Mr. Barney Chan Alameda County Environmental Health Services Environmental Protection Division 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 April 30, 2001

MAY 0 9 2007

Re: Groundwater Monitoring Report, First Quarter 2001 Eagle Gas, 4301 San Leandro Street, Oakland, California

Dear Mr. Chan,

Clearwater Group (Clearwater), on behalf of Ms. Farah Naz, is pleased to present this letter report of findings for groundwater monitoring activities for the above site. The activities reported here correspond with those proposed in the monitoring portion of the September 10, 1999, Artesian Environmental Soil Remediation Pilot Study and Well Installation Workplan.

SITE DESCRIPTION

The subject site is located in the southern portion of Oakland, California at the south corner of San Leandro Street and High Street, approximately 1,000 feet east of Interstate Highway 880. The site is bounded by commercial property to the southeast, southwest, and northwest, and by the BART tracks to the northeast (Figure 1). Based on previous investigations, the site is predominantly underlain by clays with some clayey gravel and clayey sand in shallower depths to approximately 10 feet below ground surface (bgs), and silty sand below 20 feet in some areas.

BACKGROUND

On April 21 and April 22, 1999, Artesian Environmental (now Clearwater) oversaw the removal of five underground storage tanks (USTs) at the subject site. The USTs included two 6,000 gallon gasoline USTs, two 4,000 gallon diesel USTs, and one 300 gallon used oil UST (Figure A). Field observations included strong petroleum odors from soils near the former USTs. A total of five confirmation soil samples and three groundwater samples were collected from the UST excavations. Laboratory analytical results confirmed an unauthorized release of petroleum (Table 2).

In a letter dated May 10, 1999, the Alameda County Department of Environmental Health recommended that soil be remediated by over-excavation / land disposal and that "as much groundwater as possible" be pumped from the excavation. Subsequently, approximately 800 tons of petroleum impacted soil were excavated and disposed of as Class II non-hazardous waste. Less than 1,000 gallons of petroleum impacted groundwater were pumped from the excavation. Groundwater did not recharge after pumping. Existing structures limited the amount of soil that could be safely excavated. Soil samples collected from the excavation walls and product piping trenches indicated some remaining petroleum and MTBE contamination.

On August 4 and August 5, 1999, approximately 100 linear feet of product piping was removed. Vent piping from between the former USTs and the south corner of the onsite building was also removed. All piping was cut and disposed of as scrap metal. On August 5, 1999, confirmation soil samples were collected along the piping trench. Six samples were collected from approximately three feet bgs. An additional four samples were collected, one for each of four

former fuel dispensers. Laboratory analytical results indicated the presence of hydrocarbon related contamination along piping trenches (Table 2).

On September 26, 2000, West Hazmat of Rancho Cordova, California, used a CME 75 drill rig to advance three borings to approximately 25 feet bgs (Figure 2), and collect soil samples (Table 2). Each of the three borings was converted to a groundwater monitoring well using clean, flushthreaded, two-inch diameter PVC well materials. On October 3rd and 10th, 2000, Clearwater surveyed the top of casings elevations for each well relative to an arbitrary benchmark, and developed the wells for monitoring. Initial ground samples collected from these wells contained 83,000 μg/L to 250,000 μg/L total petroleum hydrocarbons as gasoline (TPHg), and 33,000 μg/L to 400,000 µg/L methyl-tert butyl ether (MTBE).

GROUNDWATER MONITORING FIELD ACTIVITIES

Date of field activities:

1/26/01

Wells gauged/sampled:

MW-1, MW-2 and MW-3

Analytes tested:

Total Petroleum Hydrocarbons as diesel (TPHd) and gasoline (TPHg), benzene, toluene, ethyl benzene and xylenes (BTEX), five fuel oxygenates, (MTBE, EDBE, DIBE, TAME, TBA), and lead

scavengers (1,2-DCA and 1,2-DBA)

Analytical methods:

EPA Methods 8015 (modified), 8020, and 8260

Laboratory:

Entech Analytical Labs, Inc., of Sunnyvale, CA

Remarks:

None

GROUNDWATER MONITORING RESULTS

Depth to water:

7.60 feet (MW-1) to 13.38 feet (MW-3) below ground surface (bgs)

Flow direction/gradient:

East-northeast, at 0.032 ft/ft

SPH - wells/thicknesses:

Not detected for any well

TPHd concentration range:

900 μ g/L (MW-3) to 6,000 μ g/L (MW-2)

TPHg concentration range:

 $51,000 \mu g/L \text{ (MW-1) to } 740,000 \mu g/L \text{ (MW-2)}$

Benzene concentration range: 270 µg/L (MW-1) to 3,800 µg/L (MW-2)

MTBE concentration range:

77,000 μ g/L (MW-1) to 1,000,000 μ g/L (MW-2)

Remarks:

Laboratory indicated that diesel detected in all three wells was

"within quantification range but atypical for fuel."

SUMMARY AND CONCLUSIONS

Laboratory analytical results confirm petroleum related soil and groundwater contamination remain at this site. Soil contamination is greatest near the former UST excavation. Previous data indicate that some contaminated soil may remain underneath existing structures or near the former dispensers. The groundwater continued the first that the yell seem to the activities that the property of the continued to th investigation.

Field observations during drilling activities indicated that first observed groundwater was is similar for all wells (17 feet bgs to 19 feet bgs). Static groundwater levels, however, varied considerably between the three wells. If measured static water levels are accurate, groundwater appears to flow towards the northeast, at a steep gradient (i = 0.032 ft/ft). This groundwater flow directions is approximately opposite to the direction of San Francisco Bay.

Three operating USTs buried in artificial fill material currently occupy the former UST cavity, potentially acting as a groundwater sink interfering with normal groundwater flow patterns. Soil or other subsurface conditions may be influencing well recharge or groundwater gradient, producing anomalous groundwater elevation and gradient data.

RECOMMENDATIONS

Clearwater recommends additional site investigative activities to more completely delineate the groundwater contaminant plume and to determine if residual secondary source material remains on site. Currently, Clearwater is seeking access to adjacent properties surrounding the site to install either temporary borings, or permanent monitoring wells. Once access possible access locations have been determined, Clearwater will submit a workplan for further investigation. We recommend the continuation of quarterly monitoring as planned, with well redevelopment as needed to accurately determine the magnitude and direction of hydraulic gradient.

