

RECEIVED

2:40 pm, Dec 31, 2007

Alameda County Environmental Health Environmental Services Site Remediation 3400 Crow Canyon Road San Ramon, CA 94583

December 20, 2007

Mr. Jerry Wickham Alameda County Environmental Health Department Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject: Transmittal of Semiannual Groundwater Monitoring Report, November 2007

Sampling Event, Pacific Gas and Electric Company, Oakland General

Construction Yard, 4930 Coliseum Way, Oakland, California

Dear Mr. Wickham:

Attached is the Semiannual Groundwater Monitoring Report, November 2007 Sampling Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, dated December 2007. PG&E has retained ENTRIX, Inc., and Geomatrix Consultants, Inc. to perform groundwater monitoring and other technical studies at the subject site. The attached report was prepared by Innovative Technical Solutions, Inc., with review by Geomatrix.

Should you have technical questions pertaining to this report, you may contact Jonathan Skaggs of Geomatrix at 510.663.4104. For any other questions or requests pertaining to the regulatory case at the subject site, please contact me at 925.866.5888.

Sincerely,

Robert Saur

Environmental Geologist

cc: Margarita Khavul, PG&E

SEMIANNUAL GROUNDWATER MONITORING REPORT

November 2007 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared For:

Pacific Gas and Electric Company 3400 Crow Canyon Road San Ramon, CA 94583

Prepared By:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

December 2007 ITSI Project No: 07037.0018

SEMIANNUAL GROUNDWATER MONITORING REPORT

November 2007 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

This report was prepared by the staff of Innovative Technical Solutions, Inc., under the supervision of the Geologist(s) and/or Engineer(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Prepared By:

Charles Comstock, P.G., C.E.G.

Senior Geologist

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100

Walnut Creek, CA 94598

December 2007

ITSI Project No. 07037.0018

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description	1
3.0	Site History	1
4.0	Groundwater Monitoring Activities	2
5.0	Groundwater Monitoring Results	3
6.0	Conclusions	4
	References	

 $_{OakNov07_jms.doc}$ Page i

LIST OF FIGURES

Figure No.	<u>Title</u>
1	Vicinity Maps
2	Site Plan
3	Groundwater Elevation Contours (November 6, 2007)
4	Groundwater Analytical Results (November 6, 2007)

LIST OF TABLES

Table No.	<u>Title</u>
1	Summary of Groundwater Elevation Data
2	Summary of Groundwater Analytical Results (November 6, 2007)

LIST OF APPENDICES

Appendix A	Historical Groundwater Analytical Results
Appendix B	Field Procedures for Low-Flow Purging and Sampling
Appendix C	Groundwater Purging and Sampling Logs
Appendix D	Laboratory Analytical Reports and Chain-of-Custody Documentation

ACRONYMS AND ABBREVIATIONS

ACHCSA Alameda County Health Care Services Agency

AST above-ground storage tank bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes EPA U.S. Environmental Protection Agency ITSI Innovative Technical Solutions, Inc.

LC/LCSD laboratory control/laboratory control duplicate

MCL maximum contaminant level mg/kg milligrams per kilogram µg/l micrograms per liter

MS/MSD matrix spike and matrix spike duplicate

msl mean sea level

MTBE methyl tertiary butyl ether

PG&E Pacific Gas and Electric Company

RL reporting limit

RPD relative percent difference TPH total petroleum hydrocarbons

TPHd total petroleum hydrocarbons quantified as diesel total petroleum hydrocarbons quantified as gasoline TPHmo total petroleum hydrocarbons quantified as motor oil

UST underground storage tank VOC(s) volatile organic compound(s)

1.0 INTRODUCTION

This report presents the results of semiannual groundwater monitoring completed on November 6, 2007, at the Pacific Gas and Electric Company (PG&E) General Construction Yard located at 4930 Coliseum Way in Oakland, California (the site, Figure 1). The groundwater monitoring program includes the following activities: (1) measuring groundwater elevations; (2) collecting groundwater samples from monitoring wells on site; and (3) performing laboratory analyses of the samples. The program objective is to monitor the distribution of select fuel-related compounds, volatile organic compounds (VOCs), and dissolved lead in shallow groundwater beneath the site. The following sections summarize the site description, site background, groundwater monitoring activities, and analytical results of samples collected on November 6, 2007. Previous analytical results are summarized in Appendix A.

2.0 SITE DESCRIPTION

The site consists of approximately 4 acres and is operated as a storage yard for equipment and vehicles (Figure 2). The surrounding area is primarily commercial and light industrial. The site is bounded by Coliseum Way to the south, 50th Avenue to the southeast and commercial properties to the north (Figure 1).

3.0 SITE HISTORY

The following summarizes previous environmental activities associated with the site:

- **January 1988** Five underground storage tanks (USTs) and associated piping located in the northern and eastern portions of the site were removed (Figure 2). Four of the former USTs were located in a cluster in the northern portion of the site (former UST cluster). Two of these USTs reportedly contained heavy oil and two contained mineral spirits (PG&E, 1988). The fifth former UST was located near the west corner of the yard and reportedly contained diesel fuel.
- April 1988 Installation of groundwater monitoring wells OW-1 through OW-4
- May 1990 One natural gas, above ground storage tank (AST) was removed from the central portion of the site (Figure 2).
- **November and December 1991 -** Approximately 2,000 cubic yards of soil were excavated to a depth of approximately 8 to 8 ½ feet below ground surface (bgs) as a remedial action for the petroleum hydrocarbons identified in the soil in the vicinity of the

former UST cluster. Groundwater monitoring wells OW-6 and OW-7 were installed, and well OW-3 was abandoned. The concentrations of TPHd and oil and grease in the soil samples collected along the site boundaries during soil excavation activities were greater than soil cleanup target levels, while concentrations of TPHd and oil and grease in each of the remaining confirmatory samples were less than the cleanup target levels. Oil was visible in the soils in the northeast wall of the excavation along the property line, and a pipe that contained a similar petroleum product was also exposed in the northeastern wall of the excavation. The conclusions of the February 1992 *Site Remediation and Closure Report, Former Tank Cluster Area* prepared by Earth Technology Corporation suggested that off-site sources of petroleum hydrocarbons may exist in both the northeast and northwest directions (ETC, 1992).

- **December 1991** Installation of groundwater monitoring wells OW-5 through OW-7.
- **September and October 1992** An asphaltic concrete cap was constructed on lead-affected surface soil in the vicinity of the former natural gas AST. Lead, believed to have originated from lead-based paint chips generated from sandblasting of the former natural gas AST, was found in soil samples collected from this area.
- **February 1993** Groundwater monitoring well OW-8 was installed in the southern area of the yard near the location of the former natural gas AST to monitor lead concentrations in the groundwater.
- **July 1994** Groundwater sampling frequency reduced from quarterly to a semiannual basis.

4.0 GROUNDWATER MONITORING ACTIVITIES

Blaine Tech Services, Inc. performed the groundwater monitoring event on November 6, 2007. Groundwater sampling was performed using low-flow purging and sampling methods in accordance with the Low-Flow Purging and Sampling Protocol (Appendix B). Depth to groundwater measurements were collected from OW-1, OW-2, OW-4, OW-5, OW-6, OW-7, and OW-8, and were recorded in the Groundwater Purging and Sampling Logs (Appendix C). The groundwater elevation measurements were used to prepare a groundwater elevation map to determine the direction and magnitude of the groundwater gradient. Purge water generated during the groundwater monitoring activities was temporarily stored on site in 55-gallon steel drums pending disposal.

Groundwater samples were collected from OW-1, OW-2, OW-4, OW-5, OW-6, OW-7, and OW-8 in laboratory supplied containers. The samples were shipped on ice to Creek Environmental Laboratories, Inc., of San Luis Obispo, California, a State of California certified laboratory, for

analysis under chain-of-custody protocol. Samples from the monitoring wells were analyzed for the following:

- Total petroleum hydrocarbons quantified as gasoline (TPHg), TPH quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U. S. Environmental Protection Agency (EPA) Method 8015B;
- Total petroleum hydrocarbons quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U. S. Environmental Protection Agency (EPA) Method 8015B with the silca gel cleanup method;
- Dissolved lead using EPA Method 6010B; and
- VOCs using EPA Method 8260B.

Appendix D includes the laboratory analytical reports and chain-of-custody documentation.

All analyses were performed within the holding times specified by the EPA, except as noted in the laboratory case narrative. (The samples collected from wells OW-5, OW-6, and OW-7 and for the field blank exceeded hold times by one day for VOC analysis due to lab equipment malfunction.) None of the tested analytes were detected in the field blank or laboratory reagent blank. The surrogate recoveries were within the laboratory acceptance limits. Recoveries of matrix spike/matrix spike duplicate (MS/MSD) were within the laboratory acceptance limits. The relative percent differences (RPD) were within the laboratory acceptance limits.

5.0 GROUNDWATER MONITORING RESULTS

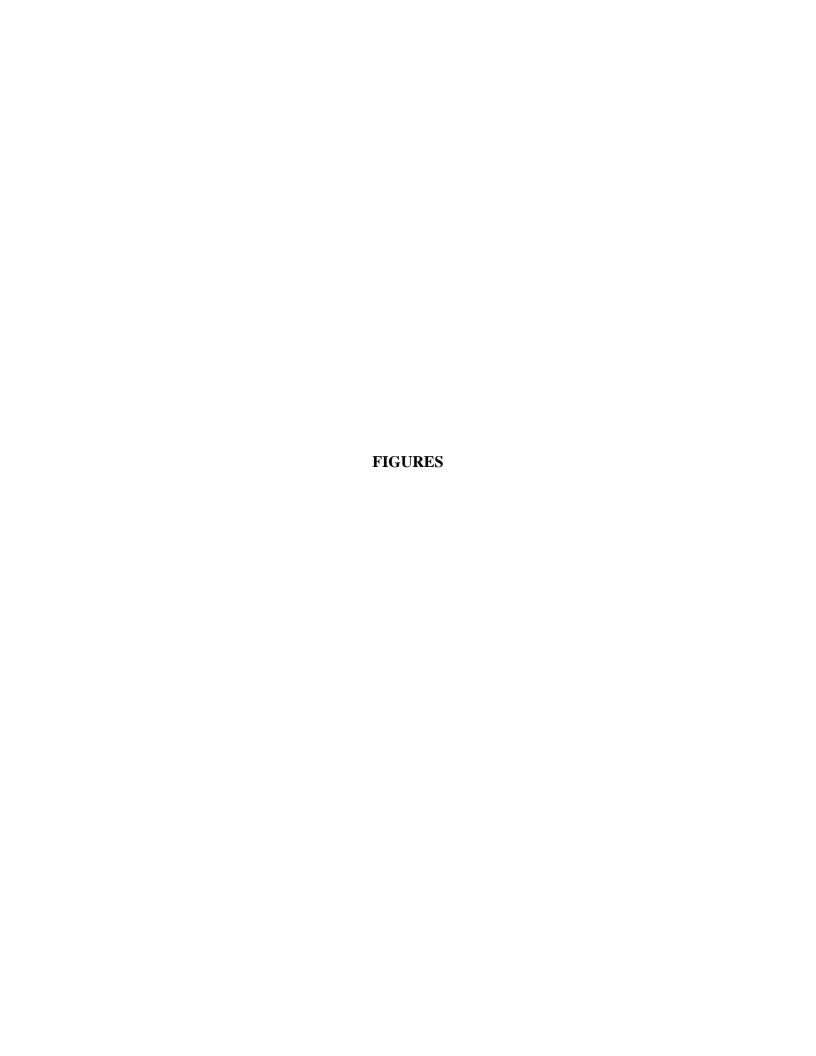
Groundwater level measurements collected during the November 6, 2007, monitoring event indicate that depth to water ranged from 3.46 to 6.67 feet below the top of casing. Based on these groundwater level measurements, the predominant groundwater flow direction was towards the south with an approximate hydraulic gradient of 0.003 ft/ft. Table 1 summarizes the depth to water measurements and groundwater elevation data. Figure 3 shows the groundwater elevation map.

Laboratory analytical results for the groundwater samples collected from the seven monitoring wells sampled during the November 6, 2007, monitoring event indicate the following:

- TPHg was detected in samples collected from three wells (OW-1, OW-5 and OW-7) sampled at the site. TPHg concentrations ranged from 50 to 250 µg/l. The highest concentration of 250 µg/l was found in OW-7, located in the northern portion of the property.
- TPHd was detected in samples collected from the seven wells sampled at the Site; however, after silica cleanup was performed, TPHd was not detected in any samples collected. TPHd concentrations in samples without silica gel cleanup ranged from 140 μg/l to 400 μg/l.
- TPHmo was detected in sanples collected from the five wells sampled at the Site; however, after silica cleanup was performed, TPHmo was not detected in any samples collected. TPHmo concentrations in samples without silica gel cleanup ranged from 100 µg/l to 500 µg/l.
- Dissolved lead was not detected above the laboratory method reporting limit of 8 μg/l.
- With the exception of a benzene detection of 6.8 µg/l at OW-5; benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE were not detected above the laboratory method reporting limit in the samples collected from the site.
- VOCs were detected in samples collected from OW-1, OW-5, OW-6, and OW-7. The highest concentrations of VOCs were found in the sample collected from well OW-7, located in the northeastern (upgradient) portion of the property.

Table 2 summarizes the laboratory analytical results. Figure 4 presents the results of the November 6, 2007, sampling event.

6.0 CONCLUSIONS

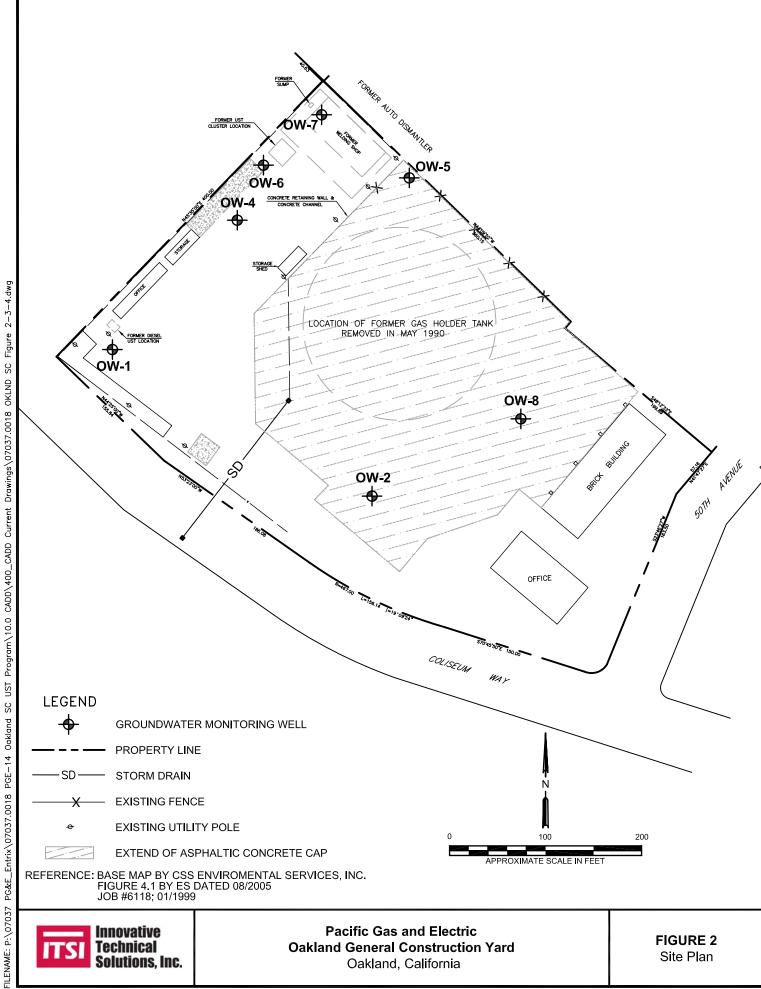

The direction of groundwater flow is generally consistent with the results of previous monitoring events, however groundwater elevations are generally lower and gradient magnitude is considerably less. Overall, the analytical results of the November 6, 2007, groundwater monitoring event are consistent with the results of previous groundwater monitoring events.

7.0 REFERENCES

CSS Environmental Services, Inc., 2005, Semi-Annual Groundwater Monitoring Report, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, September 2.

Earth Technology Corporation (ETC), 1992, Site Remediation and Closure Report Former Tank Cluster Area, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, February.

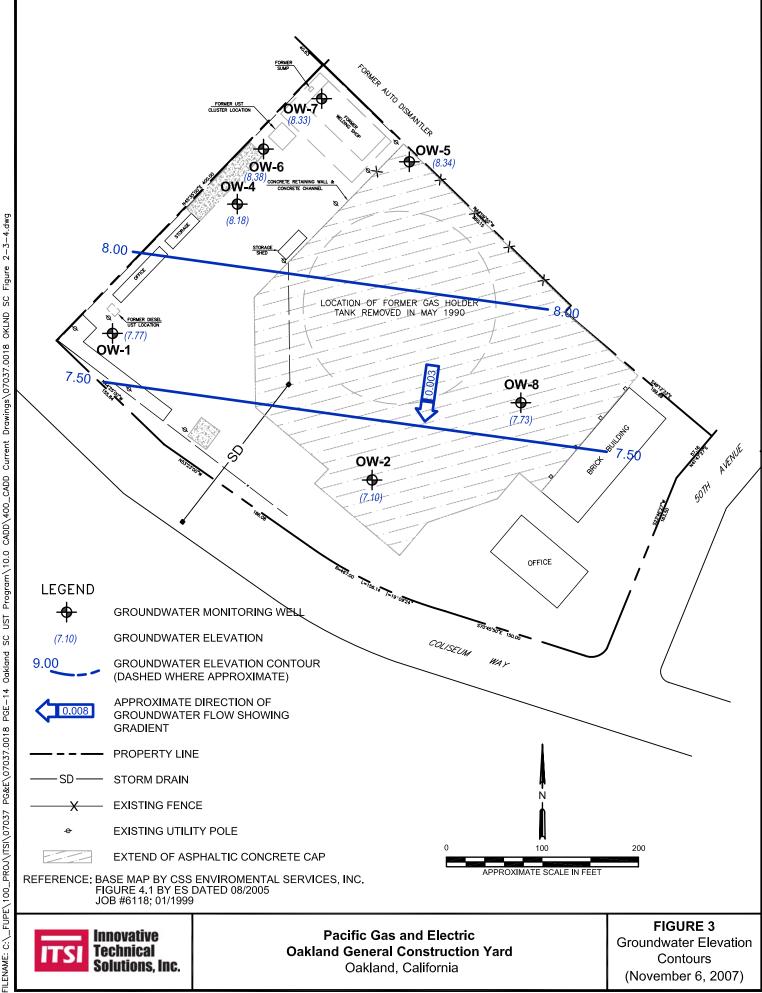
Pacific Gas and Electric Company (PG&E), 1988, Underground Tanks Investigation, PG&E General Construction Yard, 4930 Coliseum Way, Oakland, California, July.


