

RECEIVED

9:41 am, Sep 21, 2009

Alameda County Environmental Health 321 Court Street Woodland California 95695 Tel (530) 406-1760 Fax (530) 406-1071 B Haz 909563

July 13, 2009

Jerry Wickham Senior Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkwaý, Suite 250 Alameda, CA 94502-6577

 SUBJECT:
 Fuel Leak Case No. RO0000085

 SF Oakland Truck Stop

 8255 San Leandro Street

 Oakland, CA 94621

 Report Submittal – Feasibility Study and Semi-Annual Groundwater Monitoring Report

Dear Mr. Wickham:

Please find enclosed the *Feasibility Study and Semi-Annual Groundwater Monitoring Report,* prepared by Matriks for Nissan Saidian.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Please call me at 530-406-1760 or email thenderson@matrikscorp.com if you have any questions.

Sincerely,

Tom Henderson President

FEASIBILITY STUDY AND SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2009

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

PREPARED FOR: Nissan Saidian 5733 Medallion Court Castro Valley, California 94520

SUBMITTED TO: Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

> July 8, 2009 Project No. 6020

PREPARED BY:

Matriks Corporation 321 Court Street Woodland, California 95695

PROFESSIONAL CERTIFICATION iii
ACRONYMS AND ABBRREVIATIONS iv
INTRODUCTION 1
PHYSICAL SETTING1
Site Description
Geology and Soils1
Groundwater 2
PROJECT BACKGROUND AND DATA SUMMARY 2
Site History2
Contaminant Mass 5
REMEDIAL TECHNOLOGY FEASIBILITY EVALUATION6
Air Sparging with Vapor Extraction7
Ozone-Sparging with Hydrogen Peroxide injection7
Groundwater Pump and Treat
Recommendation9
QUARTERLY MONITORING SCOPE OF WORK9
Methods10
Groundwater Level Measurements 10
Monitoring Well Purging and Sampling 10
RESULTS 10
Groundwater Levels and Gradient10
Groundwater Analytical Results11
Geotracker Requirements11
CONCLUSIONS 11
RECOMMENDATIONS

TABLE OF CONTENTS

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Excavation Remediation Extents
- Figure 4 Inferred Extent of TPH in Soil
- Figure 5 Inferred Extent of MtBE/tBA in Groundwater
- Figure 6 Groundwater Gradient Map
- Figure 7 Groundwater Hydrographs

TABLES

Table 1	Soil Analytical Results
Table 2	Groundwater Analytical Results
Table 3	Well Construction Details
Table 4	Groundwater Elevation Data

APPENDICES

Appendix A	Well Sampling Logs
------------	--------------------

Appendix B Laboratory Analytical Results

PROFESSIONAL CERTIFICATION FEASIBILITY STUDY AND SEMI-ANNUAL GROUNDWATER MONITORING REPORT First Quarter 2009

SF Oakland Truck Stop 8255 San Leandro Street Oakland, California 94621 LOP Case No. RO0000085

Project No. 6020 July 8, 2009

Matriks Corporation prepared this document under the professional supervision of the person whose seal and signature appears here on. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of the investigation, which are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this report. The limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other regulatory agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user. I declare, unconcressionally of perjury, that the information and/or recommendations contained executive report is true and correct to the best of my knowledge.

Tom Henderson

President

Fred Mueller, Arthur of Carl Senior Engineer

ACRONYMS AND ABBRREVIATIONS

ACEHS	Alameda County Environmental Health Services
amsl	above mean sea level
ASE	Aqua Science Engineers, Inc.
DCA	1,2-dichloroethane
DIPE	di-isopropyl ether
EDB	ethylene di-bromide
EDF	electronic data file
ESL	Environmental Screening Level
EtBE	ethyl tert-butyl ether
ft	feet
fbg	feet below grade
ft/ft	foot per foot
FSSMR	Feasibility Study and Semi-Annual Monitoring Report
Geotracker	Geographical Information Management System
Matriks	Matriks Corporation
MtBE	methyl tert-butyl ether
mg/Kg	milligrams per kilogram
mg/L	milligrams per liter
mL	milliliter
MW	monitoring well
OSHPI	Ozone-Sparging with Hydrogen Peroxide Injection
PDF	portable document format
Penn	Penn Environmental
RWQCB	Regional Water Quality Control Board
SC	specific conductance
SRS	sensitive receptor survey
tAME	tert-amyl methyl ether
tBA	tert butyl alcohol
TDS	total dissolved solids

TOG	total oil and grease
TPH-d	total petroleum hydrocarbons as diesel
TPH-g	total petroleum hydrocarbons as gasoline
µg/L	micrograms per liter
μS	microsiemens
UST	underground storage tank
VOA	volatile organic analysis

INTRODUCTION

This Feasibility Study and Semi-annual Monitoring Report (FSSMR) has been prepared by Matriks Corporation for the SF Oakland Truck Stop in Oakland, California (the "Site"). The FSSMR was requested by Alameda County Environmental Health Services (ACEHS) in a February 26, 2009 letter to one of the Site owners, Mr. Nissan Saidian. The purpose of the FSSMR is to evaluate potential remedial methods to address fuel-related contamination in soil and shallow groundwater. The contamination was caused by an accidental release of petroleum hydrocarbons from former underground storage tanks (USTs) at the Site. ACEHS is the lead agency and has determined that this is a high priority Site based on California's MtBE guidelines and the presence of a domestic water supply well in proximity to the contaminant plume. This FSSMR has been prepared in accordance with the requirements of the California Code of Regulations Title 23, Division 3, Chapter 16, Article 11. The ACEHS case number for the Site is RO0000085.

PHYSICAL SETTING

Site Description

The Site is currently a fuel station, weigh station, and convenience mart that has been in operation since the 1960s. The surrounding area is comprised of mixed commercial and industrial properties. The Site is located approximately 1 ¼ mile east of San Francisco Bay and approximately ½ mile south of the Oakland-Alameda County Coliseum Complex. Elmhurst Creek provides storm drainage for the surrounding area and flows northwesterly across the west side of the Site. The Site and surrounding area are flat and the Site elevation is approximately 10 feet above mean seal level (amsl). A Site location map is shown on **Figure 1**.

Geology and Soils

Numerous soil borings have been drilled at the Site over the past several years. The boring logs indicate that organic-rich clay is present from the surface to about 16 feet below grade (fbg). This is consistent with the intertidal deposits shown on the published geologic map. At some boring locations, the clay extends deeper, but with less organic matter. Beneath the clay, sandy intervals are generally encountered from 17 to 40 fbg. The sands' grades range from clayey and silty to gravelly. Layers of clay or silt several feet thick were present within the sandy interval in some of the borings. Groundwater was first encountered in the borings at depths ranging from 5 to 11 fbg.

Groundwater

Groundwater monitoring wells have been installed at the project Site during several drilling events. These wells are 16 to 20 feet (ft) deep. The static water levels in the monitoring wells range seasonally from approximately 2.5 to 9.5 amsl. The groundwater flow direction is generally to the west. Depending upon the wells used for the calculation, the gradient has ranged from 0.001 to 0.008 ft/ft. Assuming a gradient of 0.001 ft/ft, effective porosity of 30%, and hydraulic conductivity of 9 gallons/day/ft², the seepage velocity of the groundwater is estimated at 0.004 ft/day. Groundwater samples from the monitoring wells have had specific conductance (SC) values ranging from 455 microsiemens (μ S) to 1,835 μ S, suggesting that total dissolved solids (TDS) concentrations are in the approximate range of 320 milligrams per liter (mg/L) to 1,285 mg/L.

PROJECT BACKGROUND AND DATA SUMMARY

Site History

In May 1998, W.A. Craig, Inc. (WAC) removed three USTs, two 4,000-gallon and one 550-gallon. The 4,000-gallon tanks stored gasoline and the 550-gallon tank stored waste oil.

In January 1999, Penn Environmental (Penn) was attempting to remove another waste oil UST and encountered difficulties due to the UST's proximity to underground utilities. Penn requested permission from ACEHS and the City of Oakland Fire Department to close the tank inplace. According to a letter report from Penn dated May 27, 1999, ACEHS and the Fire Department would consider closure in-place if a water sample collected from the tank pit contained levels of total oil and grease below regulatory requirements. Total oil and grease was not detected in the water sample collected from the tank pit. A review of available records on the ACEHS website appears to indicate that the requirements for closure in-place were met and the tank was closed in-place (ACEHS June 15, 1999).

In February 1999, Penn drilled 13 soil borings at the Site and installed groundwater monitoring wells in four of the borings (MW-1 through MW-4). Petroleum hydrocarbons were detected in soil samples from each boring except B7. Petroleum hydrocarbons were also detected in groundwater samples from each open boring and in each monitoring well. The highest concentration of methyl tert-butyl ether (MtBE) detected by laboratory analysis in the boring soil samples was 3.9 milligrams per kilogram (mg/Kg) in boring B2 at a depth of 4 ft. The highest concentration of total petroleum hydrocarbons as diesel (TPH-d) in the boring soil samples was 2,000 mg/Kg, in boring B-6 at a depth of 4 ft. The highest concentration of MtBE

The highest concentration of TPH-d in the groundwater monitoring wells was 62,000 μ g/L in groundwater monitoring well MW-1.

In August 1999, Aqua Science Engineers, Inc. (ASE) began conducting quarterly groundwater monitoring at the Site. Monitoring well MW-1 contained free-phase petroleum hydrocarbons believed to be diesel due to its dark color. Laboratory analysis detected 56,000 μ g/L TPH-g, 17,000 μ g/L benzene, and 6,100 μ g/L MtBE in MW-3.

On December 1, 1999, ASE installed additional monitoring wells MW-5 and MW-6. Free-phase petroleum hydrocarbons were again observed on the groundwater surface in monitoring well MW-1. Laboratory analysis detected 17 mg/Kg TPH-d in a soil sample from well boring MW-5 at 6 ft and 2.0 mg/Kg TPH-g in a soil sample from MW-6 also at 6 ft. Both analytical results were noted by the laboratory to have non-typical patterns for TPH-g.

In May and June 2000, ASE drilled eight additional soil borings. The highest concentration of petroleum hydrocarbons detected in boring BH-G was 1,500 mg/Kg TPH-d at 12 ft, in boring BH-A 370 mg/Kg TPH-g and 2.3 mg/Kg benzene at 7.5 feet, and in boring BH-D 1.7 mg/Kg MtBE at 11.5 ft.

In July 2002, ASE installed three additional monitoring wells (MW-7, MW-8, and MW-9). Well locations are depicted in **Figure 2**. ASE also made several attempts to drill a boring in San Leandro Street to define the eastern extent of petroleum hydrocarbons in soil and groundwater east of the Site. Each attempt was met with refusal at relatively shallow depths.

In the report documenting the July 2002 monitoring well installations, ASE presented findings of a sensitive receptor survey (SRS) conducted for the Site. The SRS concluded that due to the flat topography of the area and its close proximity to San Francisco Bay, the creek is likely to be tidally influenced. ASE also concluded that this was a likely explanation for the variable groundwater gradient at the Site (ASE 2002).

The SRS also identified three wells within a 2,000-foot radius of the Site. One well was identified as industrial and two wells were identified as irrigation wells. No domestic or municipal water supply wells were identified within the search radius (ASE 2002). The current status of these wells is unknown.

In February 2004, ASE subcontracted Subtronic Corporation to perform a ground magnetometer geophysical survey on the Site to identify additional USTs. No USTs were identified although two areas were identified that appeared to have buried reinforced concrete where the presence of buried metal objects, such as a UST, could not be ruled out (ASE 2004) due to the magnetic response of the rebar which would mask the USTs. Subtronic subsequently conducted a ground penetrating radar geophysical survey of the two magnetometer anomalies in September 2006. No USTs were identified in either location (ASE 2007).

On July 10, 2006, ASE collected a sample of free-phase petroleum hydrocarbons from monitoring well MW-1. The sample was analyzed by modified EPA Method 8015 and a forensic analysis was conducted on the chromatogram. The laboratory indicated that the product was indicative of middle distillates such as diesel fuel #2 or heating oil. The abundance of isoprenoids in conjunction with the absence of normal alkanes indicates that the fuel had undergone substantial biological degradation (ASE 2007).

In September 2006, ASE advanced 11 soil borings. Borings BH-I through BH-L and BH-S, were advanced to a depth of 50 ft, using an EP Sonic drill rig. Borings BH-M through BH-R were installed on and off-site using a Geoprobe direct push drill rig. The highest concentration of TPH-d detected by laboratory analysis of soil samples from boring BH-L was 2,200 mg/Kg at 19.5 ft. Boring BH-L also contained the highest concentration of MtBE at 0.81 mg/Kg at 14.5 ft. The highest concentration of tBA detected in boring BH-I was 2.2 μ g/L at 14.5 ft. The groundwater sample from BH-L reported the highest level of TPH-d concentrations of 27,000 μ g/L (15-18 feet bgs) (ASE 2007).

During this same time, six temporary well points were installed to define the extent of freephase floating petroleum hydrocarbons in the vicinity of the dispenser islands. PVC casing was placed in the temporary well points and remained overnight. Free-phase floating petroleum hydrocarbons were measured in boring TH-6 at a thickness of 2.54 ft. None of the other borings contained a measurable thickness of free-phase floating petroleum hydrocarbons but a petroleum hydrocarbon sheen was observed. While the borings were being backfilled, ASE noted that a thin layer of free-phase petroleum hydrocarbons was pushed to the surface on top of the cement in borings TH-2 and TH-4. Based on the results from these temporary wells, ASE returned in January 2007 and installed additional temporary well points TH-7 and TH-8. The PVC casing was placed in these wells for six hours. After six hours there was only water in boring TH-7. Laboratory analysis detected 22,000 μ g/L in a groundwater sampled collected from TH-7.

Free-phase floating hydrocarbons were removed from monitoring well MW-1 from August 1999 to March 2008, on schedules ranging from weekly to monthly. According to ASE's report dated March 9, 2007, over 140 gallons of free-phase floating diesel had been removed from monitoring well MW-1 as of March 2007.

ASE installed monitoring well MW-10 on October 10, 2006. Laboratory analytical results for a groundwater water sample collected from MW-10 on October 12, 2006 contained 1.7 μ g/L MtBE and 82 μ g/L tBA. No other analytes were detected in this sample.

ASE prepared and submitted to ACEHS the *Revised Remedial Action Plan for Underground Storage Tank and Dispenser Removal and Soil and Groundwater Remediation*, dated August 16, 2007 which was supplemented by, *Remedial Action Plan Addendum*, *Oakland Truck Stop*, dated October 19, 2007. The plans proposed site remediation through excavation, dewatering, and free-phase floating product removal. In a letter dated May 6, 2008, the ACEHS requested that the proposed scope of work be reviewed for the initial soil excavation and a Revised Corrective Action Plan be submitted.

In May 2008, the Site owners contracted with Matriks to conduct quarterly groundwater monitoring and prepare for further remediation work of the Site. Matriks prepared and submitted to ACEHS a *Revised Corrective Action Plan*, dated May 7, 2008 that included the construction of a French drain under the existing dispenser islands to facilitate the future removal of free-phase floating product. ACEHS approved the work in a letter dated May 16, 2008. The approved plan included a reduced amount of excavation, free-phase product removal, and the abandonment of monitoring wells MW-1, MW-3, and MW-6.

In July 2008, monitoring wells MW-1, MW-3, and MW-6 were destroyed. Five USTs and all associated piping and dispensers were removed. Approximately 2,330 tons of hydrocarbon impacted soil was removed. A large French drain was constructed beneath the dispenser islands and is in connection with extraction well EX-1. Excavation extents are shown on **Figure 3**. Three new double-walled USTs, six new dispensers, new double-walled piping and containment sumps, and a continuous monitoring system were installed to prevent further hydrocarbon releases onsite.

Contaminant Mass

Matriks estimated the inferred contaminant mass in soil and groundwater for this FSSMR. TPHd and TPH-g were combined for the estimate of contaminant mass in soil and MtBE and tBA were combined for the groundwater estimate. **Figure 4** shows analytical data from **Table 1** that were used for the estimate of residual TPH in Site soils. Only areas having TPH concentrations ≥1000 mg/kg were considered for this estimate since concentrations quickly fall from the 1000 mg/kg to below detection limits. Matriks estimates that there are 1,680 pounds or 258.5 gallons of residual TPH distributed irregularly within the soil in two separate distributions. Samples collected on or before February 8, 1999 were not used in this analysis because their location has been poorly depicted or show in more than one location in previous reports.

In order to arrive at this estimate, the area of soil contamination was divided into cells that the TPH was believed to occur mainly within a particular depth interval that could be assigned an average or representative TPH concentration. The contaminated regions were split into Area 1 and Area 2 as shown on **Figure 4**. TPH-g and TPH-d were combined from each sample, giving a total TPH for that point. TPH concentrations over 1000 mg/kg were averaged for all samples collected from that boring or sample location. The cells and their assigned values are shown on **Figure 4**.

Once the volume of contaminated soil had been calculated for a cell, the volume was multiplied by the average TPH concentration assigned to that cell to obtain the mass of TPH in that cell. The masses were then summed for all the cells. A typical cell calculation was done according to the following formula: 3.14 x ((L x W) / 2) x T x $1yd^3/27ft^3$ x 1.3tons/yd³ x 1kg/0.0011tons x C_Amg/kg x 1gr/1,000mg = TPH in grams

Where L and W are the cell length and width (feet), T is the thickness (feet) of the contaminated soil zone in the cell, and C_A is the highest combined TPH concentration assigned to that cell. Area 1 was calculated with a thickness of four feet. Area 2 thickness was adjusted based on the over excavation preformed in July 2008. Thus, for example, the calculation for the cell containing boring MW-3, which is a soil interval from 4-8 fbg (underlying the clean backfill of the over-excavation area), and assigned a combined TPH-g and TPH-d concentration of 2000 mg/kg, is as follows:

 $3.14 \times ((39/2) \times (23/2) \times 4)/27 \times 1.3/0.0011 \times 2000 \times 1/1,000 = 246,168$ grams of TPH within that cell. Gallons were converted at 6.5 pounds per gallon TPH.

Figure 5 shows data used for the estimate of MtBE combined with tBA in shallow groundwater. Only areas where MtBE concentrations are $\geq 1000 \ \mu g/L$ were considered for this estimate. The data shown on **Figure 5** are based on the MtBE/tBA concentrations from quarterly monitoring (**Table 2**). Matriks estimates that there are 16.3 pounds or 2.6 gallons of MtBE/tBA dissolved within a water volume of 19,994,500 liters.

In order to arrive at this estimate, a representative MtBE/tBA concentration was assigned to each monitoring well. This value was determined by taking the average of all combined MtBE and tBA concentrations for a given well since first quarter 2006, based on the data in **Table 2**. An MtBE/tBA iso-concentration contour map was then constructed, as shown on **Figure 5**. The volume of water enclosed within each iso-concentration contour was then calculated, assuming an aquifer thickness of 15 feet and porosity of 35%. Once the aquifer volume within a contoured area had been calculated, the volume was multiplied by the average MtBE/tBA concentration assigned to that area to obtain the total combined mass of MtBE and tBA. The masses were then summed for all contoured areas. A typical calculation was done according to the following formula:

```
Area x T x 0.35 x 1L/0.035ft^3 x C<sub>A</sub>µg/L x 1mg/1,000µg = MtBE/tBA in milligrams
```

Where T is the aquifer thickness (15 feet), and C_A is the average combined MtBE and tBA concentrations within that area. The C_A concentration was the average of the values for the contours bounding the given area.

REMEDIAL TECHNOLOGY FEASIBILITY EVALUATION

The remedial technology selected for this site must be capable of removing most of the residual TPH and VOCs in both soil and groundwater. The presence of MtBE and tBA is an important consideration. MtBE and tBA are highly soluble and mobile in water, and are somewhat resistant to treatment by biodegradation and certain remediation technologies. The selected remedial option must therefore be effective at removing MtBE/tBA as well as BTEX. All

remedial options will be dependent on the transmission of either the constituent or remedial method. A bench test may be required.

The following remedial action alternatives were considered for the Site:

- Air Sparging with Vapor Extraction
- Ozone-Sparging with Hydrogen Peroxide injection
- Groundwater Pump and Treat

A discussion of the limitations and advantages of each alternative follows:

Air Sparging with Vapor Extraction

- Air injection (sparging) would likely promote aerobic biodegradation of certain contaminants by indigenous aerobic bacteria. However, aerobic biodegradation may not be effective on MtBE/tBA, which can be recalcitrant to biodegradation.
- VOCs would need to be removed from the extracted soil vapors before venting the vapors to the atmosphere. The most common method for treating organic contaminants in vapors is to use activated carbon, which, although effective, is less efficient at removing MtBE than BTEX.
- Due to MtBE/tBA's high solubility (4-5%) in water and its relatively low Henry's Law Constant (0.022 for MtBE), more sparging will be required to effectively remove the dissolved phase MtBE/tBA than if BTEX alone were involved.
- Due to the above limitations, the ratio of cost to the mass of hydrocarbons removed will be relatively high compared to the ozone-peroxide technology discussed below.

TASK SUMMARY	COST (\$)
Project design, planning, permitting	24,000
Well Installation	29,000
Connection of sparge wells to Air Sparge system	35,000
Purchase and install equipment	41,000
Three years of operation and maintenance	68,000
Total	197,000

Ozone-Sparging with Hydrogen Peroxide injection

- Ozone-sparging with hydrogen peroxide injection (OSHPI) requires no NPDES or air permits because no groundwater effluent or contaminant-laden vapors are produced.
- OSHPI will treat contaminated groundwater and soil in-situ. Case studies indicate that MtBE/tBA removal rates are comparatively high.
- Ozone, with an oxidation potential of 2.07 volts, is highly reactive and will readily oxidize petroleum hydrocarbons, including MtBE/tBA. Breakdown of ozone (O₃) and hydrogen

peroxide provides an oxygen rich environment, which also promotes aerobic biodegradation of contaminants by indigenous bacteria. The end products of these reactions are carbon dioxide and water.

- The ozone-sparge points generate microbubbles (diameter of 0.3 to 200 microns) that allow the penetration of ozone into fine-grained sediments. The microbubbles have high surface area to volume ratio, which maximizes the oxidative efficiency of the ozone.
- Ozone's solubility in water (600 mg/L at 20° C) is two orders of magnitude higher than oxygen, making ozonation much more efficient than ordinary air sparging.
- Ozone has a short half-life (~15 minutes) and will not persist in the environment.
- Hydrogen peroxide would be extremely effective in the constructed trench and former UST areas because of their high soil permeability and hydraulic conductivity.
- Case studies have shown that under ideal conditions the ratio of the ozone mass injected to hydrocarbon mass destroyed is approximately 1:1, so the cost to benefit ratio for this technology is relatively low.

TASK SUMMARY	COST (\$)
Planning, permitting, bench scale testing, utility locating	22,000
Well installation, system installation, system startup	42,000
System rental and 12-months of operation/maintenance	86,000
Total	150,000

Groundwater Pump and Treat

- The feasibility of groundwater extraction would be uncertain without first conducting aquifer tests to evaluate potential pumping rates and the radius of influence. However, given the occurrence of sandy layers in the subsurface, Matriks expects pump and treat technology to be feasible at this Site. Additional analyses would also be needed in order to better characterize the groundwater geochemistry, including mineralogical constituents, metals, total organic carbon, etc.
- A permit would be required in order to discharge the treated groundwater to a sanitary sewer. The permit could require that the water be treated for other parameters if, for example, the groundwater is high in unwanted constituents such nitrate, boron, chloride, etc.
- MtBE/tBA have a relatively low affinity for granular activated carbon, especially when other organic compounds are present in the water. Therefore, more carbon will be required than if BTEX alone were the main contaminants.

• A pump and treat system is effective in controlling plume movement and a significant amount of the construction costs has been minimized due to the remediation trench having already been installed during the recent UST removal.

Planning, permitting, electrical upgrades, underground locating	35,000
Connection of wells EX-1, -2 to treatment compound and connection to East Bay Mud	17,000
Pad construction, installation and startup of dual phase system	51,000
DPE system rental and 12-months of operation/maintenance	164,000
Total	267,000

Recommendation

The alternatives evaluated considered the potential routes of exposure, implementation time, technical implementability, and cost. OSHPI injection and air sparge rely on insitu remediation and therefore compliance sampling is not necessary. The higher reactivity of OSHPI over air sparge will decrease the time of remediation which offsets the higher capital cost. Based on the foregoing discussion about the advantages and limitations of these remedial options, and our understanding of Site conditions, Matriks recommends that OSHPI be used for the final corrective action at the SF Oakland Truck Stop.

QUARTERLY MONITORING SCOPE OF WORK

The scope of work performed for this semi-annual monitoring included the following tasks:

- Measured static water levels in five monitoring wells;
- Measured groundwater, collected field quality field parameters of pH, temperature, and SC from each well;
- Purged at least three casing volumes from each well;
- Collected groundwater samples from each well;
- Analyzed groundwater samples for THP-d, TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see the *Monitoring Well Purging and Sampling* section of this report for analytical methods used);
- Updated the Geotracker database; and
- Prepared this combined Feasibility Study/Semi-Annual Monitoring Report.

Methods

Groundwater Level Measurements

The semi-annual groundwater monitoring event was conducted on March 28, 2009. Water levels were measured with an electronic water depth indicator. Each well cap was removed and the water level was allowed to equilibrate with atmospheric pressure for approximately 30 minutes before taking a water depth measurement. The static water level measurements were referenced to the surveyed marks on the top of each well casing. The depth-to-water measurements were used to calculate the purge volume of each monitoring well.

Monitoring Well Purging and Sampling

At least three well volumes were purged from each well using a clean disposable bailer. Well EX-1 contained free-phase floating hydrocarbons with a thickness of approximately 0.005 feet and was therefore not sampled. During purging, groundwater temperature, pH, and SC were measured and recorded on regular intervals with portable instrumentation. Water quality measurements were recorded on monitoring well sampling logs, copies of which are included in **Appendix A**. Well purge water was placed into labeled 55-gallon, DOT-approved steel drums, sealed, and temporarily stored onsite for subsequent proper disposal.

Following purging, groundwater samples were collected from each monitoring well using a new disposable bailer. Samples for TPH-G, BTEX, and fuel oxygenates were decanted into laboratory supplied 40-mL volatile organic analysis (VOA) vials containing hydrochloric acid as a preservative. Care was taken to eliminate headspace in each VOA prior to capping. Samples for TPH-d were decanted into laboratory supplied 1-liter amber glass jars. Samples were labeled to indicate the project number, sample ID, and date collected. The same information was recorded on the chain-of-custody forms. Samples were stored in a cooler with ice for transport to the laboratory.

Samples were submitted under documented chain-of-custody control to McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California (DHS ELAP Certification No. 1644) and analyzed for TPH-g and TPH-d by EPA Method 8015 modified; for BTEX by EPA Method 8021B; and for MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA by EPA Method 8260B.

RESULTS

Groundwater Levels and Gradient

The groundwater flow direction is calculated to be to the south-southeast, toward San Francisco Bay and the unnamed creek, with a gradient of 0.003 foot per foot. Depth to groundwater in each well and groundwater elevations and groundwater monitoring well construction details are included in **Table 3**. Historical groundwater elevation data are included

in **Table 4**. Groundwater elevation contours are depicted on **Figure 6**. Graphs of groundwater elevation versus time for selected monitoring wells are presented on **Figure 7**.

Groundwater Analytical Results

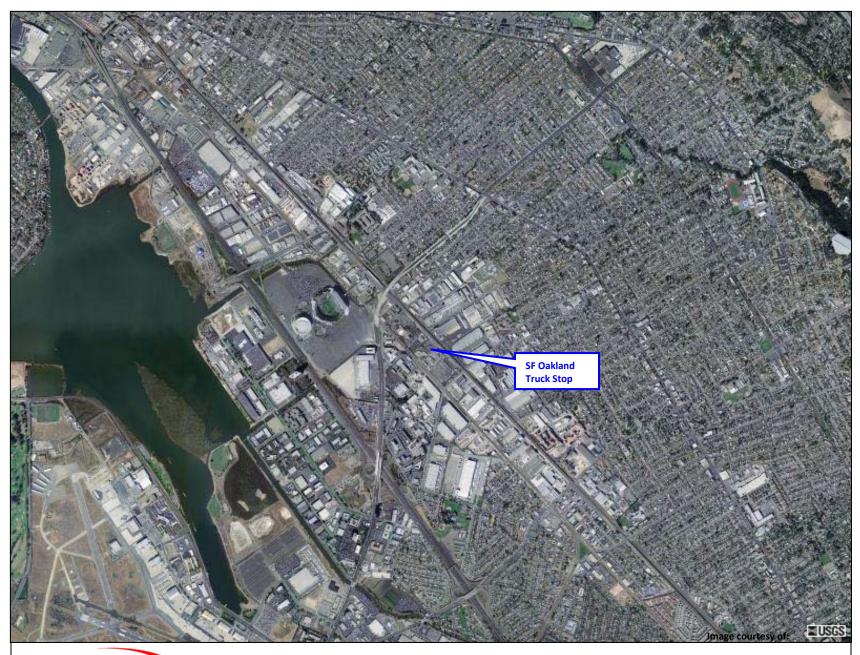
The highest concentration of petroleum hydrocarbons were detected in MW-10, 4,700 μ g/L TPH-g. MtBE was highest in extraction well EX-2, detected at 98 μ g/L. TPH-d was detected at 3,900 μ g/L in EX-2. Each of these concentrations is above the environmental screening level (ESL) for these constituents in groundwater. The constituent tBA was also detected in each monitoring well sample, except for MW-10, in concentrations as high as 6,400 μ g/L in MW-5, however, this is below the ESL for tBA of 18,000 μ g/L. Concentrations of petroleum hydrocarbons detected in groundwater samples collected during this groundwater monitoring event were within the range of historically detected concentrations. Groundwater analytical results for this and previous groundwater monitoring events are summarized in **Table 2**. A copy of the laboratory analytical report is included in **Appendix B**.

Geotracker Requirements

All analytical data were submitted electronically to the California State Water Resources Control Board Geotracker database as required by State Assembly Bill 2886 (Water Code Section 13195-13198). Electronic data files were prepared and formatted by McCampbell and electronically submitted by Matriks. Well latitudes, longitudes (GEO_XY files), and elevations (GEO_Z files) were previously submitted to the database. Well status and usage reports (GEO_WELL file) were also prepared and submitted for this groundwater monitoring event as was a complete electronic copy of this report (GEO_REPORT file) in PDF format.

CONCLUSIONS

The groundwater flow direction calculated for this quarterly event is southwest with a gradient of 0.002. Free-phase petroleum hydrocarbons are still present in EX-1 in the dispenser area, but its thickness appears to have been reduced by the removal of free-phase product, water, and soil during the Site remedial activities conducted in July 2008. The free-phase product thickness remained at 0.005 ft for the third consecutive quarter. The constituent tBA appears to be increasing in concentration with time in MW-5. The concentration of tBA appears to be deceasing or remaining about the same in the remainder of the wells. We believe that the lateral and vertical extent of petroleum hydrocarbons in groundwater has been adequately characterized and no further characterization is warranted.

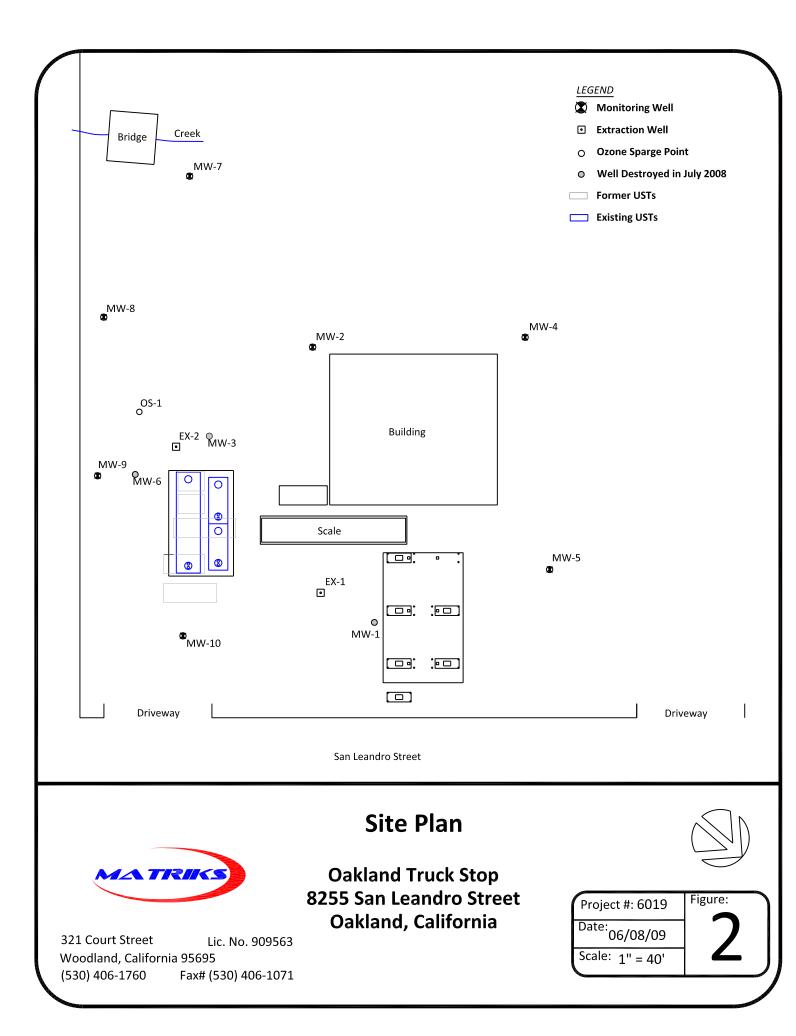

RECOMMENDATIONS

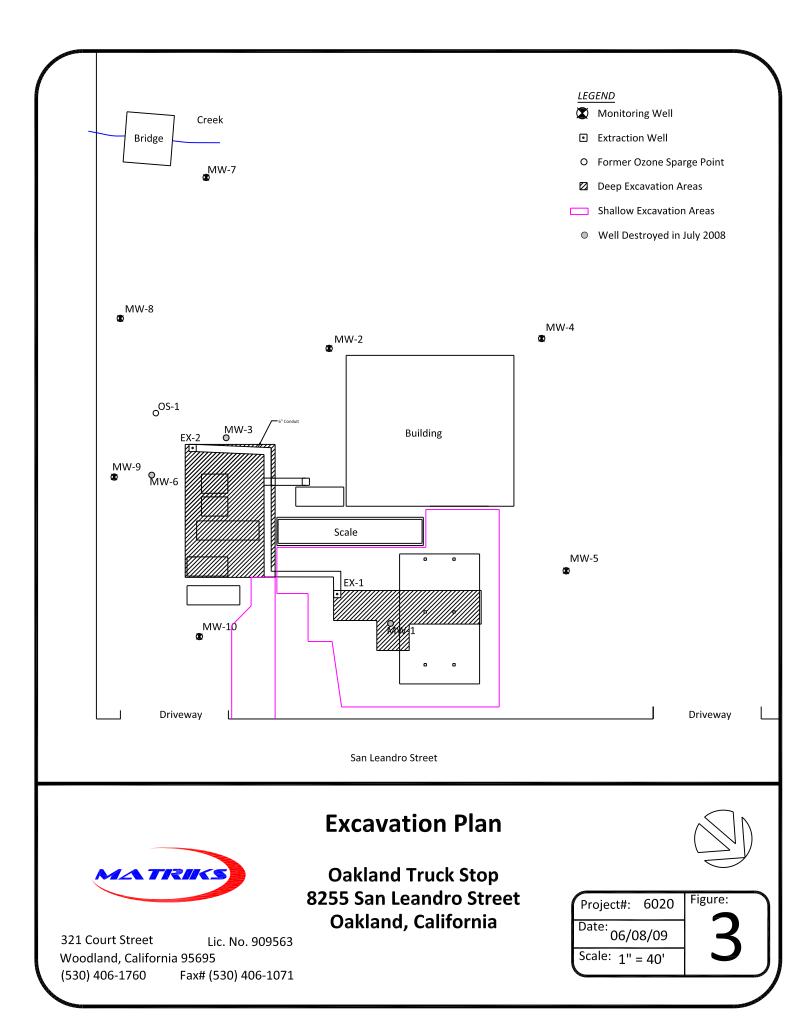
We recommend the removal of free-phase product from groundwater in EX-1. The volume of free phase diesel appears to be low. We will install a passive free-phase product skimmer in

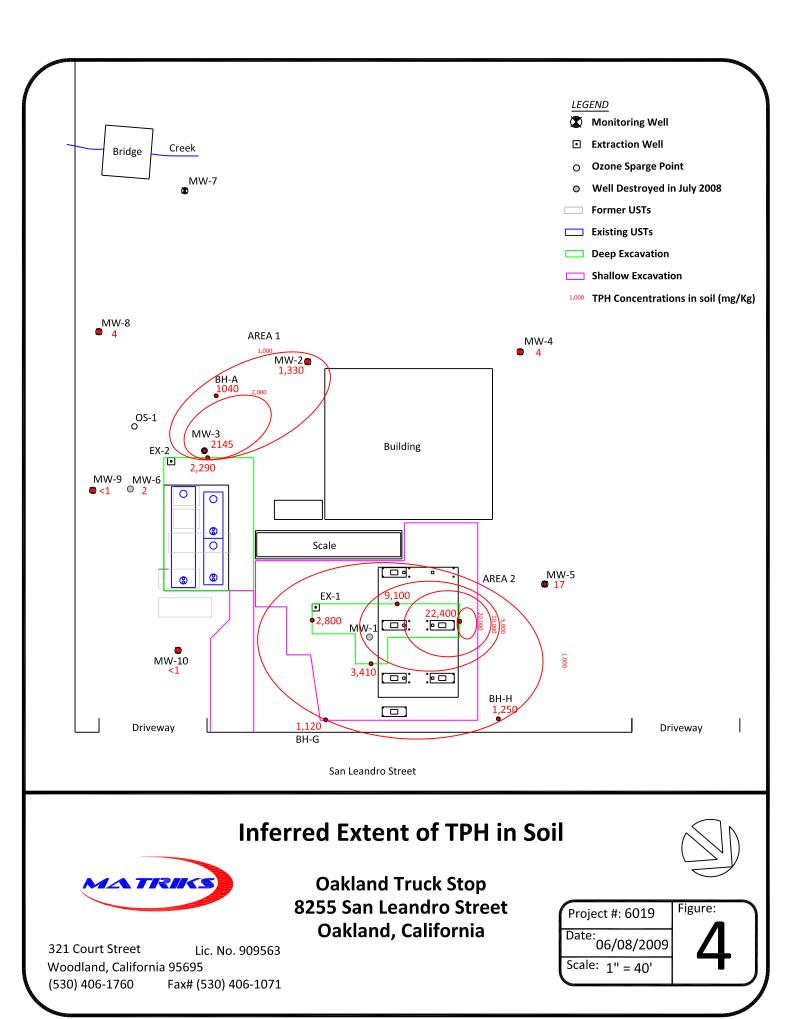
this monitoring well. The skimmer should be serviced on a weekly basis for at least four weeks and the schedule revised based on the results. Additionally, EX-1 will be sampled to identify the concentrations of tBA in groundwater. The skimmer will be used until the recommended remediation method is implemented.

While MW-3 was in place and sampled regularly, it contained some of the highest concentrations of benzene and MtBE detected in groundwater samples and constituent trends appeared to be increasing. Groundwater in this general vicinity is currently not monitored because MW-3 was removed during the July 2008 remedial action. We also recommend the installation of a new groundwater monitoring well west of the tank pit to replace MW-3. This well should be constructed as a 4-inch well in a large flush-mounted well box to allow for additional remediation.

FIGURES






Lic. No. 909563 Fax No. (530) 406-1071

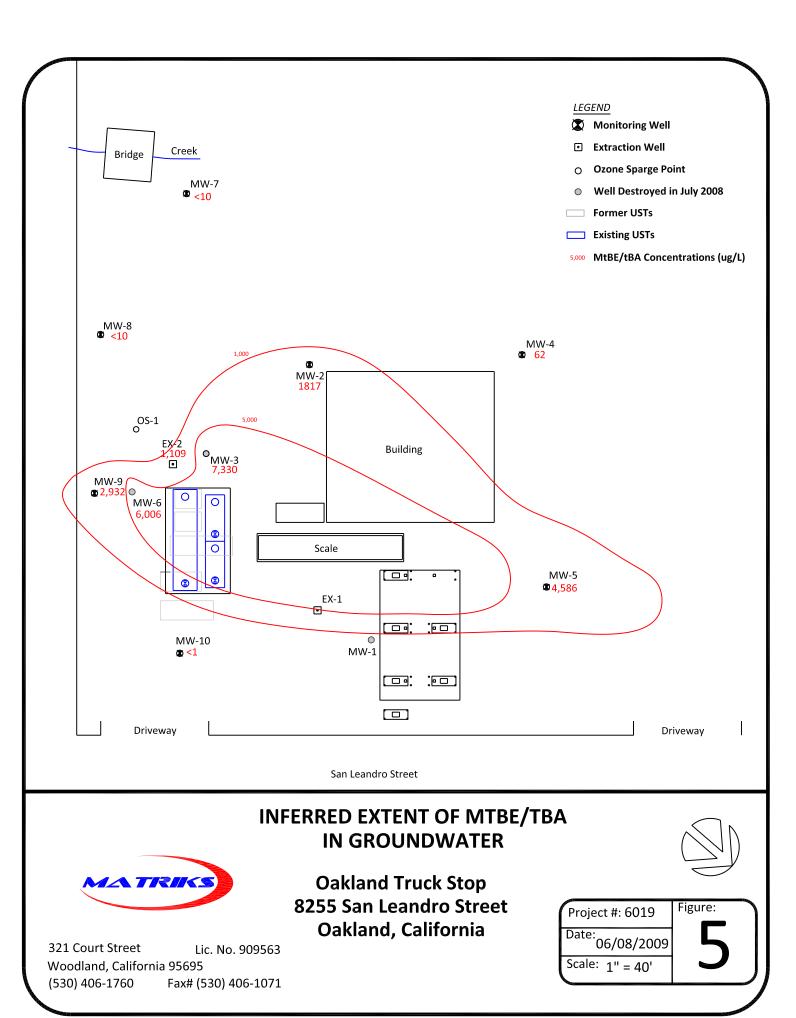

Site Location Map SF Oakland Truck Stop 8255 San Leandro Street, Oakland, CA

Figure 1

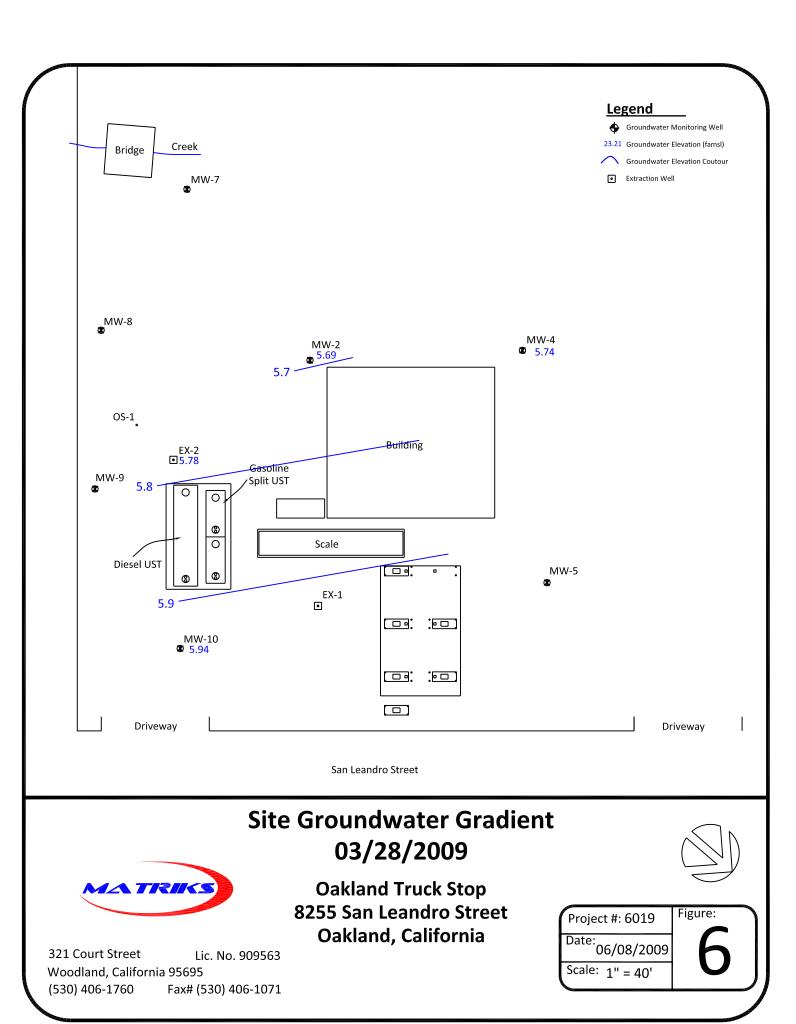
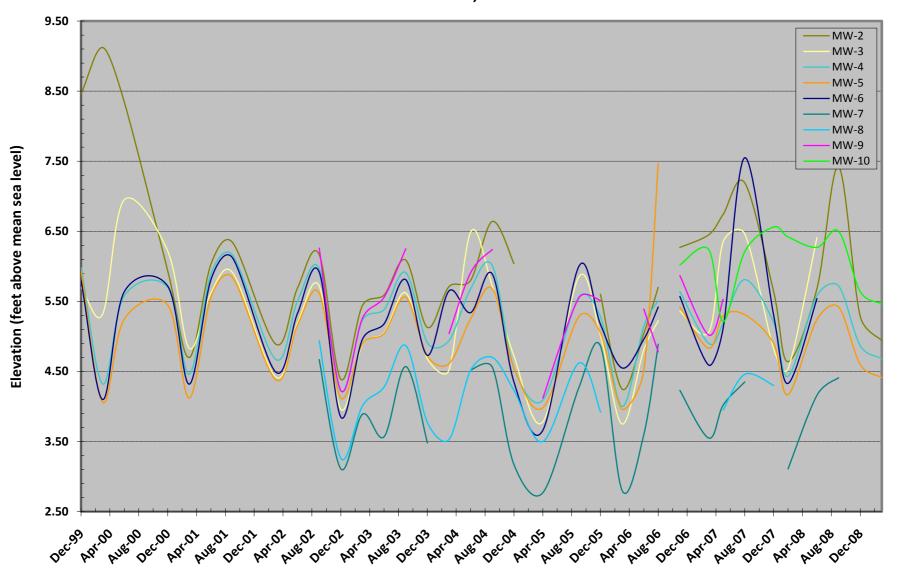



Figure 7. Monitoring Well Hydrographs Oakland Truck Stop Oakland, CA

TABLES

IF.

Sample ID	Date Sampled	Depth (in feet)	TPH-g	TPH-d	Benzene	Toluene	Ethylben- zene	Xylene	MtBE
021999-B1-1C	2/19/1999	4.0	24	1,600	0.062	0.057	0.14	0.61	0.23
021999-B1-2C	2/19/1999	11.0	21	330	0.040	0.047	0.16	0.64	0.71
021999-B1-3C	2/19/1999	16.0	<1.0	10	<0.0050	<0.0050	<0.0050	<0.0050	0.70
021999-B2-1C	2/19/1999	4.0	67	660	0.33	0.074	0.29	0.34	3.9
021999-B2-2C	2/19/1999	11.0	20	460	0.044	<0.020	0.081	0.29	0.035
021999-B2-3C	2/19/1999	16.0	<1.0	47	<0.0050	<0.0050	<0.0050	<0.0050	0.050
021999-B4-1B	2/19/1999	3.5	3.9	13	0.067	0.0051	< 0.0050	0.024	0.18
021999-B4-2B	2/19/1999	7.5	6.1	250	0.14	0.0059	0.024	0.051	0.0099
021999-B4-3C	2/19/1999	12.0	170	350	1.5	0.11	3.2	0.34	0.16
021999-B4-4C	2/19/1999	16.0	170	120	1.4	0.56	0.82	1.5	0.053
021999-B6-1C	2/19/1999	4.0	360	2,000	2.2	0.38	1.7	2.4	0.095
021999-B6-2C	2/19/1999	11.0	340	650	2.6	1.3	10	9.8	0.80
021999-B6-3C	2/19/1999	16.0	24	7	1.1	0.047	0.20	0.18	< 0.020
021999-B7-1C	2/8/1999	4.0	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
021999-B7-2C	2/8/1999	8.0	<1.0	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
021999-B7-3C	2/8/1999	12.0	<1.0	<1.0	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
021999-B7-4C	2/8/1999	16.0	<1.0	<1.0	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
021999-B8-1C	2/8/1999	4.0	45	810	0.16	0.092	0.14	0.22	0.36
021999-B8-2B	2/8/1999	7.5	2.4	<1.0	0.024	<0.0050	< 0.0050	< 0.0050	< 0.0050
021999-B8-3B	2/8/1999	11.5	67	95	0.49	0.064	0.20	<0.050	2.1
021999-B8-4B	2/8/1999	16.0	1200	890	5.6	2.6	5.1	1.1	0.70
021999-B9-1C	2/8/1999	4.0	<1.0	<1.0	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
021999-B9-2C	2/8/1999	8.0	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
021999-B9-3B	2/8/1999	11.5	<1.0	<1.0	<0.0050	<0.0050	< 0.0050	< 0.0050	0.012
021999-B9-4B	2/8/1999	15.5	<1.0	<1.0	< 0.0050	<0.0050	<0.0050	< 0.0050	0.011
021999-MW1-1C	2/18/1999	4.0	3.9	82	0.058	0.010	0.074	0.16	0.018
021999-MW1-2C	2/18/1999	8.0	<1.0	110	<0.0050	<0.0050	0.011	0.0086	0.071
021999-MW1-3C	2/18/1999	12.0	3.1	540	<0.0050	0.0065	0.025	0.053	0.013
021999-MW1-4C	2/18/1999	16.0	<1.0	3	<0.0050	<0.0050	<0.0050	<0.0050	0.016
021999-MW3-1C	2/18/1999	4.0	160	2,800	2.5	0.11	3.5	2.5	0.24
021999-MW3-2C	2/18/1999	8.0	230	1,100	5.5	0.14	5.5	0.56	0.25
021999-MW3-3C	2/18/1999	12.0	120	250	2.7	0.092	3.9	0.73	0.37
021999-MW3-4C	2/18/1999	16.0	43	15	1.1	0.084	0.49	0.35	0.92
021999-B3-1C	2/19/1999	4.0	N/A	N/A	0.022	<0.0050	<0.0050	N/A	N/A

