

RECEIVED

12:56 pm, Jul 14, 2008

Environmental Remediation 3400 Crow Canyon Road San Ramon, CA 94583

Alameda County
Environmental Health

July 8, 2008

Mr. Jerry Wickham Alameda County Environmental Health Department Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject: Transmittal of Semiannual Groundwater Monitoring Report, May 2008 Sampling

Event, Pacific Gas and Electric Company, Oakland General Construction Yard,

4930 Coliseum Way, Oakland, California

Dear Mr. Wickham:

Attached is the Semiannual Groundwater Monitoring Report, May 2008 Sampling Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, dated June 2008. PG&E has retained ENTRIX, Inc., and Geomatrix Consultants, Inc. to perform groundwater monitoring and other technical studies at the subject site. The attached report was prepared by Innovative Technical Solutions, Inc., with review by Geomatrix.

Should you have technical questions pertaining to this report, you may contact Jonathan Skaggs of Geomatrix at 510.663.4104. For any other questions or requests pertaining to the regulatory case at the subject site, please contact me at 925.866.5888.

Sincerely,

Robert Saur Environmental Geologist

cc: Anne Conner, PG&E Margarita Khavul, PG&E

SEMIANNUAL GROUNDWATER MONITORING REPORT

May 2008 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared For:

Pacific Gas and Electric Company 3400 Crow Canyon Road San Ramon, CA 94583

Prepared By:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

July 2008 ITSI Project No: 07037.0018

SEMIANNUAL GROUNDWATER MONITORING REPORT

May 2008 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

This report was prepared by the staff of Innovative Technical Solutions, Inc., under the supervision of the Geologist(s) and/or Engineer(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Prepared By:

Charles Comstock, P.G., C.E.G.

Senior Geologist

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

July 2008

ITSI Project No. 07037.0018

CHARLES R. COMSTOR No. 1010

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description	1
3.0	Site History	1
4.0	Groundwater Monitoring Activities	2
	Groundwater Monitoring Results	
	Conclusions	
	References	

LIST OF FIGURES

<u>Figure No</u> .	<u>Title</u>
1	Vicinity Maps
2	Site Plan
3	Groundwater Elevation Contours (May 6, 2007)
4	Groundwater Analytical Results (May 6, 2007)

LIST OF TABLES

Table No.	<u>Title</u>
1	Summary of Groundwater Elevation Data
2	Summary of Groundwater Analytical Results (May 6, 2007)

LIST OF APPENDICES

Appendix A	Historical Groundwater Analytical Results
Appendix B	Field Procedures for Low-Flow Purging and Sampling
Appendix C	Groundwater Purging and Sampling Logs
Appendix D	Laboratory Analytical Reports and Chain-of-Custody Documentation

ACRONYMS AND ABBREVIATIONS

ACHCSA Alameda County Health Care Services Agency

AST above-ground storage tank bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes EPA U.S. Environmental Protection Agency ITSI Innovative Technical Solutions, Inc.

LC/LCSD laboratory control/laboratory control duplicate

MCL maximum contaminant level mg/kg milligrams per kilogram µg/l micrograms per liter

MS/MSD matrix spike and matrix spike duplicate

msl mean sea level

MTBE methyl tertiary butyl ether

PG&E Pacific Gas and Electric Company

RL reporting limit

RPD relative percent difference TPH total petroleum hydrocarbons

TPHd total petroleum hydrocarbons quantified as diesel total petroleum hydrocarbons quantified as gasoline TPHmo total petroleum hydrocarbons quantified as motor oil

UST underground storage tank VOC(s) volatile organic compound(s)

OakMay08.doc Page iii

1.0 INTRODUCTION

This report presents the results of semiannual groundwater monitoring completed on May 6, 2008, at the Pacific Gas and Electric Company (PG&E) General Construction Yard located at 4930 Coliseum Way in Oakland, California (the site, Figure 1). The groundwater monitoring program includes the following activities: (1) measuring groundwater elevations; (2) collecting groundwater samples from monitoring wells on site; and (3) performing laboratory analyses of the samples. The program objective is to monitor the distribution of select fuel-related compounds, volatile organic compounds (VOCs), and dissolved lead in shallow groundwater beneath the site. The following sections summarize the site description, site background, groundwater monitoring activities, and analytical results of samples collected on May 6, 2008. Previous analytical results are summarized in Appendix A.

2.0 SITE DESCRIPTION

The site consists of approximately 4 acres and is operated as a storage yard for equipment and vehicles (Figure 2). The surrounding area is primarily commercial and light industrial. The site is bounded by Coliseum Way to the south, 50th Avenue to the southeast and commercial properties to the north (Figure 1).

3.0 SITE HISTORY

The following summarizes previous environmental activities associated with the site:

- January 1988 Five underground storage tanks (USTs) and associated piping located in the northern and eastern portions of the site were removed (Figure 2). Four of the former USTs were located in a cluster in the northern portion of the site (former UST cluster). Two of these USTs reportedly contained heavy oil and two contained mineral spirits (PG&E, 1988). The fifth former UST was located near the west corner of the yard and reportedly contained diesel fuel.
- April 1988 Installation of groundwater monitoring wells OW-1 through OW-4
- May 1990 One natural gas, above ground storage tank (AST) was removed from the central portion of the site (Figure 2).
- **November and December 1991 -** Approximately 2,000 cubic yards of soil were excavated to a depth of approximately 8 to 8 ½ feet below ground surface (bgs) as a remedial action for the petroleum hydrocarbons identified in the soil in the vicinity of the

former UST cluster. Groundwater monitoring wells OW-6 and OW-7 were installed, and well OW-3 was abandoned. The concentrations of TPHd and oil and grease in the soil samples collected along the site boundaries during soil excavation activities were greater than soil cleanup target levels, while concentrations of TPHd and oil and grease in each of the remaining confirmatory samples were less than the cleanup target levels. Oil was visible in the soils in the northeast wall of the excavation along the property line, and a pipe that contained a similar petroleum product was also exposed in the northeastern wall of the excavation. The conclusions of the February 1992 *Site Remediation and Closure Report, Former Tank Cluster Area* prepared by Earth Technology Corporation suggested that off-site sources of petroleum hydrocarbons may exist in both the northeast and northwest directions (ETC, 1992).

- **December 1991** Installation of groundwater monitoring wells OW-5 through OW-7.
- **September and October 1992** An asphaltic concrete cap was constructed on lead-affected surface soil in the vicinity of the former natural gas AST. Lead, believed to have originated from lead-based paint chips generated from sandblasting of the former natural gas AST, was found in soil samples collected from this area.
- **February 1993** Groundwater monitoring well OW-8 was installed in the southern area of the yard near the location of the former natural gas AST to monitor lead concentrations in the groundwater.
- **July 1994** Groundwater sampling frequency reduced from quarterly to a semiannual basis.

4.0 GROUNDWATER MONITORING ACTIVITIES

Blaine Tech Services, Inc. performed the groundwater-monitoring event on May 6, 2008. Groundwater sampling was performed using low-flow purging and sampling methods in accordance with the Low-Flow Purging and Sampling Protocol (Appendix B). Depth to groundwater measurements were collected from OW-1, OW-2, OW-4, OW-5, OW-6, OW-7, and OW-8, and were recorded in the Groundwater Purging and Sampling Logs (Appendix C). The groundwater elevation measurements were used to prepare a groundwater elevation map to determine the direction and magnitude of the groundwater gradient. Purge water generated during the groundwater monitoring activities was temporarily stored on site in 55-gallon steel drums pending disposal.

Groundwater samples were collected from OW-1, OW-2, OW-4, OW-5, OW-6, OW-7, and OW-8 in laboratory supplied containers. The samples were shipped on ice to Creek Environmental Laboratories, Inc., of San Luis Obispo, California, a State of California certified laboratory, for

analysis under chain-of-custody protocol. Samples from the monitoring wells were analyzed for the following:

- Total petroleum hydrocarbons quantified as gasoline (TPHg), TPH quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U. S. Environmental Protection Agency (EPA) Method 8015B;
- Total petroleum hydrocarbons quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U. S. Environmental Protection Agency (EPA) Method 8015B with the silca gel cleanup method;
- Dissolved lead using EPA Method 6010B; and
- VOCs using EPA Method 8260B.

Appendix D includes the laboratory analytical reports and chain-of-custody documentation.

All analyses were performed within the holding times specified by the EPA, except as noted in the laboratory case narrative. (The COC was amended to cancel TPH/BTEX for all samples; add TPH-g and the full list VOC plus oxygenates to OW-1, OW-4, OW-5, OW-6, and OW-7; and add dissolved lead to OW-2, OW-5 and OW-8; conduct TPH-d/mo analysis with and without silica gel cleanup on all samples; and finally, the TPH-d/mo analysis for the field blank was cancelled because the 1 liter amber container was not provided for analyses.) None of the tested analytes were detected in the field blank or laboratory reagent blank. The surrogate recoveries were within the laboratory acceptance limits. Recoveries of matrix spike/matrix spike duplicate (MS/MSD) were within the laboratory acceptance limits. The relative percent differences (RPD) were within the laboratory acceptance limits.

5.0 GROUNDWATER MONITORING RESULTS

Groundwater level measurements collected during the May 6, 2008, monitoring event indicate that depth to water ranged from 2.73 to 4.53 feet below the top of casing. Based on these groundwater level measurements, the predominant groundwater flow direction was towards the south with an approximate hydraulic gradient of 0.007 ft/ft. Table 1 summarizes the depth to water measurements and groundwater elevation data. Figure 3 shows the groundwater elevation map.

Laboratory analytical results for the groundwater samples collected from the seven monitoring wells sampled during the May 6, 2008, monitoring event indicate the following:

- TPHg was detected in samples collected from two wells (OW-6 and OW-7) sampled at the site. The TPHg concentrations were 50 to 560 µg/l, respectively. The concentration detected in OW-7 (located in the northern portion of the property) increased from the November 2007 sampling event (250 µg/l).
- TPHd was detected in samples collected from the seven wells sampled at the Site; however, after silica cleanup was performed, TPHd was not detected in any samples collected. TPHd concentrations in samples without silica gel cleanup ranged from 260 μg/l to 610 μg/l (an increase from the range detected in the November 2007 sampling event [140 μg/l to 400 μg/l]).
- TPHmo was detected in sanples collected from the five wells sampled at the Site; however, after silica cleanup was performed, TPHmo was not detected in any samples collected. TPHmo concentrations in samples without silica gel cleanup ranged from 200 μg/l to 700 μg/l (an increase from the range detected in the November 2007 sampling event [100 μg/l to 500 μg/l]).
- Dissolved lead was not detected above the laboratory method reporting limit of 4 µg/l.
- With the exception of a trace MTBE detection of 0.6 μg/l at OW-1; benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE were not detected above the laboratory method reporting limit in the samples collected from the site.
- VOCs were detected in samples collected from OW-1, OW-5, OW-6, and OW-7. The highest concentrations of VOCs were found in the sample collected from well OW-7, located in the northern (upgradient) portion of the property.
- DIPE was only detected in groundwater samples from OW-6 (5.0 ug/L) and OW-7 (0.6 ug/L).

Table 2 summarizes the laboratory analytical results. Figure 4 presents the results of the May 6, 2008, sampling event.

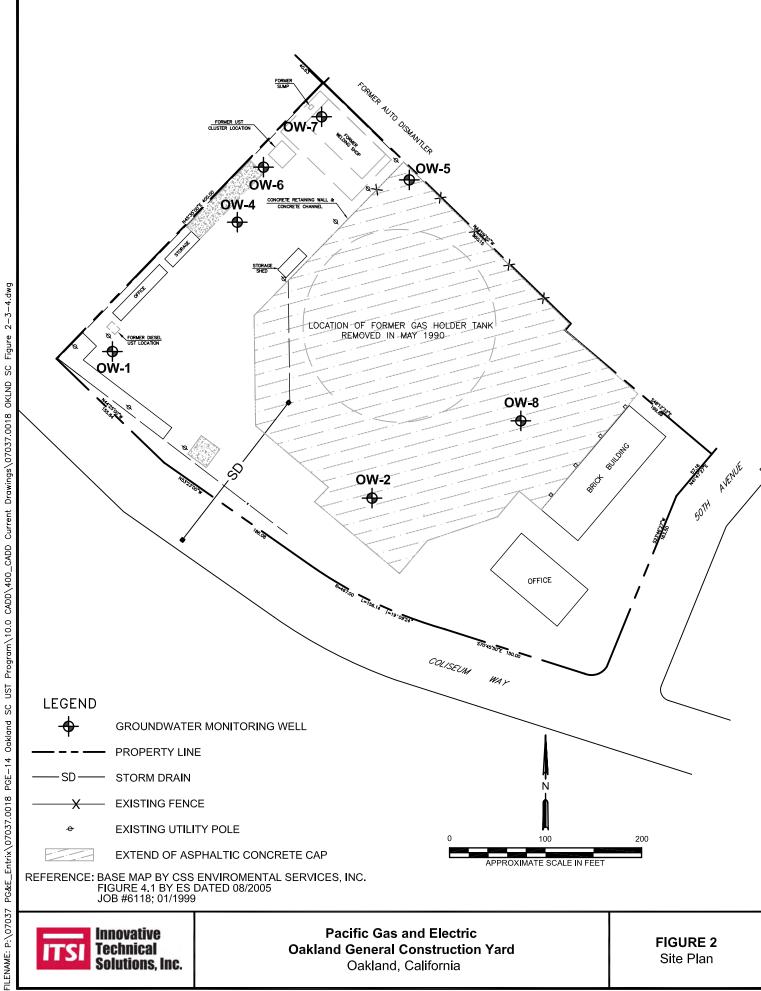
6.0 CONCLUSIONS

The direction of groundwater flow is generally consistent with the results of previous monitoring events, however groundwater elevations are generally lower. Overall, the analytical results of the May 6, 2008, groundwater-monitoring event are consistent with the results of previous groundwater monitoring events.

7.0 REFERENCES

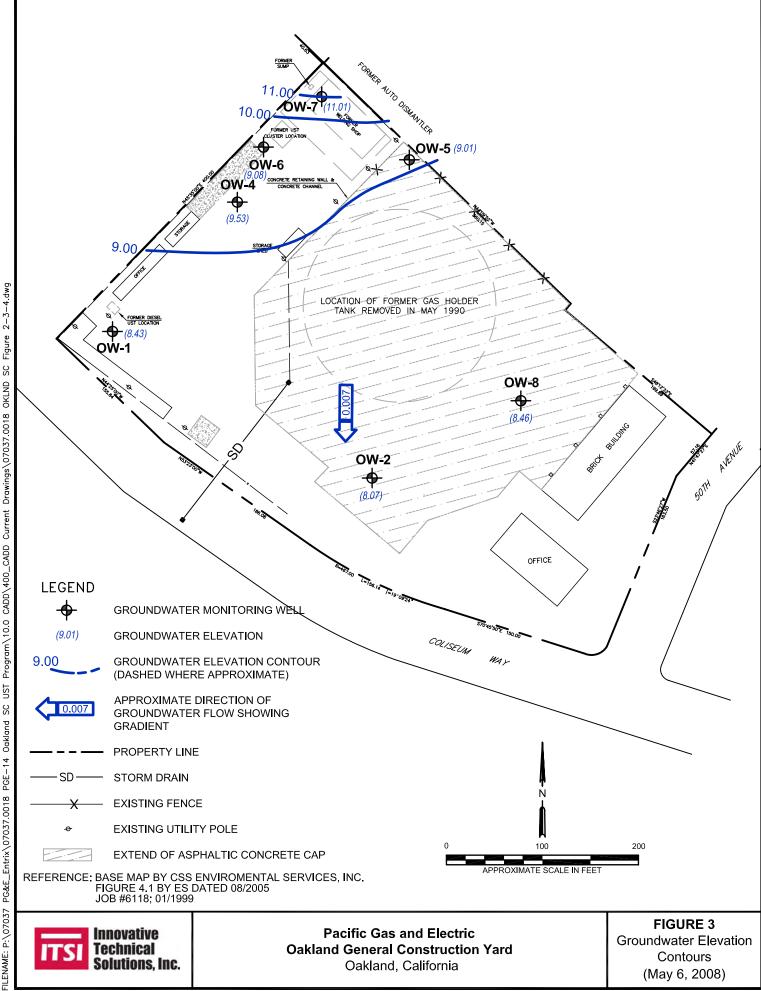
- CSS Environmental Services, Inc., 2005, Semi-Annual Groundwater Monitoring Report, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, September 2.
- Earth Technology Corporation (ETC), 1992, Site Remediation and Closure Report Former Tank Cluster Area, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, February.
- Pacific Gas and Electric Company (PG&E), 1988, Underground Tanks Investigation, PG&E General Construction Yard, 4930 Coliseum Way, Oakland, California, July.

FIGURES


Figure

Program\10.0 CADD\400_CADD Current Drawings\07037.0018 OKLND SC

UST


SC

FILENAME: P:\07037 PG&E_Entrix\07037.0018 PG&E Oakland

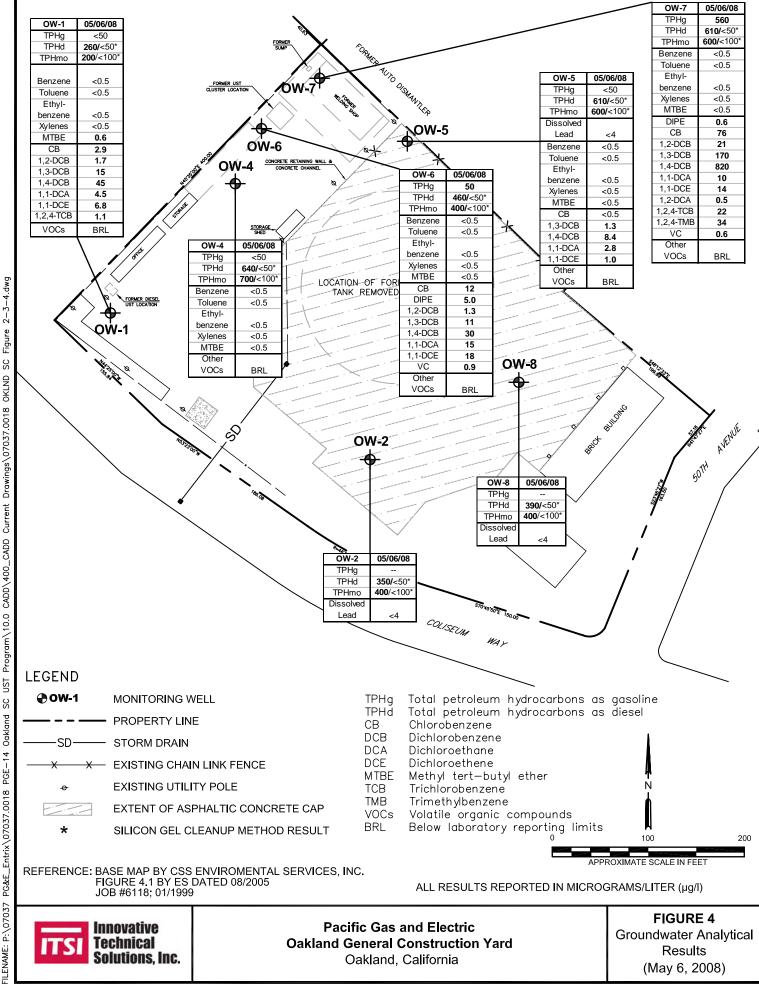

Oakland General Construction Yard Oakland, California

FIGURE 2 Site Plan

Oakland General Construction Yard Oakland, California

Contours (May 6, 2008)

Innovative Technical Solutions. Inc.