Figure

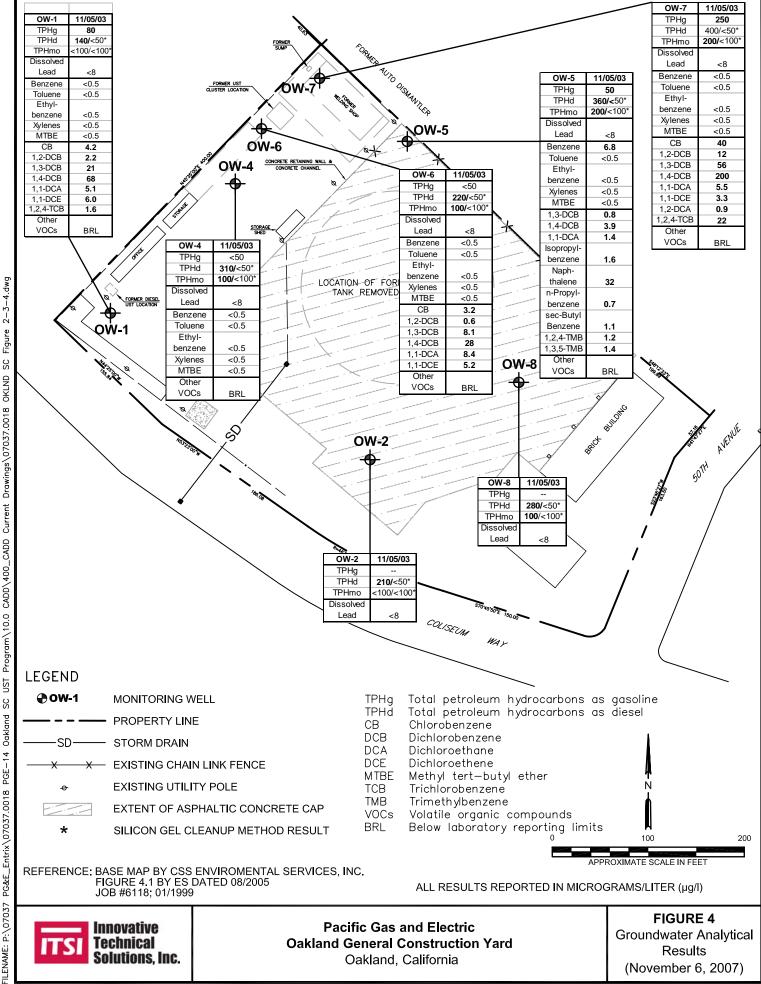
Program\10.0 CADD\400_CADD Current Drawings\07037.0018 OKLND SC

UST

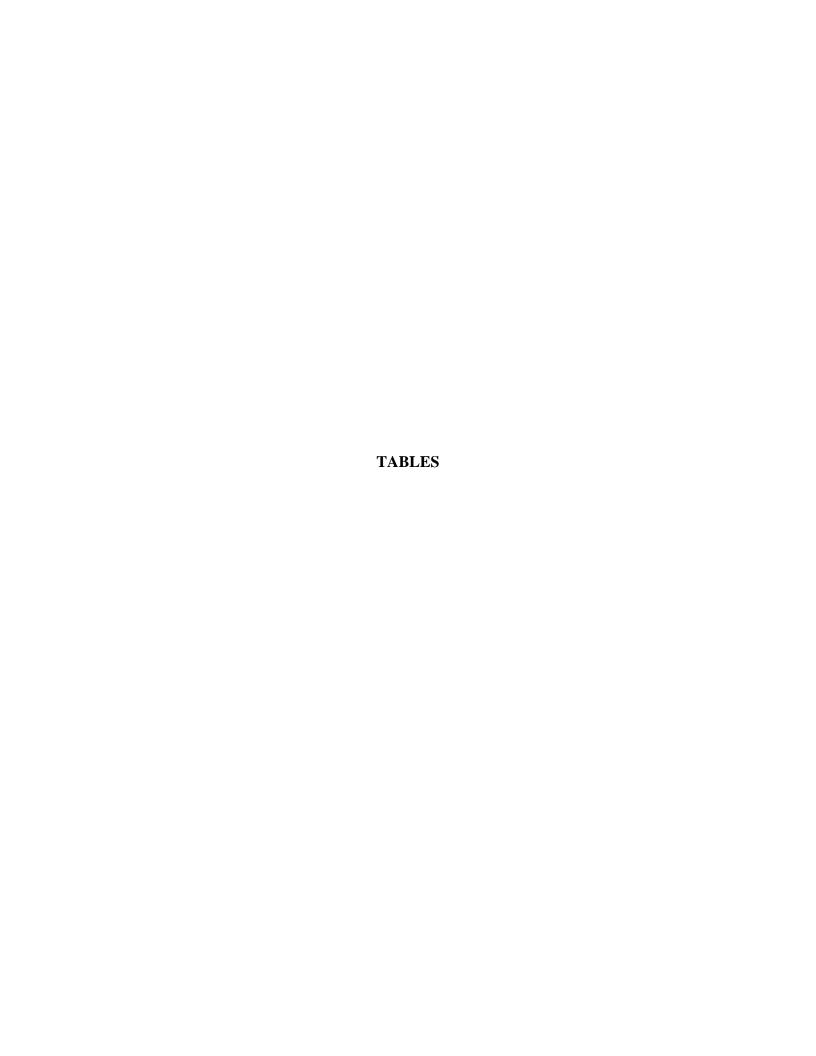
SC


FILENAME: P:\07037 PG&E_Entrix\07037.0018 PG&E Oakland

Oakland General Construction Yard Oakland, California


FIGURE 2 Site Plan

Oakland General Construction Yard Oakland, California


Contours (November 6, 2007)

Innovative Technical Solutions. Inc.

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

Groundwater Analytical Results (November 6, 2007)

TABLE 1 Summary of Groundwater Elevation Data

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

Well Number	Sample Date	TOC Elevation (feet MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet above MSL)
OW-1 OW-2 OW-4 OW-5 OW-6 OW-7 OW-8	11/6/2007 11/6/2007 11/6/2007 11/6/2007 11/6/2007 11/6/2007	11.82 11.24 12.82 13.24 13.61 15.00 11.19	4.05 4.14 4.64 4.90 5.23 6.67 3.46	7.77 7.10 8.18 8.34 8.38 8.33 7.73

Notes:

TOC = top of casing

MSL = Mean Sea Level

bgs = below ground surface

NM = Not measured. Well was not found/un-accessible due to storage container.

TOC elevation data were referenced from Figure 4.2-Historical Groundwater Elevations, (Semi-Annual Groundwater Monitoring Report, September 2,

2005, CSS Environmental Services, Inc.).

Table 2 Summary of Groundwater Analytical Results (November 6, 2007)

Pacific Gas and Electric Oakland General Construction Yard
Oakland, California

			roleum Hyd lethod 801	drocarbons 5M	Dissolved Lead Method 6010B								Vola	tile Organi	ic Compoun	ds-Method	8260B								
Sample Name	Sample Date	TPHg µg/L	TPHd μg/L	TPHmo μg/L	μg/L	Benzene µg/L	Toluene μg/L	Ethyl- benzene µg/L	Xylenes µg/L	Isopropyl- benzene µg/L	-	MTBE ΄ μg/L	I,2,3-TCB μg/L	1,2,4-TCB µg/L	1,3,5-TMB μg/L	1,2-DCA μg/L	1,2-DCB µg/L	1,3-DCB µg/L	1,4-DCB μg/L	β CB μg/L	1,1,1-TCA ′ µg/L	1,1-DCA µg/L	1,1-DCE µg/L	VC μg/L	Other VOCs µg/L
OW-1	11/06/07	80	140/ <50*	<100/<100*	<8	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	1.6	<0.5	<0.5	2.2	21	68	4.2	<0.5	5.1	6.0	<0.5	ND
OW-2	11/06/07		210 /<50*	<100/<100*	<8																				
OW-4	11/06/07	<50	310/ <50*	100/ <100*	<8	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	ND
OW-5	11/06/07	50	360/ <50*	200/ <100*	<8	6.8	< 0.5	< 0.5	< 0.5	1.6	32	<0.5	< 0.5	1.2	1.4	< 0.5	< 0.5	0.8	3.9	< 0.5	<0.5	1.4	< 0.5	< 0.5	(1)
OW-6	11/06/07	<50	220/ <50*	100/ <100*	<8	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	0.6	8.1	28	3.2	< 0.5	8.4	5.2	< 0.5	ND
OW-7	11/06/07	250	400/ <50*	200/ <100*	<8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	22	< 0.5	0.9	12	56	200	40	< 0.5	5.5	3.3	< 0.5	ND
OW-8	11/06/07		280/ <50*	100/ <100*	<8																				
FIELD BLANK	11/06/07				<8	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Notes:

(1) =Sec-butyl Benzene detected at 1.1 μ g/L and n-Propylbenzene detected at 0.7 μ g/L

μg/L = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.

-- = Not analyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,2-DCA = 1,2-Dichloroethane

1,1-DCA = 1,1-Dichloroethane 1,1-DCE = 1,1-Dichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene

1,2,4-TCB = 1,2,4-Trichlorobenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene VC = Vinyl Chloride

* = TPHd/TPHmo analyzed using silica gel cleanup

APPENDIX A

Historical Groundwater Analytical Results

Table A1 Summary of Historical Groundwater Analytical Results for TPH, Dissolved Lead, and PAHs December 2005 to Present

Pacific Gas and Electric Oakland General Construction Yard
Oakland, California

	ĺ				Dissolved										
					Lead										
		Tatal Dat			Method										
				drocarbons	6010B			Dalaman	-l A		l M	-411 007	00 014		
		- '	Method 801	ISIVI	00100	2-Methyl		Polynu	clear Aron	natic Hydro	carbons-M	etnoa 827	OC - SIN		
						2-Methyl Naph-	A	Acenap-	Anthra-	Fluoran-		Naph-	Phenan-		Other
Sample	Sample	TPHq	TPHd	TPHmo		thalene		thylene		thene	Fluorene	thalene	threne	Pyrene	PAHs
Name	Date	μg/l	μg/l	μg/l	μg/l	µg/L	thene µg/L	µg/L	cene µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L
OW-1	12/20/05	53 ¹	390 ²	470J		μg/ <u>-</u>	μg/ <u>-</u>	μg/ <u>-</u>	μ <u>g</u> /∟	μg/ <u>-</u>	μg/ -	μg/ <u>-</u>	μg/ -	μg/ <u>-</u>	μg/∟
OW-1	12/20/05	<50	200	4703	-						-				
OW-1	04/12/07	<50	110	200	<4					-					
OW-1	11/06/07	80		<100/<100*	<8										
OW-2	12/20/05	<20	200 ²	610	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-2	12/20/05		200		<20		<0.2	<0.2						<0.2 	
OW-2	04/12/07	<50	120	300	<4					-					
OW-2	11/06/07		210 /<50*	<100/<100*	<8										
OW-4	11/06/07	<50	310/ <50*	100/ <100*	<8										
OW-5	12/20/05	33 ³	300 ²	610	<3	0.96	0.31	0.26	0.24	0.70	0.67	13	0.13J	1.4	ND
OW-5	12/20/06	90	300		<20										
OW-5	04/12/07	<50	180	500	<4										
OW-5	11/06/07	50	360/ <50*	200/ <100*	<8										
OW-6	12/20/05	<20	440 ²	760	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-6	12/20/06	<50	<100												
OW-6	04/12/07	<50	160	400	<4										
OW-6	11/06/07	<50	220/ <50*	100/ <100*	<8										
OW-7	12/20/05	330 ¹	510 ^{2,4}	860	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-7	12/20/06	<50	400												
OW-7	04/12/07	<50	210	400	<4										
OW-7	11/06/07	250	400/ <50*	200/ <100*	<8										
OW-8	12/20/05	<20	250 ²	690	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-8	12/20/06				<20										
OW-8	04/12/07	<50	150	400	<4										
OW-8	11/06/07		280/ <50*	100/ <100*	<8										
FIELD															
BLANK	12/20/05	<20	<50	<500	<3	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	ND
FIELD															
BLANK	12/20/06				<20										
FIELD															
BLANK	04/12/07				<4			-	-						
FIELD															
BLANK	11/06/07				<8			-							

Notes

OW-4 could not be sampled because a shipping container is located on the well.

TPH = Total petroleum hydrocarbons

TPHg = Total petroleum hydrocarbons quantified as gasoline

TPHd = Total petroleum hydrocarbons quantified as diesel

TPHmo = Total petroleum hydrocarbons quantified as motor oil

PAH = Polynuclear aromatic hydrocarbons

 μ g/I = Micrograms per liter.

- < = Not detected at or above the practical quantitation limit.
- -- = Not analyzed
- ND = Not detected
- J = Estimated result. Result is less than the practical quantitation limit.
- (1) = The laboratory notes that the chromatogram is mainly a dominant peak(s) which is not indicative of petroleum hydrocarbons.
- (2) = The laboratory notes that the chromatogram is mainly higher boiling hydrocarbons such as asphaltene, waste oil, motor oil, weathered diesel, and hydraulic fluid.
- (3) = The laboratory notes that the chromatogram includes higher boiling hydrocarbons such as diesel
- (4) = The laboratory notes that the chromatogram contains a recognizable contaminant peak(s) that has been removed from quantitation.

Table A2 Summary of Historical Groundwater Analytical Results for VOCs December 2005 to Present

Pacific Gas and Electric Oakland General Construction Yard
Oakland, California

Volatile Organic Compounds-Method 8260B

Sample Name	Sample Date	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Xylenes μg/l	1,2,4-TMB μg/l	1,3,5-TMB µg/l	4-Isopropyl- benzene µg/I		MTBE 1	,2,3-TCB μg/l	1,2,4-TCB μg/l	1,2-DCB μg/l	1,3-DCB µg/l	1,4-DCB µg/l	CB µg/l	1,1,1-TCA μg/l	TCE µg/l	1,1-DCA µg/l	1,1-DCE µg/l	VC µg/l	Other VOCs µg/l
OW-1	12/20/05	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5		0.96	<0.5	< 0.5	4.6	37	110	8.8	0.66	<0.5	7.6	8.3	< 0.5	ND
OW-1	12/20/06	< 0.5	< 0.5	< 0.5	< 0.5																	
OW-1	04/12/07	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<5	1.0	< 0.5	1.6	1.8	19	64	4.6	0.8	< 0.5	10	11	< 0.5	ND
OW-1	11/06/07	< 0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5	1.0	<0.5	1.6	2.2	21	68	4.2	<0.5	<0.5	5.1	6.0	<0.5
OW-2	12/20/05	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5		<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	< 0.5	ND
OW-2	12/20/06																					
OW-2	04/12/07	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	ND
OW-2	11/06/07																					
OW-4	11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
OW-5	12/20/05	4.4	< 0.5	< 0.5	0.56	<0.5	< 0.5	<0.5		<0.5	< 0.5	< 0.5	< 0.5	1.0	3.9	0.63	< 0.5	0.33J	2.2	0.49J	0.6	ND
OW-5	12/20/06	0.7	< 0.5	<0.5	< 0.5	3.2	1.9	0.8	50	<0.5	<0.5	< 0.5	<0.5	1.0	4.3	< 0.5	<0.5	< 0.5	2.2	0.6	<0.5	ND
OW-5	04/12/07	4.7	<0.5	<0.5	< 0.5	<0.5	<0.5	0.7	5.3	<0.5	<0.5	< 0.5	<0.5	8.0	5.0	<0.5	<0.5	< 0.5	1.6	0.6	< 0.5	ND
OW-5	11/06/07	6.8	<0.5	<0.5	<0.5	1.2	1.4	<0.5	1.6	32	<0.5	<0.5	<0.5	<0.5	0.8	3.9	<0.5	<0.5	<0.5	1.4	<0.5	< 0.5
OW-6	12/20/05	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	0.53	<0.5	<0.5	1.4	8.6	25	5.8	<0.5	<0.5	7.0	3.1	<0.5	DN
OW-6	12/20/06	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	< 0.5	1.2	11	44	3.4	< 0.5	< 0.5	8.1	4	< 0.5	ND
OW-6	04/12/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	< 0.5	0.6	6.6	22	8.1	< 0.5	< 0.5	12.0	9.6	< 0.5	ND
OW-6	11/06/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	0.6	8.1	28	3.2	<0.5	<0.5	8.4	5.2	<0.5
OW-7	12/20/05	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5		0.26J	< 0.5	< 0.5	26	190	490	84	< 0.5	0.53	7.0	6.3	0.39J	ND
OW-7	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.8	<0.5	8.0	25	21	120	330	51	<0.5	< 0.5	3.6	3.1	< 0.5	ND
OW-7	04/12/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	32	16	130	460	70	< 0.5	< 0.5	6.5	6.8	< 0.5	(1)
OW-7	11/06/07	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	< 0.5	22	12	56	200	40	< 0.5	< 0.5	5.5	3.3	< 0.5
OW-8	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<0.5	ND
OW-8	12/20/06																					
OW-8	04/12/07	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
OW-8	11/06/07																					
FIELD																						
BLANK	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	ND
FIELD																						
BLANK	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	ND
FIELD																						Ų
BLANK	04/12/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
FIELD										_												
BLANK	11/06/07	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

OW-4 could not be sampled because a shipping container is located on the well.

