RECEIVED

8:40 am, Mar 28, 2007

Alameda County Environmental Health

Environmental Services (ES) 3400 Crow Canyon Road San Ramon, CA 94583

925.820.2000 Fax: 925.866.5892

March 2, 2007

Barney Chan Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject: Transmittal of Annual Groundwater Monitoring Report, December 2006 Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California

Dear Mr. Chan:

Attached is the Annual Groundwater Monitoring Report, December 2006 Event, Pacific Gas and Electric Company, Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California, dated March 2007. PG&E has retained ENTRIX, Inc., and Geomatrix Consultants, Inc. to perform groundwater monitoring and other technical studies at the subject site. The attached report was prepared by Innovative Technical Solutions, Inc., with review by Geomatrix.

Should you have technical questions pertaining to this report, you may contact Bob Schultz of Geomatrix at 510.663.4117. For any other questions or requests pertaining to the regulatory case at the subject site, please contact me at 925.866.5888.

Sincerely,

Robert Saur Project Manager

RAS: ngc 402.331.07.14

cc: Margarita Khavul, PG&E

ANNUAL GROUNDWATER MONITORING REPORT

December 2006 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

Prepared For:

Pacific Gas and Electric Company 3400 Crow Canyon Road San Ramon, CA 94583

Prepared By:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598

March 2007

ITSI Project No: 07037.0009

ANNUAL GROUNDWATER MONITORING REPORT

December 2006 Sampling Event

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way Oakland, California

This report was prepared by the staff of Innovative Technical Solutions, Inc., under the supervision of the Geologist(s) and/or Engineer(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Eric Ehlers, P.G. Project Manager

Innovative Technical Solutions, Inc. 2730 Shadelands Drive, Suite 100 Walnut Creek, CA 94598 Reviewed By:

Jeff

Program Manager

March 2007

ITSI Project No. 07037.0010

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description	1
3.0	Site History	1
4.0	Groundwater Monitoring Activities	2
5.0	Groundwater Monitoring Results	3
6.0	Conclusions	4
7.0	References	5

LIST OF FIGURES

<u>Figure No</u> .	Title
1	Vicinity Maps
2	Site Plan
3	Groundwater Elevation Contours (December 20, 2006)

LIST OF TABLES

<u>Table No</u> .	Title
1	Summary of Groundwater Elevation Data
2	Summary of Groundwater Analytical Results for TPH, Dissolved Lead, and PAHs
3	Summary of Groundwater Analytical Results for VOCS

LIST OF APPENDICES

Appendix A	Historical Groundwater Analytical Results
Appendix B	Low-Flow Purging and Sampling Protocol
Appendix C	Groundwater Purging and Sampling Logs
Appendix D	Laboratory Analytical Reports and Chain-of-Custody Documentation

ACRONYMS AND ABBREVIATIONS

ACHCSA	Alameda County Health Care Services Agency
AST	above-ground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CCR	California Code of Regulations
CFR	Code of Federal Regulations
EPA	U.S. Environmental Protection Agency
ITSI	Innovative Technical Solutions, Inc.
LC/LCSD	laboratory control/laboratory control duplicate
MCL	maximum contaminant level
mg/kg	milligrams per kilogram
μg/l	micrograms per liter
MS/MSD	matrix spike and matrix spike duplicate
msl	mean sea level
MTBE	methyl tertiary butyl ether
O&G	oil and gas
PG&E	Pacific Gas and Electric Company
RL	reporting limit
RPD	relative percent difference
RWQCB	Regional Water Quality Control Board
STLC	soluble threshold limit concentration
TPH	total petroleum hydrocarbons
TPHd	total petroleum hydrocarbons quantified as diesel
TPHg	total petroleum hydrocarbons quantified as gasoline
TTLC	total threshold limit concentration
UST	underground storage tank
VOC(s)	volatile organic compound(s)

1.0 INTRODUCTION

This report presents the results of annual groundwater monitoring completed on December 20, 2006, at the Pacific Gas and Electric Company (PG&E) General Construction Yard located at 4930 Coliseum Way in Oakland, California (the site, Figure 1). The groundwater monitoring program includes the following activities: (1) measuring groundwater elevations; (2) collecting groundwater samples from monitoring wells on site; and (3) performing laboratory analyses of the samples. The program objective is to monitor the distribution of select fuel-related compounds, volatile organic compounds (VOCs), and dissolved lead in shallow groundwater beneath the site. The following sections summarize the site description, site background, groundwater monitoring activities, and analytical results of samples collected on December 20, 2006. Previous analytical results are summarized in a table provided in Appendix A.

2.0 SITE DESCRIPTION

The site consists of approximately 4 acres and is operated as a storage yard for equipment and vehicles (Figure 2). The surrounding area is primarily commercial and light industrial. The site is bounded by Coliseum Way to the south, 50th Avenue to the southeast and commercial properties to the north (Figure 1).

3.0 SITE HISTORY

The following summarizes previous environmental activities associated with the site:

- January 1988 Five underground storage tanks (USTs) and associated piping located in the northern and eastern portions of the site were removed (Figure 2). Four of the former USTs were located in a cluster in the northern portion of the site (former UST cluster). Two of these USTs reportedly contained heavy oil and two contained mineral spirits (Secor, 2006). The fifth former UST was located near the west corner of the yard and reportedly contained diesel fuel.
- April 1988 Installation of groundwater monitoring wells OW-1 through OW-4
- May 1990 One natural gas, above ground storage tank (AST) was removed from the central portion of the site (Figure 2).
- November and December 1991 Approximately 2,000 cubic yards of soil were excavated to a depth of approximately 8 to 8 ½ feet below ground surface (bgs) as a

PGEOakDec06-Final

remedial action for the petroleum hydrocarbons identified in the soil in the vicinity of the former UST cluster. Groundwater monitoring wells OW-6 and OW-7 were installed. The concentrations of TPHd and oil and grease in the soil samples collected along the site boundaries during soil excavation activities were greater than soil cleanup target levels, while concentrations of TPHd and oil and grease in each of the remaining confirmatory samples were less than the cleanup target levels. Oil was visible in the soils in the northeast wall of the excavation along the property line, and two pipes that contained a similar petroleum product were also exposed in the wall of the excavation. The conclusions of the February 1992 *Site Remediation and Closure Report, Former Tank Cluster Area* prepared by Earth Technology Corporation suggested that off-site sources of petroleum hydrocarbons may exist in both the northeast and northwest directions (ETC, 1992).

- December 1991 Installation of groundwater monitoring wells OW-5 through OW-7.
- September and October 1992 An asphaltic concrete cap was constructed on leadaffected surface soil in the vicinity of the former natural gas AST. Lead, believed to have originated from lead-based paint chips generated from sandblasting of the former natural gas AST, was found in soil samples collected from this area.
- February 1993 Groundwater monitoring well OW-8 was installed in the southern area of the yard near the location of the former natural gas AST to monitor lead concentrations in the groundwater.
- **July 1994** Groundwater sampling frequency reduced from quarterly to a semiannual basis.

4.0 GROUNDWATER MONITORING ACTIVITIES

Blaine Tech Services, Inc. performed the 2006 annual groundwater monitoring event on December 20, 2006. Groundwater sampling was performed using low-flow purging and sampling methods in accordance with the Low-Flow Purging and Sampling Protocol (Appendix B). Depth to groundwater measurements were collected from OW-1, OW-2, OW-5, OW-6, OW-7, and OW-8, and were recorded in the Groundwater Purging and Sampling Logs (Appendix C). Field personnel observed a black substance on the water level indicator while measuring depth to groundwater in OW-5; however, this substance is not believed to be a non-aqueous phase liquid (NAPL), because historical groundwater concentrations and previous water level measurements do not appear to indicate that NAPL has been present in this well. Well OW-4 was inaccessible because a storage container was placed over the well. Table 1 summarizes the depth to water measurements and groundwater elevation data. The groundwater elevation measurements were used to prepare a groundwater elevation map to determine the direction and magnitude of groundwater flow. Figure 3 shows the groundwater elevation map. Purge water generated during the groundwater monitoring activities was temporarily stored onsite in 55-gallon steel drums pending disposal.

Groundwater samples were collected from OW-1, OW-2, OW-5, OW-6, OW-7, and OW-8 in laboratory supplied containers. The samples were shipped on ice to Creek Laboratories, Inc., a California state-certified laboratory, for analysis under chain-of-custody protocol.

Samples from the monitoring wells were analyzed for the following:

- OW-1, OW-5, OW-6, and OW-7 were analyzed for TPHd and TPHg using U. S. Environmental Protection Agency (EPA) Method 8015B.
- OW-1 was analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260B.
- OW-5, OW-6, and OW-7 were analyzed for VOCs using EPA Method 8260B.
- OW-2 and OW-5 were analyzed for dissolved lead using EPA Method 6010B.

Table 2 and Table 3 summarize the laboratory analytical results. Figure 4 presents the results of the December 20, 2006, sampling event. Appendix D includes the laboratory analytical reports and chain-of-custody documentation.

All analyses were performed within the holding times specified by the EPA. None of the tested analytes were detected in the method blanks. The surrogate recoveries were within the laboratory acceptance limits. Recoveries of laboratory control/laboratory control duplicates (LC/LCD), Recoveries of matrix spike/matrix spike duplicate (MS/MSD) were within the laboratory acceptance limits. The relative percent difference (RPD) were within the laboratory acceptance limits except for 1,1-dichloroethene with a RPD of 22, which was outside laboratory RPD limit of 20. A field duplicate sample was not collected during this sampling event.

5.0 GROUNDWATER MONITORING RESULTS

Groundwater level measurements collected during the December 20, 2006, monitoring event indicate that depth to water ranged from 2.85 to 5.49 feet below the top of casing. Based on these groundwater level measurements, the predominant groundwater flow direction was towards the south with an approximate hydraulic gradient of 0.005 ft/ft.

Laboratory analytical results for the groundwater samples collected from the six monitoring wells sampled during the December 20, 2006, monitoring event indicate the following:

- TPHg was detected at 90 μ g/l in OW-5. TPHg was not detected above the laboratory method reporting limit of 50 μ g/l in any other samples collected from the site.
- TPHd was detected in groundwater samples collected from OW-1, OW-5, and OW-7 at concentrations of 200 µg/l, 300 µg/l, and 400 µg/l, respectively. TPHd was detected at concentrations lower than previously reported concentrations (CSS, 2005; Appendix D). The highest concentration of TPHd was found in the sample collected from well OW-7 at 400 µg/l, located in the the northeastern (upgradient) portion of the property.
- Dissolved lead was not detected above the laboratory method reporting limit of 20 μ g/l in the samples analyzed from OW-2, OW-5, and OW-8.
- With the exception of benzene detected at $0.7 \mu g/l$ in OW-5. BTEX and methyl tertiary butyl ether (MTBE) were not detected above the laboratory method reporting limit in any other samples.
- VOCs were detected in samples collected from OW-5, OW-6, and OW-7. VOCs were detected at concentrations lower than previous monitoring events. The highest concentrations of VOCs were found in the sample collected from well OW-7, located in the northeastern (upgradient) portion of the property.

6.0 CONCLUSIONS

The direction of groundwater flow is consistent with the results of previous monitoring events. The hydraulic gradient is less than previously reported. Overall, the analytical results of the December 20, 2006, groundwater monitoring event are lower than the results of previous groundwater monitoring events.

7.0 **REFERENCES**

- CSS Environmental Services, Inc., 2005, Semi-Annual Groundwater Monitoring Report, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, September 2.
- Earth Technology Corporation (ETC), 1992, Site Remediation and Closure Report Former Tank Cluster Area, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, February.
- Secor International Incorporated (Secor), 2006, Second Semester 2005 Groundwater Monitoring Report, Pacific Gas and Electric General Construction Yard, 4930 Coliseum Way, Oakland, California, December.

FIGURES

TABLES

TABLE 1

Summary of Groundwater Elevation Data 2006 Annual Groundwater Monitoring Report

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

Well Number	Sample Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation
		(feet MSL)	(feet bgs)	(feet above MSL)
OW-1	12/20/2006	11.82	2.97	8.85
OW-2	12/20/2006	11.24	3.48	7.76
OW-4	12/20/2006	12.82	NM	
OW-5	12/20/2006	13.24	3.83*	9.41
OW-6	12/20/2006	13.61	4.10	9.51
OW-7	12/20/2006	15.00	5.49	9.51
OW-8	12/20/2006	11.19	2.85	8.34

Notes:

TOC = top of casing

MSL = Mean Sea Level

bgs = below ground surface

NM = Not measured. Well was not found/un-accessible due to storage container. TOC elevation data were referenced from Figure 4.2-Historical Groundwater Elevations, (Semi-Annual Groundwater Monitoring Report, September 2,

2005, CSS Environmental Services, Inc.).

Table 2 Summary of Groundwater Analytical Results for TPH, Dissolved Lead, and PAHs Pacific Gas and Electric Oakland General Construction Yard Oakland, California

					Dissolved										
		Tot	al Petrole	um	Lead										
		Hydroo	carbons N	lethod	Method										
			8015M		6010B			Polynu	clear Aron	natic Hydro	ocarbons-M	ethod 827	0C - SIM		
						2-Methyl									
						Naph-	Acenap-	Acenap-	Anthra-	Fluoran-		Naph-	Phenan-		Other
Sample	Sample	TPHg	TPHd	TPHmo		thalene	thene	thylene	cene	thene	Fluorene	thalene	threne	Pyrene	PAHs
Name	Date	µg/l	μg/l	µg/l	µg/l	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
OW-1	12/20/05	53 ¹	390 ²	470J											
OW-1	12/20/06	<50	200												
OW-2	12/20/05	<20	200 ²	610	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-2	12/20/06				<20										
OW-5	12/20/05	33 ³	300 ²	610	<3	0.96	0.31	0.26	0.24	0.70	0.67	13	0.13J	1.4	ND
OW-5	12/20/06	90	300		<20										
OW-6	12/20/05	<20	440 ²	760		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-6	12/20/06	<50	<100												
OW-7	12/20/05	330 ¹	510 ^{2,4}	860		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-7	12/20/06	<50	400												
OW-8	12/20/05	<20	250 ²	690	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
OW-8	12/20/06				<20										
FIELD															
BLANK	12/20/05	<20	<50	<500	<3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND
FIELD															
BLANK	12/20/06				<20										

Notes:

TPH = Total petroleum hydrocarbons TPHg = Total petroleum hydrocarbons quantified as gasoline

TPHd = Total petroleum hydrocarbons quantified as diesel

TPHmo = Total petroleum hydrocarbons quantified as motor oil PAH = Polynuclear aromatic hydrocarbons

µg/l = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.</p>
-- = Not analyzed

ND = Not detected

J = Estimated result. Result is less than the practical quantitation limit.
 (1) = The laboratory notes that the chromatogram is mainly a dominant peak(s) which is not indicative of petroleum hydrocarbons.

(2) = The laboratory notes that the chromatogram is mainly higher boiling hydrocarbons such as asphaltene, waste oil, motor oil, weathered diesel, and hydraulic fluid.

(3) = The laboratory notes that the chromatogram includes higher boiling hydrocarbons such as diesel

(4) = The laboratory notes that the chromatogram contains a recognizable contaminant peak(s) that has been removed from quantitation.

Table 3 Summary of Groundwater Analytical Results for VOCs Pacific Gas and Electric Oakland General Construction Yard

Oakland, California

											Volatile	e Organic (Compounds-	Method 8	3260B							
Sample Name	Sample Date	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Xylenes µg/l	i MTBE μg/l	CB µg/l	1,2-DCB µg/l	1,3-DCB µg/l	1,4-DCB µg/l	1,1-DCA µg/l	1,1-DCE μg/l	4-lsopropyl- benzene μg/l	Naph- thalene µg/l	1,1,1-TCA µg/l	ΤCE μg/l	1,2,3-TCB µg/l	1,2,4-TCB µg/I	1,2,4-ТМВ µg/I	1,3,5-TMB µg/l	VC µg/l	Other VOCs µg/l
OW-1	12/20/05	<0.5	<0.5	<0.5	<0.5	0.96	8.8	4.6	37	110	7.6	8.3	<0.5		0.66	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
OW-1	12/20/06	<0.5	<0.5	<0.5	<0.5																	
OW-2	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
OW-2	12/20/06																					
OW-5	12/20/05	4.4	<0.5	<0.5	0.56	<0.5	0.63	<0.5	1.0	3.9	2.2	0.49J	<0.5		<0.5	0.33J	<0.5	<0.5	<0.5	<0.5	0.6	ND
OW-5	12/20/06	0.7	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	1.0	4.3	2.2	0.6	0.8	50	<0.5	<0.5	<0.5	<0.5	3.2	1.9	<0.5	ND
OW-6	12/20/05	<0.5	<0.5	<0.5	<0.5	0.53	5.8	1.4	8.6	25	7.0	3.1	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
OW-6	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	1.2	11	44	8.1	4	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
OW-7	12/20/05	<0.5	<0.5	<0.5	<0.5	0.26J	84	26	190	490	7.0	6.3	<0.5		<0.5	0.53	<0.5	<0.5	<0.5	<0.5	0.39J	ND
OW-7	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	51	21	120	330	3.6	3.1	<0.5	6.8	<0.5	<0.5	0.8	25	<0.5	<0.5	<0.5	ND
OW-8	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
OW-8	12/20/06																					
FIELD																						
BLANK	12/20/05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
FIELD																						
BLANK	12/20/06	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Notes:

µg/l = Micrograms per liter.

< = Not detected at or above the practical quantitation limit.