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

Groundwater Analytical Results (May 6, 2008)

TABLES

TABLE 1 Summary of Groundwater Elevation Data

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

Well Number	Sample Date	TOC Elevation (feet MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet above MSL)
OW-1 OW-2 OW-4 OW-5 OW-6 OW-7 OW-8	5/6/2008 5/6/2008 5/6/2008 5/6/2008 5/6/2008 5/6/2008	11.82 11.24 12.82 13.24 13.61 15.00 11.19	3.39 3.17 3.29 4.23 4.53 3.99 2.73	8.43 8.07 9.53 9.01 9.08 11.01 8.46

Notes:

TOC = top of casing

MSL = Mean Sea Level

bgs = below ground surface

NM = Not measured. Well was not found/un-accessible due to storage container.

TOC elevation data were referenced from Figure 4.2-Historical Groundwater Elevations, (Semi-Annual Groundwater Monitoring Report, September 2,

2005, CSS Environmental Services, Inc.).

Table 2 Summary of Groundwater Analytical Results (May 6, 2008)

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

			roleum Hyd Method 801	drocarbons	Dissolved Lead Method 6010B									Volatile C	rganic Com	pounds-N	Method 826	60B								
Sample Name	Sample Date	TPHg μg/L	TPHd μg/L	TPHmo μg/L	μg/L	Benzene µg/L	Toluene µg/L	Ethyl- benzene µg/L	Xylenes µg/L	Isopropyl- benzene µg/L	thalene		1,2,3-TCB µg/L	1,2,4-TCB µg/L	1,3,5-TMB µg/L	1,2-DCA µg/L	1,2-DCB µg/L	1,3-DCB µg/L	1,4-DCB µg/L	CB pg/L	1,1,1-TCA µg/L	1,1-DCA µg/L	1,1-DCE µg/L	DIPE μg/L	VC µg/L	Other VOCs µg/L
OW-1	05/06/08	<50				<0.5	<0.5	< 0.5	< 0.5	<0.5	<5	0.6	<0.5	1.1	<0.5	<0.5	1.7	15	45	2.9	<0.5	4.5	6.8	<0.5	< 0.5	ND
OW-2	05/06/08		350 /<50*	400/ <100*	<4																					
OW-4	05/06/08	<50	640/ <50*	700/ <100*		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
OW-5	05/06/08	<50	610/ <50*	600/ <100*	<4	< 0.5	< 0.5	<0.5	<0.5	<0.5	<5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	1.3	8.4	< 0.5	< 0.5	2.8	1.0	<0.5	< 0.5	ND
OW-6	05/06/08	50	460/ <50*	400/ <100*		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	11	30	12	< 0.5	15.0	18	5.0	0.9	(1)
OW-7	05/06/08	560	610/<50*	600/ <100*		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<5	< 0.5	< 0.5	34	< 0.5	0.5	21	170	820	76	< 0.5	10	14	0.6	0.6	ND
OW-8	05/06/08		390/ <50*	400/ <100*	<4																					
FIELD BLANK	05/06/08				<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

(1) =1,2-Dichloroethane was detected at 0.5

μg/L = Micrograms per liter.
< = Not detected at or above the practical quantitation limit.

-- = Not analyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,2-DCA = 1,2-Dichloroethane 1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene 1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene

1,2,4-TCB = 1,2,4-Trichlorobenzene

DIPE = Diisopropyl Ether

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

(1) = 1,2-Dichloroethane was detected at 0.5 μg/l

* = TPHd/TPHmo analyzed using silica gel cleanup

OaklandMay08 Tables1-3-.xls Page 1 of 1

APPENDIX A

Historical Groundwater Analytical Results

Well (C) Date	MCL ug/L		DW-1 Oct-89	OW-1 Jan-90	CW-1 Apt-90	1-WO 08-bL	OW-1 Oct-98	OW-1 Jan-91	OW-1 Apr-91	OW-1 Jul-91	OW-1 Dac-91	OW-1 Mar-92	OW-1 Jul-92	OW-1 Oct-92	OW-1 Jan-93	OW-t Apr-03	OW-1 Jul-93	OW-1 Oct-93	OW-1 Jan-84	OW-1 Jul-94	OW-1 Jun-25	OW-1 Nov-85	OW-1 Jun-96	OW-1 Oct-96	OW-1 Apr _e Jun-97	OW-1 Dec-97	149-98 149-98	OW-1 Doc-98	OW-1 Jun-99	OW-1 Nov-99
PURGEABLE HALOCARBONS																	:												b10	AN
Chloromolisuno		מא	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND ND	ND ON	ND ND	(G/)	ND	NA NA	NA NA	NA NA	AM AM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	na na	NA NA	AM AM	NA NA	NA
Bromomethana		ND	MD	NΩ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA									
Vinst chlorida	0,5	ND	村口	ND	HD	ND	ND	ND	ND	ND		ND ND	ND	מא	ND	NA	NA	NA	НA	NA	NA									
Chiarcothena		NΩ	NΩ	ND	ND	ND	ND	ND	ИD	ND	NO			ND	ND	NA.	NA.	NA	NA	NA	NΑ	NA	NA	NA	NA	NA.	NA	NA	NA ·	NA
Methylana Chlarida	5#	ND	ND	NΦ	ИÐ	ИD	ИD	ND	NA.	NΑ	NA.	NA	NA	NA	NA	NA	NA													
Trichlorofluoromethane	150	ND	ND	ND	ND	NO	ND	ИD	ND	ND	ND	NO	ND			NA.	NA.	MA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dishlersethane	6	ND	ΝD	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dichiaroethana	5	ND	5	4	4	2	2	1	2.8	4.6	ND	ИD	NO	.1	3	NA	HA	NA.	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NΑ
cis-1.2-Dichloraelnana	6	ND	ND	ND	ND	ND	ИÜ	ND	ND	MD	ND	ΝĐ	ND	ND	ND	NΑ	NA.				NA.	NA	NA.	HA	NA	NA	NA	NA	NA	NA
	10	ИD	ND	ND	ND	ND	NP	ND	ND	ND	ND	ИĎ	ND	ND	ИФ	NA	NA	NA ·	NA.	NA		NA NA	NA.	NA	N/A	NA	NA	NA	NA	NA
trans-1,2-Dichtoroothone	100#*	ND	ND	ND	ND	ND	ND	NO	ND	ND	КD	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA
Chloroform	1200	ND	ДN	ND	ND	ИĎ	ND	ND	ND	NΩ	ND	ND	ND	ND	NΦ	NA	NA	NA	NA.	NΑ	ŅĄ			NA.	NA.	NA	NA	NΑ	NA	NA
Fraori 113	0.5	ND	ND	ND	ND	ND	ND	ND	0,63	ND	NO	ND	ND	ND	ND	NA	NА	NA.	NA	AI/1	NA	NA	NA		NA	NA	NA.	ΝA	NA	NA
1,2-Dichloroethane	260	ND	ND	ND	ND	ND	140	ND	ND	NΩ	ND	NO	ND	ND	NO	NA	HΑ	NA	NA	NA	NA	NA	NA.	NA	NA NA	NA.	NA.	NΑ	NA	NA.
1,1,1-Tilchioraethane	0.5	ND	ND	ND	ND	NO	ND	HA	A/A	NA	H/A	NA.	NA	NA	NA	NA	NA NA	NA.	NA	NA.	NA	NA								
Carbon Tutrechloride	100#1	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	МA	NA	NA NA	NA.	NΑ	NA	NA	NA.							
Promedich/orotnethane	5	ND	NO	ND	ND	ND	ND	NO	ND	NO	ND	ND	ND	ND	ИD	NA	NA	NA	N/A	NA	NA	NA	NA.	NA	NA NA	NA.	NA.	NA.	NA	NA.
1,2-Dichleropropane	5***	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NA	NA.	NA NA	IA	NA	NA	NA.	NA.							
eis-1,3-Dichbropropene	5	NO	ND	ND	ΝĎ	ND	ND	ND	ND	ND.	ND	ND	ND	КD	ND	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.
Trichloroathone	12	NO	ND.	ND	ND	NO	ИD	ND	ПD	ND	ND	NO	ИD	NΦ	ND	NA	·NA	NA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA.
1,1,2-Trichlerostrone	5	QN.	NO	ND	ND	NO	ND	ND	ND	HO	ND	ND	ND	ND	ND	NA	NA	NA	NA	HA	NA.	NA	A/s			NA.	NA	NA	NA	NA
truns-1,3-Dichleropropena Distramochleromalhane	100#"	ND	ND	ND	ND	NÞ	ND	NO	ND	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA						
	Inh	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИФ	ИÜ	NΑ	NA	NA	NA	ΝA	NA	NA			NA NA	NA.	NA	NA	16A	NA.
2-Chloroothylvinyl Ethor Bromoform	100#*	NO) D	ND	ND	ND	ND	110	ND	ND	ИĐ	ND	ND	ИĐ	NO	MA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.	NA.	NA	AM	NA
Teirechkrasthens	5	ND	ND	ND	ND	NΩ	ND	ND	1.1	ND	ND	MD	ND	ND	ИD	NA	NA	MV	NA	NA	NA	NA	NA NA	NA NA	NA	NA.	NA.	NA	NA	NA.
1,1,2,2-Totrachloroethane	ī	NO	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ΚD	ND	ND	NA		NA NA	ΝA	NA.	NA	NA	NA	AM						
Chlorobenzena	30	ND	ND	ND	NO	NO	ND	ND	ND	מא	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlorobanzone	50	NA.	NA	1	4	4	1	3	1.6	2,9	ND	ND	ND	ND	ND	KA	NA	NA	NA	NA	NA		NA NA	NA NA	NA.	NA.	NA	AVA	NA	NA
1.2-Dichterobenzeno	600#	NA.	NA	ND	ND	ND	ND	MD	0,58	ND	ND	ИD	ND	ИD	ИD	NA	ИA	NA	НA	NA	NA	NA			NA.	NA.	NA	NA.	NA	NA.
1,4-Dichiarabonzeno	5	4	11	5	13	11	6	3	6.7	14	3.2	ND	4	3	3	NA	ИA	NA	NA	NA.	NA	NA	NA	NA	1975	ריוו	140			
1*e-Dictionanguages	-	•	•••																											
PURGEABLE AROMATICS '																						LUD.	NO	ND	ND	0.66	ND	0.5	0.55	NO
Banzons	1	ND	NÞ	3.2	ИD	NO	ND	340	NA	ND	NA	ND	ND	NA Na	ND QN	ND	ND CM	ND	ND D	0.67	ᄧ	ND	NO							
Toluane	1960#	ND	ND	2.3	0,4	NO	ND	ND	ND	ND	ND	ИD	0,7	ND	ND	NA	ND	NΑ	ND	ND	NA NA	ND	ND	ND	ND	2.3	ND	0.70	NO	ND
Ethylpanzana	580	ND	ND	ND	NO	NO	ND	ND	ND	NΠ	ND	ИD	2	ИD	0.0	NA	ND	NA	ND	ND		ND	ND	ND	מא	1.1	ND	0.67	ND	0.59
Total Xylenes	1750**		ND	2.6	2.4	ND	ND	ND	ND	ВN	ΝĐ	3.2	Ġ	1.7	1.9	NA.	ND:	NA_	2,5	NO	NA NA	NA	NA NA	- NA	- NA	4.08	0.67	1.03	0.55	0.59
TOTAL VOCE	11.20	4	16	18,1	23.8	17	9	7	13,41	215	1,2	3.2	15.7	5.7	8,5	NA.	-7VA	, NA	2,5	NA.	··· NA	1/4	. NA	100	100	4,00	2.27		-,	
HYDROCARBONS																														
									618	NA	NA	100	120	< 50	70	NA	NA	NA	80	60	400	230	500	830	590	420	850	650	1109	990
TVH-g		NA	NA	< 50	82	< 50	< 50	< 500	NA - ann	< 50	1650	3100	3500	1000	2000	NA	2300	NA.	1000	1500	740	1000	2300	1400	1500	700	1960	1800	1300	540
TEPH-d `		< 1000			300	200	200	90	< 200	< 5000				NA.	NA	1(A	NA	NA .	NA	NA	NA.	NA	NA							
OLG		< 5000		NA	NA.	NA	NA FRA	NA - FORC	NA 4 EAR				NA.	NA NA	NA.	NA	NA.	NA	NA	NA	NA.	NA.	NA							
TPH (418.1)		NA	NА	< 5000	< 500D	< 5000	< 5000	< 5000	< 500	NA	NA	NA	1200	110	(***	17/1			••••	,			•							•
METALS																														
Lead	a	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	NA	NA	AM.	NA	AM	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

1) MCL - Maximum Centaminant Loyel in drinking water (State MCL if not noted otherwise)

2) # = EPA MCL

3) * = MCL for sum of four compounds

4) ** = MCL for sum of all sylens kanners

5) ** = MCL (or sum of starts - and dis-1,3-dichloropropens

6) NC = Not Delected at or above MCL

7) Purgeable Histocathors (EPA method 8010)

8) Purgeable Aramates (EPA method 8020)

9) NA = Not Analyzed or analyzis not required

10) £17702 Samples analyzed for VOCs out of holding time due to laboratory error

Well ID	OW-1 Jun-60	OW-1 Nav-00	OVA1 Jun-01	OW-1 Nov-01	OW-1 Jun-02	OW-1	OW-1 Apr-03	OVI-1 Nov-03	OW-1 Jun-04
Date	100-00	MANAGO	TOIL !	1104-01	2011-000				
PURGEABLE HALOCARBONS		•							
Chloromethans	NA	NA	NA	NA	NA	A14	NA	NA	NA NA
Bramamothpao	NA	NA	NA.	NA	NA.	NA	NA NA	NA NA	NA.
Vinyi chlorida	НA	NA	NΑ	NA	NA	NA NA	NA NA	NA.	NA.
Chlomethane	NA	NA	NA	NA	NA NA	NA	NA.	NA	NA
Mathylane Chlorida	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA.	ΝA	NA
Trichlerofluoremethane	NA NA	NA NA	NA.	NA	AVA	NA	NA	NA	NA
1,1-Dichloroelhene 1,1-Dichloroelhene	NA.	NA.	IG	NA	MA	N4	NA	NA	NA
cis-1,2-Dichiorpolitano	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroothana	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloreform	NA	NA	NA	NA	NA	NA	NA	NA	NA
Freen 113	NA	NA	NΑ	NA	NA	NA	HA	NA NA	NA NA
1,2-Dichtoroothane	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
1,1,1-Trichimosthana	NA	NA	NA	NA	NA	NA NA	NA.	NA.	NA.
Carbon Tetrachlorida	NA	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA	NA
Bromodichloremolhane	NA NA	NA NA	NA.	ΝA	NA.	NA.	NA	NA	NA
1,2-Dichloropropana	NA NA	NA NA	NA NA	NA.	NA	NA.	NA.	NA	₽A
cts-1,3-Dichleropropena	NA NA	NA	NA	NA.	HA	NA	NA	NA	NA
Trichlorosthene 1.1.2-Trichlorosthene	NA.	NA	NA	NA	NA	NA	NA	NA	NΑ
trans-1,3-Dichioropropana	NA	NA	NA	NA	NA	NA	NA	NA	N/A
Dicremochloremethana	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloroethylvinyl Ether	NA	NA	NA	11A	NA	NA	NA.	NA	AM
Bromoform	NA	NA	NA	NA	NA	NA	NA	NA	NA
Teirachlorpothone	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
1,1,2,2-Teirnchlorsethone	NA	NA	NA	NA	NA	NA	NA	NA NA	NA.
Chlorobonzona	AM	NA	NA	NA	NA	NA	NA NA	NA NA	NA.
1,3-Dichlorobenzena	NA	NA	NA	HA	NA	NA NA	NA.	NA.	NA.
1,2-Dichlorobanzene	NA	NA.	ŅΑ	NA NA	NA NA	NA	NA.	NA	NA.
1,4-Dichteropenzane	ŧΙΑ	NA	NA	NA	NA	110	,,,,		
PURGEABLE AROMATICS									
Benzena	ND	ND	NO	ND	NO	ИD	NĐ	ND	ND
Toluene	ND	ND	ND	ND	MD	ND	MD	ND	ND
Ethylbenzeng	ND	ND	ИD	ND	ND	ND	OM	ND	ND ON
Total Xylenes	ND	ИD	3,4	ND	ND	ND	GM AN	NA	NA
TOTAL VOCE	NA	ΠĀ	3,4	NA	NA	NA.	INA	ING	HU
HYDROCAREONS									
	080	020	480	630	540	770	380	310	290
TVH-g	350	250	740	270	870	500	460	470	420
TEPH-d OAG	NA.	NA.	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)	NA	NA	NΑ	NA	NA	NA	NA	t1A	NA
METALS									
	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lood	MA	190	IVA	11/4	1,111				
Notes: 1) MCL = Masimum Contombas	nt Level in	drinking w	aler (Sini	a MCL if n	ot noted s	therwise)			
2) # = EPA MCL 3) * = MCL for sum of four comp									
4) == MCL for sum of all xylone	lianners	District							
5) *** = MCL for sum of trains- a	n¤ (ds+1,3+	Oteniarobi	npens						
6) ND = Not Detected at or above	ra MUL	0401							
7) Purgeable Helocarbons (EP/	nipyica i nathari soci	ונו לחומי							
 a) Purgeable Aromatics (EPA e b) NA = Not Analyzed or analys 	is nai rea:	end							
10) 6/17/02 Samples analyzed	or VOCs	ut of hold	ing time d	ue to labo	ratory orr	or o			
(et milles and from application)									

