RECEIVED

1:43 pm, Oct 07, 2009

Alameda County
Environmental Health

321 Court Street Woodland California 95695 Tel (530) 406-1760 Fax (530) 406-1071 B Haz 909563

September 29, 2009

Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT: Fuel Leak Case No. RO0000085

SF Oakland Truck Stop 8255 San Leandro Street Oakland, CA 94621

Report Submittal -Semi-Annual Groundwater Monitoring Report- Third Quarter 2009

Dear Mr. Wickham:

Please find enclosed the *Semi-Annual Groundwater Monitoring Report,* prepared by Matriks for Nissan Saidian.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Please call me at 530-406-1760 or email thenderson@matrikscorp.com if you have any questions.

Sincerely,

Tom Henderson

President

SEMI-ANNUAL GROUNDWATER MONITORING REPORT Third Quarter 2009

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94552

SUBMITTED TO:

Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

> September 23, 2009 Project No. 6020

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIO	NAL CERTIFICATION	, 111
ACRONYM	S AND ABBREVIATIONS i	V
INTRODUC	TION	1
PHYSICAL S	ETTING	1
Site Desc	ription	1
Geology	and Soils	1
Groundv	vater	2
PROJECT B	ACKGROUND AND DATA SUMMARY	2
Site Histo	ory	2
SEMI-ANN	JAL MONITORING SCOPE OF WORK	5
Methods		6
	dwater Level Measurements	
Monit	oring Well Purging and Sampling	. 6
RESULTS		. 6
Groundv	vater Levels and Gradient	6
Groundv	vater Analytical Results	7
Geotrack	er Requirements	7
CONCLUSIO	ONS	7
RECOMME	NDATIONS	8
FIGURES		
Figure 1	Site Location Map	
Figure 2	Site Map	
Figure 3	Excavation Remediation Extents	
Figure 4	Groundwater Gradient Map	
Figure 5	Groundwater Hydrographs	
Figure 6	Extent of TPH-d in Groundwater	

TABLES

Table 1 Well Construction Details
 Table 2 Groundwater Elevation Data
 Table 3 Groundwater Analytical Results

APPENDICES

Appendix A Well Sampling Logs

Appendix B Laboratory Analytical Results

PROFESSIONAL CERTIFICATION SEMI-ANNUAL GROUNDWATER MONITORING REPORT Third Quarter 2009

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

Project No. 6020 September 23, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears here on. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user. I declare, under penalty of perjury, that the information and/or recommendations contained document or report is true and the best of my knowledge.

Tom Henderson President David W. Janney, P.G.

Senior Geologist

ACRONYMS AND ABBREVIATIONS

ACEHS Alameda County Environmental Health Services

amsl above mean sea level

ASE Aqua Science Engineers, Inc.

DCA 1,2-dichloroethane
DIPE di-isopropyl ether
DO dissolved oxygen

EDB ethylene di-bromide
EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

ft feet

fbg feet below grade

ft/ft foot per foot

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether mg/Kg milligrams per kilogram

mg/L milligrams per liter

mL milliliter

MW monitoring well

Penn Penn Environmental

RWQCB Regional Water Quality Control Board

SC specific conductance

SRS sensitive receptor survey

tAME tert-amyl methyl ether

tBA tert butyl alcohol

TDS total dissolved solids

TOG total oil and grease

TPH-d total petroleum hydrocarbons as diesel

TPH-g total petroleum hydrocarbons as gasoline

 μ g/L micrograms per liter

μS microsiemens

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report has been prepared to describe the results of the semi-annual groundwater monitoring event during the third quarter 2009, conducted by Matriks Corporation (Matriks) at the Oakland S.F. Truck Stop (the "Site"), located at 8255 San Leandro Street, Oakland, California. The groundwater monitoring event described herein is part of an ongoing monitoring program of petroleum hydrocarbons in groundwater caused by an unauthorized release of petroleum fuels from underground storage tanks (USTs) and/or the associated piping formerly located at the Site. Matriks is conducting the monitoring program on behalf of the Site owner and responsible party, Mr. Nissan Saidian. Alameda County Environmental Health Services (ACEHS) is the lead agency and has determined that this is a high priority site based on California's MtBE guidelines and the presence of a domestic water supply well in proximity to the contaminant plume. The ACEHS case number for the Site is RO0000085. This semi-annual groundwater monitoring event included the collection and laboratory analysis of groundwater samples from groundwater monitoring wells EX-1, EX-2, MW-2, MW-4, MW-5, MW-7, MW-9, and MW-10.

PHYSICAL SETTING

Site Description

The Site is currently an active fuel and weigh station and convenience mart that has been in operation since the 1960s. The surrounding area is comprised of mixed commercial and industrial properties. The Site is located approximately 1½ mile east of San Francisco Bay and approximately ½ mile south of the Oakland-Alameda County Coliseum Complex. Elmhurst Creek provides storm drainage for the surrounding area and flows northwesterly across the west side of the Site. The Site and surrounding area are flat and the Site elevation is approximately 10 feet above mean seal level (amsl). A Site location map is shown on **Figure 1**.

Geology and Soils

Numerous soil borings have been drilled at the Site over the past several years. The boring logs indicate that organic-rich clay is present from the surface to about 16 feet below grade (fbg). This is consistent with the intertidal deposits shown on the published geologic map for this area. At some boring locations, the clay extends deeper, but with less organic matter. Beneath the clay, sandy intervals are generally encountered from 17 to 40 fbg. The sand is locally contains clay, silt, and gravel. Layers of clay or silt several feet thick were present within the sandy interval in some of the borings. Groundwater was first encountered in the borings at depths ranging from 5 to 11 fbg.

Groundwater

Groundwater monitoring wells have been installed at the project Site during several drilling events. These wells are 16 to 20 feet (ft) deep. Monitoring well construction details are included in **Table 1**. The static water levels in the monitoring wells range seasonally from approximately 2.5 to 9.5 ft amsl. The groundwater flow direction is generally to the west. Depending upon which wells are used for the calculations, the gradient has ranged from 0.001 to 0.008 ft/ft. Assuming a gradient of 0.001 ft/ft, effective porosity of 30%, and hydraulic conductivity of 9 gallons/day/ft², the seepage velocity of the groundwater is estimated at 0.004 ft/day. Groundwater samples from the monitoring wells have had specific conductance (SC) values ranging from 455 microsiemens (μ S) to 1,835 μ S, suggesting that total dissolved solids (TDS) concentrations are in the approximate range of 320 milligrams per liter (mg/L) to 1,285 mg/L.

PROJECT BACKGROUND AND DATA SUMMARY

Site History

In May 1998, W.A. Craig, Inc. removed two 4,000-gallon gasoline USTs and one 550-gallon waste oil UST.

In January 1999, Penn Environmental (Penn) was attempting to remove another waste oil UST and encountered difficulties due to the UST's proximity to underground utilities. Penn requested permission from ACEHS and the City of Oakland Fire Department to close the tank inplace. According to a letter report from Penn dated May 27, 1999, ACEHS and the Oakland Fire Department would consider closure in-place if a water sample collected from the tank pit did not contain concentrations of total oil and grease above regulatory action concentrations. Total oil and grease was not detected in the water sample collected from the tank pit and a review of available records on the ACEHS website appears to indicate that the requirements for closure in-place were met and the tank was closed in-place (ACEHS June 15, 1999).

In February 1999, Penn drilled 13 soil borings at the Site and installed groundwater monitoring wells in four of the borings (MW-1 through MW-4). Petroleum hydrocarbons were detected in soil samples from each boring except B7. Petroleum hydrocarbons were also detected in groundwater samples from each open boring and in each monitoring well. The highest concentration of methyl tert-butyl ether (MtBE) detected by laboratory analysis in the boring soil samples was 3.9 milligrams per kilogram (mg/Kg) in boring B-2 at a depth of 4 ft. The highest concentration of total petroleum hydrocarbons as diesel (TPH-d) in the boring soil samples was 2,000 mg/Kg, in boring B-6 at a depth of 4 ft. The highest concentration of MtBE detected in groundwater from the open borings was 28,000 micrograms per liter (μ g/L) in B-8. The highest concentration of TPH-d detected in the groundwater monitoring well samples was 62,000 μ g/L, in groundwater monitoring well MW-1.

In August 1999, Aqua Science Engineers, Inc. (ASE) began conducting quarterly groundwater monitoring events at the Site. Monitoring well MW-1 contained free-phase petroleum hydrocarbons believed to be diesel due to its dark color. Laboratory analysis detected 56,000 μ g/L TPH-g, 17,000 μ g/L benzene, and 6,100 μ g/L MtBE in MW-3.

On December 1, 1999, ASE installed two additional groundwater monitoring wells MW-5 and MW-6. Free-phase petroleum hydrocarbons were again observed on the groundwater surface in monitoring well MW-1. Laboratory analysis detected 17 mg/Kg TPH-d in a soil sample from well boring MW-5 at 6 ft and 2.0 mg/Kg TPH-g in a soil sample from MW-6 also at 6 ft. Both analytical results were noted by the laboratory to have non-typical patterns for TPH-g.

In May and June 2000, ASE drilled eight additional soil borings. The highest concentration of petroleum hydrocarbons detected in boring BH-G was 1,500 mg/Kg TPH-d at 12 ft, in boring BH-A 370 mg/Kg TPH-g and 2.3 mg/Kg benzene at 7.5 feet, and in boring BH-D 1.7 mg/Kg MtBE at 11.5 ft.

In July 2002, ASE installed three additional monitoring wells (MW-7, MW-8, and MW-9). Well locations are depicted in **Figure 2**. ASE also made several attempts to drill a boring in San Leandro Street to define the eastern extent of petroleum hydrocarbons in soil and groundwater east of the Site. Each attempt was met with refusal at relatively shallow depths.

In the report documenting the July 2002 monitoring well installations, ASE presented findings of a sensitive receptor survey (SRS) conducted for the Site. The SRS concluded that due to the flat topography of the area and its close proximity to San Francisco Bay, Elmhurst Creek is likely to be tidally influenced. ASE also concluded that this was a likely explanation for the variable groundwater gradient at the Site (ASE 2002). The SRS also identified three wells within a 2,000-foot radius of the Site. One well was identified as industrial and two wells were identified as irrigation wells. No domestic or municipal water supply wells were identified within the search radius (ASE 2002). The current status of these wells has not been assessed.

In February 2004, ASE subcontracted Subtronic Corporation to perform a ground magnetometer geophysical survey on the Site to identify additional USTs. No USTs were identified although two areas were identified that appeared to have buried reinforced concrete due to the magnetic response of the rebar which might mask the USTs. The presence of buried metal objects, such as a UST, could not be ruled out in these areas (ASE 2004). Subtronic subsequently conducted a ground penetrating radar geophysical survey of the two magnetometer anomalies in September 2006. No USTs were identified in either location (ASE 2007).

On July 10, 2006, ASE collected a sample of free-phase petroleum hydrocarbons from monitoring well MW-1. The sample was analyzed by modified EPA Method 8015 and a forensic analysis was conducted on the chromatogram. The laboratory indicated that the product was

indicative of middle distillates such as diesel fuel #2 or heating oil. The abundance of isoprenoids in conjunction with the absence of normal alkanes indicates that the fuel had undergone substantial biological degradation (ASE 2007).

In September 2006, ASE advanced 11 soil borings. Borings BH-I through BH-L and BH-S, were advanced to a depth of 50 ft, using an EP Sonic drill rig. Borings BH-M through BH-R were installed on and off-site using a Geoprobe direct push drill rig. The highest concentration of TPH-d detected by laboratory analysis of soil samples from boring BH-L was 2,200 mg/Kg at 19.5 ft. Boring BH-L also contained the highest concentration of MtBE at 0.81 mg/Kg at 14.5 ft. The highest concentration of tBA detected in boring BH-I was 2.2 μ g/L at 14.5 ft. The groundwater sample from BH-L reported the highest level of TPH-d concentrations of 27,000 μ g/L (15-18 feet bgs) (ASE 2007).

During this same time, six temporary well points were installed to define the extent of free-phase floating petroleum hydrocarbons in the vicinity of the dispenser islands. PVC casing was placed in the temporary well points and remained overnight. Free-phase floating petroleum hydrocarbons were measured in boring TH-6 at a thickness of 2.54 ft. None of the other borings contained a measurable thickness of free-phase floating petroleum hydrocarbons but a petroleum hydrocarbon sheen was observed. While the borings were being backfilled, ASE noted that a thin layer of free-phase petroleum hydrocarbons was pushed to the surface on top of the cement in borings TH-2 and TH-4. Based on the results from the temporary wells, ASE returned in January 2007 and installed additional temporary well points TH-7 and TH-8. The PVC casing was placed in these wells for six hours. After six hours there was only water in boring TH-7. Laboratory analysis detected 22,000 μ g/L in a groundwater sampled collected from TH-7.

