RECEIVED

2:22 pm, Oct 30, 2008

Alameda County Environmental Health

October 30, 2008

VIA ALAMEDA COUNTY FTP SITE

Mr. Paresh C. Kharti Alameda County Environmental Health 1331 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring Report - Third Quarter 2008

Guy's Service Station 3820 San Leandro Street Oakland, California ACEH Fuel Leak Case No. RO0000089 Global ID T0600102250

Dear Mr. Kharti:

On behalf of Kelly Engineer, Pangea Environmental Services, Inc. (Pangea) has prepared this *Groundwater Monitoring Report – Third Quarter 2008*. The report describes groundwater monitoring, sampling, and other site activities.

If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Groundwater Monitoring Report – Third Quarter 2008

E: Kelly Engineer, All Star, Inc., 1791 Pine Street, Concord, California, 94520 SWRCB Geotracker (electronic copy)

GROUNDWATER MONITORING REPORT – THIRD QUARTER 2008

Guy's Service Station 3820 San Leandro Street Oakland, California

October 30, 2008

Prepared for:

Kelly Engineer 1791 Pine Street Concord, CA 94520

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies Project Manager

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

Groundwater Monitoring Report – Third Quarter 2008 3820 San Leandro Street Oakland, California October 30, 2008

INTRODUCTION

On behalf of Kelly Engineer, Pangea Environmental Services, Inc. (Pangea) performed groundwater monitoring and sampling during the current quarter at the Guy's service station located at 3820 San Leandro Street, Oakland, California. The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations and groundwater flow direction. Monitoring well locations, current groundwater analytical results, elevation data, and the estimated groundwater flow direction are shown on Figure 1. Current and historical data are summarized on Table 1.

SITE BACKGROUND

The site is a relatively level parcel occupying approximately 5,500 square feet on the northern corner of San Leandro Street and 39th Avenue in Oakland, California. The surrounding properties are primarily residential, although commercial/retail businesses occupy San Leandro Street east and west of the site. The site has operated as a retail gasoline/diesel service station since at least 1993 when Mr. Engineer commenced operations, and also includes a very small convenience store. A Phillips 66 station operated at the site for many years beforehand.

Four fuel (two diesel and two gasoline) underground storage tanks (USTs) were reportedly removed by American Consulting Remediation and Construction in January 1998 and new 20,000-gallon fuel USTs were installed. Soil samples collected during tank removal activities contained elevated concentrations of petroleum hydrocarbons. Total petroleum hydrocarbons as gasoline (TPHg) concentrations in soil ranged from 34 to 2,600 parts per million (ppm), while total petroleum hydrocarbons as diesel (TPHd) ranged from 11 to 3,700 ppm. As a result of the detected contamination an unauthorized release form (URF) was issued for the site and excavation of petroleum impacted soil was conducted to the extent practicable onsite as shown on Figure 1. According to Mr. Engineer, no final excavation report was prepared but the excavation extended to the property boundary in all directions except the northwestern direction. Based on the approximate 16 ft depth of the excavation, a total of approximately 1,200 tons of soil was excavated and disposed off site. During UST installation, the excavation was backfilled with pea gravel.

Soil and groundwater investigations have been conducted at the site since 1998. In July 1998, Brunsing Associates, Inc. drilled six soil borings and installed three groundwater monitoring wells to assess soil and groundwater conditions. ACC Environmental Consultants, Inc. (ACC) conducted periodic groundwater monitoring at the site from September 2000 to June 2004. In August 2003, ACC completed eight direct-push borings to further characterize the presence of petroleum hydrocarbons and MTBE in onsite and offsite soil and groundwater at the site. Pangea began groundwater monitoring at the site in May 2008. In the *Site Conceptual Model with Preferential Pathway Evaluation and Investigation Workplan* (Workplan) dated July 25, 2008, Pangea proposed collecting three soil gas samples to evaluate

Groundwater Monitoring Report – Third Quarter 2008 3820 San Leandro Street Oakland, California October 30, 2008

potential contaminant volatilization to indoor air, and installing one to two offsite monitoring wells to help define the extent of the plume. In a letter dated September 4, 2008, Alameda County Environmental Health (ACEH) approved the Workplan and requested the addition of one to two monitoring wells if necessary to characterize the vertical extent of contaminants.