μg/l = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.

-- = Not analyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene

1,2,4-TCB = 1,2,4-Trichlorobenzene

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride

 $^{(1)}$ = 1,2-Dichloroethane was detected at 0.5 μ g/l

Well (C) Date	MCL ug/L		DW-1 Oct-89	OW-1 Jan-90	CW-1 Apt-90	1-WO 08-bL	OW-1 Oct-98	OW-1 Jan-91	OW-1 Apr-91	OW-1 Jul-91	OW-1 Dac-91	OW-1 Mar-92	OW-1 Jul-92	OW-1 Oct-92	OW-1 Jan-93	OW-t Apr-03	OW-1 Jul-93	OW-1 Oct-93	OW-1 Jan-84	OW-1 Jul-94	OW-1 Jun-25	OW-1 Nov-85	OW-1 Jun-96	OW-1 Oct-96	OW-1 Apr _e Jun-97	OW-1 Dec-97	149-98 149-98	OW-1 Doc-98	OW-1 Jun-99	OW-1 Nov-99
PURGEABLE HALOCARBONS																	:												b10	AN
Chloromolisuno		מא	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND ND	ND OH	ND ND	(G/)	ND	NA NA	NA NA	NA NA	AM AM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	na na	NA NA	AM AM	NA NA	NA
Bromomethana		ND	MD	ΝĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA									
Vinst chlorida	0,5	ND	村口	ND	HD	ND	ND	ND	ND	ND		ND ND	ND	מא	ND	NA	NA	NA	НA	NA	NA									
Chiarcathana		NΩ	NΩ	ND	ND	ND	ND	ND	ИD	ND	NO			ND	ND	NA.	NA.	NA	NA	NA	NΑ	NA	NA	NA	NA	NA.	NA	NA	NA ·	NA
Methylana Chlarida	5#	ND	ND	NΦ	ИÐ	ИD	ИD	ND	NA.	NΑ	NA.	NA	NA	NA	NA	NA	NA													
Trichlorofluoromethane	150	ND	ND	ND	ND	NO	ND	ИD	ND	ND	ND	NO	ND			NA.	NA.	MA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dishlersethane	6	ND	ΝD	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dichiaroethana	5	ND	5	4	4	2	2	1	2.8	4.6	ND	ИD	NO	.1	3	NA	HA	NA.	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NΑ
cis-1.2-Dichloraelnana	6	ND	ND	ND	ND	ND	ИÜ	ND	ND	MD	ND	ΝĐ	ND	ND	ND	NΑ	NA.				NA.	NA	NA.	HA	NA	NA	NA	NA	NA	NA
	10	ИD	ND	ND	ND	ND	NP	ND	ND	ND	ND	ИĎ	ND	ND	ИФ	NA	NA	NA ·	NA.	NA		NA NA	NA.	NA	N/A	NA	NA	NA	NA	NA
trans-1,2-Dichtoroothone	100#*	ND	ND	ND	ND	ND	ND	NO	ND	ND	КD	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA
Chloroform	1200	ND	ДN	ND	ND	ИĎ	ND	ND	ND	NΩ	ND	ND	ND	ND	NΦ	NA	NA	NA	NA.	NΑ	ŅĄ			NA.	NA.	NA	NA	NΑ	NA	NA
Fraori 113	0.5	ND	ND	ND	ND	ND	ND	ND	0,63	ND	NO	ND	ND	ND	ND	NA	NА	NA.	NA	AI/1	NA	NA	NA		NA	NA	NA.	ΝA	NA	NA
1,2-Dichloroethane	260	ND	ND	ND	ND	ND	140	ND	ND	NΩ	ND	NO	ND	ND	NO	NA	HΑ	NA	NA	NA	NA	NA	NA.	NA	NA NA	NA.	NA.	NΑ	NA	NA.
1,1,1-Tilchioraethane	0.5	ND	ND	ND	ND	NO	ND	HA	A/A	NA	H/A	NA.	NA	NA	NA	NA	NA NA	NA.	NA	NA.	NA	NA								
Carbon Tutrechloride	100#1	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	МA	NA	NA NA	NA.	NΑ	NA	NA	NA.							
Promedich/orotnethane	5	ND	NO	ND	ND	ND	ND	NO	ND	NO	ND	ND	ND	ND	ИD	NA	NA	NA	N/A	NA	NA	NA	NA.	NA	NA NA	NA.	NA.	NA.	NA	NA.
1,2-Dichleropropane	5***	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NA	NA.	NA NA	IA	NA	NA	NA.	NA.							
eis-1,3-Dichbropropene	5	NO	ND	ND	ΝĎ	ND	ND	ND	ND	ND.	ND	ND	ND	ИD	ND	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.
Trichloroathone	12	NO	ND.	םא	ND	NO	ИD	ND	ПD	ND	ND	NO	ИD	NΦ	ND	NA	·NA	NA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA.
1,1,2-Trichlerostrone	5	QN.	NO	ND	ND	NO	ND	ND	ND	HO	ND	ND	ND	ND	ND	NA	NA	NA	NA	HA	NA.	NA	A/s			NA.	NA	NA	NA	NA
truns-1,3-Dichleropropena Distramochleromalhane	100#"	ND	ND	ND	ND	NÞ	ND	NO	ND	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA						
	Inh	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИФ	ИÜ	NΑ	NA	NA	NA	ΝA	NA	NA			NA NA	NA.	NA	NA	16A	NA.
2-Chloroothylvinyl Ethor Bromoform	100#*	NO) D	ND	ND	ND	ND	1(0	ND	ND	ИĐ	ND	ND	ИĐ	NO	MA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.	NA.	NA	AM	NA
Teirechkrasthens	5	ND	ND	ND	ND	NΩ	ND	ND	1.1	ND	ND	MD	ND	ND	ИD	NA	NA	MV	NA	NA	NA	NA	NA NA	NA NA	NA	NA.	NA.	NA	NA	NA.
1,1,2,2-Totrachloroethane	ī	NO	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ΚD	ND	ND	NA		NA NA	ΝA	NA.	NA	NA	NA	AM						
Chlorobenzena	30	ND	ND	ND	NO	NO	ND	ND	ND	מא	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlorobanzone	50	NA.	NA	1	4	4	1	3	1.6	2,9	ND	ND	ND	ND	ND	KA	NA	NA	NA	NA	NA		NA NA	NA NA	NA.	NA.	NA	AVA	NA	NA
1.2-Dichterobenzeno	600#	NA.	NA	ND	ND	ND	ND	ND	0,58	ND	ND	ИD	ND	ИD	ИD	NA	ИA	NA	НA	NA	NA	NA			NA.	NA.	NA	NA.	NA	NA.
1,4-Dichiarabonzeno	5	4	11	5	13	11	6	3	6.7	14	3.2	ND	4	3	3	NA	ИA	NA	NA	NA.	NA	NA	NA	NA	1975	ריוו	140			
1*e-Dictionanguages	-	•	•••																											
PURGEABLE AROMATICS '																						LUD.	NO	ND	ND	0.66	ND	0.5	0.55	NO
Banzons	1	ND	NÞ	3.2	ИD	NO	ND	340	NA	ND	NA	ND	ND	NA Na	ND QN	ND	ND CM	ND	ND D	0.67	140	ND	NO							
Toluane	1960#	ND	ND	2.3	0,4	NO	ND	ND	ND	ND	ND	ИD	0,7	ND	ND	NA	ND	NΑ	ND	ND	NA NA	ND	ND	ND	ND	2.3	ND	0.70	NO	ND
Ethylpanzana	580	ND	ND	ND	NO	NO	ND	ND	ND	NΠ	ND	ИD	2	ИD	0.0	NA	ND	NA	ND	ND		ND	ND	ND	מא	1.1	ND	0.67	ND	0.59
Total Xylenes	1750**		ND	2.6	2.4	ND	ND	ND	ND	ВN	ΝĐ	3.2	Ġ	1.7	1.9	NA.	ND:	NA_	2,5	NO	NA.	NA	NA-	- NA	- NA	4.08	0.67	1.03	0.55	0.59
TOTAL VOCE	11.20	4	16	18,1	23.8	17	9	7	13,41	215	1,2	3.2	15.7	5.7	8,5	NA.	-7VA	, NA	2,5	NA.	··· NA	1/4	. NA	100	100	4,00	2.27		-,	
HYDROCARBONS																														
									618	NA	NA	100	120	< 50	70	NA	NA	NA	80	60	400	230	500	830	590	420	850	650	1109	990
TVH-g		NA	NA	< 50	82	< 50	< 50	< 500	NA - ann	< 50	1650	3100	3500	1000	2000	NA	2300	NA.	1000	1500	740	1000	2300	1400	1500	700	1960	1800	1300	540
TEPH-d `		< 1000			300	200	200	90	< 200	< 5000				NA.	NA	1(A	NA	NA .	NA	NA	NA.	NA	NA							
OLG		< 5000		NA	NA.	NA	NA FRA	NA - FORC	NA 4 EAR				NA.	NA NA	NA.	NA	NA.	NA	NA	NA	NA.	NA.	NA							
TPH (418.1)		NA	NА	< 5000	< 500D	< 5000	< 5000	< 5000	< 500	NA	NA	NA	1200	110	(***	17/1			••••	,			•							•
METALS																														
Lead	a	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	NA	NA	AM.	NA	AM	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

1) MCL - Maximum Centaminant Loyel in drinking water (State MCL if not noted otherwise)

2) # = EPA MCL

3) * = MCL for sum of four compounds

4) ** = MCL for sum of all sylens kanners

5) ** = MCL (or sum of starts - and dis-1,3-dichloropropens

6) NC = Not Delected at or above MCL

7) Purgeable Histocathors (EPA method 8010)

8) Purgeable Aramates (EPA method 8020)

9) NA = Not Analyzed or analyzis not required

10) £17702 Samples analyzed for VOCs out of holding time due to laboratory error

Well ID Dato	OW-1 Jun-60	OW-1 Nav-00	OV#1 Jun-01	OW-1 Nov-01	OW-1 Jun-02	OW-1 Oct-02	OW-1 Apr-03	OV#-1 Nov-03	OV/-1 Jun-04
PURGEABLE HALDCARBONS		÷							
	NA	NA.	NA	NA	NA	HA	NA	NA	NA
Chloremelhane	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA
Bramamothano Vinyi chlorida	AK	NA	ΝA	NA	NA	NA	NA	NA	NA
Only crionica Chlorosthana	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Mathylane Chlorida	NA	NA	NA	NA	NA	НA	NA	NA	NA
Trichlorofluoromethane	NA	HA	NA	NA	NA	NA	NA	NA NA	NA NA
1.1-Dichloroelhens	NA	NA	NA	NA	ALA	NA NA	NA NA	NA NA	NA.
1,1-Dichlorpothana	NA	NA.	NA NA	NA NA	PLA NA	NA.	NA	NA.	NA.
cls-1,2-Dichlorusihans	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA	NA	NA
irans-1,2-Dichiorpolhena	NA NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA
Chloreform Freen 113	NA NA	NA.	NA	ΝA	NA	NA	NA	NA	NA
1.2-Dichtoroothane	NA.	NA	NA	NA	NA	NA	NA	НA	NA
1.1.1-Trichiorosthana	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Tehnchlotide	NA	NA.	ΝA	ΝA	NA	NA	NA	NA	AM AM
Bromedichleremolhans	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.
1,2-Dichieropropana	NA	NA	NA	NA NA.	NA NA	NA NA	NA.	NA.	NA
cts-1,3-Dichleropropena	NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	NA '
Trichiorosihene	NA NA	NA NA	NA.	NA.	NA.	NA	NA	NA	NA
1,1,2-Trichiprosthans	AM	NA NA	NA.	NA.	NA	NA	NA	NA	NA
trans-1,5-Dichloropropana Dibromochloromethena	NA.	NA	NA	NA	NA	NA	NA	AM.	NA
2-Chloroethylylnyl Ether	NA	NA	NA	12A	NA	NA	NA	NA	AM
Bromoferm	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachleroothene	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
1,1,2,2-Teirnchlorsothune	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Chlorobonzone	AM	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.
1,3-Dichlorobenzene	NA	NA.	NA,	HA NA	AN AN	NA NA	NA.	NA.	NA
1,2-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA	NA
1.4-Dichlerobenzene	NA	IVA	רעו				,		
PURGEABLE AROMATICS									
Benzena	ND	ND	NO	ND	OM	ND	NĐ	ND	ND
Toluene	ND	ND	HD	ND	ND	ND	NΩ	ND	ND ND
Elhylbenzeng	ND	ND	ИD	ND	ND	ND	DM GM	ND	ND ND
Total Xylenes	ND	ND	3,4	ND	ND NA	ND NA	NA.	NA.	
TOTAL VOCE	NA	ΙA	3,4	NA	AA	144	140	(47.	****
HYDROCARBONS									
	680	820	480	630	540	770	380	310	290
TVH-g TEPH-d	350	250	740	270	870	500	460	470	420
OAG	NA	NA	NA	NA	NA	NA	NA	NА	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	t#A	NA
METALS									
Lood	. NA	NA	NA	NA	AM	NA	NA	MA	NA
Notes: 1) MCL = Maximum Contembra: 2) # = EPA MCL 3) *= MCL for sum of four comp 4) *= #60L for sum of #B kylone 5) **= MCL for sum of #B kylone 5) NO = N6 Detected at or abov 7) Purgeable Adjocations (EPA 8) Purgeable Helpocations (EPA 8) NA = N6 Analyzad or analysi 10) #17/02 Somples analyzed i	i lanners nd cis-1,3- re MDL method 602 s not requ	Dichleropi 1010) 10s di Bred	opens opens						
*** = ***= * ***** = ** * ****									

Clif ullerab

Wall ID Date	MCL vg/L	OW-2 Apr-88		0W-2 0W-2	OW-2 Apr-90	7-WO 08-lut	OW-2 ೧ದ-90		OW-2 Apr-81	OW-2	0W-2 Dec-91	OW-2 Mar-92	OW-2 Jul-82	DCI-92	OW-2 Jan-93	OW-2 Apt-63	ንካት 33 OM-S	OW-2 Oct-93	OW-2- Jan-94	OW-2 Apr-94	OW-2 Jul-84	OW-2 Jun-95	OW-2 Nov-95		Oct-98	OVV-2 Apr _r Jun-87	OW-2 Dec-97	OW-2 Jun-98	OW-2 Dec-98	59-nut	
PURGEABLE HALOCARBONS																					•		414	A10 :	NA	NA.	NΑ	NA	NA	NA.	NA
Chioromethane		ИD	ND	ND	ND	ND	NO	ND	ND	ND ND	סא מא	ND ND	ND ND	NID CIM	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	AN AN	na Na	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA
Bramamathena		ND	ИD	SID	ND	ND	ND	ND	NO	ND	ИD	ND	ND	ИD	ND	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl chiaddo	0.5	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	150	NA	NA	NA	NA	NA
Chlorosthane		ND	ND	ND	ИО	ND	ND	ND	ND QN	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Mathylena Chloride	5#	ND	ND	ND	ND	ND	NO	ND	110	ND	NB	ND	ND	ND	ND	NA	NA	HA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.
Trichierollucromethano	150	ND	ND	ΝD	ND	ND	ND	ND	MD	ND	ND	ND	ND ·	ND	NP	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	AH	A34	NA	NA	NA	NA
1.1-Dichleroethene	£	ŊD	ИD	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	НA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
1,1-Dichloroothans	5	ND	ND	ND	140	ND	ND	ND (ND	ND	NO	ND	ND	ND	ND	ND	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA
cis-1,2-Dichloreathana	6	NA	ND	ND	ND	ND	ND UN	KD	ND	ND	NO	NO	ND	ND	ND	NA	NA	NA	NA	A/A	NA	NA	NΑ	NΑ	Alt	NA	AM	NA	NA	NA	NA.
trans-1,2-Dichloroethene	10	ND	ND,	ND	ND	ND ND	ND	ND	NO	ND	ND	ND	NP	ND	ND	NA	NA	NA	NA	NA	NA	NA.	MA	NA	NA	NA	NA	NA	NA	NA	NA.
Chloroform	100#	ND	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NΑ	NA	NA	NA,	NA	NA	NA	NA.	NA	NA	NA NA
Freen 113	1200	NA	ND	HD	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	MA	NA	NA	NA	NA	- NA	NΑ	NA	NA	NA	NA.	NA	NA	NA	NA NA	NA NA
1,2-Dichlorpolhune	0,5	ND	ND	ND	ND ND	110	ND	ND	ND	ND	ND	CM	ND	ND	ND	NA	NA	NA	NA	Alf	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,1,1-Trizhlurosthane	200	ΝĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	CM	ND	ND	ND	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	НA	NA	NA	NA	NA NA	AM	NA NA
Carban Tetrachleride	0.5	NO	ND ON	ND	ND	ND	םא	ND	ND	N20	ND	NO	ND	ND	ND	NA	NA	NΑ	MA	NA	NA	NA	NA	NA	NA	N/A	NA	NA NA	NA.	HA	NA NA
Bromodichloromethens	100#1	OM OM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	NA	AM.	NA	NA	NA	NA	NA	NA	HA	NA	NA.	NA	NA NA	NA NA	NA.	NA NA
1,2-DisMorepropens	5 5***	ND	NO	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA.
els-1,3-Dichloropropene	5	иD	ND	ND	ND	ND.	ND	NO	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA NA	NA AN	NA.	NA	AM	NA
Trichloroethene	32	ND	ND	ND	ND	HD	ND	ND	ND	NO	ND	ND	ND	ND	ND	NA	NΑ	MA	NA	NA	NA	NA	NA	NA	NA	AM AM	NA NA	NA.	NA	NA	NA
1.1.2-Trichleroethans	5***	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NΑ	NA	MA	NA	NA	NA	NA	NA	NA.	NA	NA NA	NA.	NΑ	NA	NA	NA
trans-1,3-Dichleropropeno	100#'	ND	ND	ND	ΝĎ	ND	ND	ND	ND	ND	OM	ND	ND	NO	ND -	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA.	NA.	NA	NA	NA	NA
Dibromochloromethane	100#	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ΝĎ	ΝD	NA	NA	NA	NA	NA	ΝA	NA :	NA	NA	NA.	NA.	NA	NA	NA	NA	NA
2-Chteroethytvinyl Ether Bromeform	100#*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA.	NA	NA.	NA.	NA
Tel:pchiprosthene	5	ND	ND	ИD	ND	ND	ND	ND	0.53	ND	ND	MD	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	na Na	NA.	NA.	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachieroethone	1	ND	ND	ND	ND	NÞ	ND	ND	ND	ND	ND	ND	NΩ	ND	NO	NA	NA.	NA	NA	NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NA
Chlorobenzane	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ΝD	ИD	NA	NA	NA	NA	NA	NA.	NA Alr	NA.	NA.	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlerabenzene		NA	NA.	ND	NO	ND	ND	KΒ	ND	ИΦ	ND	מא	NO	ND	ND	NA	NA	PIA,	NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA.	NA	NA
1.2-Dichiprobenzana	600#	NA	NA	ND	ИÐ	ИD	NO	ND	ND	ND	ΝD	ND	NO	ND	ND	NA	NA.	NA NA	NΑ	NA.	NA	NA.	AN	NA	NA	NA.	NA	NA	NA	MA	NA
1,4-Dichlorebenzena	5	NA	AM	ND	ND	NO	ND	ИФ	ND	ND	ND	ND	MD	ND	ИĐ	NA	NA.	104	~~	101	,,	,,,				•					
PURGEABLE AROMATICS																															
					ND	ND	ИÐ	ND	ND	ND	ND	1.4	ND	ND	ND	NA	NA	NA	NA	NA.	ŅA	NA	NA	NA	NA	NA	NA	NA	AL9	NA.	NA NA
Benzona	1	ND	.ND	0.4	0.6	ON CM	ND	ND CM	ND	ND	. ND	NP	ND	NO	ND	NA	NA	NA	NA	NA	ŅΑ	HA	NA	NA	NA	HA	NA	NA	NA	NA	NA
Taluuns	1000#	ND	ΩN QN	ND	O,U CIA	ND	ND	ND	ND	ND	ND	ND	ND	NΩ	ND	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Elbyibenzona	daq	ND	ND	Q.4	0.6	ND	ND	ND	HD	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA.	NA.	NA.	NA.	NA.
Total Xylones	1750**	· NA		1.2	1,4	- NA	NA	NA.	0.53	NA NA	NA.	1.4	NA	AJY.	NA	" NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA -	NA.	NA.	·· NA	IVA
TOTAL VOC		· NA	NA	1.2	*,7		,		_,																					•	
HYDROCARBONS																					410		NA	NA.	NA	NA	NA	NA	NA	NΑ	NA
TVH-α		NA	NA	< 50	< 50	< 50	< 50	< 50	NA	NA	NA	< 50	< 50	< 50	< 50	NA	NA.	NA	NA	NA	NA Na	NA NA	NA NA	NA.	NA.	NA.	NA	NA	NA	NA	NA
TEPH-d		< 1000			140	68	90	< 50	< 200	< 50	650	870	410	410	020	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	ΝA	NA	NA.	NA	NA	NA.
CAG		18000		NA	NA	NA	HA	NA	HA	< 5000			NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.	MA	NA.	NA.	NA	NA	NA.	NA	NA
TPH (415,1)		NA	NA	< 5000	< 5000	< 5000	< 5000	< 5000	< 500	NA	NA	HA	NA	NA	NA	NA	ΝA	NА	NA	(VA	less?	not.	1476	44.5	17/4						
• " •																															
METALS																				NC		ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
Lead	ū	NA	NA	NA	NA	NA	NA	NA	ИD	NA	NA	ND	ND	ND	ND	ND	ИП	ИД	۵	ND	4.1	ND	NU	KD	1412	,,,,					•

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted observése.)

2) #= EPA MCL

3) *= MCL for sum of all sylene isomers.

5) *** = MCL for sum of all sylene isomers.

5) *** = MCL for sum of all sylene isomers.

6) MD = Not Detacted at or above MOL.

7) Purgeable Matocarbors (EPA method 8020).

9) Purgeable Acomatics (EPA method 8020).

9) NA = Not Analyzed or analysis not required.

10) 6/17/02 Samples analyzed for VOCs out of holding time due to Isboratory error.

nte URGEABLE HALOCARBONS Nioramethana Ternemathana		OW-Z Nov-00	Ç₩-2 Jun-01	OW-2 Nov-01	OVV-2 Jun-02	OW-2 Oct-02	GW-2 Apr-03	CW-2 Nov-03	OVV 2 Jun-04
hioromethene									
totoprofitana	NA	NA	NA	NA	NA	NA	NA	М	NA
	NA,	NA	NA	NA	NA	NA	NA	NA NA	NA NA
inyl chloride	NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
hioroethana	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA
lethylane Chionde	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA.	NA
anequaniminani	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	NA
1-Dichloraethene	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	HA	NA
,1-Dichleroethane	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA
s-1,2-Dichlorosihene ans-1,2-Dichloroelhone	NA.	NA	NA.	NA.	NA	- NA	NA	NA	AM
hioroform	NA	NA	NA	NA	NA	NA	NA	NA.	NА
roon 113	NA	NA	NA	NA	NA	NA	NA	NA	NΑ
.2-Dichleroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Trichtoraethane	NA	NA	NA	N/A	NA	NA	NA	NA.	NA
arbon Tetrachloride	NA	NД	NΑ	NA	NA	NA.	NA	ИA	NA
romodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	.NA
2-Dichloropropens	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
5-1,3-Dichioropropona	MA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
Hohlarcethene	NA	NA	NA	NA NA	AN AN	NA NA	NA.	NA.	NA
,1,2-Trichlercathana	AM AM	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	ΝA
ans-1,3-Dichloropropens	NA AN	NA NA	NA	NA	NA.	NA	NA	NA	NA
iltramechleromethane -Chiomathylvinyl Ether	NA.	NA	NA.	NA	AN	NA	NA	NA	HA
romatam Iromatam	NA	NA	NA	NA	NA	NA	NA	NA	NA
'atrachicroethana	NA	NA.	NA	NA	NA	NA	NA	NA	NA
1,2,2-Tetrochicronihana	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Membenzene	NA	NA	NA	NA.	NA	NA	NA	NA	NA
,3-Dichlorebanzone	NA	NA	NA	NΑ	NA	NA	NA	₽₽	NA
2-Dichlorobenzene	NA	NA	NA	NA.	NA	NA	NA	NA	NA
.4-Dichlorobenzeno	NA	NA	NA	NA	AM	NA	AK	AM	NA
PURGEABLE AROMATICS									
ienzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ไดโนซทล	NA	NA	NA	M	NA	HA	NA	NA	NA
Shylbenzena	NA	NA	1174	NA	NA	NA	NA	NA	NA
fotal Xylenes	NA.	NA	NA	NA.	NA_	NA.	NA	NA	NA NA
OTAL VOCs	NA	·····NA	NA	NA	NA	ΝA	NA	NA	NA
MOROCARBONS									
VH-α	NA	NA	NA	NA	NA	NA	NA	NA	NA.
EPH-d	NA	NA	NA	NA	NA	NA.	NΑ	ИA	N.A.
DAG	NA	NA	NA	NA	NA	NA	NA	НA	NA
PH (415.1)	NA	NA	NA	NA	NA	ŀΙΔ	NA	NA	NA
METALS		ND	ND	ND	ИD	ND	NO	ND	NO

Weil ID Date	MCL ug/L	OW-4 Jun-58	0W-4 0ಜ-89	OW-4 Jan-90	DW-4 Apr-90	701-80	DW-4 Oct-98	F-WO 76-naL		OW-4 Jul-191	OW-4 Dac-91	OW-4 Mar-92	OW-4 Jы-52	OW-4 Oct-92	GW-4 Jan-93	OW-4 Apr-93	OW-4 Jul-93	CW-4 Oct-93	OW-4 Jan-94	DV/-4 Jul-94	OW-4 Jun-95	OW-4 Nov-95	OW-4 Jun-96	0W-4 0d-95	OW-4 Apr.Jun-97	OW-4 Dec-97	0W-4 Jul-98		DW-4 Jun-99	CW-4 Nov-89	OVY-4 Jun-00	DW-4 Nov-00		DW-4 Nov-01
PURGEABLE HALOGARBONS																		414		414	214	ыя	NA	NΔ	NA	NA	NA.	NA	NA	ΝΆ	NA	NA	NA	NA
Chloromethano Bromamethano Vinyi chloride Chloroshano Methyleno Chloride Trichloroshano 1,1-Dichloroshano 1,1-Dichloroshano 1,1-Dichloroshano is-1,2-Dichloroshano chloroshano 1,1-Tichloroshano 1,1,1-Tichloroshano 1,1,1-Tichloroshano 1,1,1-Tichloroshano 1,2-Dichloroshano 1,2-Dichloroshano 1,2-Dichloroshano 1,2-Dichloroshano 1,1,2-Tichloroshano 1	0.5 5# 150 6 5 10 100# 1200 0.5 200 0.5 5 100# 5 100# 100# 5	55555555555555555555555555555555555555	555555555555555555555555555555555	99556666666666666666666666666666666666	35555555555555555555555555555555555555	999999999999999999999999999999999999999	999999999989898999999999999999999999999	££\$\$\$£\$ n £\$£££££££\$\$\$\$ £££\$	25255555555555555555555555555555555555	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	555555555555555555555555555555555555555	222222222222222222222222222222222222222	55555545555555555555555555555555555555	25555545555555555555555555555555555555	22222222222222222222222222222222222222	NA AA A	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	NA	NA AA A	NA A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	NA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	N N N N N N N N N N N N N N N N N N N	NA AA A	NA	NA N	NA	NA A A A A A A A A A A A A A A A A A A	NA	NA	NA AA A	NA A A A A A A A A A A A A A A A A A A	NA NA NA NA NA NA NA NA NA NA NA NA NA N
1.1.2.2-Totrachleroelhane Chlorobenzona 1.3-Dichlerobenzona 1.2-Dichlerobenzona 1.4-Dichlerobenzona	1 30 800# 5	50 50 50 50 50 50 50	20 20 20 20 20 20 20	55 57 57 57 57 57 57	ND 014 014 014	25 55 55 55 55 55 55 55 55 55 55 55 55 55	ND ND ND ND	50 50 50 50 50 50 50	ND ND ND ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 25 25 25 25 25 25	70 70 70 70 70	7D 7D 7D 7D	70 70 70 70 70	66888	25 25 25 25 25 25 25 25 25	25 25 25 25 25 25 25	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	AA AA AA AA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	AM AM AM	NA NA NA	NA NA NA NA	NA NA NA NA
PURGEABLE AROMATICS Bunzens Teluens Ethylbenzene Total Xylenes TOTAL VOCE	1 1000# 680 1750**	DIA DIA DIA DIA AA	014 014 014 014 014	ND ND ND 0.6	0.5 0.8 0.3 2	ND ND ND ND	010 010 010 AM	ND ND ND ND ND	0.50 0.50 0.50	ND ND ND ND	00 00 00 00 00	ND ND ND 0,7	ND ND ND ND	ND ND ND ND	ND ND ND ON	NA HA NA NA	NA NA NA NA	AIA AIA AIA AIA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	70 70 70 70 70	ND ND ND ND	CIN CIN CIN CIN AIA	74 04 04 04 04	AN AN AN AN	AM AM AM AM	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	AM AM AM AM
HYDROCARBONS TVH-9 TEPH-4 OAG TPH (416.1)		NA ▼ 1090 ▼ 5000 NA		<50 150 NA < 5000	<50 210 NA < 5000	<50 150 NA < 5000	<50 150 NA < 5000	<50 <50 NA < 5000	NA 540 NA < 500	NA < 50 < 5000 NA	NA 2000 < 5000 NA	<50 2100 <5000 NA	< 50 620 NA NA	4 50 1300 1300 AA AA	< 50 2100 NA NA	na Na Na Na	NA 1500 NA NA	NA NA HA NA	HA NA NA NA	NA NA NA NA	AM 000at AM AM	AN 003 AN AN	11A 1100 NA NA	NO 840 NA NA	ND 980 NA NA	OM AM AM AM	1000 1000 NA NA	NA NA NA NA	AN AN AN	NA NA NA HA	NA NA NA	NA NA NA	MA MA MA NA	AA AA AA
METALS Lund	0	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	5	ND	ND	NΑ	ND	NA	ΝA	NA	NA	NA	NA	NA	Na	NА	NA	NA	NA	NA	ΝA	NA	NA	AM

Notes:

¹⁾ MCL = Mazimum Contaminant Level in drinking water (State MCL if not noted otherwise)

^{2) # =} EPA MCL

^{2) \$ =} EPA MCL
3) *- MCL for sum of four campounds
4) *-- MCL for sum of all xylene isomers
5) **-- MCL for sum of trans- and dis-1,3-Dichloropropens
6) ND = Not Detected at or above MDL
7) Purgoable Halocarbons (EPA method 5010)
8) Purgoable Aromatics (EPA method 5020)
9) NA = Not Analyzed or analysis not required
10) 6/17/02 Samples analysed for VCCs out of holding time due to laboratory smar

Wall ID	MCL	OW-5 Apr-91	Φ₩-5 Jul-81			OW-5 Jul-92		OW-5 Jen-93	OW-5	0VV-5	OVV-5	OW-5 Apr-94	OW-5	OW-5 Jun-95	CW-5 Nov95	0VV-\$ Jun-95	OW-5 Dct-96	OW-5 Apr.Jun-97	OW-5	OW-5 Jun-98	OW-5 Dec-85	OW-5	OV-5 Nov-98	OW-5 Jun-00	OW-5 Nov-00	OW-5 Jun-01	OW-5 Nav-01	OW-5 Jun-02	OW-5	DW-5 Apr-03	OW-5 Apr-03	CW-S Jun-04
Duto	ug/L	А рс-и і	JUPET	Cocrat	1941-9&	SUMBE	50.32	2M1-0-3	DOI-30	20,-23	enil est	Library		0_1,0_	(45752																	
PURGEABLE HALOCARBONS																								LIP.	410	ND	ND	ND	ND	ND	ND	ND
Chloromothens		ND	ND ND	ND	ND	ᄱ	ND CM	ND DN	ᄻ	NA AN	ND	NA NA	ND	ND ON	ND ND	ND DN	ND CN	ND ND	ND ND	ND	ND	ND ND	Q14 Q14	ND	NO	ND ND	ᅄ	ND	NO	ND	ND	ND
Bromomethana		ND	ND	ND	ND	NO.	ND	ND	ND	NA.	סא	NA	ND	ИĎ	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	NO	ND	ND	ND	ND	ND	0.55	ND
Vlayi chloride Chlorouthugo	0,5	ND	ND	ND	ND	NO	ND CIN	ND	ND	NA.	ND	NA	ND	ND	ND	ND	ND	ND	ND	NED	ND	ND	ND	ND	ND	ND	ИÐ	ND	ND	ND	ND	ND
	58	ND	ND	סא	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	67	NB	ďИ	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ΝĐ	NO	ND	ND	ND
Methylene Chlorida	150	ND	ND	ND	ND	ND	NO	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NĐ	ND	ND	ND	ND	ND
Trichlorefluoremethane 1,1-Dichloroethene	6	ND	ND	ND	ND	NO	ND	ND	ND	NA	ND	NA	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
1.1-Dichloroothane	5	1.8	7.2	ND	4	п	13	5	15	AM	2	NA	4	3.2	7.9	2.5	0.9	5.3	2.9	1	2.5	3	2.5	2.2	2.6	1.4	2.7	1.1	2.4	2.4	2,4	2.8
cis-1,2-Dichlemethana	8	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	NO	ND	ND	ND	ND	NΦ	ND	ND
trans-1,2-Dichiprootheng	10	ND	ND	ND	ND	ND	ND	ND	ΝĐ	NA	ND	NA	ND	NP	ND	ND	ND	ND	ND	ND	NΦ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110
Chloroform	100#	ND	ND	מא	ND	ND	ND	ND	GN	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	NΩ	ND	ND	ND	ND	ИD	ND	ND	ND	ND	NO	ND	ĦР
Freen 113	1200	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND
1.2-Dichlomothese	0.5	ИD	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	NO	NEO	ND	ND	ND	ND	ND	ND	NO	ND	ND	ΝD	NΩ	ND	ΝD	ND	ND	ND
1.1.1-Trichtomothene	200	6	20	15	12	25	28	7	7	NA	2	NA	3	1.3	2,1	ND	1.3	ND	ND	ND	ND	NO	ND	ИD	ΝĐ	ND	ИD	ИD	ΝD	ND	ND	ND
Carbon Tetrachleride	0.5	ND	ND	ND	ΝĐ	ND	ND	ND	ND	NA	ND	NA	NO	ND	ND	ND	ND	CM	ND	ND	ND	NO	ND	NO	ΝĎ	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	100#*	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NB	ND	ND	NΦ	ИD	NĐ	ND	ND	ND	ND	ND	ND	ND	NO	NO	ND	ИВ	ND	ND	HD
1.2-Dichloropropenu	5	ND	ND	ND	ND	ND	ND	ND	ИÐ	NA	ND	NA	ИD	ND	ND	ND	ΝÞ	NO	ND	ND	ND	ND	ИD	ND	ND	ИD	ND	ND	ND	ND	ND	ND
cis-1,3-Dichleropropuna	5***	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	140	ND	ΝĐ	ND	ND	NB	ND	ND	NO	ND	ND	ND	ND	ND	ND	NO	ND
Trichloroethene	5	0,75	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ИД	ND	NO	MD	NΩ	ND	ND	ND	0.7	0.8	9,0	ND	0,55	0,7	ND	ND	ND	NO	ND	ND
1.1.2-Trichlorpethenu	32	NĐ	ND	ND	ND	ΝD	ND	ИD	ND	NA	ND	NA	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND	NΩ	ND	ND	HD
trans-1,3-Dichleropropene	5***	ND	NO	ND	ND	NO	ИĎ	ND	ND	WA	ND	NA	ИВ	ND	ΝD	ND	ND	NO	ND	ND	ND	NO	ND	ИD	ND	ND	ND	ND	ND	ND	ИÐ	ND
Dibromochloromethena	100#*	ND	ND	ΝD	ND	ND	, ND	ND	NĐ	NA	ND	NA	ND	ND	ND	ND	ND	ИD	ND	ио	ND	ND	ND	ИD	ND	ND	ND	ND	NO	ND	ND	ND
2-ChloroethyMnyl Ether		ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ИД	ND	ND	ND	ND	КO	NA	NA	NA	NA	NA	ND	ND	ND	ИD	ND	NO	ND	ND	ND
Bramolom	100#*	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ИD	ND	ND	ND	NO	ИD	ND	ND	ND	ND	ND	ND	ND	CM	ND	ИD	ND
Tetrachicropheno	5	0.7	ND	ND	ND	ND	ND	ND	NO	NA	ND	AN	ND	ND	ΝD	MD	ND	ND:	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ᅋ	HD	ND	ND NO
1,1,2,2-Tetrachlomathana	1	ND	ND	ΝD	ND	ND	ИD	ND	ND	NA	ND	NA	ИÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	MD MD	NO ND	ND	ND
Chlorobenzeno	30	ИD	םא	ND	ND	ND	ND	ND.	ND	NA	ND	NA	ND	ND	140	ND	ND	ND	ND	ND	םא פא	ND ON	VID VID	VD	ND ND	ND	ND	ND	CIN	NO	ND	0.55
1,3-Dichlorobenzena		ИÐ	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ΝĐ	NO	ND	ND	. ND CB/I	ND CN	ND	םא הא	ND	NO.	ΝD	ND	ND	ND	ND	ND.	ND	ND	ND
1,2-Dichlorobenzene	600#	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NO	ND DN	ND	ND	ND QN	, MD	ND ND	ND	ND	ND	NO	ND	1,0	ND	ND	ND	ND	ND	ND	1.4
1,4-Dichlorobenzona	s	ИD	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NO	NU	IATA	NO	ND	IAD	1412	NO	110	110		(40	•,0	(,,,						
PURGEABLE AROMATICS																																
Benzena	1	14	20	11	15	11	13	26	14	NA	21	NA	71		f1	15	18	3,8	15	NO	7.3	8.2	13	6,3	10	7.7	13	6.3	5,0	8.0	7,0	5.0
Totuene	1000#	0.54	ND	ND	1.1	ND	ND	ND	ND	NA.	ND	NA	ND		ND	ND	ND	ИÜ	ND	NΩ	ND	NΩ	ND	NO	ND	ND	ND	NĐ	ND	ND	ND	ND
Elhylbenzena	650	0.58	ND	ND	0.0	ND	ND	0,7	ND	NA	0.7	MA	9,0		NO	ND	ND	ND	ND	ИÐ	ИО	ИО	NO	ND	ΝD	ΝĐ	0,56	ND	ND	ND	ND	ND
Total Xylanes	1750**	5.6	4	5,0	5,1	8	3.6	13	2.4	NA	9.2	NA	1.3		ND	ND	ND	NO	2.74	N⊅	ND	ND	ND	ND	ND.	ŀΦ	ND	ND	ND	NO	NÞ	KO
TOTAL VOCs		29.97	57.2	35,0	37,5	50	57,6	51,7	29,4	NA	34.9	NA	19,9	4,5	88	17.5	20.2	9,1	20.54		11.6	12	14.4	8,5	14,35	9.6	18,28	7,4	8.4	9,3	0.65	9.75
HYDROCARBONS																																
TVH-g		NA	NA	NA	120	270	160	350	140	NA	370	NA.	110	ND	ND	ND	ND	ND	83	ND	ΝD	ND	59	ND	ИD	79	100	ND	57	58	60	60
TEPH-d		600	1500	1200	840	850	1000	1000	1800	NA	510	NA	1300	510	1600	630	670	740	830	610	780	830	B00	ND	ND	540	130	250	470	410	250	550
OLG		NA	< 5000	< 5000	< 5000	NA.	NA	NA	NA	NA	ИD	NA	ND	NA	NA.	NΑ	NA	NA	HA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)		< 500	NA	NA	NA	NA	NA	NA	NA.	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA .	NA	MA	NA	NA	NA	NA	MA	NA.
WELATS																																
Laud	0	ND	NA	NA	ND	ND	ND	ND	ND	ND	7.3	7.4	5	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NO	ND	ND

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted otherwise)

2) *= EPA MCL

3) *= IACL for sum of jour compounds

4) **= MCL for sum of all xylens isomers

5) *** a MCL for sum of all xylens isomers

6) *** in MCL for sum of sinax- and cisx1,3-Dishipropropeno

6) RIO = Not Detected at or palwork MCL

7) Purgoable Halocarbons (EPA method 8020)

8) Rough Acomatics (EPA method 8020)

9) RA = Not Analyzed or sinalysis not required

10) 6/17/02 Semples enalyzed for VOCs out of holding time due to laboratory error

Wali ID Date	MCL ug/L	OW-3	OW-3 Jun-88	Ot-89	CW-3 OB-net		6-WO 08-ML	Oct-90	GW-3 Jan-91	OW-3 Apr-B1	OW-3 Jul-91	OW-8 Dec-81	OV-8 Mar-92	OW-6 Jul-92		OW-5 Jan-93	0W-6	Dcl-83	OW-6 Jan-94	CVV-6 Jul-94	0W-8 Jun-95	OW-6 Ne⊁95	OW-5 Jun-98	Od-98	6-WO T≣-nuL,rqA	OW-6 D#≎-97	DW-6	OW-6 Dec-08	OW-5	OW-6 Ney-99
PURGEABLE HALOCARBONS																									ND	ND	ND	ND	מא	CIN
Ctiloromethene Bromamethese Vinyl chloride Chloroutano Mathylano Chloride	0.5 5#	20 20 20 20 20 20 20 20 20 20 20 20 20 2	55555	35555 56555	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	OM OM OM OM P	62 66 66 66 70 70 70 70	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	24 24 35 35 35 35 35 35 35 35 35 35 35 35 35	ND 01 01 01 01 01 01	70 70 70 70 70	ND ND ND ND	55555	22 22 22 22 22 22 22 23 23 23 23 23 23 2	5 5 5 5 5 5	555555	22 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	NA NA NA NA NA	00 00 00 00 00	20 20 20 20 20 20 20 20 20 20 20 20 20 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	100 100 100 100 100 100 100	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20	ND ND ND ND	67 67 67 67 67	5 5 5 5 5 5 5 5	40 40 40 40 40	00 00 00 00 00	ND ND ND ND
Trichlorofivoromothene 1,1-Dichlorodhene 1,1-Dichlorodhene cis-1,2-Dichlorodhene trans-1,2-Dichlorodhene	150 6 5 6 10	ND ND 4 NA ND	ND ND 5 NA 2	ND 24 ND ND	ND 20 ND ND	ND ND 14 35 ND	NO 17 NO 180	ND ND 17 1 ND	ND ND 15 1 ND	6,82 ND 15 ND NO	ND ND 41 ND 41 ND	40 40 40 40 40	1 1 1 1 1 1 1 1 1 1	ND 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	ND 2 ND	ND 10 ND ND	100 22 014 014	NA NA NA NA	7 7 ND ND	ND 17 ND ND	ND 31 ND ND	11.6 11.6 11.6 11.6 11.6	ND 10 10 ND ND	ND S.4 ND ND NO	ND 7 ND ND ND	ND 7.7 ND ND ND	00 00 00 00 00	4.5 ND ND ND	2.1 NO NO NO	3.1 ND ND ND
Chlereform Freen 113 1,2-Dichlomethane 1,1,1-Tilchlerselhane	100# 1200 0.5 200	2 NA ND ND	NA NA ND ND	ND ND NO NO	ND ND ND ND	25 25 25 25 25 25 25 25 25 25 25 25 25 2	00 00 00 00 00 00	00 00 00 00 00	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ND ND 0,55 2.5 18D	011 011 011 011	00 00 00 00 00	00 00 00 00	ND ND ND	25 25 25 25 20 20	10 10 10 10 11	ND ND ND 15 ND	AN AN AN AN	55555 5555	10 10 10 10 10	62 62 63 64 64 64	24 24 24 25 25 26 26 27 28	ND ND ND	00 00 00 00	NO NO NO NO	70 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	5 5 5 5 5 5 5 5	55 55 56 56 56 56 56 56 56 56 56 56 56 5	110 110 110	00 10 10 10 10
Carbon Tatrachtorkie Bromodichioromethane 1,2-Dichleropropene cb-1,3-Dichleropropene Trichleroethane	0.5 100# 5 5	00 03 03 03 03 03 03	ND ND ND ND	40 67 67 67 67 67 67	09 09 09 09	00 01 01 01 01 01	4D 4D 4D	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00 04 04 04	70 07 07 07 07	ND ND ND ND	014 014 024 034	00 00 00 00 00 00	5 5 5 5 5 6 5 5 5 6 5 5	25 25 25 25 25 25 25 25 25 25 25 25 25 2	22 62 63 63 63	25 0 0 0 0 0 0 0	AN AN AN AN	22 23 24 24 25	55555	20 20 20 20 20 20 20	40 40 40 40	22 23 24 25 27 27 27	20 20 20 20 20 20 20 20 20 20 20 20 20 2	00 00 00 00 00	20 20 20 20 20 20 20	55555	63 63 63 63	ND ND ND ND	ND ND ND ND ND
1,1,2-Trichleroethane trans-1,3-Dichloropropane Dibromochleromethane Dibromochlykinyl Ether Bramoform	32 5*** 100#*	110 110 110 110	02 02 03 04 04	70 07 07 07	40 40 40 40 40	70 70 70 70	22 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	2 2 2 2 2 2	22 22 20 20 20 20	ND ND ND ND ND	02 02 03 03	14D 14D 14D 14D	ND ND ND	ND ND ND ND	01 01 01 01 01	00 03 03 03	20 20 20 20 20	NA NA NA NA	6 6 6 6 6 7	ND ND ND	00 00 00 00	63 63 63 63 63	22 25 25 25 25 25 25 25 25 25 25 25 25 2	034 034 034 034 034	20 20 20 20 20	014 014 014 014	ND NO NA NO ND	ND NA ND ON	ND ND 1.1 ND	25 55 56 56 56 56
Teirschiorpathens 1,1,2,2-Teirschiorpathens Chioropanzens 1,3-Dishleropenzens	5 1 30	014 414 414 414 414	ND ND NA	ND ND NA	100 100 100	55 56 56 56 56 56 56 56 56 56 56 56 56 5	ND ND ND	ND ND ND 2	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	1.4 ND 2.3 3.3 2.3	ND ND ND ND	ND ND 5.7 15	64 64 64 64 64	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 23 24 25 25 26	NA NA NA NA	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND ND 2 ND ND	ND 4,5 11 23	ND ND ND 7.4 ND	ND 5,2 20 2,4	ND 1 10 ND	HD 4.5 25 2.1	ND 28 45 6,3	ND 9.1 30 3	ND 8.3 27 2.6	ND S.4 ND	ND 1.9 9,2 0,7
1,2-Dichlerabenzane 1,4-Dichlerabenzane	500# 5	NA Ast	.NA NA	NA NA	2	ND ND	ND	2	ì	3.1	ND	23	ND	ΝĐ	ND	ND	ND	NA	NB	ND	2.9	15	48	26	65	140	84	6ģ	19	32
PURGEABLE AROMATICS Benzens	1	ND	ND	ND	0,5	ND	ND	ND	ND	0,54	ND	ND	ĦĐ	ND	ND	ND	a.s	NA	ND	ND	ND	ND	ND	ΝD	מא	0,5	ND ND	ND	ND	ND
Tolusha Elhybanzene Total Xylanas TOTAL VOCs	1000# 689 1750**	ND ND	ND ND	ND ND 11D	0,4 ND 0,7	0.8 0.5 2.1 50.4	ND ND ND	ND ND	NO NO NO	00 00 00 18,55	ND ND	ND ND 2 51.5	ND ND	ND ND ND	ND ND ND	NO NO NO	ND 1.1 ND 42.7	NA NA NA	11D 11D 11D	HD HD 104	VD ND ND	ND ND ND 81.2	01/6 01/6	ND ND ND 42.4	ОИ ОИ ОИ В 601	ND 35 ND 261,5	ND ND 129,4	ND ND 130.7	ND ND	ND ND 44.9
HYDROCARBONS		-																												
TVH-g TEPH-d O&G TPH (418.1)		NA < 1000 < 5000 NA	NA < 1000 < 5000 NA	NA < 1000 5000 NA	< 50 440 NA < 5000	52 470 NA < 5000	< 50 450 NA < 5000	< 50 130 NA < 5000	< 50 1316 NA < 5000	NA 760 NA < 500	NA < 50 < 5000 NA	NA 5500 > 500 NA		4 50 3500 NA NA	< 50 3900 NA NA	< 50 5300 NA NA	< 50 3500 NA NA	NA NA NA NA	70 2200 NA NA	<50 2500 NA NA	ND 1300 NA NA	ND 2400 NA NA	NA 2000 61	ND 2400 NA NA	28 0021 AA AA	160 1200 NA NA	110 1300 NA NA	130 2000 NA NA	18 0001 AN AN	57 1000 NA NA
METALS Lead	. 0	NA	NA	AN	NA	N:A	NA	NA	NA	МО	NA	NA	НD	ND	ND	ND	NA	NA	АИ	NA	ΝA	NA	КA	NA	NA	NA	NA	NA	NA	NA

Notes:

1) MCL = Maximum Contominant Level in drinking water (State MCL if not noted eitherwise)
2) # = EPA MCL
3) * = MCL for sum of four compounds
4) ** = MCL for sum of all sylane isomers
5) *** = MCL for sum of trans- and clo-1,3-Dichloropropiane
6) ND = MCL for sum of trans- and clo-1,3-Dichloropropiane
6) ND = McD described at or above MDL
7) Purpasite Malocarbona (EPA method 0010)
8) Purpasite Malocarbona (EPA method 0020)
9) Purpasite Malocarbona (EPA method 0020)
9) NA = Mot Analyzed or unalysis not required
10) 8/17/02 Semples analyzed for VOCs out of holding time due to laboratory error

Well ID Date	OW-6	10W-6 Nov-00	OW-8	OW-6 Nov-01	OVV-8 Jun-02		OW-5 Apr-03	DW-6 Nov-03	OW-6 Jun-04
PURGEABLE HALOCARBONS									
f ottobatting an appart									
Chiaromethana	ND	NO	ND	ND	ΝĐ	ND	ND ND	ND	NO CM
Bromomethane	· ND	ND	ND	ND	ND	ND		ND	ND
Vinyi chloride	ND	ND	ND	ND	ND	סא	ND	ND	NO NO
Chloroethana	ND	ИО	13D	ND	ND	ИD	ИD		MD
Methylone Chloride	ND	ND	ND	ND	ND	КD.	ФИ	ND CN	ND
Trichiorofluoromethana	ND	NO	ND	ND	ND		NO	ND	1.5
1,1-Dizhleroethene	ND	ND	ND	ND 1.8	ИD	ND 1.5	1.2	2.8	4.9
1,1-Dichlorosthans	1.4	2.3	1.4		1,3	1.5 OZN	ND	ND	ND CIN
cis-1,2-Dichlaroethens	ND	ND	ΝD	ND	ND	MD MD	ND	ND	NO
trans-1,2-Dichlorosthens	NO	ND	NĐ	ND	ND DN	ND	ND	ND	ND
Chlareform	ND ND	ND ND	ND ND	עא פא	ND.	ND	ND	ND	ND
From 113	ND	엄마	ND	0.76	ND	ND	ND	ND	NO
1,2-Dichleroethane	ND ND	מא מא	ND ND	ND	ND DN	ND ND	ND	ND	ИD
1.1.1-Tilchloroetheno	ND	UN ON	מא	ND	NO	ND	NO	ND	ND
Carbon Teirschloride	MD	ND	ND	ND	ND GN	ND	ND	ND	ND
Bromodichlerorathuna	ND	ND	ND	ND	ND	ND	HD	ND	ND
1,2-Dichleropropane dis-1,3-Dichleropropane	ND	ND	ND	ND	מא	ND	ND	ND	ND
Trichlargethang	NO	ND	0.7	NO	ND	ND	ND	ND	ND
1,1,2-Trichlomethane	ND	ND	ND	NO	ND	ND	ND	ND	ND
trans-1,3-Dichloropropone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochlaromethene	ND	ND	ND	NO	ND	ND	ND	ND	NO
2-ChiorochyMnyl Ether	ND	ND	NO	מא	ND	ND	ND	ND	ND
2-Chanamywnyi amer	ND	NED	ND	ND	ND	CN	ND	ND	ND
Tatrachlorosthana	ND	ND ND	ND	NO	ND	NΩ	ND	ND	NE
1.1.2.2-Tetrachicroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlerobenzene	ND I+C	ND	ND D	ND	ND	NB	ND	2.5	6.5
1.3-Dichlerobenzene	3	2.7	ND	ND	1.1	2.0	ND	1.9	2.5
1.2-Dichlorobenzane	ИD	ND	ND	ND	ND	ND.	ND	ND	0.54
1,4-Dichierobenzene	11	10	ND	ND	5,0	7.2	3.0	7.2	8.0
	••		110	,,,,	-,-				-,-
PURGEABLE AROMATICS									
Bonzene	ND	ND	ND	ND	ND	NO	ND	ND	ND
Tolueno	ND	ND	ND	ND	ND	ИΩ	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	NO	ND	ND	ND
Total Xylenes	ND	NO	ND	ND	NO	ND	ND	ND	NO
TOTAL VOCS	15,4	15.0	2.1	2.6	7.4	19.7	4,2	14.4	33.9
HYDROCARSONS									
HYDHOGARBONS									
TVH-a	ND	ND	ND	ND	ND	ND	ND	ND	75
TEPH-d	68	ND	320	65	220	380	290	380	440
QAG	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALG									
Lend	NA.	NA	NA	NA	ΝA	NA	NA	NA	NA
Notes:									

