

RECEIVED

1:39 pm, May 17, 2007

Alameda County Environmental Health

Environmental Services (ES) 3400 Crow Canyon Road San Ramon, CA 94583

925.820.2000 Fax: 925.866.5892

May 10, 2007

Mr. Barney Chan Alameda County Environmental Health Department Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject:

Pacific Gas and Electric Company Oakland General Construction Yard, 4930 Coliseum Way,

Oakland, California, Alameda County Case #RO0000099

Dear Mr. Chan:

Attached is the Semi-Annual Groundwater Monitoring Report, April 2007 Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, dated May 2007. PG&E has retained Geomatrix Consultants, Inc., to perform groundwater monitoring and other technical studies at the above-referenced PG&E property. The attached report was prepared by Innovative Technical Solutions, Inc. and reviewed by Geomatrix.

On March 14, 2007, the Alameda County Department of Environmental Health (the County) met with PG&E and representatives of the owners of the former AAA property at 745 50th Avenue (former AAA property) and the Learner property at 768 46th Avenue (Learner property). PG&E understands that the County is currently overseeing soil and groundwater investigation and cleanup at all three properties. In addition, the County is overseeing investigation and cleanup at the former Superior Plaster Castings property at 4800 Coliseum Way (former Superior Plaster property); however, PG&E understands that the responsible party for the environmental cleanup case at the Superior Plaster property has not responded to recent requests from the County and therefore did not attend the March 14, 2007, meeting.

During the meeting, the County and the attendees discussed dichlorobenzene (DCB) and chlorobenzene (CB) impacts to groundwater and petroleum hydrocarbon cleanups at the PG&E property, former AAA property, and former Superior Plaster property. Groundwater generally flows from the former AAA, Learner, and former Superior Plaster properties onto the PG&E property. PG&E was informed that the owners of the former AAA property are pursuing closure of the environmental cleanup case there, and that the County would consider closing the environmental cases at both the former AAA property and the PG&E property provided that 1) PG&E were to record a deed restriction for the PG&E property, and 2) recent data from PG&E's groundwater wells support historical trends at the PG&E property. The owners of the former AAA property have agreed to a deed restriction for their property. The County requested that PG&E expedite its semi-annual monitoring event and that groundwater in all wells be sampled and analyzed for volatile organic compounds (VOCs) in addition to the standard analyte list. PG&E agreed to the sampling requests, and the resultant data is included in the attached report. At the time of the meeting, PG&E was unable to comment on closing the environmental case at the former AAA property until PG&E obtained a better understanding of possible impacts from the upgradient properties. PG&E was also unable to commit to a decision regarding restriction of future use of the PG&E property.

Since the PG&E property is downgradient of the former AAA, Learner and former Superior Plaster properties, groundwater impacts at those properties may migrate onto the PG&E property. Accordingly, and as discussed at the March 14, 2007, meeting, PG&E's consultant reviewed files at the Alameda County Department of Environmental Health pertaining to the former AAA, Learner, and former Superior Plaster properties. DCB, CB, and petroleum hydrocarbon impacts have been detected in groundwater beneath the Learner, former AAA, and former Superior Plaster properties. On September 24, 2003, up to 360 ug/L 1,4-DCB was detected in a groundwater sample collected from an excavation spanning the property boundary between the Learner and former AAA properties. On October 8, 1998, up to 1,500 ug/L 1,4-DCB was detected in a groundwater sample collected from a monitoring well on the former Superior Plaster property. Based on the concentrations detected on upgradient properties and the concentrations

SEMIANNUAL GROUNDWATER MONITORING REPORT

April 2007 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared For:

Pacific Gas and Electric Company 3400 Crow Canyon Road San Ramon, CA 94583

Prepared By:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

May 2007 ITSI Project No: 07037.0018

May 10, 2007 Mr. Barney Chan Page 2

detected in PG&E upgradient monitoring wells OW-5 and OW-7, additional assessment at the upgradient properties appears necessary. PG&E is concerned that these three properties may be past or continuing sources of the groundwater impacts at the PG&E property. PG&E requests that the County require the responsible parties for the groundwater impacts at the Superior Plaster property, the former AAA property, and the Learner property perform additional assessment at the respective properties.

Rather than file a deed restriction for its property, PG&E would like to address the impacts caused by its past operations and pursue a "clean closure" for the PG&E property, without restrictions on future use of the property. By July 16, 2007, PG&E will submit a corrective action plan to the County proposing appropriate activities for additional sampling and cleanup at the PG&E property. Since DCB and CB impacts to groundwater beneath the northern portion of the PG&E property will need to be addressed as part of the "clean closure" of the PG&E property, and since the former Superior Plaster, the former AAA, and the Learner properties are potential sources of these groundwater impacts, PG&E requests that the County defer closure of the respective cleanup cases. PG&E also requests that the County require the respective responsible parties for the former Superior Plaster, the former AAA, and the Learner properties to collect sufficient data to identify and assess potential source areas and to delineate the extent of their detected groundwater impacts. If further evaluation suggests that impacts at properties upgradient from the PG&E property have contributed or are contributing to the impacts at the PG&E property, PG&E anticipates that the County will hold the appropriate parties responsible for cleanup of their impacts.

Please contact me at 925.866.5888 or r4sw@pge.com if you have any questions.

Sincerely,

Robert Saur

Environmental Geologist

RAS: ngc 402.331.07.24

Attachment:

Semi-Annual Groundwater Monitoring Report, April 2007 Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, dated May 2007.

cc: Jerry Wickham, Alameda County Department of Environmental Health (w/o attachment)
Donna Drogos, Alameda County Department of Environmental Health (w/o attachment)
Stephen Hill, RWQCB (w/o attachment)
Leroy Griffin, Oakland Fire Department (w/o attachment)

SEMIANNUAL GROUNDWATER MONITORING REPORT

April 2007 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

This report was prepared by the staff of Innovative Technical Solutions, Inc., under the supervision of the Geologist(s) and/or Engineer(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Prepared By:

Eric Ehlers, P.G.

Project Manager

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description	1
3.0	Site History	1
4.0	Groundwater Monitoring Activities	2
5.0	Groundwater Monitoring Results	3
6.0	Conclusions	4
	References	

OakApr07Final Page i

LIST OF FIGURES

<u>Figure No</u> .	<u>Title</u>
1	Vicinity Maps
2	Site Plan
3	Groundwater Elevation Contours (April 12, 2007)
4	Groundwater Analytical Results (April 12, 2007)

LIST OF TABLES

Table No.	<u>Title</u>
1	Summary of Groundwater Elevation Data
2	Summary of Groundwater Analytical Results (April 12, 2007)

LIST OF APPENDICES

Appendix A	Historical Groundwater Analytical Results
Appendix B	Low-Flow Purging and Sampling Protocol
Appendix C	Groundwater Purging and Sampling Logs
Appendix D	Laboratory Analytical Reports and Chain-of-Custody Documentation

OakApr07Final Page ii

ACRONYMS AND ABBREVIATIONS

ACHCSA Alameda County Health Care Services Agency

AST above-ground storage tank bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CCR California Code of Regulations CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency ITSI Innovative Technical Solutions, Inc.

LC/LCSD laboratory control/laboratory control duplicate

MCL maximum contaminant level mg/kg milligrams per kilogram μg/l micrograms per liter

MS/MSD matrix spike and matrix spike duplicate

msl mean sea level

MTBE methyl tertiary butyl ether

O&G oil and gas

PG&E Pacific Gas and Electric Company

RL reporting limit

RPD relative percent difference

RWQCB Regional Water Quality Control Board STLC soluble threshold limit concentration

TPH total petroleum hydrocarbons

TPHd total petroleum hydrocarbons quantified as diesel TPHg total petroleum hydrocarbons quantified as gasoline

TTLC total threshold limit concentration

UST underground storage tank VOC(s) volatile organic compound(s)

OakApr07Final Page iii

1.0 INTRODUCTION

This report presents the results of semiannual groundwater monitoring completed on April 12, 2007, at the Pacific Gas and Electric Company (PG&E) General Construction Yard located at 4930 Coliseum Way in Oakland, California (the site, Figure 1). The groundwater monitoring program includes the following activities: (1) measuring groundwater elevations; (2) collecting groundwater samples from monitoring wells on site; and (3) performing laboratory analyses of the samples. The program objective is to monitor the distribution of select fuel-related compounds, volatile organic compounds (VOCs), and dissolved lead in shallow groundwater beneath the site. The following sections summarize the site description, site background, groundwater monitoring activities, and analytical results of samples collected on April 12, 2007. Previous analytical results are summarized in a table provided in Appendix A.

2.0 SITE DESCRIPTION

The site consists of approximately 4 acres and is operated as a storage yard for equipment and vehicles (Figure 2). The surrounding area is primarily commercial and light industrial. The site is bounded by Coliseum Way to the south, 50th Avenue to the southeast and commercial properties to the north (Figure 1).

3.0 SITE HISTORY

The following summarizes previous environmental activities associated with the site:

- **January 1988** Five underground storage tanks (USTs) and associated piping located in the northern and eastern portions of the site were removed (Figure 2). Four of the former USTs were located in a cluster in the northern portion of the site (former UST cluster). Two of these USTs reportedly contained heavy oil and two contained mineral spirits (PG&E, 1988). The fifth former UST was located near the west corner of the yard and reportedly contained diesel fuel.
- April 1988 Installation of groundwater monitoring wells OW-1 through OW-4
- May 1990 One natural gas, above ground storage tank (AST) was removed from the central portion of the site (Figure 2).
- **November and December 1991 -** Approximately 2,000 cubic yards of soil were excavated to a depth of approximately 8 to 8 ½ feet below ground surface (bgs) as a remedial action for the petroleum hydrocarbons identified in the soil in the vicinity of the

OakApr07Final Page 1

former UST cluster. Groundwater monitoring wells OW-6 and OW-7 were installed, and well OW-3 was abandoned. The concentrations of TPHd and oil and grease in the soil samples collected along the site boundaries during soil excavation activities were greater than soil cleanup target levels, while concentrations of TPHd and oil and grease in each of the remaining confirmatory samples were less than the cleanup target levels. Oil was visible in the soils in the northeast wall of the excavation along the property line, and a pipe that contained a similar petroleum product were also exposed in the northeastern wall of the excavation. The conclusions of the February 1992 Site Remediation and Closure Report, Former Tank Cluster Area prepared by Earth Technology Corporation suggested that off-site sources of petroleum hydrocarbons may exist in both the northeast and northwest directions (ETC, 1992).

- **December 1991** Installation of groundwater monitoring wells OW-5 through OW-7.
- **September and October 1992** An asphaltic concrete cap was constructed on lead-affected surface soil in the vicinity of the former natural gas AST. Lead, believed to have originated from lead-based paint chips generated from sandblasting of the former natural gas AST, was found in soil samples collected from this area.
- **February 1993** Groundwater monitoring well OW-8 was installed in the southern area of the yard near the location of the former natural gas AST to monitor lead concentrations in the groundwater.
- **July 1994** Groundwater sampling frequency reduced from quarterly to a semiannual basis.

4.0 GROUNDWATER MONITORING ACTIVITIES

Blaine Tech Services, Inc. performed the groundwater monitoring event on April 12, 2007. Groundwater sampling was performed using low-flow purging and sampling methods in accordance with the Low-Flow Purging and Sampling Protocol (Appendix B). Depth to groundwater measurements were collected from OW-1, OW-2, OW-5, OW-6, OW-7, and OW-8, and were recorded in the Groundwater Purging and Sampling Logs (Appendix C). Field personnel observed what appeared to be sediment on the water level indicator at the bottom of monitoring well OW-5. Monitoring well, OW-4, was inaccessible because a storage container was placed over the well. The groundwater elevation measurements were used to prepare a groundwater elevation map to determine the direction and magnitude of the groundwater gradient. Purge water generated during the groundwater monitoring activities was temporarily stored on site in 55-gallon steel drums pending disposal.

Groundwater samples were collected from OW-1, OW-2, OW-5, OW-6, OW-7, and OW-8 in laboratory supplied containers. The samples were shipped on ice to Creek Environmental

OakApr07Final Page 2

Laboratories, Inc., of San Luis Obispo, California, a State of California certified laboratory, for analysis under chain-of-custody protocol. Samples from the monitoring wells were analyzed for the following:

- Total petroleum hydrocarbons quantified as gasoline (TPHg), TPH quantified as diesel (TPHd), and TPH quantified as motor oil (TPHmo) using U. S. Environmental Protection Agency (EPA) Method 8015B;
- Dissolved lead using EPA Method 6010B; and
- VOCs using EPA Method 8260B.

Appendix D includes the laboratory analytical reports and chain-of-custody documentation.

All analyses were performed within the holding times specified by the EPA. None of the tested analytes were detected in the field blank or laboratory reagent blank. The surrogate recoveries were within the laboratory acceptance limits. Recoveries of matrix spike/matrix spike duplicate (MS/MSD) were within the laboratory acceptance limits. The relative percent differences (RPD) were within the laboratory acceptance limits.

5.0 GROUNDWATER MONITORING RESULTS

Groundwater level measurements collected during the April 12, 2007, monitoring event indicate that depth to water ranged from 2.82 to 5.55 feet below the top of casing. Based on these groundwater level measurements, the predominant groundwater flow direction was towards the south with an approximate hydraulic gradient of 0.004 ft/ft. Table 1 summarizes the depth to water measurements and groundwater elevation data. Figure 3 shows the groundwater elevation map.

Laboratory analytical results for the groundwater samples collected from the six monitoring wells sampled during the April 12, 2007, monitoring event indicate the following:

- TPHg was not detected above the laboratory method reporting limit of 50 μ g/l in any of the six samples collected from the site.
- TPHd was detected in the six wells sampled at the Site. TPHd concentrations ranged from 110 µg/l to 210 µg/l. The highest concentration of TPHd was found in the sample collected from well OW-7 at 210 µg/l, located in the northeastern (upgradient) portion of the property.
- TPHmo was detected in the six wells sampled at the Site. TPHmo concentrations ranged from $200 \,\mu\text{g/l}$ to $500 \,\mu\text{g/l}$. The highest concentration of TPHmo was

OakApr07Final Page 3

- found in the sample collected from well OW-5 at $500 \,\mu\text{g/l}$, located in the northern (upgradient) portion of the property.
- Dissolved lead was not detected above the laboratory method reporting limit of 4
 µg/l in any of the six samples collected from the site.
- With the exception of benzene detected at 4.7 µg/l in OW-5 and methyl tertiary butyl ether (MTBE) detected at 1.0 µg/l in OW-1; benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE were not detected above the laboratory method reporting limit in the six samples collected from the site.
- VOCs were detected in samples collected from OW-1, OW-5, OW-6, and OW-7. The highest concentrations of VOCs were found in the sample collected from well OW-7, located in the northeastern (upgradient) portion of the property.

Tables 2 and 3 summarize the laboratory analytical results. Figure 4 presents the results of the April 12, 2007, sampling event.

6.0 CONCLUSIONS

The direction and magnitude of groundwater gradient is generally consistent with the results of previous monitoring events. Overall, the analytical results of the April 12, 2007, groundwater monitoring event are consistent with the results of previous groundwater monitoring events.

7.0 REFERENCES

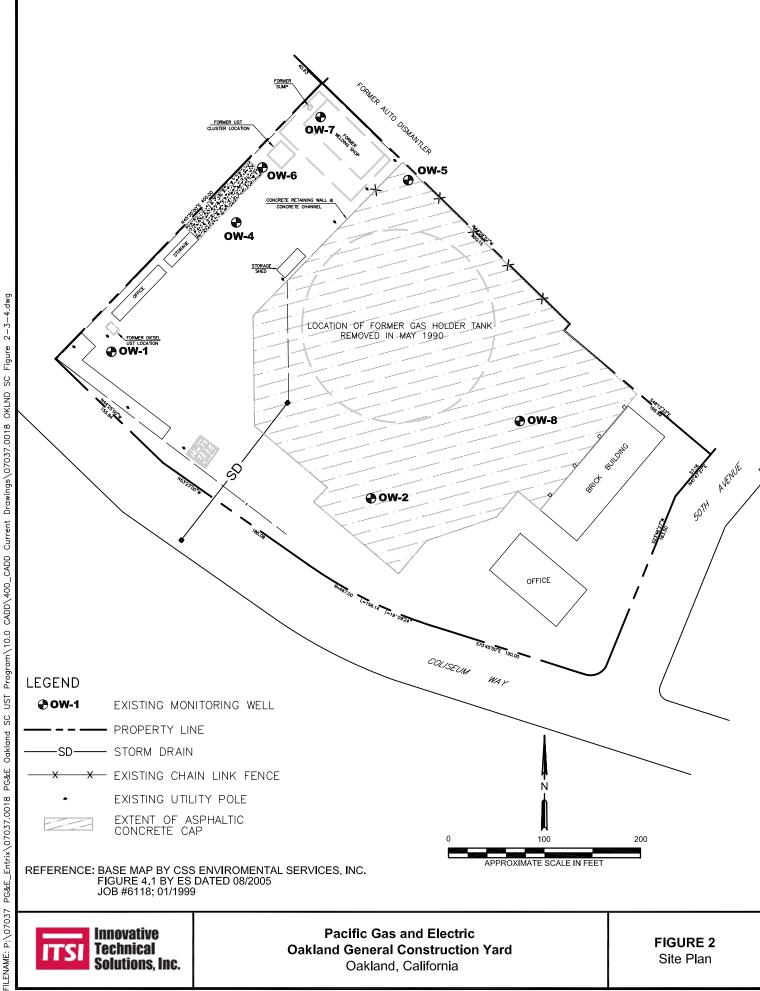
OakApr07Final

- CSS Environmental Services, Inc., 2005, Semi-Annual Groundwater Monitoring Report, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, September 2.
- Earth Technology Corporation (ETC), 1992, Site Remediation and Closure Report Former Tank Cluster Area, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, February.

Pacific Gas and Electric Company (PG&E), 1988, Underground Tanks Investigation, PG&E General Construction Yard, 4930 Coliseum Way, Oakland, California, July.

Page 4

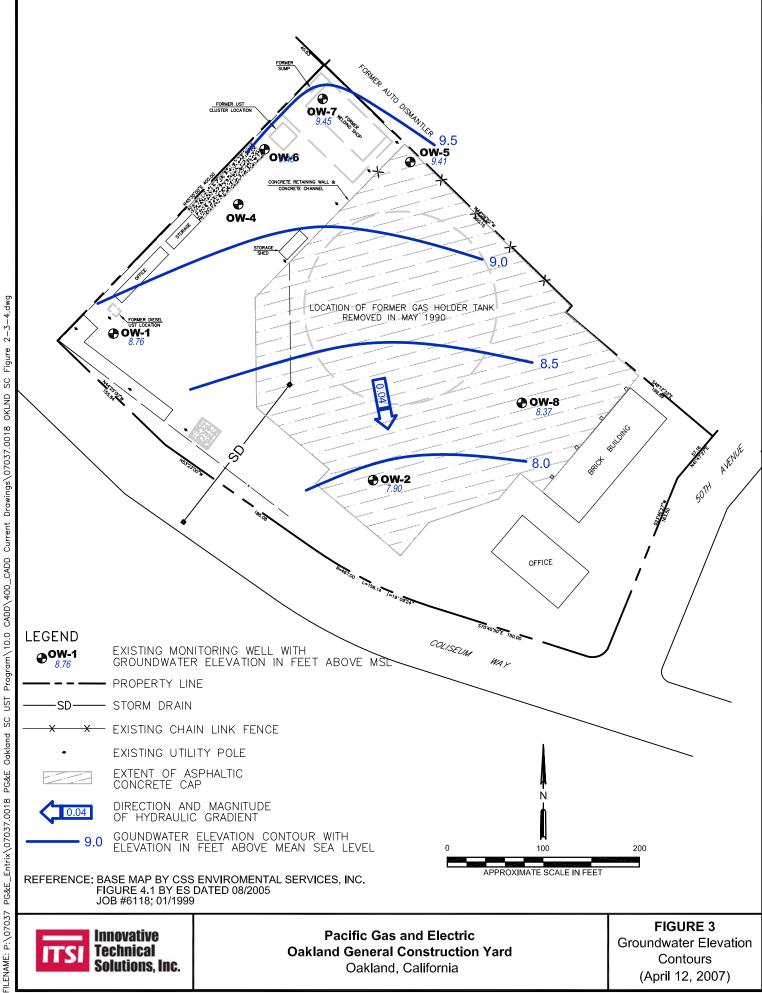
FIGURES



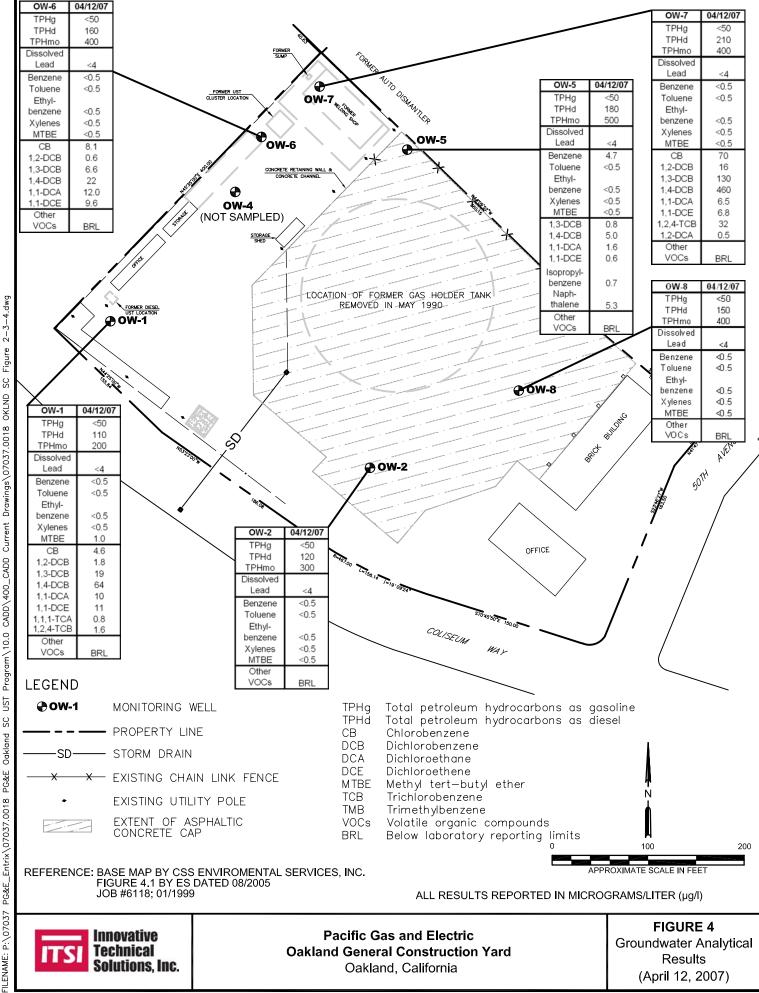
Program\10.0 CADD\400_CADD Current Drawings\07037.0018 OKLND SC

UST

SC


FILENAME: P:\07037 PG&E_Entrix\07037.0018 PG&E Oakland

Pacific Gas and Electric Oakland General Construction Yard Oakland, California


FIGURE 2 Site Plan

Solutions, Inc.

Oakland General Construction Yard Oakland, California

Contours (April 12, 2007)

Innovative **Technical** Solutions. Inc.

Pacific Gas and Electric **Oakland General Construction Yard** Oakland, California

Groundwater Analytical Results (April 12, 2007)

TABLES

TABLE 1 Summary of Groundwater Elevation Data

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

Well Number	Sample Date	TOC Elevation (feet MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet above MSL)
OW-1	4/12/2007	11.82	3.06	8.76
OW-2	4/12/2007	11.24	3.34	7.90
OW-4	4/12/2007	12.82	NM	
OW-5	4/12/2007	13.24	4.85	9.41
OW-6	4/12/2007	13.61	4.15	9.46
OW-7	4/12/2007	15.00	5.55	9.45
OW-8	4/12/2007	11.19	2.82	8.37

Notes:

TOC = top of casing

MSL = Mean Sea Level

bgs = below ground surface

NM = Not measured. Well was not found/un-accessible due to storage container.

TOC elevation data were referenced from Figure 4.2-Historical Groundwater Elevations, (Semi-Annual Groundwater Monitoring Report, September 2,

2005, CSS Environmental Services, Inc.).

Table 2 Summary of Groundwater Analytical Results (April 12, 2007)

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

			al Petrole carbons N 8015M		Dissolved Lead Method 6010B						Volatile	Organio	: Compoun	ds-Metho	od 8260B						
Sample Name	Sample Date	TPHg μg/l	TPHd µg/l	TPHmo μg/l	μg/l	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Xylenes μg/l	4-Isopropyl- benzene µg/l	Naph- thalene µg/l	MTBE µg/l	1,2,4-TCB µg/l	1,2-DCB µg/l	1,3-DCB μg/l	1,4-DCB μg/l	CB µg/l	1,1,1-TCA μg/l	1,1-DCA μg/l	1,1-DCE µg/l	Other VOCs µg/l
OW-1	04/12/07	<50	110	200	<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	1.0	1.6	1.8	19	64	4.6	8.0	10	11	ND
OW-2	04/12/07	<50	120	300	<4	< 0.5	<0.5	< 0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	ND
OW-5	04/12/07	<50	180	500	<4	4.7	<0.5	<0.5	<0.5	0.7	5.3	<0.5	<0.5	<0.5	8.0	5.0	<0.5	<0.5	1.6	0.6	ND
OW-6	04/12/07	<50	160	400	<4	< 0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	0.6	6.6	22	8.1	<0.5	12.0	9.6	ND
OW-7	04/12/07	<50	210	400	<4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	< 0.5	32	16	130	460	70	< 0.5	6.5	6.8	(1)
OW-8	04/12/07	<50	150	400	<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
FIELD BLANK	04/12/07				<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Notes:

OW-4 could not be sampled because a shipping container is located on the well.

μg/I = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.

-- = Not analyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene 1,2,4-TCB = 1,2,4-Trichlorobenzene

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride

 $^{(1)}$ = 1,2-Dichloroethane was detected at 0.5 μ g/l

APPENDIX A

Historical Groundwater Analytical Results

Table A1 Summary of Historical Groundwater Analytical Results for TPH, Dissolved Lead, and PAHs December 2005 to Present

Pacific Gas and Electric Oakland General Construction Yard
Oakland, California

			al Petrole carbons N 8015M	-	Dissolved Lead Method 6010B			Polynu	clear Aror	natic Hydro	ocarbons-M	ethod 827	0C - SIM		
Sample Name	Sample Date	TPHg μg/l	TPHd μg/l	TPHmo μg/l	μg/l	2-Methyl Naph- thalene µg/L	Acenap- thene µg/L	Acenap- thylene µg/L	Anthra- cene µg/L	Fluoran- thene µg/L	Fluorene µg/L	Naph- thalene µg/L	Phenan- threne µg/L	Pyrene µg/L	Other PAHs µg/L
OW-1	12/20/05	53 ¹	390 ²	470J											
OW-1	12/20/06	<50	200	-											
OW-1	04/12/07	<50	110	200	<4				-						
OW-2	12/20/05	<20	200 ²	610	<3	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-2	12/20/06				<20										
OW-2	04/12/07	<50	120	300	<4										
OW-5	12/20/05	33 ³	300 ²	610	<3	0.96	0.31	0.26	0.24	0.70	0.67	13	0.13J	1.4	ND
OW-5	12/20/06	90	300		<20										
OW-5	04/12/07	<50	180	500	<4										
OW-6	12/20/05	<20	440 ²	760		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-6	12/20/06	<50	<100												
OW-6	04/12/07	<50	160	400	<4										
OW-7	12/20/05	330 ¹	510 ^{2,4}	860		<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-7	12/20/06	<50	400	-											
OW-7	04/12/07	<50	210	400	<4				-						
OW-8	12/20/05	<20	250 ²	690	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-8	12/20/06			-	<20										
OW-8	04/12/07	<50	150	400	<4										
FIELD BLANK FIELD	12/20/05	<20	<50	<500	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
BLANK FIELD	12/20/06				<20										
BLANK	04/12/07				<4										

OW-4 could not be sampled because a shipping container is located on the well.

- TPH = Total petroleum hydrocarbons
- TPHg = Total petroleum hydrocarbons quantified as gasoline
- TPHd = Total petroleum hydrocarbons quantified as diesel TPHmo = Total petroleum hydrocarbons quantified as motor oil
 - PAH = Polynuclear aromatic hydrocarbons

 - µg/l = Micrograms per liter.

 < = Not detected at or above the practical quantitation limit.

 = Not analyzed

 - ND = Not detected
 - J = Estimated result. Result is less than the practical quantitation limit.
 - (1) = The laboratory notes that the chromatogram is mainly a dominant peak(s) which is not indicative of petroleum hydrocarbons.
 - (2) = The laboratory notes that the chromatogram is mainly higher boiling hydrocarbons such as asphaltene, waste oil, motor oil, weathered diesel, and hydraulic fluid.
 (3) = The laboratory notes that the chromatogram includes higher boiling hydrocarbons such as diesel
 (4) = The laboratory notes that the chromatogram contains a recognizable contaminant peak(s) that has been removed from quantitation.

Table A2 Summary of Historical Groundwater Analytical Results for VOCs December 2005 to Present

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

									Vo	latile Or	ganic Cor	mpounds-M	ethod 826	0B								
Sample Name	Sample Date	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Xylenes μg/l	1,2,4-TMB µg/l	1,3,5-TMB µg/l	4-Isopropyl- benzene µg/I	-	MTBE 1	,2,3-TCB µg/l	1,2,4-TCB μg/l	1,2-DCB μg/l	1,3-DCB μg/l	1,4-DCB μg/l	CB µg/l	1,1,1-TCA µg/l	TCE µg/l	1,1-DCA µg/l	1,1-DCE µg/l	VC µg/l	Other VOCs µg/l
OW-1	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		0.96	<0.5	<0.5	4.6	37	110	8.8	0.66	< 0.5	7.6	8.3	<0.5	ND
OW-1	12/20/06	< 0.5	< 0.5	< 0.5	< 0.5																	
OW-1	04/12/07	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<5	1.0	<0.5	1.6	1.8	19	64	4.6	8.0	< 0.5	10	11	<0.5	ND
OW-2	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<1.0	<0.5	<0.5	ND
OW-2	12/20/06																					
OW-2	04/12/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
OW-5	12/20/05	4.4	< 0.5	< 0.5	0.56	<0.5	< 0.5	<0.5		<0.5	<0.5	<0.5	< 0.5	1.0	3.9	0.63	<0.5	0.33J	2.2	0.49J	0.6	ND
OW-5	12/20/06	0.7	< 0.5	<0.5	<0.5	3.2	1.9	8.0	50	<0.5	<0.5	<0.5	<0.5	1.0	4.3	<0.5	<0.5	< 0.5	2.2	0.6	<0.5	ND
OW-5	04/12/07	4.7	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	5.3	<0.5	<0.5	<0.5	<0.5	0.8	5.0	<0.5	<0.5	<0.5	1.6	0.6	<0.5	ND
OW-6	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	0.53	<0.5	<0.5	1.4	8.6	25	5.8	<0.5	< 0.5	7.0	3.1	<0.5	ND
OW-6	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	1.2	11	44	3.4	<0.5	<0.5	8.1	4	<0.5	ND
OW-6	04/12/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	0.6	6.6	22	8.1	<0.5	<0.5	12.0	9.6	<0.5	ND
OW-7	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5		0.26J	<0.5	<0.5	26	190	490	84	<0.5	0.53	7.0	6.3	0.39J	ND
OW-7	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.8	<0.5	0.8	25	21	120	330	51	<0.5	<0.5	3.6	3.1	<0.5	ND
OW-7	04/12/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	32	16	130	460	70	<0.5	<0.5	6.5	6.8	<0.5	(1)
OW-8	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.55	<0.5	<0.5	ND
OW-8	12/20/06																					
OW-8	04/12/07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
FIELD BLANK FIELD	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	ND
BLANK FIELD	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
BLANK	04/12/07	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	ND

Notes:

OW-4 could not be sampled because a shipping container is located on the well.

μg/I = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,1-DCA = 1,1-Dichloroethane 1,1-DCE = 1,1-Dichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene

1,2,4-TCB = 1,2,4-Trichlorobenzene

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride

 $^{(1)}$ = 1,2-Dichloroethane was detected at 0.5 μ g/l

Well (C) Date	MCL ug/L		DW-1 Oct-89	OW-1 Jan-90	CW-1 Apt-90	1-WO 08-bL	OW-1 Oct-98	OW-1 Jan-91	OW-1 Apr-91	OW-1 Jul-91	OW-1 Dac-91	OW-1 Mar-92	OW-1 Jul-92	OW-1 Oct-92	OW-1 Jan-93	OW-t Apr-03	OW-1 Jul-93	OW-1 Oct-93	OW-1 Jan-84	OW-1 Jul-94	OW-1 Jun-25	OW-1 Nov-85	OW-1 Jun-96	OW-1 Oct-96	OW-1 Apr, Jun-97	OW-1 Dec-97	149-98 149-98	OW-1 Doc-98	OW-1 Jun-99	OW-1 Nov-99
PURGEABLE HALOCARBONS																	:												b10	AN
Chloromolisuno		מא	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND ND	ND OH	ND ND	(G/)	ND	NA NA	NA NA	NA NA	AM AM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	na na	NA NA	AM AM	NA NA	NA
Bromomethana		ND	MD	ΝĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA									
Vinst chlorida	0,5	ND	村口	ND	HD	ND	ND	ND	ND	ND		ND ND	ND	מא	ND	NA	NA	NA	НA	NA	NA									
Chiarcothena		NΩ	NΩ	ND	ND	ND	ND	ND	ИD	ND	NO			ND	ND	NA.	NA.	NA	NA	NA	NΑ	NA	NA	NA	NA	NA.	NA	NA	NA ·	NA
Methylana Chlarida	5#	ND	ND	NΦ	ИÐ	ИD	ИD	ND	NA.	NΑ	NA.	NA	NA	NA	NA	NA	NA													
Trichlorofluoromethane	150	ND	ND	ND	ND	NO	ND	ИD	ND	ND	ND	NO	ND			NA.	NA.	MA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dishlersethane	6	ND	ΝD	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Dichiaroethana	5	ND	5	4	4	2	2	1	2.8	4.6	ND	ИD	NO	.1	3	NA	HA	NA.	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NΑ
cis-1.2-Dichloraelnana	6	ND	ND	ND	ND	ND	ИÜ	ND	ND	MD	ND	ΝĐ	ND	ND	ND	NΑ	NA.				NA.	NA	NA.	HA	NA	NA	NA	NA	NA	NA
	10	ИD	ND	ND	ND	ND	NP	ND	ND	ND	ND	ИĎ	ND	ND	ИФ	NA	NA	NA ·	NA.	NA		NA NA	NA.	NA	N/A	NA	NA	NA	NA	NA
trans-1,2-Dichtoroothone	100#*	ND	ND	ND	ND	ND	ND	NO	ND	ND	КD	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA
Chloroform	1200	ND	ДN	ND	ND	ИĎ	ND	ND	ND	NΩ	ND	ND	ND	ND	NΦ	NA	NA	NA	NA.	NΑ	ŅĄ			NA.	NA.	NA	NA	NΑ	NA	NA
Fraori 113	0.5	ND	ND	ND	ND	ND	ND	ND	0,63	ND	NO	ND	ND	ND	ND	NA	NА	NA.	NA	AI/1	NA	NA	NA		NA	NA	NA.	ΝA	NA	NA
1,2-Dichloroethane	260	ND	ND	ND	ND	ND	140	ND	ND	NΩ	ND	NO	ND	ND	NO	NA	HΑ	NA	NA	NA	NA	NA	NA.	NA	NA NA	NA.	NA.	NΑ	NA	NA.
1,1,1-Tilchioraethane	0.5	ND	ND	ND	ND	NO	ND	HA	A/A	NA	H/A	NA.	NA	NA	NA	NA	NA NA	NA.	NA	NA.	NA	NA								
Carbon Tutrechloride	100#1	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	МA	NA	NA NA	NA.	NΑ	NA	NA	NA							
Promedich/orotnethane	5	ND	NO	ND	ND	ND	ND	NO	ND	NO	ND	ND	ND	ND	ИD	NA	NA	NA	N/A	NA	NA	NA	NA.	NA	NA NA	NA.	NA.	NA.	NA	NA.
1,2-Dichleropropane	5***	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA NA	IA	NA	NA	NA.	NA.
eis-1,3-Dichbropropene	5	NO	ND	ND	ΝĎ	ND	ND	ND	ND	ND.	ND	ND	ND	КD	ND	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.
Trichloroathone	12	NO	ND.	םא	ND	NO	ИD	ND	ПD	ND	ND	NO	ИD	NΦ	ND	NA	·NA	NA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA.
1,1,2-Trichlerostrone	5	QN.	NO	ND	ND	NO	ND	ND	ND	HO	ND	ND	ND	ND	ND	NA	NA	NA	NA	HA	NA.	NA	A/s			NA.	NA	NA	NA	NA
truns-1,3-Dichleropropena Distramochleromalhane	100#"	ND	ND	ND	ND	NÞ	ND	NO	ND	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA						
	Inh	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИФ	ИŪ	NΑ	NA	NA	NA	NΑ	NA	NA			NA NA	NA.	NA	NA	16A	NA.
2-Chloroothylvinyl Ethor Bromoform	100#*	NO) D	ND	ND	ND	ND	110	ND	ND	ИĐ	ND	NΠ	ИĐ	NO	MA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.	NA.	NA	AM	NA
Teirechkrasthens	5	ND	ND	ND	ND	NΩ	ND	ND	1.1	ND	ND	MD	ND	ND	ИD	NA	NA	MV	NA	NA	NA	NA	NA NA	NA NA	NA	NA.	NA.	NA	NA	NA.
1,1,2,2-Totrachloroethane	ī	NO	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ΚD	ND	ND	NA		NA NA	ΝA	NA.	NA	NA	NA	AM						
Chlorobenzena	30	ND	ND	ND	NO	NO	ND	ND	ND	מא	ND	ND	NĐ	ND	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlorobanzone	50	NA.	NA	1	4	4	1	3	1.6	2,9	ND	ND	ND	ND	ND	KA	NA	NA	NA	NA	NA		NA NA	NA NA	NA.	NA.	NA	AVA	NA	NA
1.2-Dichterobenzeno	600#	NA.	NA	ND	ND	ND	ND	MD	0,58	ND	ND	ИD	ND	ИD	ИD	NA	ИA	NA	НA	NA	NA	NA			NA.	NA.	NA	NA.	NA	NA.
1,4-Dichiarabonzeno	5	4	11	5	13	11	6	3	6.7	14	3.2	ND	4	3	3	NA	ИA	NA	NA	NA.	NA	NA	NA	NA	1975	ריוו	140			
l'e-hicumanausena	-	•	•••																											
PURGEABLE AROMATICS '																						LUD.	NO	ND	ND	0.66	ND	0.5	0.55	NO
Banzons	1	ND	NÞ	3.2	ИD	NO	ND	340	NA	ND	NA	ND	ND	NA Na	ND QN	ND	ND CM	ND	ND D	0.67	ᅜ	ND	NO							
Toluane	1960#	ND	ND	2.3	0,4	NO	ND	ND	ND	ND	ND	ИD	0,7	ND	ND	NA	ND	NΑ	ND	ND	NA NA	ND	ND	ND	ND	2.3	ND	0.70	NO	ND
Ethylpanzana	580	ND	ND	ND	NO	NO	ND	ND	ND	NΠ	ND	ИD	2	ИD	0.0	NA	ND	NA	ND	ND		ND	ND	ND	מא	1.1	ND	0.67	ND	0.59
Total Xylenes	1750**		ND	2.6	2.4	ND	ND	ND	ND	ВN	ΝĐ	3.2	Ġ	1.7	1.9	NA.	ND:	NA_	2,5	NO	NA NA	NA	NA NA	- NA	- NA	4.08	0.67	1.03	0.55	0.59
TOTAL VOCE	11.20	4	16	18,1	23.8	17	9	7	13,41	215	1,2	3.2	15.7	5.7	8,5	NA.	-7VA	, NA	2,5	NA.	··· NA	1/4	. NA	100	100	4,00	2.27		-,	
HYDROCARBONS																														
									618	NA	NA	100	120	< 50	70	NA	NA	NA	80	60	400	230	500	830	590	420	850	650	1109	990
TVH-g		NA	NA	< 50	82	< 50	< 50	< 500	NA - ann	< 50	1650	3100	3500	1000	2000	NA	2300	NA.	1000	1500	740	1000	2300	1400	1500	700	1960	1800	1300	540
TEPH-d `		< 1000			300	200	200	90	< 200	< 5000				NA.	NA	1(A	NA	NA .	NA	NA	NA	NA	NA							
OLG		< 5000		NA	NA.	NA	NA FRA	NA - FORC	NA 4 EAR				NA.	NA NA	NA.	NA	NA.	NA	NA	NA	NA.	NA.	NA							
TPH (418.1)		NA	NА	< 5000	< 500D	< 5000	< 5000	< 5000	< 500	NA	NA	NA	1200	110	(***	17/1			••••	,			•							•
METALS																														
Lead	a	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	NA	NA	AM.	NA	AM	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

1) MCL - Maximum Centaminant Loyel in drinking water (State MCL if not noted otherwise)

2) # = EPA MCL

3) * = MCL for sum of four compounds

4) ** = MCL for sum of all sylens kanners

5) ** = MCL (or sum of starts - and dis-1,3-dichloropropens

6) NC = Not Delected at or above MCL

7) Purgeable Histocathors (EPA method 8010)

8) Purgeable Aramates (EPA method 8020)