ATTACHMENTS

Figure I	Vicinity Map, Eagle Gas
Figure 2	Site Map, Eagle Gas
Figure 3	Groundwater Elevation Map - 1/26/01, Eagle Gas
Figure 4	Hydrocarbon Concentration in Groundwater, Eagle Gas - January 26, 2001
Figure A	Historical Sample Locations, Eagle Gas
Table 1	Groundwater Elevations and Sample Analytical Results, Eagle Gas

Table 2 Soil Sample Analytical Results

Clearwater Field Procedures

Well Gauging Data / Purge Calculations and Well Purging Data

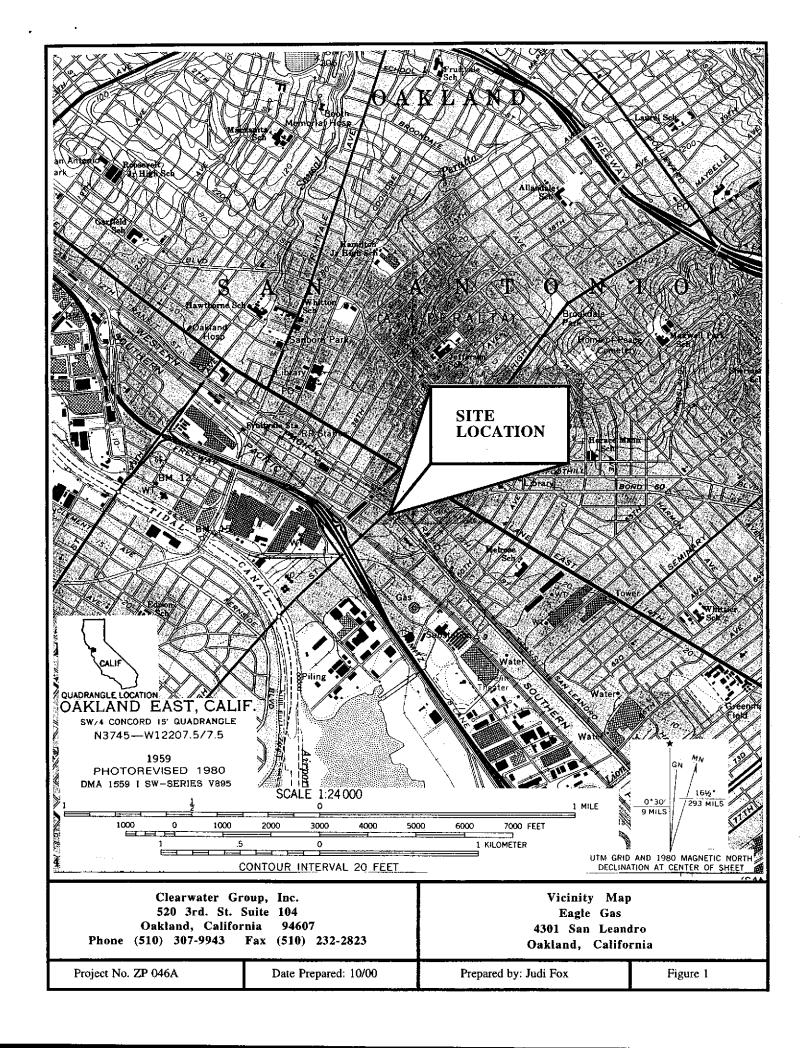
Laboratory Reports and Chain-of-Custody Forms

CERTIFICATION

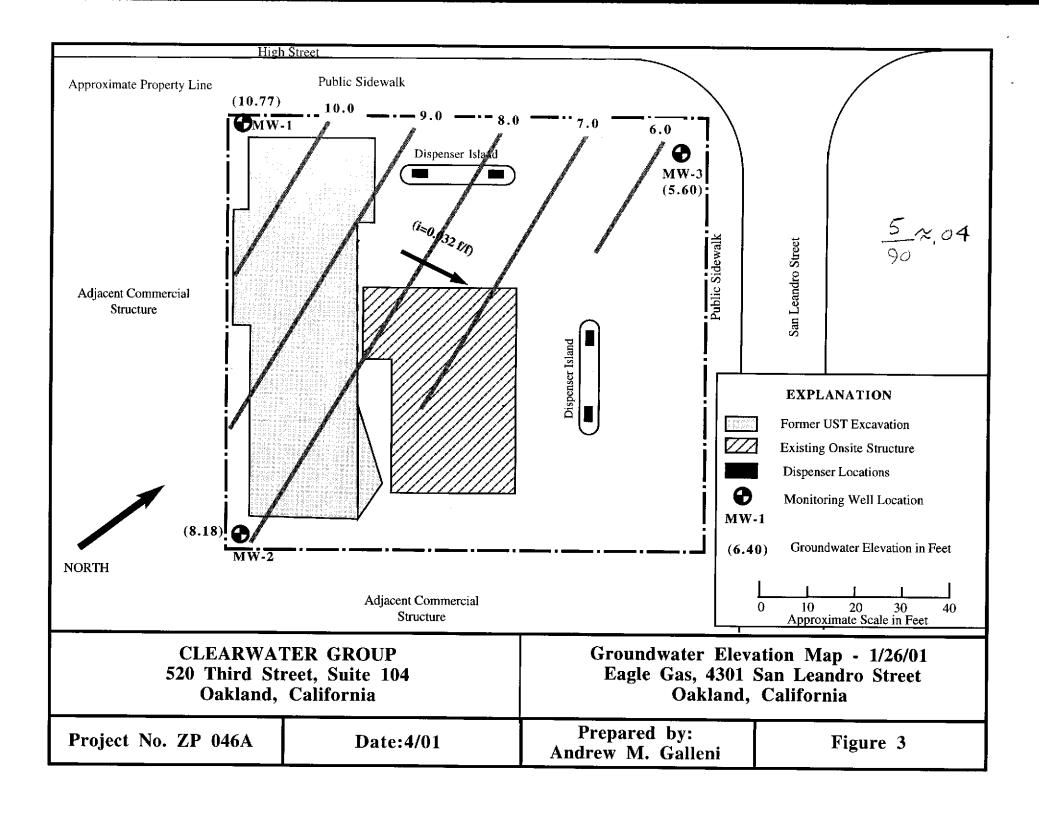
This report was prepared under the supervision of a professional Registered Geologist in the state of California. All statements, conclusions and recommendations are based solely upon published results from previous consultants, field observations by Clearwater Group and laboratory analysis performed by a California DOHS-certified laboratory related to the work performed by Clearwater Group. Information and interpretation presented herein are for the sole use of the client and regulating agency. The information and interpretation contained in this document should not be relied upon by a third party. The service provided by Clearwater Group, Inc. has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