-- = Not analyzed

ND = Not detected

J = Estimated result. result is less than the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene

1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

1,4-DCB = 1,4-Dichlorobenzene

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,2,3-TCB = 1,2,3-Trichlorobenzene

1,2,4-TCB = 1,2,4-Trichlorobenzene

TCE = Trichloroethene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

VC = Vinyl Chloride

APPENDIX A

Historical Groundwater Analytical Results

	•				-	OUT 1	094.4	0101-1	0841	0%.1	DW-t	OW-1	OW-1	OW-1	OW-1	OW-1	0W-1	OW-1	QW-1	OW-1	OW-1	OW-1	OW-1	OW-t	OW-1	OW-1	DW-1	OW-1	OW-1	OW-1
Wall (D	MCL	OW-1	DYV-1	LUVY+1	Ant-DA	6440	01.00	Jan-91	Acr-91	Jul-91	Dac-91	Mar-92	Jul-92	Oct-92	Jan-93	Apr-83	EC-luL	Oct-93	Jan 84	Jui-94	Jun-25	Nov-95	Jun-96	Oci-96	Apr.,Jun-97	Dec-97	700-96	Doc-92	700-98	NDV-39
Date	ug/L	Abl-ee	WC1-08	9411-EU	~p;*##																									
PURGEABLE HALOCARBONS																	:					ыa	ALA.	N/6	NA	NA	NA	NA	NA	NA
Chlaromoliuma		ND	ND	ND	ND	ND	ND	ΝΦ	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NĂ	NA	NA	NA	NA
Bromemelhane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE) NCI	ND	814 814	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyt chlorida	0,5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroothane		ND	ND	ND	ND	ND	ND	ND		ND ND	ND	ND.	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylana Chloride	5#	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	NO	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroflueromethane	150	ND	ND ND	80	10	MÜ	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ΝА	NA	NA	NA	NA .	. NA	NĄ	NA	NA	NA	NA	NA	NA NA
1,1-Dichloraelhane	6	ND	ΝQ 4	A ND	4	2	2	1	2.8	4.6	ND	ND	ND	1	3	NA	ha	NA	NA	NA	NA	HA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichlaroellinna	5	ND	э ND	ม่ก	ND	ND	พื่อ	Й	ND	ND	ND	NÐ	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NIA MA	N/A N/A	NA NA	6/A	NA NA	NA
cis-1,2-Dichloroelhone	10	ND	ND	ND	ND	ND	NP	ND	ND	ND	ND	NÐ	ND	ND	NР	NA	NA	NA	NA	NA	NA	NA	NA	HA NA	P24	NA NA	NA NA	Na	NA	NA
(rads-1,2-Dichorobinene	10087	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	FW-L	110	214	NB	NA	NA	NA	NA
Caleboara	1200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NØ	NA	NA	NA	NA.	N/A	pi.e	NA NA	100	ALA I	11A	NA	NA	NA	NA	NA
1 2-Olchiomethana	0.5	ND	ND	ND	NÐ	ND	ND	ND	0,63	ND	NÖ	ND	ND	ND	ND	NA	NA	NA	NA	510	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1 1-Tichioroshana	200	ND	ND	ND	ND	ND	110	ND	ND	NO	ND	ND	ND	ND	ND	NA	114	5175	144	11/5	NA	NA	NA	NA	NA	NA	HA.	NA	NA	NA
Carbon Tytrechlorkie	0.5	ND	ND	ΝD	ND	NO	ЧО	ND	ND	ND	ND	ND	ND	ND	ND	11/4	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N ^A	NA	NA
Bromedichlorothethane	100#1	ND	ND	ND	ND	ND	ND	ND	ND	NU	ND	NU	ND		ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND		ND	ND ND	ND	ND	140	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,3-Dichistopropene	5	ND UM	ND	ND	ND ND	ND	200	ND	10	ND	ND	ND	ND	םא	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	HA	NA	NA.	NA	NA
Trichlosoethone	5	NU	ND	140	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	NA	·NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
1,1,2 Trichicrostions	-12	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	NA	NA	NA	NA	HA	NA.	NA	NA	NA,	NA	NA.	NA	NA NA	NA	NA
Wing-1,3-Decheropropena	100#"	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA NA	NA MA	NA.	NA NA	60A N.4	NA	NA	NA	NA	NA
2-Chinmeltylylovi Ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	N/A N/A	NA NA	614	NA NA	NA	NA	NA	NA	NA	NA	NA	ttA.	NA
Bremeletra	100#*	NO	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NU	PGA.	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Teirachlereethene	5	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	NO	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	1	ND	NÐ	ND	ND	NO	ND	ND	ND	NO	HD HD	100	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobonzana	30	ND	ND	ND	NU	ND	ND	1	1.8	29	NO	ND	ND	ND	ND	KA	NA	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA	NA	NA
1.3-Dichlorobanzone		NA	NA	1	4 ND	4 ND	NO	ND	0.58	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichtarobenzeno	600#	NA	IVA.	6	13	11	6	3	6.7	14	3.2	ND	4	з	з	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
1,4-Dichlorobonzene	5	•	14	-	14		-	•		••																				
PURGEABLE AROMATICS															_			£ .				20		ND	ND	0.66	ND	0.5	0.55	ND
Benzana	1	NO	NÞ	3.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	커티	NA	ND	NA NA	NO	ND	NA NA	ND	50	ND	ND	ND	0.67	C74	ND	NO
Tolueno	1000#	ND	ND	23	0,4	ND	ND	ND	ND	ND	ND	ND	0,7	ND	ND	NA NA	ND ND	674	110	80	NA	ND	ND	ND	ND	2.3	ND	0,78	ND	ND
Ethylconzone	580	ND	ND	ND	ND	ND	ND	ND	ND	ND	NU	22	4	57	1.0	NA	ND	NA	2.5	ND	NA	ND	ND	ND	ND	1.1	ND	D.67	ND	0.59
Total Xylenes	1750**		ND	2.6	2.4	ND				110	- 1100 - 1100		157		8.5	NA		NA	2.5	NA	- NA	NA	NA	NA	NA	4.08	0.67	1.93	0.55	0.59
TOTAL VOC:		4	16	78,1	23.5	14	3	'	19791	A			••••										•							
HYDROCARBONS																							***		670	(30	85/1	857	1100	6 90
TVH-a		NA	NA	< 50	62	< 50	< 50	< 500	NA	NA	NA	100	120	< 50	70	NA	NA	NA	80	60	400	230	2105	1400	1500	760	1960	1800	1300	540
TEPH-d		< 1000	< 1000	190	308	200	200	90	< 200	< 50	1600	3100	3900	1000	2000	NA	2300	N/A	1000	1200	140	N/A	MA	NA	NA ·	NA	NA	NA	NA	NA
OAG		< 5000	16000	NA	NA	NA	NA	NA	NA	< 5000	< 5000	< 5000	NA	NA	NA.	NA 316	144	545 112	NA NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)		NA	NA	< 5000	< 5000	< 5000	< 5000	< 5000	< 500	NA	NA,	NA	NA	NA	PVA.	NA	nu.			1475										·
METALS																														
Least	0	NA	NA	NA	NA	NA	NA	ŅA	ND	NA	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes: 1) MCL = Maximum Contaminant 2) # = FA MCL 3) * = MCL for sum of four campe 4) ** = MCL for sum of and all sylone 1 5) *** = MCL for sum of forms - and 6) NO = Not Delocited at or above 7) Purgable Halocattons (EPA mo 6) ND = Not Analyzed for analyzed 6) ANA = Not Analyzed for analyzed 6) ANA = Not Analyzed for analyzed	Loyal In dinking water sunds somers I cis-1,3-Dichleroprope (KDL method 8010) tinod 8020) nol required r VOCs aut of holding 1	(State Mi ne ime due \$	CL (f pot r	nto botor	20429)																									

6113 sabias pis

-

.

di Bubbaab

Citile	OW-1	OW-1	OV#1	OW-1	OW-1	OW-1	OW-1	OW-1	OW-1
in in	Jun-60	Nov-00	Jun-01	Nov-01	Jun-02	Oct-02	Apr-03	Nov-03	Jun-04
HUEABLE AALUUAADUNG							NI 6	ыл	MA
aramanak	NA	NA	NA	NA	NA .	76A 818	IN/A MA	1175	NA.
amamahana	NA	NA	NA	NA	NA	NA ND	NA NA	NA	NA
nyi chlorida	NA	NA	na.	PUA.	110	MA NA	NA	NA	NA
hipposthane	NA	NA	NA	NA	-PIPA	104	100	NA	NA
strylane Chicrida	NA	NA	NA	NA	NA NA	7925	NA NA	NA	NA
ichlerofiueremethene	NA	NA	NA	NA	PI/4	145	MA	NA	NA
1-Dichloroelhene	NA	NA	NA	NA	F44	NA Sto	N/G	NA	NA
1.Dichlorpolhana	NA	NA		110	PM-1	110	NA.	NA	NA
s-1,2-Dichloroelhane	NA	NA	N/A	EN/A	414	105	MA	A1A	624
uns-1,2-Olchiorpolhena	NA	NA	NA	NA	DVA NA	104	N/5	NIA	NA
bloreform	NA	NA	NA	NA .	PGA NU	1905	+16	Na	NA
reon 113	NA	NA	NA	NA	N/A	NA NA	110	NA NA	NA
2-Dichtercethane	NA	NA	NA	NA	IN A	105	140	NA	ALC
1,1-Trichiorositiana	NA	NA	NA	NA	NA NA	NA.	100	NA	NA
arbon Tetrachloride	NA	NA,	NA	NA ND	NA	NA NA	NA	NA	NA
romodichloremolhane	NA	NA	NA.	144	PPA MO	6175	HA.	MA	NA
2-Dichloropropana	NA	NA	NA	NA.	PUA BLA	104	NA	N4	NA
s-1,3-Dichleropropena	NA	NA	NA	NA.	NA	NA NZ	NA.	NB	NA
richiorashene	NA	NA	NA	NA	AN	NA	NA.	ALE	10
5,2-Trichlorostrans	NA	NA	NA	NA	NA	NA	144	1145	810
ans-1,3-Dichioropropana	NA	NA	NA	NA	NA.	NA	NA NA	190	NA.
bremachlarementena	NA	NA	NA	NA	NA	INA.	NA NA	A10	EIA
-Chloroethylyinyi Ether	NA	NA	NA	nA	NA	NA NA	104	210	110
romototta	NA	NA	NA	NA	NA	NA	NA	N/A	PM-
etrzchierzethene	NA	NA	NA	NA	NA	NA	NA	544 576	810
1,2,2-Teimchlorseihnne	NA	NA	NA	NA	NA.	NA Ala	NA NA	1965	Alt
hlorobonzana	NA	NA	NA	NA	NA	NA	NA	194	6925
3-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA .	NA NA	110
2-Dichlorobanzene	NA	NA,	NA	NA	NA	NA	NA	104	INFA MA
4-Dichlorobenzeno	NA	NA	NA	NA	NA	NA	NA	NA	1941
URGEABLE AROMATICS									
8672000	ND	ND	ND	ND	ND	ND	ND	ND	ND
olusan	ND	ND	ND	ND	ND,	ND	ND	ND	ND
ibvibanzeng	ND	ND	ND	ND	ND	ND	ND	ND	ND
otol Xvienes	ND	ND	3,4	ND	ND	ND	ND	ND	ND
OTAL VOCE	NA	ŅA	3,4	NA	NA	-NA	- NA	NA	nA.
YDROCAREONS									
WH-0	\$80	020	480	630	540	770	380	310	290
TPH.4	350	250	740	270	870	500	460	470	420
JAG	NA	NA	NA	NA	NA	NA	NA	NA	NA
грн (416.1)	NA	NA	NA	NA	NA	NA	NA	tiA,	NA
TALS									
bea.	NA	NA	NA	NA	NA	NA	NA	NĄ	NA
loou Votse: 1) MCL = Maximum Contomber 2) # = EPA MCL 3) = AMCL for sum of fait when 3 = a AMCL for sum of all when	nt Level in counds	drinking w	niet (Sini	e MCL if n	ot noted a	therwise)			

· · · · ·

200 A

() Fungeaus Francessons (EFA normal and a 8) Pungeable Aromalics (EFA method 8020) 5) NA = Net Analyzad or analysis nol required 10) 6/17/02 Samples analyzed for VOCs out of holding time due to teberatory error

.

*

Wall 10 Date	MCL vg/L	OW-2 Apr-88	0W-2 Oct-89	CVV-2 CP-naL	OW-2 Apr-90	2-WO 08-jul	0W-2 0ct-90	OW-2 Jan-91	QVV-2 Apr-171	0W-2 Jul-91	OW-2 Dec-91	OW-2 Mar-92	o₩-2 Jul-82	077-5 0ci-95	OW-2 Jan-93	OW-2 Apt-63	이짜-5 이짜-5	0W-2 0c1-93	OW-2- Jap-94	OW-2 Apr-94	0W-2 Jul-94	oW-2 Jun-95	0W-2 Nov-85	0\Y-2 Jun-66	0W-2 0d-95	CVV-2 Apr,Jun-97	OW-2 Dac-97	0W-2 Jun-95	OW-2 Dec-98	0W-2 1un-99	DW-2 Nov-09
PURGEABLE HALOCARBONS																								NIA -	ыа	МА	NA	NA	NA	NA	NA
Chioromethane		ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NO ND	ND ND	ND ND	DA CIA	ND ND	na Na	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Biomonioliliano		NO	ND	110	50	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA.	NA	ELA.	NA NA	1124	110	NA	MA	NA	NA	NA
Vinyl chiondo	0.5	80	ND	ND	NO	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	DARA Nis	6944 N#	NA	Na	NA	NA	NA	NA
Chlorosthane	5 4	ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA I	DMR NR	His .	AIA AIA	MA ·	NA	NA	NA	NA.
Mathyleno Chiende	160	ND	ND	ND	ND	ND	ND	ND	110	ND	NB	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	PPA NA	616. N.6	Na	NA	MA	NA	NA	NA	NA
1 Maniero Nooranieritario	8	20	งบิ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NP	NA	NA	NA	NA	INA.	PAR .	110	114	110	MA	NA	MA	NA	NA	NA	NA
1,1-Dichicrosthend	4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	HA	NA Lie	144	NIA NIA	MA	NA.	NA	NA	NA	NA	NA
1,1-Dichlorbourane		NA	ND	ND	ND	ND	ND	ND	ND	NÓ	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA tin	N	1.0	+15	6JA	NA.	NA	NA	NA	NA
cis-1,2-Dichioreduland	10	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	NA	NA	NA	NA	NA	NA	NA	F#4	517	N6	NA NA	NA	NA	NA	NA	NA
Tans-1,2-Clicntotoethene	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NP	ND	ND	NA	NA	NA	NA	NA	NA	DUA NIA	F#4	6985	N6	NA.	NA	NA	NA	NA	NA
Langiarans Essan 212	1200	NA	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA Ala	1945	11/5	NA	NA	NA	NA	NA	NA	NA	NA
Fran 113	1250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	• NA	NA NA	NA NA	104	MA.	NA	NA	NA	NA	NA	NA
1,2-Litersorpenant	200	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	105	19/1	510	575	NA	MA	NA	NA	NA	NA
	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA.	114	NGA NGA	10	NA.	MA	NΔ	NA	NA	NA	NA	NA
Carpon i oracitoritor	10541	870	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	NA	NA	NA	NA	F14	665	N/A M/A	LUX.	NA NA	NA.	NA	NA	NA	NA	MA	NA
Dromogicilici ornatia	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	147	NA NA	114	NA.	NA	NA	NA	NA	NA	NA	NA
1,2-Distaronapana	ç	ND	ND	ND	ND	NÐ	ND	ND	ND	NO	ND	ND	ND	ND	ND	NA	NA,	NA	NA	NA	D6/A	N/A MA	ALA MA	NA	Na	MA	NA	NA	NA	NA	NA
Tablase all and a	- -	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	TAPA .	NA	N/A	1174	114	NIS.	NA.	210	NA	NA	NA	NA	NA
	32	ND	ND	ND	ND	ND	ND	NB	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	N/A.	EN/5	610	NIA.	NA	NA	NA	NA	NA	NA	NA
tune 13 Dichleremene	5***	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA NA	TUA	104	DIA DIA	E COM	NS	NA	NA	NA	NA	NA	NA	NA	NA
Divergetlemmethana	100#	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND -	NA	NA	NA	NIA NIA	PICK.	104	ALC: -	Na	NA	NA	NA	NA	NA	NA	NA	MA.
Distrimentational Ether		NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	144	144	Dia :	110	NA	NA	NA	NA	NA	NA	NA	NA
2-Sector and the sector	100#*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	N/A	104	PM-5	110	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Telephonotheda	5	ND	ND	ND	ND	ND	ND	ND	0.53	ND	ND	ND	ND	ND	ND	NA	NA	NA	144	114	1425	117	NA	Na	NA	NA	NA.	NA	NA	NA	NA
1 1 3 3 Tetra diamethona	1	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	NO	NA	NA	NA	144	104	554	+10	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Chlerobartest	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	NA	NA	NA	NA	n A	104	14/1	NS	NA	NA.	NA	NA	NA	NA	NA	NA
t 1 Dichlambagana	45	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA,	NA	NA	NA NA	NA NA	105	NA NA	Na	NA	NA	NA	NA	NA	NA
1 3-Dichlombenzapa	600#	NA	NA	ND	NЭ	ND	NO	ND	ND	ND	HD	ND	NO	ND	ND	NA	NA	NA	744	144	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	MA	NA
1,4-Dichlorebenzeno	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	MD	ND	QИ	NA	NA	N/A	ма	nn	1405	100		144							
PURGEABLE AROMATICS																				614 ·	NA	MA	NA	Na	NA	NA	NA	NA	NA	NA	NA
Bentaball	1	ND	.ND	0.4	ND	ND	NÐ	ND	ND	ND	ND	1.4	ND	ND	ND	NA	NA	NA MA	210	NA	ŇA	NA	NA	NA	NA	11A	NA	NA	NA	NA	NA
Toluana	1000#	ND	ND	0.4	0,6	ND	ND	ND	ND	ND.	ND	NP	ND	ND	ND	676	10-5	NA	N2	NA.	NA	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
Elbyibenzona	650	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NU	144		610	NA NA	8/4	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA.	NA	NA	NA
Telui Xviones	1750**		ND	0,4	0.6	ND	ND	ND	DH		ND		100			104		- 104	N/A	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL VOCa		NA	NA	1.2	1,4	NA	NĂ	NA	0,53	NA	NA	1.4	NA	NA	644	AA.	n A	(ers		1993											
HYDROCARBONS																										NA	NA	N.A.	NA	NA	NA
741-		NA	NA	→ 50	< 50	< 50	< 50	< 50	NA	NA	NA	< 50	< 50	< 50	< 50	NA	NA	NA	NA	NA	NA	IVA.	NA	1945	N/A NA	NA NA	NA	NA	NA	NA	NA
TVH-g		< 1000	< 1000	130	140	65	90	< 50	< 200	< 50	650	870	410	410	020	NĄ	NA.	NA	NA	NA	NA	NA	NA	144	NA	N/4		NA	N/A	NA	NA
1EPH-0		18000	14000	NA	NA	NA	HA	NA	NA	< 5000	< 5000	< 5090	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	114	NA NA	MA	N5	NA	NA	NA
		NA	NA	< 5000	< 5000	< 5000	< 5000	< 5000	< 500	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA	AVA	NA	NA	NA	LUA.	NA.	144	114	110	1.4		,
TPH (410.1)		110										-																			
METALS													-		MD	ND	ND	ND		ND	4.1	ND	ND	ФИ	ND	ND	ND	ND	ND	ND	ND
Løad	a	NA	NA	NA	NA	NA	NA	NA	ND	NA	DM4	NU	ND	140		112			-	,											
Noise: 1) NGL: Maximum Contaminanti 2) S = EPA MGL 3) S = MGL for sum of leur compo 4) ** AKL for sum of laylens i 5) *** = MGL for sum of laran-ann 6) KD = Nat Detacted at or above 7) Purgesbib Atomatics (EPA ne 6) Purgesbib Atomatics (EPA ne 0) NA = NAt Analyzod or analysis 10) K1 = Nat Analyzod or analysis 10) K1 = Nat Analyzod or analysis 10) K1 = Nat Analyzod or analysis	Level in drinking wa unds semers i ds-1,3-Dichleropr MDL mathod 6010) und 6020) not required r VOCs out of hold	ster (Giald opena og lime di	to labo	ot noted i rately en	офа (ул	•)				·																					

,

6(18 ušiet.25

.

.

