Report of Soil and Ground-Water Investigation White GMC Truck Corporation Facility 5050 Coliseum Way Oakland, California 94601 June 25, 1992 2407.06 ### Prepared for: Volvo GM Heavy Truck Corporation 7900 National Service Road Greensboro, North Carolina 27402-6115 **LEVINE-FRICKE** # **CONTENTS** | | | PAGE | |--------|--|---| | LIST | OF TABLES | iii | | LIST | OF FIGURES | iv | | 1.0 | INTRODUCTION | 1
1
2 | | 2.0 | BACKGROUND | 2
2
3
4
4
5 | | 3.0 | SOIL AND GROUND-WATER INVESTIGATION | 7
7
<u>8</u> | | 4.0 | RESULT OF HYDROGEOLOGIC INVESTIGATION 4.1 Site Geology | 9
10
11
11
13
13
13
14
14 | | 5.0 | DISCUSSION OF RESULTS AND CONCLUSIONS | 16
16
16
17 | | 6.0 | REFERENCES | 19 | | ጥል ክፒ. | FS | | **FIGURES** # CONTENTS (continued) PAGE #### **APPENDICES** - A Soil Sampling and Well Installation, Development and Sampling Procedures - B Boring Logs - C Water-Quality Sampling Sheets - D Well Survey Data - E Laboratory Reports and Chain-of-Custody Forms Soil - F Laboratory Reports and Chain-of-Custody Forms Ground Water # LIST OF TABLES | Number | Title | |--------|--| | 1 | Well Construction Details | | 2 | Types of Chemical Analyses, Sample Containers, and Preservation Methods Used for Ground-Water Sampling | | 3 | Ground-Water Elevation Data | | 4 | Concentrations of Petroleum-Related Compounds in Soil Samples | | 5 | Concentrations of Metals in Soil Samples | | 6 | Concentrations of Petroleum-Related Compounds in Ground-Water Samples | | 7 | Concentrations of Metals in Ground-Water Samples | | 8 | Concentrations of General Minerals in Ground-Water
Samples | # LIST OF FIGURES | Number | Title | |--------|---| | 1 | Site Location Map | | 2 | Site Vicinity Map With Monitoring Well Locations and Former Tank Locations | | 3 | Shallow Ground-Water Elevations on November 7, 1991 - 11 am to 12 Noon | | 4 | Concentrations of Metals and pH in Soil Samples | | 5 | Concentrations of Metals, Sulfate, TDS, and pH in Shallow Ground Water, November 1991 | #### CERTIFICATION All hydrogeologic and geologic information, conclusions, and recommendations have been prepared under the supervision of and reviewed by a Levine. Fricke California Registered Geologist. Kathleen Isaacson Senior Project Hydrogeologist California Registered Geologist (5106) *6/25/92* Date seal? June 25, 1992 LF 2407.06 # REPORT OF SOIL AND GROUND-WATER INVESTIGATION WHITE GMC TRUCK CORPORATION FACILITY 5050 COLISEUM WAY OAKLAND, CALIFORNIA #### 1.0 INTRODUCTION This report presents the results of a soil and ground-water investigation performed by Levine. Fricke, Inc. (Levine. Fricke) for Volvo GM Heavy Truck Corporation ("Volvo GM") at the White GMC Truck ("White GMC") facility, 5050 Coliseum Way, Oakland, California ("the Site"; Figure 1). This on-site investigation was conducted in accordance with a Work Plan, dated and submitted on September 3, 1991, to the Alameda County Department of Environmental Health (ACDEH). The Work Plan was prepared in response to the ACDEH's April 10, 1991 letter to Volvo GM, requesting an investigation of soil and ground-water quality at the former location of the underground waste-oil storage tank at the Site (Figure 2). The Work Plan was given verbal approval by Ms. Cynthia Chapman of the ACDEH on September 19, 1991. In addition, the scope of work outlined in the Work Plan was expanded to include investigation of soil and ground-water quality at other parts of the Site to assess potential impacts resulting from operations of previous site owners. # 1.1 Objective Elevated concentrations of oil and grease (O&G) and metals were detected in soil samples collected by Tank Protect Engineering (TPE) of Union City, California, from the sidewalls of the excavation and the excavated soil stockpile during removal of the waste-oil tank on the Site in April 1991. This investigation was conducted by Levine Fricke to assess the approximate extent of O&G and metals remaining in soil near the former waste-oil tank pit and to assess the approximate extent and concentrations of O&G, other petroleum hydrocarbons, and metals in ground water near the pit. An additional investigation was conducted to further assess the possible effect of the historical use of the Site, before acquisition of the property by White Motor Corporation, on soil and ground-water quality. # 1.2 Scope of Work Levine Fricke conducted the following tasks to assess the presence of certain chemicals in soil and ground water at the former waste-oil tank location and at certain other locations at the Site. - Reviewed regulatory records to identify reported releases of hazardous materials at sites located within a 0.5-mile radius of the Site. - Drilled seven soil borings and collected soil samples from each soil boring for lithologic description and possible chemical analysis. - Installed seven ground-water monitoring wells (LF-1 through LF-7; Figure 2) in the seven soil borings and developed the new wells. - Collected ground-water samples from the seven new on-site wells and four existing wells located on adjacent property (MW-1 through MW-4; Figure 2) for chemical analysis. - Measured depth to ground water in the seven new wells and four existing wells on the adjacent property six times during an 8-hour period to assess ground-water flow direction and the possible effect of tidal fluctuations on ground-water elevation and flow direction. - Evaluated soil and ground-water quality data. # 2.0 BACKGROUND # 2.1 Site Description The Site is located approximately 0.5 mile northeast of San Leandro Bay in a heavy industry area of Oakland in Alameda County, California (Figure 1). The Site occupies approximately 4 acres of land; its elevation is approximately 10 feet above sea level. The Site is occupied by a large warehouse-type building (Figure 2), which contains office space and large service bays to maintain heavy trucks and other large vehicles. This building is surrounded by a concrete apron, and the remainder of the Site is covered with asphalt. In the surrounding area are salvage businesses and other industrial and commercial facilities (Figure 2). A PG&E transformer station is located immediately southwest of the Site. The Southern Pacific Railroad tracks parallel the northeast perimeter of the Site. A concrete-lined stormwater canal runs parallel to Coliseum Way southeast of the Site and drains into San Leandro Bay. # 2.2 Historical Usage of the Site Review of RWQCB records, historical aerial photographs (Pacific Aerial Survey 1950, AV-28.-18-17; 1957, AV-253-11-34; 1959, AV-337-7-35; 1990, AV-3845-10-34), and Sanborne insurance maps (1912, 1925, 1950) indicate that the Site and the adjoining property at 750-50th Avenue were occupied by a variety of chemical companies between 1910 and 1964. These tenants included Chemical and Pigment Company, a division of Glidden Company, which operated at the Site between 1926 to T964. Activities conducted at the Site during this period included production of paint-related materials such as lithopone (zinc sulfide and barium sulfate). Notations on the Sanborne maps indicate that acids, including sulfuric, nitric, and hydrochloric acid, were handled on the Site at least until 1950. According to information provided in an environmental site assessment report prepared by Blymyer Engineers, Inc. (1990), the buildings were demolished in 1964 and the Site was not occupied between 1964 and 1973. White Motor Corporation purchased the Site in 1973. The building and facilities, including the underground storage tanks (Figure 2) located at the Site, were built in 1974 (Blymyer, 1990). From 1981 to 1988, Volvo-White Truck Corporation operated at the Site. White GMC, a division of Volvo GM, has operated at the Site since 1988. Operations at the Site from 1974 to the present have included maintenance of trucks and other large vehicles. Based on information supplied by Volvo GM personnel (Bob Ware, 1991), the three underground tanks on the eastern side of the building historically were used to store motor oil. The former waste-oil tank on the northern side of the building received waste oil from the adjacent underground clarifier, which is still in place (Figure 2). The clarifier receives discharge from on-site steam-cleaning facilities. not # 2.3 Tank Excavations Based on work performed by TPE, three underground motor-oil tanks located immediately east of the building and one underground 550-gallon-capacity waste-oil tank located immediately north of the building were excavated and removed from the Site by TPE on March 18, 1991 (Figure 2). The following describes activities conducted by TPE as part of that excavation. ### 2.3.1 Waste-Oil Tank When the waste-oil tank was removed, TPE field staff observed a 3-inch by 0.5-inch hole on the north end of the underside of the tank. Volvo GM personnel observed that the hole was in the shape of a puncture caused by a backhoe tooth, and concluded that it had resulted from the tank removal. According to TPE personnel, ground water was observed approximately 6 feet below ground surface (bgs). This shallow depth to ground water reportedly was anomalously high, according to TPE, because of a ruptured terra-cotta stormwater drain located at approximately 8 feet bgs. TPE collected two soil samples for chemical analysis from above the soil-water interface from the excavation sidewalls where hydrocarbon-affected soil was observed. Additional soil was excavated to remove soil observed to be affected by hydrocarbons. The excavation was completed to about 9 feet bgs. Hydrocarbons were observed floating on ground water in the tank pit. Over two days, TPE pumped approximately
1,500 gallons of water from the excavation. Two to three days later, floating hydrocarbons were again observed on the ground water in the excavation. TPE used absorbent pads to remove floating hydrocarbons from the ground-water surface. Since then, floating hydrocarbons have not been observed in the excavation. TPE collected ground-water samples from the tank excavation on March 26, 1991 (one week after ground water was removed from the tank pit), and on April 4, 1991. Soil and ground-water samples collected from the excavation by TPE were analyzed by Sequoia Analytical of Concord, California, for total petroleum hydrocarbons as gasoline (TPHg) and diesel (TPHd) using EPA Method 8015, for aromatic hydrocarbons using EPA Method 8020, for O&G using EPA Method 5520 E and F, for semivolatile hydrocarbons using EPA Method 8270, and for the metals cadmium, chromium, lead, zinc, and nickel using EPA Methods 6010, 6010, 7421, 6010, and 6010, respectively. Ground-water samples were analyzed for polychlorinated biphenyls (PCBs) using EPA Method 8080. Soil samples collected from the western side (WO1-W) and southeastern side (WO2-S) of the tank excavation contained 470 parts per million (ppm) and 40 ppm TPHd, respectively, 320 ppm and below the detection limit (1 ppm) TPHg, respectively, and 960 ppm and 110 ppm O&G, respectively. TPHd, TPHg, and O&G were reported at 3,300 ppm, 450 ppm, and 870 ppm, respectively, for the soil sample collected from the excavation stockpile (SPWO-1). Benzene, toluene, ethylbenzene, and total xylenes (BTEX) were not detected in the sidewall samples, with the exception of 0.14 ppm ethylbenzene and 0.340 ppm total xylenes in sample WO1-W. The stockpile sample contained 3.60 ppm total xylenes and lower concentrations of toluene and ethylbenzene. For the two soil samples collected from the excavation sidewalls, the highest reported metals concentrations were 580 ppm cadmium, 29 ppm chromium, 1,900 ppm lead, 5,300 ppm zinc, 7712 and 25 ppm nickel. Higher concentrations of lead (16,000 ppm) and zinc (5,600 ppm) were detected in the one stockpile sample. The three soil samples were also analyzed for semivolatile hydrocarbons; only 6.0 ppm 1,2-dichlorobenzene and 0.660 ppm 2-methylnaphthalene were detected in the stockpile sample. Ground-water samples collected from the tank excavation contained 3.1 ppm TPHd, 0.65 ppm TPHg, 0.0026 ppm benzene, 0.042 ppm toluene, 0.0076 ppm ethylbenzene, 0.014 ppm total xylenes, and 7.9 ppm O&G. For the ground-water samples, chromium and nickel were not reported above detection limits, and cadmium, lead, and zinc were reported at concentrations of 0.13 ppm, 0.32 ppm, and 100.0 ppm, respectively. PCBs and polynuclear aromatics (PNAs) were not detected above the laboratory's detection limits in the ground-water samples. STLCnot #### 2.3.2 Motor-Oil Tanks TPE personnel did not observe holes in any of the three underground motor-oil tanks during removal. However, during removal of the tanks, TPE personnel observed evidence of overflow (minor soil staining), which possibly occurred during filling of the tanks. Five soil samples were collected on March 18, 1991, from the sidewalls of the excavation at approximately 8.5 feet bgs, just above the soil-water interface. A ground-water sample was collected from the bottom of the excavation on March 18, 1991, at approximately 9 feet bgs. The soil and ground-water samples were analyzed for TPHd and aromatic hydrocarbons. TPHd concentrations in the five soil samples ranged from less than the detection limit (1.0 ppm) to 78 ppm. Benzene and ethylbenzene were detected in one soil sample at concentrations of less than 0.001 ppm. Toluene was reported at concentrations ranging from less than the detection limit of 0.0050 ppm to 0.024 ppm and total xylenes were reported at concentrations ranging from less than the detection limit of 0.050 ppm to 0.054 ppm. The ground-water sample contained 1,700 ppb TPHd and 0.36 ppb total xylenes. Benzene, toluene, and ethylbenzene were not reported above the detection limit of 0.30 ppb. 2.4 Previous Investigations - 750-50th Avenue The following is a brief summary of investigations conducted by Aqua Terra Technologies, Inc. (ATT) of Walnut Creek, California, at the adjoining property located immediately north of the Site at 750-50th Avenue in September 1990 (Figure 2). coring wells and drilled four grue oth Avenue site (Figure 2). ATT installed four shallow monitoring wells and drilled four additional borings at the 750-50th Avenue site (Figure 2). The analytical results indicated that soil samples collected during drilling contained elevated concentrations of metals. Concentrations of zinc up to 14,900 ppm were detected in soil samples collected at 10 feet bgs from borings B2 and MW-2 on the south corner of the property near White GMC. The highest concentration of barium (9,540 ppm) was detected in a soil sample collected at 5 feet bgs from boring B-1, located near well MW-3. Ground-water samples collected from wells MW-1 through MW-4 did not contain detectable concentrations of organic hydrocarbons based on analysis using EPA Methods 8240 (volatile organic compounds [VOCs]) and 8270 (semivolatile compounds [SVOCs]). Elevated concentrations of metals, including zinc, were detected in these ground-water samples. The highest concentration of zinc (2,720 ppm) was reported for water collected from well MW-2. Water sampling results indicated that the pH for the ground water measured during sampling ranged from 4.81 to 6.91 standard units. The lowest pH was reported for water collected from well MW-2. Water-level measurements taken by ATT in August 1991 indicated that ground water was mounded in the area of well MW-2 and locally flowed to the northeast, away from San Leandro Bay. ATT attributed the mounding to tidal influences in the canal, which is located 140 feet west across Coliseum Way. #### SOIL AND GROUND-WATER INVESTIGATION 3.0 To further assess the possible effect of O&G and metals on soil and ground-water quality near the former location of the waste-oil tank, and to assess the potential impact of previous activities conducted at the Site, Levine-Fricke observed the installation of seven ground-water monitoring wells on October 28, 29, 30, and 31, 1991. The locations of these wells are illustrated in Figure 2. These activities were conducted as outlined in the Work Plan dated September 3, 1991. As discussed previously, the Scope of Work described in the September 3, 1991 Work Plan was expanded to assess soil and ground-water quality at other parts of the Site so that the potential impact of activities conducted at the Site before acquisition by the White Motor Corporation could be evaluated. To achieve this objective, wells LF-4 through LF-7 were installed at the locations illustrated on Figure 2. wells were installed, developed, and sampled with the same procedures as those outlined for wells LF-1, LF-2, and LF-3 in the September 3, 1991 Work Plan. # 3.1 Soil Boring and Monitoring Well Installation Seven well borings (LF-1 through LF-7) were drilled, using the hollow-stem auger method, and completed as monitoring wells. Two soil borings (LF-1A and 1B) were attempted at locations within 10 to 20 feet of the waste-oil tank excavation so that monitoring well LF-1 could be completed adjacent to the former tank location. However, refusal was encountered at a depth of 2.5 feet (LF-1B) and 4 feet (LF-1A) bgs in the borings, because of the presence of large slabs of concrete encountered in shallow fill in the area. These two shallow borings were grouted to the ground surface. Similarly, borings SB-1 and SB-2, shown near the tank excavation on Figure 3 of the Work Plan, could not be drilled at locations specified because of But it's now w.o. Pi subsurface impediments. Monitoring well LF-1 was moved to a location outside the area containing concrete debris fill. Soil samples were collected during drilling for lithologic description and possible chemical analysis. About 10 grams of soil was removed from the samples and placed in 50-milliliter (ml) centrifuge tubes with about 10 ml of distilled water to measure pH using a calibrated pH meter. Appendix A describes the procedures for soil sampling and monitoring well installation. Lithologic logs with well construction details are included in Appendix B. Ground water in natural sediments was generally encountered during drilling at depths ranging from 9.5 to 15 feet bgs. In borings LF-1, LF-2, and LF-3, shallower water was observed in material at the approximate fill/sediment interface at depths ranging from 4 to 7 feet bgs. (The monitoring wells constructed of 2-inch-diameter polyvinyl chloride (PVC) casing were installed to depths ranging between 15 and 21.5 feet bgs and were completed to avoid screening across fill material. Table I summarizes well construction details. # 3.2 Well Development and Ground-Water Sampling The newly installed wells were developed on November 4 and 5, 1991, by purging approximately 6 well casing volumes of ground water from each well. The wells were developed using a clean Teflon bailer, with the exception of well LF-5, which was developed with a centrifugal pump. During development, observation of the quantity, clarity, pH, temperature and specific conductance were recorded on water-quality sampling sheets. Copies of these sheets are contained in Appendix C. Appendix A describes field procedures for well development and sampling. Following development, ground-water samples for chemical analysis were collected on November 4 and 5, 1991 from wells LF-1 through LF-7. Ground-water samples were collected on December 5, 1991, from wells MW-1 through MW-4 located on the adjacent property (Figure 2). Before the samples were collected from wells MW-1 through MW-4, the wells were purged with a clean Teflon bailer until the pH, specific conductance, and temperature had stabilized in each well (approximately 3 well casing volumes were
purged). Appendix C contains copies of water-quality sampling sheets used to record these measurements. Table 2 summarizes sample preservation methods and sample containers used for this ground-water sampling event. ### 4.0 RESULT OF HYDROGEOLOGIC INVESTIGATION # 4.1 Site Geology The information on the geology of the Site was obtained from well borings LF-1 through LF-7 logged by Levine. Fricke personnel (Appendix B) and the logs for well borings MW-1 through MW-4 completed by ATT. Shallow sediments encountered at the Site consist of up to 8 feet of fill material overlying silty and sandy clay sediments. The ground surface surrounding the buildings is underlain by 4 to 6 inches of asphalt. Approximately 2.5 to 7.5 feet of fill was encountered underlying the asphalt. The fill matrix consists of gravelly sandy clay, silty sand, and gravel. brick, concrete rubble, wood, white and yellow powdery materials, and other debris were observed in the fill. Additionally, 4 inches to 6.5 feet of metallic slag (waste product from the processing of mineral ores) was observed in borings LF-1, LF-4, and LF-6. The greatest thickness of slag was measured in well boring LF-6. Slag was encountered in well boring LF-6 between approximately 1.5 and 8 feet bgs. addition, the dusky red, silty sand observed in borings LF-2, LF-3, and LF-5 at depths of 3.5, 5.5, and 2.5 feet bgs, respectively, also may be fill, based on the amount of debris contained in it. Alternatively, this material may consist of native soil mixed with other manufacturing materials emplaced before when the Site was paved in 1973. The native sediments underlying the fill are heterogeneous and consist of interbedded sand, silt, and clay. Silty and sandy clay and clay commonly were observed from below the fill to depths ranging from about 10 to 13.5 feet bgs. The sediments observed in the borings below approximately 13 feet bgs consisted of interbedded silty clay, clayey and silty sand and sand. Sandy units encountered at varying depths between 10 and 15 feet bgs do not appear to be laterally continuous. The thickness of the units varied from not observed in boring LF-4 to 5 feet in boring LF-5. According to ATT, clayey material was observed in at least the lower 5 feet of borings MW-1 through MW-4. Those four wells were drilled to depths ranging from 27 to 29 feet bgs. This information indicates that a more laterally continuous layer of clayey sediments may underlie the Site below depths of about 22 feet. # 4.2 Ground-Water Elevations and Flow The ground-surface and top-of-casing elevations were surveyed on November 7, 1991, by Stedman and Associates of Walnut Creek, California, a licensed surveyor. Appendix D presents the tabulated survey data. The bench mark used by Stedman and Associates (City of Oakland BM #1094, elevation 7.85 mean sea level datum) is located on top of the concrete wall over the drainage channel across from the Site on 50th Avenue (Figure 2). Six rounds of depth-to-water measurements were taken in the seven new wells and four existing wells on the adjacent property between 9 am and 5 pm on November 7, 1991, to provide data for evaluating ground-water flow direction and the possible influence of tidal fluctuation on ground-water elevations and flow direction. Depth to water in the drainage channel was also measured from the bench mark during each round. Based on northern California tide and current tables, high tide in San Leandro Bay (+7 feet) was at approximately noon and low tides were at about 6 am (+2.8 feet) and at about 7 pm (-0.6 feet). Ground-water elevation data are presented on Table 3. Although water levels in the channel appeared to respond to tidal fluctuations, ground-water elevations measured in the wells did not appear to change in a similar manner. Comparison of the six rounds of measurements indicates that ground-water flow is generally toward the south and west in the direction of San Leandro Bay. This pattern did not change significantly over the time when the six measurements were Figure 3 presents ground-water elevations for the measurement round started at about 11 am. The ground-water elevation for well MW-4 was not used for contouring, since the depth to water fluctuated while measurements were taken, After the well cap was removed, the water level in MW-4 fluctuated 4.4 feet over approximately 8 hours. ground-water levels in well LF-4 fluctuated similarly about 0.69 foot. This amount of fluctuation was not observed in any of the other wells measured. Ground-water elevations in the other nine wells increased 0.25 foot or less over the 8-hour measurement period. The measured increases and decreases of depth to water in the channel at the point of measurement appeared to coincide with the rise and fall of the tide. The level in the channel increased about 2.38 feet between 9 am and noon (high tide) and dropped 6.57 feet between noon and 4 pm (approaching time ATT said gw flow to NE ge wally of low tide) when the channel was dry at the measurement point. The channel was also dry during the 4 pm to 5 pm Sor ACs. Why so measurement round. # 4.3 Results of Soil Chemical Analysis # 4.3.1 Petroleum-Related Compounds Soil samples collected from boring LF-1 located about 50 feet northwest of the former waste-oil tank pit (Figure 3) were analyzed for petroleum-related compounds. Table 4 presents analytical results. Appendix E includes laboratory reports with chain-of-custody forms. Four soil samples collected from boring LF-1 at approximately 2-foot intervals between 2.0 and 11.0 feet bgs were analyzed for O&G and hydrocarbons using EPA Methods 5520 E & F. O&G and hydrocarbons were only detected in the sample collected at 2.5 feet bgs at 2,200 ppm and 1,700 ppm, respectively. O&G and hydrocarbons were not reported above the detection limit of 10 ppm for the other three samples. Samples collected from boring LF-1 at 5.5 feet bgs and 10.5 feet bgs were also analyzed for extractable hydrocarbons as diesel (EPA Method 3550), purgeable hydrocarbons as gasoline (modified EPA Method 5030/8015), and BTEX (EPA Method 8020). Diesel, gasoline, and BTEX were not reported above laboratory detection limits (Appendix E). # 4.3.2 Metals A total of 24 soil samples collected at depths ranging from 2 to 21 feet bgs from borings LF-1 through LF-7 (Figure 4) were analyzed for arsenic, barium, cadmium, chromium, nickel, lead, and zinc using the EPA Method 6010/7000 series. Those metals were selected for analysis based on analytical results reported for soil samples collected during excavation of the waste-oil tank by TPE; on results reported for soil samples collected during the ATT investigation on the adjacent property; and on past usage of the Site before 1974. Figure 4 and Table 5 summarize analytical results for this investigation. Figure 4 also includes data for soil samples collected by ATT. Appendix E includes laboratory reports. LF-4 Arsenic was detected in all samples except for the sample collected at 2 feet bgs from boring LF-2. Arsenic concentrations ranged from 2 to 270 mg/kg. reed to verify Barium was detected in all samples analyzed. The highest concentrations, ranging from 60,000 to 92,000 mg/kg, were detected in samples collected at depths of 4 feet bgs and shallower from borings LF-4 and LF-7. Based on the past use of the property, the barium detected may have been in the form to an of barium sulfate. A white powdery material (possibly of barium sulfate. A white powdery material (possibly a barium compound) was observed during drilling in samples collected at a depth of 3.5 feet from boring LF-4 and at 4 feet bgs from LF-6. Lower concentrations of barium, ranging from 30 to 4,200 mg/kg, were reported for samples collected from the remaining borings. The sample collected at a depth of 3.5 feet bgs from boring LF-4 was described during drilling by Levine Fricke's field staff as containing material that appeared to be sulfur. Analysis of that sample by ASTM Method D129 indicated sulfur at 1.08 percent. The highest concentrations of cadmium, chromium, and nickel were detected in the sample collected from boring LF-1 at a depth of 7.5 feet bgs. Cadmium results ranged from less than the detection limit (0.2 mg/kg) to 110 mg/kg. Chromium was detected in all samples except those collected at 2.5 feet and 7 feet bgs from boring LF-3. Concentrations of chromium ranged from 8 to 65 mg/kg. Nickel was detected in all samples, except the sample collected from boring LF-3 at a depth of 7 feet bgs, at concentrations ranging from 8 to 130 milligrams per liter (mg/l) Lead was detected at concentrations ranging from 5 to 24,000 mg/kg. The highest concentration reported was for the sample collected at 2.5 feet bgs from boring LF-2, which contained 8,600 mg/kg of lead. The next highest concentration (1,000 mg/kg) was collected at a depth of 3.5 feet bgs from boring LF-5. White was 24,00 collected at 7 feet bgs from boring LF-3 (detection limit 200) mg/kg). The highest concentrations (16 27) mg/kg). The highest concentrations (16,000 mg/kg and 31,000 mg/kg) were detected in samples collected at depths of 21 feet bgs (6 feet below first water in natural sediments observed during drilling) and 7.5 feet bgs, respectively, from boring LF-1. Lower concentrations ranging from 20 to 6,900 mg/kg were detected in the rest of the samples analyzed. TTHE 1000 # 4.3.3 Soil pH Measurements of pH recorded when soil samples were analyzed for metals are presented on Figure 4, while soil pH values measured during drilling are presented on the boring logs. The pH for soils in the Bay Area typically ranges from 6.5 to 8 standard units (Brady, 1974). Measurements of pH ranged from a low of 3.9 standard units, in soil samples collected from boring LF-1 at depths of 15.5 feet to 20 feet bgs, to a high of 10.6 standard units, in the soil sample collected at a depth of 3.5 feet bgs from boring LF-7. Most samples from borings LF-1, LF-2, and LF-3 had pH levels between 4.3 and 6.5
standard units. Samples from borings LF-4, LF-5, and LF-6 indicated pH measurements between 6.1 and 9.3 standard units. # 4.4 Results of Ground-Water Chemical Analysis Ground-water samples were analyzed to evaluate the possible effect of O&G and petroleum-related compounds, VOCs, and metals on ground-water quality. Table 2 presents the types of analysis conducted on these samples. Appendix F includes laboratory reports with chain-of-custody forms for ground-water analysis. # 4.4.1 Petroleum-Related Compounds Ground-water samples collected from wells LF-1, LF-2, LF-3, and MW-2 were analyzed for petroleum-related compounds outlined in the September 3, 1991 Work Plan; Table 6 presents analytical results. The ground-water sample from well LF-4 was also analyzed for petroleum hydrocarbons because a fuel-type odor was noted at the time of sampling. No O&G was detected above the detection limit of 0.5 ppm in the sample from LF-1. Results for extractable hydrocarbons as diesel in samples from wells LF-1, LF-2, and LF-3 ranged from below the detection limit of 0.05 mg/l for well MW-2 to 0.3 mg/l for well LF-2. No extractable hydrocarbons as oil were reported above the detection limit of 0.10 mg/l for the sample from well MW-2. Purgeable hydrocarbons as gasoline were not detected in the samples from wells LF-1, LF-2, LF-3 and MW-2. Purgeable hydrocarbons as gasoline were detected in LF-4 at 0.59 mg/l. Benzene, toluene, and ethylbenzene were reported at below the detection limits of 0.003 mg/l and 0.005 mg/l for analysis by EPA Methods 8020 and 8240, respectively. Concentrations of total xylenes were below the detection limits of 0.001 mg/l and 0.010 mg/l, respectively. Se Milevine FRICKE 4.4.2 Volatile and Semivolatile Organic Compounds Purgeable hydrocarbons were not detected above laboratory detection limits in ground-water samples from wells LF-1 through LF-7 (Appendix F). SVOCs and PCBs were not detected above detection limits in samples from wells LF-2 and LF-5 using EPA Method 8270 (Appendix F). # 4.4.3 Metals Samples collected from wells LF-1 through LF-7 and MW-1 through MW-4 were analyzed for CAM-17 metals using the EPA Method 6010/7000 series. Where applicable, San Francisco Basin Plan detection limits were used. Table 7 summarizes the analytical results. Figure 5 presents results for arsenic, barium, cadmium, chromium, nickel, lead, zinc, and copper. Arsenic was detected in samples from all wells above the detection limit of 0.002 mg/l at concentrations ranging from 0.004 to 3.1 mg/l, except for wells LF-5 and MW-3. The highest concentrations (2.1 and 3.1 mg/l) were reported for samples from wells MW-2 and LF-3, respectively. Barium was detected in samples from all wells sampled. Concentrations ranged from 0.013 mg/l for well MW-2 to 0.13 mg/l for well LF-7. The highest concentration of cadmium (130 mg/l), copper (1.9 mg/l), nickel (20 mg/l), lead (0.5 mg/l), and zinc (40.000 mg/l) were detected in a sample collected from well (LF-l). Lower concentrations of these metals were detected in samples from most of the wells; however, lead was only reported for wells LF-6 and MW-3. Chromium was not detected above the detection limit of 0.01 mg/l in any of the ground-water samples. Iron (Fe), manganese (Mn) and magnesium (Mg) were detected at elevated concentrations in the ground-water sample from well LF-1 analyzed for general minerals. These metals are common in natural sediments. The higher concentrations detected in the ground-water samples (2,900 mg/l Fe; 350 mg/l Mn; 860 mg/l Mg) are likely due to leaching of the elements from the sediments under low pH (acidic) conditions. Other metals in the ground-water samples are presented in Table 7. These data were not discussed because generally the reported concentrations for those metals were below levels of concern. Elevated concentrations of those metals generally were detected in the ground water from well LF-1. # 4.4.4 General Minerals, Total Dissolved Solids and pH General minerals, including sulfate, along with total dissolved solids (TDS), electrical conductivity (EC), and pH were analyzed in ground-water samples from all 11 wells. All samples also were analyzed for sulfide by EPA Method 367.2. Table 8 summarizes the analytical results. Figure 5 presents the results for sulfate, TDS, and pH. Appendix F includes laboratory reports. Measurements of pH in ground-water samples from wells LF-3, LF-4, LF-5, LF-7, MW-1, and MW-4 ranged between the expected natural range of 6.5 to 8 standard units. Measurements in ground-water samples from the other five wells indicated lower pH (acidic conditions), ranging from 4 to 5.6 standard units. The lowest pH (4) was reported for well LF-1. Concentrations of TDS above 3,000 mg/l were detected in samples from wells LF-1, LF-2, LF-3, LF-5, LF-6, MW-2, and MW-3. The highest concentration (33,000 mg/l) was reported for well LF-1. The second highest concentration (16,000 mg/l) was reported for well MW-2. The laboratory report indicated that positive interference in TDS for well MW-2 may be due to fine particulates passing through the standard glass fiber filter. Concentrations of TDS below 3,000 mg/l were detected in samples from wells LF-4, LF-7, MW-1, and MW-4, and ranged from 190 mg/l for well MW-1 to 2,600 mg/l for well LF-4. The highest concentration of sulfate (91,000 mg/l) was detected in the sample collected from well LF-1. A comment on the laboratory report for that sample indicated that a portion of the sulfate might be attributed to sulfide. Ground-water samples from all wells were analyzed for sulfide, which is not part of a general mineral analysis. Sulfide was reported below the detection limit (1 mg/l) for samples from all the wells. For samples from the other 10 wells, lower concentrations of sulfate range from 190 mg/l for well MW-1 to 9,500 mg/l for well MW-2. EC measurements follow a similar pattern to TDS concentrations. EC measurements ranged from a low of 930 umhos/cm for well MW-1 (620 mg/l TDS) to a high of 49,000 umhos/cm (33,000 mg/l TDS) for well LF-1. The presence of dissolved solids in ground water tends to increase the measured EC. #### 5.0 DISCUSSION OF RESULTS AND CONCLUSIONS # 5.1 Petroleum Hydrocarbons and Other Organic Compounds in Soil and Ground Water BTEX, VOCs, SVOCs, and PCBs were not detected in samples collected from any other wells. A relatively low concentration of TPH as purgeable hydrocarbons was detected in the sample from well LF-4 and very low concentrations of TPH as extractable hydrocarbons were detected in wells LF-1 through LF-4. The results indicate that ground-water quality has not been affected by detectable concentrations of O&G approximately 50 feet downgradient from the former waste-oil tank pit based on the analytical results for the sample collected from well LF-1. O&G only were detected in a near-surface soil sample from boring LF-1; however, O&G were not detected in deeper soil or ground water. As discussed in Section 3.1, limitations during drilling due to subsurface obstacles precluded investigation of soil and ground-water quality directly adjacent to the tank pit. # 5.2 Metals and pH in Soil and Ground Water Metals detected in soil and ground water and low pH conditions appear to be the result of activities conducted at the Site prior to the acquisition by White Motor Corporation. collected during this investigation for metal concentrations in soil compare well with the previous data collected by TPE during excavation of the waste-oil tank and data reported by ATT for the adjoining property (750-50th Avenue). In general, The may elevated concentrations of metals appear to be restricted to be for much the upper 10 feet of material beneath the Site, except in the cf or vicinity of well LF-1 where concentrations of zinc up to generalization 16,000 ppm were detected to 20 feet bgs. Concentrations of metals detected in ground water were most elevated in wells LF-1 and MW-2. Concentrations of zinc and other metals in ground water from wells LF-1 and MW-2 appear to correlate with concentrations of metals in soil in that area and with low pH conditions (4 standard units) in soil and ground water. The solubility and subsequent mobility of some metals such as zinc may be enhanced in low pH environments. intage ? Barium was detected at concentrations of 60,000 mg/kg (boring LT-2) and greater in near surface soils at the east and south corners of the Site. However, the barium may be in the form of barium sulfate, which is not considered a hazardous waste. Ground-water samples collected from wells in those areas contain relatively low concentrations of barium. Although lead concentrations up to 24,000 mg/kg were detected in acidic near-surface soil samples (2.5 feet bgs) collected beneath the west-central part of the Site, lead was not reported above the detection limit of 0.005 mg/l in ground-water samples collected from nearby monitoring well LF-2. The neutral pH of soil overlying ground water may have restricted the downward migration of lead from shallower soil into ground water. The occurrence of elevated concentrations of metals in ground-water samples and relatively lower pH of soil and ground-water associated with wells LF-1 and MW-2 indicates that these wells LF-1 and MW-2 likely are located near former acid source areas at the Site. Wells LF-2 and MW-3 located on the southwestern perimeter of the Site and northwestern corner of the adjacent property, respectively, contain relatively much lower but elevated concentrations of metals in ground water compared to those detected in samples from wells LF-1 and MW-2. # 5.3 Conclusions Based on the results of this investigation, O&G and other petroleum hydrocarbons were not detected in samples from well LF-1 located 50 feet downgradient from the former waste-oil tank pit. An evaluation of ground-water and soil quality in the immediate area of the tank excavation was not possible. Subsurface conditions precluded drilling and
sampling in that area. The metals and other chemicals detected in soil and ground water beneath the Site and adjacent property are consistent with materials reportedly handled on the property before 1973. Although soil and ground-water samples collected from the lowest property before 1973. The state of metals and the lowest pH measured at the Site, these conditions are more likely due to pre-1973 activities and not related to the operation of the former waste-oil tank. The distribution of elevated concentrations of metals in near-surface soil at the Site is consistent with the should be within manufacturing and handling of materials by occupants of the Site prior to White Motor Corporation, as indicated by records for the Site. #### 6.0 REFERENCES - Blymyer Engineers, Inc. 1990. Environmental site assessment, Charles Campanella, Oakland, California, for 750-50th Avenue, Oakland, California. June 21. - Brady, N.C. 1974. The Nature and Properties of Soils (8th edition). MacMillan Publishing Company, Inc. New York. - Freeze, R.A., and J.A. Cherry. 1979. <u>Groundwater</u>. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. - Ware, Bob. 1991. White GMC, Oakland, California. Personal communication. TABLE 1 WELL CONSTRUCTION DETAILS WHITE GMC FACILITY OAKLAND, CALIFORNIA | ====== | ******** | | | | | ======================================= | |----------------|-------------------|-----------------|-------|-----------|----------|---| | Well
Number | Date
Installed | Installed
By | Depth | Interval | Interval | Depth to
First Water
(in naturally
occuring sediments)
(ft bgs) | | LF-1 | 10/31/91 | LF | 21 | 10-20 | 8-20 | 15 | | LF-2 | 10/29/91 | LF | 16 | 10-15 | 8-15 | 13 | | LF-3 | 10/30/91 | LF | 16 | 9.5-14.5 | 8.5-15 | 9.5 | | LF-4 | 10/29/91 | LF | 21 | 8-18 | 6-18 | 12 | | LF-5 | 10/29/91 | LF | 24 | 11.5-21.5 | 9.5-21.5 | 13.5 | | LF-6 | 10/28/91 | LF | 21 | 11-21 | 9-21 | 14 | | LF-7 | 10/28/91 | LF | 25 | 11-21 | 9-21.5 | 14.5 | | MW-1 | 09/05/90 | ATT | 28 | 8-28 | 6-28 | 16 | | MW-2 | 09/05/90 | ATT | 27 | 7-27 | 5-27 | 10.5 | | MU-3 | 09/05/90 | ATT | 27 | 7-27 | 5-27 | 10 | | MU-4 | 09/05/90 | ATT | 29 | 9-29 | 7-29 | 17 | #### NOTES: LF - Levine-Fricke ATT - Aqua Terra Technologies ft bgs - feet below ground surface # TABLE 2 TYPES OF CHEMICAL ANALYSES, SAMPLE CONTAINERS, AND PRESERVATION METHODS USED FOR GROUND-WATER SAMPLING NOVEMBER 4 AND 5, 1991 WHITE GMC FACILITY OAKLAND, CALIFORNIA | Analysis | Title 22
Metals | TPH(gas) | TPH(diesel) | 5520
Oil & Grease | 8240
√0€ \$ | 8270
+ PCB | General
Minerals
Add Sulfide | |---|-----------------------------|-----------------------------------|------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|--| | Type of container
Type of preservative | 1 liter
None
Filtered | 2 40-ml VOAs
HCl
Unfiltered | 2-lîter amber
HCl
Unfiltered | 2-liter amber
H2SO4
Unfiltered | 2 40-ml VOAs
HCl
Unfiltered | 2-liter amber
None
Unfiltered | 2 500-ml plastic
1 HNO3; 1 none
Unfiltered | | | | | ••••• | | | · · · · · · · · · · · · · · · · · · · | | | LF-1 | x | x | x | x | x | | x | | LF-2 | x | x | x | | X | x | x | | LF-3 | x | x | x | | x | | x | | LF-4 | х | | | | x | | x | | LF-5 | x | | | | x | X | x | | LF-6 | x | | | | x | | x | | LF-7 | x | | • | | x | | x | | NU-1 | X | | | | | | x | | MW-2 | x | x | | | | | × | | MW-3 | x | | | | | | x | | MW-4 | x | | | | | | x | | Bailer blank | | x | | | x | | | | Trip blank | | x | | | x | | , | ^{*} All samples were stored in a chilled cooler for transport to analytical laboratory. #### Key to Abbreviations: H2SO4 - sulfuric acid HCl - hydrochloric acid HNO3 - nitric acid TPH - total petroleum hydrocarbons VOA - volatile organic analysis TABLE 3 GROUND-WATER ELEVATION DATA WHITE GMC FACILITY 5050 COLISEUM WAY OAKLAND, CALIFORNIA | ****** | | #2224444 | Top of | Top of | | | |-------------|------------|------------|----------------|---------------------------------------|----------|--------------| | Well | Date | Time | PVC Casing | Well Box | Depth | Ground-Water | | ID | Measured | Measured | Elevation | Elevation | to Water | Elevation | | | | | (feet msl) | (feet msl) | | (feet msl) | | | | | | · · · · · · · · · · · · · · · · · · · | | | | LF-1 | 07-Nov-91 | 9-10 a.m. | 7.56 | 7.93 | 6.79 | 0.77 | | | | 11-12 a.m. | 7.56 | 7.93 | | 0.77 | | | | 12-1 p.m. | 7.56 | 7.93 | | 0.80 | | | | 2-3 p.m. | 7.56 | 7.93 | | 0.80 | | | | 3-4 p.m. | 7.56 | 7.93 | | 0.80 | | | | 4-5 p.m. | 7.56 | 7.93 | 6.76 | 0.80 | | LF-2 | 07-Nov-91 | 9-10 a.m. | 9.84 | 10.17 | 7.43 | 2.41 | | -· - | 0, 110, 2, | 11-12 a.m. | 9.84 | 10.17 | | 2.58 | | | | 12-1 p.m. | 9.84 | 10.17 | | 2.60 | | | | 2-3 p.m. | 9.84 | 10.17 | | 2.62 | | | | 3-4 p.m. | 9.84 | 10.17 | 7.21 | 2.63 | | | | 4-5 p.m. | 9.84 | 10.17 | 7.22 | 2.62 | | | | | 40.00 | 44 77 | 7 50 | 7 40 | | LF-3 | 07-Nov-91 | 9-10 a.m. | 10.98 | 11.33 | | 3.40
3.43 | | | | 11-12 a.m. | 10.98 | 11.33 | | 3.45 | | | | 12-1 p.m. | 10.98 | 11.33 | | 3.47 | | | | 2-3 p.m. | 10.98 | 11.33 | | 3.46 | | | | 3-4 p.m. | 10.98
10.98 | 11.33
11.33 | | 3.46 | | | | 4-5 p.m. | 10.90 | 11.33 | 1.56 | 3.40 | | LF-4 | 07-Nov-91 | 9-10 a.m. | 10.36 | 10.54 | 11.89 | -1.53 | | | | 11-12 a.m. | 10.36 | 10.54 | 11.63 | -1.27 | | | | 12-1 p.m. | 10.36 | 10.54 | | -1.15 | | | | 2-3 p.m. | 10.36 | 10.54 | 11.37 | -1.01 | | | | 3-4 p.m. | 10.36 | 10.54 | | -0.93 | | | • | 4-5 p.m. | 10.36 | 10.54 | 11.20 | -0.84 | | LF-5 | 07-Nov-91 | 9-10 a.m. | 8.03 | 8.66 | 7.34 | 0.69 | | L. , | 0. 10. 1. | 11-12 a.m. | 8.03 | 8.66 | | 0.77 | | | | 12-1 p.m. | 8.03 | 8.66 | | 0.81 | | | | 2-3 p.m. | 8.03 | 8.66 | 7.17 | 0.86 | | | | 3-4 p.m. | 8.03 | 8.66 | | 0.85 | | | | 4-5 p.m. | 8.03 | 8.66 | | 0.84 | | | • | | | | | | | LF-6 | 07-Nov-91 | 9-10 a.m. | 11.59 | 11.89 | 8.65 | 2.94 | | | | 11-12 a.m. | 11.59 | 11.89 | 8.59 | 3.00 | | | | 12-1 p.m. | 11.59 | 11.89 | 8.58 | 3.01 | | | | 2-3 p.m. | 11.59 | 11.89 | | 3.05 | | | | 3-4 p.m. | 11.59 | 11.89 | 8.55 | 3.04 | TABLE 3 GROUND-WATER ELEVATION DATA WHITE GMC FACILITY 5050 COLISEUM WAY OAKLAND, CALIFORNIA | iell
ID | Date
Measured | Time
Measured | Top of
PVC Casing
Elevation
(feet msl) | Top of
Well Box
Elevation
(feet msl) | Depth
to Water
(feet msl) | Ground-Wate
Elevation
(feet msi | |------------|------------------|------------------|---|---|---------------------------------|---------------------------------------| | | | 4-5 p.m. | 11.59 | 11.89 | 8.56 | 3.0 | | .F-7 (| 7-Nov-91 | 9-10 a.m. | 10.65 | 11.06 | 8.79 | 1.8 | | | | 11-12 a.m. | 10.65 | 11.06 | 8.54 | 2.1 | | | • | 12-1 p.m. | 10.65 | 11.06 | 8.53 | 2.1 | | | | 2-3 p.m. | 10.65 | 11.06 | 8.51 | 2.1 | | | | 3-4 p.m. | 10.65 | 11.06 | 8.53 | 2.1 | | | | 4-5 p.m. | 10.65 | 11.06 | 8.54 | 2.1 | | W-1 (| 7-Nov-91 | 9-10 a.m. | 10.21 | 10.66 | 6.13 | 4.0 | | | | 11-12 a.m. | 10.21 | 10.66 | 5.97 | 4.2 | | | | 12-1 p.m. | 10.21 | 10.66 | 5.96 | 4.2 | | | | 2-3 p.m. | 10.21 | 10.66 | 5.97 | 4.3 | | | | 3-4 p.m. | 10.21 | 10.66 | 5.95 | 4. | | | | 4-5 p.m. | 10.21 | 10.66 | 5.94 | 4_: | | W-2 (| 7-Nov-91 | 9-10 a.m. | 8.86 | 9.29 | 6.14 | 2.7 | | | | 11-12 a.m. | 8.86 | 9,29 | 5.93 | 2. | | | | 12-1 p.m. | 8.86 | 9.29 | | 2. | | | | 2-3 p.m. | 8.86 | 9.29 | 5.92 | 2. | | | | 3-4 p.m. | 8.86 | 9.29 | 5.92 | 2. | | | | 4-5 p.m. | 8.86 | 9.29 | 5.92 | 2. | | i-3 (| 07-Nov-91 | 9-10 a.m. | 9.01 | 9.46 | 7.09 | 1. | | | | 11-12 a.m. | 9.01 | 9.46 | 6.94 | 2. | | | | 12-1 p.m. | 9.01 | 9.46 | 6.92 | 2. | | | | 2-3 p.m. | 9.01 | 9.46 | 6.91 | 2. | | | | 3-4 p.m. | 9.01 | 9.46 | 6.94 | 2. | | | | 4-5 p.m. | 9.01 | 9.46 | 6.95 | 2. | | 1-4 (| 07-Nov-91 | 9-10 a.m. | 10.75 | 10.93 | 12.98 | -2. | | | | 11-12 a.m. | 10.75 | 10 .93 | 10.26 | 0. | | | | 12-1 p.m. | 10.75 | 10. 9 3 | 8.37 | 2. | | | | 2-3 p.m. | 10.75 | 10.93 | 8.72 | 2. | | | | 3-4 p.m. | 10.75 | 10.93 | 8.60 | 2. | | | | 4-5 p.m. | 10.75 | 10.93 | 8.54 | 2. | # TABLE 3 GROUND-WATER ELEVATION DATA WHITE GMC FACILITY 5050 COLISEUM WAY OAKLAND, CALIFORNIA | ======= | | | *====================================== | | | 234745222222 | |------------|------------------|------------------|---|---|---------------------------------|---| | Well
ID | Date
Measured | Time
Measured | Top of PVC Casing Elevation (feet msl) | Top of
Well Box
Elevation
(feet msl) | Depth
to Water
(feet msl) | Ground-Water
Elevation
(feet msl) | | Benchmar | k 07-Nov-91 | 9-10 a.m. | NA | NA | 5.98 | NA. | | on Chann | el* | 9-10 a.m. | NA | NA | 4.16 | NA | | | | 11-12 a.m. | NA | NA | 3.60 | NA | | | | 12-1 p.m. | NA | NA | 4.47 | NA | | | | 2-3 p.m. | NA | NA | 6.57 | NA | | | | 3-4 p.m. | NA | NA | Dry 07.90 | NA | | | | 4-5 p.m. | NA | NA | Dry | NA | #### Notes: All elevations are measured to the mean-sea-level (msl) datum. The elevations shown were taken on the north side of each box and casing. * Benchmark (BM) located on wall crossing over the channel. BM #1094 USGS elevation 7.85 msl was used to calculate elevation. NA = not applicable. TABLE 4 #### CONCENTRATIONS OF PETROLEUM-RELATED COMPOUNDS #### IN SOIL SAMPLES #### WHITE GMC FACILITY #### (All results in mg/kg) | Boring | Sample | TPH- | | | Ethyl- | Total- | oil & | Hydro- | |-----------|----------|----------------------|---------|---------|---------|---------|--------|---------| | ld . | Date | Extractable (diesel) | Benzene | Toluene | benzene | Xylenes | Grease | Carbons | | LF-1-2.5
 10/31/91 | NA | NA | NA | NA | NA | 2200 | 1700 | | LF-1-5.5 | 10/31/91 | <1 | <0.001 | <0.001 | <0.001 | <0.001 | <10 | <10 | | LF-1-7.5 | 10/31/91 | NA | NA | NA | NA | NA | <10 | <10 | | LF-1-10.5 | 10/31/91 | <1 | <0.001 | <0.001 | <0.001 | <0.003 | <10 | <10 | #### Notes: BTEX analyzed using EPA Method 8020 Oil & Grease analyzed using Method 5520E Hydrocarbons analyzed using Method 5520F TPH Extractable analyzed using Method 3550 TPH = Total Petroleum Hydrocarbons NA = Not Analyzed TABLE 5 CONCENTRATIONS OF METALS IN SOIL SAMPLES WHITE GMC FACILITY (All results in mg/kg) | **************** | ***** | | ******** | | *********** | ********* | | ******** | |--------------------|-------------|---------|----------|---------|-------------|-----------|-------|----------| | Boring ID - | | | | | Total | | | | | Sample Depth (ft.) | Sample Date | Arsenic | Barium | Cadmium | Chromium | Nickel | Lead | Zinc | | LF-1-2.5 | 10/31/91 | 270 | 470 | 20 | 46 | 13 | 8600 | 4600 | | LF-1-7.5 | 10/31/91 | 11 | 560 | 110 | 65 | 130 | 120 | 31000 | | LF-1-21 | 10/31/91 | 2 | 89 | 38 | 53 | 65 | 13 | 16000 | | LF-2-2.5 | 10/29/91 | 54 | 3200 | 60 | 36 | 49 | 24000 | 6900 | | LF-2-5.5 | 10/29/91 | 29 | 76 | <20 | 10 | 12 | <200 | 300 | | LF-2-7.5 | 10/29/91 | 160 | 84 | 0.9 | 34 | 33 | 530 | 580 | | LF-2-15.5 | 10/29/91 | 5 | 30 | 0.6 | 46 | 66 | 6 | 460 | | LF-3-2.5 | 10/30/91 | 5 | 270 | 0.4 | <6 | 8 | 20 | 97 | | LF-3-7 | 10/30/91 | 14 | 4200 | <20 | <6 | <3 | <200 | <200 | | LF-3-15 | 10/30/91 | 3 | 230 | <0.2 | 44 | 52 | 7 | 280 | | LF-4-2 | 10/29/91 | <1 | 220 | 0.8 | 23 | 31 | 77 | 140 | | LF-4-3.5 | 10/29/91 | 34 | 60000 | 30 | 32 | 82 | 850 | 5100 | | LF-4-15 | 10/29/91 | 3 | 140 | <0.2 | 49 | 96 | 11 | 49 | | LF-5-2 | 10/29/91 | 5 | 82 | 0.4 | 13 | . 19 | 8 | 110 | | LF-5-3.5 | 10/29/91 | 97 | 1600 | <20 | 33 | 50 | 1000 | 2700 | | LF-5-11 | 10/29/91 | 2 | 80 | <0.2 | 38 | 59 | 4 | 27 | | LF-5-15 | 10/29/91 | 5 | 28 | <0.2 | 48 | 98 | 6 | 34 | | LF-6-2 | 10/28/91 | 10 | 100 | 0.6 | 9 | 12 | 19 | 120 | | LF-6-9 | 10/28/91 | 200 | 200 | 11 | 31 | 24 | 360 | 1100 | | LF-6-15.5 | 10/28/91 | 5 | 51 | 0.3 | 67 | 82 | 6 | 380 | | LF-7-2 | 10/28/91 | 63 | 67000 | <0.2 | 8 | 18 | 52 | 72 | | LF-7-4 | 10/28/91 | 12 | 92000 | 0.4 | -11 | 21 | 67 | 200 | | LF-7-10 | 10/28/91 | 4 | 140 | <0.2 | 44 | 38 | 5 | 20 | | LF-7-15.5 | 10/28/91 | 4 | 150 | 0.2 | 48 | 97 | 7 | 57 | #### Notes: All metals except Arsenic analyzed using Method 6010. Arsenic analyzed using Method 7060. < = below the laboratory method detection limit of the analysis.</pre> TABLE 6 # CONCENTRATIONS OF PETROLEUM-RELATED COMPOUNDS # IN GROUND-WATER SAMPLES WHITE GMC FACILITY (All results in mg/L) | Well | Sample | TPH- PPD | TPH- PP | 0 | | Ethyl- | Total | Oil & | Hydro- | |------------|----------|---------------|----------|--------------------------|---------|---------|---------|--------|---------| | ID | Date | Purgeable Ext | ractable | Benzene | Toluene | benzene | Xylenes | Grease | Carbons | | LF-1 | 11/04/91 | <0.05 | 0.09 | 10 < 0.005 | <0.005 | <0.005 | <0.01 | <0.5 | <0.5 | | LF-2 | 11/04/91 | <0.05 | 0.3 3 | 00 <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | LF-3 | 11/04/91 | <0.05 | 0.2 8 | <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | LF-4 | 11/04/91 | 0.59 5 | 70 0.1 K | 0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | LF-4BB | 11/04/91 | <0.05 | NA | <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | LF-5 | 11/04/91 | NA | NA | <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | LF-6 | 11/05/91 | NA | NA | <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | LF-7 | 11/04/91 | NA | NA | <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | | MW-2 | 11/05/91 | NA | <0.05 | <0.0003 | <0.0003 | <0.0003 | <0.001 | NA | NA | | TRIP BLANK | 11/04/91 | <0.05 | NA | <0.005 | <0.005 | <0.005 | <0.01 | NA | NA | #### Notes: BTEX analyzed using EPA Method 624, except Well MW-2 by EPA Method 8020 Oil & Grease analyzed using Method 5520C Hydrocarbons analyzed using Method 5520F LF-488 is a Bailer Blank TPH = Total Petroleum Hydrocarbons NA = Not Analyzed TABLE 7 CONCENTRATIONS OF METALS IN GROUND-WATER SAMPLES WHITE GMC FACILITY (All results in mg/L) | | ************* | | | | ********** | ********** | | | *********** | | | |-------------|---------------|----------|----------|----------|------------|------------|----------|----------|-------------|----------|----------| | Well ID | LF-1 | LF-2 | LF-3 | LF-4 | LF-5 | LF-6 | LF-7 | MW-1 | MW-2 | MW-3 | MW-4 | | Sample Date | 11/04/91 | 11/04/91 | 11/04/91 | 11/04/91 | 11/04/91 | 11/05/91 | 11/05/91 | 11/05/91 | 11/05/91 | 11/05/91 | 11/05/91 | | Parameter | | | | | | | | | | | | | Antimony | <0.2 | <0.02 | <0.02 | 0.03 | <0.02 | <0.02 | <0.02 | <0.02 | <0.2 | <0.02 | <0.02 | | Arsenic | 0.004 | 0.028 | 3.1 | 0.026 | <0.002 | 0.008 | 0.004 | 0.073 | 2.1 | <0.002 | 0.007 | | Barium | 0.046 | 0.026 | 0.077 | 0.082 | 0.018 | 0.019 | 0.13 | 0.085 | 0.013 | 0.017 | 0.017 | | Beryllium | 0.11 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | 0.001 | <0.001 | | Cadmium | 130 | 0.009 | <0.005 | <0.005 | 0.049 | 0.079 | <0.005 | <0.005 | 7 | 0.57 | <0.005 | | Chromium | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | | Cobalt | 5.7 | 0.18 | 0.016 | <0.005 | 0.03 | 0.58 | <0.005 | 0.008 | 0.42 | 0.42 | <0.005 | | Copper | 1.9 | 0.008 | <0.004 | <0.004 | <0.005 | <0.005 | 0.006 | <0.005 | 0.093 | 0.28 | <0.005 | | ead | 0.5 | <0.005 | <0.005 | <0.005 | <0.005 | 0.009 | <0.005 | <0.005 | <0.2 | 0.005 | <0.005 | | fercury | <0.0003 | <0.0003 | <0.0003 | <0.0003 | 0.0004 | 0.0009 | 0.0011 | <0.0003 | 0.0055 | 0.0028 | 0.0027 | | Molybdenum | 0.11 | <0.01 | 0.16 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.01 | <0.01 | <0.01 | | Nickel | 20 | 0.52 | 0.012 | 0.013 | 0.23 | 2.1 | 0.01 | 0.032 | 1.2 | 1.2 | 0.012 | | Selenium | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | | Silver | 0.054 | <0.002 | <0.002 | <0.002 | 0.004 | 0.011 | <0.002 | <0.002 | 0.008 | 0.005 | <0.002 | | Thallium | <1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | /anadium | <0.005 | <0.005 | 0.006 | 0.01 | <0.005 | <0.005 | 0.006 | <0.005 | <0.005 | <0.005 | <0.005 | | Zinc | 40000 | 4.2 | 3.1 | 0.034 | 11 | 8.1 | <0.005 | 2.7 | 4200 | 600 | <0.005 | #### Notes: All Metals analyzed using Method 6010 except: Arsenic analyzed using Method 7060 Mercury analyzed using Method 7470 Selenium analyzed using Method 7740 Lithspore = mixture of Zn5, Bassy 2n0 TABLE 8 CONCENTRATIONS OF GENERAL MINERALS IN GROUND WATER WHITE GMC FACILITY LF-2 LF-3 LF-4 LF-5 LF-6 LF-7 **MW-1** MW-2 MW-3 MW-4 Well ID LF-1 11/05/91 11/05/91 11/05/91 11/04/91 11/04/91 11/04/91 11/04/91 11/04/91 11/05/91 11/05/91 11/05/91 Parameter Sample Date 530 420 250 <2 <2 260 570 550 Bicarbonate Alkalinity <2 53 22 88 49 200 200 49 60 170 280 150 270 240 Calcium <2 <2 <2 2 <2 ₹2 <2 <2 <2 <2 <2 Carbonate Alkalinity 540 320 28 470 2100 200 2300 460 250 690 1100 Chloride 5100 4900 4200 11000 7300 2100 930 10000 8000 3100 49000 Conductivity <0.04 <0.04 0.09 0.28 <0.04 1.9 <0.04 <0.04 < 0.04 <0.04 <0.04 Copper 2300 350 270 960 1500 1100 4400 920 320 350 2000 Hardness <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 Hydroxide Alkalinity 55 <0.05 0.34 25 <0.05 <0.05 210 12 <0.05 2900 40 Iron 130 190 180 62 24 55 360 430 56 29 860 Magnestum 2 30 23 0.13 0.35 17 65 0.73350 11 4.3 Manganese 740 670 920 850 2800 990 360 45 310 290 Sodium 2500 250 190 9500 1600 91000 2100 1600 560 **4800** 4200 1300 **Sulfate** <1 **~1 ~**1 _<1 ~1 **~**1 Sulfide <1 5900 2400 6900 1200 620 16000 33000 3700 3100 2600 9100 Total Dissolved Solids 0.034 11 8.1 <0.005 2.7 4200 600 <0.005 4.2 3.1 Zinc 40000 5 6.8 6.7 5.6 6.4 7 6.7 5 7.3 4.4 рH Notes: Conductivity reported in units of unhos/cm pH reported in standard units All other parameters reported in mg/L Bicarbonate Alkalinity, Carbonate Alkalinity & Hydroxide Alkanity analyzed using Method 310.1 Calcium, Copper, Iron, Magnesium, Manganese, Sodium & Zinc analyzed using Method 6010 Chloride & Sulfate analyzed using Method 300 Sulfide Analyzed using EPA Method 367.2 91000: Say 28-1= Ba= Soy 2 96 mm = 1:43 SOURCE: Thomas Bros. map Alameda and Contra Costa 1990 Figure 1: SITE LOCATION MAP #### APPENDIX A SOIL SAMPLING AND WELL INSTALLATION, DEVELOPMENT, AND SAMPLING PROCEDURES #### APPENDIX A ### SOIL SAMPLING AND WELL INSTALLATION, DEVELOPMENT, AND SAMPLING PROCEDURES #### A1.0 GROUND-WATER MONITORING WELL INSTALLATION PROCEDURES During the week of October 28, 1991, under the direction of a Levine Fricke geologist, Spectrum Exploration of Stockton, California, a licensed well drilling contractor, drilled seven well borings and installed seven ground-water monitoring wells, LF-1, LF-2, LF-3, LF-4, LF-5, LF-6 and LF-7, at the Site (Figure 2). Well borings were drilled using a truck-mounted drilling rig equipped with nominal 8-inch-outside-diameter hollow-stem augers to a depth of from about 15 to 25 feet bgs. All drilling and sampling equipment was steam cleaned before use at each drilling location. Soil cuttings from each borehole were placed in labeled 55-gallon steel drums and are being stored on site until an appropriate disposal method is determined based on analytical results. #### A2.0 SOIL SAMPLE COLLECTION Soil samples for lithologic description were collected with a 5-foot-long, 6-inch-diameter, continuous core sampling barrel situated in the lead auger. Soil samples were collected at discrete depths by driving a 2-inch-diameter, 18-inch-long, split-spoon sampler ahead of the augers into undisturbed soil. The sampler was lined with three clean, 2-inch-diameter, 6-inch-long acetate tubes. Additionally, grab samples were collected in clean 2-inch-diameter, 6-inch-long acetate tubes from the continuous core sampling barrel, and retained for possible chemical analysis. All soil samples were described using the Unified Soil Classification System. Lithologic logs
for the seven well borings are presented in Appendix C. Selected soil samples were collected for analysis from each well boring. The ends of the tubes were covered with polyethylene caps and placed in a ice-chilled cooler. The samples from LF-1, LF-2, LF-3, LF-4, LF-5, LF-6, and LF-7 were submitted for analysis under strict chain-of-custody procedures to Med-Tox of Pleasant Hill, California, a State-certified laboratory. #### A3.0 GROUND-WATER MONITORING WELL INSTALLATION Ground-water monitoring wells were installed in each of the seven well borings. The wells were constructed of 2-inch-diameter, flush-threaded well screen and well casing inserted through the hollow-stem auger. The wells were installed at total depths ranging from 14.5 to 21.5 feet bgs. Well construction details are included on Table 1. A filter pack consisting of number 2-/16 graded sand was poured into the annular space between the hollow-stem auger and the slotted PVC well casing as the auger was gradually removed from the borehole. The filter pack was installed to approximately 1 to 2 feet above the top of the well screen. 1-foot-thick layer of bentonite was placed on top of the filter pack and the remainder of the annular space was sealed with neat cement grout containing approximately 3 percent bentonite. At the ground surface, a 10-inch-long, 12-inch-diameter, road-rated, cylindrical well box was installed flush to grade to maintain the integrity of the well. Alameda County Flood Control and Water Conservation District (ACFCWCD) was contacted to observe grouting. Hong of ACFCWCD stated that the borings should be grouted whether or not an ACFCWCD representative was present. Well construction details are presented in the lithologic logs in Appendix C. Elevation of the top of the PVC casing and top of the well box for each well was surveyed relative to a known reference point to the nearest 0.01 foot by Stedman & Associates, Inc., of Walnut Creek, California, a licensed surveyor. #### A4.0 DEVELOPMENT AND SAMPLING OF WELLS On November 4 and 5, 1991, wells LF-1 through LF-7 were developed to improve hydraulic communication between the Well and adjacent water-bearing sediments. The wells were developed by purging approximately 6 well volumes from each well with a clean Teflon bailer. Well LF-5 was developed by purging 5 well volumes using a centrifugal pump. Specific conductance, pH, and temperature for ground water purged from each well were recorded on water-quality sampling sheets during the purging process. Copies of these sheets are included in Appendix D. Ground-water samples were collected for analysis from the well after parameters ### **LEVINE-FRICKE** stabilized. Ground-water samples were also collected from previously existing wells MW-1 through MW-4 after approximately 3 well volumes were purged from each well. Ground-water samples from each well were placed in the appropriate laboratory supplied containers for the specified analyses (Table 2). Ground-water samples for metals analysis were filtered in the field and collected in preserved 1-liter plastic bottles. Immediately after collection, samples were labeled and placed in an ice-chilled cooler. Ground-water samples from LF-1 through LF-7 and MW-1 through MW-4 were delivered under strict chain-of-custody protocol to Med-Tox for analysis. Purge water generated during well development and sample collection has been placed into labeled 55-gallon drums and stored on site until an appropriate disposal method based on analytical results is determined. APPENDIX B BORING LOGS Well Permit No.: 91620 October 31, 1991 Date well dillect Hammer weight and 140 lbs./30 inches drop: Date Water Level measured: LF Geologist: Greg Murray > OVM Organic Vapor Meter ppmy parts per million volume Continuous Core Sampler Modified California Sampler Sample retained for chemical analysis First water encountered during drilling in naturally occurring sediments Static water on Nov. 7, 11-12 noon Approved by: Ktarle Irane R.C. # 5106 Well Permit No.: 91620 Date well drilled: October 29, 1991 Hammer welght and drop: 140 lbs./30 inches Date Water Level measured: LF Geologist: Greg Murray Modified California Sampler Sample retained for chemical analysis First water encountered during drilling in OVM Organic Vapor Meter ppmv parts per million volume naturally occurring sediments Continuous Core Sampler _____ Static water on Nov. 7, 11-12 noon Approved by: Kettul Braw R.G. \$ 5106 WELL CONSTRUCTION AND LITHOLOGY FOR WELL LF-2 Project No. 2407.05 LEVINE-FRICKE ENGINEERS, HYDROGEOLOGISTS & APPLIED SCIENTISTS Continuous Core Sampler Modified California Sampler Sample retained for chemical analysis First water encountered during drilling in First water encountered during drilling to naturally occurring sediments Static water on Nov. 7, 11-12 noon Approved by: Kethlud . Ba an R.6 # 6106 WELL CONSTRUCTION AND LITHOLOGY FOR WELL LF-6 ppmv parts per million volume Approved by: Kathlala . Dannet 5106 # APPENDIX C WATER-QUALITY SAMPLING SHEETS ### WATER-QUALITY SAMPLING INFORMATION | Project Name Value Ch | 7 | | |--|-----------------------------|--------------| | Date | | | | Samplers Name | 7/1B | | | Sampling Location Sampling Method Tet(on B | | | | Sampling Method Tetlow B | an lev | 48.80 | | Analyses Requested | | 6.82 | | Number and Types of Sample Bottles use | d | 13.18 | | Method of Shipment | | , | | GROUND WATER | SURFACE WATER | | | Well No. LF-/ | Stream Width | /3 | | Well Diameter (in.) 2" | Stream Depth | 1/6 | | Depth to Water. Static (ft)6.82 | Stream Velocity | 120 | | | Rained recently ? | | | Water in Well Box | Other | 2.08 | | Well Depth (ft) 20.00 | 2-inch casing = 0.16 gal/ft | | | Height of Water
Column in Well | 4-inch casing = 0.65 gal/ft | | | Water Volume in Well 2.0 | 5-inch casing = 1.02 gal/ft | LOCATION MAP | | | | | 6-ind | ch casing | = 1.47 gal/ft | | | |-------|-----------------------------|----------------------------------|------------------|--------------|--------------------|----------|-----------------| | TIME | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(gallons) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTHER | REMARKS | | 1405 | | | | | | | Tobid | | 1407 | | 2 | 22.5 | 4.25 | 5150 | | Tobid | | 1409 | | 4 | 22.4 | 4.19 | 5190 | |)(| | 1415 | | 6 | 22.2 | 4.05 | 5170 | | 11 | | 14/19 | | 8 | 21.5 | 4.15 | 5230 | | survive demotor | | 1423 | | 10 | 21.6 | 4.18 | 4626 | | turbil demotor | | 1436 | 18.56 | | <u> </u> | | | <u> </u> | | | 1520 | | | | | | | Sompled | | | | | | | <u> </u> | <u> </u> | | | | | | | | <u> </u> | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | <u> </u> | | | LEVINE+FRICKE ### WATER-QUALITY SAMPLING INFORMATION | Who for | | Project No. 2407.05 | |---------------------------------------|-----------------------------|--------------------------------------| | Project Name V6/V3 571 Date | | Project No. 2407.05 Sample No. 4F-2 | | Samplers Name | 7143 | | | Sampling Location | • | - 12 515- | | Sampling Method + flou Lailes | | 7.28 | | Analyses Requested | | 7.47 | | Number and Types of Sample Bottles us | ed | - | | Method of Shipment | | - 24 | | GROUND WATER | SURFACE WATER | 7.47 | | Well No. LF-2 | _ Stream Width | - 1/6 | | Well Diameter (in.) | Stream Depth | - 4482 | | Depth to Water, 7. 28 | Stream Velocity | - 2952 | | Stade (iv) | Rained recently? | - 1 1/10 | | Water in Well Box | Other | _ | | Well Depth (ft) | 2-inch casing = 0.16 gal/ft | | | Height of Water Column in Well | 4-inch casing = 0.65 gal/ft | | | Water Volume in Well /64/ | 5-inch casing = 1.02 gal/ft | LOCATION MAP | | · · · · · · · · · · · · · · · · · · · | 6-inch casing = 1.47 gal/ft | | | тіме | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(galions) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OT | ER | REMARKS | |-------|-----------------------------|----------------------------------|------------------|--------------|--------------------|----------|----------|---------------| | 17:00 | | - | | | | | | Start bailing | | 17:04 | | 1 gal | 22.5 | 5.94 | 6300 | | | very turbid | | 13:07 | | 3 94 | 22.6 | 6.03 | 6450 | | | 11 11 | | 13:09 | | 4 | 22.5 | 5.83 | 6470 | | | * ** | | (3:10 | | 5 | 22.4 | 5.73 | 6200 | <u> </u> | | | | 13:4 | 13.34 | 6 | z2.4 | 5.70 | 5990 | | | u | | | 355 | | | | | | <u> </u> | | | | | | | | | <u> </u> | | Sompled | | | | | | | | | <u> </u> | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | — | | | | | | | | | | | | LEVINE-FRICKE ### WATER-QUALITY SAMPLING INFORMATION | | | Project No. 2407 | |------------------------------------|-----------------------------|------------------------| | Project Name Volvo | | 1 ~ 2 | | Date | | Sample No. <u>LF-3</u> | | Samplers Name <u>6t^</u> | | - | | Sampling Location LT 3 | | - 15.0 | | Sampling Method I Mand E. | <u>. 1</u> | - 7.65 | | Analyses Requested | | 7.35 | | Number and Types of Sample Bottles | | <u> × 2.16</u> | | Method of Shipment | | - 4H1 > | | GROUND WATER | SURFACE WATER | .735 | | Well No. LF-3 | Stream Width | - 1.176 | | Well Diameter (in.) | Stream Depth | - | | Depth to Water, Static (ft) | Stream Velocity | | | | Rained recently? | _ | | Water in Well Box | Other | | | Well Depth (ft) 15.0 | 2-inch casing = 0.16 gal/ft | | | Height of Water
Column in Well | 4-inch casing = 0.65 gal/ft | | | Water Volume in Well | 5-inch casing = 1.02 gal/ft | LOCATION MAP | | | 6-inch casing = 1.47 gal/ft | | | | | | | | | | |--------|-----------------------------|------------------------|----------|--------|--------------|--|----------------|---------------------------------------|--|--| | | DEPIH TO | VOLUME | ТЕМР | pН | COND | OTHE | REMAR | uks . | | | | TIME | WATER
(feet) | WITHDRAWN
(gailons) | (deg. C) | (S.U.) | (umhos/cm) | | | | | | | (1, 30 | | | | | | | Stort boil | ing | | | | 11:22 | | 1,2 | 23.3 | 6.25 | 5350 | | Start
boil | | | | | 11: 23 | | 2.4 | 23.3 | 6.42 | 4960 | | - N | | | | | [1:25 | | al ŋ | 233 | 6.25 | 5140 | | | · · · · · · · · · · · · · · · · · · · | | | | 11:27 | | 5.0 | 23.2 | 6.26 | 5/30 | | | | | | | 11:30 | | 80 | 27.7- | 6.25 | 5250 | | (1) | | | | | 11. 34 | | 10.0 | 23.3 | 6.29 | 5170 | | ار فرنه | bail vig | | | | 11:36 | 9.54 | | | | | 1 | | | | | | (2/30 | | | | | | 1 | Sampled | | | | | | | | | _ | | - | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | ,> ' | * | | | Suggested Method for Purging Well try centugal LEVINE • FRICKE ### WATER-QUALITY SAMPLING INFORMATION | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Project No. 240 |) | |---|-----------------------------|-----------------|----------| | Project Name Volvo 67 | | Sample No | | | Date 11 4 9/ | THB | Cample No. | | | Samplers Name | 1770 | 11_ | | | Sampling Location | | 18.25 | | | Sampling Method | 41 | 9.09 | | | Analyses Requested | | 9.16 | 1, 2 | | Number and Types of Sample Bottles | used | | | | Method of Shipment | | 9 | | | GROUND WATER | SURFACE WATER | 9./6 | | | Well No. | Stream Width | .16 | | | Well Diameter (in.) 2'' | Stream Depth | 5496 | | | Depth to Water, 9.0. | Stream Velocity | 9160 | 1820 | | | Rained recently? | 14456 | 10 4) | | Water in Well Box | Other | | 111 | | Well Depth (ft)/ \$. 25 | 2-inch casing = 0.16 gal/ft | | 1, 1 2 | | Height of Water Column in Well | 4-inch casing = 0.65 gal/ft | | | | Water Volume in Well 1.5 G | 5-inch casing = 1.02 gal/ft | LOCATION 1 | MAP _ | | | 6-inch casing = 1.47 gal/ft | | | | | | | | | | |----------|-----------------------------|------------------------|----------|--------|------------|-------|------------------------|--|--|--| | DEPTH TO | | VOLUME | ТЕМР | pН | COND | OTHER | REMARKS | | | | | TIME | WATER
(feet) | WITHDRAWN
(gallons) | (deg. C) | (S.U.) | (umhos/cm) | | | | | | | 0:15 | 707 | IF- 324 | (TEH (| 305) | | | bailer blank collected | | | | | 1 | | | | | | | | | | | | | | - | 227 | 3.72 | 5232 | | clar | | | | | 10:10 | | | 11.0 | , := | 5150 | | 11 | | | | | 1017 | 14,000 | 5.0 | 20.7 | 6.76 | 5910 | | // | | | | | 10:27 | | 6.0 | | | | | well demotored | | | | | 10:32 | 17.73 | | | | | | gard / endire | | | | | (0:40 | | | | | | | 22-6-1 | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | LEVINE • FRICKE ## WATER-QUALITY SAMPLING INFORMATION | 10.4 | | ~ | |--|-----------------------------|------------------------| | Project Name Volvo/6MC | | | | Date 11/4/91 | | Sample No. <u>LF-5</u> | | Samplers Name 7113 | | | | Sampling Location | | _ 21.1 | | Sampling Methodcenterf p. | unp; Ichlon boiler | - 8.30 | | Analyses Requested | | - 12.8 | | Number and Types of Sample Bottles | used | 768 | | Method of Shipment | | - 1.28 | | GROUND WATER | SURFACE WATER | 7.048 | | Well No. LF-5 | Stream Width | - | | Well Diameter (in.) 2 | Stream Depth | _ | | Depth to Water, Static (ft) | Stream Velocity | _ | | Static (ft) | Rained recently? | _ | | Water in Well Box | Other | _ | | Well Depth (ft) 21 | 2-inch casing = 0.16 gal/ft | | | Height of Water
Column in Well | 4-inch casing = 0.65 gal/ft | | | Water Volume in Well 2 32 | 5-inch casing = 1.02 gal/ft | LOCATION MAP | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ginch casing = 1 47 gal/ft | | | TIME | DEPIH TO
WATER
(feet) | VOLUME
WITHDRAWN
(gallons) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | | IER_ | REMARKS | | |-------|-----------------------------|----------------------------------|------------------|--------------|--------------------|----------|----------|----------------------|-----| | 15:11 | | | | | · | | | star + pump | | | 15.12 | | 7.0 | 72.3 | 622 | 21,400 | | | v. tur bid | | | 5:14 | | ч . Э | 27.3 | 5.70 | 12,400 | | | 11 | | | 5.16 | | 6 | 32,9 | 5.74 | 21,000 | <u> </u> | <u> </u> | " pump of de co | أوه | | c, 20 | | 8.0 | 23.7 | 5.62 | 22,200 | <u> </u> | <u> </u> | " pump of dalus | , L | | 5 (g2 | | | | | 4 | | | PHYS. | | | 7.53 | | 10:0 | 241 | 5,77 | 21,000 | <u> </u> | <u> </u> | pump off well devote | γ | | 5:29 | 14.55 | | | | | | — | | | | 15,45 | | | | | . ~ | <u> </u> | <u> </u> | Sampled | | | | | | | | <u> </u> | — | <u> </u> | | | | | | | | | | | | | | | , | | | | | <u> </u> | <u> </u> | | | | Suggested Method for Purging Well hand bail LEVINE • FRICKE ## WATER-QUALITY SAMPLING INFORMATION | Project Name Volvo GM | | Project No. <u>2467</u> | | |--------------------------------------|-----------------------------|---------------------------------------|---| | Date 11/5/91 | | Sample No. <u>LF-6</u> | _ | | Samplers Name | | | _ | | Sampling Location | | - | | | Sampling Method Teflon | hailor | 20.00 | | | Analyses Requested | | 8.67 | | | Number and Types of Sample Bottles t | nsed | - 11.3 | | | Method of Shipment | | - | | | GROUND WATER | SURFACE WATER | | | | Well No | Stream Width | - 11.3/ | | | Well Diameter (in.)2" | Stream Depth | 1.7.25 | | | Depth to Water. Static (ft) | Stream Velocity | • | ? | | | Rained recently? | - 12.73 | | | Water in Well Box | Other | - | | | Well Depth (ft) 20.00 | 2-inch casing = 0.16 gal/ft | | | | Height of Water
Column in Well | 4-inch casing = 0.65 gal/ft | · · · · · · · · · · · · · · · · · · · | _ | | Water Volume in Well | 5-inch casing = 1.02 gal/ft | LOCATION MAP | - | | TIME | DEPIH TO
WATER
(feet) | VOLUME
WITHDRAWN
(gallons) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTH | ER | REMARKS | |-------|-----------------------------|----------------------------------|------------------|--------------|--------------------|----------|----------|-----------------| | 1.00 | | | | | | | | 5727 B4, 1, 4 5 | | 9:01 | | 20 | 19.9 | 5.94 | 790 | | | slightly Turbid | | 4:04 | | 4.0 | 200 | 5.84 | 810 | | | turbid | | 9:09 | | 6.0 | 20.1 | 5.61 | 770 | | | // | | 7:13 | | 8.0 | 20.1 | 551 | 760 | <u> </u> | | " | | 9.76 | | 10.0 | 20.1 | 5.03 | 710 | | | 11 | | 9:19 | | 13:00 | 20.1 | 3.32 | 730 | | | 11 | | 7:21 | 1330 | | | | | <u> </u> | | | | 10:40 | | | | | | | <u> </u> | 5Ancie | | | | | | | | | | . , | | - | | | Ţ | | | | | | | | | | | | | | | | 6-inch casing = 1.47 gal/ft LEVINE - FRICKE ## WATER-QUALITY SAMPLING INFORMATION | Project Name Valva G | <u> </u> | Project No. 2467.05 | |------------------------------------|-----------------------------|---------------------| | Date | | Sample No | | Samplers Name | | | | Sampling Location | | 21,50 | | Sampling Method 7216 | briler | 8.50 | | Analyses Requested | | 13.00 | | Number and Types of Sample Bottles | used | - | | Method of Shipment | | - 1 | | GROUND WATER | SURFACE WATER | 13 11 | | Well No. LF-7 | Stream Width | - 1 2/2 | | Well Diameter (in.) | Stream Depth | - 70 Y | | | Stream Velocity | - 130 | | Static (ft) | Rained recently? | - 208 | | Water in Well Box | Other | _ | | Well Depth (ft) | 2-inch casing = 0.16 gal/ft | | | Height of Water
Column in Well | 4-inch casing = 0.65 gal/ft | , | | Water Volume in Weil 2 Con | 5-inch casing = 1.02 gal/ft | LOCATION MAP | | • | 6-inch casing = 1.47 gal/ft | · | | TIME | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(galions) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTHER | REMARKS | |--------|-----------------------------|----------------------------------|------------------|--|--------------------|-------|--------------| | 300 | | | | | | | START brilar | | (O)5 | | 7.0 | 27.1 | 7.5-1 | 330 | _ | 7 urbed | | 1016 | | 5.0 | 21.9 | 7.26 | 270 | | ч | | 1024 | 1 | /0.0 | 21,4 | 7.20 | 290 | | И | | 1029 | | 12.0 | 21.4 | 8.4 | 270 | | 37 | | 1034 | | 14.0 | 262 | 684 | 260 | | 17 | | 636 | >18.5 | | | | | | • | | | 1010 | * | | | | | ı' | | 11:00 | | | | | | | • | | II. OC | | | | | | | Supled | | | | | | | | | | | | | + | - | | | | | | l | I | 1 | | | | | | LEVINE • FRICKE LITY SAMPLING INFORMATION WATER-QUA Project No. 2407 Project Name Sample No. _______ Samplers Name Sampling Location Sampling Method . Analyses Requested Number and Types of Sample Bottles used Method of Shipment **GROUND WATER** SURFACE WATER MW-Stream Width ___ Well No. . Stream Depth _ Well Diameter (in.) Stream Velocity _____ Depth to Water. Statte (ft) _ Rained recently? Water in Well Box No pe Other _ Well Depth (ft) . 2-inch casing = 0.16 gal/ft Height of Water 4-inch casing = 0.65 gal/ft Column in Well Water Volume in Well 3.5 5-inch casing = 1.02 gal/ft 6-inch casing = 1.47 gal/ft **LOCATION MAP** | | | | 0-11101 | ı casınığ | = 1.47 gai/it | | | |-------|-----------------------------|--|------------------|--------------|--------------------|-------|-------------| | TIME | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(gallons) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTHER | REMARKS | | 1445 | | | | | | | Stort Ralis | | 14118 | | 3.5 | 21.3 | 7.00 | 723 | | 5/ort Ralia | | 1452 | | 7.0 | 20. 7 | 6.50 | 821 | | rerbid | | 1459 | | 10.5 | 20.2 | 630 | | | 1 / | | 1515 | | | | | | | Simpled | | ¥ | Combust | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | neter | dies | | | | | | | | | | | | | LEVINE • FRICKE ALITY SAMPLING INFORMATION **WATER-QU** Project No. 2407 Project Name Sample No. Mw-2 Date _ Samplers Name Sampling Location Sampling Method Analyses Requested Number and Types of Sample Bottles used Method of Shipment _ SURFACE WATER **GROUND WATER** Stream Width __ Well No. _ Stream Depth _ Well Diameter (in.) Stream Velocity ___ Depth to Water. Static (ft) _ Rained recently? Water in Well Box . Other _ Well Depth (ft) _ 2-inch casing = 0.16 gal/ft Height of Water 4-inch casing = 0.65 gal/ft Column in Well 5-inch casing = 1.02 gal/ft Water Volume in Well 3.3 6-inch casing = 1.47 gal/ft LOCATION MAP
 | | | 6-inc | h casing | = 1.47 gal/ft | | | |-------------|-----------------------------|----------------------------------|------------------|--------------|--------------------|-------|---------| | TIME | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(galions) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTHER | REMARKS | | 310 | | | | | | | Trustil | | 1721 | | 3.3 | 73.7 | 3.90 | 1020 | | 70167 | | 325 | | 3.3
6.6 | 21.9 | 309 | 1020 | | 11 | | 329 | | 9.9 | 21.6 | 3.68 | 1030 | | /1 | | Hos | | | | | | | sampled | | Falas | | | | ļ | | | • | | | | | <u> </u> | | | +-+- | | | | | | | | | | | | | | | | | | | | | | + | | | | | | | hard bail Suggested Method for Purging Well _ LEVINE-FRICKE ### WATER-QUALITY SAMPLING INFORMATION | · | | | |--|-----------------------------|---------------------| | Project Name Valva G | 7 | Project No. 2407.05 | | Date | | Sample No | | Samplers Name | - M | | | Sampling Location | | . | | Sampling Method | bai/ | 20 | | Analyses Requested | | .16 | | Number and Types of Sample Bottles | s used | 120 | | Method of Shipment | - way | 20 | | GROUND WATER | SURFACE WATER | 2.30 | | Well No | Stream Width | 2.10 | | Well Diameter (in.) | Stream Depth | - | | Depth to Water, 6-95 | Stream Velocity | <u>-</u> | | | Rained recently? | - | | Water in Well Box | Other | _ | | Well Depth (ft) | 2-inch casing = 0.16 gal/ft | | | Height of Water
Column in Well 20 Fee | 4-inch casing = 0.65 gal/ft | | | Water Volume in Well 2-3 | 5-inch casing = 1.02 gal/ft | LOCATION MAP | | _ | 6-inch casing = 1.47 gai/ft | | | | | | | • | | | | | |------|-----------------------------|----------------------------------|------------------|--------------|--------------------|-----|----------|--------------| | TIME | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(gallons) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTT | | REMARKS | | 1120 | | | | | · | | | Stat bailing | | 1/22 | | 2.3 | 21.00 | 465 | 750 | | | Terbid | | 1124 | | 4.6 | | | | | | 17 | | 1128 | | 6.9 | 20,8 | 4.62 | 750 | | | 17 | | | · | | | | | | <u> </u> | Sampled | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | <u> </u> | | - | - | | | | | | | <u>.</u> | | | 1 | | | 1 | | | | 1 | 1 | | | <u> </u> | LEVINE+FRICKE | WA1 | ER-QU | ALITY S | <u>AMPI</u> | ING | INFOR | MA1 | ION | |------------------|-----------------------------|--|--|--------------|--|-------------|----------------| | | ame /o | à. | 1-6 | | • | | No. 24 | | | | | / 3 / 7 | | | _ Sampl | No. MW- 4 | | Samplers | Name | <u> </u> | <u> </u> | | | - [| | | Sampling | Location | <i>~</i> | | | · | - [| | | Sampling | Method | Tetlo | 0-41 | ч | | - | <i>3</i> 6 | | Analyses | Requested _ | | | | | - | | | Number a | and Types of Sa | ample Bottles use | d | | | - | 21 | | Method o | f Shipment _ | Course | <u> </u> | | | _ | .46 | | | GROUND W | ATER | | SURFAC | e water | | .46 | | Well No. | MW- | | Stream W | /idth | | _ ^ | | | Well Dian | neter (in.) | 2" | Stream D | epth | | _ | | | Depth to | Water, | 45 | Stream V | elocity _ | | _ | | | | Well Box | | Rained re | cently? | | _ | • | | | | | Other | | | - | | | _ | th (ft) <u>29</u> | | 2-inc | h casing | = 0.16 gal/ft | | • | | Height of Column | Water
In Well | | 4-inc | h casing | = 0.65 gal/ft | | | | Water Vo | lume in Well | <u> 3.3 </u> | 5-inc | h casing | = 1.02 gal/ft | | LOCATION MAP | | | | | 6-ind | h casing | = 1.47 gal/ft | ٠ | | | TIME | DEPTH TO
WATER
(feet) | VOLUME
WITHDRAWN
(gallons) | TEMP
(deg. C) | pH
(S.U.) | COND
(umhos/cm) | OTHER | REMARKS | | 1407 | | | | | | | stort binglan | | IND | | 3.3 | 21.9 | 6.36 | 2/0 | | Clar | | 1417 | | 6.6 | 213 | 655 | 260 | | SIRGATIZ Kebil | | 1421 | | /0.0 | 210 | c.57 | 290 | | SINGHTI TUBEL | | · | | | | | | | / | | | | | | | | | | | 1436 | | | | | | | sampled | | 1 | | | | | | | Ŭ | - | | - | | | | | | | <u> </u> | | | | | | # APPENDIX D WELL SURVEY DATA Associates, Inc. 1946 N. California Blyd. Sum 240, Walnut Cook California 94580 54(1955-9440 1AX 540 935,5842 Civil Eugmeering Land Planning 1 Land Surveyng November 8, 1991 Job No. 10096-50 LEVINE - FRICKE Monitoring Wells at 5050 Coliseum Way Oakland, California | Well # | Top of Box Elevation | Top of PVC Pipe Casing Elevation | |--------|----------------------|----------------------------------| | LF-1 | 7.93 . | 7.56 | | LF-2 | 10.17 | 9.84 | | LF-3 | 11.33 | 10.98 | | LF-4 | 10.54 | 10.36 | | LF-5 | 8.66 | 8.03 | | LF-6 | 11.89 | 11.59 | | LF-7 | 11.06 | 10.65 | | MW-1 | 10.66 | 10.21 | | MW-2 | 9.29 | 8.86 | | MW-3 | 9.46 | 9.01 | | MW-4 | 10.93 | 10.75 | ### **NOTES:** - 1. All elevations are on mean sea level datum. - 2. The elevations shown were taken on the north side of each box and casing. - 3. Benchmark: City of Oakland BM #1094, elevation 7.85 mean sea level datum. | sieunun 🗢 Associties, mi | S | tedman | رئ | Associates, | Inc | |--------------------------|---|--------|----|-------------|-----| |--------------------------|---|--------|----|-------------|-----| 1646 N. California Blvd. Suite 240, Walnut Creek California 94596 415-935-9140 Mail TRANSMITTAL MEMORANDUM Civil Engineering Land Planning Land Surveying DATE: November 15, 1991 PROJECT: 5050 Coliseum Way TO: Greg Murray Levine - Fricke 1900 Powell Street Emeryville, CA 94608 OUR JOB NO.: 10096-50 **ENCLOSED** SEPARATE COVER WE ARE SENDING YOU THE FOLLOWING ITEMS: | Description | Сору | Print | Sepia | Orig. | Per
Your
Request | For
Your
Use | For
Approval | For
Review | For
Sig. | |----------------------------|------|--|-------|-------|------------------------|--------------------|-----------------|---------------|-------------| | Monitoring Well Elevations | | | | | 1 | X | x | - | | | | | | | | | | | | | | | | T. F. S. | | | | | | | | | | | | | | | | | | | REMARKS: CC: Scot D. Wilson **Project Surveyor** ### APPENDIX E LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS - SOIL **THS CERTIFICATION NO:** E772 ### CERTIFICATE OF ANALYSIS PAGE 1 OF 8 LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 KATHLEEN ISAACSON ATTN: CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 7573, 8361 REPORT DATE: 11/15/91 DATE SAMPLED: 10/30-31/91 DATE RECEIVED: (11/01/91) NOV 1 8 1991 MED-TOX JOB NO: 9111012 ANALYSIS OF: SOIL SAMPLES | Sample Identi
Client Id. | fication
Lab No. | Oil &
Grease
(mg/kg) | Hydrocarbons
(mg/kg) | Extractable
Hydrocarbons
as Diesel
(mg/kg) | |---|--------------------------|----------------------------|-------------------------|---| | LF-1-2.5
LF-1-5.5
LF-1-7.5
LF-1-10.5 | 08A
09A
10A
11A | 2,200
ND
ND
ND | 1,700
ND
ND
ND | ND

ND | | Detection Lim | nit | 10 | 10 | 1. | | Method: | | 5520E | 5520F | 3550 GCFID | | Instrument: | | IR | IR | E | | Date Extracte
Date Analyzed | - | 11/13/91
11/13/91 | 11/13/91
11/13/91 | 11/07/91
11/07/91 | ND = Not Detected Andrew Bradeen, Manager Organic Laboratory Results FAXed 11/08-13/91 Dave Sandusky, Manager Inorganic Laboratory PAGE 2 OF 8 #### LEVINE-FRICKE DATE SAMPLED: 10/30/91 DATE RECEIVED: 11/01/91 CLIENT PROJ. ID: 2407.05 REPORT DATE: 11/15/91 MED-TOX JOB NO: 9111012 | Sample Ident
Client Id. | ification
Lab No. | Arsenic
(mg/kg) | Barium
(mg/kg) | Cadmium
(mg/kg) | Chromium
(mg/kg) | Nickel
(mg/kg) | Lead
(mg/kg) | Zinc
(mg/kg) | |----------------------------|----------------------|--------------------|-------------------|--------------------|---------------------|-------------------|-----------------|-----------------| | LF-3-2.5 | 01A | 5 | 270 | 0.4 | ND | 8 | 20 | 97 | | F-3-15 | 04 A | 3 | 230 | ND | 44 | 52 | 7 | 280 | | .F-3-7 | 05A | 14 | 4,200 | ND (20) | ND | ND | ND (200) | | | £-1-2.5 | 08A | 270 | 470 | 20 (20) | 46 | 13 | 8,600 | 4,600 | | F-1-7.5 | 10A | 11 | 560 | 110 | 65 | 130 | 120 | 31,000 | | .F-1-21 | 16A | 2 | 89 | 38 | 53 | 65 | 13 | 16,000 | | Detection Li | mît | 1 | 5 | 0.2 | 6 | 3 | 2 | 2 | | Method: | | 7060 | 6010 | 6010 | 6010 | 6010 | 6010 | 6010 | | [nstrument: | | V22 | ICP | ICP | ICP | ICP | ICP | ICP | | | | | | | | | | | Date Analyzed: 11/05-07/91 ND = Not Detected Note: Detection limits elevated where noted due to matrix (spectral) interference. #### LEVINE-FRICKE CLIENT ID: LF-1-5.5 CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 10/31/91 DATE RECEIVED: 11/01/91 REPORT DATE: 11/15/91 MED-TOX LAB NO: 9111012-09A MED-TOX JOB NO: 9111012 DATE ANALYZED: 11/04/91 INSTRUMENT: H BTEX AND HYDROCARBONS (SOIL MATRIX) METHOD: EPA 8020, 5030 GCFID | | CAS # | - CONCENTRATION (ug/kg) | DETECTION
LIMIT
(ug/kg) | |------------------|------------|-------------------------|-------------------------------| | Benzene | 71-43-2 | ND | 1 | | Toluene | 108-88-3 | ND | 1 | | Ethylbenzene | 100-41-4 | ND | 1 | | Xylenes, Total | 1330-20-7 | ND | 3 | | PURGEABLE HYDROC | ARBONS AS: | | | | Gasoline | | ND mg/kg | 0.2 mg/ | ND = Not Detected #### LEVINE-FRICKE CLIENT ID: LF-1-10.5 CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 10/31/91 DATE RECEIVED: 11/01/91 REPORT DATE: 11/15/91 ND = Not Detected MED-TOX LAB NO: 9111012-11A MED-TOX JOB NO: 9111012 DATE ANALYZED: 11/04/91 INSTRUMENT: H ### BTEX AND HYDROCARBONS (SOIL MATRIX) METHOD: EPA 8020, 5030 GCFID | | CAS # | CONCENTRATION (ug/kg) | DETECTION
LIMIT
(ug/kg) | |------------------|------------|-----------------------|-------------------------------| | Benzene | 71-43-2 | ND | 1 | | Toluene | 108-88-3 | ND | 1 | | Ethylbenzene | 100-41-4 | ND | 1 | | Xylenes,
Total | 1330-20-7 | ND | 3 | | PURGEABLE HYDROC | ARBONS AS: | | | | Gasoline | | ND mg/kg | 0.2 mg/ | # QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NO: 9111012 PAGE 5 OF 8 DATE EXTRACTED: 11/12/91 DATE ANALYZED: 11/13/91 SAMPLE SPIKED: 9111012-11A MED-TOX JOB NO: 9111012 CLIENT PROJ. ID: 2407.05 INSTRUMENT: IR # IR DETERMINATION FOR OIL & GREASE/HYDROCARBONS METHOD SPIKE RECOVERY SUMMARY SOIL MATRIX | ANALYTE | MS
Conc.
(mg/kg) | Sample
Result
(mg/kg) | MS
Result
(mg/kg) | MSD
Result
(mg/kg) | Average
Percent
Recovery | RPD | |---------|------------------------|-----------------------------|-------------------------|--------------------------|--------------------------------|-----| | Oil | 232 | ND | 216 | 221 | 94.2 | 2.2 | CURRENT QC LIMITS (Revised 08/14/91) | <u>Analyte</u> | Percent Recovery | RPD | |----------------|------------------|-----| | Oil | (66-130) | 10 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 6 OF 8 DATE EXTRACTED: 11/07/91 DATE ANALYZED: 11/07/91 SAMPLE SPIKED: 9110227-05A MED-TOX JOB NO: 9111012 CLIENT PROJ. ID: 2407.05 INSTRUMENT: E MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE SOILS METHOD 3550 (SOIL MATRIX; EXTRACTION METHOD) | ANALYTE | Spike
Conc.
(mg/kg) | Sample
Result
(mg/kg) | MS
Result
(mg/kg) | MSD
Result
(mg/kg) | Average
Percent
Recovery | RPD | |---------|---------------------------|-----------------------------|-------------------------|--------------------------|--------------------------------|------| | Diesel | 50.9 | ND | 37.5 | 32.4 | 68.7 | 14.6 | CURRENT QC LIMITS (Revised 08/15/91) <u>Analyte</u> Percent Recovery <u>rpd</u> (60.3-116.2) Diesel 19.7 MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 7 OF 8 DATE ANALYZED: 11/04/91 SAMPLE SPIKED: 9111012-09A CLIENT PROJ. ID: 2407.05 MED-TOX JOB NO: 9111012 INSTRUMENT: H #### MATRIX SPIKE RECOVERY SUMMARY METHOD 5030 W/GCFID/8020 (SOIL MÁTRIX) | ANALYTE | Spike
Conc.
(ug/kg) | Sample
Result
(ug/kg) | MS
Result
(ug/kg) | MSD
Result
(ug/kg) | Average
Percent
Recovery | RPD | |-------------------------|---------------------------|-----------------------------|-------------------------|--------------------------|--------------------------------|-----| | Benzene | 22.4 | ND | 23.0 | 23.8 | 104.5 | 3.4 | | Toluene
Hydrocarbons | 100 | ND | 102 | 105 | 103.5 | 2.9 | | as Gasoline | 1040 | ND | 1100 | 1010 | 101.4 | 8.5 | #### CURRENT QC LIMITS (Revised 08/15/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |----------------|------------------|------------| | Benzene | (80.8-125.2) | 9.6 | | Toluene | (82.7-119.1) | 10.2 | | Gasoline | (54.0-120.1) | 14.8 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 8 OF 8 MATRIX: SOIL MED-TOX JOB NO: 9111012 SAMPLE SPIKED: 9111012-04A CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | | | | | | | | | QC CONTROL | LIMITS | |--------------|------------------|------------------|----------------|-------|---------------------------|--------|------|-----------------|--------------| | COMPOUND | INST./
METHOD | SAMPLE
RESULT | SPIKE
Added | | RECOVERIES
/kg)
MSD | % REC. | RPD | REC. %
LIMIT | RPD
LIMIT | | As, Arsenic | V22/7060 | 3.2 | 20 | 21.0 | 19.9 | 86.2 | 5.4 | 63.9-125.0 | 12.6 | | 8a, Barium | ICP/6010 | 231.7 | 400 | 593 | 592 | 90.2 | 0.27 | 69.0-106.1 | 5.0 | | Cd, Cadmium | ICP/6010 | ND | 20 | 15.98 | 16.12 | 80.3 | 0.86 | 66.3- 90.7 | 5.0 | | Cr, Chromium | ICP/6010 | 43.8 | 100 | 135.5 | 135.0 | 91.5 | 0.41 | 49.3-110.1 | 5.0 | | Ni, Nickel | ICP/6010 | 51.7 | 100 | 137.4 | 136.6 | 85.3 | 0.53 | 50.7-104.2 | 5.0 | | Pb, Lead | ICP/6010 | 7.2 | 100 | 98.4 | 96.9 | 90.4 | 1.56 | 69.9- 94.9 | 5.0 | | Zn, Zînc | ICP/6010 | 275.6 | 100 | 350.1 | 348.9 | 73.9 | 0.34 | 46.7- 98.6 | 5.0 | | Project No. | : 2 | 407 | .05 | | Field | Log | book | No. | : | - | 0 |)ate: | 10/3//9/ | Serial No.: | 8361 | | |-----------------------------|----------|-------|---|---------------------------------------|----------------|------------|--------------|----------|---------------------------------------|---------|-----------------|----------|---|--------------|------------------|---------------------------------------| | Project Nan | | | | | Projec | t L | ocatio | n: | OAK | land | 1 | | | | | | | Sampler (Sig | | | 1-2- | | | | | | Λ Δ | NALY | SES | | 2/1/ | Samplers: | - | | | | | SA | AMPLES |) | _ | | | 2 | 19 | | | See. | 100/25t/ | An | | | | SAMPLE NO. | DATE | T IME | LAB SAMPLE
NO. | NO. OF
CON-
TAINERS | SAMPLE
TYPE | _ | 28° 00 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 P. S. | 000 | 434 | 100 (10 / 10 / 10 / 10 / 10 / 10 / 10 / | REMA | ARKS | | | LF-1-2.5 | 1931 | 940 | 08.0 | | 5011 | | | <u> </u> | X | | | | | · | | / | | 4F-1-55 | / | 1000 | MA | | | ļ | × | × | | | X | | Met | lo by series | 6010 | 7000 | | LF-1-7.5 | | 11:45 | 10A | | | | | <u> </u> | X | | XX | | | U | | | | 4-1-10.5 | | 1040 | 11A | | | ļ | × | X | | | X | | | | | | | LF-1-B | | 1150 | 19 A | | | ļ | | | | | | H | | | | | | LF-1-15.5 | | 10.50 | 13A | | | | | ļ | | | | # | | | | | | LF-1-17 | | 1140 | 14A | | | | | | <u> </u> | | | <u>H</u> | 126 | iase (all, | | | | LF-1-19 | | 1155 | 15A | V | | | | | ļ | | | + | Ku | thlein Is | aarto | 7 — | | LF-1-21 | | 1120 | Aوا | | | <u> </u> | | | X | | 玉 | | u | th quest | in | | | | <u> </u> | Ì | | | | | ļ <u> </u> | | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | _ | |] | | | | | | | | | | | | ļ | ļ <u></u> | | ļ | | | | | | | | | | | | | | | = | <u> </u> | | ļ | ļ | | | | | | | | | | | | | | | ļ | | ļ | - | | | <u> </u> | - | | | · · · · · · · · · · · · · · · · · · · | | | | | | · · · · · · · · · · · · · · · · · · · | | - | | 1 | | | | | | | | | | | | | | | l pare | <u> </u> | TIME | <u> </u> | DCCC114 | [| | /1 | | | NATE / | Ттіме | | RELINQUISHED
(Signature) | 9 | | | | DATE | 7/ | KINE
1800 | | RECEIVI
(Signat | | <u>K</u> , | in | <u> </u> | 1 | DATE/
10/3/ | TIME | | RELINQUISHED
(Signature) | 14 | m | <u> </u> | | | 4/ | TIME | | RECEIVI
(Signat | ture) | للار | W, | EUGL E |) | DATE
1/1 약] | TIME
4/1()() | | RELINQUISHED
(Signature) | | in | Chark | | DATE/ | <i>a</i> . | TIME
5:3(| 5 | RECEIVI
(Signat | | | λà | Oulce | inia | ATE 91 | 1730 | | METHOD OF SHI | | | | | DATE | | TIME | | LAB CO | MMENTS | | | 0 - | | - | | | Sample Col | lector: | | LEVINE-FRICH
1900 Powell S
Emeryville, Co
(415) 652-4500 | Street, 12
a 94608
) | | | | | Analy | | . | orato | ory: | | | | | Shinning | (White) | jah | Conv (Green) | File | e Copy (| Yello |) (wo | _ | ld Copy | (Pink | :) | | | | FORM ' | 96/COC/ARF | | Project No. | * ************************************ | 1 | | | Field Logbook No.: | | | | | | Date | 10/3 | 0/9/ | Serial No. | .:
75` | 7 2 | | |--------------------------|--|--------|---|---------------------------------------|--------------------|----------|----------|----------------|------------------|--------------|--|--|----------|-------------|--|-------------|--| | Project Nan | ne: | 6/20 (| -
}-M1 | | Projec | t Lo | catio | n: | , | | | | | | | 7 3 | 73 | | Sampler (Sig | | | | | • • • | | | | A | NAL | YSES | 3 | | | Sampler | s: | | | | | SA | AMPLES | | • | | <u></u> | | 1/2. | 1 | $\overline{/}$ | $\overline{}$ | ZŞ | \&_ | Gron | | | | SAMPLE NO. | DATE | TIME | LAB SAMPLE | NO. OF
CON -
TAINERS | SAMPLE
TYPE | | 181/80, | 8/ | | | / | / | KOZ | RIST / | RE | MARKS | | | LF-3-2.5 | | | | | 501 | | | × | | | | A | | | | | | | 1F-3 | 10/ | | | | | <u> </u> | | | | | | 1-1 | ļ | | VAL COLOR | 1. 45. | <u>. ,) yezh</u> | | 1F-3-11 | - | 2.1 | | ! | | <u> </u> | <u> </u> | | ļ | | | 1 | ļ | · · · · · · | | | <i>i</i> | | LF-3-15 | 10/30 | 11.40 | | | | <u> </u> | | * | | ļ | | ļ | | | | | <u> </u> | | LF-3-7 | 10/30 | 12:00 | | ļ | | | ļ | X | | | | ļ | | | | | · · · · · · · · · · · · · · · · · · · | | LF-1-2A | | | | ٠ | | <u> </u> | | | | | | 1 | | 1.11. | $\epsilon_1 = \epsilon_2, 0.3$ | . ! | 1 | | | $\mathcal{L}_{\mathcal{L}}$ | | | 1 | ₩ | | <u> </u> | ļ | 1 | | | 14 | | <u> </u> | / | | | | | | | | | | | <u> </u> | | | | | <u> </u> | | | | | | | | | | | ļ | | | ' | | | | | <u> </u> | | | | | | | | | | | | | | <u> </u> | ļ | _ | ļ | | <u> </u> | | | | | | | | | | | | ļ | ļ | <u> </u> | ļ | | | | | | | ······································ | | ······································ | | | <u> </u> | | | | ļ | ↓ | ļ | ļ | ļ | | | - | | | <u> </u> | | | | | | | | | | | ļ | · | | - | | | | | | <u></u> | | | | | | | | | ļ | <u> </u> | <u> </u> | | | | - | | | | | | | | <u> </u> | | | <u> </u> | | <u> </u> | - | | - | ļ | | | | | | | <u> </u> | | RELINQUISHED | BY: | | | | DATE | | IME | <u> </u> | RECEIV | ED BY: | , 1 | <u></u> | <u> </u> | | | DATE | TIME | | (Signature) RELINQUISHED | BY: | | | · · · · · · · · · · · · · · · · · · · | DATE | | IME | | (Signa
RECEIV | ED BY: | | | | : 1 · . · | | DATE | TIME | | (Signature) RELINQUISHED | | | | | DATE | 1 | IME | - | (Signa
RECEIV | | | | | | | DATE | TIME | | (Signature) | | | | | | | TIME | | (Signa | ture) | | | | | | <u> </u> | | | METHOD OF SHI | PMENT: | | | | DATE | | IME, | | LAB CO | MMEN IS | : | | | <u>.</u> | | | | |
Sample Col | lector: | | LEVINE-FRICI
1900 Powell S
Emeryville, C
(415) 652-450 | Street, 12i
a 94608
0 | th Floor | | | | Analy | | | orato | ory: | | | | D RE (COC (AD) | # ANALYTICAL **SERVICES** S CERTIFICATION NO: E772 ### CERTIFICATE OF ANALYSIS PAGE 1 OF 3 LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 ATTN: KATHLEEN ISAACSON CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 7879, 7870, 7574 REPORT DATE: 11/21/91 DATE SAMPLED: 10/28-29/91 DATE RECEIVED: (10/30/91) MED-TOX JOB NO: 9110238 ANALYSIS OF: SOIL SAMPLES | Sample Ide | entification
. Lab No. | Total*
Organic
Carbon
(mg/kg) | |------------|---------------------------|--| | LF-2-7.5 | 06A | 5,200 | **Detection Limit** Method: 9060 Date Analyzed: 11/13/91 * Subcontracted to a DOHS certified laboratory Sherri Moore, Manager Inorganic Laboratory Results FAXed 11/08-14/91 PAGE 2 OF 3 #### LEVINE-FRICKE DATE SAMPLED: 10/28-29/91 DATE RECEIVED: 10/30/91 CLIENT PROJ. ID: 2407.05 REPORT DATE: 11/21/91 MED-TOX JOB NO: 9110238 (.01×2000) | Sample Ident
Client Id. | ification
Lab No. | Arsenic
(mg/kg) | 8arium
(mg/kg) | Cadmium
(mg/kg) | Chromium
(mg/kg) | Nickel
(mg/kg) | Lead
(mg/kg) | Zinc
(mg/kg) | | |----------------------------|----------------------|--------------------|-------------------|--------------------|---------------------|-------------------|-----------------|-----------------|----------| | LF-2-2.5 | 04A | 54 | 3,200 | 60 (20) | | 49 | 24,000 | 6,900 | | | LF-2-5.5
LF-2-7.5 | 05A
06A | 29
160 | 76
84 | ND (20)
0.9 | 10
34 | 12
33 | ND (200) | 300
580 | Too HIGH | | LF-2-15.5 | 07A | 5 | 30 | 0.6 | 46 | 66 | 36 | 460 | w mar | | Detection Lir | mit | 1 | 5 | 0.2 | 6 | 3 | 2 | 2 | | | Method: | | 7060 | 6010 | 6010 | 6010 | 6010 | 6010 | 6010 | | | Instrument: | | V22 | ICP | ICP | ICP | ICP | ICP | ICP | | Date Analyzed: 11/05-07/91 ND = Not Detected Note: Detection limits elevated where noted in parentheses, due to matrix (spectral) interference. ### QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NO: 9110238 PAGE 3 OF 3 MATRIX: SOIL MED-TOX JOB NO: 9110238 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | | | | | | OBSERVED R | ECONEDIES | | | QC CONTROL | LIMITS | |--------------|------------------|------------------|------------------|------------------|------------|-----------|--------|------|-----------------|--------------| | COMPOUND | INST./
METHOD | SAMPLE
SPIKED | SAMPLE
RESULT | SP I KE
Added | (mg/ | | % REC. | RPD | REC. %
LIMIT | RPD
LIMIT | | As, Arsenic | v22/7060 | 9110238-01A | ND | 20 | 20.2 | 20.2 | 101.0 | 0.0 | 63.9-125.0 | 12.6 | | Ba, Barium | ICP/6010 | 9110238-14A | 51 | 400 | 412 | 403 | 89.0 | 2.16 | 69.0-106.1 | 5.0 | | Cd, Cadmium | ICP/6010 | 9110238-14A | 0.33 | 20 | 16.46 | 16.46 | 80.6 | 0.00 | 66.3- 90.7 | 5.0 | | Cr, Chromium | ICP/6010 | 9110238-14A | 67.1 | 100 | 140.9 | 139.2 | 73.0 | 1.20 | 49.3-110.1 | 5.0 | | Ni, Nickel | ICP/6010 | 9110238-14A | 82.3 | 100 | 161.5 | 159.6 | 78.3 | 1.24 | 50.7-104.2 | 5.0 | | Pb, Lead | 1CP/6010 | 9110238-14A | 6.0 | 100 | 94.2 | 93.0 | 87.6 | 1.33 | 69.9- 94.9 | 5.0 | | Zn, Zinc | ICP/6010 | 9110238-14A | 378.9 | 100 | 461.1 | 456.8 | 80.0 | 0.92 | 46.7- 98.6 | 5.0 | | CLIENT MED-T
CLIENT JOB REF.:
LAB PROJECT NO: | | | NOTE: Pl | COC f | or ver | i- | d; ° | | | S. | AMPL | ER (S | リ:
 | \times | | | | | |---|---------------|------------------------------|--|--------------|---------------------|------------|--------------|----------------------|--------------|-------|--------------|----------------|--------------|----------------|---------------------------------------|--------------|-----------------|--------------------| | | (lab us | e only) | fication: | pt l' | | | | | 7 | NALY | SES | 7 | 77 | | | | | | | CLIENT SAMPLE
IDENTIFICATION | DATE
Taker | Lab Number
(lab use only) | AIR
VOLUME
(Liters) | NO.
CONT. | SAMPLE
Type
* | 1/1 | 0/. | | // | | / | // | // | | // | | , | MMENTS/
RFERENC | | 911023B-6A | 10/29 | | | , | 8 | × | | | | | | | | | | | | | | | | | | | | | | \ | | | | - | | | | - | Limit | det_ | | | | | | | | | | | | | | | | | | | 50 | mglKg | | | | | | | · | ļ | ļ | | | | | | | | ļ | | | 7 (| | | | | | | <u> </u> | | <u> </u> | | | | | | | - | | | İ | <u> </u> | | | <u> </u> | | | | <u> </u> | | | | | | | | | | | | | | | | | | - | | | | | • | | | | | | | | ļ | | | | | | ······ | | | | | | | | | | | | | | | | | <u> </u> | | | | | | - | | | <u> </u> | | | | ···· | | · · · · · · · · · · · · · · · · · · · | 1 | / | | | | | | | • | | | Relinquished by (Signature) | Ouns | - allessie | Date | 91 U | Time
:31/m | ile
(S: | celv
igna | ed b | y: K | hi | -Va | \sim | Da | ~りゃ | vela | / [0 | Date
1.3/.1/ | Time
4.360 | | Relinguished by | : () | 0 | Date | | Time | Ke | ceiv | ea D | y: | | • | | | | | | Date | Time | | (Signature) Dispatched by: (Signature) | | | Date | | Time | Red | celv | ture
ed f
ture | or 1 | ab by | y : | | | | · · · · · · · · · · · · · · · · · · · | | Date | Time | | (Signature)
Nethod of Shipm | ent: | ourier | | | | | | mmen | | | | • • • • | | | | , | - | | | CLIENT JOB REF.:
LAB PROJECT NO: | | c | opy of (
ication | of sa | mple | L | <i>J</i> 3 | // | 7 | / | _^ | NALY | SES | 7 | 7 | | 7/ | | |-------------------------------------|---------------|---------------------------|---------------------------|-----------------|---------------------|-------|----------------|------|----------|---------|---------------------------------------|----------|------------|--|--|-------------|--------------|---------------------------------------| | CLIENT SAMPLE
IDENTIFICATION | DATE
Taken | Lab Number (lab use only) | AIR
VOLUME
(Liters) | NO.
CONT. | SAMPLE
TYPE
* | N. O. | | | /, | | / | | | | <i>[</i> | | | MENTS/ | | 9110238-24 | 10/29 | | | | 8 | × | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | _ | | | | | | | | | | | | | | | ., | | | · · | | | | | | | | | • | ٠. | | | | | | | | | - | | | | · · · · · · · · · · · · · · · · · · · | | | | | | · - | _ | <u> </u> | | | | | | | | | لـــــا | a1 | | l <u>.</u> | L(| 1 | [_ | | l_ | | | . | L | i | <u> </u> | | • | • | | Relinquished by (Signature) | enic | Harrington | Date > /6/// | 91 0 | Time
1930 | (S | ceive
ignat | ure) | <u> </u> | m
', | ـــــــــــــــــــــــــــــــــــــ | dle | res | | | <u> </u> | Date | Time
Time | | Relinquished by (Signature) | 4.15 | Loves | Date | | Time
0:85 | | ceive
ignat | | : | • | | | | • | | | Date | Time | | Dispatched by:
(Signature) | rchr. | | Date | | Time | Re | ceive
ignat | d fo | r la | b by | N. | -W | 1 ~ | | | , | Date | Time
W.B | | Method of Shipm | ent: | • | | | | | ь Соп | | | | ८प | | | | | | | | ... | Project No. | : 24 | 107 | | | Field | Logboo | ok No. | : | | | Date: | 10/2 | શ્રીજ | Serial N | · | 7879 | ì. | |--------------------------------------|---------|-------|---|---------------------------|----------------|---------|----------|--------|----------|----------|-----------|------|----------|-----------------|------------|---------|--------| | Project Nan | ne: V | Ivo | GM | | Projec | t Loca | tion: | On- | Ela | • | | | | | | / 0 / 3 | | | Sampler (Sig | nature) | : 91 | 2 | | - | | | | NAL | YSES | 5 | _/_ | | Samp | _ | | | | | | 3 | MPLES | | | | 2 / B | 1/0 | \\$\'/ | \angle | | 4017 | *154/ | 6 | 7 | | | | SAMPLE NO. | DATE | TIME | LAB SAMPLE
NO. | NO. OF
CON-
TAINERS | SAMPLE
TYPE | | | | 13 | (Mr.) | | ×/ | 2/ | | REMAR | KS | | | LF-4-2 | 10/29 | 8,09 | DIA | 1 | Soil | | X | | ļ | | | | | | | | | | LF-4-5 | 14/29 | 9:15 | AOS. | 1 | | | | - | | | 1+ | | | | | | | | 14-3.5 | 10/19 | 8.26 | 02A . | | , J | | X | | X | | | | <u> </u> | <u>letals b</u> | - 601 | 0/700 | o se | | F-4-16 | 10/29 | F:30 | ZIA | - | 1 | | | | | | H | | | | <i>O</i> | | | | F-4-15 | 10/29 | 8:40 | 03A | ۲ | 4 | | X | | <u> </u> | | | | | | | | | | F-4-20 | 777 | _ | AGG | i | | | | | | | H | | | | | | | | LF-4-12.5 | 7, 7 | 9:40 | 454 | | | | | | | | H | | | | | | | | -F-7-11.5 | | 9.50 | 24A | ì | ı | | | | | | H | | Ply | ease o | call | | | | LF-2-2.5 | , | 11:70 | なかの | l | 4 | | X | | | | 末 | | Ya | ithlee | nIs | aac | 500 | | LF-2-5.5 | 10/29 | 11:40 | 05 A | 1 | \downarrow | | X | | | | <u> </u> | | | 1th 6 | | | | | LF-2-3.5 | 10/29 | 11:50 | 25A | 1 | U | | | | | | 14 | | | <u> </u> | | | | | LF-2-7.5 | • • | | 06A | 1 | V | | X | | | Х | <u> </u> | | | | | | | | F-2-101 | Popa | 1223 | Jic A | | 1 | | | | | <u> </u> | 1-} | | | | | | | | P-2-15.5 | | | 61A | ĺ | U | | X | | | | | | | | | | | | £-2-W | 10/29 | 1315 | | | V | | | | | | | |
did | not r | <u>cei</u> | ھي_ | | | LF-2-11 | 10/29 | 1325 | 27A | | 4 | | | | | 1 | 1+ | | | | | | | | RELIN Q UISHED
(Signature) | Ker | hlut | C. Jam | | DATE /3 | of TIME | :30 | (Signa | | | 7.7 | W | TILL | Cru | | | TIME 5 | | RELINQUISHED (Signature) | BV: | | | | DATE | TIME | | | (ED BY: | | <u>~-</u> | . (J | Olis | محمد | DAY | 30/41 | TIME | | RELINQUISHED (Signature) | | | | | DATE | TIME | | | ED BY: | 8 | <i>y</i> | 20 | | <u> </u> | DATE | | TIME | | METHOD OF SHI | PMENT: | | · | . — | DATE | TIME | | LAB CO | MMENTS | ò: | | | | | | | | | Sample Col | lector: | | LEVINE-FRICK
1900 Powell S
Emeryville, Co
(415) 652-4500 | treet, 12
a 94608 | th Floor | | | Anal | ytical | Lab | orato | ory: | Med | Tox | | | | | nipping (| (White) | Lab | Copy (Green) | File | Copy (| (ellow) | <u> </u> | d Cop | y (Pin | k) | | | | | FC | RM N | 6/COC | | Project No. | : 2 | -407 | . 05 | | Field | Log | gbook | No. | : | | | Date: | 10/28/9/ | Serial N | | , | |-----------------------------|---------|-------------|---|---------------------------|---------------|-------|----------|-----|--------------------|--------|-----|----------------|-----------|------------|---|--------------| | Project Nar | | | | | Proje | ect L | _ocatio | n: | OAK | Anio | 1 | | 11/ | | 787 | ן | | Sampler (Sig | | | 2 | | | | | 7 | | | | 5 | | Sampl | ers: | | | | • | | AMPLES | | | | - /s> | //3 | 1/2 | 35 | 7 | $\overline{/}$ | 101/05t/ | / | GTM | | | SAMPLE NO. | DATE | TIME | LAB SAMPLE | NO. OF
CON-
TAINERS | SAMPL
TYPE | | RAK SEL | | 1 | | | | *V/ *V/ | | REMARKS | | | LF-7-2 | 10/28 | 1045 | A80 | _ | soil | | | X | | | | | | | | | | LF7-5 | 10/28 | 1050 | -09A | ١ | | | | | | | | H | | | , | | | LF-7-4 | ,] | 1050 | 09A | 1 | | | | × | | | | | Me | Hals by | 6010/70 | 100 searc | | 15-7-10 | | 11:00 | AUI | 1 | | | | X | | | | | UF-7 | -4 recd | two | | | LF-7-15. | 5 | 11:05 | IIA. | 1. | | | | X | | | | | | | | | | LF-7-2) | Y | H:30 | 28A | 1 | | | | l | | | | H | | | | | | LF-7-25 | | 12:36 | 29A | 1 | | | | | | | | + | | | | | | LF-6-2 | 1 | 15:00 | 12A | l | | | | X | | | | | | | | | | 45 | | 15:15 | | | 1 | | | | | | | H | Ple | use w | ul ded no | + receive | | 4-6-9 | Ţ | 16115 | | 1 | V | | | X | | | | | | | Isaaus | | | 15-6-13 | V | 1150 | <i>3</i> 0A | | V | | | | | | | Ħ | | th gues | | | | LF-6445 | l | 1655 | 31A | 1 | 1 | | | | | | | 11 | | | | | | 4-6-15.5 | l | 1700 | 14A | | V | | | X | | | | | | | | | | 4F-6-20 | 1 | 1705 | | Ì | | | | | | | | H | | | | | | LF-6-18 | 1 | 1715 | 33A | 1 | V | | | | 7 | | | H | | | | | | | | | | | | | | | | | ١, | | | | | | | RELINQUISHED
(Signature) | BY: Ke | Kli | h. Ban | 5 | DATE
DATE | /91 | TIME 4/2 | 3 D | RECETVI
(Signat | | Q | | Univ | √ 0 | MIE AN | 5.15pm | | RELINQUISHED
(Signature) | BY:/ | | | | DATE | , | TIME | | RECEIVI
(Signat | | , , | ne- | (2000) | / O(D | DATE
10/3/91 | TIME 1820 | | RELINQUISHED
(Signature) | | | | | DATE | | TIME | | RECEIVI
(Signal | D BY: | | <u> </u> | CYCCE | TICS. | DATE | TIME | | METHOD OF SHI | | | | | DATE | | TIME | | LAB CO | | : | | | | <u>, </u> | . 1 | | Sample Col | | | LEVINE-FRICK
1900 Powell S
Emeryville, Co
(415) 652-4500 | reet, 121
194608 | ···· | | au) | | .1 | | | orato | ry: Med T | -OX | FORM N | - R6/COC/ARF | | Shipping (| (White) | Lab | Copy (Green) | F116 | Сору | (Tell | OW) | | d Copy | (6.10) | K.J | | | | FUKM N | 10/ CUC/ ARF | | Project No. | .: | 240 |)7 | | Field | Log | book | No.: | | | | Date | : 101 | 29/9/ | Serial No | | | |-----------------------------|----------|-------|---|----------------------------|----------------|-------|-------------|---------------------------------------|------------------|-----------------|------|-------|----------|---------------|--|-----------|--------------| | Project Nar | ne: l | /olvo | | | Projec | t L | ocatio | n: | -0 | akla | | | E | · | | 757 | 4 | | Sampler (Sig | | | 1 | | | | | | A | NAL | /SES | 5.(| | $\overline{}$ | Sample | rs: | | | | | | AMPLES | | | | | 200 | <u> </u> | <u> </u> | /Lvi | | 101 | 2/5t/_ | <u></u> | 677 | | | SAMPLE NO. | DATE | TIME | LAB SAMPLE
NO. | NO. OF
CON-
TAINERS | SAMPLE
TYPE | / | 18 P | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100 | NAL' | | | XV) | \$ | RE | EMARKS | | | LF-5-2 | 10/29 | 1600 | 15A | | Soi/ | | | X | , | | | | | | | | | | LF-5-5.5 | 10/29 | 1605 | 34A | 1 | 1 | | | | | | | X | | | | · | , | | LF-5-11 | 10/29 | 1620 | 16A | | <u> </u> | | | メ | | | | | <u>.</u> | | | | | | LF-5-15 | 10/29 | 1640 | ITA | | V | | | X | | | | | | | - | | | | LF 5-3.5 | 10/27 | 1700 | | l-t- | t | - | | | | | | X | | _ | | | | | LF-5-8 | 1429 | 1705 | 3.57
34A | 1 | V | | | | | | | X | | | | | | | LF-5-19.5 | 7 | | 306 | 1 | ı | | | | | | | X | | | | | | | LF-5-21.5 | | | 紐 | i | V | | | | | | | X | | Pla | ease co | all | | | LF-5-24 | 10/29 | 1740 | 322 | 1 | L | | | | | | | X | | La | thleen | Isaac | Sen | | LF-5-3.5 | 10/29 | 1700 | 18 A | 1 | V | | | X | | | | | | | ith que | | | | LF-4-14 | 19/29 | 13:15 | 19A | | | | | | | | | X | | not 1 | isted or | n we h | hat | | | | | | | | | | | - | | | | | | isted or | ani | ? واحريك | | | | | | | | | | | | | | | | | | | 3 | 1 | | | | | | | | | RELINQUISHED
(Signature) | | POL | . how | | DATE
10/30/ | 19, | TIME
4:3 | 0 F | RECEIV
(Signa | | V. | 5. | N | mil | GNOZ | PATE SOPA | 545ph | | RELINQUISHED
(Signature) | B#: | | 01 | | DATE | | TIME | F | RECEIV
(Signa | ED BY:
ture) | | na | , (| 1,000 | me l | DATE 3041 | TIME | | RELINQUISHED
(Signature) | | | | | DATE | | TIME | | RECEIV
(Signa | ED BY: | 7 | | | 0 | | DATE | TIME | | METHOD OF SHI | | | | | DATE | | TIME | | | MMENTS | : | | | | ······································ | l | 1 | | Sample Col | lector: | | LEVINE-FRICK
1900 Powell S
Emeryville, Co
(415) 652-4500 | treet, 121
o 94608
) | th Floor | | | | | tical | | orato | ory: | Med | Tex | FORM N | 36/COC/ARF | | Shipping (| (milite) | Lab | Copy (Green) | TITE | s copy (| 16111 | , 114 J | | ս եսիչ | . fi.111# | | | | | | FURMIN | 101 COC! ARE | ### **NALYTICAL SERVICES** 'S CERTIFICATION NO: E772 ### CERTIFICATE OF ANALYSIS PAGE 1 OF 3 LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 ATTN: KATHLEEN ISAACSON CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 7879, 7870, 7574 REPORT DATE: 11/21/91 DATE SAMPLED: 10/28-29/91 DATE RECEIVED: (10/30/91) MED-TOX JOB NO: 9110238 ANALYSIS OF: SOIL SAMPLES Sample Identification Sul fur* Lab No. (%) Client Id. 1.08 LF-4-3.5 02A Method: ASTM D129 Date Analyzed: 11/06/91 * Subcontracted to a DOHS certified laboratory Sherri Moore, Manager Inorganic Laboratory Results FAXed 11/08-14/91 PAGE 2 OF 3 #### LEVINE-FRICKE DATE SAMPLED: 10/28-29/91 DATE RECEIVED: 10/30/91 CLIENT PROJ. ID: 2407.05 REPORT DATE: 11/21/91 MED-TOX JOB NO: 9110238 | Sample Ident
Client Id. | ification
Lab No. | Arsenic
(mg/kg) | 8arium
(mg/kg) | Cadmium
(mg/kg) | Chromium
(mg/kg) | Nickel
(mg/kg) | Lead
(mg/kg) | Zinc
(mg/kg) |) | |----------------------------|----------------------|--------------------|-------------------|--------------------|---------------------|-------------------|-----------------|-----------------|-------| | LF-4-2 | 01A | ND ND | 220 | 0.8 | 23 | 31 | 77 | 140 | • | | LF-4-3.5 | 02A | 34 | 60,000 | 30 | 32 | 82 | 850 | 5,100 | | | LF-4-15 | 03A | 3 | 140 | ND | 49 | 96 | 11 | 49 | | | LF-7-2 | 08A | 63 | 67,000 | ND | 8 | 18 | 52 | 72 | - | | LF-7-4 | 09A | 12 | 92,000 | 0.4 | 11 | 21 | 67 | 200 | | | LF-7-10 | 10A | 4 | 140 | ND | 44 | 38 | 5 | 20 | | | LF-7-15.5 | 11A | 4 | 150 | 0.2 | 48 | 97 | 7 | 57 | | | LF-6-2 | 12A | 10 | 100 | 0.6 | 9 | 12 | 19 | 120 | | | LF-6-9 | 13A | 200 | 200 | 11 | 31 | 24 | 360 | 1,100 | | | LF-6-15.5 | 14A | 5 | 51 | 0.3 | 67 | 82 | 6 | 380 | | | LF-5-2 | 15A | 5 | 82 | 0.4 | 13 | 19 | 8 | 110 | | | LF-5-11 | 16A | 2 | 80 | ND | 38 | 59 | 4 | 27 | | | LF-5-15 | 17A | 5 | 28 | ND | 48 | 98 | 6 | 34 | | | LF-5-3.5 | 18A | 97 | 1,600 | ND (20) | | 50 | 1,000 (| 200) 2,700 (| (200) | | Detection Li | mit | 1 | 5 | 0.2 | 6 | 3 | 2 | 2 | | | Method: | | 7060 | 6010 | 6010 | 6010 | 6010 | 6010 | 6010 | | | Instrument: | | V22 | ICP | ICP | 1CP | ICP | ICP | 1CP | | Date Analyzed: 11/05-07/91 ND = Not Detected Note: Detection limits elevated where noted in parentheses, due to matrix (spectral) interference. ### QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NO: 9110238 PAGE 3 OF 3 MATRIX: SOIL MED-TOX JOB NO: 9110238 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | | | | | | | | | | QC CONTROL | LIMITS | |--------------|------------------|------------------|------------------|----------------|--------------------|-------|--------|------|-----------------|--------------| | COMPOUND | INST./
METHOD | SAMPLE
SP1KED | SAMPLE
RESULT | SPIKE
Added | OBSERVED R
(mg/ | | % REC. | RPD | REC. %
LIMIT | RPD
LIMIT | | As, Arsenic | V22/7060 | 9110238-01A | ND | 20 | 20.2 | 20.2 | 101.0 | 0.0 | 63.9-125.0 | 12.6 | | Ba, Barium | ICP/6010 | 9110238-14A | 51 | 400 | 412 | 403 | 89.0 | 2.16 | 69.0-106.1 | 5.0 | | Cd, Cadmium | ICP/6010 | 9110238-14A | 0.33 | 20 | 16.46 | 16.46 | 80.6 | 0.00 | 66.3- 90.7 | 5.0 | | Cr, Chromium | ICP/6010 | 9110238-14A | 67.1 | 100 | 140.9 | 139.2 | 73.0 | 1.20 | 49.3-110.1 | 5.0 | | Ni, Nickel | ICP/6010 | 9110238-14A | 82.3 | 100 | 161.5 | 159.6 | 78.3 | 1.24 | 50.7-104.2 | 5.0 | | Pb, Lead | ICP/6010 | 9110238-14A | 6.0 | 100 | 94.2 | 93.0 | 87.6 | 1.33 | 69.9- 94.9 | 5.0 | | Zn, Zinc |
ICP/6010 | 9110238-14A | 378.9 | 100 | 461.1 | 456.8 | 80.0 | 0.92 | 46.7- 98.6 | 5.0 | #### APPENDIX F LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS - GROUND WATER # NALYTICAL **SERVICES**) 3 CERTIFICATION NO: E772 ### CERTIFICATE OF ANALYSIS MCA 5 6 1881 **PAGE 1 OF 10** LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 ATTN: KATHLEEN ISAACSON CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 7572 REPORT DATE: 11/21/91 DATE SAMPLED: 11/04/91 DATE RECEIVED: (11/05/91) MED-TOX JOB NO: 9111029 ANALYSIS OF: WATER SAMPLES | Sample Ident
Client Id. | ification
Lab N o. | Purgeable
Hydrocarbons
as Gasoline
(mg/L) | Extractable Hydrocarbons as Diesel (mg/L) | Sulfide
(mg/L) | |----------------------------|------------------------------|--|---|-------------------| | LF-48B | 01A | ND | | | | LF-4 | 02A | 0.59 | | | | LF-4
LF-4 | 02E
02G | | 0.1 | ND | | LF-4 | 026 | | | 140 | | Detection Li | mit | 0.05 | 0.05 | 1 | | Method: | | 5030 GCFID | 3510 GCFID | 367.2 | | Instrument: | | F | C | NOVASPEC | | Date Extract | ed | -, | 11/13/91 | | | Date Analyze | d: | 11/08/91 | 11/13/91 | 11/13/91 | | _ | | | | | Sherri Moore, Manager Inorganic Laboratory ND = Not Detected Results FAXed 11/14/91 Andrew Bradeen, Manager Organic Laboratory #### LEVINE-FRICKE CLIENT ID: 2407.05 CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-01C MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/12/91 INSTRUMENT: 12 ## EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|------------------|----------------------|------------------------------| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25 <i>-</i> 2 | ND | 5 | | Bromomethane | 74-83-9 | ND | 10 | | 2-Butanone | 78-93-3 | ND | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 555555555 | | 1,1-Dichloroethane | 75-34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60- 5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | 5 | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88-3 | ND | 5 | | 1,1,1-Trichloroethane | 71- 55- 6 | ND | 5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5
5
5
5
5 | | Trichloroethene | 79-01 - 6 | ND | | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01 -4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | | - | | | | #### LEVINE-FRICKE CLIENT ID: LF-4 CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-02C MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/12-13/91 INSTRUMENT: 12 #### EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|-----------------------|----------------------|---------------------------------------| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25-2 | ND | 5 | | Bromomethane | 74-83-9 | ND | 10 | | 2-Butanone | 78-93-3 | ND | 10Ò | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | 1,1-Dichloroethane | 75-34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156- 6 0-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | · ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | ` 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88-3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5
5
5
5
5
5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5 | | Trichloroethene | 79-01-6 | ND | | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | PAGE 4 OF 10 #### LEVINE-FRICKE CLIENT ID: LF-4 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-021 MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/06-13/91 # CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
Reference | INST. | |------|------------|----------------------|------------------------------|---------------------|-------| | Ag | Silver | ND | 0.002 | 6010 | ICP | | As | Arsenic | 0.026 | 0.002 | 7060 | V22 | | Ba | Barium | 0.082 | 0.002 | 6010 | ICP | | Be | Beryllium | ND | 0.001 | 6010 | ICP | | Cd | Cadmium | ND | 0.005 | 6010 | ICP | | Со | Cobalt | ND | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | ND | 0.004 | 6010 | ICP | | Hg | Mercury | ND | 0.0003 | 7470 | Hg | | Mo | Molybdenum | ND | 0.01 | 6010 | IČP | | Ni | Nickel | 0.013 | 0.003 | 6010 | ICP | | Рb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | 0.03 | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | TÌ | Thallium | ND | 0.1 | 6010 | ICP | | v' | Vanadium | 0.010 | 0.005 | 6010 | ICP | | Žn | Zinc | 0.034 | 0.005 | 6010 | ICP | | | | - · | | | | ND = Not Detected INST. = Instrument Number PAGE 5 OF 10 #### LEVINE-FRICKE CLIENT ID: LF-4 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-02G MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/05-13/91 #### **GENERAL MINERALS** (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 570 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2
2
2 | 310.1 | ISE | | _ | Hydroxide Alkalinity | ND * | | 310.1 | ISE | | Ça, | Calcium | 49 | 0.03 | 6010 | ICP | | | Chloride | 690 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | ND | 0.05 | 6010 | ICP | | Mg | Magnesium | 55 | 0.04 | 6010 | ICP | | Mn | Manganese | 0.35 | 0.002 | 6010 | ICP | | | pH | 7.0 ** | NA | 9040 | ISE | | Na | Sodium | 850 | 0.05 | 6010 | ICP | | | Sulfate | 560 | 0.5 | 300 | DIONEX | | | Conductivity | 4,200 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 2,600 | 10 | 160.1 | ME-1 | | | Hardness | 2,000
350 * | 10 | 314-A | ICP | | Zn | | | 0 002 | | | | LII | Zinc | 0.034 | 0.005 | 6010 | ICP | ND = Not Detected NA = Not Applicable INST. = Instrument Number ^{*} mg CaCO3/L ** standard units *** umhos/cm #### QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NO: 9111029 PAGE 6 OF 10 DATE EXTRACTED: 11/13/91 DATE ANALYZED: 11/13/91 SAMPLE SPIKED: D.I. WATER MED-TOX JOB NO: 9111029 CLIENT PROJ. ID: 2407.05 INSTRUMENT: C #### MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATERS METHOD 3510 (WATER MATRIX; EXTRACTION METHOD) | ANALYTE | Spike
Conc.
(mg/L) | Sample
Result
(mg/L) | MS
Result
(mg/L) | MSD
Result
(mg/L) | Average
Percent
Recovery | RPD | |---------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|------| | Diesel | 0.636 | ND | 0.405 | 0.450 | 67.2 | 10.5 | CURRENT QC LIMITS (Revised 08/15/91) RPD Percent Recovery <u>Analyte</u> Diesel (49.3-101.4) 29.0 MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 7 OF 10 DATE ANALYZED: 11/08/91 SAMPLE SPIKED: 9111029-01A CLIENT PROJ. ID: 2407.05 MED-TOX JOB NO: 9111029 INSTRUMENT: F #### MATRIX SPIKE RECOVERY SUMMARY METHOD 5030 w/GCFID/8020 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(Ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPD | |-------------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|-----| | 8enzene | 16.9 | ND | 15.6 | 15.0 | 90.5 | 3.9 | | Toluene
Hydrocarbons | 71.1 | ND | 67.9 | 66.4 | 94.4 | 2.2 | | as Gasoline | 51 9 | ND | 511 | 526 | 99.9 | 2.9 | #### CURRENT QC LIMITS (Revised 08/15/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |----------------|------------------|------------| | Benzene | (77.7-118.0) | 10.3 | | Toluene | (80.7-116.2) | 10.1 | | Gasoline | (72.5-110.7) | 13.6 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 8 OF 10 INSTRUMENT: 12 MED-TOX JOB NO: 9111029
CLIENT PROJ. ID: 2407.05 #### SURROGATE STANDARD RECOVERY SUMMARY #### METHOD 8240 (WATER MATRIX) | SAMPLE IDENTIFICATION | | | SURROG | ATE RECOVERY (PEI | RCENT) | |-----------------------|----------------|------------|--|------------------------|---------------------------| | Date
Analyzed | Client Id. | Lab No. | 1,2-Dichloro-
ethane-d ₄ | Toluene-d ₈ | p-Bramofluoro-
benzene | | 11/12/91
11/13/91 | LF-488
LF-4 | 01c
02D | 100.0
91.6 | 107.1
101.7 | 104.6
98.9 | #### CURRENT QC LIMITS | <u>ANALYTE</u> | PERCENT RECOVERY | |----------------------------------|----------------------| | 1,2-Dichloroethane-d4 Toluene-d8 | (83-127)
(90-108) | | p-Bromofluorobenzene | (91-109) | PAGE 9 OF 10 DATE ANALYZED: 11/12/91 SAMPLE SPIKED: 9111029-05C 11029-050 INSTRUMENT: 12 MED-TOX JOB NO: 9111029 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY #### METHOD 8240 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPD | |--------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|-----| | 1,1-Dichloroethene | 50.0 | ND | 53.8 | 53.8 | 107.6 | 0.0 | | Trichloroethene | 50.0 | ND | 50.7 | 48.9 | 99.6 | 3.6 | | Benzene | 50.0 | ND | 52.8 | 51.9 | 104.7 | 1.7 | | Toluene | 50.0 | ND | 51.5 | 48.7 | 100.2 | 5.6 | | Chlorobenzene | 50.0 | ND | 50.4 | 50.1 | 100.5 | 0.6 | #### CURRENT QC LIMITS (Revised 08/13/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |-------------------|------------------|------------| | 1,1-Dichloroethen | e (65-133) | 13.5 | | Trichloroethene | (84-120) | 8.7 | | Benzene | (84-121) | 9.4 | | Toluene | (89-119) | 8.4 | | Chlorobenzene | (83-116) | 7.5 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 10 OF 10 MATRIX: WATER MED-TOX JOB NO: 9111029 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | COMPOUND | INST./
METHOD | SAMPLE
SPIKED | SAMPLE
RESULT | SP I KE
ADDED | | RECOVERIES
3/L)
MSD | % REC. | RPD | QC CONTROL (
REC. %
LINIT | LIMITS
RPD
LIMIT | |--------------|------------------|------------------|------------------|------------------|--------|---------------------------|--------|------|---------------------------------|------------------------| | As, Arsenić | V22/7060 | 9111029-021 | 0.0261 | 0.04 | 0.0561 | 0.0574 | 76.6 | 2.3 | 56.1-141.7 | 16.0 | | Ba, Barium | ICP/6010 | 9111029-021 | 0.082 | 2.00 | 2.07 | 2.09 | 99.9 | 1.27 | 82.4-107.9 | 5.0 | | Cd, Cadmium | 1CP/6010 | 9111029-021 | ND | 0.10 | 0.0960 | 0.0957 | 95.8 | 0.25 | 60.3-114.4 | 8.0 | | Cr, Chromium | n ICP/6010 | 9111029-021 | ND | 0.50 | 0.480 | 0.484 | 96.4 | 0.82 | 72.9-109.7 | 5.0 | | Cu, Copper | ICP/6010 | 9111029-021 | ND | 0.50 | 0.492 | 0.497 | 98.9 | 1.09 | 78.1-111.9 | 5.0 | | Hg, Mercury | Hg/7470 | 9111035-01D | ND | 2.0 ug/L | 2.004 | 2.004 | 100.2 | 0.08 | 95.0-105.0 | 2.0 | | Ni, Nickel | ICP/6010 | 9111029-021 | 0.017 | 0.50 | 0.493 | 0.500 | 95.9 | 1.23 | 74.6-108.7 | 5.0 | | Pb, Lead | ICP/6010 | 9111029-021 | ND | 0.50 | 0.498 | 0.502 | 100.0 | 0.62 | 74.8-110.9 | 5.0 | | Se, Selenium | n V22/7740 | 9111029-02I | ND | 0.08 | 0.0588 | 0.0577 | 72.8 | 1.9 | 51.1-136.2 | 17.4 | | 2n, Zinc | ICP/6010 | 9111029-021 | 0.034 | 0.50 | 0.526 | 0.529 | 98.7 | 0.52 | 67.4-109.8 | 5.0 | | Chloride | DIONEX/300 | 9111037-05A | 78.2 | 50 | 134.6 | 135.6 | 113.8 | 0.74 | 84.8-133.0 | 5.3 | | Sulfate | DIONEX/300 | 9111037-05A | 34.0 | 100 | 138 | 139 | 104.2 | 1.0 | 82.6-116.2 | 7.1 | | Sulfide | NOVASPEC/367.2 | 9111029-02G | ND | 0.2 | 0.197 | 0.199 | 99.1 | 0.81 | 80-120 | 15 | # ANALYTICAL SERVICES 'S CERTIFICATION NO: E772 ### CERTIFICATE OF ANALYSIS PAGE 1 OF 24 LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 ATTN: KATHLEEN ISAACSON CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 7572 REPORT DATE: 11/21/91 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 MED-TOX JOB NOS: 9111029, 9111031 ANALYSIS OF: WATER SAMPLES See attached for results Sherri Moore, Manager Inorganic Laboratory Results FAXed 11/14/91 Andrew Bradeen, Manager Organic Laboratory PAGE 2 OF 24 #### LEVINE-FRICKE DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 CLIENT PROJ. ID: 2407.05 REPORT DATE: 11/21/91 MED-TOX JOB NOS: 9111029, 9111031 | Sample 1 | ldentif | ication | Oil &
Grease | Hydrocarbons | Purgeable
Hydrocarbons
as Gasoline | Extractable Hydrocarbons as Diesel | Sulfide | |----------|-----------|---------|-----------------|--------------|--|------------------------------------|---------| | Client 1 | | Lab No. | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | | 2111029 | | | | | | | | LF-3 | | 03A | | ••• | ND | | | | LF-3 | | 03E | | | | 0.2 | | | LF-3 | | 03F | | | | | ND | | TRIP BLA | UK | 04A | | | NĎ | | | | LF-2 | | 05A | | | ND | | | | LF-2 | | 05E | | + | | 0.3 | | | LF-2 | | 05G | ••• | ••• | | | ND | | ç | 2111031 | | | | | | | | LF-1 | | 01A | • • • | | ND | | ••• | | LF-1 | | 01E | | | | 0.09 | | | LF-1 | | 01F | | | ••• | | ND | | LF-1 | | 01J | ND | ND | *** | | | | Detectio | on Limi | t | 0.5 | 0.5 | 0.05 | 0.05 | 1 | | Method: | | | 5520C | 5520F | 5030 GCFID | 3510 GCFID | 367.2 | | Instrum | ent: | | IR | IR | F | С | NOVASPE | | Date Ex | tracted | | 11/11/91 | 11/11/91 | | 11/13/91 | ••• | | Date Ana | alyzed: | | 11/12/91 | 11/12/91 | 11/08/91 | 11/13/91 | 11/13/9 | #### LEVINE-FRICKE CLIENT ID: (LF-3 CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-03C MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/12-13/91 INSTRUMENT: 12 # EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---|------------------|----------------------|------------------------------| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25-2 | ND | 5 | | Bromomethane | 74-83-9 | ND | 10 | | 2-Butanone | 78- 93- 3 | NĎ | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND · | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | 1,1-Dichloroethane | 75 - 34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5555555555 | | 1,1-Dichloroethene | 75-35-4 | , ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | , ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | 5 | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88-3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5
5
5
5
5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5 | | Trichloroethene | 79-01-6 | ND | _ | | Vinyl Acetate | 108-05-4 | ND ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | #### LEVINE-FRICKE CLIENT ID: TRIP BLANK CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-04C MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/12-13/91 INSTRUMENT: 12 # EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) |
---------------------------|-------------------|----------------------|------------------------------| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25-2 | ND | 5 | | Bromomethane | 74-83 -9 | ND | 10 | | 2-Butanone | 78-93-3 | ND | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108- 90- 7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | _5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | 1,1-Dichloroethane | 75-34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 55555555555 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methy1-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND , | 5 | | Toluene | 108-88-3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5
5
5
5
5
5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5 | | Trichloroethene | 79-01-6 | ND | | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | . 10 | | Xylenes, total | 1330-20-7 | ND | 10 | CLIENT ID: LF-2 CLIENT PROJ ID: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-05C MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/12/91 INSTRUMENT: 12 #### EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|------------------|----------------------|------------------------------| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25-2 | ND | 5 | | Bromomethane | 74-83-9 | ND | 10 | | 2-Butanone | 78-93-3 | ND | 100 | | Carbon Disulfide | 75-15 - 0 | ND | 10 | | Carbon Tetrachloride | 56-23 - 5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 1 0 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87 - 3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 5 5 5 5 5 5 5 5 5 5 5 | | 1,1-Dichloroethane | 75-34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88-3 | · ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5
5
5
5
5
5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5 | | Trichloroethene | 79-01-6 | ND | | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | CLIENT ID:\ LF-1 CLIENT PROJ. ID: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111031-01C MED-TOX JOB NO: 9111031 DATE ANALYZED: 11/10/91 INSTRUMENT: 12 ## EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|------------------|----------------------|---| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25 - 2 | ND | 5 | | Bromomethane | 74 - 83-9 | ND | 10 | | 2-Butanone | 78-93-3 | ND | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | 1,1-Dichloroethane | 75-34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | 5 | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88-3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5
5
5
5
5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5 | | Trichloroethene | 79-01-6 | ND | 5 | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | PAGE 7 OF 24 CLIENT ID: LF-2 CLIENT JOB NO: 2407.5 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 INSTRUMENT: 11 MED-TOX LAB NO: 9111029-05J MED-TOX JOB NO: 9111029 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 REPORT DATE: 11/21/91 # EPA METHOD 8270 BASE NEUTRAL EXTRACTABLES (WATER MATRIX) | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------------|------------------|----------------------|------------------------------| | Acenaphthene | 83-32-9 | ND | ^ 10 | | Acenaphthylene | 208-96-8 | ND | 10 | | Anthracene | 120-12-7 | ND | 10 | | Benzidine | 92-87-5 | ND | 50 | | Benzoic Acid | 65-85-0 | ND | 50 | | Benzo(a)anthracene | 56-55-3 | ND | 10 | | Benzo(b)fluoranthene | 205-99-2 | ND | 10 | | Benzo(k)fluoranthene | 207-08-9 | . ND | 10 | | Benzo(g,h,i)perylene | 191-24-2 | ND | 10 | | Benzo(a)pyrene | 50-32 - 8 | NĎ | 10 | | Benzyl Alcohol | 100-51-6 | ND | 20 | | Bis(2-chloroethoxy) methane | 111-91-1 | ND | 10 | | Bis(2-chloroethyl)ether | 111-44-4 | ND | 10 | | Bis(2-chloroisopropyl)
ether | 39638-32-9 | ND | 10 | | Bis(2-ethylhexyl) phthalate | 117-81-7 | ND | 20 | | 4-Bromophenyl phenyl ether | 101-55-3 | ND | 10 | | Butylbenzyl phthalate | 85-68-7 | ND | 10 | | 4-Chloroaniline | 106-47-8 | ND | 20 | | 2-Chloronaphthalene | 91-58-7 | ND | 10 | | 4-Chlorophenyl phenyl ether | 7005-72-3 | ND | 10 | | Chrysene | 218-01-9 | ND | 10 | | Dibenzo(a,h)anthracene | 53-70-3 | ND | 10 | | Dibenzofuran | 132-64-9 | ND | 10 | | Di-n-butylphthalate | 84-74-2 | ND | 10 | | 1,2-Dichlorobenzene | 95-50-1 | ND | 10 | PAGE 8 OF 24 CLIENT ID: LF-2 CLIENT JOB NO: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 INSTRUMENT: 11 MED-TOX LAB NO: 9111029-05J MED-TOX JOB NO: 9111029 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 REPORT DATE: 11/21/91 ## EPA METHOD 8270 BASE NEUTRAL EXTRACTABLES (cont.) | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |--------------------------------|----------|----------------------|------------------------------| | 1,3-Dichlorobenzene | 541-73-1 | ND | 10 | | l,4-Dichlorobenzene | 106-46-7 | ND | 10 | | 3,3'-Dichlorobenzidine | 91-94-1 | ND | 20 | | Diethylphthalate | 84-66-2 | ND | 10 | | Dimethylphthalate | 131-11-3 | ND | 10 | | 2,4-Dinitrotoluene | 121-14-2 | ND | 10 | | 2,6-Dinitrotoluene | 606-20-2 | ND | 10 | | Di-n-octylphthalate | 117-84-0 | ND | 10 | | 1,2-Diphenylhydrazine | 122-66-7 | ND | 10 | | Fluoranthene | 206-44-0 | ND | 10 | | Fluorene | 86-73-7 | ND | 10 | | Hexachlorobenzene | 118-74-1 | ND | 10 | | Hexachlorobutadiene | 87-68-3 | ND | 10 | | Hexachlorocyclopentadiene | 77-47-4 | ND | 10 | | Hexachloroethane | 67-72-1 | ND | 10 | | Indeno(1,2,3-cd)pyrene | 193-39-5 | ND | 10 | | Isophorone | 78-59-1 | ND | 10 | | 2-Methylnaphthalene | 91-57-6 | ND | 10 | | Naphthalene | 91-20-3 | ND | 10 | | 2-Nitroaniline | 88-74-4 | ND | 50 | | 3-Nitroaniline | 99-09-2 | ND | 50 | | 4-Nitroaniline | 100-01-6 | ND | 50 | | Nitrobenzene | 98-95-3 | ND | 10 | | N-nitrosodimethylamine | 62-75-9 | ND | 10 | | N-nitrosodiphenylamine | 86-30-6 | ND | 10 | | N-nitroso-di-n-
propylamine | 621-64-7 | ND | 10 | | Phenanthrene | 85-01-8 | ND | 10 | | Pyrene | 129-00-0 | ND | 10 | | 1,2,4-Trichlorobenzene | 120-82-1 | ND | 10 | PAGE 9 OF 24 CLIENT ID: LF-2 CLIENT JOB NO: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 INSTRUMENT: 11 MED-TOX LAB NO: 9111029-05J MED-TOX JOB NO: 9111029 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 REPORT DATE: 11/21/91 ## EPA METHOD 8270 BASE NEUTRAL EXTRACTABLES (cont.) | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |----------|------------|----------------------|------------------------------| | PCB-1016 | 12674-11-2 | ND | 50 | | PCB-1221 | 11104-28-2 | ND | 50 | | PCB-1232 | 11141-16-5 | ND | 50 | | PCB-1242 | 53469-21-9 | ND | 50 | | PCB-1248 | 12672-29-6 | ND | 50 | | PCB-1254 | 11097-69-1 | ND | 50 | | PCB-1260 | 11096-82-5 | ND | 50 | #### EPA METHOD 8270 ACID EXTRACTABLES | COMPOUND | CAS # | CONCENTRATION
(ug/L) | DETECTION
LIMIT
(ug/L) | |----------------------------|----------------------|-------------------------|------------------------------| | 4-Chloro-3-methylphenol | 59-50-7 | ND | 10 | | 2-Chlorophenol | 95-57-8 | ND | 10 | | 2,4-Dichlorophenol | 120-83-2 | ND | 10 | |
2,4-Dimethylphenol | 105-67- 9 | ND | 10 | | 4,6-Dinitro-2-methylphenol | 534-52-1 | ND | 50 | | 2,4-Dinitrophenol | 51-28-5 | ND | 50 | | 2-Methylphenol | 95-48-7 | ND | 10 | | 4-Methylphenol | 106-44-5 | ND | 10 | | 2-Nitrophenol | 88-75-5 | ND | 10 | | 4-Nitrophenol | 100-02-7 | ND | 50 | | Pentachlorophenol | 87-86-5 | ND | 50 | | Pheno1 | 108-95-2 | ND | 10 | | 2,4,5-Trichlorophenol | 95-95-4 | ND | 10 | | 2,4,6-Trichlorophenol | 88-06-2 | ND | 10 | PAGE 10 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-3 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-03H MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/06-13/91 ## CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION
LIMIT | METHOD
REFERENCE | INST. | |------|------------|---------------|--------------------|---------------------|-------| | - | | (mg/L) . | (mg/L) | KEI EKENCE | INST. | | Ag | Silver | ND | 0.002 | 6010 | ICP | | As | Arsenic | 3.1 | 0.002 | 7060 | V22 | | Ba | Barium | 0.077 | 0.002 | 6010 | ICP | | Вe | Beryllium | 0.001 | 0.001 | 6010 | ICP | | Cd | Cadmium | ND | 0.005 | 6010 | ICP | | Co | Cobalt | 0.016 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | ND | 0.004 | 6010 | ICP | | Hg | Mercury | ND | 0.0003 | 7470 | Hg | | Mo | Molybdenum | 0.16 | 0.01 | 6010 | IČP | | Ni | Nickel | 0.012 | 0.003 | 6010 | ICP | | Pb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND. | 0.004 | 7740 | V22 | | T] | Thallium | ND | 0.1 | 6010 | ICP | | ٧ | Vanadium | 0.006 | 0.005 | 6010 | ICP | | Zn | Zinc | 3.1 | 0.005 | 6010 | ICP | ND = Not Detected #### PAGE 11 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-2 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-05I MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/06-13/91 #### CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|--------------|----------------------|------------------------------|---------------------|-------| | | | | | | | | Ag | Silver | ND | 0.002 | 6010 | ICP | | As | Arsenic | 0.028 | 0.002 | 7060 | V22 | | Ba | Barium | 0.026 | 0.002 | 6010 | ICP | | Be | Beryllium | ND | 0.001 | 6010 | ICP | | Cd | Cadmium | 0.009 | 0.005 | 6010 | ICP | | Co | Cobalt | 0.18 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | 0.008 | 0.004 | 6010 | ICP | | Hg | Mercury | ND | 0.0003 | 7470 | Hg | | Mo | Mo l ybdenum | ND | 0.01 | 6010 | IČP | | Ni | Nickel | 0.52 | 0.003 | 6010 | ICP | | Pb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | T1 | Thallium | ND | 0.1 | 6010 | ICP | | V | Vanadium | ND | 0.005 | 6010 | ICP | | Zn | Zinc | 4.2 | 0.005 | 6010 | ICP | | | | | | | | ND = Not Detected PAGE 12 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-1 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111031-01H MED-TOX JOB NO: 9111031 DATE ANALYZED: 11/06-08/91 #### CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION | METHOD | | |------|------------|---------------|-----------|------------|--------| | CODE | PEIAL | CONCENTRATION | LIMIT | REFERENCE | INST. | | | | (mg/L) | (mg/L) | NES ENEROL | 111011 | | Ag | Silver | 0.054 | 0.005 | 6010 | ICP | | As | Arsenic | 0.004 | 0.002 | 7060 | V22 | | Ba | Barium | 0.046 | 0.002 | 6010 | ICP | | Be | Beryllium | 0.11 | 0.001 | 6010 | ICP | | Cd | Cadmium | 130 | 0.05 * | 6010 | ICP | | Co | Cobalt | 5.7 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | 1.9 | 0.04 | 6010 | ICP | | Hg | Mercury | ND | 0.0003 | 7470 | Hg | | Mo | Molybdenum | 0.11 | 0.01 | 6010 | IČP | | Ni | Nickel | 20 | 0.01 * | 6010 | ICP | | Рb | Lead | 0.5 | 0.2 * | 6010 | ICP | | Sb | Antimony | ND | 0.2 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | TI | Thallium | ND | 1 * | 6010 | ICP | | V | Vanadium | ND | 0.005 | 6010 | ICP | | Zn | Zinc | 40,000 | 0.005 | 6010 | ICP | ND = Not Detected ^{*} Elevated detection limits due to spectral interference. PAGE 13 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-3 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-03F MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/05-13/91 ## GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 530 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 88 | 0.03 | 6010 | ICP | | | Chloride | 250 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | 55 | 0.05 | 6010 | ICP | | Mg | Magnesium | 24 | 0.04 | 6010 | ICP | | Mn | Manganese | 4.3 | 0.002 | 6010 | ICP | | | pH | 6.4 ** | NA | 9040 | ISE | | Na | Sodium | 920 | 0.05 | 6010 | ICP | | | Sulfate | 1,600 | 0.5 | 300 | DIONEX | | | Conductivity | 4,900 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 3,100 | 10 | 160.1 | ME-1 | | | Hardness | 320 * | 1 | 314-A | ICP | | Zn | Zinc | 3.1 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable PAGE 14 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-2 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111029-05G MED-TOX JOB NO: 9111029 DATE ANALYZED: 11/05-13/91 #### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION
(mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
Reference | INST. | |------|------------------------|-------------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 53 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity ~ | ND * | 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 270 | 0.03 | 6010 | ICP | | | Chloride | 460 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | 40. | 0.05 | 6010 | ICP | | Mg | Magnesium | 62 | 0.04 | 6010 | ICP | | Mn | Manganese | 11 | 0.002 | 6010 | ICP | | | pH | 5.6 ** | NA | 9040 | ISE | | Na | Sodium | 670 | 0.05 | 6010 | ICP | | | Sulfate | 2,100 | 0.5 | 300 | DIONEX | | | Conductivity | 5,100 *** | 20 | 120.1 | YSI | | * - | Total Dissolved Solids | 3,700 | 10 | 160.1 | ME-1 | | | Hardness | 920 * | 1 | 314-A | ICP | | Zn | Zinc | 4.2 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable PAGE 15 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-1 CLIENT PROJ. ID: 2407.05 DATE RECEIVED: 11/05/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111031-01F MED-TOX JOB NO: 9111031 DATE ANALYZED: 11/05-13/91 #### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION
(mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|-------------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | ND * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 240 | 0.03 | 6010 | ICP | | | Chloride | 2,300 | 0.1 | 300 | DIONEX | | Cu | Copper | 1.9 | 0.04 | 6010 | ICP | | Fe | Iron | 2,900 | 0.05 | 6010 | ICP | | Mg | Magnesium | 860 | 0.04 | 6010 | ICP | | Mn | Manganese | 350 | 0.002 | 6010 | ICP | | | pH | 4.0 ** | NA | 9040 | ISE | | Na | Sodium | 2,500 | 0.05 | 6010 | ICP | | | Sulfate | 91,000 | 0.5 | 300 | DIONEX | | | Conductivity | 49,000 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 33,000 | 10 | 160.1 | ME-1 | | | Hardness | 4,400 * | ì | 314-A | ICP | | Zn | Zinc | 40,000 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable ### QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NOS: 9111029 & 9111031 PAGE 16 OF 24 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/12/91 SAMPLE SPIKED: D.I. WATER MED-TOX JOB NO: 9111031 CLIENT PROJ. ID: 2407.05 INSTRUMENT: IR # IR DETERMINATION FOR OIL & GREASE/HYDROCARBONS METHOD SPIKE RECOVERY SUMMARY WATER MATRIX | ANALYTE | MS
Conc.
(mg/L) | Sample
Result
(mg/L) | MS
Result
(mg/L) | MSD
Result
(mg/L) | Average
Percent
Recovery | RPD | |---------|-----------------------|----------------------------|------------------------|-------------------------|--------------------------------|-----| | Oil | 6.95 | ND | 6.48 | 6.79 | 95.5 | 4.7 | #### CURRENT QC LIMITS (Revised 08/14/91) | <u>Analyte</u> | <u>Percent Recovery</u> | RPD | |----------------|-------------------------|-----| | Oil | (87-116) | 6.5 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 17 OF 24 DATE EXTRACTED: 11/13/91 DATE ANALYZED: 11/13/91 SAMPLE SPIKED: D.I. WATER MED-TOX JOB NOS: 9111029, 9111031 CLIENT PROJ. ID: 2407.05 INSTRUMENT: C #### MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATERS METHOD 3510 (WATER MATRIX; EXTRACTION METHOD) | ANALYTE | Spike
Conc.
(mg/L) | Sample
Result
(mg/L) | MS
Result
(mg/L) | MSD
Result
(mg/L) | Average
Percent
Recovery | RPD | |---------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|------| | Diesel | 0.636 | ND | 0,405 | 0.450 | 67.2 | 10.5 | ### CURRENT QC LIMITS (Revised 08/15/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |----------------|------------------|------------| | Diesel | (49.3-101.4) | 29.0 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 18 OF 24 DATE ANALYZED: 11/08/91 SAMPLE SPIKED: 9111029-01A CLIENT PROJ. ID: 2407.05 MED-TOX JOB
NOS: 9111029, 9111031 INSTRUMENT: F #### MATRIX SPIKE RECOVERY SUMMARY METHOD 5030 W/GCFID/8020 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPD | |-------------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|-----| | Benzene | 16.9 | ND | 15.6 | 15.0 | 90.5 | 3.9 | | Toluene
Hydrocarbons | 71.1 | ND | 67.9 | 66.4 | 94.4 | 2.2 | | as Gasoline | 519 | ND | 511 | 526 | 99.9 | 2.9 | #### CURRENT QC LIMITS (Revised 08/15/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |--------------------|------------------------------|--------------| | Benzene
Toluene | (77.7-118.0)
(80.7-116.2) | 10.3
10.1 | | Gasoline | (72.5-110.7) | 13.6 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 19 OF 24 INSTRUMENT: 12 MED-TOX JOB NOS: 9111029, 9111031 CLIENT PROJ. ID: 2407.05 #### SURROGATE STANDARD RECOVERY SUMMARY #### METHOD 8240 (WATER MATRIX) | SAMP
Date | LE IDENTIFICATIO | N | • SURROG
1,2-Dichloro- | ATE RECOVERY (PE | RCENT)
p-Bramofluoro | |--------------|------------------|---------|---------------------------|------------------------|-------------------------| | Analyzed | Client Id. | Lab No. | ethane-d ₄ | Toluene-d ₈ | benzene | | 911 | 1029 | | | | | | 11/13/91 | LF-3 | 03D | 102.5 | 94.7 | 101.6 | | 11/13/91 | TRIP BLANK | 04D | 100.7 | 103.4 | 103.4 | | 11/12/91 | LF-2 | 05¢ | 106.8 | 107.3 | 108.2 | | 911 | 1031 | | | | | | 11/10/91 | LF-1 | 01C | 120.8 | 101.0 | 101.8 | ### CURRENT QC LIMITS | <u>ANALYTE</u> | PERCENT RECOVERY | |-----------------------------------|------------------| | 1,2-Dichloroethane-d ₄ | (83-127) | | Toluene-d ₈ | (90-108) | | p-Bromofluorobenzene | (91-109) | #### PAGE 20 OF 24 DATE ANALYZED: 11/10/91 SAMPLE SPIKED: 9111032-02A INSTRUMENT: 12 MED-TOX JOB NO: 9111031 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY #### **METHOD 8240** (WATER MATRIX) | | Spike
Conc. | Sample
Result | MS
Result | MSD
Result | Average
Percent
Recovery | RPD | |--------------------|----------------|------------------|--------------|---------------|--------------------------------|-----| | ANALYTE | (ug/L) | (ug/L) | (ug/L) | (ug/L) | RECOVET 9 | Kro | | 1,1-Dichloroethene | 50.0 | ND . | 52.7 | 51.2 | 103.9 | 2.9 | | Trichloroethene | 50.0 | NĎ | 52.5 | 48.4 | 100.9 | 8.1 | | Benzene | 50.0 | ND | 50.4 | 48.9 | 99.3 | 3.0 | | Toluene | 50.0 | ND | 49.9 | 47.8 | 97.7 | 4.3 | | Chlorobenzene | 50.0 | ND | 53.9 | 51.1 | 105.0 | 5.3 | #### CURRENT QC LIMITS (Revised 08/13/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |------------------|------------------|------------| | 1,1-Dichloroethe | ne (65-133) | 13.5 | | Trichloroethene | (84-120) | 8.7 | | Benzene | (84-121) | 9.4 | | Toluene | (89-119) | 8.4 | | Chlorobenzene | (83-116) | 7.5 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 21 OF 24 DATE ANALYZED: 11/12/91 SAMPLE SPIKED: 9111029-05C INSTRUMENT: 12 MED-TOX JOB NO: 9111029 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY #### METHOD 8240 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPD | |--------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|-----| | 1,1-Dichloroethene | 50.0 | ND | 53.8 | 53.8 | 107.6 | 0.0 | | Trichtoroethene | 50.0 | ND | 50.7 | 48.9 | 99.6 | 3.6 | | Benzene | 50.0 | ND | 52.8 | 51.9 | 104.7 | 1.7 | | Toluene | 50.0 | ND | 51.5 | 48.7 | 100.2 | 5.6 | | Chlorobenzene | 50.0 | ND | 50.4 | 50.1 | 100.5 | 0.6 | #### CURRENT QC LIMITS (Revised 08/13/91) | <u>Analyte</u> | Percent Recovery | RPD | |-------------------|------------------|------| | 1,1-Dichloroethen | e (65-133) | 13.5 | | Trichloroethene | (84-120) | 8.7 | | Benzene | (84-121) | 9.4 | | Toluene | (89-119) | 8.4 | | Chlorobenzene | (83-116) | 7.5 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 22 OF 24 DATE ANALYZED: 11/14/91 MED-TOX JOB NO: 9111029 INSTRUMENT: 11 CLIENT PROJ. ID: 2407.05 #### SURROGATE STANDARD RECOVERY SUMMARY #### METHOD 8270 (WATER MATRIX) | SAMPLE IDENTIFICATION Date | | | Nitro- | SURROG
2-Fluoro- | ATE R
Terphenyl- | ECOVERI | (PERCENT)
2-Fluoro- | 2,4,6-Tribromo- | |----------------------------|------------|---------|------------------------|---------------------|---------------------|-----------------------|------------------------|-----------------| | Extracted | Client Id. | lab No. | benzene-d ₅ | | 44 | Phenol-d ₅ | phenol | phenol | | 11/11/91 | LF-2 | 051 | 83.5 | 82.5 | 80.2 | 80.9 | 75.4 | 112.0 | #### CURRENT QC LIMITS | VERY | |------| | | | | PAGE 23 OF 24 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 CLIENT PROJ. ID: 910339 MED-TOX JOB NO: 9111029 SAMPLE SPIKED: POLAR WATER INSTRUMENT: 11 #### MATRIX SPIKE RECOVERY SUMMARY METHOD 8270 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPD | |----------------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|------| | Phenol | 234 | ND | 164 | 187 | 75.0 | 13.1 | | 2-Chlorophenol | 203 | ND | 132 | 152 | 70.0 | 14.1 | | 1,4-Dichlorobenzene | 201 | ND | 118 | 136 | 63.2 | 14.2 | | N-Nitroso-di-n-propylamine | 201 | ND | 131 | 140 | 67.4 | 6.6 | | 1,2,4-Trichtorobenzene | 209 | ND | 134 | 151 | 68.2 | 11.9 | | 4-Chioro-3-methylphenol | 204 | ND | 160 | 172 | 81.4 | 7.2 | | Acenaph thene | 205 | ND | 152 | 160 | 76.1 | 5.1 | | 4-Nitrophenol | 201 | ND | 160 | 172 | 82.6 | 7.2 | | 2,4-Dinitrotoluene | 404 | ND | 302 | 323 | 77.4 | 6.7 | | Pentachlorophenoi | 408 | ND | 373 | 405 | 95.3 | 8.2 | | Pyrene | 202 | ND | 159 | 172 | 81.9 | 7.9 | #### CURRENT QC LIMITS | <u>Analyte</u> | Percent Recovery | RPD | |---|--|--| | Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene | (46- 92)
(51- 85)
(32- 85)
(36-107)
(34- 87)
(48-103)
(49-117)
(23-104)
(48-102) | 19
26
26
17
20
14
15
16 | | Pentachlorophenol
Pyrene | (20-125)
(34-138) | 22
10 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 24 OF 24 MATRIX: WATER MED-TOX JOB NOS: 9111029, 9111031 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | | | | | | | | | | QC CONTROL | LIMITS | |--------------|------------------|------------------|------------------|----------------|--------|---------------------------|--------|------|-----------------|--------------| | COMPOUND | INST./
METHOD | SAMPLE
SPIKED | SAMPLE
RESULT | SP1KE
Added | | RECOVERIES
B/L)
MSD | % REC. | RPD | REC. X
LIMIT | RPO
LIMIT | | As, Arsenic | V22/7060 | 9111029-021 | 0.0261 | 0.04 . | 0.0561 | 0.0574 | 76.6 | 2.3 | 56.1-141.7 | 16.0 | | Ba, Barium | 1CP/6010 | 9111029-021 | 0.082 | 2.00 | 2.07 | 2.09 | 99.9 | 1.27 | 82.4-107.9 | 5.0 | | Cd, Cadmium | ICP/6010 | 9111029-021 | ND | 0.10 | 0.0960 | 0.0957 | 95.8 | 0.25 | 60.3-114-4 | 8.0 | | Cr, Chromium | n ICP/6010 | 9111029-021 | ND | 0.50 | 0.480 | 0.484 | 96.4 | 0.82 | 72.9-109.7 | 5.0 | | Cu, Copper | ICP/6010 | 9111029-021 | ND | 0.50 | 0.492 | 0.497 | 98.9 | 1.09 | 78.1-111.9 | 5.0 | | Hg, Mercury | Hg/7470 | 9111035-01D | NĎ | 2.0 ug/L | 2.004 | 2.004 | 100.2 | 0.08 | 95.0-105.0 | 2.0 | | Ni, Nickel | ICP/6010 | 9111029-021 | 0.017 | 0.50 | 0.493 | 0.500 | 95.9 | 1.23 | 74.6-108.7 | 5.0 | | Pb, Lead | 1CP/6010 | 9111029-021 | ND | 0.50 | 0.498 | 0.502 | 100.0 | 0.62 | 74.8-110.9 | 5.0 | | Se, Selenium | n V22/7740 | 9111029-021 | ND | 0.08 | 0.0588 | 0.0577 | 72.8 | 1.9 | 51.1-136.2 | 17.4 | | Zn, Zinc | ICP/6010 | 9111029-021 | 0.034 | 0.50 | 0.526 | 0.529 | 98.7 | 0.52 | 67.4-109.8 | 5.0 | | Chloride | DIONEX/300 | 9111037-05A | 78.2 | 50 | 134.6 | 135.6 | 113.8 | 0.74 | 84.8-133.0 | 5.3 | | Sulfate | DIONEX/300 | 9111037-05A | 34.0 | 100 | 138 | 139 | 104.2 | 1.0 | 82.6-116.2 | 7.1 | | Sulfide | NOVASPEC/367.2 | 9111029-02G | ND | 0.2 | 0.197 | 0.199 | 99.1 | 0.81 | 80-120 | 15 | RI, SF R5, SH C1, SI CHAIN OF CUSTODY / ANALYSES REQUEST FORM 9/1/029 al No.: | : /o
hture)
DATE
114
/4
/4 | <u>:91</u> | MPLES LAB SAMPLE NO. 1A - D 2A - J | NO. OF
CON-
TAINERS | | | catio | | O _A | Kla
NAL | ~ () | Date: | | | | Sample | 75)
ers: | 72 | |---|--------------------------------------|---------------------------------------|---
---|--|---|---------------------|----------------------|---------------------|----------------------|----------------------|-------|---------------------|----------------------|----------------------|---|-----------------| | : /o
hture)
DATE
114
/4
/4 | 100
: 97
IME
10:15
10:40 | MPLES LAB SAMPLE NO. 1A - D 2A - J | CON-
TAINERS | SAMPLI
TYPE | | | - | A | NAI 1 | $\wedge dx_{\zeta}$ |) | /2 | S | | MESPE | ers: | | | DATE 114 /4 /4 | 10:15
10:40 | MPLES LAB SAMPLE NO. 1A - D 2A - J | CON-
TAINERS | TYPE | | | | A | NAI 1 | $\wedge dx_{\zeta}$ | | /_\ | /5 | _ | MESPE | THB | | | DATE
114
/4
/4 | T/ME
10:15
10:40 | LAB SAMPLE
NO.
1A - D
2A - J | CON-
TAINERS | TYPE | | | | 30 | | */ | | /\9 | /3 | <u>Z</u> . | 39 CTM | THB | | | 114
/4
/4 | 10:15
10:40 | 1A-D
2A-J | CON-
TAINERS | TYPE | | | | くみブ | / \ \7. | | | | | | | | | | /4
/4 | 10:40 | 2A - J | | 4 | | <i></i> ` | <i>3/ /</i> | X 63 | | NO L | مم/ | */ | 415 K | | R | EMARKS | | | /4 | | | 1 | ~3+ K | 1 1 | メ | | | | | | | | | | | | | T. 1 | 12:30 | - | 10 | | × | X | × | × | × | × | | | | | | | | | T. 1 | | 3A -I | | | × | × | × | X | X | × | | | | | No de | up for a | herel | | | 8:00 | 4A - D | 4 | | $ \times $ | × | | | | | | | | | on | LF-3 | +LF-1 | | | | | 10 | | × | × | × | × | × | | | | | X | | | | | | | | 11 | | Х | X | X | X | X | X | | | X | | 91110 | 3/ - 1. | 4-K | | / | | | | | | | _ | | | | | | | | | | | | | | | <u> </u> | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | 1 | | + | | | | | <u> </u> | | | | | | | | | | | | <u> </u> | | + | | | | | | | | | | | | | | | | - | | | | ļ <u> </u> | | | | | | | | | | | | | | | | | | + - | | | ļ | | | 1 | | | | | | | | | | | - | | | <u> </u> | | | | | | | | | | | | | | , | | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | | | | <u> </u> | | | | | | | | | 1 - | | | | | | | | | W. | im | 41 | 041 | A | | DATE | 11 3.45 | | 11 | 7 5 | 21-10 | | DATE | Ţ | IME | | ECEIV | ED BY: | 1-3 | 1 | | بكانية | | | DATE | TIME | | <u>~ R</u> | ω | JADINA | · | DATE | | | | | | 1 | | 1 | 1- | | - / | DATE/ | TIME | | 1 | | | | | | | ï | Signa | ture) | Ne | nis | e A | ar | no | glow | 11/5/9 | 1/55 | | ENT: | , | ú. | | DATE | Т | IME | L | AB CO | MMENTS | : | | | | / | / | | | | ctor: | | 1900 Powell S
Emeryville, Co | itreet, 121
a 94608 | h Floor | | | / | Analy | tical | Lab | orato | ry: | p | red | Tox | | | | | NT: | 14 13:30
1/4 15:30
NT: | 14 13:30 54 - 18 14 15:30 NT: LEVINE-FRICK 1900 Powell S Emeryville, Cc (415) 652-4500 | 13:30 54 - 1 10 14 15:30 14 15:30 14 15:30 14 15:30 14 15:30 15:30 16 16:30 | 13:30 54 - 17 10 15:30 14 15:30 14 15:30 14 15:30 14 15:30 14 15:30 14 15:30 14 15:30 15:30 16 16:30
16:30 | 13:36 54 - 1 10 X X X X X X X X X | 13:30 54 - 1 10 | 13:38 54 - 17 10 | 13:30 54 - 10 | 13:36 54 - 18 10 | 13:36 54 - 18 10 | 15:30 | 13:30 54 - 10 | 13:30 54 - 17 10 | 13:30 54 - JK 10 | DATE TIME RECEIVED BY: (Signature) DATE TIME LAB COMMENTS: Analytical Laboratory: Med Tox Analytical Laboratory: Med Tox | 13:30 54- 10 | # ANALYTICAL SERVICES S CERTIFICATION NO: E772 ## CERTIFICATE OF ANALYSIS **PAGE 1 OF 24** LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 ATTN: KATHLEEN ISAACSON CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 8378 **REPORT DATE: 11/21/91** DATE SAMPLED: 11/04-05/91 DATE RECEIVED: (11/06/91) MED-TOX JOB NO: 9111043 ANALYSIS OF: WATER SAMPLES | Sample Ider
Client Id. | ntification
Lab No. | Sulfide
(mg/L) | |---------------------------|------------------------|-------------------| | LF-5 | 01F | ND | | LF-6 | 02D | ND | | LF-7 | 03D | ND | | MW-3 | 04B | ND | | MW-4 | 06B | ND | | MW-1 | 07B | ND | | Detection | limit | 1 | EPA Method: 367.2 Instrument: NOVASPEC Date analyzed: 11/13/91 ND = Not Detected Sherri Moore, Manager Inorganic Laboratory Results FAXed 11/15-18/91 Andrew Bradeen, Manager Organic Laboratory CLIENT ID: LE-5 CLIENT PROJ. ID: 2407.5 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-01B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/10/91 INSTRUMENT: 12 EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|------------------|----------------------|---| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25-2 | ND | 5 | | Bromomethane | 74-83-9 | ND | 10 | | 2-Butanone | 78-93 - 3 | ND | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | 1,1-Dichloroethane | 75-34-3 | ND | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69 -9 | ND | 5 | | trans-1,2-Dichloroethene | 1 56-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | 5 | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88-3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5
5
5
5
5
5
5
5 | | Trichloroethene | 79-01-6 | ND | | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | CLIENT ID: LF-6 CLIENT PROJ. ID: 2407.5 DATE SAMPLED: 11/05/91 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-02B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/10/91 INSTRUMENT: 12 #### EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|-------------------|----------------------|------------------------------| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5
5 | | Bromoform | 75-25-2 | ND ' | 5 | | Bromomethane | 74-83-9 | ND | 10 | | 2-Butanone | 78-93 <i>-</i> 3 | ND | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67 -66- 3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | 1,1-Dichloroethane | 75-34-3 | ND | 5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 | | 1,1-Dichloroethene | 75-35 -4 | ND | 55555555555 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methy1-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | ND | 5
5
5
5 | | Tetrachloroethene | 127-18-4 | ND | 5 | | Toluene | 108-88 - 3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | ND | 5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5
5 | | Trichloroethene | 79-01-6 | ND | | | Vinyl Acetate | 108- 05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | | - | | | | CLIENT ID: LF-7 CLIENT PROJ. ID: 2407.5 DATE SAMPLED: 11/05/91 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-03B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/10/91 INSTRUMENT: 12 ## EPA METHOD 8240 (WATER MATRIX) GC/MS VOLATILE ORGANIC COMPOUNDS | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |---------------------------|----------------------|----------------------|---| | Acetone | 67-64-1 | ND | 100 | | Benzene | 71-43-2 | ND | 5 | | Bromodichloromethane | 75-27-4 | ND | 5 | | Bromoform | 75-25-2 | ND | 5 | | Bromomethane | 74-83- 9 | ND | 10 | | 2-Butanone | 78-93-3 | ND | 100 | | Carbon Disulfide | 75-15-0 | ND | 10 | | Carbon Tetrachloride | 56-23-5 | ND | 5 | | Chlorobenzene | 108-90-7 | ND | 5 | | Chloroethane | 75-00-3 | ND | 10 | | 2-Chloroethyl Vinyl Ether | 110-75-8 | ND | 10 | | Chloroform | 67-66-3 | ND | 5 | | Chloromethane | 74-87-3 | ND | 10 | | Dibromochloromethane | 124-48-1 | ND | 5 | | l,l-Dichloroethane | 75-34 <i>-</i> 3 | ND | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | | 1,2-Dichloroethane | 107-06-2 | ND | 5 | | 1,1-Dichloroethene | 75-35-4 | ND | 5 | | cis-1,2-Dichloroethene | 156-69-9 | ND | 5 | | trans-1,2-Dichloroethene | 156-60-5 | ND | 5 | | 1,2-Dichloropropane | 78-87-5 | ND | 5 | | cis-1,3-Dichloropropene | 10061-01-5 | ND | 5 | | trans-1,3-Dichloropropene | 10061-02-6 | ND | 5 | | Ethylbenzene | 100-41-4 | ND | 5 | | 2-Hexanone | 591-78-6 | ND | 50 | | Methylene Chloride | 75-09-2 | ND | 5 | | 4-Methyl-2-pentanone | 108-10-1 | ND | 50 | | Styrene | 100-42-5 | ND | 5 | | 1,1,2,2-Tetrachloroethane | 7 9 -34-5 | ND | 5 | | Tetrachloroethene | 127-18-4 | NO | 5 | | Toluene | 108-88 - 3 | ND | 5 | | 1,1,1-Trichloroethane | 71-55-6 | , ND | 5
5
5
5
5
5 | | 1,1,2-Trichloroethane | 79-00-5 | ND | 5 | | Trichloroethene | 79-01-6 | ND | | | Vinyl Acetate | 108-05-4 | ND | 50 | | Vinyl Chloride | 75-01-4 | ND | 10 | | Xylenes, total | 1330-20-7 | ND | 10 | PAGE 5 OF 24 CLIENT ID: LF-5 CLIENT JOB NO: 2407.5 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 INSTRUMENT: 11 MED-TOX LAB NO: 9111043-01D MED-TOX JOB NO: 9111043 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 REPORT DATE: 11/21/91 #### EPA METHOD 8270 BASE NEUTRAL EXTRACTABLES (WATER MATRIX) | COMPOUND | CAS # | CONCENTRATION
(ug/L) | DETECTION
LIMIT
(ug/L) | |------------------------------|------------|-------------------------|------------------------------| | Acenaphthene | 83-32-9 | ND | 10 | | Acenaphthylene | 208-96-8 | ND | 10 | | Anthracene | 120-12-7 | ND | 10 | | Benzidine | 92-87-5 | ND | 50 | | Benzoic Acid | 65-85-0 | ND | 50 | | Benzo(a)anthracene | 56-55-3 | ND | 10 | | Benzo(b)fluoranthene | 205-99-2 | ND | 10 | | Benzo(k)fluoranthene | 207-08-9 | ND | 10 | | Benzo(g,h,i)perylene | 191-24-2 | ND | 10 | | Benzo(a)pyrene | 50-32-8 | ND | 10 | | Benzyl Alcohol | 100-51-6 | ND | 20 | | Bis(2-chloroethoxy) methane | 111-91-1 | ND | 10 | | Bis(2-chloroethyl)ether | 111-44-4 | ND | 10 | | Bis(2-chloroisopropyl) ether | 39638-32-9 | ND | 10 | | Bis(2-ethylhexyl) phthalate | 117-81-7 | ND | 20 | | 4-Bromophenyl phenyl ether | 101-55-3 | ND | 10 | | Butylbenzyl phthalate | 85-68-7 | ND | 10 | | 4-Chloroaniline | 106-47-8 | ND | 20 | | 2-Chloronaphthalene | 91-58-7 | ND | 10 | | 4-Chlorophenyl phenyl ether | 7005-72-3 | ND | 10 | | Chrysene | 218-01-9 | ND | 10 | | Dibenzo(a,h)anthracene | 53-70-3 | МÐ | 10 | | Dibenzofuran | 132-64-9 | ND | 10 | | Di-n-butylphthalate | 84-74-2 | ND | 10 | | 1,2-Dichlorobenzene | 95-50-1 | ND | 10 | PAGE 6 OF 24 CLIENT ID: (LF-5 CLIENT JOB NO: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 INSTRUMENT: 11 MED-TOX LAB NO: 9111043-01D MED-TOX JOB NO: 9111043 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 REPORT DATE: 11/21/91 ## EPA METHOD 8270 BASE NEUTRAL EXTRACTABLES (cont.) | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |--------------------------------|------------------|----------------------|------------------------------| | 1,3-Dichlorobenzene | 541-73-1 | ND | 10 | | 1,4-Dichlorobenzene | 106-46-7 | ND | 10 | | 3,3′-Dichlorobenzidine | 91-94-1 | ND | 20 | | Diethylphthalate | 84-66-2 | ND | 10 | | Dimethylphthalate | 131-11-3 | ND | 10 |
| 2,4-Dinitrotoluene | 121-14-2 | ND | 10 | | 2,6-Dinitrotoluene | 606-20-2 | ND | 10 | | Di-n-octylphthalate | 117-84-0 | ND | 10 | | 1,2-Diphenylhydrazine | 122-66-7 | ND | 10 | | Fluoranthene | 206-44-0 | ND | 10 | | Fluorene | 86-73-7 | ND | 10 | | Hexachlorobenzene | 118-74-1 | ND | 10 | | Hexachlorobutadiene | 87-68-3 | ND | 10 | | Hexachlorocyclopentadiene | 77-47-4 | ND | 10 | | Hexachloroethane | 67-72-1 | ND | 10 | | Indeno(1,2,3-cd)pyrene | 193-39-5 | ND | 10 | | Isophorone | 78-59-1 | ND | 10 | | 2-Methylnaphthalene | 91-57-6 | ND | 10 | | Naphthalene | 91-20-3 | ND | 10 | | 2-Nitroaniline | 88-74-4 | ND | 50 | | 3-Nitroaniline | 99-09-2 | ND | 50 | | 4-Nitroaniline | 100-01-6 | ND | 50 | | Nitrobenzene | 98-95-3 | ND | 10 | | | 62-75-9 | ND | 10 | | N-nitrosodimethylamine | 86-30-6 | ND | 10 | | N-nitrosodiphenylamine | 621-64-7 | ND
ND | 10 | | N-nitroso-di-n-
propylamine | 021-04-/ | | | | Phenanthrene | 85-01 - 8 | ND | 10 | | Pyrene | 129-00-0 | ND | 10 | | 1,2,4-Trichlorobenzene | 120-82-1 | ND | 10 | PAGE 7 OF 24 CLIENT ID: LF-5 CLIENT JOB NO: 2407.05 DATE SAMPLED: 11/04/91 DATE RECEIVED: 11/05/91 INSTRUMENT: 11 MED-TOX LAB NO: 9111043-010 MED-TOX JOB NO: 9111043 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 REPORT DATE: 11/21/91 EPA METHOD 8270 BASE NEUTRAL EXTRACTABLES (cont.) | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |----------|------------|----------------------|------------------------------| | PCB-1016 | 12674-11-2 | ND | 50 | | PCB-1221 | 11104-28-2 | ND | 50 | | PCB-1232 | 11141-16-5 | ND | 50 | | PCB-1242 | 53469-21-9 | ND | 50 | | PCB-1248 | 12672-29-6 | ND | 50 | | PCB-1254 | 11097-69-1 | ND | 50 | | PCB-1260 | 11096-82-5 | ND | 50 | EPA METHOD 8270 ACID EXTRACTABLES | COMPOUND | CAS # | CONCENTRATION (ug/L) | DETECTION
LIMIT
(ug/L) | |----------------------------|----------|----------------------|------------------------------| | 4-Chloro-3-methylphenol | 59-50-7 | ND | 10 | | 2-Chlorophenol | 95-57-8 | ND | 10 | | 2,4-Dichlorophenol | 120-83-2 | ND | 10 | | 2,4-Dimethylphenol | 105-67-9 | ND | 10 | | 4,6-Dinitro-2-methylphenol | 534-52-1 | ND | 50 | | 2,4-Dinitrophenol | 51-28-5 | ND | 50 | | 2-Methylphenol | 95-48-7 | ND | 10 | | 4-Methylphenol | 106-44-5 | ND | 10 | | 2-Nitrophenol | 88-75-5 | ND | 10 | | 4-Nitrophenol | 100-02-7 | ND | 50 | | Pentachlorophenol | 87-86-5 | ND | 50 | | Phenol | 108-95-2 | ND | 10 | | 2,4,5-Trichlorophenol | 95-95-4 | ND | 10 | | 2,4,6-Trichlorophenol | 88-06-2 | ND | 10 | PAGE 8 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-5 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-01A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-13/91 ## CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION
LIMIT | METHOD
REFERENCE | INST. | |------|------------|---------------|--------------------|---------------------|-------| | | | (mg/L) | (mg/L) | | - | | Ag | Silver | 0.004 | 0.002 | 6010 | ICP | | As | Arsenic | ND | 0.002 | 7060 | V22 | | Ba | Barium | 0.018 | 0.002 | 6010 | ICP | | Be | Beryllium | ND | 0.001 | 6010 | ICP | | Cd | Cadmium | 0.049 | 0.005 | 6010 | ICP | | Co | Cobalt | 0.030 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | ND | 0.005 | 6010 | ICP | | Hg | Mercury | 0.0004 | 0.0003 | 7470 | Hg | | Mo | Molybdenum | ND | 0.01 | 6010 | IČP | | Ni | Nickel | 0.23 | 0.003 | 6010 | ICP | | Pb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | ΤĪ | Thallium | ND | 0.1 | 6010 | ICP | | Ÿ | Vanadium | ND | 0.005 | 6010 | ICP | | Žn | Zinc | 11 | 0.005 | 6010 | ICP | ND = Not Detected PAGE 9 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-6 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-02A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-13/91 #### CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------|----------------------|------------------------------|---------------------|-------| | Ag | Silver | 0.011 | 0.002 | 6010 | ICP | | As | Arsenic | 0.008 | 0.002 | 7060 | V22 | | Ba | Barium | 0.019 | 0.002 | 6010 | ICP | | Вe | Beryllium | ND | 0.001 | 6010 | ICP | | Cd | Cadmium | 0.079 | 0.005 | 6010 | ICP | | Co | Cobalt | 0.58 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | ND | 0.005 | 6010 | ICP | | Hg | Mercury | 0.0009 | 0.0003 | 7470 | Hg | | Mo | Molybdenum | ND | 0.01 | 6010 | IČP | | Ni | Nickel | 2.1 | 0.003 | 6010 | ICP | | Pb | Lead | 0.009 | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | ŤĨ | Thallium | ND | 0.1 | 6010 | ICP | | v | Vanadium | ND | 0.005 | 6010 | ICP | | Žn | Zinc | 8.1 | 0.005 | 6010 | ICP | | | 21110 | 3 | 3.4.4.5 | | | ND = Not Detected PAGE 10 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-7 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-03A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-13/91 ## CCR 17 METALS (WATER MATRIX) | CODE | METAL | | | METHOD
REFERENCE | INST. | |------|------------|----------|--------|---------------------|-------| | | | (mg/L) · | (mg/L) | | | | Ag | Silver | ND | 0.002 | 6010 | ICP | | As | Arsenic | 0.004 | 0.002 | 7060 | V22 | | Ba | Barium | 0.13 | 0.002 | 6010 | ICP | | Вe | Beryllium | ND | 0.001 | 6010 | ICP | | Cd | Cadmium | ND | 0.005 | 6010 | ICP | | Co | Cobalt | ND | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | 0.006 | 0.005 | 6010 | ICP | | Hg | Mercury | 0.0011 | 0.0003 | 7470 | Hg | | Mo | Molybdenum | ND | 0.01 | 6010 | IĆP | | Ni | Nickel | 0.010 | 0.003 | 6010 | ICP | | Рb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | Tl | Thallium | ND | 0.1 | 6010 | ICP | | ٧ | Vanadium | 0.006 | 0.005 | 6010 | ICP | | Zn | Zinc | ND | 0.005 | 6010 | ICP | ND = Not Detected PAGE 11 OF 24 #### LEVINE-FRICKE CLIENT ID: MW-3 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-04A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-13/91 ## CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION
LIMIT | METHOD
REFERENCE | INST. | |------|------------|---------------|--------------------|---------------------|-------| | | | (mg/L) . | (mg/L) | | 2 | | Ag | Silver | 0.005 | 0.002 | 6010 | ICP | | As | Arsenic | ND | 0.002 | 7060 | V22 | | Ba | Barium | 0.017 | 0.002 | 6010 | ICP | | Вe | Beryllium | 0.001 | 0.001 | 6010 | ICP | | Cd | Cadmium | 0.57 | 0.005 | 6010 | ICP | | Co | Cobalt | 0.42 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | 0.28 | 0.005 | 6010 | ICP | | Hg | Mercury | 0.0028 | 0.0003 | 7470 | Hg | | Mo | Molybdenum | ND | 0.01 | 6010 | IČP | | Ni | Nickel | 1.2 | 0.003 | 6010 | ICP | | Рb | Lead | 0.005 | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | TÌ | Thallium | ND | 0.1 | 6010 | ICP | | V | Vanadium | ND | 0.005 | 6010 | ICP | | Žn | Zinc | 600 | 0.005 | 6010 | ICP | ND = Not Detected PAGE 12 OF 24 #### LEVINE-FRICKE CLIENT ID: MW-4 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-06A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-13/91 ## CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION
LIMIT | METHOD
REFERENCE | INST. | |------|------------|---------------|--------------------|---------------------|-------| | | • | (mg/L) | (mg/L) | | | | Ag | Silver | ND | 0.002 | 6010 | ICP | | As | Arsenic | 0.007 | 0.002 | 7060 | V22 | | Ba | Barium | 0.017 | 0.002 | 6010 | ICP | | Be | Beryllium | ND. | 0.001 | 6010 | ICP | | Cd | Cadmium | ND | 0.005 | 6010 | ICP | | Co | Cobalt | ND | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | ND | 0.005 | 6010 | ICP | | Hg | Mercury | 0.0027 | 0.0003 | 7470 | Hg | | Mo | Molybdenum | ND | 0.01 | 6010 | IČP | | Ni | Nickel | 0.012 | 0.003 | 6010 | ICP | | Рb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | Tl | Thallium | ND | 0.1 | 6010 | ICP | | ٧ | Vanadium | ND | 0.005 | 6010 | ICP | | Zn | Zinc | ND | 0.005 | 6010 | ICP | ND = Not Detected PAGE 13 OF 24 #### LEVINE-FRICKE CLIENT ID: MW-1 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-07A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-13/91 # CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION
LIMIT | METHOD
REFERENCE | INST. | |------|------------|---------------|--------------------|--------------------------------|-------| | | | (mg/L) | (mg/L) | P. Clan I. Say P. Clant V. Co. | | | Ag | Silver | ND | 0.002 | 6010 | ICP | | As | Arsenic | 0.073 | 0.002 | 7060 | V22 | | Ba | Barium | 0.085 | 0.002 | 6010 | ICP | | Вe | Beryllium | ND | 0.001 | 6010 | ICP | | Cd | Cadmium | ND | 0.005 | 6010 | ICP | | Co | Cobalt | 0.008 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | ND . | 0.005 | 6010 | ICP | | Hg | Mercury | ND | 0.0003 | 7470 | Hg | | Μŏ | Molybdenum | 0.02 | 0.01 | 6010 | IČP | | Ni | Nickel | 0.032 | 0.003 | 6010 | ICP | | Рb | Lead | ND | 0.005 | 6010 | ICP | | Sb | Antimony | ND | 0.02 | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | Tl | Thallium | ND | 0.1 | 6010 | ICP | | ٧ | Vanadium | ND | 0.005 | 6010 | ICP | | Zn | Zinc | 2.7 | 0.005 | 6010 | ICP | ND = Not Detected INST. = Instrument Number Note: Sample was filtered and preserved with Nitric Acid on 11/06/91. PAGE 14 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-5 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-01F MED-TOX JOB NO:
9111043 DATE ANALYZED: 11/06-14/91 #### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 550 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 200 | 0.03 | 6010 | ICP | | | Chloride | 1,100 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | 0.34 | 0.05 | 6010 | ICP | | Mg | Magnesium | 360 | 0.04 | 6010 | ICP | | Mn | Manganese | 17 | 0.002 | 6010 | ICP | | | pH | 6.7 ** | NA | 9040 | ISE | | Na | Sodium | 2,800 | 0.05 | 6010 | ICP | | | Sulfate | 4,800 | 0.5 | 300 | DIONEX | | | Conductivity | 11,000 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 9,100 | 10 | 160.1 | ME-1 | | | Hardness | 2,000 * | 1 | 314-A | ICP | | Zn | Zinc | 11 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable PAGE 15 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-6 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-02D MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/06-14/91 ### GENERAL MINERALS (WATER MATRIX) | CODE PARAMETER | | CONCENTRATION
(mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |----------------|------------------------|-------------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 22 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 200 | 0.03 | 6010 | ICP | | | Chloride | 540 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | 25 | 0.05 | 6010 | ICP | | Mg | Magnesium | 430 | 0.04 | 6010 | ICP | | Mn | Manganese | 65 | 0.002 | 6010 | ICP | | | ρΗ | 5.0 ** | NA | 9040 | ISE | | Na | Sodium | 990 | 0.05 | 6010 | ICP | | | Sulfate | 4,200 | 0.5 | 300 | DIONEX | | | Conductivity | 7,300 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 6,900 | 10 | 160.1 | ME-1 | | | Hardness | 2,300 * | 1 | 314-A | ICP | | Zn | Zinc | 8.1 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable PAGE 16 OF 24 #### LEVINE-FRICKE CLIENT ID: LF-7 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-03D MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/06-14/91 ### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 420 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2 👵 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 49 | 0.03 | 6010 | ICP | | | Chloride | 320 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | ND | 0.05 | 6010 | ICP | | Mg | Magnesium | 56 | 0.04 | 6010 | ICP | | Mn | Manganese | 0.73 | 0.002 | 6010 | ICP | | | ρH | 7.3 ** | NA | 9040 | ISE | | Na | Sodium | 360 | 0.05 | 6010 | ICP | | | Sulfate | 250 | 0.5 | 300 | DIONEX | | | Conductivity | 2,100 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 1,200 | 10 | 160.1 | ME-1 | | | Hardness | 350 * | 10 | 314-A | ICP | | 7 | | | 0 005 | 6010 | ICP | | Zn | Zinc | ND | 0.005 | 0010 | 107 | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable PAGE 17 OF 24 #### LEVINE-FRICKE CLIENT ID: MW-3 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-04B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/06-14/91 ### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 3 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ça | Calcium | 280 | 0.03 | 6010 | ICP | | | Chloride | 2,100 | 0.1 | 300 | DIONEX | | Cu | Copper | 0.28 | 0.04 | 6010 | ICP | | Fe | Iron | 12 | 0.05 | 6010 | ICP | | Mg | Magnesium | 190 | 0.04 | 6010 | ICP | | Mn | Manganese | 23 | 0.002 | 6010 | ICP | | | pH | 5.0 ** | NA | 9040 | ISE | | Na | Sodium | 740 | 0.05 | 6010 | ICP | | | Sulfate | 1,600 | 0.5 | 300 | DIONEX | | | Conductivity | 8,000 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 5,900 | 10 | 160.1 | ME-1 | | | Hardness | 1,500 * | ī | 314-A | ICP | | Zn | Zinc | 600 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable PAGE 18 OF 24 #### LEVINE-FRICKE CLIENT ID: MW-4 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-06B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/06-14/91 ### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 260 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | . 2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 150 | 0.03 | 6010 | ICP | | | Chloride | 200 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | ND | 0.05 | 6010 | ICP | | Mg | Magnesium | 180 | 0.04 | 6010 | ICP | | Mn | Manganese | 0.13 | 0.002 | 6010 | ICP | | | pΗ ັ | 6.7 ** | . NA | 9040 | ISE | | Na | Sodium | 290 | 0.05 | 6010 | ICP | | | Sulfate | 1,300 | 0.5 | 300 | DIONEX | | | Conductivity | 3,100 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 2,400 | 10 | 160.1 | ME-1 | | | Hardness | 1,100 * | 1 | 314-A | ICP | | Zn | Zinc | ND | 0.005 | 6010 | ICP | ND = Not Detected NA = Not Applicable ^{*} mg CaCO3/L ** standard units *** umhos/cm PAGE 19 OF 24 #### LEVINE-FRICKE CLIENT ID: MW-1 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-07B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/06-14/91 ### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | |------|------------------------|----------------------|------------------------------|---------------------|--------| | | Bicarbonate Alkalinity | 250 * | 2 | 310.1 | ISE - | | | Carbonate Alkalinity | ND * | 2
2 | 310.1 | ISE | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | Ca | Calcium | 60 | 0.03 | 6010 | ICP | | | Chloride | 28 | 0.1 | 300 | DIONEX | | Cu | Copper | ND | 0.04 | 6010 | ICP | | Fe | Iron | ND | 0.05 | 6010 | ICP | | Mg | Magnesium | 29 · | 0.04 | 6010 | ICP | | Mn | Manganese | 2.0 | 0.002 | 6010 | ICP | | | pH . | 6.8 ** | NA | 9040 | ISE | | Na | Sodium | 45 | 0.05 | 6010 | ICP | | | Sulfate | 190 | 0.5 | 300 | DIONEX | | | Conductivity | 930 *** | 20 | 120.1 | YSI | | | Total Dissolved Solids | 620 | 10 | 160.1 | ME-1 | | | Hardness | 270 * | 1 | 314-A | ICP | | Zn | Zinc | 2.7 | 0.005 | 6010 | ICP | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable #### QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NO: 9111043 PAGE 20 OF 24 INSTRUMENT: 12 MED-TOX JOB NO: 9111043 CLIENT PROJ. ID: 2407.05 #### SURROGATE STANDARD RECOVERY SUMMARY #### METHOD 8240 (WATER MATRIX) | SAMPLE IDENTIFICATION | | | * SURRO | RCENT) | | |-----------------------|--------------|------------|---|------------------------|--------------------------| | Date
Analyzed | Client 1d. | Lab Mo. | 1,2-Dichloro-
eth ane -d ₄ | Toluene-d ₈ | p-Bramofluoro
benzene | | 11/10/91 | LF-5 | 01B | 111.6 | 107.6 | 97.3 | | 11/10/91
11/10/91 | LF-6
LF-7 | 02B
03B | 111.4
114.4 | 104.3
102.7 | 99.3
98.7 | #### CURRENT QC LIMITS | ANALYTE | PERCENT RECOVERY | | | |-----------------------------------|------------------|--|--| | 1,2-Dichloroethane-d ₄ | (83-127) | | | | Toluene-d ₈ | (90-108) | | | | p-Bromofluorobenzene | (91-109) | | | #### PAGE 21 OF 24 DATE ANALYZED: 11/10/91 SAMPLE SPIKED: 9111032-02A INSTRUMENT: 12 MED-TOX JOB NO: 9111043 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY #### METHOD 8240 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPC | |--------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|-----| | 1.1-Dichloroethene | 50.0 | ND | 52.7 | 51,2 | 103.9 | 2.9 | | Trichloroethene | 50.0 | ND | 52.5 | 48.4 | 100.9 | 8.1 | | Benzene | 50.0 | ND | 50.4 | 48.9 | 99.3 | 3.0 | | Toluene | 50.0 | ND | 49.9 | 47.8 | 97.7 | 4.3 | | Chlorobenzene | 50.0 | ND | 53.9 | 51.1 | 105.0 | 5.3 | #### CURRENT QC LIMITS (Revised 08/13/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |-------------------|------------------|------------| | 1,1-Dichloroether | ne (65-133) | 13.5 | | Trichloroethene | (84-120) | 8.7 | | Benzene | (84-121) | 9.4 | | Toluene | (89-119) | 8.4 | | Chlorobenzene | (83-116) | 7.5 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 22 OF 24 DATE ANALYZED: 11/14/91 MED-TOX JOB NO: 9111043 INSTRUMENT: 11 CLIENT PROJ. ID: 2407.05 #### SURROGATE STANDARD RECOVERY SUMMARY #### METHOD 8270 (WATER MATRIX) | S AMPL i
Date
Extracted | E IDENTIFICATION Client Id. | Lab No. | Witro-
benzene-d ₅ | SURRO 6
2-Fluoro-
biphenyl | IATE
R
Terphenyl-
d ₁₄ | ECOVER1 | (PERCENT)
2-Fluoro-
phenol | 2,4,6-Tribromo-
phenol | |--------------------------------------|-----------------------------|---------|----------------------------------|----------------------------------|---|---------|----------------------------------|---------------------------| | 11/11/91 | LF-5 | 010 | 80.0 | 74.9 | 78.6 | 79.4 | 68.9 | 97.0 | #### CURRENT QC LIMITS | <u>ANALYTE</u> | PERCENT RECOVERY | |--|--| | Nitrobenzene-d ₅ 2-Fluorobiphenyl Terphenyl-d ₁₄ Phenol-d ₅ 2-Fluorophenol 2,4,6-Tribromophenol | (41-105)
(45-110)
(31-139)
(37-107)
(34- 95)
(33-145) | PAGE 23 OF 24 DATE EXTRACTED: 11/11/91 DATE ANALYZED: 11/14/91 CLIENT PROJ. ID: 2407.05 MED-TOX JOB NO: 9111043 SAMPLE SPIKED: POLAR WATER INSTRUMENT: 11 #### MATRIX SPIKE RECOVERY SUMMARY METHOD 8270 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Average
Percent
Recovery | RPD | |----------------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|------| | Phenol | 234 | ND ND | 164 | 187 | 75.0 | 13.1 | | 2-Chlorophenol | 203 | ND | 132 | 152 | 70.0 | 14.1 | | 1.4-Dichtorobenzene | 201 | ND | 118 | 136 | 63.2 | 14.2 | | N-Nitroso-di-n-propylamine | 201 | ND | 131 | 140 | 67.4 | 6.6 | | 1,2,4-Trichlorobenzene | 209 | ND | 134 | 151 | 68.2 | 11.9 | | 4-Chloro-3-methylphenol | 204 | ND | 160 | 172 | 81.4 | 7.2 | | Acenaph thene | 205 | ND | 152 | 160 | 76.1 | 5.1 | | 4-Nitrophenol | 201 | ND | 160 | 172 | 82.6 | 7.2 | | 2.4-Dinitrotoluene | 404 | ND | 302 | 323 | 77.4 | 6.7 | | Pentachlorophenol | 408 | ND | 373 | 405 | 95.3 | 8.2 | | Pyrene | 202 | ND | 159 | 172 | 81.9 | 7.9 | #### CURRENT QC LIMITS | <u>Analyte</u> | <u>Percent Recovery</u> | <u>RPD</u> | |----------------------------|-------------------------|------------| | Phenol | (46- 92) | 19 | | 2-Chlorophenol | (51- 85) | 26 | | 1,4-Dichlorobenzene | (32- 85) | 26 | | N-Nitroso-di-n-propylamine | (36-107) | 17 | | 1,2,4-Trichlorobenzene | (34- 87) | 20 | | 4-Chloro-3-methylphenol | (48-103) | 14 | | Acenaphthene | (49-117) | 15 | | 4-Nitrophenol | (23-104) | 16 | | 2,4-Dinitrotoluene | (48-102) | 16 | | Pentachlorophenol | (20-125) | 22 | | Pyrene | (34-138) | 10 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference PAGE 24 OF 24 MATRIX: WATER MED-TOX JOB NO: 9111043 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | | | | | | | | | | QC CONTROL | LIMITS | |-------------|------------------|------------------|------------------|----------------|--------|---------------------------|--------|------|-----------------|--------------| | COMPOUND | INST./
METHOD | SAMPLE
SPIKED | SAMPLE
RESULT | SPIKE
ADDED | | RECOVERIES
3/L)
MSD | % REC. | RPD | REC. %
LIMIT | RPD
LIMIT | | As, Arsenic | V22/7060 | 9111041-01A | 0.042 | 0.040 | 0.0796 | 0.0789 | 93.1 | 0.88 | 56.1-141.7 | 16.0 | | Ba, Barium | ICP/6010 | 9111068-01A | 0.011 | 2.00 | 2.01 | 2.02 | 100.1 | 0.52 | 82.4-107.9 | 5.0 | | Cd, Cadmium | ICP/6010 | 9111068-01A | ND | 0.10 | 0.0920 | 0.0928 | 92.4 | 0.80 | 60.3-114.4 | 8.0 | | Cr, Chromiu | m ICP/6010 | 9111068-01A | ND | 0.50 | 0.500 | 0.504 | 100.3 | 0.82 | 72.9-109.7 | 5.0 | | Cu, Copper | ICP/6010 | 9111068-01A | 1.314 | 0.50 | 1.784 | 1.778 | 93.4 | 0.36 | 78_1-111.9 | 5.0 | | Hg, Mercury | Hg/7470 | 9111043-07A | ND | 2.0 ug/L | 2.000 | 2.028 | 100.7 | 1.35 | 95.0-105.0 | 2.0 | | Ni, Nickel | ICP/6010 | 9111068-01A | 0.369 | 0.50 | 0.870 | 0.873 | 100.5 | 0.33 | 74.6-108.7 | 5.0 | | Pb, Lead | 1CP/6010 | 9111068-01A | 0.026 | 0.50 | 0.499 | 0.498 | 94.6 | 0.19 | 74.8-110.9 | 5.0 | | Se, Seleniu | m V22/7740 | 9111041-01A | 0.0913 | 0.080 | 0.1663 | 0.1605 | 90.1 | 3.5 | 51.1-136.2 | 17.4 | | Zn, Zinc | ICP/6010 | 9111068-01A | 0.099 | 0.50 | 0.545 | 0.546 | 89.3 | 0.32 | 67.4-109.8 | 5.0 | | Chloride | DIONEX/300 | 9111043-07B | 27.8 | 25 | 56.6 | 56.6 | 115.1 | 0.07 | 88-120 | 15 | | Sulfate | DIONEX/300 | 9111043-078 | 194 | 50 | 246 | 245 | 102.1 | 0.26 | 80-120 | 15 | | Sulfide | NOVASPEC/367.2 | 9111029-02G | ND | 0.2 | 0.197 | 0.199 | 99.1 | 0.81 | 80-120 | 15 | # ANALYTICAL SERVICES 'S CERTIFICATION NO: E772 ### CERTIFICATE OF ANALYSIS PAGE 1 OF 7 LEVINE-FRICKE 1900 POWELL ST., 12TH FL. EMERYVILLE, CA 94608 ATTN: KATHLEEN ISAACSON CLIENT PROJ. ID: 2407.05 C.O.C. NOS: 8378 REPORT DATE: 11/21/91 DATE SAMPLED: 11/05/91 DATE RECEIVED: (11/06/91) MED-TOX JOB NO: 9111043 NOV 26 1991 ANALYSIS OF: WATER SAMPLE | Sample Ident
Client Id. | ification
Lab No. | Extractable Hydrocarbons as Diesel (mg/L) | Extractable Hydrocarbons as Oil (mg/L) | Sulfide
(mg/L) | |------------------------------|----------------------|---|--|-------------------| | MW-2
MW-2 | 05D
05F | ND
 | ND ND | | | Detection Li | mit | 0.05 | 0.1 | 1 | | Method: | | 3510 GCFID | 3510 GCFID | 367.2 | | Instrument: | | С | c | NOVASPEC | | Date Extract
Date Analyze | | 11/14/91
11/14/91 | 11/14/91
11/14/91 | 11/13/91 | | ND = Not Det | ected | | | | Sherri Moore, Manager Inorganic Laboratory Results FAXed 11/15-18/91 Andrew Bradeen, Manager Organic Laboratory #### LEVINE-FRICKE CLIENT ID: MW-2 CLIENT PROJ. ID: 2407.5 DATE SAMPLED: 11/05/91 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-05B MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/08/91 INSTRUMENT: F BTEX AND HYDROCARBONS (WATER MATRIX) METHOD: EPA 8020, 5030 GCFID | | CAS # | DETECTION
LIMIT
(ug/L) | | |------------------|------------|------------------------------|---------| | Benzene | 71-43-2 | ND | 0.3 | | Toluene | 108-88-2 | ND | 0.3 | | Ethylbenzene | 100-41-4 | ND | 0.3 | | Xylenes, Total | 1330-20-7 | ND | 1 | | PURGEABLE HYDROC | ARBONS AS: | | | | Gasoline | | ND mg/L | 0.05 mg | PAGE 3 OF 7 #### LEVINE-FRICKE CLIENT ID: MW-2 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-05A MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/12-15/91 ### CCR 17 METALS (WATER MATRIX) | CODE | METAL | CONCENTRATION | DETECTION | METHOD
BEEEDENCE | INCT | |------|------------|---------------|-----------------|---------------------|-------| | | | (mg/L) | LIMIT
(mg/L) | REFERENCE | INST. | | Ag | Silver | 0.008 | 0.002 | 6010 | ICP | | As | Arsenic | 2.1 | 0.002 | 7060 | V22 | | Вa | Barium | 0.013 | 0.002 | 6010 | ICP | | Вe | Beryllium | 0.002 | 0.001 | 6010 | ICP | | Cd | Cadmium | 7.0 | 0.005 | 6010 | ICP | | Со | Cobalt | 0.42 | 0.005 | 6010 | ICP | | Cr | Chromium | ND | 0.01 | 6010 | ICP | | Cu | Copper | 0.093 | 0.005 | 6010 | ICP | | Hg | Mercury | 0.0055 | 0.0003 | 7470 | Hg | | Mo | Molybdenum | 0.01 | 0.01 | 6010 | IČP | | Ni | Nickel | 1.2 | 0.003 | 6010 | ICP | | Рb | Lead | ND | 0.2 * | 6010 | ICP | | Sb | Antimony | ND | 0.2 * | 6010 | ICP | | Se | Selenium | ND | 0.004 | 7740 | V22 | | Tl | Thallium | ND | 0.1 | 6010 | ICP | | V | Vanadium | ND | 0.005 | 6 010 | ICP | | Zn | Zinc | 4,200 | 0.5 | 6010 | ICP | ND = Not Detected ^{*} Elevated detection limits due to spectral interference. PAGE 4 OF 7 #### LEVINE-FRICKE CLIENT ID: MW-2 CLIENT PROJ. ID: 2407.5 DATE RECEIVED: 11/06/91 REPORT DATE: 11/21/91 MED-TOX LAB NO: 9111043-05F MED-TOX JOB NO: 9111043 DATE ANALYZED: 11/06-14/91 ### GENERAL MINERALS (WATER MATRIX) | CODE | PARAMETER | CONCENTRATION (mg/L) | DETECTION
LIMIT
(mg/L) | METHOD
REFERENCE | INST. | | |------|------------------------|----------------------|------------------------------|---------------------|--------|--| | - | Bicarbonate Alkalinity | ND * | 2 | 310.1 | ISE - | | | | Carbonate Alkalinity | ND * | 2
2 | 310.1 | ISE | | | | Hydroxide Alkalinity | ND * | 2 | 310.1 | ISE | | | Ca | Calcium | 170 | 0.03 | 6010 | ICP | | | | Chloride | 470 | 0.1 | 300 | DIONEX | | | Cu | Copper | 0.09 | 0.04 | 6010 | ICP | | | Fe | Iron | 210 | 0.05 | 6010 | ICP | | | Mg | . Magnesium | 130° | 0.04 | 6010 | ICP | | | Mn | Manganese | 30 | 0.002 | 6010 | ICP | | | | Hq | 4.4 ** | NA | 9040 | ISE | | | Na | Sodium | 310 | 0.05 | 6010 | ICP | | | | Sulfate | 9,500 | 0.5 | 300 | DIONEX | | | | Conductivity | 10,000 *** | 20 | 120.1 | IZY | | | | Total Dissolved Solids | # 16,000 | 10 | 160.1 | ME-1 | | | | Hardness | 960 * | 1 | 314-A | ICP | | | Zn | Zinc | 4,200 | 0.5 | 6010 | ICP | | * mg CaCO3/L ** standard units *** umhos/cm ND = Not Detected NA = Not Applicable INST. = Instrument Number # Positive interference in Total Dissolved Solids possibly due to fine particulate passing through the standard glass fiber filter. #### QUALITY CONTROL DATA LEVINE-FRICKE CLIENT PROJECT ID: 2407.05 MED-TOX JOB NO: 9111043 PAGE 5 OF 7 DATE EXTRACTED: 11/14/91 DATE ANALYZED: 11/14/91 SAMPLE SPIKED: D.I. WATER MED-TOX JOB NO: 9111043 CLIENT PROJ. ID: 2407.05 INSTRUMENT: C #### MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATERS METHOD 3510 (WATER MATRIX; EXTRACTION METHOD) | ANALYTE | Spike
Conc.
(mg/L) | Sample
Result
(mg/L) | MS
Result
(mg/L) | MSD
Result
(mg/L) | Average
Percent
Recovery | RPD | |---------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------|------| | Diesel | 0.636 | ND | 0.405 | 0.450 | 67.2 | 10.5 | #### CURRENT QC LIMITS (Revised 08/15/91) <u>RPD</u> <u>Analyte</u> Percent Recovery (49.3-101.4) Diesel 29.0 MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference #### PAGE 6 OF 7 DATE ANALYZED: 11/08/91 SAMPLE SPIKED: 9111029-01A CLIENT PROJ. ID: 2407.05 MED-TOX JOB NO:
9111043 INSTRUMENT: F ### MATRIX SPIKE RECOVERY SUMMARY METHOD 5030 w/GCFID/8020 (WATER MATRIX) | ANALYTE | Spike
Conc.
(ug/L) | Sample
Result
(ug/L) | MS
Result
(ug/L) | MSD
Result
(ug/L) | Aver age
Percent
Recovery | RPD | |-------------------------|--------------------------|----------------------------|------------------------|-------------------------|--|-----| | Benzene | 16.9 | ND | 15.6 | 15.0 | 90.5 | 3.9 | | Toluene
Hydrocarbons | 71.1 | ND | 67.9 | 66.4 | 94.4 | 2.2 | | as Gasoline | 519 | ND | 511 | 526 | 99.9 | 2.9 | #### CURRENT QC LIMITS (Revised 08/15/91) | <u>Analyte</u> | Percent Recovery | <u>RPD</u> | |--------------------|------------------------------|--------------| | Benzene
Toluene | (77.7-118.0)
(80.7-116.2) | 10.3
10.1 | | Gasoline | (72.5-110.7) | 13.6 | MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference #### PAGE 7 OF 7 MATRIX: WATER MED-TOX JOB NO: 9111043 CLIENT PROJ. ID: 2407.05 #### MATRIX SPIKE RECOVERY SUMMARY | | | | | | ODSERVEN I | RECOVERIES | | | OC CONTROL | LIMITS | |-------------|------------------|------------------|------------------|----------------|------------|-------------|--------|------|-----------------|--------------| | COMPOUND | INST./
METHOD | SAMPLE
SPIKED | SAMPLE
RESULT | SPIKE
ADDED | | g/L)
MSD | % REC. | RPD | REC. X
LIMIT | RPD
LIMIT | | As, Arsenic | V22/7060 | 9111041-01A | 0.042 | 0.040 | 0.0796 | 0.0789 | 93,1 | 0.88 | 56.1-141.7 | 16.0 | | Ba, Barium | ICP/6010 | 9111068-01A | 0.011 | 2.00 | 2.01 | 2.02 | 100.1 | 0.52 | 82.4-107.9 | 5.0 | | Cd, Cadmium | ICP/6010 | 9111068-01A | ND | 0.10 | 0.0920 | 0.0928 | 92.4 | 0.80 | 60.3-11474 | 8.0 | | Cr, Chromiu | m ICP/6010 | 9111068-01A | ND | 0.50 | 0.500 | 0.504 | 100.3 | 0.82 | 72.9-109.7 | 5.0 | | Cu, Copper | ICP/6010 | 9111068-01A | 1.314 | 0.50 | 1.784 | 1_778 | 93.4 | 0.36 | 78.1-111.9 | 5.0 | | Hg, Mercury | Hg/7470 | 9111043-07A | ND | 2.0 ug/L | 2.000 | 2.028 | 100.7 | 1.35 | 95.0-105.0 | 2.0 | | Ní, Nickel | ICP/6010 | 9111068-01A | 0.369 | 0.50 | 0.870 | 0.873 | 100.5 | 0.33 | 74.6-108.7 | 5.0 | | Pb, Lead | ICP/6010 | 9111068-01A | 0.026 | 0.50 | 0.499 | 0.498 | 94.6 | 0.19 | 74.8-110.9 | 5.0 | | Se, Seleniu | m V22/7740 | 9111041-01A | 0.0913 | 0.080 | 0.1663 | 0.1605 | 90.1 | 3.5 | 51.1-136.2 | 17.4 | | Zn, Zinc | ICP/6010 | 9111068-01A | 0.099 | 0.50 | 0.545 | 0.546 | 89.3 | 0.32 | 67.4-109.8 | 5.0 | | Chtoride | DIONEX/300 | 9111043-07B | 27.8 | 25 | 56.6 | 56.6 | 115.1 | 0.07 | 88-120 | 15 | | Sulfate | DIONEX/300 | 9111043-078 | 194 | 50 | 246 | 245 | 102.1 | 0.26 | 80-120 | 15 | | Sulfide | NOVASPEC/367.2 | 9111029-02G | ND | 0.2 | 0.197 | 0.199 | 99.1 | 0.81 | 80-120 | 15 | ## CHAIN OF CUSTODY / ANALYSES REQUEST FORM 9111043 | Project No. | .: 24 | 07.5 | | | Field | Logb | ook | No.: | - | | C | Date: | 11/4 | 1/91 | S | erial No. | 8378 | |----------------------------|----------------|-------|---|--|----------------|-------------|----------|--|--------------------|-----------------|--------|----------|--|------------|-----------|-------------------------|---| | Project Nar | ne: 6r | 10/00 | 100 | | Projec | t Lo | catio | n: (| aklo | ınd, | CA | | | | | | | | Sampler (Sie | gnature) | : | | | | | | | Α | NAL' | YSES | | / | | | Sampler | `s: | | | | SA | AMPLES | | | | frist. | /WS | 9/25 | 150 | 10 | 10 | KOL | \&\
\&\ | N. C. | THB, GT | -M | | SAMPLE NO. | DATE | TIME | LAB SAMPLE
NO. | NO. OF
CON-
TAINERS | SAMPLE
TYPE | | | | | NO N | 15.0 S | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | S. S. | | Sampler
「HB」らて
RE | MARKS | | LF-5 | 11/4/91 | 15:45 | 0/A-H | | water | X_ | x | ļ | · | | × | | | \times | × | | | | 1F-6 | 11/5/9/ | 10.00 | B JA·E | 5 | | X | X | | | | | | | X_ | | | | | LF-7 | 115 | 11:00 | 03A-E | 5 | 1 | X | X | | | | | | | X | | | e: The Two | | | 11/5 | /2:00 | 04A-D | 4 | | X | | | | | | | | X | X | MOAS | for LF-7 | | MW-2 | 11/5 | | 05A-G | 7 | | X | | X | X | | | | | X | | Are | Unipres eres | | MUY-4 | 115 | 1430 | 06A-C | 3 | 4 | X | <u> </u> | | | | | | | X | | | | | MW-(| 11/5 | 1515 | 07A-C | 3 | | * X | · | ļ | | | | | | X | | <i>//</i> C | 0 0 | | | | | | | | - | <u> </u> | | | | | | | } | 1 | | e RASIN. | | | | | | | | <u> </u> | | | | | | | | | | P (As | detection. | | | - | | 4 . 1 | | 1 | /- | 1 1 | 77 | - | | 471 | | | | · · · · · | <u> </u> | ts for | | | ' | | | tre | | _ | bot | | 1 1 | • | 7 | ~ | 22 | 1 | | 71 | Ma Due | | | 1 | mel | ats pre | 5 | | 4/1 | | | 7 |) -L | | | | - | | | : The Two | | | | pre | servet | | S ~~ | 1/6 | 121 | w | *// | <u> </u> | | | | | | | unfresterned | | | | 1 | | ┼ | | | + | - | \vdash | | | | | | | 7'_ | UNT CENTRAL | | | - | | | | | | | 1 | 1 | | - | | 1. | | | 7.4 | | | RELINQUISHED | BY: | + - | 7 | | DATE | | IME | 1 | RECEIV | D BY: | 1: | | | | .:X | 11.11 | DATE / TIME (C) | | (Signature
RELINQUISHED |) 9 | VM | ~~ ; | 4 | DATE | <u> </u> | <u> </u> | <u>' '</u> | (Signat | ture)
FD BY: | 100 | W | 1 | 1 | 27C) | 110 | 1////////////////////////////////////// | | (Signature |) I.C.A. | Elu | | <u>~</u> | 1/0 | | inv | A | RECEIVI
(Signat | ture) | 42 | W) | AL | Me | <u>}_</u> | | MIE 91 TIME | | RELINQUISHED
(Signature | ر ۱۹۲۰ | Kim | Cartaint | · | BATE | યા ' | 10: C | 101 | RECEIVI
(Signa | ture) | Chi | na | -71 | Il | CS0 | u | 11-6-41 11ME40 | | METHOD OF SH | I PMENT: | 1 | | | DATE | Ī | IME | | LAB CO | MMENTS | :. () | | 0 | | | | | | Sample Co | ollector | | LEVINE-FRICI
1900 Powell S
Emeryville, C
(415) 652-450 | Street, 12
a 94608 | th Floor | | | | Analy | 'tical | Labo | orato | ry: | | M | ed To | | | Shipping Copy | (White) | Lat | Copy (Green) | Fil | e Copy (| Yello | N) | Fiel | ld Copy | (Pin | k) | | - | | | | FORM NO. 86/COC/A |