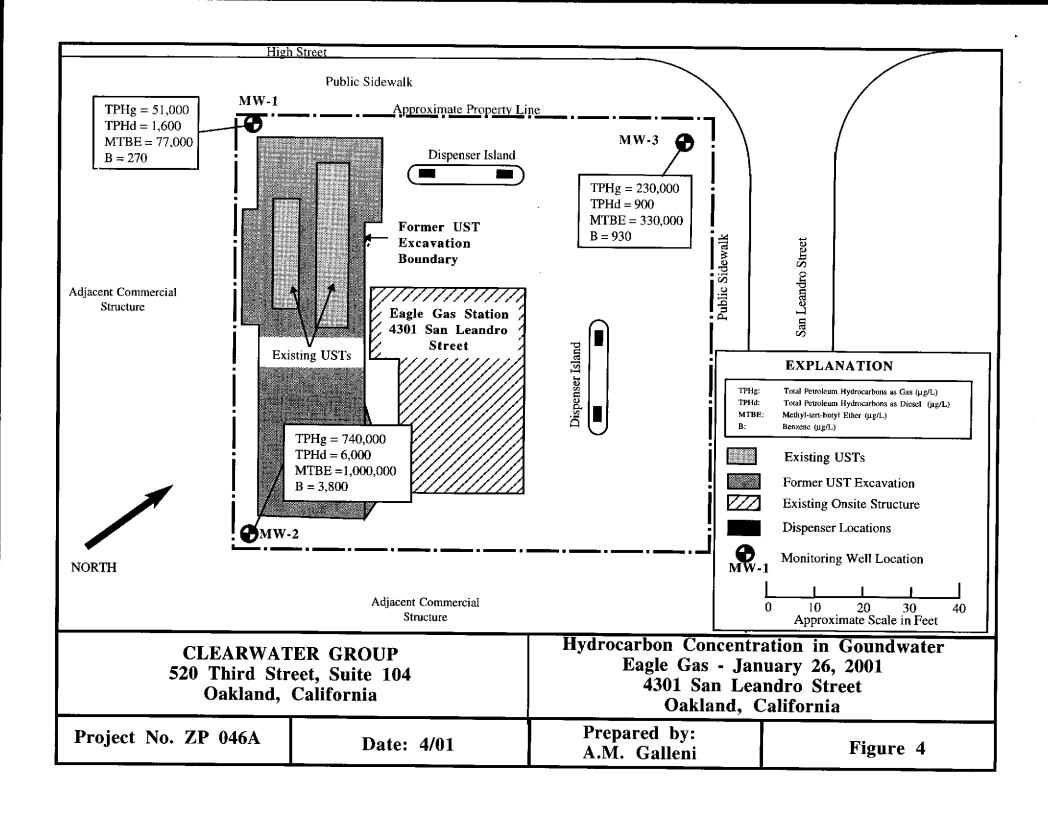
Clearwater Group,

Prepared by:


Andrew M. Galleni Project Geologist

Brian Gwinn, R.G. Senior Geologist


CC: Inspector Hernan Gomez, Oakland Fire Department


Orden M. Jall

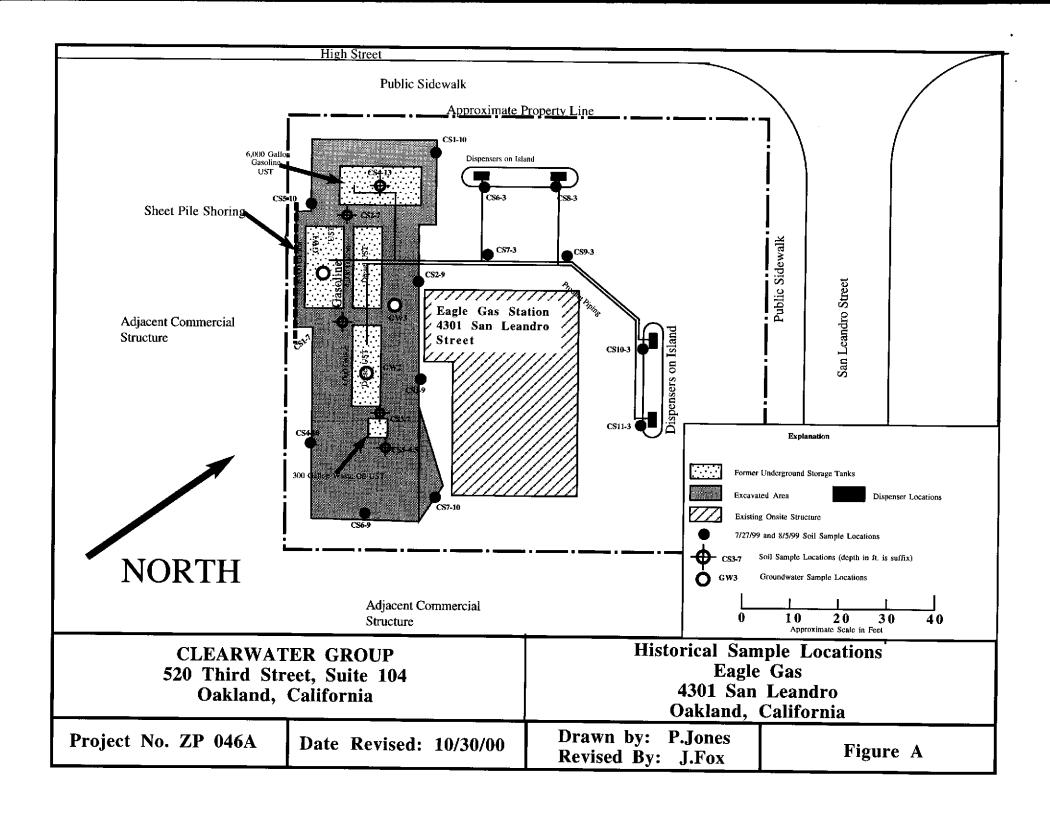

Mr. Muhammad Jamil and Ms. Farah Naz, 40092 Davis Street, Fremont, CA 94538

TABLE 2 SOIL SAMPLE ANALYTICAL RESULTS

Eagle Gas

4301 San Leandro Street

Oakland, California

Sample	Sampling	TPHg	TPHd	В	T	\mathbf{E}	X	MTBE	DIPE	ETBE	TAME	ТВА	Methanol	Ethanol	1.2-DCA	EDB
ID	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)		(mg/Kg)		(mg/Kg)		(mg/Kg)
CS1-7	4/21/99	770	840	8.9	4.8	5.8	16	86							(mg/Itg)	(IIIg/IXg)
CS2-7	4/21/99	880	1,900	3.3	5.7	15	45	16								
CS3-7	4/22/99	1,600	780	4.3	110	42	220	92								
CS5-6.5	4/22/99	20	33	0.22	1.8	0.54	3	52								
Stockpile 1	4/22/99	610	770	0.28	4.7	6.9	36	ND								
Stockpile 2	4/22/99	480	670	0.23	2.3	3.9	18	ND								
CS4-13	4/22/00	ND	ND	ND	ND	ND	ND	0.08								
CS6-3	8/5/99	4,300	1,300	11	130	82	420	70								
CS7-3	8/5/99	50	200	nd	2.4	0.85	4	14								
CS8-3	8/5/99	250	3,400	0.32	0.72	0.81	1	3.8								
CS9-3	8/5/99	380	1,900	ND	ND	ND	ND	9.5								
CS10-3	8/5/99	930	350	ND	78	17	99	310								
CS11-3	8/5/99	1,400	5,200	3.2	13	25	90	62								
MW1-10' bgs	9/26/00	310	87	0.062	0.022	1.3	3.4	6.9	<0.0050	<0.0050	0.019	2.9	<5.0	<0.050	<0.0050	<0.0050
MW2-10' bgs	9/26/00	630	210	0.053	0.052	2.0	14	1.0	<0.050	<0.050	<0.050	3.5	<10	<1.0	<0.050	<0.050
MW3-10 bgs	9/26/00	32	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	4.5	<0.0050	<0.0050	0.043	0.58	<1.0	<0.050	<0.0050	<0.0050

