

321 Court Street Woodland California 95695 Tel (530) 406-1760 Fax (530) 406-1071 A, Haz 933686

July 9, 2010

Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

9:04 am, Jul 20, 2010

RECEIVED

Alameda County Environmental Health

SUBJECT:

Fuel Leak Case No. RO0000085

SF Oakland Truck Stop 8255 San Leandro Street Oakland, CA 94621

Report Submittal -Semi-Annual Groundwater Monitoring Report- First Quarter 2010

Dear Mr. Wickham:

Please find enclosed the Semi-Annual Groundwater Monitoring Report, prepared by Matriks/HCE for Nissan Saidian.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Please call me at 530-406-1760 or email thenderson@matrikscorp.com if you have any questions.

Sincerely,

Tom Henderson

President

SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2010

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94552

SUBMITTED TO:

Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

> Project No. 6020 July 9, 2010

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIONA	L CERTIFICATIONIII
ACRONYMS A	ND ABBREVIATIONS iv
INTRODUCTIO	ON
PHYSICAL SET	TING1
Site Descrip	tion1
Geology and	d Soils
Groundwat	er2
PROJECT BACI	(GROUND AND DATA SUMMARY2
Site History	2
SEMI-ANNUA	L MONITORING SCOPE OF WORK5
Methods	6
	ater Level Measurements
RESULTS	6
Groundwat	er Levels, Dissolved Oxygen and Gradient6
Groundwat	er Analytical Results
Geotracker	Requirements7
CONCLUSIONS	57
RECOMMEND	ATIONS 8
FIGURES	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Site Location Map Site Map Excavation Remediation Extents Groundwater Gradient Map Groundwater Hydrographs

TABLES

Table 1	Well Construction Details
Table 2	Groundwater Elevation Data
Table 3	First Quarter 2010 Groundwater Analytical Results
Table 4	Historical Groundwater Analytical Results

APPENDICES

Appendix A Well Sampling Logs

Appendix B Laboratory Analytical Results

PROFESSIONAL CERTIFICATION SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2010

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

Project No. 6020

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears here on. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user. I declare, under penalty of periury, that the information and/or recommendations contained document or report is true appropriate to the best of my knowledge.

Tom Henderson

President

David W. Janney,

Senior Geologist

ACRONYMS AND ABBREVIATIONS

ACEHS Alameda County Environmental Health Services

amsl above mean sea level

ASE Aqua Science Engineers, Inc.

DCA 1,2-dichloroethane
DIPE di-isopropyl ether
DO dissolved oxygen

EDB ethylene di-bromide
EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

ft feet

fbg feet below grade

ft/ft foot per foot

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether

mg/Kg milligrams per kilogram

mg/L milligrams per liter

mL milliliter

MW monitoring well

Penn Penn Environmental

RWQCB Regional Water Quality Control Board

SC specific conductance

SRS sensitive receptor survey

tAME tert-amyl methyl ether

tBA tert butyl alcohol

TDS total dissolved solids

TOG total oil and grease

TPH-d total petroleum hydrocarbons as diesel

TPH-g total petroleum hydrocarbons as gasoline

 μ g/L micrograms per liter

μS microsiemens

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report has been prepared to describe the results of the semi-annual groundwater monitoring event during the first quarter 2010, conducted by Matriks Corporation (Matriks) at the Oakland S.F. Truck Stop (the "Site"), located at 8255 San Leandro Street, Oakland, California. The semi-annual groundwater monitoring event described herein is part of an ongoing monitoring program of petroleum hydrocarbons in groundwater caused by an unauthorized release of petroleum fuels from underground storage tanks (USTs) and/or the associated piping formerly located at the Site. Matriks is conducting the monitoring program on behalf of the Site owner and responsible party, Mr. Nissan Saidian. Alameda County Environmental Health Services (ACEHS) is the lead agency and has determined that this is a high priority site based on California's MtBE guidelines and the presence of a domestic water supply well in proximity to the contaminant plume. The ACEHS case number for the Site is RO0000085. This semi-annual groundwater monitoring event included the collection and laboratory analysis of groundwater samples from groundwater monitoring wells EX-1, EX-2, MW-2, MW-4, MW-5, MW-9, and MW-10.

PHYSICAL SETTING

Site Description

The Site is currently an active fuel and weigh station and convenience mart that has been in operation since the 1960s. The surrounding area is comprised of mixed commercial and industrial properties. The Site is located approximately 1½ mile east of San Francisco Bay and approximately ½ mile south of the Oakland-Alameda County Coliseum Complex. Elmhurst Creek provides storm drainage for the surrounding area and flows northwesterly across the west side of the Site. The Site and surrounding area are flat and the Site elevation is approximately 10 feet above mean seal level (amsl). A Site location map is shown on **Figure 1**.

Geology and Soils

Numerous soil borings have been drilled at the Site over the past several years. The boring logs indicate that organic-rich clay is present from the surface to about 16 feet below grade (fbg). This is consistent with the intertidal deposits shown on the published geologic map for this area. At some boring locations, the clay extends deeper, but with less organic matter. Beneath the clay, sandy intervals are generally encountered from 17 to 40 fbg. The sand layers contain clay, silt, and gravel. Layers of clay or silt several feet thick were present within the sandy interval in some of the borings. Groundwater was first encountered in the borings at depths ranging from 5 to 11 fbg.

Groundwater

Groundwater monitoring wells have been installed at the project Site during several drilling events. These wells are 16 to 20 feet (ft) deep. Monitoring well construction details are included in **Table 1**. The static water levels in the monitoring wells range seasonally from approximately 2.5 to 9.5 ft amsl. The groundwater flow direction is generally to the west. Depending upon which wells are used for the calculations, the gradient has ranged from 0.001 to 0.008 ft/ft. Assuming a gradient of 0.001 ft/ft, effective porosity of 30%, and hydraulic conductivity of 9 gallons/day/ft², the seepage velocity of the groundwater is estimated at 0.004 ft/day. Groundwater samples from the monitoring wells have had specific conductance (SC) values ranging from 455 microsiemens (μ S) to 1,835 μ S, suggesting that total dissolved solids (TDS) concentrations are in the approximate range of 320 milligrams per liter (mg/L) to 1,285 mg/L.

PROJECT BACKGROUND AND DATA SUMMARY

Site History

In May 1998, W.A. Craig, Inc. removed two 4,000-gallon gasoline USTs and one 550-gallon waste oil UST.

In January 1999, Penn Environmental (Penn) was attempting to remove another waste oil UST and encountered difficulties due to the UST's proximity to underground utilities. Penn requested permission from ACEHS and the City of Oakland Fire Department to close the tank inplace. According to a letter report from Penn dated May 27, 1999, ACEHS and the Oakland Fire Department would consider closure in-place if a water sample collected from the tank pit did not contain concentrations of total oil and grease above regulatory action concentrations. Total oil and grease was not detected in the water sample collected from the tank pit and a review of available records on the ACEHS website appears to indicate that the requirements for closure in-place were met and the tank was closed in-place (ACEHS June 15, 1999).

In February 1999, Penn drilled 13 soil borings at the Site and installed groundwater monitoring wells in four of the borings (MW-1 through MW-4). Petroleum hydrocarbons were detected in soil samples from each boring except B7. Petroleum hydrocarbons were also detected in groundwater samples from each open boring and in each monitoring well. The highest concentration of methyl tert-butyl ether (MtBE) detected by laboratory analysis in the boring soil samples was 3.9 milligrams per kilogram (mg/Kg) in boring B-2 at a depth of 4 ft. The highest concentration of total petroleum hydrocarbons as diesel (TPH-d) in the boring soil samples was 2,000 mg/Kg, in boring B-6 at a depth of 4 ft. The highest concentration of MtBE detected in groundwater from the open borings was 28,000 micrograms per liter (µg/L) in B-8. The highest concentration of TPH-d detected in the groundwater monitoring well samples was 62,000 µg/L, in groundwater monitoring well MW-1.

In August 1999, Aqua Science Engineers, Inc. (ASE) began conducting quarterly groundwater monitoring events at the Site. Monitoring well MW-1 contained free-phase petroleum hydrocarbons believed to be diesel due to its dark color. Laboratory analysis detected 56,000 μ g/L TPH-g, 17,000 μ g/L benzene, and 6,100 μ g/L MtBE in MW-3.

On December 1, 1999, ASE installed two additional groundwater monitoring wells MW-5 and MW-6. Free-phase petroleum hydrocarbons were again observed on the groundwater surface in monitoring well MW-1. Laboratory analysis detected 17 mg/Kg TPH-d in a soil sample from well boring MW-5 at 6 ft and 2.0 mg/Kg TPH-g in a soil sample from MW-6 also at 6 ft. Both analytical results were noted by the laboratory to have non-typical patterns for TPH-g.

In May and June 2000, ASE drilled eight additional soil borings. The highest concentration of petroleum hydrocarbons detected in boring BH-G was 1,500 mg/Kg TPH-d at 12 ft, in boring BH-A 370 mg/Kg TPH-g and 2.3 mg/Kg benzene at 7.5 feet, and in boring BH-D 1.7 mg/Kg MtBE at 11.5 ft.

In July 2002, ASE installed three additional monitoring wells (MW-7, MW-8, and MW-9). Well locations are depicted in **Figure 2**. ASE also made several attempts to drill a boring in San Leandro Street to define the eastern extent of petroleum hydrocarbons in soil and groundwater east of the Site. Each attempt was met with refusal at relatively shallow depths.

In the report documenting the July 2002 monitoring well installations, ASE presented findings of a sensitive receptor survey (SRS) conducted for the Site. The SRS concluded that due to the flat topography of the area and its close proximity to San Francisco Bay, Elmhurst Creek is likely to be tidally influenced. ASE also concluded that this was a likely explanation for the variable groundwater gradient at the Site (ASE 2002). The SRS also identified three wells within a 2,000-foot radius of the Site. One well was identified as industrial and two wells were identified as irrigation wells. No domestic or municipal water supply wells were identified within the search radius (ASE 2002). The current status of these wells has not been assessed.

In February 2004, ASE subcontracted Subtronic Corporation to perform a ground magnetometer geophysical survey on the Site to identify additional USTs. No USTs were identified although two areas were identified that appeared to have buried reinforced concrete due to the magnetic response of the rebar which might mask the USTs. The presence of buried metal objects, such as a UST, could not be ruled out in these areas (ASE 2004). Subtronic subsequently conducted a ground penetrating radar geophysical survey of the two magnetometer anomalies in September 2006. No USTs were identified in either location (ASE 2007).

On July 10, 2006, ASE collected a sample of free-phase petroleum hydrocarbons from monitoring well MW-1. The sample was analyzed by modified EPA Method 8015 and a forensic analysis was conducted on the chromatogram. The laboratory indicated that the product was

indicative of middle distillates such as diesel fuel #2 or heating oil. The abundance of isoprenoids in conjunction with the absence of normal alkanes indicates that the fuel had undergone substantial biological degradation (ASE 2007).

In September 2006, ASE advanced 11 soil borings. Borings BH-I through BH-L and BH-S, were advanced to a depth of 50 ft, using an EP Sonic drill rig. Borings BH-M through BH-R were installed on and off-site using a Geoprobe direct push drill rig. The highest concentration of TPH-d detected by laboratory analysis of soil samples from boring BH-L was 2,200 mg/Kg at 19.5 ft. Boring BH-L also contained the highest concentration of MtBE at 0.81 mg/Kg at 14.5 ft. The highest concentration of tBA detected in boring BH-I was 2.2 μ g/L at 14.5 ft. The groundwater sample from BH-L reported the highest level of TPH-d concentrations of 27,000 μ g/L (15-18 feet bgs) (ASE 2007).

During this same time, six temporary well points were installed to define the extent of free-phase floating petroleum hydrocarbons in the vicinity of the dispenser islands. PVC casing was placed in the temporary well points and remained overnight. Free-phase floating petroleum hydrocarbons were measured in boring TH-6 at a thickness of 2.54 ft. None of the other borings contained a measurable thickness of free-phase floating petroleum hydrocarbons but a petroleum hydrocarbon sheen was observed. While the borings were being backfilled, ASE noted that a thin layer of free-phase petroleum hydrocarbons was pushed to the surface on top of the cement in borings TH-2 and TH-4. Based on the results from the temporary wells, ASE returned in January 2007 and installed additional temporary well points TH-7 and TH-8. The PVC casing was placed in these wells for six hours. After six hours there was only water in boring TH-7. Laboratory analysis detected 22,000 μ g/L in a groundwater sampled collected from TH-7.

Free-phase floating hydrocarbons were removed from monitoring well MW-1 from August 1999 to March 2008, on schedules ranging from weekly to monthly. According to ASE's report dated March 9, 2007, over 140 gallons of free-phase floating diesel had been removed from monitoring well MW-1 as of March 2007.

ASE installed monitoring well MW-10 on October 10, 2006. Laboratory analytical results for a groundwater water sample collected from MW-10 on October 12, 2006 contained 1.7 μ g/L MtBE and 82 μ g/L tBA. No other analytes were detected in this sample.

ASE prepared and submitted to ACEHS the *Revised Remedial Action Plan for Underground Storage Tank and Dispenser Removal and Soil and Groundwater Remediation*, dated August 16, 2007 which was supplemented by, *Remedial Action Plan Addendum, Oakland Truck Stop*, dated October 19, 2007. The plans proposed site remediation through excavation, dewatering, and free-phase floating product removal.

In a letter dated May 6, 2008, the ACEHS requested that the proposed scope of work be reviewed for the initial soil excavation and a Revised Corrective Action Plan be submitted.

