RECEIVED

4:06 pm, Feb 24, 2011

Alameda County

Environmental Health

321 Court Street Woodland California 95695 Tel (530) 406-1760 Fax (530) 406-1071 A, Haz 909563

February 1, 2011

Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT: Fuel Leak Case No. RO0000085

SF Oakland Truck Stop 8255 San Leandro Street Oakland, CA 94621

Report Submittal -Semi-Annual Groundwater Monitoring Report- First Quarter 2011

Dear Mr. Wickham:

Please find enclosed the *Semi-Annual Groundwater Monitoring Report,* prepared by Matriks for Nissan Saidian.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Please call me at 530-406-1760 or email thenderson@matrikscorp.com if you have any questions.

Sincerely,

Tom Henderson President

SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2011

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94552

SUBMITTED TO:

Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

> Project No. 6020 February 1, 2011

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIONA	AL CERTIFICATIONIII
ACRONYMS A	ND ABBREVIATIONS iv
INTRODUCTIO	ON
PHYSICAL SET	TING1
Site Descrip	tion1
Geology and	d Soils1
Groundwat	er2
PROJECT BACK	GROUND AND DATA SUMMARY2
Site History	2
SEMI-ANNUA	L MONITORING SCOPE OF WORK5
Methods	6
	rater Level Measurements
RESULTS	6
Groundwat	er Levels and Gradient 6
Groundwat	er Analytical Results
Geotracker	Requirements7
CONCLUSIONS	57
RECOMMEND	ATIONS 8
FIGURES	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Site Location Map Site Map Excavation Remediation Extents Groundwater Gradient Map Groundwater Hydrographs

TABLES

Table 1	Well Construction Details
Table 2	Groundwater Elevation Data
Table 3	First Quarter 2011 Groundwater Analytical Results
Table 4	Historical Groundwater Analytical Results

APPENDICES

Appendix A Well Sampling Logs

Appendix B Laboratory Analytical Results

PROFESSIONAL CERTIFICATION SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2011

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

Project No. 6020

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears here on. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user. I declare, under penalty of perjury, that the information and/or recommendations contained document or report is true and correct to the best of my knowledge.

Tom Henderson President Fred Mueller Senior Engineer

ACRONYMS AND ABBREVIATIONS

ACEHS Alameda County Environmental Health Services

amsl above mean sea level

ASE Aqua Science Engineers, Inc.

DCA 1,2-dichloroethane
DIPE di-isopropyl ether
DO dissolved oxygen

EDB ethylene di-bromide
EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

ft feet

fbg feet below grade

ft/ft foot per foot

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether

mg/Kg milligrams per kilogram

mg/L milligrams per liter

mL milliliter

MW monitoring well

Penn Penn Environmental

RWQCB Regional Water Quality Control Board

SC specific conductance

SRS sensitive receptor survey

tAME tert-amyl methyl ether

tBA tert butyl alcohol

TDS total dissolved solids

TOG total oil and grease

TPH-d total petroleum hydrocarbons as diesel

TPH-g total petroleum hydrocarbons as gasoline

 μ g/L micrograms per liter

μS microsiemens

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report has been prepared to describe the results of the semi-annual groundwater monitoring event during the first quarter 2011, conducted by Matriks Corporation (Matriks) at the Oakland S.F. Truck Stop (the "Site"), located at 8255 San Leandro Street, Oakland, California. The semi-annual groundwater monitoring event described herein is part of an ongoing monitoring program of petroleum hydrocarbons in groundwater caused by an unauthorized release of petroleum fuels from USTs and/or the associated piping formerly located at the Site. Matriks is conducting the monitoring program on behalf of the Site owner and responsible party, Mr. Nissan Saidian. The Alameda County Environmental Health Services (ACEHS) is the lead agency and has determined that this is a high priority site based on California's MtBE guidelines and the presence of a domestic water supply well in proximity to the contaminant plume. The ACEHS case number for the Site is RO0000085. This semi-annual groundwater monitoring event included the collection and laboratory analysis of groundwater samples from groundwater monitoring wells EX-1, EX-2, MW-2, MW-4, MW-5, MW-9, and MW-10.

PHYSICAL SETTING

Site Description

The Site is currently an active fuel and weigh station and convenience mart that has been in operation since the 1960s. The surrounding area is comprised of mixed commercial and industrial properties. The Site is located approximately 1 ½ mile east of San Francisco Bay and approximately ½ mile south of the Oakland-Alameda County Coliseum Complex. Elmhurst Creek provides storm drainage for the surrounding area and flows northwesterly across the west side of the Site. The Site and surrounding area are flat and the Site elevation is approximately 10 feet above mean seal level (amsl). A Site location map is shown on **Figure 1**.

Geology and Soils

Numerous soil borings have been drilled at the Site over the past several years. The boring logs indicate that organic-rich clay is present from the surface to about 16 feet below grade (fbg). This is consistent with the intertidal deposits shown on the published geologic map for this area. At some boring locations, the clay extends deeper, but with less organic matter. Beneath the clay, sandy intervals are generally encountered from 17 to 40 fbg. The sand layers contain clay, silt, and gravel. Layers of clay or silt several feet thick were present within the sandy interval in some of the borings. Groundwater was first encountered in the borings at depths ranging from 5 to 11 fbg.

Groundwater

Groundwater monitoring wells have been installed at the project Site during several drilling events. These wells are 16 to 20 feet (ft) deep. Monitoring well construction details are included in **Table 1**. The static water levels in the monitoring wells range seasonally from approximately 2.5 to 9.5 ft amsl. The groundwater flow direction is generally to the west. Depending upon which wells are used for the calculations, the gradient has ranged from 0.001 to 0.008 ft/ft. Assuming a gradient of 0.006 ft/ft, effective porosity of 30%, and hydraulic conductivity of 9 gallons/day/ft², the seepage velocity of the groundwater is estimated at 0.004 ft/day. Groundwater samples from the monitoring wells have had specific conductance (SC) values ranging from 455 microsiemens (μ S) to 1,835 μ S, suggesting that total dissolved solids (TDS) concentrations are in the approximate range of 320 milligrams per liter (mg/L) to 1,285 mg/L.

PROJECT BACKGROUND AND DATA SUMMARY

Site History

In May 1998, W.A. Craig, Inc. removed two 4,000-gallon gasoline USTs and one 550-gallon waste oil UST.

In January 1999, Penn Environmental (Penn) was attempting to remove another waste oil UST and encountered difficulties due to the UST's proximity to underground utilities. Penn requested permission from ACEHS and the City of Oakland Fire Department to close the tank inplace. According to a letter report from Penn dated May 27, 1999, ACEHS and the Oakland Fire Department would consider closure in-place if a water sample collected from the tank pit did not contain concentrations of total oil and grease above regulatory action concentrations. Total oil and grease was not detected in the water sample collected from the tank pit and a review of available records on the ACEHS website appears to indicate that the requirements for closure in-place were met and the tank was closed in-place (ACEHS June 15, 1999).

In February 1999, Penn drilled 13 soil borings at the Site and installed groundwater monitoring wells in four of the borings (MW-1 through MW-4). Petroleum hydrocarbons were detected in soil samples from each boring except B7. Petroleum hydrocarbons were also detected in groundwater samples from each open boring and in each monitoring well. The highest concentration of methyl tert-butyl ether (MtBE) detected by laboratory analysis in the boring soil samples was 3.9 milligrams per kilogram (mg/Kg) in boring B-2 at a depth of 4 ft. The highest concentration of total petroleum hydrocarbons as diesel (TPH-d) in the boring soil samples was 2,000 mg/Kg, in boring B-6 at a depth of 4 ft. The highest concentration of MtBE detected in groundwater from the open borings was 28,000 micrograms per liter (µg/L) in B-8. The highest concentration of TPH-d detected in the groundwater monitoring well samples was 62,000 µg/L, in groundwater monitoring well MW-1.

In August 1999, Aqua Science Engineers, Inc. (ASE) began conducting quarterly groundwater monitoring events at the Site. Monitoring well MW-1 contained free-phase petroleum hydrocarbons believed to be diesel due to its dark color. Laboratory analysis detected 56,000 μ g/L TPH-g, 17,000 μ g/L benzene, and 6,100 μ g/L MtBE in MW-3.

On December 1, 1999, ASE installed two additional groundwater monitoring wells, MW-5 and MW-6. Free-phase petroleum hydrocarbons were again observed on the groundwater surface in monitoring well MW-1. Laboratory analysis detected 17 mg/Kg TPH-d in a soil sample from well boring MW-5 at 6 ft and 2.0 mg/Kg TPH-g in a soil sample from MW-6 also at 6 ft. Both analytical results were noted by the laboratory to have non-typical patterns for TPH-g.

In May and June 2000, ASE drilled eight additional soil borings. The highest concentration of petroleum hydrocarbons detected in boring BH-G was 1,500 mg/Kg TPH-d at 12 ft, in boring BH-A 370 mg/Kg TPH-g and 2.3 mg/Kg benzene at 7.5 feet, and in boring BH-D 1.7 mg/Kg MtBE at 11.5 ft.

In July 2002, ASE installed three additional monitoring wells (MW-7, MW-8, and MW-9). Well locations are depicted in **Figure 2**. ASE also made several attempts to drill a boring in San Leandro Street to define the eastern extent of petroleum hydrocarbons in soil and groundwater east of the Site. Each attempt was met with refusal at relatively shallow depths.

In the report documenting the July 2002 monitoring well installations, ASE presented findings of a sensitive receptor survey (SRS) conducted for the Site. The SRS concluded that due to the flat topography of the area and its close proximity to San Francisco Bay, Elmhurst Creek is likely to be tidally influenced. ASE also concluded that this was a likely explanation for the variable groundwater gradient at the Site (ASE 2002). The SRS also identified three wells within a 2,000-foot radius of the Site. One well was identified as industrial and two wells were identified as irrigation wells. No domestic or municipal water supply wells were identified within the search radius (ASE 2002). The current status of these wells has not been assessed.

In February 2004, ASE subcontracted Subtronic Corporation to perform a ground magnetometer geophysical survey on the Site to identify additional USTs. No USTs were identified although two areas were identified that appeared to have buried reinforced concrete due to the magnetic response of the rebar which might mask the USTs. The presence of buried metal objects, such as a UST, could not be ruled out in these areas (ASE 2004). Subtronic subsequently conducted a ground penetrating radar geophysical survey of the two magnetometer anomalies in September 2006. No USTs were identified in either location (ASE 2007).

On July 10, 2006, ASE collected a sample of free-phase petroleum hydrocarbons from monitoring well MW-1. The sample was analyzed by modified EPA Method 8015 and a forensic analysis was conducted on the chromatogram. The laboratory indicated that the product was

indicative of middle distillates such as diesel fuel #2 or heating oil. The abundance of isoprenoids in conjunction with the absence of normal alkanes indicates that the fuel had undergone substantial biological degradation (ASE 2007).

In September 2006, ASE advanced 11 soil borings. Borings BH-I through BH-L and BH-S, were advanced to a depth of 50 ft, using an EP Sonic drill rig. Borings BH-M through BH-R were installed on and off-site using a Geoprobe direct push drill rig. The highest concentration of TPH-d detected by laboratory analysis of soil samples from boring BH-L was 2,200 mg/Kg at 19.5 ft. Boring BH-L also contained the highest concentration of MtBE at 0.81 mg/Kg at 14.5 ft. The highest concentration of tBA detected in boring BH-I was 2.2 μ g/L at 14.5 ft. The groundwater sample from BH-L reported the highest level of TPH-d concentrations of 27,000 μ g/L (15-18 feet bgs) (ASE 2007).

During this same time, six temporary well points were installed to define the extent of free-phase floating petroleum hydrocarbons in the vicinity of the dispenser islands. PVC casing was placed in the temporary well points and remained overnight. Free-phase floating petroleum hydrocarbons were measured in boring TH-6 at a thickness of 2.54 ft. None of the other borings contained a measurable thickness of free-phase floating petroleum hydrocarbons but a petroleum hydrocarbon sheen was observed. While the borings were being backfilled, ASE noted that a thin layer of free-phase petroleum hydrocarbons was pushed to the surface on top of the cement in borings TH-2 and TH-4. Based on the results from the temporary wells, ASE returned in January 2007 and installed additional temporary well points, TH-7 and TH-8. The PVC casing was placed in these wells for six hours. After six hours there was only water in boring TH-7. Laboratory analysis detected 22,000 μ g/L in a groundwater sampled collected from TH-7.

Free-phase floating hydrocarbons were removed from monitoring well MW-1 from August 1999 to March 2008, on schedules ranging from weekly to monthly. According to ASE's report dated March 9, 2007, over 140 gallons of free-phase floating diesel had been removed from monitoring well MW-1 as of March 2007.

ASE installed monitoring well MW-10 on October 10, 2006. Laboratory analytical results for a groundwater water sample collected from MW-10 on October 12, 2006 contained 1.7 μ g/L MtBE and 82 μ g/L tBA. No other analytes were detected in this sample.

ASE prepared and submitted to ACEHS the *Revised Remedial Action Plan for Underground Storage Tank and Dispenser Removal and Soil and Groundwater Remediation*, dated August 16, 2007 which was supplemented by, *Remedial Action Plan Addendum, Oakland Truck Stop*, dated October 19, 2007. The plans proposed site remediation through excavation, dewatering, and free-phase floating product removal.

In a letter dated May 6, 2008, the ACEHS requested that the proposed scope of work be reviewed for the initial soil excavation and a Revised Corrective Action Plan be submitted.

