RECEIVED

9:40 am, Jul 20, 2009

Alameda County Environmental Health

QUARTERLY GROUNDWATER MONITORING REPORT Third Quarter 2008

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

PREPARED FOR:

Nissan Saidian 5733 Medallion Court Castro Valley, California 94520

SUBMITTED TO:

Alameda County Environmental Health Services
Local Oversight Program
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

November 4, 2008 Project No. 6020

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

TABLE OF CONTENTS

PROFESSIO	NAL CERTIFICATIONiii
ACRONYM	S AND ABBRREVIATIONSiv
INTRODUCTI	ON1
Site Descri	ption and Physical Setting1
Site Histor	y1
SITE REMEDI	ATION4
Well Aban	donment4
UST and So	oil Removal4
Dispenser	Excavation5
QUARTERLY	MONITORING SCOPE OF WORK6
METHODS	6
	vater Level Measurements6
	ing Well Purging and Sampling6
RESULTS	7
Groundwa	ter Levels and Gradient7
Groundwa	ter Analytical Results
Geotracke	Requirements8
CONCLUSION	ls8
RECOMMENI	DATIONS 8
FIGURES	
Figure 1	Site Location Map
Figure 2	Site Map Executation Remodiation Extents
Figure 3 Figure 4	Excavation Remediation Extents Groundwater Gradient Map
Figure 5	Groundwater Hydrographs
TABLES	

Table 1 Well Construction DetailsTable 2 Groundwater Elevation DataTable 3 Groundwater Analytical Results

APPENDICES

Appendix A Well Sampling Logs

Appendix B Laboratory Analytical Results

PROFESSIONAL CERTIFICATION

QUARTERLY GROUNDWATER MONITORING REPORT Third Quarter 2008

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

Project No. 6020 June 28, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears here on. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis; conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

Tom Henderson

President

David W. Janney, P.G.

Senior Geologist

ACRONYMS AND ABBRREVIATIONS

ACEHS Alameda County Environmental Health Services

AEI All Environmental, Inc.

amsl above mean sea level

ASE Aqua Science Engineers, Inc.

DCA 1,2-dichloroethane

DIPE di-isopropyl ether

EDB ethylene di-bromide

EDF electronic data file

ESL Environmental Screening Level

EtBE ethyl tert-butyl ether

Feet ft

Geotracker Geographical Information Management System

Matriks Corporation

MtBE methyl tert-butyl ether

mg/Kg milligrams per kilogram

ml milliliter

MW monitoring well

PDF portable document format

Penn Penn Environmental

RWQCB Regional Water Quality Control Board

SC specific conductance

SRS sensitive receptor survey

tAME tert-amyl methyl ether

tBA tert butyl alcohol

TOG total oil and grease

TPH-d total petroleum hydrocarbons as diesel

TPH-g total petroleum hydrocarbons as gasoline

μg/L micrograms per liter

UST underground storage tank

VOA volatile organic analysis

INTRODUCTION

This report has been prepared to describe the results of the third quarter 2008 groundwater monitoring event conducted by Matriks at the Oakland S.F. Truck Stop (the "Site"), located at 8255 San Leandro Street, Oakland, California. The sampling described herein is part of an ongoing monitoring program of petroleum hydrocarbons in groundwater caused by a release of petroleum fuels from underground storage tanks (USTs) and/or the associated piping formerly located at the Site. Matriks is conducting the monitoring program on behalf of the Site owner and responsible party, Mr. Nissan Saidian. The Alameda County Environmental Health Service (ACEHS) is the lead regulatory agency overseeing this monitoring event and the Site investigation. The ACEHS case number for the Site is RO0000085. This quarterly monitoring event included the collection and laboratory analysis of samples from groundwater monitoring wells EX-2, MW-2, MW-4, MW-5, MW-7, and MW-10.

Site Description and Physical Setting

The Site is currently a fuel station, weigh station, and convenience mart that has been in operation since the 1960s. The surrounding area is comprised of mixed commercial, industrial and residential properties. The Site is located approximately 1 ¼ mile east of San Francisco Bay and approximately ½ mile south of the Oakland-Alameda County Coliseum Complex. Elmhurst Creek provides storm drainage for the surrounding area and flows northwesterly across the west side of the Site. The Site and surrounding area are flat and the Site elevation is approximately 10 feet above mean seal level (amsl). A Site location map is shown on **Figure 1**.

Site History

In May 1998, W.A. Craig, Inc. removed three USTs, two 4,000-gallon and one 550-gallon. The 4,000-gallon tanks stored gasoline and the 550-gallon tank stored waste oil.

In January 1999, Penn Environmental was attempting to remove another waste oil UST and encountered difficulties due to the UST's proximity to underground utilities. Penn requested permission from ACEHS and the City of Oakland Fire Department to close the tank in-place. According to a letter report from Penn dated May 27, 1999, ACEHS and the Fire Department would consider closure in-place if a water sample collected from the tank pit contained levels of total oil and grease below regulatory requirements. Total oil and grease was not detected in the water sample collected from the tank pit. A review of available records on the ACEHS website appears to indicate that the requirements for closure in-place were met and the tank was closed. The final disposition of this UST, however, is unknown.

In February 1999, Penn drilled 13 soil borings at the Site and installed groundwater monitoring wells in four of the borings (MW-1 through MW-4). Petroleum hydrocarbons were detected in

soil samples from each boring except B7. Petroleum hydrocarbons were also detected in groundwater samples from each open boring and in each monitoring well. The highest concentration of methyl tert-butyl ether (MtBE) detected by laboratory analysis in the boring soil samples was 3.9 milligrams per kilogram (mg/Kg) in boring B2 at a depth of 4 feet (ft). The highest concentration of total petroleum hydrocarbons as diesel (TPH-d) in the boring soil samples was 2,000 mg/Kg, also in boring B-2 at a depth of 4 ft. The highest concentration of MtBE detected in groundwater from the open borings was 28,000 micrograms per liter (μ g/L) in B-8. The highest concentration of TPH-d in the groundwater monitoring wells was 62,000 μ g/L in groundwater monitoring well MW-1.

In August 1999, Aqua Science Engineers, Inc. (ASE) began conducting quarterly groundwater monitoring at the Site. Monitoring well MW-1 contained free-phase petroleum hydrocarbons believed to be diesel due to its dark color. Laboratory analysis detected 56,000 μ g/L TPH-g, 17,000 μ g/L benzene, and 6,100 μ g/L MtBE in MW-3.

On December 1, 1999, ASE installed additional monitoring wells MW-5 and MW-6. Free-phase petroleum hydrocarbons were again observed on the groundwater surface in monitoring well MW-1. Laboratory analysis detected 17 mg/Kg TPH-d in a soil sample from well boring MW-5 at 6 ft and 2.0 mg/Kg TPH-g in a soil sample from MW-6 also at 6 ft in. Both analytical results were noted by the laboratory to have non-typical patterns for TPH-g.

In May and June 2000, ASE drilled eight additional soil borings. The highest concentration of petroleum hydrocarbons detected in boring BH-G was 1,500 mg/Kg TPH-d at 12 ft, in boring BH-A 370 mg/Kg TPH-g and 2.3 mg/Kg benzene at 7.5 feet, and in boring BG-D 1.7 mg/Kg MtBE at 11.5 ft.

In July 2002, ASE installed three additional monitoring wells (MW-7, MW-8 and MW-9). Well locations are depicted in **Figure 2**. ASE also made several attempts to drill a boring in San Leandro Street to define the eastern extent of petroleum hydrocarbons in soil and groundwater east of the Site. Each attempt was met with refusal at relatively shallow depths.

In the report documenting the July 2002 monitoring well installations, ASE presented findings of a sensitive receptor survey (SRS) conducted for the Site. According to the SRS, there is a small-unnamed creek on the western margin of Site that appeared to provide Site drainage. The SRS also concluded that due to the flat topography of the area and its close proximity to San Francisco Bay, the creek is likely to be tidally influenced. ASE also concluded that this was a likely explanation for the variable groundwater gradient at the Site (ASE 2002).

The SRS also identified three wells within a 2,000-foot radius of the Site. One well was identified as industrial and two wells were identified as irrigation wells. No domestic or municipal water supply wells were identified within the search radius (ASE 2002). The current status of these wells is unknown.

In February 2004, ASE subcontracted Subtronic Corporation to perform a ground magnetometer geophysical survey on the Site to identify additional USTs. No USTs were identified although two areas were identified that appeared to have buried reinforced concrete where the presence buried metal objects, such as a UST, could not be ruled out (ASE 2004) due to the magnetic response of the rebar which would mask the USTs. Subtronic subsequently conducted a ground penetrating radar geophysical survey of the two magnetometer anomalies in September 2006. No USTs were identified in either location (ASE 2007).

On July 10, 2006, ASE collected a sample of free-phase petroleum hydrocarbons from monitoring well MW-1. The sample was analyzed by modified EPA Method 8015 and a forensic analysis was conducted on the chromatogram. The laboratory indicated that the product was indicative of middle distillates such as diesel fuel #2 or heating oil. The abundance of isoprenoids in conjunction with the absence of normal alkanes indicates that the fuel had undergone substantial biological degradation (ASE 2007).

In September 2006, ASE advanced 11 soil borings. Borings BH-I through BH-L and BH-S, each to a depth of 50 ft, using an EP Sonic drill rig. Borings BH-M through BH-R were installed on and off-site, respectively, using a Geoprobe direct push drill rig. The highest concentration of TPH-d detected by laboratory analysis of soil samples from boring BH-L was 2,200 mg/Kg at 19 ft. Boring BH-L also contained the highest concentration of MtBE at 0.81 mg/Kg at 14.5 ft. The highest concentration of tBA detected in boring BH-1 was 2.2 μ g/L at 14.5 ft. The sample from BH-L reported the highest level of TPH-d concentrations of 27,000 μ g/L (15-18 feet bgs) (ASE 2007).

During this same time, six temporary well points were installed to define the extent of free-phase floating petroleum hydrocarbons in the vicinity of the dispenser islands. PVC casing was placed in the temporary well points and remained overnight. Free-phase floating petroleum hydrocarbons were measure in boring TH-6 at a thickness of 2.54 ft. None of the other borings contained a measurable thickness of free-phase floating petroleum hydrocarbons but they did contain petroleum hydrocarbon sheen. While the borings were being backfilled, ASE noted that a thin layer of free-phase petroleum hydrocarbons was pushed to the surface on top of the cement in borings TH-2 and TH-4. Based on the results from these temporary wells, ASE returned in January 2007 and installed additional temporary well points TH-7 and TH-8. The PVC casing was placed in these wells for only six hours. After six hours there was only water in boring TH-7. Laboratory analysis detected 22,000 μ g/L in a groundwater sampled collected from TH-7.

Free-phase floating hydrocarbons were removed from monitoring well MW-1 from August 1999 to March 2008, on schedules ranging from weekly to monthly. According to ASE's report dated March 9, 2007, over 140 gallons of free-phase floating diesel had been removed from monitoring well MW-1 as of March 2007.

ASE installed monitoring well MW-10 on October 10, 2006. Laboratory analytical results for a groundwater water sample collected from MW-10 on October 12, 2006 contained 1.7 μ g/L MtBE and 82 μ g/L tBA. No other analytes were detected in this sample.

ASE prepared and submitted to ACEHS the *Revised Remedial Action Plan for Underground Storage Tank and Dispenser Removal and Soil and Groundwater Remediation*, dated August 16, 2007 which was supplemented by, *Remedial Action Plan Addendum*, *Oakland Truck Stop*, dated October 19, 2007. The plans proposed site remediation through excavation, dewatering, and free-phase floating product removal.

In a letter dated May 6, 2008, the ACEHS requested that the proposed scope of work be reviewed for the initial soil excavation and a Revised Corrective Action Plan be submitted.

In May 2008, the Site owners contracted with Matriks to conduct quarterly groundwater monitoring and prepare for further remediation work of the Site.

Matriks prepared and submitted to ACEHS a *Revised Corrective Action Plan*, dated May 7, 2008 that included the construction of a French drain under the existing dispenser islands to facilitate the future removal of free-phase floating product. ACEHS approved the work in a letter dated May 16, 2008. The approved plan included a reduced amount of excavation and free-phase product removal and the abandonment of monitoring wells MW-1, MW-3, and MW-6.

SITE REMEDIATION

Well Abandonment

In preparation for the excavation activities proposed in the *Revised Corrective Action Plan*, prepared and submitted by Matriks, monitoring wells MW-1, MW-3, and MW-6 were abandoned by Gregg Drilling on July 3, 2007 under permit and observation of ACEHS. Wells MW-1 and MW-3 were drilled out and backfilled with neat cement with a tremie pipe from the bottom of the borehole to the ground surface. Following the abandonment, Matriks prepared and submitted a well completion report to the California Department of Water Resources. Well MW-6 was located under high voltage power lines and for safety reasons it was pressure grouted in place without being drilled-out. The well casing was extracted by the drillers and well box were removed in the process. The well opening was filled with neat cement to surface grade.

UST and Soil Removal

Matriks began Site remediation work in July 2008. Between July 7 and 9, 2008, Matriks removed five USTs, the dispenser islands, and the fuel system piping. Matriks also removed 2337.45 tons of petroleum hydrocarbon contaminated soil from the tank pit, fuel line trenches, and under the dispenser islands. The contaminated soil was transported for proper disposal to

the West Contra Costa Sanitary Landfill between July 10 and 17, 2008. The excavated areas were backfilled and compacted with new imported fill material. Matriks also removed approximately 100,000 gallons of petroleum hydrocarbon contaminated groundwater from the tank pit. The removed water was temporarily stored in Baker tanks, filtered through activated carbon drums prior to discharge, under permit, to the sanitary sewer.

Laboratory analytical results for soil samples collected during the UST removals reported concentrations of TPH-d between 490 mg/Kg and 7500 mg/Kg and TPH-g between 130 mg/Kg and 2400 mg/Kg. Petroleum hydrocarbon contaminated soil was excavated to a depth of approximately 16 ft in the southwest corner of the UST excavation. The contaminated soil stockpiles were placed on and covered with plastic sheeting to control dust and possible odor emissions.

At approximately 16 ft in the UST excavation, groundwater began to flow into the excavation at approximately 60 gallons per minute. Excavation was halted at this point and shoring was placed around the perimeter of the excavation to stabilize the excavation walls and facilitate the installation of the new USTs. **Figure 3** shows the extent of the final UST excavation.

The excavation outside of the shoring was backfilled and compacted with clean imported backfill. The tank excavation within the shoring was filled when Matriks installed a new 20,000-gallon diesel UST and a 12,000-gallon gasoline UST within the shored area and backfilled the remainder of the excavation with new 1/8 inch pea gravel. Matriks also constructed a 6-inch extraction well (EX-2) in the pea gravel backfill for observation and future removal of petroleum hydrocarbon contaminated groundwater. Matriks also installed 6- inch PVC conduits between the tank excavation and the southwest corner of the building for future remedial activities. The PVC conduits were buried approximately 24-inches below the surface grade. The extraction well and conduit are shown on **Figure 3** Cook Environmental prepared and submitted to ACEHS, an *Interim Remedial Action Report*, dated September 18, 2008.

Dispenser Excavation

Petroleum hydrocarbon contaminated soil was also removed in the vicinity of the dispenser island. The trench excavated in the former dispenser area was 61 ft long, 14 ft wide and had an average depth of 12 ft. Trench dimensions are depicted in **Figure 3**. The contaminated soil was also transported to West Contra Costa Sanitary Landfill between July 10 and 17, 2008.

The dispenser island trench was backfilled with ¾-inch crushed rock to approximately 3 feet below surface grade to facilitate future groundwater and free-phase product removal. The crushed rock was covered with filter fabric and backfilled to grade with clean imported soil. A 6-inch extraction well (EX-1) was constructed within the crushed rock backfill material for observation and in anticipation of future groundwater removal. Matriks also installed 6-inch PVC conduits from this extraction well to the southwest corner of the station building. These

conduits were also buried approximately 24 inches below surface grade. The extraction well and conduit are shown on **Figure 3.**

QUARTERLY MONITORING SCOPE OF WORK

The scope of work performed for this quarterly monitoring included the following tasks:

- Measured static water levels in six monitoring wells;
- Measured groundwater, collected field quality field parameters of pH, temperature, and specific conductance (SC) from each well;
- Purged at least three casing volumes from each well;
- Collected groundwater samples from each well;
- Analyzed groundwater samples for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Updated the Geotracker database; and
- Prepared this Quarterly Monitoring Report.

METHODS

Groundwater Level Measurements

The quarterly groundwater monitoring event was conducted on September 27, 2008. Water levels were measured in each monitoring well with an electronic water depth indicator. Each well cap was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before taking a water depth measurement. The static water level measurements were referenced to the surveyed marks on the top of each well casing. The depth-to-water measurements were used to calculate the purge volume of each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a clean disposable bailer. Well EX-1 contained free-phase floating hydrocarbons with a thickness of approximately 0.005 feet and was therefore not sampled. During purging, groundwater temperature, pH, and SC were measured and recorded on regular intervals with portable instrumentation. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in

Appendix A. Well purge water was placed into labeled 55-gallon, DOT-approved steel drums, sealed, and temporarily stored onsite for subsequent proper disposal.

Following purging, groundwater samples were collected from each monitoring well using a new disposable bailer. Samples for TPH-G, BTEX, and fuel oxygenates were decanted into laboratory supplied 40-mL volatile organic analysis (VOA) vials containing hydrochloric acid as a preservative. Care was taken to eliminate headspace in each VOA prior to capping. Samples for TPH-d were decanted into laboratory supplied 1-liter amber glass jars. Samples were labeled to indicate the project number, sample ID, and date collected. The same information was recorded on the chain-of-custody forms. Samples were stored in a cooler with ice for transport to the laboratory.

Samples were submitted under documented chain-of-custody control to McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

The groundwater flow direction is calculated to be to the south-southeast, toward San Francisco Bay and the unnamed creek, with a gradient of 0.008 foot per foot. Depth to groundwater in each well and groundwater elevations and groundwater monitoring well construction details are included in **Table 1**. Historical groundwater elevation data are included in **Table 2**. Groundwater elevation contours are depicted on **Figure 4**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 5**.

Groundwater Analytical Results

The highest concentrations of petroleum hydrocarbons were detected in MW-2. MtBE was detected at 61 μ g/L, TPH-d was detected at 290 μ g/L, and TPH-g was detected at 1,500 μ g/L. Each of these concentrations is above the environmental screening level (ESL) for these constituents in groundwater. Benzene was not detected but the detection limit for benzene in this sample was 10 μ g/L, which is ten times above the benzene ESL. The constituent tBA was also detected in each monitoring well sample in concentrations as high as 17,000 μ g/L in MW-2, however, this is below the ESL for tBA of 18,000 μ g/L. Concentrations of petroleum hydrocarbons detected in groundwater samples collected during this groundwater monitoring event were within the range of historically detected concentrations. Groundwater analytical results for this and previous groundwater monitoring events are summarized in **Table 3**. A copy of the laboratory analytical report is included in **Appendix B**.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by State Assembly Bill 2886 (Water Code Section 13195-13198). Electronic data files were prepared and formatted by McCampbell and electronically submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. Well status and usage reports (GEO_WELL file) were also prepared and submitted for this groundwater monitoring event as was a complete electronic copy of this report (GEO_REPORT file) in PDF format.

CONCLUSIONS

The groundwater flow direction calculated for this quarterly event is west with a gradient of 0.002. Free-phase petroleum hydrocarbons are still present in EX-1 in the dispenser area, but its thickness appears to have been reduced by the removal of free-phase product, water and soil during the Site remedial activities conducted in July 2008. The constituent tBA appears to be increasing in concentration with time in MW-2, MW-5 and MW-9. The concentration of tBA appears to be deceasing or remaining about the same in the remainder of the wells. Historically, the tBA concentration in MW-9 has been observed above ESL. This well is located approximately 60 feet down-gradient of the Site. We believe that the lateral and vertical extent of petroleum hydrocarbons in groundwater has been adequately characterized and no further lateral characterization is warranted.

RECOMMENDATIONS

We recommend that the Site be observed for two additional quarters to analyze the effects of the groundwater remediation conducted to date. This will provide water quality data for one full hydrologic cycle since the completion of the July 2008 remedial action. In addition we recommend the removal of free-phase product from groundwater in EX-1. This would best be accomplished by the installation of a passive free-phase product skimmer in this monitoring well. The skimmer should be serviced on a weekly basis for at least four weeks and the schedule revised based on the results.

While MW-3 was in place and sampled regularly, it contained some of the highest concentrations of benzene and MtBE detected in groundwater samples. Groundwater in this general vicinity is currently not monitored because MW-3 was removed during the July 2008 remedial action. We also recommend the installation of a new groundwater monitoring well west of the tank pit to replace MW-3. This well should be constructed as a 4-inch well in a large flush-mounted well box to allow for additional groundwater extraction.

The feasibility of using a vacuum truck to periodically remove free-phase product from EX-1 should also be evaluated. It may be possible for a waste oil removal service company to

conduct this activity on a milk-run basis after receiving training on the procedure from Matriks. It appears likely that the installation of a permanent groundwater and free-phase product removal system in these locations will be necessary to expedite Site remediation. This will be evaluated in a forthcoming Feasibility Study.

We also recommend the installation of a stadia rod in Elmhurst Creek and the quarterly collection of creek elevation levels so that the relationship between water levels in the creek and on site may be assessed.

FIGURES

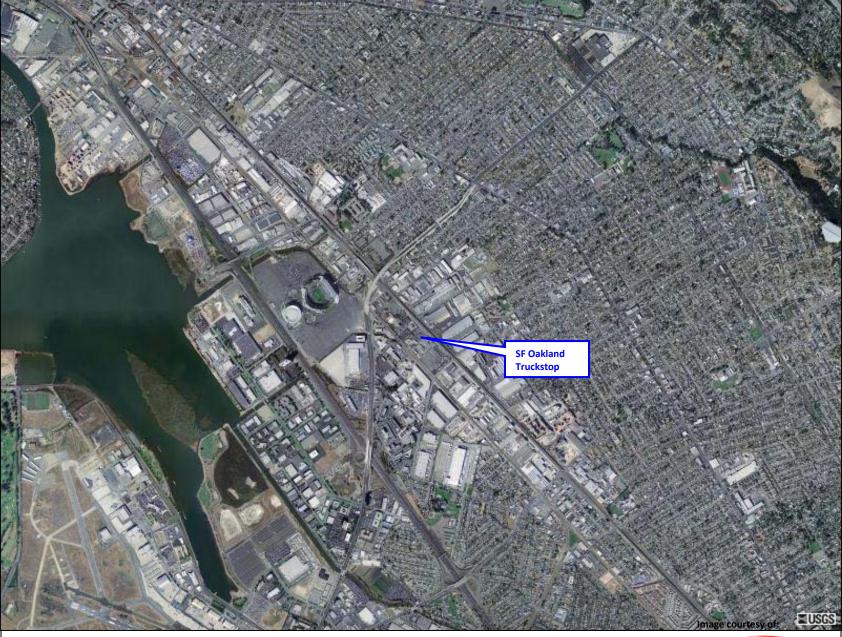
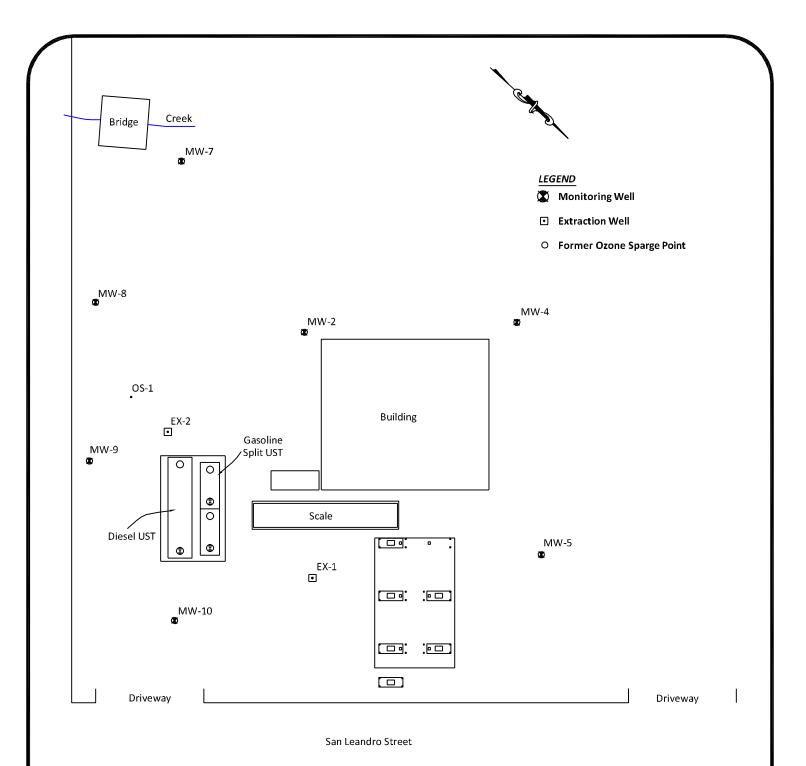
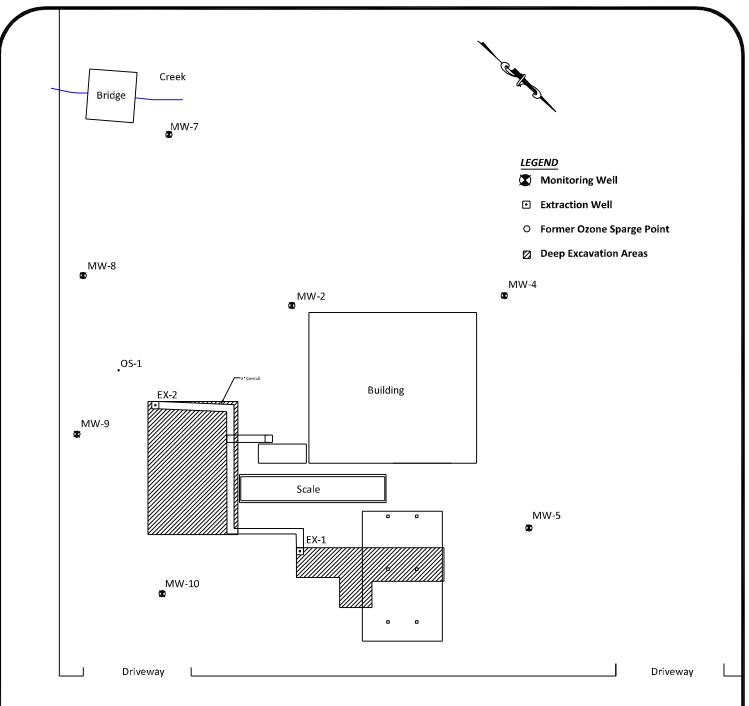



Figure 1

Site Location Map SF Oakland Truck Stop 8255 San Leandro Street, Oakland, CA

Site Plan


Oakland Truck Stop 8255 San Leandro Street Oakland, California

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1760

Project #: 6019	Figure:
Date: 11/04/2009	7
Scale: 1" = 40'	

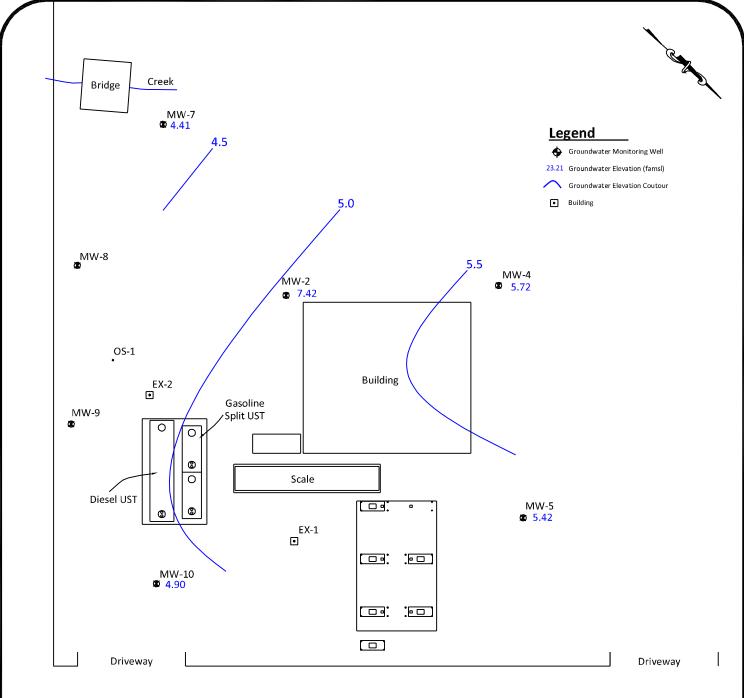
San Leandro Street

Excavation Plan

Oakland Truck Stop 8255 San Leandro Street Oakland, California

321 Court Street Lic. No. 909563

Woodland, California 95695


(530) 406-1760 Fax# (530) 406-1760

Project#: 6020

Date: 11/04/08

Scale: 1" = 40'

Figure:

San Leandro Street

Site Groundwater Gradient

Oakland Truck Stop 8255 San Leandro Street Oakland, California

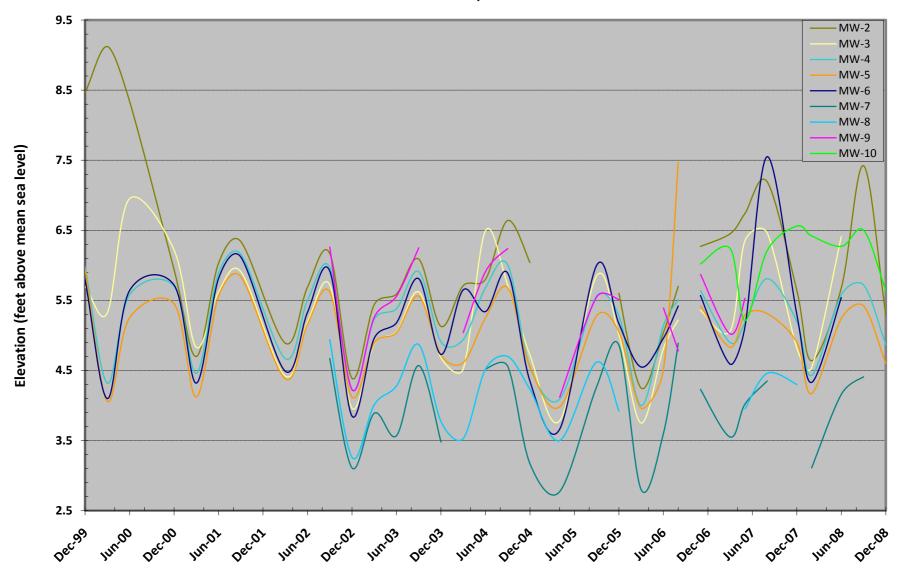


Figure: Project #: 6019 Date: 11/04/2008 Scale: 1" = 40'

321 Court Street Lic. No. 909563 Woodland, California 95695

(530) 406-1760 Fax# (530) 406-1760

Figure 5. Monitoring Well Hydrographs
Oakland Truck Stop
Oakland, CA

TABLES

Table 1
Well Construction Details
Oakland Truck Stop, Oakland, California

Well ID	Date Installed	Total Depth (feet)	Screened Interval (feet)	Water- Bearing Zone	Screen Slot Size (inches)		Bentonite Interval (feet)	Grout Interval (feet)	Flevation (feet amsl)	Northing Coordinates (feet)	Easting Coordinates (feet)	Comments
MW-1	02/18/99	16.5	15.5-5.5	Clay	0.02	16.5-4.5	4.5-3	31	11.02	2099557.04	6072595.30	Well abandoned 7-08
EX-1	07/28/08	13.5	13.5 - 1	3/4 Crush rock	0.5	NA	NA	NA	8.21	2099537.05	6072605.07	Well placed in remediation french drain for extraction
MW-2	02/19/99	16.5	15.5.5	Clayey Fine Sand	0.02	16.5-4.5	4.5-3	31	10.63	2099465.48	6072531.46	
MW-3	02/18/99	16.5	15.5 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.33	2099455.51	6072586.53	Well abandoned 7-08
MW-4	02/19/99	16.5	15 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.42	2099528.03	6072468.70	
MW-5	12/01/99	15	15 - 5	Clay	0.02	15-4	4-3.5	3.5-1.5	10.13	2099600.85	6072533.52	
MW-6	12/01/99	15	15 - 5	Sandy Silt	0.02	15-4	4-3.5	3.5-1.5	10.71	2099444.41	6072615.62	Well abandoned 7-08
EX-2	07/28/08	17	17 - 1	pea gravel	0.5	NA	NA	NA	8.18	2099430.44	6072600.10	Well placed in UST pea gravel for extraction
MW-7	07/08/02	16.5	16.5 - 5	Silty Sand, Clayey Silt	0.02	16.5-4	4-3.5	3.5-1.5	9.08	2099379.77	6072513.11	
MW-8	07/08/02	15.5	15 - 5	Silty Sand, Clayey Silt	0.02	15.5-4	4-3.5	3.5-1.5	9.61	2099392.92	6072580.86	
MW-9	07/08/02	20	20 - 5	Silty Sand, Silty Clay	0.02	20-4	4-3.5	3.5-1.5	10.99	2099435.20	6072631.28	
MW-10	10/10/06	20	20 - 5	Silty Clay	0.02	20-4	4-3.5	3.5-1.5	11.40	2099506.21	6072656.48	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-1	08/16/99	11.02	NM	NM	
	08/27/99		6.85	4.17	
	09/10/99		6.65	4.37	0.20
	09/24/99		6.87	4.15	-0.22
	10/08/99		6.81	4.21	0.06
	10/22/99		6.94	4.08	-0.13
	11/02/99		6.91	4.11	0.03
	11/19/99		6.93	4.09	-0.02
	12/06/99		5.93	5.09	1.00
	03/08/00		6.57	4.45	-0.64
	06/14/00		6.70	4.32	-0.13
	12/11/00		5.75	5.27	0.95
	03/06/01		7.60	3.42	-1.85
	06/06/01		6.80	4.22	0.80
	09/04/01		7.47	3.55	-0.67
	03/11/02		6.49	4.53	0.98
	06/06/02		6.49	4.53	0.00
	09/04/02		6.89	4.13	-0.40
	12/17/02		4.65	6.37	2.24
	03/07/03		6.55	4.47	-1.90
	06/05/03		9.77	1.25	-3.22
	09/19/03		6.56	4.46	3.21
	12/12/03		5.63	5.39	0.93
	03/15/04		7.11	3.91	-1.48
	06/22/04		NM	NM	
	09/21/04		NM	NM	
	12/30/04		NM	NM	
	04/06/05		5.70	5.32	
	09/29/05		5.40	5.62	0.30
	12/09/05		10.70	0.32	-5.30
	03/07/06		9.05	1.97	1.65
	06/20/06		4.61	6.41	4.44
	08/23/06		5.51	5.51	-0.90
	10/12/06		NM	NM	
	11/09/06		5.56	5.46	
	03/20/07		9.69	1.33	-4.13
	05/17/07		9.55	1.47	0.14
	08/16/07		6.95	4.07	2.60
	12/05/07		5.50	5.52	1.45
	02/27/08		7.28	3.74	
	06/28/08		NM	NM	
	09/27/08	Wel	l Abandoned 7/	/3/08	
EX-1	09/27/08	8.21			

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-2	08/16/99	10.63	6.30	4.33	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		8.46	2.17	
	03/08/00		9.12	1.51	-0.66
	06/14/00		8.34	2.29	0.78
	12/11/00		5.94	4.69	2.40
	03/06/01		4.70	5.93	1.24
	06/06/01		6.03	4.60	-1.33
	09/04/01		6.34	4.29	-0.31
	03/11/02		4.89	5.74	1.45
	06/06/02		5.69	4.94	-0.80
	09/04/02		6.17	4.46	-0.48
	12/17/02		4.39	6.24	1.78
	03/07/03		5.44	5.19	-1.05
	06/05/03		5.59	5.04	-0.15
	09/19/03		6.09	4.54	-0.50
	12/12/03		5.13	5.50	0.96
	03/15/04		5.71	4.92	-0.58
	06/22/04		5.80	4.83	-0.09
	09/21/04		6.64	3.99	-0.84
	12/30/04		6.04	4.59	0.60
	04/06/05		NM	NM	
	09/29/05		NM	NM	
	12/09/05		5.60	5.03	
	03/07/06		4.25	6.38	1.35
	06/20/06		5.04	5.59	-0.79
	08/23/06		5.70	4.93	-0.66
	10/12/06		NM	NM	
	11/09/06		6.27	4.36	0 : -
	03/20/07		6.45	4.18	-0.18
	05/17/07		6.74	3.89	-0.29
	08/16/07		7.19	3.44	-0.45
	12/05/07		5.64	4.99	1.55
	02/27/08		4.64	5.99	1.00
	06/28/08 09/27/08	10.63	5.68 7.42	4.95 3.21	-1.04 -1.74

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-3	08/16/99	10.32	5.85	4.47	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.7	4.62	
	03/08/00		5.32	5.00	0.38
	06/14/00		6.95	3.37	-1.63
	12/11/00		6.22	4.10	0.73
	03/06/01		4.83	5.49	1.39
	06/06/01		5.62	4.70	-0.79
	09/04/01		5.91	4.41	-0.29
	03/11/02		4.42	5.90	1.49
	06/06/02		5.19	5.13	-0.77
	09/04/02		5.72	4.60	-0.53
	12/17/02		3.96	6.36	1.76
	03/07/03		4.88	5.44	-0.92
	06/05/03		5.05	5.27	-0.17
	09/19/03		5.62	4.70	-0.57
	12/12/03 03/15/04		4.68	5.64	0.94
	06/22/04		4.52 6.49	5.80 3.83	0.16
	09/21/04		5.72	4.60	-1.97 0.77
	12/30/04		4.72	5.60	1.00
	04/06/05		3.78	6.54	0.94
	09/29/05		5.85	4.47	-2.07
	12/09/05		5.01	5.31	0.84
	03/07/06		3.75	6.57	1.26
	06/20/06	,	4.81	5.51	-1.06
	08/23/06		5.22	5.10	-0.41
	10/12/06		NM	NM	
	11/09/06		5.36	4.96	
	03/20/07		5.06	5.26	0.30
	05/17/07		6.35	3.97	-1.29
	08/16/07		6.46	3.86	-0.11
	12/05/07		4.82	5.50	1.64
	02/27/08		4.54	5.78	0.28
	06/28/08		6.41	3.91	-1.87
	09/27/08	Wel	l Abandoned 7/	3/08	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-4	08/16/99	10.50	6.12	4.38	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.98	4.52	
	03/08/00		4.32	6.18	1.66
	06/14/00		5.58	4.92	-1.26
	12/11/00		5.70	4.80	-0.12
	03/06/01		4.46	6.04	1.24
	06/06/01		5.89	4.61	-1.43
	09/04/01		6.16	4.34	-0.27
	03/11/02		4.67	5.83	1.49
	06/06/02		5.50	5.00	-0.83
	09/04/02		5.97	4.53	-0.47
	12/17/02		4.22	6.28	1.75
	03/07/03		5.23	5.27	-1.01
	06/05/03		5.38	5.12	-0.15
	09/19/03		5.91	4.59	-0.53
	12/12/03		4.91	5.59	1.00
	03/15/04		4.94	5.56	-0.03
	06/22/04		5.68	4.82	-0.74
	09/21/04		6.01	4.49	-0.33
	12/30/04		4.55	5.95	1.46
	04/06/05		4.09	6.41	0.46
	09/29/05		5.56	4.94	-1.47
	12/09/05		5.28	5.22	0.28
	03/07/06		4.00	6.50	1.28
	06/20/06		5.14	5.36	-1.14
	08/23/06		5.51	4.99	-0.37
	10/12/06		NM	NM	
	11/09/06		5.64	4.86	
	03/20/07		4.90	5.60	0.74
	05/17/07		5.18	5.32	-0.28
	08/16/07		5.81	4.69	-0.63
	12/05/07		5.20	5.30	0.61
	02/27/08		4.43	6.07	0.77
	06/28/08		5.58	4.92	-1.15
	09/27/08	10.42	5.72	4.70	-0.22

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-5	12/06/99	10.20	5.94	4.26	
	03/08/00		4.06	6.14	1.88
	06/14/00		5.25	4.95	-1.19
	12/11/00		5.45	4.75	-0.20
	03/06/01		4.12	6.08	1.33
	06/06/01		5.56	4.64	-1.44
	09/04/01		5.84	4.36	-0.28
	03/11/02		4.38	5.82	1.46
	06/06/02		5.16	5.04	-0.78
	09/04/02		5.62	4.58	-0.46
	12/17/02		4.12	6.08	1.50
	03/07/03		4.89	5.31	-0.77
	06/05/03		5.04	5.16	-0.15
	09/19/03		5.56	4.64	-0.52
	12/12/03		4.72	5.48	0.84
	03/15/04		4.61	5.59	0.11
	06/22/04		5.25	4.95	-0.64
	09/21/04		5.68	4.52	-0.43
	12/30/04		4.55	5.65	1.13
	04/06/05		3.98	6.22	0.57
	09/29/05		5.28	4.92	-1.30
	12/09/05		5.05	5.15	0.23
	03/07/06		3.96	6.24	1.09
	06/20/06		4.51	5.69	-0.55
	08/23/06		7.47	2.73	-2.96
	10/12/06		NM	NM	
	11/09/06		5.42	4.78	
	03/20/07		4.83	5.37	0.59
	05/17/07		5.29	4.91	-0.46
	08/16/07		5.31	4.89	-0.02
	12/05/07		4.90	5.30	0.41
	02/27/08		4.17	6.03	0.73
	06/28/08		5.24	4.96	-1.07
	09/27/08	10.13	5.42	4.71	-0.25

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-6	12/06/99	10.71	5.8	4.91	
	03/08/00		4.1	6.61	1.7
	06/14/00		5.64	5.07	-1.54
	12/11/00		5.72	4.99	-0.08
	03/06/01		4.32	6.39	1.4
	06/06/01		5.81	4.9	-1.49
	09/04/01		6.12	4.59	-0.31
	03/11/02		4.49	6.22	1.63
	06/06/02		5.33	5.38	-0.84
	09/04/02		5.92	4.79	-0.59
	12/17/02		3.85	6.86	2.07
	03/07/03		4.96	5.75	-1.11
	06/05/03		5.18	5.53	-0.22
	09/19/03		5.81	4.9	-0.63
	12/12/03		4.73	5.98	1.08
	03/15/04		5.65	5.06	-0.92
	06/22/04		5.34	5.37	0.31
	09/21/04		5.89	4.82	-0.55
	12/30/04		4.35	6.36	1.54
	04/06/05		3.66	7.05	0.69
	09/29/05		6	4.71	-2.34
	12/09/05		5.17	5.54	0.83
	03/07/06		4.55	6.16	0.62
	06/20/06	*	4.96	5.75	-0.41
	08/23/06		5.42	5.29	-0.46
	10/12/06	*	NM	NM	
	11/09/06		5.57	5.14	
	03/20/07		4.59	6.12	0.98
	05/17/07		5.12	5.59	-0.53
	08/16/07		7.55	3.16	-2.43
	12/05/07		5.3	5.41	2.25
	02/27/08		4.33	6.38	0.97
	06/28/08		5.54	5.17	-1.21
	09/27/08	Wel	Abandoned 7/	•	
EX-2	09/27/08	8.18			

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-7	09/04/02	9.17	4.67	4.50	
	12/17/02		3.11	6.06	1.56
	03/07/03		3.89	5.28	-0.78
	06/05/03		3.57	5.60	0.32
	09/19/03		4.57	4.60	-1.00
	12/12/03		3.48	5.69	1.09
	03/15/04		NM	NM	
	06/22/04		4.52	4.65	
	09/21/04		4.56	4.61	-0.04
	12/30/04		3.17	6.00	1.39
	04/06/05		2.77	6.40	0.40
	09/29/05		4.27	4.90	-1.50
	12/09/05		4.86	4.31	-0.59
	03/07/06		2.80	6.37	2.06
	06/20/06		3.60	5.57	-0.80
	08/23/06		4.89	4.28	-1.29
	10/12/06		NM	NM	
	11/09/06		4.23	4.94	
	03/20/07		3.55	5.62	0.68
	05/17/07		4.02	5.15	-0.47
	08/16/07		4.35	4.82	-0.33
	12/05/07		NM	NM	
	02/27/08		3.11	6.06	
	06/28/08		4.16	5.01	-1.05
	09/27/08	9.08	4.41	4.67	-0.34

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-8	09/04/02	9.68	4.94	4.74	
	12/17/02		3.26	6.42	1.68
	03/07/03		4.01	5.67	-0.75
	06/05/03		4.28	5.4	-0.27
	09/19/03		4.87	4.81	-0.59
	12/12/03		3.77	5.91	1.1
	03/15/04		3.53	6.15	0.24
	06/22/04		4.52	5.16	-0.99
	09/21/04		4.7	4.98	-0.18
	12/30/04		4.23	5.45	0.47
	04/06/05		3.5	6.18	0.73
	09/29/05		4.62	5.06	-1.12
	12/09/05		3.92	5.76	0.7
	03/07/06		NM	NM	
	06/20/06		3.84	5.84	
	08/23/06		NM	NM	
	10/12/06		NM	NM	
	11/09/06		4.39	5.29	
	03/20/07		NM	NM	
	05/17/07		3.95	5.73	
	08/16/07		4.46	5.22	-0.51
	12/05/07		4.3	5.38	0.16
	02/27/08		NM	NM	
	06/28/08		NM	NM	
	09/27/08	9.61	NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-9	09/04/02	11.07	6.26	4.81	
	12/17/02		4.23	6.84	2.03
	03/07/03		5.26	5.81	-1.03
	06/05/03		5.56	5.51	-0.30
	09/19/03		6.25	4.82	-0.69
	12/12/03		NM	NM	
	03/15/04		5.04	6.03	
	06/22/04		5.91	5.16	-0.87
	09/21/04		6.24	4.83	-0.33
	12/30/04		NM	NM	
	04/06/05		4.12	6.95	
	09/29/05		5.55	5.52	-1.43
	12/09/05		5.51	5.56	0.04
	03/07/06		NM	NM	
	06/20/06		5.39	5.68	
	08/23/06		4.78	6.29	0.61
	10/12/06		NM	NM	
	11/09/06		5.87	5.20	
	03/20/07		5.02	6.05	0.85
	05/17/07		5.53	5.54	-0.51
	08/16/07		NM	NM	
	12/05/07		NM	NM	
	02/27/08		NM	NM	
	06/28/08		5.90	5.17	
	09/27/08	10.99	NM	NM	
MW-10	10/12/06	11.56	6.02	5.54	
	11/09/06		6.24	5.32	-0.22
	03/20/07		5.21	6.35	1.03
	05/17/07		6.21	5.35	-1.00
	08/16/07		6.56	5.00	-0.35
	12/05/07		6.42	5.14	0.14
	06/28/08		6.27	5.29	0.15
	09/27/08	11.4	6.50	4.90	-0.39

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level.

D = The change in water level (elevation this quarter minus elevation last quarter). NM = not measured

 Δ = Change in groundwater elevation from previous event

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	х	MtBE	DIPE	EtBE	tAME	tBA		
MW-1	08/16/99				Not Sampled Due to Free-Floating Hydrocarbons										
	12/06/99					Sampled D									
	03/08/00				Not 9	Sampled D	ue to Fre	e-Floating	g Hydroca	rbons					
	06/14/00				Not 9	Sampled D	ue to Fre	e-Floating	g Hydroca	rbons					
	12/11/00		Not Sampled Due to Free-Floating Hydrocarbons												
	03/06/01		Not Sampled Due to Free-Floating Hydrocarbons												
	06/06/01		Not Sampled Due to Free-Floating Hydrocarbons												
	09/04/02		Not Sampled Due to Free-Floating Hydrocarbons												
	03/11/02		Not Sampled Due to Free-Floating Hydrocarbons												
	06/06/02		Not Sampled Due to Free-Floating Hydrocarbons												
	09/04/02		Not Sampled Due to Free-Floating Hydrocarbons												
	12/17/02		Not Sampled Due to Free-Floating Hydrocarbons												
	03/07/03		Not Sampled Due to Free-Floating Hydrocarbons												
	06/05/03	Not Sampled Due to Free-Floating Hydrocarbons													
	09/19/03	Not Sampled Due to Free-Floating Hydrocarbons													
	12/12/03	Not Sampled Due to Free-Floating Hydrocarbons													
	03/15/04				Not 9	Not Sampled Due to Free-Floating Hydrocarbons									
	06/22/04	Not Sampled Due to Free-Floating Hydrocarbons													
	09/21/04	Not Sampled Due to Free-Floating Hydrocarbons													
	12/30/04	Not Sampled Due to Free-Floating Hydrocarbons													
	04/06/05				Not 9	Sampled D	ue to Fre	e-Floating	g Hydroca	rbons					
	09/29/05	Not Sampled Due to Free-Floating Hydrocarbons													
	12/09/05	Not Sampled Due to Free-Floating Hydrocarbons													
	03/06/06	Not Sampled Due to Free-Floating Hydrocarbons													
	06/20/06	Not Sampled Due to Free-Floating Hydrocarbons													
	08/23/06	Not Sampled Due to Free-Floating Hydrocarbons													
	11/16/06				Not 9	Sampled D	ue to Fre	e-Floating	g Hydroca	rbons					
	03/20/07					Sampled D									
	05/17/07				Not 9	Sampled D	ue to Fre	e-Floating	g Hydroca	rbons					
	08/16/07	Not Sampled Due to Free-Floating Hydrocarbons													
	12/05/07				Not 9	Sampled D	ue to Fre	e-Floating	g Hydroca	rbons					
	02/27/08					Sampled D			<u> </u>						
	06/28/08				Not 9	Sampled D			g Hydroca	rbons					
	07/03/08						Well Aba	andoned							
EX-1	09/27/08	•	•	No	t Sampl	ed Due to	Free-Floa	ating Hyd	rocarbons	0.005 fe	et		•		

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	Е	х	MtBE	DIPE	EtBE	tAME	tBA				
MW-2	08/16/99	2,200	970	<500	3.8	<2.0	3	<4.0	<20	NA	NA	NA	NA				
	12/06/99	1,900	400	<500	16	<0.5	1.5	<0.5	5.2	NA	NA	NA	NA				
	03/08/00	1,600*	530	<500	9.7	<0.5	2.7	<0.5	27	NA	NA	NA	NA				
	06/14/00	2,000	75	<100	2.8	<0.5	3.4	<0.5	16	3.4	<0.5	<0.5	64				
	12/11/00	1,000	120	<100	2.6	<0.5	<0.5	<0.5	15	2.9	<0.5	<0.5	62				
	03/06/01	1,500	1400	NA	2.2	<0.5	1.7	<0.5	22	3.4	<0.5	<0.5	83				
	06/06/01	1,700	190	NA	2.6	<0.5	2.3	<0.5	26	3.2	<0.5	<0.5	83				
	09/04/02	2,000	450	NA	2.7	<0.5	2.1	<0.5	33	3.4	<0.5	<0.5	93				
	03/11/02	1,100	410	NA	1.0	<0.5	0.5	<0.5	26	2.5	<0.5	<0.5	69				
	06/06/02	900	430	NA	1.2	<0.5	<0.5	<0.5	23	2.8	<0.5	<0.5	73				
	09/04/02	910	510	NA	1.6	<0.5	<0.5	<0.5	45	2.5	<0.5	<0.5	67				
	12/17/02	190	220	NA	0.65	<0.5	<0.5	<0.5	34	1.5	<0.5	<0.5	46				
	03/07/03	380	300	NA	0.81	<0.5	<0.5	<0.5	50	1.9	<0.5	<0.5	73				
	06/05/03	2,200	2200	NA	1.7	<0.5	1.5	<0.5	180	4.9	<0.5	1.3	110				
	09/19/03	2,300	520	NA	2	<0.5	2.1	<0.5	180	3.7	<0.5	1.1	120				
	12/12/03	3,000	2200	NA	2.1	<0.5	1.7	<0.5	250	4.5	<0.5	1.6	130				
	03/15/04		Not	Sampled	- Truck Pa	arked on \	Well		Not Sampled - Truck Parked on Well								
	06/22/04	1,600	420	NA	1.3	<0.5	1.0	<0.5	580	4.6	<0.5	3.9	340				
	09/21/04	2,500	<400	NA	1.2	<0.5	1.5	<0.5	730	5.9	<0.5	4.9	550				
	12/30/04	1,800	<300	NA	1.2	<1.0	<1.0	<1.0	540	5	<1.0	3.6	400				
	04/06/05	Not Sampled - Truck Parke															
	09/29/05					Not Sam	pled - Tru	ick Parked	on Well								
	12/09/05	1,000	720	NA	1.0	<0.7	<0.7	<0.7	330	6.5	<0.7	 <0.5 3.9 340 <0.5 4.9 550 <1.0 3.6 400 <0.7 2.3 1,80 <0.5 1.9 1,60 <0.5 1.5 <1,50 <0.9 1.8 2,10 					
	03/06/06	1,000	<80	NA	1.2	<0.5	0.6	<0.5	290	5.4	<0.5	1.9	1,600				
	06/20/06	1,100	<80	NA	1.6	<0.5	1.0	<0.5	280	5.8	<0.5	1.5	<1,500				
	08/23/06	1,600	<200	NA	1.5	<0.9	<0.9	<0.9	290	5.5	<0.9	1.8	2,100				
	11/16/06	350	120	NA	0.56	<0.5	<0.5	<0.5	180	4.1	<0.5	0.96	1,300				
	03/20/07	460	110	NA	0.67	<0.5	<0.5	<0.5	160	4.3	<0.5	0.9	1,500				
	05/17/07	710	85	NA	<0.5	<0.5	<0.5	<0.5	160	4.4	<0.5	0.88	2,000				
	08/16/07	460	200	NA	<0.9	<0.9	<0.9	<0.9	150	6.1	<0.9	<0.9	2,700				
	12/05/07	1,500	<80	NA	<0.9	<0.9	<0.9	<0.9	66	3.8	<0.9	<0.9	2,000				
	02/27/08	810	<80	NA	0.54	<0.5	<0.5	<0.5	97	3.6	<0.5	0.52	1,400				
	06/28/08	1,100	280	NA	2.4	5.4	<0.5	<0.5	92	<10	<10	<10	1,600				
	09/27/08	1,500	290	<250	<10	<10	<10	<10	61	<10	<10	<10	1,200				

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	Х	MtBE	DIPE	EtBE	tAME	tBA
MW-3	08/16/99	56,000	10,000**	<500	17000	2600	2600	1200	6,100	NA	NA	NA	NA
10100-3	12/06/99	40,000	9,100*	<500	16000	140	1800	100	4,000	NA	NA	NA	NA NA
	03/08/00	22.000	4,500*	<500	11000	72	1100	130	3,400	NA	NA	NA	NA NA
	06/14/00	34,000	16,000	<100	13000	94	1300	160	4,800	31	<10	21	2,700
	12/11/00	24,000	14,000	<100	13000	88	750	120	4,300	<50	<50	<50	2,300
	03/06/01	34,000	12,000	NA	15000	100	1100	130	4,000	<50	<50	<50	2,100
	06/06/01	34,000	20,000	NA	14000	94	550	110	4,400	<50	<50	<50	2,300
	09/04/02	29,000	19,000	NA	13000	83	480	83	4,100	<50	<50	<50	3,400
	03/11/02	12,000	14,000	NA	2900	<20	110	<20	530	<20	<20	<20	330
	06/06/02	20,000	14,000	NA	10000	<50	200	51	2,400	<50	<50	<50	1,200
	09/04/02	24,000	17,000	NA	11000	<50	140	<50	3,200	<50	<50	<50	1,400
	12/17/02	4,900	17,000	NA	2000	<10	52	12	360	<10	<10	<10	220
	03/07/03	8,700	16,000	NA	1300	<10	43	11	770	<10	<10	<10	360
	06/05/03	27,000	14,000	NA	10000	53	220	53	5,000	<50	<50	<50	1,600
	09/19/03	120,000	13,000	NA	20000	170	710	250	6,100	<25	<25	<25	2,600
	12/12/03	29,000	27,000	NA	12000	74	240	79	5,600	17	<10	30	2,100
	03/15/04	28,000	21,000	NA	11000	72	220	64	8,200	<50	<50	<50	2,900
	06/22/04	29,000	7,600	NA	11000	71	220	54	8,400	<50	<50	<50	3,000
	09/21/04	33,000	<5,000	NA	12000	67	190	56	8,200	<25	<25	47	3,200
	12/30/04	30,000	13,000	NA	11000	62	170	49	8,900	<25	<25	49	3,200
	04/06/05	29,000	46,000	NA	10000	55	170	47	8,800	<25	<25	50	4,400
	09/29/05	28,000	1,800	NA	8700	74	190	53	7,300	<15	<15	53	4,500
	12/09/05	17,000	19,000	NA	5600	40	110	30	4,400	<15	<15	30	2,800
	03/06/06	11,000	16,000	NA	3600	26	96	22	2,400	<7.0	<7.0	19	1,400
	06/20/06	18,000	20,000	NA	6900	45	130	29	500	9.5	<7.0	34	2,900
	08/23/06	22,000	9,500	NA	6200	33	100	19	4,800	9.8	<9.0	34	3,100
	11/16/06	16,000	16,000	810	5800	26	87	18.0	2,700	10	<9.0	20	1,800
	03/20/07	23,000	12,000	410	7600	39	100	21.0	5,000	16	<8.0	35	3,200
	05/17/07	22,000	18,000	NA	10000	44	110	27.0	5,500	<15	<15	41	3,200
	08/16/07	16,000	63,000	NA	5900	33.0	66	25.0	4,600	<15	<15	39	3,400
	12/05/07	21,000	6,400	890	8000	55	120	42	4,600	<15	<15	34	4,600
	02/27/08	35,000	40,000	870	8800	54	100	38	4,300	<15	<15	38	3,300
	06/28/08	31,000	7,500	NA	12000	61	140	42	7,300	<120	<120	<120	4,700
	07/03/08						Well Ab	andoned					

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-4	08/16/99	61***	1100*	<500	<0.5	<0.5	<0.5	<1.0	86	NA	NA	NA	NA
	12/06/99	130***	220*	<500	<1.0	<1.0	<1.0	<1.0	130	NA	NA	NA	NA
	03/08/00	<50	220*	<500	<0.5	<0.5	<0.5	<0.5	130	NA	NA	NA	NA
	06/14/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	100	<0.5	<0.5	<0.5	20
	12/11/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	16
	03/06/01	<50	670	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	9.9
	06/06/01	<50	790	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/04/02	<50	950	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	26
	03/11/02	<50	250	NA	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	21
	06/06/02	<50	710	NA	<0.5	<0.5	<0.5	<0.5	92	<0.5	<0.5	<0.5	21
	09/04/02	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	150	<0.5	<0.5	<0.5	18
	12/17/02	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	0.52	18
	06/05/03	<50	2,000	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	0.5	23
	09/19/03	<50	830	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.8	23
	12/12/03	<50	1700	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	16
	03/15/04	<50	2,200	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/21/04	<50	620	NA	<0.5	<0.5	<0.5	<0.5	93	<0.5	<0.5	<0.5	31
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	59	<0.5	<0.5	<0.5	50
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	17	<0.5	<0.5	<0.5	120
	12/09/05	<50	760	NA	<0.5	<0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	94
	03/06/06	<50	470	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	68
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	120
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	140
	11/09/06	<50	200	410	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	130
	03/20/07	<50	860	NA	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	42
	05/17/07	<50	600	NA	<0.5	<0.5	<0.5	<0.5	5.6	<0.5	<0.5	<0.5	32
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	<0.5	64
	12/05/07	1,300	2,600	5,600	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	30
	02/27/08	<50	270	400	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	9.3
	06/28/08	<50	150	NA	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	37
	09/27/08	<50	160	360	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	<0.5	<0.5	33

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-5	12/06/99	450***	2000*	<500	<1.0	<1.0	<1.0	<1.0	21	NA	NA	NA	NA
	03/08/00	51***	530	<500	<0.5	<0.5	<0.5	<0.5	84	NA	NA	NA	NA
	06/14/00	380	1,400	<100	<0.5	<0.5	<0.5	<0.5	160	12	<0.5	<0.5	22
	12/11/00	540	590	<100	<0.5	<0.5	<0.5	<0.5	240	9.5	<0.5	<0.5	32
	03/06/01	510	2,900	NA	<0.5	<0.5	<0.5	<0.5	140	13	<0.5	<0.5	19
	06/06/01	280	2,700	NA	<0.5	<0.5	<0.5	<0.5	180	13	<0.5	<0.5	26
	09/04/02	630	2,600	NA	<0.5	<0.5	<0.5	<0.5	180	9.4	<0.5	<0.5	29
	03/11/02	97	3,500	NA	<0.5	<0.5	<0.5	<0.5	29	0.8	<0.5	<0.5	7
	06/06/02	61	3,500	NA	<0.5	<0.5	<0.5	<0.5	150	2.9	<0.5	<0.5	34
	09/04/02	92	6,100	NA	<0.5	<0.5	<0.5	<0.5	370	3.6	<0.5	<0.5	72
	12/17/02	110	2,100	NA	<0.5	<0.5	<0.5	<0.5	110	4.2	<0.5	<0.5	14
	03/07/03	71	1,600	NA	<0.5	<0.5	<0.5	<0.5	150	2.2	<0.5	<0.5	35
	06/05/03	95	3,300	NA	<0.5	<0.5	<0.5	<0.5	170	4.6	<0.5	<0.5	43
	09/19/03	100	1,400	NA	<0.5	<0.5	<0.5	<0.5	310	5.2	<0.5	0.68	86
	12/12/03	<50	7,600	NA	<0.5	<0.5	<0.5	<0.5	270	5.9	<0.5	0.7	91
	03/15/04	95	1,700	NA	<0.5	<0.5	<0.5	<0.5	290	6.7	<0.5	0.92	200
	09/21/04	78	990	NA	<0.5	<0.5	<0.5	<0.5	270	4.7	<0.5	0.96	880
	04/06/05	64	1,200	NA	<0.5	<0.5	<0.5	<0.5	120	4.8	<0.5	<0.5	780
	09/29/05	100	640	NA	<0.5	<0.5	<0.5	<0.5	77	3.7	<0.5	<0.5	4,000
	12/09/05	99	3,700	NA	<0.5	<0.5	<0.5	<0.5	66	6.8	<0.5	<0.5	3,000
	03/06/06	66	760	NA	<0.5	<0.5	<0.5	<0.5	42	2.9	<0.5	<0.5	1,600
	06/20/06	84	1,300	NA	<0.5	<0.5	<0.5	<0.5	42	3.6	<0.5	<0.5	3,000
	08/23/06	<200	410	NA	2.1	<2.0	<2.0	<2.0	37	2.8	<2.0	<2.0	4,800
	11/09/06	<200	700	<100	<2.0	<2.0	<2.0	<2.0	28	3.0	<2.0	<2.0	5,600
	03/20/07	<200	430	NA	<2.0	<2.0	<2.0	<2.0	22	3.0	<2.0	<2.0	3,800
	05/17/07	<200	500	NA	<2.0	<2.0	<2.0	<2.0	18	3.5	<2.0	<2.0	4,300
	08/16/07	<200	1,600	NA	<2.0	<2.0	<2.0	<2.0	13	3.0	<2.0	<2.0	6,400
	12/05/07	<200	1,400	120	<2.0	<2.0	<2.0	<2.0	8.2	2.6	<2.0	<2.0	4,700
	02/27/08	<90	1,300	190	<0.9	<0.9	<0.9	<0.9	6.0	1.8	<0.9	<0.9	2,800
	06/28/08	140	3,000	NA	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	4,300
	09/27/08	120	2,800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	6,600

Table 3 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-6	12/06/99	13,000	<50	<500	180	21	11	24	<100	NA	NA	NA	NA
	03/08/00	<10,000	4,600*	<500	230	26	18	39	12,000	NA	NA	NA	NA
	06/14/00	8,400	12,000	<100	180	12	10	22	15,000	<5.0	<5.0	70	3,300
	12/11/00	<5,000	10,000	<100	180	<50	<50	<50	14,000	<50	<50	74	2,900
	03/06/01	5,300	6,700	NA	220	<50	<50	<50	13,000	<50	<50	84	2,100
	06/06/01	5,000	2,300	NA	210	<25	<25	<25	14,000	<25	<25	84	4,200
	09/04/02	5,400	2,200	NA	190	12	<10	23	15,000	<10	<10	79	4,000
	03/11/02	4,600	11,000	NA	160	<25	<25	<25	15,000	<25	<25	39	5,100
	06/06/02	<5,000	14,000	NA	200	<50	<50	<50	17,000	<50	<50	77	8,700
	09/04/02	<5,000	50,000	NA	140	<50	<50	<50	21,000	<50	<50	52	7,500
	12/17/02	<5,000	9,100	NA	130	<50	<50	<50	16,000	<50	<50	64	6,300
	03/07/03	<5,000	12,000	NA	160	<50	<50	<50	20,000	<50	<50	53	7,500
	06/05/03	<5,000	23,000	NA	230	<50	<50	<50	19,000	<50	<50	86	7,100
	09/19/03	8,900	24,000	NA	220	<25	<25	<25	15,000	<25	<25	74	8,100
	12/12/03	8,000	24,000	NA	190	<25	<25	32	14,000	<25	<25	65	7,400
	03/15/04	4,400	26,000	NA	190	<25	<25	<25	9,900	<25	<25	61	6,700
	06/22/04	3,500	7,000	NA	150	<20	<20	<20	9,200	<20	<20	51	6,100
	09/21/04	4,600	12,000	NA	210	<20	<20	<20	8,800	<20	<20	55	7,000
	12/30/04	5,300	11,000	NA	190	<20	<20	<20	6,300	<20	<20	53	4,900
	04/06/05	5,100	680	NA	190	13	12	32	3,700	<5.0	<5.0	42	4,600
	09/29/05	4,900	2,800	NA	130	8.9	<5.0	13	2,100	<5.0	<5.0	23	3,200
	12/09/05	3,600	10,000	NA	110	7.1	<5.0	7.9	2,700	<5.0	<5.0	22	4,200
	03/06/06	3,900	900	NA	120	9.3	5	13	3,000	<0.5	<0.5	26	4,400
	06/20/06	3,600	1,500	NA	140	10	5	18	1,600	<3.0	<3.0	23	3,600
	08/23/06	4,300	<800	NA	140	11	5	13	2,000	<4.0	<4.0	22	4,000
	11/09/06	3,200	1,700	<100	110	6.9	<4.0	8.2	1,500	<4.0	<4.0	16	3,900
	03/20/07	2,100	920	NA	120	7.9	<4.0	7.1	2,000	<4.0	<4.0	20	4,000
	05/17/07	3,800	600	NA	140	9.5	<4.0	15	1,700	<4.0	<4.0	21	3,200
	08/16/07	3,500	780	NA	160	9.3	<3.0	14	1,800	<3.0	<3.0	21	3,600
	12/05/07	4,500	<600	<100	100	7.8	<4.0	14	1,400	<4.0	<4.0	15	4,900
	02/27/08	3,100	<1,500	<100	82	6.1	<2.0	7.9	760	<2.0	<2.0	9.6	4,800
	06/28/08	4,700	17,000	NA	160	13	4 11 1,7			<50	<50	<50	6,200
	07/03/08						Well Aba	andoned					
EX-2	09/27/08	990	2,100	NA	130	<10	<10	<10	210	<10	<10	<10	1,400

Table 3 Groundwater Analytical Results 8255 San Leandro Street Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA	
MW-7	09/04/02	<50	130****	NA	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<5.0	
	12/17/02	<50	220	NA	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<5.0	
	03/07/03	<50	140	NA	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0	
	06/05/03	<50	200	NA	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0	
	09/19/03	<50	320	NA	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5	<0.5	<5.0	
	12/12/03	<50	380	NA	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	<5.0	
	03/15/04						pled - Tru					l		
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<5.0	
	04/06/05	<50	120	NA	<0.5	<0.5	<0.5	<0.5	9.2	<0.5	<0.5	<0.5	<5.0	
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0	
	12/09/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0	
	03/06/06	<50	<50	NA NA	<0.5	<0.5	<0.5	<0.5	9 11	<0.5	<0.5	<0.5	<5.0 <5.0	
	06/20/06 08/23/06	<50 <50	<50 <50	NA NA	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	8.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0	
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	5.7	<0.5	<0.5	<0.5	<5.0	
	03/20/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0	
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<5.0	
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5.0	
	12/05/07	130	150	14/4	١٥.5		pled - Tru		_	٧٥.5	10.5	10.5	٧٥.٥	
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	<0.5	<5.0	
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<2.0	
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.92	<0.5	<0.5	<0.5	<2.0	
MW-8	09/04/02	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	
	12/17/02	<50	100	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	
	03/07/03	<50	62	NA	<0.5	<0.5	<0.5	<0.5	33	<0.5	<0.5	<0.5	<5.0	
	06/05/03	<50	270	NA	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0	
	09/19/03	<50	250	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0	
	12/12/03	<50	420	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0	
	03/15/04	<50	250	NA	<0.5	<0.5	<0.5	<0.5	6.4	<0.5	<0.5	<0.5	<5.0	
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0	
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5	<0.5	<5.0	
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	<0.5	<5.0	
	12/09/05	<50	86	NA	<0.5	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<5.0	
	03/06/06						pled - Tru							
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6.6	<0.5	0.5 <0.5 <0.5			
	08/23/06						pled - Tru							
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	9.3	<0.5	<0.5	<0.5	<5.0	
	03/20/07	<50	250	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0	
	05/17/07	<50	350	NA NA	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5	<0.5	<5.0 <5.0	
	08/16/07	<50	<50	NA <100	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	11 13	<0.5				
	12/05/07 02/27/08	<50	<50	<100	<∪.5		vu.5 pled - Tru			<∪.5	<0.5	₹0.5	<5.0	
	06/28/08						pled - Tru							
	09/27/08						pled - Tru							
	03/27/08					IVUL Jaili	picu - 110	ick Faiket	J OH WEII					

Table 3 Groundwater Analytical Results 8255 San Leandro Street

Oakland, California

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-9	09/04/02	<2,500	1000	NA	<25	<25	<25	<25	12,000	<25	<25	70	1700
	12/17/02	<2,000	880	NA	<20	<20	<20	<20	4,500	<20	<20	23	2300
	03/07/03	<500	450	NA	<5	<5	<5	<5	1,700	<5	<5	8.4	6600
	06/05/03	<500	4500	NA	<5	<5	<5	<5	120	<5	<5	<5.0	17,000
	09/19/03	<1,000	4500	NA	<10	<10	<10	<10	38	<10	<10	<10	15,000
	12/12/03					Not Sam	pled - Tru	ick Parke	d on Well				_
	03/15/04	<1,000	82	NA	<10	<10	<10	<10	38	<10	<10	<10	18,000
	09/21/04	<1,000	2600	NA	<10	<10	<10	<10	17	<10	<10	<10	16,000
	12/30/04					Not Sam	pled - Tru	ick Parke	on Well				
	04/06/05	<700	<50	NA	<7	<7	<7	<7	55	<7	<7	<7	15,000
	09/29/05	<700	<50	NA	<7	<7	<7	<7	34	<7	<7	<7	1,300
	12/09/05	<400	3200	NA	46	<4.0	<4.0	<4.0	12	<4.0	<4.0	<4.0	8,200
	03/06/06						pled - Tru						
	06/20/06			Not Sampled - Truck Parked on Well									
	08/23/06	<250	<50	NA	9.6	<2.5	<2.5	<2.5	18	<2.5	<2.5	<2.5	6,000
	11/09/06	<150	<50	NA	13	<1.5	<1.5	<1.5	3	<1.5	<1.5	<1.5	3,900
	03/20/07	<150	<50	NA	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	2,900
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6	<0.5	<0.5	<0.5	880
	08/16/07						pled - Tru						
	12/05/07						pled - Tru						
	02/27/08			1			pled - Tru				•	1	
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	950
	09/27/08						pled - Tru		d on Well				
MW-10	10/12/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	27
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	82
	03/20/07	<50	270	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	84
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	55
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	28
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	13
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	7.3
	06/28/08	<50	63	NA	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	8.7
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	3.3
Е	ESL 100 100 100 1.0 130 43 10 5 NE NE NE											NE	18,000

Notes:

Concentrations are recorded in units of micrograms per liter (ug/L).

- ESL Environmental Screening Level for Potable Groundwater
- * Non-typical diesel patter, hydrocarbons in early diesel range
- ** Estimated concentration due to overlapping fuel patterns in sample
- *** Non-typical gasoline pattern
- **** Non-typical diesel pattern
 - $\ensuremath{\mathsf{NE}}$ ESL is not established for this compound
- NA analyte not tested
- TPH-g total petroleum hydrocarbons as gasoline
- TPH-d total petroleum hydrocarbons as diesel
 - B benzene
 - T toluene
 - E ethylbenzene
 - X xylenes

MtBE methyl tert-butyl ether

DIPE di-isopropyl ether

EtBE ethyl tert-butyl ether

tAME tert-amyl methyl ether

tBA tert-butanol

			MO	NITORIN	NG WELL S	SAMPLING LOG	1	
SITE NAME	E/LOCATIO)N: <u>(</u>	Daklan	m) Iruc	k Stop		PROJECT #: OO!	
DATE:	9/27/	28	-				SAMPLER'S INITIALS: CM	
WELL ID:	MW- L	l	•	WELL DIA	METER (in):	_ Z		
WELL DEPT	H (ft):	14	-	DEPTH TO	WATER (ft):	5,72	WATER COLUMN Ht (ft): 8,6	28
STANDING 'To obtain sta		•- •		i.37 the water co	4	3 VOLUMES (gal): 0.17 for 2-inch well or	0.66 for a 4-inch well.	
PURGE MET	THOD:		Mini-Wh		•	SAMPLING METHOD	disposable PE bailer	
				-	RGE MEASURI	EWEN12		
Time	Gallons Purged	Temp (F)	pН	SC (uS)			Comments	
	L'Empire					DO prior to purging		
1056	Ì	75.5	7,00	1265		Sampled e	1105	
1058	2	75.9	6,98	1306		3-00-00	110	
1101	4	7610	6,99	1326				
1103	5	76.1	6.99	1340				
WELL ID:	MW- S		•		METER (in):	2	- н - колисенций) — 2 Билежили хэд з	Neor
WELL DEPT	H (ft):	14		DEPTH TO	WATER (ft):	5.42	WATER COLUMN Ht (ft): 8,5	8
STANDING \ To obtain sta				1,4Z the water co		3 VOLUMES (gal): 0.17 for 2-inch well or	<u>4,28</u> 0.66 for a 4-inch well.	
PURGE MET	HOD:			aler Pump		SAMPLING METHOD	disposable PE bailer	
		(circle t	he correct		RGE MEASURE	EMENTS		
Time	Gallons Purged	Temp (F)	рН	SC (uS)			Comments	
								_

Time	Gallons Purged	Temp (F)	рН	SC (uS)	Comments
					DO prior to purging
1036	t	74,1	6.71	1744	Well drew down 27'
1039	3	73.0	6.71	1729	
1042	4	72.2	4.71	1702	Sampled C1045
1045	5	7710	6,73	1703	

MONITORING WELL SAMPLING LOG

	9/27	108					SAMPLER'S IN		
WELL ID:	MW-10	`					SAMPLER 3 II	NITIALS:	Ciry
			e:	WELL DIAM	METER (in):				
WELL DEPTH	(ft):	26.0		DEPTH TO	WATER (ft):	6.50	WATER COLU	AN Ht (ft)	: 19.5
STANDING WA				3, 24 the water co	•	3 VOLUMES (gal) 0.17 for 2-inch well	: <u>9,7</u> l or 0.66 for a 4-inch	well.	
PURGE METHO	DD:		Mini-Wh	aler Pump		SAMPLING METH	OD: dis	posable P	E bailer
		(circle ti	nie correct		RGE MEASURI	EMENTS			
ll lime l	Gallons Purged	Temp (F)	рН	SC (uS)			Comi	ments	
	r yasır		B1 3	يصعلوان		DO prior to purgi	ng		
1116	7	72.3	7,42	724					
1120	4	71.8	7,21	706					
1123	6	71.1	7,20	708					
1125	8	71.1	7.15	710					
1/27	10	71,3	7,116	711					
MANUEL STREET CHES	11 (18)1		ut= - n		351 to 1 80	II - -10M≪11III -+		25 c 200 - 060	med - at med at the
WELL ID:	MW-6			WELL DIAM	METER (in):				
WELL DEPTH ((ft):			DEPTH TO	WATER (ft):		WATER COLUM	۸N Ht (ft)	!
STANDING WA			multiply t	the water co	lumn height hv	3 VOLUMES (gal):	: l or 0.66 for a 4-inch	well	
PURGE METHO		Vailer or		aler Pump	tanın neigne by	SAMPLING METHO		posable P	E bailer
		Circle ti	ne correct	·	RGE MEASURE	EMENTS			
ll Time I	Gallons Purged	Temp (F)	рН	SC (uS)			Comr	nents	
T R				Y . Y . N		DO prior to purgir	ng		
						Gras Samp	اد		
						Sampled e	1137		
		-							
						Sampled e	1137		

MONITORING WELL SAMPLING LOG

			MU	MITORIN	NG WELL 3	SAMPLING LUG	ı	
SITE NAME	LOCATIO	N: C	aklar	d Truck	L Stop		PROJECT #: 00	
DATE:	9/27	108	.				SAMPLER'S INITIALS:	CM
WELL ID:	MW- 7			WELL DIA	METER (in):	2		
WELL DEPT	Ή (ft):	16,20	•	DEPTH TO	WATER (ft):	4.41	WATER COLUMN Ht (ft):	1/179
STANDING V		,• ,		1,96 the water co	- olumn height by	3 VOLUMES (gal): 0.17 for 2-inch well or	5,9 0.66 for a 4-inch well.	
PURGE MET	HOD:		Mini-Wh		-	SAMPLING METHOD	disposable Pl	E bailer
				PU	RGE MEASURI	-WENI2		
Time	Gallons Purged	Temp (F)	рН	SC (uS)			Comments	
	40.10	Reff in				DO prior to purging		
949	2	68.3	6,86	1740		NOS		
953	4	67.6	6.89	נורן בורן		Sampled C1	000	
958	6.5	67.4	696	1691				
WELL ID:	WW- '7			WELL DIAM	METER (in):		STENSION SILVEN, AND SILVEN	THE PERSONS
WELL DEPT	H (ft):	1415		DEPTH TO	WATER (ft):	7,42	WATER COLUMN Ht (ft):	7.08
STANDING \ To obtain sta				1.18 the water co	lumn height by	3 VOLUMES (gal): 0.17 for 2-inch well or	3,5 Z 0.66 for a 4-inch well.	
PURGE MET	HOD:			aler Pump		SAMPLING METHOD	disposable Pl	E bailer
		(circle t	he correct	•	RGE MEASURE	EMENTS		
Time	Gallons Purged	Temp (F)	рН	SC (uS)			Comments	

Time	Gallons Purged	Temp (F)	рН	SC (uS)	Comments
	Brastan				DO prior to purging
1013	1	71,3	6,54	1952	well drew down ~5'
1017	2	70.3	6.55	1978	Sulfur Ovor
1019	3	70.4	6.54	1961	
1020	4	70.6	6.57	1959	
					Sampi-d @ 1023

APPENDIX B LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Matriks Corporation	Client Project ID: OTS	Date Sampled:	09/27/07-09/27/08
321 Court Street		Date Received:	09/29/08
Woodland, CA 95695	Client Contact: Robert Neely	Date Reported:	10/07/08
Woodalia, Ori 75075	Client P.O.:	Date Completed:	10/07/08

WorkOrder: 0809884

October 07, 2008

Dear Robert:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: OTS,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

We We	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269							38	<	1		RN		OU	ND	TI	ME		F	RUS	Н	241	HR	4	48 H	R	72 72	□ HR	5 DAY V) 🗆		
Tel	ephone: (877) 252-920	62		Fax:	(925	5) 252	-9269	,			1	3'00	112	ICK	er r	DI			Che	ck i	f sai	mple	is	effli	v ient	an	d "J	" fla	g is	required
Report To: CM	ptrieco	mast, i	net B	ill To	: Me	atmi)	45	Coil	Pr								A	naly	sis l	_							П		ther	_	Comments
Company: Matr														6					2		\Box						П			П	Ele
	Court St											8015) / MTBE		/8&1					Ben										+		Filter Samples
	land Ca	95695			I:CM	OKR	100	ource	51,0	ret		1 8		520 E					00/						20)	6020)			hxo		for Metals
Tele: (530) 90	2-1106			ax: (. 37)						801		4 / 88	9.1	8	021)		clors		es l			(8)	09/6	09/			0		analysis:
Project #:					t Nan		OT >					8021 +		991)	14)	HVO	02 / 8	des)	Aroc	_	bicie		-	PNA	9	0109	6		6		Yes / No
Project Location: Sampler Signatur		oro st	, car	tour (0 (Δ_						- 8		ease	rbons	021 (PA 61	estici	LY;	eides	E	8	00/	H	8'00	0.8	602		×		
Sampler Signatur	e. (SAME	LING		96	N	IATE	RIX		1ETI		Gas (602 /		& Gr	droca	10 / 80	Y (E)	(C.P.	8,8 ON	Pesti	o olbi	A) 09	70 (S)	10 (PA	0.7 / 20	.7 / 20	9109	0	BIG	-	
SAMPLE ID	PLE ID COCATION/ Field Point Name Date Time Type Containers Air Co							HNO3	TPH as	8	Total Petroleum Oll & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 /	Lead (200.7 / 200.8 / 6010 / 6020)	TPH -MC	5					
MW-7		9/27/08	1000	5	*	x			X	x			X															X	X	Т	
MW-Z		1	1023	1	1	1			Ti				1													-		1	1		
mw-4			1105						П																						
MW.5			1045						\Box		\top	†																	1	\exists	
MW.6			1137	1					17	П		1																1	1	†	
MW-10		1	1127	1		1			11	-														\neg				L	1	\top	
7 . 00 . 10					_		_				+	†							_					_					-	\pm	
							_		+		+	+	+	+					-				-	-					_	+	
					-		-		+		+	+	+						-	-	-	-	-	-	-			-	-	+	
2							-		+		-	+	-	-					-	-	-	-	-	-			-		-	+	
						\vdash	_		+		+	╀	+	-					-	\dashv		-	-	-	_				-	+	
					_	\vdash	_		+	Н	_	+	+	-						_		_		_					_	4	
									1			1																		4	
									\perp			1																		4	
Retinquished By:		100000000000000000000000000000000000000	Time:				1					IC G	CE/t	CO	NDIT	ION	37	Ye	S						(COM	IME	NTS	:		
Relinquished By:	Ca	9/29 Date:	Time:	_	ived B		Bu	-	_			_ H	EAD	SPA	CE A	ABSE	NT	1.	Ail	1					X	= 4	100	~ 4	- (an	uber
Envivo-to	u SR	aka	1950	7	4	1	Pul					A	PPR	OPRI	ATE	CO	NTA	INER		1	-			N	A	1	H	- 1	20	17	JP 3
Relinquished By:	10	Date:	Time:	Rece	ived B	4:	1	1				1 P	RESI	ERVI	(I) II	LA	BI ✓	0						1,	11						
Huch Ag	He.	9-29	8:15	-	/		1					PI	RESI	ERV	ATIO		DAS	08	èG.	ME pH<		S (отн	ER	B	te	X	+	0,	X	12 DX 8
2	y																												1	26	BCM

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Samantha Arbuckle

Pittsbur	rg, CA 94565-1701 52-9262					Work	Order	: 0809	884	(ClientC	Code: M	ACW				
		[WriteOn	☐ EDF		Excel		Fax		Email		Hard	Сору	Thir	rdParty	J-f	flag
Report to: Robert Nee Matriks Cor 321 Court S	poration Street	cc: PO:		matrikscorp.com;	; Cmo	kri	Ма 32	obert Ne atriks C	orporat Street				Dat	e Rece	rived:	09/29/2	
Woodland, (530) 406-17		ProjectNo: OTS	•				VVC	oodland	I, CA 9	5695			Dat	e Prini	tea:	09/30/2	2008
							1	T	Req		Tests	(See le	-	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0809884-001	MW-7		Water	9/27/2008 10:00	ПП	Α	В						T				
0809884-002	MW-2		Water	9/27/2008 10:23	ΙĒ	Α	В										
0809884-003	MW-4		Water	9/27/2008 11:05		Α	В										
0809884-004	MW-5		Water	9/27/2008 10:45		Α	В										
0809884-005	MW-6		Water	9/27/2008 11:37		Α	В										
0809884-006	MW-10		Water	9/27/2007		Α	В										
Test Legend:	TEV W	MDTEVOVV 0200	D 14/						1				Ī	- 1			
-	TEX_W 2	MBTEXOXY-8260	D_VV	3				4						5			
6	7			8				9					Į	10			
11	12																

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

Comments:

Sample Receipt Checklist

Client Name:	Matriks Corpora	ition			Date a	and Time Received:	9/29/2008	9:13:42 PM
Project Name:	отѕ				Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0809884	Matrix Water			Carrie	r: <u>EnviroTech</u>		
		<u>Chai</u>	n of Cu	stody (C	COC) Informa	tion		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinqu	uished and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by C	Client on COC?	Yes	~	No 🗆			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u> </u>	Sample	Receipt	Information			
Custody seals int	tact on shipping cont	ainer/cooler?	Yes	V	No 🗆		NA 🗆	
Shipping containe	er/cooler in good con	dition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles	?	Yes	~	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated	d test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Ho	old Time (HT)	Information		
All samples recei	ived within holding tir	me?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	6.3°C		NA \square	
Water - VOA vial	ls have zero headsp	ace / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted 🗆	
Sample labels ch	necked for correct pr	eservation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon rec	eipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	~	No 🗆			
		(Ice Ty	pe: WE	T ICE)			
* NOTE: If the "N	No" box is checked,	see comments below.						
=====	======	======	=			======		======
Client contacted:		Date conta	cted:			Contacted	by:	
Comments:								

Matriks Corporation	Client Project ID: OTS	Date Sampled:	09/27/07-09/27/08
321 Court Street		Date Received:	09/29/08
	Client Contact: Robert Neely	Date Extracted:	10/02/08-10/03/08
Woodland, CA 95695	Client P.O.:	Date Analyzed	10/02/08-10/03/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* Analytical methods SW8015Cm Extraction method SW5030B Work Order: 0809884 Lab ID Client ID Matrix TPH(g) DF % SS 001A MW-7 W ND 92 002A W MW-21500,d9 1 111003A W 1 97 MW-4ND 92 004A MW-5 W 120,d7,b6 1 90 005A MW-6 W 990,d1 1 006A MW-10 W ND 1 94

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

	•	
Matriks Corporation	Client Project ID: OTS	Date Sampled: 09/27/07-09/27/08
321 Court Street		Date Received: 09/29/08
	Client Contact: Robert Neely	Date Extracted: 10/03/08-10/04/08
Woodland, CA 95695	Client P.O.:	Date Analyzed: 10/03/08-10/04/08

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0809884

Extraction Method: SW5030B	Anal	Work Order: 0809884					
Lab ID	0809884-001B	0809884-002B	0809884-003B	0809884-004B			
Client ID	MW-7	MW-2	MW-4	MW-5	Reporting		
Matrix	W	W	W	W	DF =1		
DF	1	20	1	100	S	W	
Compound	Compound Concentration						
tert-Amyl methyl ether (TAME)	ND	ND<10	ND	ND<50	NA	0.5	
Benzene	ND	ND<10	ND	ND<50	NA	0.5	
t-Butyl alcohol (TBA)	ND	1200	33	6600	NA	2.0	
Diisopropyl ether (DIPE)	ND	ND<10	ND	ND<50	NA	0.5	
Ethylbenzene	ND	ND<10	ND	ND<50	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND<10	ND	ND<50	NA	0.5	
Methyl-t-butyl ether (MTBE)	0.92	61	3.9	ND<50	NA	0.5	
Toluene	ND	ND<10	ND	ND<50	NA	0.5	
Xylenes	ND	ND<10	ND	ND<50	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS1:	86	87	86	87			
%SS2:	93	92	95	92			
%SS3:	76	75	78	77			
Comments				b6			

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

when Ouanty	Counts		reteptione. 8	11-232-9202 Fax: 92.	3-232-9209				
Matriks Corporation	Client Pr	roject ID: OTS	Date Sampled: 09/27/07-09/27/08						
321 Court Street		Date Received:			09/29/08				
321 Court Sueet	Client C	ontact: Robert N	eely	Date Extracted:	10/03/08-1	0/04/08			
Woodland, CA 95695	Client P.	O.:		Date Analyzed:	10/03/08-1	0/04/08			
	Oxygen	ates and BTEX b	y GC/MS*						
Extraction Method: SW5030B	Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0809884								
Lab ID	0809884-005B	0809884-006B							
Client ID	MW-6	MW-10			Reporting	Limit for			
Matrix	W	W				-1			
DF	20	1			S	W			
Compound		Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND<10	ND			NA	0.5			
Benzene	130	ND			NA	0.5			
t-Butyl alcohol (TBA)	1400	3.3			NA	2.0			
Diisopropyl ether (DIPE)	ND<10	ND			NA	0.5			
Ethylbenzene	ND<10	ND			NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND<10	ND			NA	0.5			
Methyl-t-butyl ether (MTBE)	210	0.53			NA	0.5			
Toluene	ND<10	ND			NA	0.5			
Xylenes	ND<10	ND			NA	0.5			
	Surrogate Recoveries (%)								
%SS1:	86	87							
%SS2:	92	91							
%SS3:	77	75							
Comments									

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Matriks Corporation	Client Project ID: OTS	Date Sampled: 09/27/07-09/27/08
321 Court Street		Date Received: 09/29/08
321 Court Succi	Client Contact: Robert Neely	Date Extracted: 09/30/08
Woodland, CA 95695	Client P.O.:	Date Analyzed: 10/04/08-10/07/08

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 0809884

Extraction method: SW35	SW3510C Analytical methods: SW8015B W			ork Order: 080988		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0809884-001A	MW-7	W	ND	ND	1	100
0809884-002A	MW-2	W	290,e4,e2	ND	1	110
0809884-003A	MW-4	W	160,e7,e2	360	1	112
0809884-004A	MW-5	w	2800,e1,b6	1000	1	113
0809884-005A	MW-6	W	2100,e4,e2	480	1	105
0809884-006A	MW-10	W	ND	ND	1	110
					-	

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg
above the reporting innit				

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38591 WorkOrder 0809884

EPA Method SW8015Cm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0809884-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	90.4	88.2	2.46	111	109	2.13	70 - 130	20	70 - 130	20
MTBE	ND	10	98.1	112	13.6	99.3	89.7	10.2	70 - 130	20	70 - 130	20
Benzene	ND	10	91.3	91.7	0.436	93.3	89.8	3.78	70 - 130	20	70 - 130	20
Toluene	ND	10	82.7	83.3	0.736	93.5	89.3	4.51	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	92.1	94	2.06	96.3	93.4	3.04	70 - 130	20	70 - 130	20
Xylenes	ND	30	89.8	89.7	0.125	94.9	93.1	1.95	70 - 130	20	70 - 130	20
%SS:	92	10	98	95	3.23	100	97	3.50	70 - 130	20	70 - 130	20

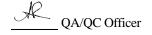
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38591 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809884-001A	09/27/08 10:00 AM	10/02/08	10/02/08 6:44 AM	0809884-002A	09/27/08 10:23 AM	10/03/08	10/03/08 4:04 AM
0809884-003A	09/27/08 11:05 AM	10/03/08	10/03/08 5:04 AM	0809884-004A	09/27/08 10:45 AM	10/03/08	10/03/08 4:23 PM
0809884-005A	09/27/08 11:37 AM	10/03/08	10/03/08 7:34 AM	0809884-006A	09/27/07	10/02/08	10/02/08 7:17 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38586 WorkOrder 0809884

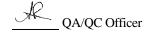
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0809880-0	02B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	117	114	2.75	106	105	1.25	70 - 130	30	70 - 130	30
Benzene	ND	10	112	110	1.58	101	100	0.724	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	121	111	8.06	83.4	85.1	2.00	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	118	118	0	95	95.3	0.293	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	109	107	2.25	114	114	0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	102	100	1.85	113	111	1.74	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	119	116	2.62	111	110	1.07	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	108	106	2.07	97	95.8	1.32	70 - 130	30	70 - 130	30
Toluene	ND	10	115	117	0.974	106	105	0.575	70 - 130	30	70 - 130	30
%SS1:	86	25	81	81	0	88	86	1.37	70 - 130	30	70 - 130	30
%SS2:	87	25	79	82	3.05	91	91	0	70 - 130	30	70 - 130	30
%SS3:	89	2.5	74	74	0	77	76	1.67	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38586 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809884-001B	09/27/08 10:00 AM	10/03/08	10/03/08 7:54 PM	0809884-002B	09/27/08 10:23 AM	10/04/08	10/04/08 4:32 PM
0809884-003B	09/27/08 11:05 AM	10/03/08	10/03/08 9:21 PM	0809884-004B	09/27/08 10:45 AM	10/04/08	10/04/08 3:48 PM
0809884-005B	09/27/08 11:37 AM	10/04/08	10/04/08 5:15 PM	0809884-006B	09/27/07	10/04/08	10/04/08 5:58 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015B

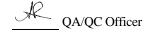
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38587 WorkOrder 0809884

EPA Method SW8015B Extraction SW3510C					Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			١
7 many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	105	106	0.989	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	82	84	1.97	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38587 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809884-001A	09/27/08 10:00 AM	09/30/08	10/06/08 2:30 PM	0809884-002A	09/27/08 10:23 AM	09/30/08	10/04/08 11:58 PM
0809884-003A	09/27/08 11:05 AM	09/30/08	10/04/08 5:08 PM	0809884-004A	09/27/08 10:45 AM	09/30/08	10/04/08 6:17 PM
0809884-005A	09/27/08 11:37 AM	09/30/08	10/07/08 9:59 AM	0809884-006A	09/27/07	09/30/08	10/04/08 12:35 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