- Notes:

 1) MCL = Maximum Contaminant Lavel in dishing water (Slate MCL If not noted otherwise)

 2) #= EPA MCL

 3) *= MCL for sum of four compounds

 4) *** = MCL for sum of all sylane is somers

 5) *** = MCL for sum of trues- and cis-1,3-Dichloropropens

 6) NO = Not Detected at or above MCL

 7) Purposhin Halocarbone (IPA melhod 8010)

 8) Purposhin Halocarbone (IPA melhod 8020)

 9) NA = Not Analyzad or analyzis not required

Well ID Date	MCL ug/L	DW-7	OW-7 Mar-92	OW-7 Jul-92	OW-7		OW-7 Apr-83	DW-7 Jul-B3	OW-7 Oct-83	OW-7 Jan-84	OW-7 Jul-94	OW-7 Jun-95	OW-7 Nav-95		OW-7	OW-7 Apr,Jun-97	OW-7 Dac-97	CW-7 Jun-98	OW-7 Doc-Pă	OW-7 Jun-99	OW-7 Nov-99	OW-7 Jun-00	0W-7 Nov-00	0W-7 Jun-01	OW-7 Nov-01	0W-7 Jun-02	OW-7 Oct-02	OW-7 Apr-03	OW-7 Nov-83	DW-7 Jยฤ-04
PURGEABLE HALOCARBON	i																													
Chieremethane Fromomethane Veryl chioride Chiereethane Methylene Chioride Trichloreethone 1,1-Dichloreethone 1,1-Dichloreethone 1,1-Dichloreethone thars-1,2-Dichloreethone Chierethone Chierethone Trans-1,2-Dichloreethone Chierethone Theore 1,2-Dichloreethone 1,2-Dichloreethane 1,2-Dichloreethane 1,1-Tifchloreethane 1,1-Tifchloreethane	0.5 5# 150 6 5 8 10 100# 1200 0.5 200 0.5	222224242222222222222222222222222222222	9222222222222222222 922222222222222222	25222222222222222222222222222222222222	£5522255525999	55555555555555555555555555555555555555	NA N		NA	5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	56555555555555555555555555555555555555	NO N	NO D D NO			ND N	22222222222222222	285252555555555555555555555555555555555	22 20 00 00 00 00 00 00 00 00 00 00 00 0	25555555555555555555	25555555555555555555	55555555555555555555	9 중 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5555555555555555555	555555555555555555555	555555555555555555555555555555555555555	555555555555555555555555555555555555555	255555555555555555555555555555555555555	252252525255555555555555555555555555555	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Carbon Tetrachiarida Democial-haramathane 1.2-Dizhloropropane cls-1.3-Dizhloropropane Trichterethene 1.1.2-Trichterethene 1.1.2-Trichterethene Obtomochloromethane 2-Chlorostrydnyl Elher Busmalerm Tetrachiarosthene 1.1.2-Z-Tetrachlerosthane Chlorobenzene 1.2-Dizhlorobenzene 1.2-Dizhlorobenzene 1.4-Dizhlorobenzene	100# 5 5 32 5 100# 100# 5 1 30	## ## ## ## ## ## ## ## ## ## ## ## ##	12	### ## ## ## ## ## ## ## ## ## ## ## ##	199	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HA NA A A A A A A A A A A A A A A A A A	ND N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 C C C C C C C C C C C C C C C C C C C	222222222238852522222233888888888888888	22222222222222 22222222222222222222222	ND N	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ND 00 ND ND NA ND ND NA ND ND NA ND ND NA ND NA ND ND NA ND	NO N	10	100 M	20 20 20 20 20 20 20 20 20 20 20 20 20 2	19 19 19 19 19 19 19 19 19 19 19 19 19 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 2 2 2 2 2 2 2 2 2 3 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22222222224 550 550 550 550 550 550 550 550 550 55	100 100 100 100 100	NO N	ND N
PURGEABLE AROMATICS Benzens Toluens Edtytheazons Total Xylones TOTAL VOCS	1 1000 880 1760	ND	0,5 0,6 ND 2,1 751.5	1 0.5 0.5 5 0.51	1.4 NO NO NO NO	074 07 07 110 120 130 130 130 130 130 130 130 130 130 13	NA NA NA NA	1.5 ND ND ND 1237.5	NA NA NA NA	1.6 ND ND 4.2 1046.0	1.2 ND ND ND 12632	<u> 661,5</u>	1,1 ND ND ND ND	ND ND ND ND	ND ND ND ND	0.56 ND ND ND ND	1.6 ND 70 1.1 1106.5	0,66 ND ND ND NO	0,65 ND ND ND NO	0.84 ON ND ND ND	0,62 ND ND ND ND	292 20 20 20 20 20 20 20 20	28.0 OM OM OM OM C8.368	909 014 014 015	00 04 04 04 04	1035	ND ND ND ND	ND ND ND ND	ND ND ND ND	NO NO NO NO 1129,7
HYDAOCARBONS TVM-I TEPH-I DAO TPH (418.1) METALS		NA 7100 < 500 NA	@ < 500	1300 2800 NA NA	1400 0000 NA NA	720 2300 NA NA	na Na Na Na	1500 4800 NA NA	NA NA NA	1400 4500 NA NA	1800 4800 NA NA	650 1500 NA NA	980 4400 NA NA	1200 4800 NA NA	1500 4800 NA NA	1100 2800 NA NA	1100 2100 NA NA	1000 2600 NA NA	1100 2500 NA NA	1200 3500 NA NA	1100 2400 NA NA	580 430 NA NA	1100 370 NA NA	1200 1100 NA NA	530 580 NA NA	1000 1000 NA NA	1360 1700 NA NA	1200 1000 NA NA	440 760 NA NA	1100 1000 NA NA
Lead	0	NA	ΝD	NO	ND	ŅD	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	HA	НA	NA	NA	NA	ŅΑ	NA	NA .

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted otherwise)

2) s = EPA MCL

3) = MCL (or sum of four compounds

4) == MCL (or sum of all sylene komon

5) == MCL (or sum of items and cts-1,3-Dichleropropene

6) ND = Not Detacted at or above MDL

7) Purgeable Helocarbons (EPA method 8010)

8) Purgeable Arematics (EPA method 8020)

9) NA = Not Analyzed or analysis not required

10) 8/17/02 Samples ensiyzed for VOCs out of holding time due to laboratory error

Weil ID	OW-8	OW-8	OW-8	OW-8	OW-8	5-WO		OW-0	6-Wa	8-W0			0W-8	OW-8	OW-8	OW-B Nov-99	OW-B	OW-6 Nov-00	DVV-8 Jun-01	OW-8 Jun-02	OW-8 Jun-02	OYY-8 Oct-02	OW-a Apr-03	OW-8 Nov-01	Jun-04
Date	Apr-93	Jus-93	Oct-93	Jan-84	Apr-94	Jul-84	Jun-95	Nev-95	Jun-96	Oct-96	tht'nuu-n	500-91	201-31	D00-00	Juli-Da	1101-40	400.00	1000 00							
P4																									
PURGEABLE HALOCARBONS																									
		•					-14			LIO	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA
Chloromethane	NA	NΑ	HA	NA		NA.	NA	NA.	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA						
Bromomethane	NA	NA.	NA	NA.	NA.	NA.	NA	NA	ΝA	HA	NA	NA	NA	NA	NA	NA	NA								
Vinyi chilerida	NA	NA	NA.	NA.	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA										
Chloresthane	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mediylana Chlorida	NA	НA	NΑ	NA	NA	NA	NA	NA.	NA	AN AN	ALI	NA NA	NA.	NA.	AIA	NA	NA	NA	NA	NA	NA	NA	HA	NA	AM
Trichloroflugiomethane	NΑ	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA	NA.	NA.	NA.	NA	NA	NΑ	NA	NA	NA	NΑ	NA	NA	NA,	NA	NA
1.1-Dichloroethene	NA.	ΝA	HA	11A	NA	NA	NA	NA	NA NA	NA.	· NA	NA	NΑ	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NΑ	NA
1.1-Dichlorosthane	NA	NΑ	NA	11A	NA	NA	NA	NA		NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA
cts-1.2-Dichleroalhone	NA	NA	NΑ	NA	NA	NA .	. NA	NA	NA NA	NA NA	NA NA	NA	NA.	NA	NA	JJA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	NA.	NA	NA	NΑ	HA	NA	NA NA	NA	NA.	NA.	NA	ΝA	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA
Chloroform	НA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	AM	NA	NA.	NA.	NА	NA	NA	NA	125	NA	AM
Froon (13	NA	NA	NA	\$2A	NA NA	NA NA	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	' NA	· NA	NA	NA
1,2-Dichloroethene	NA	NA	NA	AJA	NA NA	NA	.NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichioroelhena	NA	NA.	NA	NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA.	NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachlorido	NA.	NA	NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	МA	NA	NA	NA	NA
Bromodichloromothane	NA	NA	NA NA	NA NA	NA NA	NA.	NÁ	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MV	NA	NA	NA	NA	NA
1,2-Dichloropropulte	NA.	NA.	NA.	NA.	NA.	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA	NA	NA	NA
cis-1,3-Eichloropropene	NA.	NA		NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	НA	NA	NA	NA	HA	NV	NA
Trichloroethene	NA	NA	NA NA	NA.	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA
1,1,2-Trichloroathans	NA.	NA		NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,3-Dichteropropens	NA:	NA	NA NA	NA NA	AII	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.
Dibromochloromathons	NA	NA		NA.	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA	ЫA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA.	NA
2-Chloroellyfvinyl Ether	NA	NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	M	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Branclom ·	NA	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethens	NA	NA	NA NA	NA NA	NA NA	NA.	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
1,1,2,2-Yelmshletvethane	NA.	NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA.	NA	NA.	NA	NA	NA	NA	NA.
Chisrobanzona	NA NA	AM AM	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NΑ	NA	NA NA
1,3-Dichiprobanzana		NA NA	NA.	NA.	NA	NA	NA.	HA,	NA	NA	NA	NA	NA	NA	NA	NA	AM	NА	NA	NA	NA	NA	NA	NA	NA NA
1,2-Dichlerabenzona	NA	NA NA	NA NA	NA NA	NA	NA	NA.	HA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA
1,4-Dichlambenzane	NA	UW	INA	144																					
PURGEABLE AROMATICS																				***		611	NA	NA	NA
_	NA	NA.	NΑ	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA						
Bunzona	NA	AJ/I	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA.								
Toluena	NA	NΑ	NA	ΝA	NA	NA	NA	NA	NA	Ми	NA	NA	NA	NA ·	NA	NA NA	NA.	NA.	NA.						
Elhylbenzens	NΑ	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA C.A	NA	NA NA	NA.	NA	XX								
Total Xylenes TOTAL VOCS	- NA	NA.	NA.	FIA	NA.	NA	NA .	JА	NA	NA	1A	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA.	NA	1925	an		•
101AL VUCS	,	*																							
HYDROCARBONS																									
Marcarite																NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.
TVH-a	AM.	NA	₽ΙA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	НA	NA	NA	NA							
TEPH-d	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA Ain	NA	NA	NA.	NA	NA	NA	NA	NA	NA
OAG	NA.	NA	NА	МA	NA	NA	NA	NA.	NA	NA	ηίΑ	NA	Als	NA NA	NA NA	NA.	NA	NA	NA	NA.	NA	MA	NA	NA.	NA
TPH (418.1)	NA	ΝA	NA	NA	NA	NA	1474	1404	lat.	2171	(101			•											
METALS																									
									ND	ND	MD	ND	ИВ	ND.	ND	NO	ND	ND	ND	ND	ND	NO	ND	ND	ND
Load	27	17	110	25	12	24	3.2	ND	MP	1477	,	,,,,			.,_										

Note:

1) MCL = Maximum Contaminam Level in drinking water (State MCL if not noted otherwise)

2) # = EFA MCL

3) * = MCL for sum of four compounds

4) ** = MCL for sum of all xylena isomers

5) ** = MCL for sum of trans- and cis-1,3-Dichloropropens

6) NO = Not Detected of a betwee MDL

7) Furgosable Matecarbons (EFA method 8010)

9) Furgosable Anomatics (EFA method 8020)

9) NA = Not Analyzed or analysis not required

10) 6/17/02 Samples snalyzed for VOCs out of holding time due to laboratory smor

Well ID	MCL	OW-9B		OW-9
Date	ug/I+	Jun-96	Jun-69	Nov-99
PURGEABLE HALOCARBONS				
Chloremethans		NO	ND	N _D
Bromematiana		ND	ND	NEO
Vinyl chlorida	9.5	ND	NO	ND
Chlorosthano		ИD	ND	מא
Methylane Chicride	5#	ND	NO	ND
Trichiorofluoromethano	150	ND	ND	ND
1,1-Dichistoethena	6	HD	ND	ND
1,1-Dichlerosthens	5	ΝD	2.6	2.0 ND
cb-1,2-Dichtarcelhena	6	ND ND	ND	ND ND
trans-1,2-Dichlemethene	10 100#*	ND	ND	ND
Chlorelotm Freen 113	1200	ND	ND	ND
1.2-Dishloroethane	0.5	NO	ND	ND
1,1,1-Trichternethene	200	ND	ND	מא
Carbon Tetrachlorida	0,5	NO	ND	ND
Bromodichloromethane	100#	ND	ND	ND
1,2-Cichioropropana	5	No	ND	ND
cis-1,3-Dichloropropens	5	NO	ND	ND
Trichispethene	5	ND	ND	ND
1,1,2-Tdchiomathana	32 5	ND	ΝD	ND ND
trans-1,3-Dichiere grupens	199#	ND	ND ON	ND ND
Olbromochloromethane	Inna	NA.	ND	ND
2-Chloroathylvinyl Elber Bromoform	100#*	ND	ND	ND
Tetrachlomathens	5	NO	ND	ND
1,1,2,2-Tetrachlorosthans	1	ND	ND	ND
Chiorobenzene	30	ND	31	31
1,3-Dichlorobenzene		ND	290	290
1,2-Dichlombenzone	600#	ND	53	53
1,4-Dichlorobenzone	5	ND	560	560
PURGEABLE AROMATICS				
Bonzone	ŧ	ND	NA	NA
Tokiena	1000#	0,73	NA	NA
Ethylbenzens	680	ND	NA	NA
Total Xylenes	1750~	NO	NA	NA
TOTAL VOCE		0,73	1936,6	1035.6
HYDROCARBONS				
mai		ND	NA.	NA.
TVH-g TEPH-d		NA.	NA.	NA.
OAG ·		18A	NA.	NA.
TPH (418.1)		NA	NA	NA
METALS				
Lead	D	NA	NA	NA .
FEET	•	197	1	
Notes: 1) MCL: = Maximum Contembant 2) # = EPA MCL 3) *= MCL for sum of four compl 4) *** = MCL for sum of all xylene 5) **** = MCL for sum of trans- zu 6) ND = Not Detacted at or above 7) Purpantile Halocarbons (EPA 8) Purpantile Aromatics (EPA mo) NA = Not Analyzad or analysis	ounds Isomans d cia-1,3-0 a MDL mathod 60 alhod 8020) 110) 110)		s MCL if not noted otherwise
10) G/17/02 Samples analyzed for	r YOCs of	at of haldi	ng time d	ue to laboralary error
int mitter combine augitten in	. ,	11-/41		. ,

41181281214

APPENDIX B

Field Procedures for Low-Flow Purging and Sampling

FIELD PROCEDURES FOR LOW-FLOW PURGING AND SAMPLING

The following sections describe field procedures followed during groundwater monitoring at the site.

EQUIPMENT CALIBRATION

At the beginning of each sampling day, water quality meters for pH, specific electrical conductance (SEC), dissolved oxygen (DO), oxidation reduction potential (ORP), and turbidity are calibrated. Calibration data are recorded on the first Well Sampling Record. A CHEMetrics, or other appropriate, field test kit is used if there is a problem with DO meter calibration.

DOWNHOLE PARAMETER AND GROUNDWATER LEVEL MEASUREMENTS

After opening the wells and allowing time for equilibration to atmospheric conditions, and prior to purging and sampling activities, a complete round of downhole parameter and depth to groundwater measurements are collected from all monitoring wells. Downhole DO and ORP are measured first using a Horiba U-22, or other appropriate, water quality meter. Depth to water is then measured using an electric water level sounder to the nearest 0.01 foot from the top of casing.

FREE PRODUCT MEASUREMENT

The wells are inspected for free product, and if free product is observed, the depths to top and bottom of free product is measured using an interface probe to the nearest 0.01 foot from the top of casing.

SAMPLING ORDER

To minimize potential cross-contamination between wells, the wells are sampled in reverse order of target analyte concentration as measured during the previous sampling event.

GROUNDWATER PURGING AND SAMPLING

Groundwater sampling is performed following EPA low-flow purging and sampling procedures¹. A minimum of three equipment volumes are purged at each well using an electric pump. Typical pump types may include peristaltic, 2-inch stainless steel submersible and/or bladder pumps.

Dedicated tubing and, where necessary, submersible pumps are used to minimize disturbance. When dedicated equipment cannot be used, sufficient time is allowed after equipment installation to allow groundwater conditions to return to equilibrium. The pump inlet is placed in the center of the screened interval. Each well is purged at a flow rate of approximately 200 milliliters per minute (ml/min); flow rate is not to exceed 500 ml/min at any time during purging or sampling. Drawdown in the well is not to exceed 0.3 ft. During purging, temperature, pH, SEC, turbidity, DO, and ORP are monitored using a Horbia U-22, or other appropriate, water quality meter approximately every one equipment volume purged, or every 3 to 5 minutes. Each well is purged until the field parameters are relatively stable for three successive readings. Three successive readings should be within:

- • 0.1 for pH
- • 3% for SEC
- • 10% for temperature
- 10 mV for ORP if practical
- 10% for DO if practical
- 10% for turbidity if practical

If applicable, the ferrous ion concentration is measured using a CHEMetrics, or other appropriate, test kit during the last reading of the field parameters. Immediately after purging, a groundwater sample is collected directly through the pump discharge tubing. Depth to water after sample collection is measured and recorded on the Well Sampling Record.

EQUIPMENT CLEANING

All downhole equipment is cleaned with an Alconox-water solution and double-rinsed with deionized water before use at each well and at the end of each sampling day.

WASTE WATER CONTAINMENT

Waste water including purged groundwater and equipment cleaning water is contained in labeled, DOT-approved, 55-gallon steel drums, or other appropriate containers, and placed at a designated on-site location for future offsite disposal or recycling.

Puls, R.W. and Barcelona, M.J, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, U.S. Environmental Protection Agency, Office of Research and Development, Publication #EPA/540/5-95/504.

APPENDIX C

Groundwater Purging and Sampling Logs

WELL GAUGING DATA

Project #	071106-1	CF I Dar	e 11/6/	67 Clie	ent <u>apomatrix</u>
Site	4930	Coliseun	way,	Dakland	

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	1	Immiscibles Removed	i i	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
00-1	0929	2					4.05	(7.96		
٢	0934	2			·		4.64	19.80		
OW 5	0939	2					4.90	19.01		
02-6							5.23	17.18		
2W-Z	0950	2					4.14	20.19		
du-8	1001	2					3.46	17.75		
al = 7	1005	S					6.67	18.10	1	
	*	all	well	unc	appea	15	min. P	rior to		
		qa	ugina		1 .					
) ·	7						

Project #:	07110	6-1CF 1		Client: Ge	eomatrix						
Sampler:	1c/-			Date: 11	16/07						
Well I.D.	: ow-	1		Well Diameter: (2) 3 4 6 8							
Total Wel	ll Depth:	17.	96	Depth to V	Vater	Pre: 4.	os Post:	4.45			
Depth to 1	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	eet):	*			
Reference	ed to:	PVO	Grade	Flow Cell	Туре:	Y5(
Purge Metho Sampling M Flow Rate: _		2" Grundfo Dedicated	Tubing		Peristaltic P New Tubing Pump Deptl	g	Bladder Pump Other_	-			
Time	Temp. Oor °F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Observations	200		
(532	22.8	6.44	777	21	0.67	195	300	clear	4.		
(035	73.1	6.51	757	(7	0.62	189	600	clear	4.		
(038	72.8	6,52	750	14	0,91	172	900	clear clear	4.		
1041	22.9	6.52	752	13	0.85	(7)	1200	clear	4.		
			·								
		·									

Did well	dewater?	Yes (No)		Amount a	actually e	evacuated: 17	zoonl			
Sampling	Time:	1045			Sampling	Date:	1/6/07	***************************************			
Sample I.	D.:	0W-1	- 1100	507	Laborato			ne fal			
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	eek environm See CDC	THE RESIDENCE OF THE PROPERTY			
Equipmer	nt Blank I.	D.:	@ Time		Duplicate						

Project #:	0711	26-10	FI	Client: 4	eomati	7}~]			
Sampler:	KF			Date: (1/6/0	7			1			
Well I.D.	: OW:	-2	:	Well Dian	,	3 4	6 8		1			
Total We	ll Depth:	20.19			Depth to Water Pre: 4.14 Post: 5.04							
	Free Produ	-1000 PERSON		Thickness		oduct (fe	eet):					
Reference	ed to:	PVC	Grade	Flow Cell	<u>Туре:</u>	151						
Purge Methor Sampling M Flow Rate:	ethod:	2" Grundf Dedicated	Tubing	<i>}</i>	Peristaltic P ▼New Tubing Pump Deptl	g	Bladder Pump Other_		<u>-</u> -			
Time	Temp.	pН	Cond.	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Observations	DIL			
1317	22.94	6.79	4270	9	0.83	-9.8	300	clear	4			
1370	22.60	6.79	4266	5	6.53	-9.0	600	clear	4.			
(323			4135	6	0.45	-6.9	900	clear	4			
4326	22.52	6.74	4039	4	0.48	-6.4	1200	clear	57.0			
									1			
								·	1			
				-								
				-								
Did well	dewater?	Yes	(No)		Amount a	actually e	evacuated: 12	Coorl	-			
Sampling	Time: (330			Sampling		11/6/07		-			
Sample I.	D.: 🛇	W-Z-	-11060=	7			rek Enu	•				
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other:	rek Enu See COC					
Equipmer	nt Blank I.	D.:	@ Time		Duplicate							

			2011112		R O R CRI 1 O						
Project #:	07110	6-10-	`/	Client: Ge	omatri,	X]		
Sampler:	Æ			Date: (1/6/07							
Well I.D.	: ou-	4	•	Well Diameter: 2 3 4 6 8							
Total We	ll Depth:	19.80)	Depth to Water Pre: 4.64 Post: 4.98							
Depth to	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	et):				
Reference	ed to:	PVC)	Grade	Flow Cell	Type:	151]		
Purge Methor Sampling M Flow Rate:	lethod:	2" Grundf Dedicated	Tubing	and the second second	Peristaltic P New Tubing Pump Deptl	g .	Bladder Pump Other_				
Time	Temp.	рН	Cond. (mS or μ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Observations	12m		
1(14	20.7	6.76	1(90	18	0.69	-7.0	300	clear	4.7		
(117	20.6	6.71	1174	26	0.52	-4.0	600	Clear	4.8		
1120	20.4	6.64	1117	23	0.58	-6.3	900	clear	4.9		
1123	20.5	6.55	1109	19	0.62	-5.8	1200	clear	4.9		
Did well	dewater?	Yes	No	<u> </u>	Amount a	actually e	vacuated: (200ml	1		
Sampling	Time:	11128			Sampling	g Date:	11/6/07				
Sample I.	D.:	٧- لها (F-1106	U.7	Laborato	ry: Cro	eele Enu.				
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	See Coc				
Equipme	nt Blank I.	D.:	@ Time		Duplicate				1		

Project #:	0711	06-k	FI	Client: 6	eomatr	7X			
Sampler:	KF			Date: (1	1610-	7			7
Well I.D.	: 04	1-5		Well Diam	neter: 2	3 4	6 8		
Total We	ll Depth:	19.0	1	Depth to V	Vater	Pre:	1.90 Post:	5.20	
Depth to	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	eet):		
Reference	ed to:	PVC	Grade	Flow Cell	Type:	Y51			
Purge Methor Sampling M Flow Rate:		2" Grundfo Dedicated	Tubing		t Peristaltic P	3	Bladder Pump Other_		-
Time	Temp.	рН	Cond. (mS or (µS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Observations	DR
1152	22.08	6.41	857	93	0.59	13.0	300	clearador	4.9
1155	22.16	6.37	785	22	0.47	45.5	600	در	5.0
1158	22.15	6.36	768	20	0.45	16.2	900	u.	5.1
1201	22.17	6.34	764	ণে	0.44	16.3	1200	Ł	5.2
			:						
						701			
		·							-
Did well	dewater?	Yes (No	1	Amount a	actually e	evacuated: \2	00 ml	1
Sampling	Time:	1205			Sampling	Date:	11/6/07	**************************************	
Sample I.	D.: ()(N-5-	11060	7	Laborato	ry: Ca	cetenu.		
Analyzed	for:	TPH-G	BTEX MTI	BE TPH-D		Other: 5	cetenu.		
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	***************************************			

Project #:	07110	6-KF	Ţ	Client: 6	eomatn'	*						
Sampler:	F			Date: 11	16/07							
Well I.D.	: OW-(, 0		Well Diameter: (2) 3 4 6 8								
Total We	ll Depth:	17.18		Depth to Water Pre: 5.23 Post: 5.23								
Depth to 1	Free Produ	ıct:		Thickness	Thickness of Free Product (feet):							
Reference	ed to:	PVC	Grade	Flow Cell	Type: >	51						
Purge Methor Sampling M Flow Rate:	ethod:	2" Grundf Dedicated	Tubing		Peristaltic Pump New Tubing Pump Depth: 2.5							
Time	Temp.	pН	Cond. (mS or (mS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml	Observations	2			
1237	21.09	6.99	1053	24	0.84	25.6	300	clear	S.			
1240	21.04	6.97	1047	18	6.46	-19.7	600	clear	5.			
1243	20.94	6.98	1045	15	0.41	720.3	900	Clear	S.			
1246	20.92	6.99	1045	11	0.39	20.7	1200	clear	ς.			
					·							
						·						
		·										
Did well	dewater?	Yes	No		Amount	actually e	vacuated: 1	200				
Sampling	Time:	1250	7		Sampling	g Date:	11/6/07					
Sample I.	D.: 2	w-(-1106	07	Laborato							
Analyzed	for:	TPH-G	BTEX MT	3E TPH-D	**	Other: 5	eek Enu. De Coc	(1) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:						

Project #:	07110	06-1CF	- 1	Client: GeoMa Kix								
Sampler:	KF			Date: \((16/07							
Well I.D.	: OW	-7		Well Diam	Well Diameter: (2) 3 4 6 8							
Total We	ll Depth:	(8:10	>	Depth to Water Pre: 6.67 Post: 6.70								
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):								
Reference	ed to:	PVC	Grade	Flow Cell	Flow Cell Type: VSI							
Purge Methor Sampling M Flow Rate:		2" Grundf Dedicated	Tubing		Peristaltic Pump New Tubing Pump Depth: 12.5							
Time	Temp.	рН	Cond. (mS or (mS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. of mL)	Observations				
(448	70.6	6.54		137	0.52	7.5	250	clear				
1451	20.4	6.51	1002	126	0.50	(0.7	500	clear clear				
1454	70.4	6.42	997	(16	0.50	12.9	750	clear				
1457	70.4	6.40	987	107	0.50	(3.7	(000)	Clear				
				·								
			·									
	-											
Did well	dewater?	Yes	X6)		Amount a	actually e	vacuated: (000ml				
Sampling	Time:	1502			Sampling	; Date:	11/6/07					
Sample I.	D.: 0W	-7-110	0607		Laborator	ry: Ch	cek Enu.					
Analyzed	for:	TPH-G	BTEX MTI	BE TPH-D	Sampling Date: 11/6/27 Laboratory: Creek Enu. Other: See Coc							
Equipmen	nt Blank I.	D.:	@ Time		Duplicate I.D.:							

									٦
Project #:	07110	6-105	đ	Client:	Geoma	trix_			
Sampler:	6	F		Date: \i	16/07	•			
Well I.D.	: 0W·	- 8.		Well Diam	, (6 8		
Total We	ll Depth:	17.7	5	Depth to V	Vater	Pre: 3,	46 Post:	4.35	
Depth to	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	et):		
Reference	ed to:	PVC	Grade	Flow Cell	Type:	Y51			
Purge Methor Sampling M Flow Rate:	ethod:	2" Grundfo Dedicated			Peristaltic P New Tubing Pump Deptl	·)	Bladder Pump Other_		-
Time	Temp.	pН	Cond. (mS or μ S)	Turbidity) (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ormL)	Observations	DTW
1421	22.1	6.37	1000	4	(.48	15.3	300	cleer	4.19
1424	22.2	6.36	1029	7	1.15	16.0	600	clear	4.2:
1427	22.1	6.33	(000)	3	80.)	17.5	900	clear	4,2
1430	22.1	6.33	985	4	1.07	17.9	1200	c cear	4.3
							-		
									-
									1
									1
**************************************									-
									-
Did well	dewater?	Yes	(10)		Amount a	actually e	vacuated: 12	00 ml	1
Sampling	Time:	14	35		Sampling	Date: (1/6/07	**************************************	1
Sample I.	D.: <i>O</i>	W-8.	- 11060	7	Laborato	rv: Co	eek Enu.		1
Analyzed	for:	TPH-G	BTEX MTI	BE TPH-D		Other:	se Coc		
Equipmen	nt Blank I.	D.:	@ Time		Duplicate		~ ~ ~		

APPENDIX D Laboratory Analytical Reports and Chain-of-Custody Documentation

	BO ROGERS AVENUE		CON	DUCT	ANAL	YSIS	TO _i DE	TECT		LAB Creek Laboratories DHS#
<u> </u>	FAX (408) 573-7771 HONE (408) 573-0555				Filtered	1267	CAGER			ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION LIMITS SET BY CALIFORNIA DHS AND PROCEREGION
CHAIN OF BTS # 07(10	06-KEI &			SE SE		15 2	SILLER			☐ EPA ☐ RWQCB REGION ☐ LIA ☐ OTHER
CLIENT Geomatrix	CONTAINERS			(8015 ps)) Field	W/S7210	100		,	SPECIAL INSTRUCTIONS
SITE PG&E Oakland	INO		60B	Oil (010	3	o (Boish)			Invoice to: Geomatrix
4930 Coliseum Way	ALL C	2	t(82	Motor (9) pı	(Boism)	(B.D	3		Report to: Geomatrix Attn: Jonathan Skaggs
Oakland, CA	ш	(8015 ps)	l lis	Mo	Lea	3	10	ms		Ph# 510-663-4100 / Fax# 510663-4141
MATRIX I OR Y	CONTAINERS DO S	TPH-G (8	VOCs Full list(8260B)	TPH-D &	Dissolved Lead (6010)	DH-D	M-HAD	Ms/	٠	Geomatrix Project #
	TOTAL Ö	E	<u> </u>	E		<u> </u>			Δ.	ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #
10-1-10607 (1/6/67 1045 W	8	X	X	X	$\frac{\times}{}$	X	×		ρλ	HANDS -B VOQ/HCL-C-H 14402
0W-2-10607 1330				X	×	×	×		01	14403
0W-4-110607 1128	8	×	X	X	X	x	X		p/1	1 VO3 - B VOa/HC1 - C-H 14404
0W-5-110607 1205	10	X	*	X	X		$\boldsymbol{\chi}$	×	0/1	1003-D, von/HCL-E-5 14405
04-6-110607 1250	8	人	-	X	×	X	٧		PIH	1018 - A voa/Hal-C-G 14406
1502 1502	8 2	<u> </u>	×	×	×	ャ	>		AG	HN03-B VOQ/HCL-C-F 14407
0W-8-110607V 1435- V FB-1-110607 1200 V				X	X	×_	×		ρ/H	Woz-B 14408
FB-1-110607 1200 V	4		X		X				VE	NO3-A-B,C,D 14409
								·		*
						-				
SAMPLING DATE TIME SAMPLING COMPLETED (50) PERFOR		rela	. S		:					RESULTS NEEDED NO LATER THAN Standard TAT
RELEASED BY	DAT (c)	E 6/0	7	TIME	30	•	RECE	IVED	BY	DATE TIME 11/6/87 1736
RELEASED BY	DAT			TIME			RECE	NED JUL	BY M	Ode 11/8/97 TIME?
RELEASED BY]DAT	Έ		TIME			RECE	IVED	BY	DATE TIME
SHIPPED VIA		E SEN		TIME			COOL	ER#		2°C

CASE NARRATIVE 05889

Samples: 07-C14402 to 07-C14409

The VOC (8260B) analysis for this batch of samples (collected 11-06-07) was interrupted in the middle of a sequence due to instrument malfunction, resulting in some samples being analyzed one day past holding time. The following samples were affected:

07-C14405 (OW-5) 07-C14406 (OW-6) 07-C14407 (OW-7) 07-C14409 (FB-1)

Results for TPH-diesel by silica gel treated method in the following samples are blank subtracted to exclude extraneous, non-TPH, low level laboratory contaminants, found also in the method blank:

07-C14402 (OW-1) 07-C14405 (OW-5) 07-C14407 (OW-7)

CREEK ENVIRONMENTAL LABORATORIES

Page 1

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14402 Order: 05889

Project: PG&E Oakland Received: 11/08/07

Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Description Sampled By Date @ Time			Matrix					
OW-1	K. Cordes		11/06/0	7@10:45	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
TPH as Motor Oil	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641	
TPH as Diesel	0.14	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639	
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640	
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643	
TPH as Gasoline	0.08	0.05	1	mg/L	EPA 8015/LUFT	11/17/07		1525	
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Chlorobenzene	4.2	0.5	1	ug/L	EPA 8260	11/20/07		1711	
1,2-Dichlorobenzene	2.2	0.5	1	ug/L	EPA 8260	11/20/07		1711	
1,3-Dichlorobenzene	21	0.5	1	ug/L	EPA 8260	11/20/07		1711	
1,4-Dichlorobenzene	68	2	5	ug/L	EPA 8260	11/20/07		1711	
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/20/07		1711	
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711	

Page 2

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14402 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date @		Matrix		
======================================	K. Cordes		11/06/0	7a10:45	Aqueous		
======================================	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bat Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/20/07	17
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,1-Dichloroethane	5.1	0.5	1	ug/L	EPA 8260	11/20/07	17
1,1-Dichloroethene	6.0	0.5	1	ug/L	EPA 8260	11/20/07	17
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/20/07	17
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	17
1,2,4-Trichlorobenzene	1.6	0.5	· 1 ····	ug/L	EPA 8260	11/20/07	17

Page 3

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14402 05889 Order:

PG&E Oakland Project: Received: 11/08/07 12/17/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampleo Date a		Matrix 			
ow-1	K. Cordes		11/06/0	7a10:45	Aqueous			
Analyte	======================================	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1.2.3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 4

Jonathan Skaggs Geomatrix 2101 Webster St.

Oakland, CA 94612

Log Number: 07-C14403 Order: 05889

Project: Received: 11/08/07

PG&E Oakland

Printed:

12/17/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By			Time	Matrix			
ow-2	K. Cordes	: # = = = = = = = = = =	11/06/0	7a13:30	Aqueous	No. 400 400 100 100 100 100 100 100 100 100		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641
TPH as Diesel	0.21	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 5

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14404 05889 Order:

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

mple Description	Sampled By		Date a		Matrix			
OW-4	K. Cordes		11/06/07	7a11:28	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.1	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641
TPH as Diesel	0.31	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/17/07		1525
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/20/07		1711
Chloroform	Not Detected	0.5	1.	ug/L	EPA 8260	11/20/07		1711

Page 6

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14404 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix		
OW-4	K. Cordes		11/06/0	7@11:28	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bato Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/20/07	171
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
cis-1.3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Naphthalene	Not Detected	5	. 1	ug/L	EPA 8260	11/20/07	171
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171
1.2.4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07	171

Page 7

Jonathan Skaggs Geomatrix 2101 Webster St.

Oakland, CA 94612

Log Number: 07-C14404 Order: 05889

Project: PG&E Oakland

Received: 11/08/07 12/17/07 Printed:

REPORT OF ANALYTICAL RESULTS

			Sampled					
Sample Description	Sampled By		Date a	Time	Matrix			
OW-4	K. Cordes		11/06/0	7a11:28	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/20/07		1711
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 8

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14405 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix			
======================================	K. Cordes		11/06/0	7012:05	Aqueous			
======================================	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.2	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641
TPH as Diesel	0.36	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643
TPH as Gasoline	0.05	0.05	1	mg/L	EPA 8015/LUFT	11/17/07		1525
Benzene	6.8	0.5	1	ug/L	EPA 8260	11/21/07		1729
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,3-Dichlorobenzene	0.8	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,4-Dichlorobenzene	3.9	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
sec-Butyl Benzene	1.1	0.5	1	ug/L	EPA 8260	11/21/07		1729
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/21/07		1729
Chloroform	Not Detected	0.5	. 1	ug/L	EPA 8260	11/21/07		1729

Page 9

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14405 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix		
======================================	K. Cordes		11/06/07	7a12:05	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batcl Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/21/07	1729
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1-Dichloroethane	1.4	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Isopropylbenzene	1.6	0.5	1	ug/L	EPA 8260	11/21/07	172
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Naphthalene	32	5	1	ug/L	EPA 8260	11/21/07	172
n-Propylbenzene	0.7	0.5	1	ug/L	EPA 8260	11/21/07	172
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,2,3-Trichlorobenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	11/21/07	1729
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729

Page 10

Jonathan Skaggs

Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 07-C14405

Order:

05889

Project:

PG&E Oakland

Received: 11/08/07 Printed:

12/17/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By		Date a	Time	Matrix			
OW-5	K. Cordes		11/06/07a12:05		Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	= ======== Method	Date Analyzed	Date Prepared	Batch
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,4-Trimethylbenzene	1.2	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,3,5-Trimethylbenzene	1.4	0.5	1	ug/L	EPA 8260	11/21/07		1729
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 11

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14406 Order: 05889

Project: PG&E Oakland Received: 11/08/07

Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	By Date @ Time			Matrix				
OW-6	K. Cordes		11/06/0	7a12:50	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
TPH as Motor Oil	0.1	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641	
TPH as Diesel	0.22	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639	
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640	
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643	
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/17/07		1525	
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Chlorobenzene	3.2	0.5	1	ug/L	EPA 8260	11/21/07		1729	
1,2-Dichlorobenzene	0.6	0.5	1	ug/Ĺ	EPA 8260	11/21/07		1729	
1,3-Dichlorobenzene	8.1	0.5	1	ug/L	EPA 8260	11/21/07		1729	
1,4-Dichlorobenzene	28	1	2	ug/L	EPA 8260	11/21/07		1729	
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/21/07		1729	
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	

Page 12

Jonathan Skaggs Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 07-C14406 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0		Matrix		
======================================	K. Cordes		11/06/0	7@12:50	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batc Prepared
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/21/07	172
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1-Dichloroethane	8.4	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1-Dichloroethene	5.2	0.5	1	ug/L	EPA 8260	11/21/07	172
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/21/07	172
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	172
1,2,4-Trichlorobenzene	Not Detected	0.5	1 .	ug/L	EPA 8260	11/21/07	1729

Page 13

Jonathan Skaggs Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 07-C14406

Order:

05889

Project:

PG&E Oakland

Received: Printed:

11/08/07 12/17/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By Date a Tim K. Cordes 11/06/07a1			Matrix			
OW-6	K. Cordes				Aqueous			
Analyte	======	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 14

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14407 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description Sampled By		Date a		Matrix				
OW-7	K. Cordes		11/06/0	7@15:02	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Motor Oil	0.2	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641
TPH as Diesel	0.40	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643
TPH as Gasoline	0.25	0.05	1	mg/L	EPA 8015/LUFT	11/17/07		1525
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Chlorobenzene	40	2	5	ug/L	EPA 8260	11/21/07		1729
1,2-Dichlorobenzene	12	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,3-Dichlorobenzene	56	2	5	ug/L	EPA 8260	11/21/07		1729
1,4-Dichlorobenzene	200	2	5	ug/L	EPA 8260	11/21/07		1729
1,2-Dichloroethane (EDC)	0.9	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/21/07		1729
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729

Page 15

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14407 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Date a		Matrix				
 оw-7	K. Cordes							
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/21/07		1729
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1-Dichloroethane	5.5	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1-Dichloroethene	3.3	0.5	1	ug/L	EPA 8260	11/21/07		1729
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/21/07		1729
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,4-Trichlorobenzene	22	0.5	1	ug/L	EPA 8260	11/21/07		1729

Page 16

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14407 Order: 05889

Project: PG&E Oakland

Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By K. Cordes			Matrix			
OW-7	K. Cordes				Aqueous			
Analyte	Result	DLR	Dilution Units Factor		= ========== Method	Date Analyzed	Date Prepared	Batch
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 17

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14408 Order: 05889

Project:

PG&E Oakland

Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Date @	Time	Matrix					
OW-8	K. Cordes 11/06/07@14:35				Aqueous				
Analyte	Result DLR		Dilution Units Factor		Method	Date Date Analyzed Prepared		Batch	
TPH as Motor Oil	0.1	0.1	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1641	
TPH as Diesel	0.28	0.05	1	mg/L	EPA 8015/LUFT	11/14/07	11/12/07	1639	
TPH as Diesel, SGT	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1640	
TPH as Motor Oil, SGT	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	11/19/07	11/12/07	1643	
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Page 18

Jonathan Skaggs Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 07-C14409 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Date 0		Matrix					
FB-1	K. Cordes	11/06/0	7a12:00	Aqueous					
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared		
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	11/21/07	1729		
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729		
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	11/21/07	1729		
Dibromochloromethane	Not Detected	0.5	· · · · · · · · · · · · · · · · · · ·	ug/L	EPA 8260	11/21/07	1729		

Page 19

Jonathan Skaggs Geomatrix

2101 Webster St. Oakland, CA 94612 Log Number: 07-C14409 Order: 05889

Project: PG&E Oakland Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Date a		Matrix			
-B-1				7a12:00	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	11/21/07	1729
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07	1729
1,2,3-Trichloropropane	Not Detected	0.5		ug/L	EPA 8260	11/21/07	1729

Page 20

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C14409 Order: 05889

Project: PG&E Oakland

Received: 11/08/07 Printed: 12/17/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By K. Cordes			Matrix				
FB-1	K. Cordes				Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	11/21/07		1729	
Lead, Dissolved	Not Detected	0.008	2	mg/L	EPA 6020	11/15/07	11/14/07	1399	

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Quality Control Results

Page 21

Order No.: 05889

Laboratory Reagent Blank

Analyte	Method	Results	Units	Batch
TPH as Motor Oil	EPA 8015/LUFT	< 0.1	mg/L	1641
TPH as Diesel	EPA 8015/LUFT	< 0.05	mg/L	1639
TPH as Diesel, SGT	EPA 8015/LUFT	< 0.05	mg/L	1640
TPH as Motor Oil, SGT	EPA 8015/LUFT	< 0.1	mg/L	1643
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	1525
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	1525
Benzene	EPA 8260	< 0.5	ug/L	1711
Benzene	EPA 8260	< 0.5	ug/L	1729
Toluene	EPA 8260	< 0.5	ug/L	1711
Toluene	EPA 8260	< 0.5	ug/L	1729
Ethylbenzene	EPA 8260	< 0.5	ug/L	1711
Ethylbenzene	EPA 8260	< 0.5	ug/L	1729
m,p-Xylene	EPA 8260	< 0.5	ug/L	1711
m,p-Xylene	EPA 8260	< 0.5	ug/L	1729
o-Xylene	EPA 8260	< 0.5	ug/L	1711
o-Xylene	EPA 8260	< 0.5	ug/L	1729
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	1711
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	1729
Chlorobenzene	EPA 8260	< 0.5	ug/L	1711
Chlorobenzene	EPA 8260	< 0.5	ug/L	1729
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	1711
1,2-Dichlorobenzene	EPA 8260	< 0.5	ug/L	1729
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	1711
1,3-Dichlorobenzene	EPA 8260	< 0.5	ug/L	1729
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	1711
1,4-Dichlorobenzene	EPA 8260	< 0.5	ug/L	1729
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	1711
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	1729
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	1711
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ug/L	1729
Bromobenzene	EPA 8260	< 0.5	ug/L	1711
Bromobenzene	EPA 8260	< 0.5	ug/L	1729
Bromochloromethane	EPA 8260	< 0.5	ug/L	1711
Bromochloromethane	EPA 8260	< 0.5	ug/L	1729
Bromodichloromethane	EPA 8260	< 0.5	ug/L	1711
Bromodichloromethane	EPA 8260	< 0.5	ug/L	1729
Bromoform	EPA 8260	< 0.5	ug/L	1711
Bromoform	EPA 8260	< 0.5	ug/L	1729
Bromomethane	EPA 8260	< 0.5	ug/L	1711
Bromomethane	EPA 8260	< 0.5	ug/L	1729
n-Butylbenzene	EPA 8260	< 0.5	ug/L	1711
n-Butylbenzene	EPA 8260	< 0.5	ug/L	1729
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	1711
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	1729
t-Butyl benzene	EPA 8260	< 0.5	ug/L	1711

Quality Control Results

Page 22

Order No.: 05889

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
t-Butylbenzene	EPA 8260	< 0.5	ug/L	1729
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L ug/L	1711
Carbon Tetrachloride	EPA 8260	< 0.5	ug/L ug/L	1729
Chloroethane	EPA 8260	< 0.5	ug/L ug/L	1711
Chloroethane	EPA 8260	< 0.5	ug/L ug/L	1729
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L ug/L	1711
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L ug/L	1729
Chloroform	EPA 8260	< 0.5	ug/L ug/L	1711
Chloroform	EPA 8260	< 0.5	ug/L ug/L	1729
Chloromethane	EPA 8260	< 0.5	ug/L	1711
Chloromethane	EPA 8260	< 0.5	ug/L	1729
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	1711
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	1729
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	1711
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	1729
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	1711
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	1729
Dibromochloromethane	EPA 8260	< 0.5	ug/L ug/L	1711
Dibromochloromethane	EPA 8260	< 0.5	ug/L ug/L	1729
Dibromomethane	EPA 8260	< 0.5	ug/L ug/L	1727
Dibromomethane	EPA 8260	< 0.5	ug/L ug/L	1729
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L ug/L	1711
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L ug/L	1729
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L ug/L	1711
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L	1729
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L ug/L	1711
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L ug/L	1729
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	1711
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	1729
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L ug/L	1711
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L ug/L	1729
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	1711
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	1729
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	1711
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	1729
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	1711
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	1729
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	1711
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	1729
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	1711
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	1729
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	1711
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	1729
Hexach Lorobutadiene	EPA 8260	< 0.5	ug/L	1711

Quality Control Results

Page 23

Order No.: 05889

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	1729
Isopropylbenzene	EPA 8260	< 0.5	ug/L	1711
Isopropylbenzene	EPA 8260	< 0.5	ug/L	1729
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	1711
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	1729
Methylene Chloride	EPA 8260	< 0.5	ug/L	1711
Methylene Chloride	EPA 8260	< 0.5	ug/L	1729
Naphthalene	EPA 8260	< 5	ug/L	1711
Naphthalene	EPA 8260	< 5	ug/L	1729
n-Propylbenzene	EPA 8260	< 0.5	ug/L	1711
n-Propylbenzene	EPA 8260	< 0.5	ug/L	1729
Styrene	EPA 8260	< 0.5	ug/L	1711
Styrene	EPA 8260	< 0.5	ug/L	1729
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	1711
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	1729
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	1711
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	1729
Tetrachloroethene	EPA 8260	< 0.5	ug/L	1711
Tetrachloroethene	EPA 8260	< 0.5	ug/L	1729
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	1711
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	1729
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	1711
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	1729
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	1711
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	1729
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	1711
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	1729
Trichloroethene	EPA 8260	< 0.5	ug/L	1711
Trichloroethene	EPA 8260	< 0.5	ug/L	1729
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	1711
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	1729
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	1711
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	1729
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	1711
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	1729
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	1711
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	1729
Vinyl Chloride	EPA 8260	< 0.5	ug/L	1711
Vinyl Chloride	EPA 8260	< 0.5	ug/L	1729
Lead, Dissolved	EPA 6020	< 0.004	mg/L	1399

CREEK ENVIRONMENTAL LABORATORIES, INC.

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 24

Order No.: 05889

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
TPH as Diesel	EPA 8015/LUFT	69%	5.0	mg/L	50 - 150	1639
TPH as Diesel, SGT	EPA 8015/LUFT	62%	5.0	mg/L	50 - 150	1640
TPH as Gasoline	EPA 8015/LUFT	84%	0.5	mg/L	60 - 140	1525
TPH as Gasoline	EPA 8015/LUFT	90%	0.5	mg/L	60 - 140	1525
TPH as Gasoline	EPA 8015/LUFT	94%	0.5	mg/L	60 - 140	1525
Benzene	EPA 8260	108%	10	ug/L	80 - 120	1711
Benzene	EPA 8260	106%	10	ug/L	80 - 120	1711
Benzene	EPA 8260	103%	10	ug/L	80 - 120	1729
Toluene	EPA 8260	112%	10	ug/L	80 - 120	1711
Toluene	EPA 8260	108%	10	ug/L	80 - 120	1711
Toluene	EPA 8260	105%	10	ug/L	80 - 120	1729
Chlorobenzene	EPA 8260	114%	10	ug/L	80 - 120	1711
Chlorobenzene	EPA 8260	111%	10	ug/L	80 - 120	1711
Chlorobenzene	EPA 8260	101%	10	ug/L	80 - 120	1729
1,1-Dichloroethene	EPA 8260	107%	10	ug/L	80 - 120	1711
1,1-Dichloroethene	EPA 8260	104%	10	ug/L	80 - 120	1711
1,1-Dichloroethene	EPA 8260	107%	10	ug/L	80 - 120	1729
Trichloroethene	EPA 8260	106%	10	ug/L	80 - 120	1711
Trichloroethene	EPA 8260	101%	10	ug/L	80 - 120	1711
Trichloroethene	EPA 8260	104%	10	ug/L	80 - 120	1729
Lead, Dissolved	EPA 6020	101%	1.0	mg/L	75 - 125	1399

Matrix Spike/Matrix Spike Duplicates

		MS	MSD	Matrix	Spike			RPD	
Analyte	Method	Rec.	Rec.	RPD Sample	Amount	Units	Recovery Limits	s Limit	Batch
TPH as Diesel	EPA 8015/LUFT	64%	66%	3 07-C14398	5.0	mg/L	50 - 150	30	1639
TPH as Diesel, SGT	EPA 8015/LUFT	56%	53%	7 07-C14398	5.0	mg/L	50 - 150	30	1640
TPH as Gasoline	EPA 8015/LUFT	86%	72%	18 07-C14479	0.5	mg/L	60 - 140	30	1525
Benzene	EPA 8260	98%	99%	1 07-C14398	10	ug/L	70 - 130	20	1711
Benzene	EPA 8260	68%	90%	15 07-C14405	10	ug/L	70 - 130	20	1729
Toluene	EPA 8260	101%	103%	2 07-C14398	10	ug/L	70 - 130	20	1711
Toluene	EPA 8260	103%	108%	5 07-C14405	10	ug/L	70 - 130	20	1729
Chlorobenzene	EPA 8260	98%	97%	1 07-c14405	10	ug/L	70 - 130	20	1729
1,1-Dichloroethene	EPA 8260	86%	92%	6 07-c14405	10	ug/L	70 - 130	20	1729
Trichloroethene	EPA 8260	101%	108%	7 07-C14405	10	ug/L	70 - 130	20	1729
Lead, Dissolved	EPA 6020	100%	97%	3 07-c14403	1.0	mg/L	75 - 125	20	1399