In May 2008, the Site owners retained Matriks to conduct quarterly groundwater monitoring and prepare for further site remediation. Matriks prepared and submitted to ACEHS a *Revised Corrective Action Plan*, dated May 7, 2008 that included the construction of a French drain under the existing dispenser islands to facilitate the future removal of free-phase floating product. ACEHS approved the work in a letter dated May 16, 2008. The approved plan included a reduced amount of excavation, free-phase product removal, and the abandonment of monitoring wells MW-1, MW-3, and MW-6.

In July 2008, monitoring wells MW-1, MW-3, and MW-6 were properly abandoned during the removal of five USTs and all associated piping and dispensers. Approximately 2,330 tons of petroleum hydrocarbon impacted soil was also removed. A large French drain was constructed beneath the dispenser islands and is in connection with extraction well EX-1. Excavation extents are shown on **Figure 3**. Three new double-walled USTs, six new dispensers, new double-walled piping and containment sumps, and a continuous monitoring system were installed to prevent further hydrocarbon releases onsite.

SEMI-ANNUAL MONITORING SCOPE OF WORK

The scope of work performed for this semi-annual monitoring included the following tasks:

- Measured static water levels in seven monitoring wells;
- Measured groundwater, collected field quality parameters of pH, temperature, and SC from each well;
- Purged at least three casing volumes from each well;
- Collected groundwater samples from each well;
- Analyzed groundwater samples for THP-d, TPH-g, TPH-motor oil, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging* and Sampling section of this report for analytical methods used);
- Updated the Geotracker database; and
- Prepared this Semi-Annual Monitoring Report.

Methods

Groundwater Level Measurements

The semi-annual groundwater monitoring event was conducted on January 19, 2011. Each well cap was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before taking a water depth measurement with an electronic water depth indicator. The static water level measurements were referenced to the surveyed marks on the top of each well casing. The depth-to-water measurements were used to calculate the purge volume of each monitoring well.

Monitoring Well Purging and Sampling

Prior to sample collection, at least three well volumes were purged from each well using a clean disposable bailer. During purging, groundwater temperature, pH, and SC were measured and recorded at regular intervals with portable instrumentation. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled 55-gallon, DOT-approved steel drums, sealed, and temporarily stored onsite for subsequent proper disposal.

Following purging, groundwater samples were collected from each monitoring well using a new disposable bailer. Samples for TPH-G, BTEX, and fuel oxygenates were decanted into laboratory supplied 40-mL volatile organic analysis (VOA) vials containing hydrochloric acid as a preservative. Care was taken to eliminate headspace in each VOA prior to capping. Samples for TPH-d and TPH-motor oil were decanted into laboratory supplied 1-liter amber glass jars. Samples were labeled to indicate the project number, sample ID, and date collected. The same information was recorded on the chain-of-custody forms. Samples were stored in a cooler with ice for transport to the laboratory.

Samples were submitted under documented chain-of-custody control to McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g, TPH-d, and TPH-motor oil by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

The groundwater flow direction is calculated to be to the south-southwest, toward Elder Creek, with a gradient of 0.006 foot per foot. Historical groundwater elevation data are included in **Table 2**. Groundwater elevation contours are depicted on **Figure 4**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 5**.

Groundwater Analytical Results

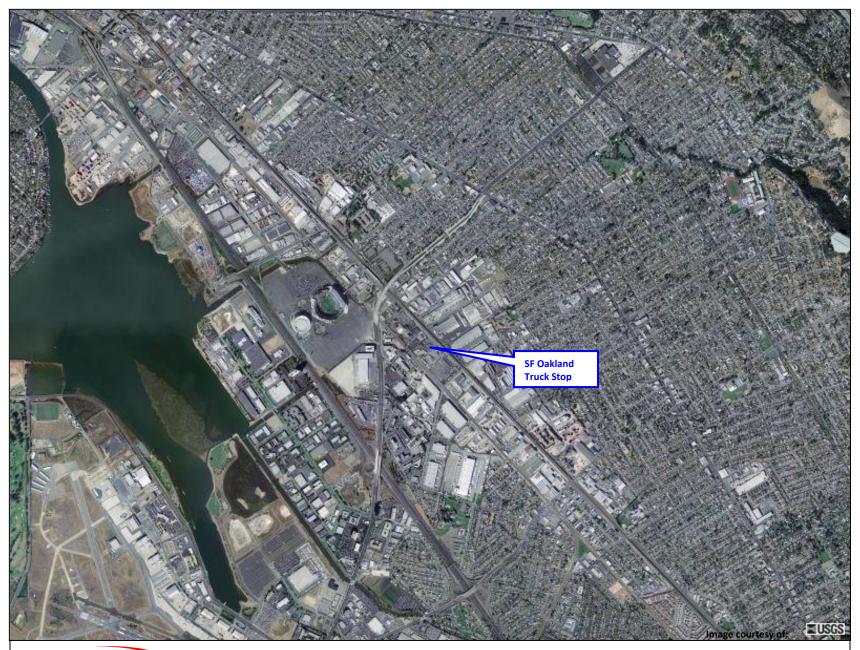
TPH-d was detected in each monitoring well ranging from 5,600 μ g/L in EX-1 to 100 μ g/L in MW-9. Benzene was only detected in well MW-2 at 2.5 μ g/L. The constituent tBA was also detected in each monitoring well sample, except for MW-10, in concentrations as high as 5,600 μ g/L in MW-5. Concentrations of petroleum hydrocarbons detected in groundwater samples collected during this groundwater monitoring event were within the range of historically detected concentrations but generally the lowest concentrations since site monitoring began in August 1999. Groundwater analytical results for this event are presented in **Table 3** and previous groundwater monitoring events are summarized in **Table 4**. A copy of the laboratory analytical report is included in **Appendix B**.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by State Assembly Bill 2886 (Water Code Section 13195-13198). Electronic data files were prepared and formatted by McCampbell and electronically submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. Well status and usage reports (GEO_WELL file) were also prepared and submitted for this groundwater monitoring event as was a complete electronic copy of this report (GEO_REPORT file) in portable document file format.

CONCLUSIONS

The groundwater flow direction calculated for this quarterly event is south-southwest with a gradient of 0.006. A slight petroleum hydrocarbon sheen is present on groundwater in EX-1 in the dispenser area. This well has historically contained a measurable thickness of petroleum hydrocarbons on groundwater, but its thickness appears to have been reduced by the removal of free-phase product, water, and soil during the Site remedial activities conducted in July 2008. TPH concentrations in this well are at a historical low.

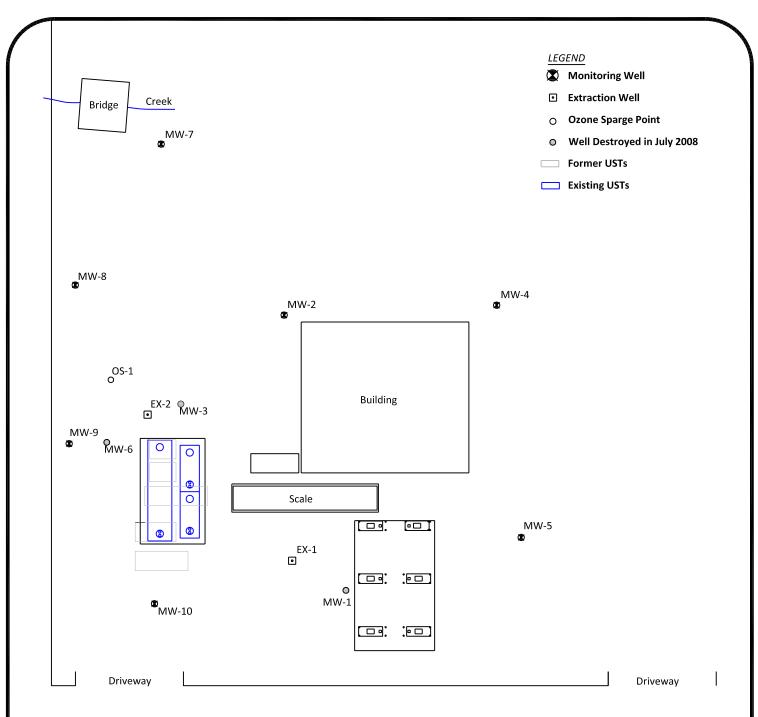

The concentration of tBA appears to be deceasing in the remainder of the wells. Before MW-3 was abandoned, groundwater samples collected from it contained some of the highest concentrations of benzene and MtBE detected in groundwater samples and constituent trends appeared to be increasing. Groundwater in this general vicinity is currently not monitored because MW-3 was removed during the July 2008 remedial action. We believe that the lateral and vertical extent of petroleum hydrocarbons in groundwater has been adequately characterized and no further lateral of vertical characterization is warranted.

RECOMMENDATIONS

Matriks recommended the installation of a new groundwater monitoring well west of the tank pit to replace MW-3. The ACEHS agreed with this recommendation in a letter dated January 12, 2010. This well will be replaced during the pilot study sometime in 2011.

A feasibility study recommending ozone sparging with hydrogen peroxide injection was submitted to ACEHS. The ACEHS' January 12, 2010 letter requested a Pilot Test Work Plan or Remedial Action Plan to implement the proposed ozone sparging and hydrogen peroxide injection remediation efforts. Because of the significant decrease in hydrocarbon concentration in the vicinity of the former USTs and dispenser islands, we believe that the site could be remediated with the less expensive ozone sparge method. A Pilot Test Workplan will be submitted to ACEHS for the well and system installation by March 15, 2011.

FIGURES



321 Court Street Woodland, California (530) 406-1760

Lic. No. 909563

Fax No. (530) 406-1071

Site Location Map SF Oakland Truck Stop 8255 San Leandro Street, Oakland, CA Figure 1

San Leandro Street

Site Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California

Project #: 6019

Date: 2/1/2011

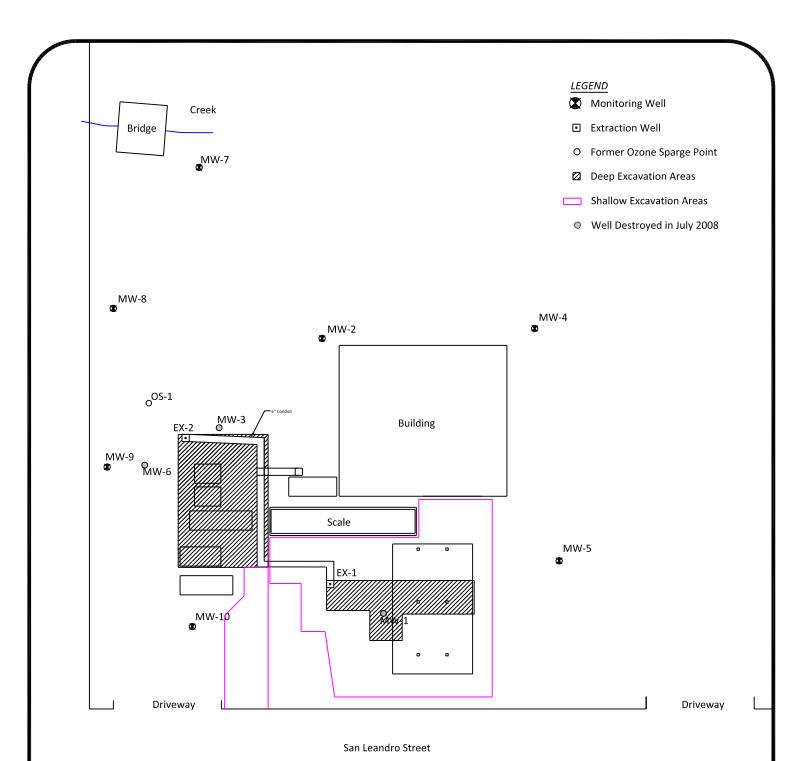

Scale: 1" = 40'

Figure:

2

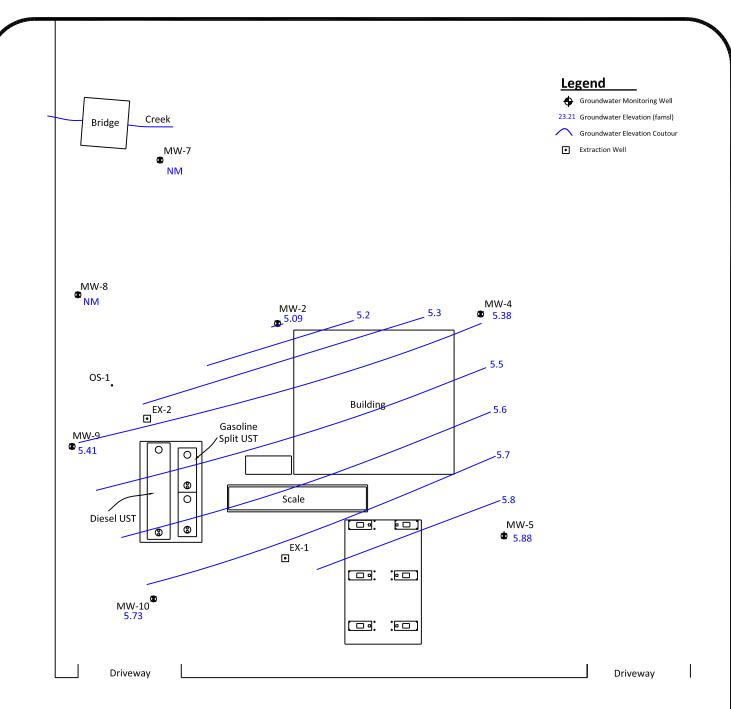
321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Oakland Truck Stop 8255 San Leandro Street Oakland, California

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071



Project#: 6020

Date: 2/1/2011

Scale: 1" = 40'