Sample ID	Date Sampled	Depth (in feet)	TPH Motor Oil	DIPE	ETBE	TAME	TBA	Meth-anol	Ethanol
021999-B1-1C	2/19/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B1-2C	2/19/1999	11.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B1-3C	2/19/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B2-1C	2/19/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B2-2C	2/19/1999	11.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B2-3C	2/19/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B4-1B	2/19/1999	3.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B4-2B	2/19/1999	7.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B4-3C	2/19/1999	12.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B4-4C	2/19/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B6-1C	2/19/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B6-2C	2/19/1999	11.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B6-3C	2/19/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B7-1C	2/8/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B7-2C	2/8/1999	8.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B7-3C	2/8/1999	12.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B7-4C	2/8/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B8-1C	2/8/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B8-2B	2/8/1999	7.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B8-3B	2/8/1999	11.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B8-4B	2/8/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B9-1C	2/8/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B9-2C	2/8/1999	8.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B9-3B	2/8/1999	11.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B9-4B	2/8/1999	15.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW1-1C	2/18/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW1-2C	2/18/1999	8.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW1-3C	2/18/1999	12.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW1-4C	2/18/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW3-1C	2/18/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW3-2C	2/18/1999	8.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW3-3C	2/18/1999	12.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW3-4C	2/18/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B3-1C	2/19/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A

E

Sample ID	Date Sampled	Depth (in feet)	TPH-g	TPH-d	Benzene	Toluene	Ethylben- zene	Xylene	MtBE
021999-B3-2C	2/19/1999	11.0	N/A	N/A	<0.0050	<0.0050	0.0052	N/A	N/A
021999-B3-3B	2/19/1999	15.5	N/A	N/A	N/A	N/A	0.33	N/A	N/A
021999-MW2-1C	2/19/1999	4.0	N/A	N/A	<0.0050	<0.0050	<0.0050	N/A	N/A
021999-MW2-2B	2/19/1999	10.5	N/A	N/A	<0.0050	<0.0050	<0.0050	N/A	N/A
021999-MW2-3B	2/19/1999	15.5	N/A	N/A	<0.0050	<0.0050	0.17	N/A	N/A
021999-MW4-1C	2/19/1999	4.0	N/A	N/A	<0.0050	<0.0050	<0.0050	N/A	N/A
021999-MW4-2C	2/19/1999	11.0	N/A	N/A	<0.0050	<0.0050	<0.0050	N/A	N/A
021999-MW4-3C	2/19/1999	16.0	N/A	N/A	<0.0050	<0.0050	<0.0050	N/A	N/A
MW-5	12/1/1999	6.0	<1.0	17	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
MW-6	12/1/1999	6.0	2.0	<1.0	<0.0050	<0.0050	<0.0050	0.013	0.025
BH-A	5/31/2000	7.5	370	670	2.3	0.16	4.7	1.1	<0.050
BH-A	5/31/2000	11.5	210	130	1.3	0.52	3.7	15	<0.020
BH-B	5/31/2000	7.5	4.4	2.5	0.040	<0.0050	<0.0050	<0.0050	<0.0050
BH-B	5/31/2000	11.5	190	120	0.048	0.030	0.37	0.020	0.41
BH-C	5/31/2000	11.5	<1.0	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	1.0
BH-D	5/31/2000	11.5	<1.0	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	1.7
BH-E	5/31/2000	11.5	<1.0	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-F	5/31/2000	11.5	<1.0	<1.0	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
BH-G	6/1/2000	12.0	270	1,500	< 0.020	0.028	<0.020	<0.020	0.050
BH-H	6/1/2000	8.0	150	1,100	0.029	0.024	<0.020	<0.020	0.060
BH-H	6/1/2000	12.0	3.0	320	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
MW-7	7/8/2002	10.5	<1.0	<1.0	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
MW-8	7/8/2002	11.0	<1.0	4	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
MW-9	7/8/2002	13.0	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	0.0058
BH-I	9/25/2006	9.5	<1.0	2	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-I	9/25/2006	14.5	7.9	5	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-I	9/25/2006	19.5	<1.0	2	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-I	9/25/2006	24.5	<1.0	4	< 0.0050	< 0.0050	<0.0050	<0.0050	0.012
BH-I	9/25/2006	29.5	<1.0	3	< 0.0050	< 0.0050	< 0.0050	<0.0050	0.018
BH-I	9/25/2006	34.5	<1.0	4	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-I	9/25/2006	39.5	<1.0	9	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-I	9/25/2006	44.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-I	9/25/2006	49.9	<1.0	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-J	9/25/2006	9.5	340	780	3.9	0.050	1.5	0.15	0.23
BH-J	9/25/2006	14.5	320	270	0.99	0.053	0.92	0.21	0.47

Sample ID	Date Sampled	Depth (in feet)	TPH Motor Oil	DIPE	ETBE	TAME	ТВА	Meth-anol	Ethanol
021999-B3-2C	2/19/1999	11.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-B3-3B	2/19/1999	15.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW2-1C	2/19/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW2-2B	2/19/1999	10.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW2-3B	2/19/1999	15.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW4-1C	2/19/1999	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW4-2C	2/19/1999	11.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
021999-MW4-3C	2/19/1999	16.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-5	12/1/1999	6.0	<50	N/A	N/A	N/A	N/A	N/A	N/A
MW-6	12/1/1999	6.0	<50	N/A	N/A	N/A	N/A	N/A	N/A
BH-A	5/31/2000	7.5	<200	<0.050	<0.050	<0.050	<0.50	N/A	N/A
BH-A	5/31/2000	11.5	<10	<0.020	<0.020	<0.020	<0.20	N/A	N/A
BH-B	5/31/2000	7.5	24	<0.0050	<0.0050	<0.0050	0.012	N/A	N/A
BH-B	5/31/2000	11.5	<10	<0.020	<0.020	<0.020	<0.20	N/A	N/A
BH-C	5/31/2000	11.5	<10	<0.0050	<0.0050	0.025	0.49	N/A	N/A
BH-D	5/31/2000	11.5	<10	<0.0050	<0.0050	0.024	0.57	N/A	N/A
BH-E	5/31/2000	11.5	14	<0.0050	<0.0050	<0.0050	<0.0050	N/A	N/A
BH-F	5/31/2000	11.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	N/A	N/A
BH-G	6/1/2000	12.0	<10	<0.020	<0.020	<0.020	<0.20	N/A	N/A
BH-H	6/1/2000	8.0	<10	<0.020	<0.020	<0.020	<0.20	N/A	N/A
BH-H	6/1/2000	12.0	<10	<0.0050	<0.0050	<0.0050	<0.020	N/A	N/A
MW-7	7/8/2002	10.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	N/A	N/A
MW-8	7/8/2002	11.0	<10	<0.0050	<0.0050	<0.0050	<0.0050	N/A	N/A
MW-9	7/8/2002	13.0	15	<0.0050	<0.0050	<0.0050	0.0051	N/A	N/A
BH-I	9/25/2006	9.5	<10	<0.0050	<0.0050	<0.0050	0.49	<0.20	<0.010
BH-I	9/25/2006	14.5	<10	<0.0050	<0.0050	<0.0050	2.2	<0.20	<0.010
BH-I	9/25/2006	19.5	16	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-I	9/25/2006	24.5	<10	<0.0050	<0.0050	<0.0050	1.0	<0.20	<0.010
BH-I	9/25/2006	29.5	<10	<0.0050	<0.0050	<0.0050	0.098	<0.20	<0.010
BH-I	9/25/2006	34.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-I	9/25/2006	39.5	13	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-I	9/25/2006	44.5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-I	9/25/2006	49.9	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-J	9/25/2006	9.5	18	<0.050	<0.050	<0.050	0.28	<5.0	<0.50
BH-J	9/25/2006	14.5	<10	<0.050	<0.050	<0.050	<0.25	<5.0	<0.50

177

Sample ID	Date Sampled	Depth (in feet)	TPH-g	TPH-d	Benzene	Toluene	Ethylben- zene	Xylene	MtBE
BH-J	9/25/2006	19.5	<1.0	8	0.019	<0.0050	<0.0050	<0.0050	0.011
BH-J	9/25/2006	24.5	<1.0	2	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-J	9/25/2006	34.5	<1.0	7	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
BH-J	9/25/2006	39.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-J	9/25/2006	44.5	<1.0	5	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-J	9/25/2006	49.9	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-K	9/26/2006	9.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
ВН-К	9/26/2006	13.0	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
ВН-К	9/26/2006	14.5	<1.0	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-K	9/26/2006	24.5	<1.0	4	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-K	9/26/2006	29.5	<1.0	2	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
ВН-К	9/26/2006	34.5	<1.0	2	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
ВН-К	9/26/2006	39.5	<1.0	3	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-K	9/26/2006	44.5	<1.0	<1.0	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-K	9/26/2006	49.5	<1.0	1	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
BH-L	9/26/2006	9.5	61	1,600	0.12	<0.025	<0.025	0.073	0.15
BH-L	9/26/2006	14.5	170	1,400	0.51	0.027	<0.025	0.054	0.81
BH-L	9/26/2006	16.0	<1.0	6	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
BH-L	9/26/2006	19.5	230	2,200	0.38	< 0.040	< 0.040	0.058	0.78
BH-L	9/26/2006	24.5	<1.0	2	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-L	9/26/2006	29.5	<1.0	3	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
BH-L	9/26/2006	34.5	<1.0	3	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-L	9/26/2006	44.5	<1.0	<1.0	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
BH-L	9/26/2006	49.5	<1.0	<1.0	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
BH-M	9/27/2006	9.5	<1.0	6	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-M	9/27/2006	14.5	<1.0	1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
BH-N	9/27/2006	9.5	<1.0	15	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
BH-N	9/27/2006	14.5	<1.0	2	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
BH-O	9/28/2006	9.5	<1.0	21	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-P	9/28/2006	9.5	<1.0	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-Q	9/28/2006	9.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-R	9/28/2006	9.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-S	9/28/2006	9.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-S	9/28/2006	14.5	<1.0	2	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
BH-S	9/28/2006	19.5	<1.0	3	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050

Sample ID	Date Sampled	Depth (in feet)	TPH Motor Oil	DIPE	ETBE	TAME	ТВА	Meth-anol	Ethanol
BH-J	9/25/2006	19.5	<10	<0.0050	<0.0050	<0.0050	0.80	<0.20	<0.010
BH-J	9/25/2006	24.5	<10	<0.0050	<0.0050	<0.0050	0.32	<0.20	<0.010
BH-J	9/25/2006	34.5	<10	<0.0050	<0.0050	<0.0050	0.017	<0.20	<0.010
BH-J	9/25/2006	39.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-J	9/25/2006	44.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-J	9/25/2006	49.9	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-K	9/26/2006	9.5	<10	<0.0050	<0.0050	<0.0050	0.21	<0.20	<0.010
BH-K	9/26/2006	13.0	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
ВН-К	9/26/2006	14.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
ВН-К	9/26/2006	24.5	<10	<0.0050	<0.0050	<0.0050	0.17	<0.20	<0.010
BH-K	9/26/2006	29.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
ВН-К	9/26/2006	34.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-K	9/26/2006	39.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-K	9/26/2006	44.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	< 0.010
ВН-К	9/26/2006	49.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-L	9/26/2006	9.5	30	<0.025	<0.025	<0.025	0.36	<2.5	<0.25
BH-L	9/26/2006	14.5	18	<0.025	<0.025	<0.025	0.5	<5.0	<0.25
BH-L	9/26/2006	16.0	<10	<0.0050	<0.0050	<0.0050	1.4	<0.20	<0.010
BH-L	9/26/2006	19.5	<100	<0.040	<0.040	<0.040	0.52	<8.0	<0.40
BH-L	9/26/2006	24.5	<10	<0.0050	<0.0050	<0.0050	0.47	<0.20	<0.010
BH-L	9/26/2006	29.5	<10	<0.0050	<0.0050	<0.0050	0.36	<0.20	<0.010
BH-L	9/26/2006	34.5	<10	<0.0050	<0.0050	<0.0050	0.018	<0.20	<0.010
BH-L	9/26/2006	44.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-L	9/26/2006	49.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	< 0.010
BH-M	9/27/2006	9.5	21	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	0.012
BH-M	9/27/2006	14.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-N	9/27/2006	9.5	42	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-N	9/27/2006	14.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-O	9/28/2006	9.5	100	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-P	9/28/2006	9.5	37	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-Q	9/28/2006	9.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-R	9/28/2006	9.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-S	9/28/2006	9.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	< 0.010
BH-S	9/28/2006	14.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	< 0.010
BH-S	9/28/2006	19.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	< 0.010

E

Sample ID	Date Sampled	Depth (in feet)	TPH-g	TPH-d	Benzene	Toluene	Ethylben- zene	Xylene	MtBE
BH-S	9/28/2006	24.5	<1.0	3	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-S	9/28/2006	29.5	<1.0	4	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-S	9/28/2006	34.5	<1.0	6	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
BH-S	9/28/2006	39.5	<1.0	2	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-S	9/28/2006	44.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
BH-S	9/28/2006	49.5	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
1N	7/8/2008	10	160	930	<0.10	<0.10	<0.10	<0.10	<0.010
2N	7/8/2008	10	240	1,700	<0.050	<0.050	0.12	0.19	<0.020
3N	7/8/2008	10	360	2,200	<0.17	<0.17	<0.17	<0.17	<0.020
4N	7/8/2008	10	130	490	<0.050	<0.050	<0.050	<0.050	<0.010
5N	7/8/2008	10	610	1,700	0.42	0.1	0.38	0.61	<0.050
1S	7/8/2008	10	130	490	<0.10	<0.10	<0.10	<0.10	<0.010
2S	7/8/2008	10	150	870	<0.10	<0.10	<0.10	<0.10	<0.025
35	7/8/2008	10	2,400	7,500	<1.0	1.4	<1.0	2.5	<0.20
4S	7/8/2008	10	970	4,800	0.75	1.1	0.51	0.99	0.049
5S	7/8/2008	10	1,100	6,400	<0.50	<0.50	<0.50	<0.50	<0.010
P1	7/9/2008	6	580	1,500	<0.25	<0.25	<0.25	1.9	0.93
P2	7/9/2008	6	200	1,900	<0.50	<0.50	<0.50	<0.50	0.078
Р3	7/9/2008	6	560	3,400	<0.10	<0.10	<0.10	1	<0.10
P4	7/9/2008	6	800	10,000	<0.10	<0.10	<0.10	0.67	<0.20
P5	7/9/2008	6	60	63	0.037	0.031	0.018	0.089	1.7
P6	7/9/2008	6	1,100	6,500	<0.50	<0.50	<0.50	<0.50	2
P7	7/9/2008	6	1,800	5,700	<1.0	2.3	<1.0	<1.0	2.2
P8	7/9/2008	6	1,100	3,800	<1.0	<1.0	<1.0	<1.0	0.31
P9	7/9/2008	6	1,400	7,000	<0.50	0.79	<0.50	2.2	<0.33
P10	7/9/2008	6	1,100	4,800	<0.50	<0.50	<0.50	<0.50	<0.33
P11	7/9/2008	6	2,200	9,300	<0.50	<0.50	<0.50	5.5	0.53
P12	7/9/2008	6	830	7,000	<0.50	<0.50	<0.50	<0.50	0.24
T1	7/9/2008	11	77	360	<0.50	<0.50	<0.50	<0.50	< 0.005
T2	7/9/2008	11	56	880	<0.10	<0.10	<0.10	<0.10	<0.005
Т3	7/9/2008	11	39	80	<0.050	<0.050	<0.050	<0.050	0.39
ST-1	7/11/2008	6	1,100	1,700	<0.25	<0.25	<0.25	<0.25	<0.10
ST-2	7/11/2008	6	110	3,300	<0.10	<0.10	<0.10	<0.10	<0.050
ST-3	7/11/2008	6	1,400	21,000	<0.50	<0.50	<0.50	<0.50	0.22
ST-4	7/11/2008	6	1,600	7,500	<0.25	<0.25	<0.25	<0.25	<0.25

Sample ID	Date Sampled	Depth (in feet)	TPH Motor Oil	DIPE	ETBE	TAME	ТВА	Meth-anol	Ethanol
BH-S	9/28/2006	24.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	< 0.010
BH-S	9/28/2006	29.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-S	9/28/2006	34.5	14	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-S	9/28/2006	39.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-S	9/28/2006	44.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
BH-S	9/28/2006	49.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.20	<0.010
1N	7/8/2008	10	N/A	<0.010	<0.010	<0.010	0.22	<5.0	<0.50
2N	7/8/2008	10	N/A	<0.020	<0.020	<0.020	2.8	<10	<1.0
3N	7/8/2008	10	N/A	<0.020	<0.020	<0.020	<0.20	<10	<1.0
4N	7/8/2008	10	N/A	<0.010	<0.010	<0.010	0.36	<5.0	<0.50
5N	7/8/2008	10	N/A	<0.050	<0.050	<0.050	0.57	<25	<2.5
1S	7/8/2008	10	N/A	<0.010	<0.010	<0.010	1	<5.0	<0.50
2S	7/8/2008	10	N/A	<0.025	<0.025	<0.025	2.6	<12	<1.2
35	7/8/2008	10	N/A	<0.20	<0.20	<0.20	<2.0	<100	<10
4S	7/8/2008	10	N/A	< 0.033	<0.033	<0.033	<0.33	<17	<1.7
5S	7/8/2008	10	N/A	< 0.010	<0.010	< 0.010	0.3	<5.0	<0.50
P1	7/9/2008	6	1,300	<0.050	<0.050	0.087	0.51	<25	<2.5
P2	7/9/2008	6	1,200	<0.033	<0.033	<0.033	1.3	<17	<1.7
P3	7/9/2008	6	2,700	<0.10	<0.10	<0.10	<1.0	<50	<5.0
P4	7/9/2008	6	1,500	<0.20	<0.20	<0.20	<2.0	<100	<10
P5	7/9/2008	6	330	<0.20	<0.20	<0.20	14	<100	<10
P6	7/9/2008	6	7,800	<0.20	<0.20	<0.20	<2.0	<100	<10
P7	7/9/2008	6	3,000	<0.20	<0.20	0.45	<2.0	<100	<10
P8	7/9/2008	6	1,800	<0.050	<0.050	<0.050	< 0.50	<25	<2.5
P9	7/9/2008	6	5,400	<0.33	<0.33	<0.33	<3.3	<170	<17
P10	7/9/2008	6	2,400	<0.33	<0.33	<0.33	<3.3	<170	<17
P11	7/9/2008	6	7,700	<0.50	<0.50	<0.50	<5.0	<250	<25
P12	7/9/2008	6	4,500	<0.20	<0.20	<0.20	<2.0	<100	<10
T1	7/9/2008	11	N/A	<0.005	<0.005	<0.005	< 0.05	<2.5	<0.25
T2	7/9/2008	11	N/A	<0.005	<0.005	<0.005	0.092	<2.5	<0.25
Т3	7/9/2008	11	N/A	<0.020	<0.020	<0.020	0.4	<10	<1.0
ST-1	7/11/2008	6	N/A	<0.10	<0.10	<0.10	<1.0	<50	<5.0
ST-2	7/11/2008	6	N/A	<0.050	<0.050	<0.050	<0.50	<25	<2.5
ST-3	7/11/2008	6	N/A	<0.020	<0.020	0.038	1.1	<10	<1.0
ST-4	7/11/2008	6	N/A	<0.25	<0.25	<0.25	<2.5	<120	<12

Sample ID	Date Sampled	Depth (in feet)	TPH-g	TPH-d	Benzene	Toluene	Ethylben- zene	Xylene	MtBE
UST-1	7/11/2008	6	390	1,900	<0.17	<0.17	<0.17	<0.17	<0.050
SP-1	7/16/2008	N/A	1,300	2,600	1.3	<0.20	1.8	1.4	0.55
SP-2	7/16/2008	N/A	1,600	1,500	1.5	<0.25	3.1	1.9	0.36
SP-3	7/16/2008	N/A	20	34	0.27	0.014	0.028	0.061	<0.70
SP-4	7/16/2008	N/A	120	110	0.15	<0.10	0.212	0.16	0.67
SP-5	7/16/2008	N/A	2,900	1,400	2.5	0.65	11	6.6	<0.50
SP-6	7/16/2008	N/A	230	1,000	<0.10	<0.10	0.29	<0.10	0.23

Sample ID	Date Sampled	Depth (in feet)	TPH Motor Oil	DIPE	ETBE	TAME	ТВА	Meth-anol	Ethanol
UST-1	7/11/2008	6	N/A	<0.050	<0.050	<0.050	<0.50	<25	<2.5
SP-1	7/16/2008	N/A	N/A	<0.25	<0.25	<0.25	<2.5	<120	<12
SP-2	7/16/2008	N/A	N/A	<0.25	<0.25	<0.25	<2.5	<120	<12
SP-3	7/16/2008	N/A	N/A	<0.033	< 0.033	<0.033	1.2	<17	<1.7
SP-4	7/16/2008	N/A	N/A	<0.033	<0.033	<0.033	0.64	<17	<1.7
SP-5	7/16/2008	N/A	N/A	<0.50	<0.50	<0.50	<5.0	<250	<25
SP-6	7/16/2008	N/A	N/A	<0.20	<0.20	<0.20	<2.0	<100	<10

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-1	08/16/99		L		Not S	Sampled I	Due to Fre	e-Floatin	g Hydroca	rbon			
	12/06/99			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydi	rocarbons	0.12 fee	et		
	03/08/00			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydi	rocarbons	0.21 fee	et		
	06/14/00			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydi	rocarbons	0.72 fee	et		
	12/11/00			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydi	rocarbons	0.60 fee	et		
	03/06/01			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydi	rocarbons	0.40 fee	et		
	06/06/01			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	1.48 fee	et		
	09/04/02			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.20 fee	et		
	03/11/02				Not Sa	ampled D	ue to Free	-Floating	Hydrocar	bons			
	06/06/02			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.67 fee	et		
	09/04/02			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.54 fee	et		
	12/17/02				Not Sa	ampled D	ue to Free	e-Floating	Hydrocar	bons			
	03/07/03			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	1.19 fee	et		
	06/05/03			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	4.63 fee	et		
	09/19/03			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.32 fee	et		
	12/12/03			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.41 fee	et		
	03/15/04			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.40 fee	et		
	06/22/04				Not Sa	ampled D	ue to Free	e-Floating	Hydrocar	bons			
	09/21/04				Not S	ampled D	ue to Fre	e-Floating	g Hydroca	rbons			
	12/30/04				Not S	ampled D	ue to Fre	e-Floating	g Hydroca	rbons			
	04/06/05			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	1.40 fee	et		
	09/29/05			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	1.00 fee	et		
	12/09/05			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	6.13 fee	et		
	03/06/06			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	5.05 fee	et		
	06/20/06			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.40 fee	et		
	08/23/06			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	2.43 fee	et		
	11/16/06			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	0.93 fee	et		
	03/20/07							ating Hydı					
	05/17/07			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	rocarbons	4.63 fee	et		
	08/16/07							ating Hydı					
	12/05/07							ating Hydı					
	02/27/08							ating Hydı					
	06/28/08			Ν	lot Sampl	ed Due to		ating Hydı	rocarbons	1.17 fee	et		
	07/03/08							andoned					
EX-1	09/27/08			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	ocarbons	0.005 fee	et		
	12/30/08			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	ocarbons	0.005 fee	et		
	03/28/09			Ν	lot Sampl	ed Due to	Free-Floa	ating Hydı	ocarbons	0.005 fee	et		

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-2	08/16/99	2,200	970	<500	3.8	<2.0	3	<4.0	<20	NA	NA	NA	NA
	12/06/99	1,900	400	<500	16	<0.5	1.5	<0.5	5.2	NA	NA	NA	NA
	03/08/00	1,600*	530	<500	9.7	<0.5	2.7	<0.5	27	NA	NA	NA	NA
	06/14/00	2,000	75	<100	2.8	<0.5	3.4	<0.5	16	3.4	<0.5	<0.5	64
	12/11/00	1,000	120	<100	2.6	<0.5	<0.5	<0.5	15	2.9	<0.5	<0.5	62
	03/06/01	1,500	1400	NA	2.2	<0.5	1.7	<0.5	22	3.4	<0.5	<0.5	83
	06/06/01	1,700	190	NA	2.6	<0.5	2.3	<0.5	26	3.2	<0.5	<0.5	83
	09/04/02	2,000	450	NA	2.7	<0.5	2.1	<0.5	33	3.4	<0.5	<0.5	93
	03/11/02	1,100	410	NA	1.0	<0.5	0.5	<0.5	26	2.5	<0.5	<0.5	69
	06/06/02	900	430	NA	1.2	<0.5	<0.5	<0.5	23	2.8	<0.5	<0.5	73
	09/04/02	910	510	NA	1.6	<0.5	<0.5	<0.5	45	2.5	<0.5	<0.5	67
	12/17/02	190	220	NA	0.65	<0.5	<0.5	<0.5	34	1.5	<0.5	<0.5	46
	03/07/03	380	300	NA	0.81	<0.5	<0.5	<0.5	50	1.9	<0.5	<0.5	73
	06/05/03	2,200	2200	NA	1.7	<0.5	1.5	<0.5	180	4.9	<0.5	1.3	110
	09/19/03	2,300	520	NA	2	<0.5	2.1	<0.5	180	3.7	<0.5	1.1	120
	12/12/03	3,000	2200	NA	2.1	<0.5	1.7	<0.5	250	4.5	<0.5	1.6	130
	03/15/04			Sampled		arked on V	Well	1		Sampled	- Truck P	arked on	Well
	06/22/04	1,600	420	NA	1.3	<0.5	1.0	<0.5	580	4.6	<0.5	3.9	340
	09/21/04	2,500	<400	NA	1.2	<0.5	1.5	<0.5	730	5.9	<0.5	4.9	550
	12/30/04	1,800	<300	NA	1.2	<1.0	<1.0	<1.0	540	5	<1.0	3.6	400
	04/06/05							ick Parked					
	09/29/05						<u> </u>	ick Parked					
	12/09/05	1,000	720	NA	1.0	<0.7	<0.7	<0.7	330	6.5	<0.7	2.3	1,800
	03/06/06	1,000	<80	NA	1.2	<0.5	0.6	<0.5	290	5.4	<0.5	1.9	1,600
	06/20/06	1,100	<80	NA	1.6	<0.5	1.0	<0.5	280	5.8	<0.5	1.5	<1,500
	08/23/06	1,600	<200	NA	1.5	<0.9	<0.9	<0.9	290	5.5	<0.9	1.8	2,100
	11/16/06	350	120	NA	0.56	<0.5	<0.5	<0.5	180	4.1	<0.5	0.96	1,300
	03/20/07	460	110	NA	0.67	<0.5	<0.5	< 0.5	160	4.3	<0.5	0.9	1,500
	05/17/07	710	85	NA	<0.5	<0.5	< 0.5	< 0.5	160	4.4	< 0.5	0.88	2,000
	08/16/07	460	200	NA	<0.9	<0.9	<0.9	<0.9	150	6.1	<0.9	<0.9	2,700
	12/05/07	1,500	<80	NA	< 0.9	<0.9	<0.9	<0.9	66	3.8	<0.9	< 0.9	2,000
	02/27/08	810	<80	NA	0.54	< 0.5	<0.5	< 0.5	97	3.6	< 0.5	0.52	1,400
	06/28/08	1,100	280	NA	2.4	5.4	<0.5	< 0.5	92	<10	<10	<10	1,600
	09/27/08	1,500	290	<250	<10	<10	<10	<10	61	<10	<10	<10	1,200
	12/30/08	1,500	960	2500	1.5	8.4	0.71	1.2	64	<5.0	<5.0	<5.0	1,400
	03/28/09	1,200	200	<250	<5.0	<5.0	<5.0	<5.0	67	<5.0	<5.0	<5.0	1,200

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-3	08/16/99	56,000	10,000**	<500	17000	2600	2600	1200	6,100	NA	NA	NA	NA
	12/06/99	40,000	9,100*	<500	16000	140	1800	100	4,000	NA	NA	NA	NA
	03/08/00	22,000	4,500*	<500	11000	72	1100	130	3,400	NA	NA	NA	NA
	06/14/00	34,000	16,000	<100	13000	94	1300	160	4,800	31	<10	21	2,700
	12/11/00	24,000	14,000	<100	13000	88	750	120	4,300	<50	<50	<50	2,300
	03/06/01	34,000	12,000	NA	15000	100	1100	130	4,000	<50	<50	<50	2,100
	06/06/01	34,000	20,000	NA	14000	94	550	110	4,400	<50	<50	<50	2,300
	09/04/02	29,000	19,000	NA	13000	83	480	83	4,100	<50	<50	<50	3,400
	03/11/02	12,000	14,000	NA	2900	<20	110	<20	530	<20	<20	<20	330
	06/06/02	20,000	14,000	NA	10000	<50	200	51	2,400	<50	<50	<50	1,200
	09/04/02	24,000	17,000	NA	11000	<50	140	<50	3,200	<50	<50	<50	1,400
	12/17/02	4,900	17,000	NA	2000	<10	52	12	360	<10	<10	<10	220
	03/07/03	8,700	16,000	NA	1300	<10	43	11	770	<10	<10	<10	360
	06/05/03	27,000	14,000	NA	10000	53	220	53	5,000	<50	<50	<50	1,600
	09/19/03	120,000	13,000	NA	20000	170	710	250	6,100	<25	<25	<25	2,600
	12/12/03	29,000	27,000	NA	12000	74	240	79	5,600	17	<10	30	2,100
	03/15/04	28,000	21,000	NA	11000	72	220	64	8,200	<50	<50	<50	2,900
	06/22/04	29,000	7,600	NA	11000	71	220	54	8,400	<50	<50	<50	3,000
	09/21/04	33,000	<5,000	NA	12000	67	190	56	8,200	<25	<25	47	3,200
	12/30/04	30,000	13,000	NA	11000	62	170	49	8,900	<25	<25	49	3,200
	04/06/05	29,000	46,000	NA	10000	55	170	47	8,800	<25	<25	50	4,400
	09/29/05	28,000	1,800	NA	8700	74	190	53	7,300	<15	<15	53	4,500
	12/09/05	17,000	19,000	NA	5600	40	110	30	4,400	<15	<15	30	2,800
	03/06/06	11,000	16,000	NA	3600	26	96	22	2,400	<7.0	<7.0	19	1,400
	06/20/06	18,000	20,000	NA	6900	45	130	29	500	9.5	<7.0	34	2,900
	08/23/06	22,000	9,500	NA	6200	33	100	19	4,800	9.8	<9.0	34	3,100
	11/16/06	16,000	16,000	810	5800	26	87	18.0	2,700	10	<9.0	20	1,800
	03/20/07	23,000	12,000	410	7600	39	100	21.0	5,000	16	<8.0	35	3,200
	05/17/07	22,000	18,000	NA	10000	44	110	27.0	5,500	<15	<15	41	3,200
	08/16/07	16,000	63,000	NA	5900	33.0	66	25.0	4,600	<15	<15	39	3,400
	12/05/07	21,000	6,400	890	8000	55	120	42	4,600	<15	<15	34	4,600
	02/27/08	35,000	40,000	870	8800	54	100	38	4,300	<15	<15	38	3,300
	06/28/08	31,000	7,500	NA	12000	61	140	42	7,300	<120	<120	<120	4,700
	07/03/08						Well Aba	andoned					

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-4	08/16/99	61***	1100*	<500	<0.5	<0.5	<0.5	<1.0	86	NA	NA	NA	NA
	12/06/99	130***	220*	<500	<1.0	<1.0	<1.0	<1.0	130	NA	NA	NA	NA
	03/08/00	<50	220*	<500	<0.5	<0.5	<0.5	<0.5	130	NA	NA	NA	NA
	06/14/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	100	<0.5	<0.5	<0.5	20
	12/11/00	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	16
	03/06/01	<50	670	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	9.9
	06/06/01	<50	790	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/04/02	<50	950	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	26
	03/11/02	<50	250	NA	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	21
	06/06/02	<50	710	NA	<0.5	<0.5	<0.5	<0.5	92	<0.5	<0.5	<0.5	21
	09/04/02	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	150	<0.5	<0.5	<0.5	18
	12/17/02	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	470	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	0.52	18
	06/05/03	<50	2,000	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	0.5	23
	09/19/03	<50	830	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.8	23
	12/12/03	<50	1700	NA	<0.5	<0.5	<0.5	<0.5	120	<0.5	<0.5	<0.5	16
	03/15/04	<50	2,200	NA	<0.5	<0.5	<0.5	<0.5	110	<0.5	<0.5	<0.5	20
	09/21/04	<50	620	NA	<0.5	<0.5	<0.5	<0.5	93	<0.5	<0.5	<0.5	31
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	59	<0.5	<0.5	<0.5	50
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	17	<0.5	<0.5	<0.5	120
	12/09/05	<50	760	NA	<0.5	<0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	94
	03/06/06	<50	470	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	68
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	120
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	140
	11/09/06	<50	200	410	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	130
	03/20/07	<50	860	NA	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	42
	05/17/07	<50	600	NA	<0.5	<0.5	<0.5	<0.5	5.6	<0.5	<0.5	<0.5	32
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.6	<0.5	<0.5	<0.5	64
	12/05/07	1,300	2,600	5,600	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	30
	02/27/08	<50	270	400	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5	<0.5	9.3
	06/28/08	<50	150	NA	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	37
	09/27/08	<50	160	360	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	<0.5	<0.5	33
	12/30/08	<50	200	320	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	<0.5	16
	03/28/09	<50	120	<250	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	4.5

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-5	12/06/99	450***	2000*	<500	<1.0	<1.0	<1.0	<1.0	21	NA	NA	NA	NA
	03/08/00	51***	530	<500	<0.5	<0.5	<0.5	<0.5	84	NA	NA	NA	NA
	06/14/00	380	1,400	<100	<0.5	<0.5	<0.5	<0.5	160	12	<0.5	<0.5	22
	12/11/00	540	590	<100	<0.5	<0.5	<0.5	<0.5	240	9.5	<0.5	<0.5	32
	03/06/01	510	2,900	NA	<0.5	<0.5	<0.5	<0.5	140	13	<0.5	<0.5	19
	06/06/01	280	2,700	NA	<0.5	<0.5	<0.5	<0.5	180	13	<0.5	<0.5	26
	09/04/02	630	2,600	NA	<0.5	<0.5	<0.5	<0.5	180	9.4	<0.5	<0.5	29
	03/11/02	97	3,500	NA	<0.5	<0.5	<0.5	<0.5	29	0.8	<0.5	<0.5	7
	06/06/02	61	3,500	NA	<0.5	<0.5	<0.5	<0.5	150	2.9	<0.5	<0.5	34
	09/04/02	92	6,100	NA	<0.5	<0.5	<0.5	<0.5	370	3.6	<0.5	<0.5	72
	12/17/02	110	2,100	NA	<0.5	<0.5	<0.5	<0.5	110	4.2	<0.5	<0.5	14
	03/07/03	71	1,600	NA	<0.5	<0.5	<0.5	<0.5	150	2.2	<0.5	<0.5	35
	06/05/03	95	3,300	NA	<0.5	<0.5	<0.5	<0.5	170	4.6	<0.5	<0.5	43
	09/19/03	100	1,400	NA	<0.5	<0.5	<0.5	<0.5	310	5.2	<0.5	0.68	86
	12/12/03	<50	7,600	NA	<0.5	<0.5	<0.5	<0.5	270	5.9	<0.5	0.7	91
	03/15/04	95	1,700	NA	<0.5	<0.5	<0.5	<0.5	290	6.7	<0.5	0.92	200
	09/21/04	78	990	NA	<0.5	<0.5	<0.5	<0.5	270	4.7	<0.5	0.96	880
	04/06/05	64	1,200	NA	<0.5	<0.5	<0.5	<0.5	120	4.8	<0.5	<0.5	780
	09/29/05	100	640	NA	<0.5	<0.5	<0.5	<0.5	77	3.7	<0.5	<0.5	4,000
	12/09/05	99	3,700	NA	<0.5	<0.5	<0.5	<0.5	66	6.8	<0.5	<0.5	3,000
	03/06/06	66	760	NA	<0.5	<0.5	<0.5	<0.5	42	2.9	<0.5	<0.5	1,600
	06/20/06	84	1,300	NA	<0.5	<0.5	<0.5	<0.5	42	3.6	<0.5	<0.5	3,000
	08/23/06	<200	410	NA	2.1	<2.0	<2.0	<2.0	37	2.8	<2.0	<2.0	4,800
	11/09/06	<200	700	<100	<2.0	<2.0	<2.0	<2.0	28	3.0	<2.0	<2.0	5,600
	03/20/07	<200	430	NA	<2.0	<2.0	<2.0	<2.0	22	3.0	<2.0	<2.0	3,800
	05/17/07	<200	500	NA	<2.0	<2.0	<2.0	<2.0	18	3.5	<2.0	<2.0	4,300
	08/16/07	<200	1,600	NA	<2.0	<2.0	<2.0	<2.0	13	3.0	<2.0	<2.0	6,400
	12/05/07	<200	1,400	120	<2.0	<2.0	<2.0	<2.0	8.2	2.6	<2.0	<2.0	4,700
	02/27/08	<90	1,300	190	<0.9	<0.9	<0.9	<0.9	6.0	1.8	<0.9	<0.9	2,800
	06/28/08	140	3,000	NA	<0.5	<0.5	<0.5	<0.5	<50	<50	<50	<50	4,300
	09/27/08	120	2,800	1,000	<50	<50	<50	<50	<50	<50	<50	<50	6,600
	12/30/08	86	1,400	430	<0.5	<0.5	<0.5	<0.5	<25	<25	<25	<25	5,000
	03/28/09	120	1,700	500	<50	<50	<50	<50	<50	<50	<50	<50	6,400

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-6	12/06/99	13,000	<50	<500	180	21	11	24	<100	NA	NA	NA	NA
	03/08/00	<10,000	4,600*	<500	230	26	18	39	12,000	NA	NA	NA	NA
	06/14/00	8,400	12,000	<100	180	12	10	22	15,000	<5.0	<5.0	70	3,300
	12/11/00	<5,000	10,000	<100	180	<50	<50	<50	14,000	<50	<50	74	2,900
	03/06/01	5,300	6,700	NA	220	<50	<50	<50	13,000	<50	<50	84	2,100
	06/06/01	5,000	2,300	NA	210	<25	<25	<25	14,000	<25	<25	84	4,200
	09/04/02	5,400	2,200	NA	190	12	<10	23	15,000	<10	<10	79	4,000
	03/11/02	4,600	11,000	NA	160	<25	<25	<25	15,000	<25	<25	39	5,100
	06/06/02	<5,000	14,000	NA	200	<50	<50	<50	17,000	<50	<50	77	8,700
	09/04/02	<5,000	50,000	NA	140	<50	<50	<50	21,000	<50	<50	52	7,500
	12/17/02	<5,000	9,100	NA	130	<50	<50	<50	16,000	<50	<50	64	6,300
	03/07/03	<5,000	12,000	NA	160	<50	<50	<50	20,000	<50	<50	53	7,500
	06/05/03	<5,000	23,000	NA	230	<50	<50	<50	19,000	<50	<50	86	7,100
	09/19/03	8,900	24,000	NA	220	<25	<25	<25	15,000	<25	<25	74	8,100
	12/12/03	8,000	24,000	NA	190	<25	<25	32	14,000	<25	<25	65	7,400
	03/15/04	4,400	26,000	NA	190	<25	<25	<25	9,900	<25	<25	61	6,700
	06/22/04	3,500	7,000	NA	150	<20	<20	<20	9,200	<20	<20	51	6,100
	09/21/04	4,600	12,000	NA	210	<20	<20	<20	8,800	<20	<20	55	7,000
	12/30/04	5,300	11,000	NA	190	<20	<20	<20	6,300	<20	<20	53	4,900
	04/06/05	5,100	680	NA	190	13	12	32	3,700	<5.0	<5.0	42	4,600
	09/29/05	4,900	2,800	NA	130	8.9	<5.0	13	2,100	<5.0	<5.0	23	3,200
	12/09/05	3,600	10,000	NA	110	7.1	<5.0	7.9	2,700	<5.0	<5.0	22	4,200
	03/06/06	3,900	900	NA	120	9.3	5	13	3,000	<0.5	<0.5	26	4,400
	06/20/06	3,600	1,500	NA	140	10	5	18	1,600	<3.0	<3.0	23	3,600
	08/23/06	4,300	<800	NA	140	11	5	13	2,000	<4.0	<4.0	22	4,000
	11/09/06	3,200	1,700	<100	110	6.9	<4.0	8.2	1,500	<4.0	<4.0	16	3,900
	03/20/07	2,100	920	NA	120	7.9	<4.0	7.1	2,000	<4.0	<4.0	20	4,000
	05/17/07	3,800	600	NA	140	9.5	<4.0	15	1,700	<4.0	<4.0	21	3,200
	08/16/07	3,500	780	NA	160	9.3	<3.0	14	1,800	<3.0	<3.0	21	3,600
	12/05/07	4,500	<600	<100	100	7.8	<4.0	14	1,400	<4.0	<4.0	15	4,900
	02/27/08	3,100	<1,500	<100	82	6.1	<2.0	7.9	760	<2.0	<2.0	9.6	4,800
	06/28/08	4,700	17,000	NA	160	13	4	11	1,700	<50	<50	<50	6,200
	07/03/08						Well Aba	andoned					
EX-2	09/27/08	990	2,100	NA	130	<10	<10	<10	210	<10	<10	<10	1,400
	12/30/08	730	9,100	2,600	72	1.3	1.7	0.53	100	<5.0	<5.0	<5.0	930
	03/28/09	66	3,900	2,300	85	<5.0	<5.0	<5.0	98	<5.0	<5.0	<5.0	590

Well ID	Date	TPH-g		TPH-mo	В	т	E	x	MtBE	DIPE	EtBE	tAME	tBA	
MW-7	09/04/02	<50	130****	NA	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<5.0	
	12/17/02	<50	220	NA	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<5.0	
	03/07/03	<50	140	NA	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0	
	06/05/03	<50	200	NA	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0	
	09/19/03	<50	320	NA	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5	<0.5	<5.0	
	12/12/03	<50	380	NA	<0.5	<0.5	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	<5.0	
	03/15/04					Not Sam	pled - Tru	uck Parked	d on Well					
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<5.0	
	04/06/05	<50	120	NA	<0.5	<0.5	<0.5	<0.5	9.2	<0.5	<0.5	<0.5	<5.0	
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0	
	12/09/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0	
	03/06/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	9	<0.5	<0.5	<0.5	<5.0	
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0	
	08/23/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8.5	<0.5	<0.5	<0.5	<5.0	
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	5.7	<0.5	<0.5	<0.5	<5.0	
	03/20/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0	
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<5.0	
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<5.0	
	12/05/07					Not Sam	pled - Tru	ick Parked	d on Well					
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	<0.5	<5.0	
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<2.0	
	09/27/08	<50	<50											
	12/30/08					Not Sam	pled - Tru	ick Parkeo	d on Well					
	03/28/09		0 <50 NA <0.5 <0.5 <0.5 12 <0.5 <0.5 <0.5 <50 0 <50											

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-8	09/04/02	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	12/17/02	<50	100	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0
	03/07/03	<50	62	NA	<0.5	<0.5	<0.5	<0.5	33	<0.5	<0.5	<0.5	<5.0
	06/05/03	<50	270	NA	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	09/19/03	<50	250	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/12/03	<50	420	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	03/15/04	<50	250	NA	<0.5	<0.5	<0.5	<0.5	6.4	<0.5	<0.5	<0.5	<5.0
	09/21/04	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	04/06/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5	<0.5	<5.0
	09/29/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	<0.5	<5.0
	12/09/05	<50	86	NA	<0.5	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<5.0
	03/06/06					Not Sam	pled - Tru	ick Parked	d on Well				
	06/20/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6.6	<0.5	<0.5	<0.5	<5.0
	08/23/06		-			Not Sam	pled - Tru	ick Parked	d on Well			-	
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	9.3	<0.5	<0.5	<0.5	<5.0
	03/20/07	<50	250	NA	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<5.0
	05/17/07	<50	350	NA	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	<0.5	<0.5	<5.0
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5	<0.5	<5.0
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5	<0.5	<5.0
	02/27/08					Not Sam	pled - Tru	ick Parkeo	d on Well				
	06/28/08					Not Sam	pled - Tru	ick Parked	d on Well				
	09/27/08							ick Parkeo					
	12/30/08					Not Sam	pled - Tru	ick Parked	d on Well				
	03/28/09					Not Sam	pled - Tru	ick Parked	d on Well				

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	Т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-9	09/04/02	<2,500	1,000	NA	<25	<25	<25	<25	12,000	<25	<25	70	1700
	12/17/02	<2,000	880	NA	<20	<20	<20	<20	4,500	<20	<20	23	2300
	03/07/03	<500	450	NA	<5	<5	<5	<5	1,700	<5	<5	8.4	6600
	06/05/03	<500	4,500	NA	<5	<5	<5	<5	120	<5	<5	<5.0	17,000
	09/19/03	<1,000	4,500	NA	<10	<10	<10	<10	38	<10	<10	<10	15,000
	12/12/03					Not Sam	pled - Tru	ick Parked	d on Well				
	03/15/04	<1,000	82	NA	<10	<10	<10	<10	38	<10	<10	<10	18,000
	09/21/04	<1,000	2,600	NA	<10	<10	<10	<10	17	<10	<10	<10	16,000
	12/30/04					Not Sam	pled - Tru	ick Parked	d on Well		-		-
	04/06/05	<700	<50	NA	<7	<7	<7	<7	55	<7	<7	<7	15,000
	09/29/05	<700	<50	NA	<7	<7	<7	<7	34	<7	<7	<7	1,300
	12/09/05	<400	3,200	NA	46	<4.0	<4.0	<4.0	12	<4.0	<4.0	<4.0	8,200
	03/06/06							ick Parked					
	06/20/06							ick Parked				•	
	08/23/06	<250	<50	NA	9.6	<2.5	<2.5	<2.5	18	<2.5	<2.5	<2.5	6,000
	11/09/06	<150	<50	NA	13	<1.5	<1.5	<1.5	3	<1.5	<1.5	<1.5	3,900
	03/20/07	<150	<50	NA	<0.5	<0.5	<0.5	<0.5	3	<0.5	<0.5	<0.5	2,900
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	6	<0.5	<0.5	<0.5	880
	08/16/07							ick Parked					
	12/05/07							ick Parked					
	02/27/08			1				ick Parked					
	06/28/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	<5.0	<5.0	950
	09/27/08						•	ick Parked					
	12/30/08							ick Parked					
	03/28/09					Not Sam	pled - Tru	ick Parked	d on Well				

Well ID	Date	TPH-g	TPH-d	TPH-mo	В	т	E	х	MtBE	DIPE	EtBE	tAME	tBA
MW-10	10/12/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	27
	11/09/06	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	82
	03/20/07	<50	270	NA	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	84
	05/17/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	55
	08/16/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	28
	12/05/07	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	13
	02/27/08	<50	<50	<100	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	7.3
	06/28/08	<50	63	NA	<0.5	<0.5	<0.5	<0.5	0.83	<0.5	<0.5	<0.5	8.7
	09/27/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	3.3
	12/30/08	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	0.73	<0.5	<0.5	<0.5	<0.5
	03/28/09	4,700	58	<250	<0.5	<0.5	<0.5	<0.5	0.63	<0.5	<0.5	<0.5	<2.0
E	SL	100	100	100	1.0	130	43	10	5	NE	NE	NE	18,000

Notes:

Concentrations are recorded in units of micrograms per liter (ug/L).

ESL Environmental Screening Level for Potable Groundwater

- * Non-typical diesel patter, hydrocarbons in early diesel range
- ** Estimated concentration due to overlapping fuel patterns in sample
- *** Non-typical gasoline pattern
- **** Non-typical diesel pattern
- NE ESL is not established for this compound
- NA analyte not tested
- TPH-g total petroleum hydrocarbons as gasoline
- TPH-d total petroleum hydrocarbons as diesel
 - B benzene
 - T toluene
 - E ethylbenzene
 - X xylenes

MtBE methyl tert-butyl ether DIPE di-isopropyl ether EtBE ethyl tert-butyl ether tAME tert-amyl methyl ether tBA tert-butanol

Table 3 Well Construction Details 8255 San Leandro Street Oakland, California

		Total	Screened	Water-	Screen	Filter Pack	Bentonite	Grout	TOC Elevation	Northing	Easting	
	Date	Depth	Interval	Bearing	Slot Size		Interval	Interval	(feet	Coordinates	Coordinates	
Well ID	Installed	(feet)	(feet)	Zone	(inches)	(feet)	(feet)	(feet)	amsl)	(feet)	(feet)	Comments
MW-1	02/18/99	16.5	15.5-5.5	Clay	0.02	16.5-4.5	4.5-3	31	11.02	2099557.04	6072595.30	Well abandoned 7-08
ININA-T	02/10/99	10.5	10.0-0.0	3/4 Crush	0.02	10.5-4.5	4.5-5	21	11.02	2033337.04	0072333.30	Well placed in remediation
EX-1	07/28/08	13.5	13.5 - 1	rock	0.5	NA	NA	NA	8.21	2099537.05	6072605.07	french drain for extraction
				Clayey Fine								
MW-2	02/19/99	16.5	15.5.5	Sand	0.02	16.5-4.5	4.5-3	31	10.63	2099465.48	6072531.46	
MW-3	02/18/99	16.5	15.5 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.33	2099455.51	6072586.53	Well abandoned 7-08
MW-4	02/19/99	16.5	15 - 5.5	Clay	0.02	16.5-4.5	4.5-3	31	10.42	2099528.03	6072468.70	
MW-5	12/01/99	15	15 - 5	Clay	0.02	15-4	4-3.5	3.5-1.5	10.13	2099600.85	6072533.52	
MW-6	12/01/99	15	15 - 5	Sandy Silt	0.02	15-4	4-3.5	3.5-1.5	10.71	2099444.41	6072615.62	Well abandoned 7-08
EX-2	07/28/08	17	17 - 1	pea gravel	0.5	NA	NA	NA	8.18	2099430.44	6072600.10	Well placed in UST pea gravel for extraction
MW-7	07/08/02	16.5	16.5 - 5	Silty Sand, Clayey Silt	0.02	16.5-4	4-3.5	3.5-1.5	9.08	2099379.77	6072513.11	
MW-8	07/08/02	15.5	15 - 5	Silty Sand, Clayey Silt	0.02	15.5-4	4-3.5	3.5-1.5	9.61	2099392.92	6072580.86	
MW-9	07/08/02	20	20 - 5	Silty Sand, Silty Clay	0.02	20-4	4-3.5	3.5-1.5	10.99	2099435.20	6072631.28	
MW-10	10/10/06	20	20 - 5	Silty Clay	0.02	20-4	4-3.5	3.5-1.5	11.40	2099506.21	6072656.48	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-1	08/16/99	11.02	NM	NM	
	08/27/99		6.85	4.17	
	09/10/99		6.65	4.37	0.20
	09/24/99		6.87	4.15	-0.22
	10/08/99		6.81	4.21	0.06
	10/22/99		6.94	4.08	-0.13
	11/02/99		6.91	4.11	0.03
	11/19/99		6.93	4.09	-0.02
	12/06/99		5.93	5.09	1.00
	03/08/00		6.57	4.45	-0.64
	06/14/00		6.70	4.32	-0.13
	12/11/00		5.75	5.27	0.95
	03/06/01		7.60	3.42	-1.85
	06/06/01		6.80	4.22	0.80
	09/04/01		7.47	3.55	-0.67
	03/11/02		6.49	4.53	0.98
	06/06/02		6.49	4.53	0.00
	09/04/02		6.89	4.13	-0.40
	12/17/02		4.65	6.37	2.24
	03/07/03		6.55	4.47	-1.90
	06/05/03		9.77	1.25	-3.22
	09/19/03		6.56	4.46	3.21
	12/12/03		5.63	5.39	0.93
	03/15/04		7.11	3.91	-1.48
	06/22/04		NM	NM	
	09/21/04		NM	NM	
	12/30/04		NM	NM	
	04/06/05		5.70	5.32	
	09/29/05		5.40	5.62	0.30
	12/09/05		10.70	0.32	-5.30
	03/07/06		9.05	1.97	1.65
	06/20/06		4.61	6.41	4.44
	08/23/06		5.51	5.51	-0.90
	10/12/06		NM	NM	
	11/09/06		5.56	5.46	
	03/20/07		9.69	1.33	-4.13
	05/17/07		9.55	1.47	0.14
	08/16/07		6.95	4.07	2.60
	12/05/07		5.50	5.52	1.45
	02/27/08		7.28	3.74	
	06/28/08		NM	NM	
	09/27/08		Well Abandon	ed 7/3/08	
EX-1	09/27/08	8.21			
	12/30/08		No measurem	ent due to free	product
	03/28/09			ent due to free	•

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-2	08/16/99	10.63	6.30	4.33	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		8.46	2.17	
	03/08/00		9.12	1.51	-0.66
	06/14/00		8.34	2.29	0.78
	12/11/00		5.94	4.69	2.40
	03/06/01		4.70	5.93	1.24
	06/06/01		6.03	4.60	-1.33
	09/04/01		6.34	4.29	-0.31
	03/11/02		4.89	5.74	1.45
	06/06/02		5.69	4.94	-0.80
	09/04/02		6.17	4.46	-0.48
	12/17/02		4.39	6.24	1.78
	03/07/03		5.44	5.19	-1.05
	06/05/03		5.59	5.04	-0.15
	09/19/03		6.09	4.54	-0.50
	12/12/03		5.13	5.50	0.96
	03/15/04		5.71	4.92	-0.58
	06/22/04		5.80	4.83	-0.09
	09/21/04		6.64	3.99	-0.84
	12/30/04		6.04	4.59	0.60
	04/06/05		NM	NM	
	09/29/05		NM	NM	
	12/09/05		5.60	5.03	
	03/07/06		4.25	6.38	1.35
	06/20/06		5.04	5.59	-0.79
	08/23/06		5.70	4.93	-0.66
	10/12/06		NM	NM	
	11/09/06		6.27	4.36	
	03/20/07		6.45	4.18	-0.18
	05/17/07		6.74	3.89	-0.29
	08/16/07		7.19	3.44	-0.45
	12/05/07		5.64	4.99	1.55
	02/27/08		4.64	5.99	1.00
	06/28/08		5.68	4.95	-1.04
	09/27/08	10.63	7.42	3.21	-1.74
	12/30/08		5.29	5.34	2.13
	03/28/09		4.94	5.69	0.35

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-3	08/16/99	10.32	5.85	4.47	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.7	4.62	
	03/08/00		5.32	5.00	0.38
	06/14/00		6.95	3.37	-1.63
	12/11/00		6.22	4.10	0.73
	03/06/01		4.83	5.49	1.39
	06/06/01		5.62	4.70	-0.79
	09/04/01		5.91	4.41	-0.29
	03/11/02		4.42	5.90	1.49
	06/06/02		5.19	5.13	-0.77
	09/04/02		5.72	4.60	-0.53
	12/17/02		3.96	6.36	1.76
	03/07/03		4.88	5.44	-0.92
	06/05/03		5.05	5.27	-0.17
	09/19/03		5.62	4.70	-0.57
	12/12/03		4.68	5.64	0.94
	03/15/04		4.52	5.80	0.16
	06/22/04		6.49	3.83	-1.97
	09/21/04		5.72	4.60	0.77
	12/30/04		4.72	5.60	1.00
	04/06/05		3.78	6.54	0.94
	09/29/05		5.85	4.47	-2.07
	12/09/05		5.01	5.31	0.84
	03/07/06		3.75	6.57	1.26
	06/20/06		4.81	5.51	-1.06
	08/23/06		5.22	5.10	-0.41
	10/12/06		NM	NM	
	11/09/06		5.36	4.96	
	03/20/07		5.06	5.26	0.30
	05/17/07		6.35	3.97	-1.29
	08/16/07		6.46	3.86	-0.11
	12/05/07		4.82	5.50	1.64
	02/27/08		4.54	5.78	0.28
	06/28/08		6.41	3.91	-1.87
	09/27/08		Well Abandon	ed 7/3/08	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-4	08/16/99	10.50	6.12	4.38	
	08/27/99		NM	NM	
	09/10/99		NM	NM	
	09/24/99		NM	NM	
	10/08/99		NM	NM	
	10/22/99		NM	NM	
	11/02/99		NM	NM	
	11/19/99		NM	NM	
	12/06/99		5.98	4.52	
	03/08/00		4.32	6.18	1.66
	06/14/00		5.58	4.92	-1.26
	12/11/00		5.70	4.80	-0.12
	03/06/01		4.46	6.04	1.24
	06/06/01		5.89	4.61	-1.43
	09/04/01		6.16	4.34	-0.27
	03/11/02		4.67	5.83	1.49
	06/06/02		5.50	5.00	-0.83
	09/04/02		5.97	4.53	-0.47
	12/17/02		4.22	6.28	1.75
	03/07/03		5.23	5.27	-1.01
	06/05/03		5.38	5.12	-0.15
	09/19/03		5.91	4.59	-0.53
	12/12/03		4.91	5.59	1.00
	03/15/04		4.94	5.56	-0.03
	06/22/04		5.68	4.82	-0.74
	09/21/04		6.01	4.49	-0.33
	12/30/04		4.55	5.95	1.46
	04/06/05		4.09	6.41	0.46
	09/29/05		5.56	4.94	-1.47
	12/09/05		5.28	5.22	0.28
	03/07/06		4.00	6.50	1.28
	06/20/06		5.14	5.36	-1.14
	08/23/06		5.51	4.99	-0.37
	10/12/06		NM	NM	
	11/09/06		5.64	4.86	
	03/20/07		4.90	5.60	0.74
	05/17/07		5.18	5.32	-0.28
	08/16/07		5.81	4.69	-0.63
	12/05/07		5.20	5.30	0.61
	02/27/08		4.43	6.07	0.77
	06/28/08		5.58	4.92	-1.15
	09/27/08	10.42	5.72	4.70	-0.22
	12/30/08		4.87	5.55	0.85
	03/28/09		4.68	5.74	0.19

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-5	12/06/99	10.20	5.94	4.26	
	03/08/00		4.06	6.14	1.88
	06/14/00		5.25	4.95	-1.19
	12/11/00		5.45	4.75	-0.20
	03/06/01		4.12	6.08	1.33
	06/06/01		5.56	4.64	-1.44
	09/04/01		5.84	4.36	-0.28
	03/11/02		4.38	5.82	1.46
	06/06/02		5.16	5.04	-0.78
	09/04/02		5.62	4.58	-0.46
	12/17/02		4.12	6.08	1.50
	03/07/03		4.89	5.31	-0.77
	06/05/03		5.04	5.16	-0.15
	09/19/03		5.56	4.64	-0.52
	12/12/03		4.72	5.48	0.84
	03/15/04		4.61	5.59	0.11
	06/22/04		5.25	4.95	-0.64
	09/21/04		5.68	4.52	-0.43
	12/30/04		4.55	5.65	1.13
	04/06/05		3.98	6.22	0.57
	09/29/05		5.28	4.92	-1.30
	12/09/05		5.05	5.15	0.23
	03/07/06		3.96	6.24	1.09
	06/20/06		4.51	5.69	-0.55
	08/23/06		7.47	2.73	-2.96
	10/12/06		NM	NM	
	11/09/06		5.42	4.78	
	03/20/07		4.83	5.37	0.59
	05/17/07		5.29	4.91	-0.46
	08/16/07		5.31	4.89	-0.02
	12/05/07		4.90	5.30	0.41
	02/27/08		4.17	6.03	0.73
	06/28/08		5.24	4.96	-1.07
	09/27/08	10.13	5.42	4.71	-0.25
	12/30/08		4.60	5.53	0.82
	03/28/09		4.41	5.72	0.19

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-6	12/06/99	10.71	5.8	4.91	
	03/08/00		4.1	6.61	1.7
	06/14/00		5.64	5.07	-1.54
	12/11/00		5.72	4.99	-0.08
	03/06/01		4.32	6.39	1.4
	06/06/01		5.81	4.9	-1.49
	09/04/01		6.12	4.59	-0.31
	03/11/02		4.49	6.22	1.63
	06/06/02		5.33	5.38	-0.84
	09/04/02		5.92	4.79	-0.59
	12/17/02		3.85	6.86	2.07
	03/07/03		4.96	5.75	-1.11
	06/05/03		5.18	5.53	-0.22
	09/19/03		5.81	4.9	-0.63
	12/12/03		4.73	5.98	1.08
	03/15/04		5.65	5.06	-0.92
	06/22/04		5.34	5.37	0.31
	09/21/04		5.89	4.82	-0.55
	12/30/04		4.35	6.36	1.54
	04/06/05		3.66	7.05	0.69
	09/29/05		6	4.71	-2.34
	12/09/05		5.17	5.54	0.83
	03/07/06		4.55	6.16	0.62
	06/20/06		4.96	5.75	-0.41
	08/23/06		5.42	5.29	-0.46
	10/12/06		NM	NM	
	11/09/06		5.57	5.14	
	03/20/07		4.59	6.12	0.98
	05/17/07		5.12	5.59	-0.53
	08/16/07		7.55	3.16	-2.43
	12/05/07		5.3	5.41	2.25
	02/27/08		4.33	6.38	0.97
	06/28/08		5.54	5.17	-1.21
	09/27/08		Well Abandon	ed 7/3/08	
EX-2	09/27/08	8.18			
	12/30/08		2.63	5.55	2.63
	03/28/09		2.40	5.78	-0.23

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-7	09/04/02	9.17	4.67	4.50	
	12/17/02		3.11	6.06	1.56
	03/07/03		3.89	5.28	-0.78
	06/05/03		3.57	5.60	0.32
	09/19/03		4.57	4.60	-1.00
	12/12/03		3.48	5.69	1.09
	03/15/04		NM	NM	
	06/22/04		4.52	4.65	
	09/21/04		4.56	4.61	-0.04
	12/30/04		3.17	6.00	1.39
	04/06/05		2.77	6.40	0.40
	09/29/05		4.27	4.90	-1.50
	12/09/05		4.86	4.31	-0.59
	03/07/06		2.80	6.37	2.06
	06/20/06		3.60	5.57	-0.80
	08/23/06		4.89	4.28	-1.29
	10/12/06		NM	NM	
	11/09/06		4.23	4.94	
	03/20/07		3.55	5.62	0.68
	05/17/07		4.02	5.15	-0.47
	08/16/07		4.35	4.82	-0.33
	12/05/07		NM	NM	
	02/27/08		3.11	6.06	
	06/28/08		4.16	5.01	-1.05
	09/27/08	9.08	4.41	4.67	-0.34
	12/30/08		NM	NM	
	03/28/09		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-8	09/04/02	9.68	4.94	4.74	
	12/17/02		3.26	6.42	1.68
	03/07/03		4.01	5.67	-0.75
	06/05/03		4.28	5.4	-0.27
	09/19/03		4.87	4.81	-0.59
	12/12/03		3.77	5.91	1.1
	03/15/04		3.53	6.15	0.24
	06/22/04		4.52	5.16	-0.99
	09/21/04		4.7	4.98	-0.18
	12/30/04		4.23	5.45	0.47
	04/06/05		3.5	6.18	0.73
	09/29/05		4.62	5.06	-1.12
	12/09/05		3.92	5.76	0.7
	03/07/06		NM	NM	
	06/20/06		3.84	5.84	
	08/23/06		NM	NM	
	10/12/06		NM	NM	
	11/09/06		4.39	5.29	
	03/20/07		NM	NM	
	05/17/07		3.95	5.73	
	08/16/07		4.46	5.22	-0.51
	12/05/07		4.3	5.38	0.16
	02/27/08		NM	NM	
	06/28/08		NM	NM	
	09/27/08	9.61	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	

Well ID	Date	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwa ter Elevation	Δ
MW-9	09/04/02	11.07	6.26	4.81	
	12/17/02		4.23	6.84	2.03
	03/07/03		5.26	5.81	-1.03
	06/05/03		5.56	5.51	-0.30
	09/19/03		6.25	4.82	-0.69
	12/12/03		NM	NM	
	03/15/04		5.04	6.03	
	06/22/04		5.91	5.16	-0.87
	09/21/04		6.24	4.83	-0.33
	12/30/04		NM	NM	
	04/06/05		4.12	6.95	
	09/29/05		5.55	5.52	-1.43
	12/09/05		5.51	5.56	0.04
	03/07/06		NM	NM	
	06/20/06		5.39	5.68	
	08/23/06		4.78	6.29	0.61
	10/12/06		NM	NM	
	11/09/06		5.87	5.20	
	03/20/07		5.02	6.05	0.85
	05/17/07		5.53	5.54	-0.51
	08/16/07		NM	NM	
	12/05/07		NM	NM	
	02/27/08		NM	NM	
	06/28/08		5.90	5.17	
	09/27/08	10.99	NM	NM	
	12/30/08		NM	NM	
	03/28/09		NM	NM	
MW-10	10/12/06	11.56	6.02	5.54	
	11/09/06		6.24	5.32	-0.22
	03/20/07		5.21	6.35	1.03
	05/17/07		6.21	5.35	-1.00
	08/16/07		6.56	5.00	-0.35
	12/05/07		6.42	5.14	0.14
	06/28/08		6.27	5.29	0.15
	09/27/08	11.4	6.50	4.90	-0.39
	12/30/2008		5.64	5.76	0.86
	3/28/2009		5.46	5.94	0.18

All measurements are in feet. DTW = Depth to water below top of PVC casing. TOC = Top of casing. ELEV = Elevation above mean sea level.

D = The change in water level (elevation this quarter minus elevation last quarter).

NM = not measured

 Δ = Change in groundwater elevation from previous event

APPENDIX A

MONITORING WELL PURGE LOGS

MONITORING WELL SAMPLING LOG

SITE NAME	LOCATIO	N: Oak	land		PROJECT:				
DATE:	3 28	09					SAMPLER'S INITIALS: CM		
WELL ID:	MW- 4			WELL DIAM	AETER (in):	2			
WELL DEPT	H (ft):	14	•	DEPTH TO	WATER (ft):	4.68	WATER COLUMN Ht (ft): <u> </u>		
				1.55		3 VOLUMES (
		<u>A</u>			lumn neight by		well or 0.66 for a 4-inch well.		
PURGE METHOD: Baile or Mini-Whaler Pump (circle the correct method)						SAMPLING ME	THOD: disposable PE bailer		
PURGE MEASUREMENTS									
Time	Gallons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)		Comments		
904	I	1416	רויר	780					
	2	16.0	7.27	810					
907	3	16.4	7.30	830		_			
	4	16.6	7.32	857					
						Sampied	eqid		
WELL ID:	MW- 2	-		WELL DIAM	AETER (in):	_2_	e - Di - Di zumenska - Ilisako Herrigi - Tesuvekaedu.		
WELL DEPT	Ή (ft):	14.5	-	DEPTH TO	WATER (ft):	4.94	WATER COLUMN Ht (ft): 9,56		
STANDING	WATER VOI	_UME (gal):		1.6		3 VOLUMES (gal): 4.8		
To obtain sta	nding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch	well or 0.66 for a 4-inch well.		
PURGE MET	HOD:	Bailer or	Mini-Wh	aler Pump		SAMPLING MI	THOD: disposable PE bailer		
		(circle t	he correct	method)			·		
				r	RGE MEASURI				
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments		
928	1	16.9	6.67						
	2	17.5	673			well drei	v down ~10'		
	4	18.0	6,74			some à.	dor		
	5	18.3	6.74						
						Sampiri) e 935		

MONITORING WELL SAMPLING LOG

SITE NAME	/LOCATIO	N: (Jakla	~u)			PROJECT:		
DATE:	3/28	109					SAMPLER'S INITIALS: <u>CM</u>		
WELL ID:	3/28 NW-E	x-Z		WELL DIAM	AETER (in):	6			
WELL DEPT	H (ft):			DEPTH TO	WATER (ft):	2.4	WATER COLUMN Ht (ft):		
STANDING N To obtain sta			multiply	the water co	lumn height by	3 VOLUMES (0.17 for 2-inch	gal): 7523 well or 0.66 for a 4-inch well.		
PURGE METHOD: SAMPLING METHOD: SAMPLING METHOD:							THOD: disposable PE bailer		
PURGE MEASUREMENTS									
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments		
1043	5	21.5	7.76	1340					
1045	10	19.7	7.58	1494					
1048	15	18.8	7.51	1564		11			
1053	20	19.2	7,51	1519		Some o	dor, good recharge		
1056	25	18.5	7.50	1554		Sampi	Je 1100		
					edetet en train				
WELL ID:	MW-			WELL DIAM	AETER (in):				
WELL DEPT	Ή (ft):			DEPTH TO	WATER (ft):		WATER COLUMN Ht (ft):		
STANDING	WATER VOI	_UME (gal):				3 VOLUMES (gal):		
To obtain sta	nding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch	well or 0.66 for a 4-inch well.		
PURGE MET	HOD:	Bailer or	Mini-Wh	aler Pump		SAMPLING M	THOD: disposable PE bailer		
		(circle t	he correct	method)	•2		Aug		
				1	RGE MEASURI				
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments		
4									

MONITORING WELL SAMPLING LOG

SITE NAME	LOCATIO	N: 0	akland	<u>ه</u>			PROJECT:
DATE:	3 28	09					SAMPLER'S INITIALS: CM
WELL ID:	MW-5	7/		WELL DIA	METER (in):	2	
WELL DEPT	Ή (ft):	14		DEPTH TO	WATER (ft):	4.41	WATER COLUMN Ht (ft): <u> </u>
STANDING N To obtain sta				<u></u> the water co	lumn height by	3 VOLUMES (ga 0.17 for 2-inch we	I): <u>4,77</u> ell or 0.66 for a 4-inch well.
PURGE MET	HOD:		Mini-Wh	aler Pump	-	SAMPLING MET	HOD: disposable PE bailer
		(chicke t		-	RGE MEASURE	EMENTS	
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments
949	t	17.4	6.97	1940			
952	3	18.2	7,00	1916			
	4	18.4	6.99	1907		slight ode	۶۲
	5	18.8	6.99	1886		Well drew d	town ~5'
						Sampier	e 957
	NAME OF TAXABLE	ومعالف حماد	k provinské se				
WELL ID:	MW- 1	5	5	WELL DIA	METER (in):	2	
WELL DEPT	H (ft):	26		DEPTH TO	WATER (ft):	5.40	WATER COLUMN Ht (ft): 20.54
	WATER VOL	_UME (gal):		3.4		3 VOLUMES (ga	I): 10.Z
To obtain sta	nding volum	e in gallons,	multiply	the water co	lumn height by	0.17 for 2-inch w	ell or 0.66 for a 4-inch well.
PURGE MET	HOD:	Baile or	Mini-Wh			SAMPLING MET	HOD: disposable PE bailer
		(0			RGE MEASURI	EMENTS	
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments
1011	2	19.3	7.26	711			
1015	5	19.7	7.28	728			
1019	~	19.9	7.31	709			
	10	20.0	7.28	705			
						sampled	e 1025

APPENDIX B

LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER SAMPLES

	Analytical, Inc.	Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
Matriks Corporation	Client Project ID: Oakland	d	Date Sampled:	03/28/09
321 Court Street			Date Received:	03/30/09
Woodland, CA 95695	Client Contact: Tom Hen	derson	Date Reported:	04/06/09
1100000000, CTT 75075	Client P.O.:		Date Completed:	04/06/09

WorkOrder: 0903740

April 06, 2009

Dear Tom:

Enclosed within are:

- 1) The results of the **5** analyzed samples from your project: **Oakland**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	Web Telephor o: Tom I	site: <u>www.mcc</u> ne: (877) 252 Henderson	1534 WII PITTSBU campbell.	LLOW PA RG, CA 9- com Em:	SS RO 1565-17	AD 701 ain@r F	C neca Fax:)C imp (92	200 bell	3		59	1(0			UR Í G		fra	OU	ND r E	D T	(M ysis	E	PI	RUS DF	SH	24] HR		- 48 I	I IR Wi		HR On	5 DAY (DW) Comments
Tele: (53 Project #:	321Co Wood 30)406-1' : .ocation:	ourt Street land, CA 950 760 San Leandre	o Street,	F Oakland	E-Mai 'ax: ('rojec 1	530)4	406- me:	-107 Oa	71 kla	nd	rik			com		& TPH as Gas (602 / 8021 + 8015)	(EPA 602/8021)		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	ocarbons (418.1)	1/8021 (HVOCs)	(I Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	'esticides)	ie Cl Herbicides)	(V0Cs)	(SVOCs)	(PAHs / PNAs)	7/200.8/6010/6020)	/ 200.8 / 6010 / 6020)	010 / 6020)	5-oxy (8260)			Filter Samples for Metals analysis: Yes / No
SAMPL	LE ID	LOCATION/ Field Point Name	• SAMI Date	Time	# Containers	Type Containers	Water		Air		1	PRI	ESEI	RVE	None	MTBE/BTEX & TPI	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 502.276017801078021 (HVOCs)	EPA 505/608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	TPH-g, BTEX, 5-0X	TPH-mo		
MW-2			3/28/09	935	5	*	Х					5	4		1			х														х	X		
MW-4			3/28/09	910	5	*	X					5	4		1			х														х	X		
- MW-5			3/28/09	957	5	*	x					5	4		1			х														х	x		
MW-10			3/28/09	1025	5	*	X					5	4		1			х														Х	X		
EX-2			3/28/09	1100	5	*	X					5	4		1			x														х	x		
																			~			-													
Retinquisher	ed By:	3/30/07 evinablect	Date: Date: 7/30/09 Date: 3/30/09	Time: 900 Time: 1800 Time: 18:55	The Rece ENV	ved B	e sy: EGH	B		J.	-	_	30/	ech 09 ad	_	GC HE DE AP PR	E/t° OOD CAD S CHL PRO ESE	CON SPAC ORI PRI RVE	EDIT CE A INAT ATE D IN	ION BSE CON LAI	NT IN È NTA B_	AB_INE		ME		.5	OTH	HER		CON	AME	ENTS	: * = 4	I VO	A + 1 Amber

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	g, CA 94565-1701 52-9262					Work	Order:	: 0903	740	Cli	entCode: M	CW				
			WriteOn	✓ EDF	Ľ	Excel	l	Fax		Email	Hard	Сору	Third F	Party	☐ J-f	lag
Report to: Tom Hende	rson	Email:	thenderson@	matrikscorp.com			Bill to: Ro	bert Ne	elv			Req	uested T	AT:	5 d	lays
Matriks Corp 321 Court S Woodland, ((530) 406-176	treet CA 95695	cc: PO: ProjectNo:					Ма 32	atriks Co 1 Court	orporation Street I, CA 956				e Receiv e Printe		03/30/2 03/30/2	
									Reque	sted Te	ests (See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9	10	11	12
0903740-001	MW-2		Water	3/28/2009 9:35		В	Α	Α								
0903740-002	MW-4		Water	3/28/2009 9:10		В		Α								
0903740-003	MW-5		Water	3/28/2009 9:57		В		Α								
0903740-004	MW-10		Water	3/28/2009 10:25		В		А								

3/28/2009 11:00

В

А

Test Legend:

0903740-005

1	GMBTEXOXYPB_W
6	
11	

2	PREDF REPORT
7	
12	

Water

EX-2

3	TPH(DMO)_W
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Matriks Corporat	ion				Date	e and ⁻	Time Received:	3/30/09 9:0	8:46 PM
Project Name:	Oakland					Che	ecklist	completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0903740	Matrix	Water			Car	rier:	<u>EnviroTech</u>		
			<u>Chair</u>	of Cu	stody (C	OC) Infor	matio	<u>n</u>		
Chain of custody	present?			Yes	✓	No]			
Chain of custody	signed when relinquis	shed and	d received?	Yes	✓	No]			
Chain of custody	agrees with sample la	abels?		Yes		No]			
Sample IDs noted	by Client on COC?			Yes	✓	No]			
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	✓	No]			
Sampler's name n	noted on COC?			Yes		No 🗆]			
			<u>S</u>	ample	Receipt	Informatio	<u>on</u>			
Custody seals int	tact on shipping contai	iner/cool	er?	Yes		No 🗆]		NA 🗹	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No]			
Samples in prope	er containers/bottles?			Yes	✓	No]			
Sample container	rs intact?			Yes	\checkmark	No]			
Sufficient sample	volume for indicated	test?		Yes		No]			
		<u>Sa</u>	mple Prese	rvation	and Ho	ld Time (H	IT) Inf	formation		
All samples receive	ved within holding time	e?		Yes	✓	No]			
Container/Temp E	Blank temperature			Coole	r Temp:	6.2°C			NA 🗆	
Water - VOA vial	s have zero headspac	ce / no b	ubbles?	Yes	✓	No] No	VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation	1?	Yes	✓	No]			
TTLC Metal - pH	acceptable upon recei	pt (pH<2	!)?	Yes		No]		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No]			
			(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

WcCampbell A "When Oualid"			Web: www.mccamp Telephone: 8	bell.com E-mail: main 377-252-9262 Fax: 92	@mccampbell.c 5-252-9269	com
Matriks Corporation		t Project ID: Oakl		Date Sampled:	03/28/09	
		5		Date Received:	03/30/09	
21 Court Street			x 1			
	Clien	t Contact: Tom H	lenderson	Date Extracted:	04/03/09	
Woodland, CA 95695	Clien	t P.O.:		Date Analyzed:	04/03/09	
	TPH(g)MBT	EX + Oxygenates	+ EDB and 1,2-DC	A*		
Extraction Method: SW5030B	1	Analytical Method: SW	3260B	1	Work Order:	0903740
Lab ID	0903740-001	B 0903740-002E	B 0903740-003B	0903740-004B		
Client ID	MW-2	MW-4	MW-5	MW-10	Reporting DF	
Matrix	W	W	W	W		-1
DF	10	1	1	1	S	W
Compound		Cor	ncentration	1	ug/kg	μg/L
'PH(g)	1200	ND	120	4700	NA	50
ert-Amyl methyl ether (TAME)	ND<5.0	ND	ND<50	ND	NA	0.5
enzene	ND<5.0	ND	ND<50	ND	NA	0.5
Butyl alcohol (TBA)	1200	4.5	6400	ND	NA	2.0
,2-Dibromoethane (EDB)	ND<5.0	ND	ND<50	ND	NA	0.5
,2-Dichloroethane (1,2-DCA)	ND<5.0	ND	ND<50	ND	NA	0.5
Diisopropyl ether (DIPE)	ND<5.0	ND	ND<50	ND	NA	0.5
thylbenzene	ND<5.0	ND	ND<50	ND	NA	0.5
Cthyl tert-butyl ether (ETBE)	ND<5.0	ND	ND<50	ND	NA	0.5
fethyl-t-butyl ether (MTBE)	67	2.3	ND<50	0.63	NA	0.5
oluene	ND<5.0	ND	ND<50	ND	NA	0.5
Zylenes	ND<5.0	ND	ND<50	ND	NA	0.5
	S	urrogate Recover	ies (%)	1	1	1
		85	83	82		
%SS1:	85					
%SS1: %SS2:	85 102	104	101	100		

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

"When Ouality	Counts"				mpbell.com E-mail: mai e: 877-252-9262 Fax: 9	-	
Matriks Corporation	Client Pr	roject ID: C	Dakland		Date Sampled:	03/28/09	
321 Court Street					Date Received:	03/30/09	
521 Court Street	Client C	Contact: To	m Hen	derson	Date Extracted:	04/03/09	
Woodland, CA 95695	Client P.	.0.:			Date Analyzed:	04/03/09	
	TPH(g)MBTEX	X + Oxygena	tes + E	DB and 1,2-D	CA*		
Extraction Method: SW5030B	Ana	lytical Method:	SW8260	В		Work Order:	0903740
Lab ID	0903740-005B						
Client ID	EX-2					Reporting	
Matrix	W					_ DF	=1
DF	10					S	W
Compound		1	Conce	ntration		ug/kg	μg/L
ГРН(g)	66					NA	50
ert-Amyl methyl ether (TAME)	ND<5.0					NA	0.5
Benzene	85					NA	0.5
-Butyl alcohol (TBA)	590					NA	2.0
1,2-Dibromoethane (EDB)	ND<5.0					NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0					NA	0.5
Diisopropyl ether (DIPE)	ND<5.0					NA	0.5
Ethylbenzene	ND<5.0					NA	0.5
Ethyl tert-butyl ether (ETBE)	ND<5.0					NA	0.5
Methyl-t-butyl ether (MTBE)	98					NA	0.5
Foluene	ND<5.0					NA	0.5
Xylenes	ND<5.0					NA	0.5
	Surr	ogate Reco	veries	(%)			
%SS1:	87						
%SS2:	104						
	83						
%SS3: Comments							

	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.me	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Matriks Corporat	ion	Client Project II							
321 Court Street				Date Received: 03/	30/09				
321 Court Street		Client Contact:	Tom Henderson	Date Extracted: 03/	/30/09				
Woodland, CA 95	5695	Client P.O.:		Date Analyzed: 03/	/31/09				
	Т	otal Extractable	Petroleum Hydrocarbon	IS*					
Extraction method: SW	/3510C	Analytical	methods: SW8015B	Wo	ork Order: 0	903740			
Lab ID	Lab ID Client ID Matrix			TPH-Motor Oil (C18-C36)	DF	% SS			
0903740-001A	MW-2	W	200,e4,e2	ND	1	105			
0903740-002A	MW-4	W	120,e2	ND	1	94			
0903740-003A	MW-5	W	1700,e1	500	1	95			
0903740-004A	MW-10	W	58,e2	ND	1	96			
0903740-005A	EX-2	W	3900,e3,e7	2300	1	98			

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or	S	NA	NA	mg/Kg
above the reporting limit	5	1111	1111	119/119

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e1) unmodified or weakly modified diesel is significant

e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

McCampbell Analytical, Inc.

"When Ouality Counts"

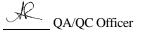
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matri	x: Water			BatchID: 42361 WorkOrder 0903740				40			
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0903740-004B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	109	109	0	98	101	2.61	70 - 130	30	70 - 130	30	
Benzene	ND	10	127	125	1.78	122	126	3.02	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	98.4	99.6	1.23	84.5	83	1.75	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	10	108	107	0.901	105	108	2.60	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	122	122	0	108	112	3.36	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	126	124	1.64	101	104	2.26	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	99.9	99.6	0.303	87.8	89.4	1.89	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	118	117	1.20	109	112	3.17	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	125	123	1.45	115	119	2.86	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	0.63	10	116	117	0.724	105	109	4.05	70 - 130	30	70 - 130	30	
Toluene	ND	10	119	116	2.09	122	124	1.45	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	127	124	2.45	122	125	2.19	70 - 130	30	70 - 130	30	
%SS1:	82	25	83	83	0	74	74	0	70 - 130	30	70 - 130	30	
%SS2:	100	25	100	101	0.595	91	91	0	70 - 130	30	70 - 130	30	
%SS3:	74	2.5	80	80	0	81	80	2.25	70 - 130	30	70 - 130	30	

BATCH 42361 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903740-001B	03/28/09 9:35 AM	04/03/09	04/03/09 2:56 AM	0903740-002B	03/28/09 9:10 AM	04/03/09	04/03/09 3:39 AM
0903740-003B	03/28/09 9:57 AM	04/03/09	04/03/09 4:23 AM	0903740-003B	03/28/09 9:57 AM	04/03/09	04/03/09 5:17 PM
0903740-004B	03/28/09 10:25 AM	04/03/09	04/03/09 5:06 AM	0903740-004B	03/28/09 10:25 AM	04/03/09	04/03/09 6:01 PM
0903740-005B	03/28/09 11:00 AM	04/03/09	04/03/09 5:50 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water			QC Matri	x: Water		BatchID: 42360				WorkOrder 0903740		
EPA Method SW8015B		ction SW	3510C				Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	101	100	0.548	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	104	104	0	N/A	N/A	70 - 130	30
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 42360 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903740-001A	03/28/09 9:35 AM	03/30/09	03/31/09 9:03 AM	0903740-002A	03/28/09 9:10 AM	03/30/09	03/31/09 12:27 PM
0903740-003A	03/28/09 9:57 AM	03/30/09	03/31/09 1:38 PM	0903740-004A	03/28/09 10:25 AM	03/30/09	03/31/09 2:50 PM
0903740-005A	03/28/09 11:00 AM	03/30/09	03/31/09 1:38 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer