RECEIVED

9:44 am, Jul 20, 2009

Alameda County Environmental Health

QUARTERLY GROUNDWATER MONITORING REPORT Fourth Quarter 2008

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94520

SUBMITTED TO:

Alameda County Environmental Health Services
Local Oversight Program
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

February 15, 2009 Project No. 6020

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIO	NAL CERTIFICATIONIII
ACRONYMS	AND ABBRREVIATIONSiv
INTRODUCT	TION1
Site Desci	ription and Physical Setting1
Site Histo	ry1
QUARTERLY	MONITORING SCOPE OF WORK4
METHOD:	S5
	dwater Level Measurements
RESULTS	6
Groundw	ater Levels and Gradient 6
Groundw	ater Analytical Results 6
Geotrack	er Requirements6
CONCLUSIO	NS 6
RECOMMEN	NDATIONS
FIGURES	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Site Location Map Site Map Excavation Remediation Extents Groundwater Gradient Map Groundwater Hydrographs
TABLES Table 1 Table 2	Well Construction Details Groundwater Elevation Data

APPENDICES

Appendix A Well Sampling Logs

Appendix B Laboratory Analytical Results

PROFESSIONAL CERTIFICATION QUARTERLY GROUNDWATER MONITORING REPORT Third Quarter 2008

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

Project No. 6020 February 15, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears here on. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user. I declare, under penalty of perjury, that the information and/or recommendations contained document or report is true and contained to the contained document or report is true and contained to the contained document or report is true and contained doc

best of my knowledge.

Tom Henderson President David W. Janney, P.G.

ACRONYMS AND ABBRREVIATIONS

ACEHS Alameda County Environmental Health Services

AEI All Environmental, Inc. amsl above mean sea level

ASE Aqua Science Engineers, Inc.

DCA 1,2-dichloroethane

DIPE di-isopropyl ether

EDB ethylene di-bromide
EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

Feet ft

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether

mg/Kg milligrams per kilogram

mL milliliter

MW monitoring well

PDF portable document format

Penn Penn Environmental

RWQCB Regional Water Quality Control Board

SC specific conductance

SRS sensitive receptor survey

tAME tert-amyl methyl ether

tBA tert butyl alcohol

TOG total oil and grease

TPH-d total petroleum hydrocarbons as diesel

TPH-g total petroleum hydrocarbons as gasoline

μg/L micrograms per liter

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report has been prepared to describe the results of the fourth quarter 2008 groundwater monitoring event conducted by Matriks at the Oakland S.F. Truck Stop (the "Site"), located at 8255 San Leandro Street, Oakland, California. The sampling described herein is part of an ongoing monitoring program of petroleum hydrocarbons in groundwater caused by an unauthorized release of petroleum hydrocarbon fuels from underground storage tanks (USTs) and/or the associated piping formerly located at the Site. Matriks is conducting the monitoring program on behalf of the Site owner and responsible party, Mr. Nissan Saidian. The Alameda County Environmental Health Service (ACEHS) is the lead regulatory agency overseeing this monitoring event and the Site investigation. The ACEHS case number for the Site is RO0000085. This quarterly monitoring event included the collection and laboratory analysis of samples from groundwater monitoring wells EX-2, MW-2, MW-4, MW-5, MW-7, and MW-10.

Site Description and Physical Setting

The Site is currently a truck and automobile fuel station, repair and weigh station, and convenience mart that has been in operation since the 1960s. The surrounding area is comprised of mixed commercial, industrial and residential properties. The Site is located approximately 1 ¼ mile east of San Francisco Bay and approximately ½ mile south of the Oakland-Alameda County Coliseum Complex. Elmhurst Creek provides storm drainage for the surrounding area and flows northwesterly across the west side of the Site. The Site and surrounding area are flat and the Site elevation is approximately 10 feet above mean seal level (amsl). A Site location map is shown on **Figure 1**.

Site History

In May 1998, W.A. Craig, Inc. removed three USTs, two 4,000-gallon and one 550-gallon. The 4,000-gallon tanks stored gasoline and the 550-gallon tank stored waste oil.

In January 1999, Penn Environmental was attempting to remove another waste oil UST and encountered difficulties due to the UST's proximity to underground utilities. Penn requested permission from ACEHS and the City of Oakland Fire Department to close the tank in-place. According to a letter report from Penn dated May 27, 1999, ACEHS and the Fire Department would consider closure in-place if a water sample collected from the tank pit contained levels of total oil and grease below regulatory requirements. Total oil and grease was not detected in the water sample collected from the tank pit. A review of available records on the ACEHS website appears to indicate that the requirements for closure in-place were met and the tank was closed in-place. The final disposition of this UST, however, is unknown.

In February 1999, Penn drilled 13 soil borings at the Site and installed groundwater monitoring wells in four of the borings (MW-1 through MW-4). Petroleum hydrocarbons were detected in soil samples from each boring except B7. Petroleum hydrocarbons were also detected in groundwater samples from each open boring and in each monitoring well. The highest concentration of methyl tert-butyl ether (MtBE) detected by laboratory analysis in the boring soil samples was 3.9 milligrams per kilogram (mg/Kg) in boring B2 at a depth of 4 feet (ft). The highest concentration of total petroleum hydrocarbons as diesel (TPH-d) in the boring soil samples was 2,000 mg/Kg, also in boring B-2 at a depth of 4 ft. The highest concentration of MtBE detected in groundwater from the open borings was 28,000 micrograms per liter (μ g/L) in B-8. The highest concentration of TPH-d in the groundwater monitoring wells was 62,000 μ g/L in groundwater monitoring well MW-1.

In August 1999, Aqua Science Engineers, Inc. (ASE) began conducting quarterly groundwater monitoring at the Site. Monitoring well MW-1 contained free-phase petroleum hydrocarbons believed to be diesel due to its dark color. Laboratory analysis detected 56,000 μ g/L TPH-g, 17,000 μ g/L benzene, and 6,100 μ g/L MtBE in MW-3.

On December 1, 1999, ASE installed additional monitoring wells MW-5 and MW-6. Free-phase petroleum hydrocarbons were again observed on the groundwater surface in monitoring well MW-1. Laboratory analysis detected 17 mg/Kg TPH-d in a soil sample from well boring MW-5 at 6 ft and 2.0 mg/Kg TPH-g in a soil sample from MW-6 also at 6 ft in. Both analytical results were noted by the laboratory to have non-typical patterns for TPH-g.

In May and June 2000, ASE drilled eight additional soil borings. The highest concentration of petroleum hydrocarbons detected in boring BH-G was 1,500 mg/Kg TPH-d at 12 ft, in boring BH-A 370 mg/Kg TPH-g and 2.3 mg/Kg benzene at 7.5 feet, and in boring BG-D 1.7 mg/Kg MtBE at 11.5 ft.

In July 2002, ASE installed three additional monitoring wells (MW-7, MW-8, and MW-9). Well locations are depicted in **Figure 2**. ASE also made several attempts to drill a boring in San Leandro Street to define the eastern extent of petroleum hydrocarbons in soil and groundwater east of the Site. Each attempt was met with refusal at relatively shallow depths.

In the report documenting the July 2002 monitoring well installations, ASE presented findings of a sensitive receptor survey (SRS) conducted for the Site. According to the SRS, there is a small-unnamed creek on the western margin of Site that appeared to provide Site drainage. The SRS also concluded that due to the flat topography of the area and its close proximity to San Francisco Bay, the creek is likely to be tidally influenced. ASE also concluded that this was a likely explanation for the variable groundwater gradient at the Site (ASE 2002).

The SRS also identified three wells within a 2,000-foot radius of the Site. One well was identified as industrial and two wells were identified as irrigation wells. No domestic or

municipal water supply wells were identified within the search radius (ASE 2002). The current status of these wells is unknown.

In February 2004, ASE subcontracted Subtronic Corporation to perform a ground magnetometer geophysical survey on the Site to identify additional USTs. No USTs were identified although two areas were identified that appeared to have buried reinforced concrete where the presence buried metal objects, such as a UST, could not be ruled out (ASE 2004) due to the magnetic response of the rebar which would mask the USTs. Subtronic subsequently conducted a ground penetrating radar geophysical survey of the two magnetometer anomalies in September 2006. No USTs were identified in either location (ASE 2007).

On July 10, 2006, ASE collected a sample of free-phase petroleum hydrocarbons from monitoring well MW-1. The sample was analyzed by modified EPA Method 8015 and a forensic analysis was conducted on the chromatogram. The laboratory indicated that the product was indicative of middle distillates such as diesel fuel #2 or heating oil. The abundance of isoprenoids in conjunction with the absence of normal alkanes indicates that the fuel had undergone substantial biological degradation (ASE 2007).

In September 2006, ASE advanced 11 soil borings. Borings BH-I through BH-L and BH-S, each to a depth of 50 ft, using an EP Sonic drill rig. Borings BH-M through BH-R were installed on and off-site, respectively, using a Geoprobe direct push drill rig. The highest concentration of TPH-d detected by laboratory analysis of soil samples from boring BH-L was 2,200 mg/Kg at 19 ft. Boring BH-L also contained the highest concentration of MtBE at 0.81 mg/Kg at 14.5 ft. The highest concentration of tBA detected in boring BH-1 was 2.2 μ g/L at 14.5 ft. The sample from BH-L reported the highest level of TPH-d concentrations of 27,000 μ g/L (15-18 feet bgs) (ASE 2007).

During this same time, six temporary well points were installed to define the extent of free-phase floating petroleum hydrocarbons in the vicinity of the dispenser islands. PVC casing was placed in the temporary well points and remained overnight. Free-phase floating petroleum hydrocarbons were measured in boring TH-6 at a thickness of 2.54 ft. None of the other borings contained a measurable thickness of free-phase floating petroleum hydrocarbons but they did contain petroleum hydrocarbon sheen. While the borings were being backfilled, ASE noted that a thin layer of free-phase petroleum hydrocarbons was pushed to the surface on top of the cement in borings TH-2 and TH-4. Based on the results from these temporary wells, ASE returned in January 2007 and installed additional temporary well points TH-7 and TH-8. The PVC casing was placed in these wells for only six hours. After six hours there was only water in boring TH-7. Laboratory analysis detected 22,000 μ g/L in a groundwater sampled collected from TH-7.

Free-phase floating hydrocarbons were removed from monitoring well MW-1 from August 1999 to March 2008, on schedules ranging from weekly to monthly. According to ASE's report dated March 9, 2007, over 140 gallons of free-phase floating diesel had been removed from monitoring well MW-1 as of March 2007.

ASE installed monitoring well MW-10 on October 10, 2006. Laboratory analytical results for a groundwater water sample collected from MW-10 on October 12, 2006 contained 1.7 μ g/L MtBE and 82 μ g/L tBA. No other analytes were detected in this sample.

ASE prepared and submitted to ACEHS the *Revised Remedial Action Plan for Underground Storage Tank and Dispenser Removal and Soil and Groundwater Remediation*, dated August 16, 2007 which was supplemented by, *Remedial Action Plan Addendum*, *Oakland Truck Stop*, dated October 19, 2007. The plans proposed site remediation through excavation, dewatering, and free-phase floating product removal.

In a letter dated May 6, 2008, the ACEHS requested that the proposed scope of work be reviewed for the initial soil excavation and a Revised Corrective Action Plan be submitted.

In May 2008, the Site owners contracted with Matriks to conduct quarterly groundwater monitoring and prepare for further remediation work of the Site. Matriks prepared and submitted to ACEHS a *Revised Corrective Action Plan*, dated May 7, 2008 that included the construction of a French drain under the existing dispenser islands to facilitate the future removal of free-phase floating product. ACEHS approved the work in a letter dated May 16, 2008. The approved plan included a reduced amount of excavation and free-phase product removal and the removal of monitoring wells MW-1, MW-3, and MW-6.

In July 2008, monitoring wells MW-1, MW-3 and MW-6 were removed during the the removal of Five USTs, all associated piping and dispensers. Approximately 2,330 tons of hydrocarbon impacted soil was removed. A large French drain was constructed beneath the dispenser islands and is in connection with extraction well EX-1. Excavation extents are shown on **Figure 3**. Three new double-walled USTs, six new dispensers, new double-walled piping and containment sumps, and a continuous monitoring system were installed to prevent further hydrocarbon releases onsite.

QUARTERLY MONITORING SCOPE OF WORK

The scope of work performed for this quarterly monitoring included the following tasks:

- Measured static water levels in seven monitoring wells;
- Measured groundwater, collected field quality field parameters of pH, temperature, and specific conductance (SC) from each well;

- Purged at least three casing volumes from each well;
- Collected groundwater samples from each well;
- Analyzed groundwater samples for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Updated the Geotracker database; and
- Prepared this Quarterly Monitoring Report.

METHODS

Groundwater Level Measurements

The quarterly groundwater monitoring event was conducted on December 30, 2008. Each well cap was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before taking a water depth measurement. Water levels were measured with an electronic water depth indicator. The static water level measurements were referenced to the surveyed marks on the top of each well casing. The depth-to-water measurements were used to calculate the purge volume of each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a clean disposable bailer. Well EX-1 contained approximately 0.005 feet of free-phase floating hydrocarbons and ,therefore was not sampled. During purging, groundwater temperature, pH, and SC were measured and recorded on regular intervals with portable instrumentation. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled 55-gallon, DOT-approved steel drums, sealed, and temporarily stored onsite for subsequent proper disposal.

Following purging, groundwater samples were collected from each monitoring well using a new disposable bailer. Samples for TPH-G, BTEX, and fuel oxygenates were decanted into laboratory supplied 40-mL volatile organic analysis (VOA) vials preserved with hydrochloric acid. Care was taken to eliminate headspace in each VOA prior to capping. Samples for TPH-d were decanted into laboratory supplied 1-liter amber glass jars. Samples were labeled to indicate the project number, sample ID, and date collected. The same information was recorded on the chain-of-custody forms. Samples were stored in a cooler with ice for transport to the laboratory.

Samples were submitted under chain-of-custody control to McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g

and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Elevations and Gradient

The groundwater flow direction is calculated to be to the south-southeast, toward San Francisco Bay and the unnamed creek, with a gradient of 0.003 foot per foot. Depth to groundwater in each well and groundwater elevations and groundwater monitoring well construction details are included in **Table 1**. Historical groundwater elevation data are included in **Table 2**. Groundwater elevation contours are depicted on **Figure 4**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 5**.

Groundwater Analytical Results

The highest concentrations of petroleum hydrocarbons were detected in MW-2. MtBE was detected at 64 μ g/L, TPH-d was detected at 960 μ g/L, and TPH-g was detected at 1,500 μ g/L TPH-mo was detected at 2,500 μ g/L. Each of these concentrations is above the environmental screening level (ESL) for these constituents in groundwater. Benzene was detected at 1.5 μ g/L. The constituent tBA was also detected in each monitoring well sample, except for MW-10, in concentrations as high as 5,000 μ g/L in MW-5, however, this is below the ESL for tBA of 18,000 μ g/L. Groundwater analytical results for this and previous groundwater monitoring events are summarized in **Table 3**. A copy of the laboratory analytical report is included in **Appendix B**.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by State Assembly Bill 2886 (Water Code Section 13195-13198). Electronic data files were prepared and formatted by McCampbell and electronically submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. Well status and usage reports (GEO_WELL file) were also prepared and submitted for this groundwater monitoring event as was a complete electronic copy of this report (GEO_REPORT file) in PDF format.

CONCLUSIONS

The groundwater flow direction calculated for this quarterly event is west with a gradient of 0.003. Free-phase petroleum hydrocarbons are still present in EX-1 in the dispenser area, but its thickness appears to have been reduced by the removal of free-phase product, water and

soil during the Site remedial activities conducted in July 2008. The free-phase product thickness remained at 0.005 feet for the second consecutive quarter. Concentrations of petroleum hydrocarbons detected in groundwater samples collected during this groundwater monitoring event were generally within the range of historically detected concentrations. The constituent tBA, however, appears to be increasing in concentration with time in MW-2, MW-5 and MW-9. The concentration of tBA appears to be deceasing or remaining about the same in the remainder of the wells. Historically, the tBA concentration in MW-9 has been observed above ESL. We believe that the lateral and vertical extent of petroleum hydrocarbons in groundwater has been adequately characterized and no further lateral characterization is warranted. The concentration of TPH-mo detected in MW-2 is a concern because TPH-mo has not been previously detected in this well. It may be related to the mechanics shop on the south corner of the building adjacent to the well. The storm drain that collects and removes storm water from the tank slab area is also located south of MW-2 and it may be contributing petroleum hydrocarbons to groundwater from parking lot run-off. Parking lot runoff would be expected to contain long-chain petroleum hydrocarbons such as motor oil or diesel fuel.

RECOMMENDATIONS

We recommend that the Site be observed for one additional quarter to analyze the effects of the groundwater remediation conducted to date. This will provide water quality data for one full hydrologic cycle since the completion of the July 2008 remedial action. In addition we recommend the removal of free-phase product from groundwater in EX-1. This would best be accomplished by the installation of a passive free-phase product skimmer in this monitoring well. The skimmer should be serviced on a weekly basis for at least four weeks and the schedule revised based on the results. Additionally, EX-1 will be sampled to identify the concentrations of tBA in groundwater.

While MW-3 was in place and sampled regularly, it contained some of the highest concentrations of benzene and MtBE detected in groundwater samples and constituent trends appeared to be increasing. Groundwater in this general vicinity is currently not monitored because MW-3 was removed during the July 2008 remedial action. We also recommend the installation of a new groundwater monitoring well west of the tank pit to replace MW-3. This well should be constructed as a 4-inch well in a large flush-mounted well box to allow for additional groundwater extraction.

We also recommend the installation of a stadia rod in Elmhurst Creek and the quarterly collection of creek elevation levels so that the relationship between water levels in the creek and on site may be assessed.

FIGURES

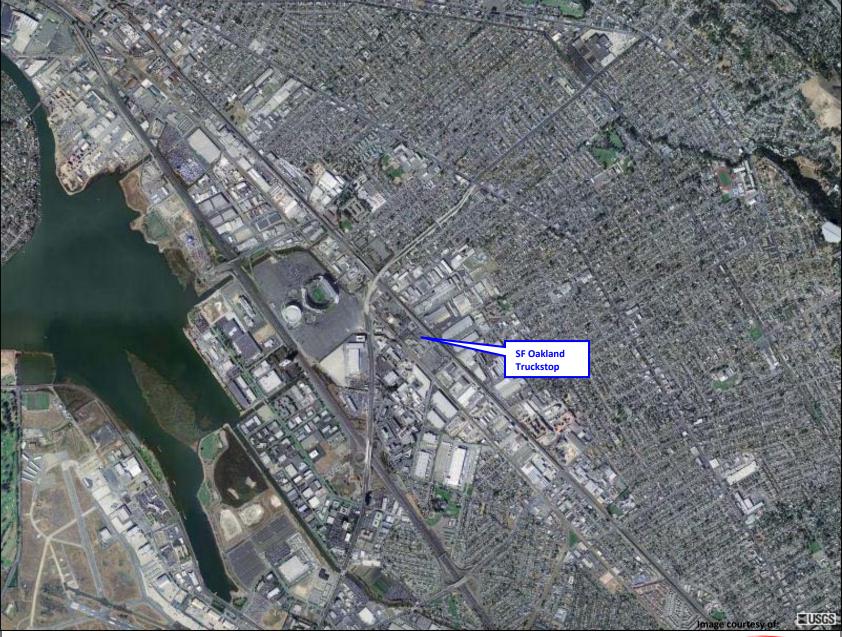
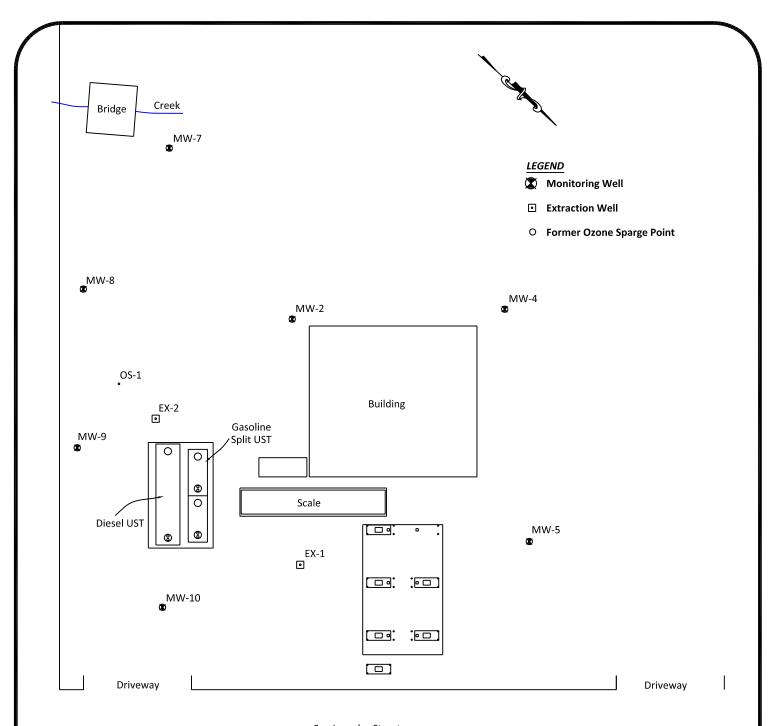



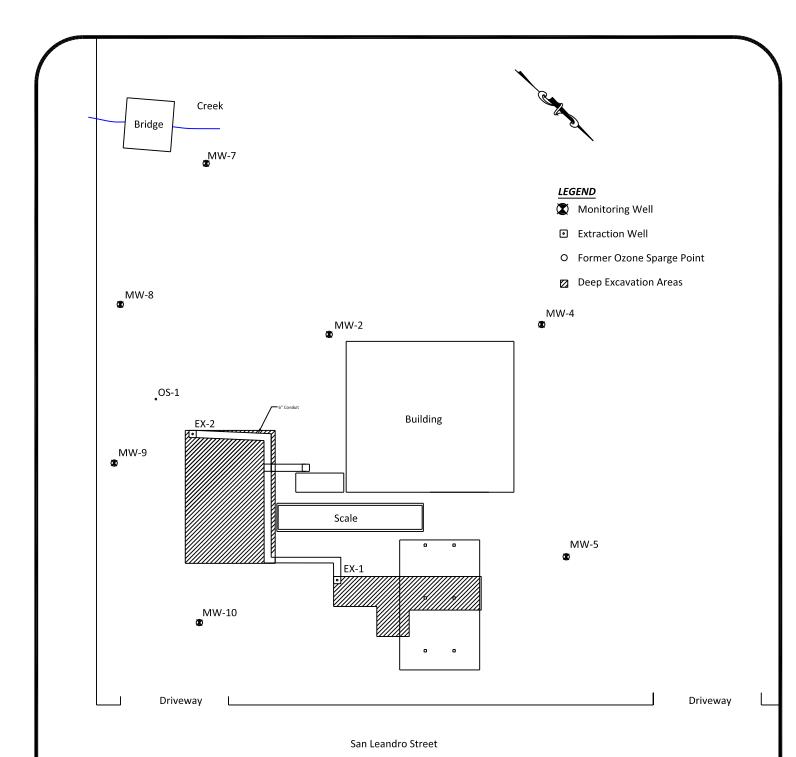
Figure 1

Site Location Map SF Oakland Truck Stop 8255 San Leandro Street, Oakland, CA

San Leandro Street

Site Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California


Project #: 6019 Figure:
Date:
02/15/2009

Scale: 1" = 40'

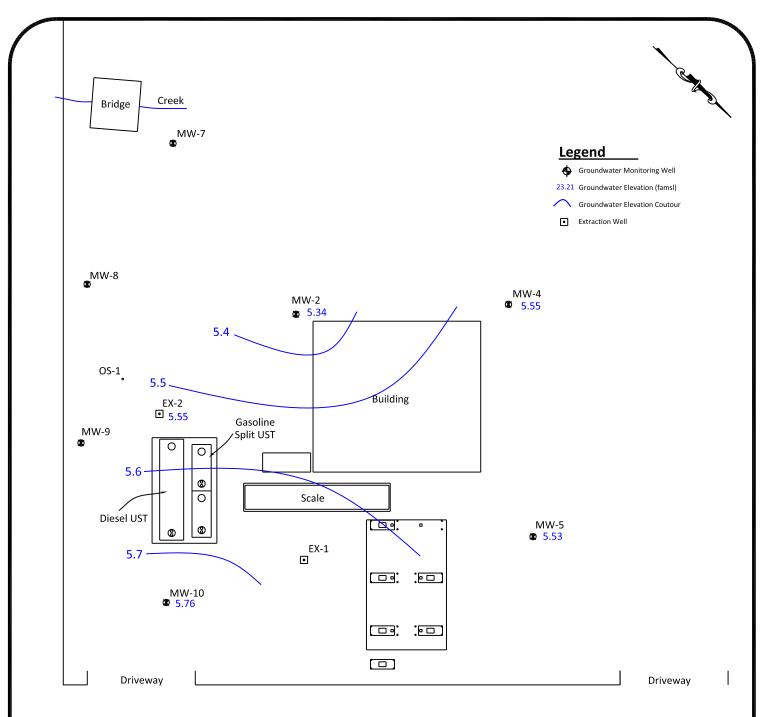
2

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1760

Excavation Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California


321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1760

Project#: 6020 Figure:

Date: 02/15/2008

Scale: 1" = 40'

San Leandro Street

Site Groundwater Gradient 12/30/2008

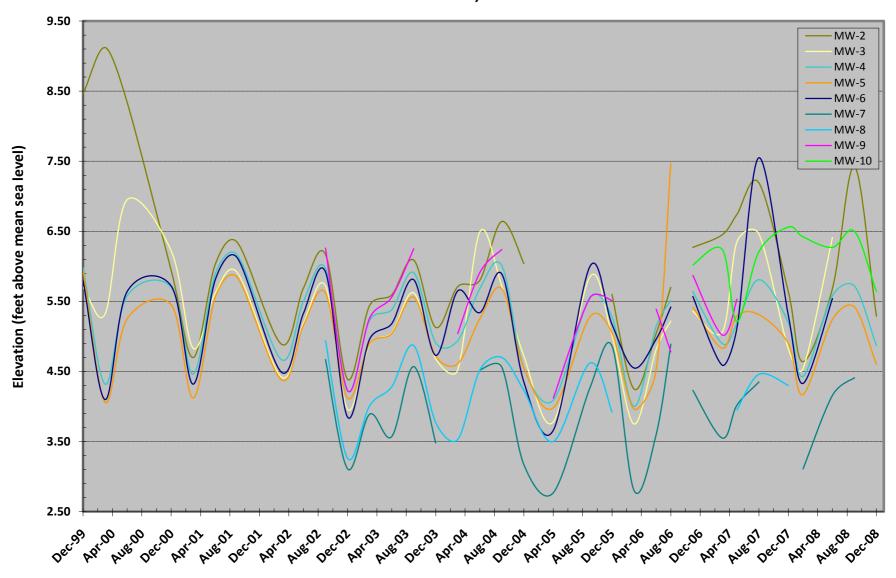
Oakland Truck Stop 8255 San Leandro Street Oakland, California

9563

Lic. No. 909563

Woodland, California 95695 (530) 406-1760 Fax# (530) 406-1760

321 Court Street



Project #: 6019 Figure: 02/15/2009

Scale: 1" = 40'

4

Figure 5. Monitoring Well Hydrographs
Oakland Truck Stop
Oakland, CA

TABLES

Table 1
Well Construction Details
Oakland Truck Stop, Oakland, California

Well ID	Date Installed	Total Depth (feet)	Screened Interval (feet)	Water- Bearing Zone	Screen Slot Size (inches)	Filter Pack Interval (feet)	Bentonite Interval (feet)	Grout Interval (feet)	Flevation (feet amsl)	Northing Coordinates (feet)	Easting Coordinates (feet)	Comments
MW-1	02/18/99	16.5	15.5-5.5	Clay	0.02	16.5-4.5	4.5-3	31	11.02	2099557.04	6072595.30	Well abandoned 7-08
EX-1	07/28/08	13.5	13.5 - 1	3/4 Crush rock	0.5	NA	NA	NA	8.21	2099537.05	6072605.07	Well placed in remediation french drain for extraction
MW-2	02/19/99	16.5	15.5.5	Clayey Fine Sand	0.02	16.5-4.5	4.5-3	31	10.63	2099465.48	6072531.46	
MW-3	02/18/99	16.5	15.5 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.33	2099455.51	6072586.53	Well abandoned 7-08
MW-4	02/19/99	16.5	15 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.42	2099528.03	6072468.70	
MW-5	12/01/99	15	15 - 5	Clay	0.02	15-4	4-3.5	3.5-1.5	10.13	2099600.85	6072533.52	
MW-6	12/01/99	15	15 - 5	Sandy Silt	0.02	15-4	4-3.5	3.5-1.5	10.71	2099444.41	6072615.62	Well abandoned 7-08
EX-2	07/28/08	17	17 - 1	pea gravel	0.5	NA	NA	NA	8.18	2099430.44	6072600.10	Well placed in UST pea gravel for extraction
MW-7	07/08/02	16.5	16.5 - 5	Silty Sand, Clayey Silt	0.02	16.5-4	4-3.5	3.5-1.5	9.08	2099379.77	6072513.11	
MW-8	07/08/02	15.5	15 - 5	Silty Sand, Clayey Silt	0.02	15.5-4	4-3.5	3.5-1.5	9.61	2099392.92	6072580.86	
MW-9	07/08/02	20	20 - 5	Silty Sand, Silty Clay	0.02	20-4	4-3.5	3.5-1.5	10.99	2099435.20	6072631.28	
MW-10	10/10/06	20	20 - 5	Silty Clay	0.02	20-4	4-3.5	3.5-1.5	11.40	2099506.21	6072656.48	

		Top of Casing	Depth to	Groundwa	
Well ID	Date	Elevation (msl)	Water (feet)	ter Elevation	Δ
MW-1	08/16/99	11.02	NM	NM	
	08/27/99		6.85	4.17	
	09/10/99		6.65	4.37	0.20
	09/24/99		6.87	4.15	-0.22
	10/08/99		6.81	4.21	0.06
	10/22/99	*	6.94	4.08	-0.13
	11/02/99		6.91	4.11	0.03
	11/19/99		6.93	4.09	-0.02
	12/06/99		5.93	5.09	1.00
	03/08/00		6.57	4.45	-0.64
	06/14/00		6.70	4.32	-0.13
	12/11/00		5.75	5.27	0.95
	03/06/01		7.60	3.42	-1.85
	06/06/01		6.80	4.22	0.80
	09/04/01		7.47	3.55	-0.67
	03/11/02		6.49	4.53	0.98
	06/06/02		6.49	4.53	0.00
	09/04/02		6.89	4.13	-0.40
	12/17/02		4.65	6.37	2.24
	03/07/03		6.55	4.47	-1.90
	06/05/03		9.77	1.25	-3.22
	09/19/03		6.56	4.46	3.21
	12/12/03		5.63	5.39	0.93
	03/15/04		7.11	3.91	-1.48
	06/22/04		NM	NM	
	09/21/04		NM	NM	
	12/30/04		NM	NM	
	04/06/05		5.70	5.32	
	09/29/05		5.40	5.62	0.30
	12/09/05		10.70	0.32	-5.30
	03/07/06		9.05	1.97	1.65
	06/20/06		4.61	6.41	4.44
	08/23/06		5.51	5.51	-0.90
	10/12/06		NM	NM	
	11/09/06		5.56	5.46	
	03/20/07		9.69	1.33	-4.13
	05/17/07		9.55	1.47	0.14
	08/16/07		6.95	4.07	2.60
	12/05/07		5.50	5.52	1.45
	02/27/08		7.28	3.74	
	06/28/08		NM	NM	
	09/27/08		Well Abandon	ed 7/3/08	
EX-1	09/27/08	8.21			
	12/30/08		No measurem	ent due to free	product

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-2	08/16/99	10.63	6.30	4.33	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		8.46	2.17	
	03/08/00		9.12	1.51	-0.66
	06/14/00		8.34	2.29	0.78
	12/11/00		5.94	4.69	2.40
	03/06/01		4.70	5.93	1.24
	06/06/01		6.03	4.60	-1.33
	09/04/01		6.34	4.29	-0.31
	03/11/02		4.89	5.74	1.45
	06/06/02		5.69	4.94	-0.80
	09/04/02		6.17	4.46	-0.48
	12/17/02		4.39	6.24	1.78
	03/07/03		5.44	5.19	-1.05
	06/05/03		5.59	5.04	-0.15
	09/19/03		6.09	4.54	-0.50
	12/12/03		5.13	5.50	0.96
	03/15/04		5.71	4.92	-0.58
	06/22/04		5.80	4.83	-0.09
	09/21/04		6.64	3.99	-0.84
	12/30/04		6.04	4.59	0.60
	04/06/05		NM	NM	
	09/29/05		NM	NM	
	12/09/05		5.60	5.03	
	03/07/06		4.25	6.38	1.35
	06/20/06		5.04	5.59	-0.79
	08/23/06		5.70	4.93	-0.66
	10/12/06		NM	NM	
	11/09/06		6.27	4.36	
	03/20/07		6.45	4.18	-0.18
	05/17/07		6.74	3.89	-0.29
	08/16/07		7.19	3.44	-0.45
	12/05/07		5.64	4.99	1.55
	02/27/08		4.64	5.99	1.00
	06/28/08		5.68	4.95	-1.04
	09/27/08	10.63	7.42	3.21	-1.74
	12/30/08		5.29	5.34	2.13

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-3	08/16/99	10.32	5.85	4.47	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.7	4.62	
	03/08/00		5.32	5.00	0.38
	06/14/00		6.95	3.37	-1.63
	12/11/00		6.22	4.10	0.73
	03/06/01		4.83	5.49	1.39
	06/06/01		5.62	4.70	-0.79
	09/04/01		5.91	4.41	-0.29
	03/11/02		4.42	5.90	1.49
	06/06/02		5.19	5.13	-0.77
	09/04/02		5.72	4.60	-0.53
	12/17/02		3.96	6.36	1.76
	03/07/03		4.88	5.44	-0.92
	06/05/03		5.05	5.27	-0.17
	09/19/03		5.62	4.70	-0.57
	12/12/03 03/15/04		4.68	5.64	0.94
	06/22/04		4.52 6.49	5.80 3.83	0.16
	09/21/04		5.72	4.60	-1.97 0.77
	12/30/04		4.72	5.60	1.00
	04/06/05		3.78	6.54	0.94
	09/29/05		5.85	4.47	-2.07
	12/09/05		5.01	5.31	0.84
	03/07/06		3.75	6.57	1.26
	06/20/06		4.81	5.51	-1.06
	08/23/06		5.22	5.10	-0.41
	10/12/06		NM	NM	
	11/09/06		5.36	4.96	
	03/20/07		5.06	5.26	0.30
	05/17/07		6.35	3.97	-1.29
	08/16/07		6.46	3.86	-0.11
	12/05/07		4.82	5.50	1.64
	02/27/08		4.54	5.78	0.28
	06/28/08		6.41	3.91	-1.87
	09/27/08		Well Abandon	ed 7/3/08	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-4	08/16/99	10.50	6.12	4.38	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.98	4.52	
	03/08/00		4.32	6.18	1.66
	06/14/00		5.58	4.92	-1.26
	12/11/00		5.70	4.80	-0.12
	03/06/01		4.46	6.04	1.24
	06/06/01		5.89	4.61	-1.43
	09/04/01		6.16	4.34	-0.27
	03/11/02		4.67	5.83	1.49
	06/06/02		5.50	5.00	-0.83
	09/04/02		5.97	4.53	-0.47
	12/17/02		4.22	6.28	1.75
	03/07/03		5.23	5.27	-1.01
	06/05/03		5.38	5.12	-0.15
	09/19/03		5.91	4.59	-0.53
	12/12/03		4.91	5.59	1.00
	03/15/04		4.94	5.56	-0.03
	06/22/04		5.68	4.82	-0.74
	09/21/04		6.01	4.49	-0.33
	12/30/04		4.55	5.95	1.46
	04/06/05		4.09	6.41	0.46
	09/29/05		5.56	4.94	-1.47
	12/09/05		5.28	5.22	0.28
	03/07/06		4.00	6.50	1.28
	06/20/06		5.14	5.36	-1.14
	08/23/06		5.51	4.99	-0.37
	10/12/06		NM	NM	
	11/09/06		5.64	4.86	
	03/20/07		4.90	5.60	0.74
	05/17/07		5.18	5.32	-0.28
	08/16/07		5.81	4.69	-0.63
	12/05/07		5.20	5.30	0.61
	02/27/08		4.43	6.07	0.77
	06/28/08		5.58	4.92	-1.15
	09/27/08	10.42	5.72	4.70	-0.22
	12/30/08		4.87	5.55	0.85

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-5	12/06/99	10.20	5.94	4.26	
	03/08/00		4.06	6.14	1.88
	06/14/00		5.25	4.95	-1.19
	12/11/00		5.45	4.75	-0.20
	03/06/01		4.12	6.08	1.33
	06/06/01		5.56	4.64	-1.44
	09/04/01		5.84	4.36	-0.28
	03/11/02		4.38	5.82	1.46
	06/06/02		5.16	5.04	-0.78
	09/04/02		5.62	4.58	-0.46
	12/17/02		4.12	6.08	1.50
	03/07/03		4.89	5.31	-0.77
	06/05/03		5.04	5.16	-0.15
	09/19/03		5.56	4.64	-0.52
	12/12/03		4.72	5.48	0.84
	03/15/04		4.61	5.59	0.11
	06/22/04		5.25	4.95	-0.64
	09/21/04		5.68	4.52	-0.43
	12/30/04		4.55	5.65	1.13
	04/06/05		3.98	6.22	0.57
	09/29/05		5.28	4.92	-1.30
	12/09/05		5.05	5.15	0.23
	03/07/06		3.96	6.24	1.09
	06/20/06		4.51	5.69	-0.55
	08/23/06		7.47	2.73	-2.96
	10/12/06		NM	NM	
	11/09/06		5.42	4.78	
	03/20/07		4.83	5.37	0.59
	05/17/07		5.29	4.91	-0.46
	08/16/07		5.31	4.89	-0.02
	12/05/07		4.90	5.30	0.41
	02/27/08		4.17	6.03	0.73
	06/28/08		5.24	4.96	-1.07
	09/27/08	10.13	5.42	4.71	-0.25
	12/30/08		4.60	5.53	0.82

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-6	12/06/99	10.71	5.8	4.91	
	03/08/00		4.1	6.61	1.7
	06/14/00		5.64	5.07	-1.54
	12/11/00		5.72	4.99	-0.08
	03/06/01		4.32	6.39	1.4
	06/06/01		5.81	4.9	-1.49
	09/04/01		6.12	4.59	-0.31
	03/11/02		4.49	6.22	1.63
	06/06/02		5.33	5.38	-0.84
	09/04/02		5.92	4.79	-0.59
	12/17/02		3.85	6.86	2.07
	03/07/03		4.96	5.75	-1.11
	06/05/03		5.18	5.53	-0.22
	09/19/03		5.81	4.9	-0.63
	12/12/03		4.73	5.98	1.08
	03/15/04		5.65	5.06	-0.92
	06/22/04		5.34	5.37	0.31
	09/21/04		5.89	4.82	-0.55
	12/30/04		4.35	6.36	1.54
	04/06/05		3.66	7.05	0.69
	09/29/05		6	4.71	-2.34
	12/09/05	*	5.17	5.54	0.83
	03/07/06		4.55	6.16	0.62
	06/20/06	*	4.96	5.75	-0.41
	08/23/06		5.42	5.29	-0.46
	10/12/06	*	NM	NM	
	11/09/06		5.57	5.14	
	03/20/07		4.59	6.12	0.98
	05/17/07		5.12	5.59	-0.53
	08/16/07		7.55	3.16	-2.43
	12/05/07		5.3	5.41	2.25
	02/27/08		4.33	6.38	0.97
	06/28/08		5.54	5.17	-1.21
	09/27/08		Well Abandon	•	
EX-2	09/27/08	8.18			
	12/30/08		2.63	5.55	2.63

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-7	09/04/02	9.17	4.67	4.50	
	12/17/02		3.11	6.06	1.56
	03/07/03		3.89	5.28	-0.78
	06/05/03		3.57	5.60	0.32
	09/19/03		4.57	4.60	-1.00
	12/12/03		3.48	5.69	1.09
	03/15/04		NM	NM	
	06/22/04		4.52	4.65	
	09/21/04		4.56	4.61	-0.04
	12/30/04		3.17	6.00	1.39
	04/06/05		2.77	6.40	0.40
	09/29/05		4.27	4.90	-1.50
	12/09/05		4.86	4.31	-0.59
	03/07/06		2.80	6.37	2.06
	06/20/06		3.60	5.57	-0.80
	08/23/06		4.89	4.28	-1.29
	10/12/06		NM	NM	
	11/09/06		4.23	4.94	
	03/20/07		3.55	5.62	0.68
	05/17/07		4.02	5.15	-0.47
	08/16/07		4.35	4.82	-0.33
	12/05/07		NM	NM	
	02/27/08		3.11	6.06	
	06/28/08		4.16	5.01	-1.05
	09/27/08	9.08	4.41	4.67	-0.34
	12/30/08				

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-8	09/04/02	9.68	4.94	4.74	
	12/17/02		3.26	6.42	1.68
	03/07/03		4.01	5.67	-0.75
	06/05/03		4.28	5.4	-0.27
	09/19/03		4.87	4.81	-0.59
	12/12/03		3.77	5.91	1.1
	03/15/04		3.53	6.15	0.24
	06/22/04		4.52	5.16	-0.99
	09/21/04		4.7	4.98	-0.18
	12/30/04		4.23	5.45	0.47
	04/06/05		3.5	6.18	0.73
	09/29/05		4.62	5.06	-1.12
	12/09/05		3.92	5.76	0.7
	03/07/06		NM	NM	
	06/20/06		3.84	5.84	
	08/23/06		NM	NM	
	10/12/06		NM	NM	
	11/09/06		4.39	5.29	
	03/20/07		NM	NM	
	05/17/07		3.95	5.73	
	08/16/07		4.46	5.22	-0.51
	12/05/07		4.3	5.38	0.16
	02/27/08		NM	NM	
	06/28/08		NM	NM	
	09/27/08	9.61	NM	NM	
	12/30/08		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-9	09/04/02	11.07	6.26	4.81	
	12/17/02		4.23	6.84	2.03
	03/07/03		5.26	5.81	-1.03
	06/05/03		5.56	5.51	-0.30
	09/19/03		6.25	4.82	-0.69
	12/12/03		NM	NM	
	03/15/04		5.04	6.03	
	06/22/04		5.91	5.16	-0.87
	09/21/04		6.24	4.83	-0.33
	12/30/04		NM	NM	
	04/06/05		4.12	6.95	
	09/29/05		5.55	5.52	-1.43
	12/09/05		5.51	5.56	0.04
	03/07/06		NM	NM	
	06/20/06		5.39	5.68	
	08/23/06		4.78	6.29	0.61
	10/12/06		NM	NM	
	11/09/06		5.87	5.20	
	03/20/07		5.02	6.05	0.85
	05/17/07		5.53	5.54	-0.51
	08/16/07		NM	NM	
	12/05/07		NM	NM	
	02/27/08		NM	NM	
	06/28/08		5.90	5.17	
	09/27/08	10.99	NM	NM	
	12/30/08		NM	NM	
MW-10	10/12/06	11.56	6.02	5.54	
	11/09/06		6.24	5.32	-0.22
	03/20/07		5.21	6.35	1.03
	05/17/07		6.21	5.35	-1.00
	08/16/07		6.56	5.00	-0.35
	12/05/07		6.42	5.14	0.14
	06/28/08		6.27	5.29	0.15
	09/27/08	11.4	6.50	4.90	-0.39
	12/30/2008		5.64	5.76	0.86

All measurements are in feet. DTW = Depth to water below top of PVC casing.

TOC = Top of casing. ELEV = Elevation above mean sea level.

D = The change in water level (elevation this quarter minus elevation last quarter).

NM = not measured

 Δ = Change in groundwater elevation from previous event

-			Canana, Camorna										
Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-1	08/16/99				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s >1.0 fee	t		
	12/06/99												
	03/08/00				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.21 fee	t		
	06/14/00			I	Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.72 fee	t		
	12/11/00				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.60 fee	t		
	03/06/01				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.40 fee	t		
	06/06/01				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 1.48 fee	t		
	09/04/02				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.20 fee	t		
	03/11/02			Not	Sampled	Due to Fr	ee-Float	ting Hydroc	arbons - <i>i</i>	Approx. 3	feet		
	06/06/02			I	Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.67 fee	t		
	09/04/02				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.54 fee	t		
	12/17/02				Not S	Sampled D	ue to Fr	ee-Floating	g Hydroca	rbons			
	03/07/03				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 1.19 fee	t		
	06/05/03			I	Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 4.63 fee	t		
	09/19/03				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.32 fee	t		
	12/12/03				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.41 fee	t		
	03/15/04				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 0.40 fee	t		
	06/22/04			Not	Sampled	Due to Fr	ee-Float	ing Hydroc	arbons - I	Not Meas	ured		
	09/21/04			Not	Sampled	Due to Fr	ee-Float	ing Hydroc	arbons - I	Not Meas	ured		
	12/30/04							g Hydrocar					
	04/06/05				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 1.40 fee	et		
	09/29/05				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 1.00 fee	t		
	12/09/05							loating Hyd					
	03/06/06				Not Samp	led Due to	Free-F	loating Hyd	rocarbon	s 5.05 fee	t		
	06/20/06				•			loating Hyd					
	08/23/06							loating Hyd					
	11/16/06							loating Hyd					
	03/20/07							loating Hyd					
	05/17/07							loating Hyd					
	08/16/07							loating Hyd					
	12/05/07							loating Hyd					
	02/27/08							loating Hyd					
	06/28/08	Not Sampled Due to Free-Floating Hydrocarbons 1.16 feet											
	07/03/08							bandoned					
EX-1	09/27/08			N	lot Sampl	ed Due to	Free-Fl	oating Hydi	ocarbons	0.005 fe	et		
	12/30/08				lot Sampl	ed Due to	Free-Fl	oating Hydi	ocarbons	0.005 fe	et		

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA	
MW-2	08/16/99	2,200	970	<500	3.8	<2.0	3	<4.0	<20	NA	NA	NA	NA	
	12/06/99	1,900	400	<500	16	<0.5	1.5	<0.5	5.2	NA	NA	NA	NA	
	03/08/00	1,600*	530	<500	9.7	<0.5	2.7	<0.5	27	NA	NA	NA	NA	
	06/14/00	2,000	75	<100	2.8	<0.5	3.4	<0.5	16	3.4	<0.5	<0.5	64	
	12/11/00	1,000	120	<100	2.6	<0.5	<0.5	<0.5	15	2.9	<0.5	<0.5	62	
	03/06/01	1,500	1400	NA	2.2	<0.5	1.7	<0.5	22	3.4	<0.5	<0.5	83	
	06/06/01	1,700	190	NA	2.6	<0.5	2.3	<0.5	26	3.2	<0.5	<0.5	83	
	09/04/02	2,000	450	NA	2.7	<0.5	2.1	<0.5	33	3.4	<0.5	<0.5	93	
	03/11/02	1,100	410	NA	1.0	<0.5	0.5	<0.5	26	2.5	<0.5	<0.5	69	
	06/06/02	900	430	NA	1.2	<0.5	<0.5	<0.5	23	2.8	<0.5	<0.5	73	
	09/04/02	910	510	NA	1.6	<0.5	<0.5	<0.5	45	2.5	<0.5	<0.5	67	
	12/17/02	190	220	NA	0.65	<0.5	<0.5	<0.5	34	1.5	<0.5	<0.5	46	
	03/07/03	380	300	NA	0.81	<0.5	<0.5	<0.5	50	1.9	<0.5	<0.5	73	
	06/05/03	2,200	2200	NA	1.7	<0.5	1.5	<0.5	180	4.9	<0.5	1.3	110	
	09/19/03	2,300	520	NA	2	<0.5	2.1	<0.5	180	3.7	<0.5	1.1	120	
	12/12/03	3,000	2200	NA	2.1	<0.5	1.7	<0.5	250	4.5	<0.5	1.6	130	
	03/15/04		Not	Sampled	- Truck Pa	arked on \	Well		Not	Sampled	d - Truck Parked on Well			
	06/22/04	1,600	420	NA	1.3	<0.5	1.0	<0.5	580	4.6	<0.5	3.9	340	
	09/21/04	2,500	<400	NA	1.2	<0.5	1.5	<0.5	730	5.9	<0.5	4.9	550	
	12/30/04	1,800	<300	NA	1.2	<1.0	<1.0	<1.0	540	5	<1.0	3.6	400	
	04/06/05							ick Parked						
	09/29/05					Not Sam	pled - Tru	ick Parked	on Well					
	12/09/05	1,000	720	NA	1.0	<0.7	<0.7	<0.7	330	6.5	<0.7	2.3	1,800	
	03/06/06	1,000	<80	NA	1.2	<0.5	0.6	<0.5	290	5.4	<0.5	1.9	1,600	
	06/20/06	1,100	<80	NA	1.6	<0.5	1.0	<0.5	280	5.8	<0.5	1.5	<1,500	
	08/23/06	1,600	<200	NA	1.5	<0.9	<0.9	<0.9	290	5.5	<0.9	1.8	2,100	
	11/16/06	350	120	NA	0.56	<0.5	<0.5	<0.5	180	4.1	<0.5	0.96	1,300	
	03/20/07	460	110	NA	0.67	<0.5	<0.5	<0.5	160	4.3	<0.5	0.9	1,500	
	05/17/07	710	85	NA	<0.5	<0.5	<0.5	<0.5	160	4.4	<0.5	0.88	2,000	
	08/16/07	460	200	NA	<0.9	<0.9	<0.9	<0.9	150	6.1	<0.9	<0.9	2,700	
	12/05/07	1,500	<80	NA	<0.9	<0.9	<0.9	<0.9	66	3.8	<0.9	<0.9	2,000	
	02/27/08	810	<80	NA	0.54	<0.5	<0.5	<0.5	97	3.6	<0.5	0.52	1,400	
	06/28/08	1,100	280	NA	2.4	5.4	<0.5	<0.5	92	<10	<10	<10	1,600	
	09/27/08	1,500	290	<250	<10	<10	<10	<10	61	<10	<10	<10	1,200	
	12/30/08	1,500	960	2500	1.5	8.4	0.71	1.2	64	<5.0	<5.0	<5.0	1,400	

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-3	08/16/99	56,000	10,000**	<500	17000	2600	2600	1200	6,100	NA	NA	NA	NA
IVIVV-5	12/06/99	40,000	9,100*	<500	16000	140	1800	100	4,000	NA	NA NA	NA NA	NA NA
	03/08/00	22.000	4,500*	<500	11000	72	1100	130	3,400	NA NA	NA NA	NA NA	NA NA
	06/14/00	34,000	16,000	<100	13000	94	1300	160	4,800	31	<10	NA 21	2,700
	12/11/00	24,000	14,000	<100	13000	88	750	120	4,300	<50	<50	<50	2,300
	03/06/01	34,000	12,000	NA	15000	100	1100	130	4,000	<50	<50	<50 <50	2,100
	06/06/01	34,000	20,000	NA NA	14000	94	550	110	4,400	<50	<50	<50	2,300
	09/04/02	29,000	19,000	NA NA	13000	83	480	83	4,100	<50	<50	<50 <50	3,400
	03/11/02	12,000	14,000	NA NA	2900	<20	110	<20	530	<20	<20	<20	330
	06/06/02	20,000	14,000	NA	10000	<50	200	51	2,400	<50	<50	<50	1,200
	09/04/02	24,000	17,000	NA NA	11000	<50	140	<50	3,200	<50	<50	<50	1,400
	12/17/02	4,900	17,000	NA NA	2000	<10	52	12	360	<10	<10	<10	220
	03/07/03	8,700	16,000	NA NA	1300	<10	43	11	770	<10	<10	<10	360
	06/05/03	27,000	14,000	NA NA	10000	53	220	53	5,000	<50	<50	<50	1,600
	09/19/03	120,000	13,000	NA NA	20000	170	710	250	6,100	<25	<25	<25	2,600
	12/12/03	29,000	27,000	NA NA	12000	74	240	79	5,600	17	<10	30	2,100
	03/15/04	28,000	21,000	NA	11000	72	220	64	8,200	<50	<50	<50	2,900
	06/22/04	29,000	7,600	NA	11000	72	220	54	8,400	<50	<50	<50	3,000
	09/21/04	33,000	<5,000	NA NA	12000	67	190	56	8,200	<25	<25	47	3,200
	12/30/04	30,000	13,000	NA	11000	62	170	49	8,900	<25	<25	49	3,200
	04/06/05	29,000	46,000	NA	10000	55	170	47	8,800	<25	<25	50	4,400
	09/29/05	28,000	1,800	NA	8700	74	190	53	7,300	<15	<15	53	4,500
	12/09/05	17,000	19,000	NA	5600	40	110	30	4,400	<15	<15	30	2,800
	03/06/06	11,000	16,000	NA	3600	26	96	22	2,400	<7.0	<7.0	19	1,400
	06/20/06	18,000	20,000	NA	6900	45	130	29	500	9.5	<7.0	34	2,900
	08/23/06	22,000	9,500	NA	6200	33	100	19	4,800	9.8	<9.0	34	3,100
	11/16/06	16,000	16,000	810	5800	26	87	18.0	2,700	10	<9.0	20	1,800
	03/20/07	23,000	12,000	410	7600	39	100	21.0	5,000	16	<8.0	35	3,200
	05/17/07	22,000	18,000	NA	10000	44	110	27.0	5,500	<15	<15	41	3,200
	08/16/07	16,000	63,000	NA	5900	33.0	66	25.0	4,600	<15	<15	39	3,400
	12/05/07	21,000	6,400	890	8000	55	120	42	4,600	<15	<15	34	4,600
	02/27/08	35,000	40,000	870	8800	54	100	38	4,300	<15	<15	38	3,300
	06/28/08	31,000	7,500	NA	12000	61	140	42	7,300	<120	<120	<120	4.700
	07/03/08	32,000	.,			02		andoned	.,	-110	-110		.,,
	57,03,00	l											

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	Е	х	MtBE	DIPE	EtBE	tAME	tBA
Well ID		ŭ	IPH-u	IPH-IIIO	ь	'	<u> </u>	^	IVILDE	DIPE	ELDE	LAIVIE	LDA
MW-4	08/16/99	61***	1100*	<500	<0.5	<0.5	<0.5	<1.0	86	NA	NA	NA	NA
	12/06/99	130***	220*	<500	<1.0	<1.0	<1.0	<1.0	130	NA	NA	NA	NA
	03/08/00	<50	220*	<500	<0.5	<0.5	<0.5	<0.5	130	NA	NA	NA	NA
	06/14/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	100	<0.5	<0.5	<0.5	20
	12/11/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	16
	03/06/01	<50	670	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	9.9
	06/06/01	<50	790	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/04/02	<50	950	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	26
	03/11/02	<50	250	NA	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	21
	06/06/02	<50	710	NA	<0.5	<0.5	<0.5	<0.5	92	<0.5	<0.5	<0.5	21
	09/04/02	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	150	<0.5	<0.5	<0.5	18
	12/17/02	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	0.52	18
	06/05/03	<50	2,000	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	0.5	23
	09/19/03	<50	830	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.8	23
	12/12/03	<50	1700	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	16
	03/15/04	<50	2,200	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/21/04	<50	620	NA	<0.5	<0.5	<0.5	<0.5	93	<0.5	<0.5	<0.5	31
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	59	<0.5	<0.5	<0.5	50
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	17	<0.5	<0.5	<0.5	120
	12/09/05	<50	760	NA	<0.5	<0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	94
	03/06/06	<50	470	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	68
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	120
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	140
	11/09/06	<50	200	410	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	130
	03/20/07	<50	860	NA	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	42
	05/17/07	<50	600	NA	<0.5	<0.5	<0.5	<0.5	5.6	<0.5	<0.5	<0.5	32
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	<0.5	64
	12/05/07	1,300	2,600	5,600	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	30
	02/27/08	<50	270	400	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	9.3
	06/28/08	<50	150	NA	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	37
	09/27/08	<50	160	360	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	<0.5	<0.5	33
	12/30/08	<50	200	320	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	16

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-5	12/06/99	450***	2000*	<500	<1.0	<1.0	<1.0	<1.0	21	NA	NA	NA	NA
	03/08/00	51***	530	<500	<0.5	<0.5	<0.5	<0.5	84	NA	NA	NA	NA
	06/14/00	380	1,400	<100	<0.5	<0.5	<0.5	<0.5	160	12	<0.5	<0.5	22
	12/11/00	540	590	<100	<0.5	<0.5	<0.5	<0.5	240	9.5	<0.5	<0.5	32
	03/06/01	510	2,900	NA	<0.5	<0.5	<0.5	<0.5	140	13	<0.5	<0.5	19
	06/06/01	280	2,700	NA	<0.5	<0.5	<0.5	<0.5	180	13	<0.5	<0.5	26
	09/04/02	630	2,600	NA	<0.5	<0.5	<0.5	<0.5	180	9.4	<0.5	<0.5	29
	03/11/02	97	3,500	NA	<0.5	<0.5	<0.5	<0.5	29	0.8	<0.5	<0.5	7
	06/06/02	61	3,500	NA	<0.5	<0.5	<0.5	<0.5	150	2.9	<0.5	<0.5	34
	09/04/02	92	6,100	NA	<0.5	<0.5	<0.5	<0.5	370	3.6	<0.5	<0.5	72
	12/17/02	110	2,100	NA	<0.5	<0.5	<0.5	<0.5	110	4.2	<0.5	<0.5	14
	03/07/03	71	1,600	NA	<0.5	<0.5	<0.5	<0.5	150	2.2	<0.5	<0.5	35
	06/05/03	95	3,300	NA	<0.5	<0.5	<0.5	<0.5	170	4.6	<0.5	<0.5	43
	09/19/03	100	1,400	NA	<0.5	<0.5	<0.5	<0.5	310	5.2	<0.5	0.68	86
	12/12/03	<50	7,600	NA	<0.5	<0.5	<0.5	<0.5	270	5.9	<0.5	0.7	91
	03/15/04	95	1,700	NA	<0.5	<0.5	<0.5	<0.5	290	6.7	<0.5	0.92	200
	09/21/04	78	990	NA	<0.5	<0.5	<0.5	<0.5	270	4.7	<0.5	0.96	880
	04/06/05	64	1,200	NA	<0.5	<0.5	<0.5	<0.5	120	4.8	<0.5	<0.5	780
	09/29/05	100	640	NA	<0.5	<0.5	<0.5	<0.5	77	3.7	<0.5	<0.5	4,000
	12/09/05	99	3,700	NA	<0.5	<0.5	<0.5	<0.5	66	6.8	<0.5	<0.5	3,000
	03/06/06	66	760	NA	<0.5	<0.5	<0.5	<0.5	42	2.9	<0.5	<0.5	1,600
	06/20/06	84	1,300	NA	<0.5	<0.5	<0.5	<0.5	42	3.6	<0.5	<0.5	3,000
	08/23/06	<200	410	NA	2.1	<2.0	<2.0	<2.0	37	2.8	<2.0	<2.0	4,800
	11/09/06	<200	700	<100	<2.0	<2.0	<2.0	<2.0	28	3.0	<2.0	<2.0	5,600
	03/20/07	<200	430	NA	<2.0	<2.0	<2.0	<2.0	22	3.0	<2.0	<2.0	3,800
	05/17/07	<200	500	NA	<2.0	<2.0	<2.0	<2.0	18	3.5	<2.0	<2.0	4,300
	08/16/07	<200	1,600	NA	<2.0	<2.0	<2.0	<2.0	13	3.0	<2.0	<2.0	6,400
	12/05/07	<200	1,400	120	<2.0	<2.0	<2.0	<2.0	8.2	2.6	<2.0	<2.0	4,700
	02/27/08	<90	1,300	190	<0.9	<0.9	<0.9	<0.9	6.0	1.8	<0.9	<0.9	2,800
	06/28/08	140	3,000	NA	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	4,300
	09/27/08	120	2,800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	6,600
	12/30/08	86	1,400	430	<0.5	<0.5	<0.5	<0.5	<25	<25	<25	<25	5,000

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-6	12/06/99	13,000	<50	<500	180	21	11	24	<100	NA	NA	NA	NA
	03/08/00	<10,000	4,600*	<500	230	26	18	39	12,000	NA	NA	NA	NA
	06/14/00	8,400	12,000	<100	180	12	10	22	15,000	<5.0	<5.0	70	3,300
	12/11/00	<5,000	10,000	<100	180	<50	<50	<50	14,000	<50	<50	74	2,900
	03/06/01	5,300	6,700	NA	220	<50	<50	<50	13,000	<50	<50	84	2,100
	06/06/01	5,000	2,300	NA	210	<25	<25	<25	14,000	<25	<25	84	4,200
	09/04/02	5,400	2,200	NA	190	12	<10	23	15,000	<10	<10	79	4,000
	03/11/02	4,600	11,000	NA	160	<25	<25	<25	15,000	<25	<25	39	5,100
	06/06/02	<5,000	14,000	NA	200	<50	<50	<50	17,000	<50	<50	77	8,700
	09/04/02	<5,000	50,000	NA	140	<50	<50	<50	21,000	<50	<50	52	7,500
	12/17/02	<5,000	9,100	NA	130	<50	<50	<50	16,000	<50	<50	64	6,300
	03/07/03	<5,000	12,000	NA	160	<50	<50	<50	20,000	<50	<50	53	7,500
	06/05/03	<5,000	23,000	NA	230	<50	<50	<50	19,000	<50	<50	86	7,100
	09/19/03	8,900	24,000	NA	220	<25	<25	<25	15,000	<25	<25	74	8,100
	12/12/03	8,000	24,000	NA	190	<25	<25	32	14,000	<25	<25	65	7,400
	03/15/04	4,400	26,000	NA	190	<25	<25	<25	9,900	<25	<25	61	6,700
	06/22/04	3,500	7,000	NA	150	<20	<20	<20	9,200	<20	<20	51	6,100
	09/21/04	4,600	12,000	NA	210	<20	<20	<20	8,800	<20	<20	55	7,000
	12/30/04	5,300	11,000	NA	190	<20	<20	<20	6,300	<20	<20	53	4,900
	04/06/05	5,100	680	NA	190	13	12	32	3,700	<5.0	<5.0	42	4,600
	09/29/05	4,900	2,800	NA	130	8.9	<5.0	13	2,100	<5.0	<5.0	23	3,200
	12/09/05	3,600	10,000	NA	110	7.1	<5.0	7.9	2,700	<5.0	<5.0	22	4,200
	03/06/06	3,900	900	NA	120	9.3	5	13	3,000	<0.5	<0.5	26	4,400
	06/20/06	3,600	1,500	NA	140	10	5	18	1,600	<3.0	<3.0	23	3,600
	08/23/06	4,300	<800	NA	140	11	5	13	2,000	<4.0	<4.0	22	4,000
	11/09/06	3,200	1,700	<100	110	6.9	<4.0	8.2	1,500	<4.0	<4.0	16	3,900
	03/20/07	2,100	920	NA	120	7.9	<4.0	7.1	2,000	<4.0	<4.0	20	4,000
	05/17/07	3,800	600	NA	140	9.5	<4.0	15	1,700	<4.0	<4.0	21	3,200
	08/16/07	3,500	780	NA	160	9.3	<3.0	14	1,800	<3.0	<3.0	21	3,600
	12/05/07	4,500	<600	<100	100	7.8	<4.0	14	1,400	<4.0	<4.0	15	4,900
	02/27/08	3,100	<1,500	<100	82	6.1	<2.0	7.9	760	<2.0	<2.0	9.6	4,800
	06/28/08	4,700	17,000	NA	160	13	4	11	1,700	<50	<50	<50	6,200
	07/03/08						Well Ab	andoned					
EX-2	09/27/08	990	2,100	NA	130	<10	<10	<10	210	<10	<10	<10	1,400
	12/30/08	730	9,100	2,600	72	1.3	1.7	0.53	100	<5.0	<5.0	<5.0	930

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-7	09/04/02	<50	130****	NA	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	220	NA	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	140	NA	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	200	NA	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	320	NA	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	380	NA	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	<5.0
	03/15/04					Not Sam	pled - Tru	ıck Parked	d on Well				
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	120	NA	<0.5	<0.5	<0.5	<0.5	9.2	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	03/06/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	9	<0.5	<0.5	<0.5	<5.0
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.5	<0.5	<0.5	<0.5	<5.0
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	5.7	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5.0
	12/05/07	Not Sampled - Truck Parked on Well											
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	<0.5	<5.0
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<2.0
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.92	<0.5	<0.5	<0.5	<2.0
	12/30/08						•	ıck Parked			1		
MW-8	09/04/02	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	100	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	62	NA	<0.5	<0.5	<0.5	<0.5	33	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	270	NA	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	250	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	420	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	03/15/04	<50	250	NA	<0.5	<0.5	<0.5	<0.5	6.4	<0.5	<0.5	<0.5	<5.0
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	86	NA	<0.5	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<5.0
	03/06/06	4F0	4F.O	NIA I	+O F			ıck Parked		40 F	-0.5	-0.5	4F.O
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6.6	<0.5	<0.5	<0.5	<5.0
	08/23/06	4F0	4F.O	1100	40 F			ıck Parked		40 F	-0.5	40 F	4F.O
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	9.3	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	250	NA NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	350	NA NA	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA <100	<0.5	<0.5	<0.5 <0.5	<0.5	11 13	<0.5	<0.5	<0.5	<5.0
	12/05/07	<50	<50	<100	<0.5	<0.5		<0.5 ick Parked		<0.5	<0.5	<0.5	<5.0
	02/27/08						·	ick Parked					
	06/28/08						•	ick Parked					
	09/27/08 12/30/08							ick Parked					
	12/30/08					NOT Sam	pieu - Tri	ick Parket	a on well				

Table 3 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-9	09/04/02	<2,500	1000	NA	<25	<25	<25	<25	12,000	<25	<25	70	1700
	12/17/02	<2,000	880	NA	<20	<20	<20	<20	4,500	<20	<20	23	2300
	03/07/03	<500	450	NA	<5	<5	<5	<5	1,700	<5	<5	8.4	6600
	06/05/03	<500	4500	NA	<5	<5	<5	<5	120	<5	<5	<5.0	17,000
	09/19/03	<1,000	4500	NA	<10	<10	<10	<10	38	<10	<10	<10	15,000
	12/12/03					Not Sam	pled - Tru	ıck Parked	d on Well				
	03/15/04	<1,000	82	NA	<10	<10	<10	<10	38	<10	<10	<10	18,000
	09/21/04	<1,000	2600	NA	<10	<10	<10	<10	17	<10	<10	<10	16,000
	12/30/04					Not Sam	pled - Tru	ick Parked	d on Well				
	04/06/05	<700	<50	NA	<7	<7	<7	<7	55	<7	<7	<7	15,000
	09/29/05	<700	<50	NA	<7	<7	<7	<7	34	<7	<7	<7	1,300
	12/09/05	<400	3200	NA	46	<4.0	<4.0	<4.0	12	<4.0	<4.0	<4.0	8,200
	03/06/06					Not Sam	pled - Trι	ıck Parked	d on Well				
	06/20/06					Not Sam	pled - Trι	ick Parked	d on Well				
	08/23/06	<250	<50	NA	9.6	<2.5	<2.5	<2.5	18	<2.5	<2.5	<2.5	6,000
	11/09/06	<150	<50	NA	13	<1.5	<1.5	<1.5	3	<1.5	<1.5	<1.5	3,900
	03/20/07	<150	<50	NA	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	2,900
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6	<0.5	<0.5	<0.5	880
	08/16/07					Not Sam	pled - Tru	ick Parked	d on Well		•		
	12/05/07							ıck Parked					
	02/27/08					Not Sam	pled - Tru	ick Parked	d on Well				
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	950
	09/27/08					Not Sam	pled - Trι	ick Parked	d on Well				
	12/30/08					Not Sam	pled - Tru	ıck Parked	d on Well				
MW-10	10/12/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	27
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	82
	03/20/07	<50	270	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	84
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	55
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	28
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	13
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	7.3
	06/28/08	<50	63	NA	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	8.7
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	3.3
	12/30/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.73	<0.5	<0.5	<0.5	<0.5
	ESL	100	100	100	1.0	130	43	10	5	NE	NE	NE	18,000

Notes:

Concentrations are recorded in units of micrograms per liter (ug/L).

- ESL Environmental Screening Level for Potable Groundwater
- * Non-typical diesel patter, hydrocarbons in early diesel range
- $\ensuremath{^{**}}$ Estimated concentration due to overlapping fuel patterns in sample
- *** Non-typical gasoline pattern
- **** Non-typical diesel pattern
- $\ensuremath{\mathsf{NE}}$ ESL is not established for this compound
- NA analyte not tested
- $\label{thm:thm:thm:petroleum} \mbox{TPH-g total petroleum hydrocarbons as gasoline}$
- TPH-d total petroleum hydrocarbons as diesel
 - B benzene
 - T toluene
 - E ethylbenzene
 - X xylenes

- MtBE methyl tert-butyl ether
- DIPE di-isopropyl ether
- EtBE ethyl tert-butyl ether
- tAME tert-amyl methyl ether
 - tBA tert-butanol

DAILY REPORT FORM

Job#		Super	visor:				Date:	12/30/08
Location:	Da	Kland						W Th F Sa
Weather:	Warm	1011						
							<u> </u>	
Description	on of Activi	ities:	load	trock - 1	rovel-	check .	water levels - c	ollect
sampl	es - trai						lab on 12/31	
			Employe	ee Initials				
Cost								
Code	# hrs	# hrs	# hrs	# hrs	# hrs	# hrs	Work Perfo	ormed
	0.5						load truck	
	2.00						travel	
-	4.00			1			Samply	
	0,5						paperwork/san	aples to lab
						,		
	7.00						Total	
				T # 11		D 1 1 E		
	Equipme			# Hours		Kental Ed	quipment	# Hours
	PTC M							
		evel indi	corpor	 				
	Dis pose	ables						
				1				
				 				
М	aterial Use	·d		Quan	itity	r i	Visitor	S
	550	zellon de	Silaa	2			1	
		gallon di	rum	7				
	55 g bail	1	rum	7				
		1	rum					
		1	rum					
		1	rum					
		1	rum					
Su		ers	rum		Tasks Pe	rformed		# Hrs
Su	bail	ers	rum		Tasks Pe	rformed		# Hrs
Su	bail	ers	rum		Tasks Pe	rformed		# Hrs

	MUNITURING WELL SAMPLING LOG												
SITE NAME	/LOCATIO	N: Oa	Flan	٥			PROJECT #:						
DATE:	12/30	108	e				SAMPLER'S INITIALS:						
WELL ID:	MW- 7			WELL DIAM	METER (in):								
WELL DEPT	H (ft):	1415	£	DEPTH TO	WATER (ft):	5.29	WATER COLUMN Ht (ft): 121						
STANDING To obtain sta		,		1.5 3 the water co		3 VOLUMES (gal): 0.17 for 2-inch well or	9.66 for a 4-inch well.						
PURGE MET	HOD:	-		aler Pump		SAMPLING METHOD	disposable PE bailer						
,		(circle t	he correct	,	RGE MEASURI	EMENTS							
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments						

	Purged	(C)	F	(uS)	(mg/L)	
						DO prior to purging
9:26	ı	64.8	6.63	2074		Slow Recharge
928	2	66.5	6.64	2066		
929	3	67.3	6.63	2042		
930	4	67.4	6.62	2022		
933	5	68.3	4.60	2020		
						Sampled 2935

WELL ID:	MW- 10	WELL DIAMETER (in):	2

WATER COLUMN Ht (ft): 20.36 DEPTH TO WATER (ft): 5.64 WELL DEPTH (ft): 26.0

STANDING WATER VOLUME (gal): 3.78 3 VOLUMES (gal): 10.1

To obtain standing volume in gallons, multiply the water column height by 0.17 for 2-inch well or 0.66 for a 4-inch well.

(circle the correct method)

PURGE METHOD:

Bailer or Mini-Whaler Pump

PURGE MEASUREMENTS

SAMPLING METHOD:

disposable PE bailer

Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)	Comments
						DO prior to purging
1050	2	68.3	7.18	670		
1054	4	68.5	7,12	680		
1055	عا	69.1	7.14	672		
	8	69.1	7,13	670		
1100	10	69.2	7.14	673		
						Sampled @ 1005

MONITORING WELL SAMPLING LOG

			<i>/</i> ///			JAMII EII (O EO O
SITE NAM	E/LOCATIO)N: <u>O</u>	Hard			PROJECT #:
DATE:	12/30	80	-:			SAMPLER'S INITIALS:
WELL ID:	MW-4		-9	WELL DIA	METER (in):	2
WELL DEP	ΓΗ (ft):	14	= 0	DEPTH TO	WATER (ft):	4187 WATER COLUMN Ht (ft): 9,13
	WATER VO	,			=	
10 ODtain su	anaing voluii					0.17 for 2-inch well or 0.66 for a 4-inch well.
PURGE ME	THOD:	The state of the s		naler Pump	-	SAMPLING METHOD: disposable PE bailer
		(circle t	the correct		RGE MEASURI	EMENTO
	Callana	T				I I
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)	Comments
		5, ji	11 12	t Ban Y		DO prior to purging
1020	- 1	63.9	7.23	1210		
1021	2	64.6	7,21	1231		
1022	3	64,8	7.22	1234		
1024	4	65.0	7.22	1234		
1075	5	65.1	7.22	1236		Sampled e1027
Haller - Lag Di	0.00	TRIE MONE	.501 Sente		eno zalg u ulka	
WELL ID:	MW-	5		WELL DIAM	METER (in):	2
WELL DEPT	ΓΗ (ft):	14	-	DEPTH TO	WATER (ft):	4.60 WATER COLUMN Ht (ft): 9.4
STANDING	WATER VOI	LUME (gal):	:	1.56		3 VOLUMES (gal): 4,68
		,				0.17 for 2-inch well or 0.66 for a 4-inch well.
PURGE MET	רייטף.	Railer or	Mini-Wh	naler Pump		SAMPLING METHOD: disposable PE bailer
FUNGE ME	nob.		he correct		£	disposable re bailer
<u></u>				PU	RGE MEASURE	EMENTS
Time	Gallons	Temp	рН	SC	DO	Comments
Time	Purged	(C)	Pr.	(uS)	(mg/L)	
		in Way bear		ur terbir.		DO prior to purging
1034	1	66.4	6.87	1728		
1035	2	66.8	6.89	1727		
1036	3	67.2	6.88	1722		
	5	67.3	6.88	1726		
II .	1	1				10000

MONITORING WELL SAMPLING LOG

SITE NAME	/LOCATIO	N: <u>()</u>	aKlan	J				PROJECT #:	
DATE:	12/30	108						SAMPLER'S INITIALS:	M
WELL ID:	MW-6	AKA G	メ・フ	WELL DIA	METER (in):	ь			
WELL DEPT	H (ft):	, II	•	DEPTH TO	WATER (ft):	2.63	(TOL)	WATER COLUMN Ht (ft):	3.37
STANDING To obtain sta		,_ ,		the water co	olumn height by			7 0.66 for a 4-inch well.	
PURGE MET	HOD:		Mini-Wh	naler Pump		SAMPLING	METHO	disposable PE ba	iler
		(circle t	ne correct		RGE MEASURE	EMENTS			
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)			Comments	
			i len			DO prior to	o purging		
950	5	65.0	7.36	1558		black	-, Sou	ne odor	
952	10	65.8	7.32	1577		9000	rechar	70	
955	15	66.4	7.32	1596					
957	20	66.5	7.31	1592		Same	pied e	21010	
1002	30	66.5	7.32	1591					
1005	35	66.4	7.32	1590					
1007	38	66.5	7.31	1288					
· · · · · · · · · · · · · · · · · · ·		MITTER OF THE	a Section		-constructors,	ONE OF THE PARTY.		ю — Л. Поволости и почения выпасы	KON INSE
WELL ID:	-WW-	Ex-1		WELL DIAM	METER (in):		s		
WELL DEPT	H (ft):			DEPTH TO	WATER (ft):			WATER COLUMN Ht (ft):	
STANDING '				the water co	Jumn height by	3 VOLUME		r 0.66 for a 4-inch well.	
					icaniii neigne by				
PURGE MET	HOD:		Mini-Wh	aler Pump	-	SAMPLING	METHO	disposable PE bai	iler ———
		(circle c	ne contect		RGE MEASURE	MENTS			
	Gallons	Temp	-11	SC	DO			Comments	
Time	Purged	(C)	pН	(uS)	(mg/L)			Comments	
				1111		DO prior to	o purging		
						1/16" F	iver p	product.	

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: Oakland Truck Stop	Date Sampled: 12/30/08
321 Court Street		Date Received: 12/31/08
Woodland, CA 95695	Client Contact: Clayton Mokri	Date Reported: 01/08/09
11 oodialid, C/1 73073	Client P.O.:	Date Completed: 01/08/09

WorkOrder: 0812834

January 08, 2009

Dear	\mathbf{C}	lay	ton	ι:
------	--------------	-----	-----	----

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: Oakland Truck Stop,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

From: EnviroTech - Rancho Cordova, CA

0812834

Website: www.mcmbell.com End in sain/gmccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269 GeoTracker EDF	_ W N	IcCAMP					AL	, I	N	C.					T										C	U	ST	OI	QΥ	R	E	O	RI		7
The contains a manufacture of the co															- 1	T	UR	IN A	AR	ou	ND) T	IM	E		DIII	B CTT	24	TID.		40.1	ID.			ZI S DAY
Emport To: Clay Long Models. Bill To: Make kg Sal (Cort St School Red St ample is effluent and "J" flag is required from pany: Make kg Sal (Cort St School Red St ample is effluent and "J" flag is required from pany: Make kg Sal (Cort St School Red St ample is effluent and "J" flag is required from pany in the					nail: n										- 1	0	'00'	Гио	olza	w E	'n	7 7	6	DI											
Emport To: Cluy Los wide Bill To: Make ks Bil	Te	lephone: (877	7) 252-92	62		Fax	: (92	25)	252	-920	69				- 1	G	reu.	114	CRE	TE	DI	6	i.												
SAMPLEID LOCATION Field Point Name Date Time Bogsthold By: Company: Malw Company: Malw	Report To: Clay	on Mok-		I	Bill To	o: M	ahri	k							7						A	nal	ysis	_	_	_	шр	10 10	CIL	iuci	16 61	_			Comments
SAMPLE ID SAMPLE ID LOCATION SAMPLE ID LOCATION															\neg			_					-							П	Т			T	
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1			-													LBE		B&F					Sene												
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1				I	-Mai	1: 6	10	eri	0	221	щ,	ne	+			/W		0 E/					Con						6	6					
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1				I	ax:)									(510		1 552	0	3	71)		, sin		3			_	7 602	602	1				
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1	Project #:			I	rojec	t Na	me:	Oq.	Klai	w)	Tru	xk	54	90		+		999	418.	700	/ 80	8	rock		cide			NAs	010	1010					Yes / No
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1	Project Location:	Dakland	CA													8021		D 98	Smo	8	602	icide	Y: Y	1	1	18	3	s/P	8/6	9/8	020				
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1																-		Srea	arb	8021	EPA	Pest	NE	ficial	3	Į Š	SVO	PAH	200	200.2	9/0				1,44
MW-10 MW-10 MW-2 MW-10 MW-10 MW-2 MW-10 MW-1			SAMI	PLING		crs		MA	TR	XIX						Gas (6	(511	Oil & C	Hydro	/ 0108	NLY ()81 (CI	CB's C	NP Per	Acidic	928	8270	8310 (200.77	72007	109/87	0			
MW-10 MW-4 1027 1040 Gx-7 1040 Gx-7 1010 Date: Time: Received By: GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LABY APPROPRIATE CONTAINERS PRESERVED IN LABY PRESERVED IN LABY APPROPRIATE CONTAINERS PRESERVED IN LABY PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY APPROPRIATE CONTAINERS PRESERVED IN LABY PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MEAN SPACE ASSENT Date: Time: Received By: APPROPRIATE CONTAINERS PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MANUEL STATE OF CHEEP MANUE	SAMPLE ID	Field Point	Date	Time	# Container	Type Contain	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO,	Other	BTEX & TPH as	TPH as Diesel (8	Total Petroleum	Total Petroleum	EPA 502.2 / 601 /	MTBE / BTEX O	EPA 505/ 608 / 80	EPA 608 / 8082 P	EPA 507 / 8141 (EPA 515 / 8151 (EPA 524.2 / 624 /	EPA 525.2 / 625 /	EPA 8270 SIM /	CAM 17 Metals	LUFT 5 Metals (Lead (200.7 / 200	- (15	440	
MW-10 MW-4 1027 1040 Gx-7 1040 Gx-7 1010 Date: Time: Received By: GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LABY APPROPRIATE CONTAINERS PRESERVED IN LABY PRESERVED IN LABY APPROPRIATE CONTAINERS PRESERVED IN LABY PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY APPROPRIATE CONTAINERS PRESERVED IN LABY PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MEAN SPACE ASSENT Date: Time: Received By: APPROPRIATE CONTAINERS PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MANUEL STATE OF CHEEP PRESERVED IN LABY MANUEL STATE OF CHEEP MANUE	MW-Z		12/30/01	935	5	*	<				7		5	1	7	X	×															_	-	T	
Selinguished By: Date: Time: Received By:	MW-10		1		1	1	T						1	T	\neg	T	1														T		1		
Plinguished By: Date: Time: Received By:	MW-4				\Box		Ħ				7		Ħ	\forall	7															T			П		
elinquished By: Date: Time: Received By: Comments: Comments:	MW-5						17				\neg		11	\forall	7							-								Т	T	П	П	\top	
elinquished By: Date: Time: Received By: COMMENTS: COMMENTS:	Ex-7		I		1	1	L				\neg		1	\forall	ヿ	1	I															1	\prod	T	
IZ IZ IZ IZ IZ IZ IZ IZ				701			T				7		\forall	\forall	7															T	\top			\top	
IZ IZ IZ IZ IZ IZ IZ IZ							T				\neg		1	\top	7														Г		\top				
IZ IZ IZ IZ IZ IZ IZ IZ										T	7		1	\forall	7												1				T			\top	- 0
IZ IZ IZ IZ IZ IZ IZ IZ	N. 32				\vdash	\vdash	\vdash			\forall	7	\forall	\forall	\forall	7												\vdash			\top	T		\vdash	\top	
IZ IZ IZ IZ IZ IZ IZ IZ										\dashv	7	\neg	+	\forall	7																\vdash		\vdash	+	
IZ IZ IZ IZ IZ IZ IZ IZ					\vdash	\vdash	+			+	+	+	+	+	+									-	-		\vdash			1	+	_	+	+	
IZ IZ IZ IZ IZ IZ IZ IZ					_	-			-	+	+	+	+	+	+	_			_	_	-			-	-	\vdash	-	-	-	-	+		-	+	
IZ IZ IZ IZ IZ IZ IZ IZ			_	-	-	\vdash	\vdash		-	+	+	+	+	+	+	-							-	-	-	-	-	-	-	-	+		+	+	
IZ IZ IZ IZ IZ IZ IZ IZ					_	_			-	-	4	_	+	+	4					-				-	_	1	-	-	-	-	+	\vdash	+	+	
IZ IZ IZ IZ IZ IZ IZ IZ	1				_						\perp				4			,														_	\perp		
elinquished By: Date: Time: Received By: Vol.	Relinquished By:		100				7	0	1	1	2	6				GC	OOD	CON	DIT	ION		I													
elinquished By: Date: Time: Received By: Date: Time: Received By:	Relinguished By:	/	_		Rece	ived B	ly:	-	6	10			_	_	\dashv	HE	CHI	ORI	CE A	BSE	NT_ IN I	AB	CH	4	1		4	+ = 1	40	100	+	la	me	ner	•
Date: Iffice Nective by:	Jongo He	01	1 10		5	MAN	10	> -	-	P	0	h	8	R	-	AP	PRO	PRI	ATE	CO	NTA	INE	RS	1	1		/	1	1						
VOAS ONG METALS OTHER	Relinquished By:	Ca	_		Rece	iven D	ıy.								┪	PR	ESE	KVE	DIN	LA	B /V	N													
Enunto - Tegy 12kg 1700 KBURKA PRESERVATION PRESERVATION PRESERVATION	Envoto-	POL	12/21	1700	K	BI	MR	K	8	-						pp	PCP	DVA	TIO		AS	08	&G			LS	OT	HER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0812834 ClientCode: MCW

		WriteOn	✓ EDF	Excel	Fax	Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Req	uested TAT:	5 days
Clayton Mokri	Email:	thenderson@ma	trikscorp.com	; Cmokri	Robert Neel	у			
Matriks Corporation	cc:				Matriks Corp	oration			
321 Court Street	PO:				321 Court S	treet	Dat	e Received:	12/31/2008
Woodland, CA 95695	ProjectNo	: Oakland Truck St	top		Woodland, C	CA 95695	Dat	e Printed:	12/31/2008
(530) 406-1760 FAX (530) 406-1771									

				Ī	Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0812834-001	MW-2	Water	12/30/2008 9:35		С	В	Α	Α								
0812834-002	MW-10	Water	12/30/2008 11:05		С	В		Α								
0812834-003	MW-4	Water	12/30/2008 10:27		С	В		Α								
0812834-004	MW-5	Water	12/30/2008 10:40		С	В		Α								
0812834-005	EX-2	Water	12/30/2008 10:10		С	В		Α								

Test Legend:

1 5-OXYS_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(DMO)_W	5
6	7	8	9	10
11	12			

Prepared by: Samantha Arbuckle

Comments:

Sample Receipt Checklist

Client Name:	Matriks Corporat	ion			Date a	and Time Received:	12/31/08 5	:05:39 PM
Project Name:	Oakland Truck S	top			Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0812834	Matrix Water			Carrie	r: <u>EnviroTech</u>		
		Chain	of Cu	stody (C	COC) Informa	ition		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinqui	shed and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs noted	I by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	~	No 🗆			
		<u>S</u>	ample	Receipt	Information			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	lition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT)	Information		
All samples recei	ved within holding tim	e?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature		Coole	er Temp:	4.2°C		NA \square	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	nitted	
Sample labels ch	necked for correct pres	servation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	~	No 🗆			
		(Ice Typ	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments below.						
=====		======		:		=====		======
Client contacted:		Date contact	ted:			Contacted	l by:	
Comments:								

Matriks Corporation	Client Pr	oject ID: Oaklan	d Truck Stop	Date Sampled:	12/30/08				
321 Court Street				Date Received:	12/31/08				
	Client C	ontact: Clayton N	Date Extracted:	01/03/09-0	1/05/09				
Woodland, CA 95695	Client P.	Client P.O.: Date Analyzed 01/03/09-01/05/0							
	Oxygenated Vol	atile Organics by	P&T and GC/M	S*					
Extraction Method: SW5030B	Anal	lytical Method: SW826	0B		Work Order:	0812834			
Lab ID	0812834-001C	0812834-002C	0812834-003C	0812834-004C					
Client ID	MW-2	MW-10	MW-4	MW-5	Reporting DF				
Matrix	W	W	W	W					
DF	10	1	1	50	S	W			
Compound		Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND<5.0	ND	ND	ND<25	NA	0.5			
t-Butyl alcohol (TBA)	1400	ND	16	5000	NA	2.0			
Diisopropyl ether (DIPE)	ND<5.0	ND	ND	ND<25	NA	0.5			
	I	i	1	I	1				

Comments * water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP

ND

0.73

Surrogate Recoveries (%)

97

ND

6.3

97

ND<25

ND<25

104

NA

NA

0.5

0.5

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND<5.0

64

96

surrogate diluted out of range or surrogate coelutes with another peak.

extracts are reported in mg/L, wipe samples in µg/wipe.

Ethyl tert-butyl ether (ETBE)

Methyl-t-butyl ether (MTBE)

%SS1:

Matriks Corporation		Client Pr	oject ID: Oaklan	Date Sampled:	12/30/08			
321 Court Street					Date Received:	12/31/08		
		Client Co	ontact: Clayton N	Mokri	Date Extracted:	te Extracted: 01/03/09-01/		
Woodland, CA 95695		Client P.	O.:	01/03/09-01/05/09				
	Oxyger	nated Vol	atile Organics by	P&T and GC/M	IS*			
Extraction Method: SW5030B		Anal	ytical Method: SW826	0B		Work Order:	0812834	
Lab ID	08128	34-005C						
Client ID	Е	X-2				Reporting DF		
Matrix		W						
DF	10					S	W	
Compound			ug/kg	μg/L				
tert-Amyl methyl ether (TAME)	NI	D<5.0				NA	0.5	
t-Butyl alcohol (TBA)	ç	930				NA	2.0	
Diisopropyl ether (DIPE)	NI	D<5.0				NA	0.5	
Ethyl tert-butyl ether (ETBE)	NI	D<5.0				NA	0.5	
Methyl-t-butyl ether (MTBE)	1	100				NA	0.5	
		Surre	ogate Recoveries	s (%)				
%SS1:		98						
Comments								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

 $^{*\} water\ and\ vapor\ samples\ are\ reported\ in\ \mu g/L,\ soil/sludge/solid\ samples\ in\ mg/kg,\ product/oil/non-aqueous\ liquid\ samples\ and\ all\ TCLP\ \&\ SPLP$ extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

Matriks Corporation	Client Project ID: Oakland Truck Stop	Date Sampled: 12/30/08
321 Court Street		Date Received: 12/31/08
	Client Contact: Clayton Mokri	Date Extracted: 01/07/09-01/08/09
Woodland, CA 95695	Client P.O.:	Date Analyzed 01/07/09-01/08/09

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods SW8021B/8015Cm Extraction method SW5030B Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS 001B MW-2 W 1500,d1 62 1.5 8.4 0.71 123 002B W ND ND MW-10 ND ND ND ND 1 98 003B W ND MW-4 ND 6.3 ND ND ND 1 92 004B MW-5 W 86,d7 5.6 ND ND ND ND 1 91 005B EX-2 109 W 730,d1 98 72 1.3 1.7 0.53 1 Reporting Limit for DF = 1; W 5 50 0.5 0.5 0.5 0.5 $\mu g/L$ ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

- d1) weakly modified or unmodified gasoline is significant
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: Oakland Truck Stop	Date Sampled: 12/30/08
321 Court Street		Date Received: 12/31/08
321 Court Succi	Client Contact: Clayton Mokri	Date Extracted: 12/31/08
Woodland, CA 95695	Client P.O.:	Date Analyzed: 01/02/09-01/07/09

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 0812834

Extraction method:	3W3310C	Anarytic	al liletilous. Sw 8013B	WO	WORK Order: 0812834			
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS		
0812834-001A	MW-2	W	960,e7,e2,e4	2500	1	112		
0812834-002A	MW-10	W	ND	ND	1	103		
0812834-003A	MW-4	W	200,e7,e2	320	1	97		
0812834-004A	MW-5	W	1400,e1	430	1	98		
0812834-005A	EX-2	W	9100,e1,e6	2600	1	97		

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg
above the reporting innit				

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- e1) unmodified or weakly modified diesel is significant
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.
- e6) one to a few isolated peaks present in the THP(d/mo) chromatogram
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40612 WorkOrder: 0812834

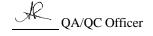
EPA Method SW8260B	EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0812824-001												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)		
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND<10	10	102	103	0.374	93.6	93.5	0.134	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND<40	50	102	98.6	3.25	77	85.6	10.6	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND<10	10	110	109	0.689	101	101	0	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND<10	10	120	120	0	112	112	0	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND<10	10	107	106	0.605	98.6	101	2.58	70 - 130	30	70 - 130	30	
%SS1:	105	25	97	97	0	98	98	0	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40612 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812834-001C	12/30/08 9:35 AM	1 01/03/09	01/03/09 1:15 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40624 WorkOrder: 0812834

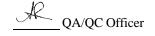
EPA Method SW8260B	EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0812834-0020												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)		
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	111	110	0.878	87.7	88.8	1.25	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	103	105	1.89	82.7	82.3	0.481	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	113	111	1.87	94.7	95	0.314	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	128	127	0.951	103	104	0.370	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	0.73	10	124	125	1.05	95.4	97.1	1.77	70 - 130	30	70 - 130	30	
%SS1:	97	25	102	106	3.50	98	97	1.17	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40624 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812834-0	002C 12/30/08 11:05 AM	1 01/03/09	01/03/09 1:54 AM	0812834-003C	12/30/08 10:27 AM	01/03/09	01/03/09 2:33 AM
0812834-0	004C 12/30/08 10:40 AM	1 01/05/09	01/05/09 4:54 PM	0812834-005C	12/30/08 10:10 AM	01/03/09	01/03/09 3:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40606 WorkOrder 0812834

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B					S	Spiked San	nple ID	: 0812821-0	10A
Analyte	Sample	Spiked	MS	MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Cr					Criteria (%)	Criteria (%)		
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	92	95.4	3.59	95	89.9	5.61	70 - 130	20	70 - 130	20
MTBE	ND	10	106	104	2.15	107	103	3.04	70 - 130	20	70 - 130	20
Benzene	ND	10	101	94.5	7.10	93.2	102	9.30	70 - 130	20	70 - 130	20
Toluene	ND	10	91.9	86	6.53	85.1	91.2	6.84	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	101	96	4.81	93.8	99.6	6.06	70 - 130	20	70 - 130	20
Xylenes	ND	30	97.8	93.7	4.24	89	97.7	9.27	70 - 130	20	70 - 130	20
%SS:	106	10	104	98	6.50	97	101	4.59	70 - 130	20	70 - 130	20

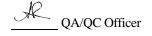
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40606 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812834-001B	12/30/08 9:35 AM	01/08/09	01/08/09 4:04 AM	0812834-002B	12/30/08 11:05 AM	01/07/09	01/07/09 2:25 PM
0812834-003B	12/30/08 10:27 AM	01/08/09	01/08/09 4:38 AM	0812834-004B	12/30/08 10:40 AM	01/08/09	01/08/09 5:11 AM
0812834-005B	12/30/08 10:10 AM	01/08/09	01/08/09 5:45 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 40623 WorkOrder: 0812834

EPA Method: SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	105	98.2	6.96	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	102	101	0.532	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40623 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0812834-001A	12/30/08 9:35 Al	12/31/08	01/02/09 11:51 AN	0812834-002A	12/30/08 11:05 AI	12/31/08	01/07/09 5:09 PN
0812834-003A	12/30/08 10:27 A	12/31/08	01/02/09 5:35 PN	0812834-004A	12/30/08 10:40 Al	12/31/08	01/02/09 6:44 PN
0812834-005A	12/30/08 10:10 A	N 12/31/08	01/02/09 7:54 PN				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND cont significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer