RECEIVED

10:01 am, Jan 16, 2009

Alameda County Environmental Health

Anne P Conner Sr. Remediation Manager Environmental Remediation 3401 Crow Canyon Rd. San Ramon, CA 94583

(925) 415-6381 (925) 415-6852 Apb1@pge.com

January 7th, 2009

Mr. Jerry Wickham

Alameda County Environmental Health Department Division of Environmental Protection 1131 Harbor Bay Parkway. 2nd Floor Alameda, California 94502

Subject: Transmittal of Semiannual Groundwater Monitoring Report, November 2008 Sampling Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California.

Dear Mr.Wickham:

Please find enclosed the *Semiannual Groundwater Monitoring Report, November 2008 Sampling Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California,* dated January 7th 2009. PG&E has retained ENTRIX, Inc., and Geomatrix Consultants, Inc. to perform groundwater monitoring and other technical studies at the subject site. The attached report was prepared by Innovative Technical Solutions, Inc. with review by Geomatrix on behalf of PG&E.

Please contact Yemia Hashimoto of Geomatrix at **(510) 663-4210** with any questions or comments pertaining to this report. For any other questions or requests regarding this site, please contact me at **(925) 415-6381**.

Sincerely yours,

Anne Conner

Anne Conner

Sr Remediation Project Manager Pacific Gas and Electric Company

cc: Margarita Khavul, PG&E

SEMIANNUAL GROUNDWATER MONITORING REPORT

November 2008 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared For:

Pacific Gas and Electric Company 3401 Crow Canyon Road San Ramon, CA 94583

Prepared By:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

January 2009

ITSI Project No: 07037.0018

SEMIANNUAL GROUNDWATER MONITORING REPORT

November 2008 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

This report was prepared by the staff of Innovative Technical Solutions, Inc., under the supervision of the Geologist(s) and/or Engineer(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Prepared By:

Charles Comstock, P.G., C.E.G. Senior Geologist

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

ITSI Project No. 07037.0018

January 2009

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description	1
3.0	Site History	2
4.0	Groundwater Monitoring Activities	3
5.0	Groundwater Monitoring Results	5
6.0	Conclusions	6
7.0	References	.7

LIST OF FIGURES

<u>Figure No</u> .	Title
1	Site Vicinity Map
2	Site Plan
3	Groundwater Elevation Contours (November 4, 2008)
4	Groundwater Analytical Results (November 4, 2008)

LIST OF TABLES

<u>Table No</u> .	Title
1	Summary of Groundwater Elevation Data
2	Summary of Groundwater Analytical Results (November 4, 2008)

LIST OF APPENDICES

Appendix A	Historical Groundwater Analytical Results
Appendix B	Field Procedures for Low-Flow Purging and Sampling
Appendix C	Groundwater Purging and Sampling Logs
Appendix D	Laboratory Analytical Reports and Chain-of-Custody Documentation

ACRONYMS AND ABBREVIATIONS

1.0 INTRODUCTION

This report presents the results of semiannual groundwater monitoring completed on November 4, 2008, at the Pacific Gas and Electric Company (PG&E) General Construction Yard located at 4930 Coliseum Way in Oakland, California (the site, Figure 1). The groundwater monitoring program includes the following activities: (1) measuring groundwater elevations; (2) collecting groundwater samples from monitoring wells on site; and (3) performing laboratory analyses of the samples. The program objective is to monitor the distribution of select fuel-related compounds, volatile organic compounds (VOCs), and dissolved lead in shallow groundwater beneath the site. The following sections summarize the site description, site background, groundwater monitoring activities, and analytical results of samples collected on November 4, 2008. Previous analytical results are tabulated in Appendix A.

2.0 SITE DESCRIPTION

The site consists of approximately 4 acres and is operated as a storage yard for equipment and vehicles (Figure 2). The surrounding area is primarily commercial and light industrial. The site is bounded by Coliseum Way to the south, 50th Avenue to the southeast and commercial properties to the north (Figure 1).

3.0 SITE HISTORY

The following summarizes previous environmental activities associated with the site:

- January 1988 Five underground storage tanks (USTs) and associated piping located in the northern and eastern portions of the site were removed (Figure 2). Four of the former USTs were located in a cluster in the northern portion of the site (former UST cluster). Two of these USTs reportedly contained heavy oil and two contained mineral spirits (PG&E, 1988). The fifth former UST was located near the west corner of the yard and reportedly contained diesel fuel.
- April 1988 Installation of groundwater monitoring wells OW-1 through OW-4
- May 1990 One natural gas, above ground storage tank (AST) was removed from the central portion of the site (Figure 2).
- November and December 1991 Approximately 2,000 cubic yards of soil were excavated to a depth of approximately 8 to 8 ½ feet below ground surface (bgs) as a remedial action for the petroleum hydrocarbons identified in the soil in the vicinity of the former UST cluster. Groundwater monitoring wells OW-6 and OW-7 were installed, and well OW-3 was abandoned. The concentrations of TPHd and oil and grease in the soil samples collected along the site boundaries during soil excavation activities were greater than soil cleanup target levels, while concentrations of TPHd and oil and grease in each of the remaining confirmatory samples were less than the cleanup target levels. Oil was visible in the soils in the northeast wall of the excavation along the property line, and a pipe that contained a similar petroleum product was also exposed in the northeastern wall of the excavation. The conclusions of the February 1992 *Site Remediation and Closure Report, Former Tank Cluster Area* prepared by Earth Technology Corporation suggested that off-site sources of petroleum hydrocarbons may exist in both the northeast and northwest directions (ETC, 1992).
- December 1991 Installation of groundwater monitoring wells OW-5 through OW-7.
- September and October 1992 An asphaltic concrete cap was constructed on leadaffected surface soil in the vicinity of the former natural gas AST. Lead, believed to have originated from lead-based paint chips generated from sandblasting of the former natural gas AST, was found in soil samples collected from this area.
- **February 1993** Groundwater monitoring well OW-8 was installed in the southern area of the yard near the location of the former natural gas AST to monitor lead concentrations in the groundwater.
- July 1994 Groundwater sampling frequency reduced from quarterly to a semiannual basis.

4.0 GROUNDWATER MONITORING ACTIVITIES

Blaine Tech Services, Inc. of San Jose, California, performed the groundwater-monitoring event on November 4, 2008. Groundwater sampling was performed using low-flow purging and sampling methods in accordance with the Low-Flow Purging and Sampling Protocol (Appendix B). Depth to groundwater measurements were collected from OW-1, OW-2, OW-4, OW-5, OW-6, OW-7, and OW-8, and were recorded in the Groundwater Purging and Sampling Logs (Appendix C). The groundwater elevation measurements were used to prepare a groundwater elevation map to determine the direction and magnitude of the groundwater gradient. Purge water generated during the groundwater monitoring activities was temporarily stored on site in 55-gallon steel drums pending disposal.

Groundwater samples were collected in laboratory supplied containers from wells OW-1, OW-2, OW-4, OW-5, OW-6, OW-7, and OW-8. The samples were shipped on ice to Creek Environmental Laboratories, Inc., of San Luis Obispo, California, a State of California certified laboratory, for analysis under chain-of-custody protocol. Samples from the monitoring wells were analyzed for:

- Total petroleum hydrocarbons quantified as gasoline (TPHg), TPH quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U. S. Environmental Protection Agency (EPA) Method 8015B;
- Total petroleum hydrocarbons quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U.S. Environmental Protection Agency (EPA) Method 8015B with the silica gel cleanup method;
- Dissolved lead using EPA Method 6010B; and
- VOCs using EPA Method 8260B.

Appendix D includes the laboratory analytical reports and chain-of-custody documentation. All analyses were performed within the holding times specified by the EPA. The COC was amended to add VOC analyses by 8260B to OW-7; and to delete TPH-g and add dissolved lead to OW-8. None of the tested analytes were detected in the field blank or laboratory reagent blank. The surrogate recoveries were within the laboratory acceptance limits. With the exception of the TPH-diesel matrix spike, recoveries of matrix spike/matrix spike duplicate (MS/MSD) were within the laboratory acceptance limits. The recovery for this sample was slightly below the lower QC limit due to matrix effects. The data was reported on the basis of acceptable recovery

of the laboratory control sample and the MSD (Appendix D). The relative percent differences (RPD) were within the laboratory acceptance limits.

5.0 GROUNDWATER MONITORING RESULTS

Groundwater level measurements collected during the November 4, 2008 monitoring event indicate that depth to water ranged from 3.61 to 7.05 feet below the top of casing. Based on these groundwater level measurements, the predominant groundwater flow direction was toward the south with an approximate hydraulic gradient of 0.002 ft/ft. Table 1 summarizes the depth to water measurements and groundwater elevation data. Figure 3 shows the groundwater elevation map.

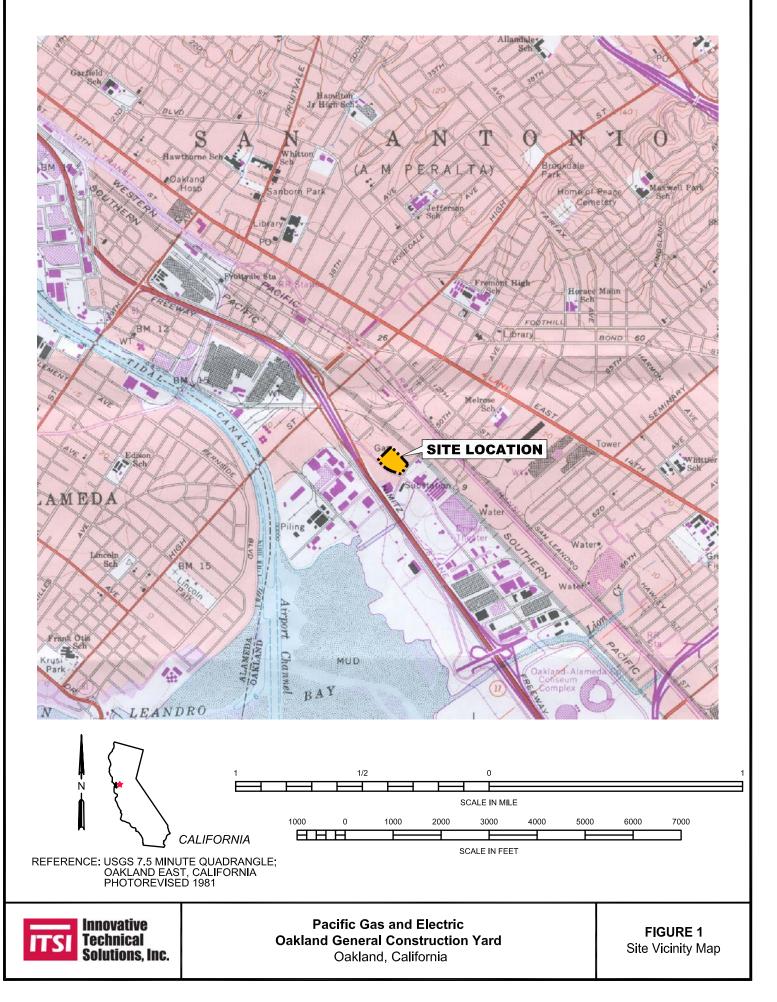
Laboratory analytical results for the groundwater samples collected from the seven monitoring wells sampled during the November 4, 2008 monitoring event indicate the following:

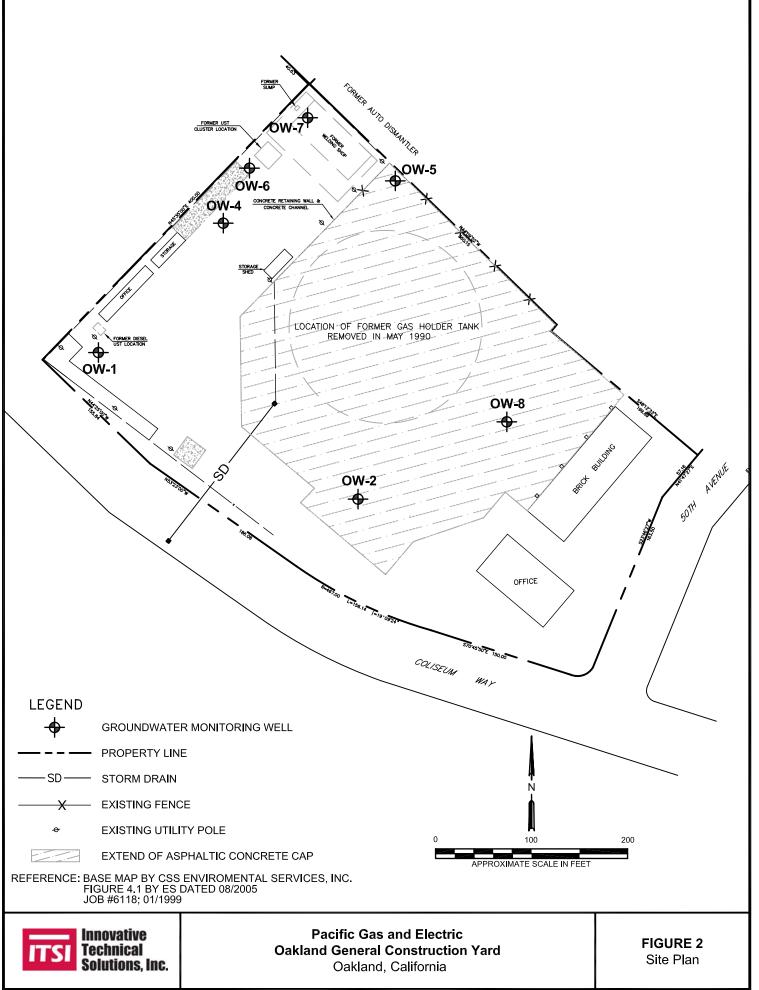
- TPHg was not detected above the reporting limit in samples collected from any of the seven wells. Analytical results for samples collected from wells OW-6 and OW-7 (located in the northern portion of the property) decreased from the May 2008 sampling event from concentrations of 50 and 560 μ g/l, respectively to below the detection limit (<50 μ g/l).
- TPHd was detected in samples collected from the seven wells sampled at the Site. TPHd concentrations in samples without silica gel cleanup ranged from $100 \mu g/l$ to $320 \mu g/l$. After silica cleanup was performed, TPHd was detected in all samples but at reduced concentrations.
- TPHmo was detected in samples collected from all wells sampled at the site. However, after silica cleanup was performed, TPHmo was detected only in well OW-2. Concentrations in this well decreased from 400 µg/l to 140 µg/l. TPHmo concentrations in samples analyzed without silica gel cleanup ranged from 200 µg/l to 400 µg/l
- Dissolved lead analyzed in samples collected from wells OW-2, OW-5, and OW-8 was not detected above the laboratory method reporting limit of 4 μg/l.
- MTBE was detected at 0.8 µg/l in the sample collected from well OW-1; no other wells had detected concentrations of MTBE.
- Benzene was detected in the sample collected from well OW-5 at 1.2 µg/l. Toluene, ethylbenzene, and total xylenes were not detected in any of the wells sampled.
- VOCs, other than those described above, were detected in samples collected from wells OW-1, OW-5, OW-6, and OW-7. The highest concentrations of these other VOCs were found in the sample collected from well OW-7, located in the northern (upgradient) portion of the property.

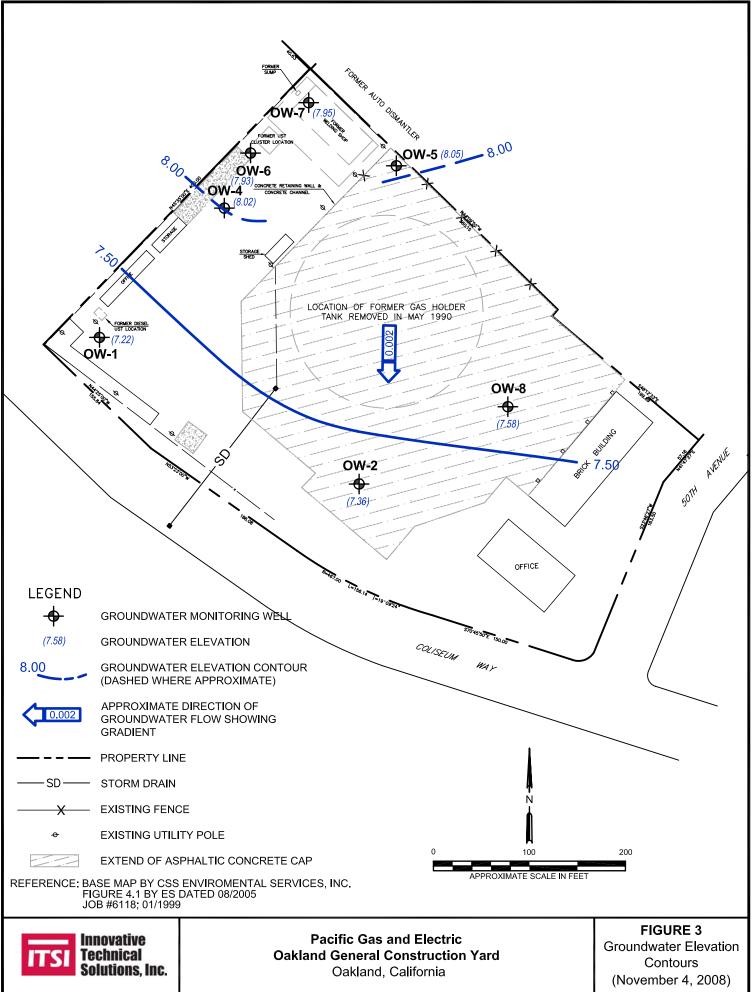
Table 2 summarizes the laboratory analytical results. Figure 4 presents the results of the November 4, 2008 sampling event.

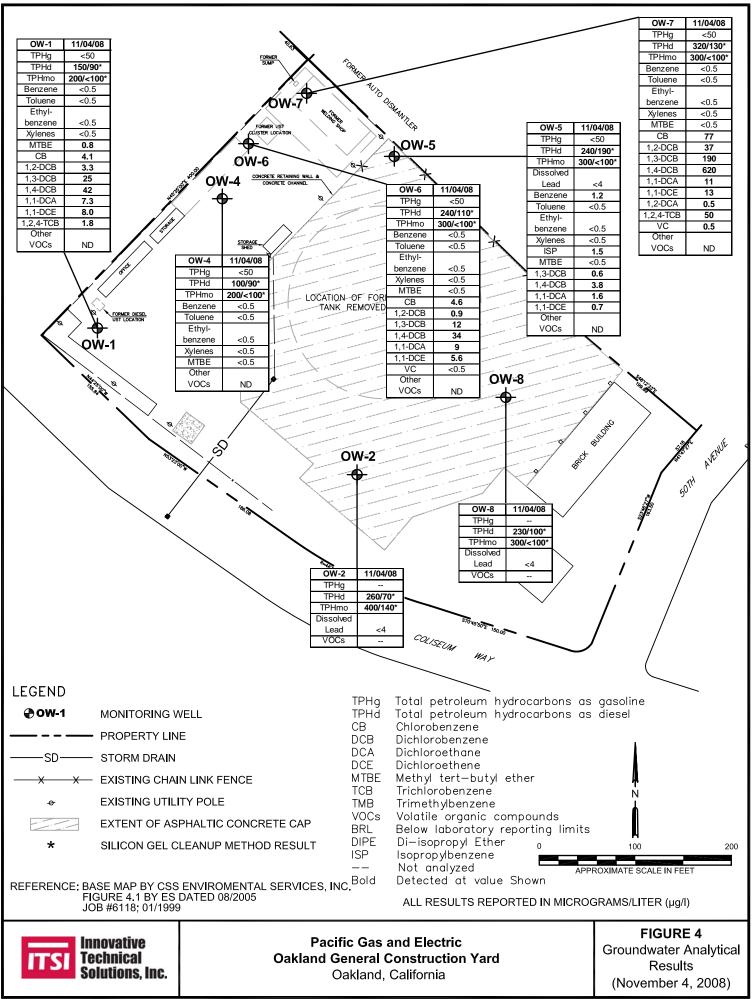
6.0 CONCLUSIONS

The direction of groundwater flow is generally consistent with and groundwater elevations are generally lower than the results of previous monitoring events. Overall, the analytical results of the November 4, 2008 groundwater monitoring event are consistent with the results of previous groundwater monitoring events.


7.0 **REFERENCES**


- CSS Environmental Services, Inc., 2005, Semi-Annual Groundwater Monitoring Report, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, September 2.
- Earth Technology Corporation (ETC), 1992, Site Remediation and Closure Report Former Tank Cluster Area, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, February.
- Pacific Gas and Electric Company (PG&E), 1988, Underground Tanks Investigation, PG&E General Construction Yard, 4930 Coliseum Way, Oakland, California, July.




FIGURES

TABLES

TABLE 1

Summary of Groundwater Elevation Data

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

Well Number	Sample Date	TOC Elevation (feet MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet above MSL)
OW-1	11/4/2008	11.82	4.60	7.22
OW-2	11/4/2008	11.24	3.88	7.36
OW-4	11/4/2008	12.82	4.80	8.02
OW-5	11/4/2008	13.24	5.19	8.05
OW-6	11/4/2008	13.61	5.68	7.93
OW-7	11/4/2008	15.00	7.05	7.95
OW-8	11/4/2008	11.19	3.61	7.58

Notes:

TOC = top of casing

MSL = Mean Sea Level

bgs = below ground surface

TOC elevation data were referenced from Figure 4.2-Historical Groundwater Elevations, (Semi-Annual Groundwater Monitoring Report, September 2, 2005, CSS Environmental Services, Inc.).

Table 2 Summary of Groundwater Analytical Results (November 4, 2008) Pacific Gas and Electric Oakland General Construction Yard Oakland, California

			oleum Hyd Iethod 801	frocarbons	Dissolved Lead Method 6010B								v	olatile Orga	unic Compo	unds-Meth	od 8260B	ł								
Sample Name	Sample Date	TPHg µg/L	TPHd µg/L	TPHmo µg/L	μg/L	Benzene µg/L	Toluene µg/L	Ethyl- benzene µg/L	Xylenes µg/L	lsopropyl- benzene µg/L	Naphthalene µg/L	MTBE µg/L	1,2,3-TCB µg/L	1,2,4-TCB µg/L	1,3,5-TMB µg/L	1,2-DCA µg/L	1,2-DCB µg/L	1,3-DCB µg/L		CB µg/L	1,1,1-TCA µg/L	1,1-DCA μg/L	1,1-DCE µg/L	DIPE µg/L	VC µg/L	Other VOCs µg/L
OW-1	11/04/08	<50		200 /<100*		<0.5	<0.5	<0.5	<0.5	<0.5	<5	0.8	<0.5	1.8	<0.5	<0.5	3.3	25	42	4.1	<0.5	7.3	8.0		<0.5	ND
OW-2	11/04/08		260/70*	400/140*	<4																					
OW-4	11/04/08	<50	100/90*	200/ <100*		< 0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	ND
OW-5	11/04/08	<50	240/190*	300/ <100*	<4	1.2	<0.5	<0.5	<0.5	1.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	3.8	<0.5	<0.5	1.6	0.7		<0.5	ND
OW-6	11/04/08	<50	240/110*	300/ <100*		< 0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	12	34	4.6	<0.5	9.0	5.6		<0.5	ND
OW-7	11/04/08	<50	320/130*	300/ <100*		< 0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	50	<0.5	0.5	37	190	620	77	<0.5	11	13		0.5	ND
OW-8	11/04/08		230/100*	300/ <100*	<4																					
FIELD BLANK	11/04/08				<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Notes:

μg/L = Micrograms per liter. < = Not detected at or above the practical quantitation limit. -- = Not analyzed

I not alrayzed
 ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).
 J = Estimated result. Result is less than the laboratory practical quantitation limit.
 MTE = Metry tertiany-buyit ether

CB = Chlorobenzene 1,2-DCB = 1,2-Dichlorobenzene 1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene 1,2-DCA = 1,2-Dichlorobenzene

1,1-DCA = 1,1-Dichloroethane 1,1-DCE = 1,1-Dichloroethane 1,1-DCE = 1,1-Dichloroethane 1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene 1,2,4-TCB = 1,2,4-Trichlorobenzene

DIPE = Diisopropyl Ether

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride * = TPHd/TPHmo analyzed using silica gel cleanup

APPENDIX A

Historical Groundwater Analytical Results

Wull (C Date	MCL ug/L		OW-1 Oct-89	OW-1 Jan-PO	CW-1 Ap:-90	OW-1 Jul-90	0W-1 0ct-90	OW-1 Jan-91	OW-1 Apr-91		OW-1 Dac-91		0W-1 Jul-92	0W-1 Oct-92	OW-1 Jan-93	OW-1 Apr-03	0W-1 Jul-93		OVV-1 Jan-84	OW-1 Jui-94	OW-1 Jen-25	O₩-1 Nov-85	OW-1 Jun-96	OW-1 Ocl-96	OW-1 Apr,Jun-97	OW-1 Dec-97	0W-1 Jun-98	OW-1 Doc-98	OW-1 Jun-99	OW-1 Nov-99
PURGEABLE HALOCARBONS	697 1				•														•											
Chloromeliune		ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	na Na	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromomelhane		D/	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Vinyt chlorida	0,5	ND	ND	ND	ND	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA ·	NA
Chlereattune		ND	ND	ND	ND	ND	ND	ND	\$NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Methylana Chiatida	5#	ND		80	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Trichloroflueromethane	150	ND	ND		110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ΝА	NA	NA	NA	NA	. NA	NĄ	NA	NA	NA	NA	NA	
1,1-Dichloraelhane	6	ND	NÐ	ND	NO	2	2	1	2.8	4.6	ND	ND	NÐ	1	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloreethane	5	ND	5	4	4		ŇŪ	й	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloraelnene	6	ND	ND	ND	ND	ND			ND	ND	ND	NP	ND	ND	NÐ	NA	NA	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloropihono	10	ND	ND	ND	ND	ND	NP	ND		80	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
Chloroform	100#*	ND		ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	, NA	NA							
Front 113	1200	ND	NЮ	ND	ND	ND	ND	ND	ND	ND.				ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.2-Dichleroethane	0.5	ND	0,63	ND	ND	ND	ND			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1.1.1-Tilchioraethane	260	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	ND			NA	NA.	NA	NA	NA	NA	NA	NA	NA	AIA	NA	NA	NA
Carbon Tutrechlarkia	0.5	ND	ND	ND	ND	ND	ND	ND	HA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Bromedichlorothethane	100#*	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	QN	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichleropropane	5	ND	ΝÐ	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA		214 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
cis-1,3-Dichbropropene	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA		NA	NA	NA	NA	HA	NA	NA	NA	NA							
	5	NO	ND	ND,	ND	ND	ND	םא	ND	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA						
Trichleroethere	12	ND	ND	ND	ND	ND	NÐ	ND	NA	·NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA							
1,1,2-Trichicrostione	5	ND	ND	ND	ND	ND	NÐ	ND	NA	NA	NA	NA	HA	NA.	NA	NA		NA	NA	NA	NA	NA	NA							
truns-1,3-Dichlercorepena	100#*	ND	ND	ND	ND	NØ	ND	ND	ND	ND	ND	ND	ND	нD	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Ditramochloremelhene	1404	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	t/A	NA							
2-Chierosinylvinyl Ether	100#*	ND	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	NO	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA	NA	NA
Bromolourn	5	ND	1.1	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA						
Teirachlorasthena	-	NO	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ЦЧ	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/A	NA	NA
1,1,2,2-Tetrachloroelhane	1	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA							
Chlorobonzana	30				4	4	1	3	1.6	2.9	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA		
1,3-Dichlorobanzone		NA	NA	1		ND	ND	ND	0,58	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichtorobenzeno	600#	NA	NA	ND 5	ЦN	11	6	3	6.7	14	3.2	ND	4	з	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobonzone	5	•	11	5	13		•	•			•			-																
PURGEABLE AROMATICS '																						10	ND	ND	ND	0.66	NP	0.5	0,55	ND
Benzone	1	ND	NÞ	3.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NР	NA	ND	ND	NA NA	ND ND	140	ND	ND	ND	0.67	ND	ND	NO
Toluene	1000#	ND	ND	23	0,4	ND	ND	ND	ND	ND	ND	ND	0,7	ND	ND	NA	ND	NA	ND	ND		ND	ND	ND	ND	2.3	ND	0,70	NO	ND
	550	ND	N⊐	ND	ND	2	ND	0.0	NA	ND	NA	ND	ND	NA			ND	ND	1.1	ND	0,67	ND	0.59							
Ethylconzana	1750**	1	NP	2.6	2.4	ND	ND	ND	ND	NÐ	NÐ	3.2	Û	1.7	1.9	NA	ND	NA_	2,5	ND	NA	ND	ND			4.08	0.67	1.03	0,55	0.59
Total Xytenes	1120	4	16	18,1	23.1	17	9	7	-15,41	215	12	32	15.7	5.7	8,5	NA	-NA	NA	2.5	NA	NA	NA	NA	NA	10A	4.00	0.07	1.03	0,00	0.00
TOTAL VOC:			10			,-																								
HYDROCARBONS																												850	1100	990
		NA	NA	< 50	62	< 50	< 50	< 500	NA	NA	NA	100	126	< 50	70	NA	NA	NA	80	60	400	230	500	830	590	420 700	850 1960	1600	1300	540
TVH-0		< 1000			303	200	200	90	< 200	< 50	1600	3100	3500	1000	2000	NA	2300	NA	1000	1500	740	1000	2300	1400	1500	-				
TEPH-d					NA	NA	NA	NA	NA	< 5000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	hА	NA	NA ,	NA	NA	NA	NA	NA
OåG		< 5000				< 5000				NA	NA	NÁ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (419.1)		NĄ	NA	< 5000		< 3000	- 2000	~ 2000	- 200	1-1	,																			
METALS																														
Lead	0	NA	NA	NA	NA	NA	на	NA	ND	NA	NA	ND	ND	ND	ND	NA	NA	NA	NA	AN	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Noles: 1) MCL = Maximum Contamina 2) # = EPA MCL		ater (State M	CL (f not	noted ot	ionvisa)																						-	-		
3) * = MCL for sum of four com 4) ** = MCL for sum of all sylon 5) *** = MCL for sum of trans- s	a komers and cis-1,3-Cichleropi	opana			-										•															
6) NC = Nei Delocied at er abo 7) Purgeobie Hidecarbons (EP, 6) Purgeobie Aremalice (EPA r	A method 6010)																													
9) NA × Not Analyzed or analyz 10) 6/17/02 Samples analyzed	is not required	ing time due t	o jabara	tory error																										

6113 sabias pis

-

.

di Bubbaab

Nell ID Data	OW-1 Jun-60	OW-1 Nov-00	OV∔1 Jun-01	OW-1 Nov-01	OW-1 Jun-02	0W-1 Oct-02	OW-1 Apr-03	OV/-1 Nov-03	OW-1 Jun-04
PURGEABLE HALOCARBONS									
· ·				NA	NA	NA	NA	NA	MA
Chloromethane	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
Bramainelhane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyi chlorida	na Na	NA	NA						
Chlomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Msthylane Chlorida	NA	NA	NA.	NA	NA	NA	NA	NA	NA
Frichlerofluoremethene	NA	NA	NA	NA	A41	NA	NA	NA	NA
1,1-Dichloroalhana	NA	NA	KA	NA	MA	NA	NA	NA	NA
1,1-Dichlorpolhana	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloruelhane	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Olchiorselhene Chlorolorm	NA	NA	NA	NA	NA	NA	NA	NA	NA
Freen 113	NA	NA	NA	NA	NA	NA	hA	NA	NA
1.2-Dichtoroothane	NA	NA	NA	NA	NA	NA	NA	ЫA	NA
1.1.1-Trichiorositiana	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachlotide	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Bromodichloremolhane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloropropana	NA	NA	NA	NA	NA	NA	NA.	NA	NA
cts-1,3-Dichlotopropena	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Trichlorasihene	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichioreethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
gans-1,3-Dichioropropana	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ditremechloremethena	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloroethylyinyi Ethar	NA	NA	NA	ΝА	NA	NA	NA	NA	NA
Bromeform	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroothono	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Teimchlomothane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobonzana	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.2-Dichlorobenzene	NA	NA	ŇA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzeno	NA	NA	NA	NA	NA	NA	NA	NA	NA
PURGEABLE AROMATICS									
Benzena	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Elhyibenzeng	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	ND	ND	3,4	ND	ND	ND	GN	ND NA	
TOTAL VOCE	NA	NA	5,4	NA	NA	NA	NA	NA	ne.
HYDROCAREONS									
TVH-g	680	020	480	630	540	770	380	310	290 420
TEPH-d	350	250	740	270	870	500	460	470	
OAG	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
трн (418.1)	NA	NA	NA	NA	NA	NA	NA	F # #4	1974
METALS									
Lood	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes:									
1) MCL = Maximum Contemina	nt Lovel in	onnking w	met later	e 1410-c	of linted c				
2) # = EPA MCL									
3) = MCL for sum of four com	- 1								
4) ** = MOL for sum of all xylon	12210475	Distance							
5) *** = MCL for sum of icans- a		richiotop	ropene						
6) ND = Not Detected at or abo		0.401							
7) Purgeable Helocarbons (EP/	n morned i Netheri 505	ար Հայու							

· · · · ·

200 A

() Fungeaus Francessons (EFA normal and a 8) Pungeable Aromalics (EFA method 8020) 5) NA = Net Analyzad or analysis nol required 10) 6/17/02 Samples analyzed for VOCs out of holding time due to teberatory error

.

*

Wall 10	MCL	OW-2	OW-2			OM-2	0₩-2 ದಿಷ-90					OW-2 Mar-92				OW-2 Apt-63			OW-2- Jap-94		CW-2 Jul-94	5-WO Jun-95	OW-2 Nov-95	0\V-2 Jun-98	0W-2 0ct-95	CVV-2 Apr,Jun-97	OW-2 Dac-97	OW-2 Jun-98	OW-2 Dec-98	0W-2 Jun-99	10W-2 Nov-09
Date	vg/L	Apr-88	Oct-89	Jen-90	Abi-an	101-90	¢164-90	9996-91	NH-11							•															
PURGEABLE HALOCARBONS									ND	ND	ON	ND	ND	NO	ND	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chioromethane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	na Na	NA NA	NA NA	NA NA	NA NA	NA NA
Bromontalliens View - Madda	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
Vinyi chioride Chlorophane	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	. NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mathylene Chicride	5#	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND DK	ND ND	ND	ND	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
Trichlerolluoromethano	150	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	NP	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dichleroetheno	6	ND ND	ND DN	ND ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
1,1-Olchloroolhana	5	NA	ND	ND	ND	ND	ND	ND	ND	NÓ	ND	ND	ND	ND	ND	NA	HA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	na Na	NA	NA	NA	NA
cis-1,2-Dichlorselhene trans-1,2-Dichlorsethene	10	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	NO	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Chleroform	100#*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA,	NA.	NA	NA	NA	NA	NA	NA
Fran 113	1200	NA	NФ	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichtoreelhune	0,5	П	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,3,1-Trishleroothane	200 0.5	ND	ND ND	ОИ QИ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Carban Totrachioride Bromodichloromathana	100#"	NO	ND	ND.	ND	ND	ND	ND	ND	NĐ	ND	NÐ	ND	ND	ND	NA	NA	NA	MA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	MA	NA
1,2-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND DN	NA NA	NA NA	NA NA	na Na	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,3-Dichloropropene	5***	ND	ND	ND	ND	NΦ	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichoraothene	5	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1.2-Trichlerosthans	32	ND	ND ND	ND NO	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
trans-1,3-Dichloropropeno	5*** 100#*	ND DA	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
Dibromochloromethane 2-Chloroethylvinyi Elher	1000	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	na Na	NA · NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Brameform	100#*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
Telachiorophene	5	ND	ND	ND	ND	ND	ND	ND	0.53	ND	ND	ND ND	ND D	ND ND	ND ND	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachicrosthena	1	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzane	30	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzena	600#	NA NA	NA NA	ND ND	ND	ND	NO	ND	ND	ND	ND	ND	NO	ND	ND	NA	NA	NA	24A	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichlorebenzene 1,4-Dichlorebenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	QИ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	604	195	1444	144	105	1973
1,4-042101000120110	-																														
PURGEABLE AROMATICS													ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŅA	NA	NA
Benzona	1	ND	.ND	0.4	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.4 ND	ND	ND	ND	NA	NA	NA	NA	NA	ŇA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluane	1000#	ND ND	ND ND	0.4 ND	0,6 ND	ND	ND	ND	но	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Elbylbenzona	620 1750**	ЧŅ	ND	0.4	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA NA		NA NA		-NA-	··· NA	- RA
Total Xylanes TDTAL VOCa	1130	- NA	NA	1.2	1,4	NA	NA	NA	0,53	NA	NA	1.4	NA	AK	NA	NA	NA	NA	NA	NA	NA	NA	NA	- NA	1124	1944	110			••••	,
HYDROCARBONS																													NA	NA	NA
7.61.4		NA	NA	- 50	< 50	< 50	< 50	< 50	NA	NA	NA	< 50	< 50	< 50	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
TVH-g TEPH-d		< 1000			140	65	90	< 50	< 200	< 50	650	870	410	410	020	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
CAG		18000	10000	NA	NA	NA	HA	NA	NA	< 5000	< 5000		NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA.	NA
TPH (410.1)		NA	NA	< 5000	< 5000	< 5000	< 5000	< 5000	< 500	NA	NA	НA	NA	NA	NA	na	195	pro-			,			-							
METALS				•									-														ND	ND	ND	ND	ND
l.¢ad	û	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	٥	ND	4.1	ND	ND	ΝĐ	ND	ND	ΝÞ	UN	5	110	,
Notoc: 1) MCL = Maximum Contaminat 2) \$ = EPA MCL 3) * = MCL for sum of faur comp 4: ** = MCL for sum of all sylent 5: *** = MCL for sum of all sylent 5: *** = MCL for sum of trans- a 4) ND = Not Datacted at or abox 7) Purgestile Haiocations (EPA it 9) NA = Not Analyzed or analyze 10) \$/77/02 Sample's analyzed it	bounds s komers nd ciz-1,3-Dichleroy re MDL 4 mathad 2010) sethed 2020) Is not required	propens				•)																									

,

6(1**1** 11)6(25)

.

.

AURGEABLE HALOCARBONS Chloromethans Dromendians Chlorosthane Chlorosthane Motylone Chloride Tichlorofluoronathane	NA			Nov-01	0W-2 Jun-02	0W-2 0ct-02	GW-2 Apr-D3	GW-2 Nov-03	C-VVQ 0-nut
Bromemethana Anyl chloride Chloroethana Methylana Chloride	NA								
Anyi chloride Chlorosthana Mothylana Chloride		NA	NA	NA	NA	NA	NA	на	N۹
Chieroettana Methylana Chierida	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylane Chioride	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA
Falable as Reasons of his top	NA	NA	NA	NA	NA	NA	NA	NA	NA
f Dethelthrolnstrensame	NA	NA	NA	NA	NA	NA	NA	NA	NA
(,1-Dichlorosthene	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,1-Dicitioroethene	NA	NA	NA	NA	NA	NA	NA		NA NA
ch-1,2-Dichlorosihane	NA	NA	NA	NA	NA	NA	NA. NA	na Na	NA
rans-1,2-Dichloroelhone	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Chloroform	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
Froon 113	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlerosthane	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1.1-Trichloraetharie	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachloride Bromodichloromethene	NA	NA	NA	NA	NA	NA	NA	NA	.NA
Bromodical Bromeaner	NA	NA	NA	NA	NA	NA	NA	NA	NA
da-1,3-Dichioropropone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorosthane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroathane	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,3-Dichloropropene	NA	ΝA	NA	NA	NA	NA	NA	NA	NA
Ditramochloromathana	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chiomathylvinyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	HA
Brorzafa/m	NA	NA	NĄ	NA	NA	NA	NA	NA.	NA
Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,1,2,2-Tetrachicrosthene	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Chlorobanzona	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzono	NA			NA NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzone	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
1.4-Dichlorobanzeno	100	1941		101					
PURGEABLE AROMATICS									
Benzone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluona	NA	NA	NA	MA.	NA	ha	NA	NA	NA
Ethylbenzena	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Xylanas	NA	NA	NA	NA	NA _	NA	NA	NA	NA
TOTAL VOCa	NA	NA	NA	NA	NA	NA	NA	NA	NA
HYDROCARBONS		NA	NA	NA	NA	NA	NA	NA	NA
	NA.		NA	NA	NA	NA	NA	NA	N,A
TVH-g	NA NA	NA				NA			
TVH-g TEPH-d		NA NA	NA	NA	NA	190	NA	NA	
TVH-g	NA		NA NA	NA NA	NA NA	ALI	NA	NA	NA
TVH-D TEPH-2 O&G	NA NA	NA							

Purgastio Aromatics (EFA Matrice Buck)
 NA > Net Analyzed or analysis not required
 10) 017/02 Bamples analyzed for VOCs out of holding lime due to laboratory oner

6111 takles ste

 $\mathcal{M}(\mathcal{M})$

.

.

1111111111

				~~~		ow-4	0W-4	OW-4	0.04	0₩4	ow.4	OW-4	ow-i	OW-4	aw.4	ow4	0W-4			DW-4			OW-4	0W-4	ow-4	OW-4	OW-4	OW-4		OW-4	OW-4		DW-4	DW-4
Well ID Date	MCL ug/L	O₩-4 Jun-88		0W-4 לצח-90				Jan-91						Oci-92		Apr-93	Jul-93	Oct-93	Jan-94	Jui-94	Jun-95	Nov-95	Jan-98	04.95	Apr. Jun 97	Dec-97	Jul-98	Oec-88	JUN-99	M04-8A	200-00	1104-140	2002-01	NOVOI
PURGEABLE HALOCARBONS																											110		*15	NA	134	NA	Na	NA
Chicromethano Brememethano Varyi chiotide Chicroethano Methyleno Chiofide Trichiorolturermethano 1,1-Dichioroethano 1,1-Dichioroethano tars 1,2-Dichioroethano Chicrofarm Fran 113 1,2-Dichioroethano 1,1,1-Tichioroethano Carton Tstrachiotide Bremedichioromethano 1,2-Dichioropopano do-1,2-Dichioropopano trichiorethano 1,2-Dichioropopano trichiorethano 1,2-Dichioropopano do-1,2-Dichioropopano trichiorethano 1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,2-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichioropopano do-1,1-Dichior	0.5 5# 150 6 5 8 1200 0.5 1200 0.5 5*** 5*** 100# 5 5*** 100# 1 100# 5 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		· · · · · · · · · · · · · · · · · · · ·	888888888888888888888888888888888888888	2	222222222222222222222222222222222222222	8222222 ² 22222222222222222222222222222	22222222222222222222222222222222222222	89999999999999999999999999999999999999	22222222222222222222222222222222222222	222222222222222222222222222222222222222	222222222222222222222222222222222222222	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	22222222222222222222222222222222222222	N N N N N N N N N N N N N N N N N N N	NA A A A A A A A A A A A A A A A A A A	NA A A A NA NA A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	N N N N N N N N N N N N N N N N N N N	NA AA AA NA N	NA A A NA A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	NA N	NA 14 NA NA NA 14 14 NA	NA N	NA N	NA N	NA N	NA KA NA	14, MA MA AA A	NA A A A A A A A A A A A A A A A A A A	NA 14	NA N
Chlorobenzone 1,3-Dichlorobenzone 1,2-Dichlorobenzone 1,4-Dichlorobenzone	30 800# 5	22 22 22 22 23 23 23 23	20 27 20 27 20 27	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND ND ND	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND ND	20 20 20 20 20	ND ND ND ND	ND ND ND ND	מא מא פא	2222	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	na Na Na	NA NA NA	na Na Na	na Na Na	NA NA NA	na Na Na	NA NA NA	na Na Ma	NA NA NA
PURGEABLE AROMATICS Bunzons Toluens Ethylbonzene Tolal Xylonos TOTAL VOCS	1 1060# 680 1750**	ND	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	КD ND ND 0.6	0.5 0.5 0.3 2 3,4	ND ND ND NA	ND ND ND ND NA	םא סא סא פא ב	20 27 27 27 27 27 20 27 20 27 20	ND ND ND 8,4	ND ND ND ND NA	ND ND ND 0.7 7.7	ND ND ND ND 4	ND ND ND ND 4	ND ND ND ND	NA NA NA NA	NA NA NA NA	na Na Na Na	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	ND 04 04 04 NA	ND ND ND ND ND	Си Си Си Ди Ал	ND ND ND ND	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
HYDROCARBONS TVH-g TEPH-d		NA • 1000			<50 210	<50 150	~50 150 NA	<50 <50 NA	NA 540 NA	NA < 50 < 5000	NA 2000 < 5000	< 50 2100 < 5000	< 50 620 NA	≺ 50 1300 NA	< 50 2100 NA	NA NA	NA 1500 NA	NA NA HA	NA NA	NA NA NA	NA 1600 NA	NA 630 NA	-NA 1100 NA	ND 840 NA	ND 950 NA	ND NA NA	ND 1000 NA	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
04G TPH (416.1)		< 5000 NA	i < 5000 NA	I NA < 5000	NA < 5000	NA < 5000				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	.NA	NA	NA	NA	на	NA	NĄ	NA	NA
METALS							•																- 4 -					474		NA.	NA	NA	NA	NA
Luad	٥	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	5	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	DIA	144	11/1	117	10
Notes: 1) MCL = Maximum Containing 2) \$= EPA MCL 3) * MCL for sum of lour camp 4) ~ = MCL for sum of all syleing 5) ~ = MCL for sum of trans- ar 6) ND = Not Detected at or aboy 7) Purgeable Halocarbons (EPA 8) Purgeable Anomalis (EPA m 9) NA = Not Analyzed or analyzed 10 MCM Sequelar analyzed	eunds isomers ad cis-1,3 o MDL method ethod 80 a not requ	-Dichlord ED10) 20) virod	auedoido				иіс <b>е )</b>																											- <i>.</i>

10) 6/17/02 Samples analyzed for VCCs out of holding time due to laboratory error

.

.

.

Wall ID Data	MCL ug/L	OW-S Apr-91		OW-5 Dec-91				OW-5 Jan-93			0\/-5 Jan-04	OW-5 Apr-94				0W-5 Jun-95		OW-5 Apr,Jun-97	OW-5 Dac-97	OW-5 Jun-98	OW-5 Dec-85	0W-5 Jun-99		0W-5 Jun-00		-	0W-5 Nov-01					GW-S Jun-04
PURGEABLE HALOCARBONS																																
Chloromothana Bromormothana Vayi chloride Chlorodiano Methylene Chloridia Trictikleröfuoreimeltiane 1,1-Ochlorodhane ds.1,2-Dichlorodhane ds.1,2-Dichlorodhane ds.1,2-Dichlorodhane (hlorofarm Freen 113 1,2-Dichlorodhane 1,1,1-Tichlorodhane 1,1,1-Tichlorodhane 1,2-Dichlorophane ds.1,2-Dichlorophane ds.1,2-Dichlorophane ds.1,2-Dichlorophane tichlorodhane Dichlorodhane Dichlorodhane Dichlorodhane Dichlorodhane 1,1,2-Tichlorodhane Dichlorodhane Stemolation Tetrchlorodhane 1,2-Dichlorodhane Dichlorodhane Dichlorodhane Dichlorodhane 1,2-Cichlorodhane Dichlorodhane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	0.5 5# 150 6 5 100# 100# 5 5 5 5 5 100# 5 100# 5 100# 5 1 100# 5 1 100# 5 5 1 100# 5 5 1 100# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND N	ND N	22222222222222222222222222222222222222	22222222*22222222222222222222222222222	222222222222222222222222222222222222222	82222222222222222222222222222222222222	222222252222722222222222222222222222222	99999999999999999999999999999999999999	~~~~~	222222222222222222222222222222222222222	NAA AA	£222222222222222222222222222222222222	82222222222222222222222222222222222222	D 2 2 2 5 7 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2	22222222322 <u>929999999999999999999</u> 2222	222222222222222222222222222222222222222	55555555555555555555555555555555555555		999999999999999999999999999999999999999	229112222522222222222222222222222222222	22222220020020202020202020202020202020	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2	82 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	D D D D D D D A A D D D D D D D D D D D	828888888888888888888888888888888888888	22222222222222222222222222222222222222	222222222222222222222222222222222222222	292222222222222222222222222222222222222	2 2 3 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2	ND N
PURGEABLE AROMATICS Bontens Totuens Elinybontens Tott Xylanes TOTAL VOCS HYDROCARBONS TVH-g TEPH-d OAG TPH (418.1)	1 1000# 450 1750**	14 0.54 5.8 29.97 NA 600 NA < 500	20 ND 4 57.2 NA 1500 < 5000 NA	11 ND 5.0 35,9 NA 1200 < 5050 NA	15 1,1 0,0 5,1 37,5 120 840 < 5000 NA	11 ND 8 50 270 850 NA NA	13 ND 3.8 57,8 180 1000 NA NA	25 ND 0,7 13 51.7 350 1000 NA NA	14 ND 2.4 29,4 140 1800 NA NA	NA A A A A A A A A A A A A A A A A A A	21 ND 0.7 9.2 34.9 370 510 ND	NA NA NA NA NA NA	11 ND 0.8 1.3 19,9 110 1300 ND ND	4.5 ND 510 NA NA	11 ND ND 88 ND 1500 NA NA	15 ND ND 17.5 ND 830 NA NA	18 ND ND 26.2 ND 870 NA NA	3,8 NO NO 9,1 740 NA NA	15 ND 2.74 20.64 83 830 NA NA		7.3 ND ND 11.5 ND 780 NA NA	82 NO NO 12 12 NO 830 NA NA	11 NO NO NO NO NO NO NO 59 600 NA NA	83 80 80 85 85 85 85	10 ND ND 14,95 ND ND NA NA	ND ND 9.8 79 540 NA NA	13 ND 0.56 ND 16.28 100 130 NA NA	8.3 ND ND 7,4 ND 250 NA NA	5.0 ND ND ND ND 8.4 57 470 NA NA	8.0 ND ND 92 58 410 NA NA	7.0 ND ND 10,05 50 250 NA NA	5.0 ND RD 9.75 80 650 NA NA
METALS																										,						
Laud	٥	ND	NA	NA	ND	ND	ND	ND	ND	ND	د.7	7.4	5	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	סא	ND	ND	ND	ND
Notes: 1) MCL = Madmum Contaminani 2) * = EPA MCL 3) * = NCL for sum of four comp: 4) ** = NCL for sum of all sylans 5) *** = NGL for sum of itran- an 6) ND = Not Detected at or above 7) Purgasbie Holocardons (EPA 8) Purgasbie Aromatize (EPA me 9) NA = Not Analyzed or sinalyzis 10) 6/17/02 Semples enalyzed fo	ounda Isomera al cis-1,3 a MDL method i sthed BD i not requ	(Dichloro) 1010) 20) Ired	prepene				at) }				·																					

a i si tahine zia

• •

.

Wali ID Date	MCL vg/L	OW-3 Apr-88	0W-3 Jun-88		CW-3 Jan-80		0Ý-3 Jul-90	0W-3 0d-90	GW-3 Jan-81	OW-3 Apr-D1	OW-3 Jui-51			OW-8 Mar-92			OW-5 Jan-93	OW-5 Jal-93	0W-6 Ocl-83	OW-6 Jan-94	C/VI-6 Jul-94	OW-8 Jun-95	OW-6 Nov-95	OW-5 Jun-95	0W-8 0d-98	CW-6 Apr,Jun-97	0W-5 D#\$-97	0W-0 Jun-95	OW-6 Dec-98	0W-6 Jun-99	OW-6 Nov-99
PURGEABLE HALOCARBONS																															
Chloromethuma Bromenthuma Viryi chlorida Chlorouthana Metrylana Chlorida Tilchiarafharana 1,1-Dichlorouthana 1,1-Dichlorouthana trans-1,2-Dichlorouthana Chloroform Froon 113 1,2-Dichlorouthana 1,2-Dichlorouthana 1,2-Dichlorouthana 1,2-Dichloropropana ch-1,3-Dichloropropana trans-1,3-Dichloropropana Tichlorouthana trans-1,3-Dichloropropana Dilermechloromethana Dilermechlorouthana	0.5 54 150 6 5 6 10 1004 1200 0.5 200 0.5 5 5 5 5 5 5 32 5 1004 5 5 1004	222222222424222222222222222222222222222	22222225542222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222222222222222222222222222222222222	22222922222222222222222222222222222222	22222222222222222222222222222222222222	22222222222222222222222222222222222222	5 2 2 2 2 2 2 2 2 2 2 2 2 <del>2</del> 2 2 2 2 2 2	22222222222222222222222222222222222222	6 6 6 6 6 6 6 6 6 6 6 6 9 9 4 6 6 9 5 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•	22222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N M M M M M M M M M M M M M M M M M M M	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	823255555555555555555555555555555555555	***************************************	222222222222222222222222222222222222222	÷÷;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	222222222222222222222222222222222222222	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222222222222222222222222222222222222	2 6 5 5 5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Branaform Teirachionathana 1,1,2,2-Tetrachiorodhana Chiorobanzane 1,3-Dichiorobanzane 1,2-Cichiorobanzane 1,4-Dichiorobanzane	100# 5 1 30 500# 5	nd Nd Nd NA NA	ND ND ND NA NA	ND ND NA NA HA	ND ND ND 3 2 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ND ND ND ND ND ND ND	ND ND ND 2 1 2	ND 00 ND 1 1 1	ND 1.4 ND 2.3 3.3 3.1	ND ND ND ND ND		ND ND 5.7 15 5.8 23		202222222222	ND ND ND ND ND ND ND ND	ND 00 00 00 00 00 00 00 00 00 00 00 00 00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA NA NA NA	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND ND 2 ND ND ND ND	ND 4,5 11 23 2,9	ND ND ND ND 7.4 ND 15	ND ND 5,2 20 2,4 48	ND ND 1 10 ND 25	ND ND 4.5 25 2.1 65	ND 26 45 6,3 140	ND ND 9.1 30 3 84	ND 8.3 27 2.6 65	ND ND 5.4 ND 19	ND ND 1.9 9,2 0,7 30
PURGEABLE AROMATICS Baazona Toluono Emploarzene Total Xylobas TOTAL VOCS	1 1000# 680 1750**	0И ОИ П В	ND ND ND ND	ND ND ND 28	0.5 0,4 ND 0,7 37,0	ND 9.8 0.5 2.1 56,4	ND ND ND 20	ND ND ND ND	ND NO ND 20	0.54 ND ND ND 32,61	00 01 01 04 04 24		ND ND ND 2 51.5	10 10 10 10 1	ND ND ND ND	ND ND ND 2	ND ND ND ND 20	0.5 ND 1.1 ND 42.7	NA NA NA NA	ND ND ND 7	ND ND ND ND	ND ND ND ND 763	ND NO ND ND 81.2	ND ND ND ND 83.6	ND ND ND ND ND	00 ND ND ND 103,8	0,5 ND 35 ND 261,5	ND ND ND 29,4	ND ND ND ND 130.7	ND ND ND 27.8	ND ND ND ND 44.9
HYDROCARBONS TVH-g TEPH-d O&G TFH (418.1) METALS		NA < 1000 < 5000 NA			< 50 440 NA < 5000	52 470 NA < 5000	< 50 459 NA < 5000	< 50 130 NA < 5000	< 50 1310 NA < 5000	NA 700 NA < 500	NA < 50 < 500D NA		NA 5500 ~ 5000 NA	< 50 4900 < 5000 NA	* 50 3500 NA NA	~ 50 3900 NA NA	< 50 5300 NA NA	< 50 3500 NA NA	NA NA NA	70 2200 NA NA	<50 2500 NA HA	ND 1300 NA NA	ND 2409 NA NA	61 2000 NA NA	ND 2400 NA NA	83 1300 NA NA	160 1200 NA NA	110 1300 NA NA	130 2000 NA NA	84 1300 NA NA	57 1600 NA NA
Lead	- o	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA		NA	NÖ	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nates: 1) MCL = Maximum Contamina 2) # = EPA MCL 3) * = MCL for sum of four com 4) ** = MCL for sum of all sylan 5) *** = MCL for sum of fans-s 6) ND = ND Exected at or abo 7) Purghable Malocarbona (EP) 2) Student formed (EPA of	pound# e isomens mai ds-1,3 ve MDL A method	-Dichlore 8010)		ale MCL	lf nat not	ed otherw	(ach																·								

1) registration failed about (EPA interval density) 8) Purgozbile Aromalics (EPA molited 2020) 9) RA = Not Analyzed or unalysis not required 10) En 7/02 Semples analyzed for VOCs out of hoking time due to laboratory error

s | | E tablec.s Sr

Well (D Data	0W-6	DW-6 Nov-00	OW-8	DW-8 Mov-D1	OVV-8 Jun-02		OW-5 Apr-63	0W-5 Nov-03	0W-5 Jun-04
Data	2911-20	1424440	001701	1101-01	BOIL OF		1.41.02		
PURGEABLE HALOCARBONS									
Chiapomotitena	ND	ND	ND	ND	NÐ	ND	ND	ND	NÖ
Bromomethane	· ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyi chłorida	NP	ND	ND	NÐ	ND	ND	ND	ND	ND
Chloroethana	ND	NÜ	ND	ND	ND	ΝD	ND	ND	ИО
Mathjone Chloride	ND	ND	ND	ND	ND	NÜ	ND	ND	ND
Trichlorofluoromethana	ND	NO	ND	ND	ND	ND .	ND	ND	ND
1,1-Dichloroethens	ND	ND	ND	ND	ND	ND	ND	ND	1.5
1,1-Dichlorosthans	1 <i>A</i>	23	1.6	1.5	1.3	1.5	1.2	2.8	4.9
cie-1,2-Dichlaroelhena	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichlorosthens	NO	ND	ND	ND	ND	ND	ND	ND	ND
Chlarofarm	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
Freen 113	ND	ND	ND	ND	ND ` ND	ND ND	ND	ND	ND
1.2-Dichloroethane	ND	ND ND	04 ND	0.76 ND	ND	ND	ND	ND	ND
1.1.1-Tichlomethena	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Carbon Teirschloride Bromodichloromsibune	ND	ND	ND	ND	סא	ND	ND	ND	ND
1.2-Dichleropropane	ND	ND	ND	ND	ND	ND	HD	ND	ND
cis-1_3-Dichloropropana	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorgethenp	ND	ND	0.7	ND	םא	ND	ND	ND	ND
1,1,2-Trichlomethane	ND	ND	ND	NO	ND	ND	ND	ND	ND
trans-1,3-Dichloropropone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibramochlaromethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-ChiamathyMnyl Elher	ND	ND	NO	ND	ND	ND	ND	ND	ND
Bromolerm	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrechlorosthene	ND	ND	ND	ND	ND	NÖ	ND	ND	ND
1.1.2.2-Tetrachioroothene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	2.5	6.5
1.3-Dichlerobenzene	3	2.7	ND	ND	1.1	2,0	ND	1.9	2.5
1,2-Dichlorobenzane	ND	ND	ND	ND	ND	ND *	ND	ND	0,54
1,4-Dichlerobenzene	11	10	ND	ND	5,0	7.2	3.0	7.2	8,0
PURGEABLE AROMATICS									
Bonzone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylencs	ND	110	ND	ND	NO	ND	ND 4.2	ND 14.4	- <u>723</u> -
TOTAL VOCS	15,4	15.0	2.1	2.6	7.4	10.7	4,£	14.4	2.2
HYDROCARBONS									
TVH-a	ND	ND	ND	ND	ND	ND	ND	ND	75
TEPH-d	68	ND	320	65	220	380	290	380	440
Q&G	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALG									
Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes;		alala 1 June -			I not not	d atha-	é 1		
1) MGL = Maximum Contaminar	IL LOVOL IA	ពមហាការចិ អ	Autos (20		1 (191 (19(6	o omano	. زمی		
2) #= EPA MCL									
3) * = MCL for sum of four comp that a MCL for sum of all minutes									
<ul> <li>4) = MCL, for sum of all sylars</li> <li>5) = MCL for sum of trans- a:</li> </ul>		Dichlares	unnana						
5) ND = Not Detected at or abov		erenoveh							
7) Purgeable Hatocarbona (EPA		0105							
a) Purpeable Aromatics (EPA m									

0) Purgeable Aromatics (EPA method 8020) B) NA = Not Analyzed or analysis not required

.

(1,2,1)

.

6228 I.L.Int.35

٠.

feksi minteratu

Well ID Dala	MCL vg/L	DW-7 Dec-91	GW-7 Mar-92	OW-7 Jul-92	0W-7 Oct-92	OW-7 "Jan-83	ow-7 Apr-e3	DW-7 Jul-83	0W-7 Oct-93	DW-7 Jon-94	0W-7 Jul-94	OW-7 Jun-95	OW-7 Nov-85		.0W-7 Dct-98	OW-7 Apr,Jun-97	OW-7 Dac-97	CW-7 Jun-98	OW-7 Doc-Pă	OW-7 Jun-99	OW-7 Nav-99	0W-7 Jun-00	DW-7 Nov-00	0W-7 Jan-01	0W-7 Nov-01	OW-7 Jun-02	0W-7 Oct-02	OW-7 Apr-03	OW-7 Nov-83	DW-7 Jun-04
PURGEABLE HALOCARBONS																							ND							
Chieromelhana		ND	ND	ND	110	ND	NA	ND	NA	ND	DN DN	ND ND	ND ND	ND ND	ND ND	ФИ QИ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND							
Bromomethane		ND	ND	NO	ND	ND	NA	ND ND	NA NA	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND ND								
Vinyl chiorida	0,5	ND	ND	NO	ND	ND DK	NA NA	ND	NA	ND	И	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Chloroethana		ND	ND ND	ND ND	ND	ND	NA	ND	NA	ND	ND	ND	570	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND ND	ND ND	ND	ND	ND
Methylana Chlaikia	5# 150	14 ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND DA	ND ND	ND	ND, ND,	ND	ND	ND	ND	6.6
Tdehlarofluorarnelliane 1.1-Dichleroelhono	6	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	6,3	ND	ND	ND	ND.	ND	ND	ND	ND	0,9
1,1-Dichloreethane	ŝ	10	14	ND	ND	25	NĄ	14	NA	8	ND	5.5	25	6.5	6.6	4,3	9,5 ND	4.1 ND	5,7 ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	NO	ND
ds-1,2-Dichlerosthene	6	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND ND	ND	аи ФИ	ND													
trans-1,2-Dichtorselhens	10	ND	ND	ND	ND	ND	HA.	ND	NA	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	NQ	ND	ND	NÐ	ND						
Chloraform	100#*	ND	ND	ND	ND	ND	HA	ND	NA	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	NP	ND	NÐ	ND						
Freen 113	1200	ND	ND	ND	ΝΦ	ND	NA	ND	NA	ND ND	ND ND	ND	ND	ND	ND	סא	ND	ЮŅ	ND	ND	ND	ND	ND	ND						
1,2-Dichloroothano	0.5	ND	ND	ND	ND	ND	NA	ND גל	NA NA	76	26	33	41	18	6,6	7.9	31	5.9	5,6	ND	ND	ND	NØ	NP	ND	ND	ND	ND	ND	ND ND
1,1,1-Trichleranihane	205	10	460	20	80	530 ND	NA NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	٨D	ND	NQ	ND	NO	ND	ND	ND	ND	ND	ND	ND DM	ND
Carbon Tetrachlaride	0,5	ND	ЦN	ND ND	ND ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	КO	ND	ND ND	ND ND	ND	ND							
Bremedichlaromethane	100#*	ND ND	ND ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	
1,2-Dichloropropane	5	ND	ND	ND	ND	ND	NA,	ND	NA	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND							
cis-1,3-Dichlorepropana Trichiorosihena	_ <u>-</u>	ND	ND	ND	ND	ND	NA	NÐ	HA.	ND	ND	ND	ND	ND	ND	ND	ND	ОИ ОИ	ND	ND	ND	10	ND							
1,1,2-Trichlorosihans	32	ND	ND	ND	ND	ND	NA	ND-	NA	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND .	NФ	ND	ND	ND	ND	NO	ND	ND	ND	ND
trans-1,3-Dichlampropene	5***	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
onardiana chiana di ana	100#*	NO	ND	ND	ND	ND	NA	) 전 1 년 1 년	NA NA	ND ND	ND	ND	ND	ND	ND D/J	ND	NA	NA	NA	NA	NA	14D	ND							
2-Chloroethylvinyl Elher		ND	ND	ND	ND	ND	NA	ND ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND								
Bromolorm	100#	ND	ND	ND ND	ND ND	ND ND	NA NA	ND	NA	NØ	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	NQ	110	ND	ND	ND	ND	ND	ND ND	ND HD	ND ND
Telrachiarosinene	5 1	ND ND	ND ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ИП	ND	ND	ND	DИ	ND	ЦЧ	ND	ND	ND	ND 25	ND 45	ND 74	110	68	110
1,1,2,2-Teirschiorouthane	102	10	ND	ND		ND	NA	29	NA	21	24	12	34	25	21	25	48	27	31	34	38	18 220	39 330	27 320	260	420	630	610	210	240
Chlorobenzene 1,3-Dichlorobenzene	40	460	130	420	330	170	NA	540	NA	450	570	270	400	360	440	290	360	340	36D 49	420 67	330 44	44	49	42	55	69	120	75	26	33
1,2-Dichiorsbonzene	600#	120	22	95	77	33	NA	470	NA	75	100	290	61	62	74	47	57 530	50 450	40 470	580	450	310	470	510	160	500	950	1000	500	740
1,4-Dichlorabenzone	5	440	120	400	290	160	NA	110	NA	410	540	51	480	500	560	410	920	430	414	544		-,-								
PURGEABLE AROMATICS																					- · · · ·		0.63	· ND	ND	ND	ND	· ND	ND	ND
8	1	ND	9,5	1	1.4	0.6	NA	1,5	NA	1.6	1.2		1,1	ND	ND	0.56	1.6	¢,66	0,65	0,84	0.62 ND	ND ND	ND							
Bonzone Tpluena	1000#		0.6	0,5	ND	нD	NA	ND	NA	ND	. ND		ND	ND	ND	ND	ND	ND	ND ND	סא סא	ND									
Ethylbenzone	680	ND	ND	0.5	NO	ND	NA	ND	NA	ND	ND		ND	ND	ND	ND ND	70 1.1	ND ND	ND											
Total Xylones	1750	ND	2,1	5	ND	ND	NA	ND	NA	4.2	ND		ND 16127	ND 591.5	ND 1118.2		1106.5			1101.0			885,6	809	701	1035	1774	1615	804	1129,7
TOTAL VOCa		1054	751.5	051	786.4	916.0	NA	1237.5	NA	1046.0	12632	661.5	1012	1 191-9		104.10	11044,4													
HYDROCARBONS				•																								1200	440	1100
		NA	700	1300	1400	720	NA	1500	NA	1400	1800	650	560	1200	1500	1100	1100			1200		580	1100	1200		1000	1360			1000
TVH-0		7100		2800			NA	4900	HA	4500	4800	1600	4400		4800	2800	2100			3500		430 NA	370 NA	NA						
TEPH-d DAG		< 500			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA								
TPH (418.1)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	DM4	110	111	194	101							
METALS																														
Lead	٥	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	НА	НA	NA	NA	NA	NA	NA	NA
Notos: 1) MCL - Meximum Gontambar 2) # - EPA MCL 3) * - MCL for sum of four som; 4) * - MCL for sum of sill syleat 5) *** - MCL for sum of sill syleat 5) *** - MCL for sum of sill syleat 5) ND = Net Detacted stor show 7) Purgeable Holocathors (EPA 2) Purgeable Aramatics (EPA 2) NA = Na Nabizzd or analysi 10) dr. 702 Samplos analysid i	acunda Isomori nd cla-1, re MDL Method Isotod 60 Is not rec	) 3-Dichlar ( 2010) (20) (ukod	ptiptere	,			wiza )																							

. .

. .

at (Fishionala

	OW-8	OW-8	OW-I	OW-8	OW-8	0W-8	ow-a	ow-a	OW-6		OW-6				OW-5			OW-6		OW 5	B-WO	OW-8	OW-8 Apr-03	OW-8 Nov-01	0W-8 Jun-04
Well ID	Apr-93	Jul-93		Jan-84	Apr-94	Jul-84	Jun-95	Nev-95	Jun-96	Oct-96 q	ខ-៣៤,រជ	Dec-97	Jun-97	Dec-98	Jun-99	Nov-99	Jun-00	Nov-00	Jun-01	Jun-02	Jun-02	Oct-02	Арг-03	(101-01	2011-0-4
Date																									
PURGEABLE HALDCARBONS		•															NA	NA	NA	мА	NA	NA	NA	NA	NA
Chloramethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA												
Bromamethane	NA	NA	NA	NA	NA	NA	NA	na Na	NA NA	NA	HA	NA	NA	NA	NA	NA	NA	NA							
Vinyi shiprida	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA															
Chlorosihane	NA	NA	NA	NA	NA	NA NA	NA	NA	NA																
Methylana Ghlarida	NA	1A	NA	NA	NA NA	NA	HA	NA	NA																
Trichlorofluoromolhano	NA	NA	NA	NA NA	NA	NA ·	NA	ŅА	NA	NA	NA	NA	NA	NA	NA	NA									
1.1-Dichlorosthene	NA	NA NA	ha Na	124	NA	NA	NA NA																		
1,1-Dichlerosthane	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA
cts-1,2-Dictriercelhans	NA	NA	NA	NA	HA	NA	NA	NA	NA.	NA	NA	NA	\$JA	NA	NA NA	NA NA	NA	NA	NA						
trans-1,2-Dichlorpethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA
Chloroform Freen 113	NA	NA	NA	14A	NA	NA NA	NA NA	NA	NA	NA	' NA	' NA	NA	NA											
1,2-Dichiorosihana	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA						
1,1,1-Trishlarabliana	NA	NA	NA	NA	NA	NA	.NA	NA	NA	NA	HA	NA NA	NA NA	NA NA	NA	NA.	NA	HA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachieride	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA											
Bromotächlaramathane	NA	NA	NA	NA	NA	NA.	NA NA	NA NA	NA	NA.	NA	NA	NA	NA	NA										
1,2-Dichloropropula	NA	NA	NA	NA	NA	NA NA	MA	NA	NA	NA															
cis-1,3-Eichloropropene	NA	NA	NA	NA NA	NA NA	NA	NA ·	NA	NA.	NA	NA	NA	NA	NA	NA										
Trichlorosthene	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	МА	NA	NA	NA	NA	NA	NA	NA NA
1,1,2-Trichloroathana	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
trans-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Dibremochleramathana	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
2. Chlorae Unitvinit Ether Bromolom	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA
Teirachlorothenn	NA	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA						
1,1,2,2-Tokashlatushans	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA								
Chisrobanzone	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA	NA										
1,3-Dichlorobanzana	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA														
1,2-Dichlembenzene	NA	NA	NA	NA NA	NA NA	NA	NA	ŅĀ																	
1,4-Dichlarabenzane	NA	NA	NA	ΓUΑ	NO.	101	141																		
PURGEABLE AROMATICS																	NA	NA	NA						
Bunzona	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA						
Toluana	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	na Na	ha Na	NA	NA	NA	NA	NA	NA -	NA	NA.	NA	NA	NA
Elhylbenzena	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA											
Total Xyienes	NA	NA	NA	NA	NA	NA NA		NA	NA NA	NA	-NA	NA		NA	NA	NA	NA	NA	NA	- RA	AIA -	NA NA	NA	NA	NA
TOTAL VOCS	- NA	NA.	- NA	NA	NA	na	1444		100	(121	101		••••												
HYDROCARBONS																					415	NA	NA	NA	NA
TVH-g	NA	NA	71A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
TEPH-d	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
DAG	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA NA	NA	ΜA	NA	NA	NA							
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	tion.		1993	1444									
METALS																									
Losd	27	t7	ND	25	12	24	3.2	ND	ND	ND	ΝD	ND	ΝΦ	ND	ND	ND	ND	ND	NÐ						
Notoc: 1) MCL = Maximum Contaminant Lovel in ddnking water 2) # = EPA MCL 3) * = MCL for sum of four compounds 4) ** = MCL for sum of sames and d=-1,3-Dichloroproper 6) ND = Net Dotosted of or above MDL 7) Purgoable Halocarbons (EPA method 8010) b) Purgoable Anomics (EPA method 8020)		CL. If not	noted str	nonvisa )																					
<li>F) NA = Not Analyzed or analysis not required 10) 6/17/02 Samples conlyzed for VOCs out of holding to</li>	kne duo I	lo labora	tory arror																						