9) NA = Not Analyzed or analyzis not required

10) £17702 Samples analyzed for VOCs out of holding time due to laboratory error

Well ID Dato	OW-1 Jun-60	OW-1 Nav-00	OV#1 Jun-01	OW-1 Nov-01	OW-1 Jun-02	OW-1 Oct-02	OW-1 Apr-03	OV#-1 Nov-03	OV/-1 Jun-04
PURGEABLE HALDCARBONS		÷							
	NA	NA.	NA	NA	NA	HA	NA	NA	NA
Chloremelhane	NA NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA
Bramamethane Vinyi chlorida	AK	NA	ΝA	NA	NA	NA	NA	NA	NA
Only crionica Chlorosthana	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Mathylane Chlorida	NA	NA	NA	NA	NA	НA	NA	NA	NA
Trichlorofluoromethane	NA	HA	NA	NA	NA	NA	NA	NA NA	NA NA
1.1-Dichloroelhens	NA	NA	NA	NA	ALA	NA NA	NA NA	NA NA	NA.
1,1-Dichlorpothana	NA	NA.	NA NA	NA NA	PLA NA	NA.	NA	NA.	NA.
cls-1,2-Dichlorusihans	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA	NA	NA
irans-1,2-Dichiorpolhena	NA NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA
Chloreform Freen 113	NA NA	NA.	NA	ΝA	NA	NA	NA	NA	NA
1.2-Dichtoroothane	NA.	NA	NA	NA	NA	NA	NA	НA	NA
1.1.1-Trichiorosthana	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Tehnchlotide	NA	NA.	ΝA	ΝA	NA	NA	NA	NA	AM AM
Bromedichleremolhans	NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA.
1,2-Dichieropropana	NA	NA	NA	NA NA.	NA NA	NA NA	NA.	NA.	NA
cts-1,3-Dichleropropena	NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	NA '
Trichiorosihene	NA NA	NA NA	NA.	NA.	NA.	NA	NA	NA	NA
1,1,2-Trichiprosthans	AM	NA NA	NA.	NA.	NA	NA	NA	NA	NA
trans-1,5-Dichloropropana Dibromochloromethena	NA.	NA	NA	NA	NA	NA	NA	AM.	NA
2-Chloroethylylnyl Ether	NA	NA	NA	12A	NA	NA	NA	NA	AM
Bromoferm	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachleroothene	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
1,1,2,2-Teirnchlorsothune	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Chlorobonzone	AM	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA.
1,3-Dichlorobenzene	NA	NA.	NA,	HA NA	AN AN	NA NA	NA.	NA.	NA
1,2-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA	NA
1.4-Dichlerobenzene	NA	IVA	רעו				,		
PURGEABLE AROMATICS									
Benzena	ND	ND	NO	ND	OM	ND	NĐ	ND	ND
Toluene	ND	ND	HD	ND	ND	ND	NΩ	ND	ND ND
Elhylbenzeng	ND	ND	ИD	ND	ND	ND	DM GM	ND	ND ND
Total Xylenes	ND	ND	3,4	ND	ND NA	ND NA	NA.	NA.	
TOTAL VOCE	NA	ΙA	3,4	NA	AA	144	140	(47.	****
HYDROCARBONS									
	680	820	480	630	540	770	380	310	290
TVH-g TEPH-d	350	250	740	270	870	500	460	470	420
OAG	NA	NA	NA	NA	NA	NA	NA	NА	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	t#A	NA
METALS									
Lood	. NA	NA	NA	NA	AM	NA	NA	MA	NA
Notes: 1) MCL = Maximum Contembra: 2) # = EPA MCL 3) *= MCL for sum of four comp 4) *= #60L for sum of #B kylone 5) **= MCL for sum of #B kylone 5) NO = N6 Detected at or abov 7) Purgeable Adjocations (EPA 8) Purgeable Holocations (EPA 8) NA = N6 Analyzad or analysi 10) #17/02 Somples analyzad i	i lanners nd cis-1,3- re MDL method 602 s not requ	Dichleropi 1010) 10s di Bred	opens opens						
*** = ***= * ***** = ** * ****									

Clif ullerab

Wad ID Date	MCL vg/L	OW-2 Apr-88		0W-2 0W-2	OW-2 Apr-90	7-WO 08-lut	OW-2 ದಿದ-90		OW-2 Apr-81	OW-2	0W-2 Dec-91	OW-2 Mar-92	OW-2 Jul-82	DW-2 Dd-92	OW-2 Jan-93	OW-2 Apt-63	ንካት 33 OM-S	OW-2 Oct-93	OW-2- Jan-94	OW-2 Apr-94	OW-2 Jul-94	OW-2 Jun-95	OW-2 Nov-95			OW-2 Apr _r Jun-87	OW-2 Dec-97	OW-2 Jun-98	OW-2 Dec-98	7un-99 CW-2	
PURGEABLE HALOCARBONS																							414	A10 :	NA	NA.	NΑ	NA	NA	NA.	NA.
Chioromethane		ON	ND	ND	ND	ND	NO	ND	ND	ND ND	סא מא	ND ND	ND ND	DIA CIM	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	AA AK	NA NA	NA NA	NA NA	NA	NA.	NA	NA	NA	NA	NA
Bramamathena		ND	ИD	SID	ND	ND	ND	ND	NO	ND	ИD	ND	ND	ND	ND	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyi chiaddo	0.5	ND	ND	ИD	ND	ND	ND	ND	ND CN	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorosthane		ND	ND	ND	ИО	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Mathylano Chisrida	5#	ND	ND	ND	ND	ND	NO	ND	110	ND	NB	ND	ND	ND	ND	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.
Trichierollucromethano	150	ND	ND	ΝD	ND	ND	ND	ND ND	MD	ND	ND	ND	ND ·	ND	ND	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	AH	A34	NA	NA	NA	NA
1.1-Dichleroethene	6	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
1,1-Dichloroothans	5	ND	ND	ND	MD	110	ND		ND	NO	ND	ND	ND	ND	ND	NA	HA	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichlorselhana	6	NA	ND	ND	NO	ND	ND	ND ND	ND	ND	NO	NO	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NΑ	NA.	HA	NA	AM	NА	NA	NA	NA
trans-1,2-Dishloroethone	10	ND	ND,	ND	HD	ND	ΝD		NO	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.
Chleroform	100#*	ND	NO	ND	ND	ND	ND	750 750	ND	ND	ND	ND	ND	מא	ND	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA
Fran 113	1200	NA	ИĎ	ND	ND	ND	ND	140	ND	ND	ND	ND	NO	ND	ND	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorpelhane	0,5	ND	ND	ND	ND	ND	ND ND	MD MD	ND	ND ND	MD MD	CM CM	מא	ND	ND	NA	NA	NA	NA	NA	NA	NA	ΑM	NА	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trishlarosthane	200	ND	ND	ИĎ	ND	ND ND	ND	ND	ND	ND	ND	CM	NED	ИD	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carban Tetrachieride	0.5	ND	ND	ND	ND		מא	ND	ND	V20	ND	ND	ND	ND	ND	NA	NA	NΑ	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	AI	NA
Bromodichloromathana	100#*	MO	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AM	NA	MA	NA
1,2-Dichloropropana	5	ND	ND	ND	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA,	NA	NA	NA	NA NA
eis-1,3-Dichloropropene	5***	ND	NO	ND		ND CM	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Trichloroethens	5	ND	ND	ND	ND	HD HD	ND	NB	ND	ND	ND	ND	ND	ND	ND	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA NA	NA NA
1.1,2-Trichlernethans	32	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA.	NA	MA	AJ1	NA	NA	MA	NA	NA	NA	AA	NA	NA	NA	NA NA	NA NA
trans-1,3-Dichlersprepene	5***	ND	ND QN	ND	ИD	ND	ND	ND	ND	ND	OM	ND	ND	NO	ND -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA AN	NA
Dittomochlommathans	100#*	ND	,	ND EN	ND	HD	ND	ND	ND	ND	ND	ND	ND	ND	ΝD	NA	NA	NA	NA	A\$1	MA	NA.	NA	NA	NA	NA	NA	NA		NA NA	NA.
2-Chicrosthylvinyl Ether		ND GN	ND ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	NĎ	ND	NA	NA	NA	NA	NA	NA.	NA	ΝA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
Bromeform	100#*			ND CN	ND	140	ND	ND	0.53	ND	ND	ND	ND	ND	ND	NA	NA	NA	ΝA	MA	NA	NA	NΑ	NA	NA	NA.	NA	NA	NA.	NA NA	NA NA
Tebachioraethene	5	ND	ND ON	ON	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	HA	NA NA	NA NA	NA NA
1,1,2,2-Tetrachioroethona	1	ND	ND	ND	HD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA AN
Chlorobenzone	30	NA NA	NA.	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND	NA	NA	ΝA	MA	NA	NA	AL1	NA	NA	NA	NA	NA	NA	NA AM	NA NA	NA NA
1,3-Dichterobenzene	resu	NA NA	NA.	ND	No No	מא	NO	ND	ND	ND	MD	ND	NO	ND	ND	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA.	NA	NA		NA	NA NA
1,2-Dichlorobenzane	600# 5	NA NA	AM	ND	ND	ND	ND	NO	ND	ND	ND	ND	NO	ИĎ	ИĐ	NA	NA.	NA	NA	AA,	NA	NA	AM	NA	NA	NA.	NA	NA	NA	104	13/2
1,4-Dichlorebenzena	5	MA	1475	NU	140		1.2	,																							
PURGEABLE AROMATICS																									411	NA	NA	NA.	NA	NA	NA
5	1 ,	СИ	. ND	0.4	ND	ND	ND	ND	ИD	ND	ND	1.4	ИD	ND	ND	NA	NA	NA	NA	NA.	ŅĀ	NA	NA	NA NA	NA NA	HA	NA.	NA.	NA	NA	NA
Benzons Taluans	1000#	ND	, ND	0.4	0.6	ND	ND	ND	ND	NB	, NO	ND	ND	ND	ND	NA	NA	NA	NA	NA.	NA	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA	NA	NA
	035	ND	ND	ND	ND	ND	ND	ND	ИΟ	ND	ND	ND	ND	ИD	ND	NA	NA	NA	NA	NA	NA			NA NA	NA.	NA .	NA.	NA.	NA	NA	NA.
Elbyibenzona	1750**	.,—	ND	0.4	0.6	NO	ND	ND	HD	ND	ND	ΝD	ND	ND	ND	NA	NA	NA.	NA	AM.	NA.	NA.	NA	NA.	NA	NA	- NA	NA.	-NA	NA.	NA.
Total Xylones TOTAL VOCa	1100	· NA	NA.	1.2	1,4	NA	NA	ŅĀ	0,53	NA	NA	1.4	NA	-NA	NA	NA.	NA	NA	NA	NA	NA	TW4	Trees.	100	1164	1	1465				
HYDROCARBONS																															
						_	_			- 14	414	- EC	- EP	< 50	< 50	NA	NA	NA	NA	NA	NA	AM.	NA	NA	NA	NA	NA	NA	NA	NΑ	NA
TVH-rr		NA	NA	< 50	< 50	< 50	< 50	< 50	NA	NA	NA	< 50	< 50		020	NA.	NA.	NA	NA	NA.	NA.	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA
TEPH-d		< 1000	< 1000	130	140	68	90	< 50	< 200	< 50	630	870 < 5000	410 NA	410 NA	NA.	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	ŅΑ	NA	NA	NA	NA.	NA.
CAG		18000	10000	NA	NA	NA	NA	NA	NA	< 5000			NA.	NA NA	NA.	NA	ΝA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA.	NA	MA
TPH (410.1)		NA	NA	< 5000	< 5000	< 5000	< 5000	< 5000	< 500	NA	NA	HA	INA	INA	1175	IIO	161	****	,	••											
METALS				•																											
Lead	ū	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	a	ND	4.1	ND	ND	ИĐ	ND	ND	ND	МĎ	ND	ND	ND

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted observése.)

2) #= EPA MCL

3) *= MCL for sum of all sylene isomers.

5) *** = MCL for sum of all sylene isomers.

5) *** = MCL for sum of all sylene isomers.

6) MD = Not Detacted at or above MOL.

7) Purgeable Matocarbors (EPA method 8020).

9) Purgeable Acomatics (EPA method 8020).

9) NA = Not Analyzed or analysis not required.

10) 6/17/02 Samples analyzed for VOCs out of holding time due to Isboratory error.

nte URGEABLE HALOCARBONS Nioramethana Ternemathana		OW-Z Nov-00	ÇW-2 Jun-01	OW-2 Nov-01	OVV-2 Jun-02	OW-2 Oct-02	GW-2 Apr-03	CW-2 Nov-03	OVV 2 Jun-04
hioromethene									
totoprofitana	NA	NA	NA	NA	NA	NA	NA	М	NA
	NA,	NA	NA	NA	NA	NA	NA	NA NA	NA NA
inyl chloride	NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
hioroethana	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA
lethylane Chionde	NA	NA	NA NA	NA NA	NA NA	NA.	NA	NA.	NA
anequaniminal properties	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	NA
1-Dichloraethene	NA NA	NA NA	NA	NA.	NA.	NA.	NA.	HA	NA
,1-Dichisroethane	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA
s-1,2-Dichlorosihene ans-1,2-Dichloroelhone	NA.	NA	NA.	NA.	NA	- NA	NA	NA	AM
hioroform	NA	NA	NA	NA	NA	NA	NA	NA.	NА
roon 113	NA	NA	NA	NA	NA	NA	NA	NA	NΑ
.2-Dichleroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1-Trichtoraethane	NA	NA	NA	N/A	NA	NA	NA	NA.	NA
arbon Tetrachloride	NA	NД	NΑ	NA	NA	NA.	NA	ИA	NA
romodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	.NA
2-Dichloropropens	NA	NA	NΑ	NA	NA	NA	NA	NA NA	NA NA
5-1,3-Dichioropropona	MA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
Hohlarcethene	NA	NA	NA	NA NA	AN AN	NA NA	NA.	NA.	NA
,1,2-Trichlercathana	AM AM	NA NA	NA NA	NA	NA	NA.	NA.	NA.	ΝA
ans-1,3-Dichloropropens	NA AM	NA NA	NA	NA	NA.	NA	NA	NA	NA
iltramechleromethane -Chiomathylvinyl Ether	NA.	NA	NA.	NA	AN	NA	NA	NA	HA
romatam	NA	NA	NA	NA	NA	NA	NA	NA	NA
'atrachicroethana	NA	NA.	NA	NA	NA	NA	NA	NA	NA
1,2,2-Tetrochicronihana	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Morabenzena	NA	NA	NA	NA	NA	NA	NA	NA	NA
,3-Dichlorebanzone	NA	NA	NA	NΑ	NA	NA	NA	₽₽	NA
2-Dichlorobenzene	NA	NA	NA	NA.	NA	NA	NA	NA	NA
.4-Dichlorobenzeno	NA	NA	NA	NA	AM	NA	AK	AM	NA
PURGEABLE AROMATICS									
ienzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ไดโนซทล	NA	NA	NA	M	NA	HA	NA	NA	NA
Shylbenzena	NA	NA	1174	NA	NA	NA	NA	NA	NA
fotal Xylanes	NA.	NA	NA	NA	NA_	NA.	NA	NA	NA NA
OTAL VOCs	NA	·····NA	NA	NA	NA	ΝA	NA	NA	NA
MOROCARBONS									
VH-α	NA	NA	NA	NA	NA	NA	NA	ИA	NA.
EPH-d	NA	NA	NA	NA	NA	NA.	NΑ	ИA	N.A.
DAG	NA	NA	NA	NA	NA	NA	NA	НA	NA
PH (415.1)	NA	NA	NA	NA	NA	ŀΙΔ	NA	NA	NA
METALS		ND	ND	ND	ИD	ND	NO	ND	ND

Weil ID Date	MCL ug/L	OW-4 Jun-58	0W-4 0ಜ-89	OVV-4 Jan-90	DW-4 Apr-90	701-80	DW-4 Oct-98	F-WO 76-naL		OW-4 Jul-191	OW-4 Dac-91	OW-4 Mar-92	OW-4 Jы-52	OW-4 Oct-92	GW-4 Jan-93	OW-4 Apr-93	OW-4 Jul-93	CW-4 Oct-93	OW-4 Jan-94	DV/-4 Jul-94	OW-4 Jun-95	OW-4 Nov-95	OW-4 Jun-96	0W-4 0d-95	OW-4 Apr.Jun-97	OW-4 Dec-97			DW-4 Jun-99	CW-4 Nov-99	OVY-4 Jun-00	OW-4 Nov-00		DW-4 Nov-01
PURGEABLE HALOGARBONS																		414		414	216	ыя	NA	NΔ	NA	NA	NA.	NA	NA	ΝA	NA	NA	NA	NA
Chloromethano Bromomethano Vinyi chlorida Chlorose thane Methyleno Chlorida Trichlorolunano 1,1-Dichloroshano 1,1-Dichloroshano than-1,2-Dichloroshano tran-1,2-Dichloroshano tran-1,2-Dichloroshano tran-1,2-Dichloroshano 1,1,1-Trichloroshano Carbon Tetrachloride Bromedichloromethano 1,2-Dichloropropano da-1,3-Dichloropropano da-1,3-Dichloropropano da-1,3-Dichloropropano da-1,3-Dichloropropano da-1,3-Dichloropropano Dictanoshano 1,1,2-Trichloroshano tran-1,3-Dichloropropano Dictanoshano 1,1-Trichloroshano tran-1,3-Dichloropropano Dictanoshano 1,1-Trichloroshano tran-1,3-Dichloropropano Dictanoshano 1,1-Trichloroshano tran-1,3-Dichloropropano Dictanoshano Trichloroshano Trich	0.5 5 8 150 6 5 100# 1200 0.5 100# 5 5*** 100# 100#	555555555555555555555555555555555555555	35555555555555555555555555555555555555	25555555555555555555555555555555555555	5555555555555555555555555555555555	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55555555555555555555555555555555	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	2525555555555 <u>555555555555555555555555</u>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	555555555555555555555555555555555555555	222222222222222222222222222222222222222	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25555545555555555555555555555555555555	222222222222222222222222222222222222222	NA A A A A A A A A A A A A A A A A A A	NA	NA AA A	NA	*************************	NA	NA A A A A A A A A A A A A A A A A A A	NA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NAMA KAMA MANA MANA MANA MANA MANA MANA	NA AA A	NA	NA N	HA NA AA	NA	NA AA A	134 A A A A A A A A A A A A A A A A A A A	NA A A A A A A A A A A A A A A A A A A	NA IN	NA N
Tetradiloroofines 1,1,2,2-Tetrachicroelhane Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	5 1 30 800# 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25 25 25 25 25 25 25 25 25 25 25 25 25 2	55 55 55 55 55 55 55 55 55 55 55 55 55	70 70 70 70 70 70	55555	00 00 00 00 00 00	20 20 20 20 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2222	22 22 22 22 22 23 23	20 20 20 20 20	2 2 2 2 D	25 26 20 20 20 20 20	5 5 5 5 5 5 5 5 5 5 5 5 5	NA NA NA NA	NA NA NA NA	AM AM AM AM	AM AM AM AM AM	AM AM AM AM	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	AH AH AH AH	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
PURGEABLE AROMATICS Bunzene Teluane Ethylbenzene Total Xylenes TOTAL VOCE	1 1000# 680 1750**	DIA OIA OIA OIA AIA	014 014 014 014 014	ND ND ND 0.5	0.5 0.5 0.3 2	ND ND ND NA	00 00 00 00 AM	20 20 20 20 20 20	62.50 60 60 60 70 60 60	ND NO ND ND	ФИ ОИ ОИ ОИ ФИ	ND ND ND 0,7	ND ND ND ND	ND ND ND ND	ои ои ои Ом	AA AA AA AA	NA NA NA NA	AA AA AA AA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	00 00 00 00 00	ND ND ND ND ND	HO HO HO HA	04 04 04 04	AN AN AN AN	AM AM AM AM	NA NA NA NA	NA NA NA NA	NA NA NA NA	MA NA NA NA	NA NA NA NA
HYDROCARBONS TVH-9 TEPH-4 OAG TPH (416.1)		NA < 1000 < 5000 NA		<50 150 NA < 5000	<50 210 NA < 5000	<50 150 NA < 5000	<50 150 NA < 5000	<50 <50 NA < 5000	NA 540 NA < 500	NA <50 <5000 NA	NA 2000 < 5000 NA	<50 2100 <5000 NA	< 50 620 NA NA	4 50 1300 1300 AA AA	< 50 2100 NA NA	na Na Na Na	NA 1500 NA NA	NA NA NA	na Na Na Na	AM AM AM AM	NA 000at NA AN	AA 630 NA AN	1100 1100 NA NA	NO 840 NA NA	ND 980 NA NA	OM AM AM AM	NO 1000 NA NA	NA NA NA NA	AN AN AN AN	AM AM AM	NA NA NA	NA NA NA	MA HA NA	NA NA NA
METALS Luad	0	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	5	ND	ND	NΑ	ND	NA	ΝA	NA	NA	NA	NA	NA	Na	NA	NA	NA	NA	AA	ΝA	NA	NA	AM

Notes:

¹⁾ MCL = Mazimum Contaminant Level in drinking water (State MCL if not noted otherwise)

^{2) # =} EPA MCL

^{2) \$ =} EPA MCL
3) *- MCL for sum of four campounds
4) *-- MCL for sum of all xylene isomers
5) **-- MCL for sum of trans- and dis-1,3-Dichloropropens
6) ND = Not Detected at or above MDL
7) Purgoable Halocarbons (EPA method 5010)
8) Purgoable Aromatics (EPA method 5020)
9) NA = Not Analyzed or analysis not required
10) 6/17/02 Samples analysed for VCCs out of holding time due to laboratory smar

Wall ID	MCL	OW-5 Apr-91	Φ₩-5 Jul-81			OW-5 Jul-92		OW-5 Jen-93	OW-5	0VV-5	OVV-5	OW-5 Apr-94	OW-5	OW-5 Jun-95	CW-5 Nov95	0VV-\$ Jun-95	OW-5 Dct-96	OW-5 Apr.Jun-97	OW-5	OW-5 Jun-98	OW-5 Dec-85	OW-5	OV-5 Nov-98	OW-5 Jun-00	OW-5 Nov-00	OW-5 Jun-01	OW-5 Nav-01	OW-5 Jun-02	OW-5	DW-5 Apr-03	OW-5 Apr-03	CW-S Jun-04
Duto	ug/L	Ар(≁# 1	JUPET	Cocrat	1941-9&	SUMBE	50.32	2M1-0-3	DOI-30	20,-23	enil est	Library		0_1,0_	(45752																	
PURGEABLE HALOCARBONS																								LIP.	416	ND	ND	ND	ND	ND	ND	ND
Chloromothens		ND	ND ND	ND	ND	ᄱ	ND CM	ND DN	ᄻ	NA AN	ND	NA NA	ND	ND ON	ND ND	ND DN	ND CN	ND ND	ND ND	ND	ND	ND ND	Q14 Q14	ND	NO	ND ND	ᅄ	ND	NO	ND	ND	ND
Bromomethana		ND	ND	ND	ND	NO	ND	ND	ND	NA.	סא	NA	ND	ИĎ	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	NO	ND	ND	ND	ND	ND	0.55	ND
Vlayi chloride Chlorouthugo	0,5	ND	ND	ND	ND	NO	ND CIN	ND	ND	NA.	ND	NA	ND	ND	ND	ND	ND	ND	ND	NED	ND	ND	ND	ND	ND	ND	ИÐ	ND	ND	ND	ND	ND
	58	ND	ND	סא	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	67	NB	ďИ	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ΝĐ	NO	ND	ND	ND
Methylene Chlorida	150	ND	ND	ND	ND	ND	NO	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NĐ	ND	ND	ND	ND	ND
Trichlorefluoremethane 1,1-Dichloroethene	6	ND	ND	ND	ND	NO	ND	ND	ND	NA	ND	NA	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
1.1-Dichloroothane	5	1.8	7.2	ND	4	п	13	5	15	AM	2	NA	4	3.2	7.9	2.5	0.9	5.3	2.9	1	2.5	3	2.5	2.2	2.6	1.4	2.7	1.1	2.4	2.4	2,4	2.8
cis-1,2-Dichlemethana	8	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	NO	ND	ND	ND	ND	NΦ	ND	ND
trans-1,2-Dichiprootheng	10	ND	ND	ND	ND	ND	ND	ND	ΝĐ	NA	ND	NA	ND	NP	ND	ND	ND	ND	ND	ND	NΦ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110
Chloroform	100#	ND	ND	מא	ND	ND	ND	ND	GN	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND	ИD	ND	ND	ND	ND	NO	ND	ĦР
Freen 113	1200	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND
1.2-Dichlomothese	0.5	ИD	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	NO	NEO	ND	ND	ND	ND	ND	ND	NO	ND	ND	ΝD	NΩ	ND	ΝD	ND	ND	ND
1.1.1-Trichtomothene	200	6	20	15	12	25	28	7	7	NA	2	NA	3	1.3	2,1	ND	1.3	ND	ND	ND	ND	NO	ND	ИD	ΝĐ	ND	ИD	ИD	ΝD	ND	ND	ND
Carbon Tetrachleride	0.5	ND	ND	ND	ΝĐ	ND	ND	ND	ND	NA	ND	NA	NO	ND	ND	ND	ND	CM	ND	ND	ND	NO	ND	NO	ΝĎ	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	100#*	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NB	ND	ND	NΦ	ИD	NĐ	ND	ND	ND	ND	ИD	ND	ND	NO	NO	ND	ИВ	ND	ND	HD
1.2-Dichloropropenu	5	ND	ND	ND	ND	ND	ND	ND	ИÐ	NA	ND	NA	ИD	ND	ND	ND	ΝÞ	NO	ND	ND	ND	ND	ИD	ND	ND	ИD	ND	ND	ND	ND	ND	ND
cis-1,3-Dichleropropuna	5***	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	140	ND	ΝĐ	ND	ND	NB	ND	ND	NO	ND	ND	ND	ND	ND	ND	NO	ND
Trichloroethene	5	0,75	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ИД	ND	NO	MD	NΩ	ND	ND	ND	0.7	0.8	9,0	ND	0,55	0,7	ND	ND	ND	NO	ND	ND
1.1.2-Trichlorpethenu	32	NĐ	ND	ND	ND	ND	ND	ИD	ND	NA	ND	NA	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND	NΩ	ND	ND	HD
trans-1,3-Dichleropropene	5***	ND	NO	ND	ND	NO	ИĎ	ND	ND	WA	ND	NA	ИВ	ND	ΝD	ND	ND	NO	ND	ND	ND	NO	ND	ИD	ND	ND	ND	ND	ND	ND	ИÐ	ND
Dibromochloromethena	100#*	ND	ND	ΝD	ND	ND	, ND	ND	NĐ	NA	ND	NA	ND	ND	ND	ND	ND	ИD	ND	ио	ND	ND	ND	ИD	ND	ND	ND	ND	NO	ND	ND	ND
2-ChloroethyMnyl Ether		ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ИД	ND	ND	ND	ND	КO	NA	NA	NA	NA	NA	ND	ND	ND	ИD	ND	NO	ND	ND	ND
Bramolom	100#*	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ИD	ND	ND	ND	NO	ИD	ND	ND	ND	ND	ND	ND	ND	CM	ND	ИD	ND
Tetrachicropheno	5	0.7	ND	ND	ND	ND	ND	ND	NO	NA	ND	AИ	ND	ND	ΝĐ	MD	ND	ND:	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ᅋ	ND ND	ND	ND NO
1,1,2,2-Tetrachlomathana	1	ND	ND	ΝD	ND	ND	ИD	ND	ND	NA	ND	NA	ИÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	MD MD	NO ND	ND	ND
Chlorobenzeno	30	ИD	םא	ND	ND	ND	ND	ND.	ND	NA	ND	NA	ND	ND	140	ND	ND	ND	ND	ND	םא פא	ND ON	VID VID	VD	ND ND	ND	ND	ND	CIN	NO	ND	0.55
1,3-Dichlorobenzena		ИÐ	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ΝĐ	NO	ND	ND	. ND CB/I	ND GN	ND	םא הא	ND	NO.	ΝD	ND	ND	ND	ND	ND.	ND	ND	ND
1,2-Dichlorobenzene	600#	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NO	ND DN	ND	ND	ND ND	, MD	ND ND	ND	ND	ND	NO	ND	1,0	ND	ND	ND	ND	ND	ND	1.4
1,4-Dichlorobenzono	s	ИD	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NO	NU	IATA	NO	ND	IAD	1412	NO	110	110		(40	•,0	(,,,						
PURGEABLE AROMATICS																																
Benzena	1	14	20	11	15	11	13	26	14	NA	21	NA	71		f1	15	18	3,8	15	NO	7.3	8.2	13	6,3	10	7.7	13	6.3	5,0	8.0	7,0	5.0
Totuene	1000#	0.54	ND	ND	1.1	ND	ND	ND	ND	NA.	ND	NA	ND		ND	ND	ND	ИÜ	ND	NΩ	ND	NΩ	ND	NO	ND	ND	ND	NĐ	ND	ND	ND	ND
Elhylbenzena	650	0.58	ND	ND	0.0	ND	ND	0,7	ND	NA	0.7	MA	9,0		NO	ND	ND	ND	ND	ΝĐ	ИD	ИО	NO	ND	ΝD	ΝĐ	0,56	ND	ND	ND	ND	ND
Total Xylanes	1750**	5.6	4	5,0	5,1	8	3.6	13	2.4	NA	9.2	NA	1.3		ND	ND	ND	NO	2.74	N⊅	ND	ND	ND	ND	ND.	ŀΦ	ND	ND	ND	NO	NÞ	KO
TOTAL VOCs		29.97	57.2	35,0	37,5	50	57,6	51,7	29,4	NA	34.9	NA	19,9	4,5	88	17.5	20.2	9,1	20.54		11.6	12	14.4	8,5	14,35	9.6	18,28	7,4	8.4	9,3	0.65	9.75
HYDROCARBONS																																
TVH-g		NA	NA	NA	120	270	160	350	140	NA	370	NA.	110	ND	ND	ND	ND	ND	83	ND	ΝD	ND	59	ND	ИD	79	100	ND	57	58	60	60
TEPH-d		600	1500	1200	840	850	1000	1000	1800	NA	510	NA	1300	510	1600	630	670	740	830	610	780	830	B00	ND	ND	540	130	250	470	410	250	550
OLG		NA	< 5000	< 5000	< 5000	NA.	NA	NA	NA	NA	ИD	NA	ND	NA	NA.	NΑ	NA	NA	HA	NA.	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)		< 500	NA	NA	NA	NA	NA	NA	NA.	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA .	NA	MA	NA	NA	NA	NA	MA	NA.
WELATS																																
Laud	0	ND	NA	NA	ND	ND	ND	ND	ND	ND	7.3	7.4	5	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NO	ND	ND

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted otherwise)

2) *= EPA MCL

3) *= IACL for sum of jour compounds

4) **= MCL for sum of all xylens isomers

5) *** a MCL for sum of all xylens isomers

6) *** in MCL for sum of sinax- and cisx1,3-Dishipropropeno

6) RIO = Not Detected at or palwork MCL

7) Purgoable Halocarbons (EPA method 8020)

8) Rough Acomatics (EPA method 8020)

9) RA = Not Analyzed or sinalysis not required

10) 6/17/02 Semples enalyzed for VOCs out of holding time due to laboratory error

Wali ID Date	MCL ug/L	OW-3 Apr-88	OW-3 Jun-88	Oct-89	CW-3 OB-net		6-WO	Oct-90	OW-3 18-naL	OW-3 Apr-91	OW-3	OW-8 Dec-81	OV4-8 Mar-92	OW-6 Jul-92		OW-5 Jan-93	Jul-93	Dcf-83 DM-6	OW-6 Jan-94	CVV-6 Jul-94	0W-8 Jun-95	OW-6 Nov-85	OW-5 Jun-98	04-98	6-WO T≣-nuL,xqA	OW-6 D#≎-97	DW-6	OW-6 Dec-08	OW-5	0W-6 Nov-99
PURGEABLE HALOCARBONS																									ND	ND	ND	ND	מא	CIN
Chloromethune Bromomethusia Vinyl chloride Chlorouthano Methylane Chloride	0.5 5#	35 55 55 55 55 55 55 55 55 55 55 55 55 5	55555	55555	55 50 50 50 50 50 50 50 50 50 50 50 50 5	014 014 014 014 014	45 40 40 40 40	원 명 명 명 명	5 5 6 6 6	4D 4D 4D 4D	70 70 70 70 70	ND ND ND ND	25 25 25 25 25 25 25 25 25 25 25 25 25 2	22 22 22 22 22 22 22 22 23 23 23 23 23 2	25555	25 25 25 25 25 25 25 25 25 25 25 25 25 2	20 20 20 20 20 20	NA NA NA NA NA	00 00 00 00 00	20 20 20 20 20 20 20 20 20 20 20 20 20 2	55 55 55 55 55 55 55 55 55 55 55 55 55	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22 22 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20	ND ND ND ND	63 63 63 63	5 5 5 5 5 5 5 5	40 40 40 40 40	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4D 4D 4D 4D 4D 4D
Trichlerofluoromothene 1,1-Dichleroelhene 1,1-Dichleroelhene cis-1,2-Dichleroelhene trans-1,2-Dichleroelhene	150 6 5 6 10	ND ND NA ND	ND ND 5 NA 2	ND ND ND ND	ND ND 20 ND	ND ND 14 33 ND	ND ND 17 ND	ND ND 17 1 ND	ND ND 15 1 ND	G,82 ND 15 ND NO	ND ND 41 ND 120	40 40 40 40	1 1 00 00	70 2 7 80	ND 2 ND	10 10 ND ND	10 10 10 10 10 10 10 10 10 10 10 10 10 1	NA NA NA	ND 7 ND ND	ND 17 ND ND	ND 31 ND ND	11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6	ND 10 ND ND	ND S.4 ND ND NO	ND 7 ND ND ND	ND 7.7 ND ND ND	01 01 01 01 01 01 01 01 01	4.5 N.D N.D N.D N.D	2.1 NO NO NO	ND 3.1 ND ND NO
Chlereform Freen 113 1,2-Dichlemethane 1,1,1-Tilchlerselhane	100#* 1200 0,5 200	2 NA ND ND	NA NA ND ND	ND ND ND ND	ND ND ND ND ND	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ND 00 00 00 00	10 04 04 04	5555	ND ND 0,55 2.5 18D	011 011 011 011	00 00 00 00 00	00 00 00 00 00 00 00	40 40 40 40	22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	NO ND NO 10	ND ND ND 15	AN AN AN AN AN	25 55 55 55 55 55 55 55 55 55 55 55 55 5	50 50 50 50 50 50	00 00 03 03 03 03 03 03	014 014 014 014	ND ND ND	00 00 00 00	NO NO NO NO	70 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	5 5 5 5 5 5 5 5	55 55 56 56 56 56 56 56 56 56 56 56 56 5	110 110 110	ир 110 110
Carbon Tatrachlotkie Bromodichloratrathane 1,2-Dichleropropane cb-1,3-Dichleropropana Trichleroathone	0.5 100#* 5 5** 5	20 20 20 20 20 20 20	22 23 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	KD KD KD	09 09 09 09	4D 0N 0N	ND ND ND	5 5 5 5 5 5 5 5 5 5 5 5 5	00 00 00 00	70 07 07 07 07	ND ND ND	62 63 64 64 64	00 00 00 00 00 00	5 5 5 5 5 6 5 5 5 6 5 6 6 6 6 6 6 6 6 6	22 23 24 25 25 25 25	20 20 20 20 20 20 20 20 20 20 20 20 20 2	25 55 50 50 50 50	NA NA NA NA NA	22 23 24 24 24 25	55555	10 10 10 10 10 10	00 00 00 00 00	70 07 07 07 07	20 20 20 20 20 20 20 20 20 20 20 20 20 2	00 00 00 00 00	22 25 25 25 25 25 25	55555	5555 565 567	ND ND ND ND	00 04 04 04 04 04
1,1,2-Trichloroethans trans-1,3-Dictiloropropens Differencefularemethans 2-Chicroethyldayi Ether Bramoform	32 5*** 100#*	100 110 110 110	70 00 00 00 00 00	70 70 70 70 70	22 23 24 25 26 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	70 70 70 70	22 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22 22 20 20 20 20 20 20 20 20 20 20 20 2	ND :	02 02 03 04	50 50 50 60 60	ND ND ND	ND ND ND ND	00 01 01 01 01 01	10 10 10 10 10 10 10 10 10 10 10 10 10 1	90 80 80 80	NA NA NA NA	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ND ND ND	ND 00 00 00	NO 25	NO N	034 034 034 034 034	20 20 20 20 20 20 20 20 20 20 20 20 20 2	014 AA AA OA	ND NO NA NO ND	ND NA ND ON	ND ND 1.1 ND	25 25 35 36 36 36 36
Telrachiomathene 1,1,2,2-Tebechlorosthene Chlorobunzane 1,3-Dichlorobenzane	5 1 30	014 014 014 014	ND 1 NA	010 010 010 010	ND ND 3	ND 00 00 00	ND ND ND	ND ND ND 2	ND ND T	1.4 ND 2.3 3.3	ND ND	ND ND 5.7 15 5.8	25 25 26 26 26 26	20 20 20 20 20 20 20 20 20 20 20 20 20 2	70 70 70 70 70 70	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70 70 70 70 70 70	NA NA NA NA	70 04 04 04	ND ND 2 ND ND	ND 4,5 11 23	NO NO NO 7.4 NO	HD HD 5,2 20 2,4	ND 1 10 ND	ND 4.5 25 2.1	ND 28 45 6,3	ND 9.1 30 3	ND 8.3 27 2.6	ND ND 5.4 ND	ND 1.9 9.2 0.7
1,2-Dichlerabenzane 1,4-Dichlerabenzane	500# 5	AIA AIA	AM. AM	NA NA	2	ND	ND 1	2	1	2,3 3.1	ND	23	ND	ΝĐ	ND GN	Ä	ND	NA	ND	ND	2.9	15	48	25	65	140	84	6ģ	19	32
PURGEABLE AROMATICS				-10		ND	КĐ	ND	ND	0,54	QИ	מא	#ID	ND	ND	ND	o.s	NA	ND	ND	ND	מא	NO	ND	ип	0,5	ND	ND	ND	ИО
Benzena Tokunno Ethylbanzeno Tatal Xylanas TOTAL VOCS	1 1000# 680 1750**	ND ND	ND ND	ND ND 11D	0.5 0.4 ND 0.7	0.8 0.5 2.1	NO NO NO 20	00 01 01 01 01	NO NO NO	ND ND ND	ND ND	ND ND 2 51.5	ND ND DN	ND ND ND	ND ND ND	NO NO 20	ND 1.1 ND 42.7	NA NA NA	ND ND 0	HD HD HD	16.7 ND ND	ND ND 81.2	12.6 ND ND	ND ND ND 42.4	ОИ ОИ ОИ В 601	ND 35 ND 261,5	ND ND ND 129,4	ND ND ND 130.7	ND ND ND	ND ND ND
HYDROCARBONS		ŭ	-			,-	-																							
TVH-II TEPH-d OAG TPH (418.1)		NA < 1000 < 5000 NA		NA < 1000 5000 NA	< 50 440 NA < 5000	52 470 NA < 5000	< 50 450 NA < 5000	< 50 130 NA < 5000	< 50 1319 NA < 5000	NA 700 NA < 500	NA < 50 < 5000 NA	NA 5500 ~ 500 NA		≈ 50 3500 NA NA	< 50 3900 NA NA	< 50 5300 NA NA	< 50 3500 NA NA	NA NA NA	70 2200 NA NA	<50 2500 NA NA	ОИ 1300 NA АН	ND 2400 NA NA	NA 2000 NA	ND 2400 NA NA	28 0021 AA AA	160 1200 NA NA	110 1300 NA NA	130 2000 NA NA	18 00Cr AN AN	57 1600 NA NA
METALS Lead	· 0	NA	NA	NA	NA	N:A	NA	NA	NA	МО	NA	NA	HD	ND	ND	ND	NA	MA	АИ	NA	ΝA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA

Notes:

1) MCL = Maximum Contominant Level in drinking water (State MCL if not noted eitherwise)
2) # = EPA MCL
3) * = MCL for sum of four compounds
4) ** = MCL for sum of all sylane isomers
5) *** = MCL for sum of trans- and clo-1,3-Dichloropropiane
6) ND = MCL for sum of trans- and clo-1,3-Dichloropropiane
6) ND = McD described at or above MDL
7) Purpasite Malocarbona (EPA method 0010)
8) Purpasite Malocarbona (EPA method 0020)
9) Purpasite Malocarbona (EPA method 0020)
9) NA = Mot Analyzed or unalysis not required
10) 8/17/02 Semples analyzed for VOCs out of holding time due to laboratory error

Well ID Date	OW-6	10W-6 Nov-00	OW-8	OW-6 Nov-01	OVV-8 Jun-02		OW-5 Apr-03	DW-6 Nov-03	OW-6 Jun-04
PURGEABLE HALOCARBONS									
f ottobatting an appart									
Chiaromethana	ND	NO	ND	ND	ΝĐ	ND	ND ND	ND	NO CM
Bromomethane	· ND	ND	ND	ND	ND	ND		ND	ND
Vinyi chloride	ND	ND	ND	ND	ND	סא	ND	ND	NO NO
Chloroethana	ND	ИО	13D	ND	ND	ИD	ИD		MD
Methylone Chloride	ND	ND	ND	ND	ND	КD.	ФИ	ND CN	ND
Trichiorofluoromethana	ND	NO	ND	ND	ND		NO	ND	1.5
1,1-Dizhleroethene	ND	ND	ND	ND 1.8	ИD	ND 1.5	1.2	2.8	4.9
1,1-Dichlorosthans	1.4	2.3	1.4		1,3	1.5 CUN	ND	ND	ND CIN
cis-1,2-Dichlaroethens	ND	ND	ΝD	ND	ND	MD MD	ND	ND	NO
trans-1,2-Dichlorosthens	NO	ND	NĐ	ND	ND DN	ND	ND	ND	ND
Chlareform	ND ND	ND ND	ND CM	עא פא	ND.	ND	ND	ND	ND
From 113	ND	ND CM	ND	0.76	ND	ND	ND	ND	NO
1,2-Dichleroethane	ND ND	מא מא	ND ND	ND	ND DN	ND ND	ND	ND	ИD
1.1.1-Tilchloroetheno	ND	UN ON	מא	ND	NO	ND	NO	ND	ND
Carbon Teirschloride	MD	ND	ND	ND	ND GN	ND	ND	ND	ND
Bromodichlerorathuna	ND	ND	ND	ND	ND	ND	HD	ND	ND
1,2-Dichleropropane dis-1,3-Dichleropropane	ND	ND	ND	ND	מא	ND	ND	ND	ND
Trichlargethans	NO	ND	0.7	NO	ND	ND	ND	ND	ND
1,1,2-Trichlomethane	ND	ND	ND	NO	ND	ND	ND	ND	ND
trans-1,3-Dichloropropone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochlaromethana	ND	ND	ND	NO	ND	ND	ND	ND	NO
2-ChiorochyMnyl Ether	ND	ND	NO	מא	ND	ND	ND	ND	ND
2-Chanamywnyi amer	ND	NED	ND	ND	ND	CN	ND	ND	ND
Tatrachlorosthana	ND	ND ND	ND	NO	ND	NΩ	ND	ND	NE
1.1.2.2-Tetrachicroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlerobenzene	ND I+C	ND	ND D	ND	ND	NB	ND	2.5	6.5
1.3-Dichlerobenzene	3	2.7	ND	ND	1.1	2.0	ND	1.9	2.5
1.2-Dichlorobenzone	ИD	ND	ND	ND	ND	ND.	ND	ND	0.54
1,4-Dichierobenzene	11	10	ND	ND	5,0	7.2	3.0	7.2	8.0
	••		110	,,,,	-,-				-,-
PURGEABLE AROMATICS									
Bonzene	ND	ND	ND	ND	ND	NO	ND	ND	ND
Tolueno	ND	ND	ND	ND	ND	ИΩ	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	NO	ND	ND	ND
Total Xylenes	ND	NO	ND	ND	NO	ND	ND	ND	NO
TOTAL VOCS	15,4	15.0	2.1	2.6	7.4	19.7	4,2	14.4	33.9
HYDROCARSONS									
HYDHOGARBONS									
TVH-a	ND	ND	ND	ND	ND	ND	ND	ND	75
TEPH-d	68	ND	320	65	220	380	290	380	440
QAG	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALG									
Lend	NA.	NA	NA	NA	ΝA	NA	NA	NA	NA
Notes:									

- Notes:

 1) MCL = Maximum Contaminant Lavel in dishing water (Slate MCL If not noted otherwise)

 2) #= EPA MCL

 3) *= MCL for sum of four compounds

 4) *** = MCL for sum of all sylane is somers

 5) *** = MCL for sum of trues- and cis-1,3-Dichloropropens

 6) NO = Not Detected at or above MCL

 7) Purposhin Halocarbone (IPA melhod 8010)

 8) Purposhin Halocarbone (IPA melhod 8020)

 9) NA = Not Analyzad or analyzis not required

Well ID Data	MCL ug/L	Dec-91	OW-7 Mar-92	OW-7 Jul-92	OW-7		OW-7 Apr-83	DW-7 Jul-B3	OW-7 Oct-83	OW-7 Jan-84	O¥V-7 Jul-94	OW-7 Jun-95	OW-7 Nav-85		OW-7	OW-7 Apr,Jun-97	OW-7 Dag-97	CW-7 Jun-98	OW-7 Doc-Pă	OW-7 Jun-RB	OW-7 Nov-99	OW-7 Jun-00	DW-7 Nov-00	0W-7 Jun-01	OW-7 Nov-01	OW-7 Jun-02	OW-7 Oct-02	OVV-7 Apr-03	OW-7 Nov-83	DW-7 Jชก-04
PURGEABLE HALOCARBONS	i																													
Chicromelhana Bromomelhana Viryl chiorida	0,5	ND ND	ND ND ND	ИО Ко	14D 10D 10D	ND ND ND	NA NA NA	ND ND ND ND	NA NA NA NA	25 25 25 25 25	110 110 110	ND ND ND	ND ND ND	ND ND ND	ND ND ND	00 00 00 00	23 02 03 03	70 07 07 07 07	00 00 00 00	ND ND ND	ND ND ND ND	5 5 5 5 5 5 5 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8668	22 22 23 24 25	22 22 25 25	4D 4D 4D 4D	ND ND ND	25 55 55 25 55 55 25 55 55	ND ND ND
Chloraethana		ND	ND	ND	CN.	ND QN	NA NA	ND	NA NA	ND	ND	ND	570	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND CIN	ND ND	ND ON	ND	ND	ND ND
Methylena Chlorkia Trichlerofluoramethana	5# 150	14 ND	ND	ND	ND	ND	HA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND CM	ND	ᄱ	ИĎ	ND DN	ΝĐ	ND OM	NO.	NO	ND	ND	ND	6,6
1.1-Dichleraelhene	6	ND	ND	NO	ND	ND	NA	ND	NA	ND	ИО	ND	ND 25	ND 6.5	ND 6.6	ND 4.3	ND 9.5	4.1	5.7	ND	6,3	ND	NED	ND	NΩ	ND	ND	ND	ND	0,9
1.1-Dichlorosthano	5	ND	14	ND	ND	25	NA NA	14 ND	na Na	A ND	ND	5.5 ND	ND	ND	ND	NP	ND	ND	HO	ND	ND	ND	ИD	NO	NĐ	NO	ND	ND	NO	ND ND
ds-1,2-Dichleresthens	6	HD	ND	ND ND	ND	ND	NA	ND	NA.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ΝĐ	ND	ND	ND	ND	ND DN	ND ND	ND	ND ND
trans-1,2-Dichtorpethens	10 100#*	ND	ND UN	ND	ND	ND	HA	ND	NA.	ND	ND	ND	ND	ND	ND	ND	ND	ND	MD	ΝĐ	ND	ND	ND	ND	ND ON	ND ND	ND	ND	ND	ND
Chloroform Freen 113	1200	ND	ND	ND	ΝĐ	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ИD	ND	ND.	ND GN	ND ND	ND ND	ΦN GN	ND CM	ND GN	ND	ND	ND	ND	ND	ND
1,2-Dichloroothson	0.5	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND 7.9	31 NO	ND 5.9	5.6	ND	ND	ND	KD.	ΝĐ	ND	ND	ND	NO	ND	ND
1.1.1-Trichloranthans	200	10	460	20	80	230	NA	73	NA	78	26	33 ND	41 ND	18 ND	a.b Ol4	ND ND	ND	ND.	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachlaride	0,5	ИĎ	ИВ	ND	ND	ΝĐ	NA	ND	NA NA	ND ND	ND ND	ND	ND	ND	NO	ND	ND	KO	ND	ND	NO	ND	ND	ИĐ	ND	No	ND	ND	ND	ND
Bremodichleremethane	1004	ND	ND ND	ND ND	ND	ND 034	na Na	ND	NA.	ND	ND	ND	ND	ND	ND	ND	ND	NO	ИD	ИD	ND	ND	ND	HD	MD GM	- ND CM	NO ON	ND ND	ND ND	ND ND
1,2-Dishloropropano	5 5***	ND ND	ND	ND	CIA	ИD	NA.	ND	NA	NĐ	ND	ND	ND	ND	ΝD	ND	ND	ND	ND	ND	ND ND	ᅄ	ᅋ	ND	ND	ND	ND	ND	ON	ND
cis-1,3-Dichloroprepane Trichloroethene	- F	ND	ND	ND	ND	ND	NA	MD	144	ND	ND	ND	N(I)	NO	ND	ND ND	ND ND	ND ND	ND QN	ND ND	ND	\$1D	HD	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichlerosihans	32	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND ND	ND ND	ND CM	ND	ND	NO	ND	ND.	ND	ND	ND	ND	NO	140	ND	ND	ND	. ND
enegorgeoldald-E,1-enart	5***	ND	ND	ND	ND	ND	NA NA	ND DM	NA NA	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NΩ	ΝĐ	ИĎ	ND	HD	ND	ND	ND	СИ	ND
Dibromochloromethane	100\$	GM GM	МD	ND	ND CN	CM CM	NA.	ND	NA	ND	ND	ND	ND	ND	MD	ND	NA	NA	NA	NA	NA	HD.	ND	ND	ND	ND ND	CN CN	QN QN	ND ND	ND DN
2-Chloroethylvinyl Elber	100#1	ND	ND	KD	ND	ND	NA	ND	NA	ND	ND	ND	ND	פא	ND	ND	ND	ND	NO	ND	ND QN	ND OH	ND DN	ND ND	ND	ND	פא	ND	ND ND	ND
Bremaform Tetrachiarosihena	5	ND	HD	ND	ND	ND	NA	ND	AM	NO	ND	NO	NO	ND	ND	ND	ND	ND	QN QN	ND CM	MD	NO	ND	ND	ND	ND	NO	NO	HD	ND
1,1,2,2-Tetrachiorouthone	1	ND	ND	ND	ИD	ND	NA	ND	NA	ND	ND	ND	NO 34	ND 25	시 21	ND 25	46	27	31	34	36	18	39	27	25	45	74	110	Ca	110
Chlorobonzane	20	10	ND	ND	b	ND	NA NA	29 540	nia Na	21 450	24 570	12 270	400	380	440	290	350	340	360	420	330	220	330	320	260	420	630	610	210	240
1,3-Dichiorobenzene	****	460 120	130 22	420 95	330 77	170 33	NA.	470	NA	75	100	290	61	62	74	47	57	50	48	67	44	44	49	42	55	69	120 950	75 1000	26 500	33 740
1,2-Dichiorsbonzens	600# 5	440	120	400	290	160	NA	110	NA	410	540	51	480	500	560	410	530	450	470	580	450	310	470	510	160	500	Apr	1000	200	146
1,4-Dicklorabenzone	,	440	120	100																										
PURGEABLE AROMATICS					1.4	0.6	NÁ	1,5	NA.	1.6	1.2		1,1	ND	ND	0.56	1.6	Q,66	0.65	0.84	0,62	ND	0,83	ND	ND	ND ND	ND	· ND	ND	ND QN
Benzone	1 1000	CIN I	0,5 0.6	0.5	ND	HD	NA	ND	NA	ND	ND		ND	ND	, ND	ND	ND	ND	ND	מא	ND	ND ND	ND	ND ON	QN QN	ND	ND	ND	ND	ND
Toluene Ethylbanzona	680	ND	ND	0.5	NO	ND	NA	ND	NA	ND	ND		ND	ND	ND	ND	70	ПN	DN ON	ND ND	ND ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
Total Xylones	1750	· MD	2,1	5	ИÐ	ND	NA	ND	NA	4.2	ND		ND	ND 591.5	ND 1118.2	ND 764,78	1.1 11155.5		920,95				886,63		701	1035	1774	1615	804	1129,7
TOTAL VOCS		1051	751.5	051	786.4	916,0	NA	1237.5	NA	1048.0	12632	661,5	16121	21.2	1116.2	107.10	1100,0	0.7.00												
HYDROCARBONS				•										4988	4500	1100	1100	1000	1100	1200	1100	580	1100	1200	530	1000	1200	1200	440	1100
TVH-0		AM	700	1300		720	NA	1500	NA	1400	1800 4800	650 1500	960 4400	1200 4500	1500 4800	2900	2100	2600	2560	3500	2400	430	370	1100	580	1000		1000	760	1000
TEPH-d		7100		2800	2900	2300	NA NA	4900 원유)LA NA	4500 NA	NA NA	NA.	NA	NA.	NA.	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA MA
GAG		< 500		AM C	NA NA	NA NA	Atri	NA.	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA
TPH (418.1)		NA	NA	11475	nΑ	****			,																					
METALS												NIC	NIC	ki#	No	NA	NA.	NA	NA	ΝA	NA	NA	НA	НA	NA	NA	NA	NΑ	NA	NA
Lead	0	NA	ND	ИÐ	ND	ŅD	NA	NA	NA	NA	NA	NΑ	NA	NA	. NA	na.	157	11/2		,-1	,		•							

Notes:

1) MCL = Maximum Contaminant Level in drinking water (State MCL if not noted otherwise)

2) s = EPA MCL

3) = MCL (or sum of four compounds

4) == MCL (or sum of all sylene komon

5) == MCL (or sum of items and cts-1,3-Dichleropropene

6) ND = Not Detacted at or above MDL

7) Purgeable Helocarbons (EPA method 8010)

8) Purgeable Arematics (EPA method 8020)

9) NA = Not Analyzed or analysis not required

10) 8/17/02 Samples enalyzed for VOCs out of holding time due to laboratory error

Weil ID	OW-8	OW-8	OW-8	OW-8	OW-8	5-WO		OW-0	6-Wa	8-W0			0W-8	OW-8	OW-8	OW-B Nov-99	OW-B	OW-6 Nov-00	DVV-8 Jun-01	OW-8 Jun-02	OW-8 Jun-02	OYY-8 Oct-02	OW-a Apr-03	OW-8 Nov-01	Jun-04
Date	Apr-93	Jus-93	Oct-93	Jan-84	Apr-94	Jul-84	Jun-95	Nev-95	Jun-96	Oct-96	tht'nuu-n	500-91	201-31	D00-00	Juli-Da	1101-40	400.00	1000 00							
P4																									
PURGEABLE HALOCARBONS																									
		•					-14			E10	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA
Chloromethane	NA	NΑ	NA		NA.	NA	NA.	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA							
Bromomethane	NA	NA.	NA	NA.	NA.	NA.	NA	NA	ΝA	HA	NA	NA	NA	NA	NA	NA	NA								
Vinyi chilerida	NA	NA	NA.	NA.	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA										
Chloresthane	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mediylana Chlorida	NA	НA	NΑ	NA	NA	NA	NA	NA	NA	AN.	ALI	NA NA	NA.	NA.	AIA	NA	NA	NA	NA	NA	NA	NA	HA	NA	AM
Trichloroflugiomethane	NΑ	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA	NA.	NA.	NA.	NA	NA	NΑ	NA	NA	NA	NΑ	NA	NA	NA,	NA	NA
1.1-Dichlorosthene	NA.	ΝA	HA	11A	NA	NA	NA	NA	NA NA	NA.	· NA	NA	NΑ	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NΑ	NA
1.1-Dichlorosthane	NA	NΑ	NA	11A	NA	NA	NA	NA		NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
cts-1.2-Dichleroalhone	NA	NA	NΑ	NA	NA	NA .	. NA	NA	NA NA	NA NA	NA NA	NA	NA.	NA	NA	JJA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	NA.	NA	NA	NΑ	HA	NA	NA NA	NA	NA.	NA.	NA	ΝA	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA
Chloroform	НA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	AM	NA	NA.	NA.	NА	NA	NA	NA	125	NA	AM
Froon (13	NA	NA	NA	\$2A	NA NA	NA NA	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	' NA	· NA	NA	NA
1,2-Dichloroethene	NA	NA	NA	AJA	NA NA	NA	.NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichioroelhena	NA	NA.	NA	NA	NA NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA.	NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachlorido	NA.	NA	NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	МA	NA	NA	NA	NA
Bromodichloromothane	NA	NA	NA NA	NA NA	NA NA	NA.	NÁ	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MV	NA	NA	NA	NA	NA
1,2-Dichloropropulte	NA.	NA.	NA.	NA.	NA.	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA	NA	NA	NA
cis-1,3-Eichloropropene	NA.	NA		NA NA	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	НA	NA	NA	NA	HA	NV	NA
Trichloroethene	NA	NA	NA NA	NA.	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA
1,1,2-Trichloroathans	NA.	NA		NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,3-Dichteropropens	NA.	NA	NA NA	NA NA	AII	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.
Dibromochloromathons	NA	NA		NA.	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA	ЫA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA.	NA
2-Chloroellyfvinyl Ether	NA	NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	M	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Branclom ·	NA	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethens	NA	NA	NA NA	NA NA	NA NA	NA.	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
1,1,2,2-Yelmshletvethane	NA.	NA	NA NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA.	NA	NA.	NA	NA	NA	NA	NA.
Chisrobanzona	NA NA	AM AM	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NΑ	NA	NA NA
1,3-Dichiprobanzana		NA NA	NA.	NA.	NA	NA	NA.	HA,	NA	NA	NA	NA	NA	NA	NA	NA	AM	NА	NA	NA	NA	NA	NA	NA	NA NA
1,2-Dichlerabenzona	NA	NA NA	NA NA	NA NA	NA	NA	NA.	HA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA
1,4-Dichlambenzane	NA	UW	INA	144																					
PURGEABLE AROMATICS																				***		610	NA	NA	NA
_	NA	NA.	NΑ	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA						
Bunzona	NA	AJ/I	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA.								
Toluena	NA	NΑ	NA	ΝA	NA	NA	NA	NA	NA	Ми	NA	NA	NA	NA ·	NA	NA NA	NA.	NA.	NA.						
Elhylbenzens	NΑ	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA C.A	NA	NA NA	NA.	NA	XX								
Total Xylenes TOTAL VOCS	- NA	NA.	NA.	FIA	NA.	NA	NA .	JА	NA	NA	1A	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA.	NA	1925	an		•
101AL VUCS	,	*																							
HYDROCARBONS																									
Marcarite																NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.
TVH-a	AM.	NA	₽ΙA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA	NA.	NA	NA	НA	NA	NA	NA							
TEPH-d	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA Ain	NA	NA	NA.	NA	NA	NA	NA	NA	NA
OAG	NA.	NA	NА	МA	NA	NA	NA	NA.	NA	NA	ηίΑ	NA	Als	NA NA	NA NA	NA.	NA	NA	NA	NA.	NA	MA	NA	NA.	NA
TPH (418.1)	NA	ΝA	NA	NA	NA	NA	1474	1404	lat.	2171	(101			•											
METALS																									
									ND	ND	MD	ND	ИВ	ND.	ND	NO	ND	ND	ND	ND	ND	NO	ND	ND	ND
Load	27	17	110	25	12	24	3.2	ND	MP	1477	,	,,,,			.,_										

Note:

1) MCL = Maximum Contaminam Level in drinking water (State MCL if not noted otherwise)

2) # = EFA MCL

3) * = MCL for sum of four compounds

4) ** = MCL for sum of all xylena isomers

5) ** = MCL for sum of trans- and cis-1,3-Dichloropropens

6) NO = Not Detected of a betwee MDL

7) Furgosable Matecarbons (EFA method 8010)

9) Furgosable Anomatics (EFA method 8020)

9) NA = Not Analyzed or analysis not required

10) 6/17/02 Samples snalyzed for VOCs out of holding time due to laboratory smor

Well ID	MCL	OW-9B		OW-9
Date	ug/I+	Jun-96	Jun-69	Nov-99
PURGEABLE HALOCARBONS				
Chloremethans		NO	ND	N _D
Bromematiana		ND	ND	NEO
Vinyl chlorida	9.5	ND	NO	ND
Chlorosthano		ИD	ND	מא
Methylane Chicride	5#	ND	NO	ND
Trichiorofluorometheno	150	ND	ND	ND
1,1-Dichistoethena	6	HD	ND	ND
1,1-Dichlerosthens	5	ΝD	2.6	2.0 ND
cb-1,2-Dichtarcelliana	6	ND ND	ND	ND ND
trans-1,2-Dichlemethene	10 100#*	ND	ND	ND
Chlorelotm Freen 113	1200	ND	ND	ND
1.2-Dishloroethane	0,5	NO	ND	ND
1,1,1-Trichternethene	200	ND	ND	מא
Carbon Tetrachlorida	0,5	NO	ND	ND
Bromodichloromethane	100#	ND	ND	ND
1,2-Cichioropropana	5	No	ND	ND
cis-1,3-Dichloropropens	5	NO	ND	ND
Trichispethene	5	ND	ND	ND
1,1,2-Trichiomathana	32 5	ND	ΝD	ND ND
trans-1,3-Dichiere crupens	199#	ND	ND ON	ND ND
Olbromochloromethane	Inna	NA.	ND	ND
2-Chloroathylvinyl Elber Bromoform	100#*	ND	ND	ND
Tetrachlomathens	5	NO	ND	ND
1,1,2,2-Tetrachlorosthans	1	ND	ND	ND
Chiorobenzene	30	ND	31	31
1,3-Dichlorobenzene		ND	290	290
1,2-Dichlombenzone	600#	ND	53	53
1,4-Dichlorobenzone	5	ND	560	560
PURGEABLE AROMATICS				
Bonzone	ŧ	ND	NA	NA
Tokiena	1000#	0,73	NA	NA
Ethylbenzens	680	ND	NA	NA
Total Xylenes	1750~	NO	NA	NA
TOTAL VOCE		0,73	1936,6	1035.6
HYDROCARBONS				
mai		ND	NA.	NA.
TVH-g TEPH-d		NA.	NA.	NA.
OAG ·		18A	NA.	NA.
TPH (418.1)		NA	NA	NA
METALS				
Lead	D	NA	NA	NA .
FEET	•	197	1	
Notes: 1) MCL: = Maximum Contembant 2) # = EPA MCL 3) *= MCL for sum of four compl 4) *** = MCL for sum of all xylene 5) **** = MCL for sum of trans- zu 6) ND = Not Detacted at or above 7) Purpantile Halocarbons (EPA 8) Purpantile Aromatics (EPA mo) NA = Not Analyzad or analysis	ounds Isomans d cia-1,3-0 a MDL mathod 60 alhod 8020) 110) 110)		s MCL if not noted otherwise
10) G/17/02 Samples analyzed for	r YOCs of	at of haldi	ng tima d	ue to laboralary error
int mitter combine augitten in	. ,	11-/41		. ,

41181281214

APPENDIX B

Low-Flow Purging and Sampling Protocol

FIELD PROCEDURES FOR GROUNDWATER MONITORING

The following sections describe field procedures followed during groundwater monitoring at the site.

EQUIPMENT CALIBRATION

At the beginning of each sampling day, water quality meters for pH, specific electrical conductance (SEC), dissolved oxygen (DO), oxidation reduction potential (ORP), and turbidity are calibrated. Calibration data are recorded on the first Well Sampling Record. A CHEMetrics, or other appropriate, field test kit is used if there is a problem with DO meter calibration.

DOWNHOLE PARAMETER AND GROUNDWATER LEVEL MEASUREMENTS

After opening the wells and allowing time for equilibration to atmospheric conditions, and prior to purging and sampling activities, a complete round of downhole parameter and depth to groundwater measurements are collected from all monitoring wells. Downhole DO and ORP are measured first using a Horiba U-22, or other appropriate, water quality meter. Depth to water is then measured using an electric water level sounder to the nearest 0.01 foot from the top of casing.

FREE PRODUCT MEASUREMENT

The wells are inspected for free product, and if free product is observed, the depths to top and bottom of free product is measured using an interface probe to the nearest 0.01 foot from the top of casing.

SAMPLING ORDER

To minimize potential cross-contamination between wells, the wells are sampled in reverse order of target analyte concentration as measured during the previous sampling event.

GROUNDWATER PURGING AND SAMPLING

Groundwater sampling is performed following EPA low-flow purging and sampling procedures¹. A minimum of three equipment volumes are purged at each well using an electric pump. Typical pump types may include peristaltic, 2-inch stainless steel submersible and/or

bladder pumps. Dedicated tubing and, where necessary, submersible pumps are used to minimize disturbance. When dedicated equipment cannot be used, sufficient time is allowed after equipment installation to allow groundwater conditions to return to equilibrium. The pump inlet is placed in the center of the screened interval. Each well is purged at a flow rate of approximately 200 milliliters per minute (ml/min); flow rate is not to exceed 500 mg/min at any time during purging or sampling. Drawdown in the well is not to exceed 0.3 ft. During purging, temperature, pH, SEC, turbidity, DO, and ORP are monitored using a Horbia U-22, or other appropriate, water quality meter approximately every one equipment volume purged, or every 3 to 5 minutes. Each well is purged until the field parameters are relatively stable for three successive readings. Three successive readings should be within:

- 0.1 for pH
- 3% for SEC
- 10% for temperature
- 10 mV for ORP if practical
- 10% for DO if practical
- 10% for turbidity if practical

If applicable, the ferrous ion concentration is measured using a CHEMetrics, or other appropriate, test kit during the last reading of the field parameters. Immediately after purging, a groundwater sample is collected directly through the pump discharge tubing. Depth to water after sample collection is measured and recorded on the Well Sampling Record.

EQUIPMENT CLEANING

All downhole equipment is cleaned with an Alconox-water solution and double-rinsed with deionized water before use at each well and at the end of each sampling day.

WASTE WATER CONTAINMENT

Waste water including purged groundwater and equipment cleaning water is contained in labeled, DOT-approved, 55-gallon steel drums, or other appropriate containers, and placed at a designated on-site location for future offsite disposal or recycling.

¹ Puls, R.W. and Barcelona, M.J, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, U.S. Environmental Protection Agency, Office of Research and Development, Publication #EPA/540/5-95/504.

APPENDIX C

Groundwater Purging and Sampling Logs

TEST EQUIPMENT CALIBRATION LOG

	D/ i =						
PROJECT NAM	NE PG+E 0	all land		PROJECT NUM	MBER 070412-	OW-/	·
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS
YSI 556mps Flowcell	06F2009	4-12-07	3900 MS Conductivity	3848ms	3900 MS	15.52	DW
			7.0 PH	3-92 7.04 9-80 245.5 mv	4-00 7.00 9 -96	16.30 16.36 16.33	ow
	V		ORP 245m	245.5 mv 96070	245 m√ 100. 9 %	15.00	DL

WELL GAUGING DATA

Project # Date	Client	Geometrix
----------------	--------	-----------

Site 4930 Colisean Way Oakland

	T	l''''	 	γ	TI.! 1	Lv i c		· · · · · · · · · · · · · · · · · · ·		
		Well		Depth to	Thickness of	1		•	Survey	
		Size	Sheen /			Immiscibles			Point:	
Well ID	Time		1		Immiscible		Depth to water		TOB or	
Well ID	1 mile	(in.)	Odor	Liquid (ft.)	Liquia (tt.)	(ml)	(ft.)	bottom (ft.)	100	Notes
010-1	1012	2					3.06	*18.13		
ow->	1026	2					3.34	×20.28		
Ow-4	•	J	covered	to going	rape box		_ (_		
	1018	2		(8.70 +o	170	ps'	4.85	* 18.98		
ow-6	1027	2					4.15	17.20		
0N-7	1035	2					5.55	18.20		- · · · · · · · · · · · · · · · · · · ·
0W-8	1030	2					2.82	17.84		
									U	- /
				Bemov	ed all	CAOS \S	tmins Dr	ior to a	244 6 6	******
				* DTP	, meas	ured af	ter samp	lina	7	
								7	·	
										····
									· · · · · · · · · · · · · · · · · · ·	
										

WELLHEAD INSPECTION CHECKLIST Page _____ of ____ Date 4-12-07 Client Geometrix

Site Address 4930 Coliscum Way Dakland

Job Number 070412-0W-1 Technician Dw Debris Other Action Well Inspected -Well Not Water Bailed Wellbox Cap Removed Lock Taken No Corrective Inspected From Components Replaced From Replaced (explain (explain Action Required Well ID Welfbox Cleaned Wellbox below) below) 0W-1 No bolts OW. 2 covered by storage units ow.4 Stripped AW-6 DW-X ow-8 NOTES:

BLAINE	TECH	SERV.	ICES	INC

Project #:	070412-	Dw-1		Client: 6	comatr	ix		
Sampler:				Date: 4	-12-0	·		<u> </u>
Well I.D.:	ow-1		4.	Well Diam	-	3 4	6 8	_
Total Wel	ll Depth:	18.13		Depth to W	Vater	Pre: 3.	o6 Post:	3.29
Depth to 1	Free Produ	•		Thickness				
Reference	ed to:	PV	Grade	Flow Cell				
Purge Metho Sampling M		2" Grundfo Dedicated		×	Peristaltic P New Tubing	•	Bladder Pump Other	
Flow Rate:	200 m	m		_	Pump Deptl	n: /0,5		
Time	Temp.	pН	Cond. (mS or us)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW Observations
1046	18.46	6.58	780	/0	0.72	51.9	600	3.31
1049	18.38	6.58	783	8	0.83	327	1200	3.31
1057	18.47	6.58	787	18	0.78	24.8	1800	3.31
1055	18.54	6.58	776	77	0.66	19.3	2400	3.3/
1058	18.59	659	770	23	0.61	17.9	3000	3.31
1101	18.60	6.58	764	21	0.57	17.1	3600	3.3/
Did well o	 	Yes (NO					-3/
Sampling	Time:	05			Sampling	Date: 4	1-12-07	v
Sample I.	D.: OW	- t-o	71207		Laborato	ry: Cre	rek	
Analyzed	for:	TPH-G	BTEX MTE	BE (PH-D)		Other:	ocs, Dissolu	red lead
Equipmer	nt Blank I.	D.:	@ Time		Duplicate			

Project #:	070412-	DW-1		Client: 6 comptrix								
Sampler:				Date: 4	-12-0	}		<u> </u>				
Well I.D.	: OW-	<u> </u>		Well Dian	. \) 3 4	6 8					
Total We	ll Depth:	20.28		Depth to Water Pre: 3.34 Post: 4.31								
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):								
Reference	ed to:	PV	Grade	Flow Cell Type: YS1 558								
Purge Metho Sampling M	lethod: 🗶	2" Grundf Dedicated		×	Peristaltic F New Tubin	3	Bladder Pump Other_					
Flow Rate:	200 m	Im			Pump Deptl	1: <u> 0 </u>						
Time	Temp.	рН	Cond. (mS or \(\mu \text{S}\)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml))	Observations				
1302	19.54	6.74	2133	_ 5	0.69	106.6	600	3.95				
1305	19.68	6.73	2747	3	<i>a</i> .78	106.5	1200	4.00				
1308	19.70	674	2787	2	0.72	106.5	1800	4.05				
1311	19.67	6.74	7812	2	0.68	107.2	2406	4.10				
Did well o	lewater?	Yes (No)	·	Amount a	ictually e	vacuated: 240	00 m				
Sampling	Time:	315					1-12-07					
Sample I.I	D.: OW	- 2 -	041707		Laboratory: Creek							
Analyzed	for:	TPH-G	BTEX MTB	BE (PH-D) Other: VOCs, Dissolved and								
Equipmen	t Blank I.I	D.:	@ Time		Duplicate		1 - 1 - 20 (4)	100				

Project #:	070412-	0w-1		Client: Geomatrix								
Well I.D.	OW-	5			. \) 3 4	6 8					
		18.98		Depth to V	Vater	Pre: U						
Depth to	Free Produ	ict: 1817	0 to 18.90									
Reference	ed to:	PVD	Grade					····				
Sampling M	ethod: 🦠	Dedicated		×			Bladder Pump Other					
Flow Rate: _		/n			Pump Depth	n:[1						
Time	Temp.	рН	Cond. (mS or μ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Observations				
1136	14.05	6.50	798	30	9.550	-6.5		4.04				
1139	19.48	6.52	793	47	.89	-8.2		4.04				
N4>	19.78	6.51	776	46	.79 -6.4		4.04					
1145	20.19	6.49	751	38	.63	-1.3		4.04				
	20.44	6.48	739	26	<i>,</i> 56	1.4		4.04				
Well Diameter (2) 3 4 6 8 Total Well Depth: 8.98 Depth to Water Pre: \(\frac{1}{2} \) 8 Post: Depth to Free Product: \(\frac{1}{2} \) 70 Fo 8.90 Thickness of Free Product (fect): \(\frac{1}{2} \) 0 Referenced to: \(\frac{1}{2} \) Grandfos Pump Other Purge Method: 2" Grundfos Pump New Tubing Pump Depth: \(\frac{1}{2} \) Temp. Temp. Cond. (mS or (A)) (NTUs) (mg/L) (mV) (gals. optin) Observations 1] 36												
Date: U - 12 - 27												
	·····							-				
												
Did well c	lewater?	Yes (N		Amount a	ctually e	vacuated: 430	om				
Sampling	Time: ow.	5-04120										
Sample I.I	D: 00	50	(MS/MS	(D)		_						
Analyzed	for:	TPH-G	BTEX MTE	BE (PH-D)				المال				
Equipmen	t B lank I.I	D.: FB	@ Time	1125			~ -2. . V 17>0 (V)	e lang				
			041207									

for VOC's , Dissolved Lead

Project #	070412-	DW-1		Client: Gcomatrix								
Sampler:				Date: 4	-12-0)						
Well I.D.	· ow-	6		Well Dian) 3 4	6 8					
Total We	ll Depth:	17.20		Depth to V	Vater	Pre: 4.	S Post:	4.15				
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):								
Reference	ed to:	PV	Grade	Flow Cell Type: 141556								
Purge Metho Sampling M	lethod:	2" Grundf Dedicated		Peristaltic Pump New Tubing Bladder Pump Other								
Flow Rate:	200 m	[/m			Pump Deptl	1:						
Time	Temp.	pН	Cond. (mS or us)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. o ml)	Observations				
1228	18,37	7.20	1115	33	0.91	49.7	600	9.15				
1231	18.54	7.21	1121	22	0.61	44.8	1200	4.15				
1234	18.56	7.21	1128	20	0.55	41.8	1800	4.15				
1237	18.62	7.21	1131	18	0.53	38.8	2400	4.15				
		·										
Did well o	dewater?	Yes (NS)		Amount a	ctually e	vacuated: ار	100 ml				
Sampling	Time:	146					1-12-07					
Sample I.	D.: 0W	-6-04	11207		Laborator							
Analyzed	for:	(TPH-G)	BTEX MTE	SE (PH-D)			OCs , Dissolv	ed lead				
Equipmen	ıt Blank I.I	D.:	@ Time		Duplicate	I.D.:		100				

Project #: 070412-0w-1	Client: Geometrix	
Sampler: Dw	Date: 4-12-27	
Well I.D.: ow-7	Well Diameter: (2) 3 4 6 8	
Total Well Depth: 18.70	Depth to Water Pre: 5.55 Post: 5.53	
Depth to Free Product:	Thickness of Free Product (feet):	
Referenced to: PVO Grade	Flow Cell Type: VSI 556	
Sampling Method: Dedicated Tubing	➤ Peristaltic Pump Bladder Pump New Tubing Other	
	Pump Depth: 10'	
	(NTUs) (mg/L) (mV) (gals. or mb) Observ	
1421 19.28 6.75 799	6.700 0.70 -18.2 600 5.53	
1424 19.36 6.76 798	11.	
Sampler: 0w Well I.D.: 0w-7 Well Diameter: 2 3 4 6 8 Total Well Depth: 18.70 Depth to Water Pre: 5.55 Post: 5.55 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVO Grade Flow Cell Type: V51 556 Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing New Tubing New Tubing Other Flow Rate: 100 N Pump Depth: 10' Time Temp. Cond. (mS or \(\alpha\)) (NTUs) (mg/L) (mV) (gals. or \(\alpha\)) Observations [421 19.28 6.75 799 Supplementaries of Free Product (feet): Post: 5.55 Post: 5.55		
Date:		-
1433 19.23 6.78 794		
Did well dewater? Yes	Amount actually evacuated: 3000 n	
Sampling Time: 1435	·	
Sample I.D.: 0w-7-041207		
Analyzed for: TPH-G BTEX MT]
Fallinment Right I II · · · · · ·	Duplicate I.D.:	

Project #:	070412-	0w-1	······································	Client: 6	comatr	ix		
Sampler:				Date: 4				P11
Well I.D.	ow-	8		Well Diam		3 4	6 8	<u> </u>
Total Wel	ll Depth:			Depth to V	Vater	Pre: 2.8	Post:	473
Depth to	Free Produ	ict:		Thickness				4.37
Reference	ed to:	PVO	Grade	Flow Cell				
Purge Metho Sampling M Flow Rate:		2" Grundfo Dedicated		×	Peristaltic P New Tubing Pump Depth	5	Bladder Pump Other_	
Time	Temp.	рН	Cond. (mS or \(\mu \text{S}\)	Turbidity (NTUs)	D.O.	ORP	Water Removed	PTW
1343	19.91	6.61	1064	(NTOS)	(mg/L) . 99	89.2	(gals. or(mL)	Observations 3.50
1346	20.69	6.63		4	.85	93.6	1200	
1349	19.92	6.64		3	.73		1800	3.55
1352	19.98	6.60	1055		.68	99.6		3.55
1355		659	1050	3		-	2400	3.55
1333	20.06	6-51	1020	3	•62	103.9	3000	3.55
							-	
		·						
				· · · · · · · · · · · · · · · · · · ·				<u> </u>
							·	
Did well c	lewater?	Yes (N)		Amount a	ctually e	vacuated: 300	10 ~/
Sampling	Time:	[400					1-12-07	
Sample I.I	D.: OW	-8-0	41207		Laborator			
Analyzed	_		BTEX MTE	ве (грн-D)			ocs , Dissola	1 1-1
Equipmen	t Blank I.I	D.;	@ Time		Duplicate	I.D.:	V-> 1 V 1550 14	ed load

APPENDIX D

Laboratory Analytical Reports and Chain-of-Custody Documentation

BLAINE	SAN I	16 OSE CA	80 ROG	ERS AVENI A 95112-11	JE oe		CON	DUCT	ANAL	YSIS	TO DE	TECT		LAB	Creek Labo	ratories (ノ
이의 그리는 이 스토토 공연에 공연하다.		JUL, UA		408) 573-77					g					ALL ANALYSES MUST	MEET SPECI	FICATIONS AN	ND DETECTION
TECH SERVICES, INC		F		408) 573-05					Filtered					LIMITS SET BY CALIF	ORNIA DHS A	The state of the s	-0.0.
CHAIN OF					1		3 33		H					LIA		RWQCB RI	EGION
CLIENT	BTS#	0700	112-1	<u>)w- </u>	ERS			(5B)	Field					☐ OTHER			
Geomati	ix				AN			(801) Fi					SPECIAL INSTRUCTION	ONS		
SITE PG&E C	akland				CONTAINERS		50B	Oil ((6010)			Silve Nije is					
4930 Co	17.0	Wax			ALL C	<u>~</u>	VOCs Full list(8260B)	or C	1 (6					Invoice to: Geomati			
Oakland		vv ay				(8015B)	list	Motor	eac	i daya Garajira				Report to: Geomatr	ix Attn: Jon	athan Skaggs	
Oakiand	, CA	MATRIX	CON	TAINERS	SSIT	08	를	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d I					Ph# 510-663-4100 /	Fax# 510663	-4141	
		W		IMINERS	COMPOSITE		S F		Dissolved Lead		pA.			Connectation Day 8			
		S= SOIL W=H ₂ 0			8	TPH-G	18	TPH-D	isso					Geomatrix Project	# 		
SAMPLE I.D. DATE	TIME	స≯	TOTAL		<u> Ö</u>	<u> E</u>	>	E						ADD'L INFORMATION		CONDITION	LAB SAMPLE #
0W-1-041207 4-17	1105	W	8			X	X	X	X						P/HN03 /25	0 -B	4802
1W-2-041207	1315		8			X	×	×	X						AG/UMP		110
5w-5-041207	1158		16			X	ス	×	×					MS/MSD	1 / 00	ALHOL C-1	
04-6-041207	1240		8			X	Ж	≻	X					M S/ M S/		VOA-I-N	1 3 0 1
DW-7-041207	1435		8			x	X	×	>							-	4805
0w-8-041207	1400		8			×	76	X	X							 	480 E
FB-041207	1125		4		-			\sim							V V (/	4807
B-411901	1175		7				X		X						P/HN03 12	50 A 24 B-D	480 g
															1017/14	- 中 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	
												44					
												371					
SAMPLING DATE COMPLETED U.S.	TIME	SAMPLI	NG										L	RESULTS NEEDED			<u> 1</u>
RELEASED BY	1500	li Eig O		Dave	IDAT	alti	1	510	ere	Ko	se			NO LATER THAN	Standard T	ΑT	
David C. Stal	r			Y Dave	4	- -/>-	, ¬	IIIVIE	700		RECE	IVER	BY	OD.		DATE 9/13/	/ TIME
RELEASED BY					DAT	E E	0 /	TIME	-		RECE	IVED	BY	Mes_		9/14	07 b:3
DELEAGED DV																DATE	TIME
RELEASED BY					DAT	E		TIME			RECE	IVED	BY			DATE	TIME
SHIPPED VIA					IDΔT	E SEN	Tr T	T18.4-	OC. 1=								Lusac
fed Ex					Tu	12	-		SENT		COOL	ER#					

Page 1

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4802 Order: 02119

Oakland Project:

04/13/07 Received: 04/25/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0		Matrix		=========	
ow-1-041207	Dave Walter.	Steve Rose	04/12/0	7a11:05	Aqueous			======
analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel	0.11	0.05	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Motor Oil	0.2	0.1	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	04/17/07		3952
	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Benzene Toluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	- 1	4032
Methyl t-Butyl Ether (MTBE)	1.0	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chlorobenzene	4.6	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dichlorobenzene	1.8	0.5	1	ug/L	EPA 8260	04/18/07		4037
1,3-Dichlorobenzene	19	0.5	1	ug/L	EPA 8260	04/18/07		403
1,4-Dichlorobenzene	64	2	5	ug/L	EPA 8260	04/23/07		413
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Chloroethane	Not Detected	20	. 1	ug/L	EPA 8260	04/18/07		403
2-Chloroethylvinyl ether	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Chloromethane 2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 2

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4802 Order: 02119 Oakland Project: Received: 04/13/07 04/25/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0		Matrix ====================================			
======================================	Dave Walter,	Steve Rose	04/12/0	7a11:05	Aqueous	*		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
4-Chlorotoluene	Not Detected	0.5	.1	ug/L	EPA 8260	04/18/07		4032
1.2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	04/18/07		4032
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,1-Dichloroethane	10	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,1-Dichloroethene	11	0.5	1	ug/L	EPA 8260	04/18/07		4032
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
2.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
1.1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
cis-1.3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Hexachlorobutadiene	Not Detected	0.5	. 1	ug/L	EPA 8260	04/18/07		403
Isopropylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	04/18/07		403
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	04/18/07	٠.	403
n-Propylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	04/18/07		403
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4037
1,2,4-Trichlorobenzene	1.6	0.5	1	ug/L	EPA 8260	04/18/07		4037
1,1,1-Trichloroethane	0.8	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032

Page 3

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4802 02119

Order: Project:

Oakland

Received:

04/13/07

Printed:

04/25/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By D			Matrix		
OW-1-041207	Dave Walter,	= ====================================		04/12/07@11:05			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	04/20/07	4103

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

— A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 4

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4803 02119 Order: Oakland Project: 04/13/07 Received: 04/25/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sampled Matrix Date @ Time Sampled By 04/12/07@13:15 Dave Walter, Steve Rose Units Dilution DLR Result Prepared Analyzed Analyte Factor 4086 04/18/07 EPA 8015/LUFT 04/19/07 mg/L 0.05 1 0.12 4086 04/18/07 TPH as Diesel 04/19/07 EPA 8015/LUFT mg/L 1 0.1 0.3 3952 TPH as Motor Oil 04/17/07 EPA 8015/LUFT mg/L 1 0.05 Not Detected 4132 TPH as Gasoline 04/23/07 EPA 8260 ug/L Not Detected 0.5 4132 04/23/07 Benzene EPA 8260 ug/L 1 0.5 Not Detected 4132 04/23/07 Toluene EPA 8260 ug/L 0.5 Not Detected 4132 04/23/07 Ethylbenzene EPA 8260 uq/L 1 0.5 Not Detected 4132 04/23/07 m,p-Xylene EPA 8260 ug/L 0.5 Not Detected 4132 04/23/07 o-Xylene **EPA 8260** ug/L 1 0.5 Not Detected 4132 Methyl t-Butyl Ether (MTBE) 04/23/07 EPA 8260 ug/L Not Detected 0.5 4132 04/23/07 Chlorobenzene **EPA 8260** ug/L 1 0.5 Not Detected 1,2-Dichlorobenzene 4132 04/23/07 EPA 8260 ug/L 0.5 1 Not Detected 4132 1,3-Dichlorobenzene 04/23/07 EPA 8260 ug/L 1 0.5 Not Detected 4132 1,4-Dichlorobenzene 04/23/07 EPA 8260 ug/L 0.5 Not Detected 4132 1,2-Dichloroethane (EDC) 04/23/07 **EPA 8260** ug/L 1 0.5 Not Detected 4132 1,2-Dibromoethane (EDB) 04/23/07 EPA 8260 ug/L 1 0.5 Not Detected 4132 Bromobenzene 04/23/07 EPA 8260 ug/L 0.5 Not Detected 4132 Bromochloromethane 04/23/07 **EPA 8260** ug/L 1 0.5 Not Detected 4132 Bromodichloromethane 04/23/07 **EPA 8260** ug/L 1 0.5 Not Detected 4132 04/23/07 EPA 8260 Bromoform 1 ug/L 0.5 Not Detected 4132 04/23/07 Bromomethane EPA 8260 ug/L 0.5 Not Detected 4132 04/23/07 n-Butylbenzene EPA 8260 ug/L 0.5 Not Detected 4132 sec-Butyl Benzene 04/23/07 EPA 8260 ug/L 0.5 Not Detected 4132 04/23/07 t-Butylbenzene EPA 8260 ug/L 1 0.5 Not Detected 4132 Carbon Tetrachloride EPA 8260 04/23/07 ug/L 0.5 Not Detected 4132 04/23/07 Chloroethane EPA 8260 ug/L 1 20 Not Detected 4132 2-Chloroethylvinyl ether EPA 8260 04/23/07 ug/L 0.5 Not Detected 4132 04/23/07 Chloroform **EPA 8260** 1 ug/L 0.5 Not Detected 4132 Chloromethane 04/23/07 EPA 8260 ug/L 0.5 Not Detected 2-Chlorotoluene

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 5

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4803

Order:

02119

Project:

Oakland

Received:

04/13/07

Printed:

04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0	Time	Matrix	:=========	:========	=====
======================================	Dave Uniter S	teve Rose	04/12/0	7a13:15	Aqueous			:=====
======================================	Result	======= DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		4132
4-Chlorotoluene	Not Detected	1	1	ug/L	EPA 8260	04/23/07		4132
1,2-Dibromo-3-Chloropropane	Not Detected	0.5	. 1	ug/L	EPA 8260	04/23/07		4132
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		4132
Dibromomethane	Not Detected	0.5	1	. ug/L	EPA 8260	04/23/07		4132
Dichlorodifluoromethane		0.5	. 1	ug/L	EPA 8260	04/23/07		4132
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		4132
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		4132
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
1,1-Dichloropropene	Not Detected	0.5		_	EPA 8260	04/23/07		413
cis-1,3-Dichloropropene	Not Detected	0.5	. 1	ug/L	EPA 8260	04/23/07		413
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
Hexachlorobutadiene	Not Detected		1	ug/L	EPA 8260	04/23/07		413
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	04/23/07		413
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
1,1,1,2-Tetrachloroethane	Not Detected	0.5	•	ug/L	EPA 8260	04/23/07		413
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L ug/L	EPA 8260	04/23/07		413
Tetrachloroethene	Not Detected	0.5	1	ug/L ug/L	EPA 8260	04/23/07		41.
1,2,3-Trichlorobenzene	Not Detected	0.5	1		EPA 8260	04/23/07		413
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07		413
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EFA G200	0 1, 22, 01		

A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 6

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4803 02119 Order: Oakland Project:

04/13/07 Received: 04/25/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sampled Date @ Time Matrix Sample Description 04/12/07@13:15 Batch Dilution DLR Result Prepared Analyzed Analyte Factor 4132 04/23/07 EPA 8260 ug/L 1 0.5 Not Detected 4132 04/23/07 Trichloroethene EPA 8260 ug/L 1 0.5 Not Detected 4132 04/23/07 Trichlorofluoromethane EPA 8260 ug/L 0.5 Not Detected 4132 1,2,3-Trichloropropane 04/23/07 EPA 8260 ug/L 0.5 Not Detected 4132 04/23/07 1,2,4-Trimethylbenzene EPA 8260 ug/L 0.5 Not Detected 4132 04/23/07 1,3,5-Trimethylbenzene EPA 8260 ug/L 0.5 Not Detected 4103 04/20/07 Vinyl Chloride EPA 6020 mg/L 0.004 Not Detected Lead, Dissolved

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

– A Minority-owned Business Enterprise –

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 7

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4804
Order: O2119
Project: Oakland
Received: 04/13/07
Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By	Sampled y Date a Time			Matrix			=====
F 0/4007	Dave Walter S	teve Rose	04/12/0	7a11:58	Aqueous			
OW-5-041207 ====================================	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TRU Discol	0.18	0.05	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Diesel TPH as Motor Oil	0.5	0.1	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
	Not Detected	0.05	` 1	mg/L	EPA 8015/LUFT	04/17/07		3952
TPH as Gasoline	4.7	0.5	1	ug/L	EPA 8260	04/18/07		4032
Benzene	Not Detected	0.5	1.	ug/L	EPA 8260	04/18/07		4032
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5		ug/L	EPA 8260	04/18/07		4032
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dichlorobenzene	0.8	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,3-Dichlorobenzene	5.0	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
sec-Butyl Benzene		0.5	1	ug/L	EPA 8260	04/18/07		4032
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloroethane	Not Detected	20	1	ug/L	EPA 8260	04/18/07		4032
2-Chloroethylvinyl ether	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloromethane 2-Chlorotoluene	Not Detected Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032

— A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 8

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4804 Order: 02119 Project: Oakland

Received: 04/13/07 04/25/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0	Time	Matrix	=======================================		======	
	Dave Halter	Steve Rose	04/12/0	7@11:58	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032	
1,2-Dibromo-3-Chloropropane	Not Detected	` 1	1	ug/L	EPA 8260	04/18/07		4037	
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1-Dichloroethane	1.6	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1-Dichloroethene	0.6	0.5	1	ug/L	EPA 8260	04/18/07		403	
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,2-Dichloropropane	Not Detected	0.5	11	ug/L	EPA 8260	04/18/07		403	
	Not Detected	0.5	:1	ug/L	EPA 8260	04/18/07		403	
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1-Dichloropropene	Not Detected	0.5	· · · 1 ·	ug/L	EPA 8260	04/18/07		403	
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Hexachlorobutadiene	0.7	0.5	1	ug/L	EPA 8260	04/18/07		403	
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Methylene Chloride	5.3	5	1	ug/L	EPA 8260	04/18/07		403	
Naphthalene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1,2,2-Tetrachloroethane		0.5	1	ug/L	EPA 8260	04/18/07		403	
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40.	
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1,2-Trichloroethane	Not Detected	0.5	,	wg, L					

– A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 9

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4804 Order: 02119 Project: Oakland Received: 04/13/07

04/25/07

REPORT OF ANALYTICAL RESULTS

Printed:

Sampled

Sample Description	Sampled By	Sampled By Date @ Time Dave Walter, Steve Rose Dave Walter, Steve Rose Dave Walter, Steve Rose			Matrix				
ow-5-041207	Dave Walter, S				Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared		
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032		
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032		
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032		
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032		
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032		
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032		
Lead, Dissolved	Not Detected	0.004	1	mg/L	EPA 6020	04/20/07	4103		

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Page 10

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4805 Order: 02119 Project: Oakland 04/13/07 Received: 04/25/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date a		Matrix			
OW-6-041207	Dave Walter, S	Steve Rose	04/12/0	7a12:40	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel	0.16	0.05	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Motor Oil	0.4	0.1	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	04/17/07		3952
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
o-Xyl ene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chlorobenzene	8.1	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dichlorobenzene	0.6	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,3-Dichlorobenzene	6.6	0.5	1	ug/L	EPA 8260	04/18/07	,	4032
1,4-Dichlorobenzene	22	0.5	. 1	ug/L	EPA 8260	04/18/07		4032
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	04/18/07		4032
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloromethane	Not Detected	0.5	, 1	ug/L	EPA 8260	04/18/07		4032
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032

Page 11

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4805

Order:

02119

Project:

Oakland

Received:

04/13/07

Printed:

04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By Date @ Time Matrix								
	Dave Walter S	teve Rose	04/12/07	7@12:40	Aqueous		:========		
)W-6-04120/ ====================================	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch	
/ Ohlenstellions	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
4-Chlorotoluene	Not Detected	1	1	ug/L	EPA 8260	04/18/07		403	
1,2-Dibromo-3-Chloropropane Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		403	
	12	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1-Dichloroethane	9.6	0.5	1	ug/L	EPA 8260	04/18/07		403	
1,1-Dichloroethene cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
Methylene Chloride	Not Detected	5	1	ug/L	EPA 8260	04/18/07		40	
Naphthalene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,1,2,2-Tetrachloroethane		0.5	1	ug/L	EPA 8260	04/18/07		40	
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4(
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	Not Detected Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		40	

— A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 12

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4805

Order:

02119

Project:

Oakland 04/13/07

Received: Printed:

04/25/07

REPORT OF ANALYTICAL RESULTS

Sampled

Sample Description	Sampled By	Sampled By			Matrix		:========	=====
 оw-6-041207	Dave Walter,	Dave Walter, Steve Rose		04/12/07@12:40				=====
======================================	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Trichloroethene Trichlorofluoromethane	Not Detected Not Detected	0.5 0.5	1	ug/L ug/L	EPA 8260 EPA 8260	04/18/07 04/18/07 04/18/07		4032 4032 4032
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	Not Detected Not Detected	0.5	1	ug/L ug/L	EPA 8260 EPA 8260 EPA 8260	04/18/07 04/18/07 04/18/07		4032 4032
1,3,5-Trimethylbenzene Vinyl Chloride	Not Detected Not Detected	0.5 0.5 0.004	1 1 1	ug/L ug/L mg/L	EPA 8260 EPA 6020	04/18/07 04/20/07		4032 4103
Lead, Dissolved	Not Detected	0.004						

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 13

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 07-C4806 Order: 02119 Project: Oakland Received: 04/13/07 Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0	Time	Matrix			
OW-7-041207	Dave Walter,	Steve Rose		7a14:35	Aqueous		======	
Analyte	Result	DLR `	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel	0.21	0.05	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Motor Oil	0.4	0.1	1	mg/L	EPA 8015/LUFT	04/19/07	04/18/07	4086
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	04/17/07		3952
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chlorobenzene	70	10	20	ug/L	EPA 8260	04/23/07		4132
1,2-Dichlorobenzene	16	10	20	ug/L	EPA 8260	04/23/07		4132
1,3-Dichlorobenzene	130	10	20	ug/L	EPA 8260	04/23/07		4132
1,4-Dichlorobenzene	460	10	20	ug/L	EPA 8260	04/23/07		4132
1,2-Dichloroethane (EDC)	0.5	0.5	1	ug/L	EPA 8260	04/18/07		4032
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	04/18/07		4032
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07		4032

A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 14

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4806 Order: 02119 Project: Oakland Received: 04/13/07 Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Date 0		Matrix		
DW-7-041207	Dave Walter,	Steve Rose	04/12/0	7@14:35	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	04/18/07	4032
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1.1-Dichloroethane	6.5	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,1-Dichloroethene	6.8	0.5	1 ·	ug/L	EPA 8260	04/18/07	4032
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
trans-1,2-Dichloethene	Not Detected	0.5	1 '	ug/L	EPA 8260	04/18/07	4032
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
2.2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1.1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	04/18/07	4032
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,1,2,2-Tetrachloroethane	Not Detected	0.5	. 1	ug/L	EPA 8260	04/18/07	4032
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,2,3-Trichlorobenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	04/18/07	4032
1,2,4-Trichlorobenzene	32	10	20	ug/L	EPA 8260	04/23/07	4132
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/18/07	4032

– A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 15

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 07-C4806 Order: 02119 Project: Oakland

Received: 04/13/07 Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sampled Sample Description Sampled By Date @ Time Matrix OW-7-041207 Dave Walter, Steve Rose 04/12/07@14:35 Aqueous Analyte Result DIR Dilution Units Method Date Date Batch Factor Analyzed Prepared Trichloroethene Not Detected 0.5 1 ug/L EPA 8260 04/18/07 4032 Trichlorofluoromethane Not Detected 0.5 1 ug/L EPA 8260 04/18/07 4032 1,2,3-Trichloropropane Not Detected 0.5 1 EPA 8260 ug/L 04/18/07 4032 1,2,4-Trimethylbenzene Not Detected 0.5 1 ug/L EPA 8260 04/18/07 4032 1,3,5-Trimethylbenzene Not Detected 0.5 ug/L EPA 8260 04/18/07 4032 Vinyl Chloride Not Detected 0.5 ug/L EPA 8260 04/18/07 4032 Lead, Dissolved Not Detected 0.004 mg/L EPA 6020 04/20/07 4103

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 16

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4807 Order: 02119 Project: Oakland Received: 04/13/07

Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sampled Sample Description Sampled By Date @ Time OW-8-041207 · Dave Walter, Steve Rose 04/12/07@14:00 Aqueous **Analyte** Result DLR Dilution Units Method Date Date Batch Factor Analyzed Prepared TPH as Diesel 0.15 0.05 1 mg/L EPA 8015/LUFT 04/19/07 04/18/07 4086 TPH as Motor Oil 0.4 0.1 1 mg/L EPA 8015/LUFT 04/19/07 04/18/07 4086 TPH as Gasoline Not Detected 0.05 1 mg/L EPA 8015/LUFT 04/17/07 3952 Benzene 0.5 Not Detected 1 EPA 8260 ug/L 04/23/07 4132 Toluene Not Detected 0.5 1 EPA 8260 ug/L 04/23/07 4132 Ethylbenzene Not Detected 0.5 ug/L EPA 8260 04/23/07 4132 m,p-Xylene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 o-Xylene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Methyl t-Butyl Ether (MTBE) Not Detected 0.5 1 EPA 8260 ug/L 04/23/07 4132 Chlorobenzene Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 1,2-Dichlorobenzene Not Detected 0.5 1 ug/L FPA 8260 04/23/07 4132 1,3-Dichlorobenzene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,4-Dichlorobenzene Not Detected 0.5 1 EPA 8260 ug/L 04/23/07 4132 1,2-Dichloroethane (EDC) Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 1,2-Dibromoethane (EDB) Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Bromobenzene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Bromochloromethane Not Detected 0.5 1 EPA 8260 ug/L 04/23/07 4132 Bromodichloromethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Bromoform Not Detected 0.5 1 EPA 8260 ug/L 04/23/07 4132 Bromomethane Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 n-Butylbenzene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 sec-Butyl Benzene Not Detected 0.5 ug/L **EPA 8260** 04/23/07 4132 t-Butylbenzene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Carbon Tetrachloride Not Detected 0.5 ug/L EPA 8260 04/23/07 4132 Chloroethane Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 2-Chloroethylvinyl ether Not Detected 20 ug/L EPA 8260 04/23/07 4132 Chloroform Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Chloromethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 2-Chlorotoluene Not Detected 0.5 ug/L **EPA 8260** 04/23/07 4132

- A Minority-owned Business Enterprise -

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 17

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 07-C4807 Order: 02119 Project: Oakland Received: 04/13/07 Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sampled Sample Description Sampled By Date a Time Matrix OW-8-041207 Dave Walter, Steve Rose 04/12/07@14:00 Aqueous Analyte Result DLR Dilution Units Method Date Date Batch Factor Analyzed Prepared 4-Chlorotoluene Not Detected 0.5 1 uq/L EPA 8260 04/23/07 4132 1,2-Dibromo-3-Chloropropane Not Detected 1 1 ug/L EPA 8260 04/23/07 4132 Dibromochloromethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Dibromomethane Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 Dichlorodifluoromethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1-Dichloroethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1-Dichloroethene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 cis-1,2-Dichloroethene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 trans-1,2-Dichloethene Not Detected 0.5 ug/L **EPA 8260** 04/23/07 4132 1,2-Dichloropropane Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 1,3-Dichloropropane Not Detected 0.5 1 ug/L FPA 8260 04/23/07 4132 2,2-Dichloropropane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1-Dichloropropene Not Detected 0.5 ug/L EPA 8260 04/23/07 4132 cis-1,3-Dichloropropene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 trans-1,3-Dichloropropene Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 Hexachlorobutadiene Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 Isopropylbenzene Not Detected 0.5 1 ug/L FPA 8260 04/23/07 4132 4-Isopropyltoluene Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 Methylene Chloride Not Detected 0.5 1 ug/L FPA 8260 04/23/07 4132 Naphthalene Not Detected 5 1 ug/L **EPA 8260** 04/23/07 4132 n-Propylbenzene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1,1,2-Tetrachloroethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1,2,2-Tetrachloroethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 Tetrachloroethene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,2,3-Trichlorobenzene Not Detected 0.5 1 ug/L **EPA 8260** 04/23/07 4132 1,2,4-Trichlorobenzene Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1,1-Trichloroethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132 1,1,2-Trichloroethane Not Detected 0.5 1 ug/L EPA 8260 04/23/07 4132

– A Minority-owned Business Enterprise —

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Page 18

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 07-C4807

Order:

02119

Project: Received: Oakland 04/13/07

Printed:

04/25/07

REPORT OF ANALYTICAL RESULTS

Sampled

			Gumptee	•			
Sample Description	Sampled By		Date @	Time	Matrix		
OW-8-041207	Dave Walter, S	Dave Walter, Steve Rose 04/12/07@14:00			Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Vinyl Chloride	Not Detected	0.5	· 1	ug/L	EPA 8260	04/23/07	4132
Lead, Dissolved	Not Detected	0.004	· 1	mg/L	EPA 6020	04/20/07	4103

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Page 19

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4808 Order: 02119 Project: Oakland Received: 04/13/07 Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description Sampled B				Matrix 				
FB-041207	Dave Walter, S	Steve Rose	04/12/07@11:25		Aqueous		1	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bat Prepared	
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
m,p-Xylene	Not Detected	0.5	· 1	ug/L	EPA 8260	04/23/07	41	
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Bromobenzene	Not Detected	0.5	1 .	ug/L	EPA 8260	04/23/07	41	
Bromochloromethane	Not Detected	0.5	1 1	ug/L	EPA 8260	04/23/07	41	
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	04/23/07	41	
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	04/23/07	41	
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	41	

Page 20

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 07-C4808 Order: 02119 Project: Oakland Received: 04/13/07 Printed: 04/25/07

REPORT OF ANALYTICAL RESULTS

nple Description Sampled By Date a Time		Matrix == ==================================					
FB-041207	Dave Walter, S	Steve Rose	04/12/0	7a11:25	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	. 4132
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	04/23/07	4132
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,2,4-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	04/23/07	4132
1,2,3-Trichloropropane	Not Detected	0.5	.1	ug/L	EPA 8260	04/23/07	4132

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 07-C4808

Order:

02119

Project: Received:

Oakland 04/13/07 Page 21

Printed:

04/25/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date a		Matrix			
FB-041207 ====================================	Dave Walter, 9	Steve Rose	04/12/0	 7a11:25	Aqueous			=====
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	===== Batch
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Lead, Dissolved	Not Detected Not Detected Not Detected Not Detected	0.5 0.5 0.5	1 1 1 1	ug/L ug/L ug/L ug/L	EPA 8260 EPA 8260 EPA 8260 EPA 6020	04/23/07 04/23/07 04/23/07 04/20/07		4132 4132 4132 4132 4103

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 22

Order No.: 02119

Laboratory Reagent Blank

TPH as Diesel EPA 8015/LUFT < 0.05	Analyte	Method	Results	Units	Batch
TPH as Motor Oil EPA 8015/LUFT < 0.1 mg/L 4086 TPH as Gasoline EPA 8015/LUFT < 0.05	TPH as Diesel	EPA 8015/LUFT	< 0.05	mg/L	4086
Benzene EPA 8260 < 0.5 ug/L 4032 Benzene EPA 8260 < 0.5	TPH as Motor Oil	EPA 8015/LUFT	< 0.1	mg/L	4086
Benzene	TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	3952
Toluene EPA 8260	Benzene	EPA 8260	< 0.5	ug/L	4032
Toluene EPA 8260 < 0.5 ug/L 4132 Ethylbenzene EPA 8260 < 0.5	Benzene	EPA 8260	< 0.5	ug/L	4132
Ethylbenzene	Toluene	EPA 8260	< 0.5	ug/L	4032
Ethylbenzene	Toluene	EPA 8260	< 0.5	ug/L	4132
m,p-Xylene EPA 8260 < 0.5 ug/L 4032 m,p-Xylene EPA 8260 < 0.5 ug/L 4132 o-Xylene EPA 8260 < 0.5 ug/L 4032 o-Xylene EPA 8260 < 0.5 ug/L 4032 Methyl t-Butyl Ether (MTBE) EPA 8260 < 0.5 ug/L 4032 Methyl t-Butyl Ether (MTBE) EPA 8260 < 0.5 ug/L 4032 Chlorobenzene EPA 8260 < 0.5 ug/L 4032 Chlorobenzene EPA 8260 < 0.5 ug/L 4032 Chlorobenzene EPA 8260 < 0.5 ug/L 4032 1,2-Dichlorobenzene EPA 8260 < 0.5 ug/L 4032 1,3-Dichlorobenzene EPA 8260 < 0.5 ug/L 4032 1,4-Dichlorobenzene EPA 8260 < 0.5 ug/L 4032 1,4-Dichlorobenzene EPA 8260 < 0.5 ug/L 4032 1,2-Dichloroethane (EDC) EPA 8260 < 0.5 ug/L 4032 <	Ethylbenzene	EPA 8260	< 0.5	ug/L	4032
m,p-Xylene	Ethylbenzene	EPA 8260	< 0.5	ug/L	4132
o-Xylene EPA 8260 < 0.5 ug/L 4032 o-Xylene EPA 8260 < 0.5	m,p-Xylene	EPA 8260	< 0.5	ug/L	4032
o-Xylene EPA 8260 < 0.5 ug/L 4132 Methyl t-Butyl Ether (MTBE) EPA 8260 < 0.5	m,p-Xylene	EPA 8260	< 0.5	ug/L	4132
Methyl t-Butyl Ether (MTBE) EPA 8260 < 0.5 ug/L 4032 Methyl t-Butyl Ether (MTBE) EPA 8260 < 0.5	o-Xylene	EPA 8260	< 0.5	ug/L	4032
Methyl t-Butyl Ether (MTBE) EPA 8260 < 0.5 ug/L 4132 Chlorobenzene EPA 8260 < 0.5	•	EPA 8260	< 0.5	ug/L	4132
Chlorobenzene EPA 8260 < 0.5 ug/L 4032 Chlorobenzene EPA 8260 < 0.5				ug/L	
Chlorobenzene EPA 8260 < 0.5 ug/L 4132 1,2-Dichlorobenzene EPA 8260 < 0.5	Methyl t-Butyl Ether (MTBE)			ug/L	
1,2-Dichlorobenzene EPA 8260 < 0.5	Chlorobenzene				4032
1,2-Dichlorobenzene EPA 8260 < 0.5	•			ug/L	4132
1,3-Dichlorobenzene EPA 8260 < 0.5					
1,3-Dichlorobenzene EPA 8260 < 0.5					
1,4-Dichlorobenzene EPA 8260 < 0.5					
1,4-Dichlorobenzene EPA 8260 < 0.5	•				
1,2-Dichloroethane (EDC) EPA 8260 < 0.5				-	
1,2-Dichloroethane (EDC) EPA 8260 < 0.5	•				
1,2-Dibromoethane (EDB) EPA 8260 < 0.5	The state of the s				
1,2-Dibromoethane (EDB) EPA 8260 < 0.5					
Bromobenzene EPA 8260 < 0.5	-				
Bromobenzene EPA 8260 < 0.5					
Bromochloromethane EPA 8260 < 0.5					
Bromochloromethane EPA 8260 < 0.5					
Bromodichloromethane EPA 8260 < 0.5					
Bromodichloromethane EPA 8260 < 0.5					
Bromoform EPA 8260 < 0.5					
Bromoform EPA 8260 < 0.5	£			_	
Bromomethane EPA 8260 < 0.5					
Bromomethane EPA 8260 < 0.5 ug/L 4132 n-Butylbenzene EPA 8260 < 0.5		•		-	
n-Butylbenzene EPA 8260 < 0.5 ug/L	•				
n-Butylbenzene EPA 8260 < 0.5 ug/L 4132 sec-Butyl Benzene EPA 8260 < 0.5 ug/L 4032					
sec-Butyl Benzene EPA 8260 < 0.5 ug/L 4032				-	
	•				
sec-Butyl Benzene EPA 8260 < 0.5 ug/L 4132	sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	4132
•	t-Butylbenzene				
•	t-Butylbenzene				
	Carbon Tetrachloride				
	Carbon Tetrachloride				

CREEK ENVIRONMENTAL LABORATORIES, INC. A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 23

Order No.: 02119

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Chloroethane	EPA 8260	< 0.5	ug/L	4032
Chloroethane	EPA 8260	< 0.5	ug/L	4132
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	4032
2-Chloroethylvinyl ether	EPA 8260	< 20	ug/L	4132
Chloroform	EPA 8260	< 0.5	ug/L	4032
Chloroform	EPA 8260	< 0.5	ug/L	4132
Chloromethane	EPA 8260	< 0.5	ug/L	4032
Chloromethane	EPA 8260	< 0.5	ug/L	4132
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	4032
2-Chlorotoluene	EPA 8260	< 0.5	ug/L	4132
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	4032
4-Chlorotoluene	EPA 8260	< 0.5	ug/L	4132
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	4032
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L `	4132
Dibromochloromethane	EPA 8260	< 0.5	ug/L	4032
Dibromochloromethane	EPA 8260	< 0.5	ug/L	4132
Dibromomethane	EPA 8260	< 0.5	ug/L	4032
Dibromomethane	EPA 8260	< 0.5	ug/L	4132
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	4032
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	4132
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L	4032
1,1-Dichloroethane	EPA 8260	< 0.5	ug/L	4132
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L	4032
1,1-Dichloroethene	EPA 8260	< 0.5	ug/L	4132
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	4032
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	4132
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	4032
trans-1,2-Dichloethene	EPA 8260	< 0.5	ug/L	4132
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	4032
1,2-Dichloropropane	EPA 8260	< 0.5	ug/L	4132
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	4032
1,3-Dichloropropane	EPA 8260	< 0.5	ug/L	4132
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	4032
2,2-Dichloropropane	EPA 8260	< 0.5	ug/L	4132
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	4032
1,1-Dichloropropene	EPA 8260	< 0.5	ug/L	4132
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4032
cis-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4132
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4032
trans-1,3-Dichloropropene	EPA 8260	< 0.5	ug/L	4132
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	4032
Hexachlorobutadiene	EPA 8260	< 0.5	ug/L	4132
Isopropylbenzene	EPA 8260	< 0.5	ug/L	4032
Isopropylbenzene	EPA 8260	< 0.5	ug/L	4132

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 24

Order No.: 02119

Laboratory Reagent Blank (continued)

Analyte .	Method	Result	Units	Batch
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	4032
4-Isopropyltoluene	EPA 8260	< 0.5	ug/L	4132
Methylene Chloride	EPA 8260	< 0.5	ug/L	4032
Methylene Chloride	EPA 8260	< 0.5	ug/L	4132 .
Naphthalene	EPA 8260	< 5	ug/L	4032
Naphthalene	EPA 8260	< 5	ug/L	4132
n-Propylbenzene	EPA 8260	< 0.5	ug/L	4032
n-Propylbenzene	EPA 8260	< 0.5	ug/L	4132
Styrene	EPA 8260	< 0.5	ug/L	4032
Styrene	EPA 8260	< 0.5	ug/L	4132
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4032
1,1,1,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4132
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4032
1,1,2,2-Tetrachloroethane	EPA 8260	< 0.5	ug/L	4132
Tetrachloroethene	EPA 8260	< 0.5	ug/L	4032
Tetrachloroethene	EPA 8260	< 0.5	ug/L	4132
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4032
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4132
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4032
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	4132
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	4032
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	4132
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	4032
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	4132
Trichloroethene	EPA 8260	< 0.5	ug/L	4032
Trichloroethene	EPA 8260	< 0.5	ug/L	4132
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	4032
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	4132
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	4032
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	4132
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4032
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4132
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4032
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	4132
Vinyl Chloride	EPA 8260	< 0.5	ug/L	4032
Vinyl Chloride	EPA 8260	< 0.5	ug/L	4132
Lead, Dissolved	EPA 6020	< 0.004	mg/L	4103

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
TPH as Gasoline	EPA 8015/LUFT	82%	0,.5	mg/L	60 - 140	3952
TPH as Gasoline	EPA 8015/LUFT	78%	0.5	mg/L	60 - 140	3952

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 25

Order No.: 02119

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
Benzene	EPA 8260	105%	10	ug/L	80 - 120	4032
Benzene	EPA 8260	105%	10	ug/L	80 - 120	4032
Benzene	EPA 8260	102%	10	ug/L	80 - 120	4132
Benzene	EPA 8260	99%	10	ug/L	80 - 120	4132
Toluene	EPA 8260	106%	10	ug/L	80 - 120	4032
Toluene	EPA 8260	107%	10	ug/L	80 - 120	4032
Toluene	EPA 8260	101%	10	ug/L	80 - 120	4132
Toluene	EPA 8260	99%	10	ug/L	80 - 120	4132
Chlorobenzene	EPA 8260	104%	10	ug/L	80 - 120	4032
Chlorobenzene	EPA 8260	104%	10	ug/L	80 - 120	4032
Chlorobenzene	EPA 8260	101%	10	ug/L	80 - 120	4132
Chlorobenzene	EPA 8260	98%	10	ug/L	80 - 120	4132
1,1-Dichloroethene	EPA 8260	113%	10	ug/L	80 - 120	4032
1,1-Dichloroethene	EPA 8260	112%	10	ug/L	80 - 120	4032
1,1-Dichloroethene	EPA 8260	111%	10	ug/L	80 - 120	4132
1,1-Dichloroethene	EPA 8260	104%	10	ug/L	80 - 120	4132
Trichloroethene	EPA 8260	113%	10	ug/L	80 - 120	4032
Trichloroethene	EPA 8260	113%	10	ug/L	80 - 120	4032
Trichloroethene	EPA 8260	109%	10	ug/L	80 - 120	4132
Trichloroethene	EPA 8260	105%	10	ug/L	80 - 120	4132
Lead, Dissolved	EPA 6020	104%	0.1	mg/L	75 - 125	4103

Matrix Spike/Matrix Spike Duplicates

	MS	MSD		Matrix	Spike			RPD	
Method	Rec.	Rec.	RPD	Sample	Amount	Units	Recovery Limits	Limit	Batch
EPA 8015/LUFT	64%	66%	2	blank	2.0	mg/L	50 - 150	30	4086
EPA 8015/LUFT	82%	82%	0	07-C4804	0.5	mg/L	60 - 140	30	3952
EPA 8260	96%	92%	3	07-C4804	10	ug/L	70 - 130	20	4032
EPA 8260	98%	98%	0	07-C4807	10	ug/L	70 - 130	20 -	4132
EPA 8260	105%	101%	4	07-C4804	10	ug/L	70 - 130	20	4032
EPA 8260	101%	102%	1	07-C4807	10	ug/L	70 - 130	20	4132
EPA 8260	98%	94%	4	07-C4804	10	ug/L	70 - 130	20	4032
EPA 8260	98%	99%	1	07-C4807	10	ug/L	70 - 130	20	4132
EPA 8260	101%	97%	4	07-C4804	10	ug/L	70 - 130	20	4032
EPA 8260	104%	100%	4	07-C4807	10	ug/L	70 - 130°	20	4132
EPA 8260	108%	104%	4	07-C4804	10	ug/L	70 - 130	20	4032
EPA 8260	104%	108%	4	07-C4807	10	ug/L	70 - 130	20	4132
EPA 6020	101%	103%	2	07-C5029	0.1	mg/L	75 - 125	20	4103
	EPA 8015/LUFT EPA 8015/LUFT EPA 8260	Method Rec. EPA 8015/LUFT 64% EPA 8015/LUFT 82% EPA 8260 96% EPA 8260 105% EPA 8260 101% EPA 8260 98% EPA 8260 98% EPA 8260 98% EPA 8260 101% EPA 8260 101% EPA 8260 101% EPA 8260 101% EPA 8260 104% EPA 8260 108% EPA 8260 108%	Method Rec. Rec. EPA 8015/LUFT 64% 66% EPA 8015/LUFT 82% 82% EPA 8260 96% 92% EPA 8260 98% 98% EPA 8260 105% 101% EPA 8260 101% 102% EPA 8260 98% 94% EPA 8260 98% 99% EPA 8260 101% 97% EPA 8260 104% 100% EPA 8260 108% 104% EPA 8260 104% 100%	Method Rec. Rec. RPD EPA 8015/LUFT 64% 66% 2 EPA 8015/LUFT 82% 82% 0 EPA 8260 96% 92% 3 EPA 8260 105% 101% 4 EPA 8260 101% 102% 1 EPA 8260 98% 94% 4 EPA 8260 98% 99% 1 EPA 8260 101% 97% 4 EPA 8260 104% 100% 4 EPA 8260 108% 104% 4 EPA 8260 108% 104% 4	Method Rec. Rec. RPD Sample EPA 8015/LUFT 64% 66% 2 blank EPA 8015/LUFT 82% 82% 0 07-C4804 EPA 8260 96% 92% 3 07-C4804 EPA 8260 98% 98% 0 07-C4807 EPA 8260 105% 101% 4 07-C4804 EPA 8260 101% 102% 1 07-C4807 EPA 8260 98% 94% 4 07-C4804 EPA 8260 101% 97% 4 07-C4804 EPA 8260 104% 100% 4 07-C4804 EPA 8260 108% 104% 4 07-C4807	Method Rec. Rec. RPD Sample Amount EPA 8015/LUFT 64% 66% 2 blank 2.0 EPA 8015/LUFT 82% 82% 0 07-C4804 0.5 EPA 8260 96% 92% 3 07-C4804 10 EPA 8260 98% 98% 0 07-C4807 10 EPA 8260 105% 101% 4 07-C4804 10 EPA 8260 98% 94% 4 07-C4807 10 EPA 8260 98% 99% 1 07-C4804 10 EPA 8260 101% 97% 4 07-C4807 10 EPA 8260 104% 100% 4 07-C4807 10 EPA 8260 104% 100% 4 07-C4804 10 EPA 8260 104% 100% 4 07-C4807 10 EPA 8260 104% 100% 4 07-C4807 10 EPA 8260 104% 100% 4 07-C4807 10 EPA 8260 104% 104% 4 07-C4807	Method Rec. Rec. RPD Sample Amount Units EPA 8015/LUFT 64% 66% 2 blank 2.0 mg/L EPA 8015/LUFT 82% 82% 0 07-C4804 0.5 mg/L EPA 8260 96% 92% 3 07-C4804 10 ug/L EPA 8260 98% 98% 0 07-C4807 10 ug/L EPA 8260 105% 101% 4 07-C4804 10 ug/L EPA 8260 101% 102% 1 07-C4807 10 ug/L EPA 8260 98% 94% 4 07-C4804 10 ug/L EPA 8260 101% 97% 4 07-C4807 10 ug/L EPA 8260 101% 97% 4 07-C4804 10 ug/L EPA 8260 104% 100% 4 07-C4807 10 ug/L EPA 8260 104% 100% 4 07-C4804 10 ug/L EPA 8260 104% 104% 4 07-C4807 10 ug/L EPA 8260 108% 104% 4 07-C4807 10 ug/L	Method Rec. Rec. RPD Sample Amount Units Recovery Limits EPA 8015/LUFT 64% 66% 2 blank 2.0 mg/L 50 - 150 EPA 8015/LUFT 82% 82% 0 07-C4804 0.5 mg/L 60 - 140 EPA 8260 96% 92% 3 07-C4804 10 ug/L 70 - 130 EPA 8260 98% 98% 0 07-C4807 10 ug/L 70 - 130 EPA 8260 105% 101% 4 07-C4804 10 ug/L 70 - 130 EPA 8260 101% 102% 1 07-C4807 10 ug/L 70 - 130 EPA 8260 98% 94% 4 07-C4804 10 ug/L 70 - 130 EPA 8260 101% 97% 4 07-C4807 10 ug/L 70 - 130 EPA 8260 104% 100% 4 07-C4807 10 ug/L 70 - 130 EPA 8260 104% 100% 4 07-C4807 10 ug/L 70 - 130 EPA 8260 104% 100% 4 07-C4804 10 ug/L 70 - 130 </td <td>Method Rec. Rec. RPD Sample Amount Units Recovery Limits Limit EPA 8015/LUFT 64% 66% 2 blank 2.0 mg/L 50 - 150 30 EPA 8015/LUFT 82% 82% 0 07-C4804 0.5 mg/L 60 - 140 30 EPA 8260 96% 92% 3 07-C4804 10 ug/L 70 - 130 20 EPA 8260 98% 98% 0 07-C4807 10 ug/L 70 - 130 20 EPA 8260 105% 101% 4 07-C4804 10 ug/L 70 - 130 20 EPA 8260 101% 102% 1 07-C4807 10 ug/L 70 - 130 20 EPA 8260 98% 94% 4 07-C4804 10 ug/L 70 - 130 20 EPA 8260 98% 99% 1 07-C4807 10 ug/L 70 - 130 20 EPA 8260 101% 97% 4 07-C4804 10 ug/L 70 - 130 20<</td>	Method Rec. Rec. RPD Sample Amount Units Recovery Limits Limit EPA 8015/LUFT 64% 66% 2 blank 2.0 mg/L 50 - 150 30 EPA 8015/LUFT 82% 82% 0 07-C4804 0.5 mg/L 60 - 140 30 EPA 8260 96% 92% 3 07-C4804 10 ug/L 70 - 130 20 EPA 8260 98% 98% 0 07-C4807 10 ug/L 70 - 130 20 EPA 8260 105% 101% 4 07-C4804 10 ug/L 70 - 130 20 EPA 8260 101% 102% 1 07-C4807 10 ug/L 70 - 130 20 EPA 8260 98% 94% 4 07-C4804 10 ug/L 70 - 130 20 EPA 8260 98% 99% 1 07-C4807 10 ug/L 70 - 130 20 EPA 8260 101% 97% 4 07-C4804 10 ug/L 70 - 130 20<

Sample Duplicate

			oump to	ounipro				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 26

Order No.: 02119

Sample Duplicate

			Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
TPH as Gasoline	EPA 8015/LUFT	07-C4736	< 0.05	< 0.05	0	mg/L	30.	3952
Benzene	EPA 8260	07-c4739	< 0.5	< 0.5	0	ug/L	20.	4032
Benzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Toluene	EPA 8260	07-c4739	< 0.5	< 0.5	0 -	ug/L	20.	4032
Toluene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Ethylbenzene	EPA 8260	07-c4739	< 0.5	< 0.5	0	ug/L	20.	4032
Ethylbenzene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L	20.	4132
m,p-Xylene	EPA 8260	07-C4739	< 0.5	< 0.5	0	ug/L	20.	4032
m,p-Xylene	EPA 8260	07-C4807	<0.5	< 0.5	. 0.	ug/L	20.	4132
o-Xylene	EPA 8260	07-04739	< 0.5	< 0.5	0	ug/L	20.	4032
o-Xylene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Methyl t-Butyl Ether (MTBE)	EPA 8260	07-C4739	0.90	0.80	12	ug/L	30.	4032
Methyl t-Butyl Ether (MTBE)	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	30.	4132
Chlorobenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,2-Dichlorobenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,3-Dichlorobenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,4-Dichlorobenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,2-Dichloroethane (EDC)	EPA 8260	07-C4739	< 0.5	< 0.5	0	ug/L	20.	4032
1,2-Dichloroethane (EDC)	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,2-Dibromoethane (EDB)	EPA 8260	07-C4739	< 0.5	< 0.5	0	ug/L	20.	4032
1,2-Dibromoethane (EDB)	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Bromobenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Bromochloromethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Bromodichloromethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Bromoform	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Bromomethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	30.	4132
n-Butylbenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
sec-Butyl Benzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
t-Butylbenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Carbon Tetrachloride	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Chloroethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	30.	4132
2-Chloroethylvinyl ether	EPA 8260	07-C4807	< 20	< 20	0	ug/L	30.	4132
Chloroform	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Chloromethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	30.	4132
2-Chlorotoluene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
4-Chlorotoluene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,2-Dibromo-3-Chloropropane	EPA 8260	07-C4807	< 1	< 1	0	ug/L	30.	4132
Dibromochloromethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Dibromomethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
Dichlorodifluoromethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	30.	4132
1,1-Dichloroethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,1-Dichloroethene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L	20.	4132
cis-1,2-Dichloroethene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
trans-1,2-Dichloethene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 27

Order No.: 02119

Sample Duplicate

			Sample	Sample				
Analyte	Method	Sample ID	Value	Duplicate	RPD	Units	RPD Limit	Batch
1,2-Dichloropropane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
1,3-Dichloropropane	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L	20.	4132
2,2-Dichloropropane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	
1,1-Dichloropropene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L	20.	4132
cis-1,3-Dichloropropene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20.	4132
trans-1,3-Dichloropropene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
Hexachlorobutadiene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	30.	4132 4132
Isopropylbenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
4-Isopropyltoluene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L	20.	
Methylene Chloride	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L	30.	4132
Naphthalene	EPA 8260	07-c4807	< 5	< 5	0	ug/L ug/L	30.	4132 4132
n-Propylbenzene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L	20.	
Styrene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
1,1,1,2-Tetrachloroethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
1,1,2,2-Tetrachloroethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
Tetrachloroethene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
1,2,3-Trichlorobenzene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
1,2,4-Trichlorobenzene	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L		4132
1,1,1-Trichloroethane	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L	20. 20.	4132
1,1,2-Trichloroethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
Trichloroethene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L		4132.
Trichlorofluoromethane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L	20. 30.	4132
1,2,3-Trichloropropane	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	30. 30.	4132
1,2,4-Trimethylbenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L		4132
1,3,5-Trimethylbenzene	EPA 8260	07-C4807	< 0.5	< 0.5	0	ug/L ug/L	20.	4132
Vinyl Chloride	EPA 8260	07-c4807	< 0.5	< 0.5	0	ug/L ug/L	20. 30.	4132 4132

Table 2 Summary of Groundwater Analytical Results (April 12, 2007)

Pacific Gas and Electric Oakland General Construction Yard Oakland, California

			al Petrole carbons N 8015M		Dissolved Lead Method 6010B		Volatile Organic Compounds-Method 8260B														
Sample Name	Sample Date	TPHg μg/l	TPHd μg/l	TPHmo μg/l	μg/l	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Xylenes μg/l	4-Isopropyl- benzene µg/l	•	MTBE ·	1,2,4-TCB µg/l	1,2-DCB μg/l	1,3-DCB µg/l	1,4-DCB μg/l	CB µg/l	1,1,1-TCA μg/l	1,1-DCA µg/l	1,1-DCE µg/l	Other VOCs µg/l
OW-1	04/12/07	<50	110	200	<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	1.0	1.6	1.8	19	64	4.6	0.8	10	11	ND
OW-2	04/12/07	<50	120	300	<4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND
OW-5	04/12/07	<50	180	500	<4	4.7	< 0.5	< 0.5	< 0.5	0.7	5.3	<0.5	< 0.5	< 0.5	8.0	5.0	<0.5	< 0.5	1.6	0.6	ND
OW-6	04/12/07	<50	160	400	<4	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<5	<0.5	< 0.5	0.6	6.6	22	8.1	< 0.5	12.0	9.6	ND
OW-7	04/12/07	<50	210	400	<4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5	<0.5	32	16	130	460	70	< 0.5	6.5	6.8	(1)
OW-8	04/12/07	<50	150	400	<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
FIELD BLANK	04/12/07	-			<4	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Notes

OW-4 could not be sampled because a shipping container is located on the well.

μg/I = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.

-- = Not analyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C).

J = Estimated result. Result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene 1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene

1,2,4-TCB = 1,2,4-Trichlorobenzene

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride

(1) = 1,2-Dichloroethane was detected at 0.5 μg/l

GWM_R_2007-05 TABLES Page 1 of 1