Clif ullerab

Wall ID Date	MCL vg/L	OW-2 Apr-88		0W-2 0W-2	OW-2 Apr-90	7-WO 08-lut	OW-2 ೧ದ-90		OW-2 Apr-81	OW-2	0W-2 Dec-91	OW-2 Mar-92	OW-2 Jul-82	DCI-92	OW-2 Jan-93	OW-2 Apt-63	ንካት 33 OM-S	OW-2 Oct-93	OW-2- Jan-94	OW-2 Apr-94	OW-2 Jul-84	OW-2 Jun-95	OW-2 Nov-95		Oct-98	OVV-2 Apr _r Jun-87	OW-2 Dec-97	OW-2 Jun-98	OW-2 Dec-98	59-nut	
PURGEABLE HALOCARBONS																					•		414	A10 :	NA	NA.	NΑ	NA	NA	NA.	NA
Chioromethane		ИD	ND	ND	ND	ND	NO	ND	ND	ND ND	סא מא	ND ND	ND ND	NID CIM	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	AN AN	na Na	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA
Bramamathena		ND	ИD	SID	ND	ND	ND	ND	NO	ND	ИD	ND	ND	ИD	ND	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl chiaddo	0.5	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	150	NA	NA	NA	NA	NA
Chlorosthane		ND	ND	ND	ИО	ND	ND	ND	ND QN	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Mathylena Chloride	5#	ND	ND	ND	ND	ND	NO	ND	110	ND	NB	ND	ND	ND	ND	NA	NA	HA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.
Trichierollucromethano	150	ND	ND	ΝD	ND	ND	ND	ND	MD	ND	ND	ND	ND ·	ND	NP	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	AH	A34	NA	NA	NA	NA
1.1-Dichleroethene	6	ŊD	ИD	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	НA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
1,1-Dichloroothans	5	ND	ND	ND	140	ND	ND	ND (ND	ND	NO	ND	ND	ND	ND	ND	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
cis-1,2-Dichloreathana	6	NA	ND	ND	ND	ND	ND UN	KD	ND	ND	NO	NO	ND	ND	ND	NA	NA	NA	NA	A/A	NA	NA	NΑ	NΑ	Alt	NA	AM	NA	NA	NA	NA.
trans-1,2-Dichloroethene	10	ND	ND,	ND	ND	ND ND	ND	ND	NO	ND	ND	ND	NP	ND	ND	NA	NA	NA	NA	NA	NA	NA.	MA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	100#	ND	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA,	NA	NA	NA	NA.	NA	NA	NA NA
Freen 113	1200	NA	ND	HD	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	MA	NA	NA	NA	NA	- NA	NΑ	NA	NA	NA	NA.	NA	NA	NA	NA NA	NA NA
1,2-Dichlorpolhune	0,5	ND	ND	ND	ND ND	110	ND	ND	ND	ND	ND	CM	ND	ND	ND	NA	NA	NA	NA	AM	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,1,1-Trizhlurosthane	200	ΝĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	CM	ND	ND	ND	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA NA	AM	NA NA
Carban Tetrachleride	0.5	NO	ND ON	ND	ND	ND	םא	ND	ND	N20	ND	NO	ND	ND	NO	NA	NA	NΑ	MA	NA	NA	NA	NA	NA	NA	N/A	NA	NA NA	NA.	HA	NA NA
Bromodichloromethens	100#1	OM OM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	NA	AM.	NA	NA	NA	NA	NA	NA	HA	NA	NA.	NA	NA NA	NA NA	NA.	NA NA
1,2-DisMorepropens	5 5***	ND	NO	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA.
els-1,3-Dichloropropene	5	иD	ND	ND	ND	ND.	ND	NO	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA NA	NA AN	NA.	NA	AM	NA
Trichloroethene	32	ND	ND	ND	ND	HD	ND	ND	ND	NO	ND	ND	ND	ND	ND	NA	NΑ	MA	NA	NA	NA	NA	NA	NA	NA	AM AM	NA NA	NA.	NA	NA	NA
1.1.2-Trichleroethans	5***	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NΑ	NA	MA	NA	NA	NA	NA	NA	NA.	NA	NA NA	NA.	NΑ	NA	NA	NA
trans-1,3-Dichleropropeno	100#*	ND	ND	ND	ΝĎ	ND	ND	ND	ND	ND	OM	ND	ND	NO	ND -	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA.	NA.	NA	NA	NA	NA
Dibromochloromethane	100#	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ΝĎ	ND	NA	NA	NA	NA	NA	ΝA	NA :	NA	NA	NA.	NA.	NA	NA	NA	NA	NA
2-Chteroethytvinyl Ether Bromeform	100#*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA.	NA	NA.	NA.	NA
Tel:pchiprosthene	5	ND	ND	ИD	ND	ND	ND	ND	0.53	ND	ND	MD	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	na Na	NA.	NA.	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachieroethone	1	ND	ND	ND	ND	NÞ	ND	ND	ND	ND	ND	ND	NΩ	ND	NO	NA	NA.	NA	NA	NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NA
Chlorobenzane	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ΝD	ИD	NA	NA	NA	NA	NA	NA.	NA Alr	NA.	NA.	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlerabenzene		NA	NA.	ND	NO	ND	ND	KΒ	ND	ИΦ	ND	מא	NO	ND	ND	NA	NA	PIA,	NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA.	NA	NA
1.2-Dichiprobenzana	600#	NA	NA	ND	ИÐ	ИD	NO	ND	ND	ND	ΝD	ND	NO	ND	ND	NA	NA.	NA NA	NΑ	NA.	NA	NA.	AN	NA	NA	NA.	NA	NA	NA	MA	NA
1,4-Dichlorebenzena	5	NA	AM	ND	ND	NO	ND	ИФ	ND	ND	ND	ND	MD	ND	ИĐ	NA	NA.	104	~~	101	,,	,,,	••••			•					
PURGEABLE AROMATICS																															
					ND	ND	ИÐ	ND	ND	ND	ND	1.4	ND	ND	NĐ	NA	NA	NA	NA	NA.	ŅA	NA	NA	NA	NA	NA	NA	NA	AL9	NA.	NA NA
Benzona	1	ND	.ND	0.4	0.6	ND GN	ND	ND	ND	ND	. ND	NP	ND	NO	ND	NA	NA	NA	NA	NA	ŅΑ	HA	NA	NA	NA	HA	NA	NA	NA	NA	NA
Taluuns	1000#	ND	ΑĐ QV	ND	O,U CIA	ND	ND	ND	ND	ND	ND	ND	ND	NΩ	ND	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Elbyibenzona	620	ND	ND	Q.4	0.6	ND	ND	ND	HD	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA.	NA.	NA.	NA.	NA.
Total Xylones	1750**	· NA		1.2	1,4	- NA	NA	NA.	0.53	NA.	NA.	1.4	NA	AJY.	NA	" NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA -	NA	NA.	·· NA	IVA
TOTAL VOC		· NA	NA	1.2	*,7		,		_,																					•	
HYDROCARBONS																					410		NA	NA	NA	NA	NA	NA	NA	NΑ	NA
TVH-α		NA	NA	< 50	< 50	< 50	< 50	< 50	NA	NA	NA	< 50	< 50	< 50	< 50	NA	NA.	NA	NA	NA	NA Na	NA NA	NA NA	NA.	NA.	NA.	NA	NA	NA	NA	NA
TEPH-d		< 1000			140	68	90	< 50	< 200	< 50	650	870	410	410	020	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	ΝA	NA	NA.	NA	NA	NA.
CAG		18000		NA	NA	NA	HA	NA	HA	< 5000			NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.	MA	NA.	NA.	NA	NA	NA.	NA	NA
TPH (415,1)		NA	NA	< 5000	< 5000	< 5000	< 5000	< 5000	< 500	NA	NA	HA	NA	NA	NA	NA	ΝA	NА	NA	(VA	less?	not.	1476	44.5	17/4						
• " •																															
METALS																				NC		ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
Lead	ū	NA	NA	NA	NA	NA	NA	NA	ИD	NA	NA	ND	ND	ND	ND	ND	ИП	ИД	۵	ND	4.1	ND	NU	KD	1412	,,,,,					•

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted observése.)

2) #= EPA MCL

3) *= MCL for sum of all sylene isomers.

5) *** = MCL for sum of all sylene isomers.

5) *** = MCL for sum of all sylene isomers.

6) MD = Not Detacted at or above MOL.

7) Purgeable Matocarbors (EPA method 8020).

9) Purgeable Acomatics (EPA method 8020).

9) NA = Not Analyzed or analysis not required.

10) 6/17/02 Samples analyzed for VOCs out of holding time due to Isboratory error.

nte URGEABLE HALOCARBONS Nioramethana Ternemathana		OW-Z Nov-00	Ç₩-2 Jun-01	OW-2 Nov-01	OVV-2 Jun-02	OW-2 Oct-02	GW-2 Apr-03	CW-2 Nov-03	OVV 2 Jun-04
hioromethene									
totoprofitana	NA	NA	NA	NA	NA	NA	NA	М	NA
	NA,	NA	NA	NA	NA	NA	NA	NA NA	NA NA
inyl chloride	NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
hioroethana	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA
lethylane Chionde	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA.	NA
anequaniminal properties	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	NA
1-Dichloraethene	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	HA	NA
,1-Dichleroethane	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA
s-1,2-Dichlorosihene ans-1,2-Dichloroelhone	NA.	NA	NA.	NA.	NA	- NA	NA	NA	AM
hioroform	NA	NA	NA	NA	NA	NA	NA	NA.	NA.
roon 113	NA	NA	NA	NA	NA	NA	NA	NA	NΑ
.2-Dichleroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Trichtoraethane	NA	NA	NA	N/A	NA	NA	NA	NA.	NA
arbon Tetrachloride	NA	NД	NΑ	NA	NA	NA.	NA	ИA	NA
romodichloromethane	NA	NA	ΝA	NA	NA	NA	NA	NA	.NA
2-Dichloropropens	NA	NA	NΑ	NA	NA	NA	NA	NA NA	NA NA
5-1,3-Dichioropropona	MA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
Hohlarcethene	NA	NA	NA	NA NA	AN AN	NA NA	NA.	NA.	NA
,1,2-Trichlercathana	AM AM	NA NA	NA NA	NA	NA	NA.	NA.	NA.	ΝA
ans-1,3-Dichloropropens	NA AM	NA NA	NA	NA	NA.	NA	NA	NA	NA
iltramechleromethane -Chiomathylvinyl Ether	NA.	NA	NA.	NA	AN	NA	NA	NA	HA
romatam Iromatam	NA	NA	NA	NA	NA	NA	NA	NA	NA
'atrachicroethana	NA	NA.	NA	NA	NA	NA	NA	NA	NA
1,2,2-Tetrochicronihana	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Membenzene	NA	NA	NA	NA.	NA	NA	NA	NA	NA
,3-Dichlorebanzone	NA	NA	NA	NΑ	NA	NA	NA	₽₽	NA
2-Dichlorobenzene	NA	NA	NA	NA.	NA	NA	NA	NA	NA
.4-Dichlorobenzeno	NA	NA	NA	NA	AM	NA	AK	AM	NA
PURGEABLE AROMATICS									
ienzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ไดโนซทล	NA	NA	NA	M	NA	HA	NA	NA	NA
Shylbenzena	NA	NA	1174	NA	NA	NA	NA	NA	NA
fotal Xylenes	NA.	NA	NA	NA	NA_	NA.	NA	NA	NA NA
OTAL VOCs	NA	·····NA	NA	NA	NA	ΝA	NA	NA	NA
MOROCARBONS									
VH-α	NA	NA	NA	NA	NA	NA	NA	NA	NA.
EPH-d	NA	NA	NA	NA	NA	NA.	NΑ	ИA	N.A.
DAG	NA	NA	NA	NA	NA	NA	NA	НA	NA
PH (415.1)	NA	NA	NA	NA	NA	ŀΙΔ	NA	NA	NA
METALS		ND	ND	ND	ИD	ND	NO	ND	ND

Well ID Date	MCL ug/L		DW-4 0대-89	0W-4 Jan-90	©W-4 Apr-90	OW-4	DW-4 Oct-90	16-naL	OW-4 Apr-91	OW-4 Jul-91	OW-4 Dac-91	OW-4 Mar-92	OW-4 1배-52	OW-4 Oct-92	OW-∔	OW-4 Apr-93	OW-4 Jul-93	DW-4 O¢(-93	OW-4 Jan-94	DVV-4 Jul-94	OW-4 Jun-95	OW-4 Nov-95	OW-4 Jun-98	0W-4 0d-95	OW-4 Apr.Jun-97	OW-4 Dec-97	OW-4 Jul-98	OW-4 Dec-88	DW-4 Jun-99	CW-4 Nov-99	OVY-4 Jun-00	0W-4 Nov-00	DW-4 Jng-01	DW-4 Nov-01
PURGEABLE HALOGARBONS																				414	*14	315	R) Ø	NΔ	Nά	AN	ALA	NA	NA	ΝΆ	₽A	NA	NA	NA
Chloromethano Bromomethano Viryl chloride Chloros Bhane Methyleno Chloride Trichlorolluoromethano 1,1-Dichlorosthano 1,1-Dichlorosthano than-1,2-Dichlorosthano than-1,2-Dichlorosthano Chlorofom From 113 1,2-Dichlorosthano 1,1,1-Trichlorosthano 1,1,1-Trichlorosthano 1,2-Dichlorosthano 1,2-Dichloropropano ch-1,3-Dichloropropano ch-1,3-Dichloropropano Trichlorosthano 1,1,2-Trichlorosthano 1,1,2-Trichlorosthano 1,1,2-Trichlorosthano 1,1,2-Trichlorosthano 1,1,2-Trichlorosthano 1,1,2-Trichlorosthano	0.5 5# 150 6 5 10 100# 1200 0.5 200 0.5 5 5	2222222222222222222 222222222222222222	99999995555555555555555555	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	555555555555555555555555555555555555555	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	555555555555555555555555555	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2222222222222222222222222 222222222222	55255555555555555555555555555555555555	5555555555555555555555555555	55555555555555555555555555555555555555	55555545555555555555555555555555555555	55555554555555555555555555555555555555	22222227722222222222222222222222222222	NA AA A	NA	NA	NA	N	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	NA	NA	NA	NA	NA NA A A A A A A A A A A A A A A A A A	HA NA A N	NA NA A NA	NA	NA AA A	NA A A A A A A A A A A A A A A A A A A	NA AA A	NA N
trans-1,3-Dichloropropana Dittornochleromethane 2-Chloroutryk-1yl Ether Brometerm Teleachleromethane 1,1,2,2-Tetrachlerosthane Chlorobenzone 1,3-Dichlorobenzone 1,4-Dichlorobenzone 1,4-Dichlorobenzone PURGEABLE AROMATICS	100#* 100#* 5 1 30 800# 5	2555555555	552555555	88888888888888		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		29999999999	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	555555555	99999999999	20 20 20 20 20 20 20 20 20 20 20 20 20 2	668888888	NA NA NA NA NA NA NA NA	HA H	NA NA NA NA NA NA NA	MA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	HA NA NA NA NA NA NA NA	HA NA A NA NA NA NA NA	NA NA NA NA NA NA NA	NA	AM AM AM AM AM AM AM	AM AM AM AM AM AM AM	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA
Bonzano Tolueno Ethylbenzene	1 1000# 686 1750**	ПИ ПИ ПИ ПИ АД	75 50 50 50 50 50 50 50 50 50 50 50 50 50	100 ND ND 0.6	0.5 0.5 0.3 2	OIN OIN OIN OIN AIN	010 010 010 010 AM	00 00 00 00 00	67.0 60.7 60.7 60.7 60.7	ND ND ND ND	00 00 00 00 00 40	ND ND ND 0.7	ND ND ND ND	ND ND ND ND	00 00 00 00 00	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA · NA · NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	75 03 03 25 26 26 26 26 26 26 26 26 26 26 26 26 26	ND ND ND ND	M2 CM CM CM	014 014 014 014	NA NA NA NA	AM AM AM AM	NA NA NA NA	AM AM AM AM	NA NA NA NA	NA NA NA NA	АИ АИ АИ АИ АИ
HYDROCARBONS TVH-9 TEPH-4 OAG TPH (416.1)		NA < 1000 < 5000 NA		<50 150 NA < 5000	<50 210 NA < 5009	<50 150 NA < 5000	<50 150 NA < 5000	<50 <50 NA < 5000	NA 540 NA < 500	NA < 50 < 5000 NA	NA 2000 < 5000 NA	<50 2100 <5000 NA	< 50 620 NA NA	4 50 1300 NA AN	< 50 2100 NA NA	ah Na Na Na	NA 1500 NA NA	NA NA HA NA	ra Na Na Na	AM AM AM AM	NA 1600 NA NA	AM 000 AM AM	ILA 1100 NA NA	ND 840 HA NA	ND 950 NA NA	ДИ АИ АИ АИ	1000 1000 NA NA	NA NA NA NA	AN AN AN	NA NA NA	NA NA NA	NA NA NA NA	NA HA NA	NA NA NA
METALS Lund	0	NA	ΝA	NA	NA	NA	NA	NA	ND	NA	NA	ND	5	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	Na	NА	NA	NA	NA	NA	ΝA	NA	МĀ	NA

Notes:

¹⁾ MCL = Mazimum Contaminant Level in drinking water (State MCL if not noted otherwise)

^{2) # =} EPA MCL

^{2) \$ =} EPA MCL
3) *- MCL for sum of four campounds
4) *-- MCL for sum of all xylene isomers
5) **-- MCL for sum of trans- and dis-1,3-Dichloropropens
6) ND = Not Detected at or above MDL
7) Purgoable Halocarbons (EPA method 5010)
8) Purgoable Aromatics (EPA method 5020)
9) NA = Not Analyzed or analysis not required
10) 6/17/02 Samples analysed for VCCs out of holding time due to laboratory smar

Wall ID	MCL	OW-5 Apr-91			OW-5 Mar-92	OW-5 Jul-92		OW-5 Jen-93		0VV-5	OVV-5	OW-5 Apr-94			CW-5 Nov95	0W-\$ Jun-95	OW-5 Dct-96	OW-5 Apr.Jun-97	OW-5	OW-5 Jun-98	OW-5 Dec-95	OW-5	OV-5 Nov-98	OW-5 Jun-00	OW-5 Nov-00	OW-5 Jun-01	OW-5 Nav-01	OW-5 Jun-02	OW-5 Oct-02	DW-5 Apr-03	OW-5 Apr-03	CW-S Jun-04
Duto	ug/L	Apr+#1	JUPEI	Cocrat	1941-92	SUMBE	Suraz	2M1-0-3	JUI-33	20,123	enil est	Library		024.02	(45752																	
PURGEABLE HALOCARBONS	ı																							LIP.	416	AID.	ND	ND	ND	ND	ND	ND
Chloromothena		ND ND	ND ND	ND	ND	ᄱ	ND CN	ND DN	MD MD	AN AN	ND	NA NA	ND	ND ND	ND ND	ND DN	ND CN	ND ND	ND ND	MD MD	ND	ND ND	Q14 Q14	ND	NO NO	ND ND	ND	ND	NO	ND	ND	ND
Bromomethans	N.E.	ND	ND	ND	ND	NO.	ND	ND	ND	NA.	סא	NA	ИD	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	NO	ND	NĐ	ND	ND	ND	0.55	ND
Vlnyi shloride	0,5	ND	ND	ND	ND	NO	ND.	ND	ND	NA.	ND	NA	ND	ND	ND	ЦN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИĎ	ND	ND	ND	ND	ND
Chlaroutiuna	58	ND	ND	סא	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	67	NB	ďИ	ND	ND	NO	ND	NB	ND	ND	ND	ND	NO	ΝĐ	NO	ND	ND	ND
Methylene Chlorida	150	HD	ND	ND	ND	ND	NO	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NĐ	ND	ND	ND	ND	ND
Trichlorefluoremethane	6	ND	ND	ND	ND	NO	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NĐ	ND	ND	ND	ΝD	КD
1.1-Dichloroothane	5	1.8	7.2	ND	4	п	13	5	15	AM	2	NA	4	3.2	7.9	2.5	0.9	5.3	2.9	1	2.5	3	2.5	2.2	2.6	1.4	2.7	1.1	2.4	2.4	2,4	2.8
cls-1,2-Dichleroethang	8	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	NO	ND	NO	ND	ND	ND	ND	ND
trans-1,2-Dichiprootheng	10	ND	ND	ND	ND	ND	ND	ND	NΩ	NA	ND	NA	ND	NP	ND	ND	ND	ND	ND	NO	NΦ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	210
Chloroform	100#	ND	ND	מא	ND	ND	ND	ND	GN	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ĦР
Freen 113	1200	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	HD	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND
1.2-Dichloroothene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	NO	NEO	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ИD
1.1.1-Trichtorpethene	200	6	20	15	12	25	28	7	7	NA	2	NA	3	1.3	2,1	ND	1.3	ND	ND	ND	ND	NO	ND	ИD	NΩ	ND	ND	NΩ	ΝD	ND	ND	ND
Carbon Tetrachicride	0.5	ND	ND	ND	ΝĐ	ND	ND	ND	ND	NA	ND	NA	NO	ND	ND	ND	ND	CM	ND	ND	ND	NO	ND	NO	ИĎ	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethene	100#*	ND	ND	ND	NĐ	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	NĐ	ИD	NĐ	ND	ND	ND	ND	ИD	ND	NO	NO	NO	ND	ИD	NO	ИD	110
1,2-Dichloropropanu	5	ND	ND	ND	ND	ND	ND	ND	ИÐ	NA	ND	NA	ИD	ND	ND	ND	ΝÞ	NO	ND	ND	ND	ND	ИD	ND	ND	ИD	ND	ND	ND	ND	ND	ND
cis-1,3-Dichleropropuna	5***	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	1/40	ND	ΝĐ	ND	ND	NB	ND	ND	NO	ND	ND	ND	ND	ND	ND	NO	ND
Trichloroelhene	5	0,75	ND	ND	ND	ND	ИD	ND	ND	NA	ND	NA	ИΩ	ND	NO	MD	ΝĎ	ND	ND	ND	0.7	0.8	9,0	ND	0.55	0,7	ND	ND	ND	NO	ND	ND
1.1.2-Trichlorpathenu	32	ND	ND	ND	ND	ND	ИD	ИD	ND	NA	ND	NA	ИВ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ΝD	ND	ND	NΩ	ND	ND	HD
trans-1,3-Dichloropropane	5***	ND	NO	ND	ND	NO	ИĎ	ND	ND	NA	ND	NA	ИВ	ND	ΝD	ND	ND	NO	ND	ИD	ND	ND	ND	ИD	ND	ND	ND	ND	ND	МП	ИÐ	ND
Dibromochloromethena	100#*	ND	ND	ΝD	ND	ND	, ND	ND	NĐ	NA	ND	NA	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	NO	ND	ND	ND
2-Chloroethytvinyl Ether		ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	КO	NA	NA	NA	NA	NA	ND	ND	ND	ИD	ND	NO	ND	ИD	ND
Bramolom	100#*	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NĐ	ND	ND	ИD	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	СN	ND	ИΩ	ND
Tetrachiorophiano	5	0.7	ND	ND	ND	ND	ИD	ND	NO	NA	ND	AN	ND	ND	ΝD	PID:	ND	ND:	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND QK	ND ND	ND DN
1,1,2,2-Tetrachlemethane	1	ИÐ	ND	ΝD	ND	ND	ИD	ND	ND	NA	ND	NA	ИÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	.ND DN	MD CM	NO	ND	NO
Chlorobeczena	30	ND	םא	ND	ND	ND	ND	ND.	ND	NA	ND	NA	ND	ND	140	ND	ND	ND	ND	ND ND	מא מא	DN GN	VID VID	VD VD	ND ND	ND	ND	ND	ND	NO	ND	0.55
1,3-Dichlorobenzena		ΝĐ	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	NO	NO	ND	ND	ИD	ΝĐ				NO.	ΝD	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorabenzena	600#	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NO	ND	ND	ND	ND	. ND	ND CM	ND	ND ON	ND	NO	ND	1,0	ND	ND	ND DM	ND	ND	מא	1.4
1,4-Dichlorobenzona	s	ИО	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NO	ND	ND	ND	ND	MD	M	ND	MU	NU	NO	140	1,0	(45	140	1-6-	,		1.0	
PURGEABLE AROMATICS																																
Benzena	1	14	20	11	15	11	13	26	14	NA	21	NA	11		11	15	18	3,8	15	NG	7.3	8.2	13	6,3	10	7.7	13	6.3	5,0	8.0	7,0	5.0
Totuene	1000#	0.54	ND	ND	1.1	ND	ND	ND	ND	NA.	ND	NA	ND		ND	ND	ND	ИÜ	ND	NΩ	ND	NΩ	ND	NO	ND	ND	ND	NĐ	ND	ND	ND	ND
Elhylbanzana	450	0.58	ND	ND	0.6	ND	ND	0,7	ND	NA	0.7	NA.	9,0		NO	ND	ND	ND	ND	ИÐ	ИD	ИО	ND	ΝD	ΝD	ΝĐ	0, 56	ND	ND	ND	ND	ND
Total Xylanes	1750**	5,6	4	6,0	5,1	8	3.6	13	2.4	NA	9.2	NA	1.3		ND	ND	ND	NO	2.74	NÞ	ND	ND	ND	ND	ND.	NĐ	ND	ND	ND	NO	ND	KO
TOTAL VOCs		29.97	57.2	35,0	37,5	50	57,6	51,7	29,4	NA	34.9	NA	19,9	4,5	88	17.5	20.2	9,1	20.54		11.6	12	14.4	8,5	14,35	9.6	18,26	7,4	8.4	9.3	9.65	9.75
HYDROCARBONS																																
1VH-g		NA	NA	NA	120	270	160	350	140	NA	370	NA.	110	ND	ND	ND	ND	ND	83	ND	ИΩ	ИĎ	59	ND	ND	79	100	ND	57	58	60	60
TEPH-d		600	1500	1200	840	850	1000	1000	1800	NA	510	NA	1300	510	1600	630	67G	740	830	610	780	930	B00	ND	ND	540	130	250	470	410	250	550
OLG		NA	< 5000	< 5000	< 5000	NA	NA	NA	NA	NA	KD	NA	ND	NA	NA.	NA	NA	NA	NA	NA.	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
TPH (418.1)		< 500	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA .	NA.	MA	NA	NA	NA	NA	ΝA	NA .
WETALS																																
Laud	٥	ND	NA	NA	ND	ИD	ND	ND	ND	ИD	7.3	7.4	5	ND	ND	M	ИD	5	ND	מא	ND	ND	ND	ИD	ND	ND	ND	NO	ND	NO	ND	ND

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted otherwise)

2) *= EPA MCL

3) *= IACL for sum of jour compounds

4) **= MCL for sum of all xylens isomers

5) *** a MCL for sum of all xylens isomers

6) *** in MCL for sum of sinax- and cisx1,3-Dishipropropeno

6) RIO = Not Detected at or palwork MCL

7) Purgoable Halocarbons (EPA method 8020)

8) Rough Acomatics (EPA method 8020)

9) RA = Not Analyzed or sinalysis not required

10) 6/17/02 Semples enalyzed for VOCs out of holding time due to laboratory error

Wali ID Date	MCL ug/L	OW-3	OW-3 Jun-88	Ot-89	CW-3 OB-net		6-WO 08-ML	Oct-90	GW-3 Jan-91	OW-3 Apr-B1	OW-3 Jul-91	OW-8 Dec-81	OV-8 Mar-92	OW-6 Jul-92		OW-5 Jan-93	0W-6	Dcl-83	OW-6 Jan-94	CVV-6 Jul-94	0W-8 Jun-95	OW-6 Ne⊁95	OW-5 Jun-98	Od-98	6-WO T≣-nuL,rqA	OW-6 D#≎-97	DW-6	OW-6 Dec-08	OW-5	OW-6 Ney-99
PURGEABLE HALOCARBONS																									ND	ND	ND	ND	מא	CIN
Ctiloromethene Bromamethese Vinyl chloride Chloroutano Mathylana Chloride	0.5 5#	20 20 20 20 20 20 20 20 20 20 20 20 20 2	55555	35555 56555	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	OM OM OM OM P	62 66 66 66 70 70 70 70	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	24 24 35 35 35 35 35 35 35 35 35 35 35 35 35	ND 01 01 01 01 01 01	70 70 70 70 70	ND ND ND ND	55555	22 22 22 22 22 22 22 23 23 23 23 23 23 2	5 5 5 5 5 5	555555	22 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	NA NA NA NA NA	00 00 00 00 00	20 20 20 20 20 20 20 20 20 20 20 20 20 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	100 100 100 100 100 100 100	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20	ND ND ND ND	63 63 63 63 63	5 5 5 5 5 5 5 5	40 40 40 40 40	00 00 00 00 00	ND ND ND ND
Trichlorofivorsmothene 1,1-Dichlorodhene 1,1-Dichlorodhene cis-1,2-Dichlorodhene trans-1,2-Dichlorodhene	150 6 5 6 10	ND ND 4 NA ND	ND ND 5 NA 2	ND 24 ND ND	ND 20 ND ND	ND ND 14 35 ND	NO 17 NO 180	ND ND 17 1 ND	ND ND 15 1 ND	6,82 ND 15 ND NO	ND ND 41 ND 41 ND	40 40 40 40 40	1 1 1 1 1 1 1 1 1 1	ND 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	ND 2 ND	ND 10 ND ND	100 22 014 014	NA NA NA NA	7 7 ND ND	ND 17 ND ND	ND 31 ND ND	0.0 11.6 11.6 11.6 11.6	ND 10 10 ND ND	ND S.4 ND ND NO	ND 7 ND ND ND	ND 7.7 ND ND ND	00 00 00 00 00	4.5 ND ND ND	2.1 NO NO NO	3.1 ND ND ND
Chlereform Freen 113 1,2-Dichlomethane 1,1,1-Tilchlerselhane	100# 1200 0.5 200	2 NA ND ND	NA NA ND ND	ND ND NO NO	ND ND ND ND	25 25 25 25 25 25 25 25 25 25 25 25 25 2	00 00 00 00 00 00	00 00 00 00 00	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ND ND 0,55 2.5 18D	011 011 011 011	00 00 00 00 00	00 00 00 00	ND ND ND	25 25 25 25 20 20	10 10 10 10 11	ND ND 15 ND	AN AN AN AN	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 10 10 10 10	62 62 63 64 64 64	24 24 24 25 25 26 26 27 28	ND ND ND	00 00 00 00	NO NO NO NO	70 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	5 5 5 5 5 5 5 5 5 5 5 5 5	55 55 56 56 56 56 56 56 56 56 56 56 56 5	110 110 110	00 10 10 10 10
Carbon Tatrachtorkie Bromodichioromethane 1,2-Dichleropropene cb-1,3-Dichleropropene Trichleroethane	0.5 100# 5 5	00 03 03 03 03 03 03	ND ND ND ND	40 40 40	09 09 09 09	00 01 01 01 01 01	4D 4D 4D	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00 04 04 04	70 07 07 07 07	ND ND ND ND	014 014 024 034	00 00 00 00 00 00	5 5 5 5 5 6 5 5 5 6 5 5	25 25 25 25 25 25 25 25 25 25 25 25 25 2	22 62 63 63 63	25 0 0 0 0 0 0 0	AN AN AN AN	22 23 24 24 25	55555	20 20 20 20 20 20 20	40 40 40 40	22 23 24 25 27 27 27	20 20 20 20 20 20 20 20 20 20 20 20 20 2	00 00 00 00 00	20 20 20 20 20 20 20	55555	63 63 63 63	ND ND ND ND	ND ND ND ND ND
1,1,2-Trichleroethane trans-1,3-Dichloropropane Dibromochleromethane Dibromochlykinyl Ether Bramoform	32 5*** 100#*	110 110 110 110	02 02 03 04 04	70 07 07 07	40 40 40 40 40	70 70 70 70	22 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	22225	22 22 20 20 20 20	ND ND ND ND ND	02 02 03 03	14D 14D 14D 14D	ND ND ND	ND ND ND ND	01 01 01 01 01	00 03 03 03	20 20 20 20 20	NA NA NA NA	6 6 6 6 6 7	ND ND ND	00 00 00 00	63 63 63 64	22 25 25 25 25 25 25 25 25 25 25 25 25 2	034 034 034 034 034	20 20 20 20 20	014 014 014 014	ND NO NA NO ND	ND NA ND ON	ND ND 1.1 ND	25 55 56 56 56 56
Teirschiorpathens 1,1,2,2-Teirschiorpathens Chioropanzens 1,3-Dishleropenzens	5 1 30	014 414 414 414 414	ND ND NA	ND ND NA	100 100 100	55 56 56 56 56 56 56 56 56 56 56 56 56 5	ND ND ND	ND ND ND 2	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	1.4 ND 2.3 3.3 2.3	ND ND ND ND	ND ND 5.7 15	64 64 64 64 64	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 23 24 25 25 26	NA NA NA NA	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND ND 2 ND ND	ND 4,5 11 23	ND ND ND 7.4 ND	ND 5,2 20 2,4	ND 1 10 ND	HD 4.5 25 2.1	ND 28 45 6,3	ND 9.1 30 3	ND 8.3 27 2.6	ND S.4 ND	ND 1.9 9,2 0,7
1,2-Dichlerabenzane 1,4-Dichlerabenzane	500# 5	NA Ast	.NA NA	NA NA	2	ND ND	ND	2	ì	3.1	ND	23	ND	ΝĐ	ND	ND	ND	NA	NB	ND	2.9	15	48	25	65	140	84	6ģ	19	32
PURGEABLE AROMATICS Benzens	1	ND	ND	ND	0,5	ND	ND	ND	ND	0,54	ND	ND	ĦĐ	ND	ND	ND	a.s	NA	ND	ND	ND	ND	ND	ΝD	מא	0,5	ND ND	ND	ND	ND
Tolusha Elhybanzene Total Xylanas TOTAL VOCs	1000# 689 1750**	ND ND	ND ND	ND ND 11D	0,4 ND 0,7	0.8 0.5 2.1 50.4	ND ND ND	ND ND	NO NO NO	00 00 00 18,55	ND ND	ND ND 2 51.5	ND ND	ND ND ND	ND ND ND	NO NO NO	ND 1.1 ND 42.7	NA NA NA	11D 11D 11D	HD HD 104	VD ND ND	ND ND ND 81.2	01/6 01/6	ND ND ND 42.4	ОИ ОИ ОИ В 601	ND 35 ND 261,5	ND ND 129,4	ND ND 130.7	ND ND	ND ND 44.9
HYDROCARBONS		-																												
TVH-g TEPH-d O&G TPH (418.1)		NA < 1000 < 5000 NA	NA < 1000 < 5000 NA	NA < 1000 5000 NA	< 50 440 NA < 5000	52 470 NA < 5000	< 50 450 NA < 5000	< 50 130 NA < 5000	< 50 1316 NA < 5000	NA 760 NA < 500	NA < 50 < 5000 NA	NA 5500 > 500 NA		4 50 3500 NA NA	< 50 3900 NA NA	< 50 5300 NA NA	< 50 3500 NA NA	NA NA NA NA	70 2200 NA NA	<50 2500 NA NA	ND 1300 NA NA	ND 2400 NA NA	NA 2000 61	ND 2400 NA NA	28 0021 AA AA	160 1200 NA NA	110 1300 NA NA	130 2000 NA NA	18 0001 AN AN	57 1000 NA NA
METALS Lead	. 0	NA	NA	AN	NA	N:A	NA	NA	NA	МО	NA	NA	НD	ND	ND	ND	NA	NA	АИ	NA	ΝA	NA	КA	NA	NA	NA	NA	NA	NA	NA

Notes:

1) MCL = Maximum Contominant Level in drinking water (State MCL if not noted eitherwise)
2) # = EPA MCL
3) * = MCL for sum of four compounds
4) ** = MCL for sum of all sylane isomers
5) *** = MCL for sum of trans- and clo-1,3-Dichloropropiane
6) ND = MCL for sum of trans- and clo-1,3-Dichloropropiane
6) ND = McD described at or above MDL
7) Purpasite Malocarbona (EPA method 0010)
8) Purpasite Malocarbona (EPA method 0020)
9) Purpasite Malocarbona (EPA method 0020)
9) NA = Mot Analyzed or unalysis not required
10) 8/17/02 Semples analyzed for VOCs out of holding time due to laboratory error

Well (D Date	OW-6	10VV-6 Nov-00	OVY-8 Jun-01	DW-6 Nov-01		OW 6	OW-5 Apr-03	DW-6 Nov-03	OW-6 Jun-04
PURGEABLE HALOCARBONS									
Chiaromethana	ND	NO	ND	ND	ΝĐ	ND	ND	ИD	NO
Bromomethane	- ND	ND	ND	ND	ND	ND	NO	ИD	ND
Vlnyl chłorkie	ND	ND	ND	ND	ND	NO	ND	ND	ND
Chloroethana	ND	ND	ND.	ND	ND	ND	ИD	ИD	ИD
Methylene Chloride	ND	ND	ND	ND	ND	NO	ND	ND	ND
Trichlorofluoromethana	ND	NO	ND	ND	ND	ΝD .	ND	HD	ND
1,1-Dishiproethens	ND	ND	ND	ND	КD	ИD	NO	ND	1,5
1,1-Dichlorosthans	1.4	23	1.4	1.8	1.3	1.5	1.2	2.8	4,9
cis-1,2-Dichlaroelhena	ND	ND	ИÐ	ND	ND	ND	ND	ND	ИĎ
trans-1,2-Dichlorosthens	NO	NO	NĐ	ND	ΝĐ	ΝĐ	ИD	ND	NO
Chlaroform	ND	ND	ND	ND	ND	ND	ND	ND	ИD
Freen 113	ND	ND	ND	ND	ND .	ND	ND	ИD	ND
1,2-Dichleroethane	ND	ND	CH1	0.76	ND	ND	ND	ND	ИП
1.1.1-Trichlemethane	ND	NO	NO	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	מא	ND	ND	ND	ND	ND	ND
Aromodich(promethere	ND	ND	ND	КD	ND	ND	ND	ND	ND ND
1,2-Dichleropropane	ND	ND	ND	ND	ND	ON CIN	ND ND	ND ND	ND ND
cis-1,3-Dichlorepropene	ND	ND ND	ND 0.7	ND OM	מא מא	ND	ИD	ND	UND UN
Trichlaraethene		ND	ND:	NO	MD	ND	ם מא	ND	ND
1,1,2-Trichlomethane	ND	ND	ND ND	MD	ND	ND	ND	ND	ND
enagorquichia, T., T-enart	ND	ND GM	ND UN	NO	ND	ND	ND	ND	NO
Dibramochlaromethene	ND	ND	NO	NO	ND	ND	מא	ND	ND
2-ChiaracthyMnyl Ether	ND	NED	ND	ND	ND	ND	ND	ND	ND
Bromeferm	ND DN	NED NED	ND	NO	ND	NO	ND	ND	ND
Tetrachiomethene	ND	140	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachioroethene Chlorobenzene	ND I+C	ND	ND I	ND	ND	NB	ND	2.5	6.5
	3	2.7	ND	ND	1.1	2.0	ND	1.9	2.5
1,3-Dichlerobenzene 1,2-Dichlerobenzene	ND	ND	ND	ND	ND	ND *	ND	ND	0.54
1.4-Dichlerobenzene	11	10	ND	ND	5,0	7.2	3.0	7.2	8.0
•	••	••							
PURGEABLE AROMATICS									
Bonzene	ND	ND	ND	ND	ND	NO	ND	ND	ND
Toluene .	ND	ND	ND	ND	ND	ИΩ	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	NO	ND	ND	ИD
Total Xylenes	ND	ND	ND	ND	NO	ND	ND	ND	NO 23.9
TOTAL VOCS	15,4	15.0	2.1	2.6	7.4	19.7	4,2	14.4	33.9
HYDROCARBONS									
TVH-α	ND	ND	ND	ND	ND	ND	ND	ND	75
TEPH-d	68	ND	320	65	220	380	290	380	440
OAG	NA	NA	NA	NA.	NA	NA	NA	NA	NA
TPH (418.1)	NA	NA	NA	NA	MA	NA	NA	NA	NA
METALG									
Lend	NA	NA	NA	NA	ΝA	NA	NA	NA	NA
Notes;									

- Notes:

 1) MCL = Maximum Contaminant Lavel in dishing water (Slate MCL If not noted otherwise)

 2) #= EPA MCL

 3) *= MCL for sum of four compounds

 4) *** = MCL for sum of all sylane is somers

 5) *** = MCL for sum of trues- and cis-1,3-Dichloropropens

 6) NO = Not Detected at or above MCL

 7) Purposhin Halocarbone (IPA melhod 8010)

