

RECEIVED

1:40 pm, Apr 22, 2008

Alameda County Environmental Health Environmental Remediation 3400 Crow Canyon Road San Ramon, CA 94583

April 18, 2008

Mr. Jerry Wickham Alameda County Environmental Health Department Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject: Transmittal of Additional Investigation Report, PG&E Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California

Dear Mr. Wickham:

Attached is the Additional Investigation Report, PG&E Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, prepared by Geomatrix Consultants, Inc and dated April 18, 2008.

PG&E understands that Alameda County Environmental Health (ACEH) considers the PG&E property and the three properties located adjacent to the PG&E property (the former Superior Plasters property, the former AAA property, and the Leaner property) to be responsible for the release that resulted in soil and groundwater impacted by chlorobenzenes on all four properties. Therefore, ACEH requested that the responsible parties for each of the four properties evaluate the source and extent of the impacts to groundwater from the chlorobenzenes. The report presents the results of the soil and groundwater investigation performed on the PG&E property. The soil and groundwater investigation on the PG&E property also included further evaluation of soil and groundwater impacts in the areas of PG&E's former Diesel UST and former waste oil UST cluster.

Based on the results of this investigation, and previous investigations, it appears that the chlorobenzenes detected in soil and groundwater at the PG&E property are most likely from an upgradient source. It also appears that further assessment of PG&E's former Diesel UST area is not warranted, further investigation of PCBs and PAHs in the area of PG&E's former waste oil UST cluster is not warranted, and the extent of TPHd and TPHmo impacts on the PG&E property in the area of former waste oil UST cluster appears limited and adequately defined.

PG&E will evaluate the data collected during this investigation with the data collected during the investigations on the former Superior Plasters property, the former AAA property, and the Leaner property. Following the evaluation of this data, PG&E will request a meeting with ACEH and the responsible parties for the former Superior Plasters property, the former AAA property, and the Leaner property to discuss the results of the investigations and the appropriate actions to be taken by the various responsible parties.

Please contact me at 925.866.5888 or r4sw@pge.com if you have any questions.

Sincerely,

Robert Saur Environmental Geologist

Additional Investigation Report

PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared for:

Pacific Gas and Electric Company 3400 Crow Canyon Road San Ramon, California 94583

April 2008

Project No. 13045.007.A

ADDITIONAL INVESTIGATION REPORT

PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

April 18, 2008 Project 13045.007.A

This report was prepared by the staff of Geomatrix Consultants, Inc., under the supervision of the geologists whose seals and signatures appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Jonathan M. Skaggs, PG #7823 **Project** Geologist

Robert W. Schultz, CHG #833

Senior Geologist

I:\Doc_Safe\13000s\13045.007\4000 REGULATORY\Adt'l Investigation Rpt\01 Text_Cvrs_Lbls\PROF CERT Pg.doc

Additional Investigation Report

PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared for:

Pacific Gas and Electric Company 3400 Crow Canyon Road San Ramon, California 94583

Prepared by:

Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612

April 2008

Project No. 13045.007.A

TABLE OF CONTENTS

Page

1.0	NTRODUCTION
2.0	3ACKGROUND 3 2.1 SITE HISTORY 3 2.2 REGIONAL GEOLOGY AND HYDROGEOLOGY 3 2.3 SITE LITHOLOGY AND HYDROGEOLOGY 4 2.4 PREVIOUS ENVIRONMENTAL SITE INVESTIGATIONS AT THE PG&E SITE 4 2.5 PREVIOUS CHLOROBENZENES RESULTS AT THE PG&E AND ADJACENT SITES 6
3.0	FIELD INVESTIGATION63.1PRE-FIELD ACTIVITIES3.2SOIL SAMPLING ACTIVITIES3.3GROUNDWATER SAMPLING ACTIVITIES3.4ANALYTICAL PROGRAM
4.0	RESULTS .9 I.1 LITHOLOGY .9 I.2 ANALYTICAL RESULTS .9 4.2.1 Soil Analytical Results .9 4.2.2 Groundwater Analytical Results .10 4.2.3 Quality Assurance and Quality Control (QA/QC) .11
5.0	DISCUSSION. 11 5.1 TPH, PCBs, PAHs and Metals Near the Former Waste Oil UST Cluster and Northern PG&E Site Boundary 11 5.2 Chlorobenzenes 12 5.3 Other CVOCs 13 5.4 Former Diesel UST 13
6.0	CONCLUSIONS
7.0	RECOMMENDATIONS14
8.0	REFERENCES

TABLE OF CONTENTS (Continued)

TABLES

Table 1 Sampling Program Summary
Table 2 Soil Analytical Results—TPH, PAHs, and PCBs—Former Waste Oil UST Cluster and Northern PG&E Site Boundary
Table 3 Soil Analytical Results—VOCs—Former Waste Oil UST Cluster and Northern PG&E Site Boundary
Table 4 Soil Analytical Results—Metals—Former Waste Oil UST Cluster and Northern PG&E Site Boundary
Table 5 Soil Analytical Results—Former Diesel UST Area
Table 6 Groundwater Analytical Results—TPH and VOCs

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan with Sampling Locations and Cross Section Locations
- Figure 3 Cross Section A-A'—TPH and VOCs in Soil and Groundwater
- Figure 4 Cross Section B-B'—TPH and VOCs in Soil and Groundwater
- Figure 5 Compilation of Historical Soil Sampling Locations
- Figure 6 Compilation of Chlorobenzene Concentrations in Groundwater—PG&E site, former Superior Plaster Casting Property, and former AAA Property
- Figure 7 Chlorobenzenes in Shallow Groundwater—PG&E Site

APPENDIXES

- Appendix A November 30, 2007, Work Plan Approval Letter from ACEH to PG&E and December 13, 2008 E-Mail from ACEH
- Appendix B November 2007 Groundwater Elevations and Groundwater Analytical Results and PG&E Site Monitoring Well Construction Logs
- Appendix C Historical Waste Oil UST Cluster Excavation Confirmation Soil Sample Locations and Final Excavation Depths
- Appendix D Soil Boring Logs
- Appendix E Analytical Laboratory Reports

ADDITIONAL INVESTIGATION REPORT PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

1.0 INTRODUCTION

On behalf of the Pacific Gas and Electric Company (PG&E), Geomatrix Consultants, Inc. (Geomatrix), prepared this additional investigation report for the PG&E Oakland General Construction Yard (the site), located at 4930 Coliseum Way in Oakland, California (Figures 1 and 2). This report summarizes the investigation work conducted between January 22 and March 12, 2008, and the previous work conducted relative to the former diesel underground storage tank (UST) and the former UST cluster at the PG&E site. This investigation was conducted in accordance with the November 16, 2007, *Additional Investigation Work Plan* (Geomatrix, 2007), approved by the Alameda County Department of Environmental Health (ACEH), with additional analytical requests in its November 30, 2007, letter to PG&E and the its December 13, 2007 E-mail to Geomatrix (Appendix A).

1.1 OBJECTIVES

The objectives of the additional investigation were the following:

- 1. Further define the total petroleum hydrocarbons quantified as diesel (TPHd), total petroleum hydrocarbons quantified as motor oil (TPHmo) and chlorobenzenes (including chlorobenzene, 1,2-dichlorobenzene [1,2-DCB], 1,3-dichlorobenzene [1,3-DCB], and 1,4-dichlorobenzene [1,4-DCB]) impacts to groundwater in the northern portion of the PG&E site.
- 2. Further assess the potential for chlorobenzenes to be in shallow soil in the northern portion of the PG&E site.
- 3. Assess the presence of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals in soil in the vicinity of the former UST cluster.
- 4. Further assess the potential presence of TPHd and TPHmo in soil in the vicinity of the former diesel UST and UST cluster.

1.2 SCOPE OF WORK

This investigation consisted of advancing borings at nine locations (SB-23 through SB-31; Figures 2 through 4) to collect soil and groundwater samples at the PG&E site. A sampling summary table is included on Table 1. The rationale and location for each of the sampling locations is presented below:

- Boring SB-23 was advanced in the western corner of the PG&E site, near the former diesel UST. The primary rationale for this boring was to further assess the presence of TPHd and TPHmo in soil adjacent to and immediately downgradient of the former diesel UST excavation. Previously, confirmation samples were collected beneath the water table during UST removal. The secondary rationale for this boring was to assess the potential presence of chlorobenzenes in shallow soil in this area.
- Boring SB-24 was advanced along the northwestern boundary of the PG&E site and south of the former Superior Plaster Castings. The rationale for this boring was to assess the presence of TPHd, TPHmo, and chlorobenzenes in shallow soil and groundwater downgradient of the former Superior Plaster Castings property.
- Boring SB-25 was advanced in the northern portion of the PG&E site, just southwest of the limits of the former UST cluster excavation. The primary rationale for this boring was to assess the presence of TPHd, TPHmo, and chlorobenzenes in groundwater in the northern portion of the PG&E site. The secondary rationale for this boring was to assess the potential presence of chlorobenzenes, PAHs, PCBs, and metals in soil outside of the limits of the former UST cluster excavation.
- Borings SB-26, SB-27, and SB-28 were advanced in the northern corner of the PG&E site, inside the limits of the former UST cluster excavation boundary. The rationale for these borings was to further investigate TPHd, TPHmo, and chlorobenzenes in groundwater downgradient of the former Superior Plaster Castings property and the former AAA property. The secondary rationale for borings SB-26 and SB-28 was to assess the potential presence of PAHs, PCBs, and metals beneath the former UST cluster excavation.
- Boring SB-29 was advanced south of the limits of the former UST cluster excavation on the PG&E site. The primary rationale for this boring was to investigate TPHd, TPHmo, and chlorobenzenes in groundwater downgradient of well OW-7. The secondary rationale for this boring was to assess the potential presence of chlorobenzenes, PAHs, PCBs, and metals in soil outside of the limits of the former UST cluster excavation.
- Boring SB-30 was advanced in the northern corner of the PG&E site. The primary rationale for this boring was to investigate TPHd, TPHmo, and chlorobenzenes in groundwater further downgradient of well OW-7. The secondary rationale for this boring was to assess the potential presence of chlorobenzenes in soil at this location.

• Boring SB-31 was advanced in the northern corner of the PG&E site, near the boundaries of the former Superior Plaster Castings and former AAA properties. The rationale for this boring was investigate TPHd, TPHmo, and chlorobenzenes in groundwater downgradient of the former Superior Plaster Castings property and the former AAA property.

In ACEH's November 30, 2007, letter to PG&E and in a December 13, 2007, e-mail to Geomatrix, ACEH requested that select soil and groundwater samples be analyzed for TPHd, TPHmo, Title 22 metals, PCBs, and volatile organic compounds (VOCs). This letter is included as Appendix A.

2.0 BACKGROUND

The site history, regional geology and hydrogeology; site lithology and hydrogeology; previous environmental investigations performed at the PG&E site; and chlorobenzenes findings at the PG&E and surrounding sites are summarized below.

2.1 SITE HISTORY

The PG&E site has been used by PG&E as a natural gas distribution center and equipment storage facility from at least the late 1930s until 1990, when a former natural gas aboveground storage tank (AST) was removed. Since 1990, the PG&E site has been used as an equipment and vehicle storage facility (PG&E, 1988). Five underground storage tanks were formerly present at the PG&E site. Four USTs were in a cluster located in the north corner of the PG&E site, and the fifth (a 1,000-gallon diesel UST) was located near the west corner of the PG&E site (Figure 2). Sampling results indicated that of the four tanks in the former UST cluster, two contained mineral spirits, one contained lubrication oil, and one contained heavy oil. The former UST cluster is also thought to have been used to store waste oils (PG&E, 1988). For the purposes of this report, the former UST cluster will be referred to as the "former waste oil UST cluster." Known historical use indicated, and sampling results confirmed, that the fifth UST contained diesel fuel.

2.2 **REGIONAL GEOLOGY AND HYDROGEOLOGY**

The PG&E site and the surrounding region are located on the East Bay Plain, which is the eastern flank of a broad bedrock depression centered on San Francisco Bay. In the vicinity of the PG&E site, the subsurface sediments consist of a thick sequence of alluvial fan deposits (300 to 700 feet thick; Water Board, 1999). The U.S. Geological Survey geologic map of the region indicates that the PG&E site and the area to the east are underlain by Holocene alluvial

fan and fluvial deposits (Graymer, 2000). Holocene streams drained the East Bay Hills and deposited sands and gravels in stream channels that flowed toward the bay. As the stream channels meandered, sands and gravels were deposited unevenly across the active alluvial plain. Finer-grained sands, silts, and clays were deposited between active stream channels. These processes produced a complexly interbedded sequence of interfingering gravels, sand, silts, and clays more than 1,000 feet thick (Helley and Lajoie, 1979). Along the San Francisco Bay margin, the alluvial deposits are interfingered with marine sediments. The PG&E site is located just to the east of historical artificial fill used to reclaim land along the San Francisco Bay margin. Major water-bearing units within the East Bay Plain include the early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the Holocene Temescal Formation, and artificial fill (CDWR, 2003).

2.3 SITE LITHOLOGY AND HYDROGEOLOGY

The PG&E site is located approximately 1/4 mile east of the margin of San Leandro Bay, on a plain gently sloping toward San Francisco Bay. Based on lithologic logs developed by others from investigations at the PG&E site, the uppermost portion of the subsurface at the PG&E site is underlain by interbedded deposits of clays, sands, and gravels by approximately 19 feet below ground surface (bgs), the maximum depth drilled. Based on depth-to-groundwater measurements collected during historical groundwater monitoring events between 1988 and 2005, groundwater ranged between approximately 3.5 and 8 feet bgs at the PG&E site, and groundwater flow direction has generally been to the south (CSS, 2005). Based on depth-to-groundwater on November 6, 2007, the groundwater gradient and flow direction was 0.003 to the south (ITSI, 2007; Appendix B). PG&E site groundwater monitoring well construction logs are included in Appendix B.

2.4 PREVIOUS ENVIRONMENTAL SITE INVESTIGATIONS AT THE PG&E SITE

The following summarizes previous environmental activities associated with the PG&E site. Historical soil sampling locations pertaining to the USTs are shown on Figure 5, and analytical data are included in Tables 2 through 5.

• February 1987—Soil borings were advanced and soil and groundwater samples were collected in the vicinity of the former waste oil UST cluster and the diesel UST (PG&E, 1987a). Petroleum hydrocarbons and benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) were detected in soil and groundwater in the vicinity of the former waste oil UST cluster. No petroleum hydrocarbons were detected in soil or groundwater in the vicinity of the former diesel UST.

- **December 1987**—Samples of the contents of five USTs were collected and analyzed (the four USTs in the former waste oil UST cluster and the former diesel UST (PG&E, 1987b). At that time, the results indicated that of the four tanks in the former waste oil UST cluster, two contained mineral spirits, one contained lubrication oil, and one contained heavy oil. The sample collected from the former diesel UST indicated that diesel was present in this UST.
- January 1988—The former waste oil UST cluster and associated piping were removed from the northern portion of the PG&E site, and the diesel UST and associated piping was removed from the western portion of the PG&E site (Figure 2) (PG&E, 1988). Petroleum hydrocarbons were detected in soil and in an excavation groundwater sample collected from the former waste oil UST cluster excavation; however, petroleum hydrocarbons were not detected in the excavation soil sample collected from the former diesel UST excavation.
- March and April 1988—Groundwater monitoring wells OW-1 through OW-4 were installed to monitor groundwater elevations and assess the potential presence of dissolved petroleum hydrocarbon concentrations in groundwater (PG&E, 1988). In addition, soil borings were advanced in the vicinities of the former waste oil UST cluster and the former diesel UST. Based on groundwater elevation measurements from wells OW-1 through OW-4, groundwater flow direction is interpreted to be to the south-southwest. Analytical results from soil samples and soil borings indicated that petroleum hydrocarbons were present in the soil in the vicinity of the former waste oil UST cluster and that soil in the vicinity of the former diesel UST had not been impacted by petroleum hydrocarbons.
- **May 1990**—The natural gas holder was removed from the central portion of the PG&E site. Following demolition of the former natural gas AST, paint chips were reported to have been observed in shallow soil in the vicinity of the former natural gas AST (CSS, 2005).
- April 1991—Groundwater monitoring well OW-5 was installed along the northeast property line. A groundwater sample was collected from well OW-5 on April 17, 1991. Chlorobenzenes were not detected; however, petroleum hydrocarbons and other CVOCs were detected (CSS, 2005).
- November and December 1991—Approximately 2,000 cubic yards of soil were excavated to a depth of between approximately 4 and 9 feet bgs as a remedial action for the petroleum hydrocarbons identified in the soil in the vicinity of the former waste oil UST cluster (Appendix C). Groundwater monitoring wells OW-6 and OW-7 were installed and well OW-3 was destroyed to allow for the excavation (Aqua, 1992). Petroleum hydrocarbon-impacted soil was removed to below cleanup levels up to the PG&E site property boundaries.
- September and October 1992—An asphaltic concrete cap was constructed above lead-affected surface soil in the vicinity of the former natural gas AST. The purpose

of the asphaltic concrete cap was to limit potential exposure to lead-affected soil and to limit groundwater infiltration in the lead-affected soil area. Lead from lead-based paint chips, generated from sandblasting of the former natural gas AST, was found in shallow soil samples collected from this area (CSS, 2005).

- **February 1993**—Groundwater monitoring well OW-8 was installed in the southern area of the yard near the location of the former natural gas AST to assess whether lead was present in groundwater at the PG&E site (ACFCWCD, 1993). Lead has not been detected in groundwater samples since June 1997, when lead was detected in a sample collected from well OW-5 at a concentration of 5 micrograms per liter (µg/L).
- July 1994 to present—Since 1994, PG&E has performed semiannual groundwater monitoring at the PG&E site. A figure showing the groundwater analytical results from the November 2007 groundwater sampling event conducted at the PG&E site is included as Appendix B (ITSI, 2007).

2.5 PREVIOUS CHLOROBENZENES RESULTS AT THE PG&E AND ADJACENT SITES

Historical chlorobenzenes concentrations in groundwater at the PG&E site, the former Superior Plaster Casting property, and the former AAA property are shown on Figure 6. In October 1998 chlorobenzenes were detected in a groundwater sample collected from well WCC-1A at the former Superior Plaster Castings property; chlorobenzene was detected at 220 μ g/L, 1,2-DCB was detected at 56 μ g/L, 1,3-DCB was detected at 900 μ g/L, and 1,4-DCB was detected at 1,500 μ g/L (ATC, 1998). During the October 1998 groundwater sampling event at the PG&E site, chlorobenzenes were detected at lower concentrations in groundwater monitoring wells OW-6 and OW-7, which are located closest to the upgradient former Superior Plaster Castings site (Figure 6; CSS, 2005). During the November 2007 groundwater sampling event at the PG&E site, the highest concentrations of chlorobenzenes were detected in well OW-7; chlorobenzene was detected at 70 μ g/L, 1,2-DCB was detected at 16 μ g/L, 1,3-DCB was detected at 130 μ g/L, and 1,4-DCB was detected at 460 μ g/L (ITSI, 2007).

3.0 FIELD INVESTIGATION

The field investigation was conducted in two mobilizations. During the first mobilization, borings were advanced at nine locations on the PG&E site (Figure 2) between January 22 and February 8, 2008, to collect groundwater and/or soil samples for chemical analysis. During the second mobilization on March 12, 2008, soil samples were collected at two locations. The following sections describe the pre-field activities, soil sampling activities, groundwater sampling activities, and the analytical program.

3.1 PRE-FIELD ACTIVITIES

Prior to initiating field activities, Geomatrix:

- obtained a soil boring permit from the Alameda County Public Works Agency;
- updated the site-specific health and safety plan;
- marked boring locations and notifying Underground Service Alert, a regional subsurface utility notification service; and
- subcontracted with a private underground utility locator, Sierra Nevada GSI of Grass Valley, California, to assess the proposed boring locations for the presence of subsurface utilities.

3.2 SOIL SAMPLING ACTIVITIES

A continuous core was collected from each boring location using a dual-tube sampling system, except where soil could not be recovered during drilling. A lithologic log was prepared for each boring by a Geomatrix field geologist using visual-manual procedures of the American Society for Testing and Materials (ASTM) Standard D2488-00, which is based on the Unified Soil Classification System. Select intervals were screened for volatile organic vapors with a photoionization detector (PID). Soil boring logs, which include PID readings, are presented in Appendix D.

Soil samples were collected from each boring for analysis (Table 1). Soil samples for volatile organic compound (VOC) analysis were collected in accordance with U.S. Environmental Protection Agency (U. S. EPA) field preservation Method 5035 by pushing a new, disposable soil sampling syringe into the soil core and then extruding a sample of approximately 5 grams into two laboratory-prepared volatile organic analysis (VOA) vials preserved with sodium bisulfate and one laboratory-prepared VOA vial preserved with methanol. Soil samples for all other analyses were collected in 1 3/8-inch-diameter butyrate liners cut to approximately 6-inch lengths. Sample containers were sealed with Teflon[®] sheets, plastic end caps, and silicone tape; sealed in plastic bags; and placed in coolers with ice prior to delivery to the analytical laboratory under Geomatrix chain-of-custody (COC) procedures. All soil samples were labeled with unique sample identifiers designating the locations and depths (e.g., SB-29-9.0 for location SB-29 from between 8.5 and 9.0 feet bgs).

Upon receiving analytical data from the initial phase of the investigation, Geomatrix remobilized to the PG&E site on March 12, 2008, to collect additional shallow soil samples for

VOC analysis at locations SB-25 and SB-29 using a hand auger and slide hammer. It should be noted that shallow soil was not collected above the initial soil sample collected at boring SB-26 from a depth of 9.5 feet bgs because soil was excavated to a depth of 9 feet bgs in 1991 (Aqua, 1992).

Prior to and between coring and sampling at each borehole, non-dedicated downhole equipment was cleaned using high-pressure steam. Following sample collection, the boreholes were backfilled with Portland neat cement grout placed from total depth to ground surface.

3.3 GROUNDWATER SAMPLING ACTIVITIES

Groundwater samples were collected from select borings for analysis (Table 1). Depth-discrete groundwater samples were collected from each of the boring locations through a dual-tube sampler. All groundwater sampling points were constructed by placing 5 feet of Schedule 40 polyvinyl chloride (PVC), 0.010-inch, factory-slotted well screen and an appropriate length of Schedule 40 PVC blank riser down the borehole; the drive casing was then partially retracted to expose the screen to the desired sampling interval. Low recharge conditions necessitated allowing the groundwater sampling tools to remain in the borehole overnight to accumulate adequate groundwater for sampling at locations SB-25, SB-28, SB-29 (11 to 16 feet bgs interval only), and SB-30.

Grab groundwater samples were collected using a peristaltic pump fitted with new, disposable polyethylene and silicone tubing at each boring location. Samples were decanted directly into laboratory-supplied sample bottles. All depth-discrete groundwater samples were labeled appropriately and placed in ice-filled coolers, prior to delivery under Geomatrix COC procedures to Creek Environmental Laboratories, Inc. (Creek), a State of California-certified laboratory located in San Louis Obispo, California.

3.4 ANALYTICAL PROGRAM

Geomatrix submitted the soil and groundwater samples to Creek, under proper COC procedures. Table 1 summarizes the soil and groundwater analytical program. VOCs were analyzed using U. S. EPA Method 8260; TPHd and TPHmo were analyzed using U. S. EPA Method 8015M with silica gel cleanup, total petroleum hydrocarbons quantified as gas (TPHg) were analyzed by U. S. EPA Method 8015, PAHs were analyzed by U. S. EPA Method 8270 SIM; PCBs were analyzed by U. S. EPA Method 8082; and Title 22 metals were analyzed by U. S. EPA Method 6020 and 7471.

4.0 **RESULTS**

The findings of the investigation described in Section 3.0 are summarized below.

4.1 LITHOLOGY

Site lithologic conditions are shown on cross sections (Figures 2 through 4). Consistent with previous investigations at the PG&E site, Geomatrix observed unconsolidated alluvial sediments with grain sizes ranging from clays to gravels. Soil observed outside of the former excavation consisted of lean clays and clayey sands from ground surface and 37 feet bgs, the maximum depth drilled (boring SB-29). A continuous clay unit was observed in the two deeper soil borings (borings SB-29 and SB-30) between approximately 14 and 33 feet bgs (Figure 4). Lithology is presented on the boring logs in Appendix D.

4.2 ANALYTICAL RESULTS

The analyses performed on each sample are summarized in Table and the analytical results for soil and groundwater samples collected during this investigation are summarized in Tables 2 through 6. Cross sections with TPH and VOC soil and groundwater analytical data are shown on Figures 2 through 4. Analytical laboratory reports and COC forms are provided in Appendix E.

4.2.1 Soil Analytical Results

As stated above, soil samples were collected from boring locations SB-24 through SB-31. Select soil samples were analyzed for TPHg, TPHd, TPHmo, VOCs, PAHs, PCBs, and metals.

TPHg was not detected in the one soil sample analyzed for that analyte. TPHd and TPHmo were detected in one soil sample at concentrations of 390 and 320 milligrams per kilogram (mg/kg), respectively. TPH results for soil are included in Table 2.

VOCs were detected in 3 of the 11 samples analyzed (Table 3). VOC detections included the following:

- Chlorobenzene was detected in one sample collected at a concentration of 0.021 mg/kg.
- 1,3-dichlorobenzene was detected in one sample at a concentration of 0.10 mg/kg.
- 1,4-dichlorobenzene was detected in three samples collected at concentrations ranging between 0.013 and 0.24 mg/kg.

PAHs and PCBs were not detected in the four samples analyzed.

Three samples were analyzed for metals. Metals detections are summarized in Table 4.

4.2.2 Groundwater Analytical Results

Groundwater samples were collected from first-encountered groundwater at boring locations SB-24 through SB-31, and groundwater was collected from the next deeper water-bearing zone at locations SB-29 and SB-30. All groundwater samples were analyzed for TPHg, TPHd, TPHmo, and VOCs.

TPHg was not detected in any groundwater samples collected. TPHd was detected in groundwater samples collected from boring locations SB-24 and SB-28 at concentrations of 620 and 270 micrograms per liter (μ g/L), respectively. TPHmo was detected in groundwater samples collected from boring locations SB-24 and SB-31 at concentrations of 1,900 and 320 μ g/L, respectively.

VOCs were detected in 8 of the 10 primary samples analyzed (Table 6). VOC detections included the following:

- Benzene was detected in one sample at a concentration of $0.6 \ \mu g/L$.
- Chlorobenzene was detected in two samples at concentrations of 62 and 64 μ g/L.
- Chloroethane was detected in one sample at a concentration of 2.4 μ g/L.
- 1,3-DCB was detected in two samples at concentrations of 52 and 57 μ g/L.
- 1,4-DCB was detected in two samples at concentrations of 200 and 210 μ g/L.
- 1,1-dichloroethane (1,1-DCA) was detected in two samples at concentrations of 34 and 37 μg/L,
- 1,2-dichloroethane (1,2-DCA) was detected in five samples at concentrations ranging between 1.9 and 3.5 µg/L.
- 1,1-dichloroethene (1,1-DCE) was detected in two samples at concentrations of 44 and 52 μ g/L.
- Isopropylbenzene was detected in one sample at a concentration of $1.5 \mu g/L$.
- Vinyl chloride was detected in two samples at concentrations of 4.1 and 53 μ g/L.

4.2.3 Quality Assurance and Quality Control (QA/QC)

Geomatrix and Creek followed specific QA/QC procedures during the investigation. All soil and groundwater samples collected during the investigation were analyzed within required holding times. During the investigation activities, Geomatrix collected a blind duplicate groundwater sample from SB-26 identified as SB-33 A summary of the laboratory and field QA/QC procedures is presented below.

The laboratory data generated during this investigation were subjected to a data completeness check of each data package, a transcription check for sample results, and a review of all laboratory reporting forms. QA/QC procedures included laboratory quality control sample/laboratory control sample duplicate (LCS/LCSD) and matrix spike/matrix spike duplicate (MS/MSD) samples. The data review (completeness, precision check, and hold time) was conducted in accordance with U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (U.S. EPA, 1999) and U.S. EPA Contract Laboratory Program National Functional on the QA/QC review, the data are complete and usable.

5.0 DISCUSSION

The results of this and the previous site investigations are discussed below.

5.1 TPH, PCBs, PAHs and Metals Near the Former Waste Oil UST Cluster and Northern PG&E Site Boundary

An excavation in 1991 removed TPH-impacted soil from the former waste oil UST area on the PG&E site. TPHd and oil and grease detections in confirmation samples collected from the excavation sidewalls and bottom on the PG&E site were below the cleanup levels of 100 mg/kg for TPHd and 1,000 mg/kg for oil and grease (Aqua, 1992). PG&E's excavation extended to the property boundary, and soil on the former Superior Plaster Castings and AAA properties was not excavated. Samples collected from the property boundary excavation sidewalls contained concentrations of TPH that exceeded the cleanup goals (Table 2 and Appendix C).

During the subject investigation, additional soil samples were collected from the former excavation bottom and sidewalls. Sampling detected diesel and motor oil-range petroleum hydrocarbons in soil beneath the former waste oil UST excavation at concentrations above the 1991 excavation cleanup level. The sampling also detected TPHd and TPHmo in groundwater beneath the PG&E site, immediately downgradient of the former Superior Plaster Casting and AAA properties.

TPHd and TPHmo were detected in the shallow groundwater sample collected from SB-24. Because motor oil-range petroleum hydrocarbons are not readily water soluble, the TPHmo detection in groundwater is not likely representative of actual groundwater conditions, but may be due to the presence of motor oil-range hydrocarbons that have sorbed to soil particles, and that may have been subsequently entrained in the groundwater sample during collection (Zemo and Foote, 2003). Because the closest former waste oil UST excavation sidewall sample (approximately 100 feet to the northeast of SB-24) was below cleanup levels, these TPH detections are likely not related to the former waste oil UST cluster. Further, no TPH was detected in the soil sample collected at 3.0 feet bgs from boring SB-24.

PCBs were previously detected in one sample collected at historical sample location SB-9 at a depth of 1.5 feet bgs (Aqua, 1991; see Figure 7). This sampling location was subsequently excavated in 1991. During this investigation, PCBs were not detected in samples collected in the vicinity of and beneath the former waste oil UST cluster. Based on this and previous investigations at the former waste oil UST cluster, no further investigation of PCBs appears warranted.

PAHs were not previously analyzed for in soil during historical sampling activities at the PG&E site. During this investigation, no PAHs were detected in samples collected in the vicinity of and beneath the former waste oil UST cluster. Based on this and previous investigations at the former waste oil UST cluster, no further investigation of PAHs appears warranted.

During this investigation, no metals were detected above likely background concentrations or the Environmental Screening Levels (ESLs) published by the San Francisco Bay Regional Water Quality Control Board (Water Board, 2007) for shallow, residential soil where groundwater is a current or potential drinking water source (Aqua, 1991and Water Board, 2007).

5.2 CHLOROBENZENES

No chlorobenzenes were detected in unsaturated soil during the subject or historical investigations at the PG&E site. Because static groundwater in PG&E site monitoring wells has historically existed between approximately 3.5 and 8.0 feet bgs, and chlorobenzenes-impacted groundwater has been documented in the northeastern portion of the PG&E site, the presence of low concentrations of chlorobenzenes in soil samples collected below the current or historical static groundwater level may be attributable to impacted groundwater. In addition,

chlorobenzenes were not detected in shallow soil samples collected above static groundwater at locations SB-25 and SB-29 (Table 3). Based on this and previous investigations at the site, no further investigation of chlorobenzenes in soil at the PG&E site appears warranted.

In groundwater, the highest-concentration chlorobenzenes in the current investigation were detected in the shallow groundwater sample collected from the farthest upgradient location along the northern PG&E site boundary with the former Superior Plaster Castings property (boring SB-26). Based on this finding, the historical chlorobenzene results for the PG&E and upgradient properties, and the soil results for chlorobenzenes, the chlorobenzenes in groundwater at the PG&E site are most likely from an upgradient off-site source. In addition, the lateral and vertical extents of chlorobenzenes in groundwater on the PG&E site appear limited.

5.3 OTHER CVOCS

During this investigation, vinyl chloride was detected in two groundwater samples: the deeper groundwater sample collected between 30 and 35 feet bgs from boring SB-30 and the shallow groundwater sample collected between 11 and 16 feet bgs from boring SB-28. In addition, chloroethane, 1,1-DCA, 1,2-DCA, and 1,1-DCE were detected at low concentrations in select groundwater samples collected in the northern corner of the PG&E site. No vinyl chloride, chloroethane, 1,1-DCA, 1,2-DCA, or 1,1-DCE were detected in soil at the PG&E site. Historically, 1,1-DCE and 1,1-DCA were detected in groundwater on the former AAA property; however, the source(s) of the detected chloroethane, 1,1-DCE, 1,1-DCA, 1,2-DCA and vinyl chloride concentrations is currently unknown.

5.4 FORMER DIESEL UST

During the November 2007 groundwater sampling event, TPHd and TPHmo were not detected in the sample collected from well OW-1. TPH and VOCs were not detected in soil during historical sampling activities at the former diesel UST. Finally, TPHd and TPHmo were not detected in the soil sample collected from boring SB-23, which is at the edge of the former diesel UST excavation and immediately upgradient of well OW-1. Based on this and previous investigations at the former diesel UST, no further assessment of the former diesel UST appears warranted.

6.0 CONCLUSIONS

Geomatrix's conclusions based on the results of this and the previous site investigations are summarized below.

- Relatively low concentrations of TPH in the diesel and motor oil ranges were detected in soil and groundwater in the former waste oil UST cluster area on the PG&E site. The extent of these impacts appears limited and adequately defined on the PG&E site, to evaluate the resulting human health and environmental risks.
- Additional evaluation of the source of the groundwater results for boring SB-24 may be warranted, depending on the analytical results for the former Superior Plaster Castings property. The TPHmo detection is not likely the results of actual groundwater conditions.
- No further investigation of PCBs at the PG&E site appears warranted at the former waste oil UST cluster.
- No further investigation of PAHs at the PG&E site appears warranted at the former waste oil UST cluster.
- Chlorobenzenes in soil and groundwater at the PG&E site are most likely from an upgradient, off-site source.
- No further assessment of the former diesel UST appears warranted.

7.0 **RECOMMENDATIONS**

Geomatrix recommends that the data generated during this investigation be evaluated together with the data generated by the investigations conducted by the upgradient property owners. We recommend a meeting between ACEH, PG&E, the former AAA property owners, the former Superior Plaster property owners, and the Learner property owners to discuss the appropriate actions to be taken by the various parties. Based on the data collected at the PG&E site, the former Superior Plaster site, and the former AAA site, Geomatrix concludes that the chlorobenzenes source(s) is likely upgradient of the PG&E site. As part of, or following multiparty discussions, Geomatrix recommends that the following priority items be accomplished:

- The likely source(s) and extent of chloroethane, 1,1-DCA, 1,2-DCA, 1,1-DCE and vinyl chloride in groundwater should be identified and the need for further investigation evaluated.
- Additional evaluation of chlorobenzenes in groundwater should be performed, such that concentration trends may be identified and evaluated.

As warranted by the pending upgradient sampling results for chlorobenzenes, Geomatrix respectfully requests, on behalf of PG&E, that the ACEH take measures necessary to address the source of chlorobenzenes.

8.0 **REFERENCES**

- Alameda County Flood Control and Water Conservation District (ACFCWCD), 1993, Drilling Permit 93058 for 4930 Coliseum Way in Oakland, February 9.
- Aqua Resources, Inc. (Aqua), 1991, Remedial Investigation Report, PG&E, ENCON-GAS Transmission and Distribution Construction Yard, Former Tank Cluster Area, 4930 Coliseum Way, Oakland, California, July 23.
- Aqua, 1992, Site Remediation and Closure Report Former Tank Cluster Area, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, February.
- ATC Associates, Inc. (ATC), 1998, Phase II Environmental Site Investigation Report, Metalcast Engineering Facility, 4800 Coliseum Way, Oakland, CA, November 25.
- California Department of Water Resources (CDWR), 2003, California's Groundwater, Bulletin 118, Santa Clara Groundwater Basin, East Bay Plain Sub-Basin.
- California Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1999, East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, June.
- Water Board, 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, November.
- CSS Environmental Services, Inc. (CSS), 2005, Groundwater Monitoring Report, PG&E Oakland General Construction Yard, Oakland, California, September.
- Geomatrix Consultants, Inc. (Geomatrix), 2007, Additional Investigation Work Plan, PG&E General Construction Yard, 4930 Coliseum Way, Oakland, California, November 16.
- Graymer, R.W., 2000, Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California: U.S. Geologic Survey Miscellaneous Field Studies Map MF 2342.
- Helley E.J., and Lajoie, K.R., 1979, Flatland Deposits of the San Francisco Bay Region, California—Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning: U.S. Geological Professional Paper 943.
- Innovative Technical Solutions, Inc. (ITSI), 2007, Semiannual Groundwater Monitoring Report, November 2007 Sampling Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, December.

- Pacific Gas and Electric Company (PG&E), 1987a, Underground Tank Investigation (DER Report 402.331-87.12), Oakland General Construction Gas Yard, May.
- PG&E, 1987b, Analysis of Liquid Wastes Contained in Underground Storage Tank Located at Peralta Way, Oakland (DER Report 402.331-87.56), Oakland General Construction Gas Yard, December.
- PG&E, 1988, Report 402.331-88.32, Coliseum Way Oakland, General Construction Gas Yard, Underground Tanks Investigation, July.
- U.S. Environmental Protection Agency (U. S. EPA), 1999, Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, PB99-963506, EPA 540/R-99-008, October.
- U.S. EPA, 2004, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-45, EPA 540-R-04-004, October.
- Zemo, D.A., and Foote, G.R., 2003, The Technical Case for Eliminating the Use of the TPH Analysis in Assessing and Regulating Dissolved Petroleum Hydrocarbons in Ground Water, Groundwater Monitoring & Remediation, Summer.

SAMPLING PROGRAM SUMMARY

PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

		Sampling				Analyse	s ¹		
Sample Location	Media	Depths (feet bgs)	TPHg	TPHd	TPHmo	PAHs	PCBs	VOCs	Metals
SD 22	Soil	7						Х	
SB-23	Soil	8		Х	Х				
SD 24	Soil	3		Х	Х			Х	
3D-24	Groundwater	11-16		Х	Х			Х	
	Soil	2					Х		Х
	Soil	2.5						Х	
SD 25	Soil	4.5						Х	
3D- 23	Soil	10						Х	
	Soil	11		Х	Х	Х			
	Groundwater	14-19		Х	Х			Х	
SB-26	Soil	9.5		Х	Х	Х	Х	Х	Х
3D- 20	Groundwater	7-12		X^2	X^2			X^2	
SB-27	Groundwater	11-16		Х	Х			Х	
SD 28	Soil	7				Х	Х	Х	Х
3D- 20	Groundwater	11-16		Х	Х			Х	
	Soil	2					Х	Х	Х
	Soil	4.5						Х	
SB 20	Soil	8						Х	
3D- 29	Soil	9	Х	Х	Х	Х			
	Groundwater	11-16		Х	Х			Х	
	Groundwater	32-38		Х	Х			Х	
	Soil	10.5						Х	
SB-30	Groundwater	12-16		Х	Х			Х	
	Groundwater	30-35		Х	Х			Х	
SB-31	Groundwater	6-8		X	X			Х	

Notes:

¹ Samples analyzed for TPHg using EPA Method 8015M, TPHd and TPHmo using EPA Method 8015M with silica gel cleanup, PAHs using EPA Method 8270-SIM, PCBs were analyzed using EPA Method 8082, VOCs using EPA Method 8260B, and Title 22 metals using EPA Methods 6020 and 7471.

² A blind field duplicate was collected from the groundwater sample collected from SB-26.

Abbreviations:

bgs = below ground surface

EPA = U. S. Environmental Protection Agency

PAHs = polynuclear aromatic hydrocarbons

PCBs = polychlorinated biphenyls

TPHd = total petroleum hydrocarbons quantified as diesel

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHmo = total petroleum hydrocarbons quantified as motor oil

SIM = selective ion mode

VOCs = volatile organic compounds

SOIL ANALYTICAL RESULTS

TPH, PAHs, and PCBs¹

Former Waste Oil UST Cluster and Northern PG&E Site Boundary

PG&E Oakland General Construction Yard

4930 Coliseum Way

Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

E.

	Depth Oil and							
Sample ID	Date	(feet bgs)	TPHg	TPHd	TPHmo	Grease	PAHs	PCBs
			Previo	us Investiga	ation			
OB-3-4	03/16/88	4.0		<10		27		
OB-3-6	03/16/88	6.0		<10		250		
OB-3-8	03/16/88	8.0		<10		13		
OB-4-8	03/16/88	8.5		<10		29		
OB-5-7.5	03/16/88	7.5		<10		<5		
OB-6-10	03/16/88	10.0		<10		21		
OB-7-8	03/16/88	8.0		<10		34		
OB-9-12.5	03/17/88	12.5		<10		<5		
OB-10-11.5	03/17/88	11.5		<10		<5		
OB-14A-11	05/17/88	11.0		<10		<5		
OB-15-10	05/17/88	10.0		<10		5		
OB-16-7	05/17/88	7.0		<10		100		
OB-16-9	05/17/88	9.0		<10		<5		
OB-17-6.5	05/17/88	6.5		<10		9		
OB-17-9	05/17/88	9.0		<10		<5		
OB-18-7	05/18/88	7.0		<10		<5		
OB-18-9	05/18/88	9.0		<10		<5		
OW-4-11	05/18/88	11.0		<10		<5		
SB-1-3	04/15/91	10.5		<2.5				
SB-2-2	04/15/91	8.5		<2.5				
OW-5-1	04/16/91	0.5						<1.0
OW-5-9	04/16/91	5.0	2	<50				
SB-13-1	05/20/91	2.5				78		
SB-13-2	05/20/91	5.5				20		< 0.017
SB-13-3	05/20/91	7.5				18		
SB-15-1	05/20/91	2.5				2,300		
SB-15-2	05/20/91	4.5				30		
SB-15-3	05/20/91	7.5				18		
SB-16-1	05/20/91	2.0				<5.0		
SB-16-2	05/20/91	4.5				8		
SB-16-3	05/20/91	7.5		510		110		< 0.017
SB-19-1	05/20/91	2.0				66		
SB-19-2	05/20/91	5.5				6		
SB-19-3	05/20/91	7.5				22		< 0.017
SB-20-1	05/20/91	3.0				82		
SB-20-2	05/20/91	4.5	4.5 66 1		120			
SB-20-3	05/20/91	91 7.5 34						
SB-21-1	05/20/91	2.5				24		
SB-21-2	05/20/91	5.5		<1.0		<50		
SB-21-3	05/20/91	7.5		<1.0		<50		

SOIL ANALYTICAL RESULTS

TPH, PAHs, and PCBs¹

Former Waste Oil UST Cluster and Northern PG&E Site Boundary

PG&E Oakland General Construction Yard

4930 Coliseum Way

Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

Sampla ID	Data	Depth	TDHa	трил	TDHmo	Oil and	ранс	DCBs
	Date	(leet bgs)	11 Hg	11110	1111110	Grease	I AIIS	TCDS
SB-22-1	05/20/91	4.3				28		
SB-22-2	05/20/91	5.5		<1.0		<50		
SB-22-3	05/20/91	7.5		<1.0		<50		
SB-5-3	05/23/91	8.5				<50		
SB-6-4	05/23/91	9.5				<50		
SB-7-2	05/23/91	6.5				<50		
SB-7-3	05/23/91	8.5				<50		
SB-8-3	05/23/91	5.5				<50		
SB-8-4	05/23/91	8.5				<50		
SB-9-3	05/23/91	7.5				<50		
SB-10-1	05/23/91	3.0				770		
SB-10-2	05/23/91	5.5				56		
SB-10-3	05/23/91	8.5				<50		
B-1	11/19/91	4.5	<10	<1.0		<10	-	
B-2	11/19/91	7.0	<10	<1.0		<10		
N-1	11/19/91	4.5	340	340		8,800		
N-2	11/19/91	4.5	410	<1.0		18,000		
N-3	11/19/91	5.5	1,200	45		5,100		
N-4	11/19/91	5.5	2,500	73		8,300		
N-5	11/19/91	5.5	<10	120		34,000		
N-6	11/19/91	5.0	<10	65		13,000		
S-1	11/19/91	3.5	<10	<1.0		<10		
S-2	11/19/91	5.0	<10	<1.0		100		
W-1	11/19/91	4.0	<10	<1.0		<10		
B-3	11/20/91	5.5	<10	<1.0		<10		
E-1	11/20/91	3.5	<10	<1.0		1,600		
W-2	11/20/91	4.0	<10	<1.0		<10		
W-3	11/20/91	5.5	<10	<1.0		<10		
W-4	11/20/91	4.0	15	<1.0		72		
B-5	11/21/91	7.5	<10	<1.0		740		
E-2	11/21/91	1.5	<10	<1.0		1.100		
W-5	11/21/91	5.0	<10	<1.0		<10		
B-6	11/22/91	8.0	27	<1.0		<10		
B-7	11/22/91	8.5	<10	<1.0		<10		
E-3	11/22/91	4 5	1.500	<1.0		5.600		
S-4	11/22/91	5.0	<10	<1.0		16		
B-8	11/23/91	8.5	<10	<1.0		<10		
B-9	11/23/01	6.0	<10	<1.0		670		
B-10	11/23/01	8.5	<10	16		33		
F-4	11/23/91	85	517	1.0		1 200		
E-4 F-5	11/23/91	5.0	5 000	63		5 300		
L-J	11/23/71	5.0	5,000	0.5		5,500		

SOIL ANALYTICAL RESULTS

TPH, PAHs, and PCBs¹

Former Waste Oil UST Cluster and Northern PG&E Site Boundary PG&E Oakland General Construction Yard

4930 Coliseum Way

Oakland, California Concentrations in milligrams per kilogram (mg/kg)

Sample ID	Date	Depth (feet bgs)	TPHg	TPHd	TPHmo	Oil and Grease	PAHs	PCBs
S-5	11/23/91	4.5	<10	<1.0		<10		
S-6	11/23/91	4.5	<10	<1.0		300		
B-13	12/02/91	9.5	<10	<1.0		<10		
S-8	12/02/91	5.0	<10	<1.0		<10		
B-14	12/05/91	9.5	<10	<1.0		<10		
			Curre	nt Investiga	tion			
SB-24-3	1/22/08	3.0		<10	<10			
SB-25-2	1/22/08	2.0					2	ND ³
SB-25-11	1/22/08	11.0		<10	<10		ND^4	
SB-26-9.5	1/23/08	6.5		390	320		ND	ND
SB-28-7	1/24/08	7.0					ND^5	ND
SB-29-2.0	3/12/08	2.0						ND
SB-29-9	1/22/08	9.0	< 0.5	<10	<10		ND	

Notes:

¹ Historical soil samples analyzed for TPH using EPA Method 8015, Oil and Grease using EPA Method 1664, PAHs using EPA Method 8270, and PCBs using EPA Method 8082. Current investigation soil samples analyzed for TPH using EPA Method 8015 with silica gel cleanup, PAHs using EPA Method 8270-SIM, and PCBs using EPA Method 8082. Detections are **bolded**.

² "--" denotes that a chemical was not analyzed.

³ Analytical detection limit ranged from 0.033 to 0.067 mg/kg.

⁴ Analytical detection limit was 0.010 mg/kg.

⁵ Naphthalene was not detected in this sample; however, this result was rejected due to a QA/QC issue.

Abbreviations:

bgs = below ground surface

EPA = U. S. Environmental Protection Agency

ESL = Environmental Screening Level

PAHs = polycyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

SIM = selective ion mode

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHd = total petroleum hydrocarbons quantified as diesel

TPHmo = total petroleum hydrocarbons quantified as motor oil

QA/QC = quality assurance/quality control

SOIL ANALYTICAL RESULTS—VOCs¹ Former Waste Oil UST Cluster and Northern PG&E Site Boundary PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Concentrations in micrograms per kilogram (mg/kg)

Sample ID	Date	Depth (feet)	СВ	1,2-DCB	1,3-DCB	1,4-DCB	Other VOCs							
			Previou	s Investigations										
B-11 11/23/91 8.5 0.13 0.16 1.1 1.8 ND ²														
E-6	11/26/91	2.5	< 0.005	< 0.005	< 0.005	< 0.005	ND							
			Curre	nt Investigation										
SB-24-3	1/22/08	3.0	< 0.005	< 0.005	< 0.005	< 0.005	ND							
SB-25-2.5	3/12/08	2.5	< 0.006	< 0.005	< 0.006	< 0.006	ND							
SB-25-4.5	3/12/08	4.5	< 0.005	< 0.005	< 0.005	< 0.005	ND							
SB-25-10	1/22/08	10	< 0.005	< 0.005	< 0.005	0.013	ND							
SB-26-9.5	1/23/08	9.5	0.021	< 0.005	0.10	0.24	ND							
SB-28-7	1/24/08	7.0	< 0.005	< 0.005	< 0.005	< 0.005	ND							
SB-29-2.0	3/12/08	2.0	< 0.300	< 0.005	< 0.300	< 0.300	ND							
SB-29-4.5	3/12/08	4.5	< 0.006	< 0.005	< 0.006	< 0.006	ND							
SB-29-8	1/22/08	8.0	< 0.005	< 0.005	< 0.005	0.040	ND							
SB-30-10.5	2/7/08	10.5	< 0.005	< 0.005	< 0.005	< 0.005	ND							

Notes:

¹ Samples analyzed for VOCs using EPA Method 8260. Detections are **bolded**.

 2 Laboratory detection limits of VOCs were between 0.005 and 0.02 mg/kg.

³ "<" denotes that the chemical was not detected above the laboratory detection limit.

Abbreviations:

bgs = below ground surface	EPA = U. S. Environmental Protection Agency
CB = chlorobenzene	NA = not available
1,2-DCB = $1,2$ -dichlorobenzene	ND = the analyte was not detected above the laboratory detection limits
1,3-DCB = 1,3-dichlorobenzene	VOCs = volatile organic compounds
1,4-DCB = $1,4$ -dichlorobenzene	

SOIL ANALYTICAL RESULTS—METALS¹

Former Waste Oil UST Cluster and Northern PG&E Site Boundary PG&E Oakland General Construction Yard 4930 Coliseum Way

Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

		Depth						Total						Molyb-			
Sample ID	Date	(feet bgs)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium VI	Cobalt	Copper	Lead	Mercury	denum	Nickel	Vanadium	Zinc
							Pre	vious Investigat	ions								
SB-1-1b	4/15/1991	4.0	19	17	290	0.22	0.8	28	<0.4	6.9	28	210	< 0.17	0.7	60	63	90
OW-5-9	4/16/1991	5.0	<8	6	190	1.2	0.29	110		14	35	8.6	0.7	< 0.24	150	59	80
SB-6-1	5/20/1991	3.5	<2.9	3.3	156	0.22	2	40.1		9.1	39.7	26	0.11	2.6	37.7	27.7	50.2
SB-13-1	5/20/1991	2.0										6.9					
SB-13-2	5/20/1991	5.0										12.2					
SB-13-2	5/20/1991	5.5	<2.9	<2.5	133	0.36	1.9	40		11.8	29.8	12.2	0.12	< 0.68	73.5	29.5	43.8
SB-15-1	5/20/1991	2.0										3,241					
SB-15-2	5/20/1991	4.0										15.6					
SB-16-1	5/20/1991	2.0										2.8					
SB-16-2	5/20/1991	4.0										5.4					
SB-16-3	5/20/1991	7.5	<3.0	<2.5	118	0.38	1.8	46.6		9.7	21.2	5.4	< 0.1	< 0.69	74.5	29	40.2
SB-19-1	5/20/1991	2.0										608					
SB-19-2	5/20/1991	5.0										8.5					
SB-19-3	5/20/1991	7.5	<3.0	<2.5	108	0.35	1.7	36.2		11.4	19.4	5.5	< 0.1	< 0.7	70.6	22.6	36.6
SB-20-1	5/20/1991	2.5										123					
SB-20-2	5/20/1991	4.0										932					
SB-21-1	5/20/1991	2.0										3					
SB-21-2	5/20/1991	5.0										7.3					
SB-22-1	5/20/1991	3.75										199					
SB-22-2	5/20/1991	5.0										7					
SB-9-1	5/23/1991	1.5	6.6	3.9	571	0.42	4.2	51.6		13.5	63.9	168	0.22	<0.7	66.1	47.4	252
B-1	9/2/1992	0.5										360					
B-2	9/2/1992	0.5										10					
B-3	9/2/1992	0.5										20					
B-4	9/2/1992	0.5										8.1					
B-5	9/2/1992	0.5										100					
B-6	9/2/1992	0.5										20					
B-7	9/2/1992	0.5										30					
B-8	9/2/1992	0.5										50					
B-9	9/2/1992	0.5										150					
B-10	9/2/1992	0.5										110					
B-11	9/2/1992	0.5										70					
B-12	9/2/1992	0.5										280					
B-13	9/2/1992	0.5										200					
B-14	9/2/1992	0.5										870					

SOIL ANALYTICAL RESULTS—METALS¹

Former Waste Oil UST Cluster and Northern PG&E Site Boundary PG&E Oakland General Construction Yard 4930 Coliseum Way

Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

Sample ID	Date	Depth (feet bgs)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Chromium VI	Cobalt	Copper	Lead	Mercury	Molyb- denum	Nickel	Vanadium	Zinc
Current Investigation																	
SB-25-2	1/22/08	1.5-2.0	1.1	4.3	560	< 0.4	0.4	46		11	34	74	0.13	1.2	65	48	130
SB-26-9.5	1/23/08	9.0-9.5	< 0.4	4.5	220	0.7	< 0.4	89		12	29	10	0.20	0.6	100	48	59
SB-28-7	1/24/08	6.5-7.0	< 0.4	2.2	170	0.5	< 0.4	42		14	11	5.6	< 0.04	< 0.4	39	26	20
SB-29-2.0	3/12/08	2.0-1.5	0.7	5.1	440	<0.4	0.5	40		9.7	28	83	0.18	0.9	53	48	92

Notes:

¹ Samples analyzed for Title 22 Metals using EPA Methods 6020 and 7470. Detections are **bolded**.

² "--" denotes that a chemical was not analyzed

³ "<" denotes that the chemical was not detected above the laboratory detection limit.

Abbreviations:

bgs = below ground surface

EPA = U. S. Environmental Protection Agency

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

SOIL ANALYTICAL RESULTS¹

Former Diesel UST Area PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

Sample ID	Date	Depth (feet bgs)	TPHg	TPHd	TPHmo	TPHk	TPHms	Oil and Grease	VOCs					
Previous Investigations														
B3-1-1 2/12/87 5.5 <0.1 <20 <100 <10														
OB-11	3/18/88	11		<1		<1	<1	<5	ND ³					
OB-12	3/18/88	11		<1		<1	<1	<5	ND					
OB-13	3/18/88	4.5		<1		<1	<1	<5	ND					
OB-13	3/18/88	9		<1		<1	<1	<5	ND					
OW-1	3/18/88	11		<1		<1	<1	<5	ND					
	Current Investigation													
SB-23-7	1/22/08	7.0							<10					
SB-23-8	1/22/08	8.0		$< 10^{3}$	<10									

Notes:

¹ Samples analyzed for TPH using EPA Method 8015, Oil and Grease by EPA Method 413.2, and VOCs using EPA Method 8010/8020.

² "--" denotes that a chemical was not analyzed.

³ Analytical detection limit were not reported.

Abbreviations:

bgs = below ground surface

EPA = U. S. Environmental Protection Agency

TPHd = total petroleum hydrocarbons quantified as diesel

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHk = total petroleum hydrocarbons quantified as kerosene

TPHmo = total petroleum hydrocarbons quantified as motor oil

TPHms = total petroleum hydrocarbons quantified as mineral spirits

VOCs = volatile organic compounds

GROUNDWATER ANALYTICAL RESULTS

TPH and VOCs¹

PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Concentrations in micrograms per liter (μ g/L)

Sample ID	Date	Sampling Interval (feet bgs)	TPHg	TPHd	TPHmo	Benzene	1,3-DCB	1,4-DCB	Chloro- benzene	1,1-DCA	1,2-DCA	Chloro- ethane	1,1-DCE	Vinyl Chloride	Isopropyl- benzene	Other VOCs
SB-24-GW-12-16	1/23/2008	12-16	< 50 ²	620	1,900	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ND^4
SB-25-GW-14-19	1/24/2008	14-19	<50	<50	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.2	<0.5	<0.5	<0.5	< 0.5	ND
SB-26-GW-7-12	1/23/2008	7-12	<50	<50	<100	<2	57	200	62 J	37	<2	<2	52	<2	<2	ND
(DUP) SB-33-GW-7-12 ⁵	1/23/2008	7-12	<50	<50	<100	<2	52	210	64 J	34	<2	<2	44	<2	<2	ND
SB-27-GW-11-16	1/24/2008	11-16	<50	<50	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.4	< 0.5	< 0.5	< 0.5	< 0.5	ND
SB-28-GW-11-16	2/8/2008	11-16	<50	270	<100	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	4.1	1.5	ND
SB-29-GW-11-16	1/24/2008	11-16	<50	<50	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	<0.5	<0.5	<0.5	< 0.5	ND
SB-29-GW-32-38	1/24/2008	32-38	<50	<50	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	ND
SB-30-GW-16-12	2/8/2008	12-16	<50	<50	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.5	<0.5	<0.5	< 0.5	< 0.5	ND
SB-30-GW-30-35	2/8/2008	30-35	< 50	< 50	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.9	2.4	< 0.5	53	< 0.5	ND
SB-31-GW-6-8	1/24/2008	6-8	< 50	< 50	320	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND

Notes:

¹ Samples analyzed for TPH using EPA Method 8015M with silica gel cleanup on extractable-range hydrocarbons and VOCs using EPA Method 8260B. Detections are **bolded**.

 2 "<" = denotes that the chemical was not detected above the laboratory detection limit.

³ "--" denotes that a chemical

⁴ Laboratory detection limits

⁵ Sample represents a blind duplicate of sample SB-26-GW-7-12.

Abbreviations:

bgs = below ground surface

EPA = U. S. Environmental Protection Agency

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- 1,3-DCB = 1,3-dichlorobenzene
- 1,4-DCB = 1,4-dichlorobenzene

1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane

1,1-DCE = 1,1-dichloroethene

ND = the analyte was not detected above the laboratory detection limits

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHd = total petroleum hydrocarbons quantified as diesel

TPHmo = total petroleum hydrocarbons quantified as motor oil

VOCs = volatile organic compounds

FIGURES

Explanation

Soil boring or monitoring well

Screened/groundwater sampling interval

Total boring depth

Groundwater observed in well (ITSI, 2007)

Predominantly coarse-grained soil Predominantly fine-grained soil

Groundwater Sample Name Interval		
ANALYTE	RESULT	
TPHd	μg/L	
TPHmo	µg/L	
TPHg	μg/L	
VOCs	µg/L	

Soil sample with analytical results

Abbreviations

ove mean sea level	ND	Not detected ablove the detection limit (See Appendix D for specific detection limits)
low ground surface	TPHg	Total petroleum hydrocarbons quantified as gasloine
lorobenzene		<u>j</u>
2-Dichloroethane	TPHd	Total petroleum hydrocarbons quantified as diesel
2-Dichlorobenzene	TPHmo	Total petroleum hydrocarbons quantified as
3-Dichlorobenzene		motor oli
1-Dichlorobenzene	VC	Vinyl Chloride
lligrams per kilogram	VOCs	Volatile organic compounds

Notes:

- 1. See Figure 2 for locations of cross sections.
- 2. Ground surface elevation estimated from top of casing elevations of the monitoring wells.

CROSS SECTION B-B' TPH AND VOCs IN SOIL AND GROUNDWATER NOVEMBER 2007 - MARCH 2008 Pacific Gas & Electric Company Oakland General Construction Yard 007**.**A By:

4930) Coliseu	m Way,	Oakla	nd, California
MDW	Da	te: 04/08/	08	Project No. 13045.0
///	Geor	natri	X	Figure 4

EXPLANATION

- \oplus RECENT SOIL SAMPLING LOCATION
- \mathbf{e} GROUNDWATER MONITORING WELL
- R ABANDONED GROUNDWATER MONITORING WELL
- HISTORICAL SOIL SAMPLING LOCATION •
- APPROXIMATE PROPERTY LINE

ABBREVIATIONS

UST UNDERGROUND STORAGE TANK

	ATC-3		
1,4-DCB	1,2-DCB	1,3-DCB	CB
(µg/L)	(µg/L)	(µg/L)	(µg/L)
250	<50	120	<50

	ATC-9		
,4-DCB	1,2-DCB	1,3-DCB	СВ
(µg/L)	(µg/L)	(µg/L)	(µg/L)
380	190	440	33

	WCC-1A		
,4-DCB	1,2-DCB	1,3-DCB	CB
(µg/L)	(µg/L)	(µg/L)	(µg/L)
1,500	<0.5	<0.5	<0.5
1,500	56	900	220

	GGW1-1		
,4-DCB	1,2-DCB	1,3-DCB	CB
(µg/L)	(µg/L)	(µg/L)	(µg/L)
<0.5	< 0.5	<0.5	<0.5

N, 2000)

	ATC-7		
I,4-DCB	1,2-DCB	1,3-DCB	CB
$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)
1,000	54	730	210

	GGW2-1		
,4-DCB	1,2-DCB	1,3-DCB	CB
(µg/L)	(µg/L)	(µg/L)	(µg/L)
360	24	210	74

	B-2		
1,4-DCB	1,2-DCB	1,3-DCB	СВ
(µg/L)	(µg/L)	(µg/L)	(µg/L)
8.6	<1.0	3.7	1.2

FORMER AAA PROPERTY

LEARNER PROPERTY

20

COMPILATION OF CHLOROBENZENE CONCENTRATIONS IN GROUNDWATER PG&E SITE, FORMER SUPEROR PLASTER CASTING PROPERTY, AND FORMER AAA PROPERTY Pacific Gas & Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA Date: 04/18/08 Project No. 13045.007.A

By: MDW

🎢 🚰 Geomatrix

Figure 6

LEARNER PROPERTY

FORMER AAA PROPERTY

CHLOROBENZENES IN SHALLOW GROUNDWATER JANUARY - MARCH 2008 Pacific Gas & Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

By: MDW	Date:	04/18/08	Project No. 13045.007.A
📈 Ge	oma	atrix	Figure 7

APPENDIX A

November 30, 2007, Work Plan Approval Letter from ACEH to PG&E and December 13, 2008 E-Mail from ACEH

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

November 30, 2007

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Mr. Robert Saur PG&E 3400 Crow Canyon Road San Ramon, CA 94583

Subject: SLIC Case No. RO0000099 and Geotracker Global ID T0600100258, PG&E, 4930 Coliseum Way, Oakland, CA 94601

Dear Mr. Saur:

Alameda County Environmental Health (ACEH) staff has reviewed the Spills, Leaks, Investigations, and Cleanups (SLIC) case file for the above referenced site including the recently submitted document entitled, "Additional Investigation Work Plan, PG&E Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California," dated November 16, 2007. The Work Plan, which was prepared by Geomatrix, proposes advancing soil borings at nine locations to collect soil and groundwater samples.

Petroleum hydrocarbons and chlorinated solvents, including 1,3-dichlorobenzene and 1,4dichlorobenzene, have been detected in soil and groundwater samples collected on four adjacent properties in the area of your site. It appears that the chlorinated solvents are from a common source of historic releases that occurred on each of the four properties (PG&E, Learner Investment Company, AAA Equipment, and Superior Plaster Casting), resulting in a commingled plume. Therefore, ACEH considers all four parties responsible for the release. As presented in directive letters and discussed during a meeting with each of the four responsible parties held on October 10, 2007, ACEH requested that responsible parties for each of four adjacent properties work individually or cooperatively to evaluate the source and extent of the groundwater impacts. We thank PG&E for their cooperation in preparing a Work Plan to accomplish this goal. We note that Alta Properties LLC and Mr. Richard Neu have also submitted a work plan for site investigation on the adjacent AAA Equipment and Learner Investment Company properties. To date a work plan has not been submitted for the Superior Plaster Casting site and we have again requested that a work plan be submitted for this fourth property.

The proposed scope of work in the November 16 work plan is generally acceptable and may be implemented provided that the technical comments below are addressed during the proposed field investigation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the technical reports requested below.

Mr. Robert Saur RO0000099 November 30, 2007 Page 2

TECHNICAL COMMENTS

- Proposed Soil and Groundwater Sampling. The proposed soil and groundwater sampling locations and methods are generally acceptable. However, we request that the proposed soil samples within the former excavation area (borings SB-26 and SB-28) be collected 6 inches below the fill and native soil contact where the contact is obvious rather than at the proposed fixed interval. If the fill and native soil contact is not obvious, the soil samples are to be collected at 9.5 feet bgs in SB-26 and 8 feet bgs in boring SB-28.
- Depth of Deeper Soil Borings. The proposed depth of deeper soil borings SB-29 and SB-30 was not specified in section 3.2.2 of the Work Plan. We request that borings SB-29 and SB-30 be extended to a minimum depth of 35 feet bgs. Determining the depth intervals for collection of depth-discrete groundwater samples in the field based on encountered soil stratigraphy is acceptable.
- 3. Proposed Laboratory Analyses for Soil Samples. We request additional analyses for several soil samples as shown on the attached Revised Table 1. We request that the four soil samples that will be analyzed for polynuclear aromatic hydrocarbons (PAHs) also be analyzed for polychlorinated biphenyls (PCBs) using EPA Method 8082 and CAM 17 metals using EPA Method 6010. We also request analysis for VOCs and TPH as diesel and motor oil for several additional samples as shown on attached Revised Table 1. Please present these results in the Site Investigation Report requested below.
- 4. **Proposed Laboratory Analyses for Groundwater Samples.** The proposed laboratory analyses for groundwater samples are acceptable.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Jerry Wickham), according to the following schedule:

April 18, 2008 – Site Investigation Report

ELECTRONIC SUBMITTAL OF REPORTS

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater

Mr. Robert Saur RO0000099 November 30, 2007 Page 3

cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/cleanup/electronic reporting</u>).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jorn N

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Hazardous Materials Specialist

Attachment: Revised Table 1

Mr. Robert Saur RO0000099 November 30, 2007 Page 4

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Marcella Harrison, GVA Kidder Mathews, 505 Sansome Street, Suite 300, San Francisco, CA 94111

Jack Krause, Alta Properties, LLC, P.O. Box 2399, Oakland, CA 94614

Richard Neu, Edenwood Corp., 47 Parsippany Road Whippany, NJ 07981

Robert Nichols, P.O. Box 6716, Oakland, CA 94603

John Miller, 250 Cambridge Avenue, Palo Alto, CA 94306

Tom Chandler, LFR, 3150 Bristol Street, Suite 250, Costa Mesa, CA 92626-7324

Robert Schultz, Geomatrix, 2101 Webster Street #12, Oakland, CA 94612

Donna Drogos, ACEH Jerry Wickham, ACEH File RO2746 File RO2478

Revised Table 1

Table 1. Sampling and Analysis Plan

Sampling Location	Location	Sample Depths to be Analyzed (feet bgs)	VOCs	TPHg	TPHd with Silica Gel Cleanup	TPHmo with Silica Gel Cleanup	PAHs
SB-23	Former diesel UST, downgradient of former	Soil: 3 ¹	x				
	Superior Plaster	Soil: 4 ²			x	x	
SB-24	Downgradient of former	Soil: 3	x		X	X	
3D-24	Superior Plaster	Groundwater: first ³	X		x	x	
	Downgradient of former	Soil: 3 ¹	x				
SB-25	Superior Plaster and Learner,	Soil: 4 ²			X	X	X
	Adjacent to former Excavation	Groundwater: first ³	Х	X	x	x	
SD 16	Downgradient of former AAA,	Soil: X9.5	X		X	X	Х
30-20	Superior Plaster, and Learner	Groundwater: first ³	X	Х	x	X	
SB-27	Downgradient of former AAA	Groundwater: first ³	X	X	x	x	
CD 29	Downgrodient of former AAA	Soil: 🗶 🞖	X		X	X	Х
3D- 20	Downgradient of tormer AAA	Groundwater: first ³	X	Х	x	x	
*		Soil: 3 ¹	X	Х			
SB-29	Downgradient of well OW-7,	Soil: 4 ²			x	X	Х
	adjacent to former excavation	Groundwater: first and deeper ³	x	x	x	x	
		Soil: 3 ¹	X				
SB-30	Downgradient of well OW-7	Groundwater: first and deeper ³	x	х	x	x	
SB-31	Downgradient of former AAA, Superior Plaster, and Learner	Groundwater: first ³	x	х	x	X	

Notes:

¹ Sample to be collected in vadose-zone soil at least 1 foot above first-encountered groundwater.

² Sample to be collected from immediately above first-encountered groundwater.

³ Depth to groundwater is estimated at 5 feet bgs. Sampling interval will be from water table to 5 feet below.

X Sample to be analyzed for listed parameters.

3.2.6 Quality Assurance and Quality Control Methodology

Field quality assurance/quality control (QA/QC) samples for chemical analysis will include the collection of one groundwater blind field duplicate and one trip blank per sample cooler. QA/QC procedures will include adherence to protocols for field sampling and decontamination procedures, as well as collection and laboratory analysis of controlled standards, matrix spike

10

Jonathan Skaggs

From: Wickham, Jerry, Env. Health [jerry.wickham@acgov.org]

Sent: Thursday, December 13, 2007 12:34 PM

To: Jonathan Skaggs

Cc: Robert Schultz; Saur, Robert

Subject: RE: PG&E Oakland GC - WP revision

Jonathan,

Please collect the soil samples for PCB and metals analysis in borings SB-25 and SB-29 at a depth of 1.5 to 2.0 feet bgs rather than 4.0 feet bgs.

Regards,

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577 510-567-6791 phone 510-337-9335 fax jerry.wickham@acgov.org

From: Jonathan Skaggs [mailto:jskaggs@geomatrix.com]
Sent: Wednesday, December 12, 2007 5:12 PM
To: Wickham, Jerry, Env. Health
Cc: Robert Schultz; Saur, Robert
Subject: PG&E Oakland GC - WP revision

Hello Jerry,

Per our discussion earlier today, you have requested that we analyze samples from 1.5-2.0 feet bgs for PCBs and metals instead of the 4.0 feet bgs sampling depth for borings SB-25 and SB-29 as indicated in your November 30, 2007 letter to PG&E concerning the investigation work plan. Please indicate your concurrence with this change.

Thanks,

Jonathan M. Skaggs, PG Project Geologist Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 510.663.4104 Direct 510.663.4141 Fax 510.409.0779 Cell

jskaggs@geomatrix.com

The materials transmitted by this electronic mail are confidential, are only for the use of the intended recipient, and may also be subject to applicable privileges. Any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please immediately notify the sender. Please also remove this message from your hard drive, diskette, and any other storage device.

APPENDIX B

November 2007 Groundwater Elevations and Groundwater Analytical Results and PG&E Site Monitoring Well Construction Logs

oject	011 1	1	JOP NO,				Borin	g No. Sheet of
	Uakland GC Yar	<u>d</u>	77	55	36	47	01	<u>v-2 1 1 1</u>
ound	Elevation Type & Diameter of Boring	and Every Aures	Location				1.10	× ~~~~
ttom	of Hole Elevation Depth	Groundwater Elevation	<u>V</u> Dete		Date St	rted ,		Finished
	19	N9' below gred	3/21/	88		3/2	1/8	8 3/22/88
ເກຍ ດ 17	of Driller	Name of Inspector	1.10.1		Boring C	ontracto		Marine B. O.
<u></u>	I TENDREN	LRIC VOF	1112 044		<u>ר די</u> הרייז	Jan		700872E 15-80
ELEVATION	DESCI	RIPTION		DEPTH (FT.)	SOIL SYMBOL	A NUMBER RECOVERY	BLOWS/	NOTES ON GROUNDWATI LEVELS, WATER RETUR CHARACTER OF DRILLIN METHOD OF ADVANCINI BORING, SIZE OF CASIN
	PIEZOMETER AV	Y BORING						Concrete 8
	JOAKED AND SAM	SANDIES COLLE	-750	1 3				5C-1 6
		Carle - S WEEE		1 7				Bentonite seal - 1
. 1	· · · · · · · · · · · · · · · · · · ·			1 -				Solid casing
				5-				
				- 7			1	
				4 - 2		- 1		
	GROUNDWATER ENCOU	ITEZED AT &	9'	4 3			1	V
		· · · · · · · · · · · · · · · · · · ·	·					
				ſ =		- 		2" Dia. PVC casing
							1	slotted D.OI"
]]				Filter packs
]_ =				Lone Star
l			· · · · · · · · · · · · · · · · · · ·	15-	•			NO. 412 SOM
ľ				13				
ł								
	· · · · · · · · · · · · · · · · · · ·			1 7		. [Pvc plug -
				20-				v
				E				
		1997 - 1997 -						
				1 1			a a a	Watertight, securi
								traffic box install
]]				at ground surface
Ī								2" pric cap insto
. F	······			1 1				on top of casing
.	<u> </u>			┤┤				
				–				
ŀ		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	E		1		
			·	1		f.		-
	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·		1				
					. 1		1 . 1	
F]]				

-

PGJE, 1988

		O G	ROUNDV	VATER		Conjunter / Engineer MS4
			ECHNOL	OGY, I	NC.	Old O
	المسيال		L RECOVERY ST	31 E M 3	S	Soil Boring UW-3
	Project	<u>PC6E</u>	/Oskland_		Owner	Pacific Gas & Electric
	Location	Qak]			Project	Number <u>205 737 2727</u>
	Date Dri	lied	<u>[]]]]</u> []]]	fotal Depth		9 Et 24.hvé
	Surface	Elevation	2 TN I		15 F	TEET Stot Size010
	Screen		2 TN.	engih	3.5	FEET_TypePVC
	Drilling	Company]	Pacific Ca	ş <u>6</u>	Drilling	Mothod Bollow Stem Auger Notes
	Driller .	R. He	ndren		Log by	D. Higgins
	5	5	1		8	
	h (Fe	truct	La È	umbe	Pic L	Description/Soil Classification
	Depi	Con II	L g	ที่วั	D T	
		1			5	Base course, + 12 inches
				и н		Black sandy silt (very stiff, slightly moist,
	- 2 -		37	A 13	HUIH	moderate oil odor)
				5	Hiififf	(grades grey, stiff)
	- 4-		al le	S S	SW.	Grey silty fine to coarse sand (medium dense,
				28	2117	Black silty clay (hard, very moist, moderate
		日	96	D 30 E 40		oil odor) (grades grey)
	- 8 -		202	F 17		Greenish grey-black sandy gravel (very dense, very poist, strong oil odor)(sheen on samples)
			C.JC	GŸ	GP	T_Encountered water 3/16/88 (0930 hrs.)
	-10-			26	HTTT	Brown sandy, fine to coarse gravel with silt and
			2.0	H 30	HIIH	cray (very acade, int, in provide and
	-1 2-			1 2	HUIII	
	F			15 40	HUIT	
	-14-		1.5	JBC		
	-1 6-					
	-1 8-					End of horizon installed menitor well
						End of Boring, Installed monitor well.
	-2 0-					
•						
	<u>-</u> 22-				[]	
	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$					
•		<u> </u>				
	021001	44	•	•		Page of

ļ

1.111

FIELD SUIL DUNI						FG4 ±,1988						
Di con	CC V		Job No.	54	4.7		1	aorine Alti	No. 1-4	Sheet 1	•	
PGONE UAKLAN	A UL 7	IKD	Lecation	36	<u>r /</u>			Ju				
12" 0.0.1	Hower-STR	EM AUGERS	Colis	eun	n U	Jay	, C	ha k	land	1		
pi Hole Elevation Dapin	Grou	ndwater Depth	Dete	~	Dete 1	itaried	10	10	2	Finished	0 100	
2014	Name		<u>\$/18/</u>	58	Barim	Cont	1 O	/ 0			8/88	
RON HENDREN	\square	ARREL KUN	GNAN		\mathcal{P}	Gai	nd E	- <i>n</i>	loeve	8-8	<u> </u>	
	DESCRIPTIC)N		DEPTH (FT.)	SYMBOL SOIL	SAMPLE TYPE & NUMBER	RECOVERY (INCHES)	BLOWS/ B	NOTES LEVE CHARA METH BORII	ON GRO LS, WATE CTER OI OD OF A NG, SIZE	UNDWATE R RETURN DRILLING DVANCING OF CASING RITY TRAFFIC	R , coult
WELL GRADED GRAV gravels to 4" across CLAY with sill, sa with brown mothing seturated @ 2', dect moist @ 4', satura	EL-medium Fill (no nd. crayel moist, stif earing gra ted (5 5	brown, dry, d odor) , and debris- it, FILL, (no od .vel content P	ense, dork grav or) 31	5	GW	2532 25	19/24	0 - 2 - 0 - 0	Pfm Fi Photo v -2.6000 E4'	rac 77 B M BEA 2	TEREN W P 1 PVC CAP ENTONITE SROUT TONTE SEA " DIA. PVC	1774
SILTY GRAVEL with to saturated (@9'), de	sand-medi ne (no p	un yellowish-br	-gten, Dun, wet	10-	GC	2-2 2" 3-1 2" 55 4-2	24		-2.3pp -2.3pp -*	me6 5 ~ @ 7.5	UD CASIN	7 8'
SILTY SAND-medium-gr sand is medium-gr POORLY GIZADED brown, saturated, dens (no bdor)	e yellowish Emed (no c GRAVEL w e, recovered	itory itory ith silt - mediu graveis to 1" a	te d, dense, Im yellowisk- Icrass		SM GP. GM	1" 55 5-2 5-1	14	12 21	-2.9pp- *	SANT SANT LONEST 12" DIA	DPACK; AR 2/12 N. BOREHOLE	
CLAYEY SAND-ligh medium- to coarse LEAN CLAY-light	t brown s	aturated, dense (no odor) aturated, stiff	, sand is		SC CL	2" 55 6-1	10/ 24	100	- 2.7 pp	- @ 16 2" DI SCH. 4	A. PVC O SCREEN	
						7-2		1- 11- 15-	@18.	6' P	ic plus	
									BORINI MONITE INST	F TERM DRING (TALLED	ninated (Nehl (D 2 2'
											- · ·	
										•		•
									* sai	nek su chemic	climitted al analy	for

NOTES:

Aqua, 1991

AQUA RESOURCES, INC. JOB NAME JUN 110 TOCATION \mathcal{M} 90262.1 noning Log Oakland, CA PG&E UNILLING COMPANY HEW DELLING nomina no. OW-5 Druit rita HARMS Anibal OCATION & NOTES CME55 IN Hollow Auger [-] Totary Web SAUCERLEY C: IN 2.6" | D Spell Barret | I 2.5" | D DHIVE WEIGHT NUERT or 1 1 V TUDE 1 601 57.617 FILISI THE AM UME AN 8:407.10:49* 117 WAIGH LEVEL PENT TIME UALC DATE 4/16/91 CASHIN DECTH IFEED THELD ENGINEER 1.11.61 ELEVATION UATUME [] Manau San Lovel [] Chinar SAMPLE NO. FOCT TODE suurach conornous URY CONT VEICHT Geel NCISTLES CONTENT 31.036/34 SHOLE R gravel U Silty clay, very dark brown to black, moist, soft, slightly plastic, some 1 gravel up to 1/2" dlam. (CL) 1 2 3 Silly clay, dark gray, moist, medium stiff, slightly plastic, some 2 decomposed rock & gravel up to 1" dlam. (CL) 4 5 з 6 Sandy gravelly clay varying to gravelly sandy clay, dark gray mottled with 7 brown & white from decomposed rock, molst, medium still to still, slightly -1 8 plastic, some gravel up to 1" diam. Liquid brown oil at 5' (CL) 9 10 11 5 1 12 Clayey sand, with Interbedded clayey gravel, medium brown, wet, loose, 13 some gravel up to 1" dlam. (SC) 7 14 1-5 Sandy clay, Interbedded with silty clay, medium brown with black and n reddish brown mottling, saturated, medium still to still, slightly plastic, 16 small amount of gravel up to 1/4" diam. (CL) 17 n 18 10 1 7 19 :1 20 21 ٨ 17 22 23 б 24 7 ų y 20

Aqua, 1991

M AQUA RESOURCES, INC.

Hemarks

-

OBSERVATION WELL INSTALLATION REPORT

•	DOLE				······································
rojact	1020 C-14	aum Way Oal	land, CA 9	4601	•
ocation	4930 COLLS	EUM NAVI Var	HE	W Drilling	
YPO of BID	4/16/91	<u></u>	Dale	Finiahod 4/16/91	
inte Started		water	Otounit E	toy Cashig T	on, Elov,
ype of Observ	allon Well'_				
		·			
		· •	k		
			7		
-		T II	L5		
		L2		•	
				locking can an	i sealed well cover
				Cub Tocurue and	
				Tunn of Dealer	2" pvc (
			<u> </u>	i i y h i o i o i i i i i i i i i i i i i i i	
1	614 feet			C and the skills C	ement grout
••••••••••••••••••••••••••••••••••••••		L3 1		Typa of Discking	
L2	4 loot			······	
• -	64 feet		N.I.		
L3	0.7		Nº 1	Ture of Scol Motorial	
1.4	0 feet		i] =	bentonite pellets	
L. ''			-121		
1.5	14 foot		-8		
1 , 1			-14		
ι. 6	5 feet		- [2]		
			-		
1.7	l foot			•	
			- 2		.020 inch
Lo	D'i feet		- []k1	_ Size of Openings _	
	e e parte	L''	- 3		
				- Type of Filter Malor	al #3 sand
	1+				
				• • • • • • • • • • • • • • • • • • • •	
	· · · · · · · · · · · · · · · · · · ·			•	
•		<u></u>	م رد میں اور		8 inches
4 a	•			- Olumolor of Boring	
		• • • •	· •		
	•			•	and the second second second second

Observed by

1

Aq-a, 1992

AQUA RESOURCES, INC.

BORING LOG

MOISTURE CONTENT #

.

BLCH3/It.

ł

W Other OW-2

DEPTH IN FEET

0

2

A

7

8

9

10

ĜĊ

SP

ספץ עאוד עפולאד נפלו

LOCATION & NUTES

DATUME [] MADE SAN Loval

-

.

SLOWS PER

16

18

20

38

A

•	LOCATION Oakland JOD NAME PG&E UHILLING COMPANY Exceltech/Resna ORILLETTS NAME DOR Jenkins ORIE [] Solid Flight Auger ONIVE WEIGHT [] OLD FALL UNIVE WEIGHT [] OLD FALL ONIVE WEIGHT [] OLD FALL ONIVE WEIGHT [] OLD FALL OATE [] [] Z/TI9791 OATE [] Z/TI9791 OATE [] [] S.371	JO90 262.2 БОПІНО NO. ОW-6 ПІЕБТ 1 OF 2 У ТОБЕ (4 БГТ ЗГЛПТ ГІМІВІІ ТІМЕ ЛМ 8:05 гм 8:55 гм В.55 гм В.55 гм В.55 гм В.55 гм В.55 гм В.55 гм В.55 гм В.55 гм
USCS CLASSIFI- CATION	SUMMACE CONDITIONS. Graded surface of agregate to base roo level - Since installation of well the image been paved with AC.	ek, nearly e surface

Water on top end of sampler with slight sheen Gravel with interstitial silty clay, olive brown (2.5Y 4/3), saturated. Gravel backfill that penetrated saturated native soil,

Gravelly sand, brown (10YR 4/3), saturated, medium dense, fine to coarse grained sand, poorly sorted, subangular gravel up to 3/4" across.

Aqua, 1992

1.1

÷

Aqua, 1992

AQUA RESOURCES, INC.

OBSERVATION WELL INSTALLATION REPORT

cationWood Coliseum W	ay, Oakl	and CA	94601		<u>. </u>		
pe of Rig Mobile B61	<u> </u>	stailed by	RESNA	•	10/10/01		
ite Started <u>12/19/91</u>	Wator	<u></u>	_ Date F	inished .	12/19/91	····	
pe of Observation Well _	Mater	`Qı	ound Ele	IV	Casing	Top, Elev	• • • • • • • • •
			•				
							•
		•					
						•	
	123	e de la composición de					
	~2)	••••			locking cap	and sealed we	11 cove
			5	Cap		1	· · ·
		┍┺┤┝╄┧ <u>┍─</u>	L	Type of	Casing	2" PVC	
• • • • • • • • • • •		,	•	. 1		· · · ·	
18 ¹ / ₂ feet			. 6	5.		acmont avant	
		' e!		Type of	Backilli _	cement grout	<u> </u>
L2 ½ foot	17						
1.2 73 feet		∇R		н. Н	· .		
		UK -	1	Type of	Seal Materi	al	
L4 10 feet				bentor	nite pellet	s	
k foot							1. ÷
L5 <u>21005</u>				· ·			
Le <u>5 feet</u>				•			· · ·
				-			
L7	1.		and the second				
12½ feet				Size of	Openings	0.020	
L8	L4		8				
		<u>[</u>]]		-		2/12 sand	1 ·
				iype or	FIITET MATA	3181	
		<u>[]</u> _[]				· · · ·	
		图-图	1 . · ·				· · · ·
		目-目		• • • •			
	-tt-		Ł		•	•••	
		1 Jane		Diamete	r of Boring	8 inches	

Remarks_

Observed by <u>M. Peterson/A. Stessman</u>

Aqua, 1992

AQUA RESOURCES, INC.

Val	<u>JV H</u>	1230	JUN		110.		I JOB NAME JOB NO
5		នក់ខ	ING	106	- -		Oakland PG&E 90262.2
all	•	BOU					DHILLING COMPANY Exceltech/Resna 0W-7
1							ORALEN'S NAME DON JEIRINS
LOCATI	ONBNO	1145					Drift, nig
				• .			A 1000 PH 2,0" ID Spill Onrel () 20" ID Shelby Tube () 6"T
							UNIVE WEIGHT 140 LD. FALL 30 IN. START FINIS
							WATER LEVEL (Freil 132 9:55PM 1 PM
				,			
							DAIE 12/19/91 12/19/91
1							CASING DEPTH (FEET) 11/2
TATU	MITIM	laget Sea	Loval	K) Other	<u></u>	· · · · · · · · · · · · · · · · · · ·	ELEVATION 4.70 FEED THEO SHOWED A. Stessman
n	5		w **	<u>+</u>	z		SUNFACE CONDITIONS
20	, č	5	EL L	35	문법	กรีวิ	Graded surface of aggregate to base rock, nearly
	39.	ő	122	<u>׀</u>	$\Sigma_{\rm w}$	533	level - since well installation the surface has
	Ϋ́Ε.	8	ĭ₿		0	0.0	been paved with AC.
							NOTE: No OVM = OVM reading of 0.0
}							
							
				· ·			
1		.			1 -		
	{ · }	1	ļ		.		
1					†	1	
	1						
		· · · · ·			2		
				Ì]	
1-1	1						
					a	1	∇
						_]	
1				1 · · ·		.]	
	- 1 k		1			_{	
1	1	1					
	. 1					_	
	1				} }.	-1	
	1		<u></u>	.	5	-	
	1		1) ·		-	
			·		{ +	·{ '	
		1	1	1	·	-	
!·			.}		8 -	-	
					{ }	-	
				·	1 1	-1	
		.)	1	¥	1 1	-	
		-{	• •			-1	
		.	1]	
1		-	1			·	
					8.		
						_	Gravel backfill material
20	1	_	1		- -	•	
	Ī		1	1		4	
12		_			8 -	-	in the second of a provish oreen
1			1.			- SP/	Gravelly sand with minor silt and cray, greyish green
11	1	23		· [- SC	(564/2), medium dense, wet, fille LU coarse grained
	1			1		-	sand, poorly sorted, subangular gravel, hous cally
					10 -	-	product visible. No UVM, slight hydrocarbon durit
I T	1					-	
-{ 1					استنبا	_l	

-

$\frac{1}{2}$	<u>10</u>	<u>UA</u>	<u>, 13</u>	ESC	UTU	CES,	INC.		LOCATION Oakland JOB NAME PG&E JOB NO 2.2	
1	(L)		вон	111.0	LUG			DIVILLING COMPANY DOW-7	
luo	dA1	1011	r NO	TES					DRILLER'S NAME DRILL RIG () Solid Filght Auger DRILL RIG () Solid Filght Auger L Datary Weth 2 OF 2	
	·						•	•	SAMPLER TYPE: 1 2.6" TO Spit Darrel (1 2.6" TO Shelby Tube () 5PT UNIVE WEIGHT LE. FALL IN. START FINISH UNIVE WEIGHT LE. FALL TIME AM	
						•			CASHING DEPTH (FEET)	
j i	ודאנ	IML	11 M	nari Sen	Laval	[] 000	r 	1		-
		LOWS PER		פרכאצעוי	NOISTURE	םהץ עאוז עבוקאד נהכיו	067TH IN	USCI CLASSIFI CLASSIFI	Sum Ace Construction	
		σ. <u>π</u>				·		-		
-	<u> </u>			· · ·			10 -	•		
-							-	•		
			·				41			
								-		
							12 -	-	with increasing clay and silt, yellow-	
	7							-	ish brown (10 YR 516), loose, saturated, fine to	
1	4								coarse grained sand, poorty sorted, subangular graves	
				25		ч. т.				-
-					·			-		
	<u>ا</u>		1			-	- 14 -		Silty clay with minor very fine grained sand, light	
-								-	yellowish-brown (2.5Y 613), wet, stiff, fare dark	
				<u>}</u>		.	15 _	-	DIGWI SCHLING,	
	5							- CL/	1 100%	
· -	8						- 16 -	-	No recovery/Redrove same interval recovered 100% 2" gravel lense	
	10	<u> </u>		18		-		-		
	6			_	_	_	17 -	-	3" gravelly clay lense	
ſ	7							-	ist three and and gravel. light vellow-	
	8			15			18 -		ish brown (2.5Y 613), wet, stiff, common dark brown-	
-		•	Ť					i-l	brown staining. No OVM.	
-			<u> </u> 			-	-		Bottom at 18'	
		1	 	-			- 19 -			
		1	<u> </u>	_		·	· -{	-		
		ł						- -		
		1	1	-	-	ł	1	_		

AQUA RESOURCES, INC.

OBSERVATION WELL INSTALLATION REPORT

Well + OW-7

Aqua, 1992

ACFCWCD, 1993

Borehole Log

Proje	ect I	Narr	ne:	PC	S&E	Oaklan	d			Project Number: 690262.03	••		
Bore			cati	00.	100	ft we	st of	east	Prop.	line Borehole No. 0W-8	1		
					75'	north	or so	uth P	rop.	Line Borshow No. Chi C Sheet 1 of			
Drilli	ng /	Ager	ncy:		HEW					Driller: Jasper Booker/Mike Campy (helper	;)		
Drilli	ng E	Equi	pme	ent:	CM	E 55				Date Started: 2/10/93 Total Depth (feet); 18'4"			
Drilli	Drilling Method: Hollow Stem Auger Date Finished: 0925 Depth to Bedrock												
Drillin	ng F	Juid		NA	<u> </u>	·····	Number of grab only Depth to 11:30						
Com	plet	ioņ	Info	rmą	tion:	2" PV	C set	botto	m @ 11	3.2' Borehole 8" Elevation			
scre sand	en ((C 2/1).0. 2)	20) : 7	: 8 '-1	'-18' 8' 6e	benton nent g	nite: cout:	6'-7 00,5%	Diameter (in): and Datum:	•••••••••		
		S	am	ple		Field A	nalysis	L	06	Checked by: Date:			
Depth (feet)	Imber	erval	ow Count	covery	9 <u></u>	D (ррт) S/B	D (ppm) S/B	aphic	SCS or ock Type	Lithologic Description Remarks			
	ź	Ē	Ē	Ê		Ē	ā	ଞ	2%	4" Asphalt over approx 10"	-,		
		•				1 - F			мт.	"It gray base rock overlying about 10" brown base rock			
1.1										W/ sand, moist	`		
5 1 1									CL	SANDY SILT, dk yellowish brown (10YR3/4), moist, some gravel to 1"			
يليل		•								SANDY CLAY (CL), very dk			
10			-						CL	(2.5YN2/), wet to saturated			
										- fine grained sand, trace - gravel			
						:			SC	SANDY CLAY, dk brown (10YR -			
15 – –	-								CH	grained sand, some subangu-	•		
1 1 1										CLAYEY SAND, dk yellowish brown (10YR4/4), saturated			
										medium dense, uncemented -			
20										SILTY CLAY (CH), olive gray (5Y5/2), moist to wet, stiff,			
										<u>Inigh plasticity</u> Bottom at 18'4"			
25						est.				• A CARACTER AND A CA			
Lili													
30— Key	!		 S/	B = 1	Samı	ole readin	o / backd	round	reading	NA = not analyzed	<u> </u>		

Form F-1009

The Earth Technology Corporation

Monitoring Well Construction Log - Flush Mount

Project Name: PG&E Oakland	Project Number: 690262.03	Date: 2/10/93
Well Observation/monitoring	Well ID: OW-8	Sheet of
Ormer: Jasper Booker	Borehole 811 Diameter (In):	Total Depth 1814" (ft):
Drilling Agency: HEW	Date Staned: 2/10/93	Depth to Water (fi):
Drilling Equipment: CME-55	Dete Finished: 2/10/93	Elevation and Datum:
Dräing Mernod: Hollow Stem Auger	Logged by: M. Peterson	Checked by:
Drilling Fluid: NA	Number of Samples: 0	Date:

Elev. Height 3/4" above GS GS Elev. Geologic GS Height 0.00 Depth BGS Elev. Depth BGS 6 ft l ft 7 ft 8 ft 11.4' 10' 18.3 ft 18.4 ft NA TD: 18.4ft Boreholé 8" Dia.

	Looped by: M. Peterson	Checked by:	
÷	Number of Samples: 0	Date:	
, , ,	HOTECTIVE CSG Diversified W Anternal/Type: Cast Iron con Nameter: 8" ID/8 3/4" OD	Vell Products ver w/ PVC Sleeve	
C	epin BGS;	Weep Hole (Y (N)	
- (NUARD POSTS (Y (N) K.:Type:		
5	URFACE PAD Concrete -	16" Diameter	
F	ISER PIPE SCH 40 PVC		
C	2 ¹¹		
1	otal Length (TOC to TOS): 8'		
1	entilated Cap (Y N)		
¢	ROUT		
с	mposition and Proportions: 2-94 11	sacks/13 gal	
T			
tr	Nerval BGS: 0.5 CO 0		
¢	ENTRALIZERS		
C	epth(s)		
5	EAL 3/8" Bentonite pelle	ets	
T	ура:		
S	ource:25 min	3 gallon	s
S	elup/Hydration Time:10:05 - 10:	Vol. Fluid Added	0
<u>т</u>	remied (Y (N)		
۴ س	Lanis Lustre 2/1	2	
7	3-100 lb sacks		
A	mt. Used: 71 to 18'4"		
Т	remied (Y N) CO 10.4		
S	ource:INTO JOILE SCAL	<u> </u>	
G	r. Size Dist.;		
\$	SCH AO PUC		
Ŧ	2 ¹¹	· · · · · · · · · · · · · · · · · · ·	
D	ameter:		
S	of Size and Type: 0.020 STOL		
tr	terval BGS; 0 LO LO		
W	ELL FOOT (Y/N)	2611	
lr.	terval BGS: 10 LO 10.0	Length 32	
8	DITOM COD (YY N) ACKFILL PLUG		
N	aterial:NA		
s	stup / Hydration Time:	F	
т	-mind or AD	Form F-1025	

APPENDIX C

Historical Waste Oil UST Cluster Excavation Confirmation Soil Sample Locations and Final Excavation Depths

Aqua, 1992

9.1992

Aqua, 1992

Aqua, 1992

APPENDIX D Soil Boring Logs

PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California							Boring Log Explanation				
BORING LOCATION:								ELEVATION A	ND DATUM:		
DRILLING CONTRACTOR: DATE STARTED:									D:	DATE FINI	SHED:
DRILLING METHOD: TOTAL DEPTH (ft.):									I (ft.):	MEASURIN	IG POINT:
DRILLING EQUIPMENT:										COMPL.	24 HRS.
SAMPLING METHOD: LOGGED BY:										1	
HAMME	R WE	IGH	IT:			DROP:		RESPONSIBLE	E PROFESSIO	DNAL:	REG. NO.
DEPTH (feet)	Sample No. Sample Blows/ Foot		OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. de cementation, react. w/HCl, geo. inte		olast. densi geo. inter.	ity, structure,		R	EMARKS	
					No						
					NO 1. 2. 	tes: Soil described using visual-manual prospective Society of Testing and Materials (AST guidance; a Standard based on the U System. Soil color described according to Mun	ocedures TM) Stand nified Soil usell Color present in pe abrupt	of American lard D 2488 for I Classification	- - - es - - -		
6- - 7-					5. 6.	OVM = organic vapor meter, reading i (ppm). Odor, if noted is subjective and not ne	in volume	tric parts per m indicative of	illion – –		
8-					7.	NA = not applicable. ND = no data			_		
9- - 10-					Inte	erval of recovered soil collected with a	continuo	us core sampler	- - -		
11- - 12-	12.5	X			Inte	erval of no recovery.			_		
13 14 15	SB-1-5				Sa	nple collected for chemical analysis a	nd sample	e identification.			KEYFORM (REV. 7/99)
		///		Geomatr	ix			Proje	ect No. 13045	.007	Page 1 of 1

PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California							Log of Boring No. SB-23					
BORING LOCATION: N: 2105614.02; E: 6065591.25							ELEVATION AND DATUM: Not surveyed: datum is around surface					
DRILLING CONTRACTOR: Woodward Drilling Co.									DATE FIN	ISHED:		
TOTAL DEPTH (1/22/08 MEASURI	NG POINT:		
	NG ME	ETHO	DD:	Direct	push	12.0			Ground	surface		
DRILLI	NG EC	QUIP	MEN	T: Power	Probe 9630 ProD	DEPTH 1	DEPTH TO WATER (ft.) 9.0 NA					
SAMPLING METHOD: AMS dual-tube sampling system [4' x 1 3/8"] LOGGED BY: M. Webb										-		
HAMM	ER WE	EIGH	IT:	NA	DROP: NA	J. Skag	RESPONSIBLE PROFESSIONAL			REG. NO. PG 7823		
DEPTH (feet)	No.	MPLES lows/ oot OVM		OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter.	ity, structu	re,	F	REMARKS			
	S	S	ш	Ľ	Surface Elevation: Not sur	veyed		$\left \right $				
_					ASPHALTIC CONCRETE : (4 inches thick) AGGREGATE BASE	ASPHALTIC CONCRETE : (4 inches thick) AGGREGATE BASE						
1-								$\left - \right $	from cuttings.			
-								-				
2-					CLAYEY SAND (SC): greenish black (10GY 2.5/	1), moist,	80% fine	+				
_					sand, 20% low plasticity fines sand fraction fine to medium		-					
3-												
								$\left \right $				
4-					SANDY LEAN CLAY (CL): greenish black (10Y 2 fines. 40% fine to medium sand, low to medium pla	st, 60% oft						
5-					70% fines, 30% fine to medium sand							
6-	٢-											
	SB-23											
7-	0,											
					GRAVELLY LEAN CLAY with SAND (CL): greenis mottled with vellowish brown (10YR 5/8), moist, 5(sh gray (5)% fines. 3	GY 5/1) 30% fine					
8-	8				gravel, 20% fine to coarse sand, medium plasticity	, firm						
_	SB-23	$\backslash /$										
9-		V						$\left - \right $				
_					(2.5Y 3/3), wet, 90% fine to medium sand, 10% lo	lark olive l w plasticit	brown y fines	$\left - \right $				
10-		()						$\left - \right $				
_							2.2/4)	$\left - \right $				
11-						wet, 85% fines, 15% fine sand, medium plasticity,	soft to firr	n s/1),	_			
12-					SANDY LEAN CLAY with GRAVEL (CL): very dar	k greenisł	n gray	1_	.			
_					(10G 3/1) mottled with yellowish brown (10YR 5/6 30% fine to coarse sand, 20% fine gravel, medium), wet, 50% n plasticity	, soft to	$\left - \right $	Borehole с Type I-II ne	estroyed using eat cement grout		
13-					\firm	/	$\left - \right $	placed from total depth to				
_					Bottom of boring at 12.0 feet			$\left - \right $	tremie pipe).		
14-								$\left - \right $				
-								$\left - \right $				
15-					I:\PROJECT\13045.007	10000 BORING L	.OGS\GINT LOGS\DRAWIN	GS\SE	B-23 BORING.GDW	OAKBOREV (REV. 8/2007)		
		///	<u>~</u> (Geomati	ʻix		Project No. 130	45.0	007	Page 1 of 1		

PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California							Log of Boring No. SB-24						
BORING LOCATION: N: 2105676.13; E: 6065670.82							ELEVATION AND DATUM: Not surveyed; datum is ground surface						
DRILLING CONTRACTOR: Woodward Drilling Co									ARTED:		DATE FIN 1/22/08	ISHED:	
DRILLING METHOD: Direct push TOTAL D 12.0											MEASURING POINT: Ground surface		
DRILLING EQUIPMENT: Power Probe 9630 ProD									TO WATER (ft.) 9.1 NA				
SAMPLING METHOD: AMS dual-tube sampling system [4' x 1 3/8"] LOGGED BY: M. Webb										10.			
HAMMER WEIGHT: NA				NA	DROP: NA			RESPONSIBLE PROFESSIO			NAL:	REG. NO. PG 7823	
DEPTH (feet)	Sample No.	Sample No. No. Blows/ Blows/		OVM READING (ppm)		DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.					REMARKS		
					ASPHALTIC CONCRETE (4 inches thick)								
1- 1- 2-					AG	GREGATE BASE					Hand auge bgs. Soil I from cuttir	ered to 5 feet ithology logged Igs.	
	SB-24-3				SANDY LEAN CLAY (CL): greenish black (10Y 2.5/1), moist, 70% fines, 30% fine to medium sand, low plasticity, soft								
5- 6- 7-					 GR (10 sar	AVELLY LEAN CLAY with SAND (CL Y 3/1), moist, 50% fines, 30% fine gra d, medium plasticity, soft to firm	ark greeni fine to co	sh gray arse					
8-					with yellowish brown (10YR 5/6), moist, 80% fines, 20% fine sand, medium plasticity, firm yellowish brown (10YR 5/6), 75% fines, 25% fine sand					_			
9-					↓ wet					_			
10					PO yell gra	ORLY GRADED SAND with CLAY an owish brown (10YR 4/6), wet, 50% fin vel, 10% low plasticity fines	nd GRAVI le to coar	VEL (SP-SC): dark arse sand, 40% fine – –					
12- - 13- - 14- - - - -					Bot	tom of boring at 12.0 feet				Borehole of Type I-II no placed from ground su tremie pipe	Forehole destroyed using Type I-II neat cement grout laced from total depth to pround surface with a remie pipe.		
		al a		Teomate	ix				Project No. 12	045	007	OAKBOREV (REV. 8/2007)	
		///		Jeomati					10,000,10	04 0.	001		
PROJE	CT:	PG Oal	&E (klane	GENERA d, Califori	L CONS nia	STRUCTION Y	'ARD		L	og of Bor	in	g No. S	B-24gw
-----------------	------------------------	-----------	-------------------	-------------------------	---------------	------------------------	--	--	--------------------	-----------------	--------------------	----------------------------	--
BORIN	g loc	ATIO	ON:	N: 21056	676.13;	E: 6065670.82	2		ELEVATI Not sur	ON AND DATUM	1: 1 is	ground s	urface
DRILLI	NG CC	NTF	RACT	OR: Woo	odward	Drilling Co			DATE ST 1/23/08	ARTED:		DATE FIN 1/23/08	IISHED:
DRILLII	NG ME	THC	DD:	Direct	push				TOTAL D 16.0	EPTH (ft.):		MEASUR Ground	ING POINT: surface
DRILLI	NG EC	UIP	MEN	T: Power	Probe 9	9630 ProD			DEPTH T	OWATER (ft.)	FIF N/	RST A	COMPL. NA
SAMPL	ING M	ETH	IOD:	AMS dua	al-tube sa	ampling system [[4' x 1 3/8"]		LOGGED M. Web	BY: b			
HAMM	ER WE	IGH	T:	NA		DROP: NA			RESPON	SIBLE PROFES	SIO	NAL:	REG. NO. PG 7823
DEPTH (feet)	Sample Sample Solution	Sample	Blows/ 55 Foot	OVM READING (ppm)		NAME (USCS): c ceme	DESCRIPTI olor, moist, % by v entation, react. w/H	ON vt., plast. dens ICl, geo. inter.	ity, structur	e,		F	REMARKS
	0	0,	_		Se	e log of boring SE	Surface Elevation 3-24 for lithologic	descriptions	veyed				
_						0 0	0	·			$\left -\right $		
1-											$\left - \right $		
2-													
_											_		
3-											$\left -\right $		
_											$\left - \right $		
4-													
5-											_		
_											_		
6-											-	Grab grou	ndwater sample
											-	SB-24-GV through 5	V-12-16 collected feet of 1-inch OD
												Sch. 40 P (0.010-inc	VC screen h slot size)
8-											_	placed in t 11 to 16 fe	oorehole from eet bgs.
_											-	Drive casi bottom of	ng retracted from boring to 12 feet
9-											-	bgs to ma seal.	intain surface
10-													
											$\left - \right $		
11-											$\left - \right $		
_											$\left - \right $		
12-													
13-													
_											$\left - \right $		
14-											$\left - \right $		
											$\left - \right $		
				Geometr	ix					Project No. 130	45 (07	OAKBOREV (REV. 8/2007) Page 1 of 2

PROJE	CT:	PG Oa	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD nia	Log of Bor	ring No. SI	B-24gw	(cont'd)
DEPTH (feet)	Sample No.	Sample IdN	Blows/ G Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, struc t. w/HCl, geo. inter.	ture,	F	REMARKS
_	-				See log of boring SB-24 for litholog	ic descriptions	_	-	
16-					Bottom of boring at 16.0 feet			Borehole	destroyed using
17-							-	placed fro ground su tremie pip	m total depth to rface with a
18-							_	-	
19-							-	-	
20-							-	-	
21-							-	-	
-	-						_	-	
22-							-	-	
23-							_	-	
24-							_	-	
-							_	-	
25-							-	-	
26-							_	-	
27-							_	-	
28-							_	-	
							_	-	
29-							-	-	
30-							-	-	
31-							-	-	
							_	-	
32-							-	-	
33-									OAKBOREV (REV. 8/2007)
							Project No. 13045	5.007	Page 2 of 2

PROJE	CT:	PG Oa	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD	Log of	Bori	ng No. S	SB-25
BORIN	G LOC	CATI	ON:	N: 2105	ELEVATION AND DA	TUM:	around su	urfaco	
		ידואר			adward Drilling Co	DATE STARTED:	luiii is	DATE FINI	SHED:
			ACT			1/22/08		1/22/08	
DRILLII	NG ME	ETH	OD:	Direct	push	19.0		Ground	surface
DRILLII	NG EC	QUIP	MEN	T: Power	Probe 9630 ProD	DEPTH TO WATER (1	t.) t.) 10	RST .8	COMPL. NA
SAMPL	ING N	1ETH	HOD:	AMS dua	Il-tube sampling system [4' x 1 3/8"]	LOGGED BY: M. Webb			
HAMM	ER WE	EIGH	IT:	NA	drop: NA	RESPONSIBLE PROF J. Skaggs	ESSIO	NAL:	REG. NO. PG 7823
DEPTH (feet)	ample No.	ample	lows/ S Foot	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. de cementation, react. w/HCl, geo. inte	nsity, structure, er.		R	EMARKS
	ŝ	ů	8 –	R	Surface Elevation: Not s	surveyed			
					ASPHALTIC CONCRETE : (4 inches thick)			Hand auge	red to 5 feet
1- - 2- -	SB-25-2			0.2	AGGREGATE BASE LEAN CLAY with SAND (CL): greenish black (80% fines, 20% fine sand, low plasticity, soft	10Y 2.5/1), moist,	_ 	bgs. Soil lit	hology logged gs.
3- - 4- 5-	3- 4- 5-								iRAE 2000 PID vith 100 ppm standard.
6- 7- 8-				0.1	GRAVELLY LEAN CLAY with SAND (CL): very mottled with dark yellowish brown (10YR 3/6), rr fine to medium gravel, 20% fine to coarse sand,	dark gray (N 3/) noist, 50% fines, 30% low plasticity, firm			
9	SB-25-11 SB-25-10			0.1	POORLY GRADED SAND with CLAY and GRA dark grayish brown (2.5Y 3/2), moist, 50% fine to fine gravel, 15% low plasticity fines dark yellowish brown (10YR 4/6) ↓ wet SANDY LEAN CLAY (CL) POORLY GRADED SAND with GRAVEL (SP-S brown (10YR 4/6), wet, 80% fine to coarse sand fines	VEL (SP-SC): very o coarse sand, 35%			
					I:PROJECT	\13045.007\10000 BORING LOGS\GINT		VINGS\SB-25/GDW	OAKBOREV (REV. 8/2007)
		///		Jeomati	TX	Project No.	13045.0	JU <i>1</i>	Page 1 of 2

PROJE	PROJECT: PG&E GENERAL CONSTRUCTION YARD							
		Ua	Klan	d, Califori	nia	Log of Boring No.	S	B-25 (cont'd)
	SAM	ИРL	ES	'n				
et)	e .	ele -	t s/	M/ MIC	DESCR	RIPTION		REMARKS
DEF (fe	No.	Samp	Blow Foo	O\ (pp	NAME (USCS): color, moist, % cementation, react	by wt., plast. density, structure, t. w/HCl, geo. inter.		
	0)	0)		ш.				
					SANDY LEAN CLAY (CL)			
					LEAN CLAY (CL): light olive brown	n (2.5Y 5/3), wet, 95% fines, 5%		
16-					inte sana, mediam plasticity, inm			
-								
17-							-	
-							-	
18-							-	
-							-	
19-					Bottom of boring at 19.0 feet		-	Borehole destroyed using
-							_	Type I-II neat cement grout
20-							$\left - \right $	placed from total depth to ground surface with a
							$\left - \right $	tremie pipe.
21-							_	
_								
22-								
23-								
20								
24-								
25-								
26-							-	
-							-	
27-							-	
-							-	
28-							-	
							-	
29-							-	
-							-	
30-							-	
							$\left -\right $	
31-							$\left -\right $	
							$\left - \right $	
32-	32							
33-								
	I:\PROJECT\13045.007\10000 BORING LOGS\GINT LOGS\DRAWINGS\SB-25/GDW OAKBOREV (REV. 8/2007)							
						Project No. 130	45.	007 Page 2 of 2

PROJE	CT:	PG Oa	&E (klan	GENERA d, Califor	L CONS nia	STRUCTION YARD			Log of Bo	rir	ng No. S	SB-25a
BORIN	G LOC	AT	ON:	N: 2105	750.07;	E: 6065752.96		ELEVATI Not sur	ON AND DATUM	l: 1 is	ground s	urface
DRILLI	NG CC	DNT	RACT	OR: Wo	odward	Drilling Co		DATE ST 1/22/08	ARTED:		DATE FIN 1/22/08	ISHED:
DRILLI	NG ME	ΞTH	OD:	Direct	push			TOTAL D 9.0	EPTH (ft.):		MEASURI Ground	NG POINT: surface
DRILLI	NG EC	QUIF	MEN.	T: Power	Probe 9	630 ProD		DEPTH T	O WATER (ft.)	FIF 5.5	RST 5	COMPL. NA
SAMPL	ING N	1ETI	HOD:	AMS dua	al-tube sa	ampling system [4' x 1 3/8"]		LOGGED M. Web) BY: bb			
HAMM	ER WE	EIGI	HT:	NA		DROP: NA		RESPON	SIBLE PROFES:	SIO	NAL:	REG. NO. PG 7823
H F SAMPLES Ø Ø DESCRIPTION H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H </td <td>ity, structur</td> <td>e,</td> <td></td> <td>F</td> <td>REMARKS</td>						ity, structur	e,		F	REMARKS		
	й	ő	8 -	R	4.01	Surface Elevation:	Not sur	veyed				
-	-				ASI			live brown	(2.5)	_	Hand auge	ered to 2 feet
1-					4/3)), moist, 65% fine gravel, 30% fine	to coarse sa	and, 5% fir	nes	_	bgs. Soil I from cuttin	ithology logged Igs.
-	-									-		
2-										-		
3-												
	-									$\left - \right $		
4-	-									_		
-										-		
5-										-		
6-					wet	t						
-	-	$\left(\right)$								_		
7-	-	V								-		
-		ľ								-		
8-		$ \rangle\rangle$										
9-	-	_			Dat	tom of horizo at 0.0 fact					Doroholo	lastrough using
-					BOL	tom of boring at 9.0 leet				-	Type I-II no	eat cement grout
10-										-	ground su	fface with a
-										$\left - \right $		5.
12-	-									_		
										-		
13-										-		
14-												
-										$\left - \right $		
15-												OAKBOREV (REV. 8/2007)
		///	<u>~</u> (Geomati	`ix				Project No. 130	45.0	007	Page 1 of 1

PROJE	CT:	PG Oal	&E (klan	GENERA d, Califor	L CONS nia	TRUCTION YARD		Log of E	Bori	ng No. S	SB-25b
BORIN	G LOC	CATIO	ON:	N: 2105	750.07;	E: 6065752.96		ELEVATION AND DAT Not surveyed; dat	TUM: Tum is	s ground s	urface
DRILLII	NG CC	ONTF	RACT	OR: NA				DATE STARTED: 3/12/08		DATE FIN 3/12/08	IISHED:
DRILLII	NG ME	ETHO	DD:	Hand	auger			TOTAL DEPTH (ft.): 4.5		MEASUR Ground	ING POINT: surface
DRILLII	NG EC	QUIP	MEN	T: Hand a	auger			DEPTH TO WATER (f	t.) ∣N	rst A	COMPL.
SAMPL	.ING M	1ETH	IOD:	Hand au	ger			LOGGED BY: M. Webb			
HAMM	ER WE	EIGH	IT:	NA		drop: NA		RESPONSIBLE PROF J. Skaggs	ESSIC	DNAL:	REG. NO. PG 7823
DEPTH (feet)	Sample No.	Sample 1	Blows/ 50 Foot	OVM READING (ppm)		DESCRIPTION NAME (USCS): color, moist, % by wt., plast. der cementation, react. w/HCl, geo. inte	nsit er.	y, structure,		F	REMARKS
	0,	0,		-	ASF	Surface Elevation: Not s PHALTIC CONCRETE : (4 inches thick)	surv	eyed	_		
1- 2-	5-2.5				AG	GREGATE BASE				Hand aug bgs. Soil from cuttir	ered to 4.5 feet lithology logged ngs.
3-	SB-2(_		
4-	-25-4.5				LEA	AN CLAY with SAND (CL): very dark gray (N	N 3/), moist, 80%			
5	SE				Bott	tom of boring at 4.5 feet		/	_	Borehole of Type II-V i grout place depth to g	destroyed using neat cement ed from total round surface.
6-											
7-									-		
_									-		
8-											
9-									_		
-									-		
10-											
11-									_		
10									-		
-									_		
13-									-		
-									_		
15-											OAKBOREV (REV. 8/2007)
		///	<u>~</u> (Geomati	`ix			Project No.	13045	.007	Page 1 of 1

PROJE	CT:	PG Oal	&E (klane	GENERA d, Califori	L CONSTRUCTION YARD		Log of I	Boring	g No. S	B-25gw
BORIN	G LOC	ATIO	ON:	N: 2105	750.07; E: 6065752.96		ELEVATION AND D. Not surveyed; d	ATUM: atum is	ground s	urface
DRILLII	NG CC	ONTF	RACT	OR: Woo	odward Drilling Co		DATE STARTED: 1/23/08		DATE FIN 1/24/08	ISHED:
DRILLII	NG ME	THO	DD:	Direct	push		TOTAL DEPTH (ft.): 19.0		Ground	NG POINT: surface
DRILLII	NG EC	UIP	MEN	T: Power	Probe 9630 ProD		DEPTH TO WATER	(ft.) FIR 4.0	ST)	COMPL. NA
SAMPL	ING N	IETH	IOD:	AMS dua	al-tube sampling system [4' x 1 3/8"]		LOGGED BY: M. Webb			
HAMM	ER WE	EIGH	T:	NA	DROP: NA		RESPONSIBLE PRO	DFESSION	NAL:	REG. NO. PG 7823
DEPTH (feet)	SAN No.	ample	lows/ 5	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., cementation, react. w/HCI	l plast. dens , geo. inter.	ity, structure,		F	REMARKS
	С	ũ	<u> </u>	R	Surface Elevation:	Not sur	veyed			
_						Scription		_		
1-								-		
-										
								_		
3-								_		
-								-		
4-								-		
5-										
								_		
6-								_		
_								-		
7-								-		
8-										
_								_		
9-								_		
-								-		
10-										
11-										
-								_		
12-								-		
-								-		
13-										
14-										
-								-		
15-										OAKBOREV (REV. 8/2007)
		///	<u> </u>	Geomatr	rix		Project No	o. 13045.0	07	Page 1 of 2

SAMPLES SAMPLES Solution PEMARKS 10<	PROJEC	CT: PG Oa	6&E (Iklan	GENERA d, Califori	L CONSTRUCTION YARD	Log of Boi	ring No. SE	3-25gw	(cont'd)
See log of boring SB-25 for lithologic description - 16- - 17- - 17- - 18- - 19- - 20- - 21- - 22- - 23- - 24- - 25- - 26- - 27- - 28- - 28- - 29- - 29- - 29- - 29- - 29- -	DEPTH (feet) Sample	Sample No. Sample	Blows/ G Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, react	RIPTION by wt., plast. density, struc t. w/HCl, geo. inter.	ture,		REMARKS
116- - - Grab groundwater sam 117- - - Sb2-25-GW-14-19 colle 118- - - - 119- - - - 120- - - - 20- - - - 21- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 22- - - - - 23- - - -	_				See log of boring SB-25 for litholog	ic description	_		
20- Bottom of boring at 19.0 feet Borehole destroyed using round surface seal. 20- Borehole destroyed using round surface with a tremie pipe. 22- Borehole destroyed using round surface with a tremie pipe. 23- Borehole destroyed using round surface with a tremie pipe. 24- Borehole destroyed using round surface with a tremie pipe. 25- Borehole destroyed using round surface with a tremie pipe. 26- Borehole destroyed using round surface with a tremie pipe. 26- Borehole destroyed using round surface with a tremie pipe. 26- Borehole destroyed using round surface with a tremie pipe. 27- Borehole destroyed using round surface with a tremie pipe. 28- Borehole destroyed using round surface with a tremie pipe. 29- Borehole destroyed using round surface with a tremie pipe. 29- Borehole destroyed using round surface with a tremie pipe. 29- Borehole destroyed using round surface with a tremie pipe. 29- Borehole destroyed using round surface with a tremie pipe. 29- Borehole destroyed using round surface with a tremie pipe.	16- 17- 18-						-	Grab grou SB-25-GV through 5 Sch. 40 P (0.010-inc placed in 14 to 19 fr Drive casi	Indwater sample V-14-19 collected feet of 1-inch OD VC screen th slot size) borehole from eet bgs. ing retracted from
20- - - Borehole destroyed usi 21- - - - 22- - - - 23- - - - 23- - - - 23- - - - 24- - - - 25- - - - 26- - - - 28- - - - 28- - - - 28- - - - 28- - - - 29- - - - 29- - - -	19-				Bottom of boring at 19.0 feet			bottom of bgs to ma seal.	boring to 14 feet intain surface
21-	20-						-	Borehole Type I-II r placed fro	destroyed using leat cement grout m total depth to
	21-						_	ground su tremie pip	irface with a e.
23- - - 24- - - 25- - - 26- - - 27- - - 28- - - 29- - - 1 - - 1 - - 29- - -	22-						_		
24- - - - 25- - - - 26- - - - 27- - - - 28- - - - 29- - - -	23-						_		
	24-						_		
	25-						_		
27- 28- 29-	26-						_		
28 29	27-						_		
29							_		
	_						_		
	29-						_		
	30-						_		
	31-						_		
	32-						_		
	33								OAKBOREV (REV 8/2007)
Project No. 13045.007 Page 2 of 2							Project No. 13045	5.007	Page 2 of 2

PROJE	CT:	PG Oal	&E (klane	GENERA d, Califor	L CONSTRUCTION YARD	Log of Bo	oring No.	SB-26			
BORIN	G LOC	ATIO	ON:	N: 2105	ELEVATION AND DATUM	: is around s	surface				
DRILLI	NG CC	NTF	RACT	OR: Wo	odward Drilling Co	DATE STARTED: 1/23/08	DATE FII 1/23/08	NISHED:			
DRILLI	NG ME	THC	DD:	Direct	push	TOTAL DEPTH (ft.): 12.0	MEASUF	RING POINT: I surface			
DRILLI	NG EC	UIP	MEN	T: Power	Probe 9630 ProD	DEPTH TO WATER (ft.)	FIRST 5.6	COMPL. NA			
SAMPL	ING N	IET⊦	IOD:	AMS dua	al-tube sampling system [4' x 1 3/8"]	LOGGED BY: M. Webb					
HAMM	ER WE	EIGH	IT:	NA	drop: NA	RESPONSIBLE PROFESS	SIONAL:	REG. NO. PG 7823			
ЭЕРТН (feet)	SAN No.	ample 1	lows/ 5	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter.	ity, structure,		REMARKS			
	s, _	Se	≝≞	R	Surface Elevation: Not sur	veyed					
					ASPHALTIC CONCRETE : (4 inches thick)						
	POORLY GRADED SAND with GRAVEL (SP): dark olive brown (2.5Y 3/3), moist, 70% fine to coarse sand, 25% fine to medium gravel, 5% fines							ered to 4 feet lithology logged ngs.			
2					65% fine to coarse sand, 30% fine to coarse grave	I, 5% fines	<pre>OVM = N calibratec isobutyler</pre>	iniRAE 2000 PID with 100 ppm ne standard.			
4				0.2	wet POORLY GRADED GRAVEL (GP): dark greenisl wet, 85% fine to coarse gravel, 10% fine to coarse	vet POORLY GRADED GRAVEL (GP): dark greenish gray (10GY 4/1), vet, 85% fine to coarse gravel, 10% fine to coarse sand, 5% fines					
	SB-26-9.5				CLAYEY SAND with GRAVEL (SC): dark greenis wet, 55% fine to coarse sand, 35% low plasticity fin gravel	h gray (10GY 4/1), nes, 10% fine	 Stringers present fr 	of black liquid om 8 to 10 feet			
- 11-							bgs. 				
12- Bottom of boring at 12.0 feet 13- - 14- -							Borehole Type I-II r placed frc ground si tremie pip	destroyed using neat cement grout om total depth to urface with a ne.			
15-	I						L I	OAKBOREV (REV. 8/2007)			
		///	<u>_</u> (Geomati	'ix	Project No. 1304	45.007	Page 1 of 1			

PROJE	CT:	PG Oa	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD nia		Log of Bo	ori	ng No.	SB-27
BORIN	G LOC	CATI	ON:	N: 2105	347.95; E: 6065842.59	ELEVATI	ON AND DATUM	1: n is	around si	Inface
DRILLI	NG CC	ONTE	RACT	OR: Wo	odward Drilling Co	DATE ST	ARTED:	113	DATE FIN	ISHED:
		тна	חר.	Direct	nush	TOTAL D	DEPTH (ft.):		MEASURI	NG POINT:
				Direct	push	16.0		FIF	Ground	Surface
DRILLI	NG EC	QUIP	MEN	T: Power	Probe 9630 ProD	DEPTH T	O WATER (ft.)	10	.3	NA
SAMPL	ING M	1ETH	HOD:	AMS dua	II-tube sampling system [4' x 1 3/8"]	M. Web) BY: pb			
HAMM	ER WE	∃IG⊦	IT:	NA	DROP: NA	RESPON	ISIBLE PROFES 195	SIO	NAL:	REG. NO. PG 7823
DEPTH (feet)	SAI No.	ample	lows/ Foot	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. densi cementation, react. w/HCl, geo. inter.	ty, structur	re,		F	REMARKS
	ŭ	ő	<u> </u>	R	Surface Elevation: Not sur	veyed				
1					ASPHALTIC CONCRETE : (4 inches thick) POORLY GRADED SAND with GRAVEL (SP): ve brown (2.5Y 3/2), moist, 75% fine sand, 20% fine to 5% fines	ery dark g o coarse (rayish gravel,		Hand auge bgs. Soil li from cuttin	ered to 5 feet ithology logged gs.
2-								$\left - \right $		
3-					LEAN CLAY with GRAVEL (CL): dark greenish gra mottled with dark yellowish brown (10YR 4/6), mois fine to coarse gravel, 10% fine to coarse sand, mea	ay (5GY 4 st, 60% fir dium plas	l/1) nes, 30% ticity, soft			
4-								$\left - \right $		
-					plant debris			$\left - \right $		
5-					LEAN CLAY (CL): black (10YR 2/1), moist, 90% f sand, medium plasticity, soft, stringers of black liqu	ines, 10% iid, odor	6 fine	$\left - \right $		
-										
- 0									Grab grou SB-27-GW	ndwater sample /-11-16 collected
7-		\square						$\left - \right $	through 5 f Sch. 40 P	feet of 1-inch OD /C screen
		X			moist, 55% fine to coarse sand, 30% medium plast	ticity fines	s, 15% fine	$\left -\right $	(0.010-incl placed in b	n slot size) orehole from 11
8-		\vdash			gravel, odor			$\left -\right $	to 16 feet b	Dgs.
-								$\left - \right $	bottom of t	poring to 11 feet
9-								$\left - \right $	seal.	
10_										
					-					
11-					• wet					
-								$\left - \right $		
12-					↓ Uark yellowish brown (10 FR 4/6) 55% fine to coarse sand 25% fine to coarse grave	1 20% lov	v plasticity	$\left - \right $		
-					fines	1, 2070 100	v plasticity	$\left -\right $		
13-								$\left - \right $		
								$\left - \right $		
14-										
							$\left \right $			
15-				Coomet	iv		Droject No. 400	 ME (207	OAKBOREV (REV. 8/2007)
		///		Jeomatr	X		Project No. 130	45.0	JUT	Page 1 of 2

PROJE	CT:	PG Oa	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD nia	Log of Bo	oring No.	S	B-27 (cont	d)
DEPTH (feet)	Sample No.	Sample 1	Blows/ S Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, struct t. w/HCl, geo. inter.	ture,		REMARK	S
_					CLAYEY SAND with GRAVEL (SC): con'd		_		
16-			-		Bottom of boring at 16.0 feet			-	Borehole destroye	d using
17-								_	l ype I-II neat ceme placed from total d ground surface wit tremie pipe.	ent grout lepth to th a
18-								_		
19-								_		
20-								_		
21-										
								_		
22-								_		
23-								_		
24-								_		
								_		
25-								_		
26-								_		
27-								_		
_								_		
28-								_		
29-								_		
30-								_		
-								$\left - \right $		
31-								$\left - \right $		
32-								$\left - \right $		
33-										
							Project No. 1304	45.0	007 Page 2	v (ĸ⊨v. 8/2007) of 2
L									1 490 2	

PROJE	CT:	PG Oal	&E (kland	GENERA	L CONSTRUCTION YARD nia	Log of Bo	ring No.	SB-28
BORIN	G LOC	ATIO	ON:	N: 2105	808.3; E: 6065872.42	ELEVATION AND DATUM: Not surveyed: datum	is around s	urface
DRILLI	NG CC	ONTF	RACT	OR: Wo	odward Drilling Co	DATE STARTED: 1/24/08	DATE FIN 1/24/08	ISHED:
DRILLI	NG ME	ETHO	DD:	Direct	push	TOTAL DEPTH (ft.): 16.0	MEASURI Ground	NG POINT: surface
DRILLI	NG EC	QUIP	MEN	T: Power	Probe 9630 ProD	DEPTH TO WATER (ft.)	FIRST 11.7	COMPL. NA
SAMPL	ING N	1ETH	IOD:	AMS dua	al-tube sampling system [4' x 1 3/8"]	LOGGED BY: M. Webb		
HAMM	ER WE	EIGH	IT:	NA	DROP: NA	RESPONSIBLE PROFESS	IONAL:	REG. NO. PG 7823
DEPTH (feet)	SAI No.	ample I	lows/ Si	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter.	ity, structure,	F	REMARKS
	й Х	Š	<u> </u>	R	Surface Elevation: Not su	veyed		
_					ASPHALTIC CONCRETE : (4 inches thick)	an dad ana iah	- Hand auge	ered to 5 feet
1-					brown (2.5Y 3/2), moist, 65% fine to coarse grave sand, 5% fines	, 30% fine to coarse	bgs. Soil I from cuttin	ithology logged gs.
2-						-	_	
-							-	
3-						-	_	
4-							-	
							-	
5-						-	_	
6-							-	
	B-28-7				LEAN CLAY (CL): very dark grayish brown (10YF fines, 10% fine sand, medium plasticity, soft	R 3/2), moist, 90%	-	
-	N. N	\mathbb{N}			LEAN CLAY with SAND (CL): very dark grayish b mottled with yellowish brown (10YR 5/8) moist, 75	rown (10YR 3/2) % fines, 15% fine to	-	
8-					coarse sand, 10% line gravel, medium plasticity, li		_	
9-							_	
-					SANDY LEAN CLAY with GRAVEL (CL): dark yel 4/4) mottled with yellowish brown (10YR 5/8), moi	lowish brown (10YR st, 50% fines, 30%	-	
10-					fine to medium sand, 20% fine gravel, medium pla	sticity, soft	_	
11-							-	
12-					CLAYEY SAND with GRAVEL (SC): dark yellowis $\overline{1}$ 4/6) wet 55% fine to coarse sand 30% medium.	sh brown (10YR	_	
-					fine to coarse gravel		-	
13-					dark yellowish brown (10YR 4/6)	-	_	
14-					SANDY LEAN CLAY (CL): dark yellowish brown 70% fines, 30% fine sand, low plasticity soft	(10YR 4/6), wet,	-	
15-							_	
				Comet	I:PROJECT/I	3045.007/10000 BORING LOGS/GINT LOGS/D	RAWINGS\SB-28/GDW	OAKBOREV (REV. 8/2007)
		///		seomati	IA	Project No. 1304	0.007	rage 1 of 2

PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California Log of Bor							C	B 28 (cont'd)
								6 6-2 8 (Cont d)
DEPTH (feet)	Sample No.	Sample 4	Blows/ S Foot	OVM READING (ppm)	DESCR NAME (USCS): color, moist, % cementation, react	RIPTION by wt., plast. density, structure, t. w/HCl, geo. inter.		REMARKS
					SANDY LEAN CLAY (CL): cont'd		F	
 16			_		LEAN CLAY with SAND (CL): dark 85% fines, 15% fine sand, medium	< grayish brown (2.5Y 4/2), wet, plasticity, soft		Borehole destroyed using
					Bottom of boring at 16.0 feet		_	Type I-II neat cement grout placed from total depth to ground surface with a
- 18-							_	tremie pipe.
							L	
19-							_	
20-							_	
21-								
							L	
22-							_	
23-							_	
 24							_	
25-							_	
							L	
26-							-	
27-								
							L	
28-							-	
29-								
-							-	
30-							F	
31-								
-							F	
32-							-	
33-								
						I:\PROJECT\13045.007\10000 BORING LOGS\GINT LOGS	DRA	MINGS\SB-28/GDW OAKBOREV (REV. 8/2007)
L							.0.	

PROJE	CT:	PG Oal	&E (klano	GENERA d, Califori	L CONS nia	STRUCTION	YARD		L	og of B	orir	ng	No. S	B-28gw
BORIN	G LOC	ATIO	ON:	N: 21058	808.3; E	: 6065872.42	2		ELEVATI Not sur	ON AND DAT	[.] UM: um i	sg	ground si	urface
DRILLII	NG CC	NTF	RACT	OR: Woo	odward	Drilling Co			DATE ST 2/7/08	ARTED:			DATE FIN 2/8/08	ISHED:
DRILLII	NG ME	THC	DD:	Direct	push				TOTAL D 16.0	EPTH (ft.):			MEASURI Ground	NG POINT: surface
DRILLI	NG EG	UIP	MEN	T: Power	Probe 9	630 ProD			DEPTH T	O WATER (f	.) F .) N	IRS JA	δT	COMPL. NA
SAMPL	ING M	ETH	IOD:	AMS dua	al-tube sa	ampling system	ı [4' x 1 3/8"]		LOGGED M. Web	BY: b	•			1
HAMMI	ER WE	IGH	T:	NA		DROP: NA	Ą		RESPON	SIBLE PROF	ESSI	ON/	AL:	REG. NO. PG 7823
DEPTH (feet)	ample No.	ample	slows/ 55 Foot	OVM EEADING (ppm)		NAME (USCS): cen	DESCRIP color, moist, % by nentation, react. w	TION / wt., plast. dens //HCl, geo. inter.	ity, structu	e,			F	REMARKS
	S	S	ш	Ľ	0.0	- lea of hering C	Surface Elevation	on: Not sur	veyed			_		
					See	e log of boring S	B-28 for litholog	ic descriptions.			_	- F	Hand auge	ered to 5.5 feet
1-											_	- t	ogs.	
-											_	-		
2-												-		
3-												-		
-											_	-		
4-											_	-		
5-														
											_	-		
6-											_	-		
-											_	-		
7-											_			
8-											_	-		
-											_	-		
9-											_	-		
10-												-		
											_	-		
11-											_	-	Grab arou	ndwater sample
-											_	- 5 t	SB-28-GW through 5 t	/-11-16 collected feet of 1-inch OD
12-												- S	Sch. 40 P\ (0.010-incl	/C screen n slot size)
13-											_	- F	placed in b to 16 feet l	orehole from 11 bgs. Drive
-											-	C L	casing retr	acted from poring to 11 feet
14-											-	- k s	ogs to mai seal.	ntain surface
45												-		
15-				•	•					_			_	OAKBOREV (REV. 8/2007)
		///	<u> </u>	Jeomatr	*IX					Project No.	13045	5.00)7	Page 1 of 2

PROJE	CT:	PG Oal	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD nia	Log of Bor	ring No. SI	B-28gw	(cont'd)
DEPTH (feet)	Sample No.	Sample 1	Blows/ G Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, struct t. w/HCl, geo. inter.	ture,	F	REMARKS
_					See log of boring SB-28 for litholog	ic descriptions.	_	_	
16-					Bottom of boring at 16.0 feet			Borehole	destroyed using
17-							-	grout plac depth to g with a tren	ed from total round surface nie pipe.
18-							-	-	
19-							-	-	
20-							_	-	
21-							_	-	
22-							_	-	
							_	-	
23-							_	-	
24-							_	-	
25-							_	-	
-							_	-	
							_	-	
27-							_	-	
28-							_	-	
29-							=	-	
30-							_	-	
							-	-	
31-							_	-	
32-							_	-	
33-								_	
							Project No. 1304	5.007	Page 2 of 2
L									

PROJE	CT:	PG Oal	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD	Log of B	ori	ng No.	SB-29
BORIN	GLOC	ATI	ON.	N· 2105	787 49 [.] F [.] 6065810 09	ELEVATION AND DATU	M: _		
				11. 2100		Not surveyed; datu	m is	ground su	
DRILLI	NG CC	NT	RACT	OR: Wo	odward Drilling Co	1/22/08		1/22/08	ISHED:
						TOTAL DEPTH (ft.):		MEASURI	NG POINT:
DRILLI	NG ME	TH	DD:	Direct	push	37.0		Ground	surface
DRILLII	NG EC	UIP	MEN	T: Power	Probe 9630 ProD	DEPTH TO WATER (ft.)	FIF	RST 5	COMPL.
SAMPL	ING M	IETH	IOD:	AMS dua	Il-tube sampling system [4' x 1 3/8"]	LOGGED BY: M. Webb			
HAMM	ER WE	EIGH	IT:	NA	drop: NA	RESPONSIBLE PROFES	SSIO	NAL:	REG. NO. PG 7823
DEPTH (feet)	sample No.	sample Id	Blows/ G Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. densit cementation, react. w/HCl, geo. inter.	y, structure,		R	REMARKS
	0	0)		LL.	Surface Elevation: Not surv	reyed			
_					ASPHALTIC CONCRETE : (4 inches thick)			Hand auge	ared to 5 feet
					AGGREGATE BASE			bas. Soil li	tholoav loaged
1-							-	from cuttin	gs.
-							-		
2-									
_								OVM = Mir	niRAE 2000 PID
_								isobutylene	with 100 ppm
3-				2.1			-	loobatylent	s standard.
1_									
4					LEAN CLAY with SAND (CL): greenish black (10Y	′ 2.5/1), moist,			
-					80% fines, 20% fine sand, low plasticity, soft				
5-							-		
_									
6-					POORLY GRADED GRAVEL with SAND (GP)				
-							-		
7-									
,	9-8				GRAVELLY LEAN CLAY with SAND (CL): very dat	k greenish gray			
	SB-2				(10Y 3/1) mottled with dark yellowish brown (10YR fines 30% fine gravel 20% fine to coarse sand low	4/6), MOIST, 50%			
8-	0,					v plasticity, intri	-		
				0.2					
	6-67				POORLY GRADED SAND with CLAY and GRAVE	L (SP-SC): dark			
9-	SB-;				greenish gray (30 4/1), moist, 30% liftle to coarse s gravel, 15% low plasticity fines	anu, 55 /0 IIITE			
-					↓ wet		-		
10-					¥ ·		-		
					–				
					yellowish brown (10YR 5/6)				
11-									
-							-		
12-		\vdash					-		
_							\parallel		
10				0.1	POORLY GRADED SAND with GRAVEL (SP): da	rk yellowish brown			
13-				U. I	(101 K 4/0), wet, 05% The to coarse sand, 30% the	e graver, 5% tines			
-							$\left -\right $		
14-							_		
_									
4-									
15-							_ (]		OAKBOREV (REV. 8/2007)
		///	<u>~</u> (Geomatr	ix	Project No. 13	045.0	007	Page 1 of 3

PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California				GENERA d, Califori	L CONSTRUCTION YARD nia	Log of Bo	oring No.	. 5	SB-29 (d	cont'd)
DEPTH (feet)	Sample No.	Sample 1	Blows/ S Foot	OVM READING (ppm)	DESCR NAME (USCS): color, moist, % cementation, react	RIPTION by wt., plast. density, struc t. w/HCl, geo. inter.	ture,		F	REMARKS
					POORLY GRADED SAND with GF	RAVEL (SP): cont'd				
					LEAN CLAY with SAND (CL): light	t olive brown (2.5Y 5/3), v	wet, 95%	-		
10-					ines, 5% ine sand, medium plasud	city, iirri		Γ		
17								Γ		
18-										
19-										
20-										
_								_		
21-								_		
_								_		
22-								_		
								_		
23-								_		
-								_		
24-			-					_		
-								-		
25-								-		
_								-		
26-								-		
_								-		
27-								-		
-								-		
28-		\vdash	1					-		
-								-		
29-								-		
-								-		
30-		\vdash	1					-		
-								-		
31-								-		
_								-		
32-		\parallel			POORLY GRADED SAND with CL	AY (SP-SC): light olive b	prown	1		
					(2.5Y 5/4), wet, 90% fine sand, 10%	% medium plasticity fines				
33-	•									OAKBOREV (REV. 8/2007)
							Project No. 130)45	5.007	Page 2 of 3

PROJE	PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California Log of Boring							6B-29 (d	cont'd)
DEPTH (feet)	Sample No.	Sample 1	Blows/ S Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, structure, t. w/HCl, geo. inter.		F	REMARKS
_					sand fraction fine to coarse		_		
34-					POORLY GRADED SAND with CL	AY (SP-SC): cont'd	_		
35-					LEAN CLAY (CL): light olive brown sand, medium plasticity, firm	n (2.5Y 5/4), wet, 95% fine, 5% fi	ine _		
36-			-		POORLY GRADED SAND with CL (2.5Y 5/4), wet, 90% fine sand, 109	AY (SP-SC): light olive brown 6 low plasticity fines			
37-					Bottom of boring at 37.0 feet			Borehole o Type I-II n placed froi	lestroyed using eat cement grout n total depth to
38-							_	ground su tremie pipe	rface with a e.
39-							_	Soil expan 4 feet after	ding in sleeve to having only
40-							_	driven the from 28 to	casing to 2 feet 37 feet bgs.
41-							_		
42-							_		
43-							_		
44-							_		
45-							-		
46-							_		
-							-		
47-							F		
48-							-		
49-							_		
50-							_		
51-									OAKBOREV (REV. 8/2007)
						Project	t No. 13045.	007	Page 3 of 3

PROJE	CT:	PG Oal	&E (klane	GENERA	L CONS nia	TRUCTION YARD		Log of	Bori	ng No. S	SB-29a
BORIN	G LOC	ATIO	ON:	N: 2105	787.49; I	TION AND DA	TUM: tum is	around s	urface		
DRILLI	NG CC	ONTF	RACT	OR: NA			DATE 3/12/	STARTED: 08		DATE FIN 3/12/08	IISHED:
DRILLI	NG ME	ETHO	DD:	Hand a	auger		TOTAL	_ DEPTH (ft.):		MEASUR Ground	ING POINT: surface
DRILLI	NG EC	UIP	MEN	T: Hand a	auger		DEPTH	H TO WATER (ft.) Fl	RST A	COMPL.
SAMPL	ING N	IETH	IOD:	Hand aug	ger		LOGG M. W	ED BY: ebb			
HAMM	ER WE	EIGH	IT:	NA		DROP: NA	RESPO J. Ska	ONSIBLE PROI aggs	ESSIC)NAL:	REG. NO. PG 7823
DEPTH (feet)	sample No.	sample 5	Blows/ 60 Foot	OVM READING (ppm)		DESCRIPTION NAME (USCS): color, moist, % by wt., plast. dens cementation, react. w/HCl, geo. inter.	sity, struc	ture,		F	REMARKS
	0)	0		ш	<u>مع</u>	Surface Elevation: Not su PHALTIC CONCRETE : (4 inches thick)	rveyed				
_					AG	GREGATE BASE				Hond oug	arad to 1 E fact
1-									_	bgs. Soil	lithology logged
_	-2.0								_	from cuttir	ngs.
2-	3B-29										
_	0)										
3-											
1_	1.5										
4	-29-4				LEA	AN CLAY with SAND (CL): greenish black (10	Y 2.5/1)	, moist,			
	SE				- 80% Bott	tom of boring at 4.5 feet		/	\square	Borehole of	destroyed using
5-					Dott					grout place	neat cement ed in borehole
_										from total	depth to ground
6-									-	sunace.	
-									-		
7-									-		
_									-		
8-									_		
_									_		
9-									_		
_											
10-											
11_											
12-											
-											
13-									-		
-									-		
14-									-		
-									-		
15-											OAKBOREV (REV. 8/2007)
		///	<u> </u>	Geomatr	ix			Project No.	13045.	.007	Page 1 of 1
L											-

PROJE	CT:	PG Oal	&E (klan	GENERA d, Califori	L CONS nia	STRUCTION YA	RD	L	.og of Bo	orin	g No. S	B-29gw
BORIN	G LOC	ATI	ON:	N: 2105	787.49;	E: 6065810.09		ELEVAT	ON AND DATI	JM: Im is	s ground s	urface
DRILLII	NG CC	NTF	RACT	OR: Woo	odward	Drilling Co		DATE ST 1/23/08	ARTED:		DATE FIN 1/24/08	ISHED:
DRILLI	NG ME	ETHO	DD:	Direct	push			TOTAL E 38.0	DEPTH (ft.):		MEASURI Ground	NG POINT: surface
DRILLII	NG EC	UIP	MEN	T: Power	Probe 9	630 ProD		DEPTH 1	O WATER (ft.) 14	rst 4.0	COMPL. NA
SAMPL	ING M	IET⊦	IOD:	AMS dua	Il-tube sa	ampling system [4'	x 1 3/8"]	LOGGEE M. Web) BY: ob			
HAMM	ER WE	EIGH	T:	NA		DROP: NA		RESPON J. Skag	ISIBLE PROFE J gs	ESSIC)NAL:	REG. NO. PG 7823
DEPTH (feet)	sample No.	ample	Blows/ 6	OVM READING (ppm)		NAME (USCS): colo cement	DESCRIPTION or, moist, % by wt., plast. dei ation, react. w/HCl, geo. inte	nsity, structu er.	re,		F	REMARKS
	0	0	-		Se	e log of boring SB-2	urface Elevation: Not s	surveyed				
_					000			5.		-		
1-										-		
-										-		
2-										-		
3-												
										_		
4-										_		
-										-		
5-										-		
										-		
-0 -												
7-										_		
-										_		
8-										_		
-										-		
9-												
10-										_		- deseter
_										_	Grab grou SB-29-GW	Indwater sample
11-										-	through 5 Sch. 40 P	reet of 1-inch OD /C screen
										-	(0.010-incl placed in b	n slot size) porehole from 11
12-											Drive casi	ogs. ng retracted from
13-											bottom of l	ooring to 11 feet ntain surface
										_	seal.	
14-										-		
-										-		
15-									1		1	OAKBOREV (REV. 8/2007)
		///	≧ (Geomatr	`ix				Project No. 1	3045.	.007	Page 1 of 3

PROJE	CT:	PG Oal	&E (klan	GENERA d, Califor	L CONSTRUCTION YARD nia	Log of Bo	ring No. S	B	-29gw (cont'd)
DEPTH (feet)	Sample No.	Sample	Blows/ 6	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, struc t. w/HCl, geo. inter.	cture,		R	EMARKS
					See log of boring SB-29 for litholog	ic descriptions.		_		
16-								_		
17-								_		
-								_		
18-								_		
19-								_		
20								_		
								_		
21-								_		
22-								_		
-								_		
23-								_		
24-								_		
25-								_		
_								_		
26-								_		
27-								_		
28-								_		
-								_		
29-								_	Grab groun SB-29-GW-	dwater sample -32-38 collected
30-								_	through 5 fe Sch. 40 PV	eet of 1-inch OD C screen
31-								_	(0.010-inch placed in bo to 38 feet be	slot size) prehole from 33 gs.
_								_	Drive casing bottom of bo	g retracted from oring to 32 feet
32-								- -	ogs to main seal.	tain surface
33-										OAKBOREV (REV. 8/2007)
							Project No. 1304	45.0	007	Page 2 of 3

PROJE	CT:	PG Oal	&E (klane	GENERA d, Califori	L CONSTRUCTION YARD	Log of Boring No.	SE	3-29gw (cont'd)
	C 4 4							
£ ⊒	SAN e	UPLI 0	<u>-</u> 5 %	M NG E	DESCF	RIPTION		REMARKS
DEP (fee	Samp No.	Samp	Blows Foot	OV READ (ppi	NAME (USCS): color, moist, % cementation, reac	, by wt., plast. density, structure, t. w/HCl, geo. inter.		
_					See log of boring SB-29 for litholog	ic descriptions.	_	
34-							-	
35-								
-							-	
36-							L	
37-							_	
-							-	
38-					Bottom of boring at 38.0 feet		_	Borehole destroyed using Type I-II neat cement grout
39-							-	placed from total depth to ground surface with a
40-								
_							-	
41-							L	
42-							_	
-							-	
43-								
44-							-	
45-								
-							-	
46-								
47-							-	
48-								
_							-	
49-								
50-							-	
51_								
								OAKBOREV (REV. 8/2007)
						Project No. 13	8045	.007 Page 3 of 3

PROJE	CT:	PG Oa	&E (kland	GENERA d, Califor	L CONSTRUCTION YARD		Log of Bo	oring N	o. SB-30
BORIN	GLOC		ON.	N· 2105	713 89 [.] E [.] 6065763 72	ELEVATIO	ON AND DATUM	l:	
DOIM		/////	014.	14. 2105	13.83, E. 8883783.72	Not surv	/eyed; datum	ı is groun	d surface
DRILLII	NG CC	DNTF	RACT	OR: Wo	odward Drilling Co	DATE STA 2/7/08	ARTED:	DATE 2/8/0	FINISHED: 8
DRILLII	NG ME	ETH	OD:	Direct	push	TOTAL DE 35.0	EPTH (ft.):	MEAS Grou	URING POINT: Ind surface
DRILLII	NG EC	UIP	MEN	T: Power	Probe 9630 ProD	DEPTH TO	OWATER (ft.)	FIRST	COMPL.
SAMPL	ING N	IETH	HOD:	AMS dua	I-tube sampling system [4' x 1 3/8"]	LOGGED M. Webl	BY: b	1.0	
HAMMI	ER WE	∃IG⊦	łT:	NA	DROP: NA	RESPONS	SIBLE PROFESS	SIONAL:	REG. NO. PG 7823
DEPTH (feet)	SAN No.	MPLe MPLe	ows/ SE	OVM EADING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. densit cementation, react. w/HCl, geo. inter.	ty, structure	2,		REMARKS
	Se_	S	ᇳᄔ	R	Surface Elevation: Not surv	/eyed			
					ASPHALTIC CONCRETE : (4 inches thick)				
1-					GRAVELLY LEAN CLAY with SAND (CL): brown 65% fines, 20% fine to coarse gravel, 15% fine to c plasticity, soft	(10YR 4/3 coarse san	3), moist, d, low	Hand a bgs. S from c	augered to 3.5 feet Soil lithology logged uttings.
2-					CLAYEY SAND with GRAVEL (SC): black (2.5Y 2 fine to coarse sand, 25% fine gravel, 20% low plast	2.5/1), moi ticity fines	st, 55%		
3-								OVM =	- MiniRAE 2000 PID
4-					LEAN CLAY with SAND (CL): black (2.5Y 2.5/1), r 20% fine sand, medium plasticity, soft	moist, 80%	6 fines,	isobuty	lene standard.
5 6 					CLAYEY GRAVEL with SAND (GC): black (2.5Y 2 fine to coarse gravel, 35% fine to coarse sand, 15%	 2.5/1), wet 6 low plast	., 50% icity fines	- 	
7-				0	LEAN CLAY with SAND (CL): black (2.5Y 2.5/1), r 15% fine sand, low plasticity, soft	moist, 85%	6 fines,		
8-					LEAN CLAY (CL): black (2.5Y 2.5/1), moist, 90% sand, low plasticity, soft	fines, 10%	fine		
9-				0.3				-	
 10	SB-30-10.5			0	GRAVELLY LEAN CLAY with SAND (CL): dark gr moist, 50% fines, 30% fine to coarse gravel, 20% fi low plasticity, firm	ray (2.5Y 4 ne to coar	4/1), se sand,		
11-					CLAYEY SAND with GRAVEL (SC): dark yellowish 4/6), wet, 50% fine to coarse sand, 35% fine to coar low plasticity fines	h brown (1 Irse gravel	I0YR , 15%		
13-				0.5				_	
14-					LEAN CLAY (CL): dark yellowish brown (10YR 4/6 10% fine sand, low plasticity, soft CLAYEY SAND with GRAVEL (SC)	6), wet, 90	% fines,		
									OAKBOREV (REV. 8/2007)
		///		Seomatr	ix		Project No. 130	45.007	Page 1 of 3

PROJE	CT:	PG Oal	&E (kland	GENERA d, Califor	L CONSTRUCTION YARD nia	Log of B	oring No.	S	B-30 (cont'd)
-	SAI	MPLE	ES	Ů					DEMADIZO
DEPTI (feet)	Sample No.	Sample	Blows/ Foot	OVM READIN (ppm)	DESC NAME (USCS): color, moist, 9 cementation, read	RIPTION 6 by wt., plast. density, struc t. w/HCl, geo. inter.	cture,		REMARKS
		\bigtriangledown		0.6	light olive brown (2.5Y 5/4)				
16-		\square			LEAN CLAY (CL): cont'd			_	
17-					↓ firm			_	
18-								_	
- 19-					pale yellow (2.5Y 8/2)			_	
20-				0.4				_	
								_	
21-					light brownish gray (2.5Y 6/2)			_	
22-								_	
23-								_	
-								_	
24-								_	
25-								_	
-				0.5				-	
26-									
27-								_	
28-								_	
-									
								_	Grab groundwater sample SB-30-GW-30-35 collected
30-									boring through 5 feet of 1-inch OD Sch. 40 PVC
31-								_	screen (0.010-inch slot size) placed in borehole from 30 to 35 feet bgs.
32-					LEAN CLAY with SAND (CL): dat 80% fines, 20% fine sand, low pla	k yellowish brown (10YR sticity, firm	4/6), wet,	_	Drive casing retracted from bottom of boring to 30 feet bgs to maintain surface seal.
33-	I							I	OAKBOREV (REV. 8/2007)
							Project No. 130	45.	007 Page 2 of 3

PROJE	ROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California					Log of Boring No. SB-30 (cont'd)						
DEPTH (feet)	Sample No.	Sample A	Blows/ 0 Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, struct t. w/HCl, geo. inter.	ure,		REMARKS			
_				0.4	POORLY GRADED SAND (SC): o wet, 90% fine to medium sand, 109	dark yellowish brown (10Y % low plasticity fines	R 4/6),	_				
34-				-	LEAN CLAY (CL): dark yellowish I 5% fine sand, low plasticity, firm	brown (10YR 4/6), wet, 95	% fines,	-				
35-			-		Bottom of boring at 35.0 feet			Borehole	destroyed using neat cement grout			
36-								ground si	urface with a be.			
37-								_				
38-								_				
39-								_				
40-								-				
41-								_				
42-								-				
43-								-				
44-								_				
45-								_				
46-								_				
47-								_				
-								-				
48-								_				
49-								-				
50-								-				
51-							Device of Marcola		OAKBOREV (REV. 8/2007)			
							Project No. 1304	100.00	Page 3 of 3			

PROJE	CT:	PG Oal	&E (klan	GENERA d, Califori	L CONS nia	STRUCTION	YARD		L	og of B	orin	g No. S	B-30gw
BORIN	G LOC	ATIO	ON:	N: 2105	713.89;	E: 6065763.	72		ELEVATI Not sur	ON AND DAT veyed; dat	UM: um is	s ground s	urface
DRILLII	NG CC	NTF	RACT	OR: Woo	odward	Drilling Co			DATE ST 2/7/08	ARTED:		DATE FIN 2/8/08	ISHED:
DRILLI	NG ME	THC	DD:	Direct	push				TOTAL D 16.0	EPTH (ft.):		Ground	NG POINT: surface
DRILLII	NG EC	UIP	MEN	T: Power	Probe 9	630 ProD			DEPTH T	O WATER (ft	.) Fll .) 2.	rst 0	COMPL.
SAMPL	ING M	ETH	IOD:	AMS dua	al-tube sa	mpling syster	m [4' x 1 3/8"]		LOGGED M. Web) BY: Db			
HAMM	ER WE	IGH	IT:	NA		DROP: N	A		RESPON	ISIBLE PROF I gs	ESSIC	NAL:	REG. NO. PG 7823
DEPTH (feet)	ample No.	ample	Blows/ 6	OVM (EADING (ppm)		NAME (USCS): ce	DESCRIP color, moist, % b mentation, react. v	TION y wt., plast. dens //HCl, geo. inter.	sity, structur	Ге,		F	REMARKS
	S	S	ш	Ľ.	Sor		Surface Elevati	on: Not sur	rveyed				
_					566		SB-30 IOI IIINOIOg	ic descriptions.			_		
1-											_		
											_		
2-											_		
-											_		
3-											_		
_											-		
4-											_		
5-													
6-											_		
-											_		
7-											_		
-											_		
8-											_		
-											_		
9-													
10-													
_											_	Grab grou SB-30-GV	ndwater sample /-16-12 collected
11-											_	through 5 Sch. 40 P	feet of 1-inch OD /C screen
_											_	(0.010-inc	n slot size)
12-											_	to 16 feet	ogs.
_											_	bottom of	ng retracted from poring to 12 feet
13-											-	bgs to mai seal.	ntain surface
-											-		
14-													
45													
15-										Duci ())			OAKBOREV (REV. 8/2007)
		///		Jeomatr	"IX					Project No.	13045.	007	Page 1 of 2

PROJE	PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California				L CONSTRUCTION YARD nia	Log of Boring No. SB-30gw (cont'd)						
DEPTH (feet)	Sample No.	Sample IdN	Blows/ G Foot	OVM READING (ppm)	DESCF NAME (USCS): color, moist, % cementation, reac	RIPTION by wt., plast. density, struc t. w/HCl, geo. inter.	ture,	F	REMARKS			
_					See log of boring SB-30 for litholog	ic descriptions.	_	_				
16-					Bottom of boring at 16.0 feet			Borehole o	lestroyed using			
17-							_	placed from ground su	n total depth to rface with a			
18-							_					
19-							_					
20-							_					
21-							_					
							_					
22-							-	-				
23-							_					
24-							_					
25-							_					
_							_					
26-							_					
27-							_					
28-							_					
20-							_					
							_					
30-							_					
31-							_					
32-							_					
_							-					
33-	I	I	I	I	1				OAKBOREV (REV. 8/2007)			
							Project No. 13045	5.007	Page 2 of 2			

PROJE	PROJECT: PG&E GENERAL CONSTRUCTION YARD Oakland, California				Log of Boring No. SB-31						
BORIN	G LOC	ATI	ON:	N: 2105	857.82;	E: 6065827.14	ELEVAT	TON AND DATUM	/I: n is	around si	Inface
DRILLI	NG CC	DNTI	RACT	OR: Wo	odward	Drilling Co	DATE S	TARTED:	1.10	DATE FINI	ISHED:
DRILLI	NG ME	ETH	OD:	Direct	push		TOTAL	DEPTH (ft.):		MEASURI	NG POINT:
DRILLI	NG EC	UIP	MEN	T: Power	Probe 9	630 ProD	DEPTH	TO WATER (ft.)		ST	
SAMPL	ING N	IETH	HOD:	AMS dua	al-tube sa	ampling system [4' x 1 3/8"]	LOGGE	D BY:	1.)	
НАММ	ER WE	EIGH	IT:	NA		DROP: NA	RESPO	NSIBLE PROFES	SIO	NAL:	REG. NO.
EPTH eet)	SAN ble	JPle Iple	vs/ Sa	VM ADING pm)		DESCRIPTION NAME (USCS): color, moist, % by wt., plast. den cementation. react. w/HCl. geo. inter	sity, structu	ure,		R	EMARKS
Ц Ц Ц Ц Ц С	San No	San	Blov Fo	O REA (P		Surface Elevation: Not su	irveyed				
					AS	PHALTIC CONCRETE : (4 inches thick)					
- 1- _					PO bro 5%	ORLY GRADED SAND with GRAVEL (SP): wn (2.5Y 3/2), moist, 75% fine to coarse sand fines	very dark (, 20% fine	grayish gravel,	_	Hand auge bgs. Soil li from cuttin	ered to 5 feet thology logged gs.
2-					↓ 60%	% fine to coarse sand, 35% fine to coarse grav	el, 5% fine	es	_		
3-									$\left -\right $		
4-					min	nor amounts of plastic debris					
-									_		
5-											
6-		$\left \right\rangle$								Orah array	
7-		$\left \right\rangle$							_	SB-31-GW from adjace boring thro	/-6-8 collected ent companion ugh 5 feet of
8-		/ \			 LEA 15%	AN CLAY with SAND (CL): black (10YR 2/1), % fine sand, low plasticity, soft	 wet, 85%			1-inch OD screen (0.0 size) place from 3 to 8 Drive casir	Sch. 40 PVC 010-inch slot d in borehole feet bgs.
9-									$\left - \right $	bottom of to bgs to main	poring to 6 feet ntain surface
					LEA (5G me	AN CLAY with SAND and GRAVEL (CL): ven 3 3/2), wet, 60% fines, 25% fine to coarse sand dium plasticity, firm	y dark gra d, 15% fin	yish green e gravel,		seal.	
11-					LE/ fine	AN CLAY with SAND (CL): grayish green (5G es, 25% fine sand, low plasticity, soft	6 5/2), wet	, 75%		Borehole d Type I-II ne placed fron	estroyed using eat cement grout n total depth to
12-					Bot	tom of boring at 12.0 feet				ground sur tremie pipe	face with a
13-									$\left - \right $		
-									$\left - \right $		
14-											
15-											
		///	<u>~</u> (Geomatr	ix			Project No. 130)45.(007	Page 1 of 1

APPENDIX E

Analytical Laboratory Reports

------ A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1230 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 1

Sample Description	Sampled By	Sampled By Date ລ Time Matrix 						======
sB-23-7	Matt Webb		01/22/0	01/22/08a09:45				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromochloromethane	Not Detected	5	1	ug/Kġ	EPA 8260	02/05/08		4375
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromoform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromomethane	Not Detected	5 ·	. 1	ug/Kg	EPA 8260	02/05/08		4375
t-Butylbenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
sec-Butyl Benzene	Not Detected	. 5	1	ug/Kg	EPA 8260	02/05/08	•	4375
Carbon Tetrachloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
2-Chloroethylvinyl ether	Not Detected	20	. 1.	ug/Kg	EPA 8260	02/05/08		4375
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chloromethane	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
2-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
4-Chlorotoluene	Not Detected	5	[°] 1	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dibromo-3-Chloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dibromomethane	Not Detected	5	. 1.	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dibromoethane (EDB)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.3-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.4-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1-Dichloroethene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
cis-1,2-Dichloroethene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1230 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 2

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix 			
SB-23-7	Matt Webb	19992288225	01/22/0	8a09:45	Solid		22222222222	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
trans-1.2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	· .	4375
1.3-Dichloropropane	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08		4375
2.2-Dichloropropane	Not Detected	5.	1	ug/Kg	EPA 8260	02/05/08		4375
1.1-Dichloropropene	Not Detected	5	_ 1	ug/Kg	EPA 8260	02/05/08		4375
cis-1.3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
trans-1.3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Ethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.1.1.2-Tetrachloroethane	Not Detected	5.	. 1	ug/Kg	EPA 8260	02/05/08		4375
1.1.2.2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Tetrachloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Toluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2.3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2.4-Trichlorobenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
1.1.1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.1.2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2.3-Trichloropropane	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08		4375
1.2.4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.3.5-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	•	4375
Vinyl Chloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375

A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

 Page 3

 Log Number:
 08-C1230

 Order:
 P0463

 Project:
 PG&E Oak Gen. Const. Yard 13045.007

 Received:
 01/25/08

 Printed:
 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix			
sb-23-7	Matt Webb	Matt Webb		8a09:45	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
m,p-Xylenes o-Xylene	Not Detected Not Detected	5 5	1	ug/Kg ug/Kg	EPA 8260 EPA 8260	02/05/08 02/05/08		4375 4375

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

 Page 4

 Log Number:
 08-C1231

 Order:
 P0463

 Project:
 PG&E Oak Gen. Const. Yard 13045.007

 Received:
 01/25/08

 Printed:
 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix			
SB-23-8	Matt Webb	Matt Webb		8a09:50	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4227
TPH as Motor Oil, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4228

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1232 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 5

Sample Description	Sampled By		Sampled Date @	l Time	Matrix			
sB-24-3	Matt Webb		01/22/0	8a10:15	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4227
TPH as Motor Oil, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4228
Benzene	Not Detected	. 5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromochloromethane	'Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromoform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
t-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
sec-Butyl Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Carbon Tetrachloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chloroethane	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
2-Chloroethylvinyl ether	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08	÷.	4375
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
2-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
4-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2-Dibromo-3-Chloropropane	Not Detected	5	1	üg/Kg	EPA 8260	02/05/08		4375
Dibromochloromethane	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
Dibromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.2-Dibromoethane (EDB)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA. 8260	02/05/08		4375
1.2-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.3-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.4-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1.1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1232 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 6

Sample Description	Sampled By		Sampled Date ລ	l Time	Matrix			
sB-24-3	Matt Webb	01/22/0	8a10:15	. Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
cis-1,2-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
trans-1,2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	t.	4375
1,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
2,2-Dichloropropane	Not Detected	. 5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
cis-1,3-Dichloropropene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375
trans-1,3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Ethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375
n-Propylbenzene	Not Detected	- 5	1	′ ug/Kg	EPA 8260	02/05/08		4375
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1,1,2-Tetrachloroethane	Not Detected	5	1. 1 ¹	ug/Kg	EPA 8260	02/05/08		4375
1,1,2,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Tetrachloroethene	Not Detected	. 5	1	ug/Kg	EPA 8260	02/05/08		4375
Toluene	Not Detected	5		ug/Kg	EPA 8260	02/05/08	·····	4375
1,2,3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2,4-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1,1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1,2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Trichloroethene	Not Detected	5.	1	ug/Kg	EPA 8260	02/05/08		4375
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2,3-Trichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2,4-Trimethylbenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1232 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 7

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ຝ	Time	Matrix		
sB-24-3	Matt Webb	Matt Webb			Solid		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1.3.5-Trimethylbenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	4375
Vinyl Chloride	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	4375
m,p-Xylenes	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
o-Xylene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1233 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 8

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date @	Time	Matrix::			
======================================	Matt Webb		01/22/0	8012:35	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Mercury	0.13	0.04	1	mg/Kg	EPA 7471	01/31/08	01/30/08	4091
Antimony	1.1	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Arsenic	4.3	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Barium	560	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Beryllium	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Cadmium	0.4	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Chromium	46	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Cobalt	11	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Copper	34	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Lead	74	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Molybdenum	1.2	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Nickel	65	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Selenium	Not Detected	0.5	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Silver	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Thallium	Not Detected	0.4	. 1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Vanadium	48	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Zinc	130	. 4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

------ A Minority-owned Business Enterprise -----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1234 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Sample Description	Sampled By	2	Sampl Date	ed @ Time	Matrix		
SB-25-10	Matt Webb		01/22	2/08a13:15	Solid	n dan ant ant ant ant and ann ha ba ba an an an an an an	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batc Prepared
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Bromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Bromoform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Bromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
t-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
sec-Butyl Benzene	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08	437
Carbon Tetrachloride	Not Detected	5	· 1	ug/Kg	ÈPA 8260	02/05/08	437
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Chloroethane	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	437
2-Chloroethylvinyl ether	Not Detected	20	. 1	ug/Kg	EPA 8260	02/05/08	437
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Chloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
2-Chlorotoluene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	437
4-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
1,2-Dibromo-3-Chloropropane	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	437
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
Dibromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
1,2-Dibromoethane (EDB)	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08	437
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	437
1,2-Dichlorobenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	437
1,3-Dichlorobenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	437
1,4-Dichlorobenzene	13	5	1	ug/Kg	EPA 8260	02/05/08	437
1,1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
1,2-Dichloroethane (EDC)	Not Detected	5	1	uġ/Kg	EPA 8260	02/05/08	4375
1,1-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
cis-1,2-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375

------ A Minority-owned Business Enterprise ---

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1234 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 10

Sample Description	Sampled By	,	Sampled Date ລ	Time	Matrix	Matrix				
sB-25-10	Matt Webb		01/22/0	8013:15	Solid					
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch		
trans-1,2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
2,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
cis-1,3-Dichloropropene	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08		4375		
trans-1,3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Ethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Isopropylbenzene	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08		4375		
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375		
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375		
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,1,1,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,1,2,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Tetrachloroethene	Not Detected	5	· 1·	ug/Kg	EPA 8260	02/05/08		4375		
Toluene	Not Detected	5	· . 1	ug/Kg	EPA 8260	02/05/08		4375		
1,2,3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,2,4-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,1,1-Trichloroethane	Not Detected	5	<u>1</u>	ug/Kg	EPA 8260	02/05/08		4375		
1,1,2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,2,3-Trichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,2,4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
1,3,5-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		
Vinyl Chloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375		

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1234 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	•	Sampled Date ລ	Time.	Matrix			
sB-25-10	Matt Webb	Matt Webb		8a13:15	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
m,p-Xylenes o-Xylene	Not Detected Not Detected	5 5	1	ug/Kg ug/Kg	EPA 8260 EPA 8260	02/05/08 02/05/08		4375 4375

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Page 11

----- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1235 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 12

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix				
sB-25-11	Matt Webb		01/22/0	8a13:25	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
TPH as Diesel, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4227	
TPH as Motor Oil, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4228	
Acenaphthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Acenaphthylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benz [a] anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo [a] pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[b]fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[ghi]perylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[k] fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Chrysene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Dibenz[a,h]anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Fluorene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Indeno[1,2,3-cd]pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Naphthalene	Not Detected	10	. 1 .	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Phenanthrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

----- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1236 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 13

Sample Description	Sampled By	•	Sampled Date ລ	Time	Matrix		
 SB-29-8	Matt Webb	·······	01/22/0	8a14:30	Solid		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Bromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	,4375
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Bromoform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	· 4375
Bromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
t-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
sec-Butyl Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Carbon Tetrachloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Chloroethane	Not Detected	5 .	. 1	ug/Kg	EPA 8260	02/05/08	4375
2-Chloroethylvinyl ether	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08	4375
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Chloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
2-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
4-Chlorotoluene	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08	4375
1.2-Dibromo-3-Chloropropane	Not Detected	5	1	ug/Kg ·	EPA 8260	02/05/08	4375
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
Dibromomethane	Not Detected	5	-1	ug/Kg	EPA 8260	02/05/08	4375
1,2-Dibromoethane (EDB)	Not Detected			ug/Kg	EPA 8260	02/05/08	4375
Dichlorodifluoromethane	Not Detected	5	.1	ug/Kg	EPA 8260	02/05/08	4375
1.2-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
1.3-Dichlorobenzene	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08	4375
1.4-Dichlorobenzene	40	5	1	ug/Kg	EPA 8260	02/05/08	4375
1.1-Dichloroethane	Not Detected	. 5	1	ug/Kg	EPA 8260	02/05/08	4375
1.2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
1.1-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375
cis-1.2-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1236 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

Page 14

Sample Description	Sampled By		Sampled Date @ T	ime	Matrix	Matrix			
SB-29-8	Matt Webb		01/22/08	a14:30	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
trans-1,2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,2-Dichloropropane	Not Detected	. 5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
2,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
cis-1,3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
trans-1,3-Dichloropropene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	•	4375	
Ethylbenzene	Not Detected	5	1 ·	ug/Kg	EPA 8260	02/05/08		4375	
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
4-Isopropyltoluene	Not Detected	5 '	. 1	ug/Kg	EPA 8260	02/05/08		4375	
Methylene Chloride	Not Detected	20	1.	ug/Kg	EPA 8260	02/05/08		4375	
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375	
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
Styrene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08		4375	
1,1,1,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,1,2,2-Tetrachloroethane	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08		4375	
Tetrachloroethene	Not Detected	5	· · · · · · · · · · · · · · · · · · ·	ug/Kg	EPA 8260	02/05/08		4375	
Toluene	Not Detected	5	· 1	ug/Kg	EPA 8260	02/05/08		4375	
1,2,3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,2,4-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,1,1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1.1.2-Trichloroethane	Not Detected	5 -	1	ug/Kg	EPA 8260	02/05/08		4375	
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,2,3-Trichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,2,4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,3,5-Trimethylbenzene	Not Detected	• 5	1	ug/Kg	EPA 8260	02/05/08		4375	
Vinyl Chloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	

- A Minority-owned Business Enterprise ----141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Page 15 Log Number: 08-C1236 P0463 PG&E Oak Gen. Const. Yard 13045.007 Project: 01/25/08 Received: 02/15/08

REPORT OF ANALYTICAL RESULTS

Order:

Printed:

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
SB-29-8	Matt Webb	Matt Webb 01/22/08@14:		8@14:30	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
m,p-Xylenes o-Xylene	Not Detected Not Detected	5 5	1 1	ug/Kg ug/Kg	EPA 8260 EPA 8260	02/05/08 02/05/08		4375 4375

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1237 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045.007 Received: 01/25/08 Printed: 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date @	l Time	Matrix				
SB-29-9	Matt Webb	01/22/0	8014:35	Solid					
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
TPH as Diesel, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4227	
TPH as Motor Oil, SGT	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4228	
TPH as Gasoline	Not Detected	0.5	1	mg/Kg	EPA 8015/LUFT	02/04/08		4223	
Acenaphthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Acenaphthylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benz [a] anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo [a] pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[b] fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[ghi]perylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[k]fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Chrysene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Dibenz[a,h]anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Fluoranthene	Not Detected	. 10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Fluorene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Indeno[1,2,3-cd]pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Naphthalene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Phenanthrene	Not Detected	10	· 1 ·	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962 	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Page 16

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1238 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Page 17

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix	*********	1282252			
SB-24-GW-12-16	Matt Webb		01/23/0	8a10:00	:00 Aqueous					
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Bátch		
TPH as Diesel, SGT	0.62	0.05	· 1	mg/L	EPA 8015/LUFT	02/04/08	01/30/08	4229		
TPH as Motor Oil, SGT	1.9	0.1	1	mg/L	EPA 8015/LUFT	02/04/08	01/30/08	4230		
Benzene	Not Detected	s 5	10	ug/L	EPA 8260	02/05/08		4559		
Toluene	Not Detected	- 5	10	ug/L	EPA 8260	02/05/08		4559		
Ethylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
m,p-Xylene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
o-Xylene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Chlorobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
1,2-Dichlorobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
1,3-Dichlorobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
1,4-Dichlorobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
1,2-Dichloroethane (EDC)	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
1,2-Dibromoethane (EDB)	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Bromobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Bromochloromethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Bromodichloromethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Bromoform	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Bromomethane	Not Detected	5	· 10	ug/L	EPA 8260	02/05/08		4559		
n-Butylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
sec-Butyl Benzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
t-Butylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Carbon Tetrachloride	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
Chloroethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
2-Chloroethylvinyl ether	Not Detected	200	10	ug/L	EPA 8260	02/05/08		4559		
Chloroform	Not Detected	5	10	ug/L	EPA 8260	02/05/08		. 4559		
Chloromethane	Not Detected	5 ·	10	ug/L	EPA 8260	02/05/08		4559		
2-Chlorotoluene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559		
4-Chlorotoluene	Not Detected	5	10	սց/Լ	EPA 8260	02/05/08		4559		
1,2-Dibromo-3-Chloropropane	Not Detected	10	10	ug/L	EPA 8260	02/05/08		4559		

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1238 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Page 18

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix	* *** 8** 2** 2** 2** 2** 2** 2** 2** 2*		
SB-24-GW-12-16	Matt Webb		01/23/0	8a10:00	Aquèous			
Analyte	 Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Dibromochloromethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Dibromomethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Dichlorodifluoromethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08	`	4559
1,1-Dichloroethane	Not Detected	5	. 10	ug/L	EPA 8260	02/05/08		4559
1,1-Dichloroethene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
cis-1,2-Dichloroethene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
trans-1,2-Dichloethene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,2-Dichloropropane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,3-Dichloropropane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
2,2-Dichloropropane	Not Detected	5	10	ug/L	EPA 8260	02/05/08	•	4559
1,1-Dichloropropene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
cis-1,3-Dichloropropene	Not Detected	5	10	ug/L	EPA 8260	02/05/08 ⁻		4559
trans-1,3-Dichloropropene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Hexachlorobutadiene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Isopropylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
4-Isopropyitoluene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Methylene Chloride	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Naphthalene	Not Detected	50	10	ug/L	EPA 8260	02/05/08		4559
n-Propylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Styrene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,1,1,2-Tetrachloroethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,1,2,2-Tetrachloroethane	Not Detected	5	· 10	ug/L	EPA 8260	02/05/08		4559
Tetrachloroethene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,2,3-Trichlorobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,2,4-Trichlorobenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,1,1-Trichloroethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
1,1,2-Trichloroethane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Trichloroethene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559
Trichlorofluoromethane	Not Detected	5	10,	ug/L	EPA 8260	02/05/08		4559

------ A Minority-owned Business Enterprise -----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1238 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Page 19

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Sampled Date @ Time Matrix							
======================================	Matt Webb		01/23/0	8a10:00	Aqueous	*****	Date E Date E d Prepared 8 8 8 8				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch			
1,2,3-Trichloropropane	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559			
1,2,4-Trimethylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559			
1,3,5-Trimethylbenzene	Not Detected	5	10	ug/L	EPA 8260	02/05/08		4559			
Vinyl Chloride	Not Detected	· 5	10	ug/L	EPA 8260	02/05/08		4559 			

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1239 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Page 20

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
sB-26-9.5	Matt Webb	01/23/0	8a16:00	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Mercury	0.20	0.04	1	mg/Kg	EPA 7471	01/31/08	01/30/08	4091
TPH as Diesel, SGT	390	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4227
TPH as Motor Oil, SGT	320	10	1	mg/Kg	EPA 8015/LUFT	02/04/08	01/28/08	4228
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromoform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Bromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
t-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
sec-Butyl Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	. •	4375
Carbon Tetrachloride	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chlorobenzene	21	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chloroethane	Not Detected	5	1	ug/Kg	EPÁ 8260	02/05/08		4375
2-Chloroethylvinyl ether	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08		4375
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Chloromethane	Not Detected	5	· · · 1···	ug/Kg	EPA 8260	02/05/08	• • • •	4375
2-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	•	4375
4-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dibromo-3-Chloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dibromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dibromoethane (EDB)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,2-Dichlorobenzene	Not Detected	- 5	1	ug/Kg	EPA 8260	02/05/08		4375
1,3-Dichlorobenzene	100	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,4-Dichlorobenzene	240	5	1	ug/Kg	EPA 8260	02/05/08		4375
1,1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375

------ A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

 Page 21

 Log Number:
 08-C1239

 Order:
 P0463

 Project:
 PG&E Oak Gen. Const. Yard 13045-007

 Received:
 01/25/08

 Printed:
 02/15/08

Sample Description	Sampled By		Date a	Time	Matrix				
SB-26-9.5	Matt Webb		01/23/0	8a16:00	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared		
1,2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,1-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
cis-1,2-Dichloroethene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	4375		
trans-1,2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,2-Dichloropropane	Not Detected	5 `	1	ug/Kg	EPA 8260	02/05/08	4375		
1,3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
2,2-Dichloropropane	Not Detected	5	1	`ug∕Kg	EPA 8260	02/05/08	.4375		
1,1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
cis-1,3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
trans-1,3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Ethylbenzene	Not Detected	5.	1	ug/Kg	EPA 8260	02/05/08	4375		
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08	4375		
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/05/08	4375		
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,1,1,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,1,2,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Tetrachloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Toluene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,2,3-Trichlorobenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	4375		
1,2,4-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,1,1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
1,1,2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		
Trichlorofluoromethane	Not Detected	5	. 1	ug/Kg	EPA 8260	02/05/08	4375		
1,2,3-Trichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08	4375		

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Page 22 Log Number: 08-C1239 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Sample Description	Sampled By	Sample Date ລ	d Time	Matrix					
SB-26-9.5	Matt Webb		01/23/0	08a16:00	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
1,2,4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
1,3,5-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
Vinyl Chloride	Not Detected	5.	1	ug/Kg	EPA 8260	02/05/08		4375	
m,p-Xylenes	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
o-Xylene	Not Detected	5	1	ug/Kg	EPA 8260	02/05/08		4375	
Acenaphthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Acenaphthylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benz[a] anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo [a] pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[b]fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[ghi]perylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Benzo[k]fluoranthene	Not Detected	10	. 1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Chrysene	Not Detected	10	· 1 .	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Dibenz[a,h]anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Fluoranthene	Not Detected	10	· 1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Fluorene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Indeno[1,2,3-cd]pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Naphthalene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Phenanthrene	Not Detected	10	. 1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	01/25/08	01/25/08	3962	
Antimony	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Arsenic	4.5	0.4	1 -	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Barium	220	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Beryllium	0.7	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Cadmium	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Chromium	89	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Cobalt	12	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Copper	29	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	

A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Page 23 Log Number: 08-C1239 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By = ==================================			Matrix				
======================================	Matt Webb				Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
Lead	10	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Molybdenum	0.6	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Nickel	100	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Selenium	Not Detected	0.5	. 1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Silver	Not Detected	0.4	· 1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Thallium	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Vanadium	48	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	
Zinc	59	4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

— A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1240 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Sample Description	Sampled By		Sampled Date ລີ	Time	Matrix ====================================					
sB-26-GW-7-12	Matt Webb		01/23/0	Ba16:40	Aqueous					
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch		
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08	01/30/08	4229		
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/04/08	01/30/08	4230		
TPH as Gasoline	Not Detected	0.05	1 .	mg/L	EPA 8015/LUFT	02/04/08		4224		
Benzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Toluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Ethylbenzene	Not Detected	2	, 5	ug/L	EPA 8260	02/05/08		4559		
m.p-Xylene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
o-Xylene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Chlorobenzene	62 J	2	5	ug/L	EPA 8260	02/05/08		4559		
1.2-Dichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
1.3-Dichlorobenzene	57	2	5	ug/L	EPA 8260	02/05/08		4559		
1.4-Dichlorobenzene	200	5	10	.ug/L	EPA 8260	02/11/08		4418		
1,2-Dichloroethane (EDC)	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
1,2-Dibromoethane (EDB)	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Bromobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Bromochloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Bromodichloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Bromoform	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Bromomethane	Not Detected	2	· 5	ug/L	EPA 8260	02/05/08		4559		
n-Butylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
sec-Butyl Benzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
t-Butylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Carbon Tetrachloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Chloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
2-Chloroethylvinyl ether	Not Detected	100	5	ug/L	EPA 8260	02/05/08		4559		
Chloroform	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Chloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
2-Chlorotoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
4-Chlorotoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1240 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Page 25

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix	****	
======================================	Matt Webb		01/23/0	8a16:40	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1,2-Dibromo-3-Chloropropane	Not Detected	5	5	ug/L	EPA 8260	02/05/08	4559
Dibromochloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Dibromomethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Dichlorodifluoromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1-Dichloroethane	37	2	5	ug/L	EPA 8260	02/05/08	4559
1,1-Dichloroethene	52	2	5	ug/L	EPA 8260	02/05/08	4559
cis-1,2-Dichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
trans-1,2-Dichloethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,3-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
2,2-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
cis-1,3-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
trans-1,3-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Hexachlorobutadiene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Isopropylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
4-Isopropyltoluene	Not Detected	`2	5	ug/L	EPA 8260	02/05/08	4559
Methylene Chloride	Not Detected	2	··· 5 ·	ug/L	EPA 8260	02/05/08	4559
Naphthalene	Not Detected	20	5	ug/L	EPA 8260	02/05/08	4559
n-Propylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Styrene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1,1,2-Tetrachloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1,2,2-Tetrachloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Tetrachloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2,3-Trichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2,4-Trichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1,1-Trichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1,2-Trichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Trichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1240 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Page 26

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled Sampled By Date ଇ Time Ma				Matrix	Matrix				
sB-26-GW-7-12	Matt Webb 01/23/08@1			8a16:40	Aqueous			222223		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch		
Trichlorofluoromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
1.2.3-Trichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
1.2.4-Trimethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
1.3.5-Trimethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	•	4559		
Vînyl Chloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559 		

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1241 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix					
======================================	Matt Webb		01/23/0	8a16:50	Aqueous					
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch		
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08	01/30/08	4229		
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/04/08	01/30/08	4230		
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08		4224		
Benzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Toluene	Not Detected	2	. 5	ug/L	EPA 8260	02/05/08		4559		
Ethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
m.p-Xvlene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
o-Xvlene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Chlorobenzene	64	2	5	ug/L	EPA 8260	02/05/08		4559		
1.2-Dichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
1 3-Dichlorobenzene	52	2	5	ug/L	EPA 8260	02/05/08		4559		
1.4-Dichlorobenzene	. 210	5	10	ug/L	EPA 8260	02/11/08		4418		
1.2-Dichloroethane (EDC)	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4555		
1.2-Dibromoethane (EDB)	Not Detected	. 2	5	ug/L	EPA 8260	02/05/08		4559		
Bromobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4555		
Bromochloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4555		
Bromodichloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4555		
Bromoform	Not Detected	2 2	5	ug/L	EPA 8260	02/05/08		4559		
Bromomethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
n-Butvlbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
sec-Butyl Benzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
t-Butyl benzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Carbon Tetrachloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Chloroethane	Not Detected	2	. 5	ug/L	EPA 8260	02/05/08		4559		
2-Chloroethylvinyl ether	Not Detected	100	5	ug/L	EPA 8260	02/05/08		4559		
Chloroform	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
Chloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
2-Chlorotoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559		
4-Chlorotoluene	Not Detected	2	5	ug/L	EPÀ 8260	02/05/08		4559		

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1241 Order: P0463 Project: PG&E Oak Gen. Const. Yard 13045-007 Received: 01/25/08 Printed: 02/15/08

Sample Description	Sampled By		Sampled Date ລ	Time	Matrîx.			
sB-33-gw-7-12	Matt Webb		01/23/0	8a16:50	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,2-Dibromo-3-Chloropropane	Not Detected	5	5	ug/L	EPA 8260	02/05/08		4559
Dibromochloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Dibromomethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Dichlorodifluoromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4555
1,1-Dichloroethane	34	2	5	ug/L	EPA 8260	02/05/08	••••••	4559
1,1-Dichloroethene	44	2	5	ug/L	EPA 8260	02/05/08		4559
cis-1,2-Dichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
trans-1,2-Dichloethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1,2-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1,3-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
2,2-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	•	4559
1,1-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
cis-1,3-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
trans-1,3-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Hexachlorobutadiene	Not Detected	2	, 5	ug/L	EPA 8260	02/05/08		4559
Isopropylbenzene	Not Detected	- 2	5	ug/L	EPA 8260	02/05/08		4559
4-Isopropyltoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Methylene Chloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Naphthalene	Not Detected	20 .	5	ug/L	EPA 8260	02/05/08		4559
n-Propylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Styrene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1,1,1,2-Tetrachloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1.1.2.2-Tetrachloroethane	Not Detected	. 2	5	ug/L	EPA 8260	02/05/08		4559
Tetrachloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1.2.3-Trichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1.2.4-Trichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1,1,1-Trichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1,1,2-Trichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Trichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559

CREEK ENVIRONMENTAL LABORATORIES, INC. 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 29

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1241 Order: P0463 PG&E Oak Gen. Const. Yard 13045-007 Project: Received: 01/25/08 02/15/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By Date @ Time ====================================			Matrix	***********		
sB-33-GW-7-12	Matt Webb				Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Trichlorofluoromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1.2.3-Trichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08		455 9
1.2.4-Trimethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
1.3.5-Trimethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559
Vinyl Chloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08		4559

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

. CREEK ENVIRONMENTAL LABORATORIES

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1242 Order: P0463 PG&E Oak Gen. Const. Yard 13045-007 Project: 01/25/08 Received: 02/15/08 Printed:

Page 30

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix		
Trip Blank	Matt Webb		01/22/0	8a 	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Benzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Toluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Ethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
m,p-Xylene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
o-Xylene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Chlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2-Dichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,3-Dichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.4-Dichlorobenzene	Not Detected	2	5.	ug/L	EPA 8260	02/05/08	4559
1,2-Dichloroethane (EDC)	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2-Dibromoethane (EDB)	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Bromobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Bromochloromethane	Not Detected	2	. 5	ug/L	EPA 8260	02/05/08	4559
Bromodichloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Bromoform	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Bromomethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
n-Butylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
sec-Butyl Benzene	Not Detected	2		ug/L	EPA 8260	02/05/08	4559
t-Butylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Carbon Tetrachloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Chloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
2-Chloroethylvinyl ether	Not Detected	100	5	ug/L	EPA 8260	02/05/08	4559
Chloroform	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Chloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
2-Chlorotoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
4-Chlorotoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2-Dibromo-3-Chloropropane	Not Detected	5	5	ug/L	EPA 8260	02/05/08	4559
Dibromochloromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Dibromomethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559

---- A Minority-owned Business Enterprise ---

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612
 Log Number:
 08-C1242

 Order:
 P0463

 Project:
 PG&E Oak Gen. Const. Yard 13045-007

 Received:
 01/25/08

 Printed:
 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix	******	
Trip Blank	Matt Webb	· · · · · · · · · · · · · · · · · · ·	01/22/0	01/22/08a			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Dichlorodifluoromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1-Dichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,1-Dichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
cis-1,2-Dichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
trans-1,2-Dichloethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	45 59
1.2-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	. 4559
1.3-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
2,2-Dichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.1-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
cis-1.3-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
trans-1,3-Dichloropropene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Hexachlorobutadiene	Not Detected	2	5	ug/L '	EPA 8260	02/05/08	4559
Isopropylbenzene	Not Detected	2	- 5	ug/L	EPA 8260	02/05/08	4559
4-Isopropyltoluene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Methylene Chloride	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Naphthalene	Not Detected	20	5	ug/L	EPA 8260	02/05/08	4559
n-Propylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Styrene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.1.1.2-Tetrachloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.1.2.2-Tetrachloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Tetrachloroethene	Not Detected	. 2	5	ug/L	EPA 8260	02/05/08	4559
1.2.3-Trichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.2.4-Trichlorobenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.1.1-Trichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.1.2-Trichloroethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Trichloroethene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
Trichlorofluoromethane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1.2.3-Trichloropropane	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559
1,2,4-Trimethylbenzene	Not Detected	2	5	ug/L	EPA 8260	02/05/08	4559

Page 31

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

 Page 32

 Log Number:
 08-C1242

 Order:
 P0463

 Project:
 PG&E Oak Gen. Const. Yard 13045-007

 Received:
 01/25/08

 Printed:
 02/15/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix				
Trip Blank	Matt Webb	Matt Webb		80	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
1,3,5-Trimethylbenzene Vinyl Chloride	Not Detected Not Detected	2 2	5	ug/L ug/L	EPA 8260 EPA 8260	02/05/08 02/05/08		4559 455 <u>9</u>	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 33

Order No.: P0463 Laboratory Reagent Blank

Analyte	Method	Results	Units	Batch
Mercury	EPA 7471	< 0.04	mg/Kg	4091
TPH as Diesel, SGT	EPA 8015/LUFT	< 0.05	mg/L	4229
TPH as Diesel, SGT	EPA 8015/LUFT	< 10	mg/Kg	4227
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 0.1	mg/L	4230
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 10	mg/Kg	4228
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	4224
TPH as Gasoline	EPA 8015/LUFT	< 0.5	mg/Kg	4223
Benzene	EPA 8260	< 5	ug/Kg	4375
Bromobenzene	EPA 8260	< 5	ug/Kg	4375
Bromochloromethane	EPA 8260	< 5	ug/Kg	4375
Bromodichloromethane	EPA 8260	< 5	ug/Kg	4375
Bromoform	EPA 8260	< 5	ug/Kg	4375
Bromomethane	EPA 8260	< 5	ug/Kg	4375
t-Butylbenzene	EPA 8260	< 5	ug/Kg	4375
n-Butylbenzene	EPA 8260	< 5	ug/Kg	4375
sec-Butyl Benzene	EPA 8260	< 5	ug/Kg	4375
Carbon Tetrachloride	EPA 8260	< 5	ug/Kg	4375
Chlorobenzene	EPA 8260	.< 5	ug/Kg	4375
Chloroethane	EPA 8260	< 5	ug/Kg	4375
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/Kg	4375
Chloroform	EPA 8260	< 5	ug/Kg	4375
Chloromethane	EPA 8260	< 5	ug/Kg	4375
2-Chlorotoluene	EPA 8260	< 5	ug/Kg	4375
4-Chlorotoluene	EPA 8260	< 5	ug/Kg	4375
1,2-Dibromo-3-Chloropropane	EPA 8260	< 5	ug/Kg	4375
Dibromochloromethane	EPA 8260	< 5	ug/Kg	4375
Dibromomethane	EPA 8260	< 5	ug/Kġ	4375
1,2-Dibromoethane (EDB)	EPA 8260	< 5	ug/Kg	4375
Dichlorodifluoromethane	EPA 8260	< 5	ug/Kg	4375
1,2-Dichlorobenzene	EPA 8260	< 5	ug/Kg	4375
1,3-Dichlorobenzene	EPA 8260	< 5	ug/Kg	4375
1,4-Dichlorobenzene	EPA 8260	< 5	ug/Kg	4375
1,1-Dichloroethane	EPA 8260	< 5	ug/Kg	4375
1,2-Dichloroethane (EDC)	EPA 8260	< 5	ug/Kg	4375
1,1-Dichloroethene	EPA 8260	< 5 .	ug/Kg	4375
cis-1,2-Dichloroethene	EPA 8260	< 5	ug/Kg	4375
trans-1,2-Dichloethene	EPA 8260	< 5	ug/Kg	4375
1,2-Dichloropropane	EPA 8260	< 5	ug/Kg	4375
1,3-Dichloropropane	EPA 8260	< 5	ug/Kg	4375
2,2-Dichloropropane	EPA 8260	< 5	ug/Kg	4375
1,1-Dichloropropene	EPA 8260	< 5	ug/Kg	4375
cis-1,3-Dichloropropene	EPA 8260	< 5	ug/Kg	4375
trans-1,3-Dichloropropene	EPA 8260	< 5	ug/Kg	4375
Ethylbenzene	EPA 8260	< 5	ug/Kg	4375
Hexachlorobutadiene	EPA 8260	< 5	ug/Kg	4375

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Order No.: P0463

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Isopropylbenzene	EPA 8260	< 5	ug/Kg	4375
4-Isopropyltoluene	EPA 8260	< 5	ug/Kg	4375
Methylene Chloride	EPA 8260	< 20	ug/Kg	4375
Naphthalene	EPA 8260	< 20	ug/Kg	4375
n-Propylbenzene	EPA 8260	< 5	ug/Kg	4375
Styrene	EPA 8260	< 5	ug/Kg	4375
1,1,1,2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	4375
1.1.2.2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	4375
Tetrachloroethene	EPA 8260	< 5	ug/Kg	4375
Toluene	EPA 8260	< 5	ug/Kg	4375
1.2.3-Trichlorobenzene	EPA 8260	< 5	ug/Kg	4375
1.2.4-Trichlorobenzene	EPA 8260	< 5	ug/Kg	4375
1.1.1-Trichloroethane	EPA 8260	< 5	ug/Kg	4375
1.1.2-Trichloroethane	EPA .8260	< 5	ug/Kg	4375
Trichloroethene	EPA 8260	< 5	ug/Kg	4375
Trichlorofluoromethane	EPA 8260	· < 5	ug/Kg	4375
1.2.3-Trichloropropane	EPA 8260	< 5	ug/Kg	4375
1.2.4-Trimethylbenzene	EPA 8260	< 5	ug/Kg	4375
1.3.5-Trimethylbenzene	EPA 8260	< 5	ug/Kg	4375
Vinyl Chloride	EPA 8260	< 5	ug/Kg	4375
m.p-Xylenes	EPA 8260	< 5	ug/Kg	4375
o-Xylene	EPA 8260	< 5	ug/Kg	4375
Benzene	EPA 8260	< 2.5	ug/L	4559
Toluene	EPA 8260	< 2.5	ug/L	4559
Ethylbenzene	EPA 8260	< 2.5	ug/L	4559
m,p-Xylene	EPA 8260	< 2.5	ug/L	4559
o-Xylene	EPA 8260	< 2.5	ug/L	4559
Chlorobenzene	EPA 8260	< 2.5	ug/L	4559
1,2-Dichlorobenzene	EPA 8260	< 2.5	ug/L	4559
1,3-Dichlorobenzene	EPA 8260	< 2.5	ug/L	4559
1,4-Dichlorobenzene	EPA 8260	< 2.5	ug/L	4559
1,2-Dichloroethane (EDC)	EPA 8260	< 2.5	ug/L	4559
1,2-Dibromoethane (EDB)	EPA 8260	< 2.5	ug/L	4559
Bromobenzene	EPA 8260	< 2.5	ug/L	4559
Bromochloromethane	EPA 8260	< 2.5	ug/L	4559
Bromodichloromethane	EPA 8260	< 2.5	ug/L	4559
Bromoform	EPA 8260	< 2.5	ug/L	4559
Bromomethane	EPA 8260	< 2.5	ug/L	4559
n-Butylbenzene	EPA 8260	< 2.5	ug/L	4559
sec-Butyl Benzene	EPA 8260	< 2.5	uġ/L	4559
t-Butylbenzene	EPA 8260	< 2.5	ug/L	4559
Carbon Tetrachloride	EPA 8260	< 2.5	ug/L	4559
Chloroethane	EPA 8260	< 2.5	ug/L	4559
2-Chloroethylvinyl ether	EPA 8260	< 100	ug/L	4559

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 35

Order No.: P0463

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Chloroform	EPA 8260	< 2.5	ug/L	4559
Chloromethane	EPA 8260	< 2.5	ug/L	4559
2-Chlorotoluene	EPA 8260	< 2.5	ug/L	4559
4-Chlorotoluene	EPA 8260	< 2.5	ug/L	4559
1.2-Dibromo-3-Chloropropane	EPA 8260	< 5	ug/L	4559
Dibromochloromethane	EPA 8260	< 2.5	ug/L	4559
Dibromomethane	EPA 8260	< 2.5	ug/L	4559
Dichlorodifluoromethane	EPA 8260	< 2.5	ug/L	4559
1.1-Dichloroethane	EPA 8260	< 2.5	ug/L	4559
1.1-Dichloroethene	EPA 8260	< 2.5	ug/L	4559
cis-1,2-Dichloroethene	EPA 8260	< 2.5	ug/L	4559
trans-1,2-Dichloethene	EPA 8260	< 2.5	ug/L	4559
1.2-Dichloropropane	EPA 8260	< 2.5	ug/L	4559
1.3-Dichloropropane	EPA 8260	< 2.5	ug/L	4559
2.2-Dichloropropane	EPA 8260	< 2.5	ug/L	4559
1.1-Dichloropropene	EPA 8260	< 2.5	ug/L	4559
cis-1.3-Dichloropropene	EPA 8260	< 2.5	ug/L	4559
trans-1.3-Dichloropropene	EPA 8260	< 2.5	ug/L	4559
Hexachlorobutadiene	EPA 8260	< 2.5	ug/L	4559
Isopropylbenzene	EPA 8260	< 2.5	ug/L	4559
4-Isopropyltoluene	EPA 8260	< 2.5	ug/L	4559
Methylene Chloride	EPA 8260	< 2.5	ug/L	4559
Naphthalene	EPA 8260	< 25	ug/L	4559
n-Propylbenzene	EPA 8260	< 2.5	ug/L	4559
Styrene	EPA 8260	< 2.5	ug/L	4559
1,1,1,2-Tetrachloroethane	EPA 8260	< 2.5	ug/L	4559
1,1,2,2-Tetrachloroethane	EPA 8260	< 2.5	ug/L	4559
Tetrachloroethene	EPA 8260	< 2.5	ug/L	4559
1,2,3-Trichlorobenzene	EPA 8260	< 2.5	ug/L	4559
1,2,4-Trichlorobenzene	EPA 8260	< 2.5	ug/L	4559
1,1,1-Trichloroethane	EPA 8260	< 2.5	ug/L	4559
1,1,2-Trichloroethane	EPA 8260	< 2.5	ug/L	4559
Trichloroethene	EPA 8260	< 2.5	ug/L	4559
Trichlorofluoromethane	EPA 8260	< 2.5	ug/L	4559
1,2,3-Trichloropropane	EPA 8260	< 2.5	ug/L	4559
1,2,4-Trimethylbenzene	EPA 8260	< 2.5	uġ/L	4559
1,3,5-Trimethylbenzene	EPA 8260	< 2.5	ug/L	4559
Vinyl Chloride	EPA 8260	< 2.5	ug/L	4559
Acenaphthene	EPA 8270 SIM	< 10	ug/Kg	3962
Acenaphthylene	EPA 8270 SIM	< 10	ug/Kg	3962
Anthracene	EPA 8270 SIM	< 10	ug/Kg	3962
Benz [a] anthracene	EPA 8270 SIM	< 10	ug/Kg	3962
Benzo[a]pyrene	EPA 8270 SIM	< 10	ug/Kg	3962
Benzo[b]fluoranthene	EPA 8270 SIM	< 10	ug/Kg	3962

Quality Control Results

Page 36

Order No.: P0463

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
	,			
Benzo[ghi]perylene	EPA 8270 SIM	< 10	ug/Kg	3962
Benzo[k]fluoranthene	EPA 8270 SIM	< 10	ug/Kg	3962
Chrysene	EPA 8270 SIM	< 10	ug/Kg	3962
Dibenz[a,h]anthracene	EPA 8270 SIM	< 10	ug/Kg	3962
Fluoranthene	EPA 8270 SIM	< 10	ug/Kg	3962
Fluorene	EPA 8270 SIM	< 10	ug/Kg	3962
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	< 10	ug/Kg	3962
Naphthalene	EPA 8270 SIM	< 10	ug/Kg	3962
Phenanthrene	EPA 8270 SIM	< 10	ug/Kg	3962
Pyrene	EPA 8270 SIM	< 10	ug/Kg	3962
Antimony	EPA 6020	< 0.4	mg/Kg	4203
Arsenic	EPA 6020	< 0.4	mg/Kg	4203
Barium	EPA 6020	< 0.4	mg/Kg	4203
Beryllium	EPA 6020	< 0.4	mg/Kg	4203
Cadmium	EPA 6020	< 0.4	mg/Kg	4203
Chromium	EPA 6020	< 0.4	mg/Kg	4203
Cobalt	EPA 6020	< 0.4	mg/Kg	4203
Copper	EPA 6020	< 0.4	mg/Kg	4203
Lead	EPA 6020	< 0.4	mg/Kg	4203
Molybdenum	EPA 6020	< 0.4	mg/Kg	4203
Nickel	EPA 6020	< 0.4	mg/Kg	4203
Selenium	EPA 6020	< 0.5	mg/Kg	4203
Silver	EPA 6020	< 0.4	mg/Kg	4203
Thallium	EPA 6020	< 0.4	mg/Kg	4203
Vanadium	EPA 6020	< 0.4	mg/Kg	4203
Zinc	EPA 6020	< 4	mg/Kg	4203

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
Marcury	FDA 7471	 00%		ma/Ka		4091
TPH as Diesel, SGT	EPA 8015/LUFT	56%	5.0	mg/L	50 - 150	4229
TPH as Diesel, SGT	EPA 8015/LUFT	56%	250	mg/Kg	50 - 150	4227
TPH as Gasoline	EPA 8015/LUFT	92%	0.2	mg/L	60 - 140	4224
TPH as Gasoline	EPA 8015/LUFT	72%	5.0	mg/Kg	60 - 140	4223
Benzene	EPA 8260	92%	100	ug/Kg	60 - 140	4375
Chlorobenzene	EPA 8260	98%	100	ug/Kg	60 - 140	4375
1,1-Dichloroethene	EPA 8260	74%	100	ug/Kg	60 - 140	4375
Toluene	EPA 8260	97%	100	ug/Kg	60 - 140	4375
Trichloroethene	EPA 8260	95%	100	ug/Kg	60 - 140	4375
Benzene	EPA 8260	119%	50	üğ/L	80 - 120	4559
Toluene	EPA 8260	136%	50	ug/L	80 - 120	4559
Chlorobenzene	EPA 8260	121%	50	ug/L	80 - 120	4559

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 37

Order No.: P0463

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
1,1-Dichloroethene	EPA 8260	82%	50	ug/L	80 - 120	4559
Trichloroethene	EPA 8260	107%	50	ug/L	80 - 120	4559
Acenaphthene	EPA 8270 SIM	96%	67	ug/Kg	31 - 137	3962
Acenaphthylene	EPA 8270 SIM	66%	67	ug/Kg	26 - 119	3962
Anthracene	EPA 8270 SIM	78%	67	ug/Kg	44 - 110	3962
Benz [a] anthracene	EPA 8270 SIM	97%	67	ug/Kg	38 - 116	3962
Benzo [a] pyrene	EPA 8270 SIM	81%	67	ug/Kg	36 - 121	3962
Benzo[b]fluoranthene	EPA 8270 SIM	70%	67	ug/Kg	37 - 129	3962
Benzo[ghi]perylene	EPA 8270 SIM	94%	67	ug/Kg	31 - 128	3962
Benzo[k]fluoranthene	EPA 8270 SIM	91%	67	ug/Kg	36 - 135	3962
Chrysene	EPA 8270 SIM	85%	67	ug/Kg	38 - 128	3962
Dibenz[a,h]anthracene	EPA 8270 SIM	93%	67	ug/Kg	28 - 134	3962
Fluoranthene	EPA 8270 SIM	91%	67	ug/Kg	37 - 126	3962
Fluorene	EPA 8270 SIM	84%	67	ug/Kg	29 - 119	3962
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	94%	67	ug/Kg	25 - 125	3962
Naphthalene	EPA 8270 SIM	75%	67	ug/Kg	15 - 119	3962
Phenanthrene	EPA 8270 SIM	107%	67	ug/Kg	38 - 124	3962
Pyrene	EPA 8270 SIM	85%	67	ug/Kg	35 - 142	3962
Antimony	EPA 6020	50%	90	mg/Kg	10 - 120	4203
Arsenic	EPA 6020	85%	130	mg/Kg	60 - 140	4203
Barium	EPA 6020	101%	320	mg/Kg	60 - 140	4203
Beryllium	EPA 6020	106%	90	mg/Kg	60 - 140	4203
, Cadmium	EPA 6020	112%	66	mg/Kg	60 - 140	4203
Chromium	EPA 6020	96%	73	mg/Kg	60 - 140	4203
Cobalt	EPA 6020	100%	73	mg/Kg	60 - 140	4203
Copper	EPA 6020	96%	68	mg/Kg	60 - 140	4203
Lead	EPA 6020	105%	130	mg/Kg	60 - 140	4203
Molybdenum	EPA 6020	91%	49	mg/Kg	60 - 140	4203
Nickel	EPA 6020	99%	56	mg/Kg	60 - 140	4203
Selenium	EPA 6020	116%	160	mg/Kg	60 - 140	4203
Silver	EPA 6020	106%	100	mg/Kg	60 - 140	4203
Thallium	EPA 6020	111%	130	mg/Kg	60 - 140	4203
Vanadium	EPA 6020	89%	83	mg/Kg	60 - 140	4203
Zinc	EPA 6020	94%	180	mg/Kg	60 - 140	4203

Matrix Spike/Matrix Spike Duplicates

Analyte	Method	MS Rec.	MSD Rec.	. RPD	Matrix Sample	Spike Amount	Units	Recovery Limits	RPD Limit	Batch
Mercury	EPA 7471	86%	102%	17	08-c1246	0.8	mg/Kg	60 - 140	30	4091
TPH as Gasoline	EPA 8015/LUFT	120%	120%	0	08-c1240	0.2	mg∕L	60 - 140	30	4224
TPH as Gasoline	EPA 8015/LUFT	64%	68%	6	08-c1237	5.0	mg/Kg	50 - 150	30	4223
Acenaphthene	EPA 8270 SIM	79%	82%	4	08-01237	67	ug/Kg	31 - 137	30	3962
Acenaphthylene	EPA 8270 SIM	51%	52%	3	08-c1237	67	ug/Kg	26 - 119	30	3962

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 38

Order No.: P0463

Matrix Spike/Matrix Spike Duplicates

		MS	MSD		Matrix	Spike			RPD	
Analyte	Method	Rec.	Rec.	RPD	Sample	Amount	Units	Recovery Limits	Limit	Batch
Anthracene	EPA 8270 SIM	67%	66%	2	08-C1237	67	ug/Kg	44 - 110	30	3962
Benz [a] anthracene	EPA 8270 SIM	96%	87%	10	08-c1237	67	ug/Kg	38 - 116	30	3962
Benzo[a]pyrene	EPÅ 8270 SIM	70%	69%	2	08-C1237	67	ug/Kg	36 - 121	30	3962
Benzo[b]fluoranthene	EPA 8270 SIM	78%	66%	17	08-01237	67	ug/Kg	37 - 129	30	3962
Benzo[ghi]perylene	EPA 8270 SIM	81%	76%	6	08-C1237	67	ug/Kg	31 - 128	30	3962
Benzo[k] fluoranthene	EPA 8270 SIM	85%	82%	4	08-C1237	67	ug/Kg	36 - 135	30	3962
Chrysene	EPA 8270 SIM	73%	73%	0	08-C1237	67	ug/Kg	38 - 128	30	3962
Dibenz[a,h]anthracene	EPA 8270 SIM	79%	81%	2	08-C1237	67	ug/Kg	28 - 134	30	3962
Fluoranthene	EPA 8270 SIM	82%	79%	4	08-C1237	67	ug/Kg	37 - 126	30	3962
Fluorene	EPA 8270 SIM	76%	76%	0	08-C1237	67	ug/Kg	29 - 119	30	3962
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	81%	81%	0	08-C1237	67	ug/Kg	25 - 125	30	3962
Naphthalene	EPA 8270 SIM	24%	33%	32	08-01237	67	ug/Kg	15 - 119	<u>,</u> 30	3962
Phenanthrene	EPA 8270 SIM	103%	103%	0	08-c1237	67	ug/Kg	38 - 124	30	3962
Pyrene	EPA 8270 SIM	79%	76%	4	08-01237	67	ug/Kg	35 - 142	36	3962
Antimony	EPA 6020	103%	104%	0	08-C1310	50	mg/Kg	10 - 120	30	4203
Arsenic	EPA 6020	94%	93%	1	08-c1310	50	mg/Kg	60 - 140	30	4203
Barium	EPA 6020	93%	93%	1	08-01310	50	mg/Kg	60 - 140	30	4203
Beryllium	EPA 6020	97%	97%	0	08-C1310	50	mg/Kg	60 - 140	30	4203
Cadmium	EPA 6020	105%	105%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Chromium	EPA 6020	97%	97%	0	08-c1310	50	mg/Kg	60 - 140	30	4203
Cobalt	EPA 6020	97%	97%	0	08-C1310	50	mg/Kg	60 - 140	30	4203
Copper	EPA 6020	102%	102%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Lead	EPA 6020	99%	99%	1	08-01310	50	mg/Kg	60 - 140	30	4203
Molybdenum	EPA 6020	95%	96%	1	08-01310	50	mg/Kg	60 - 140	30	4203
Nickel	EPA 6020	100%	100%	0	08-C1310	50	mg/Kg	60 - 140	30	4203
Selenium	EPA 6020	104%	104%	0	08-C1310	200	mg/Kg	60 - 140	30	4203
Silver	EPA 6020	98%	99%	1	08-C1310	50	mg/Kg	50 - 130	30	4203
Thallium	EPA 6020	97%	99%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Vanadium	EPA 6020	99%	95%	2	08-C1310	50	mg/Kg	60 - 140	30	4203
Zinc	EPA 6020	114%	116%	2	08-C1310	50	mg/Kg	60 - 140	30	4203

Sample Duplicate

Analyte	Method	Sample ID	Sample Value	Sample Duplicate	RPD	Units	RPD Limit	Batch
TPH as Diesel, SGT	EPA 8015/LUFT	kv:LCS	2.8	3.2	13	mg/L	30.	4229
Benzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Bromobenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Bromochloromethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Bromodichloromethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Bromoform	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Bromomethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	50.	4375
t-Butylbenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 39

Order No.: P0463

Sample Duplicate

,			Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
n-Butylbenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
sec-Butyl Benzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Carbon Tetrachloride	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Chlorobenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Chloroethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	50.	4375
2-Chloroethylvinyl ether	EPA 8260	08-C1234	< 20	< 20	0	ug/Kg	50.	4375
Chloroform	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Chloromethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	50.	4375
2-Chlorotoluene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
4-Chlorotoluene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,2-Dibromo-3-Chloropropane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	40.	4375
Dibromochloromethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Dibromomethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,2-Dibromoethane (EDB)	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Dichlorodifluoromethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	50.	4375
1,2-Dichlorobenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,3-Dichlorobenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,4-Dichlorobenzene	EPA 8260	08-C1234	17	10	52	ug/Kg	30.	4375
1,1-Dichloroethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,2-Dichloroethane (EDC)	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,1-Dichloroethene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
cis-1,2-Dichloroethene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
trans-1,2-Dichloethene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,2-Dichloropropane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,3-Dichloropropane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
2,2-Dichloropropane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,1-Dichloropropene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
cis-1,3-Dichloropropene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
trans-1,3-Dichloropropene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Ethylbenzene	EPA 8260	08-C1234 .	< 5	< 5	0	ug/Kg	30.	4375
Hexachlorobutadiene 🔍	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	40.	4375
Isopropylbenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
4-Isopropyltoluene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Methylene Chloride	EPA 8260	08-C1234	< 20	< 20	0	ug/Kg	40.	4375
Naphthalene	EPA 8260	08-C1234	< 20	< 20	0	ug/Kg	40.	4375
n-Propylbenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Styrene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,1,1,2-Tetrachloroethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,1,2,2-Tetrachloroethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Tetrachloroethene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
Toluene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,2,3-Trichlorobenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,2,4-Trichlorobenzene	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
1,1,1-Trichloroethane	EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 40

Order No.: P0463

Sample Duplicate

		Sample	Sample				D . 4 . h
Method	Sample ID	Value	Duplicate	RPD	Units		Batcu
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	50.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	40.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	50.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
EPA 8260	08-C1234	< 5	< 5	0	ug/Kg	30.	4375
EPA 8270 SIM	08-0835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-0835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	. 30.	3962
EPA 8270 SIM	08-0835	< 10	< 10 ·	0	ug/Kg	30.	3962
EPA 8270 SIM	08-0835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-0835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-0835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10 ·	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 8270 SIM	08-C835	< 10	< 10	0	ug/Kg	30.	3962
EPA 6020	08-C1311	63	63	0	mg/Kg	30.	4203
	Method EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8260 EPA 8270 EPA 8270 SIM EPA 8270 SIM	MethodSample IDEPA 826008-C1234EPA 8270SIMBPA 8270SIM08-C835EPA 8270SIM08-C835 <td>Method Sample ID Value EPA 8260 08-C1234 < 5</td> EPA 8260 08-C1234 < 5	Method Sample ID Value EPA 8260 08-C1234 < 5	Method Sample ID Value Duplicate EPA 8260 08-C1234 < 5	Method Sample ID Value Duplicate RPD EPA 8260 08-C1234 < 5	Sample Sample Sample Method Sample ID Value Duplicate RPD Units EPA 8260 08-C1234 < 5	Sample Sample Duplicate RPD Units RPD Limit EPA 8260 08-C1234 < 5

3232239500

AMERICAN SCIENTIFIC

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Ordered	By

Project ID: P0463 Project Name:

Enclosed are the results of analyses on 2 samples analyzed as specified on attached chain of custody.

Laboratory Manager

Rojert G. Araghi Laboratory Director

AMERICAN SCIENTIFIC

PAGE 03/03

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Las Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered	By
---------	----

Attn:

Telephone: (805)545-9838

Orval Osborne

Page:	2	Ϋ́,		
Project ID:	P0463			
		36771	01/29/2008	CREEK

Method: 8082, Polychlorinated Biphenyls(PCBs) by Gas Chromatography

QC Batch No: 020108-1

T We would the Hour would all	3 Mild Stephen mild pelocodi C.C.	Paul Alexander ale and a local state	See Boundated when Stear Strip		in the first state of the second
	SB-25-2(1233	SB-26-9.5(12		· .	
)	39)			
	01/22/2008	01/22/2008			
	01/30/2008	01/30/2008			
	02/01/2008	02/01/2008			
	Soil	Soil	1		
	ug/kg	ug/kg			
	1	1 :			
BOLL STREET					na sena frei a ran anna 1 ann 1 anna 1 anna 1 anna 1 anna 1 anna 1 1 anna 1 anna 1 anna 1 1 anna 1 anna 1 anna 1 1 anna 1 anna 1 1 ann 1 1 ann 1 1 ann 1 1 ann 1 1 ann 1 1 ann
33.00	ND	ND			
67.00	ND	ND	<u> </u>		
33,00	MD	ND			
33.00	ND	ND			
33.00	ND	ND	· · ·		
33,00	ND	ND			
33,00	ND	ND		_	
	BOIM 33.00 67.00 33.00 33.00 33.00 33.00 33.00	SB-25-2(1233) 01/22/2008 01/30/2008 01/30/2008 02/01/2008 02/01/2008 Soil ug/kg 1 HOHERTING 33.00 ND 33.00 ND	SB-25-2(1233 SB-26-9.5(12) 39) 01/22/2008 01/22/2008 01/30/2008 01/30/2008 02/01/2008 02/01/2008 Soil Soil Ug/kg Ug/kg 1 1 HOLL ND 33.00 ND	SB-25-2(1233 SB-26-9.5(12)) 39) 01/22/2008 01/22/2008 01/30/2008 01/30/2008 02/01/2008 02/01/2008 Soil Soil ug/kg ug/kg 1 1 POIL POIL 33.00 ND 33.00 ND	SB-25-2(1233 SB-26-9.5(12) 39) 01/22/2008 01/22/2008 01/30/2008 01/30/2008 01/30/2008 01/30/2008 02/01/2008 02/01/2008 Soil Soil ug/kg ug/kg 1 1 S3.00 ND 33.00 ND

Gur Lan LD		nn - Angele an Angelen an Angelen An Marin an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an Angelen an	H 212 (63)			
Sherees			Rec 1	% Rec		
Surrounte Percent Recovery	Territoria and a second start an					
Decachlorobiphenyl		43-169	112	88		

QUALITY CONTROL REPORT

QC Batch No: 020108-1 LCS LCS DUP LCS RPD LCS/LCSD LCS RPD % REC % REC % REC % Limit % Limît unalities! 2.6 39-150 <30 116 119 Aroclor-1260 (PCB-1260)

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits	
08 01270	 //375	EDA 8260	Dibromofluoromethane	140.	80-130	
08-01230	4375	EPA 8260	Toluene-d8	94.	70-126	
08-01230	4,375	EPA 8260	4-BFB	64.	57-124	
08-01230	5773	EPA 8015M (C12-C40)	Hexacosane	80	50-150	
08-01232	/375	EPA 8260	Dibromofluoromethane	106.	80-130	
08-01232	4375	EPA 8260	Toluene-d8	118.	70-126	· / · ·
08-01232	4375	EPA 8260	4-BFB	85.	57-124	
08-01232	5773	EPA 8015M (C12-C40)	Hexacosane	69.	50-150	
08-01234	4375	EPA 8260	Dibromofluoromethane	109.	80-130	
08-01234	4375	EPA 8260	Toluene-d8	134.	70-126	e de la companya de l
08-01234	4375	EPA 8260	4-BFB	93.	57-124	
08-01235	5773	EPA 8015M (C12-C40)	Hexacosane	73.	50-150	
08-01235	3962	EPA 8270	Pyrene-d10	78.	26-127	
08-01236	4375	EPA 8260	Dibromofluoromethane	108.	80-130	e la c
08-01236	4375	EPA 8260	Toluene-d8	121.	70-126	•
08-01236	4375	EPA 8260	4-BFB	90.	57-124	
08-01237	5773	EPA 8015M (C12-C40)	Hexacosane	73.	50-150	en de la companya de En la companya de la c
08-01237	3962	FPA 8270	Pyrene-d10	66.	26-127	· · ·
08-01237	4223	FPA 8015M (Gasoline)	a.a.a-Trifluorotoluene	105.	50-150	
08-01238	4559	EPA 8260	Dibromofluoromethane	109.	81-123	· · ·
08-01238	4559	EPA 8260	Toluene-d8	108.	78-116	
08-01238	4559	EPA 8260	4-BFB	65.	60-116	
08-01238	5775	FPA 8015M (C12-C40)	Hexacosane	75.	50-150	
08-01230	4375	EPA 8260	Dibromofluoromethane	102.	80-130	
08-01239	4375	EPA 8260	Toluene-d8	101.	70-126	
08-01239	4375	EPA 8260	4-BFB	92.	57-124	· ·
08-01239	5773	EPA 8015M (C12-C40)	Hexacosane	88.	50-150	
08-01239	3962	EPA 8270	Pyrene-d10	73.	26-127	•
08-01259	4559	EPA 8260	Dibromofluoromethane	107.	81-123	
08-01240	4559	FPA 8260	Toluene-d8	108.	78-116	:
08-01240	4559	FPA 8260	4-BFB	62.	60-116	
08-01240	5775	EPA 8015M (C12-C40)	Hexacosane	77.	50-150	
08-01240	4224	FPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	108.	50-150	
08-01240	4559	FPA 8260	Dibromofluoromethane	106.	81-123	
08-01241	4559	FPA 8260	Toluene-d8	105.	78-116	
08-01241	4418	EPA 8260	4-BFB	77.	60-116	· ·
08-01241	5775	EPA 8015M (C12-C40)	Hexacosane	76.	50-150	· · · · · · · · · · · · · · · · · · ·
08-01241	4224	FPA 8015M (Gasoline)	a.a.a-Trifluorotoluene	105.	50-150	
08-01241	4559	FPA 8260	Dibromofluoromethane	102.	81-123	
08-01242	4559	EPA 8260	Toluene-d8	113.	78-116	
08-01242	4550	EPA 8260	4-BFB	61.	60-116	
blank	4550	EPA 8260	Dibromofluoromethane	108.	81-123	
LCS	4559	EPA 8260	Dibromofluoromethane	105.	81-123	
hlenk	4550	FPA 8260	Toluene-d8	124.	78-116	· .
	4550	FPA 8260	Toluene-d8	107.	78-116	•
hlank	4550	FPA 8260	4-BFB	67.	60-116	•
DUCIN	757	2.7. 0200				
CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
LCS	4559	EPA 8260	4-BFB	64.	60-116
blank	4375	EPA 8260	Dibromofluoromethane	110.	80-130
LCS	4375	EPA 8260	Dibromofluoromethane	103.	80-130
08-C1234 dup.	4375	EPA 8260	Dibromofluoromethane	104.	80-130
blank	4375	EPA 8260	Toluene-d8	101.	70-126
LCS	4375	EPA 8260	Toluene-d8	100.	70-126
08-C1234 dup.	4375	EPA 8260	Toluene-d8	112.	70-126
blank	4375	EPA 8260	4-BFB	97.	57-124
LCS	4375	EPA 8260	4-BFB	97.	57-124
08-C1234 dup.	4375	EPA 8260	4-BFB	93.	57-124
blank	5773	EPA 8015M (C12-C40)	Hexacosane	75.	50-150
blank	3962	EPA 8270	Pyrene-d10	74.	26-127
LCS	3962	EPA 8270	Pyrene-d10	86.	26-127
08-C835 dup.	3962	EPA 8270	Pyrene-d10	74.	26-127
08-C1237 MS	3962	EPA 8270	Pyrene-d10	67.	26-127
08-C1237 MSD	3962	EPA 8270	Pyrene-d10	73.	26-127
blank	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	106.	50-150
LCS	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	105.	50-150
08-C1240 MS	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	111.	50-150
08-C1240 MSD	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	113.	50-150
blank	4223	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	99.	50-150
LCS	4223	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	105.	50-150
08-C1237 MS	4223	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	106.	50-150
08-C1237 MSD	4223	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	105.	50-150

CHAIN-O	F-CUSTO	DDY REC	ORD						. \ 		: 					<u> </u>	H) 4	1 b	2	· · ·		C)Al	K	<u>11</u>	67	0	
PROJECT	NAME:	,C46	Oahli	mb	Ge	n	<u>nl</u>	on	5 <u>m</u>	ret	Non	Ya	-1	. · ·					ATE:	1/	77	10	8	P	AGE	-1	OF	<u> </u>	
	\$. 007				LABO	Cr	ex	- /	s	.M+	ice l'			IN:	<u></u>					GREG		EINT 5		:					
RESULTS TO:	ionath	an st	cong gy s		LABO	RATOP		RESS:							· .														
URNAROUND T	IME: Stor	~ Jar	Y								ĺ		···· ·																
AMPLE SHIPME	NT METHOD:				LABO	RATO	RY CON	TACT:				•				11		G	EOTRAC	KER RI	EQUIRE	D		1		YES		NO	
					LABO	RATO	RY PHO	NE NUM	BER:					-				s	TE SPEC	VEIC G									
-	-Dala						N.	£	` Α	NA	IYS	FS			ş,									ĺ					
SAMPL	FMY S				0	\mathbf{T}	100	13	ि												6								
Nº P		6 111	117		20	50	2	38	2	4											N),		ø			so			
1	1 100	o un	N		8	°€ X	25	3	1-1-	-2				ļ							r ot		Tyr			ainer			
		· · · · · · · · · · · · · · · · · · ·			3	-4	-15	5 2		12	-										N, N	_	vativ			Cont			
-	TIME	SAI			3	ボ	ľ.	18	12	th											bor (S)	tered	esen	oled	S/MS	. of (AD	DITION	JAL
		UNI			<u> -</u>	=	F			F						- 3				. Lon	й Х	Ē	when	ان ا	Ĭ	Ž			-1-S
1/22/08	0945	58-2	3-7		X	- 66			ļ						<u> </u>	U	40 m	. ()	V UN+		51	NK	climit	ωY	\mathcal{N}	13	ľ	<u>130</u>	H
<u> </u>	0950	58-2	3-8			Z.	X		1						-		3''5	ee	m				-	1-1-	11		1.	231	
	1015	5B-2	4-3		X	X	X									4)mIVO	A/	6 51	lari	-		set be			4	1	232	-A
	1735	50-7	25-2						X	X				i			ç 11 5	-10	int				يو السب			1-	12	33	
	1315	SB-	25-10		X											ų	ام ()	VI	A				withing	,		3	Ĩ.	234	F
	137.5	CR-	25-11		ŕ		X	X									311 01	Pan				П				11	 1, '	235	
	1470	212	79 0	•			\sim			_							10 .	1	MA				with	re t		7	1-	126	A
	1930	- <u>5</u> - 57	6-9			X	v	V									64 <	1 00	101		1	V	2)0.000	V			1	237	4-
$\overline{}$	1133		<u>~ </u>			~					·			+) ~~				-	<u> </u>						
				·										<u> </u>						.	<u>.</u>								
							\checkmark			<u> </u>				_													,,_		•••
									+											-				<u>. .</u>					
				. <u> </u>	ļ						IA,			7						: 					-		•••	*	
					ļ					1	• 167		123	10	7				eni sezitt			-							
																	,		· •.						-	-			
												•																	-
RELINQU	JISHED E	BY:	DATE	TIME	RÉ	CE	IVED	BY:				DATE	тім	E	TOTAL N	NUMBER	OF CON	ITAIN	ERS:							17	C		
SIGNATURE	Noor	Will	1/-		SIG	NATL	JRE:	(11	1	/		the	9:1	5	SAMPLI	NG COM	MENTS:												
PRINTED NA	ME:	1 1. 10/0	1/2%	1800	PR	NTEC	NAME		10			<i>קברן</i>	Y	十		La		-p	L	/		<	5	./-	· · ·	CAD	1	Porn	
COMPANY:	new	WEDD			CO	NPAN	IY:	<u>"Dai</u>	æ			-		┢	/		/			74	pe_	 1	/	170	20	7	<u> </u>	rep	
SIGNATURE	200 M	ITIK_			SIG		JRE:	46							0	01.			0 .	0	-1-	1-		-7	7.		·······		<u></u>
PRINTED NA	ME		-		PRI	NTER	NAM	E:					·	┝	2		02	ter	si-)a	/ /	C	a/	-	P	ef.	n,č	<u>}</u>	
COMPANY			- ·					-						-					/		<u>۲ ا</u>			-	-			201	
COMPANY:			<u> </u>										ļ																
SIGNATURE	:				SIG	NATL	JRE:							ĺ	210)1 We	bster S	Stree	et, 12	th F	loor	.	-						
PRINTED NA	ME:].		PRI	NTED	D NAM	Ε:							Oal	kland,	Califo	rnia	946 ⁻	12-3	066			\sim	₿(Ge	om	atr	ix
00110110					CO	MPAN	VY:							-	Fel 51	0.663	.4100	Fa	x 510).663	3.414	41				-			

1

CHAIN-OF-CUSTODY RECORD			PO1463 0	AK 10641
PROJECT NAME: PG &F Dat Can	eral Canst Yard		DATE: 123 08	PAGE) OF)
PROJECT NUMBER: 13045 007	LABORATORY NAME:	CLIENT INFORMATION:	REPORTING REQUIREMENTS:	
RESULTS TO: To allow Skap as	LABORATORY ADDRESS:			······································
TURNAROUND TIME:				
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT:	~		
	LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED	YES NO
	*		SITE SPECIFIC GLOBAL ID NO.	<u>1 1 1 </u>
SAMPLERS/ (SIGNATURE):		YSES		
Mund Cart water make	8260 B Mo 8015N 8270 C 8270 C 808 2 15 6010 B		Water (W),), or Other (O) ative Type	ontainers
DATE TIME SAMPLE NUMBER	VOC. PAHS PAHS Press	CON TYPE		
1/23/08 1000 SB-24-GW-12-16	X	40~w	L VOAS WN HOL	× N3 1238 Ar
		1-6	amper WN -	YNI
1600 58-26-95			UDAS S - NazHSDY	YN3 17394 7
			Sticlesus C -	YNI O
1/40 58 - 21 - (1)-7-12				V N 2 12400
10-10-55-26-GN-7-12				IN I INTOFT
			amber WN -	
1670 38-35-GN- +-12		40.0	NE VORS W N HOI	TNS ING AT
			ML VOAS WN ITCI	
			amber WN -	IN I DID AD
V - Trip Blank		40-w	AL VOHS WNHC	YN2124-16
				<u> </u>
		╈╪╪╪╪╪		
		11/22/02		
		1 1 1 00	····	
RELINQUISHED BY: DATE TIME	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CON	ITAINERS:	24
SIGNATURE: Matt Wight	SIGNATURE	1/23/9:15 SAMPLING COMMENTS:		
PRINTED NAME: Mat Webb \$278 800	PRINTED NAME GOM	* For TP	Hd. mp : Silira	all prep
COMPANY:	COMPANY		1 1	
SIGNATURE:	SIGNATURE:	20/1.12	der Sal 1 Call	Thernigt
PRINTED NAME:	PRINTED NAME:		y in fail	voic pr
COMPANY:	COMPANY:		<u> </u>	· · · · · · · · · · · · · · · · · · ·
SIGNATURE:	SIGNATURE:			
PRINTED NAME:	PRINTED NAME:	2101 Webster S	street, 12th Floor	
•			1111a 34012-3000	🗠 Geomatrix 👘

Alter.

— A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1293 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
SB-29-GW-11-16	Matt Webb		01/24/0	8a10:40	Aqueous			122220
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08		422
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dichloroethane (EDC)	1.3	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	···· · · · · · · · ·	432
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
t-Butylbenzene	Not Detected	0.5	1 · ,	ug/L	EPA 8260	02/07/08		432
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/07/08		432
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chloromethane	Not Detected	0,5	······································	ug/L	EPA 8260	02/07/08	···· · ·····	432
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432

---- A Minority-owned Business Enterprise --

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1293 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date a	Time	Matrix		
======================================	Matt Webb		01/24/08	8@10:40	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batc Prepared
1.2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	02/07/08	432
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	. 432
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1.1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1.1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
cis-1.2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
trans-1.2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
2 2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
cis-1 3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
trans-1 3-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08	432
Heyechlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
I sopropyl benzene	Not Detected	0.5	1	ug/Ĺ	EPA. 8260	02/07/08	432
A-Isopropyltoluepe	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08	432
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Nanhthalona	Not Detected	5		ug/L	EPA 8260	02/07/08	432
n-Pronyl benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Styrono	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 1 1 2-Totrachloroethene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08	432
1 1 2 2-Totrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Tetrechleneethone	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 2 3 Trichlorobonzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1,2,5-11 Teleforobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1,2,4-Trichtorobenzene	Not Detected	0.5	·····	ug/L	EPA 8260	02/07/08	432
1.4.2-Inichloroothono	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Thich I oposthene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
I I I CII COL De LITERIE	HOL DELEGIEN		-				•

- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1293 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	•	Sampled Date ລ	Time	Matrix		
sB-29-GW-11-16	Matt Webb	Matt Webb			Aqueous	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bato Prepared
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	. 432

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

– A Minority-owned Business Enterprise –

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1294 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date a	Time	Matrix			
	Matt Webb		01/24/08	Ba11:30	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08		422
Benzene	Not Detected	0.5	- 1	ug/L	EPA 8260	02/07/08		432
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dichloroethane (EDC)	2.2	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432;
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4321
n-Butvlbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
t-Butvlbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4321
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
Chloroethane	Not Detected -	0.5	1	ug/L	EPA 8260	02/07/08		4327
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/07/08		4327
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
Chloromethane	Not Detected	0.5		ug/L	EPA 8260	02/07/08		4327
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327

– A Minority-owned Business Enterprise –

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1294 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix		
======================================	Matt Webb		01/24/08	8011:30	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bato Prepared
1.2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	02/07/08	432
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1.1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1.1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
cis-1.2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
trans-1.2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
2 2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
cis-1 3-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08	432
trans-1 3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Hexachl orobuitadiene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
4-Isopropyltaluene	Not Detected	0.5	· 1	ug/L	EPA 8260	02/07/08	432
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Nanhthal ene	Not Detected	5	1	ug/L	EPA 8260	02/07/08	437
n-Pronvi henzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Styrope	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 1 1 2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 1 2 2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Totrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1.2.3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1.2.4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
1 1 1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	431
1 1 2-Inichioroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432
Thichloroothene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	432

PRINTED ON RECYCLED PAPER

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan SkaggsLog Number: 08-C1294GeomatrixOrder: P04872101 Webster St.Project: 13045.007Oakland, CA 94612Received: 01/28/08Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled Sampled By Date a Time Ma 						
======================================	Matt Webb	Matt Webb			Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	 Method	Date Analyzed	Date Prepared	Batc
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2.3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.3.5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

--- A Minority-owned Business Enterprise ---

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1295 P0487 Order: 13045.007 Project: 01/28/08 Received: 02/11/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix					
======================================	Matt Webb		01/24/0	8a12:30	Aqueous			======		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batcł		
TPH as Diesel SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427:		
TPH as Motor Oil, SGT	0.32	0.1	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	4276		
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08		4224		
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Ethylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		4327		
m.p-Xvlene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
o-Xviene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
1 2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
1.3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
1.2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
1.2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4321		
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	•	4321		
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Bromomethane	Not Detected	0.5		ug/L	EPA 8260	02/07/08		4327		
n-Butyl benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
sec~Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
t-Butyl benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4321		
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Chloroethane	Not Detected	0.5	1	ug/L	-EPA 8260	02/07/08		4327		
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/07/08		4327		
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327		
2-Chlorotoluene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		4327		
4-Chlorotoluene	Not Detected	0.5	1 .	ug/L	EPA 8260	02/07/08		4327		
4-0110101010C0	Not Second	***		-						

----- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1295 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ຝ	Time	Matrix		
======================================	Matt Webb		01/24/0	8a12:30	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1 2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/Ĺ	EPA 8260	02/07/08	4327
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 1-Dichloroethane	Not Detected	0.5	. 1 ·	ug/L	EPA 8260	02/07/08	4327
1 1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
cis-1 2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
trans-1 2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 2-Dichloropropage	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08	4327
1 3-Dichloropropage	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4321
2 2-Dichloropropape	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 1-Dickloropropene	Not Detected	0.5	1 -	ug/L	EPA 8260	02/07/08	4327
cis-1 3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
trans-1 3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Hexach orobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Isopropyl benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
A - I sopropy to luepe	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Methylene Chloride	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08	4327
Nanhthalene	Not Detected	5	· · · · · · · · · · · · · · · · · · ·	ug/L	EPA 8260	02/07/08	4327
n-Bronyl benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 1 1 2-Tetrachloroethane	Not Detected	0.5	- 1	ug/L	EPA 8260	02/07/08	4327
1 1 2 2-Tetrachioroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4321
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 2 3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4321
1 2 4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 1 1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
1 1 2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	4327
Trichloroethene	Not Detected	0.5	2 1	ug/L	EPA 8260	02/07/08	4327

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C1295 Order: P0487 13045.007 Project: 01/28/08 Received: 02/11/08 Printed:

REPORT OF ANALYTICAL RESULTS

SB-31-GW-6-8 Matt Webb 01/24/08a12:30 Aqueous Analyte Result DLR Dilution Units Method Date Date Bate Analyte Result DLR Dilution Units Method Date Date Bate Trichlorofluoromethane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432	Sample Description	Sampled By		Sampled Date ລ	l Time	Matrix			
AnalyteResultDLRDilutionUnitsMethodDateDateBateFactorFactorAnalyzedPreparedTrichlorofluoromethaneNot Detected0.51ug/LEPA 826002/07/084321,2,3-TrichloropropaneNot Detected0.51ug/LEPA 826002/07/084321,2,4-TrimethylbenzeneNot Detected0.51ug/LEPA 826002/07/084321,3,5-TrimethylbenzeneNot Detected0.51ug/LEPA 826002/07/08432Vinyl ChlorideNot Detected0.51ug/LEPA 826002/07/08432	======================================	Matt Webb	Matt Webb			Aqueous			
Trichlorofluoromethane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432	Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 433 1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 433 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 433 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 433 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08 433	Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432	1.2.3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432	1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08 432	1.3.5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
	Vinyl Chloride	Not Detected	0.5	1.	ug/L	EPA 8260	02/07/08		432

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1296 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	l Time	Matrix			
sb-29-gw-32-38	Matt Webb		01/24/0	8a13:30	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Motor Oil, SGT	Not Detected	0.1	1	· mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/04/08		422
Benzene	Not Detected	0.5	.1	ug/L	EPA 8260	02/07/08		432
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
o-Xvlene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromochloromethane	Not Detected	0.5	1.	ug/L	EPA 8260	02/07/08		432
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
t-Butvlbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		432
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/07/08		432
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chloromethane	Not Detected	0.5	·· 1 ·	ug/L	EPA 8260	02/07/08		432
2-Chlorotoluene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		432
4-Chlorotoluene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		432

- A Minority-owned Business Enterprise -

141 SU

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1296 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
======================================	Matt Webb	Matt Webb (Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	02/07/08		432
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,3-Dichloropropane	Not Detected	0.5	· 1	ug/L	EPA 8260	02/07/08		432
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Hexachlorobutadiene	Not Detected	0.5	1.	ug/L	EPA 8260	02/07/08		432
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Naphthalene	Not Detected	5	· · · · · · · · · · · · · · · · · · ·	ug/L	EPA 8260	02/07/08		432
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,1,2,2-Tetrachloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		432
Tetrachloroethene	Not Detected	0.5	- 1	ug/L	EPA 8260	02/07/08		432
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2,4-Trichlorobenzene	Not Detected	0.5	: 1	ug/L	EPA 8260	02/07/08		432
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,1,2-Trichloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		432
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1296 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

SB-29-GW-32-38Matt Webb01/24/08@13:30AqueousAnalyteResultDLRDilutionUnitsMethodDateDateEFactorAnalyzedPreparedTrichlorofluoromethaneNot Detected0.51ug/LEPA 826002/07/081,2,3-TrichloropropaneNot Detected0.51ug/LEPA 826002/07/081,2,4-TrimethylbenzeneNot Detected0.51ug/LEPA 826002/07/081,3,5-TrimethylbenzeneNot Detected0.51ug/LEPA 826002/07/08Vinyl ChlorideNot Detected0.51ug/LEPA 826002/07/08	Sample Description	Sampled By		Sampled Date ର ୀ	lime	Matrix			
AnalyteResultDLRDilutionUnitsMethodDateDateDateEFactorFactorAnalyzedPreparedTrichlorofluoromethaneNot Detected0.51ug/LEPA 826002/07/081,2,3-TrichloropropaneNot Detected0.51ug/LEPA 826002/07/081,2,4-TrimethylbenzeneNot Detected0.51ug/LEPA 826002/07/081,3,5-TrimethylbenzeneNot Detected0.51ug/LEPA 826002/07/08Vinyl ChlorideNot Detected0.51ug/LEPA 826002/07/08	sB-29-GW-32-38	Matt Webb		01/24/08	3@13:30	Aqueous			
Trichlorofluoromethane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08	Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Bato
1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 02/07/08 1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08	Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Not Detected 0.5 1 ug/L EPA 8260 02/07/08 1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08	1.2.3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 02/07/08 Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08	1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
VinyL Chloride Not Detected 0.5 1 ug/L EPA 8260 02/07/08	1.3.5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
	Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

------ A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1297 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date @	Time	Matrix			
======================================	Matt Webb		01/24/0	8a16:45	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batcl
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	427
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/05/08	01/31/08	4270
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	· · ·	432
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dichloroethane (EDC)	3.4	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
n-Butyl benzene	Not Detected	0.5	1.	ug/L	EPA 8260	02/07/08		432
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/07/08		432
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
2-Chlorotoluene	Not Detected	0.5		ug/L	EPA 8260	02/07/08	······································	432
4-Chiorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1.2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	02/07/08	-	432

----- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1297 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
sB-27-GW-11-16	Matt Webb		01/24/0	8@16:45	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batcl
Dibromochloromethane	Not Detected	0.5	. 1	ug/L	EPA 8260	02/07/08		432
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432;
1.1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432;
1.1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432;
cis-1.2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
trans-1.2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1.3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
2.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1.1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
cis-1.3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
trans-1,3-Dichloropropene	Not Detected	0.5	· 1	ug/L	EPA 8260	02/07/08		4327
Hexachlorobutadiene	Not Detected	0.5	1,	ug/L	EPA 8260	02/07/08		4327
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432;
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	02/07/08		4327
n-Propylbenzene	Not Detected	0.5	· · · · 1··	ug/L	EPA 8260	02/07/08		4327
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1.1.1.2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1,1.2.2-Tetrachloroethane	Not Detected	0.5	1 .	ug/L	EPA 8260	02/07/08		4327
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1,2,3-Trichlorobenzene	Not Detected	0.5	1 .	ug/L	EPA 8260	02/07/08		4327
1.2.4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1.1.1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08	· · · · · · · · · · · · · · · · · · ·	4327
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		4327

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 15

Jonathan	Skag	jgs	
Geomatriz	ĸ		
2101 Webs	ster	St.	
Oakland,	CA	94612	

Log Number: 08-C1297 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	•	Sampled Date ຝ	Time	Matrix			
sB-27-GW-11-16	Matt Webb			======================================	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/07/08		432
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8260/LUFT	02/07/08		432

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

- A Minority-owned Business Enterprise -141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C1298 P0487 Order: 13045.007 Project: Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ຝ	Tîme	Matrix			
======================================	Matt Webb	Matt Webb			Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batcl
	Not Detected	 ۵ ۵۵	1	ma/Ka	EPA 7471	01/31/08	01/30/08	409
Mercury	Not Detected	10	1	mg/Kg	EPA 8015/LUFT	02/05/08	02/04/08	427
TPH as Diesel, Sul	Not Detected	10	1	ma/Ka	EPA 8015/LUFT	02/05/08	02/04/08	4271
IPH as Motor Uit, Su	Not Detected	5	1	ua/Ka	EPA 8260	02/07/08		432!
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Brollopenzerie	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Bromocritoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Bromotorm	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Bromorothana	Not Detected	-5	1	ug/Kg	EPA 8260	02/07/08		432!
t-Rutyl benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432
n-Rutylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Carbon Tetrachloride	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Chloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
2-Chloroethylvinyl ether	Not Detected	20	1	ug/Kg	EPA 8260	02/07/08		432!
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
Chloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!
2-Chlorotoluene	Not Detected	· · ···· 5···	1	ug/Kg	EPA 8260	02/07/08		432!
4-Chlorotoluene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/07/08		432!
1 2-Dibromo-3-Chloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		4325
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		4325
Dibromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		4325
1 2-Dibromoethane (EDB)	Not Detected	. 5.	1	ug/Kg	EPA .8260	02/07/08		432
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		4325
1 2-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		4325
1 3-Dichlorobenzene	Not Detected	5	· • •	ug/Kg	EPA 8260	02/07/08		4325
1 4-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		4325
1.1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432!

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1298 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By Date			Matrix		
sB-28-7	Matt Webb	 Matt Webb		8a15:20	Solid		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batcl Prepared
1.2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
1.1-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
cis-1.2-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
trans-1.2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
1,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
1,3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
2.2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
1.1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
cis-1.3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
trans-1.3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
Ethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432:
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	02/07/08	432!
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/07/08	432!
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	4325
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
1.1.1.2-TetrachLoroethane	Not Detected	5	1 .	ug/Kg	EPA 8260	02/07/08	432!
1 1 2 2-TetrachLoroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432:
Tetrachloroethene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/07/08	432!
Toluene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432:
1 2 3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432!
1 2 4-Trichlorobenzene	Not Detected	5	. 1	ug/Kg	EPA 8260	02/07/08	432:
1 1 1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	432:
1 1 2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	4325
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	4325
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	4325
1.2.3-Trichloropropane	Not Detected	5	1 -	ug/Kg	EPA 8260	02/07/08	4325

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1298 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	•	Sampled Date ລ	Time	Matrix			•
sB-28-7	Matt Webb		01/24/0	8a15:20	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
1,2,4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432
1,3,5-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432
Vinyl Chloride	Not Detected	5	. 1	ug/Kg	EPA 8260	02/07/08		432
m,p-Xylenes	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08	•	432
o-Xylene	Not Detected	5	1	ug/Kg	EPA 8260	02/07/08		432
Acenaphthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Acenaphthylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Anthracene	Not Detected	10	• 1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Benz [a] anthracene	Not Detected	10	. 1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Benzo [a] pyrene	Not Detected	10	. 1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Benzo[b] fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Benzo[ghi]perylene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Benzo[k]fluoranthene	Not Detected	10	. 1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Chrysene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Dibenz[a,h]anthracene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Fluoranthene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Fluorene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Indeno[1,2,3-cd]pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Naphthalene	Not Detected	10 R	· · · · 1 ·	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Phenanthrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431'
Pyrene	Not Detected	10	1	ug/Kg	EPA 8270 SIM	02/06/08	02/05/07	431
Antimony	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420:
Arsenic	2.2	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420:
Barium	170	0.4	. 1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203
Beryllium	0.5	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Cadmium	Not Detected	0_4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420:
Chromium	42	0.4	· · · · · · · · · · · · · · · · · · ·	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Cobalt	14	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420.
Copper	11	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	4203

– A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C1298 Order: P0487 Project: 13045.007 Received: 01/28/08 Printed: 02/11/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
sb-28-7	Matt Webb	Matt Webb		8a15:20	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batc
Lead	5.6	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Molybdenum	Not Detected	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Nickel	39	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Selenium	Not Detected	0.5	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Silver	Not Detected	0.4	· 1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Thallium	Not Detected	Ò.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Vanadium	26	0.4	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420
Zinc	20	4.	1	mg/Kg	EPA 6020	02/04/08	01/30/08	420

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 20

Order No.: P0487 Laboratory Reagent Blank

Analyte	Method	Results	Units	Batch
Mercury	EPA 7471	< 0.04	mg/Kg	4091
TPH as Diesel, SGT	EPA 8015/LUFT	< 10	mg/Kg	4277
TPH as Diesel, SGT	EPA 8015/LUFT	< 0.05	mg/L	4275
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 0.1	mg/L	4276
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 10	mg/Kg	4278
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	4224
Benzene	EPA 8260	< 5	ug/Kg	4325
Bromobenzene	EPA 8260	< 5	ug/Kg	4325
Bromochloromethane	EPA 8260	< 5	ug/Kg	4325
Bromodichloromethane	EPA 8260	< 5	ug/Kg	4325
Bromoform	EPA 8260	< 5	ug/Kg	4325
Bromomethane	EPA 8260	< 5	ug/Kg	4325
t-Butylbenzene	EPA 8260	< 5	ug/Kg	4325
n-Butylbenzene	EPA 8260	< 5	ug/Kg	4325
sec-Butyl Benzene	EPA 8260	< 5	ug/Kg	4325
Carbon Tetrachloride	EPA 8260	< 5	ug/Kg	4325
Chlorobenzene	EPA 8260	< 5	ug/Kg	4325
Chloroethane	EPA 8260	< 5	ug/Kg	4325
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/Kg	4325
Chloroform	EPA 8260	< 5	ug/Kg	4325
Chloromethane	EPA 8260	< 5	ug/Kg	4325
2-Chlorotoluene	EPA 8260	< 5	ug/Kg	4325
4-Chlorotoluene	EPA 8260	< 5	ug/Kg	4325
1,2-Dibromo-3-Chloropropane	EPA 8260	< 5	ug/Kg	4325
Dibromochloromethane	EPA 8260	< 5	ug/Kg	4325
Dibromomethane	EPA 8260	< 5	ug/Kg	4325
1,2-Dibromoethane (EDB)	EPA 8260	< 5	ug/Kg	4325
Dichlorodifluoromethane	EPA 8260	< 5	ug/Kg	4325
1,2-Dichlorobenzene	EPA 8260	< 5	ug/Kg	4325
1,3-Dichlorobenzene	EPA 8260	< 5	ug/Kg	4325
1,4-Dichlorobenzene	EPA 8260	< 5	ug/Kg	4325
1,1-Dichloroethane	EPA 8260	< 5	ug/Kg	4325
1,2-Dichloroethane (EDC)	EPA 8260	< 5	ug/Kg	4325
1,1-Dichloroethene	EPA 8260	< 5	ug/Kg	4325
cis-1,2-Dichloroethene	EPA 8260	< 5	ug/Kg	4325
trans-1,2-Dichloethene	EPA 8260	< 5	ug/Kg	4325
1,2-Dichloropropane	EPA 8260	< 5	ug/Kg	4325
1,3-Dichloropropane	EPA 8260	< 5	ug/Kg	4325
2,2-Dichloropropane	EPA 8260	< 5	ug/Kg	4325
1,1-Dichloropropene	EPA 8260	- < 5	ug/Kg	4325
cis-1,3-Dichloropropene	EPA 8260	् < 5	ug/Kg	4325
trans-1,3-Dichloropropene	EPA 8260	< 5	ug/Kg	4525
Ethylbenzene	EPA 8260	< 5	ug/Kg	4525
Hexachlorobutadiene	EPA 8260	< 5	ug/Kg	4525
Isopropylbenzene	EPA 8260	< 5	ug/Kg	4525

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 21

Order No.: P0487

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
	0240			
4-Isopropyltoluene	EPA 6200	< 20	ug/kg	4325
Methylene Unioride	EPA 0200	< 20	ug/kg	4325
Naphthalene	EPA 0200	< 20 < F	ug/kg	4325
n-Propyl benzene	EPA 0200	< 5	ug/Kg	4325
Styrene	EPA 0200	< 5 < 5		4325
1,1,1,2-letrachloroethane	EPA 0200		ug/Kg	4325
1,1,2,2-letrachloroethane	EPA 0200	< 5 4 F	ug/kg	4323
letrachtoroethene	EPA 0200			4325
Toluene	EPA 8260	< 5	ug/kg	4323
1,2,3-Trichlorobenzene	EPA 8260	< 5	ug/kg	4325
1,2,4-Trichlorobenzene	EPA 8260	< 5	ug/kg	4323
1,1,1-Trichloroethane	EPA 8260	< 5	ug/kg	4327
1,1,2-Trichloroethane	EPA 8260	< 5	ug/kg	4323
Trichloroethene	EPA 8260	< 5	ug/Kg	4325
Trichlorofluoromethane	EPA 8260	< 5	ug/Kg	4323
1,2,3-Trichloropropane	EPA 8260	< 5	ug/Kg	4525
1,2,4-Trimethylbenzene	EPA 8260	< 5	ug/Kg	4525
1,3,5-Trimethylbenzene	EPA 8260	< 5	ug/Kg	4325
Vinyl Chloride	EPA 8260	< 5	ug/Kg	4325
m,p-Xylenes	EPA 8260	< 5	ug/Kg	4325
o-Xylene	EPA 8260	< 5	ug/Kg	4325
Benzene	EPA 8260	< 0.5	ug/L	4327
Toluene	EPA 8260	< 0.5	ug/L	4327
Ethylbenzene	EPA 8260	< 0.5	ug/L	4327
m,p-Xylene	EPA 8260	< 0.5	ug/L	4327
o-Xylene	EPA 8260	< 0.5	ug/L	4327
Chlorobenzene	EPA 8260	< 0.5	ug/L	4327
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	4327
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	4327
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	4327
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	4327
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	4327
Bromobenzene	EPA 8260	< 0.5	ug/L	4327
Bromochloromethane	EPA 8260	< 0.5	ug/L	4327
Bromodichloromethane	EPA 8260	< 0.5	ug/L	4327
Bromoform	EPA 8260	< 0.5	ug/L	4327
Bromomethane	EPA 8260	< 0.5	ug/L	4327
n-Butylbenzene	EPA 8260	< 0.5	ug/L	4327
sec-Butyl _Benzene-	EPA 8260	< 0.5	ug/L	4327
t-Butylbenzene	EPA 8260	< 0.5	ug/L	4327
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L	4327
Chloroethane	EPA 8260	< 0.5	ug/L	4327
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	4327
Chloroform	EPA 8260	< 0.5	ug/L	4327

Quality Control Results

Page 22

Order No.: P0487

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Chloromethane	EPA 0200	< 0.5	ug/L	4321
2-Chlorotoluene	EPA 0200	< 0.5	ug/L	4321
	EPA 0200	< 0.5	ug/t	4327
1,2-Dibromo-3-Chloropropane	EPA 0200			4327
Dibromochloromethane	EPA 0200	< 0.5		4321
Dibromomethane	EPA 0200	< 0.5	ug/t	4327
Dichlorodifluoromethane	EPA 0200	< 0.5	ug/L	4321
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L	4321
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L	4321
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	4321
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	4327
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	4327
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	4327
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	4327
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	4327
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4327
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4327
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	4327
Isopropylbenzene	EPA 8260	< 0.5	ug/L	4327
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	4327
Methylene Chloride	EPA 8260	< 0.5	ug/L	4327
Naphthalene	EPA 8260	< 5	ug/L	4327
n-Propylbenzene	EPA 8260	< 0.5	ug/L	4327
Styrene	EPA 8260	< 0.5	ug/L	4327
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4327
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4327
Tetrachloroethene	EPA 8260	< 0.5	ug/L	4327
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4327
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4327
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	4327
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	4327
Trichloroethene	EPA 8260	< 0.5	ug/L	4327
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	4327
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	4327
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4327
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4327
Vinyl Chloride	EPA 8260	< 0.5	ug/L	4327
Acenaphthene	EPA 8270 SIM	< 10	ug/Kg	4311
Acenaphthylene	EPA 8270 SIM	< 10	ug/Kg	4311
Anthracene	EPA 8270 SIM	< 10	ug/Kg	4311
Benz [a] anthracene	EPA 8270 SIM	< 10	ug/Kg	4311
Benzo[a] pyrene	EPA 8270 SIM	< 10	ug/Kg	4311
Benzo[b]fluoranthene	EPA 8270 SIM	< 10	ug/Kg	4311
Benzo[ghi]perylene	EPA 8270 SIM	< 10	ug/Kg	4311

– A Minority-owned Business Enterprise –

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 23

Order No.: P0487

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Benzo[k]fluoranthene	EPA 8270 SIM	< 10	ug/Kg	4311
Chrysene	EPA 8270 SIM	< 10	ug/Kg	4311
Dibenz[a,h]anthracene	EPA 8270 SIM	< 10	ug/Kg	4311
Fluoranthene	EPA 8270 SIM	< 10	ug/Kg	4311
Fluorene	EPA 8270 SIM	< 10	ug/Kg	4311
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	< 10	ug/Kg	4311
Naphthalene	EPA 8270 SIM	< 10	ug/Kg	4311
Phenanthrene	EPA 8270 SIM	< 10	ug/Kg	4311
Pyrene	EPA 8270 SIM	< 10	ug/Kg	4311
TPH as Gasoline	EPA 8260/LUFT	< 0.05	mg/L	4327
Antimony	EPA 6020	< 0.4	mg/Kg	4203
Arsenic	EPA 6020	< 0.4	mg/Kg	4203
Barium	EPA 6020	< 0.4	mg/Kg	4203
Beryllium	EPA 6020	< 0.4	mg/Kg	4203
Cadmium	EPA 6020	< 0.4	mg/Kg	4203
Chromium	EPA 6020	< 0.4	mg/Kg	4203
Cobalt	EPA 6020	< 0.4	mg/Kg	4203
Copper	EPA 6020	< 0.4	mg/Kg	4203
Lead	EPA 6020	< 0.4	mg/Kg	4203
Molybdenum	EPA 6020	< 0.4	mg/Kg	4203
Nickel	EPA 6020	< 0.4	mg/Kg	4203
Selenium	EPA 6020	< 0.5	mg/Kg	4203
Silver	EPA 6020	< 0.4	mg/Kg	4203
Thallium	EPA 6020	< 0.4	mg/Kg	4203
Vanadium	EPA 6020	< 0.4	mg/Kg	4203
Zinc	EPA 6020	< 4	mg/Kg	4203

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
Mercury	EPA 7471	90%	8.3	mg/Kg	56 - 148	4091
TPH as Diesel, SGT	EPA 8015/LUFT	54%	250	mg/Kg	50 - 150	4277
TPH as Diesel, SGT	EPA 8015/LUFT	56%	5.0	mg/L	50 - 150	4275
TPH as Diesel. SGT	EPA 8015/LUFT	64%	5.0	mg/L	50 - 150	4275
TPH as Gasoline	EPA 8015/LUFT	92%	0.2	mg/L	60 - 140	4224
Benzene	EPA 8260	114%	50	ug/Kg	60 - 140	4325
Chlorobenzene	EPA 8260	128%	50	ug/Kg	60 - 140	4325
1.1-Dichloroethene	EPA 8260	80%	50	ug/Kg	60 - 140 _	4325
Toluene	EPA 8260	122%	50	ug/Kg	60 - 140	4325
Trichloroethene	EPA 8260	112%	50	ug/Kg	60 - 140	4325
Benzene	EPA 8260	114%	10	ug/L	80 - 120	4327
Toluene	EPA 8260	146%	10	ug/L	80 - 120	4327
Chlorobenzene	EPA 8260	110%	10	ug/L	80 - 120	4327

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 24

Order No.: P0487

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
1,1-Dichloroethene	EPA 8260	89%	10	ug/L	80 - 120	4327
Trichloroethene	EPA 8260	123%	10	ug/L	80 - 120	4327
Acenaphthene	EPA 8270 SIM	61%	67	ug/Kg	31 - 137	4311
Acenaphthylene	EPA 8270 SIM	43%	67	ug/Kg	26 - 119	4311
Anthracene	EPA 8270 SIM	75%	67	ug/Kg	44 - 110	4311
Benz[a] anthracene	EPA 8270 SIM	88%	67	ug/Kg	38 - 116	4311
Benzo[a]pyrene	EPA 8270 SIM	67%	67	ug/Kg	36 - 121	4311
Benzo[b]fluoranthene	EPA 8270 SIM	88%	67	ug/Kg	37 - 129	4311
Benzo[ghi]perylene	EPA 8270 SIM	81%	67	ug/Kg	31 - 128	4311
Benzo[k]fluoranthene	EPA 8270 SIM	93%	67	ug/Kg	36 - 135	4311
Chrysene	EPA 8270 SIM	81%	67	ug/Kg	38 - 128	4311
Dibenz[a,h]anthracene	EPA 8270 SIM	87%	67	ug/Kg	28 - 134	4311
Fluoranthene	EPA 8270 SIM	87%	67	ug/Kg	37 - 126	4311
Fluorene	EPA 8270 SIM	78%	67	ug/Kg	29 - 119	4311
Indeno[1,2,3-cd]pyrene	EPA 8270 SIM	82%	67	ug/Kg	25 - 125	4311
Naphthalene	EPA 8270 SIM	13%	67	ug/Kg	15 - 119	4311
Phenanthrene	EPA 8270 SIM	94%	67	ug/Kg	38 - 124	4311
Pyrene	EPA 8270 SIM	84%	67	ug/Kg	35 - 142	4311
Antimony	EPA 6020	50%	90	mg/Kg	10 - 120	4203
Arsenic	EPA 6020	85%	130	mg/Kg	60 - 140	4203
Barium	EPA 6020	101%	320	mg/Kg	60 - 140	4203
Beryllium	EPA 6020	106%	90	mg/Kg	60 - 140	4203
Cadmium	EPA 6020	112%	66	mg/Kg	60 - 140	4203
Chromium	EPA 6020	96%	73	mg/Kg	60 - 140	4203
Cobalt	EPA 6020	100%	. 73	mg/Kg	60 - 140	4203
Copper	EPA 6020	96%	68	mg/Kg	60 - 140	4203
Lead	EPA 6020	105%	130	mg/Kg	60 - 140	4203
Molybdenum	EPA 6020	91%	49	mg/Kg	60 - 140	4203
Nickel	EPA 6020	99%	56	mg/Kg	60 - 140	4203
Selenium	EPA 6020	116%	160	mg/Kg	60 - 140	4203
Silver	EPA 6020	106%	100	mg/Kg	60 - 140	4203
Thallium	EPA 6020	111%	130	mg/Kg	60 - 140	4203
Vanadium	EPA 6020	89%	83	mg/Kg	60 - 140	4203
Zinc	EPA 6020	94%	180	mg/Kg	60 - 140	4203

Matrix Spike/Matrix Spike Duplicates

		MS	MSD		Matrix	Spike			RPD	
Analyte	Method	Rec.	Rec.	RPD	Sample	Amount	Units	Recovery Limits	Limit	Batch
	*********									1001
Mercury	EPA 7471	86%	102%	17	08-C1246	0.8	mg/Kg	60 - 140	50	4091
TPH as Gasoline	EPA 8015/LUFT	120%	120%	0	08-C1240	0.2	mg/L	60 - 140	30	4224
Benzene	EPA 8260	118%	114%	3	08-C1298	50	ug/Kg	50 - 150	30	4325
Chlorobenzene	EPA 8260	134%	128%	5	08-C1298	50	ug/Kg	50 - 150	30	4325
1,1-Dichloroethene	EPA 8260	84%	78%	7	08-C1298	50	ug/Kg	50 - 150	30	4325

A Minority-owned Business Enterprise A Minority-owned B Minority-owne

Quality Control Results

Page 25

Order No.: P0487

Matrix Spike/Matrix Spike Duplicates

		MS MSD M		Matrix	Spike			RPD		
Analyte	Method	Rec.	Rec.	RPD	Sample	Amount	Units	Recovery Limits	Limit	Batch
Toluene	EPA 8260	128%	124%	3	08-C1298	50	ug/Kg	50 - 150	30	4325
Trichloroethene	EPA 8260	114%	108%	5	08-01298	50	ug/Kg	50 - 150	30	4325
Benzene	EPA 8260	116%	116%	0	08-C1296	10	ug/L	70 - 130	20	4327
Toluene	EPA 8260	148%	149%	1	08-C1296	10	ug/L	70 - 130	20	4327
Chlorobenzene	EPA 8260	113%	112%	1	08-C1296	10	ug/L	70 - 130	20	4327
1.1-Dichloroethene	EPA 8260	84%	94%.	11	08-C1296	10	ug/L	70 - 130	20	4327
Trichloroethene	EPA 8260	126%	125%	1	08-C1296	10	ug/L	70 - 130	20	4327
Antimony	EPA 6020	103%	104%	0	08-C1310	50	mg/Kg	10 - 120	30	4203
Arsenic	EPA 6020	94%	93%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Barium	EPA 6020	93%	93%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Bervilium	EPA 6020	97%	97%	0	08-c1310	50	mg/Kg	60 - 140	30	4203
Cadmium	EPA 6020	105%	105%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Chromium	EPA 6020	97%	97%	0	08-C1310	50	mg/Kg	60 - 140	30	4203
Cobalt	EPA 6020	97%	97%	0	08-C1310	50	mg/Kg	60 - 140	30	4203
Copper	EPA 6020	102%	102%	1	08-01310	50	mg/Kg	60 - 140	30	4203
l ead	EPA 6020	99%	99%	1	08-c1310	50	mg/Kg	60 - 140	30	4203
Malybdenum	EPA 6020	95%	96%	1	08-C1310	50	mg/Kg	60 - 140	30	4203
Nickel	EPA 6020	100%	100%	0	08-C1310	50	mg/Kg	60 - 140	30	4203
Selenium	EPA 6020	104%	104%	0	08-C1310	200	mg/Kg	60 - 140	30	4203
Silver	EPA 6020	98%	99%	1	08-C1310	50	mg/Kg	50 - 130	30	4203
Thallium	EPA 6020	97%	99%	1	08-c1310	50	mg/Kg	60 - 140	30	4203
Vapadium	EPA 6020	99%	95%	2	08-C1310	50	mg/Kg	60 - 140	30	4203
Zinc	EPA 6020	114%	116%	2	08-C1310	50	mg/Kg	60 - 140	30	4203

Sample Duplicate

Analyte	Method	Sample ID	Sample Value	Duplicate	RPD	Units	RPD Limit	Batch
TDH as Diesel SGT	FPA 8015/LUFT	08-C1298	< 10	< 10	0	mg/Kg	30.	4277
TPH as Diesel, SGT	EPA 8015/LUFT	kv:LCS	2.8	3.2	13	mg/L	30.	4275
TPH as Motor Oil. SGT	EPA 8015/LUFT	08-C1298	< 10	< 10	Ó	mg/Kg	30.	4278
Vanadium	EPA 6020	08-C1311	63	63	0	mg/Kg	30.	4203
	in the second							

3232239500

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel; (323) 223-9700 Fax: (323) 223-9500

Ordered B	Y	
		Municerco: Percent Provide Manual Andrews
		CL/29/2008
Telephone	(805) 545-9820	
Attn	Orval Osborne	
		30772 01/29/2008 CREEK

Project ID: P0487 Project Name:

Enclosed are the results of analyses on 1 sample analyzed as specified on attached chain of custody.

Amolk MOLKY Brar Laboratory Manager

Rojert G. Araghi Laboratory Director 3232239500

AMERICAN SCIENTIFIC

PAGE 03/03

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fast (323) 223-9500

ANALYTICAL RESULTS

Ordered By

-	-	_	 -	-	<u>.</u>	_	~	<u> </u>	 	

Creek a 144 Suc San Luis	upar Ro Suire C-5 Obispo: CA 93401		
Telepho	nc: (805)545-9838		
Attn:	Orval Osborne		

Page: 2

Project

t ID:	P0487		Spininger	Cluent
		36772	01/29/2008	CREEK

Method: 8082, Polychlorinated Biphenyls(PCBs) by Gas Chromatography

	QC Batch I	No: 020108-1				
OUR LAN LID	Charlend and the standard from	212785				
Client Sample I.D.		SB-28-7(1298		ALL SPORT OF THE COURSE	AND RECEIPTION AND STOLE	and the second s
					ļ	
Date Sampled		01/24/2006	8			
Date Prepared		01/29/2008			1	
Preparation Method						
Date Analyzed		02/01/2008				
Matrix		Soil				
Units		ug/kg				
Dilution Factor		1			· · · · · · · · · · · · · · · · · · ·	
	POL			a - Aller and a strand a str strand a strand a s	a na presi parta presi al alla de la compañía de la La compañía de la comp	
Aroclor-1016 (PCB-1016)	33.00	ND	ANY	S OF STREET, ST	and the state of the	initianitian and the second second
Aroclor-1221 (PCB-1221)	67.00	ND				
Aroclor-1232 (PCB-1232)	33.00	ND			· · · · · · · · · · · · · · · · · · ·	
Aroclor-1242 (PCB-1242)	33.00	ND	·····			
Aroclor-1248 (PCB-1248)	33.00	ND				
Aroclor-1254 (PCB-1254)	33.00	ND				· · · · · · · · · · · · · · · · · · ·
Aroclor-1260 (PCB-1260)	33.00	ND		•••	[

Surrogate Percent Recovery					and a second state of the	
Decachlorobiphenyl	43-169	84	Containing of the second second	and the second second second	and the state of the state of the	- January Research

QUALITY CONTROL REPORT

QC Batch No: 020108-1

The second of the second					-u-1				
	LCS	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD			 T	٦
Arenvies	% REC	% REC	% REC	% Limit	% Limit				
Aroclor-1260 (PCB-1260)	116	119	2.6	39-150	<30	 		 	+

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
	/307	EDA 8260	Dibromofluoromethane	115.	81-123
08-01293	4327	EPA 8260	Toluene-d8	105.	78-116
08-01273	4327	EPA 8260	4-8FB	76.	60-116
08-01293	5774	EPA 8015M (C12-C40)	Hexacosane	72.	50-150
08-01293	4224	FPA 8015M (Gasoline)	a.a.a-Trifluorotoluene	107.	50-150
08-01294	4327	EPA 8260	Dibromofluoromethane	114.	81-123
08-01294	4327	EPA 8260	Toluene-d8	105.	78-116
08-C1294	4327	EPA 8260	4-BFB	75.	60-116
08-C1294	5774	EPA 8015M (C12-C40)	Hexacosane	78.	50-150
08-C1294	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	109.	50-150
08-C1295	4327	EPA 8260	Dibromofluoromethane	115.	81-123
08-C1295	4327	EPA 8260	Toluene-d8	106.	78-116
08-C1295	4327	EPA 8260	4-BFB	81.	60-116
08-C1295	5774	EPA 8015M (C12-C40)	Hexacosane	90.	50-150
08-C1295	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	110.	50-150
08-C1296	4327	EPA 8260	Dibromofluoromethane	107.	81-123
08-C1296	4327	EPA 8260	Toluene-d8	106.	78-116
08-01296	4327	EPA 8260	4-BFB	72.	60-116
08-01296	5774	EPA 8015M (C12-C40)	Hexacosane	73.	50-150
08-C1296	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	110.	50-150
08-C1297	4327	EPA 8260	Dibromofluoromethane	111.	81-123
08-01297	4327	EPA 8260	Toluene-d8	106.	78-116
08-C1297	4327	EPA 8260	4-BFB	72.	60-116
08-C1297	5774	EPA 8015M (C12-C40)	Hexacosane	79.	50-150
08-C1298	4325	EPA 8260	Dibromofluoromethane	107.	80-150
08-01298	4325	EPA 8260	Toluene-d8	100.	/U-120
08-01298	4325	EPA 8260	4-BFB	69.	57-124
08-C1298	5774	EPA 8015M (C12-C40)	Hexacosane	00. 77	-24-127
08-C1298	4311	EPA 8270	Pyrene-diu	37.	20-127 81-123
blank	4327	EPA 8260	Dibromotluoromethane	108	81-123
LCS	4327	EPA 8260	Dibromotiuoromethane	113	81-123
08-C1296 MS	4327	EPA 8260	Dibromofiuoromethane	115	81-123
08-C1296 MSD	4321	EPA 0200	Toluene-d8	105	78-116
blank	4321	EPA 0200	Toluene-d8	104	78-116
LUS	4321	EPA 0200	Toluene-d8	105.	78-116
U8-L1290 MS	4321	EPA 0200	Toluene-d8	106.	78-116
US-CIZYO MSD	4321	EPA 8260	4-BFB	75.	60-116
DLank	4321	EPA 8260	4-BFB	73.	60-116
LL3 09.01204 MC	4367	EPA 8260	4-BFB	74.	60-116
00-01290 MSD	4327	EPA 8260	4-BFB	73.	60-116
00-01290 M30	4321	EPA 8260	Dibromofluoromethane	103.	80-130
	4325	EPA 8260	Dibromofluoromethane	101.	80-130
100-01208 MS	4325	EPA 8260	Dibromofluoromethane	102.	80-130
03 01270 MG	4325	EPA 8260	Dibromofluoromethane	100.	80-130
hlank	4325	EPA 8260	Toluene-d8	100.	70-126
DIGHT					

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
LCS	4325	EPA 8260	Toluene-d8	100.	70-126
08-C1298 MS	4325	EPA 8260	Toluene-d8	99.	70-126
08-C1298 MSD	4325	EPA 8260	Toluene-d8	100.	70-126
blank	4325	EPA 8260	4-BFB	72.	57-124
LCS	4325	EPA 8260	4-BFB	72.	57-124
08-C1298 MS	4325	EPA 8260	4-BFB	65.	57-124
08-C1298 MSD	4325	EPA 8260	4-BFB	63.	57-124
blank	5774	EPA 8015M (C12-C40)	Hexacosane	86.	50-150
blank	4311	EPA 8270	Pyrene-d10	52.	26-127
LCS	4311	EPA 8270	Pyrene-d10	61.	26-127
blank	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	106.	50-150
LCS	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	105.	50-150
08-C1240 MS	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	111.	50-150
08-C1240 MSD	4224	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	113.	50-150

PROJECT NAME:		······································	DATE:	PAGE OF
PROJECT NUMBER: 13045007	LABORATORY NAME:	CLIENT INFORMATION:	REPORTING REQUIREMENTS:	
RESULTS TO: Jonathan Skaggs	LABORATORY ADDRESS:	-		
TURNAROUND TIME: Strangland	San Lauz Chzon (1 7340	· · · · · · · · · · · · · · · · · · ·		en nyaké Addithatoko , nya kényakanan ang kényakan .
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT:		GEOTRACKER REQUIRED	YES NO
Cal Overnight	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO	
SAMPLERS (SIGNATURE)	ANAL'	YSES		
Mart Will SAMPLE	PH INO PH INO PHO PHO PHO PHO PHO PHO PHO PHO PHO PH		A Differ (0) Servative Type	of Containers
DATE TIME NUMBER	アローンののにな			S S S S COMMENTS
1/24/08 10:40 5 13.29-6CU-11.16		A-G- ILant	cr, 40m/VO4WNFC	1 4 11 7 1293
11:20 KB-25.GW-14-19			· · · · · · · · · · · · · · · · · · ·	1244
12. 20 53-31-600-6-8			<u> </u>	129
13.20 5B-29.6W-32-38				Y 15 M5/MSD
1/ 4.45 $5/3-27-6W-11-16$				N 7 4
15-20 > 13-28-F	XXX	A-O Actedic	liner, 40m/1045 9,6	
	4NU 71/1 3 P	en D. Skars 512/7/08 2	∽	
	TNO 044'S	per J kagss		
			· · · · · · · · · · · · · · · · · · ·	
SIGNATURE:		DATE TIME SAMPLING COMMENTS	······································	
PRINTED NAME: 1 / ///	PRINTED NAME)	-1/280 7:50 - 7 400 1	Han Lan	h ir d
COMPANY: C	COMPANX:	$a = \frac{a}{1} - \frac{a}{1} - \frac{a}{1}$	VUAS with Delik	M 151501 tate (reserval
SIGNATURE:	SIGNATURE:	0-1-40ml	10A Methand	reservative
PRINTED NAME:	PRINTED NAME:	-1 2^{-7} T	-1/Calovernial	1 / NO Sprt
COMPANY	COMPANY:			1
		2101 Webster \$	Street, 12th Floor	
FINITED INVINE.		Oakland, Califo	ornia 94612-3066 🛛 🚺	🔏 Geomatrix

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2021 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ 1	[ime	Matrix			
======================================			02/08/08	3a08:55	Aqueous			===
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/20/08	02/14/08	4680
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/20/08	02/14/08	4682
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/20/08		4668
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
m_p-Xvlene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
o-Xvlene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1 2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1 3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dichloroethane (EDC)	3.5	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
sec-Butyl Benzene	Not Detected	0.5	1.	ug/L	EPA 8260	02/19/08		4634
t-Butyl benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/19/08		4634
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2021 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
======================================			02/08/0	8a08:55	Aqueous			
Analyte	Result	========= DL,R	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	02/19/08		4634
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
trans-1.2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
4-Isopropyltoluene	Not Detected	0.5	. 1	ug/L	EPA 8260	02/19/08		4634
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	02/19/08		4634
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 3

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2021 Order: P0760 PG&E Oakland GCY 13045.007 Project: Received: 02/12/08 03/05/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix				
======================================			02/08/0	8a08:55	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634	
1 2 3-Trichloronronane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634	
1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634	
1 3 5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634	
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2022 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

Sample Description	Sampled By		Sampled Date @ ⁻	Time	Matrix			======
======================================			02/08/08	8a09:45	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/20/08	02/14/08	4680
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/20/08	02/14/08	4682
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/20/08		4668
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
o-Xvlene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,2-Dichloroethane (EDC)	1.9	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chloroethane	2.4	0.5	1	ug/L	EPA 8260	02/19/08		4634
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/19/08		4634
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2022 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix 			
sB-30-GW-30-35			02/08/0	8a09:45	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,2-Dibromo-3-Chloropropane	Not Detected		1	ug/L	EPA 8260	02/19/08		4634
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	02/19/08		4634
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634

.

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2022 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By			Time	Matrix			
======================================	22 \$22228865222888	*********	02/08/0	8a09:45	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1 3 5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Vinyl Chloride	53	2	5	ug/L	EPA 8260	02/21/08		4706

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2023 Order: P0760 PG&E Oakland GCY 13045.007 Project: Received: 02/12/08 03/05/08 Printed:

Sample Description	Sampled By		Sampled Date ର ୀ 	Time	Matrix			======
				8a12:55	Solid			======
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Bromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Bromoform	Not Detected	5	· 1	ug/Kg	EPA 8260	02/20/08		4695
Bromomethane	Not Detected	5	· 1	ug/Kg	EPA 8260	02/20/08		4695
t-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
sec-Butyl Benzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Carbon Tetrachloride	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Chloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
2-Chloroethylvinyl ether	Not Detected	20	1	ug/Kg	EPA 8260	02/20/08		4695
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Chloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
2-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
4-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,2-Dibromo-3-Chloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Dibromomethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,2-Dibromoethane (EDB)	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,2-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,3-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,4-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,1-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
cis-1,2-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		469

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2023 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ର 	Time	Matrix			
======================================			02/07/0	8a12:55	Solid			======
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
trans-1.2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1 2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1 3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
2.2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1.1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
cis-1.3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
trans-1.3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Ethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08	•	4695
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	02/20/08		4695
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	02/20/08		4695
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,1,1,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1.1.2.2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Tetrachloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Toluene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,2,3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1.2.4-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1.1.1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1.1.2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,2,3-Trichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1.2,4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
1,3,5-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08		4695
Vinyl Chloride	Not Detected	5	1	ug/Kg	EPA 8260	02/20/08	•	4695

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2023 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
sB-30-10.5			02/07/0	8a12:55	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
m,p-Xylenes o-Xylene	Not Detected Not Detected	5	1	ug/Kg ug/Kg	EPA 8260 EPA 8260	02/20/08 02/20/08		4695 4695

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 10

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2024 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

Sample Description	Sampled By		Sampled Date 급]	[ime	Matrix = ===================================			======
======================================			02/08/08	3a14:00	Aqueous			
Analyte	Result ,	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel, SGT	0.27	0.05	1	mg/L	EPA 8015/LUFT	02/20/08	02/14/08	4680
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	02/20/08	02/14/08	4682
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	02/20/08		4668
Benzene	0.6	0.5	1	ug/L	EPA 8260	02/19/08		4634
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
o-Xvlene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08	•	4634
1.2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	02/19/08		4634
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634

CREEK ENVIRONMENTAL LABORATORIES, INC. 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 11

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2024 Order: P0760 PG&E Oakland GCY 13045.007 Project: Received: 02/12/08 Printed: 03/05/08

Sample Description	Sampled By		Sampled Date @	Time	Matrix			
======================================			02/08/0	8a14:00	Aqueous			======
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1.2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	02/19/08		4634
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
cis-1.2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
trans-1.2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
2.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
cis-1.3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
trans-1.3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Isopropylbenzene	1.5	0.5	1	ug/L	EPA 8260	02/19/08		4634
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	02/19/08		4634
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.1.2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.2.2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.1.2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 12

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C2024 Order: P0760 Project: PG&E Oakland GCY 13045.007 Received: 02/12/08 Printed: 03/05/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date @	d Time ====================================	Matrix = ===================================			=====
======================================			02/08/0	08a14:00	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1 2 3-Trichloropropage	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	02/19/08		4634
1 3 5-Trimethylbenzene	Not Detected	0.5	1.	ug/L	EPA 8260	02/19/08		4634
Vinyl Chloride	4.1	0.5	1	ug/L	EPA 8260	02/19/08		4634

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Quality Control Results

Page 13

Order No.: P0760 Laboratory Reagent Blank

Method	Results	Units	Batch
EPA 8015/LUFT	< 0.05	mg/L	4680
EPA 8015/LUFT	< 0.1	mg/L	4682
EPA 8015/LUFT	< 0.05	mg/L	4668
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 20	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 5	ug/Kg	4695
EPA 8260	< 20	ug/Kg	4695
EPA 8260	< 20	ug/Kg	4695
	Method EPA 8015/LUFT EPA 8015/LUFT EPA 8260 EPA 8260	Method Results EPA 8015/LUFT < 0.05	Method Results Units EPA 8015/LUFT < 0.05

Quality Control Results

Page 14

Order No.: P0760

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
n-Propylbenzene	EPA 8260	< 5	ug/Kg	4695
Styrene	EPA 8260	< 5	ug/Kg	4695
1.1.1.2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	4695
1.1.2.2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	4695
Tetrachloroethene	EPA 8260	< 5	ug/Kg	4695
Toluene	EPA 8260	< 5	ug/Kg	4695
1.2.3-Trichlorobenzene	EPA 8260	< 5	ug/Kg	4695
1.2.4-Trichlorobenzene	EPA 8260	< 5	ug/Kg	4695
1.1.1-Trichloroethane	EPA 8260	< 5	ug/Kg	4695
1.1.2-Trichloroethane	EPA 8260	< 5	ug/Kg	4695
Trichloroethene	EPA 8260	< 5	ug/Kg	4695
Trichlorofluoromethane	EPA 8260	< 5	ug/Kg	4695
1 2 3-Trichloropropane	EPA 8260	< 5	ug/Kg	4695
1 2 4-Trimethylbenzene	EPA 8260	< 5	ug/Kg	4695
1 3 5-Trimethylbenzene	EPA 8260	< 5	ug/Kg	4695
Vipyl Chloride	EPA 8260	< 5	ug/Kg	4695
m p-Xvlepes	EPA 8260	< 5	ug/Kg	4695
o-Xvlene	EPA 8260	< 5	ug/Kg	4695
Benzene	EPA 8260	< 0.5	ug/L	4634
	EPA 8260	< 0.5	ug/L	4634
Ethylbenzene	EPA 8260	< 0.5	ug/L	4634
	EPA 8260	< 0.5	ug/L	4634
	EPA 8260	< 0.5	ug/L	4634
	EPA 8260	< 0.5	ug/L	4634
1. 2-Dichlorobonzene	EPA 8260	< 0.5	uq/L	4634
1. Z-Dichlensbenzene	EPA 8260	< 0.5	ug/L	4634
1,5-Dichlorobenzene	EPA 8260	< 0.5	ug/L	4634
1,4-Dichtorobenzene	EPA 8260	< 0.5	ug/L	4634
1.2 Distrementhene (EDD)	EPA 8260	< 0.5	u g/L	4634
	EPA 8260	< 0.5	ug/L	4634
Bromobenzene	EDA 8260	< 0.5	ug/l	4634
Bromochloromethane	EPA 0200	< 0.5	ug/L	4634
Bromodicitoromethane	EPA 8260	< 0.5	ua/i	4634
Bromotorn	EPA 8260	< 0.5	ug/1	4634
Bromometnane	EFA 0200	< 0.5	ug/1	4634
n-Butylbenzene	EPA 0200	< 0.5	ug/L	4634
sec-Butyl Benzene	EPA 0200	< 0.5	ug/L	4634
t-Butylbenzene	EPA 0200	< 0.5		4634
Carbon Tetrachloride	EPA 0200	< 0.5	ug/L	4634
Chloroethane	EPA 8260	< 20	ug/L	4034
2-Chloroethylvinyl ether	EPA 8260	< 20 < 0 F	ug/L	4034
Chloroform	EPA 8260	< U.) Z O F	ug/L	4034
Chloromethane	EPA 8260	< U.D	ug/L	4034
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	4034
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	4004

Quality Control Results

Page 15

Order No.: P0760

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
1 2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	4634
Dibromochloromethane	EPA 8260	< 0.5	ug/L	4634
Dibromomethane	EPA 8260	< 0.5	ug/L	4634
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	4634
1.1-Dichloroethane	EPA 8260	< 0.5	ug/L	4634
1.1-Dichloroethene	EPA 8260	< 0.5	ug/L	4634
cis-1.2-Dichloroethene	EPA 8260	< 0.5	ug/L	4634
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	4634
1.2-Dichloropropane	EPA 8260	< 0.5	ug/L	4634
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	4634
2.2-Dichloropropane	EPA 8260	< 0.5	ug/L	4634
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	4634
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4634
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4634
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	4634
Isopropylbenzene	EPA 8260	< 0.5	ug/L	4634
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	4634
Methylene Chloride	EPA 8260	< 0.5	ug/L	4634
Naphthalene	EPA 8260	< 5	ug/L	4634
n-Propylbenzene	EPA 8260	< 0.5	ug/L	4634
Styrene	EPA 8260	< 0.5	ug/L	4634
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4634
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4634
Tetrachloroethene	EPA 8260	< 0.5	ug/L	4634
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4634
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4634
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	4634
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	4634
Trichloroethene	EPA 8260	< 0.5	ug/L	4634
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	4634
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	4634
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4634
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4634
Vinyl Chloride	EPA 8260	< 0.5	ug/L	4634
Vinyl Chloride	EPA 8260	< 0.5	ug/L	4706

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
TDH as Diesel SGT	EPA 8015/LUFT	 53%	5.0	mg/L	50 - 150	4680
TPH as Gasoline	EPA 8015/LUFT	84%	0.5	mg/L	60 - 140	4668
Benzene	EPA 8260	120%	50	ug/Kg	60 - 140	4695
Chlorobenzene	EPA 8260	110%	50	ug/Kg	60 - 140	4695

Quality Control Results

Page 16

Order No.: P0760

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
	EDA 8260	144%	 50		60 - 140	4695
1,1-Dichloroethene	EPA 8260	106%	50	ug/Kg	60 - 140	4695
Trichloroethene	EPA 8260	122%	50	ug/Kg	60 - 140	4695
Benzene	EPA 8260	112%	10	ug/L	80 - 120	4634
Benzene	EPA 8260	112%	10	ug/L	80 - 120	4634
Toluene	EPA 8260	104%	10	ug/L	80 - 120	4634
Toluene	EPA 8260	107%	10	ug/L	80 - 120	4634
Chlorobenzene	EPA 8260	100%	10	ug/L	80 - 120	4634
Chlorobenzene	EPA 8260	103%	10	ug/L	80 - 120	4634
1,1-Dichloroethene	EPA 8260	146%	10	ug/Ļ	80 - 120	4634
1,1-Dichloroethene	EPA 8260	158%	10	ug/L	80 - 120	4634
Trichloroethene	EPA 8260	115%	10	ug/L	80 - 120	4634
Trichloroethene	EPA 8260	115%	10 [°]	ug/L	80 - 120	4634

Matrix Spike/Matrix Spike Duplicates

Matrix spike/Matrix spike bapt	i da coo	MS	MSD	Matrix	Spike			RPD		
Analyte	Method	Rec.	Rec.	RPD Sample	Amount	Units	RecoveryLimit	s Limit	Batch	_
TPH as Gasoline	EPA 8015/LUFT	70%	68%	3 08-c2021	0.5	mg/L	60 - 140	30	4668	
Parana dusorme	EDA 8260	102%	105%	1 08-c1931	10	ug/L	70 - 130	20	4634	
Benzene	EFA 0200	10270					70 - 170	20	4634	
Toluene	EPA 8260	90%	92%	2 08-01931	10	ug/L	70 - 150	20	4004	

Sample Duplicate

Analyte	Method	Sample ID	Sample Value	Sample Duplicate	RPD	Units	RPD Limit	Batch
TDU on Diogol SCT	EPA 8015/111FT	kv:LCS	2.6	2.5		mg/L	30.	4680
Renzene	EPA 8260	08-C1933	< 0.5	< 0.5	0	ug/L	20.	4634
Toluene	EPA 8260	08-C1933	< 0.5	< 0.5	0	ug/L	20.	4634
Fthylbenzene	EPA 8260	08-C1933	< 0.5	< 0.5	0	ug/L	20.	4634
m.p-Xvlene	EPA 8260	08-C1933	< 0.5	< 0.5	0	ug/L	20.	4634
o-Xylene	EPA 8260	08-C1933	< 0.5	< 0.5	0	ug/L	20.	4634
1.2-Dichloroethane (EDC)	EPA 8260	08-01933	< 0.5	< 0.5	0	ug/L	20.	4634
1.2-Dibromoethane (EDB)	EPA 8260	08-C1933	< 0.5	< 0.5	0	ug/L	20.	4634
Vinyl Chloride	EPA 8260	08-C2022	53	56	4	ug/L	30.	4706

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
08-02021	4634	EPA 8260	Dibromofluoromethane	108.	81-123
08-02021	4034	EPA 8260	Toluene-d8	94.	78-116
08-02021	4034	EPA 8260	4-BFB	83.	60-116
08-02021	5771	EPA 8015M (C12-C40)	Hexacosane	84.	50-150
08-02021	4668	EPA 8015M (Gasoline)	a.a.a-Trifluorotoluene	93.	50-150
08-02021	4000		Dibromofluoromethane	102.	81-123
08-02022	4700	EPA 8260	Toluene-d8	90.	78-116
00-02022	4700	EPA 8260	4-BFB	92.	60-116
08-02022	5771	EPA 8015M (C12-C40)	Hexacosane	86.	50-150
08-02022	4668	EPA 8015M (Gasoline)	a.a.a-Trifluorotoluene	96.	50-150
08-02022	4000	EPA 8260	Dibromofluoromethane	123.	80-130
08-02023	4075	EPA 8260	Toluene-d8	80.	70-126
00-02023	4075	EPA 8260	4-BFB	79.	57-124
08-02025	4075	EPA 8260	Dibromofluoromethane	110.	81-123
08-02024	4034	EPA 8260	Toluene-d8	95.	78-116
08-02024	4034	EPA 8260	4-BFB	87.	60-116
08-02024	5771	EFA 8015M (C12-C40)	Hexacosane	82.	50-150
08-02024	2111	EPA BOIDM (CIE CHO)	a a a-Trifluorotoluene	99.	50-150
08-02024	4000	EPA BOIDH (dasorine)	Dibromofluoromethane	100.	81-123
blank	4034	EPA 8260	Dibromofluoromethane	104.	81-123
DLank	4/00	EPA 8260	Dibromofluoromethane	95.	81-123
LUS	4034	EPA 8260	Dibromofluoromethane	92.	81-123
LCSD	4034	EPA 8260	Dibromofluoromethane	102.	81-123
LL3	4700	EPA 8260	Dibromofluoromethane	107.	81-123
08-01933 dup.	4034	EPA 8260	Dibromofluoromethane	106.	81-123
08-02022 dup.	4/00	EPA 8260	Dibromofluoromethane	93.	81-123
00-01931 MSD	4034	EDA 8260	Dibromofluoromethane	91.	81-123
00-01931 Mou	4034	EDA 8260	Toluene-d8	92.	78-116
blank	4034	EPA 8260	Toluene-d8	88.	78-116
blank	4/00	CDA 8260	Toluene-d8	91.	78-116
LUS	4034	EPA 8260	Toluene-d8	89.	78-116
LLSD	4034	EPA 8200	Toluene-d8	89.	78-116
LLS	4/00	EPA 8260	Toluene-d8	93.	78-116
08-01933 dup.	4004	EPA 8260	Toluene-d8	94.	78-116
08 - 12022 dup.	4/00	EPA 8260	Toluene-d8	110.	78-116
U8-L1931 MS	4034	EPA 8260	Toluene-d8	109.	78-116
08-CIYSI MSD	4034	EPA 8260	4-BFB	86.	60-116
blank	4034	EPA 0200	4-BFB	85.	60-116
blank	4/00	EPA 0200	4-BFB	81.	60-116
LUS	4034	EPA 0200	4 B1 B	84.	60-116
LCSD	4034	EPA 0200	4 BIB	87.	60-116
LUS	4/00	EFA 0200	A-BFB	85.	60-116
08-01933 dup.	4004	EFA 0400	4-BFB	98	60-116
08-02022 dup.	4/06	EPA 0200	4-BEB	88	60-116
U8-C1931 MS	4654	EPA 0200	+-DFD /-DFD	94	60-116
U8-C1931 MSD	4654	EPA 8200	4°DFD Dibnomofluonomothone	112	80-130
blank	4695	EPA 8260	D Folliot Luorolle chane	114-	00 100

 A Minority-owned Business Enterprise

 141 SUBURBAN ROAD, SUITE C-5
 • SAN LUIS OBISPO, CA 93401
 • (805) 545-9838
 • FAX (805) 545-0107

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
LCS	4695	EPA 8260	Dibromofluoromethane	100.	80-130
08-C2086 dup.	4695	EPA 8260	Dibromofluoromethane	89.	80-130
blank	4695	EPA 8260	Toluene-d8	79.	70-126
LCS	4695	EPA 8260	Toluene-d8	81.	70-126
08-C2086 dup.	4695	EPA 8260	Toluene-d8	122.	70-126
blank	4695	EPA 8260	4-BFB	72.	57-124
LCS	4695	EPA 8260	4-BFB	76.	57-124
08-C2086 dup.	4695	EPA 8260	4-BFB	60.	57-124
blank	5771	EPA 8015M (C12-C40)	Hexacosane	95.	50-150
blank	4668	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	98.	50-150
LCS	4668	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	102.	50-150
08-C2021 MS	4668	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	97.	50-150
08-C2021 MSD	4668	EPA 8015M (Gasoline)	a,a,a-Trifluorotoluene	98.	50-150

CHAIN-OF-CUSTODY RECORD				and the second	
PROJECT NAME: PG QF COLL	and Carlo				OAK 10643
PROJECT NUMBER: 13045 MP	LABORATORY NAME:	ISTUCT	ton Yard	DATE: 2/8/08	PAGE OF
RESULTS TO: CARGE Thomas SIL	LABORATORY ADDRESS		MATION:	REPORTING REQUIREMENTS:	
TURNAROUND TIME:	141 Jubarton Rel	SUITE C-5	5	0071	1
SAMPLE SHIPMENT METHOD:	Jen Son LUB Obispu	», CA 9	4301	F 70-10	0
C(z) = 1	LABORATORY CONTACT:	1			
al Overnight	LABORATORY PHONE NUMBER:			GEOTRACKER REQUIRED	YES NO
SAMPLERS (SIGNATURE)				SITE SPECIFIC GLOBAL ID NO.	
(
DATE TIME SAMPLE NUMBER 18/08 8:55 5B-30-6W-16-17 18/08 9:55 5B-30-6W-16-17 18/08 12:55 5B-30-6W-20-35 17/08 12:55 5B-30-6W-20-35 17/08 12:00 5B-30-6W-11-16 17/08 0770 5B-30-4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CONT. TYPE A 6 40ml VC 3 40ml VC 6 40ml VC 3 40ml VC	AINER ND SIZE ND SIZE VOA Littered VOA Soli (N), addition VOA Soli (N), addition VI VOA Soli (N), addition VI VI VOA Soli (N), addition VI VI VI VI VI VI VI VI VI VI VI VI VI	$\begin{array}{c} \begin{array}{c} & s_{\text{sequence}} \\ & p_{\text{algorization}} \\ & \text{Comments} \\ \hline \\ & \text{M} \\ \end{array} \\ \hline \\ & \text{M} \\ & \text{M} \\ & \text{M} \\ \hline \\ & \text{M} \\ & $
		╞┈┼━┼━	+++->		
		┝━┝─┼──			
		2	$ 0 + T_{a} =$		
			1 the saci	NO BEAL	
SNATURE:	E RECEIVED BY:		ME TOTAL NUMBER OF CONTAI	NERS:	
INTED NAME:	X MCTUCKey		SAMPLING COMMENTS:		
Matt Webb 81008 160	L MCTUCKO		100 xHCI Drogan	1 4 1 AD 1 1 1 1 1	
	COMPANY: POK I abe	1	The Ficselle	in vers	8260) and My
GNATURE:	SIGNATURE:	++	- Chiy		
RINTED NAME:	PRINTED NAME:	-	2011 0065(30	1) preservarn	re - 2 Sodium BischEmp
DMPANY:	COMPANY:	-	-	▼	1 Methonal
GNATURE:	SIGNATURE:				
			2101 Webster Stre	et. 12th Floor	
			Oakland, California	94612-3066	Coometrice
	COMPANY:]	Tel 510.663.4100 Fa	ax 510.663.4141	Geomatrix

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3547 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled Date ର	Time	Matrix				
sB-25-2.5	Matt Webb	03/12/0	8a10:05	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Benzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromochloromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromodichloromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromoform	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromomethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
t-Butylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
n-Butylbenzene	Not Detected	6	['] 1	ug/Kg	EPA 8260	03/20/08	Υ.	5529
sec-Butyl Benzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Carbon Tetrachloride	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Chlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Chloroethane	Not Detected	6	· 1	ug/Kg	EPA 8260	03/20/08		5529
2-Chloroethylvinyl ether	Not Detected	100	1	ug/Kg	EPA 8260	03/20/08		5529
Chloroform	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Chloromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
2-Chlorotoluene	Not Detected	6	· 1	ug/Kg	EPA 8260	03/20/08		5529
4-Chlorotoluene	Not Detected	. 6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dibromo-3-Chloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Dibromochloromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Dibromomethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dibromoethane (EDB)	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Dichlorodifluoromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,3-Dichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,4-Dichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,1-Dichloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dichloroethane (EDC)	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,1-Dichloroethene	Not Detected	. 6	· , 1	ug/Kg	EPA 8260	03/20/08		5529
cis-1.2-Dichloroethene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3547 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

Page 2

Sample Description	Sampled By		Sampled Date @	Time	Matrix				
 \$B-25-2.5	Matt Webb 03/12/08@10:05				Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
trans-1,2-Dichloethene	Not Detected	· 6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,2-Dichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,3-Dichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
2,2-Dichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,1-Dichloropropene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
cis-1,3-Dichloropropene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
trans-1,3-Dichloropropene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Ethylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Hexachlorobutadiene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Isopropylbenzene	Not Detected	6	. 1	ug/Kg	EPA 8260	03/20/08		5529	
4-Isopropyltoluene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Methylene Chloride	Not Detected	30	· 1	ug/Kg	EPA 8260	03/20/08		5529	
Methyl t-Butyl Ether (MTBE)	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Naphthalene	Not Detected	30	1	ug/Kg	EPA 8260	03/20/08		5529	
n-Propylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Styrene	Not Detected	6	1 -	ug/Kg	EPA 8260	03/20/08		5529	
1,1,1,2-Tetrachloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,1,2,2-Tetrachloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
Tetrachloroethene	Not Detected	· 6· /	.1	ug/Kg	EPA 8260	03/20/08	•• •	5529	
Toluene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,2,3-Trichlorobenzene	Not Detected	6	. 1	ug/Kg	EPA 8260	03/20/08		5529	
1,2,4-Trichlorobenzene	Not Detected	6	. 1	ug/Kg	EPA 8260	03/20/08		5529	
1,1,1-Trichloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,1,2-Trichloroethane	Not Detected	6	· 1	ug/Kg	EPA 8260	03/20/08		5529	
Trichloroethene	Not Detected	6	. 1	ug/Kg	EPA 8260	03/20/08		5529	
Trichlorofluoromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,2,3-Trichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,2,4-Trimethylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
1,3,5-Trimethylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Page 3 Log Number: 08-C3547 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix				
sB-25-2.5	Matt Webb	att Webb		8a10:05	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
Vinyl Chloride	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
m,p-Xylene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	
o-Xylene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3548 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08 1 415 6

Page 4

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix		
sB-25-4.5	Matt Webb	03/12/0	8a10:30	Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Benzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Bromobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Bromochloromethane	Not Detected	. 5	1	ug/Kg	EPA 8260	03/20/08	5529
Bromodichloromethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Bromoform	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Bromomethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
t-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	· 03/20/08	5529
n-Butylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
sec-Butyl Benzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Carbon Tetrachloride	Not Detected	5	. 1	ug/Kg	EPA 8260	03/20/08	5529
Chlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Chloroethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
2-Chloroethylvinyl ether	Not Detected	100	1	ug/Kg	EPA 8260	03/20/08	5529
Chloroform	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Chloromethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
2-Chlorotoluene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
4-Chlorotoluene	Not Detected	5	. 1	ug/Kg	EPA 8260	03/20/08	5529
1,2-Dibromo-3-Chloropropane	Not Detected	5	· 1	ug/Kg	EPA 8260	03/20/08	5529
Dibromochloromethane	Not Detected	5	1	ug/Kg	EPA	03/20/08	5529
Dibromomethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,2-Dibromoethane (EDB)	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
Dichlorodifluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,2-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,3-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,4-Dichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,1-Dichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,2-Dichloroethane (EDC)	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529
1,1-Dichloroethene	Not Detected	. 5	1	ug/Kg	EPA 8260	03/20/08	5529
cis-1,2-Dichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	5529

: 4

- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

.

Log Number: 08-C3548 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	l Time	Matrix			
======================================	Matt Webb	03/12/0	8a10:30	Solid				
Analyte	Result	ÐLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
trans-1,2-Dichloethene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,3-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
2,2-Dichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,1-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		55 29
cis-1,3-Dichloropropene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
trans-1,3-Dichloropropene	Not Detected	· 5	1	ug/Kg	EPA 8260	03/20/08		5529
Ethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
Hexachlorobutadiene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		552 9
Isopropylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
4-Isopropyltoluene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	03/20/08		5529
Methyl t-Butyl Ether (MTBE)	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	03/20/08		5529
n-Propylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		552 9
Styrene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,1,1,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,1,2,2-Tetrachloroethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
Tetrachloroethene	Not Detected	. 5	1	ug/Kg	EPA 8260	03/20/08		5529
Toluene	Not Detected	5	. 1	ug/Kg	EPA 8260	03/20/08		5529
1,2,3-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,2,4-Trichlorobenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,1,1-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,1,2-Trichloroethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
Trichloroethene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
Trichlorofluoromethane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,2,3-Trichloropropane	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08		5529
1,2,4-Trimethylbenzene	Not Detected	5	1	ug/Kg	EPA 8260	03/20/08	•	5529
1 3 5-Trimethylbenzepe	Not Detected	5	1	ua/Ka	EPA 8260	03/20/08		5529

CREEK ENVIRONMENTAL LABORATORIES, INC. - A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3548 Order: P1346 PG&E Oakland General Const. Yard Project: 03/14/08 Received: 03/25/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix 			
sB-25-4.5	Matt Webb	Matt Webb		03/12/08a10:30				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Vinyl Chloride m,p-Xylene o-Xylene	Not Detected Not Detected Not Detected	5 5 5	1 1 1	ug/Kg ug/Kg ug/Kg	EPA 8260 EPA 8260 EPA 8260	03/20/08 03/20/08 03/20/08		5529 5529 5529

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3549 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
sB-29-2.0	Matt Webb	03/12/0	8a10:45	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Benzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Bromobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Bromochloromethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Bromodichloromethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Bromoform	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Bromomethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
t-Butylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
n-Butylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
sec-Butyl Benzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Carbon Tetrachloride	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Chlorobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Chloroethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
2-Chloroethylvinyl ether	Not Detected	5000	50	ug/Kg	EPA 8260	03/25/08		5633
Chloroform	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Chloromethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
2-Chlorotoluene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
4-Chlorotoluene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2-Dibromo-3-Chloropropane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Dibromochloromethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		. 5633
Dibromomethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2-Dibromoethane (EDB)	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Dichlorodifluoromethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2-Dichlorobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,3-Dichlorobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,4-Dichlorobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,1-Dichloroethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2-Dichloroethane (EDC)	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1.1-Dichloroethene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
cis-1.2-Dichloroethene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633

- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3549 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrîx			.222233
sB-29-2.0	Matt Webb	03/12/0	8a10:45	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
trans-1,2-Dichloethene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2-Dichloropropane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,3-Dichloropropane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
2,2-Dichloropropane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,1-Dichloropropene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08	•	5633
cis-1,3-Dichloropropene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
trans-1,3-Dichloropropene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Ethylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Hexachlorobutadiene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Isopropylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
4-Isopropyltoluene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Methylene Chloride	Not Detected	1000	50	ug/Kg	EPA 8260	03/25/08		5633
Methyl t-Butyl Ether (MTBE)	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Naphthalene	Not Detected	1000	50	ug/Kg	EPA 8260	03/25/08		5633
n-Propylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		. 5633
Styrene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,1,1,2-Tetrachloroethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,1,2,2-Tetrachloroethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Tetrachloroethene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Toluene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2,3-Trichlorobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2,4-Trichlorobenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,1,1-Trichloroethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,1,2-Trichloroethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Trichloroethene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
Trichlorofluoromethane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2,3-Trichloropropane	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1,2,4-Trimethylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
1.3.5-Trimethylbenzene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633

CLOSED OD

CREEK ENVIRONMENTAL LABORATORIES, INC.

- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3549 Order: P1346 PG&E Oakland General Const. Yard Project: 03/14/08 Received: 03/25/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix			
======================================	Matt Webb	Matt Webb		03/12/08a10:45		ا هم که نمو برد می هم می هم می می می می برد برد برد برد مربقه این والد این برد برد برد برد برد این می می می داد برد این این می	~~~~~~~~~~	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Vinyl Chloride	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
m,p-Xylene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633
o-Xylene	Not Detected	300	50	ug/Kg	EPA 8260	03/25/08		5633

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

de la travia de la companya de la 🚱 (RRINTED ON RECYCLED PAPER) (PA 🤟 de la compañía de la compañía de la CAMEDADE PAPER) (PA 🤟

.

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3550 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
SB-29-2.0	Matt Webb	Matt Webb 03/12			Solid			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Mercury	0.18	0.04	1	mg/Kg	EPA 7471	03/21/08	03/21/08	5572
Antimony	0.7	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Arsenic	5.1	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Barium	440	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Beryllium	Not Detected	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Cadmium	0.5	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Chromium	40	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Cobalt	9.7	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Copper	28	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Lead	83	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Molybdenum	0.9	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Nickel	53	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Selenium	Not Detected	0.5	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Silver	Not Detected	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Thallium	Not Detected	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Vanadium	48	0.4	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Zinc	92	4 .	1	mg/Kg	EPA 6020	03/18/08	03/17/08	5434
Aroclor 1016	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544
Aroclor 1221	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544
Aroclor 1232	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544
Aroclor 1242	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544
Aroclor 1248	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544
Aroclor 1254	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544
Aroclor 1260	Not Detected	0.06	2	mg/kg	EPA 8082	03/20/08	03/20/08	5544

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

2 DOMESTIC STREET

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3550 Order: P1346 Project: PG&E Oakland General Const. Yard 03/14/08 Received: 03/25/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		S	Sampled Date @ Tim	e	Matrix			
SB-29-2.0	Matt Webb)3/12/08a1	 0:45	Solid			888222
Analyte	Result	DLR D	ilut Fact	ion :or	Units	Method	Date Analyzed	Date Prepared	Batch

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

- A Minority-owned Business Enterprise -

CREEK ENVIRONMENTAL LABORATORIES, INC.

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3551 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

Page 12

Sample Description	Sampled By		Sampled Date ລ	Time	Matrîx			
sB-29-4.5	Matt Webb	03/12/0	8a09:35	Solid				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Benzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	• .	5529
Bromobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromochloromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromodichloromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromoform	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Bromomethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
t-Butylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
n-Butylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
sec-Butyl Benzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	·	5529
Carbon Tetrachloride	Not Detected	, 6	1	ug/Kg	EPA 8260	03/20/08		5529
Chlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Chloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
2-Chloroethylvinyl ether	Not Detected	100	1	ug/Kg	EPA 8260	03/20/08		5529
Chloroform	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Chloromethane	Not Detected	6	· 1	ug/Kg	EPA 8260	03/20/08		5529
2-Chlorotoluene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		. 5529
4-Chlorotoluene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	•	5529
1,2-Dibromo-3-Chloropropane	Not Detected	.6	· · 1	ug/Kg	EPA 8260	03/20/08		5529
Dibromochloromethane	Not Detected	-6	1	ug/Kg	EPA 8260	03/20/08		5529
Dibromomethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dibromoethane (EDB)	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Dichlorodifluoromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,3-Dichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,4-Dichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1.1-Dichloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,2-Dichloroethane (EDC)	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
1,1-Dichloroethene	Not Detected	6	. 1	ug/Kg	EPA 8260	03/20/08		5529
cis-1.2-Dichloroethene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3551 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

Page 13

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix		
======================================	Matt Webb	Matt Webb			Solid		
Analyte	Result	DLR	Dilution Factor	Units	' Method	Date Analyzed	Date Batch Prepared
trans-1,2-Dichloethene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,2-Dichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,3-Dichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
2,2-Dichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,1-Dichloropropene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
cis-1,3-Dichloropropene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
trans-1,3-Dichloropropene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Ethylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Hexachlorobutadiene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Isopropylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
4-Isopropyltoluene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Methylene Chloride	Not Detected	20	1	ug/Kg	EPA 8260	03/20/08	5529
Methyl t-Butyl Ether (MTBE)	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Naphthalene	Not Detected	20	1	ug/Kg	EPA 8260	03/20/08	5529
n-Propylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Styrene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,1,1,2-Tetrachloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,1,2,2-Tetrachloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Tetrachloroethene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Toluene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,2,3-Trichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,2,4-Trichlorobenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,1,1-Trichloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,1,2-Trichloroethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Trichloroethene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
Trichlorofluoromethane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,2,3-Trichloropropane	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,2,4-Trimethylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529
1,3,5-Trimethylbenzene	Not Detected	6	1	ug/Kg	EPA 8260	03/20/08	5529

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C3551 Order: P1346 Project: PG&E Oakland General Const. Yard Received: 03/14/08 Printed: 03/25/08

REPORT OF ANALYTICAL RESULTS

Sampled By	Sampled By			Matrix			
Matt Webb	03/12/0	Ba09:35	Solid		********		
Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Not Detected	6	1	ug/Kg	EPA 8260	03/20/08		5529
Not Detected	6	1	ug/Kg ug/Kg	EPA 8260	03/20/08		5529
	Sampled By Matt Webb Result Not Detected Not Detected Not Detected	Sampled By Matt Webb Result DLR Not Detected 6 Not Detected 6 Not Detected 6	Sampled By Date a Date a Matt Webb 03/12/00 Result DLR Dilution Factor Not Detected 6 1 Not Detected 6 1 Not Detected 6 1	Sampled Sampled Sampled By Date a Time Matt Webb 03/12/08a09:35 Result DLR Dilution Wot Detected 6 1 ug/Kg Not Detected 6 1 ug/Kg Not Detected 6 1 ug/Kg	SampledSampled ByDate @ TimeMatrixMatt Webb03/12/08@09:35SolidMatt Webb03/12/08@09:35SolidResultDLRDilutionUnitsMethodFactorHethodNot Detected61ug/KgNot Detected61ug/KgNot Detected61ug/KgEPA 8260Not Detected61Not Detected61ug/KgEPA 8260Not Detected6	Sampled Date @ Time Matrix Sampled By Date @ Time Matrix Matt Webb 03/12/08@09:35 Solid Result DLR Dilution Units Method Date Result DLR Dilution Units Method Date Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Not Detected 6 1 ug/Kg EPA 8260 03/20/08	Sampled Date @ Time Matrix Sampled By Date @ Time Matrix Matt Webb 03/12/08@09:35 Solid Matt Webb 03/12/08@09:35 Solid Result DLR Dilution Units Method Date Date Result DLR Dilution Units Method Date Prepared Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg EPA 8260 03/20/08 Image: Not Detected 6 1 ug/Kg

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

the grant and the stranger was reader to the

Lab Director, Michael Ng

Quality Control Results

Page 15

Order No.: P1346 Laboratory Reagent Blank

Analyte	Method	Results	Units	Batch
Mercury	EPA 7471	< 0.04	mg/Kg	5572
Benzene	EPA 8260	< 5	ug/Kg	5529
Benzene	EPA 8260	< 5	ug/Kg	5633
Bromobenzene	EPA 8260	< 5	ug/Kg	5529
Bromobenzene	EPA 8260	< 5	ug/Kg	5633
Bromochloromethane	EPA 8260	< 5	ug/Kg	5529
Bromochloromethane	EPA 8260	< 5	ug/Kg	5633
Bromodichloromethane	EPA 8260	< 5	ug/Kg	5529
Bromodichloromethane	EPA 8260	< 5	ug/Kg	5633
Bromoform	EPA 8260	< 5	ug/Kg	5529
Bromoform	EPA 8260	< 5	ug/Kg	5633
Bromomethane	EPA 8260	< 5	ug/Kg	5529
Bromomethane	EPA 8260	< 5	ug/Kg	5633
t-Butylbenzene	EPA 8260	< 5	ug/Kg	5529
t-Butylbenzene	EPA 8260	< 5	ug/Kg	5633
n-Butylbenzene	EPA 8260	< 5.	ug/Kg	5529
n-Butylbenzene	EPA 8260	< 5	ug/Kg	5633
sec-Butyl Benzene	EPA 8260	< 5	ug/Kg	552 9
sec-Butyl Benzene	EPA 8260	< 5	ug/Kg	5633
Carbon Tetrachloride	EPA 8260	< 5	ug/Kg	5529
Carbon Tetrachloride	EPA 8260	< 5	ug/Kg	5633
Chlorobenzene	EPA 8260	< 5	ug/Kg	5529
Chlorobenzene	EPA 8260	< 5	ug/Kg	5633
Chloroethane	EPA 8260	< 5	ug/Kg	5529
Chloroethane	EPA 8260	< 5	ug/Kg	5633
2-Chloroethylvinyl ether	EPA 8260	< 100	ug/Kg	5529
2-Chloroethylvinyl ether	EPA 8260	< 100	ug/Kg	5633
Chloroform	EPA 8260	< 5	ug/Kg	5529
Chloroform	EPA 8260	< 5	ug/Kg	5633
Chloromethane	EPA 8260	< 5	ug/Kg	5529
Chloromethane	EPA 8260	< 5	ug/Kg	5633
2-Chlorotoluene	EPA 8260	< 5	ug/Kg	5529
2-Chlorotoluene	EPA 8260	< 5	ug/Kg	5633
4-Chlorotoluene	EPA 8260	< 5	ug/Kg	5529 [°]
4-Chlorotoluene	EPA 8260	< .5	ug/Kg	5633
1,2-Dibromo-3-Chloropropane	EPA 8260	. < 5	ug/Kg	5529
1,2-Dibromo-3-Chloropropane	EPA 8260	< 5	ug/Kg	5633
Dibromochloromethane	EPA 8260	< 5	ug/Kg	5529
Dibromochloromethane	EPA 8260	< 5	ug/Kg	5633
Dibromomethane	EPA 8260	< 5	ug/Kg	5529
Dibromomethane	EPA 8260	< 5	ug/Kg	5633
1,2-Dibromoethane (EDB)	EPA 8260	< 5	ug/Kg	5529
1,2-Dibromoethane (EDB)	EPA 8260	< 5	ug/Kg	5633
Dichlorodifluoromethane	EPA 8260	< 5	ug/Kg	5529
Dichlorodifluoromethane	EPA 8260	< 5	ug/Kg	5633

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 16

Order No.: P1346

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
1,2-Dichlorobenzene	EPA 8260	< 5	ug/Kg	5529
1,2-Dichlorobenzene	EPA 8260	< 5	ug/Kg	5633
1,3-Dichlorobenzene	EPA 8260	< 5	ug/Kg	5529
1,3-Dichlorobenzene	EPA 8260	< 5	ug/Kg	5633
1,4-Dichlorobenzene	EPA 8260	< 5	ug/Kg	5529
1,4-Dichlorobenzene	EPA 8260	< 5	ug/Kg	5633
1,1-Dichloroethane	EPA 8260	< 5	ug/Kg	5529
1,1-Dichloroethane	EPA 8260	< 5	ug/Kg	5633
1,2-Dichloroethane (EDC)	EPA 8260	< 5	ug/Kg	5529
1,2-Dichloroethane (EDC)	EPA 8260	< 5	ug/Kg	5633
1,1-Dichloroethene	EPA 8260	< 5	ug/Kg.	5529
1,1-Dichloroethene	EPA 8260	< 5	ug/Kg	5633
cis-1,2-Dichloroethene	EPA 8260	< 5	ug/Kg	5529
cis-1,2-Dichloroethene	EPA 8260	< 5	ug/Kg	5633
trans-1,2-Dichloethene	EPA 8260	< 5	ug/Kg	5529
trans-1,2-Dichloethene	EPA 8260	< 5	ug/Kg	5633
1,2-Dichloropropane	EPA 8260	< 5	ug/Kg	5529
1,2-Dichloropropane	EPA 8260	< 5	ug/Kg	5633
1.3-Dichloropropane	EPA 8260	< 5	ug/Kg	5529
1,3-Dichloropropane	EPA 8260	< 5	ug/Kg	5633
2.2-Dichloropropane	EPA 8260	< 5	ug/Kg	5529
2.2-Dichloropropane	EPA 8260	< 5	ug/Kg	5633
1.1-Dichloropropene	EPA 8260	< 5	ug/Kg	5529
1,1-Dichloropropene	EPA 8260	< 5	ug/Kg	5633
cis-1,3-Dichloropropene	EPA 8260	< 5	ug/Kg	5529
cis-1,3-Dichloropropene	EPA 8260	< 5	ug/Kg	5633
trans-1,3-Dichloropropene	EPA 8260	< 5	ug/Kg	5529
trans-1.3-Dichloropropene	EPA 8260	< 5	ug/Kg	5633
Ethylbenzene	EPA 8260	< 5	ug/Kg	5529
Ethylbenzene	EPA 8260	< 5	ug/Kg	5633
Hexachlorobutadiene	EPA 8260	< 5	ug/Kg	5529
Hexachlorobutadiene	EPA 8260	< 5	ug/Kg	5633
Isopropylbenzene	EPA 8260	< 5	ug/Kg	5529
Isopropylbenzene	EPA 8260	< 5	ug/Kg	5633
4-Isopropyltoluene	EPA 8260	< 5	ua/Ka	5529
4-Isopropyltoluene	EPA 8260	< 5	ua/Ka	5633
Methvlene Chloride	EPA 8260	< 20	uq/Kq	5529
Methylene Chloride	EPA 8260	< 20	ua/Ka	5633
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 5	ua/Ka	5529
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 5	ua/Ka	5633
Naphthalene	EPA 8260	< 20	ua/Ka	5529
Naphthalene	EPA 8260	< 20	ug/Ka	5633
n-Propyl benzene	FPA 8260	< 5	ua/Ka	5529
n-Propylbenzene	FPA 8260	< 5	-9/109 Ug/Ka	5633
			-31 12	

CERENCED ON SECTURE

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 17

Order No.: P1346

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Styrene	EPA 8260	< 5	ug/Kg	5529
Styrene	EPA 8260	< 5	ug/Kg	5633
1,1,1,2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	5529
1,1,1,2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	5633
1,1,2,2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	5529
1,1,2,2-Tetrachloroethane	EPA 8260	< 5	ug/Kg	5633
Tetrachloroethene	EPA 8260	< 5	ug/Kg	5529
Tetrachloroethene	EPA 8260	< 5	ug/Kg	5633
Toluene	EPA 8260	< 5	ug/Kg	5529
Toluene	EPA 8260	< 5	ug/Kg	5633
1,2,3-Trichlorobenzene	EPA 8260	< 5	ug/Kg	5529
1,2,3-Trichlorobenzene	EPA 8260	< 5	ug/Kg	5633
1,2,4-Trichlorobenzene	EPA 8260	< 5	ug/Kg	5529
1,2,4-Trichlorobenzene	EPA 8260	< 5	ug/Kg	5633
1,1,1-Trichloroethane	EPA 8260	< 5	ug/Kg	5529
1,1,1-Trichloroethane	EPA 8260	< 5	ug/Kg	5633
1,1,2-Trichloroethane	EPA 8260	< 5	ug/Kg	5529
1,1,2-Trichloroethane	EPA 8260	< 5	ug/Kg	5633
Trichloroethene	EPA 8260	< 5	ug/Kg	5529
Trichloroethene	EPA 8260	< 5	ug/Kg	5633
Trichlorofluoromethane	EPA 8260	< 5	ug/Kg	5529
Trichlorofluoromethane	EPA 8260	< 5	ug/Kg	5633
1,2,3-Trichloropropane	EPA 8260	< 5	ug/Kg	5529
1,2,3-Trichloropropane	EPA 8260	< 5	ug/Kg	5633
1,2,4-Trimethylbenzene	EPA 8260	< 5	ug/Kg	5529
1,2,4-Trimethylbenzene	EPA 8260	< 5	ug/Kg	5633
1,3,5-Trimethylbenzene	EPA 8260	< 5	ug/Kg	5529
1,3,5-Trimethylbenzene	EPA 8260	< 5	ug/Kg	5633
Vinyl Chloride	EPA 8260	< 5	ug/Kg	5529
Vinyl Chloride	EPA 8260	< 5	ug/Kg	5633
m,p-Xylene	EPA 8260	< 5	ug/Kg	5529
m,p-Xylene	EPA 8260	< 5	ug/Kg	5633
o-Xylene	EPA 8260	< 5	ug/Kg	5529
o-Xylene	EPA 8260	< 5	ug/Kg	5633
Antimony	EPA 6020	< 0.4	mg/Kg	5434
Arsenic	EPA 6020	< 0.4	mg/Kg	5434
Barium	EPA 6020	< 0.4	mg/Kg	5434
Beryllium	EPA 6020	< 0.4	mg/Kg	5434
Cadmium	EPA 6020	< 0.4	mg/Kg	5434
Chromium	EPA 6020	< 0.4	mg/Kg	5434
Cobalt	EPA 6020	< 0.4	mg/Kg	5434
Copper	EPA 6020	< 0.4	mg/Kg	5434
Lead	EPA 6020	< 0.4	mg/Kg	5434
Molybdenum	EPA 6020	< 0.4	mg/Kg	5434
-				•

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 18

Order No.: P1346

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Nickel	EPA 6020	< 0.4	mg/Kg	5434
Selenium	EPA 6020	< 0.5	mg/Kg	5434
Silver	EPA 6020	< 0.4	mg/Kg	5434
Thallium	EPA 6020	< 0.4	mg/Kg	5434
Vanadium	EPA 6020	< 0.4	mg/Kg	5434
Zinc	EPA 6020	< 4	mg/Kg	5434
Aroclor 1016	EPA 8082	< 0.03	mg/kg	5544
Aroclor 1221	EPA 8082	< 0.03	mg/kg	5544
Aroclor 1232	EPA 8082	< 0.03	mg/kg	5544
Aroclor 1242	EPA 8082	< 0.03	mg/kg	5544
Aroclor 1248	EPA 8082	< 0.03	mg/kg	5544
Aroclor 1254	EPA 8082	< 0.03	mg/kg	5544
Aroclor 1260	EPA 8082	< 0.03	mg/kg	5544

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
Mercury	FDA 7471	 04%	83	 ma/Ka	56 - 148	5572
Benzene	EPA 8260	122%	50	Ha/Ka	60 - 140	5529
Benzene	EPA 8260	100%	50		60 - 140	5633
Chlorobenzene	EPA 8260	118%	50	ua/Ka	60 - 140	5529
Chlorobenzene	EPA 8260	102%	50		60 - 140	5633
1.1-Dichloroethene	EPA 8260	116%	50	ua/Ka	60 - 140	5529
1.1-Dichloroethene	EPA 8260	96%	50	ug/Kg	60 - 140	5633
Toluene	EPA 8260	116%	50	ua/Ka	60 - 140	5529
Toluene	EPA 8260	100%	50	ua/Ka	60 - 140	5633
Trichloroethene	EPA 8260	116%	50	ua/Ka	60 - 140	5529
Trichloroethene	EPA 8260	98%	50	ua/Ka	60 - 140	· 5633
Antimony	EPA 6020	98%	90	ma/Ka	10 - 120	5434
Arsenic	EPA 6020	86%	130	ma/Ka	60 - 140	5434
Barium	EPA 6020	98%	320	ma/Ka	60 - 140	5434
Beryllium	EPA 6020	101%	90	ma/Ka	60 - 140	5434
Cadmium	EPA 6020	107%	66	mg/Kg	60 - 140	5434
Chromium	EPA 6020	99%	73	mg/Kg	60 - 140	5434
Cobalt	EPA 6020	97%	73	mg/Kg	60 - 140	5434
Copper	EPA 6020	92%	68	mg/Kg	60 - 140	5434
Lead	EPA 6020	104%	130	mg/Kg	60 - 140	5434
Molybdenum	EPA 6020	99%	49	mg/Kg	60 - 140	5434
Nickel	EPA 6020	94%	56	mg/Kg	60 - 140	5434
Selenium	EPA 6020	108%	160	mg/Kg	60 - 140	5434
Silver	EPA 6020	104%	100	mg/Kg	60 - 140	5434
Thallium	EPA 6020	97%	130	mg/Kg	60 - 140	5434
Vanadium	EPA 6020	98%	83	mg/Kg	60 - 140	5434

 A Minority-owned Business Enterprise

 141 SUBURBAN ROAD, SUITE C-5
 • SAN LUIS OBISPO, CA 93401
 • (805) 545-9838
 • FAX (805) 545-0107

Quality Control Results

Page 19

Order No.: P1346

Laboratory Known Analysis (LCS)

Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
EPA 6020	109%	180	mg/Kg	60 - 140	5434
EPA 8082	80%	0.1	mg/kg	60 - 130	5544
EPA 8082	80%	0.1	mg/kg	60 - 130	5544
	Method EPA 6020 EPA 8082 EPA 8082	Method Recovery EPA 6020 109% EPA 8082 80% EPA 8082 80%	Method Recovery Spike Amount EPA 6020 109% 180 EPA 8082 80% 0.1 EPA 8082 80% 0.1	Method Recovery Spike Amount Units EPA 6020 109% 180 mg/Kg EPA 8082 80% 0.1 mg/kg EPA 8082 80% 0.1 mg/kg	Method Recovery Spike Amount Units Recovery Limits EPA 6020 109% 180 mg/Kg 60 - 140 EPA 8082 80% 0.1 mg/kg 60 - 130 EPA 8082 80% 0.1 mg/kg 60 - 130

Matrix Spike/Matrix Spike Duplicates

	MS	MSD	Matrix	Spike			RPD	
Analyte Me	thod Rec.	Rec.	RPD Sample	Amount	Units	Recovery Limits	Limit	Batch
Mercury EPA	7471 99%	100%	1 08-c3814	0.8	mg/Kg	60 - 140	30	5572
Antimony EPA	6020 101%	103%	2 08-C3394	50	mg/Kg	10 - 120	30	5434
Arsenic EPA	6020 95%	100%	6 08-C3394	50	mg/Kg	60 - 140	30	5434
Barium EPA	6020 89%	91%	3 08-C3394	50	mg/Kg	60 - 140	30	5434
Beryllium EPA	6020 87%	88%	2 08-C3394	50	mg/Kg	60 - 140	30	5434
Cadmium EPA	6020 98%	102%	5 08-C3394	50	mg/Kg	60 - 140	30	5434
Chromium EPÁ	6020 95%	97%	2 08-C3394	50 ·	mg/Kg	60 - 140	30	5434
Cobalt EPA	6020 92%	95%	3 08-c3394	50	mg/Kg	60 - 140	30	5434
Copper EPA	6020 96%	98%	2 08-c3394	50	mg/Kg	60 - 140	30	5434
Lead EPA	6020 104%	108%	3 08-C3394	50	mg/Kg	60 - 140	30	5434
Molybdenum EPA	6020 91%	94%	2 08-03394	50	mg/Kg	60 - 140	30	5434
Nickel EPA	6020 92%	95%	3 08-C3394	50	mg/Kg	60 - 140	30	5434
Selenium EPA	6020 103%	108%	4 08-c3394	200	mg/Kg	60 - 140	30	5434
Silver EPA	6020 94%	97%	3 08-C3394	50	mg/Kg	50 - 130	30	5434
Thallium EPA	6020 102%	106%	4 08-C3394	50	mg/Kg	60 - 140	30	5434
Vanadium EPA	6020 94%	100%	1 08-C3394	50	mg/Kg	60 - 140	30	5434
Zinc EPA	6020 102%	110%	7 08-C3394	50	mg/Kg	60 - 140	30	5434

Sample Duplicate

Analyte	Method	Sample ID	Sample Value	Sample Duplicate	RPD	Units	RPD Limit	Batch
Benzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Bromobenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Bromochloromethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Bromodichloromethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Bromoform	EPA 8260	08-C3547	< 6	< 6	Ņ	ug/Kg	30.	5529
Bromomethane	EPA 8260	08-C3547	< 6		0.0	ug/Kg	50.	5529 ····
t-Butylbenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
n-Butylbenzene	EPA 8260	08-C3547	< 6	< 6	Ō	ug/Kg	30.	5529
sec-Butyl Benzene	EPA 8260	08-c3547	< 6	< 6	0	ug/Kg	30.	5529
Carbon Tetrachloride	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Chlorobenzene	EPA 8260	08-C3547	< 6	< 6	- 0	ug/Kg	30.	5529
Chloroethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	50.	5529
2-Chloroethylvinyl ether	EPA 8260	08-C3547	< 130	< 110	14	ug/Kg	50.	5529
Chloroform	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529

- A Minority-owned Business Enterprise –

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 20

Order No.: P1346

Sample Duplicate

			Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
Chloromethane	EPA 8260	08-c3547	< 6	< 6	0	ug/Kg	50.	5529
2-Chlorotoluene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
4-Chlorotoluene	EPA 8260	08-C3547	< 6	< 6	Ò	ug/Kg	30.	5529
1,2-Dibromo-3-Chloropropane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	40.	5529
Dibromochloromethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Dibromomethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,2-Dibromoethane (EDB)	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Dichlorodifluoromethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	50.	5529
1,2-Dichlorobenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,3-Dichlorobenzene	EPA 8260	08-C3547	< 6 ·	< 6	0	ug/Kg	30.	5529
1,4-Dichlorobenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1-Dichloroethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,2-Dichloroethane (EDC)	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1-Dichloroethene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
cis-1,2-Dichloroethene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
trans-1,2-Dichloethene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,2-Dichloropropane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,3-Dichloropropane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
2,2-Dichloropropane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1-Dichloropropene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
cis-1,3-Dichloropropene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
trans-1,3-Dichloropropene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Ethylbenzene	EPA 8260	08-c3547	< 6	< 6	0	ug/Kg	30.	5529
Hexachlorobutadiene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	40.	5529
Isopropylbenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
4-Isopropyltoluene	EPA 8260	08- c3 547	< 6	< 6	0	ug/Kg	30.	5529
Methylene Chloride	EPA 8260	08-C3547	< 26	< 22	17	ug/Kg	40.	5529
Methyl t-Butyl Ether (MTBE)	EPA 8260	08-c3547	< 6	< 6	0	ug/Kg	40.	5529
Naphthalene	EPA 8260	08-C3547	< 26	< 22	17	ug/Kg	40.	5529
n-Propylbenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Styrene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1,1,2-Tetrachloroethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1,2,2-Tetrachloroethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Tetrachloroethene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Toluene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,2,3-Trichlorobenzene	EPA 8260	08-C3547	< .6	< 6	0.	ug/Kg	30.	5529
1,2,4-Trichlorobenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1,1-Trichloroethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,1,2-Trichloroethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Trichloroethene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Trichlorofluoromethane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	50.	5529
1,2,3-Trichloropropane	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	40.	5529
1,2,4-Trimethylbenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
1,3,5-Trimethylbenzene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 21

Order No.: P1346

Sample Duplicate

	·		Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
Vinyl Chloride	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	50.	5529
m,p-Xylene	EPA 8260	08-C3547	< 6	< 6	Ò	üg/Kg	30.	5529
o-Xylene	EPA 8260	08-C3547	< 6	< 6	0	ug/Kg	30.	5529
Aroclor 1016	EPA 8082	08-C3550	< 0.06	< 0.06	0	mg/kg	30.	5544
Aroclor 1221	EPA 8082	08-C3550	< 0.06	< 0.06	0	mg/kg	30.	5544
Aroclor 1232	EPA 8082	08-C3550	< 0.06	< 0.06	0	mg/kg	30.	5544
Aroclor 1242	EPA 8082	08-C3550	. < 0.06	< 0.06	0	mg/kg	30.	5544
Aroclor 1248	EPA 8082	08-C3550	< 0.06	< 0.06	0	mg/kg	30.	5544
Aroclor 1254	EPA 8082	08-c3550	< 0.06	< 0.06	. 0	mg/kg	30.	5544
Aroclor 1260	EPA 8082	08-C3550	< 0.06	< 0.06	0	mg/kg	30.	5544
	-							

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise 141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Surrogate Report

08-C3547 5529 EPA 8260 Dibromofluoromethane 118. 80-130 08-C3547 5529 EPA 8260 Toluene-d8 91. 70-126 08-C3547 5529 EPA 8260 4-BFB 79. 57-124 08-C3548 5529 EPA 8260 Dibromofluoromethane 111. 80-130 08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 DCB (soil) 64. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 <
08-C3547 5529 EPA 8260 Dibromot Luoromethane 116. 30-130 08-C3547 5529 EPA 8260 Toluene-d8 91. 70-126 08-C3547 5529 EPA 8260 4-BFB 79. 57-124 08-C3548 5529 EPA 8260 Dibromof Luoromethane 111. 80-130 08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 Dibromof Luoromethane 106. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromof Luoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromof Luoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromof Luoromethane 114.
08-C3547 5529 EPA 8260 Totuene-d8 91. 70-126 08-C3547 5529 EPA 8260 4-BFB 79. 57-124 08-C3548 5529 EPA 8260 Dibromofluoromethane 111. 80-130 08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3549 5645 EPA 8260 Dibromofluoromethane 106. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130
08-C3547 5529 EPA 8260 4-BFB 79. 57-124 08-C3548 5529 EPA 8260 Dibromofluoromethane 111. 80-130 08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3548 5529 EPA 8260 Dibromofluoromethane 106. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 1
08-C3548 5529 EPA 8260 Dibromofluoromethane 111. 80-130 08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3549 5645 EPA 8260 Dibromofluoromethane 106. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 84. 57-124 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 </td
08-C3548 5529 EPA 8260 Toluene-d8 99. 70-126 08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3549 5645 EPA 8260 Dibromofluoromethane 106. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 0LCS 5529 EPA 8260 Dibromofluoromethane 115. 80-13
08-C3548 5529 EPA 8260 4-BFB 84. 57-124 08-C3549 5645 EPA 8260 Dibromofluoromethane 106. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 110. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane
08-C3549 5645 EPA 8260 Dibromofluoromethane 105. 80-130 08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 Jibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 110. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 103.
08-C3549 5645 EPA 8260 Toluene-d8 99. 70-126 08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 112. 80-130 Q8-C3547 Gup. 5529 EPA 8260 Dibromofluoromethane 107. 80-130 Q8-C3918 Gup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 Q8-C3918 Gup. 5645 EPA 826
08-C3549 5645 EPA 8260 4-BFB 95. 57-124 08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 110. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260
08-C3550 5544 EPA 8081/8082 TCMX (soil) 64. 50-150 08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 Q8-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5645 </td
08-C3550 5544 EPA 8081/8082 DCB (soil) 81. 50-150 08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8
08-C3551 5529 EPA 8260 Dibromofluoromethane 114. 80-130 08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 Q8-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 107. 80-130 Q8-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 Q8-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 Blank 5529 EPA 8260 Toluene-d8 93. 70-126 LCS 5529 EPA 8260 <t< td=""></t<>
08-C3551 5529 EPA 8260 Toluene-d8 97. 70-126 08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 10. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 10. 80-130 CS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 95. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 95. 70-126
08-C3551 5529 EPA 8260 4-BFB 84. 57-124 blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5645 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 95. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260
blank 5529 EPA 8260 Dibromofluoromethane 114. 80-130 blank 5645 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Toluene-d8 93. 70-126 blank 5529 EPA 8260 Toluene-d8 99. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98.
blank 5645 EPA 8260 Dibromofluoromethane 112. 80-130 LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 95. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
LCS 5529 EPA 8260 Dibromofluoromethane 110. 80-130 LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 115. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 95. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
LCS 5645 EPA 8260 Dibromofluoromethane 107. 80-130 08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 115. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 99. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
08-C3547 dup. 5529 EPA 8260 Dibromofluoromethane 115. 80-130 08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 99. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
08-C3918 dup. 5645 EPA 8260 Dibromofluoromethane 103. 80-130 blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 99. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
blank 5529 EPA 8260 Toluene-d8 93. 70-126 blank 5645 EPA 8260 Toluene-d8 99. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
blank 5645 EPA 8260 Toluene-d8 99. 70-126 LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
LCS 5529 EPA 8260 Toluene-d8 95. 70-126 LCS 5645 EPA 8260 Toluene-d8 98. 70-126
LCS 5645 EPA 8260 Toluene-d8 98. 70-126
08-C3547 dup. 5529 EPA 8260 Toluene-d8 92. 70-126
08-C3918 dup. 5645 EPA 8260 Toluene-d8 94. 70-126
blank 5529 EPA 8260 4-BFB 93. 57-124
blank 5645 EPA 8260 4-BFB 98. 57-124
LCS 5529 EPA 8260 4-BFB 90. 57-124
LCS 5645 EPA 8260 4-BFB 102. 57-124
08-C3547 dup. 5529 EPA 8260 4-BFB 78. 57-124
08-C3918 dup. 5645 EPA 8260 4-BFB 109. 57-124
blank 5544 FPA 8081/8082 TCMX (soil) 63. 50-150
08-C3550 dup. 5544 FPA 8081/8082 TCMX (soil) 73. 50-150
blank 5544 FPA 8081/8082 DCB (soil) 84. 50-150
08-C3550 dup. 5544 FPA 8081/8082 DCB (soil) 86. 50-150

CHAIN-OF-CUSTODY RECORD		OAK 19579
PROJECT NAME: BSEE Cakles	rel General Construction Vand	UAN 12572
PROJECT NUMBER: 13045.007	LABORATORY NAME: CIPER FULL CLIENT INFORMATION:	REPORTING REQUIREMENTS:
RESULTS TO: Jonathon Skasgs	LABORATORY ADDRESS: 1415	PIZU/
TURNAROUND TIME: 5. Handland	San Leis Ohispe, CA93401	1.1.2.10
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT: Vidy Wensloff	
	LABORATORY PHONE NUMBER:	
SAMPLERS (SIGNATURE):	ANALYSES	
Mat Webb	B B C C -	valive Type
DATE TIME NUMBER	2 2 2	/PE AND SIZE 등 등 응 양 중 ADDITIONAL /
3/12/08 1005 53-25-2.5	X 47	m/1/1/4 5 1/ (1) V 1/3 A-C 21/17
1030 53-25-4.5		$\frac{1}{1}$
1045 SB-29-2.0	X	D D AB 3540
1045 5B-24-20	XX	specification of 1 3557
V 935 5B-29-4.5	X 40,	n/ VOA VV DVV 3 A-C 3551
SIGNATURE:		CONTAINERS:
PRINTED NAME: 312/6 12:15	PRINTED NAME: 3/14(68 SAMPLING COMMEN	115: (D-2 VOA With Sodium Bisdfare
COMPANY:	COMPANY:	Preservattre, I VOA with
SIGNATURE:	SIGNATURE:	Methand
PRINTED NAME:	PRINTED NAME:	2) IVOA with Scaliem Bisch Fork
COMPANY:	COMPANY:	UCA With Methonal
SIGNATURE:	SIGNATURE:	
PRINTED NAME:	PRINTED NAME: 2101 Webste	er Street, 12th Floor
COMPANY:	COMPANY: Cakland, Ca	00 Fax 510 663 4141

CREEK ENVIRONMENTAL LABORATORIES, INC.

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster Street Oakland, CA 94612

Chromatographs PG&E Oakland General Construction Yard 13045.007

Creek Sample Name	Geomatrix Sample ID	Date Analyzed
1000 000 00.5	SD 24 2	2/04/08
1232 SGT 20:5	SB-24-5 SB-24-GW-12-16	2/04/08
2000 ppm MO CC	2000 ppm Motor Oil Continuing Calibration	2/04/08
1000 ppm Dies CC	1000 ppm Diesel Continuing Calibration	2/04/08
1295 SGT 1000.5	SB-31-GW-6-8	2/05/08
2000 ppm MO CC	2000 ppm Motor Oil Continuing Calibration	2/05/08
1000 ppm Dies CC	1000 ppm Diesel Continuing Calibration	2/05/08
2024 SGT 1000:5	SB-28-GW-11-16	2/20/08
2000 ppm MO CC	2000 ppm Motor Oil Continuing Calibration	2/20/08
1000 ppm Dies CC	1000 ppm Diesel Continuing Calibration	2/20/08

	0		N O U		4 0 0 0			
								-]
N -					• •			
							· · · · · · · · · · · ·	
۔ بے ل ا						· .		
- - 0								•
1		• • •						
L L L L L L L L L L L L L L L L L L L								
- 4		···· · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · ·
		an da san da rearreachailte rea						
Data File Name Operator Instrument	' : C:\HPC : PLF : DIESEI	CHEM\1\DAT	FA\020408\	\004F(201.D Page Numb Vial Numb	er : er :	1 4	
Sample Name Run Time Bar Cod Acquired on Report Created o	: 1232 S le: : 04 Feb on: 31 Mar	GT 20:5 0 08 09:0 0 08 01:3)5 PM 33 PM		Injection Sequence Instrumen Analysis	Number : Line : ht Method: Method :	1 2 DIESEI DIESEI	L9.MTH L9.MTH

	0			4 0 0 0		
		· · · · · · · · · · · · · · · · · · ·	······································	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·	
· • •			· · · · · · · · · · · · · · · · · ·			
- Q 0 - 0	Market Company					
- 1 - N -			<u></u>			
- 4 - 4	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
Data File Name Operator Instrument Sample Name Run Time Bar C Acquired on Report Created	e : C:\HPC : PLF : DIESEL : 1000 p dode: : 05 Feb on: 27 Mar	HEM\1\DATA om Dies CC 08 00:14 08 11:38	\\020408\\050F : : AM 3 AM	0301.D Page Numbe Vial Numbe Injection Sequence L Instrument Analysis M	r : number : ine : Method: ethod :	1 50 1 3 DIESEL9.MTH DIESEL9.MTH

					4 0 0 0	() () () ()	
· · · · · · · · · · · · · · · · · · ·	<u>I. I. I</u>	<u> </u>					
N							
- 4 -							
0 -							
· · · ·	·				• • •		
1 0 -							
→ - N -						5755 (specific specific specif	
- 4 - 4						· · · · ·	
							an a
Data File Name Operator Instrument Sample Name Run Time Bar (Acquired on Report Created	e : : Code: :	C:\HPCHEM PLF DIESEL 1295 SGT 05 Feb 08 27 Mar 08	\1\DATA\02 1000:5 04:16 PM 11.39 AM	0508\003FC	201.D Page Numbe Vial Numbe Injection Sequence I Instrument	er : er : Number : line : Method:	1 3 1 2 DIESEL9.MTH DIESEL9.MTH

	· · · · · · · · · · · · · · · · · · ·	0				4 0 0 0			
								· · · · · · · · · · · · · · · · · · ·	-] · · ·
- 4								• • • •	
) -									
() -								•	
1 0 -		A Street and a str							. '
 N −			We we have a second sec						• •
4				•					
			• • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·			
Data File Nam Operator Instrument Sample Name Run Time Bar	le : : : Code:	C:\HPCH PLF DIESEL 2000 pp	EM\1\DA' m MO CC	FA\02050	8\049F0	101.D Page Num Vial Num Injectio Sequence	ber ber n Number Line	: 1 : 49 : 1 : 1	
Acquired on Report Create	: d on:	05 Feb 31 Mar	08 02:4 08 11:4	13 PM 16 AM		Instrume Analysis	nt Method Method	: DIESEI : DIESEI	19.MTH 19.MTH

	0				4 0 0 0		
· · · · · · · · · · · · · · · · · · ·							
N N				· · · ·			алан Алан Алан
					·		
4 							
			- · · · ·				
0		-					
→ N - N -							
	×						
			· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	
Data File Name Operator Instrument Sample Name Run Time Bar Co Acquired on Report Created	: C:\HPC : PLF : DIESEL : 1000 p de: : 05 Feb on: 31 Mar	HEM\1\DAT. pm Dies C 08 03:0 08 11:4	A\020508\ C 3 PM 7 AM	050F0101. Page Vial Inje Sequ Inst Anal	D Number Number ction Num ence Line rument Met ysis Metho	: 1 : 50 ber : 1 : 1 thod: DI od : DI	ESEL9.MTH ESEL9.MTH

			Ŵ	10 (1 0 0	
	0))
N -					
0 -	1				
· · · · · · · · · · · · · · · · · · ·					
1					
► - N - N -		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
- ↓ ↓					
0	· · · · · · · · · · · · · · · · · · ·				
Data File Name Operator Instrument Sample Name	: C:\HPC : PLF : DIESEL : 2024 S	HEM\1\DATA\02	2008\008F03 Pa V	01.D age Number : ial Number : njection Number :	1 8
Run Time Bar Co Acquired on Report Created	ode: : 20 Feb on: 27 Mar	08 09:36 PM 08 11:40 AM		equence Line : nstrument Method : nalysis Method :	- 3 DIESEL9.MTH DIESEL9.MTH

	0				4 0 0			
N								
4						•		
9 –								
- (Q) 	La contraction of the second sec	N. Market	,					
- 0 - -	• • •	A WWWWWWWWW						
- N L		A CONTRACTOR OF						
- 4 								
						· · · · · · · · · · · · · · · · · · ·		
Data File Name Operator Instrument Sample Name Run Time Bar (Acquired on Report Created	e : C:\H : PLF : DIES : 2000 Code: : 20 F d on: 31 Ma	PCHEM\1\DA EL ppm MO CC eb 08 06: ar 08 11:	TA\02200 02 PM 47 AM	08\049F020 Pa V: II Se II AT	D1.D age Numbe ial Numbe njection equence I nstrument	er : er : Number : ine : Method:	1 49 1 2 DIESEL9.MTH DIESEL9 MTH	С.
					,			

	1 0 0		} 0 0		
N		· · · · · · · · · · · · · · · · · · ·		· ·	
0 -					
N - N - 1			· · · · · · · · · · · · · · · · · · ·		•
					۹ ۱۹۹۹ - ۱۹۹۹ ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹
Data File Name		A\022008\050F0)101. D		
Operator : Instrument : Sample Name : Run Time Bar Code: Acquired on : Report Created on:	PLF DIESEL 1000 ppm Dies C 20 Feb 08 05:4 31 Mar 08 11:4	C 3 PM 7 AM	Page Number Vial Number Injection Nur Sequence Line Instrument Me Analysis Meth	: 1 : 50 nber : 1 > : 1 ethod: DIESE nod : DIESE	L9.MTH L9.MTH