NOTES:

Total petroleum hydrocarbons as diesel by EPA Method 8015 (modified)
Total petroleum hydrocarbons as gasoline by EPA Method 8015 (modified)
Benzene, toluene, ethylbenzene and total xylenes by EPA Method 8260 (modified) TPHd TPHg

BTEX

MTBE Methyl tert-Butyl Ether by EPA Method 8260B

Ethyl-tert-Butyl Ether by EPA 8260B tert-Amyl Methyl Ether by EPA 8260B **ETBE TAME**

tert-Butanol by EPA 8260B TBA DIPE Diisopropyl Ether by EPA 8260B Not Tested / No Data Available

ND not detected above laboratory detection limits

TABLE 1 GROUNDWATER ELEVATIONS AND SAMPLE ANALYTICAL RESULTS

Eagle Gas

4301 San Leandro Street Oakland, California

Sample ID	Sampling Date					TPHd (µg/L)	TPHg (μg/L)	B (μg/L)	T (μg/L)	E (µg/L)	X (μg/L)	MTBE	EDB	1,2-DCA		ЕТВЕ	TAME	TBA
		<u> </u>			((1-6)	<u>(P-8:27</u>	(46.2)	(ME/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)_	(μg/L)
MW-1	10/3/00	18.37		9.41	0	460	93,000	<500	<500	<500	<500	130,000	<10,000	<10,000	<10,000	<10.000	<10,000	<2.000
	10/27/00	18.37	7.27	11.10	0												1.0,000	
	1/26/01	18.37	7.60	10.77	0	1,600*	51,000	270	<100	<100	<100	77,000	<5,000	<5,000	<5,000	<5,000	<5,000	<20,000
MW-2	10/3/00	20.28	20.26	0.02	0	210	250,000	<1,250	<1,250	<1,250	<1,250	400,000	<25,000	<25,000	<25.000	<25.000	<25,000	<100,000
	10/27/00	20.28	13.88	6.40	0												122,000	
	1/26/01	20.28	12.10	8.18	0	6,000*	740,000	3,800	<500	940	1,600	1,000,000	<50,000	<50,000	<50,000	<50,000	<50,000	<200,000
MW-3	10/10/00	18.98			0	120	83,000	<500	<500	<500	<500	33,000	<2,500	<2,500	<2,500	<2,500	<2,500	<10,000
	10/27/00	18.98	18.75	0.23	0													
	1/26/01	18.98	13.38	5.60	0	900*	230,000	930	<500	<500	<500	330,000	<25,000	<25,000	<25,000	<25,000	<25,000	<100,000

NOTES:

TOC	Top of well casing referenced to mean sea level
DTW	Depth to water
GWE	Groundwater elevation
SPH	Separate phase hydrocarbons (floating product); no samples taken
TPHd	Total petroleum hydrocarbons as gasoline by EPA Method 8015 (modified)
TPHg	Total petroleum hydrocarbons as gasoline by EPA Method 8015 (modified)
BTEX	Benzene, toluene, ethylbenzene and total xylenes by EPA Method 8020 (modified)
MTBE	Methyl tert-Butyl Ether by EPA Method 8260B
EDB	1,2-Dibromoethane by EPA Method 8260B
1,2-DCA	1,2-Dichloroethane by EPA Method 8260B
DIPE	Diisopropyl Ether by EPA Method 8260B
ETBE	Ethyl-t-butyl Ether by EPA Method 8260B
TAME	tert-Amyl Methyl Ether by EPA Method 8260B
TBA	tert-Butanol by EPA Method 8260B
(µg/L)	Micrograms per liter: approximately wqual to parts per billion
< #	Not detected in quantities greater than indicated method detection limit

not tested / no data available

^{*} Laboratory note: "Results within quantitation range; chromatogrpahic pattern not typical of fuel."

CLEARWATER GROUP, INC.

Groundwater Monitoring and Sampling Field Procedures

Groundwater Monitoring

Prior to beginning, a decontamination area is established. Decontamination procedures consist of scrubbing downhole equipment in an Alconox® solution wash (wash solution is pumped through any purging pumps used), and rinsing in a first rinse of potable water and a second rinse of potable water or deionized water if the latter is required. Any non-dedicated down hole equipment is decontaminated prior to use. When using a peristaltic pump, new or dedicated silicon head tube and polyethylene tubing is used.

Prior to purging and sampling a well, the static water level is measured to the nearest 0.01 feet with an electronic water sounder. Depth to bottom is typically measured once per year, at the request of the project manager, and during Clearwater's first visit to a site. If historical analytical data are not available, with which to establish a reliable order of increasing well contamination, the water sounder and tape will be decontaminated between each well. If floating separate-phase hydrocarbons (SPH) are suspected or observed, SPH is collected using a clear, open-ended product bailer, and the thickness is measured to the nearest 0.01 feet in the bailer. SPH may alternatively be measured with an electronic interface probe. Any monitoring well containing a measurable thickness of SPH before or during purging is not additionally purged and no sample is collected from that well. Wells containing a hydrocarbon sheen are sampled unless otherwise specified by the project manager. Field observations such as well integrity as well as water level measurements and floating product thicknesses are noted on the Gauging Data/Purge Calculations form.

Well Purging

Each monitoring well to be sampled is purged using either a PVC bailer, submersible pump or a peristaltic pump. Physical parameters (pH, temperature and conductivity) of the purge water are monitored during purging activities to assess if the water sample collected is representative of the aquifer. If required, parameters such as dissolved oxygen, turbidity, salinity etc. are also measured. Samples are considered representative if parameter stability is achieved. Stability is defined as a change of less than 0.25 pH units, less than 10% change in conductivity in micro mhos, and less than 1.0 degree centigrade (1.8 degrees Fahrenheit) change in temperature. Parameters are measured in a discreet sample decanted from the bailer separately from the rest of the purge water or in a in-line flowthrough cell. Parameters are measured at least four times during purging; initially, and at volume intervals of one well volume. Purging continues until three well casing volumes have been removed or until the well completely dewaters. Wells which dewater or demonstrate a slow recharge, may be sampled after fewer than three well volumes have been removed. Well purging information is recorded on the Purge Data sheet. All meters used to measure parameters are calibrated daily. Purge water is sealed, labeled, and stored on site in D.O.T.-approved 55-gallon drums. After being chemically profiled, the water is removed to an appropriate disposal facility by a licensed waste hauler.

Groundwater Sample Collection

Groundwater samples are collected immediately after purging or, if purging rate exceeds well recharge rate, when the well has recharged to at least 80% of its static water level. If recharge is extremely slow, the well is allowed to recharge for at least two hours, if practicable, or until sufficient volume has accumulated for sampling. The well is sampled within 24 hours of purging or repurged. Samples are collected using polyethylene bailers, either disposable or dedicated to the well. Samples may also be collected from the peristaltic pump tubing. Samples being analyzed for compounds most sensitive to volatilization are collected first. Water samples are placed in appropriate laboratory-supplied containers, labeled, documented on a chain of custody form and placed on ice in a cooler for transport to a state-certified analytical laboratory. Analytical detection limits match or surpass standards required by relevant local or regional guidelines.

Quality Assurance Procedures

To prevent contamination of the samples, CGI personnel adhere to the following procedures in the field:

- A new, clean pair of latex gloves are put on prior to sampling each well.
- Wells are gauged, purged and groundwater samples are collected in the expected order of increasing degree of contamination based on historical analytical results.
- All purging equipment will be thoroughly decontaminated between each well, using the procedures previously
 described at the beginning of this section.
- During sample collection for volatile organic analysis, the amount of air passing through the sample is minimized. This helps prevent the air from stripping the volatiles from the water. Sample bottles are filled by slowly running the sample down the side of the bottle until there is a convex meniscus over the mouth of the bottle. The lid is carefully screwed onto the bottle such that no air bubbles are present within the bottle. If a bubble is present, the cap is removed

and additional water is added to the sample container. After resealing the sample container, if bubbles still are present inside, the sample container is discarded and the procedure is repeated with a new container.

Laboratory and field handling procedures may be monitored, if required by the client or regulators, by including quality control (QC) samples for analysis with the groundwater samples. Examples of different types of QC samples are as follows:

- Trip blanks are prepared at the analytical laboratory by laboratory personnel to check field handling procedures. Trip blanks are transported to the project site in the same manner as the laboratory-supplied sample containers to be filled. They are not opened, and are returned to the laboratory with the samples collected. Trip blanks are analyzed for purgable organic compounds.
- Equipment blanks are prepared in the field to determine if decontamination of field sampling equipment has been effective. The sampling equipment used to collect the groundwater samples is rinsed with distilled water which is then decanted into laboratory-supplied containers. The equipment blanks are transported to the laboratory, and are analyzed for the same chemical constituents as the samples collected at the site.
- Duplicates are collected at the same time that the standard groundwater samples are being collected and are analyzed for
 the same compounds in order to check the reproducibility of laboratory data. They are typically only collected from
 one well per sampling event. The duplicate is assigned an identification number that will not associate it with the
 source well.

Generally, trip blanks and field blanks check field handling and transportation procedures. Duplicates check laboratory procedures. The configuration of QC samples is determined by CGI depending on site conditions and regulatory requirements.

CLEARWATER GROUPING

WELL GAUGING/PURGING CALCULATIONS DATA SHEET

4301 San Leandro Date Job No. Location 520 3rd Street, Suite 104 Oakland CA, 94607 Eagle Gas Oakland, Ca. 1-26-01 ZPO46A Phone: (510)893-5160 Fax: (510) 893-5947 Tech(s): Drums on Site @TOA Drums on Site @ TOD SR Soil: Water: () Water: / Ô Soil: Well No Diameter DTB DTW ST CV PV SPL Notes (in) (ft) (ft) (ft) (gal) (gal) (ft) 4.6 6.0 7.60 8.13

Explanation:

DTB = Depth to Bottom

DTW = Depth to Water

ST = Saturated Thickness (DTB-DTW)

CV = Casing Volume (ST x cf)

PV = Purge Volume (standard 3 x CV, well development 10 x CV)

SPL = Thickness of Separate Phase Liquid

Conversion Factors (cf)

2-inch diameter well cf=0.16 gal/ft

4-inch diameter well cf=0.65 gal/ft

6-inch diameter well cf=1.44 gal/ft

Job No.: 28	346A	Location: S	antegnallo	Street 1)all	Data.	1-26-01 Tech: SR
WELL	TIME	VOLUME	TEMP.	COND.	pH	1-26-01 Tech: 5 K Sample time: 1515
No.	(24-hr)	(gal)	(deg. F.)	(mS/cm)		Sample for: (circle)
MW-2		1.5	61.9	12.71	7	TPHg TPHino TPHino
Calc. purge	1409	3	61,2	8,52	6.77	BTEX MIBE 8010
volume	1413	4.5	60,8	7.5	6,80	Other: S Full OXYS, Law Scavefer
6	14/7	6	61.4	557	629	Sampling Method:
		:				Dedicated)/ Disposable bailer
	COMMEN	TS: color, tu	rbidity, rech	narge, etc.		Purging Method:
	bew	n, loc	١ : ١	Po	t !	PVC bailer) Pump
WELL No.	TIME	VOLUME	TEMP.	COND.	Hq	Sample time: 1540
	(24-hr)	(gal)	(deg. F.)	(mS/cm)	٠, ١	Sample for: (circle)
[MW-)	1425	12	593	(0.24	5.62	TPHe TPHd TPHmo
Calc. purge	1429	4	11,	6.25	2.01	BTEX MISE 8010
volume	14 33	6	1	6,68	5,96	Other S Full oxys, Lead Scars
8,13	1438	8,13	13	65	533	Sampling Method:
						Dedicated / Disposable bailer
	COMMEN	TS: color, tu	rbidity, recl	narge, etc.		Purging Method:
Sheer	dark	gay	Mgi	90:01)	PVC bailer / Pump
WELL	TIME	VOLUME	TEMP.	COND.	pН	Sample time: 1525
No.	(24-hr)	(gal)	(deg. F.)	(mS/cm)		Sample for: (circle)
LMW-3	14,49	1	Cotil	37	5.87	TPHg TPHino
Calc. purge	1452	Q	62.3	5.37	5.91	MTSE 8010
volume	14.55	3	62.7	6.K	6,18	Other: S fuel oxys, Land Scars
4.6	1460	4.6	(4)	591	6.23	Sampling Method:
						Dedicated Disposable bailer
	COMMEN	ITS: color, t	irbidity, rec	harge, etc.		Purging Method:
•	bour	1	1	fail		PVC bailer / Pumo
		7				

Entech Analytical Labs, Inc. 3334 Victor Court (408) 588-0200

Chain of Custody / Analysis Request

Santa Clara, C	CA 9508	54	(408)	588-020	01 -	Fax																					
Attention to: Andie	N G	alleni		Phone No.	89	3 -	514			ase Or					Send	invol	ce to	(if Dill	erent)	ı				Phon	е		
Company Name:	1	G60		Fax No.:	89	·3-		//P	rojec Zí	t Num	ber:	(Comp	any								1 <u></u>			
Mailing Address: This		treet		· ·				Р	rojec	t Nam	 ie:		. •		Billing	Add	ess	(if Diff	erent)							•	
city: Oaklan	1			State:	Zio:	46	0			t Loca					City:	-								State	3	Ζŧρ	
Sampler: SR Date:			Turn Aroun	d 4	Same 24 Ho 8 Ho 2 Ho	Day ur ur	ooo						[] [] [] [] [] [] [] [] [] [] [] [] [] [//					7/	7	7/	1	
1-26-0	0		Time		z no Standa						1	3				63	, S	/ /		1 × ×	$\langle \gamma \rangle$	7,	/ ,	/ ,	/ /		
Order ID:			Sam	pling		osite		iners	vative	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A Tam				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				/	/				
Client ID	Laborator	y No.	Date	Time	Matrix		Grab	Containers	Preservative	7. Selling 1			1 . Salar 1 . Sa					y c	73	To the second se		/		(5.00) May 1			Remarks
MW-1				1240			Ϋ́	7 1	14					\star	***		\prec	4	X								
MW-Z				15/5			\coprod	Ц						\perp				1	1		<u> </u>		<u> </u>				
MW-3			126-00	1525	<u> </u>		W	4	VД					X			\mathbf{W}	7	7					ļ			
					╀-		_	4	_																		
<u> </u>					+	Ш	4	4														<u> </u>	ļ	ļ			
					4		_	_	_												<u> </u>			ļ			
							_	_	_																ļ		· · · · · · · · · · · · · · · · · · ·
					+	$\vdash \vdash$	4	4	_		-										<u> </u>		ļ				
ļ <u></u>					+		4	4									<u> </u>				<u> </u>		_	_			
					+		_	-													<u> </u>				-		<u></u>
					╀	\vdash	4	+	_			 	 	!				_					-	 			
Relinquished by:	de	Received by	Hust	9	ato: 126	<u> </u>	me: G: q		Spec	cial	Inst	ruct	ions	or (Com	mer	ts.	L				•	ľ	<u> </u>	 	PDES	Detection Limits
Relinquished by:	estill C	Asceived by			ale:	_	me:																				
Relinquished by:		Received by	r:		ate:	7	me:		Met.	ale.	ΔΙΔ	le 9	h P	2 D.	, P	Cq	Ce	Or (30 f)	- C	b k	la k	4n.⊾	la M	lo M	i, K, Si, Ag, Na,
Relinquished by:		Received by	n.		ate:	Ť	me:		IAICI	Se,	Sr,	TI, S	n, T	i, V,	Zn, `	W :	CA	M-1	7 🗀	Ju, F	Platin	ng [19, N	PPN	iy, iv /I-13	IO, IV	LUFT-5

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

February 02, 2001

Andrew M. Galleni Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Order: 24175

Date Collected: 1/26/01

Project Name: Eagle Gas

Date Received: 1/26/01

Project Number: ZP046A

P.O. Number:

Project Notes:

On January 26, 2001, samples were received under documentented chain of custody. Results for the following analyses are attached:

<u>Matrix</u> Liquid <u>Test</u>

Gas/BTEX

<u>Method</u>

EPA 8015 MOD. (Purgeable)

Oxygenates+1,2DCA+EDB

EPA 8020 EPA 8260B

TPH as Diesel

EPA 8015 MOD. (Extractable)

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson

Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01
Date Received: 1/26/01
Project Name: Eagle Gas
Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

				Cum	чл	aary wea	i icepo	,, , , , , , , , , , , , , , , , , , ,			
Order ID:	24175		Lab Sa	mple ID:	241	75-001		Client Sam	ple ID: MW	7-1	
Sample Time:	3:40 PM		Sam	ple Date:	1/26	5/01		1	Matrix: Liq	uid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel		1600	x	2	50	100	μg/L	1/29/01	1/31/01	DW010107	EPA 8015 MOD (Extractable)
						Surroga	ate	Surr	ogate Recovery	Cont	rol Limits (%)
						o-Terphe	enyl		81	4	5 - 105
Order ID:	24175		Lab Sa	mple ID:	2417	75-002		Client Sam	ple ID: MW	7-2	
Sample Time:	3:15 PM		Sam	ple Date:	1/26	5/01		1	Matrix: Liqu	uid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel		6000	x	5	50	250	μ g /L	1/29/01	2/1/01	DW010107	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surr	ogate Recovery	Cont	rol Limits (%)
						o-Terphe	enyl		82	4	5 - 105
Order ID:	24175		Lab Sa	mple ID:	2417	75-003		Client Sam	ple ID: MW	7-3	
Sample Time:	3:25 PM		Sam	ple Date:	1/26	6/01		I	Matrix: Liqu	uid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel		900	x	1	50	50	μg/L	1/29/01	1/31/01	DW010107	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surre	ogate Recovery	Cont	rol Limits (%)
						o-Terphe	nyl		91	4.	5 - 105

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01
Date Received: 1/26/01
Project Name: Eagle Gas
Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24175		Lab Sa	mple II	D: 2417	5-001		Client Sam	ple ID: M	W-1	
Sample Time: 3:40 PM		Sam	ple Dat	e: 1/26	01		Ι	Matrix: Li	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	270		200	0.5	100	μg/L	N/A	1/31/01	WGC2010130	EPA 8020
Toluene	ND		200	0.5	100	μ g/ L	N/A	1/31/01	WGC2010130	EPA 8020
Ethyl Benzene	ND		200	0.5	100	μg/L	N/A	1/31/01	WGC2010130	EPA 8020
Xylenes, Total	ND		200	0.5	100	μg/L	N/A	1/31/01	WGC2010130	EPA 8020
·					Surroga	ite	Surr	ogate Recove	ry Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		93	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	51000	x	200	50	10000	μg/L	N/A	1/31/01	WGC2010130	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surre	ogate Recove	ry Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		105	6.5	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01
Date Received: 1/26/01
Project Name: Eagle Gas
Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24175		Lab Sa	mple II	2 417	5-002		Client Sam	ple ID: M	W-2	
Sample Time: 3:15 PM		Sam	ple Date	e: 1/26	0 1		1	Matrix: Li	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	3800		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020
Toluene	ND		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020
Ethyl Benzene	940		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020
Xylenes, Total	1600		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020
•					Surroga	ite	Surr	ogate Recove	ry Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		91	63	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	740000	x	1000	50	50000	μg/L	N/A	1/30/01	WGC2010129	EPA 8015 MOD (Purgeable)
					Surroga	ıte	Surre	ogate Recove	ry Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		104	6.5	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01

Date Received: 1/26/01 Project Name: Eagle Gas

Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24175		Lab Sa	ımple II): 24 17	5-003		Client Sam	ple ID: MV	W - 3				
Sample Time: 3:25 PM	А	Sam	ple Dat	e: 1/26/	′ 01	Matrix: Liquid							
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method			
Benzene	930		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020			
Toluene	ND		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020			
Ethyl Benzene	ND		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020			
Xylenes, Total	ND		1000	0.5	500	μg/L	N/A	1/30/01	WGC2010129	EPA 8020			
					Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)			
				aa	a-Trifluoro	toluene		88	65	5 - 135			
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method			
TPH as Gasoline	230000	x	1000	50	50000	μg/L	N/A	1/30/01	WGC2010129	EPA 8015 MOD. (Purgeable)			
					Surroga	ite	Surre	ogate Recovery	Contr	ol Limits (%)			
				aaa	a-Trifluoro	toluene		102	65	5 - 135			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01
Date Received: 1/26/01
Project Name: Eagle Gas
Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

Client Sample ID: MW-1 **Order ID: 24175** Lab Sample ID: 24175-001 Matrix: Liquid Sample Time: 3:40 PM **Sample Date: 1/26/01** Result POL Analysis Date QC Batch ID Method DF DLR Units **Parameter** Flag **EPA 8260B** WMS2010130 ND 1000 5 5000 μg/L 1/31/01 1,2-Dibromoethane (EDB) ND 1000 5 5000 μ g/L 1/31/01 WMS2010130 EPA 8260B 1,2-Dichloroethane EPA 8260B ND 1000 5 5000 μg/L 1/31/01 WMS2010130 Diisopropyl Ether WMS2010130 EPA 8260B 1/31/01 ND 1000 5 5000 μg/L Ethyl-t-butyl Ether 1/31/01 WMS2010130 EPA 8260B Methyl-t-butyl Ether 77000 1000 5000 μg/L EPA 8260B 1000 5 1/31/01 WMS2010130 tert-Amyl Methyl Ether ND 5000 μ**g**/L $\mu g/L$ 1/31/01 WMS2010130 **EPA 8260B** ND 1000 20000 tert-Butanol Surrogate Recovery Surrogate Control Limits (%) 65 - 135 4-Bromofluorobenzene 100 106 65 - 135 Dibromofluoromethane 65 - 135 99 Toluene-d8

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Enteck-Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01
Date Received: 1/26/01
Project Name: Eagle Gas
Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24175		Lab San	ple ID:	24175-0	002	Clie	nt Sample ID:	MW-2	
Sample Time: 3:15 P	M	Samp	le Date:	1/26/01			Matrix:	Liquid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
1,2-Dibromoethane (EDB)	ND		10000	5	50000	μg/L	1/31/01	WMS2010130	EPA 8260B
1,2-Dichloroethane	ND		10000	5	50000	μ g /L	1/31/01	WMS2010130	EPA 8260B
Diisopropyl Ether	ND		10000	5	50000	μ g /L	1/31/01	WMS2010130	EPA 8260B
Ethyl-t-butyl Ether	ND		10000	5	50000	μ g /L	1/31/01	WMS2010130	EPA 8260B
Methyl-t-butyl Ether	1000000		10000	5	50000	μg/L	1/31/01	WMS2010130	EPA 8260B
tert-Amyl Methyl Ether	ND		10000	5	50000	μg/L	1/31/01	WMS2010130	EPA 8260B
tert-Butanol	ND		10000	20	200000	μg/L	1/31/01	WMS2010130	EPA 8260B
	Surrogate	e		Surroga	te Recovery	,	Control Limits ((%)	
	4-Bromof	luorobenzen	e		99		65 - 135		
	Dibromof	luoromethar	ne		108		65 - 135		
	Toluene-d	8			100		65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Emech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Clearwater Group, Inc. 520 Third Street, Suite 104 Oakland, CA 94607

Attn: Andrew M. Galleni

Date: 2/2/01
Date Received: 1/26/01
Project Name: Eagle Gas
Project Number: ZP046A

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24175		Lab Sample ID: 24175-003					Client Sample ID: MW-3				
Sample Time: 3:25 PM	[Sample	Date:	1/26/01							
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method		
1,2-Dibromoethane (EDB)	ND		5000	5	25000	μg/L	1/31/01	WMS2010130	EPA 8260B		
1,2-Dichloroethane	ND		5000	5	25000	μg/L	1/31/01	WMS2010130	EPA 8260B		
Diisopropyl Ether	ND		5000	5	25000	μg/L	1/31/01	WMS2010130	EPA 8260B		
Ethyl-t-butyl Ether	ND		5000	5	25000	μg/L	1/31/01	WMS2010130	EPA 8260B		
Methyl-t-butyl Ether	330000		5000	5	25000	μg/L	1/31/01	WMS2010130	EPA 8260B		
tert-Amyl Methyl Ether	ND		5000	5	25000	μg/L	1/31/01	WMS2010130	EPA 8260B		
tert-Butanol	ND		5000	20	100000	μg/L	1/31/01	WMS2010130	EPA 8260B		
	Surrogat	te		Surroga	te Recovery		Control Limits ((%)			
	4-Bromofluorobenzene				101		65 - 135				
	Dibromo	fluoromethane	,		107		65 - 135				
	Toluene-	18			99		65 - 135				

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

STANDARD LAB QUALIFIERS (FLAGS)

All Entech lab reports now reference standard lab qualifiers. These qualifiers are noted in the adjacent column to the analytical result and are adapted from the U.S. EPA CLP program. The current qualifier list is as follows:

Qualifier	Description
(Flag)	
U	Compound was analyzed for but not detected
J	Estimated value for tentatively identified compounds or if result is below PQL but above MDL
N	Presumptive evidence of a compound (for Tentatively Identified Compounds)
В	Analyte is found in the associated Method Blank
E	Compounds whose concentrations exceed the upper level of the calibration range
D	Multiple dilutions reported for analysis; discrepancies between analytes may be due to dilution
X	Results within quantitation range; chromatographic pattern not typical of fuel

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC2010130

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/30/01

Paramet	ter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test:	TPH	as Gasoline										
TPH as (Gasoline	EPA 8015 M	ND		561		529.8	LCS	94.4		_	65.0 - 135.0
		Surrogate		Surrog	ate Recover	·y	Control 1	Limits (%)	-			
		aaa-Trifluorotolu	iene		102		65 -	135				
Test:	BTE	X				<u> </u>						
Benzene		EPA 8020	ND		6.2		6.08	LCS	98.1			65.0 - 135.0
Ethyl Be	nzene	EPA 8020	ND		7.8		6.61	LCS	84.7			65.0 - 135.0
Toluene		EPA 8020	ND		35.8		29.7	LCS	83.0			65.0 - 135.0
Xylenes,	total	EPA 8020	ND		43		36.2	LCS	84.2			65.0 - 135.0
		Surrogate		Surrog	ate Recover	у	Control I	Limits (%)				
		aaa-Trifluorotolu	iene		96		65 -	135				
Test:	TPH	as Gasoline			<u>-</u>					• • • • • • • • • • • • • • • • • • • •		
TPH as C	Gasoline	EPA 8015 M	ND		561		549.6	LCSD	98.0	3.67	25.00	65.0 - 135.0
		Surrogate		Surrog	Surrogate Recovery		Control Limits (%)				,	
		aaa-Trifluorotoluene			102		65 -	135				
Test:	BTE	X										
3enzene		EPA 8020	ND		6.2		6.49	LCSD	104.7	6.52	25.00	65.0 - 135.0
Ethyl Be	пиете	EPA 8020	ND		7.8		6.83	LCSD	87.6	3.27	25.00	65.0 - 135.0
Foluene		EPA 8020	ND		35.8		31.1	LCSD	86.9	4.61	25.00	65.0 - 135.0
Xylenes,	total	EPA 8020	ND		43		37.3	LCSD	86.7	2.99	25.00	65.0 - 135.0
		Surrogate		Surrog	ate Recover	у	Control I	imits (%)				
	aaa-Trifluorotoluene				97		65 -	135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

DW010107

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/30/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test:	TPH as Diesel				•						
TPH as Die	sel EPA 8015 M	ND		1000		708.12	LCS	70.8			50.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control 1	Limits (%)			•	
	o-Terphenyl			70		45 -	105			- · · · · · · · · · · · · · · · · · · ·	
Test:	TPH as Diesel					*					
TPH as Die	sel EPA 8015 M	ND		1000		753.94	LCSD	75.4	6.27		50.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	Limits (%)			-	
	o-Terphenyl			75		45 -	105				1

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS2010130

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/30/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD .	RPD Limits	Recovery Limits
Test: EPA 8	260B					-					
1,1-Dichloroethene	EPA 8260B	ND		40		35.6	LCS	89.0			65.0 - 135.0
Benzene	EPA 8260B	ND		40		39.9	LCS	99.8			65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		40		37.5	LCS	93.8			65.0 - 135.0
Methyl-t-butyl Ether	EPA 8260B	ND		40		38.8	LCS	97.0			65.0 - 135.0
Toluene	EPA 8260B	ND		40		37.3	LCS	93.2			65.0 - 135.0
Trichloroethene	EPA 8260B	ND		40		36.8	LCS	92.0			65.0 - 135.0
	Surrogate		Surrogate Recovery		гу	Control Limits (%)					
	4-Bromofluorob	enzene		103		65 -	135				
	Dibromofluoror	nethane		98		57 -	139				
	Toluene-d8			101		65 -	135				
Test: EPA 8	260B										
1,1-Dichloroethene	EPA 8260B	ND		40		34.8	LCSD	87.0	2.27	25.00	65.0 - 135.0
Benzene	EPA 8260B	ND		40		40.3	LCSD	100.7	1.00	25.00	65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		40		37.7	LCSD	94.3	0.53	25.00	65.0 - 135.0
Methyl-t-butyl Ether	EPA 8260B	ND		40		38.8	LCSD	97.0	0.00	25.00	65.0 - 135.0
Toluene	EPA 8260B	ND		40		37.5	LCSD	93.8	0.53	25.00	65.0 - 135.0
Trichloroethene	EPA 8260B	ND		40		36.7	LCSD	91.8	0.27	25.00	65.0 - 135.0
,	Surrogate		Surrog	ate Recover	ry	Control I	imits (%)				
	4-Bromofluorobenzene		103			65 -	135				
	Dibromofluoron	nethane		101		57 -	139				
	Toluene-d8			102		65 -	135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC2010129

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/29/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: TPH	I as Gasoline	<u>-</u>									
TPH as Gasoline	EPA 8015 M	ND		561		568.7	LCS	101.4			65.0 - 135.0
	Surrogate		Surrogate Recovery			Control	Limits (%)				-
aaa-Trifluorotoluene		uene	104			65 -	135				
Test: BTI	EX										
Benzene	EPA 8020	ND		6.2		6.21	LCS	100.2			65.0 - 135.0
ethyl Benzene EPA 8020 ND		•	7.8		6.57	LCS	84.2			65.0 - 135.0	
Toluene	EPA 8020	ND		35.8		29.7	LCS	83.0			65.0 - 135.0
Xylenes, total	EPA 8020	ND		43		35.6	LCS	82.8			65.0 - 135.0
	Surrogate		Surrogate Recovery		Control Limits (%)			-			
	aaa-Trifluorotole	uene		97		65 -	135			•	
	BE by EPA 802										· · · · · · · · · · · · · · · · · · ·
Methyl-t-butyl Et			52.8			51.1 LCS		96.8			65.0 - 135.0
	Surrogate		Surrogate Recovery		у	Control Limits (%)					
	aaa-Trifluorotoh	епе		97		65 -	135				
	I as Gasoline			-							
TPH as Gasoline	EPA 8015 M	ND		561		537.1	LCSD	95.7	5.72	25.00	65.0 - 135.0
	Surrogate		Surrogate Recovery		У	Control Limits (%)					
	aaa-Trifluorotoluene			103		65 -	135				
Test: BTE	X	·							•••		
Benzene	EPA 8020	ND		6.2		6.18	LCSD	99.7	0.48	25.00	65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		7.8		6.48	LCSD	83.1	1.38	25.00	65.0 - 135.0
Toluene	EPA 8020	ND		35.8		30.2	LCSD	84.4	1.67	25.00	65.0 - 135.0
Xylenes, total	EPA 8020	ND		43		36.0	LCSD	83.7	1.12	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	y	Control Limits (%)					
	aaa-Trifluorotoluene			97		65 -	135				
	BE by EPA 8020		-							· •	
Methyl-t-butyl Et	her EPA 8020	ND		52.8		51.4	LCSD	97.3	0.59	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control l	Limits (%)				
	aaa-Trifluorotolu	ene		97		65 -	135				

Entech Analytical Labs, Inc. Chain of Custody / Analysis Request 3334 Victor Court (408) 588-0200 Santa Clara, CA 95054 (408) 588-0201 - Fax Purchase Order No.: Attention to: Send Invoice to (if Different) (510)893-540 Andrew Project Number: Company Name: Company 29046A Billing Address (if Different) 5 an Eagle 995 Project Location: City: State Zip Sampler: Same Day 🔲 24 Hour Turn 48 Hour-Around Date: 72 Hour Time Standard Order ID: Containers Sampling Grab Time Laboratory No. Date Client ID Remarks MW-J MW-3■ NPDES Detection Limits Special Instructions or Comments 1820 Date: Metals: Al, As, Sb, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Mo, Ni, K, Si, Ag, Na, Date: Relinquished by: Received by: Se, Sr, Tl, Sn, Ti, V, Zn, W: CAM-17 Plating PPM-13 LUFT-5 L