Data	Jun-00	Nov-00	Jan-01	Nav-01	Jun-02	Oct-02	Apr-03	Nov-03	Jun-C
PURGEABLE HALOCARBONS									
Chloromelhana	NA	NA	NA	NA	NA	NA	NA	нА	NA
Amportation	NA	NA	NA	NA	NA	NA	NA	NA	NA
Most chladda	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chiemethane	NA	NA	NA	NA	NA	NA	ŇΑ	NA	NA
Melwinne Chioride	NA	NA	NA	NA	NA	NA	NA,	NA	۶A
Tichlorofluormanikana	NA	NA	NA	NA	NA	NA	NA	NA	NA
1'1-Dichloronibana	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1.Dictionethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
cies 2-Dichloronihane	NA	NA	NA	NA	NA	NA	NA.	na	NA
trans-1 2-Dichlorpelhone	NA	NA	NA	NA	NA	- NA	NA	NA	NA
Chloroform	NA	NA	NA	NA	NA	NA	NA	NA	NA
From 113	NA	NA	NA	NA.	NA	NA	NA	NA	NA
1.2-Dichlorosthane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1.1-Trichlemethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Tatrachierida	NA	NA	NA	NA	NA	NA	NA	ħA,	N-
Bromedichloromethane	NA	NA	NA	na	NA	NA	NA	NA	.NA
1,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	N/A
th-1,3-Dichloropropone	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Trichlorosthane	NA	NA	NA	NA	NA	NA	NA	NA	N/4
1,1,2-Trichloroathane	NA	NA	NA	NA.	NA	NA	NA		197
trans-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA NA	NA NA	15A	514
Ditramechloromethene	NA	NA	04A	NA	NA NA	510	NA NA	NA.	10
2-Chiomathylvinyl Ether	NA	NA	NA		NA NA	NA	NA.	NA	
Broraala/m	NA	NA NA	110	NA NA	1944) B2B	NA	NA	NA	NA
Tetrachioroethane	NA NA	P945	NA NA	NA NA	110	NA	NA	NA	N/
1,1,2,2-Terronicroninane	D44	616	NA NA	NA	NA	NA	NA	NA	NA
Chierobenzene	616	NI6	NA	NA.	NG	NA	NA	NA	N/
	NA	NA	NA	NA	NA	NA	NA	NA	N/
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	N
PURGEABLE AROMATICS									
Bertoop	NA	NA	NA	NA	NA	NA	NA	NA	N/
Taliane	NA	NA	NA	NA	NA	ħА	NA	NA	NA
Sthulbentens	NA	NA	NA	NA	NA	· NA	NA	NA	NA
Total Xvlanes	NA	NA	NA	NA	NA	NA	NA	NA	N/
TOTAL VOCa	NA	NA	NA	NA	NA	NA	NA	NA	N/
HYDROCARBONS									
TVH-a	NA	NA	NA	NA	NA	NA	NA	NA	N
TEPH-d	NA	NA	NA	NA	NA	NA	NA	NA	NP.
OAG	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (415.1)	NA	NA	MA	NA	NĄ	A 11	NA	NA	N
METALS									
Load	ND	ND	ND	ND	ND	ND	ND	ND	N
Nolas:									
1) MCL = Maximum Contembor	it Lovel in	drinking	walor (S	iste MCL	ji net nat	ed ethers	wise)		
2) # = EFA MCL 3) * = MCL for sum of four come	ounds								
4) ** = MCL for sum of all zviant	i laomé/a								
	nd cis-1.3	-Dichloro	propene						
5) *** # MCL for gum of trans. Bi									

Purgastio Aromatics (EFA Matrice Buck)
 NA > Net Analyzed or analysis not required
 10) 017/02 Bamples analyzed for VOCs out of holding lime due to laboratory oner

6111 takles ste

 $\mathcal{M}(\mathcal{M})$

н.

.

1111111111

Well ID Date	MCL ug/L	OW-4 Jun-88	0W-4 0ct-89	0W-4 Jan-90	OW-4 Apr-90	О₩-4 ,5ці-60	0W-4 Oct-90	0VV-4 Jan-91	0W-4 Apr-91	0W-4 Jul-91	OW-4 Dac-91	OW-4 Mar-92	OW-1 Jม-52	OW-4 Ocl-92	GW-4 Jan-93	OW-4 Apr-93	0W-4 Jul-93	0W-4 0ct-93	OW-4 Jan-94	DW-4 Jui-94	OW-4 Jun-95	OW-4 Nov-95	OW-4 Jan-96	0W-4 0d-95	OW-4 Apr.Jun-97	DW-4 Dec-97	0W-4 Jul-98	OW-4 Dec-88	DW-4 Jun-59	CW-4 Nov-99	OVY-4 Jun-00	Nov-D0	DW-4 Jun-01 f	UVY-4 1py-01
PURGEABLE HALOGARBONS																											1 IA	61A	٨IA	NA	12A	NA	NA	NA
Chloromethane Remonstiane		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA						
Vinyi chlorida	0.5	ND	ND	NÐ	ND	NO	ND	ND	ND	ND	ND	ND	NU			NA NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA								
Chloroelhand		ND	ND	NÐ	ND	NO	ND	ND	ND			NU	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Melnylano Chlorida	54	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA.	NA	HA	NA	NA	NA	NA	NA	NA	NA	HA.	NA	NA	NA
Trichlorofluoremaihane	150	ND	ND	+ ND	NO		10	10	ND	ND N	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	N/A	ripa Na									
1,1-Dichleresthane	6	ND	UN NE	LIN I	NO		ND		61	8.4	ND	7	4	4	3	HA	NA	ŅA	NĄ	NA	NA	NA	NA	NA	NA	P6/4	FOX.	14/4 512						
1,1-Dichloroeltman	2	ND		140	NO	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA.	N/4	110	11/5									
cis-1,2-Dichlaroothone	10		ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	N/A N/A	NA	514	NA.	NA	NA	NA
trans-1,2-Demoraturant	100	NO	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÖ	NA	NA NG	104	61A	110	NA	NA	NA	NA	NA									
Chierolorm Erector 113	1200	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	NA Na	AIA	NA NA	NA	NA	NA	NA	NA	NA	NA							
1 2-Fichlamethetet	0.5	ND	ND	ND	ND	ND	ND	ND	D.46	ND	ND	ND	ND	NO	ND	NA	NA	NA	NA,	NA NA	NA	110	E LE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1 1-Trichlopethene	200	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA NA	5/A	NA	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Corbon Tetrachipide	0,5	ND	ND	ND	ND	ND	ND	ND	NÞ	ND	ND	ND	ND	ND	ND	NA.	NA	NA	FIA MA	NA NA	11/4	NA NA	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromedichleromethano	100#*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NU	ND	NA NA	NA NA	NA NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.2-Dichloropropane	\$	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	144	NA NA	N/4	NA	NA	NÁ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,3-Dichioropropena	5***	ND	ND	םא	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Trichloroethone	5	ND	ND	ND	ND	ND	ND	UN	NU	ND	ND		ND.	N0.	ND	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,1,2-Trichleroothune	32	ND	ND	ND	ND	ND	NB	ND	NO	NO	ND	ND	ND	หถ	ND	NA	NA	NA	NA	NA	NA	NĄ	NA	NA	NA	NA	NA	NA	на	NA	NA	NA	NA.	NA
trans-1,3-Dichloropropana	5	ND	ND	ND	ND	ND			NO	ND	ND	ND.	NO	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Ditremochicromethane	100#	ND	ND	ND	140	ND	ND	มก	NO	ND	ND	ND	ND	ND	ND	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA								
2-Chierepthylybyl Ether		ND	ND	10	ND	AD AD	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	ŅA	NA	NA	NA	NA	NA	NA	N/A	NA	NA	PEA MA	NA NA	624
Brameterm	1004	ND	10	10	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	HA	NA	NA	NA	NA	NA	NA NA	NA	610	NA NA	NA NA								
Teltachioroothona		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	NA 610	N/4	NA	NA	NA NA	ЫД	NA
1,1,2,2+) Buddinerseniana	- 10	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	NA NA	14/5	N/A	NO	NA.	NA	NA	NA	NA								
1 3 Dichlarobanzona	94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA ALA	NEA NIA	MA	NA	NA	NA	NA	NA	NA	NA	NA							
1.2-Dichlorchanzone	800#	ND	ND	ND	ND	ND	ND	ND	ND	NÞ	ND	ND	ND	ND	ND	NA	N/A N/A	NA	NA NA	144	120	NA	NA	NA	NA	NA	NA	NA						
t 4-Dichlorobenzene	5	ND	NÐ	NÐ	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	NÐ	NA	NA	NA	NA.	NA	NA.	1924	1404	190	100		1401							
PURGEABLE AROMATICS																															•			
Bonzone	1	ND	ND	ыр	a.s	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA - NA -	NA NA	NA NA	NA NA	ND DM	ND ND	HD ND	ND ND	na Na	na Na	NA	NA	NA	NA	NA
Teluene	1000#	ND	ND	ND	0.6	ND		ND	100	NO	ND	NO	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA							
Ethylbonzone	685	ND		140	5	ND	ND	ND	NO	ND	ND.	0.7	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA	NA	- NA	NA	NVA ALA								
Total Xylanes	1759**		NU	0.5		NIA	NA NA		6.56	0.4	NA	7.7	4	4	- 3	NA	- NA	NA	NA.	NA	NA	NA	NA.	NA	DA	нA								
TOTAL VOCE		na.	INA.	u,e	4,4	183	1	-																										
HYDROCARBONS													- 60		< 5D	ыл	ЫÅ	NA	МА	NA	NA	NA	-NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
TVH-g		NA	NA	<50	<50	<50	<50	450	NA	NA	1000	5100	100	1300	2500	NA	1500	NA	NA	NA	1600	630	1100	840	950	NA	1000	NA	NA	NA	NA	NA	НA	NA
TEPH-d		 1000 	< 1000	150	210	150	150	<50	200	< 50 A F00A	× 5000	~ 6000	MA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA											
ØåG		< 5000	< 5000	NA	NA	NA	NA	NA + 5000	NA - 506	< 2000 NO	< 5000 NA	10000	MA	NΔ	NA	NA	NA	NA	NA	на	NA	NĄ	NA	NA										
TPH (416.1)		NA	NA	< 5000	< 5000	< 5000	< 5000	< 2000	< 200	1924	1944	114	141	1975	194	,																		
METALS														ND		N18	NO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Load	٥	NA	NA	NA	NĄ	NA	NA	NA	ND	NA	NA	NU	2	NU	NU	NA	NU	11-5	110	110		114												
Notes: 1) MCL = Maximum Centaminani 2) # = EPA MCL 3) * = MCL for sum of four campu 4) ** = MCL for sum of all xylene	Level In Juncis Somers	diinking Y	vatar (GL	nin MCL.	il nol net	ed obierw	riz e)																											· ,
5) ANCL for sum of (fails- an 6) ND + Not Detected at or above 7) Purgeable Halocarbons (EPA 5) Purgeable Aromatica (EPA mo	MOL method E thod 802	010) 0)																															-	
9) NA = Not Analyzad or analysis	not requ	100																																

10) 6/17/02 Samples analyzed for VOCs out of holding time due to laboratory error

.

.

Wall ID Data	MCL ug/L	OW-5 Apr-91	©₩-5 Jul-81	CW-5 Dec-91	OW-5 Mar-92	0₩-5 Jul-82	OVI-5 Ocl-92	OW-5 Jan-93 .	0W-5 Jul-93	079-5 Oct-93	077-5 Jan-94	OW-5 Apr-94	0W-5 Jui-94	Q₩-5 Јил-95	CW-5 Nov95	0W-5 Jun-95	0V¥-5 Dct-96	OW-5 Apr,Jun-97	OW-5 Dac-97	OW-5 Jun-98	0W-5 Dec-85	0W-5 Jun-99	OVV-5 Nov-98	0W-5 Jun-00	OW-S Nov-00	GW-5 Jun-01	0W-5 Nav-01	OW-5 Jun-02 (0W-5 0ct-02	DW-5 Apr-03	ОW-5 Арг-03 .	CW-5 Jun-04
PURGEABLE HALOCARBONS																																
Chloromothana Bromemothana Bromemothana Vinyi chlorida Chloroditana Methylene Chlorida Tricklorolluarcamothane 1,1-Dichloroothane dc-1,2-Dichloroothane dc-1,2-Dichloroothane dc-1,2-Dichloroothane dc-1,2-Dichloroothane 1,1-Trichloroothane 1,1-Trichloroothane 1,1-Trichloroothane 1,1-Trichloroothane 1,2-Dichlorophana (cb-1,3-Dichlorophana (cb-1,3-Dichlorophana (cb-1,3-Dichlorophana 1,2-Trichloroothana 1,1,2-Trichloroothana 1,1,2-Trichloroothana 2-ChloroothyMnyl Ether Bromodilto Bromodiltoroothane 3,1,2-Teiruchlaroothane 1,1,2-Trichloroothana ChloroothyMnyl Ether Bromodiltor Dismodchoroothane 1,1,2-Trichloroothane 1,1,2-Teiruchlaroothane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene	0.5 5# 150 6 5 8 10 100#* 7200 0.5 5 5**** 5 32 0.5 5 100#* 5 1 00#* 5 1 00#* 5 1 00#* 5 1 00#* 5 1 00#* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55555555555555555555555555555555555555	±====================================	222222222222222222222222222222222222222	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND 000 ND 00 ND 00	10000000000000000000000000000000000000	NA N	N D D D D D D D D D D D D D D D D D D D	NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	00000000000000000000000000000000000000	00000000000000000000000000000000000000	ND N	N N N N N N N N N N N N N N N N N N N	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N N N N N N N N N N N N N N N N N N N	ND0 00 1 ND0 00 00 ND0 00 ND ND0 ND	N 100 1 1 N N N D D D D D D D D D D D D D D D	1919 1919 1919 1919 1919 1919 1919 191	N 19 2 2 3 4 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 8 8 9 8 5 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9	222222222222222222222222222222222222222	N 10 55 10 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	N N N N N N N N N N N N N N N N N N N
PURGEABLE AROMATICS Bohrann Tolusne Elhylianzana Tolal Xylanes Tolal Xylanes Tolal Xylanes	1 1000# 650 1750**	14 0.54 0.58 5.6 29.97	20 ND ND 4 57.2	11 ND ND 6,0	15 1,1 0.0 5,1 	11 ND ND 8	13 ND ND 3.4 57,6	26 ND 0,7 13 51,7	14 ND ND 2.4 29,4	NA NA NA NA	21 ND 0.7 9.2 34.9	NA NA NA NA	11 ND 0,8 1,3 19,9	4,5	11 ND ND ND	15 ND ND ND 17.5	18 ND ND ND 26,2	3,8 NO NO NO 9,1	15 ND ND 2.74 20.54		7.3 ND ND ND 11.5	8.2 NO NO NO 12	11 ND ND ND ND	6,3 ND ND ND	10 ND ND ND 14,35	7.7 ND ND ND 9.0	13 ND 0.56 ND 18.28	6.3 ND ND ND 7,4	6,0 ND ND ND 8,4	8.0 ND ND ND AN 292	7.0 ND ND ND	5.0 ND ND ND ND 9.75
HYDROCARBONS TVH-g TEPH-d OLG TBH (HE 1)		NA 600 NA	NA 1500 < 5000 NA	NA 1200 < 5000 NA	120 840 < 5000 NA	270 850 NA	160 1000 NA NA	350 1000 NA NA	140 1800 NA NA	NA NA NA	370 510 ND ND	NA NA NA	110 1300 ND ND	ND 510 NA NA	ND 1609 NA NA	ND 830 NA NA	ND 870 NA NA	ND 740 NA NA	83 830 NA NA	ND 830 NA NA	ND 780 NA NA	dia DCE Aia Aia	59 600 NA NA	ND ND NA NA +	ND ND NA NA	79 540 NA NA	100 130 NA NA	ND 250 NA NA	57 470 NA NA	58 410 NA NA	50 250 NA NA	60 550 NA NA
		- 500	145		(10)	101					,									•												
Loud	o	ND	NA	NA	ND	ND	ND	ND	ND	ND	د.7	7.4	5	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	מא	ND	ND	ND
Notes: 1) MCL = Maximum Contaminent I 2) # = EPA MCL 3) * = MCL for sum of faur compou 4) * = MCL for sum of all sylone is 5) *** # MCL for sum of all sylone is 5) *** # MCL for sum of fama- end 6) ND = N40 Deteched at or above 7) Purgeable Halocarbans (EPA m 8) Purgeable Halocarbans (EPA m 8) Purgeable Acomstitum (EPA method) 9) NA = N16 Analyzed or inabysis 10) 6/17/02 Semples analyzed for	Javal In d Inda amora cis-1,3-D MDt Joshod 80 hod 8020 Jost requir VOCe of	iinking w lichlorop 10) 2 ed 4 of hold	rator (Sia repono ing lime I	te MCL if	i nal note poratory é	d olliend	34 }				·								·		·											

er en la sub-

a i si tahine zia

••

.

Wali ID Date	MCL vg/L	OW-3 Apr-88	OW-3 Jun-68	OW-3 Oct-89	E-WO OB-net.	0W-3 Apr-93	097-3 708-90	0W-3 0d-90	OW-3 Jan-81	OW-3 Apr-D1	0W-3 Jui-91	OW- Dec-	8 OW- 11 Mar-9	1 OW- 2 Jut-1	8 GW-8 2 Oct-92	OW-5 Jan-93	OW-5 Jul-93	0W-6 Oct-93	OW-6 Jan-94	CVV-6 Jul-94	OW-8 Jun-15	OW-6 Nev-95	0W-5 Jun-95	0W-8 0d-95	OW-6 Apr,Jun-97	0W-5 Dec-97	0W-6 Jun-98	OW-6 Dec-98	OW-6 Jun-99	OW-6 Nev-99
PURGEABLE HALOCARBONS																													N 23	10
Ciloramethunis Bromarnethunis Ungi chindide Chiaraethane Mathylene Chienda Tileharaethane Mathylene Chienda Tileharaethane 1,1-Dichkeroethane trans-1,2-Dichkeroethane trans-1,2-Dichkeroethane trans-1,2-Dichkeroethane 1,1-Tickderaethane 1,1-Tickderaethane 1,1-Tickderaethane 1,1-Tickderaethane 1,1-Zickheroethane trachloroethane trachloroethane 1,1-Zickheroethane 1,1-Zickheroethane trachloroethane 1,1-Zickheroethane 1,1-Zickheroethane trachloroethane 1,1-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 1,2-Zickheroethane 2-Chicheroethana 1,2-Dichkerobanane 1,2-Dichkerobanane	0.5 54 150 6 5 5 1004 1200 0.5 5 5 32 1004 5 1 1004 5 1 30 6 6 6 8 10 10 10 10 10 10 10 10 10 10	222222222242442222222222222222222222222	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02222222222222222222222222222222222222	99999999999999999999999999999999999999	222222222112222222222222222222222222222	· · · · · · · · · · · · · · · · · · ·	NNNN 02015 NNN 05555 NNN 020 DD 2011 NNN 02015 NNN 025555 NNN 020 DD 2011 NNN 02011 NN	2 2 2 % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		00 20 20 20 20 20 20 20 20 20 20 20 20 2			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2922323252222252525252525252525252525252	NA AA A	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	999×5999999999999999999999999999999999	N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2	***************************************	N N N N N N N N N N N N N N N N N N N	x x x x x x x x x x x x x x x x x x x	202222222222222222222222222222222222222	22222222222772222222222222222222222222	22222222222222222222222222222222222222	N B N N N N N A H N N N N N N N N N N N N N	22222222222222222222222222222222222222	99999999999999999999999999999999999999
PURGEABLE AROMATICS											20			ыг	ם אים	80	6.6	NA	ND	NO	ND	מא	ND	ND	ND	0,5	ND	ND	NP	ND
Banzona Toluono Eihyleenzene Total Xylones Total Vylones	1 1000# 680 1750**	ND ND ND	ND ND ND	ND ND ND ND 28	0.5 0,4 ND 0.7 37.8	ND 0.8 0.5 2.1 50,4	ND ND ND ND 20		ND ND ND 20	ND ND ND ND 32,61		NI NI 2 51	ND ND ND ND	NC NC NC 2	ND ND ND ND 2	ND ND ND 20	ND 1.1 ND 42.7	NA NA NA	но но ND 7	ND ND ND	ND ND ND 76.3	ND ND ND 81.2	ND ND ND	ND ND ND 42.4	ND ND ND 1034	ND 35 ND 261,5	ND ND ND 129,4	ND ND ND 110.7	ND ND ND 27.6	ND ND ND 44.9
HYDROCARBONS																														
ТVH-д ТЕРН-д О&G ТРН (418.1)		NA < 1000 < 5000 NA	NA < 1000 < 5009 NA	NA < 1000 5000 NA	< 50 440 NA < 5000	52 470 NA < 5000	< 50 450 NA < 5000	< 50 130 NA < 5000	< 50 1316 NA < 5000	NA 700 NA < 500	NA < 50 < 5000 NA	NJ 554 4 50 N	< \$1 0 490 00 < 50 NA	I 45 D 350 NA NA NA	0 < 50 10 3900 NA NA	< 50 5300 NA NA	< 50 3500 NA NA	NA NA NA	70 2200 NA NA	<50 2500 NA NA	ND 1300 NA NA	ND 2400 NA NA	61 2000 NA NA	ND 2400 NA NA	63 0001 NA NA	160 1200 NA NA	110 1300 NA NA	130 2000 NA NA	84 1300 NA NA	57 1000 NA NA
METALS			•																											
Lead	0	NA	NA	NA	NA	N'A	NA	NA	NA	ND	MA	N	NC	NS	ND ND	ND	NA	МА	NA	NA	NA	NA	NA	NA	NA	NA	NA	na,	NA	NA
Notes: 1) MCL = Markmum Contaminan 2) # = EPA MCL 3) * = NGL for sum of four comp 4) ** = NGL for sum of fail sylone 5) *** = NGL for sum of stars an 6) ND = Nol Delocted at ar abov 7) Purgabio Halocurbona (EPA	(Level In ounds Isomans ci cis-1 ,7- s MDL method 1	drinking v Dichiorej Dichiorej	waler (Sti propuno	lle MCL I	f nat not	ed officenw	(ach					•																		

1) registration failed about (EPA interval density) 8) Purgozbile Aromalics (EPA molited 2020) 9) RA = Not Analyzed or unalysis not required 10) Eth 7/02 Semples analyzed for VOCs out of hoking time due to laboratory error

s | | E tablec.s Sr

Well (D Data	0W-6 Jun-00	1014-6 Nov-00	OW-8 Jun-01	DW-6 Nov-D1	OVV-8 Jun-02	OW-6 Oct-02	OW-8 Apr-03	0W-5 Nov-03	0W-5 Jun-04
PURGEABLE HALOCARBONS									
Chiaromaikana	ND	ND	ND	ND	NÐ	ND	ND	ND	NÖ
Boosomethana	- ND	ND	ND	ND	ND	ND	ND	ND	ND
Meet chorde	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Main fons Chlorida	ND	ND	ND	ND	ND	ND	ND	ND	ND
Techloroficitomethana	ND	ND	ND	ND	ND	ND .	ND	ND	ND
1.1-Dichloraethene	ND	ND	ND	ND	ND	ND	ND	ND	1,5
1.1-Dichlorosthane	1.4	23	1.4	1.8	1,3	1.5	1.2	2.8	4.9
cis-1.2-Dichloroelhena	ND	ND	ND	ND	ND	ND	ND	ND	NØ
trans-1,2-Dichloresthene	NO	ND	ND	ND	ND	ND	ND	ND	ND
Chlaroferm	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freen 113	ND	ND	ND	ND	ND `	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	0.76	ND	ND	ND	ND	ND
1.1.1-Trichlomethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Teirachloride	ND	ND	ND	ND	Ю	ND	ND	ND	ND
Bromodichloromsthuss	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlerepropane	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropane	ND	ND	ND	ND	но	ND	ND	ND	ND
Trichlaraethene	ND	ND	0.7	ND	п	ND	ND	ND	ND
1,1,2-Trictionethane	ND	ND	ND	NO	ND	ND	ND	ND	ND
trans-1,3-Dichloropropone	ND	ND	ND	NO	ND	ND	ND	ND	ND
Dibramochlaromethene	ND	ND	ND	ND	ND	ND	ND	ND	100
2-ChianomyMnyl Elher	ND	ND	ND	dи	ND	ND	ND	ND	NO
Bromolerm	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachlorosthane	סא	ND	ND	ND	ND	ND	ND	ND	QN .
1,1,2,2-Tetrachioroothane	NO	ND	ND	ND	ND	ND	ND	ND	NO
Chlerobenzene	ND	ND	ND	ND	ND	NO	NU	2.5	0.5
1,3-Dichlerobenzene	3	2.7	ND ND	ND	1.1	2,0	ND	1.9	2,3
1,2-Dichlorobenzane	ND	1ND	ND	10	6 H	100.	20	1407	8.0
1,4-Dichlerabenzene	11	10	ND	ND	0,0	1.2	3.0	1-4	2,9
PURGEABLE AROMATICS									
Bonzone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene ,	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	NO	ND	ND	ND
Total Xylenss	ND	110	ND	ND	NO	ND			
TOTAL VOCS	15,4	15.0	2.1	2.6	1.4	19.7	4,2	14.4	*
HYDROCARBONS									
TVH-g	ND	ND	ND	ND	ND	ND	ND	ND	75
TEPH-d	68	ND	320	65	220	380	290	380	440
Q&G	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALG									
Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes: 1) MCL = Maximum Conteminen 2) #= EPA MCL 3) * = MCL for sum of faur comp 4) ** = MCL for sum of all sylene 5) *** = MCL for sum of runs- an	t Lavet in ounds isomars id cis-1,3-	ddaldiag v Dichlorop	valat (Sb vepana	ile NGL I	f noi note	d stherw	(30)		
 ND = Not Detected at or above Purgeable Hatocarbone (EPA) 	a NICL melhod 8	010)							

0) Purgeable Aromatics (EPA method 8020) B) NA = Not Analyzed or analysis not required

.

(1,2,1)

.

fiff iddies.sis

٠.

fitte anticas pla

Well ID Daia	MCL vg/L	DW-7 Dec-91	OW-7 Mar-92	0W-7 Jul-92	OW-7 ೦ದ-92	0W-7 ,Jan-83	ow-7 Apr-83	DW-7 Jul-83	OW-7 Oct-93	DW-7 Jan-84	O₩-7 J⊔-94	GW-7 Jun-95	0W-7 Nov-85	GW-7 Jun-95	.0W-7 Dct-95	OV47 Apr,Jun-97	OW-7 Dec-97	GW-7 Jun-98	OW-7 Doc-Pă	OW-7 Jun-99	0W-7 Nav-99	0W-7 Jun-00	DW-7 Nov-00	0W-7 Jan-01	0W-7 Nov-01	0W-7 Jun-02	0W-7 Oct-02	OW-7 Apr-03	OW-7 Nov-83	DW-7 Jun-04
PURGEABLE HALOCARBONS																					·				NB	NID.	ND	ΝΟ	ND	ND
Chieromelhane Gromonelhane Vanj shloride Chieroelhane Mathylana Chierda Tdehlarofluoramelhane 1,1-Dichloroethane ch:1,2-Dichloroethane ch:1,2-Dichloroethane tara:1,2-Dichloroethane Chieroflum	0.5 5# 150 6 5 6 10 100# 100#		2222222222222222	222222222222222222222222222222222222222	222222222222	222222222222222222222222222222222222222	NA NA NA NA NA NA NA NA NA	2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2	NA N	22222222222	22222222222222	ND 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NO N	ND 20 20 20 20 50 20 20 20 20 20 20 20 20 20 20 20 20 20	20000000000000000000000000000000000000	222222222222222222222222222222222222222	2 2 2 2 2 2 2 2 9 2 2 2 2 2 2 9 2 9 2 9			22222222222222		299999999999999999	29999999999999	222222222222222			2222222222222	ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Fron 113 1,3-Dicklorashisab 1,1-Dicklorashisab Carbon Tairachlaikig Branedichlasmashisab 1,2-Dicklorashisab 1,2-Dicklorashisab 1,1,2-Tricklorashisab Distorachlarashisab Distorachlarashisab Chitorashisab Chitorashisab Chitorashisab Chitorashisab 1,1,2-Z-Dicklorashisab Chitorashisab 1,1,2-Z-Dicklorashisab Chitorabarane 1,3-Dicklorashisab 1,3-Dicklorashisab 1,3-Dicklorashisab 1,3-Dicklorashisab 1,3-Dicklorashisab 1,3-Dicklorashisab	1200 0.5 200 0.5 100# 5 32 5 100# 100# 1 30 600# 5			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999		NA NA AA A		NA NA A A A A A A A A A A A A A A A A A	ND 76 ND 00 00 00 00 00 00 00 00 00 00 00 00 00	ND 26 ND 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND 0	ND 33 ND ND ND ND ND ND ND ND ND ND ND ND 250 51	ND 41 00 0 00 00 00 00 00 00 00 00 00 00 00	N 18 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	ND 7.9 ND ND ND ND ND ND ND 259 419	N 31 20 20 20 20 20 20 20 20 20 20 20 20 20	ND 5.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND D D D D D D D D D D D D D D D D D D	22222222222222222222222222222222222222	ND D D D D D D D D D D D D D D D D D D		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ND ND ND ND ND ND ND ND ND ND ND ND ND N
FURGEASLE AROMATICS Benzone Toluene Ethylbenzone Tolal Xylones Tolal Xylones	1 1000# 680 1750		0,5 0,6 ND 2,1 751.5	1 0,5 0,5 5 051	1.4 ND ND ND	2.0 ПН ОИ ОИ Ц310	NA NA NA NA	1.5 ND ND ND 1237.5	na Na Na Na	1,5 ND ND 4,2	1.2 ND ND ND 12632	661,5	1,1 HD ND ND 16121	ND ND ND ND ND	ND ND ND ND	0.56 ND ND ND 764.76	1.6 ND 70 1.1 1105.5	0,66 ND ND ND ND	0,65 ND ND ND 1920,95	0.84 ON ND ND 1101.6	0,62 ND ND ND 856,92	ND ND ND ND ND ND ND ND ND ND ND ND ND N	24.0 DM ND QM QM 26,83	07 07 07 07 808	םא פא פא מא 781	ND ND ND ND 1035	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND 1129,7
HYDROCARBONS TVH-1) TEPH-4 OAG TPH (438.1)		NA 7100 ≮5000 NA	700 4400 • < 5001 • NA	1300 2800 NA NA	1400 3900 NA NA	720 2300 NA NA	na Na Na	1500 4900 NA NA	na Ha Na Na	1400 4500 NA NA	1800 4000 NA NA	650 1600 NA NA	560 4400 NA NA	1200 4500 NA NA	1500 4800 NA NA	1100 2900 NA NA	1100 2100 NA NA	1000 2600 NA NA	1109 3569 NA NA	1200 3500 NA NA	1100 2400 NA NA	580 430 NA NA	1100 370 NA NA	1200 1100 NA NA	530 580 NA NA	1000 1000 NA NA	1300 1700 NA NA	1200 1000 NA NA	440 760 NA NA	1100 1000 NA NA
METALS	0	NA	ND	NØ	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NÅ	NA	NA	NA	ha	на	NA	NA	NA	NA	NA	NA
Notos: 1) MCL = Maximum Contantina 2) s = EPA MCL 3) * = MCL for sum of four som 4) ** = NCL for sum of ranse 6) ND = Not Detacted after abo 7) Purgeable Atamatics (EPA 2) NA = Na Analyzed or analy 10) A1702 Samplos analyzed	nt Level & pounds a kernert nd ck-1,1 ve MDL A method for MDL (le net rec for VOCs	n drinking S-Dichier S-Dichier S-Dichier (120) (120) (120) (120) (120) (120) (120)	y waler (S opropene	s dua la	an ton k.	lad olher y error	wita)																							

. .

. .

at (Fishionala

																				0.00	On AL G	CMAL.8	COALS.	OW-8	ow a
	OW-8	OW-8	014-1	OW-8	OW-8	0W-8	ow-a	OW-8	DW-8	OW-8	OW-6	OW-B	OW-II	6W-8	OW-5	COVV-B	OW-B	New OB	Liyy-a 200-01	Jun 07	.102-02	Oct-02	Anr-03	Nov-01	Jun-04
Date	Apr-93	Jui-93	Oct-93	Jan-94	Apr-94	Jul-84	Jun-95	Nev-95	Jun-96	Oct-96 .	pr,Jun-9	Dec-97	364-31	Dec-95	ភព្-ភាភ	(104-36	100400	1404-04							
PURGEABLE HALDCARBONS																									
								1.44		610	МА	676	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromathane	NA	NA	NA	NA	NA	NA	NA Ma	114	NA NA	NIX	NA NA	NB	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomelhane	NA	NA	NA	NA	NA	NA NA	NA MA	1104	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŅΑ	NA	NA	NA	NA	NA	NA
Vinyi chierida	NA	NA	NA	NA	NA	NA	NA MA	JNA	NA	*10 *12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloresihane	NA	NA	NA.	NA	NA	N/1	NA	145	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylena Chlorida	NA	1A	NA	NA	NA	194	NIA.	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	HA	NA	NA
Trichlorofluoromethane	NA	NA	NA	NA	NA NA	NA M5 -	11075	MA	316	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA,	NA	NA
1,1-Dichlorosthene	NA	NA	564	114	514	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
1,1-Dichloroethene	NA.	DVA.	544	1975	114	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
cts-1,2-Dichleraelhene	605 N/2	815	NA NA	N2A	HA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloraethana	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA ALIA	1944	10/A	NA
Chloroform	NIZ	NA	NA	14A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA,	NA	NA	NA MB	1 M M	100	NA	NA
FIBOR 114	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	₽A	NA	NA	NA.	144	N/5	110	NA NA	MA	NA	NA	NA
1,2-Dunanioniana 4,4,1 Techiorophung	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	HA	NA	NA	NA	NA	N/A	N/A	104	616	NG NG	NA	NA	NA	NA	NA
Carbon Teirachioide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	516	NA NA	345	818	NA	NA	NA	NA	NA	NA
Bremprächlaremathane	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	PKA,	514	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1.2.Dicklosopromba	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	144	516	NIA.	NA	NA	NA	NA	NA	NA	NA	NA
cia.t 3-Fichloropronage	NA	NA	NA	NA	NA	NA	HA	NA	NA	NA	NA	NA	NA	PIA ALA	NA NA	1475	NA NA	NA	NA	NA	NA	NA	MA	NA	NA
Trichlorostherie	N/A	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA.	F04	10	NA.	Na	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.1.2-Trichloroethane	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA .	NA	10	N/5	100	MA	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1.3-Dichloropropene	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA		EIA EIA	515	214	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromothone	NA	NA	NA	NA	NA	NA	NA	NA	NA	DUA NIA	LIA .	610	NA	51A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-ChloraeUniviny) Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	114	414	112	67.0	NΔ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromoloum	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	INA.	114	N/S	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Teirachloroethenn	NA	NA	NA	NA	NA	NA	TOA NA	1525	100	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	АИ	NA
1,1,2,2-Teirechlarvethans	NA	NA	NA	NA	NA	NA NA	F64	414	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chiprobanzone	NA	NA	NA	NA	N/A	IVA.	NA NA	MA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobanzana	NA	NA	NA	NA.	EN/A BLD	NA NA	NA NA	на	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlembenzona	NA	NA	NA NA	104	510	NA	NA	MA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŅĂ
1,4-Dichlorobenzone	NA	NA	P(A	P44	nDA.	,,,,,	141																		
																			•						
PURGEABLE AROMATICS																		- 1 -				ых	10	MA	NA
B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/A ALA	ALA ALA	μ υ .	NA
Manzana Walana	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	ENA NA	FUR.	NA NA	NA	NA
Thubba	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	61A	NA NA	1444	110	NA	NA	NA	NA
Total Vinces	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	- 114		564				NA NA		NA	NA
TOTAL VOCS	- NA	NA	NA	MA	NA	NA	NA .	ŅĄ	NA	NA	-NA-	NA	NA	NA	NA	FEA	LIN.	an	11/4	1WD		191			
HYDROCARBONS																									
													*14	515	NA	Ы۵	NA	NA	NA	NA	NA	NA	NA	NA	NA,
TVH-a	NA	NA	₽A	NA	NA	NA	NA	NA	N/A	NA	144	114	1124	RIG.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEPH-d	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA Ale	-10 -10	144	51A	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CAG	NA	NA	NĄ	NA	NA	NA	NA	NA.	144	DIA Ala	FKA 615	Na	114	NA	NA	NA	NA	NA	NA	NA	NA	MΑ	NA	NA	NA
TPH (418.1)	NA	NA	NA	NA	NA	NA	NA	Part 1	(%**	05	ne	11/1	****			,									
•																									
METALS																									
		67	*10	75	12	24	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DND	ND
Load	21	17	10	23	14	-1	•																		
Notos:	iStale M	C1 If not	neted nil	namise 1																					
A MART = Watching revealing on reveal of country watch	Corote III		,																						
2) F = EPA MCL	•																								
a) - w MUL 101 SUM BI IOUT COMPONING																									
A) ** = MGL for sum of all Kylene isotates	10																								
D) = Marc for sum of sums and care and control operations with the particular sum of sums MDI.																									
o) NU = Noi Oblected 61 of above 1404																									
In Fragmental Association (EPA method A010)																									
c) Fulgence Automace (cr Animales ecco)								•																	
am 6/17/02 Semples analyzed for VOCs pet of holding t	ime duo i	lo laboral	tory arrow																						
tel accesses antiches musicant in contractioner.			-																						

Vell ID	MCL	OW-9B	OW-8	OW-9		
Date	սց/ե	Jun-96	Jun-69	Nov-99		
URGEABLE HALOCARBONS						
			10	10		
		ND	ND	ND		
	0.5	ND	DN D	ND		
Thinnaibann		ND	ND	ND		
Acibylana Chiorida	5#	ND	ND	ND		
Fichtoro Luorome Uteno	150	ND	ND	ND		
.1-Dichlotoethens	6	ND	ND	ND		
1.1-Dichlerosthens	5	ND	2.6	2.0		
ca-1,2-Dichtarcelhena	6	ND	ND	ND		
rans-1,2-Dichlamathena	10	ND	ND	ND		
Chloreform	100#*	ND	ND	ND		
Freen 113	1200	ND	ND	ND		
1,2-Dichloroethane	Ø,5	ND	10	ND		
1,1,1-Trichterethane	200	ND		ND		
Carbon Tetrachiondo	400#	10	ND	ND ND		
Biomodichioromethano	100#	110	ND	ND		
1,2-Lichiomprepana	3	NO	ND	ND		
cas-1,3-Dichloropropens	а 5	ND	ND	ND		
1 1 Charbenste	32	ND	ND	ND		
rens-1 3-Dichlementanin	5	ND	ND	ND		
Olivornachistomalitada	100#*	ND	ND	ND		
2-Chioraethylying Elber	•	NA	ND	ND		
Bromoform	100#*	ND	ND	ND		
Tetrachlorosthene	5	ND	ND	ND		
1,1,2,2-Tetrachloroathasa	1	ND	60	ND		
Chiorobanzana	30	ND	31	31		
t,3-Dichlorobenzone		ND	390	290		
1,2-Dichlorobenzone	600#	ND	53	53		
1,4-Dichlorobenzone	5	ND	560	560		
PURGEABLE AROMATICS						
Begrane	ŧ	ND	NA	NA		
Tokiena	1000#	0,73	NA	NA		
Fihylbenzette	650	D/t	NA	NA		
Total Xvianas	1750**	ND	NA	NA		
IOTAL VOCE		0,73	1036,6	1038.6		
Hydrocarbons						
				ATA		
TVH-g		ND	D144	100		
TEPH-d		144	F6/4	NA NA		
DAG	1	147	110	NA		
(PH (4)4.1)		194	104			
METALS						
Lead	٥	NA	NA	NA		
hlafa r t						
ivens. 4) strit – Marimum Contaminant	1 evel in d	vinking w	ilar (Stab	MCL If not	nolod otherw	dia e ti
NA-ERANCI	Coron will be	- 1. (m) (Q. 19)				
are united for som at faur evente	เหนร์ธ					
41 ** = MCL for sum of sti vylens	Isomere					
5) *** = MCL for sum of trans- up	d cla-1.3-D	(chioroor	openø			

1

5) *** = MCL for sum of trans- and d=-1,3-DEMorepropens 6) ND - Not Detacted at or above MDL. 7) Purgaebile Malacerbons (EPA method 80:0) 8) Purgaebile Malacerbons (EPA method 80:20) 6) NA = Not Amalyzad for anolytic ont inquired 10) Gr1702 Samples analyzad for VOGs out of holding time due to laboratory error

. .

