	D12-2.0+21	Total/NA	Solid	. 6010B	102606
720-38517-32	E12-0.5+22	Total/NA	Solid	6010B	102606
720-38517-33	E12-2.0+22	Total/NA	Solid	6010B	102606
720-38517-41	F12-0.5+12	Total/NA	Solid	6010B	102606
720-38517-42	F12-2.0+12	Total/NA	Solid	6010B	102606
LCS 720-102606/2-A	Lab Control Sample	Total/NA	Solid	6010B	102606
LCSD 720-102606/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	102606
LCSSRM 720-102606/25-A	Lab Control Sample	Total/NA	Solid	6010B	102606
MB 720-102606/1-A	Method Blank	Total/NA	Solid	6010B	102606

TestAmerica San Francisco 12/9/2011

Lab Chronicle

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02 Client Sample ID: K0-0.5+20 Lab Sample ID: 720-38517-1 Matrix: Solid Date Collected: 11/01/11 09:45 Date Received: 11/04/11 13:30 Dilution Batch Prepared Batch Batch Method Run Factor Number or Analyzed Analyst Lab Туре Prep Type Total/NA Prep 3050B 102606 11/09/11 13:50 SK TAL SF TAL SF Total/NA 6010B 102765 11/11/11 11:14 CAM Analysis 4 Lab Sample ID: 720-38517-2 Client Sample ID: K0-2.0+20 Date Collected: 11/01/11 10:05 Matrix: Solid Date Received: 11/04/11 13:30 Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst Lab Prep Type Туре Total/NA Ргер 3050B 102606 11/09/11 13:50 SK TAL SF Total/NA Analysis 6010B 102765 11/11/11 11:22 CAM TAL SF Δ Client Sample ID: J0-0.5+21 Lab Sample ID: 720-38517-10 Date Collected: 11/01/11 12:35 Matrix: Solid Date Received: 11/04/11 13:30 Batch Prepared Batch Batch Dilution or Analyzed Lab Prep Type Туре Method Run Factor Number Analyst TAL SF 11/09/11 13:50 sĸ Total/NA 3050B 102606 Prep TAL SF 102765 11/11/11 11:26 CAM Total/NA Analysis 6010B 4 Client Sample ID: J0-2.0+21 Date Collected: 11/01/11 11:40 Date Received: 11/04/11 13:30 Batch Batch Dilution Batch Prepared Method Number or Analyzed Analyst Lab Prep Type Туре Run Factor Prep 3050B 102606 11/09/11 13:50 SK TAL SF Total/NA Total/NA 6010B 102765 11/11/11 11:30 CAM TAL SF Analysis 4 Lab Sample ID: 720-38517-15 Client Sample ID: G12-0.5+16 Date Collected: 11/02/11 09:25 Matrix: Solid Date Received: 11/04/11 13:30 Batch Prepared Batch Batch Dilution or Analyzed Prep Type Туре Method Run Factor Number Analyst Lab SK TAL SF Total/NA Prep 3050B 102606 11/09/11 13:50 Total/NA 102765 11/11/11 11:43 CAM TAL SF Analysis 6010B 4 Client Sample ID: G12-2.0+16 Lab Sample ID: 720-38517-16 Date Collected: 11/02/11 09:30 Matrix: Solid Date Received: 11/04/11 13:30 Batch Dilution Batch Prepared Batch Method or Analyzed Prep Type Туре Run Factor Number Analyst Lab Total/NA Prep 3050B 102606 11/09/11 13:50 SK TAL SF Total/NA Analysis 6010B 4 102765 11/11/11 11:47 CAM TAL SF

Lab Sample ID: 720-38517-11

Matrix: Solid

Client Sample ID: C12-0.5+21 Date Collected: 11/02/11 10:50 Date Received: 11/04/11 13:30

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF	
Total/NA	Analysis	6010B		· 4	102765	11/11/11 11:52	CAM	TAL SF	

Client Sample ID: C12-2.0+21

Date Collected: 11/02/11 11:00 Date Received: 11/04/11 13:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF
Total/NA	Analysis	6010B		4	102765	11/11/11 11:56	CAM	TAL SF

Client Sample ID: BB9-0.5+13

Client Sample ID: BB9-2.0+13

Batch

Туре

Prep

Analysis

Batch

Method

3050B

6010B

Date Collected: 11/02/11 13:10

Date Received: 11/04/11 13:30

Prep Type

Total/NA

Total/NA

Date Collected: 11/02/11 12:55 Date Received: 11/04/11 13:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF
Total/NA	Analysis	6010B		4	102765	11/11/11 12:00	CAM	TAL SF

Dilution

Factor

4

Run

Lab Sample ID: 720-38517-22

Lab Sample ID: 720-38517-24

Lab Sample ID: 720-38517-25

Matrix: Solid

Matrix: Solid

Matrix: Solid

Prepared		
or Analyzed	Analyst	Lab
11/09/11 13:50	SK	TAL SF
11/11/11 12:04	CAM	TAL SF
	or Analyzed 11/09/11 13:50	or Analyzed Analyst 11/09/11 13:50 SK

Client Sample ID: BB10-0.5+16

Date Collected: 11/02/11 13:45 Date Received: 11/04/11 13:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF
Total/NA	Analysis	6010B		4	102765	11/11/11 12:08	CAM	TAL SF

Client Sample ID: BB10-2.0+16

Date Collected: 11/02/11 13:55 Date Received: 11/04/11 13:30

1		Batch	Batch		Dilution	Batch	Prepared		
	Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			 102606	11/09/11 13:50	SK	TAL SF
	Total/NA	Analysis	6010B		4	102765	11/11/11 12:13	CAM	TAL SF

TestAmerica Job ID: 720-38517-1

Lab Sample ID: 720-38517-18

Lab Sample ID: 720-38517-19

Lab Sample ID: 720-38517-21

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: D12-0.5+21

Date Collected: 11/02/11 15:30 Date Received: 11/04/11 13:30

Date Received:		U			·				
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF	
Total/NA	Analysis	6010B		4	102765	11/11/11 12:46	CAM	TAL SF	

Client Sample ID: D12-2.0+21

Date Collected: 11/02/11 15:45 Date Received: 11/04/11 13:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF
Total/NA	Analysis	6010B		4	102765	11/11/11 12:42	CAM	TAL SF

Client Sample ID: E12-0.5+22

Date Collected: 11/02/11 16:30 Date Received: 11/04/11 13:30

	Batch	Batch		Dilution	Batch	Prepared			
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK	TAL SF	
Total/NA	Analysis	6010B		4	102765	11/11/11 12:38	CAM	TAL SF	

Client Sample ID: E12-2.0+22

Date Collected: 11/02/11 16:40 Date Received: 11/04/11 13:30

								·
	Batch	Batch	Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B		102606	11/09/11 13:50	SK	TAL SF	
Total/NA	Analysis	6010B	4	102765	11/11/11 12:34	CAM	TAL SF	

Client Sample ID: F12-0.5+12

Date Collected: 11/03/11 09:25 Date Received: 11/04/11 13:30

	Batch	Batch	*	Dilution	Batch	Prepared	
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst
Total/NA	Prep	3050B			102606	11/09/11 13:50	SK
Total/NA	Analysis	6010B	· .	4	102765	11/11/11 12:17	CAM

Client Sample ID: F12-2.0+12

Date Collected: 11/03/11 09:30 Date Received: 11/04/11 13:30

	Batch	Batch			Dilution	Batch	Prepared		
Prep Type	Туре	Method	•	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	 Prep	3050B				102606	11/09/11 13:50	SK	TAL SF
Total/NA	Analysis	6010B	· .		4	102765	11/11/11 12:21	CAM	TAL SF

TestAmerica San Francisco 12/9/2011

TestAmerica Job ID: 720-38517-1

Lab Sample ID: 720-38517-29

Lab Sample ID: 720-38517-30

Lab Sample ID: 720-38517-32

Lab Sample ID: 720-38517-33

Lab Sample ID: 720-38517-41

Lab Sample ID: 720-38517-42

Lab TAL SF TAL SF

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

TestAmerica Job ID: 720-38517-1

٢

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Laboratory TestAmerica San Francisco	Authority California	Program State Program	EPA Region 9	Certification ID 2496

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

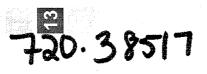
11

Method	Method Description		 Protocol	Laboratory
6010B	Metals (ICP)		 SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:


TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Job ID: 720-38517-1

12

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-38517-1	K0-0.5+20	Solid	11/01/11 09:45	11/04/11 13:30
720-38517-2	K0-2.0+20	Solid	11/01/11 10:05	11/04/11 13:30
720-38517-10	J0-0.5+21	Solid	11/01/11 12:35	11/04/11 13:30
720-38517-11	J0-2.0+21	Solid	11/01/11 11:40	11/04/11 13:30
720-38517-15	G12-0.5+16	Solid	11/02/11 09:25	11/04/11 13:30
720-38517-16	G12-2.0+16	Solid	11/02/11 09:30	11/04/11 13:30
720-38517-18	C12-0.5+21	Solid	11/02/11 10:50	11/04/11 13:30
720-38517-19	C12-2.0+21	Solid	11/02/11 11:00	11/04/11 13:30
720-38517-21	BB9-0.5+13	Solid	11/02/11 12:55	11/04/11 13:30
720-38517-22	BB9-2.0+13	Solid	11/02/11 13:10	11/04/11 13:30
720-38517-24	BB10-0.5+16	Solid	11/02/11 13:45	11/04/11 13:30
720-38517-25	BB10-2.0+16	Solid	11/02/11 13:55	11/04/11 13:30
720-38517-29	D12-0.5+21	Solid	11/02/11 15:30	11/04/11 13:30
720-38517-30	D12-2.0+21	Solid	11/02/11 15:45	11/04/11 13:30
720-38517-32	E12-0.5+22	Solid	11/02/11 16:30	11/04/11 13:30
720-38517-33	E12-2.0+22	Solid	11/02/11 16:40	11/04/11 13:30
720-38517-41	F12-0.5+12	Solid	11/03/11 09:25	11/04/11 13:30
720-38517-42	F12-2.0+12	Solid	11/03/11 09:30	11/04/11 13:30

TestAmerica San Francisco 12/9/2011

-TENT39, 4.12 134723

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 9452 (925) 602-4710 X 2 (925) 602-4720 FAX Project Number: AM- Sampler(s) Signature(s):	Contact: 23 Email: 161 Email: Email: Email:	IN OF Tom Neely theely@eti eticlabrepo Yemia.Haa Tiffany.Kl 02	y orts@e shimot itzke@ Nu:	com eticeng to@am	.com ec.co com f Cont serva	om	Lead (EPA Method 6010B)	HOLD									P.O. No. 20852 Results: □ FAX X Email Turn-around time: □ 5-day □ 24-hour X Standard Deliverable: X PDF □ EDF X EDD Notes: PG&E / AMEC project Please bill ETIC Engineering, Inc. Project Name: Oakland General Construction Yard
KO-0.5+20 11/	1/11 0945	soil	1				X			Τ							6"x2" stainless steel sleeve
10-2,0+20 11/		soil	1		1		X										
10-5.0+2011/		soil	1					X									
K00-0.5+12 11/		soil	1					X									
K00-2.0+12 11/		soil	1					X									
KOO -5.0+1211/		soil	1					X									
300-0.5+12 11/		soil	1					X									
300-2.0+1211/	1/11 1140	soil	1					X									
J00-5.0+12 11/	1/11 1205	soil	1					X					ļ!		_		
30-0.5+21 11/		1	1						au		<u> </u>				_		
30-2.0+21 11/	1/11 1240	soil	1						ļ	_	<u> </u>						
30-5.0+21 11/	1/11 1255	soil	1		_			X		<u>.</u>							<u> </u>
G13-0.5+12 11/	2/11 0815	soil	1		_	1		¥	ļļ		_				_		
G13-2.0+1211/	2/11 0830	soil	1			ļ	NY X				<u></u>						
G12-0.5+1611/			1				$\perp \Sigma$	4			<u> </u>						· · · · · · · · · · · · · · · · · · ·
612-2.0+16 11/	2/11 0930	soil	1					1						1			Date Time
	Relinquished by				Dat		Tim		Ι.			K	eceived	by			
1 tare	Di			<u>l</u>	1. 5	511(158	50	. (_	1						11.3.11 1530
	•			1	14	111	101	D	~	<u>×</u>	B	<u> </u>	WW				11/4/11 1016
Analytical laboratory	y: TestAme	erica (Plea	isanto	on)			,		1								carrier Page 1 of 5
Relinguished	l by K	BE	juic-	n].	4/11	12	330	>	1-0	ceì	jeil	: F	50-11	Wie	LC	i.	~ 11-4-11 1330

12/9/2011

Page 19 of 30

720.38517

Ţ. €

						7	av	2		•. •						13-172
TIC Engineering, Inc. 285 Morello Avenue leasant Hill, CA 94523 925) 602-4710 X 2161 925) 602-4720 FAX	Contact:	Tom Neely tneely@et eticlabrepo Yemia.Ha	<u>y</u> iceng.co orts@et	om iceng.	com	KOLOR)								1	□ FAX und time: □ 24-hour	X Email
roject Number: AM-OA	Email: KGCY-	Tiffany.K 02	Num	ber of	com Containe ervative	EDA Method								Please	G&E / AMEC	ineering, Inc
ampler(s) gnature(s): / Zure- Sample Identification Date		Sample Type	Unpreserved	HNO3	H ₂ SO ₄ NaOH	T and / ED								Project 1	Name: Oakland Construe Commen	ction Yard
Identification Date GI2-S.O+16 11/2/1		soil												6"x2" stai	nless steel slee	
11/2/1		soil	1			5	$\left\langle \uparrow \right\rangle$				┼─┨				1	
C12-2.0+21 11/2/1	1	soil	1			ΤŔ	Ż							1	. \	
12-5.0+21 11/2/1		soil	1				X									·····
BB9-0,5+13 11/2/1			1													
339-2.0+13 11/2/1		soil	1				$\langle $									
339-5.0+1311/2/1		soil	1				X				_			· · ·		
3310-0,5+16 11/2/1	1 1345	soil	1								_			_		
3310-2.0+16 11/2/1	1 1355	- soil	1			2	≤ 1							<u> </u>		
BB10-5.0416 11/2/1			1				_X				-					
3 310 - 6.0+16 11/2/1	1		1		<u> </u>		-X									
339-6.0+13 11/2/1	1	1	1:		 	\downarrow								<u> </u>		
212-0.5+21 11/2/1	, ,		-1		<u> </u>	+k	\mathbf{x}				_		. 			·····
<u> </u>	1		1	_			XL_	·						· .		
212-5.0+21 11/2/1			1	_	 											
512-0,5+22 11/2/1 Ratio	1 <u>630</u> 11ished by	soil	1		Date		ime [Receive	d by		<u> </u>	Date	Time
Reimqui C		• •		1	1) iSi ((1	530								11.3.11	
		-			14/11		10		\leq	P	~~~	SH	<u></u>		11/4/11	1010
Analytical laboratory:	TestAme	erica (Plea	santor					hippin	g notes	: 10	A TA	2+ Amp	NEA	Camer		Page 2 of

12/9/2011

Page 20 of 30

		720	.38517	13-1723
ETIC Engineering, Inc. 2285 Morello Avenue Contac Pleasant Hill, CA 94523 Email: (925) 602-4710 X 2161 Email: (925) 602-4720 FAX Email: Email:	Tiffany.Klitzke@amec.com Number of Conta	Ethod 6010B)		P.O. No. <u>20852</u> Results: □ FAX X Email Turn-around time: □ 5-day □ 24-hour X <u>Standard</u> Deliverable: X PDF □ EDF X EDD Notes: PG&E / AMEC project Please bill ETIC Engineering, Inc.
Project Number: AM-OAKGCY Sampler(s) Signature(s): Carthology Sample Identification Date Time	Sauble Cl	NaOH a Lead (EPA HOLD		Project Name: Oakland General Construction Yard Comments
$\begin{array}{c} E 2-2.0+22 \\ 11/2/11 \\ 1/641 \\ E 2-5.0+22 \\ 11/2/11 \\ 1/651 \\ 0 3-0.5+2 \\ 11/3/11 \\ 082 \\ 0 3-2.0+2 \\ 11/3/11 \\ 082 \\$	Soil 1 Soil 1			6"x2" stainless steel sleeve
Relinquished by	Date [[:3	11 1530	ipping notes: Vor TesrA	U.3.11 1030

TIC Engineering,	Inc.	CHA	IN OI	F C	CUS	ST	OI	DY	7														P.O. No. Results:	20852 i FAX	X Email
285 Morello Aver easant Hill, CA 25) 602-4710 25) 602-4720 FA	94523 X 2161	Contact: Email: Email: Email: Email:	Tom Neel tneely@et eticlabrep Yemia.Ha Tiffany.K	icen; orts((shim	@etic 10to(eng. Damo	ec.co			Lead (EPA Method 6010B)							артенити <mark>н</mark> а странитисти инстатисти и так				-		Deliverab X PDF	□ 24-hour	X EDD
oject Number: A	M-OA	KGCY-	02	ľ		er of I Pres			S	4 Me													Please	bill ETIC Eng	ineering, Inc.
mpler(s) gnature(s):	at		ie_	Unpreserved			4	Į		d (EP.	CD												Project Na	ame: Oakland Construc	General tion Yard
Sample Identification	Date	Time	Sample Type	Unpre	HCI	HNO3	H ₂ SO ₄	NaOH		Lea	HOLD													Comment	ts
E14-5,0+23	11/3/11	1145	soil	1							\mathbb{X}												6"x2" stain	less steel sleev	/e
214-0,5+23			soil	1	ļ					1	\mathbb{X}	1												1	
214-2,0+23			soil	1						<u> </u>	\mathbb{N}	_												.)	
714-5.0+23	11/ 3 /11	1330	soil	1							X	·								·		\square	<u> </u>	V	
	11/ /11	l	soil	1								<u> </u>													
	11/ /11		soil	1																					
	11/ /1]		soil	1																					
	11/ /11	l	soil	1																					
	11/ /11		soil	1																					
	11/ /11		soil	1																					
	11/ /1		soil	1																					
	11/ /1	l l	soil	1																					
	11/ /1	L	soil	1																					
	11/ /1	1	soil	1	1					Γ		1													·
	11/ /1	1	soil	1								1		·											
	11/ /1	1	soil	1						T													-		
	Relinqu	ished by					Date	;	r	Tim	e	1		hieren de de la			Rec	eiveo	l by					Date	Time
Flate		$i \geq 1$	` <u> </u>			$ 1\rangle$	13	4(Y	53	300		C	/	2	•								11.3.11	1530
1/4/11						2/(3			T	Ŧ		<		dit.					11/4/11	1010				

กิ. V.

			700. 38 31 1 134722
ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 9452 (925) 602-4710 X 21 (925) 602-4720 FAX	51 Email: eticlabreports(Email: Yemia.Hashin Email: Tiffany.Klitzk	g.com @eticeng.com noto@amec.com	(W) BOUT AG AG STATE
Sampler(s): Signature(s): Sample Identification	Sample	T	Hall Project Name: Oakland General Project Name: Oakland General Construction Yard Hall Comments
DI-A 11.3			XXX 6"x2" stainless steel sleeve
DI-13 11.3			XXX 4 POINT COMPOSIT)
DI-C 11.3	111 1330 Sozie 1		XXX DESIGNATE SAMPLE
DI-D 11.3			XXX DID AS DI-ABEANDD V
D2-W 11.3	111 1400 WATER 2	61	XXX Six40 mLVOA wi HCLITWO 12-
TripBlank 11.0	11 1400 Water	2	Xamber, & Dne 250mL polyu
			NH NO3
			Two fomi upt.
· · · · · · · · · · · · · · · · · · ·			
	····		
	· · ·		
Re	inquished by	Date	Time Received by Date Time
Mart	- Di	11.3.11	1530 11.3.11 1530
	1.	11/4/11	1010 SR STA 11/4/11 1010
Analytical laboratory:	TestAmerica (Pleasan		Shipping notes: Via Test America carrier Page 5 of 5
Dali	vished by AB	Soft 11/41	

12/9/2011

720-38517-2

Salimpour, Afsaneh

From: Klitzke, Tiffany [Tiffany.Klitzke@ame

Sent: Tuesday, November 15, 2011 12:34 PM

To: Salimpour, Afsaneh; ETIC Labreports; Mr. Thomas Neely; Hashimoto, Yemia

Subject: RE: Files from 720-38517-1 AM-OAKGCY-02

Hi Afsaneh,

Can you please report the results for D1-A,B,C and D, and D2-W in a separate lab report?

Also, we'd like to run the following samples on hold for Lead by 6010 on a standard turnaround time:

G13-0.5+12 G13-2.0+12 G12-5.0+16 D12-5.0+21 D13-0.5+21 D13-2.0+21 F12-5.0+12

Thank you,

Tiffany Klitzke Staff Geologist

AMEC 2101 Webster St 12th Floor Oakland, CA 94612 direct: 510-663-4144

From: Salimpour, Afsaneh [mailto:afsaneh.salimpour@testamericainc.com] **Sent:** Friday, November 11, 2011 4:46 PM **To:** ETIC Labreports; Klitzke, Tiffany; Mr. Thomas Neely; Hashimoto, Yemia **Subject:** Files from 720-38517-1 AM-OAKGCY-02

AFSANEH SALIMPOUR

TestAmerica San Francisco THE LEADER IN ENVIRONMENTAL TESTING

Tel: 925.484,1919 www.testamericainc.com

Reference: [093263] Attachments: 2

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents.

11/15/2011

Mullen, Joan

120-38517-3

From:	Salimpour, Afsaneh
Sent:	Thursday, December 01, 2011 12:49 PM
To:	Mullen, Joan
Subject:	FW: Files from 720-38517-2 AM-OAKGCY-02
Importance	: High

Please scan this email to job # 720-38517-3.

AFSANEH SALIMPOUR

Project Manager

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING 1220 Quarry Lane Pleasanton, CA 94566 Tel 925.484.1919 | Fax 925.600.3002 www.testamericainc.com

The Staff of TestAmerica San Francisco & the Oakland Service Center want to wish you a wonderful holiday season! And header to sets serve you, we want to lefy ou how our extension Thankspiving: and 25°L 2011 - We verse closed November 24⁴ Christmas: }2011 – We will be CLOSED Örtsmart 26¹ New Years: January 2¹⁸, 2012 – We will be CLOSED WE CERTAINLY APPRECIATE YOUR BUSHIESS!

have a safe and happy holiday season

-----Original Message-----

From: Klitzke, Tiffany [mailto:Tiffany.Klitzke@amec.com] Sent: Tuesday, November 22, 2011 3:44 PM To: Salimpour, Afsaneh; ETIC Labreports; Mr. Thomas Neely Subject: RE: Files from 720-38517-2 AM-OAKGCY-02

Hi Afsaneh,

I would like to analyze the following samples on hold for lead with a standard turnaround time: G14-0.5+14 G14-2.0+14

E13-0.5+12

Thanks,

Tiffany Klitzke Staff Geologist

AMEC 2101 Webster St 12th Floor Oakland, CA 94612 direct: 510-663-4144

From: Salimpour, Afsaneh [mailto:afsaneh.salimpour@testamericainc.com] Sent: Tuesday, November 22, 2011 3:11 PM To: ETIC Labreports; Klitzke, Tiffany; Mr. Thomas Neely

720.38517 - email

Salimpour, Afsaneh

From: Yuko Mamiya [ymamiya@eticeng.com]

Sent: Monday, November 07, 2011 6:13 PM

To: Thomas Neely; Salimpour, Afsaneh; ETICLabReports; 'tiffany.klitzke@amec.com'; 'yemia.hashimoto@amec.com'

Subject: RE: Sample Login Confirmation for 720-38517, AM-OAKGCY-02

Sample ID J0-2.0+21 should be 1140 on COC also Sample ID K00-2.5+12 @ 1110 was added to the COC. Attached is the revised COC (Page 1 and 5). Thanks.

Yuko Mamiya ETIC Engineering, Inc. 2285 Morello Ave. Pleasant Hill CA 94523 Tel: 925-602-4710 x2164 Fax: 925-602-4720 Mobile: 925-030-6421 ymamiya@eliceng.com www.eliceng.com

From: Thomas Neely Sent: Monday, November 07, 2011 5:55 PM To: 'afsaneh.salimpour@testamericainc.com'; ETICLabReports; 'tiffany.klitzke@amec.com'; 'yemia.hashimoto@amec.com'; Yuko Mamiya Subject: Re: Sample Login Confirmation for 720-38517, AM-OAKGCY-02

I will check with the crew to reconcile these two items

Tom

Sent from my Blackberry

From: Salimpour, Afsaneh <afsaneh.salimpour@testamericainc.com> To: ETICLabReports; Tiffany Klitzke <tiffany.klitzke@amec.com>; Thomas Neely; Yemia Hashimoto <yemia.hashimoto@amec.com> Sent: Mon Nov 07 17:36:06 2011 Subject: Sample Login Confirmation for 720-38517, AM-OAKGCY-02

Sample ID - J0-2.0+21, COC list time as 1240, sample has time of 11:40, loggerd per COC. Received sample not listed on COC- Sample ID K00*-2.5+12 @ 1110, logged and placed on hold.

AFSANEH SALIMPOUR

TestAmerica San Francisco THE LEADER IN ENVIRONMENTAL TESTING

ETIC Engineering, Inc.	CHA	IN OI	F C	US	TO	DY	Ľ												P.O. No. 20852	
2285 Morello Avenue	Contact:	Tom Neel	lv																Results: DFAX Turn-around time:	X Email
Pleasant Hill, CA 94523	Email:	tneely@et	the second s	com			-	B											□ 5-day □ 24-hour	X Standor
(925) 602-4710 X 2161	Email:	eticlabrep			ig.com	1	~	6010B								ļ			Deliverable:	In <u>Continuary</u>
(925) 602-4720 FAX	Email:	Yemia.Ha					-												X PDF DEDF	X EDD
	Email:	Tiffany.K					••	l g											Notes: PG&E / AMEC	
Project Number: AM-OA	KGCY-	02	1		of Cor reserva		rs	A Method											Please bill ETIC Eng	
Sampler(s) Signature(s):		- i	Unpreserved					Lead (EP,	D.									к	Project Name: Oaklan Constru	d General ction Yard
Sample Identification Date	Time	Sample Type	Unpre	HCI	H ₂ SO ₄	NaOH		Lea	HOLD							ŀ			Commer	ıts
KO-0,5+20 11/1/1		soil	1					X											6"x2" stainless steel slee	ve
KO-2.0+20 11/1 /1	1005	soil	1					X											\ \	
KO-5.0+20 11/ 1/1	1010	soil	1						X						·			1		
K00-015+12 11/ 1/1	1040	soil	1			Γ	·		X		·							1		
K00-2.0+12 11/ 1/1	1045	soil	1				1		X			-						1		· · · · · · · · · · · · · · · · · · ·
KOO -5.0+ 11/ 1 /1	1100	soil	1					[Ń			1								
300-0.5+12 11/ 1./1		soil	1			1			\mathbf{X}									1	1	······································
300-2.0+12 11/1/1	1140	soil	1					1	X			1						1	1	
JOO-5.0+12 11/ 1/1	1205	soil	1			1			X			1								
30-0.5+21 11/1/1		soil	1			1	1	\overline{X}	X	an								1		······
30-2.0+21 11/1/1	1240	HP soil	1			1	-	X							1	_		1		
50-5.0+21 11/1/11		soil	1						X							- -		\square		
G13-0.5+12 11/2/11	0815	soil	1			Ι	14	R	X								1	1	1	
G13-2.0+12 11/2 /11	0830	soil	1			T	NE	X	\mathbf{X}											·····
G12-0.5+16 11/2/11		soil	1					X				1						1		•
G12-2.0+16 11/2/11	the second se	soil	1			1		X				1						1	V	
Relinqu			*******		Date	3 -		Time				••••••••••••••••••••••••••••••••••••••		Rece	eived	by	l		Date	Tíme
Mara D	<u>`</u>			1	1.3	511(14	53	0		Ċ	Ĺ	-						11.3.11	1530
<u> </u>	1	4/4/11/010												11/4/11	1016					
Analytical laboratory:	rica (Pleas	santo							ShiŢ	ping	note	s: V	iq T	Ter	:An	ieni	DA (camier	Page 1 of	

ີພ

Page 27 of 30

12/9/2011

	ETIC Engineerin 2285 Morello A Pleasant Hill, C (925) 602-4710 (925) 602-4720	venue A 94523 X 2161	Contact: Email:	il: eticlabreports@eticeng.com il: Yemia.Hashimoto@amec.com						TFH-d by EPA Method 8015B(M) with the statement NO	BTEX and TPH-g by EPA Method 8260B	CAM 17 Metals by EPA 6010B/7471	-		•	•							P.O. No. 20852 Results: □ FAX X Em Turn-around time: □ 5-day □ 24-hour X Stand Deliverable: X PDF □ EDF X EDI Notes: PG&E / AMEC project	lard	
	Project Number:	AM-OA	KGCY-()2	1			Conta			Meth	-g by	s by E								ĺ			Please bill ETIC Engineering,	, Inc.
	Sampler(s) Signature(s): Sample Identification	·	<u> </u>	Sample	Unpreserved	HCI	HNO,		NaOH		H-d by EPA	EX and TPH	AM 17 Metal										470	Project Name: Oakland General Construction Yar	
ND		Date	Time	Туре	5	H	H	Ξ	ž -	_	Hall	BI	V C	V	•			ļ			ļ		T	Contraction of the	
	DI-A DI-B	11.3.11								_	$\tilde{\mathbf{x}}$	$\hat{\mathbf{x}}$	Ŷ								<u> </u>	ļ		6"x2" stainles steel sli	<u>eere</u>
	DI-C	11.3.11	1330	SOZL				$\left \right $	·	-	$\dot{\sim}$	$\frac{\lambda}{\lambda}$	$\overline{\mathbf{A}}$	-{		4		<u>bri</u>	•			PC		<u> </u>	
	DI-D	(1.3.11	· · · · · · · · · · · · · · · · · · ·	SOLL						-	\Diamond	$\frac{\Lambda}{\chi}$	\uparrow			ES D	IG	NA			1	P	}		
	D2-W	11.3.11		WATER	12	6	1			\neg	$\frac{1}{X}$		X)	-0		2	1-1	-2	μK3	γ C γ	(AA)	2DV Six40 MLVOA WHCL, TWO	
	Trip Blank	11.03.11		Water		2				-	<u> </u>							<u> </u>	<u> </u>				X	amber, & Dne 250mL pc	
							-		-	7													R	H NO3	ny ur
1M	K00-25+12	- 11-1-11	1110	Soil	1																	1	\square	TWO GOML UDA.	
¥ .																									
					ļ	ļ.	<u> </u>			_							ļ	ļ	ļ	<u> </u>	ļ				
					<u> </u>	<u> </u>		 -		_						·	ļ	ļ			ļ		ļ	·	·····
	······									_	-						ļ		 			ļ			······
					┢──					-											ļ				
					-			$\left \right $	_									<u> </u>	 		 			<u>_</u>	~
			+						┿												ŀ				
		Relinqu	ished by		L	1	I	Date			Time		<u> </u>			l	L	Re	ceive	d by	1.	<u>.</u>	l	LDate T	ìme
	173	the	Ì	\supset			11	· 3·	J	10	530	5		l		1	~	`						11-3.11 (5	
		1.1	<u> </u>		•		1	4/11		-	$\frac{20}{10}$			~	C	5	>				-			11	
	Analytical labo	ratory:	TestAmer	ica (Plea	sant	ion)	<u>i (4</u>		<u> </u>	<u>د (</u>			Shi	ppi	ng n	lote	s: \	ka	E Te	st.)	WE WE	<u>\</u> 1/20	x (11/4/11 10 anitr Page 50	910 of <u>5</u>

Page 28 of 30

12/9/2011

Client: ETIC Engineering, Inc.

Job Number: 720-38517-1

List Source: TestAmerica San Francisco

Login Number: 38517 List Number: 1

List Number: 1 Creator: Mullen, Joan					
Question	Answer	Comment			
Radioactivity either was not measured or, if measured, is at or below background	N/A			· · · · · · · · · · · · · · · · · · ·	
The cooler's custody seal, if present, is intact.	N/A				
The cooler or samples do not appear to have been compromised or tampered with.	True				
Samples were received on ice.	True				
Cooler Temperature is acceptable.	True				skien:
Cooler Temperature is recorded.	True	3.9,4.1			
COC is present.	True				
COC is filled out in ink and legible.	True				
COC is filled out with all pertinent information.	False				
Is the Field Sampler's name present on COC?	True				
There are no discrepancies between the sample IDs on the containers and the COC.	True				
Samples are received within Holding Time.	True	·			
Sample containers have legible labels.	True				142
Containers are not broken or leaking.	True				
Sample collection date/times are provided.	True				
Appropriate sample containers are used.	True				
Sample bottles are completely filled.	True				
Sample Preservation Verified.	N/A				
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	•	•		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True				
Multiphasic samples are not present.	True				
Samples do not require splitting or compositing.	True				
Residual Chlorine Checked.	True				

Login Sample Receipt Checklist

Client: ETIC Engineering, Inc.

Job Number: 720-38517-1

Login Number: 38517 List Source: TestAmerica San Francisco List Number: 1 Creator: Mullen, Joan Question Answer Comment N/A Radioactivity either was not measured or, if measured, is at or below background The cooler's custody seal, if present, is intact. N/A The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True Cooler Temperature is acceptable. True

True

True

True

False

True

True

True

True

True

True

True

True

N/A

True

True

True

True

True

3.9,4.1

COC is filled out in ink and legible. COC is filled out with all pertinent information.

Cooler Temperature is recorded.

COC is present.

Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time.

Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided.

Appropriate sample containers are used. Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-38517-2 Client Project/Site: AM-OAKGCY-02

For: ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523

Attn: Mr. Thomas Neely

Alanef Sal

Authorized for release by: 11/22/2011 3:07:06 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

Definitions/Glossary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Glossary

Glossary		_ 3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	-
%R	Percent Recovery	5
CNF	Contains no Free Liquid	5
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	8
PQL	Practical Quantitation Limit	
RL	Reporting Limit	9
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
		44

Job ID: 720-38517-2

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-38517-2

Comments

No additional comments.

Receipt

Sample ID - J0-2.0+21, COC list time as 1240, sample has time of 11:40, loggerd per COC. Received sample not listed on COC- Sample ID K00*-2.5+12 @ 1110, logged and placed on hold.

All other samples were received in good condition within temperature requirements.

Detection Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02 TestAmerica Job ID: 720-38517-2

Client Sample ID: G13-0.5+12						Lal	bS	Sample ID:	720-38517-13
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	340		2.0		mg/Kg	4	_	6010B	Total/NA
Client Sample ID: G13-2.0+12						Lal	b S	Sample ID:	720-38517-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	590		1.8		mg/Kg	4	_	6010B	Total/NA
Client Sample ID: G12-5.0+16						Lal	b S	Sample ID:	720-38517-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	6.8		1.9		mg/Kg	4	_	6010B	Total/NA
Client Sample ID: D12-5.0+21						Lal	b S	Sample ID:	720-38517-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	5.3		1.9		mg/Kg	4	_	6010B	Total/NA
Client Sample ID: D13-0.5+21						Lal	b S	Sample ID:	720-38517-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	31		1.8		mg/Kg	4	_	6010B	Total/NA
Client Sample ID: D13-2.0+21						Lal	b S	Sample ID:	720-38517-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	61		2.0		mg/Kg	4	_	6010B	Total/NA
Client Sample ID: F12-5.0+12						Lal	b S	Sample ID:	720-38517-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	17		1.9		mg/Kg	4	_	6010B	Total/NA

Method: 6010B - Metals (ICP)

Client Sample ID: G13-0.5+12

Lab Sample ID: 720-38517-13

5 6

Client Sample ID: G13-0.5+12							Lab Sa	ample ID: 720-3	8517-13
Date Collected: 11/02/11 08:15								Matr	ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	340		2.0		mg/Kg		11/21/11 09:28	11/22/11 00:15	4
Client Sample ID: G13-2.0+12							Lab Sa	ample ID: 720-3	8517-14
Date Collected: 11/02/11 08:30									ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	590		1.8		mg/Kg		11/21/11 09:28	11/22/11 00:20	4
Client Sample ID: G12-5.0+16							Lab Sa	ample ID: 720-3	8517-17
Date Collected: 11/02/11 10:00									ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.8		1.9		mg/Kg		11/21/11 09:28	11/22/11 00:24	4
Client Sample ID: D12-5.0+21							Lab St	ample ID: 720-3	8517-31
Date Collected: 11/02/11 15:55							Lab Ge		ix: Solid
Date Received: 11/04/11 13:30								Math	
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Lead	5.3		1.9		mg/Kg		11/21/11 09:28	11/22/11 00:37	4
Client Sample ID: D13-0.5+21							Lab Sa	ample ID: 720-3	8517-35
Date Collected: 11/03/11 08:10								Matri	ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	31		1.8		mg/Kg		11/21/11 09:28	11/22/11 00:41	4
Client Sample ID: D13-2.0+21							Lab Sa	ample ID: 720-3	8517-36
Date Collected: 11/03/11 08:20									ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	61		2.0		mg/Kg		11/21/11 09:28	11/22/11 00:45	4
Client Sample ID: F12-5.0+12							l ah Q	ample ID: 720-3	8517-43
Date Collected: 11/03/11 09:40							Lab Se		ix: Solid
Date Received: 11/04/11 13:30								wat	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	17		1.9		mg/Kg		11/21/11 09:28	11/22/11 00:49	4
					5 5				

TestAmerica Job ID: 720-38517-2

Method: 6010B - Metals (IC	;P)
----------------------------	-----

Lab Sample ID: MB 720-103263/1-A									C	lient Sa	mple ID: N	lethod	Blank
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 103354											Prep B	atch: 1	03263
	MB	MB											
Analyte	Result	Qualifier		RL	М	DL Unit		D	Pre	pared	Analyze	d	Dil Fac
Lead	ND			0.50		mg/Kg)	1	11/21/	11 09:28	11/21/11 2	3:25	1
Lab Sample ID: LCS 720-103263/2-A								Cli	ent S	Sample I	D: Lab Co	ntrol S	ample
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 103354											Prep B		
			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits		
Lead			50.0		48.7		mg/Kg			97	80 - 120		
Lab Sample ID: LCSD 720-103263/3-A							Cli	ent S	amp	ole ID: La	ab Control	Samp	le Dup
Matrix: Solid													-
											Prepiy	pe: Io	tal/NA
											Prep Ty Prep B		
			Spike		LCSD	LCSD							03263
Analysis Batch: 103354 Analyte			Spike Added			LCSD Qualifier	Unit		D	%Rec	Prep B		tal/NA 03263 RPD Limit
Analysis Batch: 103354			•				<mark>Unit</mark> mg/Kg		D	%Rec 95	Prep B %Rec.	atch: 1	03263 RPD
Analysis Batch: 103354 Analyte Lead			Added		Result					95	Prep B %Rec. Limits 80 - 120	atch: 1 RPD	03263 RPD Limit
Analysis Batch: 103354 Analyte Lead Lab Sample ID: LCSSRM 720-103263/25-			Added		Result					95	Prep B %Rec. Limits 80 - 120	atch: 1 RPD 3 ntrol S	IO3263 RPD Limit 20
Analysis Batch: 103354 Analyte Lead Lab Sample ID: LCSSRM 720-103263/25- Matrix: Solid	 A		Added		Result					95	Prep B %Rec. Limits 80 - 120	atch: 1 RPD 3 ntrol S pe: To	ample
Analysis Batch: 103354 Analyte Lead Lab Sample ID: LCSSRM 720-103263/25- Matrix: Solid	 A		Added		Result 47.3					95	Prep B %Rec. Limits 80 - 120 D: Lab Co Prep Ty	atch: 1 RPD 3 ntrol S pe: To	ample
Analysis Batch: 103354 Analyte	 A		Added 50.0	L	Result 47.3	Qualifier				95	Prep B %Rec. Limits 80 - 120 D: Lab Co Prep Ty Prep B	atch: 1 RPD 3 ntrol S pe: To	ample

Metals

Prep Batch: 103263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-38517-13	G13-0.5+12	Total/NA	Solid	3050B	
720-38517-14	G13-2.0+12	Total/NA	Solid	3050B	
720-38517-17	G12-5.0+16	Total/NA	Solid	3050B	
720-38517-31	D12-5.0+21	Total/NA	Solid	3050B	
720-38517-35	D13-0.5+21	Total/NA	Solid	3050B	
720-38517-36	D13-2.0+21	Total/NA	Solid	3050B	
720-38517-43	F12-5.0+12	Total/NA	Solid	3050B	
LCS 720-103263/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-103263/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-103263/25-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-103263/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 103354

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-38517-13	G13-0.5+12	Total/NA	Solid	6010B	103263
720-38517-14	G13-2.0+12	Total/NA	Solid	6010B	103263
720-38517-17	G12-5.0+16	Total/NA	Solid	6010B	103263
720-38517-31	D12-5.0+21	Total/NA	Solid	6010B	103263
720-38517-35	D13-0.5+21	Total/NA	Solid	6010B	103263
720-38517-36	D13-2.0+21	Total/NA	Solid	6010B	103263
720-38517-43	F12-5.0+12	Total/NA	Solid	6010B	103263
LCS 720-103263/2-A	Lab Control Sample	Total/NA	Solid	6010B	103263
LCSD 720-103263/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	103263
LCSSRM 720-103263/25-A	Lab Control Sample	Total/NA	Solid	6010B	103263
MB 720-103263/1-A	Method Blank	Total/NA	Solid	6010B	103263

chent Samp	le ID: G13-0	.5+12				Lat	o Sample II	D: 720-38517-1
Date Collected:	: 11/02/11 08: [,]	15						Matrix: Soli
Date Received:	11/04/11 13:3	30						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	- 3050B			103263	11/21/11 09:28	JR	TAL SF
Total/NA	Analysis	6010B		4	103354	11/22/11 00:15	CAM	TAL SF
_	, and yord	00102					0,	
lient Sampl	le ID: G13-2	.0+12				Lat	o Sample II	D: 720-38517-1
ate Collected:								Matrix: Soli
ate Received:	11/04/11 13:3	30						
-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	- 3050B			103263	11/21/11 09:28	JR	TAL SF
Total/NA	Analysis	6010B		4	103354	11/22/11 00:20	CAM	TAL SF
	Analysis	00100		-	103034	11/22/11 00:20	OAW	TAL OI
lient Sampl	le ID: G12-5	5.0+16				Lat	o Sample II	D: 720-38517-1
ate Collected:							•	Matrix: Sol
ate Received:	11/04/11 13:3	30						
-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	- 3050B			103263	11/21/11 09:28	JR	TAL SF
		00000			100200	11/21/11 05.20	010	INC OF
Total/NA	Analysis	6010B		4	103354	11/22/11 00:24	CAM	TAL SF
Total/NA	Analysis	.0+21		4	103354			D: 720-38517-3
Total/NA Client Sampl	Analysis le ID: D12-5 : 11/02/11 15:	5. 0+21		4	103354			D: 720-38517-3
Total/NA Client Sampl	Analysis le ID: D12-5 : 11/02/11 15:: 11/04/11 13::	5 .0+21 55 30				Lat		D: 720-38517-3
Total/NA Client Sampl Date Collected: Date Received:	Analysis le ID: D12-5 : 11/02/11 15: 11/04/11 13: Batch	5. 0+21 55 30 Batch	Run	Dilution	Batch	Lat	o Sample II	D: 720-38517-3 Matrix: Sol
Total/NA Client Sampl vate Collected: vate Received: Prep Type	Analysis le ID: D12-5 : 11/02/11 15:; 11/04/11 13:; Batch Type	55 30 Batch Method	Run		Batch Number	Lak Prepared or Analyzed	Analyst	D: 720-38517-3 Matrix: Sol
Total/NA Client Sampl ate Collected: ate Received: Prep Type Total/NA	Analysis le ID: D12-5 : 11/02/11 15:: 11/04/11 13:: Batch Type Prep	5.0+21 55 30 Batch <u>Method</u> 3050B	<u>Run</u>	Dilution Factor	Batch Number 103263	Prepared or Analyzed 11/21/11 09:28	Analyst JR	D: 720-38517-3 Matrix: Sol
Total/NA Client Sampl ate Collected: ate Received: Prep Type Total/NA	Analysis le ID: D12-5 : 11/02/11 15:; 11/04/11 13:; Batch Type	55 30 Batch Method	Run	Dilution	Batch Number	Lak Prepared or Analyzed	Analyst	D: 720-38517-3 Matrix: Sol
Total/NA Client Sampl Pate Collected: Pate Received: Total/NA Total/NA	Analysis Ie ID: D12-5 11/02/11 15: 11/04/11 13:3 Batch Type Prep Analysis	5.0+21 55 30 Batch Method 3050B 6010B	<u>Run</u>	Dilution Factor	Batch Number 103263	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37	Analyst JR CAM	D: 720-38517-3 Matrix: Sol Lab TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-0	5.0+21 55 30 Batch Method 3050B 6010B	Run	Dilution Factor	Batch Number 103263	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37	Analyst JR CAM	D: 720-38517-3 Matrix: Sol Lab TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected:	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13: Batch Type Prep Analysis le ID: D13-0 11/03/11 08:	5.0+21 55 30 Batch Method 3050B 6010B 0.5+21 10	Run	Dilution Factor	Batch Number 103263	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37	Analyst JR CAM	D: 720-38517-3 Matrix: Sol Lab TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected:	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13: Batch Type Prep Analysis le ID: D13-0 11/03/11 08:	5.0+21 55 30 Batch Method 3050B 6010B 0.5+21 10	Run	Dilution Factor	Batch Number 103263	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37	Analyst JR CAM	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Client Sampl Date Collected: Date Received: Client Received: Date Received:	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13: Batch Type Prep Analysis le ID: D13-0 11/03/11 08: 11/04/11 13:3 Batch	5.0+21 55 30 Batch Method 3050B 6010B 9.5+21 10 30	Run	Dilution Factor 4	Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared	Analyst JR CAM	D: 720-38517-3 Matrix: Sol Lab TAL SF TAL SF D: 720-38517-3 Matrix: Sol
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected: Date Received: Prep Type Prep Type	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13: Batch Type Prep Analysis le ID: D13-0 11/03/11 08: 11/04/11 13:3 Batch Type	5.0+21 55 30 Batch Method 3050B 6010B 5.5+21 10 30 Batch Method		Dilution Factor 4 Dilution	Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed	Analyst JR CAM	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF D: 720-38517-3 Matrix: Soli
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-0 11/03/11 08: 11/04/11 13:3 Batch Type Prep	5.0+21 55 30 Batch Method 3050B 6010B 0.5+21 10 30 Batch Method 3050B		Dilution Factor 4 Dilution Factor	Batch Number 103263 103354	Lak Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lak Prepared or Analyzed 11/21/11 09:28	Analyst JR CAM D Sample II Analyst JR	D: 720-38517-3 Matrix: Soli TAL SF TAL SF TAL SF D: 720-38517-3 Matrix: Soli Lab TAL SF
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected: Date Received: Prep Type Prep Type	Analysis le ID: D12-5 11/02/11 15: 11/04/11 13: Batch Type Prep Analysis le ID: D13-0 11/03/11 08: 11/04/11 13:3 Batch Type	5.0+21 55 30 Batch Method 3050B 6010B 5.5+21 10 30 Batch Method		Dilution Factor 4 Dilution	Batch Number 103263 103354 Batch Number	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed	Analyst JR CAM D Sample II	D: 720-38517-3 Matrix: Soli TAL SF TAL SF D: 720-38517-3 Matrix: Soli
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA	Analysis le ID: D12-5 11/02/11 15:3 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-0 11/03/11 08:3 11/04/11 13:3 Batch Type Prep Analysis	5.0+21 55 30 Batch Method 3050B 6010B 5.5+21 10 30 Batch Method 3050B 6010B		Dilution Factor 4 Dilution Factor	Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:41	Analyst JR CAM D Sample II JR CAM	D: 720-38517-3 Matrix: Soli TAL SF TAL SF 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Sampl	Analysis le ID: D12-5 11/02/11 15:3 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-0 11/03/11 08:2 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-2	5.0+21 55 30 Batch Method 3050B 6010B 0.5+21 10 30 Batch Method 3050B 6010B 0.5+21 10 30 80 80 80 80 80 80 80 80 80 8		Dilution Factor 4 Dilution Factor	Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:41	Analyst JR CAM D Sample II JR CAM	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Analysis Ie ID: D12-5 11/02/11 15:3 11/04/11 13:3 Batch Type Prep Analysis Ie ID: D13-0 11/03/11 08:3 I1/04/11 13:3 Batch Type Prep Analysis Ie ID: D13-2 11/03/11 08:3	5.0+21 55 30 Batch Method 3050B 6010B 9.5+21 10 30 Batch Method 3050B 6010B 2.0+21 20		Dilution Factor 4 Dilution Factor	Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:41	Analyst JR CAM D Sample II JR CAM	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Analysis Ie ID: D12-5 11/02/11 15:3 11/04/11 13:3 Batch Type Prep Analysis Ie ID: D13-0 11/03/11 08:3 I1/04/11 13:3 Batch Type Prep Analysis Ie ID: D13-2 11/03/11 08:3	5.0+21 55 30 Batch Method 3050B 6010B 9.5+21 10 30 Batch Method 3050B 6010B 2.0+21 20		Dilution Factor 4 Dilution Factor	Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:41	Analyst JR CAM D Sample II JR CAM	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF TAL SF TAL SF
Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Analysis le ID: D12-5 11/02/11 15:3 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-0 11/03/11 08:3 11/04/11 13:3 le ID: D13-2 11/03/11 08:3 11/04/11 13:3	5.0+21 55 30 Batch Method 3050B 6010B 9.5+21 10 30 Batch Method 3050B 6010B 9.5+21 10 30 8.0+21 20 30		Dilution Factor 4 Dilution Factor 4	Batch Number 103263 103354 Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:41 Lat	Analyst JR CAM D Sample II JR CAM	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF D: 720-38517-3 Matrix: Soli Lab TAL SF
Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Total/NA Client Sampl Date Collected: Date Received: Total/NA Total/NA Total/NA Total/NA Total/NA Client Sampl Date Collected: Date Received:	Analysis le ID: D12-5 11/02/11 15:3 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-0 11/03/11 08:3 11/04/11 13:3 Batch Type Prep Analysis le ID: D13-2 11/03/11 08:3 11/04/11 13:3 Batch	5.0+21 55 30 Batch Method 3050B 6010B 9.5+21 10 30 Batch Method 3050B 6010B 8.0+21 20 30 Batch Batch Method 3050B 6010B	Run	Dilution Factor 4 Dilution Factor 4 Dilution	Batch Number 103263 103354 Batch Number 103263 103354	Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:37 Lat Prepared or Analyzed 11/21/11 09:28 11/22/11 00:41 Lat Prepared	Analyst JR CAM D Sample II JR CAM D Sample II D Sample II	D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF D: 720-38517-3 Matrix: Soli Lab TAL SF TAL SF TAL SF TAL SF D: 720-38517-3 Matrix: Soli

Lab Sample ID: 720-38517-43

Matrix: Solid

Client Sample ID: F12-5.0+12

Date Collected: 11/03/11 09:40 Date Received: 11/04/11 13:30

Date Necerveu								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			103263	11/21/11 09:28	JR	TAL SF
Total/NA	Analysis	6010B		4	103354	11/22/11 00:49	CAM	TAL SF

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Laboratory	Authority	Program	EPA Region	Certification ID	
TestAmerica San Francisco	California	State Program	9	2496	

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02 TestAmerica Job ID: 720-38517-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-38517-13	G13-0.5+12	Solid	11/02/11 08:15	11/04/11 13:30
720-38517-14	G13-2.0+12	Solid	11/02/11 08:30	11/04/11 13:30
720-38517-17	G12-5.0+16	Solid	11/02/11 10:00	11/04/11 13:30
720-38517-31	D12-5.0+21	Solid	11/02/11 15:55	11/04/11 13:30
720-38517-35	D13-0.5+21	Solid	11/03/11 08:10	11/04/11 13:30
720-38517-36	D13-2.0+21	Solid	11/03/11 08:20	11/04/11 13:30
720-38517-43	F12-5.0+12	Solid	11/03/11 09:40	11/04/11 13:30

720-38517-2

Salimpour, Afsaneh

From: Klitzke, Tiffany [Tiffany.Klitzke@amec.com]

Sent: Tuesday, November 15, 2011 12:34 PM

To: Salimpour, Afsaneh; ETIC Labreports; Mr. Thomas Neely; Hashimoto, Yemia

Subject: RE: Files from 720-38517-1 AM-OAKGCY-02

Hi Afsaneh,

Can you please report the results for D1-A,B,C and D, and D2-W in a separate lab report?

Also, we'd like to run the following samples on hold for Lead by 6010 on a standard turnaround time:

G13-0.5+12 G13-2.0+12 G12-5.0+16 D12-5.0+21 D13-0.5+21 D13-2.0+21 F12-5.0+12

Thank you,

Tiffany Klitzke Staff Geologist

AMEC 2101 Webster St 12th Floor Oakland, CA 94612 direct: 510-663-4144

From: Salimpour, Afsaneh [mailto:afsaneh.salimpour@testamericainc.com]
Sent: Friday, November 11, 2011 4:46 PM
To: ETIC Labreports; Klitzke, Tiffany; Mr. Thomas Neely; Hashimoto, Yemia
Subject: Files from 720-38517-1 AM-OAKGCY-02

AFSANEH SALIMPOUR

TestAmerica San Francisco THE LEADER IN ENVIRONMENTAL TESTING

Tel: 925.484,1919 www.testamericainc.com

Reference: [093263] Attachments: 2

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed.

Its contents (including any attachments) may contain confidential and/or privileged information.

If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents.

Client: ETIC Engineering, Inc.

Login Number: 38517 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.9,4.1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

List Source: TestAmerica San Francisco

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-38517-3 Client Project/Site: AM-OAKGCY-02

For: ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523

Attn: Mr. Thomas Neely

Alanef Sal

Authorized for release by: 12/1/2011 1:58:12 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Definitions/Glossary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Δ
ф.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	8
PQL	Practical Quantitation Limit	
RL	Reporting Limit	9
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
		41

Job ID: 720-38517-3

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-38517-3

Comments

No additional comments.

Receipt

Sample ID - J0-2.0+21, COC list time as 1240, sample has time of 11:40, loggerd per COC. Received sample not listed on COC- Sample ID K00*-2.5+12 @ 1110, logged and placed on hold.

All other samples were received in good condition within temperature requirements.

Metals

No other analytical or quality issues were noted.

Detection Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02 TestAmerica Job ID: 720-38517-3

Client Sample ID: E13-0.5+12						Lab	Samp	le ID: 720-38517-38
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	od Prep Type
Lead	25		2.0		mg/Kg	4	6010B	B Total/NA
Client Sample ID: G14-0.5+14						Lab	Samp	le ID: 720-38517-44
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	od Prep Type
Lead	47		1.9		mg/Kg	4	6010B	B Total/NA
Client Sample ID: G14-2.0+14						Lab	Samp	le ID: 720-38517-45
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	od Prep Type
Lead	51		1.9		mg/Kg	4	6010B	B Total/NA

10. 300 00543 00 5 6 7

Method:	6010B	- Metals	(ICP)

Client Sample ID: E13-0.5+12 Date Collected: 11/03/11 08:40							Lab Sa	ample ID: 720-3 Matri	8517-38 ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	25		2.0		mg/Kg		11/29/11 16:57	11/30/11 21:33	4
Client Sample ID: G14-0.5+14							Lab Sa	ample ID: 720-3	8517-44
Date Collected: 11/03/11 10:30								Matri	ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	47		1.9		mg/Kg		11/29/11 16:57	11/30/11 21:37	4
Client Sample ID: G14-2.0+14							Lab Sa	ample ID: 720-3	8517-45
Date Collected: 11/03/11 10:40								Matri	ix: Solid
Date Received: 11/04/11 13:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	51		1.9		mg/Kg		11/29/11 16:57	11/30/11 21:41	4

TestAmerica Job ID: 720-38517-3

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-103638/1-A Matrix: Solid Analysis Batch: 103741	МВ	мв								C	lient Sa		Method ype: To Batch: 1	tal/NA
Analyte	Result			RL	м	DL	Unit		D	Pre	pared	Analyz	ed	Dil Fac
Lead	ND			0.50			mg/Kg			11/29/	11 16:57	11/30/11 2	21:04	1
Lab Sample ID: LCS 720-103638/2-A									CI	ient S	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep T	ype: To	tal/NA
Analysis Batch: 103741												Prep E	Batch: 1	03638
			Spike		LCS	LC	S					%Rec.		
Analyte			Added		Result	Qu	alifier	Unit		D	%Rec	Limits		
Lead			50.0		51.6			mg/Kg			103	80 - 120		
Lab Sample ID: LCSD 720-103638/3-A								Clie	ent S	Samp	le ID: La	ab Contro	l Samp	le Dup
Matrix: Solid												Prep T	ype: To	tal/NA
Analysis Batch: 103741												Prep E	Batch: 1	03638
			Spike		LCSD	LC	SD					%Rec.		RPD
Analyte			Added		Result	Qu	alifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			50.0		51.6			mg/Kg			103	80 - 120	0	20

Metals

Prep Batch: 103638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-38517-38	E13-0.5+12	Total/NA	Solid	3050B	
720-38517-44	G14-0.5+14	Total/NA	Solid	3050B	
720-38517-45	G14-2.0+14	Total/NA	Solid	3050B	
LCS 720-103638/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-103638/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
MB 720-103638/1-A	Method Blank	Total/NA	Solid	3050B	
nalysis Batch: 103741					
· ·					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
nalysis Batch: 103741 Lab Sample ID 720-38517-38		Prep Type Total/NA	Solid	Method 6010B	Prep Batc
Lab Sample ID 720-38517-38	Client Sample ID				
Lab Sample ID	Client Sample ID E13-0.5+12	Total/NA	Solid	6010B	10363
Lab Sample ID 720-38517-38 720-38517-44 720-38517-45	Client Sample ID E13-0.5+12 G14-0.5+14	Total/NA Total/NA	Solid Solid	6010B 6010B	
Lab Sample ID 720-38517-38 720-38517-44	Client Sample ID E13-0.5+12 G14-0.5+14 G14-2.0+14	Total/NA Total/NA Total/NA	Solid Solid Solid	6010B 6010B 6010B	10363 10363 10363 10363

Client Samp	le ID: E13-0	.5+12				Lat	Sample I	D: 720-38517-3
Date Collected	: 11/03/11 08:4	1 0						Matrix: Soli
Date Received	: 11/04/11 13:3	0						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			103638	11/29/11 16:57	SK	TAL SF
Total/NA	Analysis	6010B		4	103741	11/30/11 21:33	BA	TAL SF
Client Samp	le ID: G14-0	.5+14				Lat	o Sample II	D: 720-38517-4
Date Collected	: 11/03/11 10:3	80						Matrix: Soli
Date Received	: 11/04/11 13:3	0						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			103638	11/29/11 16:57	SK	TAL SF
Total/NA	Analysis	6010B		4	103741	11/30/11 21:37	BA	TAL SF
Client Samp	le ID: G14-2	.0+14				Lat	o Sample II	D: 720-38517-4
Date Collected	: 11/03/11 10:4	10						Matrix: Soli
Date Received	: 11/04/11 13:3	0						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab

4

103741

11/30/11 21:41

ΒA

Laboratory References:

Total/NA

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

6010B

Analysis

TAL SF

Certification Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Laboratory	Authority	Program	EPA Region	Certification ID	
TestAmerica San Francisco	California	State Program	9	2496	

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ETIC Engineering, Inc. Project/Site: AM-OAKGCY-02 TestAmerica Job ID: 720-38517-3

1	
5	
8	
9	
12	
13	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
720-38517-38	E13-0.5+12	Solid	11/03/11 08:40	11/04/11 13:30	
720-38517-44	G14-0.5+14	Solid	11/03/11 10:30	11/04/11 13:30	
720-38517-45	G14-2.0+14	Solid	11/03/11 10:40	11/04/11 13:30	5
				ļ	

13

Mullen, Joan

From: Salimpour, Afsaneh

Sent: Thursday, December 01, 2011 12:49 PM

To: Mullen, Joan

Subject: FW: Files from 720-38517-2 AM-OAKGCY-02

Importance: High

Please scan this email to job # 720-38517-3.

AFSANEH SALIMPOUR

Project Manager

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING 1220 Quarry Lane Pleasanton, CA 94566 Tel 925.484.1919 | Fax 925.600.3002 www.testamericainc.com

WE CERTAINLY APPRECIATE YOUR BUSHIESSI HAVE A SAFE AND HAPPY HOLIDAY SEASON

-----Original Message-----

From: Klitzke, Tiffany [mailto:Tiffany.Klitzke@amec.com] Sent: Tuesday, November 22, 2011 3:44 PM To: Salimpour, Afsaneh; ETIC Labreports; Mr. Thomas Neely Subject: RE: Files from 720-38517-2 AM-OAKGCY-02

Hi Afsaneh, I would like to analyze the following samples on hold for lead with a standard turnaround time: G14-0.5+14 G14-2.0+14 E13-0.5+12

Thanks,

Tiffany Klitzke Staff Geologist

AMEC 2101 Webster St 12th Floor Oakland, CA 94612 direct: 510-663-4144

From: Salimpour, Afsaneh [mailto:afsaneh.salimpour@testamericainc.com] Sent: Tuesday, November 22, 2011 3:11 PM To: ETTC Labreports; Klitzke, Tiffany; Mr. Thomas Neely

Client: ETIC Engineering, Inc.

Login Number: 38517 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.9,4.1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 720-38517-3

List Source: TestAmerica San Francisco