Free-phase floating hydrocarbons were removed from monitoring well MW-1 from August 1999 to March 2008, on schedules ranging from weekly to monthly. According to ASE's report dated March 9, 2007, over 140 gallons of free-phase floating diesel had been removed from monitoring well MW-1 as of March 2007.

ASE installed monitoring well MW-10 on October 10, 2006. Laboratory analytical results for a groundwater water sample collected from MW-10 on October 12, 2006 contained 1.7 μ g/L MtBE and 82 μ g/L tBA. No other analytes were detected in this sample.

ASE prepared and submitted to ACEHS the *Revised Remedial Action Plan for Underground Storage Tank and Dispenser Removal and Soil and Groundwater Remediation*, dated August 16, 2007 which was supplemented by, *Remedial Action Plan Addendum, Oakland Truck Stop*, dated October 19, 2007. The plans proposed site remediation through excavation, dewatering, and free-phase floating product removal.

In a letter dated May 6, 2008, the ACEHS requested that the proposed scope of work be reviewed for the initial soil excavation and a Revised Corrective Action Plan be submitted.

In May 2008, the Site owners retained Matriks to conduct quarterly groundwater monitoring and prepare for further site remediation. Matriks prepared and submitted to ACEHS a *Revised Corrective Action Plan*, dated May 7, 2008 that included the construction of a French drain under the existing dispenser islands to facilitate the future removal of free-phase floating product. ACEHS approved the work in a letter dated May 16, 2008. The approved plan included a reduced amount of excavation, free-phase product removal, and the abandonment of monitoring wells MW-1, MW-3, and MW-6.

In July 2008, monitoring wells MW-1, MW-3, and MW-6 were properly abandoned during the removal of five USTs and all associated piping and dispensers. Approximately 2,330 tons of petroleum hydrocarbon impacted soil was also removed. A large French drain was constructed beneath the dispenser islands and is in connection with extraction well EX-1. Excavation extents are shown on **Figure 3**. Three new double-walled USTs, six new dispensers, new double-walled piping and containment sumps, and a continuous monitoring system were installed to prevent further hydrocarbon releases onsite.

SEMI-ANNUAL MONITORING SCOPE OF WORK

The scope of work performed for this semi-annual monitoring included the following tasks:

- Measured static water levels in eight monitoring wells;
- Measured groundwater, collected field quality field parameters of dissolved oxygen, pH, temperature, and SC from each well;
- Purged at least three casing volumes from each well;
- Collected groundwater samples from each well;
- Analyzed groundwater samples for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Updated the Geotracker database; and
- Prepared this Semi-Annual Monitoring Report.

Methods

Groundwater Level Measurements

The semi-annual groundwater monitoring event was conducted on September 12, 2009. Each well cap was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before taking a water depth measurement with an electronic water depth indicator. The static water level measurements were referenced to the surveyed marks on the top of each well casing. The depth-to-water measurements were used to calculate the purge volume of each monitoring well.

Monitoring Well Purging and Sampling

Prior to sample collection, at least three well volumes were purged from each well using a clean disposable bailer. Prior to bailing dissolved oxygen (DO) was measured. During purging, groundwater temperature, pH, and SC were measured and recorded on regular intervals with portable instrumentation. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled 55-gallon, DOT-approved steel drums, sealed, and temporarily stored onsite for subsequent proper disposal.

Following purging, groundwater samples were collected from each monitoring well using a new disposable bailer. Samples for TPH-G, BTEX, and fuel oxygenates were decanted into laboratory supplied 40-mL volatile organic analysis (VOA) vials containing hydrochloric acid as a preservative. Care was taken to eliminate headspace in each VOA prior to capping. Samples for TPH-d were decanted into laboratory supplied 1-liter amber glass jars. Samples were labeled to indicate the project number, sample ID, and date collected. The same information was recorded on the chain-of-custody forms. Samples were stored in a cooler with ice for transport to the laboratory.

Samples were submitted under documented chain-of-custody control to McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels, Dissolved Oxygen and Gradient

Initial DO concentrations in the wells ranged from 1.39 mg/L in EX-1 to 2.64 mg/L in MW-7. The groundwater flow direction is calculated to be to the west, toward San Francisco Bay and Elder Creek, with a gradient of 0.001 foot per foot. Historical groundwater elevation data are

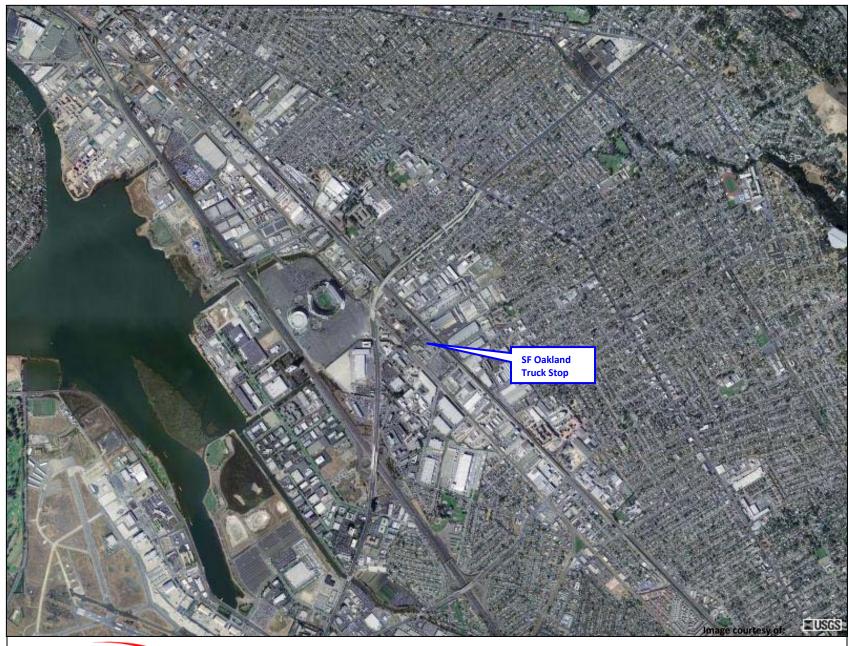
included in **Table 2**. Groundwater elevation contours are depicted on **Figure 4**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 5**.

Groundwater Analytical Results

TPH-d was detected in each monitoring well ranging from 73,000 μ g/L in EX-1 to 87 μ g/L in MW-7. Benzene was detected above the MCL only in well MW-5 at 7.3 μ g/L. The constituent tBA was also detected in each monitoring well sample, except for MW-10 and MW-7, in concentrations as high as 8,600 μ g/L in MW-5, however, this is below the ESL for tBA of 18,000 μ g/L. Concentrations of petroleum hydrocarbons detected in groundwater samples collected during this groundwater monitoring event were within the range of historically detected concentrations. Groundwater analytical results for this and previous groundwater monitoring events are summarized in **Table 3**. A copy of the laboratory analytical report is included in **Appendix B**.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by State Assembly Bill 2886 (Water Code Section 13195-13198). Electronic data files were prepared and formatted by McCampbell and electronically submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. Well status and usage reports (GEO_WELL file) were also prepared and submitted for this groundwater monitoring event as was a complete electronic copy of this report (GEO_REPORT file) in portable document file format.

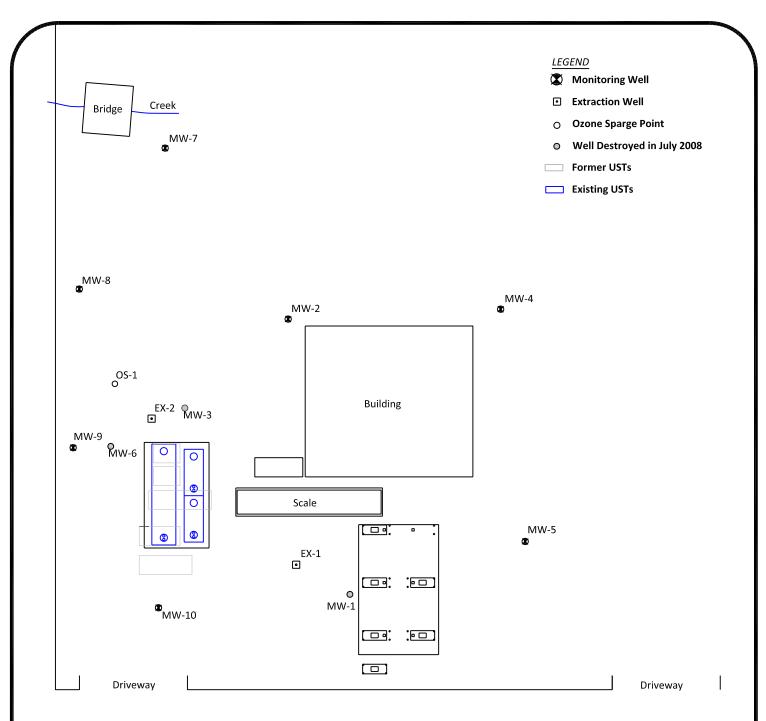

CONCLUSIONS

The groundwater flow direction calculated for this quarterly event is west with a gradient of 0.001. A petroleum hydrocarbon sheen is present on groundwater in EX-1 in the dispenser area. This well has historically contained a measurable thickness of petroleum hydrocarbons on groundwater, but its thickness appears to have been reduced by the removal of free-phase product, water, and soil during the Site remedial activities conducted in July 2008. The extent of TPH-d in groundwater is depicted in **Figure 6**. The constituent tBA is increasing in concentration with time in MW-5. The concentration of tBA appears to be deceasing or remaining about the same in the remainder of the wells. Before MW-3 was abandoned, groundwater samples collected from it contained some of the highest concentrations of benzene and MtBE detected in groundwater samples and constituent trends appeared to be increasing. Groundwater in this general vicinity is currently not monitored because MW-3 was removed during the July 2008 remedial action. We believe that the lateral and vertical extent of petroleum hydrocarbons in groundwater has been adequately characterized and no further lateral of vertical characterization is warranted.

RECOMMENDATIONS

Matriks recommends the installation of a new groundwater monitoring well west of the tank pit to replace MW-3. This well should be constructed as a 4-inch well in a large flush-mounted well box to allow for possible additional remediation. A feasibility study recommending ozone sparging with hydrogen peroxide injection has been submitted to ACEHS. Upon approval, a final remediation plan will be submitted to ACEHS outlining the installation of additional wells and the remediation system.

FIGURES



321 Court Street Woodland, California (530) 406-1760

Lic. No. 909563
Fax No. (530) 406-1071

Site Location Map SF Oakland Truck Stop 8255 San Leandro Street, Oakland, CA

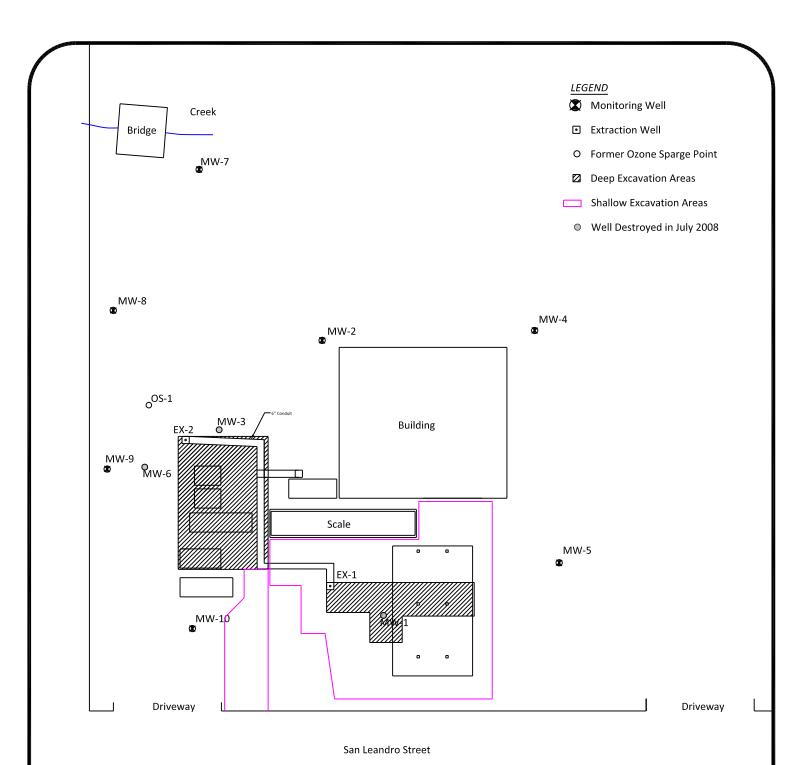
Figure 1

San Leandro Street

Site Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California

Project #: 6019


Date: 09/23/09

Scale: 1" = 40'

Figure:

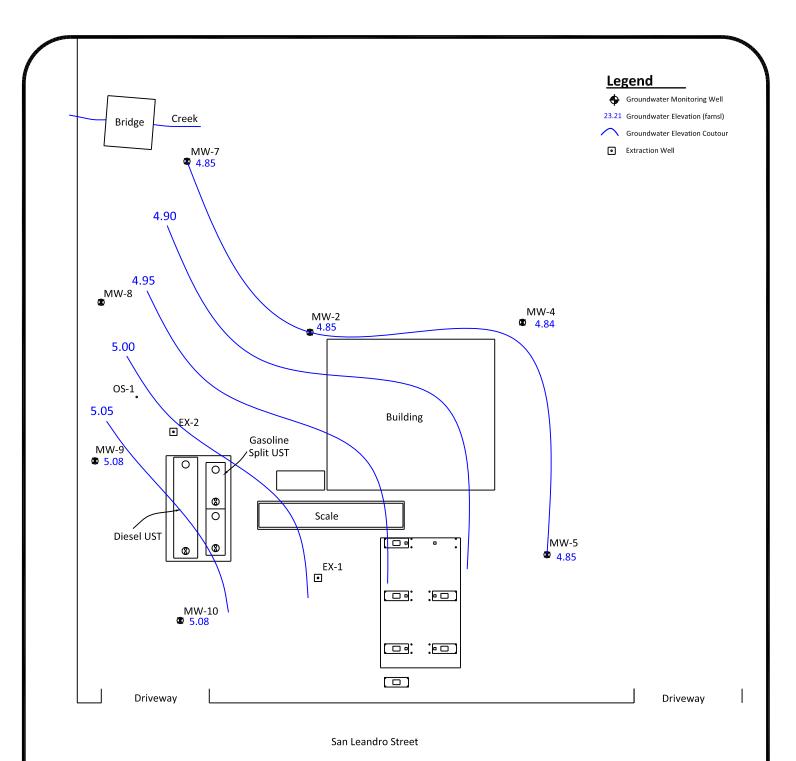
321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Excavation Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California

321 Court Street Lic. No. 909563 Woodland, California 95695


(530) 406-1760 Fax# (530) 406-1071

Project#: 6020 Figure:

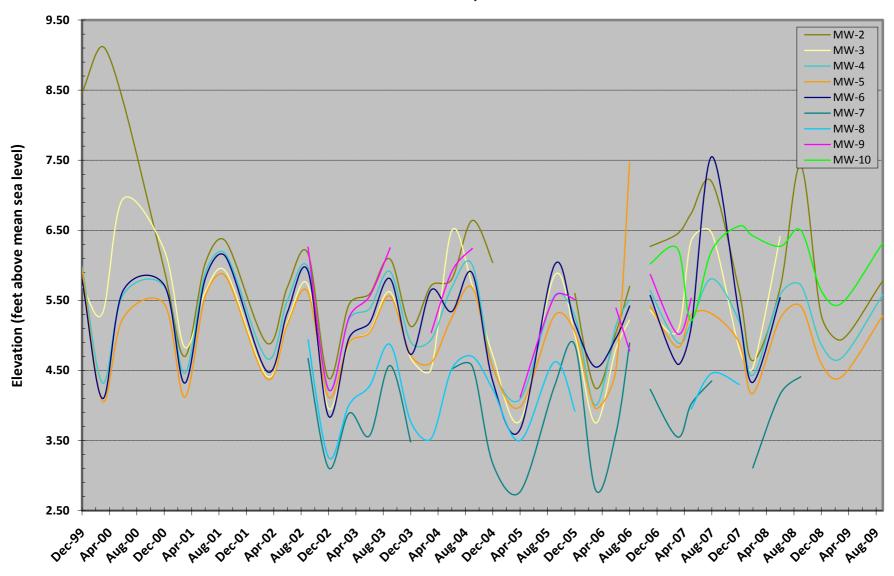
Date: 09/23/09

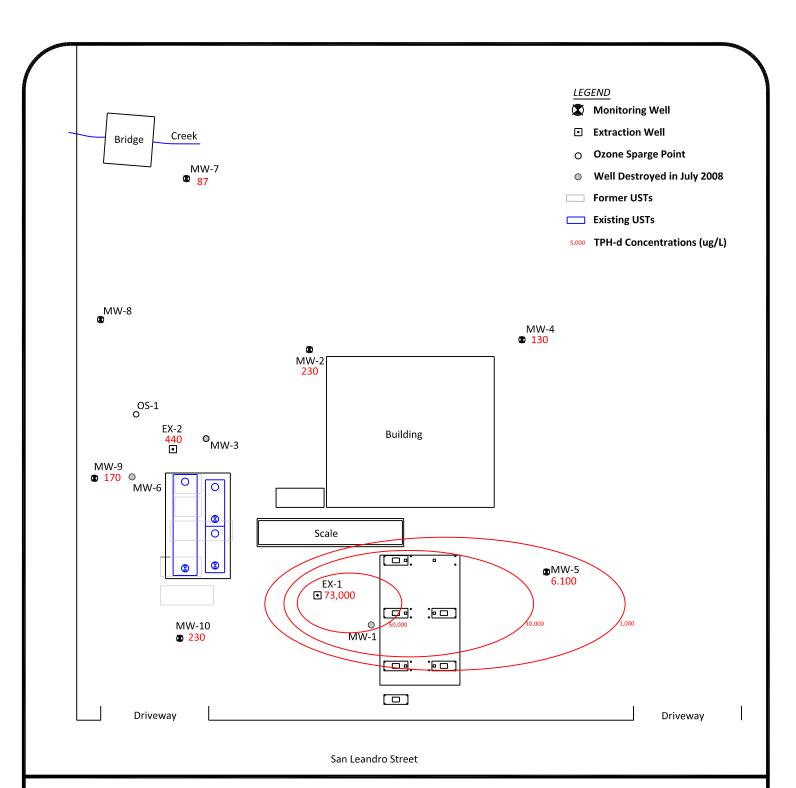
Scale: 1" = 40'

Site Groundwater Gradient September 12, 2009

Oakland Truck Stop Oakland, California

8255 San Leandro Street




Figure: Project #: 6020 Date: 09/23/2009 Scale: 1" = 40'

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

Figure 5. Monitoring Well Hydrographs
Oakland Truck Stop
Oakland, CA

Oakland Truck Stop 8255 San Leandro Street Oakland, California

Project #: 6020

Date: 09/23/2009

Scale: 1" = 40'

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1071

TABLES

Table 1
Well Construction Details
8255 San Leandro Street
Oakland, California

Well ID	Date Installed	Total Depth (feet)	Screened Interval (feet)	Water- Bearing Zone	Screen Slot Size (inches)		Bentonite Interval (feet)	Grout Interval (feet)	TOC Elevation (feet amsl)	Northing Coordinates (feet)	Easting Coordinates (feet)	Comments
MW-1	02/18/99	16.5	15.5-5.5	Clay	0.02	16.5-4.5	4.5-3	31	11.02	2099557.04	6072595.30	Well abandoned 7-08
EX-1	07/28/08	13.5	13.5 - 1	3/4 Crush rock	0.5	NA	NA	NA	8.21	2099537.05	6072605.07	Well placed in remediation french drain for extraction
MW-2	02/19/99	16.5	15.5.5	Clayey Fine Sand	0.02	16.5-4.5	4.5-3	31	10.63	2099465.48	6072531.46	
MW-3	02/18/99	16.5	15.5 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.33	2099455.51	6072586.53	Well abandoned 7-08
MW-4	02/19/99	16.5	15 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.42	2099528.03	6072468.70	
MW-5	12/01/99	15	15 - 5	Clay	0.02	15-4	4-3.5	3.5-1.5	10.13	2099600.85	6072533.52	
MW-6	12/01/99	15	15 - 5	Sandy Silt	0.02	15-4	4-3.5	3.5-1.5	10.71	2099444.41	6072615.62	Well abandoned 7-08
EX-2	07/28/08	17	17 - 1	pea gravel	0.5	NA	NA	NA	8.18	2099430.44	6072600.10	Well placed in UST pea gravel for extraction
MW-7	07/08/02	16.5	16.5 - 5	Silty Sand, Clayey Silt	0.02	16.5-4	4-3.5	3.5-1.5	9.08	2099379.77	6072513.11	
MW-8	07/08/02	15.5	15 - 5	Silty Sand, Clayey Silt	0.02	15.5-4	4-3.5	3.5-1.5	9.61	2099392.92	6072580.86	
MW-9	07/08/02	20	20 - 5	Silty Sand, Silty Clay	0.02	20-4	4-3.5	3.5-1.5	10.99	2099435.20	6072631.28	
MW-10	10/10/06	20	20 - 5	Silty Clay	0.02	20-4	4-3.5	3.5-1.5	11.40	2099506.21	6072656.48	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-1	08/16/99	11.02	NM	NM	
	08/27/99		6.85	4.17	
	09/10/99		6.65	4.37	0.20
	09/24/99		6.87	4.15	-0.22
	10/08/99		6.81	4.21	0.06
	10/22/99		6.94	4.08	-0.13
	11/02/99		6.91	4.11	0.03
	11/19/99		6.93	4.09	-0.02
	12/06/99		5.93	5.09	1.00
	03/08/00		6.57	4.45	-0.64
	06/14/00		6.70	4.32	-0.13
	12/11/00		5.75	5.27	0.95
	03/06/01		7.60	3.42	-1.85
	06/06/01		6.80	4.22	0.80
	09/04/01		7.47	3.55	-0.67
	03/11/02		6.49	4.53	0.98
	06/06/02		6.49	4.53	0.00
	09/04/02		6.89	4.13	-0.40
	12/17/02		4.65	6.37	2.24
	03/07/03		6.55	4.47	-1.90
	06/05/03		9.77	1.25	-3.22
	09/19/03		6.56	4.46	3.21
	12/12/03		5.63	5.39	0.93
	03/15/04		7.11	3.91	-1.48
	06/22/04		NM	NM	
	09/21/04		NM	NM	
	12/30/04		NM	NM	
	04/06/05		5.70	5.32	
	09/29/05		5.40	5.62	0.30
	12/09/05		10.70	0.32	-5.30
	03/07/06		9.05	1.97	1.65
	06/20/06		4.61	6.41	4.44
	08/23/06		5.51	5.51	-0.90
	10/12/06		NM	NM	
	11/09/06		5.56	5.46	
	03/20/07		9.69	1.33	-4.13
	05/17/07		9.55	1.47	0.14
	08/16/07		6.95	4.07	2.60
	12/05/07		5.50	5.52	1.45
	02/27/08		7.28	3.74	
	06/28/08		NM	NM L 7 (2 (00	
	09/27/08		Well Abandon		
EX-1	09/27/08	8.21			
	12/30/08		No measurem	ent due to free	product
	03/28/09		No measurem	ent due to free	product
	09/12/09		6.45	1.76	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-2	08/16/99	10.63	6.30	4.33	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		8.46	2.17	
	03/08/00		9.12	1.51	-0.66
	06/14/00		8.34	2.29	0.78
	12/11/00		5.94	4.69	2.40
	03/06/01		4.70	5.93	1.24
	06/06/01		6.03	4.60	-1.33
	09/04/01		6.34	4.29	-0.31
	03/11/02		4.89	5.74	1.45
	06/06/02		5.69	4.94	-0.80
	09/04/02		6.17	4.46	-0.48
	12/17/02		4.39	6.24	1.78
	03/07/03		5.44	5.19	-1.05
	06/05/03		5.59	5.04	-0.15
	09/19/03		6.09	4.54	-0.50
	12/12/03		5.13	5.50	0.96
	03/15/04		5.71	4.92	-0.58
	06/22/04		5.80	4.83	-0.09
	09/21/04		6.64	3.99	-0.84
	12/30/04		6.04	4.59	0.60
	04/06/05		NM	NM	
	09/29/05		NM	NM	
	12/09/05		5.60	5.03	
	03/07/06		4.25	6.38	1.35
	06/20/06		5.04	5.59	-0.79
	08/23/06		5.70	4.93	-0.66
	10/12/06		NM	NM	
	11/09/06		6.27	4.36	
	03/20/07		6.45	4.18	-0.18
	05/17/07		6.74	3.89	-0.29
	08/16/07		7.19	3.44	-0.45
	12/05/07		5.64	4.99	1.55
	02/27/08		4.64	5.99	1.00
	06/28/08		5.68	4.95	-1.04
	09/27/08	10.63	7.42	3.21	-1.74
	12/30/08		5.29	5.34	2.13
	03/28/09		4.94	5.69	0.35
	09/12/09		5.78	4.85	-0.84

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-3	08/16/99	10.32	5.85	4.47	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.7	4.62	
	03/08/00		5.32	5.00	0.38
	06/14/00		6.95	3.37	-1.63
	12/11/00		6.22	4.10	0.73
	03/06/01		4.83	5.49	1.39
	06/06/01		5.62	4.70	-0.79
	09/04/01		5.91	4.41	-0.29
	03/11/02		4.42	5.90	1.49
	06/06/02		5.19	5.13	-0.77
	09/04/02		5.72	4.60	-0.53
	12/17/02		3.96	6.36	1.76
	03/07/03		4.88	5.44	-0.92
	06/05/03		5.05	5.27	-0.17
	09/19/03		5.62	4.70	-0.57
	12/12/03		4.68	5.64	0.94
	03/15/04		4.52	5.80	0.16
	06/22/04		6.49	3.83	-1.97
	09/21/04		5.72	4.60	0.77
	12/30/04		4.72	5.60	1.00
	04/06/05		3.78	6.54	0.94
	09/29/05 12/09/05		5.85	4.47	-2.07
	03/07/06		5.01 3.75	5.31	0.84
	06/20/06			6.57	1.26
	08/23/06		4.81 5.22	5.51 5.10	-1.06 -0.41
	10/12/06		NM	NM	-0.41
	11/09/06		5.36	4.96	
	03/20/07		5.06	5.26	0.30
	05/17/07		6.35	3.97	-1.29
	08/16/07		6.46	3.86	-0.11
	12/05/07		4.82	5.50	1.64
	02/27/08		4.54	5.78	0.28
	06/28/08		6.41	3.91	-1.87
	09/27/08		Well Abandon	•	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-4	08/16/99	10.50	6.12	4.38	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.98	4.52	
	03/08/00		4.32	6.18	1.66
	06/14/00		5.58	4.92	-1.26
	12/11/00		5.70	4.80	-0.12
	03/06/01		4.46	6.04	1.24
	06/06/01		5.89	4.61	-1.43
	09/04/01		6.16	4.34	-0.27
	03/11/02		4.67	5.83	1.49
	06/06/02		5.50	5.00	-0.83
	09/04/02		5.97	4.53	-0.47
	12/17/02		4.22	6.28	1.75
	03/07/03		5.23	5.27	-1.01
	06/05/03		5.38	5.12	-0.15
	09/19/03		5.91	4.59	-0.53
	12/12/03		4.91	5.59	1.00
	03/15/04		4.94	5.56	-0.03
	06/22/04		5.68	4.82	-0.74
	09/21/04		6.01	4.49	-0.33
	12/30/04		4.55	5.95	1.46
	04/06/05		4.09	6.41	0.46
	09/29/05		5.56	4.94	-1.47
	12/09/05		5.28	5.22	0.28
	03/07/06		4.00	6.50	1.28
	06/20/06		5.14	5.36	-1.14
	08/23/06		5.51	4.99	-0.37
	10/12/06		NM	NM 4.00	
	11/09/06		5.64	4.86	
	03/20/07		4.90	5.60	0.74
	05/17/07		5.18	5.32	-0.28
	08/16/07		5.81	4.69	-0.63
	12/05/07		5.20	5.30	0.61
	02/27/08		4.43	6.07	0.77
	06/28/08	40.45	5.58	4.92	-1.15
	09/27/08	10.42	5.72	4.70	-0.22
	12/30/08		4.87	5.55	0.85
	03/28/09 09/12/09		4.68 5.58	5.74 4.84	0.19 -0.90

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-5	12/06/99	10.20	5.94	4.26	
	03/08/00		4.06	6.14	1.88
	06/14/00		5.25	4.95	-1.19
	12/11/00		5.45	4.75	-0.20
	03/06/01		4.12	6.08	1.33
	06/06/01		5.56	4.64	-1.44
	09/04/01		5.84	4.36	-0.28
	03/11/02		4.38	5.82	1.46
	06/06/02		5.16	5.04	-0.78
	09/04/02		5.62	4.58	-0.46
	12/17/02		4.12	6.08	1.50
	03/07/03		4.89	5.31	-0.77
	06/05/03		5.04	5.16	-0.15
	09/19/03		5.56	4.64	-0.52
	12/12/03		4.72	5.48	0.84
	03/15/04		4.61	5.59	0.11
	06/22/04		5.25	4.95	-0.64
	09/21/04		5.68	4.52	-0.43
	12/30/04		4.55	5.65	1.13
	04/06/05		3.98	6.22	0.57
	09/29/05		5.28	4.92	-1.30
	12/09/05		5.05	5.15	0.23
	03/07/06		3.96	6.24	1.09
	06/20/06		4.51	5.69	-0.55
	08/23/06		7.47	2.73	-2.96
	10/12/06		NM	NM	
	11/09/06		5.42	4.78	
	03/20/07		4.83	5.37	0.59
	05/17/07		5.29	4.91	-0.46
	08/16/07		5.31	4.89	-0.02
	12/05/07		4.90	5.30	0.41
	02/27/08		4.17	6.03	0.73
	06/28/08		5.24	4.96	-1.07
	09/27/08	10.13	5.42	4.71	-0.25
	12/30/08		4.60	5.53	0.82
	03/28/09		4.41	5.72	0.19
	09/12/09		5.28	4.85	-0.87

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-6	12/06/99	10.71	5.8	4.91	
	03/08/00		4.1	6.61	1.7
	06/14/00		5.64	5.07	-1.54
	12/11/00		5.72	4.99	-0.08
	03/06/01		4.32	6.39	1.4
	06/06/01		5.81	4.9	-1.49
	09/04/01		6.12	4.59	-0.31
	03/11/02		4.49	6.22	1.63
	06/06/02		5.33	5.38	-0.84
	09/04/02		5.92	4.79	-0.59
	12/17/02		3.85	6.86	2.07
	03/07/03		4.96	5.75	-1.11
	06/05/03		5.18	5.53	-0.22
	09/19/03		5.81	4.9	-0.63
	12/12/03		4.73	5.98	1.08
	03/15/04		5.65	5.06	-0.92
	06/22/04		5.34	5.37	0.31
	09/21/04		5.89	4.82	-0.55
	12/30/04		4.35	6.36	1.54
	04/06/05		3.66	7.05	0.69
	09/29/05		6	4.71	-2.34
	12/09/05		5.17	5.54	0.83
	03/07/06		4.55	6.16	0.62
	06/20/06		4.96	5.75	-0.41
	08/23/06		5.42	5.29	-0.46
	10/12/06		NM	NM	
	11/09/06		5.57	5.14	
	03/20/07		4.59	6.12	0.98
	05/17/07		5.12	5.59	-0.53
	08/16/07		7.55	3.16	-2.43
	12/05/07		5.3	5.41	2.25
	02/27/08		4.33	6.38	0.97
	06/28/08		5.54	5.17	-1.21
	09/27/08		Well Abandon	ed 7/3/08	
EX-2	09/27/08	8.18			
	12/30/08		2.63	5.55	2.63
	03/28/09		2.40	5.78	-0.23
	09/19/09		5.90	2.28	-3.50

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-7	09/04/02	9.17	4.67	4.50	
	12/17/02		3.11	6.06	1.56
	03/07/03		3.89	5.28	-0.78
	06/05/03		3.57	5.60	0.32
	09/19/03		4.57	4.60	-1.00
	12/12/03		3.48	5.69	1.09
	03/15/04		NM	NM	
	06/22/04		4.52	4.65	
	09/21/04		4.56	4.61	-0.04
	12/30/04		3.17	6.00	1.39
	04/06/05		2.77	6.40	0.40
	09/29/05		4.27	4.90	-1.50
	12/09/05		4.86	4.31	-0.59
	03/07/06		2.80	6.37	2.06
	06/20/06		3.60	5.57	-0.80
	08/23/06		4.89	4.28	-1.29
	10/12/06		NM	NM	
	11/09/06		4.23	4.94	
	03/20/07		3.55	5.62	0.68
	05/17/07		4.02	5.15	-0.47
	08/16/07		4.35	4.82	-0.33
	12/05/07		NM	NM	
	02/27/08		3.11	6.06	
	06/28/08		4.16	5.01	-1.05
	09/27/08	9.08	4.41	4.67	-0.34
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		4.23	4.85	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-8	09/04/02	9.68	4.94	4.74	
	12/17/02		3.26	6.42	1.68
	03/07/03		4.01	5.67	-0.75
	06/05/03		4.28	5.4	-0.27
	09/19/03		4.87	4.81	-0.59
	12/12/03		3.77	5.91	1.1
	03/15/04		3.53	6.15	0.24
	06/22/04		4.52	5.16	-0.99
	09/21/04		4.7	4.98	-0.18
	12/30/04		4.23	5.45	0.47
	04/06/05		3.5	6.18	0.73
	09/29/05		4.62	5.06	-1.12
	12/09/05		3.92	5.76	0.7
	03/07/06		NM	NM	
	06/20/06		3.84	5.84	
	08/23/06		NM	NM	
	10/12/06		NM	NM	
	11/09/06		4.39	5.29	
	03/20/07		NM	NM	
	05/17/07		3.95	5.73	
	08/16/07		4.46	5.22	-0.51
	12/05/07		4.3	5.38	0.16
	02/27/08		NM	NM	
	06/28/08		NM	NM	
	09/27/08	9.61	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-9	09/04/02	11.07	6.26	4.81	
	12/17/02		4.23	6.84	2.03
	03/07/03		5.26	5.81	-1.03
	06/05/03		5.56	5.51	-0.30
	09/19/03		6.25	4.82	-0.69
	12/12/03		NM	NM	
	03/15/04		5.04	6.03	
	06/22/04		5.91	5.16	-0.87
	09/21/04		6.24	4.83	-0.33
	12/30/04		NM	NM	
	04/06/05		4.12	6.95	
	09/29/05		5.55	5.52	-1.43
	12/09/05		5.51	5.56	0.04
	03/07/06		NM	NM	
	06/20/06		5.39	5.68	
	08/23/06		4.78	6.29	0.61
	10/12/06		NM	NM	
	11/09/06		5.87	5.20	
	03/20/07		5.02	6.05	0.85
	05/17/07		5.53	5.54	-0.51
	08/16/07		NM	NM	
	12/05/07		NM	NM	
	02/27/08		NM	NM	
	06/28/08		5.90	5.17	
	09/27/08	10.99	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
	09/12/09		5.91	5.08	
MW-10	10/12/06	11.56	6.02	5.54	
	11/09/06		6.24	5.32	-0.22
	03/20/07		5.21	6.35	1.03
	05/17/07		6.21	5.35	-1.00
	08/16/07		6.56	5.00	-0.35
	12/05/07		6.42	5.14	0.14
	06/28/08		6.27	5.29	0.15
	09/27/08	11.4	6.50	4.90	-0.39
	12/30/2008		5.64	5.76	0.86
	3/28/2009		5.46	5.94	0.18
	9/12/2009		6.32	5.08	-0.86

All measurements are in feet. DTW = Depth to water below top of PVC casing.

TOC = Top of casing. ELEV = Elevation above mean sea level.

 ${\bf D}$ = The change in water level (elevation this quarter minus elevation last quarter). ${\bf NM}$ = not measured

 Δ = Change in groundwater elevation from previous event

Table 3 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	Е	х	MtBE	DIPE	EtBE	tAME	tBA
MW-1	08/16/99				Not:	Sampled I	Due to Fr	ee-Floatin	g Hydroca	arbon		1	
	12/06/99		Not Sampled Due to Free-Floating Hydrocarbons 0.12 feet										
	03/08/00							ating Hyd					
	06/14/00				•			ating Hyd			et		
	12/11/00			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	o.60 fe	et		
	03/06/01							ating Hyd					
	06/06/01			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.48 fe	et		
	09/04/02			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	0.20 fe	et		
	03/11/02				Not Sa	ampled D	ue to Fre	e-Floating	Hydrocar	bons			
	06/06/02			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	0.67 fe	et		
	09/04/02			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	0.54 fe	et		
	12/17/02				Not Sa	ampled D	ue to Fre	e-Floating	Hydrocar	bons			
	03/07/03			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.19 fe	et		
	06/05/03			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	4.63 fe	et		
	09/19/03			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	0.32 fe	et		
	12/12/03			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	0.41 fe	et		
	03/15/04			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	o.40 fe	et		
	06/22/04				Not Sa	ampled D	ue to Fre	e-Floating	Hydrocar	bons			
	09/21/04				Not S	Sampled D	ue to Fr	ee-Floating	, Hydroca	rbons			
	12/30/04							ee-Floating					
	04/06/05			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.40 fe	et		
	09/29/05			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.00 fe	et		
	12/09/05							ating Hyd					
	03/06/06							ating Hyd					
	06/20/06				•			ating Hyd					
	08/23/06							ating Hyd					
	11/16/06				•			ating Hyd			et		
	03/20/07							ating Hyd			et		
	05/17/07							ating Hyd			et		
	08/16/07			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.05 fe	et		
	12/05/07			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.40 fe	et		
	02/27/08			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.40 fe	et		
	06/28/08			N	lot Sampl	ed Due to	Free-Flo	ating Hyd	ocarbons	1.17 fe	et		
	07/03/08							andoned					
EX-1	09/27/08			N	lot Sampl	ed Due to	Free-Flo	ating Hydi	ocarbons	0.005 fe	et		
	12/30/08			N	lot Sampl	ed Due to	Free-Flo	ating Hydi	ocarbons	0.005 fe	et		
	03/28/09			N	lot Sampl	ed Due to	Free-Flo	ating Hydi	ocarbons	0.005 fe	et		
	09/12/09	550	73,000	24,000	<0.5	<0.5	<0.5	<0.5	35	<10	<10	<10	1,400

Table 3 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	Е	х	MtBE	DIPE	EtBE	tAME	tBA	
MW-2	08/16/99	2,200	970	<500	3.8	<2.0	3	<4.0	<20	NA	NA	NA	NA	
	12/06/99	1,900	400	<500	16	<0.5	1.5	<0.5	5.2	NA	NA	NA	NA	
	03/08/00	1,600*	530	<500	9.7	<0.5	2.7	<0.5	27	NA	NA	NA	NA	
	06/14/00	2,000	75	<100	2.8	<0.5	3.4	<0.5	16	3.4	<0.5	<0.5	64	
	12/11/00	1,000	120	<100	2.6	<0.5	<0.5	<0.5	15	2.9	<0.5	<0.5	62	
	03/06/01	1,500	1400	NA	2.2	<0.5	1.7	<0.5	22	3.4	<0.5	<0.5	83	
	06/06/01	1,700	190	NA	2.6	<0.5	2.3	<0.5	26	3.2	<0.5	<0.5	83	
	09/04/02	2,000	450	NA	2.7	<0.5	2.1	<0.5	33	3.4	<0.5	<0.5	93	
	03/11/02	1,100	410	NA	1.0	<0.5	0.5	<0.5	26	2.5	<0.5	<0.5	69	
	06/06/02	900	430	NA	1.2	<0.5	<0.5	<0.5	23	2.8	<0.5	<0.5	73	
	09/04/02	910	510	NA	1.6	<0.5	<0.5	<0.5	45	2.5	<0.5	<0.5	67	
	12/17/02	190	220	NA	0.65	<0.5	<0.5	<0.5	34	1.5	<0.5	<0.5	46	
	03/07/03	380	300	NA	0.81	<0.5	<0.5	<0.5	50	1.9	<0.5	<0.5	73	
	06/05/03	2,200	2200	NA	1.7	<0.5	1.5	<0.5	180	4.9	<0.5	1.3	110	
	09/19/03	2,300	520	NA	2	<0.5	2.1	<0.5	180	3.7	<0.5	1.1	120	
	12/12/03	3,000	2200	NA	2.1	<0.5	1.7	<0.5	250	4.5	<0.5	1.6	130	
	03/15/04		Not	Sampled	- Truck Pa	arked on \	Well		Not Sampled - Truck Parked on Well					
	06/22/04	1,600	420	NA	1.3	<0.5	1.0	<0.5	580	4.6	<0.5	3.9	340	
	09/21/04	2,500	<400	NA	1.2	<0.5	1.5	<0.5	730	5.9	<0.5	4.9	550	
	12/30/04	1,800	<300	NA	1.2	<1.0	<1.0	<1.0	540	5	<1.0	3.6	400	
	04/06/05			Not Sampled - Truck Parked on Well										
	09/29/05		Not Sampled - Truck Parked on Well											
	12/09/05	1,000	720	NA	1.0	<0.7	<0.7	<0.7	330	6.5	<0.7	2.3	1,800	
	03/06/06	1,000	<80	NA	1.2	<0.5	0.6	<0.5	290	5.4	<0.5	1.9	1,600	
	06/20/06	1,100	<80	NA	1.6	<0.5	1.0	<0.5	280	5.8	<0.5	1.5	<1,500	
	08/23/06	1,600	<200	NA	1.5	<0.9	<0.9	<0.9	290	5.5	<0.9	1.8	2,100	
	11/16/06	350	120	NA	0.56	<0.5	<0.5	<0.5	180	4.1	<0.5	0.96	1,300	
	03/20/07	460	110	NA	0.67	<0.5	<0.5	<0.5	160	4.3	<0.5	0.9	1,500	
	05/17/07	710	85	NA	<0.5	<0.5	<0.5	<0.5	160	4.4	<0.5	0.88	2,000	
	08/16/07	460	200	NA	<0.9	<0.9	<0.9	<0.9	150	6.1	<0.9	<0.9	2,700	
	12/05/07	1,500	<80	NA	<0.9	<0.9	<0.9	<0.9	66	3.8	<0.9	<0.9	2,000	
	02/27/08	810	<80	NA	0.54	<0.5	<0.5	<0.5	97	3.6	<0.5	0.52	1,400	
	06/28/08	1,100	280	NA	2.4	5.4	<0.5	<0.5	92	<10	<10	<10	1,600	
	09/27/08	1,500	290	<250	<10	<10	<10	<10	61	<10	<10	<10	1,200	
	12/30/08	1,500	960	2500	1.5	8.4	0.71	1.2	64	<5.0	<5.0	<5.0	1,400	
	03/28/09	1,200	200	<250	<5.0	<5.0	<5.0	<5.0	67	<5.0	<5.0	<5.0	1,200	
	09/12/09	770	230	<250	0.86	6.2	0.89	<0.5	53	<10	<10	<10	1,000	

Table 3 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-3	08/16/99	56,000	10,000**	<500	17000	2600	2600	1200	6,100	NA	NA	NA	NA
	12/06/99	40,000	9,100*	<500	16000	140	1800	100	4,000	NA	NA	NA	NA
	03/08/00	22,000	4,500*	<500	11000	72	1100	130	3,400	NA	NA	NA	NA
	06/14/00	34,000	16,000	<100	13000	94	1300	160	4,800	31	<10	21	2,700
	12/11/00	24,000	14,000	<100	13000	88	750	120	4,300	<50	<50	<50	2,300
	03/06/01	34,000	12,000	NA	15000	100	1100	130	4,000	<50	<50	<50	2,100
	06/06/01	34,000	20,000	NA	14000	94	550	110	4,400	<50	<50	<50	2,300
	09/04/02	29,000	19,000	NA	13000	83	480	83	4,100	<50	<50	<50	3,400
	03/11/02	12,000	14,000	NA	2900	<20	110	<20	530	<20	<20	<20	330
	06/06/02	20,000	14,000	NA	10000	<50	200	51	2,400	<50	<50	<50	1,200
	09/04/02	24,000	17,000	NA	11000	<50	140	<50	3,200	<50	<50	<50	1,400
	12/17/02	4,900	17,000	NA	2000	<10	52	12	360	<10	<10	<10	220
	03/07/03	8,700	16,000	NA	1300	<10	43	11	770	<10	<10	<10	360
	06/05/03	27,000	14,000	NA	10000	53	220	53	5,000	<50	<50	<50	1,600
	09/19/03	120,000	13,000	NA	20000	170	710	250	6,100	<25	<25	<25	2,600
	12/12/03	29,000	27,000	NA	12000	74	240	79	5,600	17	<10	30	2,100
	03/15/04	28,000	21,000	NA	11000	72	220	64	8,200	<50	<50	<50	2,900
	06/22/04	29,000	7,600	NA	11000	71	220	54	8,400	<50	<50	<50	3,000
	09/21/04	33,000	<5,000	NA	12000	67	190	56	8,200	<25	<25	47	3,200
	12/30/04	30,000	13,000	NA	11000	62	170	49	8,900	<25	<25	49	3,200
	04/06/05	29,000	46,000	NA	10000	55	170	47	8,800	<25	<25	50	4,400
	09/29/05	28,000	1,800	NA	8700	74	190	53	7,300	<15	<15	53	4,500
	12/09/05	17,000	19,000	NA	5600	40	110	30	4,400	<15	<15	30	2,800
	03/06/06	11,000	16,000	NA	3600	26	96	22	2,400	<7.0	<7.0	19	1,400
	06/20/06	18,000	20,000	NA	6900	45	130	29	500	9.5	<7.0	34	2,900
	08/23/06	22,000	9,500	NA	6200	33	100	19	4,800	9.8	<9.0	34	3,100
	11/16/06	16,000	16,000	810	5800	26	87	18.0	2,700	10	<9.0	20	1,800
	03/20/07	23,000	12,000	410	7600	39	100	21.0	5,000	16	<8.0	35	3,200
	05/17/07	22,000	18,000	NA	10000	44	110	27.0	5,500	<15	<15	41	3,200
	08/16/07	16,000	63,000	NA	5900	33.0	66	25.0	4,600	<15	<15	39	3,400
	12/05/07	21,000	6,400	890	8000	55	120	42	4,600	<15	<15	34	4,600
	02/27/08	35,000	40,000	870	8800	54	100	38	4,300	<15	<15	38	3,300
	06/28/08	31,000	7,500	NA	12000	61	140	42	7,300	<120	<120	<120	4,700
	07/03/08	Well Abandoned											

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-4	08/16/99	61***	1100*	<500	<0.5	<0.5	<0.5	<1.0	86	NA	NA	NA	NA
	12/06/99	130***	220*	<500	<1.0	<1.0	<1.0	<1.0	130	NA	NA	NA	NA
	03/08/00	<50	220*	<500	<0.5	<0.5	<0.5	<0.5	130	NA	NA	NA	NA
	06/14/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	100	<0.5	<0.5	<0.5	20
	12/11/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	16
	03/06/01	<50	670	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	9.9
	06/06/01	<50	790	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/04/02	<50	950	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	26
	03/11/02	<50	250	NA	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	21
	06/06/02	<50	710	NA	<0.5	<0.5	<0.5	<0.5	92	<0.5	<0.5	<0.5	21
	09/04/02	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	150	<0.5	<0.5	<0.5	18
	12/17/02	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	0.52	18
	06/05/03	<50	2,000	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	0.5	23
	09/19/03	<50	830	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.8	23
	12/12/03	<50	1700	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	16
	03/15/04	<50	2,200	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/21/04	<50	620	NA	<0.5	<0.5	<0.5	<0.5	93	<0.5	<0.5	<0.5	31
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	59	<0.5	<0.5	<0.5	50
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	17	<0.5	<0.5	<0.5	120
	12/09/05	<50	760	NA	<0.5	<0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	94
	03/06/06	<50	470	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	68
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	120
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	140
	11/09/06	<50	200	410	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	130
	03/20/07	<50	860	NA	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	42
	05/17/07	<50	600	NA	<0.5	<0.5	<0.5	<0.5	5.6	<0.5	<0.5	<0.5	32
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	<0.5	64
	12/05/07	1,300	2,600	5,600	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	30
	02/27/08	<50	270	400	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	9.3
	06/28/08	<50	150	NA	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	37
	09/27/08	<50	160	360	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	<0.5	<0.5	33
	12/30/08	<50	200	320	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	16
	03/28/09	<50	120	<250	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	4.5
	09/12/09	<50	130	330	<0.5	<0.5	<0.5	<0.5	4.2	<0.5	<0.5	<0.5	13

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-5	12/06/99	450***	2000*	<500	<1.0	<1.0	<1.0	<1.0	21	NA	NA	NA	NA
	03/08/00	51***	530	<500	<0.5	<0.5	<0.5	<0.5	84	NA	NA	NA	NA
	06/14/00	380	1,400	<100	<0.5	<0.5	<0.5	<0.5	160	12	<0.5	<0.5	22
	12/11/00	540	590	<100	<0.5	<0.5	<0.5	<0.5	240	9.5	<0.5	<0.5	32
	03/06/01	510	2,900	NA	<0.5	<0.5	<0.5	<0.5	140	13	<0.5	<0.5	19
	06/06/01	280	2,700	NA	<0.5	<0.5	<0.5	<0.5	180	13	<0.5	<0.5	26
	09/04/02	630	2,600	NA	<0.5	<0.5	<0.5	<0.5	180	9.4	<0.5	<0.5	29
	03/11/02	97	3,500	NA	<0.5	<0.5	<0.5	<0.5	29	0.8	<0.5	<0.5	7
	06/06/02	61	3,500	NA	<0.5	<0.5	<0.5	<0.5	150	2.9	<0.5	<0.5	34
	09/04/02	92	6,100	NA	<0.5	<0.5	<0.5	<0.5	370	3.6	<0.5	<0.5	72
	12/17/02	110	2,100	NA	<0.5	<0.5	<0.5	<0.5	110	4.2	<0.5	<0.5	14
	03/07/03	71	1,600	NA	<0.5	<0.5	<0.5	<0.5	150	2.2	<0.5	<0.5	35
	06/05/03	95	3,300	NA	<0.5	<0.5	<0.5	<0.5	170	4.6	<0.5	<0.5	43
	09/19/03	100	1,400	NA	<0.5	<0.5	<0.5	<0.5	310	5.2	<0.5	0.68	86
	12/12/03	<50	7,600	NA	<0.5	<0.5	<0.5	<0.5	270	5.9	<0.5	0.7	91
	03/15/04	95	1,700	NA	<0.5	<0.5	<0.5	<0.5	290	6.7	<0.5	0.92	200
	09/21/04	78	990	NA	<0.5	<0.5	<0.5	<0.5	270	4.7	<0.5	0.96	880
	04/06/05	64	1,200	NA	<0.5	<0.5	<0.5	<0.5	120	4.8	<0.5	<0.5	780
	09/29/05	100	640	NA	<0.5	<0.5	<0.5	<0.5	77	3.7	<0.5	<0.5	4,000
	12/09/05	99	3,700	NA	<0.5	<0.5	<0.5	<0.5	66	6.8	<0.5	<0.5	3,000
	03/06/06	66	760	NA	<0.5	<0.5	<0.5	<0.5	42	2.9	<0.5	<0.5	1,600
	06/20/06	84	1,300	NA	<0.5	<0.5	<0.5	<0.5	42	3.6	<0.5	<0.5	3,000
	08/23/06	<200	410	NA	2.1	<2.0	<2.0	<2.0	37	2.8	<2.0	<2.0	4,800
	11/09/06	<200	700	<100	<2.0	<2.0	<2.0	<2.0	28	3.0	<2.0	<2.0	5,600
	03/20/07	<200	430	NA	<2.0	<2.0	<2.0	<2.0	22	3.0	<2.0	<2.0	3,800
	05/17/07	<200	500	NA	<2.0	<2.0	<2.0	<2.0	18	3.5	<2.0	<2.0	4,300
	08/16/07	<200	1,600	NA	<2.0	<2.0	<2.0	<2.0	13	3.0	<2.0	<2.0	6,400
	12/05/07	<200	1,400	120	<2.0	<2.0	<2.0	<2.0	8.2	2.6	<2.0	<2.0	4,700
	02/27/08	<90	1,300	190	<0.9	<0.9	<0.9	<0.9	6.0	1.8	<0.9	<0.9	2,800
	06/28/08	140	3,000	NA	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	4,300
	09/27/08	120	2,800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	6,600
	12/30/08	86	1,400	430	<0.5	<0.5	<0.5	<0.5	<25	<25	<25	<25	5,000
	03/28/09	120	1,700	500	<50	<50	<50	<50	<50	<50	<50	<50	6,400
	09/12/09	88	6,100	1,900	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	8,600

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-6	12/06/99	13,000	<50	<500	180	21	11	24	<100	NA	NA	NA	NA
	03/08/00	<10,000	4,600*	<500	230	26	18	39	12,000	NA	NA	NA	NA
	06/14/00	8,400	12,000	<100	180	12	10	22	15,000	<5.0	<5.0	70	3,300
	12/11/00	<5,000	10,000	<100	180	<50	<50	<50	14,000	<50	<50	74	2,900
	03/06/01	5,300	6,700	NA	220	<50	<50	<50	13,000	<50	<50	84	2,100
	06/06/01	5,000	2,300	NA	210	<25	<25	<25	14,000	<25	<25	84	4,200
	09/04/02	5,400	2,200	NA	190	12	<10	23	15,000	<10	<10	79	4,000
	03/11/02	4,600	11,000	NA	160	<25	<25	<25	15,000	<25	<25	39	5,100
	06/06/02	<5,000	14,000	NA	200	<50	<50	<50	17,000	<50	<50	77	8,700
	09/04/02	<5,000	50,000	NA	140	<50	<50	<50	21,000	<50	<50	52	7,500
	12/17/02	<5,000	9,100	NA	130	<50	<50	<50	16,000	<50	<50	64	6,300
	03/07/03	<5,000	12,000	NA	160	<50	<50	<50	20,000	<50	<50	53	7,500
	06/05/03	<5,000	23,000	NA	230	<50	<50	<50	19,000	<50	<50	86	7,100
	09/19/03	8,900	24,000	NA	220	<25	<25	<25	15,000	<25	<25	74	8,100
	12/12/03	8,000	24,000	NA	190	<25	<25	32	14,000	<25	<25	65	7,400
	03/15/04	4,400	26,000	NA	190	<25	<25	<25	9,900	<25	<25	61	6,700
	06/22/04	3,500	7,000	NA	150	<20	<20	<20	9,200	<20	<20	51	6,100
	09/21/04	4,600	12,000	NA	210	<20	<20	<20	8,800	<20	<20	55	7,000
	12/30/04	5,300	11,000	NA	190	<20	<20	<20	6,300	<20	<20	53	4,900
	04/06/05	5,100	680	NA	190	13	12	32	3,700	<5.0	<5.0	42	4,600
	09/29/05	4,900	2,800	NA	130	8.9	<5.0	13	2,100	<5.0	<5.0	23	3,200
	12/09/05	3,600	10,000	NA	110	7.1	<5.0	7.9	2,700	<5.0	<5.0	22	4,200
	03/06/06	3,900	900	NA	120	9.3	5	13	3,000	<0.5	<0.5	26	4,400
	06/20/06	3,600	1,500	NA	140	10	5	18	1,600	<3.0	<3.0	23	3,600
	08/23/06	4,300	<800	NA	140	11	5	13	2,000	<4.0	<4.0	22	4,000
	11/09/06	3,200	1,700	<100	110	6.9	<4.0	8.2	1,500	<4.0	<4.0	16	3,900
	03/20/07	2,100	920	NA	120	7.9	<4.0	7.1	2,000	<4.0	<4.0	20	4,000
	05/17/07	3,800	600	NA	140	9.5	<4.0	15	1,700	<4.0	<4.0	21	3,200
	08/16/07	3,500	780	NA	160	9.3	<3.0	14	1,800	<3.0	<3.0	21	3,600
	12/05/07	4,500	<600	<100	100	7.8	<4.0	14	1,400	<4.0	<4.0	15	4,900
	02/27/08	3,100	<1,500	<100	82	6.1	<2.0	7.9	760	<2.0	<2.0	9.6	4,800
	06/28/08	4,700	17,000	NA	160	13	4	11	1,700	<50	<50	<50	6,200
	07/03/08							andoned					
EX-2	09/27/08	990	2,100	NA	130	<10	<10	<10	210	<10	<10	<10	1,400
	12/30/08	730	9,100	2,600	72	1.3	1.7	0.53	100	<5.0	<5.0	<5.0	930
	03/28/09	66	3,900	2,300	85	<5.0	<5.0	<5.0	98	<5.0	<5.0	<5.0	590
	09/12/09	470	4,400	1,800	7.3	0.96	<0.5	<0.5	140	<5.0	<5.0	<5.0	880

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-7	09/04/02	<50	130****	NA	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	220	NA	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	140	NA	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	200	NA	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	320	NA	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	380	NA	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	<5.0
	03/15/04		•			Not Sam	pled - Tru	ick Parked	on Well				
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	120	NA	<0.5	<0.5	<0.5	<0.5	9.2	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	03/06/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	9	<0.5	<0.5	<0.5	<5.0
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.5	<0.5	<0.5	<0.5	<5.0
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	5.7	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5.0
	12/05/07					Not Sam	pled - Tru	ick Parked	d on Well				
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	<0.5	<5.0
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<2.0
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.92	<0.5	<0.5	<0.5	<2.0
	12/30/08					Not Sam	pled - Tru	ick Parked	d on Well				
	03/28/09					Not Sam	pled - Tru	ick Parked	d on Well				
	09/12/09	<50	87	<250	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<2.0

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-8	09/04/02	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	100	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	62	NA	<0.5	<0.5	<0.5	<0.5	33	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	270	NA	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	250	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	420	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	03/15/04	<50	250	NA	<0.5	<0.5	<0.5	<0.5	6.4	<0.5	<0.5	<0.5	<5.0
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	86	NA	<0.5	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<5.0
	03/06/06					Not Sam	pled - Tru	ick Parked	on Well		-	•	
	06/20/06	<50	<50 NA <0.5 <0.5 <0.5 <0.5 6.6 <0.5 <0.5 <0.5 <5.0										
	08/23/06		Not Sampled - Truck Parked on Well										
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	9.3	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	250	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	350	NA	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	02/27/08		Not Sampled - Truck Parked on Well										
	06/28/08					Not Sam	pled - Trι	ick Parked	on Well				
	09/27/08					Not Sam	pled - Tru	ick Parked	d on Well				
	12/30/08					Not Sam	pled - Tru	ick Parked	on Well				
	03/28/09					Not Sam	pled - Tru	ick Parked	on Well				
	09/12/09					Not Sam	pled - Tru	ick Parked	on Well				

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-9	09/04/02	<2,500	1,000	NA	<25	<25	<25	<25	12,000	<25	<25	70	1700
	12/17/02	<2,000	880	NA	<20	<20	<20	<20	4,500	<20	<20	23	2300
	03/07/03	<500	450	NA	<5	<5	<5	<5	1,700	<5	<5	8.4	6600
	06/05/03	<500	4,500	NA	<5	<5	<5	<5	120	<5	<5	<5.0	17,000
	09/19/03	<1,000	4,500	NA	<10	<10	<10	<10	38	<10	<10	<10	15,000
	12/12/03					Not Sam	pled - Tru	ick Parked	on Well				
	03/15/04	<1,000	82	NA	<10	<10	<10	<10	38	<10	<10	<10	18,000
	09/21/04	<1,000	2,600	NA	<10	<10	<10	<10	17	<10	<10	<10	16,000
	12/30/04					Not Sam	pled - Tru	ick Parked	on Well				
	04/06/05	<700	<50	NA	<7	<7	<7	<7	55	<7	<7	<7	15,000
	09/29/05	<700	<50	NA	<7	<7	<7	<7	34	<7	<7	<7	1,300
	12/09/05	<400	3,200	NA	46	<4.0	<4.0	<4.0	12	<4.0	<4.0	<4.0	8,200
	03/06/06					Not Sam	pled - Tru	ick Parked	on Well				
	06/20/06					Not Sam	pled - Tru	ick Parked	d on Well				
	08/23/06	<250	<50	NA	9.6	<2.5	<2.5	<2.5	18	<2.5	<2.5	<2.5	6,000
	11/09/06	<150	<50	NA	13	<1.5	<1.5	<1.5	3	<1.5	<1.5	<1.5	3,900
	03/20/07	<150	<50	NA	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	2,900
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6	<0.5	<0.5	<0.5	880
	08/16/07					Not Sam	pled - Tru	ick Parked	d on Well				
	12/05/07						pled - Tru						
	02/27/08					Not Sam	pled - Tru	ick Parked	on Well				
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	950
	09/27/08					Not Sam	pled - Tru	ick Parke	on Well				
	12/30/08					Not Sam	pled - Tru	ick Parke	d on Well				
	03/28/09		Not Sampled - Truck Parked on Well										
	09/12/09	<50	170	300	<0.5	<0.5	<0.5	<0.5	<1.7	<1.7	<1.7	<1.7	330

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-10	10/12/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	27
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	82
	03/20/07	<50	270	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	84
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	55
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	28
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	13
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	7.3
	06/28/08	<50	63	NA	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	8.7
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	3.3
	12/30/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.73	<0.5	<0.5	<0.5	<0.5
	03/28/09	4,700	58	<250	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5	<0.5	<2.0
	09/12/09	<50	230	830	<0.5	<0.5	<0.5	<0.5	0.65	<0.5	<0.5	<0.5	<2.0
E	ESL	100	100	100	1.0	130	43	10	5	NE	NE	NE	18,000

Notes

Concentrations are recorded in units of micrograms per liter (ug/L).

- ESL Environmental Screening Level for Potable Groundwater
 - * Non-typical diesel patter, hydrocarbons in early diesel range
- ** Estimated concentration due to overlapping fuel patterns in sample
- *** Non-typical gasoline pattern
- **** Non-typical diesel pattern
 - NE ESL is not established for this compound
- NA analyte not tested
- TPH-g total petroleum hydrocarbons as gasoline
- TPH-d total petroleum hydrocarbons as diesel
 - B benzene
 - T toluene
 - E ethylbenzene
 - X xylenes

MtBE methyl tert-butyl ether

DIPE di-isopropyl ether

EtBE ethyl tert-butyl ether

tAME tert-amyl methyl ether tBA tert-butanol

MONITORING WELL SAMPLING LOG

SITE NAME	E/LOCATIO	N:	Ock			AMI LING LO	PROJECT #:
	15		041	lano			
DATE:	9/12	109					SAMPLER'S INITIALS:
WELL ID:	_ MW- _l	0	-	WELL DIAM	METER (in):	2	
WELL DEPT	ΓΗ (ft):	145 2	26	DEPTH TO	WATER (ft):	6.32	WATER COLUMN Ht (ft): /9,68
STANDING	WATER VO	LUME (gal):		3.27		3 VOLUMES (gal):	918
					•	0.17 for 2-inch well	or 0.66 for a 4-inch well.
PURGE MET	ГНОD:		- University	aler Pump		SAMPLING METHO	D: disposable PE bailer
		(circle t	he correct		RGE MEASURI	FMFNTS	
	Gallons	Temp	T T	sc	DO DO	I	
Time	Purged	(C)	pН	(uS)	(mg/L)		Comments
					2.15	DO prior to purgin	9 ORP -159
1255	2	72.9	7,18	749	5.26		
1258	4	21.1	7,21	739			
1304	6	70.65	7,12	Secretaria de la companya del companya de la companya della compan	5-8		
1305	8	70.63	215	722			
1307	10	70.61	7119	721	5.74	Sampl	ed C1310
		22	- 111111. - 1201111.				
WELL ID:	WA-	5x-1		WELL DIAM	METER (in):	6	
WELL DEPT	ΓΗ (ft):		-	DEPTH TO	WATER (ft):	6.45 fbg	WATER COLUMN Ht (ft):
STANDING	WATER VO	LUME (gal):				3 VOLUMES (gal):	
				the water co	lumn height by	0.17 for 2-inch well	or 0.66 for a 4-inch well.
PURGE MET	гнор:	Bailer or	Mini-Wh	aler Pump		SAMPLING METHO	D: disposable PE bailer
		(circle t	he correct				
Г	T				RGE MEASUR	EMENTS T	
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)		Comments
	500	(0)		()	2.17	DO prior to purgin	9 ORP -169
	10	73.59	7,12	1556	4.87		- ', " W
	20	73.54	7113	1580	7.34		
1340	30	73.57	2.13	1582	8.36		

rime	Purged	(C)	рп	(uS)	(mg/L)	Comments
					2.12	DO prior to purging ORP -169
	10	73.59	7,12	1556	4.87	
The state of the s	20	73.54	7113	1580	7.34	
1340	30	73.57	2,13	1582	8.36	
						Sampled e1343

MONITORING WELL SAMPLING LOC

			MU	MITORIN	IG WELL	SAMPLING LOG
SITE NAME	E/LOCATIO	ON:	Dakla	nd	in a state of the	PROJECT #:
DATE:	9/1	2/09	-			SAMPLER'S INITIALS: CM
WELL ID:	Z -WM	-	_	WELL DIAM	METER (in):	2_
WELL DEPT	ΓΗ (ft):	1415	<u>.</u>	DEPTH TO	WATER (ft):	5.78 WATER COLUMN Ht (ft): 8.72
STANDING To obtain sta				1,44 the water co	•	3 VOLUMES (gal): 4.3 0.17 for 2-inch well or 0.66 for a 4-inch well.
PURGE MET	гнор:		Mini-Wh	naler Pump method)		SAMPLING METHOD: disposable PE bailer
				PU	RGE MEASURI	EMENTS
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)	Comments
		2.9	· ·		1.85	DO prior to purging ORP -166
1157	1	71.22	6.72	2057	4.75	
1158	2	70.67	6.70	2190	4,93	
1200	3	70.22	6.68	7027	5.26	
1202	4	70.02	6.68	Contract of the contract of th	5.19	
						Sampled e1204
						•
	,					
WELL ID:	MW- C	Ex-2	_	WELL DIAM	METER (in):	6
WELL DEPT	TH (ft):	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	-	DEPTH TO	WATER (ft):	5.9 Pbg WATER COLUMN Ht (ft):
STANDING '	WATER VO	LUME (gal):				3 VOLUMES (gal):
To obtain sta	anding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch well or 0.66 for a 4-inch well.
PURGE MET	THOD:		Mini-Wh	aler Pump		SAMPLING METHOD: disposable PE bailer
		(Circle C	ne correct	(1973-1975)	RGE MEASURE	EMENTS
	Gallons	Temp		SC	DO	
Time	Purged	(C)	pН	(uS)	(mg/L)	Comments
		Market Control			1.39	DO prior to purging ORP -223.8
1222	5	78.04	7.26	1603	4.27	
	100 10	0-2-	2 -	1000	aut	

Time Purged (C) PH (uS) (mg/L) Comments 1.39 DO prior to purging ORP -223.8 1227 5 78.04 7.26 /603 4.27 10 77.39 7.26 /669 4.48 1231 20 77.05 7.26 1681 4.27 1236 33 77.46 7.26 1691 4.58 Sampled 1240

MONITORING WELL SAMPLING LOG

			MU	NITOKIN	IG WELL	SAMPLING LUC	3		
SITE NAME	E/LOCATIC	ON:	Ogklo	and			PROJECT	#:	
DATE:	9/12	-109	_				SAMPLER	R'S INITIALS:	CM
WELL ID:	MW- 1	7		WELL DIA	METER (in):	2			
WELL DEPT	ГН (ft):	16.2		DEPTH TO	WATER (ft):	4,23	WATER CO	OLUMN Ht (ft):	11.97
		LUME (gal): ne in gallons,		1.98 the water co	- olumn height by	3 VOLUMES (gal): 0.17 for 2-inch well o			
PURGE MET		Bailer or	Mini-Wh	haler Pump		SAMPLING METHO		disposable Pl	E bailer
		(circle t	the correct		IRGE MEASURI	EMENTS		***	
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		(Comments	
					2-64	DO prior to purging	ORP	-236.5	
1007	2	66.31	7.01	1809	5.15				
1010	4	65.7	7.01	1690	5.09				
1012	5	65.6	6.96	1685	5115				
1014	6.5	65.6	6.99	1678	5.40				
						Sampled C	1016	7400 - 10 Table 19 19 19 19 19 19 19 19 19 19 19 19 19	
						·			
								Enter Committee in a 11 Marine	
WELL ID:	ww- ८	1	-	WELL DIAM	METER (in):				
WELL DEPT	'H (ft):	14	_	DEPTH TO	WATER (ft):	5.58	WATER CO	OLUMN Ht (ft):	8.42
STANDING Y	WATER VO	LUME (gal):	e e	1.4		3 VOLUMES (gal):	4,2		
To obtain sta	ınding volum	ie in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch well o	r 0.66 for a 4	-inch well.	
PURGE MET	rhod:	A CONTRACT OF THE PARTY OF THE	Mini-Wh	haler Pump	-	SAMPLING METHOL	D <u>:</u>	disposable Pl	E bailer
		(circle c	THE COTTECT		RGE MEASURE	EMENTS		- I - I - I - I - I - I - I - I - I - I	
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		(Comments	
		(-)		(==)	1,39	DO prior to purging	ORP	- 762.5	
1033	1	74.61	7.13	(013	3.81		011		7.
00-0		- "-		, -, -					

Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)	Comments
					1,39	DO prior to purging ORP - 762.5
1033	1	74.61	7,13	1013	3.81	
1035	2	74.75	7116	1023	4114	
1037	3	74.82	7116	1031	4.17	
	4	701.84	7,16	1039	4.14	
1039	5	74.85	7,16	1043	4.08	59mpled @ 1041

MONITORING WELL SAMPLING LOG

SITE NAME	/LOCATIO	N: E	g c a	nd			PROJECT #:					
DATE:	9/1	2109	2				SAMPLER'S INI	TIALS:	CM			
WELL ID:	MW-5			WELL DIAM	METER (in):	2						
WELL DEPT	H (ft):	14		DEPTH TO	WATER (ft):	5.28	WATER COLUM	N Ht (ft):	8.72			
STANDING To obtain sta		277 10		1, 44 the water co	lumn height by	3 VOLUMES (g 0.17 for 2-inch w	al): <u>4,3</u> vell or 0.66 for a 4-inch v	well.				
PURGE MET	THOD:		Mini-Wh			SAMPLING MET	THOD: disp	osable PE	bailer			
PURGE MEASUREMENTS												
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comm	ents	7.5 94			
					1.79	DO prior to pu	rging ORP -	220.4	′			
1053	1	73.8	6.84	1794			Michael Michael					
1055	2	73.7		1848	4.69			EdmildErmes - Jesus	-			
1057	3.5	73.1	6.83		4.80	TENTA		W-3052 TRAIN D	V. Primar Primar Communication			
1059	5	723		1864	463	PH 6.8	2					
						Sample	e 1102					
						11.000.000						
			7112									
WELL ID:	MW- C	ነ	_	WELL DIAM	METER (in):	4						
WELL DEPT	H (ft):	14	•	DEPTH TO	WATER (ft):	5.91	WATER COLUM	N Ht (ft):	8.09			
STANDING Y				139		3 VOLUMES (g		well.				
To obtain standing volume in gallons, multiply the water column height by 0.17 for 2-inch well or 0.66 for a 4-inch well. PURGE METHOD: Bailer or Mini-Whaler Pump (circle the correct method) SAMPLING METHOD: disposable PE bailer												
				PU	RGE MEASURE	EMENTS	(III) Sulpasses a services		Andrew Verlage Ver			
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)		Comm	ents				
					1.59	DO prior to pu	rging ORP	-143.5	-			
1126	10	67.6	7.00	1197	5.14				Y 4			
1132	20	67.3	7.05	116 1	5.16							
1138	30	67.1	7,10	1147								

sampled e 1141

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: Oakland Truck Stop	Date Sampled: 09/12/09
321 Court Street		Date Received: 09/14/09
Woodland, CA 95695	Client Contact: Tom Henderson	Date Reported: 09/22/09
, , , , , , , , , , , , , , , , , , ,	Client P.O.:	Date Completed: 09/22/09

WorkOrder: 0909399

September 22, 2009

D	т		
Dear	- 1 (om	n.
Dou			

Enclosed within are:

- 8 analyzed samples from your project: Oakland Truck Stop, 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

0909399

	AWA.
1	A
1	

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262

Fax: (925) 252-9269

CHAIN OF CUSTODY RECOR

	N OF C	-021		KECU	KD_	-1
TURN AROUND T	IME				4	
GeoTracker EDF		□ Ex				
L.	Check	if samp	le is efflu	ent and ",	J" flag is re	equired

Report To: Tov	~ Hunders	on	E	ill To	:									L					1	Anal	ysis	Re	ques	st						C	the	r	Comments
Company: Mar	riks																	Т			2												Filter
Cour	adland (LBE		3&F					gene												Samples
Wo	odland (7	I	E-Mai	l:									/M		0 E/I					Con						6	6					for Metals
Tele: (\$30)90			F	ax: ()								8015) / MTBE		552	0	8	13		ls/		3			_	602	6020					analysis:
Project #:			P	rojec	t Nan	ne:	Och	las	U 50	nd	c 5	10	Δ	+		999	180	00	/ 802	8	rock		cide			NAs)	010	/010			5		Yes / No
Project Location:	Oaklane)		25/01/2			-0.					-		8021		(C)	ns (E	602	icide	V; A	(S)	erbi	(S	CS	s/P	9/8	9/8	020)		Scor		
Sampler Signatur	e: 01	_		100 F 100										(602/3		reas	arbo	8021	VA3	Pest	SE	ticid	GE	VOC	SVO	AH	200.	200.8	9/0		M		
		SAMI	PLING		ers		MA	TR	IX			THO	OD VED	100		Oil & C	lydroc	8010 /	NLY (81 (CI	CB's 0	NP Pes	Acidic	8260 (8270 (8310 (F	7 1.002	00.77	8 / 601		90		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	Containers	Type Containers	Water	_		Sludge	Tall D	0 5	HNO.	Other	BTEX & TPH as	TPH as Dissel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congener	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lend (200.7 / 200.8 / 6010 / 6020)	CM HAS			
) #	Tyl	Wa	Soil	Air	Sludge	3 3	ICE ICE		ō	BTE	TPH	Tota	Tota	EPA	ITW	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAN	LUF	Len	6	70		
AND EX-1		9/12/09	1343	8	*	5				4	5 <			X	×															Х	X		
Ex-Z		9/12/09	1240			1					11				1															1			
MW-10		यायंज	1310			П					Ш			Ш																			
MW-Z			1204			П				T	П						Т																
ww.5			102			П					П																						
Mw-9			1141			П				Т	П						Г																
MW-7			1016			П					П		T	П																			
mw-y			1041		1	1				1																							
				'				-	-	+	+	+	+	+				-															
								+		+	+	+	+	+	+	+		+	-	H							H						
										†	†	+	t	t	t	t	H	t															
								1		Ť	T		T	T	T																		
Religquished By:		Date:	Time:	1	ived B		00		PR	8				G	CE/t	co	NDI	TION	<u>\</u>	0		7.	U	7	M	,		CO	MM	ENT	S:		
Relinquished By:		Date:	Time:	Rece	ived B	v:	KC	_	1	_	_	_				SPA ILOR				AR	_			4	_1	10	lon	+	0	my	0-		
Envivotes	hRC	914	19:45	1	1	_	7	/	2					A	PPF	OPR	IAT	E CO	NTA		RS_		_	1	-	10			-1	0			
Relinquished By:		Date:	Time:	Rece	ived B	y:				9				P	RES	ERVI	ED I	N LA	В	_													
					P	RES	ERV	ATIO		OAS	0	&G	MI		LS	OT	HER	t															
							_	_			_	_	_	-					_		_	1000	_		_		_	_					

McCampbell Analytical, Inc.

MW-4

Water

9/12/2009 10:41

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	, CA 94565-1701 2-9262				,	Work	Order:	09093	399	C	lientCode	: MCW				
		WaterTrax	WriteOn	✓ EDF		Excel	[Fax	[Email		HardCopy	Thi	rdParty	☐ J-	flag
Report to: Tom Henders	son	Email: t	:henderson@	matrikscorp.com	Bill to: Robert Neely						Requested TAT:			5 0	days	
Matriks Corpo 321 Court Str Woodland, C. (530) 406-1760	reet A 95695		Oakland Truc	k Stop	Matriks Corporation 321 Court Street Woodland, CA 95695							te Rece te Prin		09/14/ 09/14/		
Latain	Oliver ID		B# - 4 of co	Oallastian Data	Requested Tests (See legend below)											
Lab ID	Client ID				11-1-1		_	_		-	_	- ^	•	40	4.4	40
			Matrix	Collection Date	Hold	1	2	3	4	5	6	7 8	9	10	11	12
0909399-001	EX-1		Water	9/12/2009 13:43	Hold	1	2 A	3	4	5	6	7 8	9	10	11	12
0909399-001 0909399-002	EX-1 EX-2			1	Hold	1 В		1	4 C C	5	6	7 8	9	10	11	12
			Water	9/12/2009 13:43	Hold		A	1	_	5	6	7 8	9	10	11	12
0909399-002	EX-2		Water Water	9/12/2009 13:43 9/12/2009 12:40	Hold	В	A	1	С	5	6	7 8	9	10	11	12
0909399-002 0909399-003	EX-2 MW-10		Water Water Water	9/12/2009 13:43 9/12/2009 12:40 9/12/2009 13:10	Hold	B B	A A A	1	C	5	6	7 8	9	10	11	12
0909399-002 0909399-003 0909399-004	EX-2 MW-10 MW-2		Water Water Water Water	9/12/2009 13:43 9/12/2009 12:40 9/12/2009 13:10 9/12/2009 12:04	Hold	B B	A A A	1	C C	5	6	7 8	9	10	11	12

Test Legend:

0909399-008

1 9-OXYS_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(DMO)_W	5
6	7	8	9	10
11	12			
				Prepared by: Ana Venegas

Comments:

Sample Receipt Checklist

Client Name:	Matriks Corpora	ition			Date a	and Time Received:	9/14/2009	8:31:16 PM
Project Name:	Oakland Truck S	Stop			Check	dist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0909399	Matrix Water			Carrie	r: <u>EnviroTech (R</u>	<u>C)</u>	
		<u>Chair</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinqu	ished and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by C	lient on COC?	Yes	~	No 🗆			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u>s</u>	<u>ample</u>	Receipt	Information	<u>!</u>		
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles	?	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	d test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT) Information		
All samples recei	ived within holding tir	ne?	Yes	✓	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:	7.6°C		NA \square	
Water - VOA via	ls have zero headsp	ace / no bubbles?	Yes	V	No 🗆	No VOA vials subm	nitted \square	
Sample labels ch	necked for correct pr	eservation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon rec	eipt (pH<2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes	V	No 🗆			
		(Ice Typ	e: WE	T ICE)			
* NOTE: If the "N	No" box is checked, s	see comments below.						
	======	======		===:		=====		======
Client contacted:		Date contact	ted:			Contacted	l by:	
Comments:								

"When Ouality	Counts"		Telephone: 8'	77-252-9262 Fax: 925	5-252-9269						
Matriks Corporation	Client Pr	oject ID: Oaklan	d Truck Stop	Date Sampled:	09/12/09						
321 Court Street				Date Received:	09/14/09						
	Client C	ontact: Tom Her	derson	Date Extracted:	09/16/09						
Woodland, CA 95695	Client P.	Client P.O.: Date Analyzed 09/16/09									
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0909399											
Lab ID	0909399-001B	0909399-002B	0909399-003B	0909399-004B							
Client ID	EX-1	EX-2	MW-10	MW-2	Reporting DF						
Matrix	W	W	W	W	1						
DF	20	10	1	20	S	W					
Compound		Conc	entration		ug/kg	μg/L					
tert-Amyl methyl ether (TAME)	ND<10	ND<5.0	ND	ND<10	NA	0.5					
t-Butyl alcohol (TBA)	1400	880	ND	1000	NA	2.0					
1,2-Dibromoethane (EDB)	ND<10	ND<5.0	ND	ND<10	NA	0.5					
1,2-Dichloroethane (1,2-DCA)	ND<10	ND<5.0	ND	ND<10	NA	0.5					
Diisopropyl ether (DIPE)	ND<10	ND<5.0	ND	ND<10	NA	0.5					
Ethanol	ND<1000	ND<500	ND	ND<1000	NA	50					

Surrogate Recoveries (%)

ND<5.0

ND<5000

140

ND

ND

0.65

ND<10

ND<10,000

53

0.5

500

0.5

NA

NA

NA

%SS1:	78	79	79	77	
Comments	b6				

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND<10

ND<10,000

35

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Ethyl tert-butyl ether (ETBE)

Methyl-t-butyl ether (MTBE)

Methanol

			,, _,_,,	/ /
Matriks Corporation	Client Project ID:	Oakland Truck Stop	Date Sampled:	09/12/09
321 Court Street			Date Received:	09/14/09
	Client Contact: To	om Henderson	Date Extracted:	09/16/09
Woodland, CA 95695	Client P.O.:		Date Analyzed	09/16/09

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	Anal	ytical Method: SW826	0В		Work Order:	0909399	
Lab ID	0909399-005B	0909399-006B	0909399-007B	0909399-008B			
Client ID	MW-5	MW-9	MW-7	MW-4	Reporting DF	Limit for =1	
Matrix	W	W	W	W	1		
DF	100	3.3	1	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<50	ND<1.7	ND	ND	NA	0.5	
t-Butyl alcohol (TBA)	8600	330	ND	13	NA	2.0	
1,2-Dibromoethane (EDB)	ND<50	ND<1.7	ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<50	ND<1.7	ND	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND<50	ND<1.7	ND	ND	NA	0.5	
Ethanol	ND<5000	ND<170	ND	ND	NA	50	
Ethyl tert-butyl ether (ETBE)	ND<50	ND<1.7	ND	ND	NA	0.5	
Methanol	ND<50,000	ND<1700	ND	ND	NA	500	
Methyl-t-butyl ether (MTBE)	ND<50	ND<1.7	1.1	4.2	NA	0.5	
	Surr	ogate Recoveries	s (%)				
%SS1:	111	113	75	75			
Comments	b6						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP
extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Matriks Corporation	Client Project ID: Oakland Truck Stop	Date Sampled:	09/12/09
321 Court Street		Date Received:	09/14/09
	Client Contact: Tom Henderson	Date Extracted:	09/16/09-09/17/09
Woodland, CA 95695	Client P.O.:	Date Analyzed:	09/16/09-09/17/09

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Bm Extraction method: SW5030B Work Order: 0909399

Extracti	on method. Swaaab			rinary	ileai illetilous.	5 11 0021B/0013	Bill		11 01	k Oluci.	0707377
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	EX-1	W	550	30	ND	ND	ND	ND	1	95	d7,b6
002A	EX-2	W	470	160	7.3	0.96	ND	ND	1	103	d7,d1
003A	MW-10	W	ND	ND	ND	ND	ND	ND	1	97	
004A	MW-2	W	770	75	0.86	6.2	0.89	ND	1	113	d9
005A	MW-5	W	88	6.8	ND	ND	ND	ND	1	100	d7,b6
006A	MW-9	W	ND	ND	ND	ND	ND	ND	1	99	
007A	MW-7	W	ND	ND	ND	ND	ND	ND	1	98	
008A	MW-4	W	ND	ND	ND	ND	ND	ND	1	97	
	rting Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5		μg/L	<u> </u>
	eans not detected at or we the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all
TCLP & SPLP extracts in mg/L.

- # cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.
- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: Oakland Truck Stop	Date Sampled:	09/12/09
321 Court Street		Date Received:	09/14/09
	Client Contact: Tom Henderson	Date Extracted:	09/14/09
Woodland, CA 95695	Client P.O.:	Date Analyzed:	09/17/09-09/21/09

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 0909399

Extraction method:	SW3510C	Analytical	methods: SW8015B		W	ork Order:	0909399
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
0909399-001C	EX-1	W	73,000	24,000	20	111	e1,b6
0909399-002C	EX-2	W	4400	1800	1	94	e1
0909399-003C	MW-10	w	230	830	1	97	e7,e2
0909399-004C	MW-2	w	230	ND	1	93	e11,e2
0909399-005C	MW-5	W	6100	1900	1	101	e1,b6
0909399-006C	MW-9	w	170	300	1	89	e7,e2
0909399-007C	MW-7	W	87	ND	1	89	e2
0909399-008C	MW-4	W	130	330	1	92	e7,e2
Rei	porting Limit for DF =1:	W	50	250		ца/І	

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant
- e2) diesel range compounds are significant; no recognizable pattern
- e7) oil range compounds are significant
- e11) stoddard solvent/mineral spirit (?)

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45823 WorkOrder 0909399

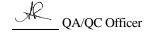
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0909380-002B)02B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	84	86.8	3.21	90.4	91.1	0.748	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	89.4	94.1	5.13	95.3	91.4	4.15	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	95.9	98.8	2.97	104	101	2.69	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	91.5	95	3.70	101	101	0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	103	107	4.57	117	117	0	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	94.6	96.6	2.10	105	104	0.949	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	2.5	10	95.1	96.7	1.35	105	103	2.36	70 - 130	30	70 - 130	30
%SS1:	77	25	76	77	1.14	76	77	1.83	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 45823 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909399-001B	09/12/09 1:43 PM	I 09/16/09	09/16/09 3:45 PM	0909399-002B	09/12/09 12:40 PM	09/16/09	09/16/09 4:29 PM
0909399-003B	09/12/09 1:10 PM	09/16/09	09/16/09 5:12 PM	0909399-004B	09/12/09 12:04 PM	09/16/09	09/16/09 5:56 PM
0909399-005B	09/12/09 11:02 AM	09/16/09	09/16/09 4:07 PM	0909399-006B	09/12/09 11:41 AM	09/16/09	09/16/09 4:49 PM
0909399-007B	09/12/09 10:16 AM	09/16/09	09/16/09 1:14 AM	0909399-008B	09/12/09 10:41 AM	09/16/09	09/16/09 1:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015B

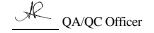
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45824 WorkOrder 0909399

EPA Method SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	102	101	0.427	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	97	97	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 45824 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909399-001C	09/12/09 1:43 PM	09/14/09	09/21/09 7:44 PM	0909399-002C	09/12/09 12:40 PM	09/14/09	09/19/09 1:49 AM
0909399-003C	09/12/09 1:10 PM	09/14/09	09/17/09 7:27 PM	0909399-004C	09/12/09 12:04 PM	09/14/09	09/19/09 3:00 AM
0909399-005C	09/12/09 11:02 AM	09/14/09	09/17/09 8:35 PM	0909399-006C	09/12/09 11:41 AM	09/14/09	09/18/09 7:49 PM
0909399-007C	09/12/09 10:16 AM	09/14/09	09/18/09 9:02 PM	0909399-008C	09/12/09 10:41 AM	09/14/09	09/18/09 10:14 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45834 WorkOrder 0909399

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample I							nple ID	D: 0909398-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	105	115	8.76	113	106	7.21	70 - 130	20	70 - 130	20
MTBE	ND	10	101	100	0.677	101	100	1.15	70 - 130	20	70 - 130	20
Benzene	ND	10	95.4	95.9	0.517	97.6	94.7	3.01	70 - 130	20	70 - 130	20
Toluene	ND	10	95.6	95.9	0.359	98.3	94.8	3.64	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	95.1	95.5	0.381	97.6	95.2	2.50	70 - 130	20	70 - 130	20
Xylenes	ND	30	97.3	98.2	0.920	100	98	2.11	70 - 130	20	70 - 130	20
%SS:	95	10	96	98	1.50	97	97	0	70 - 130	20	70 - 130	20

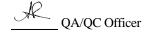
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 45834 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909399-001A	09/12/09 1:43 PM	09/17/09	09/17/09 1:54 PM	0909399-002A	09/12/09 12:40 PM	09/16/09	09/16/09 8:05 AM
0909399-002A	09/12/09 12:40 PM	09/17/09	09/17/09 3:13 AM	0909399-003A	09/12/09 1:10 PM	09/16/09	09/16/09 6:12 PM
0909399-004A	09/12/09 12:04 PM	09/17/09	09/17/09 3:43 AM	0909399-005A	09/12/09 11:02 AM	09/17/09	09/17/09 7:35 PM
0909399-006A	09/12/09 11:41 AM	09/16/09	09/16/09 7:12 PM	0909399-007A	09/12/09 10:16 AM	09/16/09	09/16/09 8:42 PM
0909399-008A	09/12/09 10:41 AM	09/16/09	09/16/09 9:12 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