áj)t liðkusk

APPENDIX B

Low-Flow Purging and Sampling Protocol

Plan for December 2006 Annual Groundwater Monitoring – PG&E Oakland General Construction Yard 4930 Coliseum Way Oakland, California

- Hold a tailgate health and safety meeting at start of each day. Blaine Tech Services (BTS) personnel (sampler) should follow and sign the provided health and safety plan (HSP). Please review general site safety issues, on-site traffic flow and operations, compounds of concern, and location of closest hospital. Please have a copy of the HSP with you during sampling activities.
- Open all wells and allow sufficient time to equilibrate (minimum of 15 minutes per well). Inspect wells for free product using an interface probe. Gauge all wells for static water level in following order prior to commencement of sampling activities.
 - 1. OW-1
 - 2. OW-4
 - 3. OW-5
 - 4. OW-6
 - 5. OW-2
 - 6. OW-8
 - 7. OW-7
- For wells OW-1, OW-2, and OW-4, measure and record the total depth after sampling. Install disposable tubing inlet at the following depths, which correspond to the middle of each well screen. For wells OW-5 through OW-8, measure and record the total depth using a clean, interface probe and install the disposable tubing inlet at approximately 5 feet above the total depth

Well ID	Diameter	Total Depth	Screen Interval	Depth of
	(inches)	(feet bgs)	(ft bgs)	dedicated
				tubing (ft bgs)
OW-1	UNK	UNK	3-18	10.5
OW-2	UNK	UNK	3-18	10.5
OW-4	UNK	UNK	8.5-21	21
OW-5	UNK	UNK	UNK	UNK
OW-6	UNK	UNK	UNK	UNK
OW-7	UNK	UNK	UNK	UNK
OW-8	UNK	UNK	UNK	UNK

• Please document that the water quality meter has been calibrated prior to the start of sampling activities in the field notes. Use the low flow sampling procedures developed by the U.S. Environmental Protection Agency (EPA)¹ as a guidance. Record water

¹ Puls, Robert W., and Barcelona, Michael J., Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA. April 1996.

quality parameters every 3 to 5 minutes. Parameter stability is based on three consecutive readings with:

• Maintain a draw down of less than 0.3 feet

• Flow rate of 200 to 500 milliliters (mL) per minute (Do not exceed 500 mL per minute)

- pH± 0.1 standard pH units (SU)
- Conductivity $\pm 3\%$
- Temperature \pm 0.1 degree
- ORP \pm 10%
- DO ± 10%
- Turbidity \pm 10% or less than 10 nephelometric turbidity units (NTU)
- Purge and sample in following order: Use a sample ID containing the well name and date of sampling.
 - 1. OW-1
 - 2. OW-4
 - 3. OW-5
 - 4. OW-6
 - 5. OW-2
 - OW-8
 OW-7
- Collect the following quality assurance/quality control (QA/QC) samples:
 - Field Blank (decant laboratory-provided deionized water into laboratorysupplied containers in the vicinity of the well head); note in field notes the location that the field blank was collected.
- Analyses:

Well ID	TPH diesel	TPH gasoline	VOCs by	BTEX by	Dissolved
	by 8015M	by 8015M	8260B	8260B	Lead by 6010
OW-1	Х	Х		Х	
OW-2				Х	Х
OW-4	Х	Х			
OW-5	Х	Х	Х		Х
OW-6	Х	Х	Х		
OW-7	Х	Х	Х		
OW-8					X
Field Blank			Х		Х

- Field Decontamination
 - The water level sounder should be decontaminated before each well using Alconox (phosphate-free detergent) using a three-bucket wash.
 - Rinsate should be stored in the drums together with the purge water.
 - Disposable equipment (nitrile gloves, tubing, etc.) should be placed in a predetermined, on-site receptacle.
- Field Notes and Documentation
 - o BTS Chain of Custody
 - o BTS Well Gauging Data
 - o BTS Low Flow Well Monitoring Data Sheet
 - o BTS Purge Drum Inventory
 - o BTS Wellhead Inspection Checklist
- Stage drum at PG&E Service Center
 - Affix Waste Material Label (uncharacterized waste label) to drum with date, volume
 - Please record drum information on drum tally/field notes for project records
 - Coordinate with Oakland facility manager regarding the drum. Leave the drum on site in a location identified by the facility manager. Drum needs to be in overpack to protect against leakage.
- Submit samples to:

Creek Environmental Laboratory 141 Suburban Road, Suite C5 San Luis Obispo, CA 93401 Phone: 805-545-9838

- Submit Field Notes/Forms
 - PDF all field forms and email to Jonathan Skaggs (Geomatrix) at jskaggs@geomatrix.com, and Eric Ehlers (ITSI) at EEhlers@ITSI.com.

APPENDIX C

Groundwater Purging and Sampling Logs

WELLHEAD INSPECTION CHECKLIST .

ite Address	4930	Colis	Cum U	lay O	akland				
ob Number	0612	20- DW-	<u>·1</u>		_ Teo	chnician	DW		
Well ID	We Ni Aci	Il Inspected - o Corrective ion Required	Water Baile From Wellbox	ct Weilbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Weil Not Inspected (explain below)
ow-1			<u>Slip</u> ea	p. Tabs fo	thex sec	urity bolt	packed	w/dirt	
ow-2			Stipe	άρ . ((k k	u u	<u>v</u>	••	
ow-4									<u>×</u>
<u>06-5</u>			No lock	SPH on	inside o	Casily,	Cane off o	F probe fro	n <u>a gauging</u> 1
ow-6			No loc	k 205	3 60/75	present			
<u>ow-7</u>			No loc	h. Cap l	broken, c	inable to	lock. 20	F 3 60/75	present
00-8			No we	Il lide	<u>It's bro</u>	ern inti	picees.	Nolock	
						-			
<u></u>			·	·					
						<u></u>			
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
							<u> </u>		
					-				
NOTES	<u>1</u>				/ /	<u> </u>	•	L	L
	00-	4-00	VCLCY (over w/	large	Storage	containe	:{5	
	<u></u>			<u></u>					

www.blainetech.com

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO LOS ANGELES

SAN DIEGO

Page of _____

WELL GAUGING DATA

Project # <u>D6/220-Dw-1</u> Date <u>12-20-06</u> Client <u>Geometrix</u> Site <u>4930</u> Coliscum Way Cakland

					Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /	Immiscible	Immiscible	Removed	Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	(0 <u>0</u>)	Notes
							_	\checkmark		
ow-1	082	2					2.97	×18.07		
AW-2	0800	2					3.48	\$20.27		
	- •		Unable	Le age	e/					
14-4		=	August	6 10		1				
000 /	•		COVERS	04 57	DIAGE CI	Mainers.				
a. c	4020	2				<i>¥</i> ≭		19.5		
00-5	00 80	v					2.02	17.05		
	.070	า					110	12.1.		
0W-6	08 34	0					7,10	11.00		
		2					- IIA	10.1.		
ow-1	0109	0					5.99	18.16		
							0.0-		$\left(\Lambda \right)$	
0w-8	0900	8					2.85	17.90		
ĺ										
		·····					1	· ····		
			Remove		CAR 12	t allor	prior to			
			MCM01~		MAP 5 1.	<u>, winz.</u>		9 449127		
		N/ n	and in ca	11	1 fr	0. 10	oh.	•		
		<u> </u>	1005410	p acpi	h a 1	er sar	+ /// × 9	· ···-································		
	· ·	¥¥	ul.		0-0		1		,	ļ
	<u> </u>	~~ <u>^</u>	when g	renging	DIBIOS	bbe Cam	e up w/	tree produ	<u>et.</u>	
		<u>,</u> ,	11			1 11				
		Ura	1012 fc	get ac	curete a	kepth or	thicknes	5		
				ļ						
	ļ							·		
			1							
	<u> </u>	1			1	<u> </u>		<u>+</u>		ŧ
L	1	<u> </u>	L	L	1	1		L	L	L

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

Project #: $bb(230 - 0W - 1$ Client: $bcondriverset$ Sampler: bL Start Date: $12 - 20 - 06$ Well 1.D.: $0W - 1$ Well Diameter: $23 - 4 - 6 - 8$ Total Well Depth: 19.07 Depth to Water Pre: 2.47 Post: 3.25 Depth to Free Product: Thickness of Free Product (feet): Referenced to: C Grade Flow Cell Type: $Y_{51} - 556$ Purge Method: 2° Grade Flow Cell Type: $Y_{51} - 556$ Purge Method: 2° Grade for C of T when Tubing Dater Pump Depth: $92 - 0.55^{\circ}$ Time C or T pH (mS or D) D (MTUs) (mg/L) (mV) (gals. ocm Observations 0923 18.65 6.63 77.1 6.4° 0.666 97.5 boo 5.33 0924 18.81 6.62 76.1 0.3 0.499 72.8 1200 $3.350924 19.10 6.63 75.2 0.3 0.35 60.3 1800 3.34^{\circ}0932 19.16 6.63 75.2 0.3 0.35 60.3 1800 3.34^{\circ}0932 19.16 6.63 75.2 0.3 0.35 60.3 1800 3.34^{\circ}0938 19.57 6.63 72.9 0.2 0.33 51.4 5000 3.34^{\circ}0938 19.57 6.63 72.9 0.2 0.38 47.2 7600 3.34^{\circ}0938 19.57 6.63 72.9 0.2 0.28 47.2 7600 3.34^{\circ}0938 19.57 6.63 72.9 0.2 0.28 47.2 7600 3.34^{\circ}0938 19.57 6.63 72.9 0.2 0.28 47.2 7600 3.34^{\circ}0038 19.57 6.63 72.9 0.2 0.28 47.2 7600 3.54^{\circ}0038 19.57 6.63 0.5^{\circ} 0.26 0.28 47.2 7600 3.54^{\circ}0038$ 19.57 6.63 0.56 6.66 10000 1000 10000 10000 10000 10000 10000 100000 10000 100000 100000									*
Sampler: Div Start Date: $12 - 20 - 06$ Well I.D.: $0W-1$ Well Diameter: 23 4 6 8 Total Well Depth: $[9.07]$ Depth to Water Pre: 2.97 Post: 3.25 Depth to Free Product: Thickness of Free Product (feet): Referenced to: 2^{oo} Grade Flow Cell Type: $Y51 - 556$ Purge Method: 2^{oo} Graudfus Pump X Peristaltic Pump Bladder Pump Sampling Method: 2^{oo} Graudfus Pump X Peristaltic Pump Depth to Second Turbidity 0.0 Time Temp. pH Cond. Turbidity $D.0$ $0RP$ (mV) $(gats. orght)$ $Other$ $0^{0}2^{3}$ 8.65 6.63 771 $6.4'$ $0.66'$ 97.5 $b00$ $3.33'$ $0^{2}2^{4}$ $[R.8]$ 6.62 761 0.3 $0.4'9$ 72.8 1200 $3.5'$ $0^{2}32$ $(R.97)$ $6.63'$ $752'$ $0.3'$ $5.6'$ 1800 $3.34'$ $0^{2}32$ $(9.16'- 175')$ $0.2'$ <td< td=""><td>Project #:</td><td>06(220</td><td>-0w-1</td><td></td><td>Client: 6</td><td>comatri</td><td>î x</td><td></td><td></td></td<>	Project #:	06(220	-0w-1		Client: 6	comatri	î x		
Well 1.D.: $0W-1$ Well Diameter: 0 3 4 6 8 Total Well Depth: $[9,07]$ Depth to Water Pre: 2.97 Post: 3.25 Cond. Turbidity Dup. Other Other Other Pump Depth: 90 0.45 Other	Sampler:	Ow			Start Date	: 12-2	0-06	<u></u>	
Total Well Depth: $[9.07]$ Depth to WaterPre: 2.97 Post: 3.25 Depth to Free Product:Thickness of Free Product (feet):Referenced to: PV GradeFlow Cell Type: $Y51$ Purge Method: $2^{\circ0}$ Grade of PumpDepth to Water $Pump$ Depth to Rate: 200 n/l/m Pump Depth: pP Pump Depth: pP Time $Q0 \text{ n/l/m}$ Pump Depth: pP Time $Q0 \text{ n/l/m}$ Pump Depth: pP Time $Q0 \text{ n/l/m}$ Pump Depth: pP Pump Depth: pP Time $Q0 \text{ n/l/m}$ Pump Depth: pP Pump Depth:	Well I.D.	: ow-1			Well Dian	neter: 🕖	3 4	6 8	
Depth to Free Product:Thickness of Free Product (feet):Referenced to: $P''' Grade S PumpPurge Method:2" Grundfos PumpDedicated TubingPeristaltic PumpBladder PumpSampling Method:Dedicated TubingOtherTow Rate:2001/mPump Depth: f2 / 0.5'TimeCond.TurbidityD.0ORPWater Removed0 T - 0.5'TimeCond.TurbidityD.0ORPWater Removed0 - 5'TimeCond.TurbidityD.0ORPTemp.PHCond.TurbidityD.0ORPWater Removed0 - 5'TimeCond.ORPWater Removed0 - 5'TimeCond.Cond.ORP0 - 5'Temp.PHCond.Cond.Tomp.DIOtherOtherOtherOtherOther$	Total We	ll Depth:	18.07		Depth to V	Vater	Pre: 2	97 Post:	3.20
Referenced to:	Depth to	Free Prod	uct:		Thickness	of Free P	roduct (fe		
Purge Method: 2° Grundfos Pump Sampling Method: Dedicated Tubing Pump Dedicated Tubing Pump Depth: $\frac{1}{200 \text{ m}}$ Pump Dedicated Tubing Pump Depth: $\frac{1}{200 \text{ m}}$ Pump Pump Depth: $\frac{1}{200 \text{ m}}$ Pump Depth: $\frac{1}{200 \text{ m}}$ Pump Pump Depth: $\frac{1}{200 \text{ m}}$ Pump Depth: $\frac{1}$	Reference	ed to:	PVQ	Grade	Flow Cell	Type: Y	51 556		
Flow Rate: 20 $n!/m$ Pump Depth: $p!/0.5'$ Time Temp. (9 or $^{\circ}F)$ pH Cond. (mS or fK) Turbidity (NTUs) D.O. (mg/L) ORP (mV) Water Removed (gals. orm) DTL Observations 0923 18.65 6.63 77/ 0.4' 0.66 97.5 600 3.33 0924 18.81 6.62 761 0.3 0.4'9 72.8 1200 3.35 0924 19.10 6.63 752 0.3 0.35 60.3 1800 3.34' 0935 19.19 6.63 750 0.1 0.45 56.8 2400 3.34' 0935 19.19 6.63 724 0.2 0.33 51.4 3003 3.34' 0935 19.19 6.63 729 0.2 0.38' 47.2 3600 3.34' 0936 19.17 6.63 729 0.2 0.28' 47.2 3600 3.34' 0138 19.27 6.63 729 0.2 128' 47.2 3600 3.34' Did well dewater? <t< td=""><td>Purge Metho Sampling M</td><td>od: lethod:</td><td>2" Grundf Dedicated</td><td>os Pump Tubing</td><td>× د</td><td>Peristaltic I New Tubin</td><td>Pump g</td><td>Bladder Pump Other_</td><td></td></t<>	Purge Metho Sampling M	od: lethod:	2" Grundf Dedicated	os Pump Tubing	× د	Peristaltic I New Tubin	Pump g	Bladder Pump Other_	
Time Temp. (9 or %) pH Cond. (mS or (3)) Turbidity (NTUs) D.O. (mg/L) ORP (mV) Water Removed (gals. or fil) DT/ Observations 0923 18.65 6.63 77 / 6.4 0.66 97.5 600 3.33 0924 // 8.81 6.62 76 / 0.3 0.49 72.8 // J00 3.35 6924 // 8.81 6.63 752 0.3 0.35 60.3 // 800 3.34 6924 // 9.01 6.63 752 0.7 0.35 56.8 2400 3.34 6935 19.19 6.63 742 0.7 0.33 5/.4 3000 3.34 6935 19.19 6.63 729 0.2 0.33 5/.4 3000 3.34 6938 19.19 6.63 729 0.2 0.28 47.2 3600 3.34 6938 19.27 6.63 729 0.28 47.2 3600 3.34 601 well dewater? Yes Moderational participant and participant and participant and participant and participant and participant an	Flow Rate:	200	. <u> /m</u>		· ·····	Pump Dept	h: 😥 /	0.5'	
0923 18.65 6.63 771 0.44 0.66 97.5 $b00$ 3.33 0926 18.81 6.62 761 0.3 0.499 72.8 1200 3.35 0924 19.10 6.63 752 0.3 0.355 60.3 1800 3.34 0934 19.10 6.63 752 0.3 0.455 56.8 2400 3.34 0935 19.19 6.63 742 0.2 0.33 51.6 3000 3.34 0935 19.19 6.63 729 0.2 0.33 51.6 3000 3.34 0938 19.27 6.63 729 0.28 47.2 3600 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 014 well dewater? Yes Yes Amount actually evacuated: 3600 360 <td>Time</td> <td>Temp.</td> <td>pH</td> <td>Cond. (mS or (µS))</td> <td>Turbidity (NTUs)</td> <td>D.O. (mg/L)</td> <td>ORP (mV)</td> <td>Water Removed (gals. or mL)</td> <td>DTL Observations</td>	Time	Temp.	pH	Cond. (mS or (µS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTL Observations
0924 $ 8.8 $ 6.62 761 0.3 0.49 72.8 1203 3.35 0929 19.10 6.63 752 0.3 0.35 60.3 1800 3.34 0932 19.07 6.63 750 0.1 0.455 56.8 2400 3.34 0935 19.19 6.63 747 0.2 0.335 51.4 3000 3.34 0935 19.19 6.63 747 0.2 0.335 51.4 3000 3.34 0935 19.19 6.63 729 0.28 47.2 3600 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 014 well dewater? Yes M Amount actually evacuated: $3600n$ $360n$ $360n$	0923	18.65	6.63	771	6.Ý	0.66	97.5	600	3.33
0924 19.10 6.63 752 0.3 0.35 60.3 1800 3.34 0932 19.01 6.63 750 0.7 0.45 56.8 2400 3.34 0935 19.19 6.63 747 0.2 0.33 51.4 3000 3.34 0935 19.19 6.63 747 0.7 0.33 51.4 3000 3.34 0438 19.77 6.63 729 0.7 0.28 47.7 3600 3.34 0438 19.77 6.63 729 0.7 0.28 47.7 3600 3.34 0438 19.77 6.63 729 0.7 0.28 47.7 3600 3.34 0.138 19.77 6.63 729 0.7 0.28 47.2 3600 3.34 0.14 0.7 0.7 0.7 0.28 47.2 3600 1.80 0.14 0.94 5.94 5.96 5.96	0926	18.81	6.62	761	0.3	0.49	72.8	1200	3.35
0432 (9.07) 6.67 750 0.7 0.45 56.8 2400 3.34 0935 19.19 6.63 747 0.2 0.33 51.6 3000 3.34 0138 19.77 6.63 779 0.7 0.28 47.2 3600 3.34 0138 19.77 6.63 779 0.7 0.28 47.2 3600 3.34 0138 19.77 6.63 779 0.7 0.28 47.2 3600 3.34 0138 19.77 6.63 779 0.7 0.28 47.2 3600 3.34 0138 19.77 6.63 779 0.7 0.28 47.2 3600 3.34 0138 19.77 6.63 790 0.7 0.28 47.2 3600 3.34 01400 19.76 19.76 19.76 19.76 19.76 19.76 19.76 19.76 19.76 19.76 19.76 19.76 </td <td>6929</td> <td>19.10</td> <td>6.63</td> <td>752</td> <td>0,3</td> <td>0.35</td> <td>60.3</td> <td>1800</td> <td>3.34</td>	6929	19.10	6.63	752	0,3	0.35	60.3	1800	3.34
0935 $19, 19$ 6.63 742 0.2 0.33 51.4 3000 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 0138 19.27 6.63 729 0.28 47.2 3600 3.34 0.138 19.27 6.63 729 0.28 47.2 3600 3.34 0.138 19.27 6.63 729 0.28 47.2 3600 3.34 0.138 19.27 6.63 729 0.28 47.2 3600 3.34 0.138 19.27 0.28 47.2 3600 3.34 0.138 19.27 0.28 47.2 3600 3.34 0.138 0.28	0932	19.07	6.63	750	0.7	0.45	56.8	2400	3.34
$\begin{array}{c cccc} 0938 & 19.77 & 6.63 & 779 & 0.7 & 0.28 & 47.7 & 3600 & 3.34 \\ \hline \\ $	0935	19.19	6.63	742	0.2	0.33	51.6	3000	3.34
Did well dewater? Yes M Sampling Time: AHOUNT actually evacuated: 3600 m Sample I.D.: OW-1 - 12 2006 Laboratory: Creeck Analyzed for: PH-2 BTEX MTBE PH-2	0938	19.27	6.63	729	0.7	0.28	47.2	3600	3.34
Did well dewater? Yes A Amount actually evacuated: 3600 m Sampling Time: 0946 Sampling Date: 12-30-06 Sample I.D.: 0W-1-122006 Laboratory: Creek Analyzed for: PH-2 BTEX MTBE PH-P Other:									
Did well dewater? Yes Amount actually evacuated: 3600 m Sampling Time: 0946 Sampling Date: 12-30-06 Sample I.D.: 0W-1-122006 Laboratory: Creck Analyzed for: PH-9 BTEX MTBE PH-9 BTEX	<u> </u>								
Did well dewater? Yes \frown Amount actually evacuated: 3600 m Sampling Time: 0946 Sampling Date: $12 - 30 - 06$ Sample I.D.: $0W - 1 - 122006$ Laboratory: CreekAnalyzed for: $PH - 0$ $W - 1 - 122006$ Other:									
Did well dewater? Yes Model Amount actually evacuated: 3600 m Sampling Time: 0946 Sampling Date: 12-30-06 Sample I.D.: 0W-1-122006 Laboratory: Creck Analyzed for: PH-2 BTEX MTBE PH-2 BTEX MTBE PH-D Other: Other:									
Sampling Time: 946 Sampling Date: 12-20-06 Sample I.D.: 0W-1-122006 Laboratory: Creek Analyzed for: PH-Q BTEX MTBE PH-P Other: @ Durling Date: Laboratory:	Did well o	dewater?	Yes	Ø	······ .	Amount	actually e	evacuated: 360	poml
Sample I.D.: OW-1-122006 Laboratory: Creek Analyzed for: FPH-2 BTEX MTBE FPH-P Other:	Sampling	Time: of	140			Sampling	g Date: 1	2-20-06	
Analyzed for: TPH-7 BTEX MTBE TPH-7 Other:	Sample I.	D.: <i>ow-</i>	1-1220	06		Laborato	ry: Cre	ck	
Fouriement Plank ID	Analyzed	for:	TPH-Q	BTEX MTE	BE (PH-D		Other:		
Equipment Blank I.D.: Time Duplicate I.D.:	Equipmer	nt Blank I.	D.:	₩ Time	<u> </u>	Duplicate	e I.D.:		

Sampler: Dw Start Date: $12 - 20 - 06$ Well I.D.: $0W - 2$ Well Diameter: $23 - 4 - 6 - 8$	Project #:	Project #: 06 1220-DW-1 Client: Geometrix									
Well I.D.: $0 W - 2$ Well Diameter: $2 3 4 6 8$ Total Well Depth: 12 Depth to Water Pre: $3, 48$ Post: $4, 45$ Depth to Free Product: Thickness of Free Product (feet): Referenced to: FV2 Grade Flow Cell Type: $Y51$ SS6 Purge Method: 2" Grandfos Pump Dedicated Tubing XPeristaltic Pump XNew Tubing Bladder Pump Other Flow Rate: 200 $1 w$ Pump Depth: 10^{+} Time Temp. $0 or ^FF$ Cond. PH Turbidity (mS or 150 D.O. (mg/L) ORP (mV) Water Removed (gals. or m) $P7w$ Observatic Its1 19.28 $G. 78$ 3.325 0.11 1.36 50.5 6.00 4.35 Its1 19.28 $G. 77$ 3.345 0.11 1.30 70.1 1200 4.35 Its1 19.53 6.77 3.345 0.11 1.30 70.1 1200 4.35 Its1 19.53 6.77 3.345 0.11 1.69 96.3 3000 4.62 Its1 19.06 6.76 3.370	Sampler:	DW			Start Date:	12-20	- 06				
Total Well Depth: 18 Depth to Water Pre: 3, 48 Post: 4, 45 Depth to Free Product: Thickness of Free Product (feet): Referenced to: FV2 Grade Flow Cell Type: 751 556 Purge Method: 2" Grundfos Pump Dedicated Tubing X Peristaltic Pump XNew Tubing Bladder Pump Other	Well I.D.	: ow-2			Well Diam	neter: Ø	3 4	68			
Depth to Free Product: Thickness of Free Product (feet): Referenced to: FVC Grade Flow Cell Type: YS1 S56 Purge Method: 2" Grandfos Pump Dedicated Tubing 2" Peristaltic Pump New Tubing Bladder Pump Other Flow Rate: 200 16 Pump Depth: 10° Time Temp. ($O \ or \ or \ P)$ PH Cond. (mS or M) Turbidity (NTUs) D.O. (mg/L) ORP (mV) Water Removed (gats. or m) $PT \ O$ [151] 19.28 G.78 3.525 0.10 1.36 50.5 6.00 4.75 [151] 19.38 G.77 $3.34'$ 0.1 1.70 $7.4'$ 1800 4.35 [151] 19.53 6.77 $3.34'$ 0.1 1.69 46.3 3000 4.62 [200] 19.65 6.77 $3.34'$ 0.1 1.69 46.3 3000 4.62 [205] 19.09 6.76 $3.34'$ 0.1 1.60 $104.4'$ 3600 4.62 [206] 19.80 6.76 $3.34'$ <td< td=""><td>Total We</td><td>ll Depth:</td><td>18</td><td></td><td>Depth to V</td><td>Vater</td><td>Pre: 3,</td><td>48 Post:</td><td>4.45</td></td<>	Total We	ll Depth:	18		Depth to V	Vater	Pre: 3,	48 Post:	4.45		
Referenced to: $formation Pressure Flow Cell Type: \frac{1}{5} 556 Purge Method: 2" Grundfos PumpDedicated Tubing restaltic Pumprestaltic PumpNew Tubing Bladder PumpOther Flow Rate: 10^{-1} Pump Depth: 10^{-1} Time Cool \ 0 \ 0^{\circ} F) pH Cond.(mS or 150^{\circ}) Turbidity(NTUs) D.O.(mg/L) ORP(mV) Water Removed(gals. of m) b7twObservation [LS] 19-28 G.78 3.325 0.10 1.36 50.5 God 4.75^{\circ} [LS] 19-28 G.71 3.345 0.11 1.30 70.1 1200 4.25^{\circ} [LS] 19-38 6.77 3.345 0.11 1.30 70.1 1200 4.25^{\circ} [L151] 19-35 6.771 3.345 0.11 1.97 7.4^{\circ} 1800 4.35^{\circ} [] 200 19.45 6.771 3.345 0.1 1.09 96.3 3000 4.62^{\circ} [] 206 $	Depth to I	Free Produ	uct:		Thickness	of Free Pi	oduct (fe	eet):			
Purge Method: 2" Grundfos Pump Dedicated Tubing \times Peristaltic Pump New Tubing Bladder Pump Other Flow Rate: 200 16 Pump Depth: 10^{1} Time Temp. ($\bigcirc 0^{\circ} 0^{\circ} F)$ pH Cond. (mS or $f \odot$) Turbidity (NTUs) D.O. (mg/L) ORP (mV) Water Removed (gals. 0m) $P7\omega$ Observation ($gals. 0m$) [151] 19.28 $G.778$ 3.525 0.10 1.36 50.5 6.00 4.15 [154] 19.38 6.771 3.345 0.11 1.30 70.1 1200 4.55 [151] (9.53) 6.771 3.343 0.1 1.21 $77.4'$ 1800 4.35 [152] 19.45 6.771 3.343 0.1 1.201 $77.4'$ 1800 4.52 [153] 19.45 6.771 3.345 0.1 1.691 96.3 3000 4.62 [150] 19.46 6.76 3.345 0.1 1.061 $104.4'$ 3600 4.62 [206] 19.89 6.76 3.330	Reference	ed to:	PV	Grade	Flow Cell	Туре: Ү 5	556				
Flow Rate: 10^{-1} Pump Depth: 10^{-1} Time Temp. ($\bigcirc 0 \circ ^{\circ}F$) pH Cond. (mS or CS) Turbidity (NTUs) D.O. (mg/L) ORP (mV) Water Removed (gals. orml) PTW 1151 19.28 6.78 3.325 0.10 1.36 50.5 6.00 4.15 1154 19.28 6.77 3.345 0.1 1.30 70.1 1200 4.55 1151 19.53 6.77 3.343 0.1 1.01 77.4 1800 4.35 1200 19.65 6.77 3.350 0.1 1.15 85.5 2400 4.55 1200 19.65 6.77 3.350 0.1 1.15 85.5 2400 4.52 1200 19.65 6.76 3.340 0.1 1.06 104.44 3600 4.62 1206 19.80 6.76 3.340 0.1 1.06 104.44 3600 4.62 1206 19.89 6.76 3.330 <td< td=""><td>Purge Metho Sampling M</td><td>od: ethod:</td><td>2" Grundfo Dedicated</td><td>os Pump Tubing</td><td colspan="5">Y Peristaltic Pump SNew Tubing Other</td></td<>	Purge Metho Sampling M	od: ethod:	2" Grundfo Dedicated	os Pump Tubing	Y Peristaltic Pump SNew Tubing Other						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow Rate: _		1 m		r	Pump Deptl	1: 10 '				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	Temp.	рН	Cond. (mS or (IIS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. o ml)	PTW Observations		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1151	19-28	6.78	3325	0,10	1.36	50.5	600	4.15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1154	19.38	6.77	3345	0,1 1.30 70,1 1200 4.25						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1157	19.53	6.77	3343	0.1	2.1 1.21 77.4 1800 4.3					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	19.65	6.77	3350	0.1	4.52					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1203	19.67	6.76	3345	0,1	1.69	96.3	3000	4.62		
1209 19.89 6.76 3330 0,1 D.98 112,3 4200 4.80	1206	19.80	6.76	33Y0	0.1	1.06	104.4	3600	4.70		
	(209	19.89	6.76	3330	0,1	D.98	112,3	4200	4.80		
				, <u>, , , , , , , , , , , , , , , , </u>							
					·····	*			•		
Did well dewater? Yes No Amount actually evacuated: 4300	Did well c										
Sampling Time: 12.0 Sampling Date: 12-20-06	Sampling										
Sample I.D.: 0W-2-122006 Laboratory: Creek	Sample I.I	D.: 0W-2	1-12200	76		Laborator	ry: Cree	ek			
Analyzed for: TPH-G BTEX MTBE TPH-D Other: D:550/ved Lead by 602.	Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other: D	:ssolved Lead	by 6020		
Equipment Blank I.D.: Field Blank Ton Duplicate I.D.:	Equipmen										

Project #:	: 061220	-06-1		Client:	reomatri	X		
Sampler:	DW			Start Date:	12-20-	06		
Well I.D.	: ow-4			Well Diam	neter: 2	3 4	6 8	
Total We	ll Depth:	 ,		Depth to V	Vater	Pre: -	Post:	
Depth to	Free Produ	let:		Thickness	of Free Pr	roduct (fe	et):	
Reference	ed to:	PVC	Grade	Flow Cell	Туре:			
Purge Metho Sampling M Flow Rate: _	od: lethod:	2" Gruntf Dedicated	os Pump Tubing		Perisfultic I New Tubin Pump Dept	Դսmp g h:	Bladder Pump Other_	
Time	Temp. (°C or °F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Observations
	Co	vereb	by la	rge Stor	age sh	eds. N	o samples	
		1				<u> </u>		
·····			····					
								
							,	
<u> </u>								·······
							·	
Did well o	de vater?	Yes	No		Amount a	actually	vacuated:	
Sampling	Time.			· · · · · · · · · · · · · · · · · · ·	Sampling	g Date:		
Sample I.	D.:				Laborato	ry:		
Analyzed	for:	Трн-G	BTEX MT	BE TPH-D		Other:		
Equipmer	nt Blank I.	D.: \	@ Time		Duplicate	; I.D.:		
				•		•	۱.	\

Project #	Project #: 06 1220-DW-1 Client: Geomatrix										
Sampler:	ow			Start Date:	12-20	9-06					
Well I.D.	: ow-5			Well Diam	neter: 🖉	3 4	68				
Total We	ll Depth:	19.05	**	Depth to Water Pre: 3.83 Post:							
Depth to	Free Produ	uct:		Thickness of Free Product (feet):							
Reference	ed to:	PVO	Grade	Flow Cell Type: YSI 56							
Purge Metho Sampling M Flow Rate:	od: lethod: 200 ml	2" Grundf Dedicated	os Pump Tubing	۲ ×	Y Peristaltic Pump Bladder Pump New Tubing Other						
			,								
Time	Temp.	pН	Cond (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m))	Observations			
1017	15.48	6.55	172	21	0.87	42.2	600	4.08			
1020	15.44	6.53	717	24	4.00						
1023	15.87	6.55	716	28	4.00						
1026	15.94	6.55	722	25	4.00						
1029	16.02	6.51	723	22	0.59	23.1	3000	4.00			
1032	15.96	6.51	721	20	0.55	18.2	3600	4.00			
1035	15.95	6.51	719	19	0.50	14.0	4200	4.00)			
Did wall											
Somelin -	Did wen dewater? Yes (Ng Amount actually evacuated: 4300 k										
Sampling	Samping Time. 1040 Samping Date: (2-30-06										
Sample I.	D.: 0W- 5	5-12200	6 (m	<u>5/m50)</u>	Laborato	ry: Cre	<u>ek</u>				
Analyzed	tor:	TPH-G	BTEX MTI	BE (PH-D)		Other: V	oc's Dissolu	red leads by			
Equipmen	nt Blank I.	D.:	Time		Duplicate	e I.D.:					

•

LOW FLOW WELL MONITORING DATA SHEET

1

Project #	061220	- OW-1		Client: 6	<i>comatrix</i>							
Sampler:	DW			Start Date:	12-20	1-06		······································				
Well I.D.	: ow-6			Well Diam	ieter: (2)	3 4	68					
Total We	ll Depth:	17.20		Depth to V	Depth to Water Pre: 4.10 Post: 4.10							
Depth to	Free Produ	uct:		Thickness of Free Product (feet):								
Reference	ed to:	PVO	Grade	Flow Cell Type: <u>Y51 556</u>								
Purge Metho Sampling M Flow Rate:	od: lethod: 200 m l l	2" Grundf Dedicated	os Pump Tubing	× ×	Peristaltic Pump Bladder Pump New Tubing Other Pump Denth: / 0 /							
Time	Temp.	pН	Cond. (mS or us)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ma)	DTW Observations				
1109	17.96	7.25	1079	<u>4</u> 4	44 0.54 34.1 600 4.10							
1112	17.85	7.25	1085	33	33 0.59 24.9 1200 4.10							
1115	17.90	7.24	1087	29	29 0.39 15,1 1800 4,1							
1118	18.02	7.23	1094	24	0.32	-2.6	2400	4.11				
1121	17.65	7.03	tin	22	0.31	-25.9	3000	4.11				
1124	17.50	7.23	1(17	21	0.32	-34.6	3600	4.10				
1127	17.39	7.23	liių	20	0.33	- 41.2	4200	4.10				
							·····					
Did well	dewater?	Yes (No		Amount	actually e	vacuated: 47	00 m				
Sampling	Time:	130			Sampling	g Date: 1	2-20-06					
Sample I.D.: 0w-6-122006					Laborato	ry: Cier	k					
Analyzed	for:	(PH-)	BTEX MTI	BE TPH-		Other: V	06'3	•				
Equipmer	nt Blank I.	D.:	@ Time	-	Duplicate	e I.D.:						

Project #	: 061220	-0w-1		Client: G	comatri	 x					
Sampler:	DW			Start Date	12-20	-06					
Well I.D.	: ow-7			Well Diameter: (2) 3 4 6 8							
Total We	ll Depth:	18.16		Depth to V	Depth to Water Pre: 5,49 Post:						
Depth to	Free Produ	uct:	ar a that's block	Thickness of Free Product (feet):							
Reference	ed to:	PVO	Grade	Flow Cell Type: 151 556							
Purge Meth Sampling M	od: Iethod:	2" Grundfe Dedicated	os Pump Tubing	Peristaltic Pump New Tubing Other							
Flow Rate:	_ 200 m[[M			Pump Depth: /0'						
Time	Temp. (O or °F)	рН	Cond. (mS or (µS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (1))	Drw Observations			
1300	17.65	6.76	799	46	0.71	72,7	600	5.52			
1303	17.39	6.76	-794	44	0.86 65.5 1200 5.5						
1306	17.37	6.75	792	35	0.76 60.3 1800 51						
1309	17-24	6.74	789	32	0.56 53.8 2400 5.						
1312	17.21	6.73	787	29	0.50	49.3	3000	5.52			
1315	17.25	6.73	785	28	0.45	46.4	3600	5.52			
							·				
Did well	dowater?	Vos	<u></u>		A mount.		1				
		<u>res</u> (Amount	actually e	vacuated:	·			
Sampling	<u>11me: [3</u>	<u>do</u>		<u></u>	Sampling	g Date: /	2-20-06				
Sample I.D.: 0w-7-122006					Laboratory: Creek						
Analyzed for: (TPH-G) BTEX MTBE				BE (TPH-D)	PH-D Other: VoC'S						
Equipmer	nt Blank I.	D.:	Time		Duplicate	e I.D.:					

Project #:	06120	6-DW	1-1	Client:	'scomati	rix				
Sampler:	DW		<u></u>	Start Date:	12-20.	06				
Well I.D.	: ow-8			Well Diam	neter: 💋	3 4	68			
Total We	ll Depth:	17.90		Depth to V	Depth to Water Pre: 2.85 Post: 3.75					
Depth to 2	Free Produ	uct:		Thickness of Free Product (feet):						
Reference	ed to:	(PVC)	Grade	Flow Cell Type: YSI 556						
Purge Metho Sampling M	od: lethod:	2" Grundf Dedicated	os Pump Tubing	✓ Peristaltic Pump Bladder Pump ✓New Tubing Other						
Flow Rate: _	200 NI 1	<u>m</u>			Pump Dept	n: /0 ′				
Time	Temp. (°) or °F)	рН	Cond. (mS or aS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (16))	かん Observations		
1225	19.32	6.53.	1042	0.1	0.57.	84.7	600	4.05		
(228	19.05	6.54	1031.	0.1	0.65	87.1	1200	4.03		
1231	19.19	6.54	1075	011	4.03					
1234	(9.38	6.54	1024	0.1	4.05					
1231	19.69	6.55	1024	0,1	0.33	94.9	3000	4.05		
				·						
		<u></u>		······			·····			
							·			
Did well c	dewater?	Yes	No		Amount a	actually e	vacuated: 300	onl		
Sampling	Time: (240			Sampling	Date: /2) -90-06			
Sample I.I	D.: OW	-8-122	006		Laborato	ry: Cre.	ek			
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D		Other: D	issolved Load	by 6020		
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	e I.D.:		- <u>j</u>		

LOW FLOW WELL MONITORING DATA SHEET

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	IE PGZE	1930 Colise	um Way	PROJECT NUM	IBER 06/220-0W	-1	<u> </u>
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
YSI 556 Flow dell	0501520	12-20-06 0555	Conductivity 3900ms	3950 mg	3900 Jus	14.98	Besu
			pH 4.0	4.00 6.96 10.03	4.00 7.00	15.16 15.08 14:99	Dh
U.			ORP 244mV DO 100%	245.9 m/ 99.372	244 mV within 10%	15.03	DC
Hach 2100P Turbidineter	28926		Turbidity 60.1 20	20.1 19.8	within 10%		DW

2

Creek Environmental Laboratories, Inc.

Chain-of-Custody

141 Suburban Road, Suite C-5, San Luis Obispo, CA 93401 phone (805) 545-9838 fax (805) 545-0107 www.creeklabs.com sales@creeklabs.com

Order # _____

Please Print in Pen			—ù					
Client Name	Conta	act	Phone			Due D	ate:	
Geomatrix	Jonat	han Skaggs	510-663-4	104		24Hr		
Address City		State Zip	Fax			Cell	510-409-07 	79
2101 Webster Street, Oakland, CA 94612		· · · · ·	510-663-4	141		Веере	<u>r</u> . Tai	· · · · · · · · ·
Project Name/Number			P0#				5 10:	
Rill to: (if different from above)	Address	(i City			State	7ir)
same	74441055					outo		
Sampler Name (Print)	Comments:	Lead needs 2.5 ug/l reporting limit.				Matrix	Key: DW	= Drinking Water
Dave walter						AQ = .	Aqueous (SL = Soil/Solid
	Date/Time				# of			
Sample Description	Sampled	Analysis		Matrix	Bottles	Preservative /	Type Bottles	Creek Lab Sample #
OW-1 - 177006	12-20-06	TPH.D 8015, TPH.G 8015, BTE	EX 8260B	AQ	74	11 Amber, 3 VV HCI		
OW 2 mart	12-70-06	Dissolved Lead 6010B	· · · ·	AQ	16	250 ml P i	inpres	
UVV-Z - (22006	1210	BTEX 82608			9	Ster 1	S WHEL	
-0141-4		TPH.D.8015, TPH.G 8015, BTE	X 8260B -	AQ	7	1LAmber,	na a se de	
						6 VV HCI	<u> </u>	
OW-5 (& MS MSD) - Date	12-20-06	TPH.D 8015, TPH.G 8015, VOC	C 8260B,	AQ	446	3 1I Ambe	r, 10 VV	
	.1640	Dissolved Lead 6010B			13	HCI 250 m	d P unp	and the second second
OW-6 -12244	12-20-06	TPH.D 8015, TPH.G 8015, VOC	C 8260B	AQ	7	11 Amber,		
UII-U -(19006	1130			-	_	6 VV HG		
OW-7 -121006	12-20-06	[TPH.D 8015, TPH.G 8015, VOC	58260B	AQ	1	11 Amper,		
	132				4	BVV HCI		
OW-8 -122006	1240	Dissolved Lead Control / 60	10 D	AQ		239 III P I	upres	
Field Blank - mark	12-70-06	VOC 8260B, Dissolved Lead 6	6010B	AQ	1,0	3 VV HCI,	្តត្រ អ្នកស្នារភ្នំសេ	
TIEIU DIATIK 187006	1150	· · · · · · · · · · · · · · · · · · ·			7	250 ml P I	Inpres	Color Maria and a Color Color and a Color
			·	_			tine Alternation	
	<u> </u>					Charles Read Street		
	<i>(</i> 6) ·		CEIVED	đī	(n ')
(Sign) (Print)	(Organiz	zation) (Sign)			(Pri	nt)	<u>(C</u>	rganization)
David C. Welt Dave 1, Dalter	BTS	12-20-06/1615						
	•						Creek E Laborat	nvironmental ories. Inc.
FOR LAR USE ON V. Chipping Method: Clippt/	ab/ Courier	Samaler	onditions: T	emp		Infact: Y/ N	Custody	Sealed: Y/ N
TON LAD OOL ONLY. Shipping meanor. Chemine								Charles and the second
DEMARKS								
			A LIVER DE LE CONTRACTO			- Control - All All All All All All All All All	C	hadroansteach ar d'haar ar
	entrate de Chillesona				a Sidderaal		urrente i dir dise di Parla di	

APPENDIX D

Laboratory Analytical Reports and Chain-of-Custody Documentation

Creek Environmental Laboratories, Inc.

1

10

@creeklabs.com Order # 17719 141 Suburban Road, Suite C-5, San Luis Obispo, CA 93401 phone (805) 545-9838 fax (805) 545-0107 www.creeklabs.com sales@creeklabs.com

Please Print in Pen										
Client Name	Conta	ct	Phone			Due Dete				
Geomatrix	Jonatl	nan Skaggs	510-663-41	04		24Hr 48	Due Date: 24Hr 48Hr Other Normal TAT Cell 510-409-0779 Beeper Copies To: ITSI State Zip Matrix Key: DW = Drinking Water DOI: DOI:			
Address City		State Zip	Fax				0_400_077			
2101 Webster Street, Oakland, CA 94612			510-663-41	41		Beeper	0-403-011	5		
Project Name/Number PG&E Oakland			PO#			Copies To	0:			
Bill to: (if different from above) same	Address		City			State	Zip			
Sampler Name (Print) Dave Walter	Comments:	Lead needs 2.5 ug/l reporting lin	nit.			Matrix K	ey: DW =	Drinking Water		
Sample Description	Date/Time Sampled	Analysis		Matrix	# of		ueous S	L = Soli/Solid		
OW-1 - 122006	12-20-06	TPH.D 8015, TPH.G 8015, E	3TEX 8260B	AQ	Xy a	I Amber,	e Bottles	Creek Lab Sample #		
OW-2 -122006	12-20-06	Dissolved Lead 6010B	or fun X	AQ	TO	250 ml P uni	pres	16715		
OW-4		TPH.D. 8015, TPH.G 8015, E	TEX 8260B-	AQ	7	LAmber.				
						6 VV HCI	9 60			
OW-5 (& MS, MSD)-122006	12-20-06	TPH.D 8015, TPH.G 8015, V Dissolved Lead 6010B	/OC 8260B,	AQ	130	3 1I Amber, HCl 250 ml I	18 VV Punp	16716		
OW-6 -122006	12-20-06	TPH.D 8015, TPH.G 8015, V	/OC 8260B	AQ	7	11 Amber, 6 VV HCI		16717		
OW-7 -122006	12-20-06	TPH.D 8015, TPH.G 8015, V	/OC 8260B	AQ	7	11 Amber, 6 VV HCI		16718		
OW-8 -122006	12-20-06	Dissolved Lead 602057	JOIO B	AQ	1 :	250 ml P un	pres	16719		
Field Blank - 122006	(2-70-06	VOC 8260B, Dissolved Lea	d 6010B	AQ	1.0	SVV HCI, 250 ml P un	nres	16720		
							<u>,</u>			
RELINQUISHED BY		DATE/TIME	RECEIVED	BY						
(Sign) (Print)	(Organiz	(Sig	n)	- 1	Print	9	(0	regnization)		
David C. Kelt Dave 1.20/ter	BTS	12-20-0 6/161								
		12/21/06	ull Oder	TC	Gil	pone	Creek En	nvironmental		
FOR LAB USE ONLY: Shipping Method: Client	_ab/ Courier:	Samp	e Conditions: Te	mp:	3 <u></u>	tact YVN	Custody	Sealed: Y/ KT		
REMARKS REMARABELDA	1 12/	21/05		•		<u> </u>				
Per M-SV-260	$\frac{1}{1}$	1100								

H

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 06-C16714 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
	Dave Walter	Dave Walter			Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel	0.2	0.1	1	mg/L	EPA 8015/LUFT	12/28/06	12/22/06	897
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	12/29/06		989
Benzene	Not Detected	0.5	. 1	ug/L	EPA 8260	12/29/06		923
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16715 Order: N7719 Project: PG&E Oakland Received: 12/21/06 01/04/07 Printed:

REPORT OF ANALYTICAL RESULTS

			Sampled					
Sample Description	Sampled By	Sampled By			Matrix			
ow-2-12206	Dave Walter	Dave Walter		6a12:10	Aqueous		==========================	
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Lead, Dissolved	Not Detected	0.02	1	mg/L	EPA 6010	12/22/06		815

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16716 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ 	Time	Matrix = ===================================					
 OW-5(& ms,msd)-12206	Dave Walter		12/20/0	6a10:40	Aqueous	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch		
Lead, Dissolved	Not Detected	0.02	1	mg/L	EPA 6010	12/22/06		815		
TPH as Diesel	0.3	0.1	1	mg/L	EPA 8015/LUFT	12/28/06	12/22/06	897		
TPH as Gasoline	0.09	0.05	1	mg/L	EPA 8015/LUFT	12/29/06		989		
Benzene	0.7	0.5	1	ug/L	EPA 8260	12/29/06		923		
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
m.p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	· 1	ug/L	EPA 8260	12/29/06		923		
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
1.2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
1.3-Dichlorobenzene	1.0	0.5	1	ug/L	EPA 8260	12/29/06		923		
1,4-Dichlorobenzene	4.3	0.5	1	ug/L	EPA 8260	12/29/06		923		
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	12/29/06		923		
Chloroform	Not Detected	0.5		ug/L	EPA 8260	12/29/06		923		
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923		

A Minority-owned Business Enterprise

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaqqs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16716 N7719 Order: Project: PG&E Oakland 12/21/06 Received: Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sampled Date @ Time Matrix Sampled By Sample Description ______ _____ 12/20/06@10:40 Aqueous Dave Walter OW-5(& ms.msd)-12206 ______ Method Date Date Batch Dilution Units DLR Result Analyte Prepared Analyzed Factor _ _ _ _ _____ _____ 12/29/06 923 ug/L FPA 8260 Not Detected 0.5 1 4-Chlorotoluene 923 EPA 8260 12/29/06 1 1 ug/L Not Detected 1,2-Dibromo-3-Chloropropane EPA 8260 12/29/06 923 1 ug/L 0.5 Dibromochloromethane Not Detected 923 EPA 8260 12/29/06 0.5 1 ug/L Dibromomethane Not Detected 923 EPA 8260 12/29/06 Dichlorodifluoromethane Not Detected 0.5 1 ug/L 923 EPA 8260 12/29/06 2.2 0.5 1 ug/L 1,1-Dichloroethane 923 12/29/06 0.5 1 ug/L EPA 8260 0.6 1,1-Dichloroethene 923 0.5 1 ug/L EPA 8260 12/29/06 Not Detected cis-1,2-Dichloroethene EPA 8260 12/29/06 923 0.5 1 ug/L Not Detected trans-1,2-Dichloethene 923 EPA 8260 12/29/06 0.5 1 ug/L Not Detected 1.2-Dichloropropane 12/29/06 923 EPA 8260 Not Detected 0.5 1 ug/L 1,3-Dichloropropane 923 EPA 8260 12/29/06 0.5 1 ug/L Not Detected 2,2-Dichloropropane 12/29/06 923 0.5 1 ug/L EPA 8260 Not Detected 1,1-Dichloropropene 0.5 1 ug/L EPA 8260 12/29/06 923 cis-1,3-Dichloropropene Not Detected EPA 8260 12/29/06 923 0.5 1 ug/L trans-1,3-Dichloropropene Not Detected 923 EPA 8260 12/29/06 ug/L 0.5 1 Hexachlorobutadiene Not Detected 923 EPA 8260 12/29/06 Not Detected 0.5 1 ug/L Isopropylbenzene EPA 8260 923 12/29/06 0.8 0.5 1 ug/L 4-Isopropyltoluene 12/29/06 923 0.5 1 ug/L FPA 8260 Not Detected Methylene Chloride 923 ug/L EPA 8260 12/29/06 1 50 5 Naphthalene 12/29/06 923 EPA 8260 0.5 1 ug/L Not Detected n-Propylbenzene 923 12/29/06 ug/L EPA 8260 0.5 1 Styrene Not Detected 923 12/29/06 1 ug/L EPA 8260 1,1,1,2-Tetrachloroethane Not Detected 0.5 923 EPA 8260 12/29/06 0.5 1 ug/L Not Detected 1,1,2,2-Tetrachloroethane 923 ug/L EPA 8260 12/29/06 0.5 1 Not Detected Tetrachloroethene EPA 8260 12/29/06 923 ug/L 0.5 1 1,2,3-Trichlorobenzene Not Detected 923 EPA 8260 12/29/06 0.5 1 ug/L 1,2,4-Trichlorobenzene Not Detected 923 EPA 8260 12/29/06 Not Detected 0.5 1 ug/L 1,1,1-Trichloroethane 923 EPA 8260 12/29/06 0.5 1 ug/L Not Detected 1.1.2-Trichloroethane

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16716 Order: N7719 PG&E Oakland Project: Received: 12/21/06 01/04/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ຝ	d Time	Matrix			
	Dave Walter		12/20/0	06a10:40	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2,4-Trimethylbenzene	3.2	0.5	1	ug/L	EPA 8260	12/29/06		923
1,3,5-Trimethylbenzene	1.9	0.5	1	ug/L	EPA 8260	12/29/06		923
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

Page 5

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16717 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
OW-6-122006	Dave Walter	12/20/0	6@11:30	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel	Not Detected	0.1	1	mg/L	EPA 8015/LUFT	12/28/06	12/22/06	897
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	12/29/06		989
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Chlorobenzene	3.4	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2-Dichlorobenzene	1.2	0.5	1	ug/L	EPA 8260	12/29/06		923
1,3-Dichlorobenzene	11	0.5	1	ug/L	EPA 8260	12/29/06		923
1,4-Dichlorobenzene	44	0.5	- 1	ug/L	EPA 8260	12/29/06		923
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	12/29/06		923
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
All and be been advected by the state of the	en en se de Saland en la colonida la mante de la la la colonidade de servicio en la colonidade de servicio en l				A second s			

Page 6

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16717 Order: N7719 Project: PG&E Oakland Received: 12/21/06 01/04/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	l Time	Matrix		
ow-6-122006	Dave Walter	12/20/0	6a11:30	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	12/29/06	923
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,1-Dichloroethane	8.1	0.5	1	ug/L	EPA 8260	12/29/06	923
1,1-Dichloroethene	4.0	0.5	1	ug/L	EPA 8260	12/29/06	923
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Isopropylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	12/29/06	923
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	12/29/06	923
n-Propylbenzene	Not Detected	0.5	· 1	ug/L	EPA 8260	12/29/06	923
Styrene. and a representation of the	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
1,2,4-Trichlorobenzene	Not Detected	0.5	[.] 1	ug/L	EPA 8260	12/29/06	923
1,1,1-Trichloroethane	Not Detected	0.5	1.	ug/L	EPA 8260	12/29/06	923
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	923
Trichloroethene	Not Detected	0.5	- 1	ug/L	EPA 8260	12/29/06	923

Page 7

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16717 Order: N7719 Project: PG&E Oakland Received: 12/21/06 01/04/07 Printed:

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sa Da	mpled te @ Time	Matrix			
ow-6-122006	Dave Walter		12	/20/06a11:30	Aqueous	======		
Analyte	Result	DLR	Diluti Facto	on Units r	Method	Date Analyzed	Date Prepared	Batch
Trichlorofluoromethane	Not Detected	0.5		1 ug/L	EPA 8260	12/29/06		923
1,2,3-Trichloropropane	Not Detected	0.5		1 ug/L	EPA 8260	12/29/06		923
1,2,4-Trimethylbenzene	Not Detected	0.5		l ug/L	EPA 8260	12/29/06		923
1,3,5-Trimethylbenzene	Not Detected	0.5		l ug/L	EPA 8260	12/29/06		923
Vinyl Chloride	Not Detected	0.5		l ug/L	EPA 8260	12/29/06		923

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16718 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	1 Time 	Matrix			
ow-7-122006	Dave Walter)6a13:20	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
TPH as Diesel	0.4	0.1	1	mg/L	EPA 8015/LUFT	12/28/06	12/22/06	897
TPH as Gasoline	Not Detected	0.05	1	mg/L	EPA 8015/LUFT	12/29/06		989
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	,	923
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Chlorobenzene	51	10	20	ug/L	EPA 8260	01/02/07		990
1,2-Dichlorobenzene	21	10	20	ug/L	EPA 8260	01/02/07		990
1,3-Dichlorobenzene	120	10	20	ug/L	EPA 8260	01/02/07		990
1,4-Dichlorobenzene	330	10	20	ug/L	EPA 8260	01/02/07		990
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
sec-Butyl Benzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	12/29/06		923
Chloroform	Not Detected	0.5	· 1· ·	ug/L	EPA 8260	12/29/06		923
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
2-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 06-C16718 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
======================================	Dave Walter	12/20/0	6@13:20	Aqueous				
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Bat Prepared	:ch
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	12/29/06	9	23
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,1-Dichloroethane	3.6	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,1-Dichloroethene	3.1	0.5	1	ug/L	EPA 8260	12/29/06	9	23
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
trans-1,2-Dichloethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Isopropylbenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	12/29/06	9	23
4-Isopropyltoluene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Naphthalene	6.8	5	1	ug/L	EPA 8260	12/29/06	9	23
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,2,3-Trichlorobenzene	0.8	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,2,4-Trichlorobenzene	25	0.5	1	ug/L	EPA 8260	12/29/06	9	23
1,1,1-Trichloroethane	Not Detected	0.5	1.	ug/L	EPA 8260	12/29/06	9	23
1,1,2-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	97	23
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06	97	23

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 06-C16718 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	d Time	Matrix			
ow-7-122006	Dave Walter		12/20/0)6a13:20	Aqueous			
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	12/29/06		923

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16719 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	l Time	Matrix			
ow-8-122006	Dave Walter		12/20/0	======================================	Aqueous			.=====
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
Lead, Dissolved	Not Detected	0.02	1	mg/L	EPA 6010	12/22/06		815

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612 Log Number: 06-C16720 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampleo Date a	ł Time	Matrix		
Field Blank-122006	Dave Walter		===== ===== 12/20/0)6a11:50	Aqueous		
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Lead, Dissolved	Not Detected	0.02	1	mg/L	EPA 6010	12/22/06	815
Benzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Toluene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Ethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
m,p-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
o-Xylene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Methyl t-Butyl Ether (MTBE)	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Chlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,2-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,3-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,4-Dichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,2-Dichloroethane (EDC)	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,2-Dibromoethane (EDB)	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Bromobenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Bromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Bromodichloromethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Bromoform	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Bromomethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
n-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
sec-Butyl Benzene	Not Detected	0.5	1 `	ug/L	EPA 8260	01/02/07	990
t-Butylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Carbon Tetrachloride	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Chloroethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
2-Chloroethylvinyl ether	Not Detected	20	1	ug/L	EPA 8260	01/02/07	990
Chloroform	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Chloromethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
2-Chlorotoluene	Not Detected	0.5	1.	ug/L	EPA 8260	01/02/07	990
4-Chlorotoluene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,2-Dibromo-3-Chloropropane	Not Detected	1	1	ug/L	EPA 8260	01/02/07	990

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 06-C16720 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Samplec Date @	d Time	Matrix		
Field Blank-122006	Dave Walter)6@11:50	Aqueous		=====================
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Batch Prepared
Dibromochloromethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Dibromomethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Dichlorodifluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,1-Dichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,1-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
cis-1,2-Dichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
trans-1,2-Dichloethene	Not Detected	0.5	⁻ 1	ug/L	EPA 8260	01/02/07	990
1,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,3-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
2,2-Dichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,1-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
cis-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
trans-1,3-Dichloropropene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Hexachlorobutadiene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Isopropylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
4-Isopropyltoluene	Not Detected	0.5	. 1	ug/L	EPA 8260	01/02/07	990
Methylene Chloride	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Naphthalene	Not Detected	5	1	ug/L	EPA 8260	01/02/07	990
n-Propylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Styrene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,1,1,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,1,2,2-Tetrachloroethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Tetrachloroethene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,2,3-Trichlorobenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,2,4-Trichlorobenzene	Not Detected	0.5	. 1	ug/L	EPA 8260	01/02/07	990
1,1,1-Trichloroethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
1,1,2-Trichloroethane	Not Detected	0.5		ug/L	EPA 8260	01/02/07	990
Trichloroethene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990
Trichlorofluoromethane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07	990

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Jonathan Skaggs Geomatrix 2101 Webster St. Oakland, CA 94612

Log Number: 06-C16720 Order: N7719 Project: PG&E Oakland Received: 12/21/06 Printed: 01/04/07

REPORT OF ANALYTICAL RESULTS

Sample Description	Sampled By		Sampled Date ລ	Time	Matrix			
Field Blank-122006	Dave Walter		12/20/0	======================================	Aqueous	======	= = = = = = = = = = = = = = = = = = =	======
Analyte	Result	DLR	Dilution Factor	Units	Method	Date Analyzed	Date Prepared	Batch
1,2,3-Trichloropropane	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07		
1,2,4-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07		990
1,3,5-Trimethylbenzene	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07		990
Vinyl Chloride	Not Detected	0.5	1	ug/L	EPA 8260	01/02/07		990

DLR = Detection Limit for Reporting. Results of "Not Detected" are below DLR.

CREEK ENVIRONMENTAL LABORATORIES

Lab Director, Michael Ng

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 1

Order No.: N7719

agent	Blank
	agent

Analyte	Method	Results	Units	Batch
Lead, Dissolved	EPA 6010	< 0.02	mg/L	815
TPH as Diesel	EPA 8015/LUFT	< 0.1	mg/L	897
TPH as Gasoline	EPA 8015/LUFT	< 0.05	mg/L	989
Benzene	EPA 8260	< 0.5	ug/L	923
Benzene	EPA 8260	< 0.5	ug/L	99 0
Toluene	EPA 8260	< 0.5	ug/L	923
Toluene	EPA 8260	< 0.5	ug/L	99 0
Ethylbenzene	EPA 8260	< 0.5	ug/L	923
Ethylbenzene	EPA 8260	< 0.5	ug/L	990
m,p-Xylene	EPA 8260	< 0.5	ug/L	923
m,p-Xylene	EPA 8260	< 0.5	ug/L	990
o-Xylene	EPA 8260	< 0.5	ug/L	923
o-Xylene	EPA 8260	< 0.5	ug/L	990
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	923
Methyl t-Butyl Ether (MTBE)	EPA 8260	< 0.5	ug/L	990
Chlorobenzene	EPA 8260	< 0.5	uq/L	923
Chlorobenzene	EPA 8260	< 0.5	ug/L	990
1,2-Dichlorobenzene	EPA 8260	< 0.5	ua/L	923
1,2-Dichlorobenzene	EPA 8260	< 0.5		990
1,3-Dichlorobenzene	EPA 8260	< 0.5	ua/I	923
1,3-Dichlorobenzene	EPA 8260	< 0.5	ua/L	990
1,4-Dichlorobenzene	EPA 8260	< 0.5	ua/L	923
1,4-Dichlorobenzene	EPA 8260	< 0.5	ua/L	990
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/L	923
1,2-Dichloroethane (EDC)	EPA 8260	< 0.5	ug/l.	990
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	ua/L	923
1,2-Dibromoethane (EDB)	EPA 8260	< 0.5	-3/- ua/L	990
Bromobenzene	EPA 8260	< 0.5	ua/L	923
Bromobenzene	EPA 8260	< 0.5	ug/L	990
Bromochloromethane	EPA 8260	< 0.5	ua/L	923
Bromochloromethane	EPA 8260	< 0.5	ua/L	990
Bromodichloromethane	EPA 8260	< 0.5	ua/L	923
Bromodichloromethane	EPA 8260	< 0.5	ua/L	990
Bromoform	EPA 8260	< 0.5	ua/L	923
Bromoform	EPA 8260	< 0.5	ua/l	990
Bromomethane	EPA 8260	< 0.5	ua/l	923
Bromomethane	EPA 8260	< 0.5	ua/l	000
n-Butylbenzene	EPA 8260	< 0.5	ug/l	023
n-Butylbenzene	EPA 8260	< 0.5	ug/l	oon
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	923
sec-Butyl Benzene	EPA 8260	< 0.5	ug/L	000
t-Butylbenzene	EPA 8260	< 0.5	-3/- ua/l	923
t-Butylbenzene	EPA 8260	< 0.5	-9/-	000
Carbon Tetrachloride	EPA 8260	< 0.5	ua/i	027
Carbon Tetrachloride	EPA 8260	< 0.5	-3/ .	990

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Order No.: N7719

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
Chloroethane	EPA 8260	< 0.5		923
Chloroethane	EPA 8260	< 0.5	ua/L	990
2-Chloroethylvinyl ether	EPA 8260	< 20	ua/L	923
2-Chloroethylvinyl ether	EPA 8260	< 20	-3/- ua/l	990
Chloroform	EPA 8260	< 0.5	ua/1	923
Chloroform	EPA 8260	< 0.5	-3/- Ua/l	990
Chloromethane	EPA 8260	< 0.5	ug/l	923
Chloromethane	EPA 8260	< 0.5	ug/1.	990
2-Chlorotoluene	EPA 8260	< 0.5	ua/L	923
2-Chlorotoluene	EPA 8260	< 0.5	ua/l	990
4-Chlorotoluene	EPA 8260	< 0.5	9/= Ua/l	923
4-Chlorotoluene	EPA 8260	< 0.5	ua/l	990
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ua/l	923
1,2-Dibromo-3-Chloropropane	EPA 8260	< 1	ug/L	000
Dibromochloromethane	EPA 8260	< 0.5	ug/L	023
Dibromochloromethane	EPA 8260	< 0.5		000
Dibromomethane	EPA 8260	< 0.5	ug/L	023
Dibromomethane	EPA 8260	< 0.5	ug/L	000
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	023
Dichlorodifluoromethane	EPA 8260	< 0.5	ug/L	000
1,1-Dichloroethane	EPA 8260	< 0.5		023
1,1-Dichloroethane	EPA 8260	< 0.5		000
1,1-Dichloroethene	EPA 8260	< 0.5		023
1,1-Dichloroethene	EPA 8260	< 0.5		92.5
cis-1,2-Dichloroethene	EPA 8260	< 0.5		770 027
cis-1,2-Dichloroethene	EPA 8260	< 0.5	ug/L	92.5
trans-1.2-Dichloethene	EPA 8260	< 0.5	ug/L	770 027
trans-1.2-Dichloethene	EPA 8260	< 0.5		92.3
1.2-Dichloropropane	EPA 8260	< 0.5		027
1.2-Dichloropropane	EPA 8260	< 0.5		923
1.3-Dichloropropane	EPA 8260	< 0.5		990
1.3-Dichloropropane	EPA 8260	< 0.5	ug/L	923
2.2-Dichloropropane	EDA 8260	< 0.5	ug/L	990
2.2-Dichloropropane	EPA 8260	< 0.5	ug/L	925
1.1-Dichloropropene	EPA 8260	< 0.5	ug/L	990
1.1-Dichloropropene	EPA 8260	< 0.5		923
cis-1.3-Dichloropropene	EPA 8260	< 0.5		990
cis-1 3-Dichloropropene	EPA 8260	< 0.5		923
trans-1 3-Dichloropropene	EPA 8260	< 0.5		990
trans-1 3-Dichloropropene	EPA 0200	< 0.5	ug/L	923
Hexach a cobutadiana	EPA 0200	< 0.5	ug/L	990
lexach orobutadiene	EFA 0200	< 0.5 2 0 F	ug/L	923
Isonropyl henzene	EPA 0200	S. U.D.	ug/L	990
sonronví benzene	EPA 0200	< 0.5 I	ug/L	925
sobi oby chenzelle	EPA 0200	< U.5 I	ug/L	990

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Order No.: N7719

Laboratory Reagent Blank (continued)

Analyte	Method	Result	Units	Batch
4- Loopponyl tolyopp				
4-Isopropyl toluono	EPA 8260	< 0.5	ug/L	923
4-Isopropyttotdene	EPA 8260	< 0.5	ug/L	990
Methylene Chioride	EPA 8260	< 0.5	ug/L	923
	EPA 8260	< 0.5	ug/L	990
Naphthalene	EPA 8260	< 5	ug/L	923
napritratene	EPA 8260	< 5	ug/L	990
	EPA 8260	< 0.5	ug/L	923
Stunene	EPA 8260	< 0.5	ug/L	990
Styrene	EPA 8260	< 0.5	ug/L	923
styrene	EPA 8260	< 0.5	ug/L	990
1,1,1,2-letrachloroethane	EPA 8260	< 0.5	ug/L	923
1,1,1,2-letrachloroethane	EPA 8260	< 0.5	ug/L	990
1,1,2,2-letrachloroethane	EPA 8260	< 0.5	ug/L	923
1,1,2,2-letrachloroethane	EPA 8260	< 0.5	ug/L	99 0
letrachloroethene	EPA 8260	< 0.5	ug/L	923
Tetrachloroethene	EPA 8260	< 0.5	ug/L	990
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	923
1,2,3-Trichlorobenzene	EPA 8260	< 0.5	ug/L	990
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	923
1,2,4-Trichlorobenzene	EPA 8260	< 0.5	ug/L	99 0
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	923
1,1,1-Trichloroethane	EPA 8260	< 0.5	ug/L	99 0
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	923
1,1,2-Trichloroethane	EPA 8260	< 0.5	ug/L	990
Trichloroethene	EPA 8260	< 0.5	ug/L	923
Trichloroethene	EPA 8260	< 0.5	ug/L	990
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	923
Trichlorofluoromethane	EPA 8260	< 0.5	ug/L	990
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	923
1,2,3-Trichloropropane	EPA 8260	< 0.5	ug/L	990
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	923
1,2,4-Trimethylbenzene	EPA 8260	< 0.5	ug/L	990
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	923
1,3,5-Trimethylbenzene	EPA 8260	< 0.5	ug/L	990
Vinyl Chloride	EPA 8260	< 0.5	ug/L	923
Vinyl Chloride	EPA 8260	< 0.5	ug/L	990

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery Spike Amount		Units	Recovery Limits	Batch	
Lead, Dissolved	EPA 6010	93%	1.0	mg/L		815	
TPH as Diesel	EPA 8015/LUFT	85%	2.0	mg/L	60 - 140	897	
TPH as Gasoline	EPA 8015/LUFT	98%	0.5	mg/L	60 - 140	989	

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 4

Order No.: N7719

Laboratory Known Analysis (LCS)

Analyte	Method	Recovery	Spike Amount	Units	Recovery Limits	Batch
TPH as Gasoline	EPA 8015/LUFT	98%	0.5	 ma/i		080
Benzene	EPA 8260	99%	10	ug/L	80 - 120	027
Benzene	EPA 8260	102%	10	ug/L	80 - 120	023
Benzene	EPA 8260	96%	10	ug/1	80 - 120	000
Benzene	EPA 8260	96%	10	ug/L	80 - 120	000
Toluene	EPA 8260	95%	10	ug/L	80 - 120	023
Toluene	EPA 8260	97%	10	-3/- ua/l	80 - 120	023
Toluene	EPA 8260	91%	10	ua/i	80 - 120	990
Toluene	EPA 8260	94%	10	ua/L	80 - 120	990
Chlorobenzene	EPA 8260	95%	10	ua/L	80 - 120	923
Chlorobenzene	EPA 8260	96%	10	ug/L	80 - 120	923
Chlorobenzene	EPA 8260	98%	10	uq/L	80 - 120	990
Chlorobenzene	EPA 8260	100%	10	ug/L	80 - 120	990
1,1-Dichloroethene	EPA 8260	105%	10	ug/L	80 - 120	923
1,1-Dichloroethene	EPA 8260	109%	10	ua/L	80 - 120	923
1,1-Dichloroethene	EPA 8260	92%	10	ug/L	80 - 120	990
1,1-Dichloroethene	EPA 8260	98%	10	ug/L	80 - 120	990
Trichloroethene	EPA 8260	100%	10	uq/L	80 - 120	923
Trichloroethene	EPA 8260	100%	10	ug/L	80 - 120	923
Trichloroethene	EPA 8260	91%	10	ug/L	80 - 120	990
Trichloroethene	EPA 8260	92%	10	ug/L	80 - 120	990
				. -		

Matrix Spike/Matrix Spike Duplicates

		MS	MSD	Matrix	Spike			RPD	
Analyte	Method	Rec.	Rec.	RPD Sample	Amount	Units	Recovery Limits	Limit	Batch
Lead, Dissolved	EPA 6010	90%	88%	2 06-C16715	1.0	mg/L	75 - 125	20	815
TPH as Diesel	EPA 8015/LUFT	70%	75%	6 06-C16716	2.0	mg/L	50 - 150	30	897
TPH as Gasoline	EPA 8015/LUFT	96%	98%	2 06-C16716	0.5	mg/L	60 - 140	30	989
Benzene	EPA 8260	93%	103%	10 06-c16716	10	ug/L	70 - 130	20	923
Benzene	EPA 8260	94%	96%	2 06-C16798	10	ug/L	70 - 130	20	990
Toluene	EPA 8260	91%	100%	9 06-C16716	10	ug/L	70 - 130	20	923
Toluene	EPA 8260	93%	92%	1 06-016798	10	ug/L	70 - 130	20	990
Chlorobenzene	EPA 8260	102%	101%	1 06-C16716	10	ug/L	70 - 130	20	923
Chlorobenzene	EPA 8260	96%	98%	2 06-C16798	10	ug/L	70 - 130	20	990
1,1-Dichloroethene	EPA 8260	86%	109%	22 06-C16716	10	ug/L	70 - 130	20	923
1,1-Dichloroethene	EPA 8260	98%	97%	1 06-C16798	10	ug/L	70 - 130	20	990
Trichloroethene	EPA 8260	100%	100%	0 06-C16716	10	ug/L	70 - 130	20	923
Trichloroethene	EPA 8260	91%	92%	1 06-C16798	10	ug/L	70 - 130	20	990
Sample Duplicate									
			Sampl	e Sample					
Analyte	Method Sa	ample ID	Value	Duplicate	RPD Un	its RPD	Limit Batch		

141 SUBURBAN ROAD, SUITE C-5 • SAN LUIS OBISPO, CA 93401 • (805) 545-9838 • FAX (805) 545-0107

Quality Control Results

Page 5

Order No.: N7719

Sample Duplicate

Analyte	Metł	nod	Sample ID	Sample Value	Sample Duplicate	RPD	Units	RPD Limit	Batch
TPH as Gasoline	EP/	8015/LUFT	06-C16717	< 0.05	< 0.05	0	mg/L	30.	989
Benzene	E	PA 8260	06-C16911	< 0.5	< 0.5	0	ug/L	20.	990
Toluene	E	PA 8260	06-C16911	< 0.5	< 0.5	0	ug/L	20.	990
Ethylbenzene	E	PA 8260	06-C16911	< 0.5	< 0.5	0	ug/L	20.	990
m,p-Xylene	E	PA 8260	06-C16911	< 0.5	< 0.5	0	ug/L	20.	990
o-Xylene	E	PA 8260	06-C16911	< 0.5	< 0.5	0	ug/L	20.	990
Methyl t-Butyl Ether	(MTBE) E	PA 8260	06-C16911	< 0.5	< 0.5	0	ug/L	30.	990