 8) Purposhin Halocarbone (IPA melhod 8020)

 9) NA = Not Analyzad or analyzis not required

Well ID Date	MCL ug/L	DW-7	OW-7 Mar-92	OW-7 Jul-92	OW-7		OW-7 Apr-83	DW-7 Jul-B3	OW-7 Oct-83	OW-7 Jan-84	OW-7 Jul-94	OW-7 Jun-95	OW-7 Nav-95		OW-7	OW-7 Apr,Jun-97	OW-7 Dac-97	CW-7 Jun-98	OW-7 Doc-Pă	OW-7 Jun-99	OW-7 Nov-99	OW-7 Jun-00	0W-7 Nov-00	0W-7 Jun-01	OW-7 Nov-01	0W-7 Jun-02	OW-7 Oct-02	OW-7 Apr-03	OW-7 Nov-83	DW-7 Jยฤ-04
PURGEABLE HALOCARBON	ì																													
Chieremethane Fromomethane Veryl chioride Chieroethane Methylene Chioride Trichloroethone 1,1-Dichloroethone 1,1-Dichloroethone 1,1-Dichloroethone thars-1,2-Dichloroethone Chierothone Chierothone From 113 1,2-Dichloroeth	0.5 5# 150 6 5 8 10 100# 1200 0.5 200 0.5	222224242222222222222222222222222222222	9222222222222222222 922222222222222222	25222222222222222222222222222222222222	£5522255525999	55555555555555555555555555555555555555	NA N		NA	5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	56555555555555555555555555555555555555	NO DO NO	NO D D NO			ND N	22222222222222222	285252555555555555555555555555555555555	22 20 00 00 00 00 00 00 00 00 00 00 00 0	25555555555555555555	25555555555555555555	55555555555555555555	9 중 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5555555555555555555	555555555555555555555	555555555555555555555555555555555555555	555555555555555555555555555555555555555	255555555555555555555555555555555555555	252252525255555555555555555555555555555	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Carbon Tetrachiarida Democial-haramathane 1.2-Dizhloropropane cls-1.3-Dizhloropropane Trichterethene 1.1.2-Trichterethene 1.1.2-Trichterethene Obtomochloromethane 2-Chlorostrydnyl Elher Busmalerm Tetrachiarosthene 1.1.2-Z-Tetrachlerosthane Chlorobenzene 1.2-Dizhlorobenzene 1.2-Dizhlorobenzene 1.4-Dizhlorobenzene	100# 5 5 32 5 100# 100# 5 1 30	## ## ## ## ## ## ## ## ## ## ## ## ##	12	### ## ## ## ## ## ## ## ## ## ## ## ##	199	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HA NA A A A A A A A A A A A A A A A A A	ND N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 C C C C C C C C C C C C C C C C C C C	2222222222388 222222222223888	22222222222222 22222222222222222222222	ND N	6 6 7 7 7 7 7 7 7 8 8 5 5 5 6 5 5 7 7 7 7 8 8 5 5 5 6 5 5 5 6 6 5 5 5 6 6 6 5 5 6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND 00 ND ND NA ND ND NA ND ND NA ND ND NA ND NA ND ND NA ND	NO N	10	100 M	20 20 20 20 20 20 20 20 20 20 20 20 20 2	19 19 19 19 19 19 19 19 19 19 19 19 19 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 2 2 2 2 2 2 2 2 2 3 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22222222224 550 550 550 550 550 550 550 550 550 55	100 100 100 100 100	NO N	ND N
PURGEABLE AROMATICS Benzens Toluens Edtytheazons Total Xylones TOTAL VOCS	1 1000 880 1760	ND	0,5 0,6 ND 2,1 751.5	1 0.5 0.5 5 0.51	1.4 NO NO NO NO	074 07 07 110 120 130 130 130 130 130 130 130 130 130 13	NA NA NA NA	1.5 ND ND ND 1237.5	NA NA NA NA	1.6 ND ND 4.2 1046.0	1.2 ND ND ND 12632	<u> 661,5</u>	1,1 ND ND ND ND	ND ND ND ND	ND ND ND ND	0.56 ND ND ND ND	1.6 ND 70 1.1 1106.5	0,66 ND ND ND NO	0,65 ND ND NO NO	0.84 ON ND ND ND	0,62 ND ND ND ND	292 20 20 20 20 20 20 20 20	28.0 OM OM OM OM C8.368	909 014 014 015	00 04 04 04 04	1035	ND ND ND ND	ND ND ND ND	ND ND ND ND	NO NO NO NO 1129,7
HYDAOCARBONS TVM-I) TEPH-I DAO TPH (418.1) METALS		NA 7100 < 500 NA	@ < 500	1300 2800 NA NA	1400 0000 NA NA	720 2300 NA NA	na Na Na Na	1500 4800 NA NA	NA NA NA	1400 4500 NA NA	1800 4800 NA NA	650 1500 NA NA	980 4400 NA NA	1200 4800 NA NA	1500 4800 NA NA	1100 2800 NA NA	1100 2100 NA NA	1000 2600 NA NA	1100 2500 NA NA	1200 3500 NA NA	1100 2400 NA NA	580 430 NA NA	1100 370 NA NA	1200 1100 NA NA	530 580 NA NA	1000 1000 NA NA	1360 1700 NA NA	1200 1000 NA NA	440 760 NA NA	1100 1000 NA NA
Lead	0	NA	ΝD	NO	ND	ŅD	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	HA	НA	NA	NA	NA	ŅΑ	NA	NA .

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted otherwise)

2) s = EPA MCL

3) = MCL (or sum of four compounds

4) == MCL (or sum of all sylene komon

5) == MCL (or sum of items and cts-1,3-Dichleropropene

6) ND = Not Detacted at or above MDL

7) Purgeable Helocarbons (EPA method 8010)

8) Purgeable Arematics (EPA method 8020)

9) NA = Not Analyzed or analysis not required

10) 8/17/02 Samples ensiyzed for VOCs out of holding time due to laboratory error

141-1115	OW-8	OW-8	OW-8	OW-8	OW-8	5-WO	GW-8	OW-8	DW-8	0W-8			OW-E	E-WO	OW-6	OW-B	OW-B	OW-6 Nov-00	DW-8 Jun-01	OW-8 Jun-02	OW-8 Jun-02	Oy-8 Oct-02	DVV-8 Apr-03	0W-8 Nov-01	Jun-04
Wall ID Date	Apr-93	Jul-93	Oct-93	Jan-84	Apr-94	Jul-84	Jun-95	Nev-95	Jun-96	Oct-96	ជា។ សា	Dec-97	Jun-97	Dec-98	Jun-99	Nov-99	Jun-00	Lega-OG	**************************************	201742	JEFVE	CHILL	(im on	****	
Diffe																									
PURGEABLE HALDCARBONS																									
(0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•										416	NA	NA	NA	NA.	NA	NA	NA	AM.	NA	NA	NA	NA	NA
Chloramethane	NA	NA	HA	NA	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA.	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Brompmelhane	NA	NA.	NΑ	NΑ	NA	NA	NA	NA	NA	NA	NΑ			NA.	NA.	NA	NA	FIA	NA	NA	NA	NA	NA	NA	NA
Vinyl chicrida	NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA											
Chloresibune	NA	MA	NA.	NA	NA.	NA NA	NA.	NA.	ΝA	NA	NA	NΑ	NA	NA	NA	NA	NA								
Methylena Chlorida	NA	HA	NΑ	NA	na Na	NA NA	NA NA	NA.	AVA	NA	NA	NA	NA.	NA	NA	NA	HA	NA	NA .						
Trichlere(luciomethane	NΑ	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA NA	NA NA	NA.	NA.	NA.	ΝA	NA	NA	NA	NA	NA	NA	NA,	NA	NA
1.1-Dichiprosthene	NA	ΝA	HA	HA	NA	NA ·	NA	NA	NA	NA NA	· NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dichloroethene	NA	NA.	NA	114	NA	NA	NA	NA	NA			NA.	NA.	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA
cts-1.2-Dichlergelhone	NA	NA	NΑ	NA	NA	NA .	NA.	NA	NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	ΝA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloraethana	NA	NA	NA	NΑ	HA	NA	NA	NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	HA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	AA	NA.	NA.	NA	NA	NA	NA	NA	PZA.	NA	AM
Freen 113	NA	NA	NA	\$2A	NA NA	NA NA	NA NA	NA	ΝA	NA	NA	NA	NA	' NA	· NA	NA	NA								
1,2-Dichloroethene	NA	NA	NA	AJA	NA NA	NA	.NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NΑ	NA						
1,1,1-Trichioroethena	NA.	NA.	NA	NA	NA NA	NA.	ΝA	NA.	NA	NA	NA	NA	NA.	NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachloride	NA	NA	NA	NA NA	NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	МA	NA	NA	NA	NA
Bromotichloromothane	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	MV	NA	NA	NA	NA	NA									
1,2-Dichloropropane	NA	NA.	NA.	NA.	NA.	NA	HA	NA	NA.	NA	NA	NA	NA	NA	NA.										
cis-1,3-Eichloropropens	NA	NA	NA AM	AN	NA.	NA	NA.	NA	NA	NA	ΝA	NA	NA	NA	HA	М	NA								
Trichloroethene	NA.	NA.	NA NA	NA.	NA.	NA	AM.	NA	NΑ	NА	NA	NA	NA	NA											
1,1,2-Trichloroathans	NA.	NA NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA						
trans-1,3-Dichloropropens	NA NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA NA												
Dibromochloramathans	NA NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA										
2-Chloraethylvinyl Ether			NA.	NA.	NA	ASA	NA	MA	NA	NA.	NA	NA	NA.	NA	NA	NA	NA								
Brantolom	NA NA	NA NA	NA.	NA.	NA.	NA	NΑ	NA	NA	NΑ	NA	NA	NA	NA	NA NA										
Tetrachloroothenn	NA NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA-	NA	NA NA												
1,1,2,2-Tokashlorvethans	NA NA	NA.	NA.	NA	NA	NA	ΝA	NΑ	NA	NΑ	NA	NA	NA	NA	NA.	NA	NA NA	NA NA							
Chicrobanzone	NA NA	NA.	NA.	NA.	NA	NA	NA	NA	NA.	NA NA	NA.	NA NA													
1,3-Dichlorobanzana	NA.	NA.	NA	NA	NA	NA	NΑ	HA.	NA	NA.	NA	NA.	NA	NA	NA	NA NA	NA NA	NA.							
1,2-Dichlersbenzons	NA	NA	ΝA	NA	NA	NA	NΑ	Alt	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NΑ	NA	NA	144	190	140
1,4-D/chlorobenzone	1971			• • • •																					
PURGEABLE AROMATICS																									
PURGEABLE ARCHITICS																		NA	NA	NA	NA	NA	NA	NA	NA
Bunzona	NA	NA,	NΑ	NA	NA	NA	NA,	NA	NΑ	NA.	NA	NA NA	NA	NA.	NA.	NA.	NA	NA	NA						
Toluena	NA	ΝA	NA	NA NA	NA NA	NA NA	NA -	NA.	NA.	NA	NA	NA													
Elhylbenzena	NA	ΝA	NA	ам Ан	NA NA	NA NA	NA.	NA.	NA	N/A	NA	NA	NA												
Total Xvienes	NA	NA NA	- NA	- NA	NA.	KA	- RA	NA	NA.	NA	NA.	NA.													
TOTAL VOCS	NA.	ΑM	- NA	HA	NA	NA	NA.	ЛĄ	NA	NA	IA.	NA	NA	NA.	IVA	IN	1125	141				• • • • • • • • • • • • • • • • • • • •			
HYDROCARBONS																									
							470		NA	NA	NA	NA	NA	NА	NA	NA.									
TVH-g	A31	NA	₽ΙĄ	NA	NA	NA	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA
TEPH-d	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA						
DAG	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA.	NA	NA	NA	NA.	NA	NA	NA	ASA	NA	NA.	MΑ	NA	NA	NA
TPH (418.1)	, NA	NA	NA	NA	NA	NA	NA	tar.	(NC)	110	1941	1007	****		•										
•																									
METALS																									
	27		#10	25	12	24	3.2	ND	ND	ND	MD	ND	ND	ИĎ	ND	NO	ND	ИD	ΝĐ	ND	ND	ΝD	ND	ND	ND
Food	27	17	140	لته	14	-7																			

Note:

1) MCL = Maximum Contaminam Level in drinking water (State MCL if not noted otherwise)

2) # = EFA MCL

3) * = MCL for sum of four compounds

4) ** = MCL for sum of all xylena isomers

5) ** = MCL for sum of trans- and cis-1,3-Dichloropropens

6) NO = Not Detected of a betwee MDL

7) Furgosable Matecarbons (EFA method 8010)

9) Furgosable Anomatics (EFA method 8020)

9) NA = Not Analyzed or analysis not required

10) 6/17/02 Samples snalyzed for VOCs out of holding time due to laboratory smor

Well⊞	MCL	OW-9B		OAA-a
Date	ug/L	Jun-96	Jm-69	Mov-99
PURGEABLE HALDCARBONS				
		NO	ND	ND
Chloromethane		ND	ND	ND
Bromomatiana	0.5	ND	NO	ND
Vinyl chilcride	11.4	QN	ND	ND
Chlorosthana Chlorosthana Chlorden	5#	ND	NO	ND
Methylana Chlorida	150	ND	ND	ND
Trichtoroffuoremethene 1,1-Dichleteethene	6	HD	NP	ND
1,1-Dichleroethens	5	RD	2.6	2.0
	6	ND	ND	ND
ch-1,2-Dichtarcethene trans-1,2-Dichtarcethene	10	ND	ND	ND
Chloreform	100#*	ND	ND	ND
Chloratorn Freez 113	1200	ND	ND	ND CIN
1.2-Dishloroethana	0.5	ND	ND	ND
1,1,1-Trichicustitans	200	ND	NO	ND
Carbon Tairachloide	P.5	NO	ND	ND
Bromodichleromethane	100#	מא	ND	ND
1.2-Cichlorapropana	5	NO	ND	ND
cis-1,3-Dichloropropens	5	NO	ND	ND
Trichismethens	5	ND	ND	ND
1.1.2-Tdcblopathans	32	ND	ND	ND
trans-1,3-Dichteropropens	5	ND	ND	ND
Olbromochloromothene	199#	ND	ND	ND
2-Chlorosthylvinyl Elber	,	NA.	ND	ND
Bromoform	100#*	ND	ND	ND
Tetrachiomethene	5	ND	ND	ND
1.1.2.2-Tetrachiorositrana	1	ND	ND	ND
Chipphenzene	30	ND	31	31
t_3-Dichlorobenzene		ND	390	290
1.2-Dichlorobenzone	600#	ND	53	53
1.4-Dichlorobenzona	5	ND	560	560
1,4-Didi(MODBi)Linis	-	••-		
PURGEABLE AROMATICS				
Benzane	ŧ	ND	NA	NA
Tokiena	1000#	0,73	NA	NA.
Ethylbenzene	680	ND	NA	NA
Total Xylenes	1750**	ND	NA	NA
TOTAL VOCE	*****	0.73	1036,6	1038.6
10172 1000				
HYDROCARSONS				
		_		
TVH-g		ND	NA	NA
TEPH-d		NA	NA	NA
040		18A	NA	NA
TPH (418.1)		NA	NA	NA
METALS				
Lead	O	AM	NA	NA
Notes:				
1) MCL = Maximum Contemboot	Level in d	rinking wa	ılar (State	MCL If not a
2) # = EPA MCL		,	,-,	
3) = MCL (or sum of four compo	uncis			
A se same service of oth compa				

- (ezwado balon k

- 3) = n NCL for sum of four compounds
 4) ** = NCL for sum of faur compounds
 5) *** = NCL for sum of trans- and cis-1,3-Dichloropropans
 5) ND = Not Detected at or above MDL
 7) Purgachile Halocarbons (EPA method 8010)
 8) Purgachile Azomatics (EPA method 8020)
 9) NA = Not Analyzed or analyzed not required
 10) 6/17/02 Samples analyzed for YOCs out of holding time due to laboratory error

Table A1 Summary of Historical Groundwater Analytical Results for TPH, Dissolved Lead, and PAHs December 2005 to Present

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

					Dissolved										1
					Lead										
		Total Pot	roleum Hv	drocarbons	Method										
			Method 801		6010B			Poly	nuclear Aromati	ic Hydrocarbons-l	Method 8270	C - SIM			
						2-Methyl		,				-			
Sample	Sample	TPHg	TPHd	TPHmo		Naphthalene	Acenapthene	Acenapthylene	Anthracene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Other PAHs
Name	Date	μg/l	μg/l	μg/l	μg/l	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
OW-1	12/20/05	53 ¹	390 ²	470J											
OW-1	12/20/06	<50	200												
OW-1	04/12/07	<50	110	200	<4										
OW-1	11/06/07	80	140/ <50*	<100/<100*	<8										
OW-1	05/06/08	<50	260/<50*	200 /<100*											 ND
OW-2 OW-2	12/20/05 12/20/06	<20	200	610 	<3 <20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-2	04/12/07	 <50	120	300	<20 <4										
OW-2	11/06/07			<100/<100*	<8										
OW-2	05/06/08		350 /<50*	400/<100*	<4										
OW-4	11/06/07	<50	310/ <50*	100/ <100*	<8										
OW-4	05/06/08	<50	640/ <50*	700/ <100*											
OW-5	12/20/05	33 ³	300 ²	610	<3	0.96	0.31	0.26	0.24	0.70	0.67	13	0.13J	1.4	ND
OW-5	12/20/06	90	300		<20										
OW-5	04/12/07	<50	180	500	<4										
OW-5	11/06/07	50	360/ <50*	200/ <100*	<8										
OW-5	05/06/08	<50	610/ <50*	600/ <100*	<4										
OW-6	12/20/05	<20	440 ²	760		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-6	12/20/06	<50	<100		-,										
OW-6 OW-6	04/12/07 11/06/07	<50 <50	160 220/ <50*	400 100/ <100*	<4 <8										
OW-6	05/06/08	50	460/ <50*	400/ <100*											
OW-7	12/20/05	330 ¹	510 ^{2,4}	860		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-7	12/20/05	<50	400				<0.2 	<0.2 		<0.2 					
OW-7	04/12/07	<50	210	400	<4										
OW-7	11/06/07	250	400/ <50*	200/ <100*	<8										
OW-7	05/06/08	560	610/ <50*	600/ <100*											
OW-8	12/20/05	<20	250 ²	690	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-8	12/20/06				<20										
OW-8	04/12/07	<50	150	400	<4										
OW-8	11/06/07		280/ <50*	100/ <100*	<8										
OW-8	05/06/08		390/ <50*	400/ <100*	<4										
FIELD					_										
BLANK	12/20/05	<20	<50	<500	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
FIELD	40/00/00				-00										
BLANK FIELD	12/20/06			-	<20						-			-	
BLANK	04/12/07				<4		_	_	_		_			_	
FIELD	04/12/07				~			-	-		-			-	
BLANK	11/06/07				<8										
FIELD	. 1/00/01				~0										
BLANK	05/06/08				<4										

Notes:

OW-4 could not be sampled because a shipping container is located on the well.

TPH = Total petroleum hydrocarbons

TPHg = Total petroleum hydrocarbons quantified as gasoline

TPHd = Total petroleum hydrocarbons quantified as diesel

TPHmo = Total petroleum hydrocarbons quantified as motor oil

PAH = Polynuclear aromatic hydrocarbons

- μg/l = Micrograms per liter. < = Not detected at or above the practical quantitation limit.
- -- = Not analyzed
- ND = Not detected
- ND = Not detected

 J = Estimated result. Result is less than the practical quantitation limit.

 (1) = The laboratory notes that the chromatogram is mainly a dominant peak(s) which is not indicative of petroleum hydrocarbons.
- (2) = The laboratory notes that the chromatogram is mainly higher boiling hydrocarbons such as asphaltene, waste oil, motor oil, weathered diesel, and hydraulic fluid.
- (3) = The laboratory notes that the chromatogram includes higher boiling hydrocarbons such as diesel
- (4) = The laboratory notes that the chromatogram contains a recognizable contaminant peak(s) that has been removed from quantitation.

Table A2 Summary of Historical Groundwater Analytical Results for VOCs December 2005 to Present

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

										Vola	tile Organio	Compour	ds-Metho	d 8260B									
Sample Name	Sample Date	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Xylenes μg/l	1,2,4-TMB µg/l		4-Isopropyl- benzene µg/l		MTBE μg/l	1,2,3-TCB µg/l	1,2,4-TCB μg/l	1,2-DCB μg/l	1,3-DCB µg/l	1,4-DCB μg/l	CB µg/l	1,1,1-TCA µg/l	TCE µg/l	1,1-DCA μg/l	1,1-DCE μg/l	DIPE µg/l	VC µg/l	Othe VOC µg/
OW-1	12/20/05	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5		0.96	<0.5	<0.5	4.6	37	110	8.8	0.66	<0.5	7.6	8.3	<0.5	<0.5	ND
OW-1	12/20/06	<0.5	< 0.5	< 0.5	< 0.5																		
OW-1	04/12/07	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<5	1.0	< 0.5	1.6	1.8	19	64	4.6	8.0	<0.5	10	11	<0.5	< 0.5	NE
OW-1	11/06/07	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5	1.0	<0.5	1.6	2.2	21	68	4.2	<0.5	<0.5	5.1	<0.5	6.0	NE
OW-1	05/06/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	1.1	1.7	15	45	2.9	<0.5	<0.5	4.5	6.8	<0.5	<0.5	NE
OW-2	12/20/05	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	NE
OW-2	12/20/06																						
OW-2	04/12/07	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
OW-2	11/06/07																						
OW-2	05/06/08																						
OW-4	11/06/07	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
OW-4	05/06/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NI
OW-5	12/20/05	4.4	< 0.5	< 0.5	0.56	<0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	1.0	3.9	0.63	< 0.5	0.33J	2.2	0.49J	< 0.5	0.6	NI
OW-5	12/20/06	0.7	< 0.5	< 0.5	< 0.5	3.2	1.9	0.8	50	< 0.5	< 0.5	< 0.5	< 0.5	1.0	4.3	< 0.5	< 0.5	< 0.5	2.2	0.6	< 0.5	< 0.5	N
OW-5	04/12/07	4.7	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	0.7	5.3	< 0.5	< 0.5	< 0.5	< 0.5	8.0	5.0	< 0.5	<0.5	<0.5	1.6	0.6	< 0.5	< 0.5	N
OW-5	11/06/07	6.8	< 0.5	< 0.5	< 0.5	1.2	1.4	<0.5	1.6	32	< 0.5	< 0.5	< 0.5	< 0.5	0.8	3.9	<0.5	< 0.5	< 0.5	1.4	< 0.5	< 0.5	N
OW-5	05/06/08	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	8.4	< 0.5	< 0.5	< 0.5	2.8	1.0	< 0.5	< 0.5	NI
OW-6	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	0.53	<0.5	<0.5	1.4	8.6	25	5.8	<0.5	<0.5	7.0	3.1	<0.5	<0.5	NI
OW-6	12/20/06	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	< 0.5	1.2	11	44	3.4	< 0.5	< 0.5	8.1	4	< 0.5	< 0.5	NI
OW-6	04/12/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	< 0.5	0.6	6.6	22	8.1	< 0.5	< 0.5	12.0	9.6	< 0.5	< 0.5	NI
OW-6	11/06/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	< 0.5	0.6	8.1	28	3.2	< 0.5	< 0.5	8.4	< 0.5	5.2	NI
OW-6	05/06/08	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	1.3	11	30	12	< 0.5	< 0.5	15	18.0	5.0	0.9	(2
OW-7	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		0.26J	<0.5	<0.5	26	190	490	84	<0.5	0.53	7.0	6.3	<0.5	0.39J	NE
OW-7	12/20/06	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6.8	< 0.5	0.8	25	21	120	330	51	< 0.5	< 0.5	3.6	3.1	< 0.5	< 0.5	NI
OW-7	04/12/07	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<5	< 0.5	< 0.5	32	16	130	460	70	<0.5	<0.5	6.5	6.8	< 0.5	< 0.5	(1
OW-7	11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	22	12	56	200	40	<0.5	<0.5	5.5	<0.5	3.3	NI
OW-7	05/06/08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	34	21	170	820	76	<0.5	<0.5	10	14.0	0.6	0.6	NI
OW-8	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<0.5	<0.5	NI
OW-8	12/20/05							<0.5 											0.55				
OW-8	04/12/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 <5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N
OW-8	11/06/07					<0.5 																	
OW-8	05/06/08																						
FIELD	30,00,00																						
BLANK	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	N
BLANK	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	N

Notes:

OW-4 could not be sampled because a shipping container is located on the well.

<0.5

< 0.5

<0.5

μg/l = Micrograms per liter.

11/06/07

05/06/08

BLANK 04/12/07

FIELD BLANK

FIELD BLANK

< = Not detected at or above the practical quantitation limit.

<0.5

< 0.5

<0.5

<0.5

< 0.5

<0.5

-- = Not analyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

< 0.5

< 0.5

<0.5

< 0.5

< 0.5

< 0.5

<0.5

< 0.5

<0.5

<0.5

< 0.5

<0.5

< 0.5

<5

<5

< 0.5

<0.5 <5 < 0.5

< 0.5

< 0.5

< 0.5

< 0.5

<0.5

<0.5

< 0.5

<0.5

< 0.5

< 0.5

< 0.5

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene 1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

DIPE = Diisopropyl Ether

1,1-DCA = 1,1-Dichloroethane

1.1-DCE = 1.1-Dichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene 1,2,4-TCB = 1,2,4-Trichlorobenzene

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene 1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride

 $^{(1)}$ = 1,2-Dichloroethane was detected at 0.5 μ g/l

(2) =1,2-Dichloroethane was detected at 0.5

<0.5 <0.5 <0.5

< 0.5

< 0.5

<0.5 <0.5

<0.5 <0.5

< 0.5

< 0.5

<0.5

<0.5

< 0.5

<0.5

<0.5

< 0.5

<0.5

< 0.5

< 0.5

<0.5

<0.5

<0.5

<0.5

ND

ND

ND

Page 1 of 1 OaklandMay08 Tables1-3-.xls

APPENDIX B

Field Procedures for Low-Flow Purging and Sampling

FIELD PROCEDURES FOR LOW-FLOW PURGING AND SAMPLING

The following sections describe field procedures followed during groundwater monitoring at the site.

EQUIPMENT CALIBRATION

At the beginning of each sampling day, water quality meters for pH, specific electrical conductance (SEC), dissolved oxygen (DO), oxidation reduction potential (ORP), and turbidity are calibrated. Calibration data are recorded on the first Well Sampling Record. A CHEMetrics, or other appropriate, field test kit is used if there is a problem with DO meter calibration.

DOWNHOLE PARAMETER AND GROUNDWATER LEVEL MEASUREMENTS

After opening the wells and allowing time for equilibration to atmospheric conditions, and prior to purging and sampling activities, a complete round of downhole parameter and depth to groundwater measurements are collected from all monitoring wells. Downhole DO and ORP are measured first using a Horiba U-22, or other appropriate, water quality meter. Depth to water is then measured using an electric water level sounder to the nearest 0.01 foot from the top of casing.

FREE PRODUCT MEASUREMENT

The wells are inspected for free product, and if free product is observed, the depths to top and bottom of free product is measured using an interface probe to the nearest 0.01 foot from the top of casing.

SAMPLING ORDER

To minimize potential cross-contamination between wells, the wells are sampled in reverse order of target analyte concentration as measured during the previous sampling event.

GROUNDWATER PURGING AND SAMPLING

Groundwater sampling is performed following EPA low-flow purging and sampling procedures¹. A minimum of three equipment volumes are purged at each well using an electric pump. Typical pump types may include peristaltic, 2-inch stainless steel submersible and/or bladder pumps.

Dedicated tubing and, where necessary, submersible pumps are used to minimize disturbance. When dedicated equipment cannot be used, sufficient time is allowed after equipment installation to allow groundwater conditions to return to equilibrium. The pump inlet is placed in the center of the screened interval. Each well is purged at a flow rate of approximately 200 milliliters per minute (ml/min); flow rate is not to exceed 500 ml/min at any time during purging or sampling. Drawdown in the well is not to exceed 0.3 ft. During purging, temperature, pH, SEC, turbidity, DO, and ORP are monitored using a Horbia U-22, or other appropriate, water quality meter approximately every one equipment volume purged, or every 3 to 5 minutes. Each well is purged until the field parameters are relatively stable for three successive readings. Three successive readings should be within:

- • 0.1 for pH
- • 3% for SEC
- 10% for temperature
- 10 mV for ORP if practical
- 10% for DO if practical
- 10% for turbidity if practical

If applicable, the ferrous ion concentration is measured using a CHEMetrics, or other appropriate, test kit during the last reading of the field parameters. Immediately after purging, a groundwater sample is collected directly through the pump discharge tubing. Depth to water after sample collection is measured and recorded on the Well Sampling Record.

EQUIPMENT CLEANING

All downhole equipment is cleaned with an Alconox-water solution and double-rinsed with deionized water before use at each well and at the end of each sampling day.

WASTE WATER CONTAINMENT

Waste water including purged groundwater and equipment cleaning water is contained in labeled, DOT-approved, 55-gallon steel drums, or other appropriate containers, and placed at a designated on-site location for future offsite disposal or recycling.

Puls, R.W. and Barcelona, M.J, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, U.S. Environmental Protection Agency, Office of Research and Development, Publication #EPA/540/5-95/504.

APPENDIX C

Groundwater Purging and Sampling Logs

SPH or Purge Water Drum Log

Client:	Geomatrix		
Site Address: 4	930 Coliseum	Way Oakland	

STATUS OF DRUM(S) UPON	ARRIVAL				
Date	12-20-06	4-12-07	11/6/07	05/06/08	
Number of drum(s) empty:					
Number of drum(s) 1/4 full:					
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:	1				
Number of drum(s) full:			2		
Total drum(s) on site:	l	0	3		
Are the drum(s) properly labeled?	Ŋ		У	9	
Drum ID & Contents:			purgueto	puze wester	
If any drum(s) are partially or totally filled, what is the first use date:			12/06		

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.
- -All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPART	JRE		e de la companya de l	
Date	12-20-06	4-12-07		05/06/08	
Number of drums empty:					
Number of drum(s) 1/4 full:					
Number of drum(s) 1/2 full:		1	30		
Number of drum(s) 3/4 full:	1				
Number of drum(s) full:			2		
Total drum(s) on site:	12	Э	3		
Are the drum(s) properly labeled?	I	ч	7	y	
Drum ID & Contents:	J	Price vater			

LOCATION OF DRUM(S)

Describe location of drum(s):

FINAL STATUS								
Number of new drum(s) left on site this event	2 (1.559)) > (KS 91)	0					
Date of inspection:	19-20-06	4-12-07	# 11/6/07	65/06/08				
Drum(s) labelled properly:	ч	Ŋ	7	n				
Logged by BTS Field Tech:	DW	nΨ	Œ	mb				
Office reviewed by:	1/	M	NS .	8				

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME 4930 Co	s//seam,	Dolland, Ca	PROJECT NUI	MBER 570506	-MD)	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP. c°	INITIALS
YSI 536	66F1362 A4	05/06/12 PM	4.00 7.00 10.00	9.62 7.11 10.21	9 3	18.3	and
		Cal	3100	3809	9		/
	Ψ	01	243	245	54	V	
Hach test faction	071200026924		20 100 100	19 101 801	94	18.)	
				٠.			

WELL GAUGING DATA

Project # <u>080506</u> Date _	05/06/08 Client Geomating
Site 4930 Coliseum,	Oakland, Ca

					Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /	Immiscible			Depth to water		TOB or	Mater
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)		(ft.)	bottom (ft.)	TOP	Notes
)w - l							03.39€	18.10		
OW- 2	0847	2					3.17	20.22		
ow - 4	0833	2					3.79	19.51		
ow-5	0838	2					4.23	19.01		
ow - 6	0842	2					4.53	17.25		
ow-7	0856	2			·		3.99	18.21		
ow-8	0852	2	:				273	17.96		
		8	Rem	sur a	Il Cap.	15	min.	prior 1		
			Gargi	*			min.			
		*	men	dep	12 15	bolh	alle	Sampling		
										3
		1	-							

WELLHEAD INSPECTION CHECKLIST

Page _____ of ____

Date (05/06	5/08	Client	neo	ma tuy	<u>(</u>			
Site Add	lress 49	130 C	Olisiem		Och	k/oul	1 Co		
Job Nun	nber <u></u>	5/08 130 (18050(5-mi	<u> </u>	Tec	hnician	M.	DIERGE	
Well	ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
OW	- 1	8			***************************************				
Ow	-2	1							
2	-4	*	9						
00	-5	7							
02		X		-/ak	al W	Ow-	/)		
00	-7	X					************************		
0~	-8								
					···				
NOTE	ES:					*****			Photographic and the second se
				- <u></u>					
	· · · · · · · · · · · · · · · · · · ·						mpographic ,		
								P 4 P 4 P 4 P 4 P 4 P 4 P 4 P 4 P 4 P 4	

Project #:	0805	06-m	D)	Client: G	Client: Geomatrix				
Sampler:	MD			Date: 05/06/07					
Well I.D.	: DW -	- [Well Diameter: 3 4 6 8					
Total We	ll Depth:	18	.10	Depth to V	Water	Pre:05	.39 Post:	03.50	
Depth to	Free Produ	uct:		Thickness	of Free Pr	oduct (fe	et):		
Reference	ed to:	eve	Grade	Flow Cell	Type:y	SZ 55	6		
Purge Methors Sampling M		2" Grundf Dedicated	•		Peristaltic P	3	Bladder Pump Other_		
Flow Rate:	250	mL/m	· <u>~</u>		Pump Depth	n:/ <u></u>	Stat		
Time	Temp.	рН	Cond. (mS or US)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Observations	
0907	19.38	6.04	987	43	3.35	69.1			
0910			973	26	4.80	37.2	750		
0913	17.56	6.35	956	19	2.15	15.5	1500		
0916	19.82	6.50	945	10	0.87	-6.7	2250		
0919	19.90	6.50	939	9	0.71	-8.(3000		
				·					
Did well	dewater?	Yes	No		Amount a	actually e	vacuated: 3	,000~L	
Sampling	Time:	092	27		Sampling	Date:	05/06/	108	
Sample I.	D.: 04	u - / -	05062	2008	Laborato	ry: G	eek		
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D	Other: See Coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:			

Project #: 080506-mo1	Client: Geometry					
Sampler: My	Client: Geometric Date: 05/06/08					
Well I.D.: OW-Z	Well Diameter: ② 3 4 6 8					
Total Well Depth: 20.22	Depth to Water Pre: 3, 17 Post: 3,20					
	Thickness of Free Product (feet):					
Referenced to: P Grade	Flow Cell Type: 4 SI - 556					
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing	Remarkatic Pump New Fubing Other					
Flow Rate: 250 m C/min	Pump Depth: 10.5 Rect					
Time Cond. (mS or S)	Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) (gals. or mt) Observations					
136 21.04 6.59 2588	18 1.27 254.1					
1139 21.15 6.69 2594	15 1.06 242.0 750					
1142 21.08 6.73 2621	14 0-72 223,7 1500					
1145 21.04 6.75 2636	D 0.93 205.6 2250					
1148 21.00 6.75 2647	12 0.94 199.7 3000					
Did well dewater? Yes	Amount actually evacuated: 300					
Sampling Time: 1159	Sampling Date: $05 (06/07)$					
Sample I.D.: 0W-2-050620						
Analyzed for: TPH-G BTEX MTB	E TPH-D Other: Sec Coc					
Equipment Blank I.D.: @ Time	Duplicate I.D.:					

Project #:	070500	5-m01		Client: Geomatry						
Sampler:	mo			Date: 05/06/08						
Well I.D.:	0W-1	64		Well Diameter: ② 3 4 6 8						
Total Wel	l Depth:	17	25 19.51	Depth to Water Pre: 03.29 Post: 03.37						
Depth to I	Free Produ	ıct:			Thickness of Free Product (feet):					
Reference	ed to:	200	Grade	Flow Cell	Type: <u></u>	SI		/		
Purge Metho Sampling Mo		2" Grundfo Dedicated	•		Peristaltic P New Tubing	3	Bladder Pump Other_			
Flow Rate: _		some/m	·		Pump Depth	n:	2.5 Fact	MMARGARITY 1157 Aurill		
Time	Temp. (Øor °F)	рН	Cond. (mS or AS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n	Observations		
1359	19.64	6.32	1403	17	2.48	282.1				
1402	19.59	6.49	1903	20	1.20	266.4	750			
(405	(9.37	6.56	1404	しう	0.89	247.2				
1408	19.06	6.56	1405	12	0.77	230.2	3000			
1411	19.07	6-56	1901	11	0.79	225.9	3750			
				WATER PARTY AND AND ADDRESS OF THE PARTY AND A						
				***************************************	4444					
						A.				
Did well	dewater?	Yes	NG)		Amount a	actually e	vacuated: 3	350mlp		
Sampling		172	.)		Sampling	g Date:	05/06/0	}		
Sample I.	D.: OU	J - 4 -	65 06 Z 00	Se	Laboratory: Creek Other: Sec Coc					
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other:	See Coc			
Equipmer	nt Blank I.	D.:	(a) Time	MANUFIC CO.	Duplicate	e I.D.:				

Project #:	0805	06-u	10/	Date: 05/06/08					
Sampler:	MO			Date:	Date: 05/06/08				
Well I.D.:	:0W-	5		Well Diameter: 2 3 4 6 8					
Total Wel	ll Depth:	19.	0/	Depth to V	Vater	Pre: 04	-23 Post:	09.31	
Depth to 1	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	et):		
Reference	ed to:	BAG	Grade	Flow Cell	Type:	SZ 55	۵		
Purge Methor Sampling M Flow Rate:		2" Grundfo Dedicated	Tubing		Peristaltic P New Tubing Pump Depth	·	Bladder Pump Other_ 5-fewf		
Time	Temp.	pН	Cond. (mS or uS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nE))	Observations	
036	20.20	6.38		51	1.59	74.1			
1039	20.23	6.44	826	30	0.91	70.6	750		
1042	20.39		815	21	0.60	58.2	1300		
1045	20.43	6.48	805	17	0.45	50.9	2250		
1048	20.50	6.46	802	15	0.43	50.0	3000		
*							***************************************	***************************************	

	*								
Did well	dewater?	Yes	160		Amount a	actually e	evacuated: 3	000	
Sampling	g Time:	1059			Sampling	Date:	05/06/0	P	
Sample I.	.D.: OW	-5-0	506200f	>	Laborato:	ry: C	veeK		
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D	Laboratory: Creek Other: See Coc				
Equipme	nt Blank I.	.D.:	@ Time		Duplicate I.D.:				

Project #:	08050	16 -m	01	Client: Gz	es and try	· (
Sampler:	MO	0		Date: 05/06/0/								
Well I.D.:	: OW-	\$6)	Well Diam	Well Diameter: 2 3 4 6 8							
Total We	ll Depth:	-175	20 /9.30	Depth to W	Depth to Water Pre: 0453 Post: 04.65							
	Free Produ			Thickness of Free Product (feet):								
Reference	ed to:	POLE	Grade	Flow Cell Type: 451 556								
Purge Metho Sampling M	ethod:	2" Grundfo	•		Peristaltic B New Tubing	, -	Bladder Pump Other_					
riow Rate:	Z53,	me / am			Pump Depth		recor					
Time	Temp. (Oor °F)	pН	Cond. (mS or μ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mD)	Observations				
0991	18.07	7,00	1156	10	1.56	91.7						
0944	18.09	7.03	1157	1/	0.87	78.6						
0947	18-13	7.08	116/	ð	0.41	54.3	1500					
0950	18,17	7.08	1162	9	0.36	49.2	2250					
6953	18.22	7.09	1164	8	0.38	39.1	3000					
6956	18.26	7.09	1165	9	0.32	34.9	3750					
			·									
		·		·			.P.;					
	lile	el u	w_ n	nsstabiler	o as	- Ow	-4 uch	Pant Ren				
Did well	dewater?	Yes	No		Amount a	actually e	vacuated: 3=	750mL				
Sampling	ampling Time: 1012 Sampling Date: 65/06/08											
Sample I.	ample I.D.: OW-6-0506 ZOOP Laboratory: Cheek											
Analyzed		TPH-G	BTEX MT	BE TPH-D		Other:	See Coc	7				
Falling	it Blank L	D. FB-05	0620 ₀ @	107.6	Dunlicate	· 1 D ·						

Project #:	080506	S-MDI		Client: 6	reomas	hip			
Sampler:	MD			Date: 05	106/0	P			
Well I.D.:	ow	-7		Well Diam	eter: 🕗	3 4	6 8		
Total Well	Depth:	18.	21	Depth to W	/ater	Pre: O	3.99 Post:	09.29	
Depth to F	ree Produ	ict:		Thickness	of Free Pr	oduct (fe	et):	•	
Reference	d to:	PYC	Grade	Flow Cell	Гуре:	457 -	- 556		
Purge Method Sampling Me Flow Rate:	thod:	2" Grundfo Dedicated	•		Peristaltic P Mew Tubing Pump Depth	3	Bladder Pump Other		
Time	Temp. Or °F)	pН	Cond. (mS or μ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Observations	
1439	21.25	6.91	859	21	230	-16.6			
1992	20.61	6.94	831	14	0.49	-18.0	750		
1445	20.12	6.86	827	9	0.35	-18.9	1500		
1448	20.20	6.84	824	10	0.27	-18.3	2250		
1451	20.19	6.85	223	11	0.27	-18.6	3000		
-									
			ms/m	57 04	Mij	well	(9 wa	3 Aubr. 18	2 = G
									1
				which will have been a second and the second and th		-			
Did well d	lewater?	Yes	NO		Amount a	actually e	vacuated: 2	0000	
Sampling	Time:	150	7		Sampling	g Date:	05/06/0	SP	
Sample I.I	D.: OW	-7-	- 05062	2008	Laborato	ry: G	rente See Cert		
Analyzed	for:	TPH-G	BTEX MTI	BE TPH-D		Other:	See Cer		
Equipmen	t Blank I.	D.:	(A) Time		Duplicate				

Project #:	0805	06-12	n 12 /	Client: Reo ma truj							
Sampler:	MO			Date: 05	1061	s P					
Well I.D.:	: ow.	8		Well Diam	neter: (2)	3 4	6 8				
Total Wel	ll Depth:	17.9	6	Depth to V	Vater	Pre: 02	2.73 Post:	02.91			
Depth to 1	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	et):				
Reference	ed to:	MO	Grade	Flow Cell Type: 4SI 556							
Purge Metho Sampling M	ethod:	2" Grundfe Dedicated	Tubing		Peristaltic P	g	Bladder Pump Other				
Flow Rate: 250 my Pump Depth: 3.0 Feet Temp. Cond. Turbidity D.O. ORP Water Removed											
Time	Temp. Or °F)	pН	(mS or US)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Observations			
1226	20.47	6.53	1240	7	3.10	194.3					
1229	20.42	6.56	1233	4	1.92	185.0	750				
12 32	20.37	6.57	1213	8	1.11	174.4	1300				
1235	20.31	6.57	1201	9	0,80	164.3	7250				
1238	20.28	6.56	1189	8	0.65	159.3	3000				
-											
	·										
Did well	dewater?	Yes	NO.		Amount	actually e	vacuated: 3	000 ml/n			
Sampling	Time:	129	1-9		Sampling	g Date: (5/06/0				
Sample I.	D.: 0W	0506	2008	Laborato	ry: Cı	nee K					
Analyzed for: TPH-G BTEX MTBE T						Other:	See Co	ی ح			
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:	ţ	,			

APPENDIX D

Laboratory Analytical Reports and Chain-of-Custody Documentation

BLAINE SAN JOSE, CALIFORNIA 95112-1 FAX (408) 573-7 PHONE (408) 573-0 CHAIN OF CUSTODY	ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION IMITS SET BY CALIFORNIA DHS AND EPA I RWOCK REGION	S#
BTS #00006-M01 CLIENT Geomatrix SITE PG&E 4930 Coliseum Wy.	SHANN OTHER SPECIAL INSTRUCTIONS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	com
Oakland, CA MATRIX CONTAINERS SAMPLE I.D. DATE TIME 5 TOTAL OW-1-05062008 O5/660 0927 W 8	Project: PG&E Coliseum Wy. **TPH-D and Motor Oil require silica gel cleanup ADD'L INFORMATION STATUS CONDITION LAB SAME	
OW-2-05062008 1159 w 8 OW-4-05062008 1421 w 8 OW-5-05062008 1059 w 8 OW-6-05062008 10/2 w 8	x x x x x x x x x x x x x x x x x x x	3 1 5 6
OW-7-05062008 ISO7 W I3 OW-8-05062008 I249 W 8 FB-05062008 I020 W 4	X X X X X X VV HCI A. B. C. NE H OY 1	7 8 9 0
SAMPLING DATE TIME SAMPLING COMPLETED 05/06/08 1530 PERFORMED BY RELEASED BY (Sample custom)	RESULTS NEEDED NO LATER THAN Standard TAT RECEIVED BY RECEIVED BY RECEIVED BY	
RELEASED BY SHIPPED VIA	DATE TIME RECEIVED BY DATE TIME RECEIVED BY DATE TIME PATE SENT TIME SENT COOLER #	537 5:00

CASE NARRATIVE P2379

Client: Geomatrix

Sample(s): 08-C6413 to 08-C6420

Samples 08-C6413 to 08-C6420 were received at the laboratory with no anomaly except the following remark:

- There was no 1-L amber glass container received for sample 08-C6420 (FB-05062008) for the requested TPH-d/mo analysis, which was subsequently cancelled for the sample.
- The COC was amended per client's request to cancel TPH/BTEX for all samples, but added TPH-g, full list VOC + oxygenates, and dissolved Lead to selected samples. Additionally, TPH-d/mo analysis was to be performed with and without silica gel treatment.

VOC was analyzed by GC/MS method (EPA 8260B) coupled with PAT (EPA 5030B). TPH-gasoline was analyzed by GC/FID method (EPA 8015M) coupled with PAT (EPA 5030B). TPH-diesel/motor oil was extracted with liquid-liquid extraction (EPA 3510C), and the extract was split to be treated with or without silica gel. The extracts were analyzed separately by GC/FID method (EPA 8015M). Dissolved Lead was field filtered and analyzed directly by ICP-MS method (EPA 6020).

All samples were extracted and analyzed within holding time. There was no analytical anomaly.

CREEK ENVIRONMENTAL LABORATORIES

Page 1

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6413 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 05/23/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Matrix						
ow-1-05062008	M. Pierce		05/06/0	8a09:27	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
TPH as Motor Oil	0.2	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802	
TPH as Diesel	0.26	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802	
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803	
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803	
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/13/08		7458	
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	•	7609	
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
m,p-Xylene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/19/08		7609	
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Methyl t-Butyl Ether (MTBE)	0.6	0.5	1	ug/L	EPA 8260	05/19/08	,	7609	
t-Amyl Methyl Ether (TAME)	Not Detected	0.5	. 1	ug/L	EPA 8260	05/19/08		7609	
t-Butyl Alcohol (TBA)	Not Detected	2	1	ug/L	EPA 8260	05/19/08		7609	
Diisopropyl Ether (DIPE)	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Ethyl t-Butyl Ether (ETBE)	Not Detected	0.5	1 :	ug/L	EPA 8260	05/19/08		7609	
Chlorobenzene	2.9	0.5	1	ug/L	EPA 8260	05/19/08		7609	
1,2-Dichlorobenzene	1.7	0.5	.1	ug/L	EPA 8260	05/19/08		7609	
1,3-Dichlorobenzene	15	0.5	1	ug/L	EPA 8260	05/19/08		7609	
1,4-Dichlorobenzene	45	5	10	ug/L	EPA 8260	05/16/08	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7573	
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609	
t-Butylbenzene	Not Detected	0.5	Ì	ug/L	EPA 8260	05/19/08		7609	

Page 2

Jonathan Skaggs Geomatrix

2101 Webster St. Oakland, CA 94612

Log Number: 08-C6413 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0		Matrix		
ow-1-05062008	M. Pierce		.05/06/08	3a09:27	Aqueous		
Analyte .	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bat Prepared
Carbon Tetrachloride	Not Detected	0.5	1 .	ug/L	EPA 8260	05/19/08	76
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	. 76
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	05/19/08	76
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	. 76
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
1,2-Dibromo-3-Chloropropane	Not Detected	1	1 .	ug/L	EPA 8260	05/19/08	76
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
1,1-Dichloroethane	4.5	0.5	1	ug/L	EPA 8260	05/19/08	76
1,1-Dichloroethene	6.8	0.5	1	ug/L	EPA 8260	05/19/08	76
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
1,3-Dichloropropane	Not Detected	0.5	1 -	ug/L	EPA 8260	05/19/08	76
2,2-Dichloropropane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/19/08	76
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
trans-1,3-Dichloropropene	Not Detected	0.5	1.	ug/L	EPA 8260	05/19/08	76
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
Isopropylbenzene	Not Detected	0.5	.1 .	ug/L	EPA 8260	05/19/08	76
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	05/19/08	76
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	05/19/08	76
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	76

Page 3

Jonathan Skaggs

Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 08-C6413

Order:

P2379

Project:

PG&E Coliseum Wy.

Received:

05/07/08 05/23/08

Printed:

REPORT OF ANALYTICAL RESULTS

Sampled

ample Description Sampled By			Date a	Time	Matrix			·
OW-1-05062008	M. Pierce		05/06/0	08a09:27	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
1,2,4-Trichlorobenzene	1.1	0.5	1	ug/L	EPA 8260	05/19/08		7609
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08	·	7609
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	05/19/08		7609

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 4

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6414 Order: P2379

Project:

PG&E Coliseum Wy.

Received: Printed:

05/07/08 05/23/08

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By		Date a	Time	Matrix			
OW-2-05062008	M. Pierce		05/06/0	8a11:59	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.4	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel	0.35	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel, SGT	Not Detected	0.05	1.	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	05/12/08		7381

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Jonathan Skaggs

Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 08-C6415

Order: P2379

Project: PG&E Coliseum Wy. Page 5

05/07/08 Received: 05/23/08 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date @		Matrix 	· ·		
ow-4-05062008	M. Pierce		05/06/0	8014:21	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.7	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel	0.64	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel, SGT	Not Detected	0.05	1 ,	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/13/08		7458
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Toluene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
Ethylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Amyl Methyl Ether (TAME)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butyl Alcohol (TBA)	Not Detected	2	1	ug/L	EPA 8260	05/16/08		7573
Diisopropyl Ether (DIPE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethyl t-Butyl Ether (ETBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Chlorobenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3-Dichlorobenzene	Not Detected	0.5	· 1	ug/L	EPA 8260	05/16/08		7573
1,4-Dichlorobenzene	Not Detected	0.5	1 1 .	ug/L	EPA 8260	05/16/08	•	7573
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromochloromethane	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08		7573
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromoform	Not Detected	0.5	· 1	ug/L	EPA 8260	05/16/08		7573
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	* * *	7573
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573

Page 6

Jonathan Skaggs Geomatrix 2101 Webster St.

Oakland, CA 94612

Log Number: 08-C6415 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	· · · · · · · · · · · · · · · · · · ·			Matrix				
ow-4-05062008	M. Pierce		05/06/0	8a14:21	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
Chloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573	
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	05/16/08		7573	
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
2-Chlorotoluene	Not Detected	0.5	• 1	ug/L	EPA 8260	05/16/08		7573	
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	05/16/08		7573	
Dibromochloromethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573	
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
1,1-Dichloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573	
1,1-Dichloroethene	Not Detected	0.5	1.	ug/L	EPA 8260	05/16/08		7573	
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	, ,	7573	
1,3-Dichloropropane	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08		7573	
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	*	7573	
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	÷	7573	
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	05/16/08		7573	
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	05/16/08		7573	
n-Propylbenzene	Not Detected	0.5	1 ·	ug/L	EPA 8260	05/16/08		7573	
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573	
1,1,1,2-Tetrachloroethane	Not Detected	0.5	· 1	ug/L	EPA 8260	05/16/08		7573	

Page 7

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6415 Order: P2379

Project: PG&E Coliseum Wy.

05/07/08 Received: Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By		Date a		Matrix			
OW-4-05062008	M. Pierce		05/06/0	8014:21	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichlorobenzene	Not Detected	0.5	· 1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1,1-Trichloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	*	7573
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Vînyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 8

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6416 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date @		Matrix			
 ow-5-05062008	M. Pierce		05/06/0	8010:59	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.6	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel	0.61	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/13/08		7458
Benzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Amyl Methyl Ether (TAME)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butyl Alcohol (TBA)	Not Detected	2	1	ug/L	EPA 8260	05/16/08		7573
Diisopropyl Ether (DIPE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethyl t-Butyl Ether (ETBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3-Dichlorobenzene	1.3	0.5	, 1	ug/L	EPA 8260	05/16/08		7573
1,4-Dichlorobenzene	8.4	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromodichloromethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
Bromoform	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08		7573
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573

Page 9

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6416

Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix		
Ow-5-05062008	M. Pierce		05/06/0	8a10:59	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Chloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	05/16/08	7573
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	05/16/08	7573
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Dibromomethane	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08	7573
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1-Dichloroethane	2.8	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1-Dichloroethene	1.0	0.5	1	ug/L	EPA 8260	05/16/08	7573
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
trans-1,2-Dichloethene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
1,2-Dichloropropane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
2,2-Dichloropropane	Not Detected	0.5	1.	ug/L	EPA 8260	05/16/08	7573
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Isopropylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
4-Isopropyltoluene	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08	7573
Methylene Chloride	Not Detected	5	1 '	ug/L	EPA 8260	05/16/08	7573
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	05/16/08	7573
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1,1,2-Tetrachloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573

Page 10

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C6416 Order: P2379

Project:

PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By			Matrix	·		•
OW-5-05062008	M. Pierce		05/06/08a10:59		Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichlorobenzene	Not Detected	0.5	- 1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trichlorobenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	1	7573
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		.7573
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Vinyl Chloride	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	05/12/08		7381

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 11

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C6417

Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date @		Matrix	·		
	M. Pierce		05/06/0	8010:12	Aqueous			: :
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.4	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel	0.46	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Motor Oil, SGT	Not Detected	0.1	. 1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Gasoline	0.05	0.05	1	mg/L	EPA 8015/LUFT	05/13/08		7458
Benzene	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08		7573
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	•	7573
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Amyl Methyl Ether (TAME)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butyl Alcohol (TBA)	Not Detected	2	. 1	ug/L	EPA 8260	05/16/08		7573
Diisopropyl Ether (DIPE)	5.0	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethyl t-Butyl Ether (ETBE)	Not Detected	0.5	1 1	ug/L	EPA 8260	05/16/08		7573
Chlorobenzene	12	0.5	, 1	ug/L	EPA 8260	05/16/08	*	7573
1,2-Dichlorobenzene	1.3	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3-Dichlorobenzene	11	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,4-Dichlorobenzene	30	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	·	7573
1,2-Dibromoethane (EDB)	Not Detected	0.5	1.	ug/L	EPA 8260	05/16/08		7573
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromoform	Not Detected	0.5	1	ug/L .	EPA 8260	05/16/08		7573
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	•	7573
n-Butylbenzene	Not Detected	0.5	1,	ug/L	EPA 8260	05/16/08		7573
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573

Page 12

Jonathan Skaggs Geomatrix

2101 Webster St.
Oakland, CA 94612

Log Number: 08-C6417 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Date a		Matrix			
Ow-6-05062008	M. Pierce		05/06/0	08a10:12	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bato Prepared
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	05/16/08	757
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	05/16/08	757
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,1-Dichloroethane	15	0.5	1	ug/L	EPA 8260	05/16/08	757
1,1-Dichloroethene	18	0.5	1	ug/L	EPA 8260	05/16/08	757
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,3-Dichloropropane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	757
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
cis-1,3-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	757
trans-1,3-Dichloropropene	Not Detected	0.5	1.	ug/L	EPA 8260	05/16/08	757
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757.
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757.
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757.
Methylene Chloride	Not Detected	.5	1	ug/L	EPA 8260	05/16/08	757
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	05/16/08	757.
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757.
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757

Page 13

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6417

Order: P2379 Project:

PG&E Coliseum Wy.

05/07/08 Received: Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By		Date a	Time	Matrix			
ow-6-05062008	M. Pierce 05/06/			8a10:12	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichlorobenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1.2.4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Vinyl Chloride	0.9	0.5	1	ug/L	EPA 8260	05/16/08		7573

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 14

Jonathan Skaggs Geomatrix 2101 Webster St.

Oakland, CA 94612

Log Number: 08-C6418 Order:

P2379

Project:

PG&E Coliseum Wy.

Received: Printed:

05/07/08 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Date a		Matrix == ==================================				
OW-7-05062008	M. Pierce		05/06/08	3a15:07	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.6	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel	0.61	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Gasoline	0.56	0.05	_. 1	mg/L	EPA 8015/LUFT	05/13/08		7458
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Amyl Methyl Ether (TAME)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butyl Alcohol (TBA)	Not Detected	2	1	ug/L	EPA 8260	05/16/08		7573
Diisopropyl Ether (DIPE)	0.6	0.5	1	ug/L	EPA 8260	05/16/08		7573
Ethyl t-Butyl Ether (ETBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Chlorobenzene	76	5	10	ug/L	EPA 8260	05/16/08		7573
1,2-Dichlorobenzene	21	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3-Dichlorobenzene	170	5	10	ug/L	EPA 8260	05/16/08		7573
1,4-Dichlorobenzene	820	20	50	ug/L	EPA 8260	05/16/08		7573
1,2-Dichloroethane (EDC)	0.5	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	· · · · · · · · · · · · · · · · · · ·	7573
Bromobenzene	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08		7573
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Bromoform	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
t-Butylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573

Page 15

Jonathan Skaggs Geomatrix 2101 Webster St.

Oakland, CA 94612

Log Number: 08-C6418 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix			
OW-7-05062008	M. Pierce		05/06/0	8015:07	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	05/16/08		7573
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
2-Chlorotoluene	Not Detected	0.5	, 1	ug/L	EPA 8260	05/16/08		7573
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	05/16/08		7573
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	•	7573
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1-Dichloroethane	10	0.5	1.	ug/L	EPA 8260	05/16/08		7573
1,1-Dichloroethene	14	0.5	1 .	ug/L	EPA 8260	05/16/08	•	7573
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
trans-1,2-Dichloethene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
cis-1,3-Dichloropropene	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08		7573
trans-1,3-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	05/16/08		7573
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	05/16/08		7573
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573

Page 16

Jonathan Skaggs Geomatrix 2101 Webster St.

Oakland, CA 94612

Log Number: 08-C6418 Order: P2379

Project: PG&E

PG&E Coliseum Wy.

Received: Printed:

05/07/08 05/23/08

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By		Time	Matrix			
OW-7-05062008	M. Pierce		05/06/08a15:07		Aqueous		:=====	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trichlorobenzene	34	5	10	ug/L	EPA 8260	05/16/08		7573
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,2,3-Trichloropropane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08		7573
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08		7573
Vinyl Chloride	0.6	0.5	1	ug/L	EPA 8260	05/16/08		7573

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 17

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C6419 Order: P2379

Project:

PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Date a	Time	Matrix				
OW-8-05062008	M. Pierce 0			8a12:49	Aqueous			
Analyte	Result DLR		Dilution Units Factor		Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.4	0.1	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel	0.39	0.05	1	mg/L	EPA 8015/LUFT	05/12/08	05/12/08	7802
TPH as Diesel, SGT	Not Detected	0.05	. 1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	05/22/08	05/12/08	7803
Lead, Dissolved	Not Detected	0.004	. 1	mg/L	EPA 6020	05/12/08		7381

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 18

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C6420 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix		
FB-05062008	M. Pierce		05/06/0	8a10:20	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bate Prepared
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	75
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	75
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	75
m,p-Xylene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	757
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	. 1 .	ug/L	EPA 8260	05/16/08	757
t-Amyl Methyl Ether (TAME)	Not Detected	0.5	. 1 .	ug/L	EPA 8260	05/16/08	757
t-Butyl Alcohol (TBA)	Not Detected	2	1	ug/L	EPA 8260	05/16/08	757
Diisopropyl Ether (DIPE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Ethyl t-Butyl Ether (ETBE)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7 57
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
n-Butylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	757
sec-Butyl Benzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	757
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Chloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	757
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	05/16/08	757
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757.

Page 19

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 08-C6420 Order: P2379

Project: PG&E Coliseum Wy.

Received: 05/07/08 Printed: 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix		
FB-05062008	M. Pierce		05/06/0	8a10:20	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batc Prepared
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757.
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	757
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	05/16/08	757
Dibromochloromethane	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08	757:
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
cis-1,3-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
I sopropy l benzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	05/16/08	7573
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	05/16/08	7573
n-Propylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1 .	ug/L	EPA 8260	05/16/08	7573
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	. 7573
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573

Page 20

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 08-C6420 Order: P2379

Project:

PG&E Coliseum Wy.

Received: Printed: 05/07/08 05/23/08

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sample Date a		Matrix		
FB-05062008	M. Pierce			======= 08a10:20	= ====================================	: E	
Analyte	Result	DLR	Dilution Factor	Units	= ======== Method	Date Analyzed	Date Batch Prepared
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Trichlorofluoromethane	Not Detected	0.5	. 1	ug/L	EPA 8260	05/16/08	7573
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	05/16/08	7573
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	05/12/08	7381

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Quality Control Results

Page 21

Order No.: P2379

Laboratory Reagent Blank

Analyte	Method	Results	Units	Batch
TPH as Motor Oil	EPA 8015/LUFT	< 0.1	mg/L	7802
TPH as Diesel	EPA 8015/LUFT	< 0.05	mg/L	7802
TPH as Diesel, SGT	EPA 8015/LUFT	< 0.05	mg/L	7803
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 0.1	mg/L	7803
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	7458
Benzene	EPA 8260	< 0.5	ug/L	7573
Benzene	EPA 8260	< 0.5	ug/L	7609
Toluene	EPA 8260	< 0.5	ug/L	7573
Toluene	EPA 8260	< 0.5	ug/L	7609
Ethylbenzene	EPA 8260	< 0.5	ug/L	7573
Ethylbenzene	EPA 8260	< 0.5	ug/L	7609
m,p-Xylene	EPA 8260	< 0.5	ug/L	7573
m,p-Xylene	EPA 8260	< 0.5	ug/L	7609
o-Xylene	EPA 8260	< 0.5	ug/L	7573
o-Xylene	EPA 8260	< 0.5	ug/L	7609
Methyl t-Butyl Ether (MTBE) Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	7573
t-Amyl Methyl Ether (TAME)	EPA 8260 EPA 8260	< 0.5	ug/L	7609 7577
t-Amyl Methyl Ether (TAME)	EPA 8260	< 0.5 < 0.5	ug/L	7573 7609
t-Butyl Alcohol (TBA)	EPA 8260	< 2.5	ug/L ug/L	7573
t-Butyl Alcohol (TBA)	EPA 8260	< 2.5	ug/L	7609
Diisopropyl Ether (DIPE)	EPA 8260	< 0.5	ug/L	7573
Diisopropyl Ether (DIPE)	EPA 8260	< 0.5	ug/L	7609
Ethyl t-Butyl Ether (ETBE)	EPA 8260	< 0.5	ug/L	7573
Ethyl t-Butyl Ether (ETBE)	EPA 8260	< 0.5	ug/L	7609
Chlorobenzene	EPA 8260	< 0.5	ug/L	7573
Chlorobenzene	EPA 8260	< 0.5	ug/L	7609
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	7573
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	7609
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	7573
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	7609
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	7573
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	7573
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	7609
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	7573
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	7609
Bromobenzene Bromobenzene	EPA 8260	< 0.5	ug/L	7573
Bromochloromethane	EPA 8260	< 0.5	ug/L	7609
Bromochloromethane	EPA 8260	< 0.5	ug/L	7573
Bromodichloromethane	EPA 8260 EPA 8260	< 0.5	ug/L	7609 7577
Bromodichloromethane	EPA 8260	< 0.5 < 0.5	ug/L ug/L	7573 7609
Bromoform	EPA 8260	< 0.5	ug/L ug/L	7573
Bromoform	EPA 8260	< 0.5	ug/L ug/L	7609
Bromomethane	EPA 8260	< 0.5	ug/L	7573
			~3/ -	, , , ,

Quality Control Results

Page 22

Order No.: P2379

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Bromomethane	EPA 8260	< 0.5	ug/L	7609
n-Butylbenzene	EPA 8260	< 0.5	ug/L	7573
n-Butylbenzene	EPA 8260	< 0.5	ug/L	7609
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	7573
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	7609
t-Butylbenzene	EPA 8260	< 0.5	ug/L	7573
t-Butylbenzene	EPA 8260	< 0.5	ug/L	7609
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L	7573
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L	7609
Chloroethane	EPA 8260	< 0.5	ug/L	7573
Chloroethane	EPA 8260	< 0.5	ug/L	7609
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	7573
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	7609
Chloroform	EPA 8260	< 0.5	ug/L	7573
Chloroform	EPA 8260	< 0.5	ug/L	7609
Chloromethane	EPA 8260	< 0.5	ug/L	7573
Chloromethane	EPA 8260	< 0.5	ug/L	7609
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	7573
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	7609
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	7573
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	7609
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	7573
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1.	ug/L	7609
Dibromochloromethane	EPA 8260	< 0.5	ug/L	7573
Dibromochloromethane	EPA 8260	< 0.5	ug/L	7609
Dibromomethane	EPA 8260	< 0.5	ug/L	7573
Dibromomethane	EPA 8260	< 0.5	ug/L	7609
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	7573
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	7609
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L	7573
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L	7609
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L	7573
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L	7609
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	7573
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	7609
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	7573
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	7609
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	7573
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	7609
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	7573
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	7609
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	7573
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	7609
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	7573

Quality Control Results

Page 23

Order No.: P2379

Laboratory Reagent Blank (continued)

				*
Analyte	Method	Result	Units	Batch
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	7609
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	7573
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	7609
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	7573
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	7609
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	7573
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	7609
Isopropylbenzene	EPA 8260	< 0.5	ug/L	7573
Isopropylbenzene	EPA 8260	< 0.5	ug/L	7609
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	7573
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	7609
Methylene Chloride	EPA 8260	< 5	ug/L	7573
Methylene Chloride	EPA 8260	< 5	ug/L	7609
Naphthalene	EPA 8260	< 5	ug/L	7573
Naphthalene	EPA 8260	< 5	ug/L	7609
n-Propylbenzene	EPA 8260	< 0.5	ug/L	7573
n-Propylbenzene	EPA 8260	< 0.5	ug/L	7609
Styrene	EPA 8260	< 0.5	ug/L	7573
Styrene	EPA 8260	< 0.5	ug/L	7609
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	7573
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	7609
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	7573
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	7609
Tetrachloroethene	EPA 8260	< 0.5	ug/L	7573
Tetrachloroethene	EPA 8260	< 0.5	ug/L	7609
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	7573
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	7609
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	7573
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	7609
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	7573
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	7609
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	7573
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	7609
Trichloroethene	EPA 8260	< 0.5	ug/L	7573
Trichloroethene	EPA 8260	< 0.5	ug/L	7609
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	7573
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	7609
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	7573
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	7609
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	7573
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	7609
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	7573
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	7609
Vinyl Chloride	EPA 8260	< 0.5	ug/L	7573
,	2.7. 3200	. 0.5	~9/ L	,,,,

Quality Control Results

Page 24

Order No.: P2379

Laboratory Reagent Blank (continued)

Analyte	Method	Resul t	Units	Batch
Vinyl Chloride	EPA 8260	< 0.5	ug/L	7609
Lead, Dissolved	EPA 6020	< 0.004	mg/L	7381

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
TPH as Diesel	EPA 8015/LUFT	81%	5.0	mg/L	50 - 150	7802
TPH as Diesel, SGT	EPA 8015/LUFT	64%	5.0	mg/L	50 - 150	7803
TPH as Gasoline	EPA 8015/LUFT	72%	0.5	mg/L	60 - 140	7458
Benzene	EPA 8260	100%	10	ug/L	80 - 115	7573
Benzene	EPA 8260	90%	10	ug/L	80 - 115	7609
Toluene	EPA 8260	99%	10	ug/L	82 - 115	7573
Toluene	EPA 8260	96%	10	ug/L	82 - 115	7609
Chlorobenzene	EPA 8260	102%	10	ug/L	81 - 115	7573
Chlorobenzene	EPA 8260	101%	10	ug/L	81 - 115	7609
1,1-Dichloroethene	EPA 8260	117%	10	ug/L	63 - 129	7573
1,1-Dichloroethene	EPA 8260	91%	10	ug/L	63 - 129	7609
Trichloroethene	EPA 8260	100%	10	ug/L	77 - 117	7573
Trichloroethene	EPA 8260	98%	10	ug/L	77 - 117	7609
Lead, Dissolved	EPA 6020	97%	0.2	mg/L	75 - 125	7381

Matrix Spike/Matrix Spike Duplicates

		MS	MSD	Matrix	Spike			RPD	
Analyte	Method	Rec.	Rec.	RPD Sample	Amount	Units	Recovery Limits	Limit	Batch
TPH as Diesel	EPA 8015/LUFT	78%	73%	6 08-C6418	5.0	mg/L	50 - 150	30	7802
TPH as Diesel, SGT	EPA 8015/LUFT	58%	62%	7 08-c6418	5.0	mg/L	50 - 150	30	7803
TPH as Gasoline	EPA 8015/LUFT	78%	104%	29 08-C6416	0.5	mg/L	60 - 140	30	7458
Benzene	EPA 8260	91%	92%	1 08-c6408	10	ug/L	80 - 122	20	7573
Toluene	EPA 8260	88%	89%	1 08-C6408	10	ug/L	79 - 125	20	7573
Lead, Dissolved	EPA 6020	103%	103%	0 08-C6414	0.1	mg/L	75 - 125	20	7381

Sample Duplicate

Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD	Limit	Batch	
Ethylbenzene	EPA 8260	08-C6610	74	72	3	ug/L		20.	7609	

Surrogate Report

Sample Number	Batch	n Me	thod		Surrogate	% Recovery	QC Limits
08-c6413	7609	P EP	A 8260		Dibromofluoromethane	104.	81-123
08-c6413	7609		A 8260		Toluene-d8	96.	78-116
08-c6413	7609) EP	A 8260		4-BFB	94.	60-116
08-C6413	7802	EP.	A 8015M	(C12-C40)	Hexacosane	86.	50-150
08-C6413	7458			(Gasoline)	a,a,a-Trifluorotoluene	106	50-150
08-C6413	7609	EP.	A 8260		1,2-Dichloroethane-d4	108	70-130
08-C6413	7803	EP.	A 8015M	(C12-C40)	Hexacosane.Silica Gel	71.	50-150
08-C6414	7802	EP.	A 8015M	(C12-C40)	Hexacosane	79.	50-150
08-C6414	7803	EP	A 8015M	(C12-C40)	Hexacosane.Silica Gel	67.	50-150
08-C6415	7573	EP	A 8260		Dibromofluoromethane	99.	81-123
08-c6415	7573	EP	A 8260		Toluene-d8	97.	78-116
08-c6415	7573	EP/	A 8260		4-BFB	94.	60-116
08-c6415	7802	EP/	A 8015M	(C12-C40)	Hexacosane	86.	50-150
08-C6415	7458	EP/	8015M	(Gasoline)	a,a,a-Trifluorotoluene	104.	50-150
08-c6415	7573	EP#	8260		1,2-Dichloroethane-d4	104.	70-130
08-C6415	7803	EP/	8015M	(C12-C40)	Hexacosane Silica Gel	73.	50-150
08-C6416	7573	EP#	8260		Dibromofluoromethane	100.	81-123
08-C6416	7573	EP#	8260		Toluene-d8	97.	78-116
08-C6416	7573	EPA	8260		4-BFB	95.	60-116
08-C6416	7802	EPA	8015M	(C12-C40)	Hexacosane	85.	50-150
08-C6416	7458	EPA	8015M	(Gasoline)	a,a,a-Trifluorotoluene	103.	50-150
08-C6416	7573	EPA	8260		1,2-Dichloroethane-d4	100.	70-130
08-C6416	7803	EPA	8015M	(C12-C40)	Hexacosane.Silica Gel	65.	50-150
08-c6417	7573	EPA	8260		Dibromofluoromethane	100.	81-123
08-c6417	7573	EPA	8260		Toluene-d8	96.	78-116
08-c6417	7573	EPA	8260		4-BFB	91.	60-116
08-c6417	7802	EPA	8015M	(C12-C40)	Hexacosane	86.	50-150
08-C6417	7458		. 8015M	(Gasoline)	a,a,a-Trifluorotoluene	106.	50-150
08-C6417	7573		8260		1,2-Dichloroethane-d4	100.	70-130
08-C6417	7803			(C12-C40)	Hexacosane.Silica Gel	60.	50-150
08-C6418	7573		8260		Dibromofluoromethane	100.	81-123
08-C6418	7573		8260		Toluene-d8	92.	78-116
08-C6418	7573		8260		4-BFB	81.	60-116
08-C6418	7802			(C12-C40)	Hexacosane	83.	50-150
08-C6418	7458			(Gasoline)	a,a,a-Trifluorotoluene	105.	50-150
08-C6418	7573		8260		1,2-Dichloroethane-d4	98.	70-130
08-C6418	7803			(C12-C40)	Hexacosane.Silica Gel	64.	50-150
08-C6419	7802			(C12-C40)	Hexacosane	85.	50-150
08-c6419	7803			(C12-C40)	Hexacosane.Silica Gel	61.	50-150
08-C6420	7573		8260		Dibromofluoromethane	102.	81-123
08-c6420	7573		8260		Toluene-d8	97.	78-116
08-c6420	7573		8260		4-BFB	97.	60-116
08-C6420	7573		8260		1,2-Dichloroethane-d4	104.	70-130
blank blank	7573		8260		Dibromofluoromethane		81-123
blank .ce	7609		8260		Dibromofluoromethane		81-123
LCS	7573	EPA	8260		Dibromofluoromethane	99.	81-123

Surrogate Report

Sample Number	Batch	Method	Surrogate	% Recovery	QC Limits
LCS	7609	EPA 8260	Dibromofluoromethane	98.	81-123
08-C6408 MS	7573	EPA 8260	Dibromofluoromethane	99.	81-123
08-C6408 MSD	7573	EPA 8260	Dibromofluoromethane	99	81-123
blank	7573	EPA 8260	Toluene-d8	96.	78-116
blank	7609	EPA 8260	Toluene-d8	95.	78-116
LCS	7573	EPA 8260	Toluene-d8	98.	78-116
LCS	7609	EPA 8260	Toluene-d8	96.	78-116
08-C6408 MS	7573	EPA 8260	Toluene-d8	99	78-116
08-C6408 MSD	7573	EPA 8260	Toluene-d8	99.	78-116
blank	7573	EPA 8260	4-BFB	101.	60-116
blank	7609	EPA 8260	4-BFB	99	60-116
LCS	7573	EPA 8260	4-BFB	101.	60-116
LCS	7609	EPA 8260	4-BFB	98.	60-116
08-C6408 MS	7573	EPA 8260	4-BFB	98.	60-116
08-C6408 MSD	7573	EPA 8260	4-BFB	99.	60-116
blank	7802	EPA 8015M (C12-C4	40) Hexacosane	90.	50-150
LCS	7802	EPA 8015M (C12-C4	40) Hexacosane	93.	50-150
08-C6418 MS	7802	EPA 8015M (C12-C4	40) Hexacosane	90.	50-150
08-C6418 MSD	7802	EPA 8015M (C12-C4	(0) Hexacosane	79.	50-150
blank	7458	EPA 8015M (Gasoli	ine) a,a,a-Trifluorotoluene	97.	50-150
LCS	7458	EPA 8015M (Gasoli	ine) a,a,a-Trifluorotoluene	99.	50-150
08-C6416 MS	7458	EPA 8015M (Gasoli	ine) a,a,a-Trifluorotoluene	110.	50-150
08-C6416 MSD	7458	EPA 8015M (Gasoli	ne) a,a,a-Trifluorotoluene	125.	50-150
blank	7573	EPA 8260	1,2-Dichloroethane-d4	103.	70-130
blank	7609	EPA 8260	1,2-Dichloroethane-d4	108.	70-130
LCS	7573	EPA 8260	1,2-Dichloroethane-d4	98.	70-130
LCS	7609	EPA 8260	1,2-Dichloroethane-d4	100.	70-130
08-C6408 MS	7573	EPA 8260	1,2-Dichloroethane-d4	92.	70-130
08-C6408 MSD	7573	EPA 8260	1,2-Dichloroethane-d4	93.	70-130
blank	7803	EPA 8015M (C12-C4	0) Hexacosane Silica Gel	68.	50-150
LCS	7803	EPA 8015M (C12-C4	0) Hexacosane.Silica Gel	70.	50-150
08-C6418 MS	7803	EPA 8015M (C12-C4	0) Hexacosane.Silica Gel	62.	50-150
08-C6418 MSD	7803	EPA 8015M (C12-C4	0) Hexacosane.Silica Gel	59.	50-150