In May 2008, the Site owners retained Matriks to conduct quarterly groundwater monitoring and prepare for further site remediation. Matriks prepared and submitted to ACEHS a *Revised Corrective Action Plan*, dated May 7, 2008 that included the construction of a French drain under the existing dispenser islands to facilitate the future removal of free-phase floating product. ACEHS approved the work in a letter dated May 16, 2008. The approved plan included a reduced amount of excavation, free-phase product removal, and the abandonment of monitoring wells MW-1, MW-3, and MW-6.

In July 2008, monitoring wells MW-1, MW-3, and MW-6 were properly abandoned during the removal of five USTs and all associated piping and dispensers. Approximately 2,330 tons of petroleum hydrocarbon impacted soil was also removed. A large French drain was constructed beneath the dispenser islands and is in connection with extraction well EX-1. Excavation extents are shown on **Figure 3**. Three new double-walled USTs, six new dispensers, new double-walled piping and containment sumps, and a continuous monitoring system were installed to prevent further hydrocarbon releases onsite.

SEMI-ANNUAL MONITORING SCOPE OF WORK

The scope of work performed for this semi-annual monitoring included the following tasks:

- Measured static water levels in seven monitoring wells;
- Measured groundwater, collected field quality field parameters of dissolved oxygen, pH, temperature, and SC from each well;
- Purged at least three casing volumes from each well;
- Collected groundwater samples from each well;
- Analyzed groundwater samples for THP-d, TPH-g, TPH-motor oil, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging* and Sampling section of this report for analytical methods used);
- Updated the Geotracker database; and
- Prepared this Semi-Annual Monitoring Report.

Methods

Groundwater Level Measurements

The semi-annual groundwater monitoring event was conducted on March 30, 2010. Each well cap was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before taking a water depth measurement with an electronic water depth indicator. The static water level measurements were referenced to the surveyed marks on the top of each well casing. The depth-to-water measurements were used to calculate the purge volume of each monitoring well.

Monitoring Well Purging and Sampling

Prior to sample collection, at least three well volumes were purged from each well using a clean disposable bailer. Prior to bailing dissolved oxygen (DO) was measured. During purging, groundwater temperature, pH, and SC were measured and recorded on regular intervals with portable instrumentation. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled 55-gallon, DOT-approved steel drums, sealed, and temporarily stored onsite for subsequent proper disposal.

Following purging, groundwater samples were collected from each monitoring well using a new disposable bailer. Samples for TPH-G, BTEX, and fuel oxygenates were decanted into laboratory supplied 40-mL volatile organic analysis (VOA) vials containing hydrochloric acid as a preservative. Care was taken to eliminate headspace in each VOA prior to capping. Samples for TPH-d and TPH-motor oil were decanted into laboratory supplied 1-liter amber glass jars. Samples were labeled to indicate the project number, sample ID, and date collected. The same information was recorded on the chain-of-custody forms. Samples were stored in a cooler with ice for transport to the laboratory.

Samples were submitted under documented chain-of-custody control to McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g, TPH-d, and TPH-motor oil by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels, Dissolved Oxygen and Gradient

Initial DO concentrations in the wells ranged from 3.19 mg/L in MW-4 to 5.0 mg/L in MW-2. The groundwater flow direction is calculated to be to the southwest, toward Elder Creek, with a gradient of 0.001 foot per foot. Historical groundwater elevation data are included in **Table 2**.

Groundwater elevation contours are depicted on **Figure 4**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 5**.

Groundwater Analytical Results

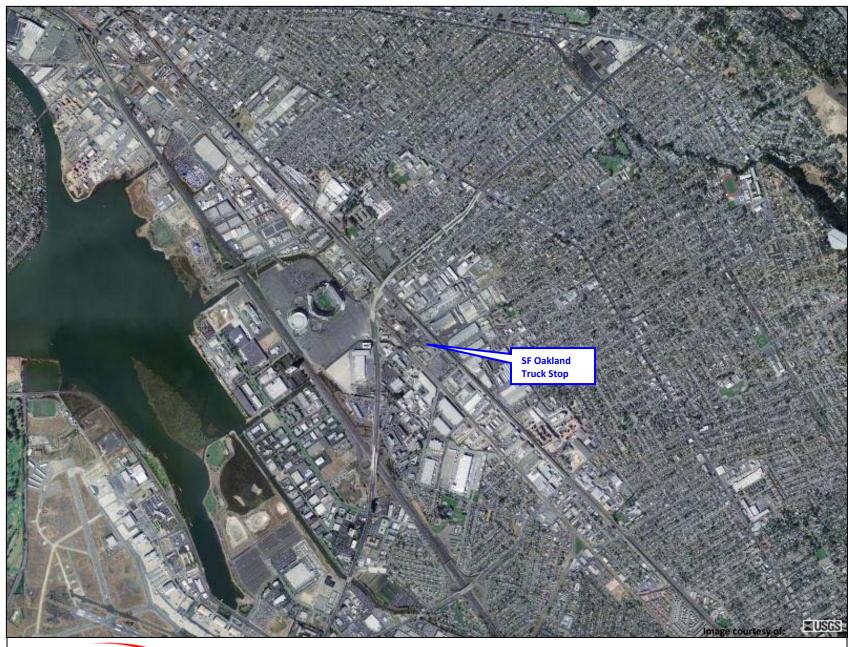
TPH-d was detected in each monitoring well ranging from 520,000 μ g/L in EX-1 to 66 μ g/L in MW-10. Benzene was detected above the MCL only in well MW-2 at 2.0 μ g/L. The constituent tBA was also detected in each monitoring well sample, except for MW-10, in concentrations as high as 10,000 μ g/L in MW-5, however, this is below the ESL for tBA of 18,000 μ g/L. Concentrations of petroleum hydrocarbons detected in groundwater samples collected during this groundwater monitoring event were within the range of historically detected concentrations. Groundwater analytical results for this event are presented in **Table 3** and previous groundwater monitoring events are summarized in **Table 4**. A copy of the laboratory analytical report is included in **Appendix B**.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by State Assembly Bill 2886 (Water Code Section 13195-13198). Electronic data files were prepared and formatted by McCampbell and electronically submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. Well status and usage reports (GEO_WELL file) were also prepared and submitted for this groundwater monitoring event as was a complete electronic copy of this report (GEO_REPORT file) in portable document file format.

CONCLUSIONS

The groundwater flow direction calculated for this quarterly event is southwest with a gradient of 0.001. A petroleum hydrocarbon sheen is present on groundwater in EX-1 in the dispenser area. This well has historically contained a measurable thickness of petroleum hydrocarbons on groundwater, but its thickness appears to have been reduced by the removal of free-phase product, water, and soil during the Site remedial activities conducted in July 2008. The constituent tBA is increasing in concentration with time in MW-5. The concentration of tBA appears to be deceasing or remaining about the same in the remainder of the wells. Before MW-3 was abandoned, groundwater samples collected from it contained some of the highest concentrations of benzene and MtBE detected in groundwater samples and constituent trends appeared to be increasing. Groundwater in this general vicinity is currently not monitored because MW-3 was removed during the July 2008 remedial action. We believe that the lateral and vertical extent of petroleum hydrocarbons in groundwater has been adequately characterized and no further lateral of vertical characterization is warranted.

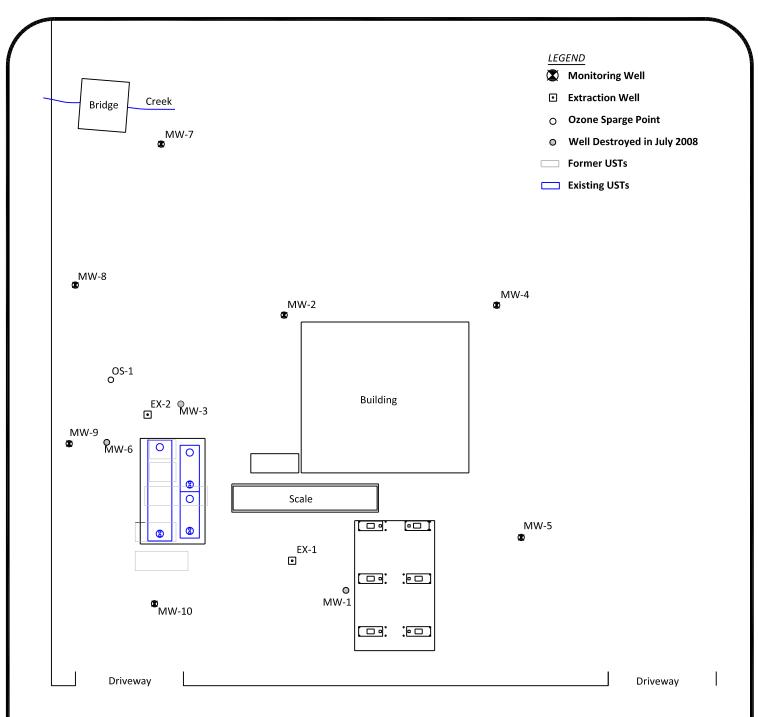

RECOMMENDATIONS

Matriks recommended the installation of a new groundwater monitoring well west of the tank pit to replace MW-3. The ACEHS agreed with this recommendation in a letter dated January 12, 2010.

A feasibility study recommending ozone sparging with hydrogen peroxide injection was submitted to ACEHS. The ACEHS' January 12, 2010 letter requested a Pilot Test Work Plan or Remedial Action Plan to implement the proposed ozone sparging and hydrogen peroxide injection remediation efforts. This work plan is currently being prepared.

The next semi-annual monitoring event will occur in September 2010. Groundwater monitoring activities will include sampling of the newly installed MW-3R (replacement for MW-3) along with the Site's other wells.

FIGURES



321 Court Street Woodland, California (530) 406-1760

Lic. No. 933686

Fax No. (530) 406-1071

Site Location Map SF Oakland Truck Stop 8255 San Leandro Street, Oakland, CA Figure 1

San Leandro Street

Site Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California

Project #: 6019

Date: 4/9/10

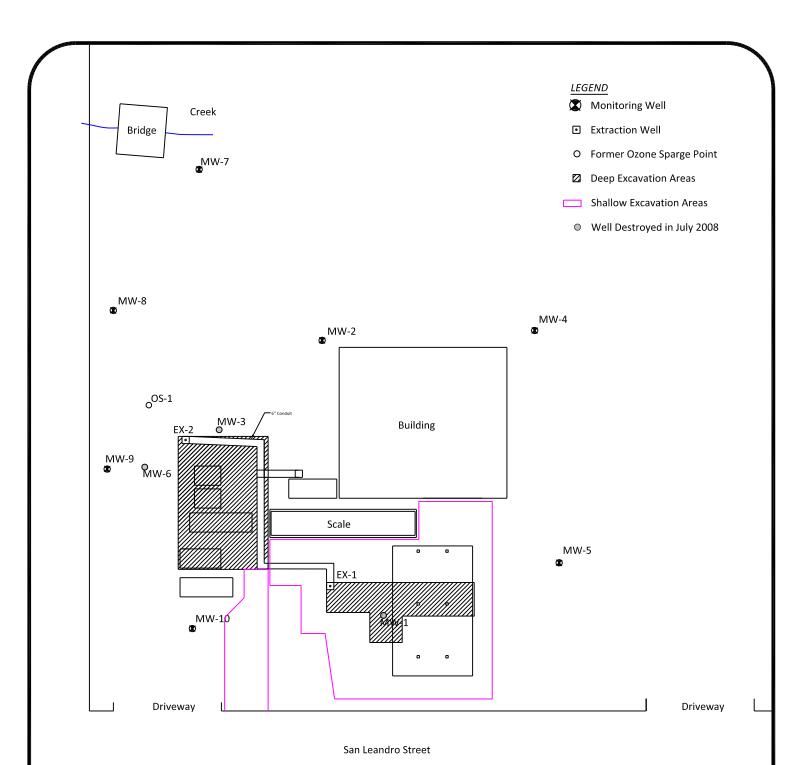

Scale: 1" = 40'

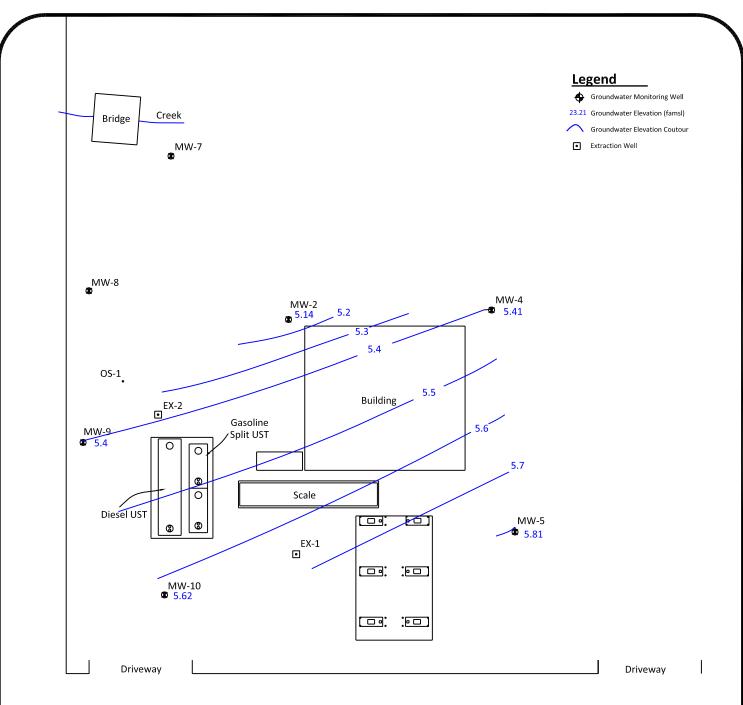
Figure:

2

321 Court Street Lic. No. 933686 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Excavation Plan


Oakland Truck Stop 8255 San Leandro Street Oakland, California

321 Court Street Lic. No. 933686 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Project#:	6020	Figure:
Date: 4/9/	3	
Scale: 1" :	= 40'	

San Leandro Street

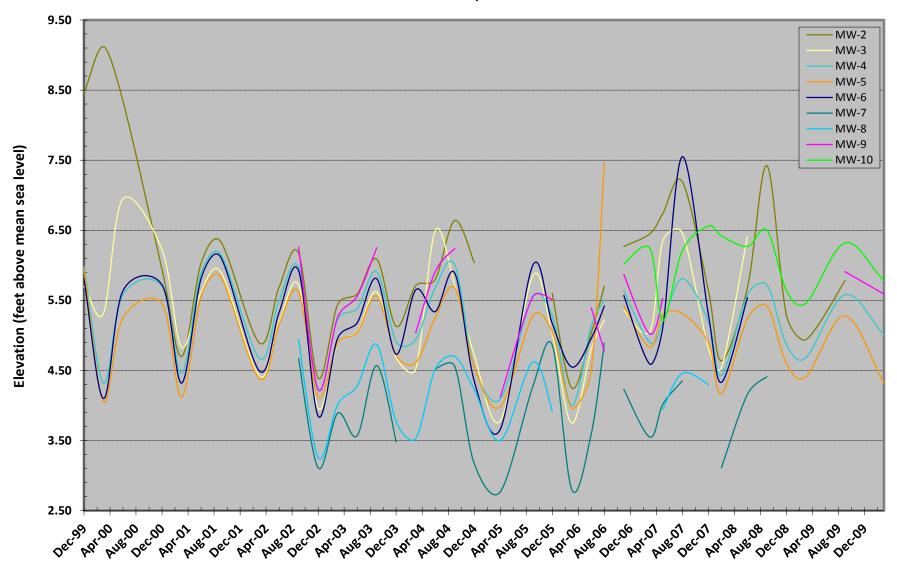
Site Groundwater Gradient March 30, 2010

Oakland Truck Stop 8255 San Leandro Street Oakland, California

Project #: 6020

Date: 4/9/10

Scale: 1" = 40'


Figure:

321 Court Street Lic. No. 933686

Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Figure 5. Monitoring Well Hydrographs
Oakland Truck Stop
Oakland, CA

TABLES

Table 1
Well Construction Details
8255 San Leandro Street
Oakland, California

Well ID	Date Installed	Total Depth (feet)	Screened Interval (feet)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet)	Bentonite Interval (feet)	Grout Interval (feet)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Easting Coordinates (feet)	Comments
MW-1	02/18/99	16.5	15.5-5.5	Clay	0.02	16.5-4.5	4.5-3	31	11.02	2099557.04	6072595.30	Well abandoned 7-08
EX-1	07/28/08	13.5	13.5 - 1	3/4 Crush rock	0.5	NA	NA	NA	8.21	2099537.05	6072605.07	Well placed in remediation french drain for extraction
MW-2	02/19/99	16.5	15.5.5	Clayey Fine Sand	0.02	16.5-4.5	4.5-3	31	10.63	2099465.48	6072531.46	
MW-3	02/18/99	16.5	15.5 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.33	2099455.51	6072586.53	Well abandoned 7-08
MW-4	02/19/99	16.5	15 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.42	2099528.03	6072468.70	
MW-5	12/01/99	15	15 - 5	Clay	0.02	15-4	4-3.5	3.5-1.5	10.13	2099600.85	6072533.52	
MW-6	12/01/99	15	15 - 5	Sandy Silt	0.02	15-4	4-3.5	3.5-1.5	10.71	2099444.41	6072615.62	Well abandoned 7-08
EX-2	07/28/08	17	17 - 1	pea gravel	0.5	NA	NA	NA	8.18	2099430.44	6072600.10	Well placed in UST pea gravel for extraction
MW-7	07/08/02	16.5	16.5 - 5	Silty Sand, Clayey Silt	0.02	16.5-4	4-3.5	3.5-1.5	9.08	2099379.77	6072513.11	
MW-8	07/08/02	15.5	15 - 5	Silty Sand, Clayey Silt	0.02	15.5-4	4-3.5	3.5-1.5	9.61	2099392.92	6072580.86	
MW-9	07/08/02	20	20 - 5	Silty Sand, Silty Clay	0.02	20-4	4-3.5	3.5-1.5	10.99	2099435.20	6072631.28	
MW-10	10/10/06	20	20 - 5	Silty Clay	0.02	20-4	4-3.5	3.5-1.5	11.40	2099506.21	6072656.48	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-1	08/16/99	11.02	NM	NM	
	08/27/99		6.85	4.17	
	09/10/99		6.65	4.37	0.20
	09/24/99		6.87	4.15	-0.22
	10/08/99		6.81	4.21	0.06
	10/22/99		6.94	4.08	-0.13
	11/02/99		6.91	4.11	0.03
	11/19/99		6.93	4.09	-0.02
	12/06/99		5.93	5.09	1.00
	03/08/00		6.57	4.45	-0.64
	06/14/00		6.70	4.32	-0.13
	12/11/00		5.75	5.27	0.95
	03/06/01		7.60	3.42	-1.85
	06/06/01		6.80	4.22	0.80
	09/04/01		7.47	3.55	-0.67
	03/11/02		6.49	4.53	0.98
	06/06/02		6.49	4.53	0.00
	09/04/02		6.89	4.13	-0.40
	12/17/02		4.65	6.37	2.24
	03/07/03		6.55	4.47	-1.90
	06/05/03		9.77	1.25	-3.22
	09/19/03		6.56	4.46	3.21
	12/12/03		5.63	5.39	0.93
	03/15/04		7.11	3.91	-1.48
	06/22/04		NM	NM	
	09/21/04		NM	NM	
	12/30/04		NM	NM	
	04/06/05		5.70	5.32	
	09/29/05		5.40	5.62	0.30
	12/09/05		10.70	0.32	-5.30
	03/07/06		9.05	1.97	1.65
	06/20/06		4.61	6.41	4.44
	08/23/06		5.51	5.51	-0.90
	10/12/06		NM	NM	
	11/09/06		5.56	5.46	
	03/20/07		9.69	1.33	-4.13
	05/17/07		9.55	1.47	0.14
	08/16/07		6.95	4.07	2.60
	12/05/07		5.50	5.52	1.45
	02/27/08		7.28	3.74	-1.78
	06/28/08		NM	NM	
	09/27/08		Well Abandon	ea //3/08	
EX-1	09/27/08	8.21			
	12/30/08		No measureme		
	03/28/09			ent due to free	product
	09/12/09		6.45	1.76	
	03/30/10		2.76	5.45	3.69

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-2	08/16/99	10.63	6.30	4.33	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		8.46	2.17	
	03/08/00		9.12	1.51	-0.66
	06/14/00		8.34	2.29	0.78
	12/11/00		5.94	4.69	2.40
	03/06/01		4.70	5.93	1.24
	06/06/01		6.03	4.60	-1.33
	09/04/01		6.34	4.29	-0.31
	03/11/02		4.89	5.74	1.45
	06/06/02		5.69	4.94	-0.80
	09/04/02		6.17	4.46	-0.48
	12/17/02		4.39	6.24	1.78
	03/07/03		5.44	5.19	-1.05
	06/05/03		5.59	5.04	-0.15
	09/19/03		6.09	4.54	-0.50
	12/12/03		5.13	5.50	0.96
	03/15/04		5.71	4.92	-0.58
	06/22/04		5.80	4.83	-0.09
	09/21/04		6.64	3.99	-0.84
	12/30/04		6.04	4.59	0.60
	04/06/05		NM	NM	
	09/29/05		NM	NM	
	12/09/05		5.60	5.03	
	03/07/06		4.25	6.38	1.35
	06/20/06		5.04	5.59	-0.79
	08/23/06		5.70	4.93	-0.66
	10/12/06		NM	NM	
	11/09/06		6.27	4.36	
	03/20/07		6.45	4.18	-0.18
	05/17/07		6.74	3.89	-0.29
	08/16/07		7.19	3.44	-0.45
	12/05/07		5.64	4.99	1.55
	02/27/08		4.64	5.99	1.00
	06/28/08		5.68	4.95	-1.04
	09/27/08	10.63	7.42	3.21	-1.74
	12/30/08		5.29	5.34	2.13
	03/28/09		4.94	5.69	0.35
	09/12/09		5.78	4.85	-0.84
	03/30/10		5.49	5.14	0.29

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-3	08/16/99	10.32	5.85	4.47	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.7	4.62	
	03/08/00		5.32	5.00	0.38
	06/14/00		6.95	3.37	-1.63
	12/11/00		6.22	4.10	0.73
	03/06/01		4.83	5.49	1.39
	06/06/01		5.62	4.70	-0.79
	09/04/01		5.91	4.41	-0.29
	03/11/02		4.42	5.90	1.49
	06/06/02		5.19	5.13	-0.77
	09/04/02		5.72	4.60	-0.53
	12/17/02		3.96	6.36	1.76
	03/07/03		4.88	5.44	-0.92
	06/05/03		5.05	5.27	-0.17
	09/19/03		5.62	4.70	-0.57
	12/12/03		4.68	5.64	0.94
	03/15/04		4.52	5.80	0.16
	06/22/04		6.49	3.83	-1.97
	09/21/04		5.72	4.60	0.77
	12/30/04		4.72	5.60	1.00
	04/06/05		3.78	6.54	0.94
	09/29/05 12/09/05		5.85	4.47	-2.07
	03/07/06		5.01 3.75	5.31 6.57	0.84 1.26
	06/20/06		4.81	5.51	
	08/23/06		5.22	5.10	-1.06 -0.41
	10/12/06		NM	NM	-0.41
	11/09/06		5.36	4.96	
	03/20/07		5.06	5.26	0.30
	05/17/07		6.35	3.97	-1.29
	08/16/07		6.46	3.86	-0.11
	12/05/07		4.82	5.50	1.64
	02/27/08		4.54	5.78	0.28
	06/28/08		6.41	3.91	-1.87
	09/27/08		Well Abandon	•	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-4	08/16/99	10.50	6.12	4.38	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.98	4.52	
	03/08/00		4.32	6.18	1.66
	06/14/00		5.58	4.92	-1.26
	12/11/00		5.70	4.80	-0.12
	03/06/01		4.46	6.04	1.24
	06/06/01		5.89	4.61	-1.43
	09/04/01		6.16	4.34	-0.27
	03/11/02		4.67	5.83	1.49
	06/06/02		5.50	5.00	-0.83
	09/04/02		5.97	4.53	-0.47
	12/17/02		4.22	6.28	1.75
	03/07/03		5.23	5.27	-1.01
	06/05/03		5.38	5.12	-0.15
	09/19/03		5.91	4.59	-0.53
	12/12/03		4.91	5.59	1.00
	03/15/04		4.94	5.56	-0.03
	06/22/04		5.68	4.82	-0.74
	09/21/04		6.01	4.49	-0.33
	12/30/04		4.55	5.95	1.46
	04/06/05		4.09	6.41	0.46
	09/29/05		5.56	4.94	-1.47
	12/09/05		5.28	5.22	0.28
	03/07/06		4.00	6.50	1.28
	06/20/06		5.14	5.36	-1.14
	08/23/06		5.51	4.99	-0.37
	10/12/06		NM	NM	
	11/09/06		5.64	4.86	
	03/20/07		4.90	5.60	0.74
	05/17/07		5.18	5.32	-0.28
	08/16/07		5.81	4.69	-0.63
	12/05/07		5.20	5.30	0.61
	02/27/08		4.43	6.07	0.77
	06/28/08		5.58	4.92	-1.15
	09/27/08	10.42	5.72	4.70	-0.22
	12/30/08		4.87	5.55	0.85
	03/28/09		4.68	5.74	0.19
	09/12/09		5.58	4.84	-0.90
	03/30/10		5.01	5.41	0.57

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-5	12/06/99	10.20	5.94	4.26	
	03/08/00		4.06	6.14	1.88
	06/14/00		5.25	4.95	-1.19
	12/11/00		5.45	4.75	-0.20
	03/06/01		4.12	6.08	1.33
	06/06/01		5.56	4.64	-1.44
	09/04/01		5.84	4.36	-0.28
	03/11/02		4.38	5.82	1.46
	06/06/02		5.16	5.04	-0.78
	09/04/02		5.62	4.58	-0.46
	12/17/02		4.12	6.08	1.50
	03/07/03		4.89	5.31	-0.77
	06/05/03		5.04	5.16	-0.15
	09/19/03		5.56	4.64	-0.52
	12/12/03		4.72	5.48	0.84
	03/15/04		4.61	5.59	0.11
	06/22/04		5.25	4.95	-0.64
	09/21/04		5.68	4.52	-0.43
	12/30/04		4.55	5.65	1.13
	04/06/05		3.98	6.22	0.57
	09/29/05		5.28	4.92	-1.30
	12/09/05		5.05	5.15	0.23
	03/07/06		3.96	6.24	1.09
	06/20/06		4.51	5.69	-0.55
	08/23/06		7.47	2.73	-2.96
	10/12/06		NM	NM	
	11/09/06		5.42	4.78	
	03/20/07		4.83	5.37	0.59
	05/17/07		5.29	4.91	-0.46
	08/16/07		5.31	4.89	-0.02
	12/05/07		4.90	5.30	0.41
	02/27/08		4.17	6.03	0.73
	06/28/08		5.24	4.96	-1.07
	09/27/08	10.13	5.42	4.71	-0.25
	12/30/08		4.60	5.53	0.82
	03/28/09		4.41	5.72	0.19
	09/12/09		5.28	4.85	-0.87
	03/30/10		4.32	5.81	0.96

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-6	12/06/99	10.71	5.8	4.91	
	03/08/00		4.1	6.61	1.7
	06/14/00		5.64	5.07	-1.54
	12/11/00		5.72	4.99	-0.08
	03/06/01		4.32	6.39	1.4
	06/06/01		5.81	4.9	-1.49
	09/04/01		6.12	4.59	-0.31
	03/11/02		4.49	6.22	1.63
	06/06/02		5.33	5.38	-0.84
	09/04/02		5.92	4.79	-0.59
	12/17/02		3.85	6.86	2.07
	03/07/03		4.96	5.75	-1.11
	06/05/03		5.18	5.53	-0.22
	09/19/03		5.81	4.9	-0.63
	12/12/03		4.73	5.98	1.08
	03/15/04		5.65	5.06	-0.92
	06/22/04		5.34	5.37	0.31
	09/21/04		5.89	4.82	-0.55
	12/30/04		4.35	6.36	1.54
	04/06/05		3.66	7.05	0.69
	09/29/05		6	4.71	-2.34
	12/09/05		5.17	5.54	0.83
	03/07/06		4.55	6.16	0.62
	06/20/06		4.96	5.75	-0.41
	08/23/06		5.42	5.29	-0.46
	10/12/06		NM	NM	
	11/09/06		5.57	5.14	
	03/20/07		4.59	6.12	0.98
	05/17/07		5.12	5.59	-0.53
	08/16/07		7.55	3.16	-2.43
	12/05/07		5.3	5.41	2.25
	02/27/08		4.33	6.38	0.97
	06/28/08		5.54	5.17	-1.21
	09/27/08		Well Abandon	ed 7/3/08	
EX-2	09/27/08	8.18			
	12/30/08		2.63	5.55	2.63
	03/28/09		2.40	5.78	-0.23
	09/19/09		5.90	2.28	-3.50
	03/30/10		5.49	2.69	0.41

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-7	09/04/02	9.17	4.67	4.50	
	12/17/02		3.11	6.06	1.56
	03/07/03		3.89	5.28	-0.78
	06/05/03		3.57	5.60	0.32
	09/19/03		4.57	4.60	-1.00
	12/12/03		3.48	5.69	1.09
	03/15/04		NM	NM	
	06/22/04		4.52	4.65	
	09/21/04		4.56	4.61	-0.04
	12/30/04		3.17	6.00	1.39
	04/06/05		2.77	6.40	0.40
	09/29/05		4.27	4.90	-1.50
	12/09/05		4.86	4.31	-0.59
	03/07/06		2.80	6.37	2.06
	06/20/06		3.60	5.57	-0.80
	08/23/06		4.89	4.28	-1.29
	10/12/06		NM	NM	
	11/09/06		4.23	4.94	
	03/20/07		3.55	5.62	0.68
	05/17/07		4.02	5.15	-0.47
	08/16/07		4.35	4.82	-0.33
	12/05/07		NM	NM	
	02/27/08		3.11	6.06	
	06/28/08		4.16	5.01	-1.05
	09/27/08	9.08	4.41	4.67	-0.34
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		4.23	4.85	
	03/30/10		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-8	09/04/02	9.68	4.94	4.74	
	12/17/02		3.26	6.42	1.68
	03/07/03		4.01	5.67	-0.75
	06/05/03		4.28	5.4	-0.27
	09/19/03		4.87	4.81	-0.59
	12/12/03		3.77	5.91	1.1
	03/15/04		3.53	6.15	0.24
	06/22/04		4.52	5.16	-0.99
	09/21/04		4.7	4.98	-0.18
	12/30/04		4.23	5.45	0.47
	04/06/05		3.5	6.18	0.73
	09/29/05		4.62	5.06	-1.12
	12/09/05		3.92	5.76	0.7
	03/07/06		NM	NM	
	06/20/06		3.84	5.84	
	08/23/06		NM	NM	
	10/12/06		NM	NM	
	11/09/06		4.39	5.29	
	03/20/07		NM	NM	
	05/17/07		3.95	5.73	
	08/16/07		4.46	5.22	-0.51
	12/05/07		4.3	5.38	0.16
	02/27/08		NM	NM	
	06/28/08		NM	NM	
	09/27/08	9.61	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		NM	NM	
	03/30/10		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-9	09/04/02	11.07	6.26	4.81	
	12/17/02		4.23	6.84	2.03
	03/07/03		5.26	5.81	-1.03
	06/05/03		5.56	5.51	-0.30
	09/19/03		6.25	4.82	-0.69
	12/12/03		NM	NM	
	03/15/04		5.04	6.03	
	06/22/04		5.91	5.16	-0.87
	09/21/04		6.24	4.83	-0.33
	12/30/04		NM	NM	
	04/06/05		4.12	6.95	
	09/29/05		5.55	5.52	-1.43
	12/09/05		5.51	5.56	0.04
	03/07/06		NM	NM	
	06/20/06		5.39	5.68	
	08/23/06		4.78	6.29	0.61
	10/12/06		NM	NM	
	11/09/06		5.87	5.20	
	03/20/07		5.02	6.05	0.85
	05/17/07		5.53	5.54	-0.51
	08/16/07		NM	NM	
	12/05/07		NM	NM	
	02/27/08		NM	NM	
	06/28/08		5.90	5.17	
	09/27/08	10.99	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		5.91	5.08	
	03/30/10		5.59	5.40	0.32
MW-10	10/12/06	11.56	6.02	5.54	0.77
	11/09/06		6.24	5.32	-0.22
	03/20/07		5.21	6.35	1.03
	05/17/07		6.21	5.35	-1.00
	08/16/07		6.56	5.00	-0.35
	12/05/07		6.42	5.14	0.14
	06/28/08		6.27	5.29	0.15
	09/27/08	11.4	6.50	4.90	-0.39
	12/30/2008		5.64	5.76	0.86
	3/28/2009		5.46	5.94	0.18
	9/12/2009		6.32	5.08	-0.86
	3/30/2010		5.78	5.62	0.54

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level.

D = The change in water level (elevation this quarter minus elevation last quarter). NM = not measured

 $[\]Delta$ = Change in groundwater elevation from previous event

Table 3

Groundwater Analytical Results

First Quarter 2010

March 30, 2010

8255 San Leandro Street

Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
EX-1	03/30/10	170 ^{**}	520,000 ⁺	290,000	<0.5	<0.5	<0.5	<0.5	16	<10	<10	<10	1,400
MW-2	03/30/10	780	210****	<250	2.0	7.1	<0.5	2.4	72	<5.0	<5.0	<5.0	870
MW-4	03/30/10	<50	240****	680***	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5	4.4
MW-5	03/30/10	90**	640 ⁺	300***	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	10,000
EX-2	03/30/10	170 [*]	1,800 ⁺	840	0.79	<0.5	<0.5	<0.5	79	<5.0	<5.0	<5.0	1100
MW-7	03/30/10					Well	Could No	t Be Locat	:ed				
MW-8	03/10/10					Well	Could No	t Be Locat	ed				
MW-9	03/30/10	<50	110****	<250	<0.5	<0.5	<0.5	<0.5	2.2	<1.0	<1.0	<1.0	190
MW-10	03/30/10	<50	66****	<250	<0.5	<0.5	<0.5	<0.5	0.87	<0.5	<0.5	<0.5	<2.0
Е	SL	100	100	100	1.0	130	43	10	5	NE	NE	NE	18,000

Notes:

Concentrations are recorded in units of micrograms per liter (ug/L).

ESL Environmental Screening Level for Potable Groundwater

- ⁺ Unmodified or weakly modified diesel is significant
- * No recognizable pattern
- ** Strongly aged gasoline or diesel range compounds are significant in the TPH-g chromatogram
- *** Oil range compounds are significant
- **** Diesel range compounds are significant, no recognizable pattern

NE ESL is not established for this compound

NA analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

B benzene

T toluene

E ethylbenzene

X xylenes

MtBE methyl tert-butyl ether

DIPE di-isopropyl ether

EtBE ethyl tert-butyl ether tAME tert-amyl methyl ether

tBA tert-butanol

Table 4 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA	
MW-1	08/16/99				Not S	ampled D	ue to Free	e-Floating	Hydrocar	bon				
	12/06/99	1		No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.12 feet	:			
	03/08/00			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.21 feet	:			
	06/14/00	1		No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.72 feet	:			
	12/11/00		Not Sampled Due to Free-Floating Hydrocarbons 0.60 feet											
	03/06/01		Not Sampled Due to Free-Floating Hydrocarbons 0.40 feet Not Sampled Due to Free-Floating Hydrocarbons 1.48 feet											
	06/06/01													
	09/04/02			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.20 feet				
	03/11/02				Not Sar	mpled Du	e to Free-	Floating F	lydrocarb	ons				
	06/06/02			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.67 feet				
	09/04/02			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.54 feet	:			
	12/17/02				Not Sar	mpled Du	e to Free-	Floating F	lydrocarb	ons				
	03/07/03			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	1.19 feet	i .			
	06/05/03			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	4.63 feet				
	09/19/03			No	t Sample	d Due to	Free-Float	ting Hydro	ocarbons	0.32 feet	:			
	12/12/03					d Due to		<u> </u>						
	03/15/04			No	•	d Due to					:			
	06/22/04					mpled Du			•					
	09/21/04					ampled Du								
	12/30/04					ampled Du								
	04/06/05					d Due to								
	09/29/05					d Due to		<u> </u>						
	12/09/05					d Due to								
	03/06/06					d Due to								
	06/20/06				•	d Due to		<u> </u>						
	08/23/06					d Due to								
	11/16/06					d Due to								
	03/20/07					d Due to		<u> </u>		4.77 feet				
	05/17/07					d Due to				4.63 feet				
	08/16/07					d Due to				1.05 feet				
	12/05/07					d Due to								
	02/27/08					d Due to		<u> </u>						
	06/28/08			No	t Sample	d Due to			ocarbons	1.17 feet	i .			
	07/03/08						Well Aba							
EX-1	09/27/08					d Due to I								
	12/30/08					d Due to I								
	03/28/09				t Sample	d Due to I	Free-Float	ting Hydro	carbons (0.005 feet	t			
	09/12/09	550	73,000	24,000	<0.5	<0.5	<0.5	<0.5	35	<10	<10	<10	1,400	
	03/30/10	170	520,000	290,000	<0.5	<0.5	<0.5	<0.5	16	<10	<10	<10	1,400	

Table 4 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	Е	х	MtBE	DIPE	EtBE	tAME	tBA	
MW-2	08/16/99	2,200	970	<500	3.8	<2.0	3	<4.0	<20	NA	NA	NA	NA	
	12/06/99	1,900	400	<500	16	<0.5	1.5	<0.5	5.2	NA	NA	NA	NA	
	03/08/00	1,600*	530	<500	9.7	<0.5	2.7	<0.5	27	NA	NA	NA	NA	
	06/14/00	2.000	75	<100	2.8	<0.5	3.4	<0.5	16	3.4	<0.5	<0.5	64	
	12/11/00	1,000	120	<100	2.6	<0.5	<0.5	<0.5	15	2.9	<0.5	<0.5	62	
	03/06/01	1,500	1400	NA	2.2	<0.5	1.7	<0.5	22	3.4	<0.5	<0.5	83	
	06/06/01	1,700	190	NA	2.6	<0.5	2.3	<0.5	26	3.2	<0.5	<0.5	83	
	09/04/02	2,000	450	NA	2.7	<0.5	2.1	<0.5	33	3.4	<0.5	<0.5	93	
	03/11/02	1,100	410	NA	1.0	<0.5	0.5	<0.5	26	2.5	<0.5	<0.5	69	
	06/06/02	900	430	NA	1.2	<0.5	<0.5	<0.5	23	2.8	<0.5	<0.5	73	
	09/04/02	910	510	NA	1.6	<0.5	<0.5	<0.5	45	2.5	<0.5	<0.5	67	
	12/17/02	190	220	NA	0.65	<0.5	<0.5	<0.5	34	1.5	<0.5	<0.5	46	
	03/07/03	380	300	NA	0.81	<0.5	<0.5	<0.5	50	1.9	<0.5	<0.5	73	
	06/05/03	2,200	2200	NA	1.7	<0.5	1.5	<0.5	180	4.9	<0.5	1.3	110	
	09/19/03	2,300	520	NA	2	<0.5	2.1	<0.5	180	3.7	<0.5	1.1	120	
	12/12/03	3,000	2200	NA	2.1	<0.5	1.7	<0.5	250	4.5	<0.5	1.6	130	
	03/15/04			Sampled -		rked on W	/ell		Not	Sampled	- Truck P	arked on Well		
	06/22/04	1,600	420	NA	1.3	<0.5	1.0	<0.5	580	4.6	<0.5	3.9	340	
	09/21/04	2,500	<400	NA	1.2	<0.5	1.5	<0.5	730	5.9	<0.5	4.9	550	
	12/30/04	1,800	<300	NA	1.2	<1.0	<1.0	<1.0	540	5	<1.0	3.6	400	
	04/06/05						oled - Truc							
	09/29/05			ı			oled - Truc							
	12/09/05	1,000	720	NA	1.0	<0.7	<0.7	<0.7	330	6.5	<0.7	2.3	1,800	
	03/06/06	1,000	<80	NA	1.2	<0.5	0.6	<0.5	290	5.4	<0.5	1.9	1,600	
	06/20/06	1,100	<80	NA	1.6	<0.5	1.0	<0.5	280	5.8	<0.5	1.5	<1,500	
	08/23/06	1,600	<200	NA	1.5	<0.9	<0.9	<0.9	290	5.5	<0.9	1.8	2,100	
	11/16/06	350	120	NA	0.56	<0.5	<0.5	<0.5	180	4.1	<0.5	0.96	1,300	
	03/20/07	460	110	NA	0.67	<0.5	<0.5	<0.5	160	4.3	<0.5	0.9	1,500	
	05/17/07	710	85 200	NA	<0.5	<0.5	<0.5	<0.5	160	4.4	<0.5	0.88	2,000	
	08/16/07	460		NA	<0.9	<0.9	<0.9	<0.9	150	6.1	<0.9	<0.9	2,700	
	12/05/07	1,500 810	<80 <80	NA NA	<0.9 0.54	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	66 97	3.8	<0.9 <0.5	<0.9 0.52	2,000	
	02/27/08 06/28/08	1,100	<80 280	NA NA	0.54 2.4	5.4	<0.5	<0.5	97	<10	<0.5	<10	1,400 1,600	
	09/27/08	1,500	290	<250	<10	<10	<10.5	<10.5	61	<10	<10	<10	1,200	
	12/30/08	1,500	960	2500	1.5	8.4	0.71	1.2	64	<5.0	<5.0	<5.0	1,400	
	03/28/09	1,200	200	<250	<5.0	<5.0	<5.0	<5.0	67	<5.0	<5.0	<5.0	1,200	
	09/12/09	770	230	<250	0.86	6.2	0.89	<0.5	53	<10	<10	<10	1,000	
	03/30/10	780	210	<250	2.0	7.1	<0.5	2.4	72	<5.0	<5.0	<5.0	870	
	03/30/10	700	210	\$250	2.0	7.1	۲0.5	2.4	12	₹5.0	₹5.0	₹5.0	6/0	

Table 4 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-3	08/16/99	56,000	10,000**	<500	17000	2600	2600	1200	6,100	NA	NA	NA	NA
	12/06/99	40,000	9,100*	<500	16000	140	1800	100	4,000	NA	NA	NA	NA
	03/08/00	22,000	4,500*	<500	11000	72	1100	130	3,400	NA	NA	NA	NA
	06/14/00	34,000	16,000	<100	13000	94	1300	160	4,800	31	<10	21	2,700
	12/11/00	24,000	14,000	<100	13000	88	750	120	4,300	<50	<50	<50	2,300
	03/06/01	34,000	12,000	NA	15000	100	1100	130	4,000	<50	<50	<50	2,100
	06/06/01	34,000	20,000	NA	14000	94	550	110	4,400	<50	<50	<50	2,300
	09/04/02	29,000	19,000	NA	13000	83	480	83	4,100	<50	<50	<50	3,400
	03/11/02	12,000	14,000	NA	2900	<20	110	<20	530	<20	<20	<20	330
	06/06/02	20,000	14,000	NA	10000	<50	200	51	2,400	<50	<50	<50	1,200
	09/04/02	24,000	17,000	NA	11000	<50	140	<50	3,200	<50	<50	<50	1,400
	12/17/02	4,900	17,000	NA	2000	<10	52	12	360	<10	<10	<10	220
	03/07/03	8,700	16,000	NA	1300	<10	43	11	770	<10	<10	<10	360
	06/05/03	27,000	14,000	NA	10000	53	220	53	5,000	<50	<50	<50	1,600
	09/19/03	120,000	13,000	NA	20000	170	710	250	6,100	<25	<25	<25	2,600
	12/12/03	29,000	27,000	NA	12000	74	240	79	5,600	17	<10	30	2,100
	03/15/04	28,000	21,000	NA	11000	72	220	64	8,200	<50	<50	<50	2,900
	06/22/04	29,000	7,600	NA	11000	71	220	54	8,400	<50	<50	<50	3,000
	09/21/04	33,000	<5,000	NA	12000	67	190	56	8,200	<25	<25	47	3,200
	12/30/04	30,000	13,000	NA	11000	62	170	49	8,900	<25	<25	49	3,200
	04/06/05	29,000	46,000	NA	10000	55	170	47	8,800	<25	<25	50	4,400
	09/29/05	28,000	1,800	NA	8700	74	190	53	7,300	<15	<15	53	4,500
	12/09/05	17,000	19,000	NA	5600	40	110	30	4,400	<15	<15	30	2,800
	03/06/06	11,000	16,000	NA	3600	26	96	22	2,400	<7.0	<7.0	19	1,400
	06/20/06	18,000	20,000	NA	6900	45	130	29	500	9.5	<7.0	34	2,900
	08/23/06	22,000	9,500	NA	6200	33	100	19	4,800	9.8	<9.0	34	3,100
	11/16/06	16,000	16,000	810	5800	26	87	18.0	2,700	10	<9.0	20	1,800
	03/20/07	23,000	12,000	410	7600	39	100	21.0	5,000	16	<8.0	35	3,200
	05/17/07	22,000	18,000	NA	10000	44	110	27.0	5,500	<15	<15	41	3,200
	08/16/07	16,000	63,000	NA	5900	33.0	66	25.0	4,600	<15	<15	39	3,400
	12/05/07	21,000	6,400	890	8000	55	120	42	4,600	<15	<15	34	4,600
	02/27/08	35,000	40,000	870	8800	54	100	38	4,300	<15	<15	38	3,300
	06/28/08	31,000	7,500	NA	12000	61	140	42	7,300	<120	<120	<120	4,700
	07/03/08						Well Abai	ndoned					

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-4	08/16/99	61***	1100*	<500	<0.5	<0.5	<0.5	<1.0	86	NA	NA	NA	NA
	12/06/99	130***	220*	<500	<1.0	<1.0	<1.0	<1.0	130	NA	NA	NA	NA
	03/08/00	<50	220*	<500	<0.5	<0.5	<0.5	<0.5	130	NA	NA	NA	NA
	06/14/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	100	<0.5	<0.5	<0.5	20
	12/11/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	16
	03/06/01	<50	670	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	9.9
	06/06/01	<50	790	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/04/02	<50	950	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	26
	03/11/02	<50	250	NA	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	21
	06/06/02	<50	710	NA	<0.5	<0.5	<0.5	<0.5	92	<0.5	<0.5	<0.5	21
	09/04/02	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	150	<0.5	<0.5	<0.5	18
	12/17/02	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	0.52	18
	06/05/03	<50	2,000	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	0.5	23
	09/19/03	<50	830	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.8	23
	12/12/03	<50	1700	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	16
	03/15/04	<50	2,200	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/21/04	<50	620	NA	<0.5	<0.5	<0.5	<0.5	93	<0.5	<0.5	<0.5	31
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	59	<0.5	<0.5	<0.5	50
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	17	<0.5	<0.5	<0.5	120
	12/09/05	<50	760	NA	<0.5	<0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	94
	03/06/06	<50	470	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	68
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	120
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	140
	11/09/06	<50	200	410	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	130
	03/20/07	<50	860	NA	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	42
	05/17/07	<50	600	NA	<0.5	<0.5	<0.5	<0.5	5.6	<0.5	<0.5	<0.5	32
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	<0.5	64
	12/05/07	1,300	2,600	5,600	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	30
	02/27/08	<50	270	400	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	9.3
	06/28/08	<50	150	NA	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	37
	09/27/08	<50	160	360	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	<0.5	<0.5	33
	12/30/08	<50	200	320	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	16
	03/28/09	<50	120	<250	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	4.5
	09/12/09	<50	130	330	<0.5	<0.5	<0.5	<0.5	4.2	<0.5	<0.5	<0.5	13
	03/30/10	<50	240	680	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5	4.4

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-5	12/06/99	450***	2000*	<500	<1.0	<1.0	<1.0	<1.0	21	NA	NA	NA	NA
	03/08/00	51***	530	<500	<0.5	<0.5	<0.5	<0.5	84	NA	NA	NA	NA
	06/14/00	380	1,400	<100	<0.5	<0.5	<0.5	<0.5	160	12	<0.5	<0.5	22
	12/11/00	540	590	<100	<0.5	<0.5	<0.5	<0.5	240	9.5	<0.5	<0.5	32
	03/06/01	510	2,900	NA	<0.5	<0.5	<0.5	<0.5	140	13	<0.5	<0.5	19
	06/06/01	280	2,700	NA	<0.5	<0.5	<0.5	<0.5	180	13	<0.5	<0.5	26
	09/04/02	630	2,600	NA	<0.5	<0.5	<0.5	<0.5	180	9.4	<0.5	<0.5	29
	03/11/02	97	3,500	NA	<0.5	<0.5	<0.5	<0.5	29	0.8	<0.5	<0.5	7
	06/06/02	61	3,500	NA	<0.5	<0.5	<0.5	<0.5	150	2.9	<0.5	<0.5	34
	09/04/02	92	6,100	NA	<0.5	<0.5	<0.5	<0.5	370	3.6	<0.5	<0.5	72
	12/17/02	110	2,100	NA	<0.5	<0.5	<0.5	<0.5	110	4.2	<0.5	<0.5	14
	03/07/03	71	1,600	NA	<0.5	<0.5	<0.5	<0.5	150	2.2	<0.5	<0.5	35
	06/05/03	95	3,300	NA	<0.5	<0.5	<0.5	<0.5	170	4.6	<0.5	<0.5	43
	09/19/03	100	1,400	NA	<0.5	<0.5	<0.5	<0.5	310	5.2	<0.5	0.68	86
	12/12/03	<50	7,600	NA	<0.5	<0.5	<0.5	<0.5	270	5.9	<0.5	0.7	91
	03/15/04	95	1,700	NA	<0.5	<0.5	<0.5	<0.5	290	6.7	<0.5	0.92	200
	09/21/04	78	990	NA	<0.5	<0.5	<0.5	<0.5	270	4.7	<0.5	0.96	880
	04/06/05	64	1,200	NA	<0.5	<0.5	<0.5	<0.5	120	4.8	<0.5	<0.5	780
	09/29/05	100	640	NA	<0.5	<0.5	<0.5	<0.5	77	3.7	<0.5	<0.5	4,000
	12/09/05	99	3,700	NA	<0.5	<0.5	<0.5	<0.5	66	6.8	<0.5	<0.5	3,000
	03/06/06	66	760	NA	<0.5	<0.5	<0.5	<0.5	42	2.9	<0.5	<0.5	1,600
	06/20/06	84	1,300	NA	<0.5	<0.5	<0.5	<0.5	42	3.6	<0.5	<0.5	3,000
	08/23/06	<200	410	NA	2.1	<2.0	<2.0	<2.0	37	2.8	<2.0	<2.0	4,800
	11/09/06	<200	700	<100	<2.0	<2.0	<2.0	<2.0	28	3.0	<2.0	<2.0	5,600
	03/20/07	<200	430	NA	<2.0	<2.0	<2.0	<2.0	22	3.0	<2.0	<2.0	3,800
	05/17/07	<200	500	NA	<2.0	<2.0	<2.0	<2.0	18	3.5	<2.0	<2.0	4,300
	08/16/07	<200	1,600	NA	<2.0	<2.0	<2.0	<2.0	13	3.0	<2.0	<2.0	6,400
	12/05/07	<200	1,400	120	<2.0	<2.0	<2.0	<2.0	8.2	2.6	<2.0	<2.0	4,700
	02/27/08	<90	1,300	190	<0.9	<0.9	<0.9	<0.9	6.0	1.8	<0.9	<0.9	2,800
	06/28/08	140	3,000	NA	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	4,300
	09/27/08	120	2,800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	6,600
	12/30/08	86	1,400	430	<0.5	<0.5	<0.5	<0.5	<25	<25	<25	<25	5,000
	03/28/09	120	1,700	500	<50	<50	<50	<50	<50	<50	<50	<50	6,400
	09/12/09	88	6,100	1,900	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	8,600
	03/30/10	90	640	300	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	10,000

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-6	12/06/99	13,000	<50	<500	180	21	11	24	<100	NA	NA	NA	NA
	03/08/00	<10,000	4,600*	<500	230	26	18	39	12,000	NA	NA	NA	NA
	06/14/00	8,400	12,000	<100	180	12	10	22	15,000	<5.0	<5.0	70	3,300
	12/11/00	<5,000	10,000	<100	180	<50	<50	<50	14,000	<50	<50	74	2,900
	03/06/01	5,300	6,700	NA	220	<50	<50	<50	13,000	<50	<50	84	2,100
	06/06/01	5,000	2,300	NA	210	<25	<25	<25	14,000	<25	<25	84	4,200
	09/04/02	5,400	2,200	NA	190	12	<10	23	15,000	<10	<10	79	4,000
	03/11/02	4,600	11,000	NA	160	<25	<25	<25	15,000	<25	<25	39	5,100
	06/06/02	<5,000	14,000	NA	200	<50	<50	<50	17,000	<50	<50	77	8,700
	09/04/02	<5,000	50,000	NA	140	<50	<50	<50	21,000	<50	<50	52	7,500
	12/17/02	<5,000	9,100	NA	130	<50	<50	<50	16,000	<50	<50	64	6,300
	03/07/03	<5,000	12,000	NA	160	<50	<50	<50	20,000	<50	<50	53	7,500
	06/05/03	<5,000	23,000	NA	230	<50	<50	<50	19,000	<50	<50	86	7,100
	09/19/03	8,900	24,000	NA	220	<25	<25	<25	15,000	<25	<25	74	8,100
	12/12/03	8,000	24,000	NA	190	<25	<25	32	14,000	<25	<25	65	7,400
	03/15/04	4,400	26,000	NA	190	<25	<25	<25	9,900	<25	<25	61	6,700
	06/22/04	3,500	7,000	NA	150	<20	<20	<20	9,200	<20	<20	51	6,100
	09/21/04	4,600	12,000	NA	210	<20	<20	<20	8,800	<20	<20	55	7,000
	12/30/04	5,300	11,000	NA	190	<20	<20	<20	6,300	<20	<20	53	4,900
	04/06/05	5,100	680	NA	190	13	12	32	3,700	<5.0	<5.0	42	4,600
	09/29/05	4,900	2,800	NA	130	8.9	<5.0	13	2,100	<5.0	<5.0	23	3,200
	12/09/05	3,600	10,000	NA	110	7.1	<5.0	7.9	2,700	<5.0	<5.0	22	4,200
	03/06/06	3,900	900	NA	120	9.3	5	13	3,000	<0.5	<0.5	26	4,400
	06/20/06	3,600	1,500	NA	140	10	5	18	1,600	<3.0	<3.0	23	3,600
	08/23/06	4,300	<800	NA	140	11	5	13	2,000	<4.0	<4.0	22	4,000
	11/09/06	3,200	1,700	<100	110	6.9	<4.0	8.2	1,500	<4.0	<4.0	16	3,900
	03/20/07	2,100	920	NA	120	7.9	<4.0	7.1	2,000	<4.0	<4.0	20	4,000
	05/17/07	3,800	600	NA	140	9.5	<4.0	15	1,700	<4.0	<4.0	21	3,200
	08/16/07	3,500	780	NA	160	9.3	<3.0	14	1,800	<3.0	<3.0	21	3,600
	12/05/07	4,500	<600	<100	100	7.8	<4.0	14	1,400	<4.0	<4.0	15	4,900
	02/27/08	3,100	<1,500	<100	82	6.1	<2.0	7.9	760	<2.0	<2.0	9.6	4,800
,	06/28/08	4,700	17,000	NA	160	13	4	11	1,700	<50	<50	<50	6,200
	07/03/08			,			Well Aba		,				
EX-2	09/27/08	990	2,100	NA	130	<10	<10	<10	210	<10	<10	<10	1,400
	12/30/08	730	9,100	2,600	72	1.3	1.7	0.53	100	<5.0	<5.0	<5.0	930
	03/28/09	66	3,900	2,300	85	<5.0	<5.0	<5.0	98	<5.0	<5.0	<5.0	590
	09/12/09	470	4,400	1,800	7.3	0.96	<0.5	<0.5	140	<5.0	<5.0	<5.0	880
	03/30/10	170	1,800	840	0.79	<0.5	<0.5	<0.5	79	<5.0	<5.0	<5.0	1100

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-7	09/04/02	<50	130****	NA	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	220	NA	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	140	NA	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	200	NA	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	320	NA	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	380	NA	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	<5.0
	03/15/04					Not Samp	led - Truc	k Parked	on Well				
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	120	NA	<0.5	<0.5	<0.5	<0.5	9.2	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	03/06/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	9	<0.5	<0.5	<0.5	<5.0
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.5	<0.5	<0.5	<0.5	<5.0
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	5.7	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5.0
	12/05/07					Not Samp	led - Truc	k Parked	on Well				
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	<0.5	<5.0
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<2.0
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.92	<0.5	<0.5	<0.5	<2.0
	12/30/08					Not Samp	oled - Truc	k Parked	on Well				
	03/28/09					Not Samp	oled - Truc	k Parked	on Well				
	09/12/09	<50	87	<250	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<2.0

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-8	09/04/02	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	100	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	62	NA	<0.5	<0.5	<0.5	<0.5	33	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	270	NA	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	250	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	420	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	03/15/04	<50	250	NA	<0.5	<0.5	<0.5	<0.5	6.4	<0.5	<0.5	<0.5	<5.0
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	86	NA	<0.5	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<5.0
	03/06/06					Not Samp	oled - Truc	k Parked	on Well				
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6.6	<0.5	<0.5	<0.5	<5.0
	08/23/06					Not Samp	oled - Truc	k Parked	on Well				
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	9.3	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	250	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	350	NA	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	02/27/08					Not Samp	oled - Truc	k Parked	on Well				
	06/28/08					Not Samp	oled - Truc	k Parked	on Well				
	09/27/08					Not Samp	oled - Truc	k Parked	on Well				
	12/30/08					Not Samp	oled - Truc	k Parked	on Well				
	03/28/09					Not Samp	oled - Truc	k Parked	on Well				
	09/12/09					Not Samp	oled - Truc	k Parked	on Well				

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-9	09/04/02	<2,500	1,000	NA	<25	<25	<25	<25	12,000	<25	<25	70	1700
	12/17/02	<2,000	880	NA	<20	<20	<20	<20	4,500	<20	<20	23	2300
	03/07/03	<500	450	NA	<5	<5	<5	<5	1,700	<5	<5	8.4	6600
	06/05/03	<500	4,500	NA	<5	<5	<5	<5	120	<5	<5	<5.0	17,000
	09/19/03	<1,000	4,500	NA	<10	<10	<10	<10	38	<10	<10	<10	15,000
	12/12/03					Not Samp	oled - Truc	k Parked	on Well				
	03/15/04	<1,000	82	NA	<10	<10	<10	<10	38	<10	<10	<10	18,000
	09/21/04	<1,000	2,600	NA	<10	<10	<10	<10	17	<10	<10	<10	16,000
	12/30/04					Not Samp	oled - Truc	k Parked	on Well				
	04/06/05	<700	<50	NA	<7	<7	<7	<7	55	<7	<7	<7	15,000
	09/29/05	<700	<50	NA	<7	<7	<7	<7	34	<7	<7	<7	1,300
	12/09/05	<400	3,200	NA	46	<4.0	<4.0	<4.0	12	<4.0	<4.0	<4.0	8,200
	03/06/06					Not Samp	oled - Truc	k Parked	on Well				
	06/20/06					Not Samp	oled - Truc	k Parked	on Well				
	08/23/06	<250	<50	NA	9.6	<2.5	<2.5	<2.5	18	<2.5	<2.5	<2.5	6,000
	11/09/06	<150	<50	NA	13	<1.5	<1.5	<1.5	3	<1.5	<1.5	<1.5	3,900
	03/20/07	<150	<50	NA	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	2,900
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6	<0.5	<0.5	<0.5	880
	08/16/07					Not Samp							
	12/05/07					Not Samp	oled - Truc	k Parked	on Well				
	02/27/08					Not Samp	oled - Truc	k Parked	on Well				
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	950
	09/27/08					Not Samp	oled - Truc	k Parked	on Well				
	12/30/08					Not Samp							
	03/28/09					Not Samp	led - Truc	k Parked	on Well				
	09/12/09	<50	170	300	<0.5	<0.5	<0.5	<0.5	<1.7	<1.7	<1.7	<1.7	330
	03/30/10	<50	110	<250	<0.5	<0.5	<0.5	<0.5	2.2	<1.0	<1.0	<1.0	190

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	T	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-10	10/12/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	27
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	82
	03/20/07	<50	270	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	84
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	55
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	28
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	13
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	7.3
	06/28/08	<50	63	NA	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	8.7
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	3.3
	12/30/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.73	<0.5	<0.5	<0.5	<0.5
	03/28/09	4,700	58	<250	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5	<0.5	<2.0
	09/12/09	<50	230	830	<0.5	<0.5	<0.5	<0.5	0.65	<0.5	<0.5	<0.5	<2.0
	03/30/10	<50	66	<250	<0.5	<0.5	<0.5	<0.5	0.87	<0.5	<0.5	<0.5	<2.0
	ESL	100	100	100	1.0	130	43	10	5	NE	NE	NE	18,000

Notes

Concentrations are recorded in units of micrograms per liter (ug/L).

- ESL Environmental Screening Level for Potable Groundwater
- * Non-typical diesel patter, hydrocarbons in early diesel range
- ** Estimated concentration due to overlapping fuel patterns in sample
- *** Non-typical gasoline pattern
- **** Non-typical diesel pattern

NE ESL is not established for this compound

NA analyte not tested

TPH-g total petroleum hydrocarbons as gasoline

TPH-d total petroleum hydrocarbons as diesel

B benzene

T toluene

E ethylbenzene

X xylenes

MtBE methyl tert-butyl ether DIPE di-isopropyl ether

EtBE ethyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol

Project #:	6020	07	75	Station #:	8255	Sanh	eando St.	
Sampler:	6020 Henda	Son		Date: 3	130/1			
Weather: (Cloudy	/ Rain		Ambient Ai	ir Tempera	ture: 64°)	
Well ID:	Ex-1			Well Diam	eter: 2" 3'	6" 6		
Total Well	Depth: ₍ ろ	, (Depth to W	/ater: 2	2.76		
Depth to F	ree Product	•		Thickness	of Free Pro	oduct (feet):	K/A	
Reference				D.O. Meter			HACH	
DTW with	80% Recha	rge [(Height	of Water C	olumn x 0.2	20) + DTW	•		
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersil		Waterra Peristaltic Extraction Pump Other		Sampling Method	d: Other	Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	(Gals.) X	Specified Volumes	= 6 65 Calculated Vo		Well Diameter 1" 2" 3"	0.04 4" 0.16 6"	0.65 1.47 her radius ^{2 *} 0.163	
			Cond. (mS	Turbidity	Gallons			
Time	Temp (°F)	рН	or µS)	(NTUs)	Removed	Observation	S	
, , , , , , , , , , , , , , , , , , , ,						Heavy	steen	
						3		
<u> </u>		<u> </u>			l			
Did well de	ewater? Y	es (No)		Gallons ac	tually evac	uated: 7+		
Sampling I	Date: 313	o Sampli	ng Time:	8.20	Depth to V	Vater: 4.	7(
Sample ID	: EX- (Labora	tory: Mc	(Jubp	게			
A1	TOIL	DTEV ME	F 0	Y TO:	1 1			
Analyzed f	or: TPH-g	RIEX MIR	E Oxys C	otner: 1 Pt	fd-mo			
Duplicate I	D.	Analyzed for	r TPH-a F	RTEX MIR	F Oxys C	Other:		
Dupilicate I		, aidiyeda lo	y L	/ 1 L/ \ 141(L/)	L OAYS C	, i i i i i i i i i i i i i i i i i i i		
D.O. (if red	q'd): {	Pre-purge:		mg/L Post-purge:				
ORP (if red		Pre-purae:		mV		Post-purge:	mV	

Project #:	6020	07	3	Station #:	8255	Sanhe	randro St	, ,		
Sampler:	6020 Hensel Cronsu	2504		-	30/10					
Weather:	Cronsi	1 Ran	,	Ambient A	r Tempera	ture: 65				
Well ID:	Ex·2			Well Diam	eter: 2" 3	" (4") 6" 8	3"			
Total Well	Depth: \	7′		Depth to W	/ater: 5.	49'				
Depth to Fi	ree Product	N/A		Thickness	of Free Pro	oduct (feet):	NA			
Reference	To:			D.O. Meter	(if req'd):	YSI	HACH			
DTW with 8	80% Recha	rge [(Height	of Water C	olumn x 0.2	20) + DTW]:				
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersit		Waterra Peristaltic Extraction Pump Other		Sampling Method	d: (Bailer Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume	(Gals.) X	Specified Volumes	= 11.5	Gallons	Well Diameter 1" 2" 3"	0.04 4" 0.16 6"	0.65 1.47 her radius ² * 0.1	63		
			Cond. (mS	Turbidity	Gallons					
Time	Temp (°F)	pΗ	or µS)	(NTUs)	Removed	Observation	S			
8:33	64.5	6.09	1436		3					
8:35	64.6	6.05	1463		6					
8-39	64.6	6.05	1520	***************************************	9	1				
8:42	64.6	6.07	1539		12	_				
Did well de	water? Y	es (No)		Gallons ac	tually evac	uated: 12				
Did Well de	water: 1	co (No)		Callotts ac	taany evac	uatea. =				
Sampling [Date: 3 130	Sampli	ng Time: 🎖	-44	Depth to \	Vater:				
Sample ID:		Labora	tory: Mc (ampbel	A					
						,				
Analyzed for	or: TPH-g	BTEX MtB	E Oxys C	Other: (YH	rd/mof	~				
Duplicate I	D:	Analyzed fo	r: TPH-g E	STEX MtB	E Oxys (Other:				
D C "	.11\	3	7.	4.4 mo/l	I	Dant	(L a i	mg/L		
D.O. (if req ORP (if red		Pre-purge: Pre-purge:	ی کر ک	7.46 mg/L Post-purge: 4.66 mg mV Post-purge: m'						
	a∪a7. I	ic-buide.		1117		i ostpuluc.l		1117		

Project #: 6020 075 Station #: 8255 San Leandro St. Sampler: Hendercon Date: 3/30/10 Weather: Ceousy / Ran Ambient Air Temperature: 65°
Sampler: Hender on Date: 3/30/16 Weather: Crown / Rm Ambient Air Temperature: 65°
Weather: Change / Cang Ambient Air Temperature: 65°
Well ID: Nw-4 Well Diameter (2") 3" 4" 6" 8"
Total Well Depth: 14 Depth to Water: 5.01
Depth to Free Product: N/A Thickness of Free Product (feet): N/A
Referenced To: D.O. Meter (if req'd): YSI HACH
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]:
Purge Method: Baile Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other
Well Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier
Cond. (mS Turbidity Gallons
Time Temp (°F) pH or µS) (NTUs) Removed Observations
858 63.7 6.47 775 1
859 63.9 6.34 762 2
9:01 63.9 6.29 759 3
Did well dewater? Yes (No) Gallons actually evacuated: 3
Sampling Date: 3/30 Sampling Time: 9.103 Depth to Water: 8.55
Sample ID: Laboratory: McCampbell's
Analyzed for: TPH-g BTEX MtBE Oxys Other: TP4-d/ms
There is a first present the same of the s
Duplicate ID: Analyzed for: TPH-g BTEX MtBE Oxys Other:
D.O. (if req'd): Pre-purge: 3.19 mg/L Post-purge: 2.84 m
ORP (if req'd): Pre-purge: mV Post-purge: m

		MATICAL C	7010 01011	1011 111011	HOIMITO D	/ \	1	
Project #:	6020	0	TS	Station #:	8255	San Le	andro	S4.
Sampler:	6020 Henders	ion		I	130/10			
Weather:	_	Rain		Ambient A	ir Temperat	ure: 65°		
Well ID:	MW-5			Well Diam	eter: 2") 3"	' 4" 6" 8	}#	
Total Well	Depth: 14			Depth to V	Vater: 4,	32		
Depth to F	ree Product:	N/4		Thickness	of Free Pro	duct (feet):	NA	
Reference	ed To:			D.O. Meter	r (if req'd):	YSI	HACH	
DTW with	80% Rechar	rge [(Height	t of Water C	olumn x 0.2	20) + DTW]	*		
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersib	cement	Waterra Peristaltic Extraction Pump Other		Sampling Method:		Disposable Bailer Extraction Port Dedicated Tubing	
					-		Diameter Multiplie	
	(Gals.) X		= 1.7	Gallons	1" 2"	0.04 4" 0.16 6"	0.65 1.47	
1 Case Volume	•	Specified Volumes	Calculated Vol		2 3"			ıs² * 0.163
	Ţ							
Time	Temp (°F)	Hq	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observation	s	
9:41	61.8	5.44	1852		1			
9.42	65.1	5.93	17.84		2		Marca de Marca de Caración de	
9.44	65.5	5.94	18.41		3			
Did well de	ewater? Y	es (No)		Gallons ac	tually evacu	uated: 3		
Sampling	Date: 3/30	Sampli	ing Time: 4	:50	Depth to V	Vater: 8 -	99	
		1	·	/	1,			
Sample IL): MW-5	Labora	atory: Mac	cam / be	Ц			
Analyzed	for: TPH-g I	BTEX MtB	BE Oxys C	Other: 1	Ad /mo	-		
Duplicate	ID:	Analyzed fo	or: TPH-g B	BTEX MtB	E Oxys C)ther:		***************************************
					1			
D.O. (if re		Pre-purge:	4,17			Post-purge:	5.25	mg/L mV
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ימימזי ו	-re-nitrae.		m\/	•	HUST-DITUE:	8	mv.

							·		
Project #:	6020	C	75	Station #:	8255	- San L.	eandro St.		
Sampler:	6020 Henders Cloudy	5 1		8	130				
Weather:	Cloudy	(rain		Ambient A	ir Tempera	ture: 66	>		
Well ID:	Mw-9			Well Diam	eter: 2" 3	" (4") 6" 8) II		
Total Well	Depth: (나	L		Depth to V	Vater: 5	.59'			
Depth to F	ree Product	NA		Thickness	of Free Pro	oduct (feet):	NA	-	
Reference	d To:			D.O. Mete	r (if req'd):	YSI	НАСН		
DTW with	80% Recha	rge [(Height	t of Water C	olumn x 0.2	20) + DTW];			
Purge Method:	Baile Disposable Bailer Positive Air Displa Electric Submersit		Waterra Peristaltic Extraction Pump Other		Sampling Method	d: Other	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
Case Volume Calculated Volume Well Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier Multiplier									
		ì	Cond. (mS	Turbidity	Gallons				
Time	Temp (°F)	pН	or µS)	(NTUs)	Removed	Observation	s	···	
10:11	60.9	6.14	901	1	1				
10-13	61.5	6.05	1120	3	3				
10:14	61.9	6.01	876	5	5				
10.19	62.0	6.01	699	7	7				
								-	
								ř	
Did well de	ewater? Y	es (No)		Gallons ac	tually evac	uated: 7			
Sampling	Date: 3(3)	0 Sampli	ng Time: 【	0:23	Depth to \	Water:			
Sample ID: Mw-9 Laboratory: Mc Can & Sull									
			•						
Analyzed f	or: TPH-g	BTEX MtB	E Oxys C	Other: TP	td/m				
Dunkasta	Δ.	^ ~ ~ h - ~ ~ d - f -	TD!! - "	OTEV MAD	- O	Othor			
Duplicate I	U.	Analyzed 10	or: TPH-g E	STEX MtB	E Oxys (Other:			
D.O. (if red	q'd): F	Pre-purge:	3.4	/ mg/L		Post-purge:	4.06	mg/L	
ORP (if red		Pre-purge:		mV		Post-purge:		mV	

		MAIRINS C	OKPUKAI	ION MON	TOKING D	ATA SHEE		
Project #:	6020	01	T5	Station #:	8255	Sanh	eandro St.	
Sampler:	6020 Hender	रूप १		Date: ろ	130 /1.	6		
	couny			Ambient Ai	r Temperat	ure: 67°		
	MW - 10			Well Diame	eter:(2") 3"	4" 6" 8	3"	
Total Well	Depth: 2	o'		Depth to W	/ater: 5	.78'	The second secon	
Depth to F	ree Product	: NA		Thickness	of Free Pro	duct (feet):	N/A	
Reference	d To:			D.O. Meter	(if req'd):	YSI	HACH	
DTW with	80% Recha	rge [(Height	of Water C	olumn x 0.2	20) + DTW]:	•		
Purge Method:	Bailer Disposable Bailer Positive Air Displa Electric Submersit	acement	Waterra Peristaltic Extraction Pump Other		Sampling Method:		Bailer Disposable Bailer Extraction Port Dedicated Tubing	
					Well Diameter	Multiplier Well D	Diameter Multiplier	
			= 2.3	O-11	1"	0.04 4"		
	(Gals.) X	- 17 111-1		Gallons	2" 3"	0.16 6" 0.37 Ot	1.47 ther radius ² * 0.163	
1 Case Volume		Specified Volumes	Calculated Vol	iume	8	0.3/ 0.	ner laulus v. 100	
			Cond. (mS	Turbidity	Gallons			
Time	Temp (°F)	ρН	or µS)	(NTUs)	Removed	Observation	s	
10:33	63.9	6-22	786		`			
10:34	64.9	6.08	729		2			
10.36	67.3	6.02	736		3			
	 					1		
						<u> </u>		
Did well de	water? V	es (No)		Gallone ac	tually evacu	uated: 3		
Dia Well de	Water i	es (NO)		Gallons ac	Luany Evacu	ialeu.		
Sampling I	Date: 3(3)	O Sampli	ng Time: 1	0:39	Depth to V	Vater: 4.0)2	******
		,			1			
Sample ID	MW-11	_D Labora	tory: Mc	(Ampbe	JI.			
					- 1 /			
Analyzed f	or: TPH-g	BTEX MtB	E Oxys C	Other: TR	td /m		Manages	
		- 1 - 1 - 1						
Duplicate I	D:	Analyzed fo	r: TPH-g E	31EX MIBI	E Oxys O	other:		
D.O. (if red		Pre-purge:	4.29	mg/L		Post-purge:	3.11	mg/L
ORP (if red		Pre-nurge:	1.07	mV		Post-nurge:		m\/

			OKPOKAI	RATION MONITORING DATA SHEET									
Project #:	6020	OTS	>	Station #:	8255	Sauhe	randn	St.					
Sampler:	Hender	son		Date: 3									
Weather:	6020 Hender Clondy	Rain		Ambient Ai	r Temperat	ure: 64		_					
Well ID:	Mw-2			Well Diame	eter 2" 3"	′ 4" 6" 8	}" 	-					
Total Well	Depth: \	.2		Depth to W	/ater: 5⋅	49		=					
Depth to F	ree Product:	N/A		Thickness	of Free Pro	duct (feet):	N/A						
Reference	d To:			D.O. Meter	(if req'd):	YSI	HACH						
DTW with	80% Rechar	rge [(Heighi	of Water C	Column x 0.20) + DTW]:									
Purge Method:	Bailer Disposable Bailer Positive Air Displac Electric Submersib		Waterra Peristaltic Extraction Pump Other		Sampling Method:		Bailer Disposable Extraction P Dedicated T	Port					
1 Case Volume	(Gals.) X	Specified Volumes		Gallons	Well Diameter 1" 2" 3"	0.04 4" 0.16 6"		Multiplier 0.65 1.47 radius ² * 0.163					
	-		-										
Time	Temp (°F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gallons Removed	Observation	ıs						
10-40	62.8	6-06	1913		-1								
1042	64.8	5.88	1836		Z	Ges s.	مداا						
10.43	64.8	5.80	1858		3								
					<u> </u>								
Did well de	water? Y	es (No)		Gallons ac	tually evacu	uated: 9.4	48						
Sampling [Date: 31 30	Sampli	ing Time: 19	N:4C	Depth to V	Vater:							
Sampling L	Jaic. VI VV	<u> </u>	ng rine	<u> </u>	Depui to v	valei.							
Sample ID	: MW-Z	Labora	tory: Mc	Campbe	<u> </u>								
Analyzed f	or: TPH-g I	BTEX MtB	BE Oxys C	Other: TP	Hd/mo								
					-				······································				
Duplicate I	D: .	Analyzed for	or: TPH-g E	STEX MtBI	E Oxys C	Other:							
D.O. (if red		Pre-purge:	5.0	mg/L		Post-purge:	4	1.59	mg/L				
ORP (if red		Pre-purge:		mV		Post-purge:			mV				

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: OTS	Date Sampled: 03/30/10
321 Court Street		Date Received: 03/31/10
621 60000 5000	Client Contact: Tom Henderson	Date Reported: 04/07/10
Woodland, CA 95695	Client P.O.:	Date Completed: 04/07/10

WorkOrder: 1003906

April 07, 2010

D 1	т -
Dear	Lom:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: **OTS**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Web	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Telephone: (877) 252-9262 Report To: Ton Henderson Bill To: MATRIKS Corp									0					RN Geo		OU	INI	T	IM	E		RUS	SH	OI	HR		48			72 H) IR 5)n (D'	DAY DAY				
Report To: T6M	Hender	SON	F	Bill To	o: M	AT	2	K	5 (Co-	P	X.		1						A	nal	ysis	Rec	ques	st		_	_				Oth	ier	Con	nments	s	
Company: Matricks Corp 321 Court Street Woodland CA 95695 E-Mail: thenderson Ometrick Tele: (530) 406 1760 Fax: (530) 466 1871 Project #: Project Name: OTS Project Location: OACLAND Sampler Signature: On the American												as Gas (602 / 8021 + 8015)	MTBE / BTEX ONLY (EPA 602 / 8021)		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	searbons (418.1)			EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners				(SVOCs)	(PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	10 / 6020)		-	240	Filto San for ana						
		SAMI	PLING	8	ers	L	MA	ATR	IX		PRI	ESE	RVE	D	TPH	NLY	lotor	0:18	Hydn	8010	081 (C	CB's	NP P	Acidi	8260	8270	8310	200.7	2007	8/60		-	2				
SAMPLE ID LOCATION/ Field Point E E E E E E E E E E E E E E E E E E E											HNO3	Other	MTBE/BTEX &	MTBE / BTEX 0	TPH as Diesel / Motor Oil (8015)	Total Petroleum	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 P	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 5242 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (LUFT 5 Metals (2	Lead (200,7 / 200,8 / 6010 / 6020)	TOH-MG		1000						
EX-1		3/30/10		4		×				T	ĸ	7	T	T	×	×															×	×		Ver	4 416	48	413
Ex -2		1		4		1				1	T			7	1	1)	i					
MW- Z				4		Ħ				1	T			7	1																1		-				
MW.4				4		I					T			1																		1					
MW.5				4						1	П			1																		П				1	
Mw-9		1		4		1				1	П	П		1		T																П				1	
MW-10		1		4		V			7	1	,	V	-	1	1	1														H	1	1	1			1	
						F			7	1	-		1	7																							
									1	1	1	1	1	#																						1	
										+				+																							
Relinquished By: Date: Time: Received By: April Time: Received By: Time: Received By:							,	\forall	HE. DEC	OD AD CHI PRO	CON SPAC LORI OPRI RVE	DIT CE A NAT ATE	BSE ED I CON	NT_ IN L			T.	_				(COM	IME	NTS:	:											
Relinquished By: EVICK OUSEY Date: Time: Received By: 3/31/42/35								7	1	-		RVA		vo		08	kG	ME'		s (отн	ER															

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262			WorkOr	der: 10039	006 (ClientCode: MCW			
	☐ WaterTrax ☐ WriteO	n	Excel	Fax	Email	HardCopy	ThirdParty	☐ J-f	lag
Report to:			Bil	I to:		Re	quested TAT:	5 d	lays
Tom Henderson Matriks Corporation 321 Court Street Woodland, CA 95695 (530) 406-1760 FAX (530) 406-1771	cc: PO: ProjectNo: OTS	@matrikscorp.com		Robert Ne Matriks Co 321 Court Woodland	rporation		ite Received: ite Printed:	03/31/2 03/31/2	
					Requested	Tests (See legend	below)		
Lab ID Client ID	Matrix	Collection Date Hold	1	2 3	4 5	6 7 8	9 10	11	12

				L	Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
			<u> </u>				I .		1	1	1	1	ı	1	1	т п	
1003906-001	EX-1	Water	3/30/2010	Ш	С	В	Α										
1003906-002	EX-2	Water	3/30/2010		С	В	Α										
1003906-003	MW-2	Water	3/30/2010		С	В	Α										
1003906-004	MW-4	Water	3/30/2010		С	В	Α										
1003906-005	MW-5	Water	3/30/2010		С	В	Α										
1003906-006	MW-9	Water	3/30/2010		С	В	Α										
1003906-007	MW-10	Water	3/30/2010		С	В	Α										

Test Legend:

1 9-OXYS_W	2 G-MBTEX_W	3 TPH_W	4	5
6	7	8	9	10
11	12			

Prepared by: Samantha Arbuckle

Comments:

Sample Receipt Checklist

Client Name:	Matriks Corpo	ration			Date a	and Time Received:	3/31/2010	9:46:38 PM
Project Name:	OTS				Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	1003906	Matrix Water			Carrie	r: <u>EnviroTech (Re</u>	<u>C)</u>	
		<u>Ch</u>	ain of Cu	ıstody (C	COC) Informa	ntion		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relin	quished and received	l? Yes	V	No 🗆			
Chain of custody	agrees with samp	le labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC	,	Yes	V	No 🗆			
Date and Time of	collection noted by	Client on COC?	Yes	✓	No \square			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
			Sample	Receip	t Information	!		
Custody seals int	tact on shipping co	ntainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good c	ondition?	Yes	V	No 🗆			
Samples in prope	er containers/bottle	es?	Yes	~	No 🗆			
Sample containe	rs intact?		Yes	✓	No \square			
Sufficient sample	volume for indica	ted test?	Yes	✓	No 🗌			
		Sample Pre	eservatio	n and Ho	old Time (HT)) Information		
All samples recei	ived within holding	time?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	7.3°C		NA \square	
Water - VOA vial	ls have zero head:	space / no bubbles?	Yes	~	No 🗆	No VOA vials subm	itted 🗆	
Sample labels ch	necked for correct	oreservation?	Yes	~	No 🗌			
Metal - pH accep	table upon receipt	(pH<2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes	V	No 🗆			
		(Ice	Type: WE	ET ICE)			
* NOTE: If the "N	No" box is checked	l, see comments belo	W.					
				===				======
Client contacted:		Date con	tacted:			Contacted	by:	
Comments:								

Matriks Corporation
Client Project ID: OTS
Date Sampled: 03/30/10
Date Received: 03/31/10
Client Contact: Tom Henderson
Date Extracted: 04/03/10
Woodland, CA 95695
Client P.O.:
Date Analyzed: 04/03/10

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	Work Order:	1003906				
Lab ID	1003906-001C	1003906-002C	1003906-003C	1003906-004C		
Client ID	EX-1	EX-2	MW-2	MW-4	Reporting DF	Limit for =1
Matrix	W	W	W	W	1	
DF	20	10	10	1	S	W
Compound		Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND<10	ND<5.0	ND<5.0	ND	NA	0.5
t-Butyl alcohol (TBA)	1400	1100	870	4.4	NA	2.0
1,2-Dibromoethane (EDB)	ND<10	ND<5.0	ND<5.0	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<10	ND<5.0	ND<5.0	ND	NA	0.5
Diisopropyl ether (DIPE)	ND<10	ND<5.0	ND<5.0	ND	NA	0.5
Ethanol	ND<1000	ND<500	ND<500	ND	NA	50
Ethyl tert-butyl ether (ETBE)	ND<10	ND<5.0	ND<5.0	ND	NA	0.5
Methanol	ND<10,000	ND<5000	ND<5000	ND	NA	500
Methyl-t-butyl ether (MTBE)	16	79	72	1.3	NA	0.5
	Surr	ogate Recoveries	s (%)			
%SS1:	103	103	109	108		
Comments	b6					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP
extracts are reported in mg/L, wipe samples in μg/wipe.

 $ND\ means\ not\ detected\ above\ the\ reporting\ limit/method\ detection\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Matriks Corporation	Client Project ID: OTS Date Sampled:						
321 Court Street					Date Received:	03/31/10	
		Client Co	ontact: Tom Hen	derson	Date Extracted:	04/03/10	
Woodland, CA 95695		Client P.0	О.:		Date Analyzed:	04/03/10	
Oxygenate	ed Volat	tile Orgar	nics + EDB and 1,	2-DCA by P&T	and GC/MS*		
Extraction Method: SW5030B		Anal	ytical Method: SW826	0B		Work Order:	1003906
Lab ID	100390	06-005C	1003906-006C	1003906-007C			
Client ID	M	W-5	MW-9	MW-10		Reporting DF	Limit for
Matrix	,	W	W	W		1	
DF	1	.00	2	1		S	W
Compound			Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)	NI	D<50	ND<1.0	ND		NA	0.5
t-Butyl alcohol (TBA)	10	,000	190	ND		NA	2.0
1,2-Dibromoethane (EDB)	NΙ	D<50	ND<1.0	ND		NA	0.5
1,2-Dichloroethane (1,2-DCA)	NI	D<50	ND<1.0	ND		NA	0.5
Diisopropyl ether (DIPE)	NΙ	D<50	ND<1.0	ND		NA	0.5
Ethanol	ND<	<5000	ND<100	ND		NA	50
Ethyl tert-butyl ether (ETBE)	NI	D<50	ND<1.0	ND		NA	0.5
Methanol	ND<	50,000	ND<1000	ND		NA	500
Methyl-t-butyl ether (MTBE)	NI	D<50	2.2	0.87		NA	0.5
		Surr	ogate Recoveries	s (%)			
%SS1:	1						

 $ND\ means\ not\ detected\ above\ the\ reporting\ limit/method\ detection\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Comments

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

Matriks Corporation	Client Project ID: OTS	Date Sampled:	03/30/10
321 Court Street		Date Received:	03/31/10
	Client Contact: Tom Henderson	Date Extracted:	04/02/10-04/07/10
Woodland, CA 95695	Client P.O.:	Date Analyzed:	04/02/10-04/07/10

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Bm Extraction method: SW5030B Work Order: 1003906 Lab ID Client ID Matrix $TP\underline{H(g)}$ MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS Comments 001B EX-1 W 170 13 ND ND ND ND 96 d7,b6 002B EX-2 W 76 ND 97 d7,d9,b6 170 0.79 ND ND 1 003B MW-2 W ND<120 2.0 7.1 ND 106 780 2.4 1 d9 004B MW-4 W ND ND ND ND ND ND 1 102 005B W MW-5 90 6.5 ND ND ND ND 1 96 d6/d7 006BMW-9 W ND ND ND ND ND ND 1 92 007B MW-10 W ND ND ND ND ND ND 1 95

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all
TCLP & SPLP extracts in mg/L.

0.5

0.005

0.5

0.005

0.5

0.005

0.5

0.005

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

50

1.0

5.0

0.05

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b6) lighter than water immiscible sheen/product is present

W

- d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram; and/or d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

Reporting Limit for DF = 1;

ND means not detected at or

above the reporting limit

 $\mu g\!/\!L$

mg/Kg

Matriks Corporation	Client Project ID: OTS	Date Sampled:	03/30/10
321 Court Street		Date Received:	03/31/10
	Client Contact: Tom Henderson	Date Extracted:	03/31/10
Woodland, CA 95695	Client P.O.:	Date Analyzed:	04/05/00-04/06/10

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 1003906

Extraction method:	3W3310C	Anarytica	al methods: SW8015B		VV (ork Order:	1003906
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
1003906-001A	EX-1	W	520,000	290,000	200	86	e1,b6
1003906-002A	EX-2	W	1800	840	1	106	e1/e3,b6
1003906-003A	MW-2	W	210	ND	1	106	e2,e11
1003906-004A	MW-4	W	240	680	1	102	e7,e2
1003906-005A	MW-5	W	640	300	1	102	e1,e7
1003906-006A	MW-9	W	110	ND	1	102	e2
1003906-007A	MW-10	W	66	ND	1	102	e2

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLC PTCLP extracts are reported in $\mu g/L$.

- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant; and/or e3) aged diesel is significant
- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant
- e11) stoddard solvent/mineral spirit (?)

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

 $⁺ The \ following \ descriptions \ of \ the \ TPH \ chromatogram \ are \ cursory \ in \ nature \ and \ McCampbell \ Analytical \ is \ not \ responsible \ for \ their \ interpretation:$

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 49671 WorkOrder 1003906

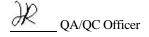
EPA Method SW8260B	Extraction SW5030B Spiked Sample ID: 1003898-004B)04B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc			
7 thaty to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	87	83.5	4.03	95.1	97.5	2.48	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	75.6	71	6.31	101	109	8.47	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	94.5	94	0.436	106	108	1.47	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	105	101	3.92	106	109	2.25	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	110	107	2.83	107	109	2.24	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	85.5	83.9	1.93	105	108	2.85	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	94.7	92.8	1.97	115	118	2.63	70 - 130	30	70 - 130	30
%SS1:	105	25	81	83	2.59	100	101	1.06	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 49671 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003906-001C	03/30/10	04/03/10	04/03/10 3:36 PM	1003906-002C	03/30/10	04/03/10	04/03/10 2:08 AM
1003906-003C	03/30/10	04/03/10	04/03/10 2:47 AM	1003906-004C	03/30/10	04/03/10	04/03/10 3:25 AM
1003906-005C	03/30/10	04/03/10	04/03/10 4:53 PM	1003906-006C	03/30/10	04/03/10	04/03/10 5:32 PM
1003906-007C	03/30/10	04/03/10	04/03/10 6:11 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 49661 WorkOrder 1003906

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1003895-001A											01A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Criteria (%)		
7 may to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	94.6	93.8	0.870	97.3	96.9	0.394	70 - 130	20	70 - 130	20
MTBE	ND	10	97.1	105	8.04	93.2	101	8.02	70 - 130	20	70 - 130	20
Benzene	ND	10	87.1	89.5	2.79	89.2	91.1	2.16	70 - 130	20	70 - 130	20
Toluene	ND	10	87.4	89.6	2.53	89.1	90.9	2.01	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	86.5	88.3	1.98	87.7	89.4	1.91	70 - 130	20	70 - 130	20
Xylenes	ND	30	88.6	90.2	1.78	89.7	91.5	2.00	70 - 130	20	70 - 130	20
%SS:	102	10	96	97	1.24	97	98	0.453	70 - 130	20	70 - 130	20

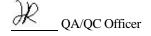
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 49661 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003906-003B	03/30/10	04/06/10	04/06/10 3:33 AM	1003906-004B	03/30/10	04/06/10	04/06/10 4:05 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 49670 WorkOrder 1003906

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1003898-003A											03A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Criteria (%)		
raidiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	90.2	76.2	16.8	110	109	1.16	70 - 130	20	70 - 130	20
MTBE	ND	10	102	107	4.35	83.4	83.9	0.643	70 - 130	20	70 - 130	20
Benzene	ND	10	94.1	101	6.78	98.9	96.5	2.40	70 - 130	20	70 - 130	20
Toluene	ND	10	84	89.9	6.79	102	100	2.25	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	83.7	87.5	4.50	106	103	2.41	70 - 130	20	70 - 130	20
Xylenes	ND	30	95.3	99.4	4.19	108	106	1.66	70 - 130	20	70 - 130	20
%SS:	98	10	100	104	3.44	93	93	0	70 - 130	20	70 - 130	20

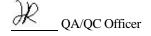
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 49670 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003906-001B	03/30/10	04/06/10	04/06/10 11:12 PM	1003906-002B	03/30/10	04/07/10	04/07/10 3:49 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 49686 WorkOrder 1003906

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1004015-001A											01A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Criteria (%)		
raidiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	92.3	94.8	2.65	92.2	96.2	4.22	70 - 130	20	70 - 130	20
MTBE	ND	10	79.9	80.4	0.597	77.6	78.4	1.07	70 - 130	20	70 - 130	20
Benzene	ND	10	85.2	84	1.42	81.6	84.7	3.76	70 - 130	20	70 - 130	20
Toluene	ND	10	83.1	82.7	0.472	80	82.7	3.31	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	81	82.3	1.60	79.4	81.9	3.15	70 - 130	20	70 - 130	20
Xylenes	ND	30	80.9	82.8	2.40	80	82.4	3.03	70 - 130	20	70 - 130	20
%SS:	100	10	103	98	5.04	102	97	5.46	70 - 130	20	70 - 130	20

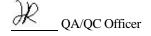
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 49686 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003906-005B	03/30/10	04/03/10	04/03/10 7:29 AM	1003906-006B	03/30/10	04/02/10	04/02/10 10:12 AM
1003906-007B	03/30/10	04/02/10	04/02/10 9:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

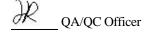
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 49609 WorkOrder 1003906

EPA Method SW8015B		Spiked Sample ID: N/A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	100	101	0.789	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	97	97	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 49609 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1003906-001A	03/30/10	03/31/10	04/06/10 12:09 AM	1003906-002A	03/30/10	03/31/10	04/06/00 6:38 PM	
1003906-003A	03/30/10	03/31/10	04/06/00 7:46 PM	1003906-004A	03/30/10	03/31/10	04/06/00 8:54 PM	
1003906-005A	03/30/10	03/31/10	04/05/00 6:17 PM					


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

W.O. Sample Matrix: Water

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

BatchID: 49685

WorkOrder 1003906

QC SUMMARY REPORT FOR SW8015B

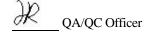
EPA Method SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and, y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	105	106	0.880	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	102	102	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

QC Matrix: Water

BATCH 49685 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1003906-006A	03/30/10	03/31/10	04/05/00 7:25 PM	1003906-007A	03/30/10	03/31/10	04/06/00 5:30 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