Wali	MCL	OW-98		0W-9	
Date	սց/ե	Jun-96	1uo-69	Nov-99	
PURGEABLE HALOCARBONS					
PORGENELE INTERNITORI					
Chloromethane		NO	ND	ND	
Bromentatione		ND	ND	ND	
Vinyl chilcride	0.5	ND	ND	ND	
Chlorosthano		ND	ND	ND	
Melhylana Chiorida	5#	ND	ND	ND	
Trichtoro Luorome Liano	150	ND	ND	ND	
1,1-Dichlotoothena	6	D11	ND	ND	
1,1-Dichlerosthens	5	ND	2.6	2.0	
cis-1,2-Dichtarcelhene	6	ND	ND	ND	
trans-1,2-Dichlomethene	10	ND	ND	ND	
Chloreletm	100#*	ND	ND	ND ND	
Freen 113	1200	ND ND	ND ND	ND	
1,2-Dichloroethane	0,5			ND	
1,1,1-Trichteresthene	200	ND ND	ND ND	ND	
Carbon Tetracalorida	P,5	ND	ND	ND	
Bromodichioromethane	100#*	ND	ND	ND	
1,2-Cichiorapropana	5	ND	ND	ND	
cis-1,3-Dichloropropens	5	ND	ND	ND	
Trichispelhene	32	ND	ND	ND	
1,1,2-Tdzhiornathana	 5	ND	ND	ND	
trans-1,3-Dichterepropens	199#*	ND	ND	ND	
Olbromochloromethene 2-Chloroethyivinyi Elher	1906	NA	ND	ND	
2-Chiolognykanys cilitar Bromoform	100#*	ND	ND	ND	
Tetrachloroathene	5	ND	ND	ND	
1.1,2,2-Tetrachiorosihasa	1	ND	ND	ND	
Chiprobenzone	30	ND	31	31	
t 3-Dichlorobenzene		ND	390	390	
1.2-Dichlorobenzene	600#	ND	53	53	
1.4-Dichlorobenzene	5	ND	560	560	
PURGEABLE AROMATICS					
_	t	ND	NA	NA	
Banzane	1000#	0,73	NA	NA	
Takiana	680	ND	NA	NA	
Ethylbenzene	1750**	ND	NA	NA	
Total Xylenes	1100	0,73	1036.6		
TOTAL YOUR		0.75	1030,0	1010.0	
Hydrocarbons					
TVH-0		ND	NA	NA	
TEPH-d		NA	NA	NA	
040		NA	NA	NA	
TPH (418.1)		NA	NA	NA	
METALS					
Lead	D	NA	NA	NA	
1)-6					
Notes: 1) MCL = Maximum Conteminen 2) # = EPA MCL	t Level in d	kinking wa	ılar (Stab	s MCL If not not	ni otharwis
3) = MCL for sum of four comp					
4) ** = MCL for sum of all xylens	Isomere				
5) *** = MCL for sum of trans- an	d ca-1,3-0	)Ichlonopi	opene		
•					

1 1

5) *** = MCL for sum of trans- and d=-1,3-DEH/arcpropens 6) ND - Not Detacted at or above MDL. 7) Purgeable Halceschanz (EPA methad 80:0) 8) Purgeable Halceschanz (EPA methad 80:20) 6) NA = Not Amilyzad er anolyzis not inequired 10) Gr1702 Samples analyzed for VOGe out of holding time due to laboratory error

. .

áj)t liðkusk

## **APPENDIX B**

Field Procedures for Low-Flow Purging and Sampling



#### FIELD PROCEDURES FOR LOW-FLOW PURGING AND SAMPLING

The following sections describe field procedures followed during groundwater monitoring at the site.

#### **EQUIPMENT CALIBRATION**

At the beginning of each sampling day, water quality meters for pH, specific electrical conductance (SEC), dissolved oxygen (DO), oxidation reduction potential (ORP), and turbidity are calibrated. Calibration data are recorded on the first Well Sampling Record. A CHEMetrics, or other appropriate, field test kit is used if there is a problem with DO meter calibration.

#### DOWNHOLE PARAMETER AND GROUNDWATER LEVEL MEASUREMENTS

After opening the wells and allowing time for equilibration to atmospheric conditions, and prior to purging and sampling activities, a complete round of downhole parameter and depth to groundwater measurements are collected from all monitoring wells. Downhole DO and ORP are measured first using a Horiba U-22, or other appropriate, water quality meter. Depth to water is then measured using an electric water level sounder to the nearest 0.01 foot from the top of casing.

#### FREE PRODUCT MEASUREMENT

The wells are inspected for free product, and if free product is observed, the depths to top and bottom of free product is measured using an interface probe to the nearest 0.01 foot from the top of casing.

#### SAMPLING ORDER

To minimize potential cross-contamination between wells, the wells are sampled in reverse order of target analyte concentration as measured during the previous sampling event.

#### **GROUNDWATER PURGING AND SAMPLING**

Groundwater sampling is performed following EPA low-flow purging and sampling procedures¹. A minimum of three equipment volumes are purged at each well using an electric pump. Typical pump types may include peristaltic, 2-inch stainless steel submersible and/or bladder pumps.

Dedicated tubing and, where necessary, submersible pumps are used to minimize disturbance. When dedicated equipment cannot be used, sufficient time is allowed after equipment installation to allow groundwater conditions to return to equilibrium. The pump inlet is placed in the center of the screened interval. Each well is purged at a flow rate of approximately 200 milliliters per minute (ml/min); flow rate is not to exceed 500 ml/min at any time during purging or sampling. Drawdown in the well is not to exceed 0.3 ft. During purging, temperature, pH, SEC, turbidity, DO, and ORP are monitored using a Horbia U-22, or other appropriate, water quality meter approximately every one equipment volume purged, or every 3 to 5 minutes. Each well is purged until the field parameters are relatively stable for three successive readings. Three successive readings should be within:

- • 0.1 for pH
- • 3% for SEC
- • 10% for temperature
- • 10 mV for ORP if practical
- • 10% for DO if practical
- • 10% for turbidity if practical

If applicable, the ferrous ion concentration is measured using a CHEMetrics, or other appropriate, test kit during the last reading of the field parameters. Immediately after purging, a groundwater sample is collected directly through the pump discharge tubing. Depth to water after sample collection is measured and recorded on the Well Sampling Record.

### **EQUIPMENT CLEANING**

All downhole equipment is cleaned with an Alconox-water solution and double-rinsed with deionized water before use at each well and at the end of each sampling day.

### WASTE WATER CONTAINMENT

Waste water including purged groundwater and equipment cleaning water is contained in labeled, DOT-approved, 55-gallon steel drums, or other appropriate containers, and placed at a designated on-site location for future offsite disposal or recycling.

Puls, R.W. and Barcelona, M.J, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, U.S. Environmental Protection Agency, Office of Research and Development, Publication #EPA/540/5-95/504.

## APPENDIX C

Groundwater Purging and Sampling Logs



## WELLHEAD INSPECTION CHECKLIST

Date 11/108	·	_ Client	AMEC					
Site Address	Coliseumby	· Dakfan	)					
	BELLON-PCI			Тес	chnician	Prorni	34	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
010-1	×							
OW-Z	2			٨				
OW-4	K	X Insid	e con	river				
0W-5	<u>×</u>							
0~-6		13 ta	los strippe	d				
0w-7	K	K						
DW-8	₩.							
			,					
<u></u>								
								ļ
NOTES:								
				ta - Nora Marko a sua ana aminina sa mana sa m				
						·····		

BLAINE TECH SERVICES, INC.

LOS ANGELES

www.blainetech.com

Page _____ of _____

### WELL GAUGING DATA

Project # OENOS-QUI Date NAVE Client AMEC

## Site Phyle Colisenmwy, Oakland

		317.11			Thickness	•	1		Survey	
		Well Size	Sheen /	Depth to Immiscible	of Immiscible	Immiscibles Removed	Depth to water	Depth to well	Point: TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)		(ft.)	bottom (ft.)	(TOC).	Notes
0w-1	922	2					4.60	18.05		
0W-1 0V-3 0W-5	940	Ĺ					3.88	20.25		
00-5	931	2					5,19	19.05		
ow-4	926	2					4.80	19.50		
0w-6	934	$\mathcal{V}$					5.60	17.20		
0w-7	1000	2					7.05	18.15		-
0W-7 0W-8	950	2					3.61	17.94		
						Ţ				

4 55
Ö
$\overline{\cap}$
5
Ľ
$\mathbf{\omega}$
5
G
PMENT (
111
beind Comm
ЦQU
ш
i interesta
TEST
Ш
r

PROJECT NAME	PROJECT NAME AMEC @ PGAE Colorum US, Oakland	1 & Colizeum Ugi	Cakland	PROJECT NUN	PROJECT NUMBER 081104-PC1		
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF STANDARDS TEST USED	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP 20	SIL
VST 556	05K 1408AE	11/4/08 77)5	e/. 03	3/2 b		20,)	P(
			4.6.6.90	Hg 6.90		18.40	
				10.09		2.2	
		02.9 23	1 w 6 25 60	2416.7 mr		17.89	
	5		3900 NG	38.35 Mc		107.7	
Hach I O.M.	080+0003446		400 MIN 563	563 Nru		2	
Tuckyimete			d.0/ 54	29		l	
			idy 6	Q	T		
		,	dy's			١	7
							<u> </u>

Project #	:3E1104-6	201	······································	Client: A	MEL			
Sampler:	PC			Date:				
Well I.D.	· OW-1			Well Diam	neter: 🕖	3 4	6 8	
	ll Depth:	£.05		Depth to V	Water	Pre: 4.1	Post:	
	Free Produ			Thickness				
Reference	ed to:	EVQ	Grade	Flow Cell		-		
	od: 1ethod: 3ce~		1	t	×Peristaltic P ∖New Tubing Pump Depth	ump g	Bladder Pump Other_	
	Temp.	1	Cond.	Turbidity	.D.O.	ORP	Water Removed	
Time	(Or °F)	pН	(mS or <b>\$\$</b> )	(NTUs)	(mg/L)	(mV)	(gals. or	Observations
1022	22.01	6-53	826	10	0.98	210	initial	(AL)
1025	2208	6.56	833		0.81	212	\$ 900	4.66
1028	22.10	6.50	836	2	0.80	216	(200	4.69
1031	22.10	6.51	837	2	0.80	218	2700	4.67
1034	22.12	6.51	837	2	0.77	220	3600	4.69
	1				<i></i>			· ·
Did well o	dewater?	Yes	No	•	Amount a	ictually e	vacuated: 3.	,L
Sampling	Time: 10	50			Sampling		(	
Sample I.	D.: Ourol	10408 C	)w-1-11200	>B	Laborator		t.	*******
Analyzed		TPH-G	BTEX MTE			Other: 5		<b></b>
Equipmer	nt Blank I.I	D.:	@ Time		Duplicate		<u></u>	

	ELL MONITORING DATA SHEET
Project #: 081104-PC	Client: AWEC
Sampler: PC	Date: 11/4/05
Well I.D.: Ord-Z	Well Diameter: 3 4 6 8
Total Well Depth: 20-25	Depth to Water Pre: 3.88 Post:
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: Kale Grade	Flow Cell Type: YSI 556
Purge Method:       2" Grundfos Pump         Sampling Method:       Dedicated Tubing         Flow Rate:       300 ml/min	Peristaltic PumpBladder Pumpk New TubingOtherPump Depth:O.5'
TimeTemp. Cond. (mS or )Cond. (mS or )	Turbidity D.O. ORP Water Removed
1252 2210 6.15 811	8 0.96 22.5 initial (FG.)
1255 22.12 6.18 814	7 0.98 22.0 900 3.96
1258 22.12 6.22 817	7 0.97 20.1 1900 3.97
1381 72.15 6.22 817	5 0.97 200 2700 3.97
1304 22.14 6.25 818	1 0.96 20.2 3600 3.97
Did well dewater? Yes	Amount actually evacuated: 36 4
Sampling Time: (م)رو	Sampling Date: 11 ]-4 /08
Sample I.D.: ow 2-11/2008	Laboratory: Creek
Analyzed for: TPH-G BTEX MT	
Equipment Blank I.D.: @	Duplicate I.D.:

ELL MONITORING DATA SHEET
Client: AMÉC
Date: 11/4/08
Well Diameter: (2) 3 4 6 8
Depth to Water Pre: 4.50 Post:
Thickness of Free Product (feet):
Flow Cell Type: 151 556
K Peristaltic Pump   Bladder Pump     New Tubing   Other
Pump Depth:i5`
TurbidityD.O.ORPWater Removed(NTUs)(mg/L)(mV)(gals. or m)Observations
9 0.96 164.2 initial (FG.)
2 0.92 166.2 900 486
3 0.90 165.3 1800 4.86
3 0.90 165.0 2700 4.86
2 0.89 161.1 3600 4.86
Amount actually evacuated:
Sampling Date: 11/4/08
Laboratory: Creek
TBE TPH-D Other: See LOL
Duplicate I.D.:

			LOW WE					
Project #: e				Client: Al				
Sampler: P				Date: 11	1/08			
Well I.D.:	DU-5			Well Diam	neter: 🕖	3 4	68	1777-1766
Total Well	Depth:	9.05		Depth to V	Vater	Pre: 5.19	Post:	
Depth to F	ree Produ	lct:		Thickness	of Free Pi	roduct (fe	et):	
Referenced	l to:	PD	Grade	Flow Cell	Туре: <u> </u>	556		
Purge Method Sampling Met	thod:	2" Grundf Dedicated	-		Peristaltic F New Tubin	g	Bladder Pump Other_	
Flow Rate:		1 min			Pump Dept			
Time	Temp. (Or °F)	pH	Cond. (mS or (157)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. omb)	Observations
1142	+2113	6.66	801	é	0-81	-13.0	initial	(FG) Diw:
1145	22.12	6.60	800	7	0.80	-10.0	900	5.22
1148	22-10	6-60	802	5	0-75	-1,0	1800	5.25
1151	22.04	6.61	Boz	5	0,60	-1,2	2700	5-26
1154 :	22.10	0.65	805	iq	0.59	2	3600	5.26
1157	22-10	6.64	806	2	0.59	2	4500	5.26
					*			
Did well de	ewater?	Yes	Ø		 Amount :	actually e	vacuated: 4.5	
Sampling T	Time: 17	०५			Sampling			
Sample I.D				· · · ·	Laborato			
Analyzed f		TPH-G	BTEX MTE	BE TPH-D		Other: 50		
Equipment	Blank I.	D.:	@ Time		Duplicate		<u>l</u>	

	LL MONITORING DATA SHEET
Project #: Joney-Tui	Client: AMEC
Sampler: ec	Date: 11 4 08
Well I.D.: Ow-6	Well Diameter: 2 3 4 6 8
Total Well Depth: 17.20	Depth to Water Pre: 5.68 Post:
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: Grade	Flow Cell Type: <u>VSI 556</u>
Purge Method:2" Grundfos PumpSampling Method:Dedicated TubingFlow Rate:300 ml/mm	$\swarrow$ Peristaltic PumpBladder Pump $\checkmark$ New TubingOtherPump Depth: $\sim 12.5^{\circ}$
Temp. Cond.	
Time $(mS \text{ or } \mu S)$ pH $(mS \text{ or } \mu S)$	
218 22,10 6.51 809	12 1.11 12 initial Diw
1221 22.02 6.50 811	8 1.02 21 900 5-69
1224 22.00 6.51 820	8 0.96 24 1800 5-69
1727 22.00 6.51 823	5 0.96 25 2700 5.71
1230 21.96 6.54 824	4 0.95 26 3600 5.71
· · · · · · · · · · · · · · · · · · ·	
Did well dewater? Yes 🔊	Amount actually evacuated: 366
Sampling Time: 17.35	Sampling Date: 11/4/08
Sample I.D.: 0 W-6 - 112008	Laboratory: creek
Analyzed for: TPH-G BTEX MT	
Equipment Blank I.D.: FB-112005	i 230 Duplicate I.D.:

#### Client: AMEC Project #: 081104-001 Sampler: 7 Date: 11/4/08 Well Diameter: (2) Well I.D .: 04-7 3 4 6 8 Total Well Depth: \ 18 15 Depth to Water Pre: 7.05 Post: Depth to Free Product: Thickness of Free Product (feet): Referenced to: Flow Cell Type: YSI 556 PVC Grade 2" Grundfos Pump Purge Method: Peristaltic Pump Bladder Pump **Dedicated** Tubing ANew Tubing Sampling Method: Other Flow Rate: 300 mllmin Pump Depth: 12-5 Temp. Cond. Turbidity D.O. ORP Water Removed $( \circ V )$ or $\circ F )$ (mS or as) Time pН (NTUs) (mg/L)(mV)(gals. or mL) Observations (FE) initial 1427 2232 6.73 835 -14.7 6 1.10 1425 836 2235 6.73 900 0.87 -2.1 711 ų 14-24 2236 6.70 830 5 ] [ 0.87 1800 7.11 5 出到 826 2700 6-71 7.11 22-36 0.85 14 825 1434 22-35 6. Fi C-ICOLO 0.84 15 3600 7.12 Ţ, Amount actually evacuated: 3.6L Did well dewater? Yes NO Sampling Date: 11/4/08 Sampling Time: 1440 Sample I.D.: 0w-7-112008 Laboratory: (week VISIMSD Analyzed for: Other: SEC coc TPH-G BTEX MTBE TPH-D (a) Equipment Blank I.D.: Duplicate I.D.: Time

Project #:	081104-90			Client: AM	EC	******	· ·	
Sampler				Date: 11/4				
Well I.D.	: ow-8			Well Diam		3 4	68	
	ll Depth:	17.94		Depth to W	Vater	Pre: 3.6	Post:	
Depth to	Free Produ	act:		Thickness				
Reference	ed to:	eve	Grade	Flow Cell	Type:}	15 J. 556		
Purge Metho Sampling M		2" Grundfe Dedicated	•		Peristaltic P New Tubing Pump Deptl	g g	Bladder Pump Other_	
	Temp.		Cond.	Turbidity	D.O.	ORP	Water Removed	 T
Time	(Øor °F)	pH	(mS or (LS)	(NTUs)	(mg/L)	(mV)	(gals. or mD)	Observations
1325	22.42	6.40	1139		4.78	199.2	initial	(fd) privi
1328	22.88	6.3%	1122		3.01	186.1	900	3.66
1331	22.91	6.30	1120		097	182.1	1700	3-66
1334	22.96	6.29	115	2	096	183.6	2700	3.66
1337	22.96	6-29	1109	2	0.97	184.1	3600	366
					*			
Did well	dewater?	Yes	KD .		Amount a	actually e	vacuated: 3.6	L-
Sampling	Time: 😗	70			Sampling			
	D.: 0y-2				Laborato			
Analyzed		TPH-G	BTEX MT	BE TPH-D			elloc	
Equipmer	nt Blank I.	D.:	@ Time		Duplicate			

																							·			
63	~			-				10.1	. · ·				N 198	M.	7	14 - L		N N	P.		125	111	I	1.1	1.2.1	
14	Ľ٦	8 8		- М			ت م	- N - 1	8 m 1	8 16.4	1	$\mathbf{a}$	. 8	MA.	10	81	እ ዝዋ		121	и п.	8 81	YD.	. 6	ഹ	15	
1.1	- Con	-	- B-	-8	- <b>6</b>	10 8		18	- 11	9 <b>9</b> -	Q 2	<b>A-4</b>	- C 3	vv	- 24	- 81 St		6	<i>H</i> 1	1 B	66	88	- 19	128	<u> </u>	
1	_ ¥	- H	- 6	8	· •	<i>y</i> <u>n</u>	1.1.1	ш.	ີພ	<u>a</u> 77	6.	ັ	12.37	Y.Y	્યન		- <u>n</u>			r . e	a a ,	a.m.			5000	
15	~		1.11		1.1			T. T.			-														~	

Client: Geometrix						
Site Address: 4930 Coliscu	m Way	Oakland				
STATUS OF DRUM(S) UPON	ARRIVAL	•				
Date	12-20-06	4.12.07	11/6/07	05/06/08	11/4/08	
Number of drum(s) empty:						
Number of drum(s) 1/4 full:						
Number of drum(s) 1/2 full:				1		
Number of drum(s) 3/4 full:						
Number of drum(s) full:			2	0		
Total drum(s) on site:	1	0	3	1	0	
Are the drum(s) properly labeled?	у		У	4	-	
Drum ID & Contents:			purgenetor	punge weifur		
If any drum(s) are partially or totally filled, what is the first use date:			phyereto 12/06	0		

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.

-If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPART	JRE				
Date	12-20-06	4.12.07		05/06/08	11/4/08	
Number of drums empty:						
Number of drum(s) 1/4 full:						
Number of drum(s) 1/2 full:	1	1	30			
Number of drum(s) 3/4 full:	1					
Number of drum(s) full:			2			
Total drum(s) on site:	2	2	3			
Are the drum(s) properly labeled?	<u>η</u>	ч	$\neg$	4	N	
Drum ID & Contents:	1 3	Purge water	~		-9	
LOCATION OF DRUM(S)						
Describe location of drum(s): 10	vear Moh	erial Room 55 Sul Tru	m ulal of			
FINAL STATUS			and and a second se			
Number of new drum(s) left on site this event	2 (1.559	)))) (155 gl)	0	1	<i>) *</i>	
Date of inspection:	12-20.06	4.12.07	+0 11/6/07	65/06/08	11460	
Drum(s) labelled properly:	y y	4	Ŋ	9	X	
Logged by BTS Field Tech:	DIN	NU	ĿF	MD	FU	

## APPENDIX D

Laboratory Analytical Reports and Chain-of-Custody Documentation



BLAINE	• • •	OSE, CA	LIFORN	ERS AVENL IA 95112-11 408) 573-77	05			DUCT	ANAL	YSIS 1	O DE	ECT	3	LAB Creek ALL ANALYSES MUST MEET SPEC	FICATIONS AND	DHS #
TECH SERVICES	, INC.	P		408) 573-05		· .							clean	LIMITS SET BY CALIFORNIA DHS A	ND	
CHAIN OF CUSTODY	рто #				1		a gel 3)	1 I. N 1			red		50			
CLIENT		02110	4-101		ERS		(Silic yzing				Filte		<u>द</u> १ ६	SPECIAL INSTRUCTIONS		
SITE	C Geomati	rix			CONTAINERS		(8015m) (Silica or to analyzing)		5)	an ann An Stàite	eld	. *	8015 M	SPECIAL INSTRUCTIONS	40	<
PG&							(801 or to		(801	(Ţ)	Lead (6010)Field Filtered		0,-1	Invoice to : AMEC Geomatrix		
	Coliseum	Way			E ALL	B)	MO (8) d prior		Oil	TPH-Gas (8015M)	601		S C C	Report to : AMEC Geomatrix A	tn: Yemia Has	himot
Oakla	nd, CA	MATRIX		TAINERS	SSITE	260	<u>TPH</u> quire	15M)	tor	s (8(	ad (		Motor	cc: ITSI Attn: Kim Tom		
					COMPOSITE	VOCs (8260B	TPH-D & TPHMO cleanup required pr	TPH-D (8015M)	TPH-Motor Oil	-Ga	Le	<b>MS/MSD</b>	· 1			
SAMPLE I.D. DATE		S= SOIL W=H ₂ 0	TOTAL		0    	NOV	TPH- lean	I-Hd.	Ηd	Hd	Diss.	<b>NSN</b>	Hall		1.1	
02-1-112008 114	1		7			X	V	K	X	X	I		X	(ABCDEE		LAB SAMPLE #
1-2-112008	1310		2				V	X	X		x		K	AB	neLTTR	15481
<i>piy-4-112008</i>	1122		7			X	X	x	ĸ	X	×	-	X	ABCD, EF	C	<u>15482</u> 15483
22-5-1(2008	1205		6			X	X	X	X	X	X		x	VU Hel Aclung	FIT	15484
96-10-112008	1325		7-			X	x	X	V	X	×			i ionpicirie	P/HUG DO	15485
00-7-112008	1440		11	Adde. per fo		$\otimes$	X	K	X	X	×	X	X	NOTHER AGIONP	LITTS	15486
26-8-112008	1350		2	1 m			×	×	Ve	R)	Ŕ		k	AGUNPLITTE PLAN		15487
FB-112050	1730		3			X				T	X			VU HCI PLANO3	C.	15488
									1	NCE		Ad	1		× × × × ×	
					1997 - 19						YA		l			
												7-8	S			· · · · · · · · · · · · · · · · · · ·
SAMPLING DATE		SAMPLI PERFO		Y 1. io.	<u>,</u>	ما							Ľ			
RELEASED BY								TIME			RECĘ	IVED.	ΒY	Standard T		TIME
RELEASED BY	Mia 3	22	421	ŭ l		-				P		¥	$\hat{m}$	Wash	11/5/0	
1	510	66.0	)	•	DAT			TIME			RECE	I¥ÆD	BY		DATE	TIME
RELEASED BY	Fors	<del>,0</del>			DAT	E		TIME	."	 	RECE	IVED	BY		DATE	TIME
SHIPPED VIA					DAT	ESEN	١T	TIME	SENT		COOL	FR #				
Cal Overnight	٢				1 1	1/08			30			······ · π				

BLAINE	SAN J	11 OSE, CA	180 ROGI LUFORNI	ERS AVENUI A 95112-110	5   5		CON	DUCT	ANAL	YSIS	TO DE	TECT		LAB	Creek	P579	
TECH SERVICES,			FAX (	408) 573-777 408) 573-055	1								5	ALL ANALYSES MUST LIMITS SET BY CALIFO	MEET SPECI	FICATIONS AN	D DETECTION
CHAIN OF CUSTODY							gel				5		si lica	EPA		RWQCB RE	GION
CLIENT	BTS#	02110	H-P()		SS		(8015m) (Silica gel lor to analyzing)				ltere		2 2				
AMEC	Geomatr	ix			AINE		s) (r zviar				d Fi		S.F.	SPECIAL INSTRUCTIO	NS	•	
SITE PG&E					CONTAINERS		015n to ai		(8015)		Fiel		ŝ.	Invoice to : AMEC G			
4930 C	oliseum '	Way			Ţ		O (8 prior		1 (8	SM	10		Ō	Bernstein Ab (Tropic	이 같은 것이 있다.		
Oakland	, CA				uu.	(8260B	PHM ired	F	r Oil	801	(60		et a	Report to : AMEC G	200 B (1997)	tn: Yemia Ha	shimot
		MATRO	CON	TAINERS	COMPOSIT	(82	& T requ	80151	Aoto	Jas (	Cead	ß	E				
		S= SOIL			Ö	VOCs	TPH-D & TPHMO (8015m) (Silica cleanup required prior to analyzing)	TPH-D (8015M)	TPH-Motor	TPH-Gas (8015M)	Diss. Lead (6010)Field Filtered	MS/MSD	Hall	Project: PG&E Coli	iseum Way	-	
SAMPLE I.D. DATE	TIME		TOTAL		ů	× V	TP cle	44			ā	X		ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
<u>52-1-1/2008 11/1/07</u>		<u>دی</u> ۱	1		_	*	X	X	X	*			×				15421
<u>w-2-1170095</u>	1310		7-				K	K	X		X		K				15482
24-4-112008	122		7	Areas Indune Areas Areas Minacon Areas		K	K	K	K	K	*	-	X				15483
22-5-112008	1204		6			X	×	X	X	M	X		K		1		15484
26-6-112005	1325		7			X	×	×	K	X	*		x				19489
12-7-112008	1440		11			<u> </u>	X	×	×	X	×	X	K				15408
1. 8-112008	1350		2				x	۴	V		×		K	PLOASY AJA	YZE DI	SI LEAD	NO TPI
<u>FB-112050</u>	1730	¥	3			X					X						1548
	•																
							- 14 - 12 - 14										
SAMPLING DATE	тіме (945	Sampli Perfoi	NG RMED BY	lion	, ish									RESULTS NEEDED NO LATER THAN			
RELEASED BY				1.6n 1	DATE		1	TIME			RECE	IVED		<u> </u>	Standard TA	DATE	TIME
RELEASED BY					DATE			TIME			RECE	IVED	ay .		2	In a second	
									· · · · ·			• • • • • • •				DATE	TIME
RELEASED BY				l I	DATE			TIME			RECE	IVED	BY .			DATE	TIME
Shipped Via				<u>.                                    </u>	DATE	CON	<b>r</b>	THAT	SENT		COOL		:				

.

BLAINE TECH SERVICES Fax:1+408+573+7771 Nov 7 2008 18:16

P.02



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Date: December 1, 2008

#### CASE NARRATIVE P5792

**Client: Amec Geomatrix Project:** PG&E 4930 Coliseum Way 08-C15481 to 08-C15488 Sample(s): Sampled: 11/04/08

**Received: 11/05/08** 

Samples 08-C15481 to 08-C15488 were received at the laboratory at 4°C, with no anomaly. Subsequent to sample receipt, the following changes were made to the request for analysis per client's instructions:

- For sample 08-C15486 (OW-7-112008), VOCs analysis by 8260B was added.
- For sample 08-C15487 (OW-8-112008), TPH-gasoline was deleted and Dissolved Lead was added.

VOC was analyzed by PAT/GC/MS method (EPA 5030B/8260B). TPH-gasoline was analyzed by PAT/GC/FID method (EPA 5030B/8015M). TPH-diesel/motor oil was extracted with liquid-liquid extraction (EPA 3510C) and analyzed by GC/FID method (EPA 8015M). The extracts were then treated with silica gel cleanup (EPA 3630C) and then reanalyzed for TPH-diesel/motor oil by EPA 8015M method.

All samples were extracted and analyzed within holding time. All analytical quality control parameters were within acceptable limits except for the following remarks:

- The TPH-diesel matrix spike (MS) recovery for sample 08-C15486 was slightly below the lower QC limit due to matrix effects. The data was reported on the basis of acceptable recovery of the LCS and MSD.
- The 8260 surrogate recoveries of 4-BFB in both 08-C15486 MS and MSD were slightly over the upper QC limit due to matrix effects.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

This report pertains only to the samples submitted to the Laboratory. This report is provided for the exclusive use of the client to whom it is addressed. This report shall not be reproduced, except in full, without written permission from Creek Environmental Laboratories. Any reproduction of this report, or use of the Laboratory's name for advertising or publicity purpose without authorization is prohibited.



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612 Log Number: 08-C15481 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### **REPORT OF ANALYTICAL RESULTS**

Sampled Sample Description Sampled By Date @ Time Matrix nu-1-112008 P. Cornish 11/04/08a10:50 Aqueous ______ Analyte Result DLR Dilution Units Method Date Date Batch Factor Analyzed Prepared TPH as Motor Oil 0.2 0.1 1 EPA 8015/LUFT mg/L 11/08/08 11/08/08 3413 TPH as Diesel 0.15 0.05 1 mg/L EPA 8015/LUFT 11/08/08 11/08/08 3413 TPH as Diesel, SGT 0.05 0.09 1 mg/L EPA 8015/LUFT 11/24/08 11/08/08 3588 TPH as Motor Oil, SGT Not Detected 0.1 1 mg/L EPA 8015/LUFT 11/24/08 11/08/08 3588 TPH as Gasoline Not Detected 0.05 1 mg/L EPA 8015/LUFT 11/10/08 3249 Benzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Toluene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 Ethylbenzene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 m,p-Xylene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 o-Xylene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Methyl t-Butyl Ether (MTBE) 0.8 0.5 1 ug/L EPA 8260 11/13/08 3190 Chlorobenzene 4.1 0.5 1 ug/L EPA 8260 11/13/08 3190 1,2-Dichlorobenzene 3.3 0.5 1 ug/L EPA 8260 11/13/08 3190 1,3-Dichlorobenzene 25 0.5 1 ug/L EPA 8260 11/13/08 3190 1,4-Dichlorobenzene 42 5 10 EPA 8260 ug/L 11/14/08 3193 1,2-Dichloroethane (EDC) Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 1,2-Dibromoethane (EDB) Not Detected 0.5 1 ug/L FPA 8260 11/13/08 3190 Bromobenzene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 Bromochloromethane Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 Bromodichloromethane Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Bromoform 0.5 Not Detected 1 EPA 8260 ug/L 11/13/08 3190 Bromomethane Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 n-Butylbenzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 sec-Butyl Benzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 t-Butvlbenzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Carbon Tetrachloride Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Chloroethane 0.5 Not Detected 1 EPA 8260 ug/L 11/13/08 3190 2-Chloroethylvinyl ether Not Detected 20 1 ug/L EPA 8260 11/13/08 3190 Chloroform Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15481 P5792 Order: Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date a		Matrix		
======================================	P. Cornish		11/04/0	8a10:50	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/13/08	3190
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethane	7.3	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethene	8.0	0.5	1	ug/L	EPA 8260	11/13/08	3190
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dichloropropane	Not Detected	0.5	· 1 ·	ug/L	EPA 8260	11/13/08	3190
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2,2-Dichloropropane	Not Detected	0.5	· · · · · · · · · · · · · · · · · · ·	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloropropene	Not Detected	0.5	sela in <b>1</b>	ug/L	EPA 8260	11/13/08	3190
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2,2-Tetrachloroethane	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
Tetrachloroethene	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichlorobenzene	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
1,2,4-Trichlorobenzene	1.8	0.5	1	ug/L	EPA 8260	11/13/08	3190



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612 Log Number: 08-C15481 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

1,1,1-TrichloroethaneNot Detected0.51ug/LEPA 826011/13/01,1,2-TrichloroethaneNot Detected0.51ug/LEPA 826011/13/0TrichloroetheneNot Detected0.51ug/LEPA 826011/13/0	e Description	Sampled By		Sampled Date ລ		Matrix		
Factor         Analyze           1,1,1-Trichloroethane         Not Detected         0.5         1         ug/L         EPA 8260         11/13/0           1,1,2-Trichloroethane         Not Detected         0.5         1         ug/L         EPA 8260         11/13/0           Trichloroethene         Not Detected         0.5         1         ug/L         EPA 8260         11/13/0	12008	P. Cornish	P. Cornish			Aqueous		
1,1,2-Trichloroethane         Not Detected         0.5         1         ug/L         EPA 8260         11/13/0           Trichloroethene         Not Detected         0.5         1         ug/L         EPA 8260         11/13/0	te	Result	DLR		Units	Method	Date Analyzed	Date Batch Prepared
Trichloroethene Not Detected 0.5 1 ug/L EPA 8260 11/13/06	-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
	-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Trichlorofluoromethane Not Detected 0.5 1 ug/L EPA 8260 11/13/06	loroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
	lorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichloropropane Not Detected 0.5 1 ug/L EPA 8260 11/13/0	-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08	-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,3,5-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08	-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Vinyl Chloride Not Detected 0.5 1 ug/L EPA 8260 11/13/08	Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

Page 3

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 4 Yemia Hashimoto Log Number: 08-C15482 AMEC Geomatrix Order: P5792 2101 Webster St., 12th Floor Project: PG&E Coliseum Way Oakland, CA 94612 Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix				
ow-2-112008	P. Cornish		11/04/0	8013:10	Aqueous		==========	: ::: ::: ::: ::: ::: :::	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
TPH as Motor Oil	0.4	0.1	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413	
TPH as Diesel	0.26	0.05	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413	
TPH as Diesel, SGT	0.07	0.05	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588	
TPH as Motor Oil, SGT	0.14	0.1	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588	
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	11/14/08		3215	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng



A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612 Log Number: 08-C15483 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08 Page 5

#### REPORT OF ANALYTICAL RESULTS

Sampled Sample Description Sampled By Date @ Time Matrix ______ _______________ OW-4-112008 P. Cornish 11/04/08a11:22 Aqueous Analyte Result DLR Dilution Units Method Date Date Batch Factor Analyzed Prepared TPH as Motor Oil 0.2 0.1 1 EPA 8015/LUFT 11/08/08 mg/L 11/08/08 3413 TPH as Diesel 0.10 0.05 1 mg/L EPA 8015/LUFT 11/08/08 11/08/08 3413 TPH as Diesel, SGT 0.09 0.05 1 mg/L EPA 8015/LUFT 11/24/08 11/08/08 3588 TPH as Motor Oil. SGT Not Detected 0.1 1 mg/L EPA 8015/LUFT 11/24/08 11/08/08 3588 TPH as Gasoline 0.05 Not Detected 1 mg/L EPA 8015/LUFT 11/10/08 3249 0.5 Benzene Not Detected 1 ug/L EPA 8260 11/13/08 3190 Toluene 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 Ethylbenzene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 0.5 m,p-Xylene Not Detected 1 EPA 8260 ug/L 11/13/08 3190 o-Xylene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 Methyl t-Butyl Ether (MTBE) Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Chlorobenzene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 1,2-Dichlorobenzene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 1,3-Dichlorobenzene 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,4-Dichlorobenzene 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,2-Dichloroethane (EDC) 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,2-Dibromoethane (EDB) Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 Bromobenzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Bromochloromethane Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Bromodichloromethane Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 Bromoform 0.5 Not Detected 1 ug/L EPA 8260 3190 11/13/08 Bromomethane Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 n-Butylbenzene 0.5 Not Detected 1 EPA 8260 ug/L 11/13/08 3190 sec-Butyl Benzene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 t-Butvlbenzene 0.5 1 Not Detected EPA 8260 ug/L 11/13/08 3190 Carbon Tetrachloride 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 Chloroethane Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 2-Chloroethylvinyl ether 20 Not Detected 1 ug/L EPA 8260 3190 11/13/08 Chloroform Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190

CREEK ENVIRONMENTAL LABORATORIES, INC. - A Minority-owned Business Enterprise



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15483 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

REPORT OF ANALYTICAL RESULTS

Sampled Sample Description Date @ Time Sampled By Matrix ______ _____ 11/04/08a11:22 04-4-112008 P. Cornish Aqueous Analyte DLR Dilution Units Result Method Date Date Batch Prepared Factor Analyzed . . . . . Chloromethane Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 2-Chlorotoluene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 4-Chlorotoluene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 1,2-Dibromo-3-Chloropropane Not Detected 1 ug/L EPA 8260 11/13/08 3190 1 Dibromochloromethane 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 Dibromomethane 0.5 EPA 8260 Not Detected 1 ug/L 11/13/08 3190 Dichlorodifluoromethane Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 1,1-Dichloroethane 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,1-Dichloroethene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 cis-1,2-Dichloroethene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 trans-1,2-Dichloethene 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,2-Dichloropropane Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 1,3-Dichloropropane 1 Not Detected 0.5 ug/L EPA 8260 11/13/08 3190 2,2-Dichloropropane 0.5 EPA 8260 Not Detected 1 ug/L 3190 11/13/08 1,1-Dichloropropene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 cis-1,3-Dichloropropene 0.5 1 EPA 8260 Not Detected ug/L 11/13/08 3190 trans-1,3-Dichloropropene Not Detected 0.5 1 ug/L EPA 8260 11/13/08 3190 Hexachlorobutadiene 0.5 1 EPA 8260 Not Detected 11/13/08 ug/L 3190 Isopropylbenzene 0.5 1 EPA 8260 Not Detected ug/L 11/13/08 3190 4-Isopropyltoluene 0.5 Not Detected 1 EPA 8260 ug/L 11/13/08 3190 5 Methylene Chloride Not Detected 1 EPA 8260 3190 ug/L 11/13/08 5 Naphthalene Not Detected 1 ug/L EPA 8260 11/13/08 3190 n-Propylbenzene Not Detected 0.5 1 EPA 8260 ug/L 11/13/08 3190 0.5 Styrene Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,1,1,2-Tetrachloroethane 0.5 EPA 8260 Not Detected 1 3190 ug/L 11/13/08 1,1,2,2-Tetrachloroethane Not Detected 0.5 1 EPA 8260 3190 ug/L 11/13/08 Tetrachloroethene 0.5 Not Detected 1 ug/L EPA 8260 11/13/08 3190 1,2,3-Trichlorobenzene Not Detected 0.5 EPA 8260 ug/L 11/13/08 3190 0.5 1,2,4-Trichlorobenzene Not Detected 1 EPA 8260 11/13/08 3190 ug/L



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia HashimotoLog Number: 08-C15483AMEC GeomatrixOrder: P57922101 Webster St., 12th FloorProject: PG&E Coliseum WayOakland, CA 94612Received: 11/05/08Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date ຝ		Matrix		
ow-4-112008	P. Cornish		11/04/0	8011:22	Aqueous		<b></b>
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Trichloroethene	Not Detected	0.5	- 1	ug/L	EPA 8260	11/13/08	3190
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15484 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix				
	P. Cornish		11/04/0	8a12:05	Aqueous		·		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Date Analyzed	Date Prepared	Batch	
TPH as Motor Oil	0.3	0.1	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413	
TPH as Diesel	0.24	0.05	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413	
TPH as Diesel, SGT	0.19	0.05	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588	
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588	
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/13/08		3304	
Benzene	1.2	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
1,3-Dichlorobenzene	0.6	0.5	· · · · · 1.	ug/L	EPA 8260	11/13/08		3190	
1,4-Dichlorobenzene	3.8	0.5	1	ug/L	EPA 8260	11/13/08		3190	
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
1,2-Dibromoethane (EDB)	Not Detected	0.5	·····	ug/L	EPA 8260	11/13/08		3190	
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	• • • • • • • • •	3190	
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
sec-Butyl Benzene	Not Detected	0.5	<b>1</b>	ug/L	EPA 8260	11/13/08		3190	
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/13/08		3190	
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190	

Page 8



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15484 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 12/01/08 Printed:

Page 9

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date ລ	Time	Matrix		
OW-5-112008	P. Cornish		11/04/0	)8a12:05	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Date Analyzed	Date Batch Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dibromo-3-Chloropropane	Not Detected	1	- 1	ug/L	EPA 8260	11/13/08	3190
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethane	1.6	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethene	0.7	0.5	1	ug/L	EPA 8260	11/13/08	3190
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Isopropylbenzene	1.5	0.5	i1	ug/L	EPA 8260	11/13/08	3190
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
n-Propylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	11/13/08	3190
Styrene	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2,2-Tetrachloroethane	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 10

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15484 Order: P5792 PG&E Coliseum Way Project: Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date		Matrix		
	P. Cornish		 11/04/0	8a12:05	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2-Trichloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	11/13/08	3190
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	11/14/08	3215

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 11

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15485 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 12/01/08 Printed:

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date ຝ	Time	Matrix			
OW-6-112008	P. Cornish		11/04/0	)8a13:25	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.3	0.1	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413
TPH as Diesel	0.24	0.05	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413
TPH as Diesel, SGT	0.11	0.05	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/10/08		3249
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Chlorobenzene	4.6	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,2-Dichlorobenzene	0.9	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,3-Dichlorobenzene	12	0.5	··· ··· · <b>1</b> ···	ug/L	EPA 8260	11/13/08		3190
1,4-Dichlorobenzene		0.5	1	ug/L	EPA 8260	11/13/08		3190
1,2-Dichloroethane (EDC)	Not Detected	0.5	. 1	ug/L	EPA 8260	11/13/08		3190
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
t-Butylbenzene	Not Detected	0.5	1.	ug/L	EPA 8260	11/13/08		3190
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/13/08		3190
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15485 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

Page 12

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date ລ	Time	Matrix		-
OW-6-112008	P. Cornish		11/04/0	8a13:25	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/13/08	3190
Dibromochloromethane	Not Detected	0.5	່ 1	ug/L	EPA 8260	11/13/08	3190
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethane	9.0	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethene	5.6	0.5	1	ug/L	EPA 8260	11/13/08	3190
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2,2-Dichloropropane	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,3-Dichloropropene	Not Detected	0.5	••••••••••••••••••••••••••••••••••••••	ug/L	EPA 8260	11/13/08	3190
Hexachlorobutadiene	Not Detected	0.5	į <b>1</b>	ug/L	EPA 8260	11/13/08	3190
Isopropylbenzene	Not Detected	0.5	11	ug/L	EPA 8260	11/13/08	3190
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2,2-Tetrachloroethane	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
Tetrachloroethene	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichlorobenzene	Not Detected	0.5	····· 1 ····	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190

----- A Minority-owned Business Enterprise ----

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 13

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612 Log Number: 08-C15485 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ		Matrix		
	P. Cornish	P. Cornish		8a13:25	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trimethylbenzene	Not Detected	0.5	.1	ug/L	EPA 8260	11/13/08	3190
1,3,5-Trimethylbenzene	Not Detected	0.5	.1	ug/L	EPA 8260	11/13/08	3190
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612 Log Number: 08-C15486 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08 Page 14

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sample Date a		Matrix			
ow-7-112008	P. Cornish	P. Cornish			Aqueous		=======	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.3	0.1	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413
TPH as Diesel	0.32	0.05	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413
TPH as Diesel, SGT	0.13	0.05	· 1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/10/08		3249
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Toluene	Not Detected	0.5	. 1	ug/L	EPA 8260	11/13/08		3190
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Chlorobenzene	77	10	20	ug/L	EPA 8260	11/14/08		3193
1,2-Dichlorobenzene	37	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,3-Dichlorobenzene	190	10	20	ug/L	EPA 8260	11/14/08		3193
1,4-Dichlorobenzene	620	.10	20	ug/L	EPA 8260	11/14/08		3193
1,2-Dichloroethane (EDC)	0.5	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,2-Dibromoethane (EDB)	Not Detected	0.5	· · · · · · · · · · · · · · · · · · ·	ug/L	EPA 8260	11/13/08		3190
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromodichloromethane	Not Detected	0.5	. 1	ug/L	EPA 8260	11/13/08		3190
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
n-Butylbenzene	Not Detected	0.5	1,	ug/L	EPA 8260	11/13/08		3190
sec-Butyl Benzene	Not Detected	0.5	1 .	ug/L	EPA 8260	11/13/08		3190
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Carbon Tetrachloride	Not Detected	0.5	<b>1</b>	ug/L	EPA 8260	11/13/08		3190
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
2-Chloroethylvinyl ether	Not Detected	20		ug/L	EPA 8260	11/13/08		3190
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190

141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 15

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15486 P5792 Order: Project: PG&E Coliseum Way Received: 11/05/08 12/01/08 Printed:

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ຝ	Time	Matrix		
ow-7-112008	P. Cornish	P. Cornish 1			Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/13/08	3190
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethane	11	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1-Dichloroethene	13	0.5	1	ug/L	EPA 8260	11/13/08	3190
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
2,2-Dichloropropane	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
1,1-Dichloropropene	Not Detected	0.5	. <b>1</b> .	ug/L	EPA 8260	11/13/08	3190
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/13/08	3190
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,1,2,2-Tetrachloroethane	Not Detected	0.5		ug/L	EPA 8260	11/13/08	3190
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	3190
1,2,4-Trichlorobenzene	50	10	20	ug/L	EPA 8260	11/14/08	3193



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15486 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ		Matrix			
ow-7-112008	P. Cornish	P. Cornish			Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,2,3-Trichloropropane	Not Detected	0.5	. 1	ug/L	EPA 8260	11/13/08		3190
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08		3190
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/13/08	•	3190
Vinyl Chloride	0.5	0.5	1	ug/L	EPA 8260	11/13/08		3190

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng



CREEK ENVIRONMENTAL LABORATORIES, INC. 141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 17

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15487 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By			Matrix			
ow-8-112008	P. Cornish		11/04/	======================================	Aqueous			=====
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.3	0.1	1	∉ mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413
TPH as Diesel	0.23	0.05	1	mg/L	EPA 8015/LUFT	11/08/08	11/08/08	3413
TPH as Diesel, SGT	0.10	0.05	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/24/08	11/08/08	3588
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	11/14/08		3215

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612 Log Number: 08-C15488 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date ລ		Matrix		
FB-112008	P. Cornish	P. Cornish			Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,2-Dibromoethane (EDB)	Not Detected	0.5	· 1	ug/L	EPA 8260	11/11/08	3107
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Bromoform	Not Detected	0.5	·	ug/L	EPA 8260	11/11/08	3107
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
sec-Butyl Benzene	Not Detected	0.5		ug/L	EPA 8260	11/11/08	3107
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/11/08	3107
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,2-Dibromo-3-Chloropropane	Not Detected		······	ug/L	EPA 8260	11/11/08	3107
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15488 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date ລ	Time	Matrix		
FB-112008	P. Cornish				Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,1-Dichloroethene	Not Detected	0.5	1 .	ug/L	EPA 8260	11/11/08	3107
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
trans-1,2-Dichloethene	Not Detected	0.5	. 1	ug/L	EPA 8260	11/11/08	3107
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,3-Dichloropropane	Not Detected	0.5	· 1	ug/L	EPA 8260	11/11/08	3107
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Isopropylbenzene	Not Detected	0.5		ug/L	EPA 8260	11/11/08	3107
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Methylene Chloride	Not Detected	5	· 1	ug/L	EPA 8260	11/11/08	3107
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/11/08	3107
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Styrene	Not Detected	0.5		ug/L	EPA 8260	11/11/08	3107
1,1,1,2-Tetrachloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	11/11/08	3107
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,1,2-Trichloroethane	Not Detected	0.5		ug/L	EPA 8260	11/11/08	3107
Trichloroethene	Not Detected	0.5		ug/L	EPA 8260	11/11/08	3107
Trichlorofluoromethane	Not Detected	0.5	· · · · · · · · · · · · · · · · · · ·	ug/L	EPA 8260	11/11/08	3107
1,2,3-Trichloropropane	Not Detected	0.5	1	· ug/L	EPA 8260	11/11/08	3107



141 SUBURBAN ROAD, SUITE C • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Yemia Hashimoto AMEC Geomatrix 2101 Webster St., 12th Floor Oakland, CA 94612

Log Number: 08-C15488 Order: P5792 Project: PG&E Coliseum Way Received: 11/05/08 Printed: 12/01/08

#### REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled By		l Time	Matrix		
 FB-112008	P. Cornish			8a12:30	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/11/08	3107
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	11/14/08	3215

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Quality Control Results

Page 21

Order No.: P5792 Laboratory Reagent Blank

Analyte	Method	Results	Units	Batch
TPH as Motor Oil	EPA 8015/LUFT	< 0.1	mg/L	3413
TPH as Diesel	EPA 8015/LUFT	< 0.05	mg/L	3413
TPH as Diesel, SGT	EPA 8015/LUFT	< 0.05	mg/L	3588
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 0.1	mg/L	3588
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	3249
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	3304
Benzene	EPA 8260	< 0.5	ug/L	3107
Benzene	EPA 8260	< 0.5	ug/L	3190
Toluene	EPA 8260	< 0.5	ug/L	3107
Toluene	EPA 8260	< 0.5	ug/L	3190
Ethylbenzene	EPA 8260	< 0.5	ug/L	3107
Ethylbenzene	EPA 8260	< 0.5	ug/L	3190
m,p-Xylene	EPA 8260	< 0.5	ug/L	3107
m,p-Xylene	EPA 8260	< 0.5	ug/L	3190
o-Xylene	EPA 8260	< 0.5	ug/L	3107
o-Xylene	EPA 8260	< 0.5	ug/L	3190
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	3107
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	3190
Chlorobenzene	EPA 8260	< 0.5	ug/L	3107
Chlorobenzene	EPA 8260	< 0.5	ug/L	3190
Chlorobenzene	EPA 8260	< 0.5	ug/L	3193
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3107
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3190
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3107
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3190
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3193
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3107
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3190
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	3193
1,2-Dichloroethane (EDC)	EPA-8260	< 0.5	ug/L	3107
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	3190
,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	3107
,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	3190
Iromobenzene	EPA 8260	< 0.5	ug/L	3107
romobenzene	EPA 8260	< 0.5	ug/L	3190
romochloromethane	EPA 8260	< 0.5	ug/L	3107
romochloromethane	EPA 8260	< 0.5	ug/L	3190
romodichloromethane	EPA 8260	< 0.5	ug/L	3107
romodichloromethane	EPA 8260	< 0.5	ug/L	3190
Bromoform	EPA 8260	< 0.5	ug/L	3107
Bromoform	EPA 8260	< 0.5	ug/L	3190
romomethane	EPA 8260	< 0.5	ug/L	3107
romomethane	EPA 8260	< 0.5	ug/L	3190
Butylbenzene	EPA 8260	< 0.5	ug/L	3107
-Butylbenzene	EPA 8260	< 0.5	ug/L	3190

Quality Control Results

Page 22

Order No.: P5792

#### Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	3107
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	3190
t-Butylbenzene	EPA 8260	< 0.5	ug/L	3107
t-Butylbenzene	EPA 8260	< 0.5	ug/L .	3190
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L	3107
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L	3190
Chloroethane	EPA 8260	< 0.5	ug/L	3107
Chloroethane	EPA 8260	< 0.5	ug/L	3190
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	3107
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	3190
Chloroform	EPA 8260	< 0.5	ug/L	3107
Chloroform	EPA 8260	< 0.5	ug/L	3190
Chloromethane	EPA 8260	< 0.5	ug/L	3107
hloromethane	EPA 8260	< 0.5	ug/L	3190
-Chlorotoluene	EPA 8260	< 0.5	ug/L	3107
-Chlorotoluene	EPA 8260	< 0.5	ug/L	3190
-Chlorotoluene	EPA 8260	< 0.5	ug/L	3107
-Chlorotoluene	EPA 8260	< 0.5	ug/L	3190
,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	3107
,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	3190
ibromochloromethane	EPA 8260	< 0.5	ug/L	3107
ibromochloromethane	EPA 8260	< 0.5	ug/L	3190
ibromomethane	EPA 8260	< 0.5	ug/L	3107
ibromomethane	EPA 8260	< 0.5	ug/L	3190
ichlorodifluoromethane	EPA 8260	< 0.5	ug/L	3107
ichlorodifluoromethane	EPA 8260	< 0.5	ug/L	3190
,1-Dichloroethane	EPA 8260	< 0.5	ug/L	3107
,1-Dichloroethane	EPA 8260	< 0.5	ug/L	3190
,1-Dichloroethene	EPA 8260	< 0.5	ug/L	3107
,1-Dichloroethene	EPA 8260	< 0.5	ug/L	3190
is-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	3107
is-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	3190
rans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	3107
rans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	3190
,2-Dichloropropane	EPA 8260	< 0.5	ug/L	3107
,2-Dichloropropane	EPA 8260	< 0.5	ug/L	3190
,3-Dichloropropane	EPA 8260	< 0.5	ug/L	3107
,3-Dichloropropane	EPA 8260	< 0.5	ug/L	3190
,2-Dichloropropane	EPA 8260	< 0.5	ug/L	3107
2-Dichloropropane	EPA 8260	< 0.5	ug/L	3190
1-Dichloropropene	EPA 8260	< 0.5	ug/L	3107
1-Dichloropropene	EPA 8260	< 0.5	ug/L	3190
s-1,3-Dichloropropene	EPA-8260	< 0.5	ug/L	3107
s-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	3190

Quality Control Results

Page 23

Order No.: P5792

#### Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	3107
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	3190
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	3107
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	3190
Isopropylbenzene	EPA 8260	< 0.5	ug/L	3107
Isopropylbenzene	EPA 8260	< 0.5	ug/L	3190
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	3107
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	3190
Methylene Chloride	EPA 8260	< 5	ug/L	3107
Methylene Chloride	EPA 8260	< 5	ug/L	3190
Naphthalene	EPA 8260	< 5	ug/L	3107
Naphthalene	EPA 8260	< 5	ug/L	3190
n-Propylbenzene	EPA 8260	< 0.5	ug/L	3107
n-Propylbenzene	EPA 8260	< 0.5	ug/L	3190
Styrene	EPA 8260	< 0.5	ug/L	3107
Styrene	EPA 8260	< 0.5	ug/L	3190
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	3107
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	3190
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	3107
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	3190
Tetrachloroethene	EPA 8260	< 0.5	ug/L	3107
Tetrachloroethene	EPA 8260	< 0.5	ug/L	3190
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	3107
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	3190
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	3107
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	3190
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	3193
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	3107
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	3190
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	3107
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	3190
Trichloroethene	EPA 8260	< 0.5	ug/L	3107
Trichloroethene	EPA 8260	< 0.5	ug/L	3190
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	3107
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	3190
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	3107
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	3190
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	3107
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	3190
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	3107
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	3190
Vinyl Chloride	EPA 8260	< 0.5	ug/L	3107
Vinyl Chloride	EPA 8260	< 0.5	ug/L	3190
Lead, Dissolved	EPA 6020	< 0.004	mg/L	3215

Quality Control Results

Page 24

Order No.: P5792

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
TPH as Diesel	EPA 8015/LUFT	75%	5.0	mg/L	50 - 150	3413
TPH as Diesel, SGT	EPA 8015/LUFT	93%	5.0	mg/L	50 - 150	3588
TPH as Gasoline	EPA 8015/LUFT	104%	0.5	mg/L	60 - 140	3249
TPH as Gasoline	EPA 8015/LUFT	104%	0.5	mg/L	60 - 140	3304
Benzene	EPA 8260	115%	10	ug/L	80 - 120	3107
Benzene	EPA 8260	97%	10	ug/L	80 - 120	3190
Toluene	EPA 8260	117%	10	ug/L	80 - 120	3107
Toluene	EPA 8260	104%	10	ug/L	80 - 120	3190
Ethylbenzene	EPA 8260	116%	10	ug/L	80 - 120	3107
Ethylbenzene	EPA 8260	104%	10	ug/L	80 - 120	3190
m,p-Xylene	EPA 8260	115%	20	ug/L	80 - 120	3107
m,p-Xylene	EPA 8260	106%	20	ug/L	80 - 120	3190
o-Xylene	EPA 8260	115%	10	ug/L	80 - 120	3107
o-Xylene	EPA 8260	114%	10	ug/L	80 - 120	3190
Lead, Dissolved	EPA 6020	97%	1.0	mg/L	75 - 125	3215

#### Matrix Spike/Matrix Spike Duplicates

		MS	MSD	Matrix	Spike			RPD	
Analyte	Method	Rec.	Rec.	RPD Sample	Amount	Units	Recovery Limit	s Limit	Batch
					·				7/47
TPH as Diesel	EPA 8015/LUFT	47%	66%	25 08-C15486	5. 5.0	mg/L	50 - 150	30	3413
TPH as Diesel, SGT	EPA 8015/LUFT	62%	69%	10 08-c15486	5.0	mg/L	50 - 150	30	3588
TPH as Gasoline	EPA 8015/LUFT	104%	124%	11 08-c15486	5 0.5	mg/L	60 - 140	30	3249
Benzene	EPA 8260	106%	101%	5 08-C15486	5 10	ug/L	80 - 120	20	3190
Toluene	EPA 8260	107%	102%	5 08-015486	5 10	ug/L	80 - 120	20	3190
Ethylbenzene	EPA 8260	111%	109%	2 08-C15486	5 10	ug/L	80 - 120	20	3190
m,p-Xylene	EPA 8260	104%	102%	2 08-015486	5 20	ug/L	80 - 120	20	3190
o-Xylene	EPA 8260	103%	101%	2 08-C15486	5 10	ug/L	80 - 120	20	3190
Lead, Dissolved	EPA 6020	93%	92%	1 08-c15482	2 1.0	mg/L	75 - 125	20	3215

Sample Duplicate

			Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
Benzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
Toluene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
Ethylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
m,p-Xylene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
o-Xylene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
Methyl t-Butyl Ether (MTBE)	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107
Chlorobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
1,2-Dichlorobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20	3107
1,3-Dichlorobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
1,4-Dichlorobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107



Quality Control Results

Page 25

Order No.: P5792

#### Sample Duplicate

Analyte	Method	Sample ID	Sample Value	Sample Duplicate	RPD	Units	RPD Limit	Batch	
1,2-Dichloroethane (EDC)	EPA 8260	08-c15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,2-Dibromoethane (EDB)	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Bromobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Bromochloromethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Bromodichloromethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Bromoform	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Bromomethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
n-Butylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
sec-Butyl Benzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
t-Butylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Carbon Tetrachloride	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Chloroethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
2-Chloroethylvinyl ether	EPA 8260	08-C15405	< 20	< 20	0	ug/L	40.	3107	
Chloroform	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Chloromethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
2-Chlorotoluene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
4-Chlorotoluene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,2-Dibromo-3-Chloropropane	EPA 8260	08-C15405	< 1	< 1	0	ug/L	30.	3107	
Dibromochloromethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Dibromomethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Dichlorodifluoromethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
1,1-Dichloroethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,1-Dichloroethene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
cis-1,2-Dichloroethene	EPA 8260	08-c15405	< 0.5	< 0.5	0	ug/L	20.	3107	
trans-1,2-Dichloethene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,2-Dichloropropane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,3-Dichloropropane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
2,2-Dichloropropane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,1-Dichloropropene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
cis-1,3-Dichloropropene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
trans-1,3-Dichloropropene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Hexachlorobutadiene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
Isopropylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
4-Isopropyltoluene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Methylene Chloride	EPA 8260	08-C15405	< 5	< 5	0	ug/L	30.	3107	
Naphthalene	EPA 8260	08-C15405	< 5	< 5	0	ug/L	30.	3107	
n-Propylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	· · · · · ·
Styrene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,1,1,2-Tetrachloroethane	EPA 8260	08-C15405	< 0.5	< 0.5	.0.	ug/L	20.	3107	
1,1,2,2-Tetrachloroethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
Tetrachloroethene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	
1,2,3-Trichlorobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
1,2,4-Trichlorobenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107	
1,1,1-Trichloroethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107	



Quality Control Results

Page 26

Order No.: P5792

Sample Duplicate

			Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
1,1,2-Trichloroethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
Trichloroethene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
Trichlorofluoromethane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107
1,2,3-Trichloropropane	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107
1,2,4-Trimethylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	20.	3107
1,3,5-Trimethylbenzene	EPA 8260	08-C15405	< 0.5	< 0.5		ug/L	20.	3107
Vinyl Chloride	EPA 8260	08-C15405	< 0.5	< 0.5	0	ug/L	30.	3107



#### Surrogate Report

S	ample Number	Batch	Met	thod		Surrogate	% Recovery	QC Limits	
-	8-C15481	3193	 ED/	A 8260		Dibromofluoromethane	102.	81-123	
	8-C15481	3193		A 8260		Toluene-d8	98.	78-116	
	8-C15481	3193		A 8260	· .	4-BFB	94.	60-116	
	8-C15481	3413		8015M/LUFT	חפח	Hexacosane	90.	50-150	
	8-C15481	3249		8015M/LUFT		a,a,a-Trifluorotoluene	131.	50-150	
	8-C15481	3193		8260	GKO	1,2-Dichloroethane-d4	100.	70-130	
	8-C15481	3588		8015M/LUFT	DPO	Hexacosane.Silica Gel	96.	50-150	
	8-015482	3413		8015M/LUFT		Hexacosane	90. 90.	50-150	
	8-C15482	3588		8015M/LUFT		Hexacosane.Silica Gel	116.	50-150	
	8-C15483	3190		8260	DIG	Dibromofluoromethane	99.	81-123	
	8-C15483	3190		8260		Toluene-d8	98.	78-116	
	8-C15483	3190		8260		4-BFB	93.	60-116	
	8-C15483	3413		8015M/LUFT	חפת	Hexacosane	93. 84.	50-150	
	B-C15483	3249		8015M/LUFT		a,a,a-Trifluorotoluene	135.	50-150	
	B-C15483	3190		8260	dico	1,2-Dichloroethane-d4	94.	70-130	
	3-C15483	3588		8015M/LUFT	DRO	Hexacosane.Silica Gel	108.	50-150	
	3-C15484	3190		8260	DRO	Dibromofluoromethane	99.	81-123	
	3-C15484	3190		8260		Toluene-d8	100.	78-116	
	3-C15484	3190		8260		4-BFB	94.	60-116	
	3-C15484	3413		8015M/LUFT	DRO	Hexacosane	84.	50-150	
	3-C15484	3304		8015M/LUFT		a,a,a-Trifluorotoluene	111.	50-150	
	3-C15484	3190		8260	ano	1,2-Dichloroethane-d4	95.	70-130	
	3-C15484	3588		8015M/LUFT	DRO	Hexacosane.Silica Gel	98.	50-150	
	3-c15485	3190		8260	DICO	Dibromofluoromethane	100.	81-123	
	S-C15485	3190		8260		Toluene-d8	98.	78-116	
	-c15485	3190		8260		4-BFB	96.	60-116	
	-C15485	3413		8015M/LUFT	DRO	Hexacosane	96.	50-150	
	-C15485	3249		8015M/LUFT		a,a,a-Trifluorotolüene	140.	50-150	
	-C15485	3190		8260	Lite	1,2-Dichloroethane-d4	98.	70-130	
	-C15485	3588		8015M/LUFT	DRO	Hexacosane.Silica Gel	104.	50-150	
	-C15486	3193		8260		Dibromofluoromethane	102.	81-123	
	-C15486	3193		8260		Toluene-d8	97.	78-116	
	-C15486			8260		4-BFB	93.	60-116	
	-C15486			8015M/LUFT		Hexacosane	76.	50-150	
	-C15486			8015M/LUFT		a,a,a-Trifluorotoluene	130.	50-150	
	-C15486	3193				1,2-Dichloroethane-d4	102.	70-130	
	-C15486			8015M/LUFT		Hexacosane.Silica Gel	86.	50-150	
	-C15487			8015M/LUFT		Hexacosane	90.	50-150	
	-C15487			8015M/LUFT		Hexacosane.Silica Gel	90.	50-150	
	-C15488			8260		Dibromofluoromethane	100.	81-123	· · · · · · · · · · · · · · · · · · ·
	-C15488			8260		Toluene-d8	98.	78-116	
	-C15488			8260		4-BFB		60-116	
	-C15488			8260		1,2-Dichloroethane-d4		70-130	
	ank			8260		Dibromofluoromethane		81-123	
	ank			8260		Dibromofluoromethane		81-123	
bla				8260		Dibromofluoromethane		81-123	
~							1971		

#### Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
			····		
LCS	3107		Dibromofluoromethane	101.	81-123
LCS	3190		Dibromofluoromethane	100.	81-123
LCS	3193		Dibromofluoromethane	101.	81-123
08-C15486 MS	3190		Dibromofluoromethane	99.	81-123
08C15486 MSD	3190		Dibromofluoromethane	96.	81-123
blank	3107		Toluene-d8	98.	78-116
blank	3190		Toluene-d8	98.	78-116
blank		EPA 8260	Toluene-d8	98.	78-116
LCS	3107		Toluene-d8	98.	78-116
LCS	3190		Toluene-d8	98.	78-116
LCS	3193	EPA 8260	Toluene-d8	99.	78-116
08-C15486 MS	3190	EPA 8260	Toluene-d8	108.	78-116
08C15486 MSD	3190	EPA 8260	Toluene-d8	108.	78-116
blank	3107	EPA 8260	4-BFB	92.	60-116
blank	3190	EPA 8260	4-BFB	93.	60-116
blank	3193	EPA 8260	4-BFB	92.	60-116
LCS	3107	EPA 8260	4-BFB	99.	60-116
LCS	3190	EPA 8260	4-BFB	100.	60-116
LCS	3193	EPA 8260	4-BFB	102.	60-116
08-C15486 MS	3190	EPA 8260	4-BFB	124.	60-116
08c15486 MSD	3190	EPA 8260	4-BFB	126.	60-116
blank	3413	EPA 8015M/LUFT DRO	Hexacosane	97.	50-150
LCS	3413	EPA 8015M/LUFT DRO	Hexacosane	95.	50-150
08-C15486 MS	3413	EPA 8015M/LUFT DRO	Hexacosane	74.	50-150
08C15486 MSD	3413	EPA 8015M/LUFT DRO	Hexacosane	85.	50-150
blank	3249	EPA 8015M/LUFT GRO	a,a,a-Trifluorotoluene	124.	50-150
blank	3304	EPA 8015M/LUFT GRO	a,a,a-Trifluorotoluene	103.	50-150
LCS	3249	EPA 8015M/LUFT GRO	a,a,a-Trifluorotoluene	119.	50-150
LCS	3304	EPA 8015M/LUFT GRO	a,a,a-Trifluorotoluene	102.	50-150
08-C15486 MS	3249	EPA 8015M/LUFT GRO	a,a,a-Trifluorotoluene	131.	50-150
08C15486 MSD	3249	EPA 8015M/LUFT GRO	a,a,a-Trifluorotoluene	130.	50-150
blank	3107	EPA 8260	1,2-Dichloroethane-d4	97.	70-130
blank	3190	EPA 8260	1,2-Dichloroethane-d4	99.	70-130
blank	3193	EPA 8260	1,2-Dichloroethane-d4	98.	70-130
LCS	3107	EPA 8260	1,2-Dichloroethane-d4	98.	70-130
LCS	3190	EPA 8260	1,2-Dichloroethane-d4		70-130
LCS	3193	EPA 8260	1,2-Dichloroethane-d4		70-130
08-C15486 MS	3190	EPA 8260	1,2-Dichloroethane-d4		70-130
08C15486 MSD		EPA 8260	1,2-Dichloroethane-d4	· · · · · · · · · · · · · · · · · · ·	70-130
blank		EPA 8015M/LUFT DRO	Hexacosane.Silica Gel		50-150
LCS		EPA 8015M/LUFT DRO	Hexacosane.Silica Gel		50-150
08-C15486 MS		EPA 8015M/LUFT DRO	Hexacosane.Silica Gel		50-150
08C15486 MSD		EPA 8015M/LUFT DRO	Hexacosane.Silica Gel		50-150
		agener in tala manta and ang			