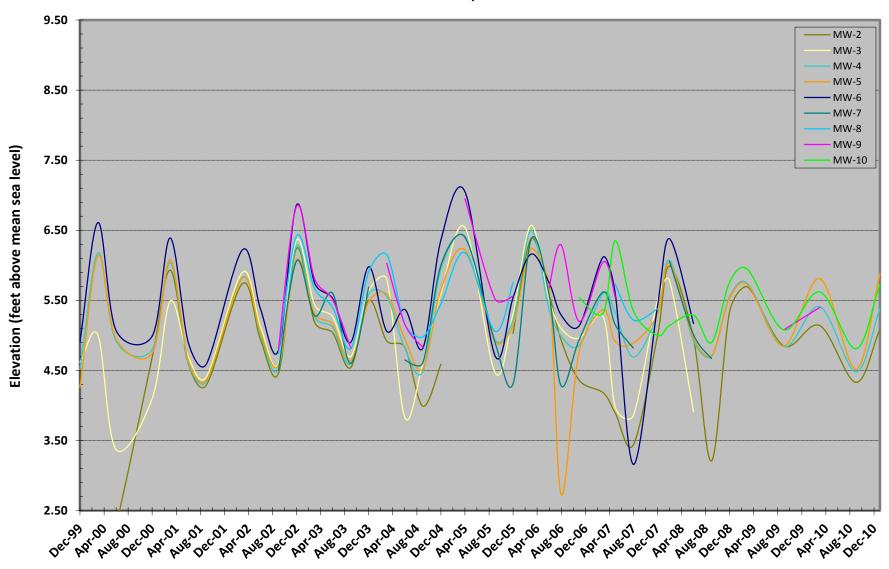
Figure:

San Leandro Street

Site Groundwater Gradient January 19, 2011

Oakland Truck Stop 8255 San Leandro Street Oakland, California

Project #: 6020


Figure:

Date: 2/1/2011 Scale: 1" = 40' 4

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Figure 5. Monitoring Well Hydrographs
Oakland Truck Stop
Oakland, CA

TABLES

Table 1
Well Construction Details
8255 San Leandro Street
Oakland, California

Well ID	Date Installed	Total Depth (feet)	Screened Interval (feet)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet)	Bentonite Interval (feet)	Grout Interval (feet)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Easting Coordinates (feet)	Comments
MW-1	02/18/99	16.5	15.5-5.5	Clay	0.02	16.5-4.5	4.5-3	31	11.02	2099557.04	6072595.30	Well abandoned 7-08
EX-1	07/28/08	13.5	13.5 - 1	3/4 Crush rock	0.5	NA	NA	NA	8.21	2099537.05	6072605.07	Well placed in remediation french drain for extraction
MW-2	02/19/99	16.5	15.5.5	Clayey Fine Sand	0.02	16.5-4.5	4.5-3	31	10.63	2099465.48	6072531.46	
MW-3	02/18/99	16.5	15.5 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.33	2099455.51	6072586.53	Well abandoned 7-08
MW-4	02/19/99	16.5	15 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.42	2099528.03	6072468.70	
MW-5	12/01/99	15	15 - 5	Clay	0.02	15-4	4-3.5	3.5-1.5	10.13	2099600.85	6072533.52	
MW-6	12/01/99	15	15 - 5	Sandy Silt	0.02	15-4	4-3.5	3.5-1.5	10.71	2099444.41	6072615.62	Well abandoned 7-08
EX-2	07/28/08	17	17 - 1	pea gravel	0.5	NA	NA	NA	8.18	2099430.44	6072600.10	Well placed in UST pea gravel for extraction
MW-7	07/08/02	16.5	16.5 - 5	Silty Sand, Clayey Silt	0.02	16.5-4	4-3.5	3.5-1.5	9.08	2099379.77	6072513.11	
MW-8	07/08/02	15.5	15 - 5	Silty Sand, Clayey Silt	0.02	15.5-4	4-3.5	3.5-1.5	9.61	2099392.92	6072580.86	
MW-9	07/08/02	20	20 - 5	Silty Sand, Silty Clay	0.02	20-4	4-3.5	3.5-1.5	10.99	2099435.20	6072631.28	
MW-10	10/10/06	20	20 - 5	Silty Clay	0.02	20-4	4-3.5	3.5-1.5	11.40	2099506.21	6072656.48	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
	00/46/00				
MW-1	08/16/99	11.02	NM	NM	
	08/27/99		6.85	4.17	0.00
	09/10/99 09/24/99		6.65	4.37	0.20
	10/08/99		6.87	4.15	-0.22
	10/08/99		6.81	4.21	0.06
	11/02/99		6.94	4.08	-0.13
	11/19/99		6.91	4.11	0.03
	12/06/99		6.93	4.09	-0.02
	03/08/00		5.93 6.57	5.09 4.45	1.00
	06/14/00		6.70	4.45	-0.64
	12/11/00				-0.13
	03/06/01		5.75 7.60	5.27 3.42	0.95 -1.85
	06/06/01		6.80	4.22	
	09/04/01		7.47	3.55	0.80 -0.67
	03/11/02		6.49	4.53	0.98
	06/06/02		6.49	4.53	0.98
	09/04/02		6.89	4.13	-0.40
	12/17/02		4.65	6.37	2.24
	03/07/03		6.55	4.47	-1.90
	06/05/03		9.77	1.25	-3.22
	09/19/03		6.56	4.46	3.21
	12/12/03		5.63	5.39	0.93
	03/15/04		7.11	3.91	-1.48
	06/22/04		NM	NM	1.40
	09/21/04		NM	NM	
	12/30/04		NM	NM	
	04/06/05		5.70	5.32	
	09/29/05	,	5.40	5.62	0.30
	12/09/05	,	10.70	0.32	-5.30
	03/07/06		9.05	1.97	1.65
	06/20/06	•	4.61	6.41	4.44
	08/23/06	•	5.51	5.51	-0.90
	10/12/06		NM	NM	
	11/09/06		5.56	5.46	
	03/20/07	•	9.69	1.33	-4.13
	05/17/07		9.55	1.47	0.14
	08/16/07		6.95	4.07	2.60
	12/05/07		5.50	5.52	1.45
	02/27/08		7.28	3.74	-1.78
	06/28/08		NM	NM	
	09/27/08		Well Abandon	ed 7/3/08	
EX-1	09/27/08	8.21			
	12/30/08		No measureme	ent due to free	product
	03/28/09		No measureme	ent due to free	product
	09/12/09		6.45	1.76	
	03/30/10		2.76	5.45	3.69
	09/29/10		4.80	3.41	-2.04
	01/19/11		2.58	5.63	2.22

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-2	08/16/99	10.63	6.30	4.33	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		8.46	2.17	
	03/08/00		9.12	1.51	-0.66
	06/14/00		8.34	2.29	0.78
	12/11/00		5.94	4.69	2.40
	03/06/01		4.70	5.93	1.24
	06/06/01		6.03	4.60	-1.33
	09/04/01		6.34	4.29	-0.31
	03/11/02		4.89	5.74	1.45
	06/06/02		5.69	4.94	-0.80
	09/04/02		6.17	4.46	-0.48
	12/17/02		4.39	6.24	1.78
	03/07/03		5.44	5.19	-1.05
	06/05/03		5.59	5.04	-0.15
	09/19/03		6.09	4.54	-0.50
	12/12/03		5.13	5.50	0.96
	03/15/04		5.71	4.92	-0.58
	06/22/04		5.80	4.83	-0.09
	09/21/04		6.64	3.99	-0.84
	12/30/04		6.04	4.59	0.60
	04/06/05		NM	NM	
	09/29/05		NM	NM	
	12/09/05		5.60	5.03	
	03/07/06		4.25	6.38	1.35
	06/20/06	•	5.04	5.59	-0.79
	08/23/06 10/12/06	•	5.70	4.93	-0.66
	11/09/06		NM C 27	NM 4.26	
	03/20/07		6.27	4.36	0.10
	05/20/07		6.45	4.18	-0.18
			6.74	3.89	-0.29
	08/16/07 12/05/07		7.19 5.64	3.44	-0.45
	02/27/08		4.64	4.99 5.99	1.55
	06/28/08		5.68	4.95	-1.04
	09/27/08	10.63	7.42	3.21	-1.74
	12/30/08	10.03	5.29	5.34	2.13
	03/28/09		4.94	5.69	0.35
	09/12/09		5.78	4.85	-0.84
	03/30/10		5.49	5.14	0.29
	09/29/10				
	01/19/11		6.30 5.54	4.33 5.09	-0.81 0.76

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-3	08/16/99	10.32	5.85	4.47	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.7	4.62	
	03/08/00		5.32	5.00	0.38
	06/14/00		6.95	3.37	-1.63
	12/11/00		6.22	4.10	0.73
	03/06/01		4.83	5.49	1.39
	06/06/01		5.62	4.70	-0.79
	09/04/01		5.91	4.41	-0.29
	03/11/02		4.42	5.90	1.49
	06/06/02		5.19	5.13	-0.77
	09/04/02		5.72	4.60	-0.53
	12/17/02		3.96	6.36	1.76
	03/07/03		4.88	5.44	-0.92
	06/05/03		5.05	5.27	-0.17
	09/19/03		5.62	4.70	-0.57
	12/12/03		4.68	5.64	0.94
	03/15/04		4.52	5.80	0.16
	06/22/04		6.49	3.83	-1.97
	09/21/04		5.72	4.60	0.77
	12/30/04		4.72	5.60	1.00
	04/06/05		3.78	6.54	0.94
	09/29/05		5.85	4.47	-2.07
	12/09/05		5.01	5.31	0.84
	03/07/06		3.75	6.57	1.26
	06/20/06		4.81	5.51	-1.06
	08/23/06		5.22	5.10	-0.41
	10/12/06	 	NM	NM	
	11/09/06	 	5.36	4.96	
	03/20/07		5.06	5.26	0.30
	05/17/07		6.35	3.97	-1.29
	08/16/07	1	6.46	3.86	-0.11
	12/05/07	ŀ	4.82	5.50	1.64
	02/27/08 06/28/08	ļ	4.54	5.78	0.28
	09/27/08	1	6.41 Well Abandone	3.91	-1.87

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-4	08/16/99	10.50	6.12	4.38	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.98	4.52	
	03/08/00		4.32	6.18	1.66
	06/14/00		5.58	4.92	-1.26
	12/11/00		5.70	4.80	-0.12
	03/06/01		4.46	6.04	1.24
	06/06/01		5.89	4.61	-1.43
	09/04/01	,	6.16	4.34	-0.27
	03/11/02		4.67	5.83	1.49
	06/06/02		5.50	5.00	-0.83
	09/04/02		5.97	4.53	-0.47
	12/17/02		4.22	6.28	1.75
	03/07/03		5.23	5.27	-1.01
	06/05/03		5.38	5.12	-0.15
	09/19/03		5.91	4.59	-0.53
	12/12/03		4.91	5.59	1.00
	03/15/04		4.94	5.56	-0.03
	06/22/04		5.68	4.82 4.49	-0.74
	09/21/04 12/30/04		6.01	5.95	-0.33
	04/06/05		4.55	6.41	1.46
	09/29/05		4.09	4.94	0.46
	12/09/05		5.56 5.28	5.22	-1.47 0.28
	03/07/06		4.00	6.50	1.28
	06/20/06		5.14	5.36	-1.14
	08/23/06		5.51	4.99	-0.37
	10/12/06		NM	NM	0.57
	11/09/06		5.64	4.86	
	03/20/07		4.90	5.60	0.74
	05/17/07	•	5.18	5.32	-0.28
	08/16/07	•	5.81	4.69	-0.63
	12/05/07		5.20	5.30	0.61
	02/27/08		4.43	6.07	0.77
	06/28/08		5.58	4.92	-1.15
	09/27/08	10.42	5.72	4.70	-0.22
	12/30/08		4.87	5.55	0.85
	03/28/09		4.68	5.74	0.19
	09/12/09		5.58	4.84	-0.90
	03/30/10		5.01	5.41	0.57
	09/29/10		5.94	4.48	-1.23
	01/19/11		5.04	5.38	0.90

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-5	12/06/99	10.20	5.94	4.26	
	03/08/00		4.06	6.14	1.88
	06/14/00		5.25	4.95	-1.19
	12/11/00		5.45	4.75	-0.20
	03/06/01		4.12	6.08	1.33
	06/06/01		5.56	4.64	-1.44
	09/04/01		5.84	4.36	-0.28
	03/11/02		4.38	5.82	1.46
	06/06/02		5.16	5.04	-0.78
	09/04/02		5.62	4.58	-0.46
	12/17/02		4.12	6.08	1.50
	03/07/03		4.89	5.31	-0.77
	06/05/03		5.04	5.16	-0.15
	09/19/03		5.56	4.64	-0.52
	12/12/03		4.72	5.48	0.84
	03/15/04		4.61	5.59	0.11
	06/22/04		5.25	4.95	-0.64
	09/21/04		5.68	4.52	-0.43
	12/30/04		4.55	5.65	1.13
	04/06/05		3.98	6.22	0.57
	09/29/05		5.28	4.92	-1.30
	12/09/05		5.05	5.15	0.23
	03/07/06		3.96	6.24	1.09
	06/20/06		4.51	5.69	-0.55
	08/23/06		7.47	2.73	-2.96
	10/12/06		NM	NM	
	11/09/06		5.42	4.78	
	03/20/07		4.83	5.37	0.59
	05/17/07		5.29	4.91	-0.46
	08/16/07		5.31	4.89	-0.02
	12/05/07		4.90	5.30	0.41
	02/27/08		4.17	6.03	0.73
	06/28/08		5.24	4.96	-1.07
	09/27/08	10.13	5.42	4.71	-0.25
	12/30/08		4.60	5.53	0.82
	03/28/09		4.41	5.72	0.19
	09/12/09		5.28	4.85	-0.87
	03/30/10		4.32	5.81	0.96
	09/29/10		5.61	4.52	-1.29
	01/19/11		4.25	5.88	1.36

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-6	12/06/99	10.71	5.8	4.91	
	03/08/00		4.1	6.61	1.7
	06/14/00		5.64	5.07	-1.54
	12/11/00		5.72	4.99	-0.08
	03/06/01		4.32	6.39	1.4
	06/06/01		5.81	4.9	-1.49
	09/04/01		6.12	4.59	-0.31
	03/11/02		4.49	6.22	1.63
	06/06/02		5.33	5.38	-0.84
	09/04/02		5.92	4.79	-0.59
	12/17/02		3.85	6.86	2.07
	03/07/03		4.96	5.75	-1.11
	06/05/03		5.18	5.53	-0.22
	09/19/03		5.81	4.9	-0.63
	12/12/03		4.73	5.98	1.08
	03/15/04		5.65	5.06	-0.92
	06/22/04		5.34	5.37	0.31
	09/21/04		5.89	4.82	-0.55
	12/30/04		4.35	6.36	1.54
	04/06/05		3.66	7.05	0.69
	09/29/05		6	4.71	-2.34
	12/09/05		5.17	5.54	0.83
	03/07/06		4.55	6.16	0.62
	06/20/06		4.96	5.75	-0.41
	08/23/06		5.42	5.29	-0.46
	10/12/06		NM	NM	
	11/09/06		5.57	5.14	
	03/20/07		4.59	6.12	0.98
	05/17/07		5.12	5.59	-0.53
	08/16/07		7.55	3.16	-2.43
	12/05/07		5.3	5.41	2.25
	02/27/08		4.33	6.38	0.97
	06/28/08		5.54	5.17	-1.21
	09/27/08		Well Abandon	ed 7/3/08	
EX-2	09/27/08	8.18			
	12/30/08		2.63	5.55	2.63
	03/28/09		2.40	5.78	-0.23
	09/19/09		5.90	2.28	-3.50
	03/30/10		5.49	2.69	0.41
	09/29/10		4.50	3.68	0.99
	01/19/11		5.08	3.10	-0.58

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-7	09/04/02	9.17	4.67	4.50	
	12/17/02		3.11	6.06	1.56
	03/07/03		3.89	5.28	-0.78
	06/05/03		3.57	5.60	0.32
	09/19/03		4.57	4.60	-1.00
	12/12/03		3.48	5.69	1.09
	03/15/04		NM	NM	
	06/22/04		4.52	4.65	
	09/21/04		4.56	4.61	-0.04
	12/30/04		3.17	6.00	1.39
	04/06/05		2.77	6.40	0.40
	09/29/05		4.27	4.90	-1.50
	12/09/05		4.86	4.31	-0.59
	03/07/06		2.80	6.37	2.06
	06/20/06		3.60	5.57	-0.80
	08/23/06		4.89	4.28	-1.29
	10/12/06		NM	NM	
	11/09/06		4.23	4.94	
	03/20/07		3.55	5.62	0.68
	05/17/07		4.02	5.15	-0.47
	08/16/07		4.35	4.82	-0.33
	12/05/07		NM	NM	
	02/27/08		3.11	6.06	
	06/28/08		4.16	5.01	-1.05
	09/27/08	9.08	4.41	4.67	-0.34
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		4.23	4.85	
	03/30/10		NM	NM	
	09/29/10		NM	NM	
	01/19/11		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-8	09/04/02	9.68	4.94	4.74	
	12/17/02		3.26	6.42	1.68
	03/07/03		4.01	5.67	-0.75
	06/05/03		4.28	5.4	-0.27
	09/19/03		4.87	4.81	-0.59
	12/12/03		3.77	5.91	1.1
	03/15/04		3.53	6.15	0.24
	06/22/04		4.52	5.16	-0.99
	09/21/04		4.7	4.98	-0.18
	12/30/04		4.23	5.45	0.47
	04/06/05		3.5	6.18	0.73
	09/29/05		4.62	5.06	-1.12
	12/09/05		3.92	5.76	0.7
	03/07/06		NM	NM	
	06/20/06		3.84	5.84	
	08/23/06		NM	NM	
	10/12/06		NM	NM	
	11/09/06		4.39	5.29	
	03/20/07		NM	NM	
	05/17/07		3.95	5.73	
	08/16/07		4.46	5.22	-0.51
	12/05/07		4.3	5.38	0.16
	02/27/08		NM	NM	
	06/28/08		NM	NM	
	09/27/08	9.61	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		NM	NM	
	03/30/10		NM	NM	
	09/29/10		NM	NM	
	01/19/11		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Ground water Elevation	Δ
MW-9	09/04/02	11.07	6.26	4.81	
	12/17/02	•	4.23	6.84	2.03
	03/07/03		5.26	5.81	-1.03
	06/05/03		5.56	5.51	-0.30
	09/19/03		6.25	4.82	-0.69
	12/12/03		NM	NM	
	03/15/04	*	5.04	6.03	
	06/22/04		5.91	5.16	-0.87
	09/21/04		6.24	4.83	-0.33
	12/30/04		NM	NM	
	04/06/05		4.12	6.95	
	09/29/05		5.55	5.52	-1.43
	12/09/05		5.51	5.56	0.04
	03/07/06		NM	NM	
	06/20/06		5.39	5.68	
	08/23/06		4.78	6.29	0.61
	10/12/06		NM	NM	
	11/09/06		5.87	5.20	
	03/20/07		5.02	6.05	0.85
	05/17/07		5.53	5.54	-0.51
	08/16/07		NM	NM	
	12/05/07		NM	NM	
	02/27/08		NM	NM	
	06/28/08		5.90	5.17	
	09/27/08	10.99	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		5.91	5.08	
	03/30/10		5.59	5.40	0.32
	09/29/10		NM	NM	
	01/19/11		5.58	5.41	
MW-10	10/12/06	11.56	6.02	5.54	
	11/09/06		6.24	5.32	-0.22
	03/20/07		5.21	6.35	1.03
	05/17/07	•	6.21	5.35	-1.00
	08/16/07		6.56	5.00	-0.35
	12/05/07		6.42	5.14	0.14
	06/28/08		6.27	5.29	0.15
	09/27/08	11.4	6.50	4.90	-0.39
	12/30/2008		5.64	5.76	0.86
	3/28/2009		5.46	5.94	0.18
	9/12/2009		6.32	5.08	-0.86
	3/30/2010		5.78	5.62	0.54
	9/29/2010		6.59	4.81	-0.81
	1/19/2011		5.67	5.73	0.92

All measurements are in feet. DTW = Depth to water below top of PVC casing.

TOC = Top of casing. ELEV = Elevation above mean sea level.

 $^{{\}bf D}$ = The change in water level (elevation this quarter minus elevation last quarter) ${\bf NM}$ = not measured

 $[\]Delta$ = Change in groundwater elevation from previous event

Table 3

Groundwater Analytical Results

First Quarter 2011

January 19, 2011 8255 San Leandro Street

Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
EX-1	01/19/11	120 [*]	5,600 ²⁺	3,800	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	970
MW-2	01/19/11	1,900³^	320	940 [†]	2.5	16	0.68	1.2	41	<2.5	<2.5	<2.5	450
MW-4	01/19/11	<50	660¹	3,000 [†]	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	4.6
MW-5	01/19/11	88*	1,000 ⁺	640	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	5,600
EX-2	01/19/11	100*	1,200²+	850	<0.5	<0.5	<0.5	<0.5	39	<5.0	<5.0	<5.0	590
MW-7	01/19/11					Well	Could No	t Be Locat	ed				
MW-8	01/19/11					Well	Could No	t Be Locat	ed				
MW-9	01/19/11	<50	100¹	<250	<0.5	<0.5	<0.5	<0.5	<1.2	<1.2	<1.2	<1.2	240
MW-10	01/19/11	<50	180 ^¹	610 [†]	<0.5	<0.5	<0.5	<0.5	0.53	<5.0	<0.5	<0.5	<2.0
E	ESL	100	100	100	1.0	130	43	10	5	NE	NE	NE	12

Notes:

Concentrations are recorded in units of micrograms per liter (ug/L).

- ESL Environmental Screening Level for Potable Groundwater
 - ¹ Diesel range compounds are significant, no recognizable pattern
 - ² Aged diesel is significant
 - ³ No recognizable pattern
 - ⁴ Gasoline range compounds are significant
 - ⁺ Unmodified or weakly modified diesel is significant
 - [‡] Lighter than water immiscible sheen/product is present
 - ^ Weakly modified or unmodified gasoline is significant
 - * Strongly aged gasoline or diesel range compounds are significant in the TPH-g chromatogram
 - † Oil range compounds are significant

NE ESL is not established for this compound

NA analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

B benzene

T toluene

E ethylbenzene

X xylenes

MtBE methyl tert-butyl ether

DIPE di-isopropyl ether

EtBE ethyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol

Table 4 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA	
MW-1	08/16/99				Not Sa	ampled D	ue to Free	e-Floating	Hydrocar	bon				
	12/06/99			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.12 feet				
	03/08/00			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.21 feet	:			
	06/14/00		Not Sampled Due to Free-Floating Hydrocarbons 0.72 feet Not Sampled Due to Free-Floating Hydrocarbons 0.60 feet Not Sampled Due to Free-Floating Hydrocarbons 0.40 feet Not Sampled Due to Free-Floating Hydrocarbons 1.48 feet Not Sampled Due to Free-Floating Hydrocarbons 0.20 feet Not Sampled Due to Free-Floating Hydrocarbons Not Sampled Due to Free-Floating Hydrocarbons 0.67 feet Not Sampled Due to Free-Floating Hydrocarbons 0.54 feet											
	12/11/00													
	03/06/01													
	06/06/01													
	09/04/02													
	03/11/02													
	06/06/02													
	09/04/02													
	12/17/02	<u> </u>			Not Sar	mpled Du	e to Free-	Floating F	lydrocarb	ons				
	03/07/03			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	1.19 feet				
	06/05/03	<u> </u>		No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	4.63 feet				
	09/19/03			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.32 feet	:			
	12/12/03	<u></u>		No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.41 feet				
	03/15/04			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.40 feet				
	06/22/04	<u></u>			Not Sar	mpled Du	e to Free-	Floating F	lydrocarb	ons				
	09/21/04						ue to Free							
	12/30/04				Not Sa	ımpled Dı	ue to Free	-Floating	Hydrocar	bons				
	04/06/05						Free-Float							
	09/29/05						Free-Float							
	12/09/05	Not Sampled Due to Free-Floating Hydrocarbons 6.13 feet												
	03/06/06						Free-Float							
	06/20/06			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.40 feet				
	08/23/06			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	2.43 feet				
	11/16/06	Not Sampled Due to Free-Floating Hydrocarbons 0.93 feet												
	03/20/07	<u> </u>					Free-Float			4.77 feet				
	05/17/07			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	4.63 feet				
	08/16/07	<u></u>		No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	1.05 feet				
	12/05/07	Not Sampled Due to Free-Floating Hydrocarbons 1.40 feet												
	02/27/08						Free-Float							
	06/28/08			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	1.17 feet	:			
	07/03/08						Well Abai							
EX-1	09/27/08			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.005 feet				
	12/30/08			No	t Sample	d Due to	Free-Float	ting Hydro	carbons	0.005 feet				
	03/28/09			No	t Sample	d Due to	Free-Float	ting Hydro	carbons	0.005 feet				
	09/12/09	550	73,000	24,000	<0.5	<0.5	<0.5	<0.5	35	<10	<10	<10	1,400	
	03/30/10	170	520,000	290,000	<0.5	<0.5	<0.5	<0.5	16	<10	<10	<10	1,400	
	09/30/10	300	33,000	16,000	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	880	
	01/19/11	120	5,600	3,800	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	970	