GROUNDWATER MONITORING AND SAMPLING

On September 18, 2008, onsite monitoring wells and one tank backfill well were gauged for depth-to-water and inspected for separate-phase hydrocarbons (SPH) prior to collection of groundwater samples. Well caps were removed from all monitoring wells and technicians allowed at least 15 minutes for water-level equilibration before measuring depth to water. During groundwater monitoring, Pangea's technician noted that the well cap for MW-3 was under pressure and that groundwater is slow to recharge during well purging. These observations suggest that 15 minutes may not be adequate time for water levels to fully equilibrate prior to gauging. This conclusion is further supported by the prevalence of low permeability clay in site soil and well MW-3's proximity to the tank complex. To further evaluate this conclusion, Pangea calculated and compared the difference in groundwater elevation in each well between consecutive monitoring events as shown on Table 1. The results of this evaluation indicate that the difference in water levels in individual site wells between consecutive monitoring events varies widely. To accurately evaluate groundwater flow direction during future monitoring events, Pangea plans to remove all well caps the day before groundwater monitoring to allow water levels to fully equilibrate.

Prior to sample collection, approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump, or a peristaltic pump. During well purging, field technicians measured the pH, temperature, conductivity, total dissolved solids (TDS) and oxygen reduction potential (ORP). A groundwater sample was collected from each well with a disposable bailer, and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4° C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Groundwater monitoring field data sheets, including purge volumes and field parameter measurements, are presented in Appendix A.

MONITORING RESULTS

Current and historical groundwater elevation data and analytical results are described below and summarized on Table 1. Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015Cm, benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method 8021B. Samples were analyzed by McCampbell

Groundwater Monitoring Report – Third Quarter 2008 3820 San Leandro Street

Oakland, California October 30, 2008

Analytical, Inc., of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is

included in Appendix B.

Groundwater Flow Direction

Based on depth-to-water data collected on September 18, 2008, the overall groundwater flow direction onsite is generally towards the southwest at a gradient of approximately 0.05ft/ft. Groundwater elevation data and the inferred groundwater flow direction are shown on Figure 1. The inferred groundwater flow direction is generally consistent with previous monitoring results. However, as noted above, the wells appear to have not fully equilibrated prior to water level measurement resulting in a 'steeper' gradient and altering the calculated groundwater flow direction. Depth-to-water and groundwater elevation data are

presented in Table 1.

Hydrocarbon Distribution in Groundwater

No SPH was observed in any site wells. The maximum TPHg and benzene concentrations detected were $69,000~\mu g/L$ and $8,700~\mu g/L$, respectively, in source area well MW-3. Significantly lower hydrocarbon concentrations were detected in wells MW-1 and MW-2. TPHg concentration increases from the previous monitoring event may be due to the historic low water levels measured in well MW-3 this quarter. Hydrocarbon concentrations were generally within historic ranges in site monitoring wells this

quarter. Hydrocarbon concentration data are summarized in Table 1 and on Figure 1.

Historic data suggests that contaminant concentrations are stable or decreasing in source area well MW-3. Historic data from wells MW-1 and MW-2 suggests that contaminants are naturally attenuating in site

groundwater located further from the source area.

Fuel Oxygenate Distribution in Groundwater

The maximum MTBE concentration was detected in well MW-3 at 18,000 µg/L. No MTBE was detected in offsite, crossgradient well MW-2 or in upgradient on site well MW-1. As shown on Table 1, MTBE

concentrations recorded this quarter are generally within historical ranges.

OTHER SITE ACTIVITIES

Investigation Workplan

Pangea recently submitted a *Site Conceptual Model with Preferential Pathway Evaluation and Investigation Workplan* (Workplan) dated July 25, 2008 to ACEH. In a letter dated September 4, 2008, ACEH concurred with Pangea's recommendations to collect three soil gas samples to

3

Groundwater Monitoring Report – Third Quarter 2008

3820 San Leandro Street

Oakland, California

October 30, 2008

evaluate potential contaminant volatilization to indoor air, and installing one to two offsite

monitoring wells to help define the extent of the plume. Additionally, ACEH requested that one

to two more offsite monitoring wells be installed if necessary to characterize the vertical extent

of contaminants. Pangea plans to implement the approved Workplan with the additional wells

requested by ACEH in the near future, contingent upon weather, access and client authorization.

Upcoming Monitoring

Due to apparent plume stability based on data spanning 10 years, and due to the upcoming approved

offsite well installation, Pangea plans to delay the next monitoring event until completion of the new

groundwater monitoring wells. This next monitoring will therefore likely occur in the late fourth quarter

of 2008 or in the first quarter of 2009, depending on the well installation schedule.

During the next monitoring event, Pangea will remove well caps one day prior to conducting monitoring

to allow water levels to equilibrate, and all site monitoring wells will be gauged for depth to water and

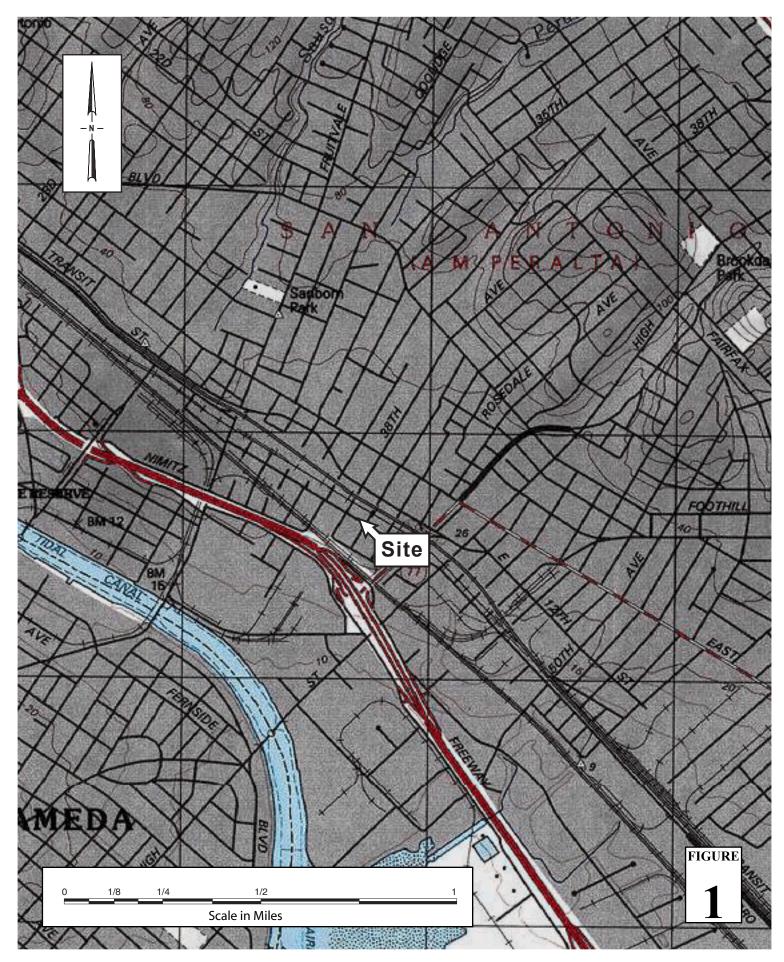
inspected for SPH. Groundwater samples will be collected from each well and analyzed for TPHg, BTEX

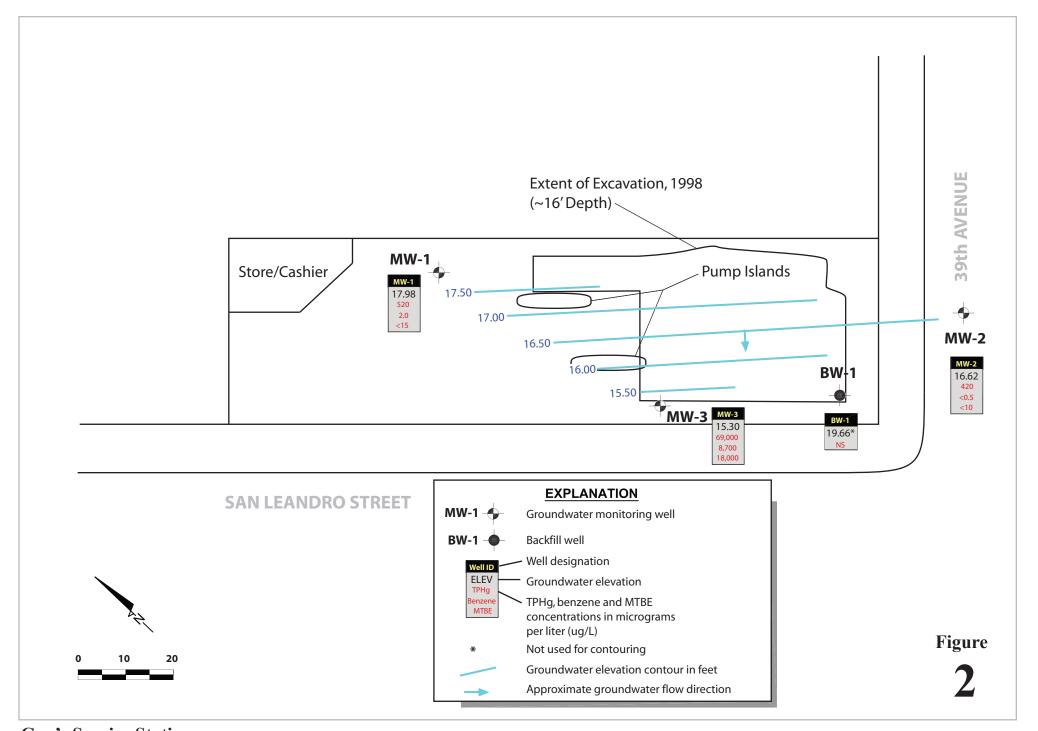
and MTBE. Pangea will summarize groundwater monitoring activities and results in a groundwater

monitoring report following completion of each future groundwater monitoring event.

ATTACHMENTS

Figure 1 – Site Vicinity Map


Figure 2 – Groundwater Elevation and Hydrocarbon Concentration Map


Table 1 – Groundwater Elevation and Analytical Data

Appendix A – Groundwater Monitoring Field Data Sheets

Appendix B – Laboratory Analytical Report

4

Guy's Service Station 3820 San Leandro Street Oakland, California

Pangea

Table 1. Groundwater Analytical Data: Petroleum Hydrocarbons - Guy's Gas Station, 3820 San Leandro Street, Oakland, California

Well ID TOC Elev (ft)	Date Sampled	Groundwater Elevation (ft)	Depth to Water (ft)	TPHd ←	ТРНд	Benzene	Toluene —— μg/L -	Ethylbenzene	Xylenes	МТВЕ ———	Groundwater Elevation Change (ft)
Monitoring W	/ells										
BW-1	7/2/1998			<50	1,300	300	3.5	<0.5	2.8	580	
(26.00)	5/7/2008	17.87	8.13		1,000	53	5.5	<0.5	1.1	<60	
(20.00)	9/18/2008	19.66	6.34								1.79
MW-1	7/6/1998	19.77	7.77	<100	4,100	36	53	<5.0	20	80	
(27.54)	9/10/2000			1,800	1,000	4.8	< 0.50	6.2	1.2	<5.0	
(27.87)	4/10/2001	20.20	7.34		1,100	12	7.7	<2.5	<2.5	73	
	7/17/2001	18.54	9.00	320	920	6.2	1.1	< 0.50	< 0.50	49	-1.66
	1/15/2003	20.60	6.94	86	360	5.5	<0.50	4.3	1.3	19	
											0.07
	4/17/2003	20.53	7.01	<50	<50	< 0.50	<0.50	<0.50	<1.0	11	-0.07
	7/17/2003	18.83	8.71	95	380	19	<0.50	3.7	1.5	5.6	-1.70
	11/21/2003	17.93	9.61	160	600	4.7	< 0.50	8.8	2	4.3	-0.90
	3/23/2004	20.23	7.31	120	140	1.3	< 0.50	1.2	<1.0	11	2.30
	6/9/2004	18.89	8.65	84	570	1.6	< 0.50	1.5	<1.0	11	-1.34
	5/7/2008	19.63	7.91		< 50	< 0.5	< 0.5	< 0.5	< 0.5	7.5	
	9/18/2008	17.98	9.56		520	2.0	8.5	0.98	<0.5	<15	-1.65
MW-2	7/6/1998	17.82	8.15	<100	6,400	190	14	13	12	210	
(25.97)	9/10/2000			270	760	19	< 0.50	< 0.50	< 0.50	110	
	4/10/2001	18.65	7.32		320	3.6	1.1	1.2	0.79	< 5.0	
	7/17/2001	17.01	8.96	68	440	6.0	< 0.50	6.2	< 0.50	< 5.0	-1.64
	1/15/2003	18.72	7.25	250	750	13	< 0.50	< 0.50	< 0.50	78	
	4/17/2003	18.54	7.43	120	180	< 0.50	< 0.50	< 0.50	<1.0	8.1	-0.18
	7/17/2003	17.08	8.89	400	640	10	< 0.50	< 0.50	<1.0	27	-1.46
	11/21/2003	16.56	9.41	1,100	980	2.2	0.62	< 0.50	1.1	54	-0.52
	3/23/2004	18.38	7.59	350	660	0.81	< 0.50	< 0.50	<1.0	7.7	1.82
	6/9/2004	17.22	8.75	1,300	1,000	8.9	0.55	< 0.50	<1.0	28	-1.16
	5/7/2008	17.75	8.22		270	1.7	3.6	<0.5	0.77	< 5.0	
	9/18/2008	16.62	9.35		420	<0.5	7.8	<0.5	1.0	<10	-1.13
MW-3	7/6/1998	18.10	8.42	<100	36,000	6,700	72	6.2	530	13,000	
(26.52)	9/10/2000			4,200	20,000	9,200	70	710	79	6,400	
(20.32)	4/10/2001	18.79	7.73		15,000	4,500	27	320	140	8,800	
	7/17/2001	18.10	8.42	8,000	28,000	7,000	<50	270	75	15,000	-0.69
	1/15/2003					10,000	110				
		18.92	7.60	11,000	40,000			680	210	20,000	0.47
	4/17/2003	18.45	8.07	3,200	39,000	11,000	<100	870	<200	34,000	-0.47
	7/17/2003	17.45	9.07	5,100	58,000	16,000	<250	850	<500	28,000	-1.00
	11/21/2003	16.79	9.73	7,500	80,000	15,000	<200	1,300	<400	27,000	-0.66
	3/23/2004	18.67	7.85	12,000	41,000	12,000	130	1,100	<200	27,000	1.88
	6/9/2004	17.52	9.00	13,000	50,000	16,000	<250	1,200	< 500	32,000	-1.15
	5/7/2008	18.02	8.50		35,000	8,300	74	140	28	20,000	
	9/18/2008	15.30	11.22		69,000	8,700	230	140	<25	18,000	-2.72
Grab Ground	water Sampliı	ng									
B9-W	8/6/2003			8,600	27,000	3,100	210	1,600	780	96	
B10-W	8/6/2003			840,000	130,000	15,000	<250	5,200	5,100	40,000	
B13-W	8/6/2003			1,700	4,100	25	<2.5	21	< 5.0	28	
B16-W	8/6/2003			18,000,000	180,000	99	< 50	< 50	<100	7,000	

Abbreviations:

 $[\]mu g/L = Micrograms$ per liter [commonly referred to as parts per billion (ppb)].

 $TPHd = Total\ petroleum\ hydrocarbons\ as\ diesel\ by\ EPA\ Method\ 8260B$.

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8260B on and prior to 6/9/2004, and by EPA Method 8015Cm thereafter.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B on and prior to 6/9/2004, and by EPA Method 8021B thereafter.

MTBE = Methyl tert butyl ether by EPA Method 8260B on and prior to 6/9/2004, and by EPA Method 8021B thereafter.

Groundwater Elevation (GWE) Change calculated by subtracting GWE from previous quarter GWE.

APPENDIX A

Groundwater Monitoring Field Data Sheets

Well Gauging Data Sheet

		well Gau	iging Data s	Sneet		
ask #: 1260	0.001.216		Project Name	: Engineer -	Oakland	
3820 San	Leandro S	St., Oakland,	CA		Date: 9/18/	2008
yce Taylor			Signature:	32		
Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point
2	1215			4.56	19,85	NTOC
2	1220	ı	_	9,35	19,50	1
2	1225	1		11.22	19,45	
4	1230		(6.34	12.44	
			***		<u></u>	
			***		,	
:. ≯well	eaps re	moved	15 mm p	mor to	, well	gaugina
	3820 San yce Taylor Well Size (in.) Z L L H	yce Taylor Well Size (in.) Time Z 1215 Z 1220 H 1230	3820 San Leandro St., Oakland, yce Taylor Depth to Immiscible Liquid (ft)	ask #: 1260.001.216 3820 San Leandro St., Oakland, CA yce Taylor Well Size (in.) Time Depth to Immiscible Liquid (ft) Z 1215 - 2 1220 - 4 1230	Signature: Sig	Ask #: 1260.001.216

N	MONITO	ORING F	IELD DATA	SHEET	•	Well ID	: MW-1				
Project.Ta	ısk #: 126	50.001.21	6	Project N	lame:Eng	ineer - Oa	ıkland				
Address: 3	3820 Sar	Leand <u>r</u> o	St., Oakland,	, CA							
Date: 9/18	3/2008			Weather: Sunnu Volume/ft. 1" = 0.04 J3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163							
Well Diam	eter: 7	N II		Volume/ft.	1" = 0.04 _ 2" = 0.16	3" = 0.37 4" = 0.65	6'' = 1.47 radius ² * 0.	163			
Total Dept	th (TD):	19.85		Depth to							
Depth to V			6	Product ⁻	Thickness	: -					
Water Col				1 Casing	Volume:	1.65		gallons			
Reference	Point:	NTOC	,	_3_Cas	sing Volur	mes: 4.9_	5	gallons			
Purging De	evice Di	sp ősable	Bailer								
Sampling		Disposable		TOS							
Time	Temp ©	pН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW			
	22,8	6,86	<u>Z131</u>	1730		102	3.5				
	22.7	7,07	685	5/8.7		<u>'</u>					
122.45	22,7	7,09	681	<u>515.0</u>		- &	5.25				
											
						i	_				
<u> </u>				_							
							_				
Comments:											
				- 171		, , , , , , , , , , , , , , , , , , ,					
Sample ID): MU	J-1		Sample 7	Γime: 12	250					
Laboratory	y: McCaı	mpbell		Sample [Date: 9/18	3/2008					
Containers	s/Preserv	/ative: 3 H	ICI Voas								
Analyzed 1	for: TPH	g, BTEX	and MTBE by	8015Cm/	8021B						
Sampler N				Signature	0						

	MONITO	ORING F	IELD DATA	SHEET	•	Well ID	: MW-	7		
Project.T	ask #: 12	60.001.21	6	Project N	lame:Eng	ineer - Oa	akland			
Address:	3820 Sar	n Leandro	St., Oakland,	CA						
Date: 9/1	8/2008			Weather: Sบุกใน						
Well Diar	meter: こ	и		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
		19,50)	Depth to	Product:					
		TW): 9,3		Product ⁻	Γhickness					
		ght: /ථ,	_	1 Casing	Volume:	1.62		gallons		
Referenc	e Point:	NTOC		1		nes:4,8	6	gallons		
Purging Device: Disposable Bailer										
		Disposabl		TOS						
Time	Temp ©	pH	Cond (µs)	UT44_	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
1255	22.8	6,89	734.7	558.4		-41	1,75			
1257	22,2	6,98	731.1	5500		-86	3,5			
1300	21-9	6.18	733, 5	5583		704	525			
		i.								
						.				
						:				
Comments	· 507	y, tuis								
Comments	. 5170) 2013,								
		, =								
Sample II	D: <u>~ / (</u>	N- 乙		Sample 1	Time: 13	05				
Laborato	ry: McCa	mpbell		Sample [Date: 9/18	/2008				
Containe	rs/Preser	vative: 3 H	lCl Voas	****		····				
Analyzed	for: TPH	lg, BTEX	and MTBE by	8015Cm/8	8021B					
Sampler	Name: Br	yce Taylo	r	Signature	: B					

	MONITO	ORING F	TELD DATA	SHEET	-	Well ID: MW-3				
Project.T	ask #: 12	60.001.21	6	Project N	lame:Eng	ineer - Oa	ıkland			
Address:	3820 Sai	n Leandro	St., Oakland,	CA						
Date: 9/1	8/2008			Weather: รับมีกับ						
Well Diar	meter: 7	. "		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total Dep	oth (TD):	19,45		Depth to	Product:					
Depth to	Water (D	TW): ///	rz	Product '	Thickness	:				
Water Co	olumn Hei	ght: 🖇 ,	23	1 Casing	Volume:	1,3	2	gallons		
Referenc		WTO		_3_Ca	sing Volur	nes: 3	9.6.	gallons		
Purging [Device: Dj	sposable	Bailer				•			
		Disposabl		TOS	_					
Time	Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW		
13/0	230	6 81	1304	1018		-58	1.5			
1312	224	6,80	1362	1067		-72	3,0			
1315	23.0	6.84	1372	1077		-86	4,5			
			-							
			-							
Comments	: 5h.	een		L.,,,,						
	WIL CO	images	pressure		_		411			
	VEII CAD	v nece j	- CICIDO IC	·						
						V				
Sample II	D: ///	W-3		Sample ⁻	Time: 13	320				
Laborato	ry: McCa	mpbell		Sample I	Date: 9/18	/2008				
Containe	rs/Preser	vative: 3 H	ICI Voas							
Analyzed	for: TPH	lg, BTEX	and MTBE by	8015Cm/	8021B					
		yce Taylo		Signature						

APPENDIX B

Laboratory Analytical Report

McCampbell Analytical, Inc. "When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1260.001;Engineer-	Date Sampled:	09/18/08
1710 Franklin Street, Ste. 200	Oakland	Date Received:	09/18/08
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Reported:	09/25/08
	Client P.O.:	Date Completed:	09/24/08

WorkOrder: 0809576

September 25, 2008

Dear	Morgan	:
------	--------	---

Enclosed within are:

- 3 analyzed samples from your project: # 1260.001; Engineer- Oakland, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

0809576

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Road TURN AROUND TIME Pittsburg, CA 94565 RUSH 24 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Coelt (Normal) No Write On (DW) Telephone: (925) 252-9262 Fax: (925) 252-9269 Report To: Morgan Gillies Bill To: Pangea Analysis Request Other Comments Company: Pangea Environmental Services, Inc. Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 ase (5520 E&F/B&F) Samples PAH's / PNA's by EPA 625 / 8270 / 8310 E-Mail: mgillies@pangeaenv.com Total Petroleum Hydrocarbons (418.1) for Metals Fax: (510) 836-3709 Tele: (510) 836-3702 analysis: Project Name: Engineer - Oakland Project #: 1260.001 BTEX ONLY (EPA 602 / 8020) Yes / No EPA 608 / 8082 PCB's ONLY CAM-17 Metals (6010 / 6020) LUFT 5 Metals (6010 / 6020) Project Location: 3820 San Leandro St., Oakland, CA Lead (200.8 / 200.9 / 6010) Sampler Signature: 6.1 EPA 601/8010/8021 TPH as Diesel (8015) METHOD SAMPLING MATRIX Type Containers PRESERVED EPA 8140 / 8141 EPA 8150 / 8151 Containers BTEX & TPH SAMPLE ID LOCATION (Field Point Name) Sludge Date Time HNO3 Other Other HCL ICE Soil MW-1 1250 3820 MW-Z San Lendro rad MW-3 3 1320 VOU Relinquished By: Time: Received By: ICE/t°(D) COMMENTS: GOOD CONDITION HEAD SPACE ABSENT Relinquished By:/ Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Received By: Date: Time: VOAS O&G METALS OTHER PRESERVATION pH<2

McCampbell Analytical, Inc.

MW-1

MW-2

MW-3

Water

Water

Water

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262					Work()rder:	08095	576	C	lientC	ode: PE	Œ				
		WriteO	n 🔽 EDF		Excel	[Fax	5	✓ Email		HardC	Сору	ThirdP	arty	☐ J -1	lag
Report to:					I	Bill to:						Requ	uested T	AT:	5 c	lays
Morgan Gillies Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200	Email: cc: PO:		ngeaenv.com			Pa 17	ngea Ei 10 Fran	ıklin Stre	nental S eet, Ste	,	C.		e Receiv			
Oakland, CA 94612 (510) 836-3700 FAX (510) 836-3709	ProjectNo	o: #1260.001;E	Engineer- Oakland			Oa	kland, (CA 946 ⁻	12			Date	e Printed	<i>l</i> :	09/18/2	2008
								Requ	uested ⁷	Tests (See leg	end b	elow)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

Α

9/18/2008 12:50

9/18/2008 13:05

9/18/2008 13:20

_	_				
Test	1	94	en	d	٠

0809576-001

0809576-002

0809576-003

1 G-MBTEX_W	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			
				Prepared by: Kimberly Burks

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Sample Receipt Checklist

Client Name:	Pangea Envir	onmental Svcs., Inc.			Date a	nd Time Received:	9/18/2008	7:35:35 PM
Project Name:	# 1260.001;Er	igineer- Oakland			Check	list completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0809576	Matrix Water			Carrie	r: Rob Pringle (M	IAI Courier)	
		<u>Chair</u>	of Cu	ıstody (C	COC) Informa	<u>tion</u>		
Chain of custody	y present?		Yes	V	No 🗆			
Chain of custody	y signed when reli	nquished and received?	Yes	V	No 🗆			
Chain of custody	y agrees with sam	ple labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC	?	Yes	V	No 🗆			
Date and Time o	of collection noted b	y Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>s</u>	ample	Receipt	t Information			
Custody seals in	ntact on shipping c	ontainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good o	condition?	Yes	V	No 🗆			
Samples in prop	er containers/bottl	es?	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indica	ited test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT)	Information		
All samples rece	eived within holding	time?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	6.2°C		NA \square	
Water - VOA via	als have zero head	space / no bubbles?	Yes	~	No 🗆	No VOA vials subm	itted	
Sample labels c	hecked for correct	preservation?	Yes	~	No 🗌			
TTLC Metal - pH	l acceptable upon r	eceipt (pH<2)?	Yes		No 🗆		NA 🔽	
Samples Receiv	red on Ice?		Yes	✓	No 🗆			
		(Ice Typ	e: WE	T ICE)			
* NOTE: If the "I	No" box is checke	d, see comments below.						
=====		======					====	
Client contacted:	:	Date contac	ted:			Contacted	by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1260.001;Engineer- Oakland	Date Sampled: 09/18/08	
1710 Franklin Street, Ste. 200	Oakiaiiu	Date Received: 09/18/08	
	Client Contact: Morgan Gillies	Date Extracted: 09/20/08-09/23/08	
Oakland, CA 94612	Client P.O.:	Date Analyzed 09/20/08-09/23/08	

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods SW8021B/8015Cm Extraction method SW5030B Work Order: 0809576 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS 001A MW-1 W 520,d1 ND<15 2.0 8.5 0.98 ND 95 002A MW-2 W ND ND 1 420,d9 ND<10 7.8 1.0 113 003A MW-3 W 69,000,d1,b6 18,000 8700 230 140 ND<25 50 100 Reporting Limit for DF = 1; W 5 0.5 50 0.5 0.5 0.5 μg/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

I	* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe,
ı	product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

- b6) lighter than water immiscible sheen/product is present
- ${\tt d1}$) weakly modified or unmodified gasoline is significant
- d9) no recognizable pattern

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38347 WorkOrder 0809576

EPA Method SW8021B/8015Cm Extraction SW5030B							Spiked Sample ID: 0809578-001A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, undiffe	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	91.1	92.3	1.24	98.7	90.3	8.81	70 - 130	20	70 - 130	20
MTBE	ND	10	102	106	4.67	99.8	95.5	4.48	70 - 130	20	70 - 130	20
Benzene	ND	10	96.6	96.2	0.440	101	97.9	3.31	70 - 130	20	70 - 130	20
Toluene	ND	10	87.2	86.9	0.303	92.5	88.7	4.23	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	97.5	98.1	0.628	99.8	99.4	0.430	70 - 130	20	70 - 130	20
Xylenes	ND	30	90.2	94.1	4.21	98.2	95.6	2.72	70 - 130	20	70 - 130	20
%SS:	96	10	97	99	1.35	106	99	6.98	70 - 130	20	70 - 130	20

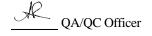
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38347 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809576-001A	09/18/08 12:50 PM	09/20/08	09/20/08 12:56 PM	0809576-002A	09/18/08 1:05 PM	09/23/08	09/23/08 7:13 PM
0809576-003A	09/18/08 1:20 PM	09/22/08	09/22/08 3:44 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