Table 4 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA	
MW-2	08/16/99	2,200	970	<500	3.8	<2.0	3	<4.0	<20	NA	NA	NA	NA	
	12/06/99	1,900	400	<500	16	<0.5	1.5	<0.5	5.2	NA	NA	NA	NA	
	03/08/00	1,600*	530	<500	9.7	<0.5	2.7	<0.5	27	NA	NA	NA	NA	
	06/14/00	2,000	75	<100	2.8	<0.5	3.4	<0.5	16	3.4	<0.5	<0.5	64	
	12/11/00	1,000	120	<100	2.6	<0.5	<0.5	<0.5	15	2.9	<0.5	<0.5	62	
	03/06/01	1,500	1400	NA	2.2	<0.5	1.7	<0.5	22	3.4	<0.5	<0.5	83	
	06/06/01	1,700	190	NA	2.6	<0.5	2.3	<0.5	26	3.2	<0.5	<0.5	83	
	09/04/02	2,000	450	NA	2.7	<0.5	2.1	<0.5	33	3.4	<0.5	<0.5	93	
	03/11/02	1,100	410	NA	1.0	<0.5	0.5	<0.5	26	2.5	<0.5	<0.5	69	
	06/06/02	900	430	NA	1.2	<0.5	<0.5	<0.5	23	2.8	<0.5	<0.5	73	
	09/04/02	910	510	NA	1.6	<0.5	<0.5	<0.5	45	2.5	<0.5	<0.5	67	
	12/17/02	190	220	NA	0.65	<0.5	<0.5	<0.5	34	1.5	<0.5	<0.5	46	
	03/07/03	380	300	NA	0.81	<0.5	<0.5	<0.5	50	1.9	<0.5	<0.5	73	
	06/05/03	2,200	2200	NA	1.7	<0.5	1.5	<0.5	180	4.9	<0.5	1.3	110	
	09/19/03	2,300	520	NA	2	<0.5	2.1	<0.5	180	3.7	<0.5	1.1	120	
	12/12/03	3,000	2200	NA	2.1	<0.5	1.7	<0.5	250	4.5	<0.5	1.6	130	
	03/15/04		Not	Sampled -	Truck Pa	rked on W	/ell			Sampled	- Truck P	arked on '	Well	
	06/22/04	1,600	420	NA	1.3	<0.5	1.0	<0.5	580	4.6	<0.5	3.9	340	
	09/21/04	2,500	<400	NA	1.2	<0.5	1.5	<0.5	730	5.9	<0.5	4.9	550	
	12/30/04	1,800	<300	NA	1.2	<1.0	<1.0	<1.0	540	5	<1.0	3.6	400	
	04/06/05					Not Samp	oled - Truc	k Parked	on Well					
	09/29/05					Not Samp	led - Truc	k Parked	on Well					
	12/09/05	1,000	720	NA	1.0	<0.7	<0.7	<0.7	330	6.5	<0.7	2.3	1,800	
	03/06/06	1,000	<80	NA	1.2	<0.5	0.6	<0.5	290	5.4	<0.5	1.9	1,600	
	06/20/06	1,100	<80	NA	1.6	<0.5	1.0	<0.5	280	5.8	<0.5	1.5	<1,500	
	08/23/06	1,600	<200	NA	1.5	<0.9	<0.9	<0.9	290	5.5	<0.9	1.8	2,100	
	11/16/06	350	120	NA	0.56	<0.5	<0.5	<0.5	180	4.1	<0.5	0.96	1,300	
	03/20/07	460	110	NA	0.67	<0.5	<0.5	<0.5	160	4.3	<0.5	0.9	1,500	
	05/17/07	710	85	NA	<0.5	<0.5	<0.5	<0.5	160	4.4	<0.5	0.88	2,000	
	08/16/07	460	200	NA	<0.9	<0.9	<0.9	<0.9	150	6.1	<0.9	<0.9	2,700	
	12/05/07	1,500	<80	NA	<0.9	<0.9	<0.9	<0.9	66	3.8	<0.9	<0.9	2,000	
	02/27/08	810	<80	NA	0.54	<0.5	<0.5	<0.5	97	3.6	<0.5	0.52	1,400	
	06/28/08	1,100	280	NA	2.4	5.4	<0.5	<0.5	92	<10	<10	<10	1,600	
	09/27/08	1,500	290	<250	<10	<10	<10	<10	61	<10	<10	<10	1,200	
	12/30/08	1,500	960	2500	1.5	8.4	0.71	1.2	64	<5.0	<5.0	<5.0	1,400	
	03/28/09	1,200	200	<250	<5.0	<5.0	<5.0	<5.0	67	<5.0	<5.0	<5.0	1,200	
	09/12/09	770	230	<250	0.86	6.2	0.89	<0.5	53	<10	<10	<10	1,000	
	03/30/10	780	210	<250	2.0	7.1	<0.5	2.4	72	<5.0	<5.0	<5.0	870	
	09/29/10	1,200	440	1,200	<2.0	8.5	0.8	2.3	46	<1.2	<1.2	<1.2	400	
	01/19/11	1,900	320	940	2.5	16	0.68	1.2	41	<2.5	<2.5	<2.5	450	

Table 4 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-3	08/16/99	56,000	10,000**	<500	17000	2600	2600	1200	6,100	NA	NA	NA	NA
	12/06/99	40,000	9,100*	<500	16000	140	1800	100	4,000	NA	NA	NA	NA
	03/08/00	22,000	4,500*	<500	11000	72	1100	130	3,400	NA	NA	NA	NA
	06/14/00	34,000	16,000	<100	13000	94	1300	160	4,800	31	<10	21	2,700
	12/11/00	24,000	14,000	<100	13000	88	750	120	4,300	<50	<50	<50	2,300
	03/06/01	34,000	12,000	NA	15000	100	1100	130	4,000	<50	<50	<50	2,100
	06/06/01	34,000	20,000	NA	14000	94	550	110	4,400	<50	<50	<50	2,300
	09/04/02	29,000	19,000	NA	13000	83	480	83	4,100	<50	<50	<50	3,400
	03/11/02	12,000	14,000	NA	2900	<20	110	<20	530	<20	<20	<20	330
	06/06/02	20,000	14,000	NA	10000	<50	200	51	2,400	<50	<50	<50	1,200
	09/04/02	24,000	17,000	NA	11000	<50	140	<50	3,200	<50	<50	<50	1,400
	12/17/02	4,900	17,000	NA	2000	<10	52	12	360	<10	<10	<10	220
	03/07/03	8,700	16,000	NA	1300	<10	43	11	770	<10	<10	<10	360
	06/05/03	27,000	14,000	NA	10000	53	220	53	5,000	<50	<50	<50	1,600
	09/19/03	120,000	13,000	NA	20000	170	710	250	6,100	<25	<25	<25	2,600
	12/12/03	29,000	27,000	NA	12000	74	240	79	5,600	17	<10	30	2,100
	03/15/04	28,000	21,000	NA	11000	72	220	64	8,200	<50	<50	<50	2,900
	06/22/04	29,000	7,600	NA	11000	71	220	54	8,400	<50	<50	<50	3,000
	09/21/04	33,000	<5,000	NA	12000	67	190	56	8,200	<25	<25	47	3,200
	12/30/04	30,000	13,000	NA	11000	62	170	49	8,900	<25	<25	49	3,200
	04/06/05	29,000	46,000	NA	10000	55	170	47	8,800	<25	<25	50	4,400
	09/29/05	28,000	1,800	NA	8700	74	190	53	7,300	<15	<15	53	4,500
	12/09/05	17,000	19,000	NA	5600	40	110	30	4,400	<15	<15	30	2,800
	03/06/06	11,000	16,000	NA	3600	26	96	22	2,400	<7.0	<7.0	19	1,400
	06/20/06	18,000	20,000	NA	6900	45	130	29	500	9.5	<7.0	34	2,900
	08/23/06	22,000	9,500	NA	6200	33	100	19	4,800	9.8	<9.0	34	3,100
	11/16/06	16,000	16,000	810	5800	26	87	18.0	2,700	10	<9.0	20	1,800
	03/20/07	23,000	12,000	410	7600	39	100	21.0	5,000	16	<8.0	35	3,200
	05/17/07	22,000	18,000	NA	10000	44	110	27.0	5,500	<15	<15	41	3,200
	08/16/07	16,000	63,000	NA	5900	33.0	66	25.0	4,600	<15	<15	39	3,400
	12/05/07	21,000	6,400	890	8000	55	120	42	4,600	<15	<15	34	4,600
	02/27/08	35,000	40,000	870	8800	54	100	38	4,300	<15	<15	38	3,300
	06/28/08	31,000	7,500	NA	12000	61	140	42	7,300	<120	<120	<120	4,700
	07/03/08						Well Aba	ndoned					

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	Е	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-4	08/16/99	61***	1100*	<500	<0.5	<0.5	<0.5	<1.0	86	NA	NA	NA	NA
	12/06/99	130***	220*	<500	<1.0	<1.0	<1.0	<1.0	130	NA	NA	NA	NA
	03/08/00	<50	220*	<500	<0.5	<0.5	<0.5	<0.5	130	NA	NA	NA	NA
	06/14/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	100	<0.5	<0.5	<0.5	20
	12/11/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	16
	03/06/01	<50	670	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	9.9
	06/06/01	<50	790	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/04/02	<50	950	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	26
	03/11/02	<50	250	NA	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	21
	06/06/02	<50	710	NA	<0.5	<0.5	<0.5	<0.5	92	<0.5	<0.5	<0.5	21
	09/04/02	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	150	<0.5	<0.5	<0.5	18
	12/17/02	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	0.52	18
	06/05/03	<50	2,000	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	0.5	23
	09/19/03	<50	830	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.8	23
	12/12/03	<50	1700	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	16
	03/15/04	<50	2,200	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/21/04	<50	620	NA	<0.5	<0.5	<0.5	<0.5	93	<0.5	<0.5	<0.5	31
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	59	<0.5	<0.5	<0.5	50
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	17	<0.5	<0.5	<0.5	120
	12/09/05	<50	760	NA	<0.5	<0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	94
	03/06/06	<50	470	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	68
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	120
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	140
	11/09/06	<50	200	410	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	130
	03/20/07	<50	860	NA	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	42
	05/17/07	<50	600	NA	<0.5	<0.5	<0.5	<0.5	5.6	<0.5	<0.5	<0.5	32
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	<0.5	64
	12/05/07	1,300	2,600	5,600	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	30
	02/27/08	<50	270	400	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	9.3
	06/28/08	<50	150	NA	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	37
	09/27/08	<50	160	360	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	<0.5	<0.5	33
	12/30/08	<50	200	320	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	16
	03/28/09	<50	120	<250	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	4.5
	09/12/09	<50	130	330	<0.5	<0.5	<0.5	<0.5	4.2	<0.5	<0.5	<0.5	13
	03/30/10	<50	240	680	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5	4.4
	09/29/10	<50	130	510	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	3.9
	01/19/11	<50	660	3,000	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	4.6

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-5	12/06/99	450***	2000*	<500	<1.0	<1.0	<1.0	<1.0	21	NA	NA	NA	NA
	03/08/00	51***	530	<500	<0.5	<0.5	<0.5	<0.5	84	NA	NA	NA	NA
	06/14/00	380	1,400	<100	<0.5	<0.5	<0.5	<0.5	160	12	<0.5	<0.5	22
	12/11/00	540	590	<100	<0.5	<0.5	<0.5	<0.5	240	9.5	<0.5	<0.5	32
	03/06/01	510	2,900	NA	<0.5	<0.5	<0.5	<0.5	140	13	<0.5	<0.5	19
	06/06/01	280	2,700	NA	<0.5	<0.5	<0.5	<0.5	180	13	<0.5	<0.5	26
	09/04/02	630	2,600	NA	<0.5	<0.5	<0.5	<0.5	180	9.4	<0.5	<0.5	29
	03/11/02	97	3,500	NA	<0.5	<0.5	<0.5	<0.5	29	0.8	<0.5	<0.5	7
	06/06/02	61	3,500	NA	<0.5	<0.5	<0.5	<0.5	150	2.9	<0.5	<0.5	34
	09/04/02	92	6,100	NA	<0.5	<0.5	<0.5	<0.5	370	3.6	<0.5	<0.5	72
	12/17/02	110	2,100	NA	<0.5	<0.5	<0.5	<0.5	110	4.2	<0.5	<0.5	14
	03/07/03	71	1,600	NA	<0.5	<0.5	<0.5	<0.5	150	2.2	<0.5	<0.5	35
	06/05/03	95	3,300	NA	<0.5	<0.5	<0.5	<0.5	170	4.6	<0.5	<0.5	43
	09/19/03	100	1,400	NA	<0.5	<0.5	<0.5	<0.5	310	5.2	<0.5	0.68	86
	12/12/03	<50	7,600	NA	<0.5	<0.5	<0.5	<0.5	270	5.9	<0.5	0.7	91
	03/15/04	95	1,700	NA	<0.5	<0.5	<0.5	<0.5	290	6.7	<0.5	0.92	200
	09/21/04	78	990	NA	<0.5	<0.5	<0.5	<0.5	270	4.7	<0.5	0.96	880
	04/06/05	64	1,200	NA	<0.5	<0.5	<0.5	<0.5	120	4.8	<0.5	<0.5	780
	09/29/05	100	640	NA	<0.5	<0.5	<0.5	<0.5	77	3.7	<0.5	<0.5	4,000
	12/09/05	99	3,700	NA	<0.5	<0.5	<0.5	<0.5	66	6.8	<0.5	<0.5	3,000
	03/06/06	66	760	NA	<0.5	<0.5	<0.5	<0.5	42	2.9	<0.5	<0.5	1,600
	06/20/06	84	1,300	NA	<0.5	<0.5	<0.5	<0.5	42	3.6	<0.5	<0.5	3,000
	08/23/06	<200	410	NA	2.1	<2.0	<2.0	<2.0	37	2.8	<2.0	<2.0	4,800
	11/09/06	<200	700	<100	<2.0	<2.0	<2.0	<2.0	28	3.0	<2.0	<2.0	5,600
	03/20/07	<200	430	NA	<2.0	<2.0	<2.0	<2.0	22	3.0	<2.0	<2.0	3,800
	05/17/07	<200	500	NA	<2.0	<2.0	<2.0	<2.0	18	3.5	<2.0	<2.0	4,300
	08/16/07	<200	1,600	NA	<2.0	<2.0	<2.0	<2.0	13	3.0	<2.0	<2.0	6,400
	12/05/07	<200	1,400	120	<2.0	<2.0	<2.0	<2.0	8.2	2.6	<2.0	<2.0	4,700
	02/27/08	<90	1,300	190	<0.9	<0.9	<0.9	<0.9	6.0	1.8	<0.9	<0.9	2,800
	06/28/08	140	3,000	NA	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	4,300
	09/27/08	120	2,800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	6,600
	12/30/08	86	1,400	430	<0.5	<0.5	<0.5	<0.5	<25	<25	<25	<25	5,000
	03/28/09	120	1,700	500	<50	<50	<50	<50	<50	<50	<50	<50	6,400
	09/12/09	88	6,100	1,900	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	8,600
	03/30/10	90	640	300	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	10,000
	09/29/10	120	2,600	1,100	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	5,700
	01/19/11	88	1,000	640	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	5,600

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-6	12/06/99	13,000	<50	<500	180	21	11	24	<100	NA	NA	NA	NA
	03/08/00	<10,000	4,600*	<500	230	26	18	39	12,000	NA	NA	NA	NA
	06/14/00	8,400	12,000	<100	180	12	10	22	15,000	<5.0	<5.0	70	3,300
	12/11/00	<5,000	10,000	<100	180	<50	<50	<50	14,000	<50	<50	74	2,900
	03/06/01	5,300	6,700	NA	220	<50	<50	<50	13,000	<50	<50	84	2,100
	06/06/01	5,000	2,300	NA	210	<25	<25	<25	14,000	<25	<25	84	4,200
	09/04/02	5,400	2,200	NA	190	12	<10	23	15,000	<10	<10	79	4,000
	03/11/02	4,600	11,000	NA	160	<25	<25	<25	15,000	<25	<25	39	5,100
	06/06/02	<5,000	14,000	NA	200	<50	<50	<50	17,000	<50	<50	77	8,700
	09/04/02	<5,000	50,000	NA	140	<50	<50	<50	21,000	<50	<50	52	7,500
	12/17/02	<5,000	9,100	NA	130	<50	<50	<50	16,000	<50	<50	64	6,300
	03/07/03	<5,000	12,000	NA	160	<50	<50	<50	20,000	<50	<50	53	7,500
	06/05/03	<5,000	23,000	NA	230	<50	<50	<50	19,000	<50	<50	86	7,100
	09/19/03	8,900	24,000	NA	220	<25	<25	<25	15,000	<25	<25	74	8,100
	12/12/03	8,000	24,000	NA	190	<25	<25	32	14,000	<25	<25	65	7,400
	03/15/04	4,400	26,000	NA	190	<25	<25	<25	9,900	<25	<25	61	6,700
	06/22/04	3,500	7,000	NA	150	<20	<20	<20	9,200	<20	<20	51	6,100
	09/21/04	4,600	12,000	NA	210	<20	<20	<20	8,800	<20	<20	55	7,000
	12/30/04	5,300	11,000	NA	190	<20	<20	<20	6,300	<20	<20	53	4,900
	04/06/05	5,100	680	NA	190	13	12	32	3,700	<5.0	<5.0	42	4,600
	09/29/05	4,900	2,800	NA	130	8.9	<5.0	13	2,100	<5.0	<5.0	23	3,200
	12/09/05	3,600	10,000	NA	110	7.1	<5.0	7.9	2,700	<5.0	<5.0	22	4,200
	03/06/06	3,900	900	NA	120	9.3	5	13	3,000	<0.5	<0.5	26	4,400
	06/20/06	3,600	1,500	NA	140	10	5	18	1,600	<3.0	<3.0	23	3,600
	08/23/06	4,300	<800	NA	140	11	5	13	2,000	<4.0	<4.0	22	4,000
	11/09/06	3,200	1,700	<100	110	6.9	<4.0	8.2	1,500	<4.0	<4.0	16	3,900
	03/20/07	2,100	920	NA	120	7.9	<4.0	7.1	2,000	<4.0	<4.0	20	4,000
	05/17/07	3,800	600	NA	140	9.5	<4.0	15	1,700	<4.0	<4.0	21	3,200
	08/16/07	3,500	780	NA	160	9.3	<3.0	14	1,800	<3.0	<3.0	21	3,600
	12/05/07	4,500	<600	<100	100	7.8	<4.0	14	1,400	<4.0	<4.0	15	4,900
	02/27/08	3,100	<1,500	<100	82	6.1	<2.0	7.9	760	<2.0	<2.0	9.6	4,800
	06/28/08	4,700	17,000	NA	160	13	4	11	1,700	<50	<50	<50	6,200
	07/03/08						Well Aba	ndoned					
EX-2	09/27/08	990	2,100	NA	130	<10	<10	<10	210	<10	<10	<10	1,400
	12/30/08	730	9,100	2,600	72	1.3	1.7	0.53	100	<5.0	<5.0	<5.0	930
	03/28/09	66	3,900	2,300	85	<5.0	<5.0	<5.0	98	<5.0	<5.0	<5.0	590
	09/12/09	470	4,400	1,800	7.3	0.96	<0.5	<0.5	140	<5.0	<5.0	<5.0	880
	03/30/10	170	1,800	840	0.79	<0.5	<0.5	<0.5	79	<5.0	<5.0	<5.0	1,100
	09/29/10	120	1,400	830	1.5	0.54	<0.5	1.4	56	<5.0	<5.0	<5.0	1,100
	01/19/11	100	1,200	850	<0.5	<0.5	<0.5	<0.5	39	<5.0	<5.0	<5.0	590

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-7	09/04/02	<50	130****	NA	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	220	NA	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	140	NA	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	200	NA	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	320	NA	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	380	NA	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	<5.0
	03/15/04					Not Samp	oled - Truc	k Parked	on Well				
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	120	NA	<0.5	<0.5	<0.5	<0.5	9.2	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	03/06/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	9	<0.5	<0.5	<0.5	<5.0
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.5	<0.5	<0.5	<0.5	<5.0
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	5.7	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5.0
	12/05/07					Not Samp	oled - Truc	k Parked	on Well				
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	<0.5	<5.0
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<2.0
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.92	<0.5	<0.5	<0.5	<2.0
	12/30/08					Not Samp	oled - Truc	k Parked	on Well				
	03/28/09					Not Samp	led - Truc	k Parked	on Well				
	09/12/09	<50	87	<250	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<2.0
	03/30/10						Well Not	Located					
	09/29/10						Well Not	Located					
	01/19/11						Well Not	Located					

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	Е	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-8	09/04/02	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	100	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	62	NA	<0.5	<0.5	<0.5	<0.5	33	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	270	NA	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	250	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	420	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	03/15/04	<50	250	NA	<0.5	<0.5	<0.5	<0.5	6.4	<0.5	<0.5	<0.5	<5.0
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	86	NA	<0.5	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<5.0
	03/06/06					Not Samp	oled - Truc	k Parked	on Well				
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6.6	<0.5	<0.5	<0.5	<5.0
	08/23/06					Not Samp	led - Truc	k Parked	on Well				
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	9.3	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	250	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	350	NA	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	02/27/08					Not Samp							
	06/28/08					Not Samp	oled - Truc	k Parked	on Well				
	09/27/08		Not Sampled - Truck Parked on Well										
	12/30/08					Not Samp	oled - Truc	k Parked	on Well				
	03/28/09					Not Samp	led - Truc	k Parked	on Well				
	09/12/09					Not Samp	oled - Truc	k Parked	on Well				
	03/30/10						Well Not	Located					
	09/29/10						Well Not	Located					
	01/19/11						Well Not	Located					

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	Е	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-9	09/04/02	<2,500	1,000	NA	<25	<25	<25	<25	12,000	<25	<25	70	1700
	12/17/02	<2,000	880	NA	<20	<20	<20	<20	4,500	<20	<20	23	2300
	03/07/03	<500	450	NA	<5	<5	<5	<5	1,700	<5	<5	8.4	6600
	06/05/03	<500	4,500	NA	<5	<5	<5	<5	120	<5	<5	<5.0	17,000
	09/19/03	<1,000	4,500	NA	<10	<10	<10	<10	38	<10	<10	<10	15,000
	12/12/03					Not Samp	oled - Truc	k Parked	on Well				
	03/15/04	<1,000	82	NA	<10	<10	<10	<10	38	<10	<10	<10	18,000
	09/21/04	<1,000	2,600	NA	<10	<10	<10	<10	17	<10	<10	<10	16,000
	12/30/04					Not Samp	oled - Truc	k Parked	on Well				
	04/06/05	<700	<50	NA	<7	<7	<7	<7	55	<7	<7	<7	15,000
	09/29/05	<700	<50	NA	<7	<7	<7	<7	34	<7	<7	<7	1,300
	12/09/05	<400	3,200	NA	46	<4.0	<4.0	<4.0	12	<4.0	<4.0	<4.0	8,200
	03/06/06					Not Samp	oled - Truc	k Parked	on Well				
	06/20/06					Not Samp	oled - Truc	k Parked	on Well				
	08/23/06	<250	<50	NA	9.6	<2.5	<2.5	<2.5	18	<2.5	<2.5	<2.5	6,000
	11/09/06	<150	<50	NA	13	<1.5	<1.5	<1.5	3	<1.5	<1.5	<1.5	3,900
	03/20/07	<150	<50	NA	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	2,900
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6	<0.5	<0.5	<0.5	880
	08/16/07						oled - Truc						
	12/05/07					Not Samp	oled - Truc	k Parked	on Well				
	02/27/08					Not Samp	oled - Truc	k Parked	on Well				
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	950
	09/27/08						oled - Truc						
	12/30/08						oled - Truc						
	03/28/09					Not Samp	oled - Truc	k Parked	on Well				
	09/12/09	<50	170	300	<0.5	<0.5	<0.5	<0.5	<1.7	<1.7	<1.7	<1.7	330
	03/30/10	<50	110	<250	<0.5	<0.5	<0.5	<0.5	2.2	<1.0	<1.0	<1.0	190
	09/29/10					Not Samp	led - Truc	k Parked	on Well				
	01/19/11	<50	100	<250	<0.5	<0.5	<0.5	<0.5	<1.2	<1.2	<1.2	<1.2	240

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-10	10/12/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	27
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	82
	03/20/07	<50	270	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	84
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	55
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	28
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	13
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	7.3
	06/28/08	<50	63	NA	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	8.7
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	3.3
	12/30/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.73	<0.5	<0.5	<0.5	<0.5
	03/28/09	4,700	58	<250	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5	<0.5	<2.0
	09/12/09	<50	230	830	<0.5	<0.5	<0.5	<0.5	0.65	<0.5	<0.5	<0.5	<2.0
	03/30/10	<50	66	<250	<0.5	<0.5	<0.5	<0.5	0.87	<0.5	<0.5	<0.5	<2.0
	09/29/10	<50	100	350	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<0.5	<0.5	<2.0
	01/19/11	<50	180	610	<0.5	<0.5	<0.5	<0.5	0.53	<5.0	<0.5	<0.5	<2.0
E	SL	100	100	100	1.0	130	43	10	5	NE	NE	NE	12

Notes:

Concentrations are recorded in units of micrograms per liter (ug/L).

- ESL Environmental Screening Level for Potable Groundwater
 - * Non-typical diesel pattern, hydrocarbons in early diesel range
- ** Estimated concentration due to overlapping fuel patterns in sample
- *** Non-typical gasoline pattern
- **** Non-typical diesel pattern

NE ESL is not established for this compound

NA analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

B benzene

T toluene

E ethylbenzene

X xylenes

MtBE methyl tert-butyl ether DIPE di-isopropyl ether

EtBE ethyl tert-butyl ether tAME tert-amyl methyl ether

tBA tert-butanol

		MAIRIKS C	CORPORAT	HON MON	HORING D	AIA SHEET						
Project#:	6020)		Station #:	SFC	ot5	*					
Sampler:	Toward	at Me	ela	Date:	/19/11							
Weather:	Clean-	Cool -10	2	Ambient A	ir Temperat	ture:						
Well ID:	M W -	2		Well Diam	eter (2") 3'	′ 4″ 6″ 8″						
Total Well	Depth:	16,5	ļ	Depth to W	Vater:	5'6.5"		10.85				
Depth to F	ree Product			Thickness	of Free Pro	oduct (feet):						
Reference	ed To:			D.O. Meter	r (if req'd):	YSI HAC	Н					
DTW with	80% Recha	rge [(Height	t of Water C	olumn x 0.2	20) + DTW]	-						
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersi	acement	Waterra Peristaltic Extraction Pump Other		Sampling Method	Disposi Extract Dedicar Other	able Bailer . on Port led Tubing	_				
1.74 1 Case Volume	(Gals.) X	Specified Volumes	= 5.2 Calculated Vol	-	2							
Time 9:27 9:30 9:34	Temp (°F) 62.k 64.8 65.1	pH 5.5/ 5.54 5.63	Cond. (ms or µs) 1744 1932 1682	Turbidity (NTUs)	Gallons Removed	Observations Clean - n dank dank	o abvomed	Ci-7				
			<u></u>					! -				
Did well de	ewater? Y	es No		Gallons ac	tually evacı	uated:						
Sampling	Date:	Sampli	ng Time:		Depth to V	Vater:						
Sample ID);	Labora	itory:									
Analyzed 1	for: TPH-g	BTEX MtB	E Oxys C	Other:								
Duplicate	ID:	Analyzed fo	or: TPH-g E	STEX MtB	E Oxys C	Other:						
D.O. (if re	g'd): I	Pre-purge:		mg/L		Post-purge:	mg/L					
ORP (if re		Pre-purge:		mV		m∨	İ					

	MATRIKS CORPORATION MONITORING DATA SHEET												
Project #: 602	.C		Station #:	SF	CTS								
Sampler: Trues	dale III	eelu	Date:	1/19	/11								
Weather: ()	1100-100	1000	Ambient A	r Temperat	ture:								
Well ID:	J-4		Well Diam	eter (2 th 3"	4" 6" 8"								
Total Well Depth:	165		Depth to W	/ater:		51 37							
Depth to Free Produ	ct:		Thickness	of Free Pro	duct (feet):								
Referenced To:			D.O. Mete	(if req'd):	YSĮ HA	СН							
DTW with 80% Recl	arge [(Heigh	t of Water C	olumn x 0.20) + DTW]:										
Purge Method: Bailer Waterra Disposable Bailer Penstaltic Positive Air Displacement Extraction Pump Electric Submersible Other Well Diameter Multiplier Bailer Disposable Bailer Extraction Port Dedicated Tubing Well Diameter Multiplier Well Diameter Multiplier													
Well Diameter Multiplier Well Diameter Multiplier													
Well Diameter Multiplier Well Diameter Multiplier 1													
Time Temp (°F	5) pH	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations								
9:46 61.5	1 21	961	((1)(0)	7	() ()	. 50							
a:51 62.2	5.32	833		3	110	4 () 4							
9:53 61.7	6.34	900		4	Λ.	1 gray							
	40.0		:										
						:							
Did well dewater?	Yes (No)		Gallons ac	tually evacu	ıated:								
Sampling Date:	Sampl	ing Time:		Depth to V	Vater:								
Sample ID:	Labora	atory:	_										
Analyzed for: TPH-	BTEX Mte	BE Oxys C	Other:										
Duplicate ID:	Analyzed fo	or: TPH-g E	STEX MtB	E Oxys C	Other:								
D.O. (if req'd):	Pre-purge:		o.O. (if req'd): Pre-purge: mg/L Post-purge:										

321 Court Street, Woodland, CA 95695 (530) 406-1760

Well box was follof 420

Project #:	6020)		Station #:	SF	OTS						
Sampler:-	Tousi	1. 11	201.1	Date:	119/11							
Weather:	Closs 11	orl-Was	m	Ambient A	ir Temperat	ture:						
Well ID:	MW	-5		Well Diam	eter 2" 3'	4" 6" 8"						
Total Well	Depth:	15		Depth to V	Vater:		5 4'	3"				
Depth to F	ree Product	:		Thickness	of Free Pro	oduct (feet):						
Reference	d To:			D.O. Mete	r (if req'd):	YSI HA	ACH					
DTW with	80% Recha	rge [(Heigh	t of Water C	olumn x 0.	20) + DTW]	:						
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersit	cement	Waterra Peristaltic Extraction Pump Other		Sampling Method	Dis Extr	osable Bailer raction Port dicated Tubing					
					Well Diameter	Multiplier Well Diam	eter Multiplier					
1.72	1. $\frac{1}{2}$ (Gals.) X $\frac{3}{3}$ = $\frac{5.16}{2}$ Gallons $\frac{1}{2}$ 0.04 4" 0.65 6" 1.47											
1 Case Volume		radius ²	* 0.163									
Time	Temp (°F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations						
11:04	65.3	5.32	1724		2	mostly	clear	Slight	-Odor			
11:07	66.4	5.3	1827		3.5	n O	11	1, 0	11			
11:10	670T	5.36	1826		4.5	10	21	()	5			
						7						
Did well de	ewater? Y	es No		Gallons ac	tually evacu	uated:			-			
Sampling I	Date:	Sampli	ng Time:		Depth to V	Vater:						
Sample ID	:	Labora	itory:									
Analyzed f	or: TPH-g	BTEX MtE	BE Oxys C	Other:								
Duplicate I	D:	Analyzed fo	or: TPH-g E	BTEX MtB	E Oxys C	Other:						
D.O. (if red	a'd): F	Pre-purge:		mg/L		Post-purge:		mg/L				
ORP (if red		Pre-purge:		mV		Post-purge:		mV				
The second secon	CONTRACTOR OF THE PARTY OF THE	AND DESCRIPTION OF THE PARTY OF	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	The State of the S								

		MATRINS	CORPORAL	TION WION	III OKING D	MIMOREEI
Project #:	6020)		Station #:	SF	OTS
Sampler:	Trues	date /	leely	Date:	1/19/1	
Weather:	(1) om	11 ml - W	1140	Ambient A	ir Temperat	ture:
Well ID:	Mh)-	9		Well Diam	eter 2 3'	' 4" 6" 8"
Total Well	Depth:	20		Depth to V	Vater:	Z'
Depth to F	ree Product			Thickness	of Free Pro	oduct (feet):
Reference	d To:			D.O. Mete	r (if req'd):	YSI HACH
DTW with	80% Recha	rge [(Heigh	t of Water C	olumn x 0.	20) + DTW]	
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersil	cement	Waterra Peristaltic Extraction Pump Other		Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing Other
9.3 x			28		Well Diameter	Multiplier Well Diameter Multiplier
9.3 1 Case Volume	(Gals.) X	3 Specified Volumes	= 28 Calculated Vol	Gallons	1" 2" (0.04 4" 0.65 0.76 6" 1.47 0.37 Other radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations
16:19	62.4	5.34	1099		12	cloudy so
10:23	62.8	5.37	1033		19	n d'h
10:29	62.8	5.37	1032	NUE D	25	r tj
		ķ.	5. 0			
			é)e			
				Sec.		
				4		
Did well de	water? Y	es (No)		Gallons ac	tually evacu	uated:
Sampling [Date:	Sampli	ng Time:	и	Depth to V	Vater:
Sample ID:		Labora	tory:			
Analyzed fo	or: TPH-g	BTEX MtB	E Oxys C	Other:		
Duplicate I	D:	Analyzed fo	r: TPH-g E	BTEX MtB	E Oxys C	Other:
D.O. (if req	ı'd): F	Pre-purge:		mg/L		Post-purge: mg/l
ORP (if red		Pre-purge:		mV		Post-purge: mV
OKP (IT red	(u): I	re-purge:		mv		Post-purge:

Project #:	6020		2.	Station #:	SF	OTS.		
Sampler:	Truesd	ale Me	D \ &	Date:	1/19/11			
Weather:	Clean	16001-1	Nama	Ambient Ai	r Temperati	ure:		
Well ID:	MW-	10		Well Diame	eter 2" 3"	4" 6" 8'		
Total Well	Depth:	20		Depth to W	/ater: 5	7 811		
Depth to Fr	ree Product			Thickness	of Free Pro	duct (feet):		
Referenced	d To:		j	D.O. Meter	r (if req'd):	^YSI I	HACH	
DTW with 8	80% Recha	rge [(Height	of Water C	column x 0.2	20) + DTW]:			
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersib		Waterra Peristaltic Extraction Pump Other		Sampling Method:	; sed E	Bailer Disposable Bailer Extraction Port Dedicated Tubing	*
					Well Diameter	Multiplier Well Di	ameter Multiplier	
2.28 1 Case Volume	(Gals.) X	Specified Volumes	= 6.8 4 Calculated Vo	Gallons		0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 radius ² *0.163	
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	3		
10:42	.66	5.42	508		I for odor			
10:46	67.5	5.48	609		3.5	U	odor	
10:51	68.2	5.51	652		6	1(
3							@	
Did well de	ewater? Y	es No		Gallons ac	tually evacu	ıated:	CM Section 1	
Sampling [Date:	Sampli	ng Time:		Depth to V	Vater:		
Sample ID		Labora	atory:					
Analyzed f	or: TPH-g	BTEX MtE	BE Oxys	Other:			J	
				۵.				
Duplicate I	D:	Analyzed for	or: TPH-g	BTEX MtB	E Oxys C	Other:	4	
D.O. (if red	q'd):	Pre-purge:		mg/l		Post-purge:		mg/L
ORP (if red	q'd):	Pre-purge:		m√	1	Post-purge:		mV
Control of the said	6					0) 400 4700		

Project #:	6020)		Station #:	SF	OTS	
Sampler:	Truesd	ale W	eely	Date:	/19/11		
Weather:	Clear C	ool-Was	in	Ambient A	ir Temperat	ure:	
Well ID:	EX-1			Well Diam	eter: 2" 3"	4" 6" 8"	
Total Well I	Depth:	3.5		Depth to V	Vater:	z'. 7".	to Tor
Depth to Fr	ee Product:			Thickness	of Free Pro	duct (feet):	
Referenced	d To:			D.O. Mete	r (if req'd):	YSI F	HACH
DTW with 8	30% Recharg	ge [(Heigh	t of Water C	olumn x 0.	20) + DTW]	:	
Purge Method:	Bailer Disposable Bailer Positive Air Displace Electric Submersible		Waterra Peristaltic Extraction Pump Other		Sampling Method	D	ailer isposable Bailer xtraction Port edicated Tubing
					Well Diameter	Multiplier Well Dia	meter Multiplier
1 Case Volume	(Gals.) X	3 pecified Volumes	= 35 Calculated Vol	Gallons	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0,65 1,47 er radius² * 0.163
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations	bubbles
, b							
Did well de	Date:	Sampli	ng Time:	Gallons ac	tually evacu		
Sample ID:		Labora	itory:				
Analyzed fo	or: TPH-g B	TEX MtE	BE Oxys C	other:			
Duplicate II	D: A	nalyzed fo	or: TPH-g B	STEX MtB	E Oxys C	Other:	
D.O. (if req	'd): Pr	e-purge:		mg/L		Post-purge:	mg/L
ORP (if req	and the second second second	re-purge:		mV			

321 Court Street, Woodland, CA 95695 (530) 406-1760

2' 10" 5:5"

WIATRING CORPOR	ATION MONTORING DATA SHEET
Project #: 6020	Station #: 5P OTS
Sampler: Twesdate Week	Date: 1 / 19 / 11.
Weather: Oean (Cool- Warm	Ambient Air Temperature:
Well ID: Ex-Z	Well Diameter: 2" 3" 4" 6" 8"
Total Well Depth:	Depth to Water: 2' 7.5'-Toc .
Depth to Free Product:	Thickness of Free Product (feet):
Referenced To:	D.O. Meter (if req'd): YSI HACH
DTW with 80% Recharge [(Height of Water	er Column x 0.20) + DTW]:
Purge Method:	Sampling Method: Bailer
Bailer Waterra (isposable Bailer Peristaltic	Disposable Bailer Extraction Port

/		_					
11.76		5	35	Well Diameter	Multiplier	Well Diameter	Multiplier
				1"	0.04	4"	0.65
11.76	(Gals.) X	=	= 35.28 Gallons	2"	0.16	6"	1.47
1 Case Volume		Specified Volumes	Calculated Volume	3"	0.37	Other	radius ² * 0.163

Extraction Pump

Other

Positive Air Displacement

Electric Submersible

Time	Temp (°F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observations	
11/35	67.8	5.89	1492		15	Cloud SS	
11:46	65.3	5.30	1493		30	11 7	
11:50	63.9	5.34	1493		35	- 11 55	
				0 1,1			
						•	

Did well dewater?	Yes No		Gallons	actua	ally eva	cuated:		940
Sampling Date:	Samplir	g Time:		D	epth to	Water:		
Sample ID:	Laborat	ory:		70.00				
Analyzed for: TPH	I-g BTEX MtB	E Oxys	Other:		i i		*	
Duplicate ID:	Analyzed for	: TPH-g	BTEX M	ItBE	Öxys	Other:		•
D.O. (if req'd):	Pre-purge:	•	. n	ng/L	•	Post-purge:		mg/L
ORP (if req'd):	Pre-purge:		r	nV		Post-purge:		mV

321 Court Street, Woodland, CA 95695 (530) 406-1760

2 7.8

Dedicated Tubing

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Ar "When Quality		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Matriks Corporation	Client Project ID: #6020; SF	FOTS	Date Sampled:	01/19/11				
321 Court Street			Date Received:	01/20/11				
22 0041 2400	Client Contact: Tom Hende	erson	Date Reported:	01/26/11				

WorkOrder: 1101481

Date Completed: 01/26/11

January 26, 2011

T .	_	
Dear	Tom	

Enclosed within are:

Woodland, CA 95695

1) The results of the 7 analyzed samples from your project: #6020; SF OTS,

Client P.O.:

- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

	we Tel	bsite: <u>www.m</u> ephone: (877	PITTSBU ccampbel () 252-92	LLOW PA IRG, CA 9- L.com En	SS RO 4565-1' nail: n	AD 701 rain@ Fax	(92	am 25)	Ч pbel 252-	8 Leon									RO	U	ND DF	TI	MI	PD Che	F	RUS	H Ex	24 ccel	HR	1	48 H Wri	IR ite (72 On J" fl	2 HR (D)	W) 🛄	d
		6-1760 8255	St. (A 9)	SE95 I	-Mai	1:+11 530	me:	ec 40 St	504	10 5T	7/	,	500	rp-c	2 / 8021 + 8015)7 MTBE		Oil & Course (1664 / 6500 P/B&D)	(Tractor perco / Lator) actual	arbons (418.1)	9021 (HVOCs)			ongeners	Reides)			(VOCs)	AHs / PNAs)	200.8 / 6010 / 6020)	(00.8 / 6010 / 6020)	0 / 6020)	2 Db Scavencers	Othe	r	Filter Sample for Met analysis Yes / N	s tals
	SAMPLE ID	LOCATION/ Field Point Name		Time	# Containers	Type Containers	Water	MA	Air Air			RE!	SER	Officer Officer Officer	TPH as	1 8		YOUR TANK OR OH OF THE	Total Petroleum Hydroc	EFA 502.2 / 601 / 8010 / 8021 (HY OCS)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / C.	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 5242 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metads (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metads (200.7 / 200.8 / 6010 / 6020)	Lend (200.7 / 200.8 / 6010 / 6020)	FOXYS \$ 7				
5	.Mw-2		1/19/11		4	30 1A	X			+	1	(8		+	X	X		Ť	+	1												×				_
	WW-4		1/7		ч	1	X				X	(X																			1				e e
	MW-5				4		X				1	9	Υ																							
	Mw-9				4		X			_	1	97	<	1	1	1		_		1											Ш					
1	MW-10				4		X		_	1	17	17	X	1	\perp	-		-		1	1															
J	MWEFX-1				4		X		-	_	1)	9)	9	+	Н		1	+		+	4	4	4	_					_		Н					_
1	MWETY-2		V		ч	V	X		-	+	4)	47	-	+	14	N	/	+	+	+	+	+	-	-	_				-			A		Н		
											+																									_
1			-			-			+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	-				-		\vdash			\vdash		10
1									+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	\forall												
t									+	\top	+		1	+	T			4		+		+	+	1										П		
	Relinquished By:	il	Date:	Time: 230 Time:	Rece	lyed B	ly:	OI DI		evi	to	i l			H D A	EAI ECE PPF	D SP.	ACE RIN RIA	E ABS ATE TE C	D II	N LA	B	S_	/						COM	IME	NTS	d			
	Relinquished By:	intel	Date: 1/20	Time: 7.25	and the same	ived B		2	1	/	Q	_					ERV		INL		(s	0&		ME'		s	OTE	JER								

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 110148	1 Clie	ntCode: MCW		
	WaterTrax	WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	☐ J-flag
Report to:				Bil	I to:		Req	uested TAT:	5 days
Tom Henderson	Email: tl	henderson@ma	trikscorp.com		Robert Neel	y			
Matriks Corporation	cc:				Matriks Corp	oration			
321 Court Street	PO:				321 Court St	reet	Dat	e Received:	01/20/2011
Woodland, CA 95695	ProjectNo: #	#6020; SF OTS			Woodland, C	CA 95695	Dat	e Printed:	01/20/2011
(530) 406-1760 FAX (530) 406-1771									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
		T				T _		1 .	T	I	1	I	1	1	1	
1101481-001	OTS MW-2	Water	1/19/2011	ΙШ	С	В	A	A								
1101481-002	OTS MW-4	Water	1/19/2011		С	В		Α								
1101481-003	OTS MW-5	Water	1/19/2011		С	В		Α								
1101481-004	OTS MW-9	Water	1/19/2011		С	В		Α								
1101481-005	OTS MW-10	Water	1/19/2011		С	В		Α								
1101481-006	OTS MWETX-1	Water	1/19/2011		С	В		Α								
1101481-007	OTS MWETX-2	Water	1/19/2011		С	В		Α								

Test Legend:

1 9-OXYS_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(D)_W	5
6	7	8	9	10
11	12			
				Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

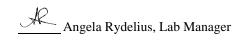
Sample Receipt Checklist

Client Name:	Matriks Corp	oration			Date a	and Time Received:	1/20/2011	7:44:21 PM
Project Name:	#6020; SF OT	s			Check	klist completed and re	eviewed by:	Zoraida Cortez
WorkOrder N°:	1101481	Matrix Water			Carrie	r: EnviroTech (RC	<u>:)</u>	
		<u>Chain</u>	of Cu	stody (C	COC) Informa	ation		
Chain of custod	y present?		Yes	V	No 🗆			
Chain of custod	y signed when reli	nquished and received?	Yes	V	No 🗆			
Chain of custod	y agrees with sam	ple labels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC	??	Yes	V	No 🗆			
Date and Time of	of collection noted b	y Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	V	No 🗆			
		<u>s</u>	ample	Receipt	t Information	<u>!</u>		
Custody seals in	ntact on shipping o	ontainer/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	ner/cooler in good	condition?	Yes	V	No 🗆			
Samples in prop	per containers/bott	es?	Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sampl	e volume for indica	ated test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT) Information		
All samples rece	eived within holding	g time?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	4.7°C		NA 🗆	
Water - VOA via	als have zero head	dspace / no bubbles?	Yes	✓	No 🗆	No VOA vials submit	tted 🗆	
Sample labels of	checked for correct	preservation?	Yes	~	No 🗌			
Metal - pH acce	ptable upon receip	t (pH<2)?	Yes		No 🗆		NA 🔽	
Samples Receiv	red on Ice?		Yes	✓	No 🗆			
		(Ice Typ	e: WE	T ICE)			
* NOTE: If the "	'No" box is checke	d, see comments below.						
=====	=====	=======			====	======	====	======
Client contacted	:	Date contact	ted:			Contacted	by:	
Comments:								

Matriks Corporation	Client Project ID: #6020; SF OTS	Date Sampled: 01/19/11
321 Court Street		Date Received: 01/20/11
	Client Contact: Tom Henderson	Date Extracted: 01/22/11-01/25/11
Woodland, CA 95695	Client P.O.:	Date Analyzed: 01/22/11-01/25/11

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	Anal	ytical Method: SW826	•		Work Order:	1101481
Lab ID	1101481-001C	1101481-002C	1101481-003C	1101481-004C		
Client ID	OTS MW-2	OTS MW-4	OTS MW-5	OTS MW-9	Reporting DF	
Matrix	W	W	W	W	1	
DF	5	1	100	2.5	S	W
Compound		Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND<2.5	ND	ND<50	ND<1.2	NA	0.5
t-Butyl alcohol (TBA)	450	4.6	5600	240	NA	2.0
1,2-Dibromoethane (EDB)	ND<2.5	ND	ND<50	ND<1.2	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<2.5	ND	ND<50	ND<1.2	NA	0.5
Diisopropyl ether (DIPE)	ND<2.5	ND	ND<50	ND<1.2	NA	0.5
Ethanol	ND<250	ND	ND<5000	ND<120	NA	50
Ethyl tert-butyl ether (ETBE)	ND<2.5	ND	ND<50	ND<1.2	NA	0.5
Methanol	ND<2500	ND	ND<50,000	ND<1200	NA	500
Methyl-t-butyl ether (MTBE)	41	1.4	ND<50	ND<1.2	NA	0.5
	Surr	ogate Recoveries	s (%)		•	•
%SS1:	90	90	92	90		
Comments		_				


* water and vapor samples are reported in µg/L,	, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP
extracts are reported in mg/L, wipe samples in p	μg/wipe.

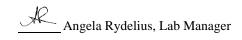
 $ND\ means\ not\ detected\ above\ the\ reporting\ limit/method\ detection\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

When outune	Count			retephone: o	,, 202)202 Tunt)2.	, 202 ,20,	
Matriks Corporation		Client Pro	oject ID: #6020;	SF OTS	Date Sampled:	01/19/11	
321 Court Street					Date Received:	01/20/11	
		Client Co	ontact: Tom Hen	derson	Date Extracted:	01/22/11-0	1/25/11
Woodland, CA 95695		Client P.0	О.:		Date Analyzed:	01/22/11-0	1/25/11
Oxygenat	ed Vola	tile Organ	nics + EDB and 1,	2-DCA by P&T	and GC/MS*		
Extraction Method: SW5030B		Anal	ytical Method: SW826	0B		Work Order:	1101481
Lab ID	Date Receive						
Client ID	OTS	MW-10	OTS MWETX-1	OTS MWETX-2		Reporting DF	
Matrix		W	W	W		1	
DF		1	10	10		S	W
Compound			Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)		ND	ND<5.0	ND<5.0		NA	0.5
t-Butyl alcohol (TBA)		ND	970	590		NA	2.0
1,2-Dibromoethane (EDB)	İ	ND	ND<5.0	ND<5.0		NA	0.5
1,2-Dichloroethane (1,2-DCA)	İ	ND	ND<5.0	ND<5.0		NA	0.5
Diisopropyl ether (DIPE)]	ND	ND<5.0	ND<5.0		NA	0.5
Ethanol		ND	ND<500	ND<500		NA	50
Ethyl tert-butyl ether (ETBE)		ND	ND<5.0	ND<5.0		NA	0.5
Methanol]	ND	ND<5000	ND<5000		NA	500
Methyl-t-butyl ether (MTBE)	().53	ND<5.0	39		NA	0.5
		Surre	ogate Recoveries	s (%)			
%SS1:		92	91	90			


 $ND\ means\ not\ detected\ above\ the\ reporting\ limit/method\ detection\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Comments

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

Matriks Corporation	Client Project ID: #6020; SF OTS	Date Sampled:	01/19/11
321 Court Street		Date Received:	01/20/11
	Client Contact: Tom Henderson	Date Extracted:	01/22/11-01/25/11
Woodland, CA 95695	Client P.O.:	Date Analyzed:	01/22/11-01/25/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1101481 Lab ID Client ID MatrixTPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS Comments001B OTS MW-2 W 1900 ND<90 2.5 16 0.68 1.2 106 d1,d9 W 109 002B OTS MW-4 ND ND ND ND ND ND 1 003B W ND ND OTS MW-5 88 ND ND ND 1 107 d7 004B OTS MW-9 W ND ND ND ND ND ND 1 109 005B OTS MW-10 W ND ND ND ND ND ND 1 105 006B OTS MWETX-1 W 120 ND ND ND ND ND 1 100 ď7 007B OTS MWETX-2 W 100 35 ND ND ND ND 1 110 d7 Reporting Limit for DF = 1; W 50 5.0 0.5 0.5 0.5 0.5 μ g/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

- # cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.
- %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor
- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- d1) weakly modified or unmodified gasoline is significant
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

Angela Rydelius, Lab Manager

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

OTS MWETX-1

OTS MWETX-2

W

W

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

3800

850

1

1

98

96

e3

e3/e1

Matriks Corpo	oration		Client Project ID: #6020; SF 0	OTS	Date Sampled:	01/19	9/11	
321 Court Stre	eet				Date Received:	01/20)/11	
321 Court Str			Client Contact: Tom Henders	son	Date Extracted:	01/20	0/11	
Woodland, CA	A 95695		Client P.O.:	Date Analyzed:	01/22	2/11-01/24	l/11	
			Total Extractable Petroleum	Hydrocarbo	ns*			
Extraction method:	SW3510C		Analytical methods: SW	78015B		Wo	ork Order:	1101481
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Mote	or Oil (C18-C36)	DF	% SS	Comments
1101481-001A	OTS MW-2	W	320		940	1	99	e7,e4,e2
1101481-002A	OTS MW-4	W	660		3000	1	96	e7,e2
1101481-003A	OTS MW-5	W	1000		640	1	97	e1
1101481-004A	OTS MW-9	W	100		ND	1	99	e2
1101481-005A	OTS MW-10	W	180		610	1	96	e7,e2

5600

1200

Reporting Limit for DF =1;	MDL	50	250	μg/L
ND means not detected at or above the RL/MDL.	RL	50	250	μg/L

^{*} water samples are reported in ug/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- e2) diesel range compounds are significant; no recognizable pattern
- e3) aged diesel is significant; and/or e1) unmodified or weakly modified diesel is significant
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant

1101481-006A

1101481-007A

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 55719 WorkOrder 1101481

EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 1101491-001A												001A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	ptance Criteria (%)		
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	99.7	94.6	5.05	98.5	98.9	0.379	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	98	104	5.49	95.4	95.3	0.111	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	111	114	2.33	111	109	1.54	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	1.4	10	111	111	0	114	114	0	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	118	119	0.202	119	119	0	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	115	116	1.21	113	113	0	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	124	124	0	117	117	0	70 - 130	30	70 - 130	30	
%SS1:	85	25	100	101	0.968	82	83	1.54	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 55719 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1101481-001C	01/19/11	01/25/11	01/25/11 12:31 AM	1101481-002C	01/19/11	01/25/11	01/25/11 1:12 AM
1101481-003C	01/19/11	01/25/11	01/25/11 1:54 AM	1101481-004C	01/19/11	01/25/11	01/25/11 2:37 AM
1101481-005C	01/19/11	01/25/11	01/25/11 3:20 AM	1101481-006C	01/19/11	01/22/11	01/22/11 3:12 AM
1101481-007C	01/19/11	01/22/11	01/22/11 3:54 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 55732 WorkOrder 1101481

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1101481-005												05B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, 10	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	94.3	93.4	1.01	95.9	93.5	2.49	70 - 130	20	70 - 130	20
MTBE	ND	10	115	115	0	115	114	0.797	70 - 130	20	70 - 130	20
Benzene	ND	10	123	118	4.31	116	119	3.17	70 - 130	20	70 - 130	20
Toluene	ND	10	108	104	4.61	103	106	3.05	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	106	102	4.50	101	103	2.12	70 - 130	20	70 - 130	20
Xylenes	ND	30	120	116	3.75	115	117	1.92	70 - 130	20	70 - 130	20
%SS:	105	10	106	105	1.43	102	107	5.36	70 - 130	20	70 - 130	20

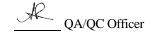
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 55732 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1101481-001B	01/19/11	01/22/11	01/22/11 4:15 AM	1101481-002B	01/19/11	01/22/11	01/22/11 5:15 AM
1101481-003B	01/19/11	01/24/11	01/24/11 10:51 PM	1101481-004B	01/19/11	01/22/11	01/22/11 5:45 AM
1101481-005B	01/19/11	01/22/11	01/22/11 6:44 AM	1101481-006B	01/19/11	01/25/11	01/25/11 6:38 PM
1101481-007B	01/19/11	01/25/11	01/25/11 5:08 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 55730 WorkOrder 1101481

EPA Method SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%			
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	89.5	86.9	2.95	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	80	81	0.370	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 55730 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1101481-001A	01/19/11	01/20/11	01/22/11 3:21 AM	1101481-002A	01/19/11	01/20/11	01/22/11 3:16 PM
1101481-003A	01/19/11	01/20/11	01/22/11 10:21 AM	1101481-004A	01/19/11	01/20/11	01/24/11 8:59 PM
1101481-005A	01/19/11	01/20/11	01/22/11 4:30 PM	1101481-006A	01/19/11	01/20/11	01/22/11 3:16 PM
1101481-007A	01/19/11	01/20/11	01/22/11 5:43 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer