Atlantic Richfield Company

Shannon CouchOperations Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: shannon.couch@bp.com

November 20, 2012

Re: Soil Investigation Work Plan

Atlantic Richfield Company Station #374 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

RECEIVED

2:05 pm, Nov 21, 2012

Alameda County Environmental Health


"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Shannon Couch

Operations Project Manager

Attachment

SOIL VAPOR INVESTIGATION WORK PLAN

Atlantic Richfield Company Station No.374 6407 Telegraph Avenue Oakland, California

Prepared for

Ms. Shannon Couch Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

875 Cotting Lane, Suite G Vacaville, California 95688 (707) 455-9270 www.broadbentinc.com

November 20, 2012

Project No. 06-88-602

broadbentinc.com

CREATING SOLUTIONS, BUILDING TRUST.

November 20, 2012

Project No. 06-88-602

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 **Submitted via ENFOS**

Attn.: Ms. Shannon Couch

Re:

Soil Vapor Investigation Work Plan, Atlantic Richfield Company Station No.374, 6407 Telegraph

Avenue, Oakland, California; ACEH Case No. RO0000078

Dear Ms. Couch:

Broadbent & Associates, Inc. (Broadbent) is pleased to submit this Soil Vapor Investigation Work Plan for Atlantic Richfield Company Station No.374 located at 6407 Telegraph Avenue, San Leandro, California (Site). This document was prepared in order to propose additional assessment that would potentially support case closure under the recently-approved Low Threat Policy (CRWQCB, 2012). Broadbent is proposing herein the installation and sampling of one soil vapor probe.

Should you have questions or require additional information, please do not hesitate to contact us at (707) 455-7290.

TIDWELL

Sincerely,

BROADBENT & ASSOCIATES, INC.

Kristene Tidwell, P.G., C.HG.

Senior Geologist

Enclosures

cc:

Ms. Dilan Roe, Alameda County Environmental Health (Submitted via ACEH ftp site)

Electronic copy uploaded to GeoTracker

SOIL VAPOR INVESTIGATION WORK PLAN

Atlantic Richfield Company Station No.374 6407 Telegraph Avenue, Oakland, California Fuel Leak Case No. RO0000078

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	BACK	GROUND INFORMATION	1
	2.1	Site Location	
	2.2	Previous Environmental Activities at Site	
	2.3	Regional Geology and Hydrogeology	
	2.4	Site Hydrogeology	
3.0	PROP	POSED SCOPE OF WORK	4
	3.1	Pre-Mobilization Activities	4
	3.2	Proposed Soil Vapor Probe Installation Activities	4
	3.3	Proposed Soil Vapor Probe Sampling	5
	3.4	Laboratory Analysis of Soil Vapor Samples	5
	3.5	Reporting	6
4.0	PROF	POSED SCHEDULE	6
5.0	CLOS	URE	6
6.0	REFE	RENCES	6
DRAV	VINGS		
1 -	Site L	ocation Map	
2 -		Map with Current Petroleum Concentrations	
3 -		ayout Plan with Proposed Soil Vapor Probe Location	
APPE	NDICES		
A -	Histo	rical Soil & Groundwater Data	
B-	Soil B	Boring and Well Construction Logs	

- C Geologic Cross-Sections and Historical Site Figures
- D- Draft Closure Checklist

SOIL VAPOR INVESTIGATION WORK PLAN

Atlantic Richfield Company Station No.374 6407 Telegraph Avenue, Oakland, California Fuel Leak Case No. RO0000078

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company— (ARC, a BP affiliated company) Broadbent & Associates, Inc. (Broadbent) has prepared this *Soil Vapor Investigation Work Plan* (Work Plan) for the Atlantic Richfield Company (ARCO) Station No.374 (herein referred to as Station No.374), located at 6407 Telegraph Avenue, Oakland, California (Site). This Work Plan was prepared in order to assess potenital soil vapor impacts at the Site resulting from moderate residual groundwater hydrocarbon concentrations in onsite monitoring well MW-4. Other wells at the Site contain comparatively low to non-detect hydrocarbon concentrations, and it appears that this Site may be eligible to be closed under the recently approved California State Water Resources Control Board's (CSWRCB) *Low Threat Underground Storage Tank Case Closure Policy* (Low Threat UST Closure Policy). This work plan includes discussions on the Site background and previous environmental activities, regional and Site geology and hydrogeology, proposed scope of work, and proposed schedule.

2.0 BACKGROUND INFORMATION

2.1 Site Location

Station No. 374 is located at the northwest corner of Telegraph and Alcatraz Avenues in an area of mixed residential and commercial land use. The elevation of the Site is approximately 164 feet above mean sea level with local topography sloping gently to the southwest (United States Geological Survey [USGS], Oakland West Quadrangle, California). Surrounding land use is primarily single- and multi-family residences with commercial buildings located east and southeast of the Site. The Assessor's Parcel Number is 16-1424.

2.2 Previous Environmental Activities at Site

The following section summarizes the previous hydrocrabon release, resulting investigations, and remedial activities completed at the Site. Appendix A includes tabulated soil and groundwater analytical data. Appendix B includes available soil boring and well contstruction logs. Appendix C includes available Site geologic cross sections and historic figures.

In February 1988, a leak was detected in the vapor/vent line of the unleaded system during annual tank testing. In April 1988, an underground storgate tank (UST) Unauthorized Release Report was filed with the Alameda County Public Health Service.

In April 1988, Applied Geosystems (AGS) advanced soil borings B-1 through B-4 near then exisiting USTs. Gasoline range organics (GRO, hydrocarbon chain lengths C6-C12) concentrations in soil samples ranged from 48 to 930 milligrams per kilogram (mg/kg). Groundwater was encountered at approximately 10 feet below ground surface (bgs). One inch of floating product was observed in a grab-groundwater sample collected from boring B-1. Additionally, product sheen was also observed in grab-groundwater samples from borings B-2 and B-4.

In June 1988, four gasoline USTs were removed from the Site. No holes were observed in the removed tanks; however, some of the protective asphaltic coating had dissolved around the fill ports of the tanks. Laboratory analyses of the soil samples collected beneath one of the former USTs indicated GRO concentrations ranging from 3 mg/kg to 1,097 mg/kg. The excavation was extended north of this UST; a soil sample (S-12-T4A2) collected after this excavation indicated a GRO concentration of 795 mg/kg. A

Soil Vapor Investigation Work Plan ARCO Station No.374 November 20, 2012

soil sample collected beneath the north of the excavation (S-11-T1A) indicated a GRO concentration of 399 mg/kg. Groundwater was observed seeping into the northwestern portion of the UST pit at a depth of approximately 12 feet. Observation wells W-1 and W-2 were installed in the former UST pit and observation wells W-3 and W-4 were installed in the new UST pit. Field observations indicated the presence of sheen in wells W-1 and W-2 in the former UST pit.

In December 1988, AGS collected a groundwater sample from well W-4 and analyzed for GRO and the volatile gasoline constituents benzene, toluene, ethylbenzene, and total xylenes (BTEX). No detectable concentrations of GRO or BTEX were reported (AGS, January 5, 1989).

In July 1989, AGS installed groundwater monitor wells MW-1 through MW-4. Well MW-3 was installed offsite on the west side of Irwin Court. Eight of the nine soil samples collected during these activities did not contained detectable concentrations of gasoline constituents. A GRO concentration of 60 mg/kg was reported for the sample obtained from a depth of 8.5 feet in the boring advanced prior to the installation of well MW-1.

In April 1991, RESNA performed step-drawdown and constant discharge tests using tank backfill well W-

In April 1992, RESNA advanced offsite soil borings B-5 and B-6 and converted the borings into wells MW-5 and MW-6, southwest and west of the Site. No GRO or BTEX were reported in the soil samples collected during this investigation.

Between October and December 1993, RESNA oversaw installation of a groundwater extraction (GWE) remediation system at the Site. System operation commenced on December 21, 1993. Water was extracted from well W-2 and treated using liquid-phase activated carbon before being discharged to the sanitary sewer. The system was shut down on October 13, 1995 following verbal approval from the ACEH. A total of 93,989 gallons of water were reportedly extracted during system operation and an estimated 2.61 pounds of GRO were removed from groundwater.

In September 1995, dispensers and associated underground product lines were removed from the Site. Pacific Environmental Group (PEG), Inc. collected soil samples beneath both the dispenser islands and product lines. Total purgeable petroleum hydrocarbons as gasoline (TPPHg) were reported for soil samples collected from beneath the product lines at concentrations ranging between 1.9 mg/kg and 65 mg/kg; benzene was detected in soil sample TR-A-13 at 0.30 mg/kg. Beneath the product dispensers, TPPHg was detected at concentrations ranging between 19 mg/kg and 140 mg/kg; benzene was detected in two soil samples at 2.1 mg/kg (TR-A-14) and 0.0089 mg/kg (TR-A-15).

In November 1995, PEG installed oxygen releasing compound (ORC) socks in well MW-3 to enhance naturally-occuring bioremediation. In September 1998, Pinnacle Environmental Solutions installed ORC socks in well MW-4. The bioremediation enhancement program was terminated during the Second Quarter of 2000.

In November 2008, Stratus Environmental, Inc. (Stratus) conducted an onsite soil investigation in order to characterize residual hydrocarbon contamination within soils at the former UST area. Soil borings B-11 and B-12 were advanced in the vicinity of historical soil samples S-12-T4A1 and S--12-T4A2, respectively. Soil samples collected from 15 feet (B-11) and 15.5 feet (B-12) were analyzed for GRO, BTEX, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), di-isopropyl ether (DIPE), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), tertiary butyl alcohol (TBA), and ethanol. All analytes were non-detect with the exception of trace concentrations of MTBE (0.0072 mg/kg and 0.014 mg/kg) at 15 feet bgs and TBA (0.011 mg/kg) at 15.5 feet bgs. The boring locations are depicted in Appendix C.

In December 2008, Stratus collected compliance soil samples during dispenser and product piping upgrades. Soil samples were collected beneath the fuel dispensers and short pipeline stubs into the main product lines, which were not removed/replaced. Based on initial soil sample analytical results, limited excavation was attempted to remove soil from sampling locations D4-2.5' and PL3-3' due to their elevated hydrocarbon concentrations. Additional soil samples (D-4 5' and PL-3 5') were collected on December 9, 2008 from approximately 5 feet bgs in an attempt to delineate the vertical extent of contamination at the two previous locations with elevated hydrocarbon concentrations. Additional soil sample PL-3 5' contained lower hydrocarbon concentrations than the original sample, while sample D-4 5' contained higher hydrocarbons concentrations than the original sample. Maximum GRO and benzene concentrations reported in the soil samples were 6,500 mg/kg and 19 mg/kg, respectively. A total of approximately 84 cubic yards of soil was transported by Belshire Environmental Services to the Forward Incorporated Allied Waste Services disposal facility in Manteca, California. Sample locations are depicted in Appendix C.

In September 2009, Stratus oversaw advancement of four direct-push borings (B-13, B-14, B-14A, and B-15) in the vicinity of the south end of the eastern pump island. The borings were advanced near the December 2008 pipeline and dispenser samples PL-3 and D-4, to a maximum depth of 18 feet bgs; soil samples for laboratory analyses were obtained from 4.5 feet, 6.5 feet, and 8.5 feet bgs from each boring. Soil samples from B-13 and B-15 contained GRO up to 1,800 mg/kg, benzene up to 8.2 mg/kg, and MTBE up to 0.024 mg/kg. Soil samples from boring B-14 to the south of the pump island contained GRO up to 390 mg/kg, benzene up to 0.56 mg/kg, and MTBE up to 0.025 mg/kg. A "grab" groundwater sample collected from boring B-15 contained 19,000 micrograms per liter (ug/L) of GRO, 3,700 ug/L of benzene, and 250 ug/L of MTBEⁱ. Boring locations are depicted in Appendix C.

In November 2010, BAI advanced four soil borings (B-16 through B-19) and converted three borings (B-16 through B-18) to groundwater monitor wells (MW-7, MW-8, and MW-9). Boring and monitor well locations are provided in Appendix C.

Groundwater monitoring has been performed at the Site since wells were first installed in 1989. The highest concentrations of petroleum hydrocarbons have historically and are currently detected in well MW-4. Currently, the highest concentrations of GRO and BTEX have been detected in MW-4, with non-detect concentrations in other wells. MTBE is currently present in wells MW-1, MW-2, MW-3, MW-6 MW-7, MW-8, and MW-9. Currently, the highest concentration of MTBE is present in well MW-1 at 66 ug/L.

2.3 Regional Geology and Hydrogeology

According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the San Leandro Sub-Area, near the northern boundary of the San Lorenzo Sub-Area, in the East Bay Plain of the San Francisco Basin. These Sub-Areas share the same hydrogeologic characteristics, yet are separated by the junction of the surface trace between the San Leandro and San Lorenzo alluvial fans. These Sub-Areas consist primarily of alluvial fan sediments with the distinction of the Yerba Buena Mud extending west into the San Leandro and San Lorenzo Sub-Areas, unlike the northern Sub-Areas. The Yerba Buena Mud forms a major aquitard between the shallow and deep aquifers throughout much of southwestern area of the East Bay Plain. The San Leandro and San Lorenzo Sub-Areas alluvial fans are finer grained and produce less groundwater than the Niles Cone basin to the south.

Soil Vapor Investigation Work Plan ARCO Station No.374 November 20, 2012

Geologic data derived from onsite borings indicate unconsolidated sediments consisting of silts and silty clay from two to 40 feet bgs. Sand, sandy clay and clayey sand zone underlies and overlies these silty clays and silts. Soil boring and well construction logs are provided in Appendix B. Copies of geologic cross-sections for the Site are provided in Appendix C.

2.4 Site Hydrogeology

The Site is underlain Holocene and Pleistocene alluvial fan and fluvial sediments (USGS, 1997) consisting of beds and lenses of medium dense to dense, sandy or silty clay, and clayey or silty sands and gravels to the total explored depth of 40 feet bgs.

Groundwater under confined conditions is typically encountered at depths greater than ten to twelve feet bgs. Since groundwater monitoring began at the Site in 1989, depth-to-water measurements have ranged from approximately 4.5 to 9.5 feet below ground surface (bgs). Groundwater flow direction has been consistently to the southwest at an average gradient of approximately 0.03 feet per foot. Current and Historical Groundwater Data are presented in Attachment A. Available Soil Boring/Well Logs are presented in Attachment B.

3.0 PROPOSED SCOPE OF WORK

Soil vapor sampling is proposed herein to evaluate potential petroleum compounds present in soil vapor at the Site near the former hydrocarbon releases described above. Current GRO and benzene concentrations in monitoring well MW-4 indicate residual impacts, however recent analytical data from other Site wells indicates that the hydrocarbon plume is small in size. However, due to current benzene concentrations in well MW-4 being approximately 1,000 ug/L, soil vapor in this area needs to be evaluated for the Site to be considered a candidate to be closed according to the Low Threat UST Closure Policy (CSWRCB, 2012). To that end, soil vapor sampling in the vicinity of well MW-4 is proposed herein. The details of the proposed scope of work are presented below.

This soil vapor sampling is being proposed to evaluate potential unacceptable human health risks that will be required to be address prior this Site being ready for case closure per the Low Threat UST Closure Policy. A preliminary Closure checklist based on this guidance is presented in Appendix D.

3.1 Pre-Mobilization Activities

Prior to initiating field activities, Broadbent will obtain the necessary permits from Alameda County, prepare a Site-Specific Health & Safety Plan (HASP) for the proposed work, clear the Site for subsurface utilities, and provide 72-hour advance written notification to ACEH prior to the start of field activities. The utility clearance will include notifying Underground Services Alert (USA-North) of the pending work a minimum of two full business days prior to initiating the subsurface field investigation. In addition, the services of a private underground utility locator will be utilized.

The Site-Specific HASP will be prepared for use by personnel implementing the work. The HASP will address the proposed soil vapor probe installation/sampling scope of work. A copy of the HASP will be available onsite during the work. Subcontractors performing field activities will be provided with a copy of the HASP prior to initiating work. A safety tailgate meeting will also be conducted daily to review the Site hazards and mitigations.

3.2 Proposed Soil Vapor Probe Installation Activities

A total of two soil vapor probes at two different sampling depths are proposed to be installed in the vicinity if well MW-4 (SG-1A/SG-1B; Drawing 3). The soil vapor probes will be installed using a hand auger at each location. Probe SG-1A will be constructed to a total depth of 3.0 feet bgs and SG-1B will be constructed to a total depth of 5.5 feet bgs. Soil vapor from both intervals will be sampled and the deeper sample will be initially analyzed, with the shallower depth being analyzed if the deeper sample exceeds screening levels as described below.

Soil vapor probes will be constructed using implants attaching a 6-inch long soil vapor probe tip to 0.125-inch diameter nylon (i.e. NylaFlow) or Teflon tubing extending two feet above the surface. The soil vapor probe tips will be constructed of double-woven stainless steel wire screen with a 0.057-inch pore diameter, equipped with stainless-steel end fittings. Each soil vapor implant will be embedded within the middle of a one-foot thick sand filter pack of #2/12 sorted sand, topped with one-half foot of dry granular Bentonite below a minimum of one-half foot of hydrated granular Bentonite, and completed with a flush, traffic-rated well vault at the surface set within neat cement concrete surface seal to match the existing grade. Care will be taken to prevent the tubing and Swagelok fitting at its end from being damaged or kinked when coiled back into the well vault.

3.3 Proposed Soil Vapor Probe Sampling

Sampling will occur at least two weeks after installation of the soil vapor monitoring implants to allow time for the concrete to cure and disturbed subsurface conditions to equilibrate. In addition, soil vapor sampling shall not be performed during or immediately after a rainfall event of 0.5 inches or more. If a rainfall event of this magnitude occurs within 24 hours of the scheduled soil vapor sampling activities, the field work shall be rescheduled.

After setting up a secure and barricaded work area, the sampling train will be assembled. The Swagelok fitting at the end of the implant's tubing will be connected to an inline vacuum gage with a tee then a 100-cubic centimeter (cc) calibrated syringe with three-way valve at the tip. Coming off the tee for the sample will be a one-liter Summa canister, supplied by the laboratory under high vacuum (-30 inches Mercury/in.Hg), leak checked, and batch certified to be free of contaminants. With the valve to the soil vapor monitoring implant closed and the valve to the Summa canister closed, the sampling train will be checked for leaks during a shut-in leak test by applying with the calibrated syringe a vacuum of -15 in.Hg for a period of five minutes (-15 in. Hg is fifty percent above the standard threshold of -10 in.Hg considered representative of "No Flow" conditions). When the applied vacuum does not drop during the shut-in test, the sampling train assembly will be considered leak-tested tight.

After the shut-in leak test, the closed valve of the soil vapor monitoring implant will be opened and the sampling train slowly purged of three calculated interior volumes using the calibrated syringe. Following completion of purging, a clear plastic shroud will be setup over the sampling train to contain the chemical tracer/leak-check compound (Helium gas) that will be released within. The shroud will be placed to completely cover the soil vapor sampling implant wellhead, its aboveground tubing, and the tubing, fittings, and sample Summa canister that will make up the sampling train. Once setup, Helium gas will be released via tubing under the shroud. A Radiodetection Model MGD-2002 Helium Detector (or similar) will be used to monitor the concentration within the shroud by placing its probe within.

Prior to and during sampling, a positive-pressure concentration of approximately 20 percent Helium will be maintained within the shroud using the compressed gas cylinder's flow regulator. Helium concentrations within the shroud will be recorded in the field notes at one-minute intervals.

Once a positive-pressure Helium atmosphere is created under the shroud, the valve to the Summa canister will be opened and the sample collected. The sampling rates into the Summa canisters will be fixed by laboratory-supplied critical orifice assemblies (flow regulators) with a 0.0060 inch orifice allowing approximately 200 standard cc per minute (cc/min). Samples will be collected into the Summa canisters until the vacuum has dropped from the initial laboratory-supplied vacuum of -30 in.Hg to -5 in.Hg. Sample start times, end times, starting vacuums, ending vacuums, and Helium concentrations during sampling will be recorded in the field notes.

Finally, for comparison purposes, one Summa canister will be used to collect an ambient air sample from the ground level just outside the door into the front side of the Station Building. No leak-check compound will be utilized during collection of the ambient air sample.

3.4 Laboratory Analysis of Soil Vapor Samples

Collected samples will be promptly submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. in Garden Grove, California (CA-ELAP #1230, NELAP #03220CA). At the laboratory, select soil gas samples will be analyzed for GRO by EPA Method TO-3, and for BTEX, MTBE, Ethanol, TBA, DIPE, ETBE, and TAME by EPA Method TO-15. Soil gas samples will also be analyzed for Oxygen (O_2) and Argon, Carbon Dioxide (CO_2), Methane (CO_4), and Helium (Tracer/leak-check compound) by Modified Method ASTM D-1946.

Direction on the chain-of-custody will be to analyze first the "B" samples from 5.5 feet bgs. Concentration results for the "B" deeper soil vapor samples will be compared against the Environmental Screening Levels (ESLs) for shallow soil gas (commercial/industrial land use) established by the California Regional Water Quality Control Board, San Francisco Bay Region. Concentrations will also be compared to acceptable concentrations presented in the Low Threat UST Closure Policy (SWRCB, 2012). If concentration results for any of the TO-3/TO-15 analytes from the deeper "B" soil vapor sample exceed established screening levels, then the corresponding shallow "A" soil vapor sample from 3.0 ft bgs will be analyzed also. Laboratory analyses for soil vapor samples will be performed in accordance with EPA standard holding times for Summa canisters.

3.5 Reporting

Upon completion of the work activities described above and after receipt of laboratory analytical data, Broadbent will prepare a Soil Vapor Sampling Report containing the following information at a minimum:

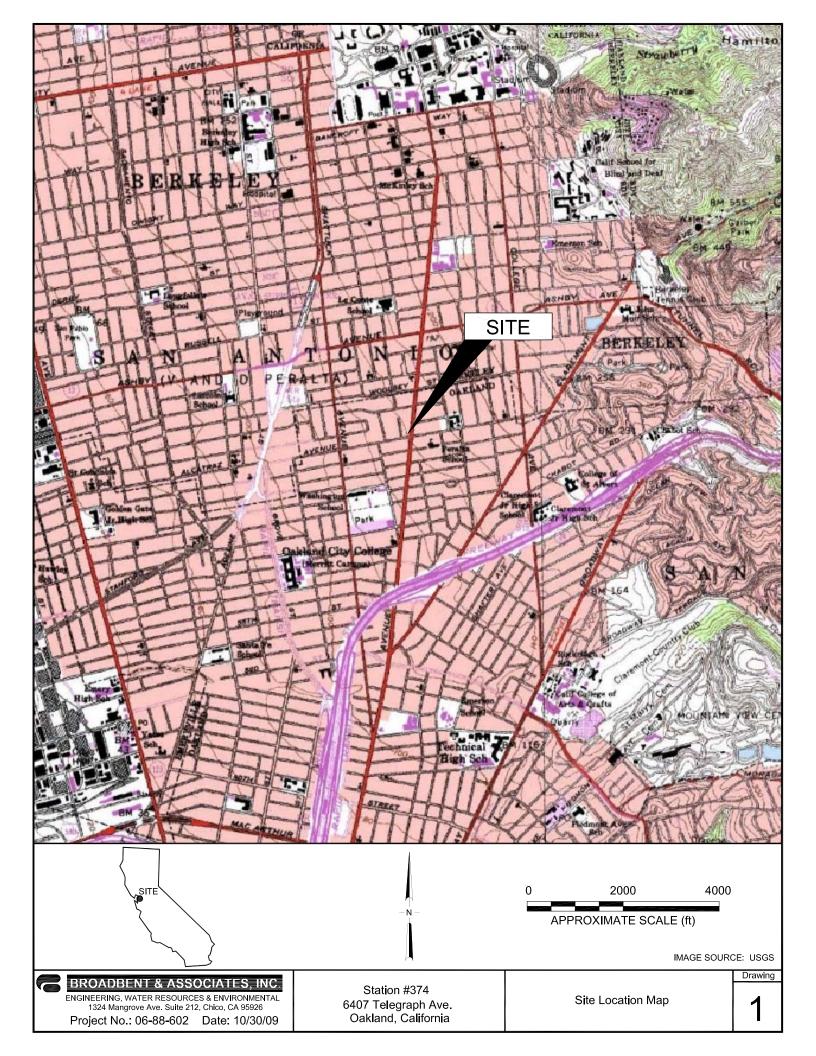
- Descriptions of the work performed;
- Copies of the required permits;
- Copies of the field notes;
- Tabulated results and measurements;
- Laboratory analytical reports with chain-of-custody records; and
- Site recommendations.

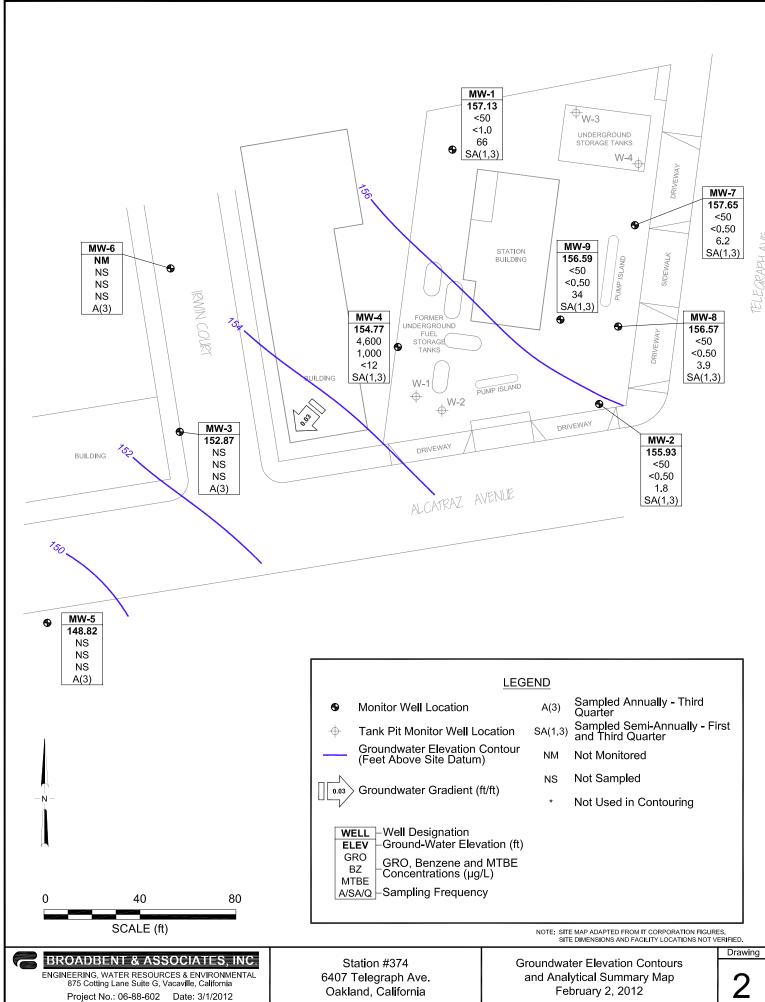
4.0 PROPOSED SCHEDULE

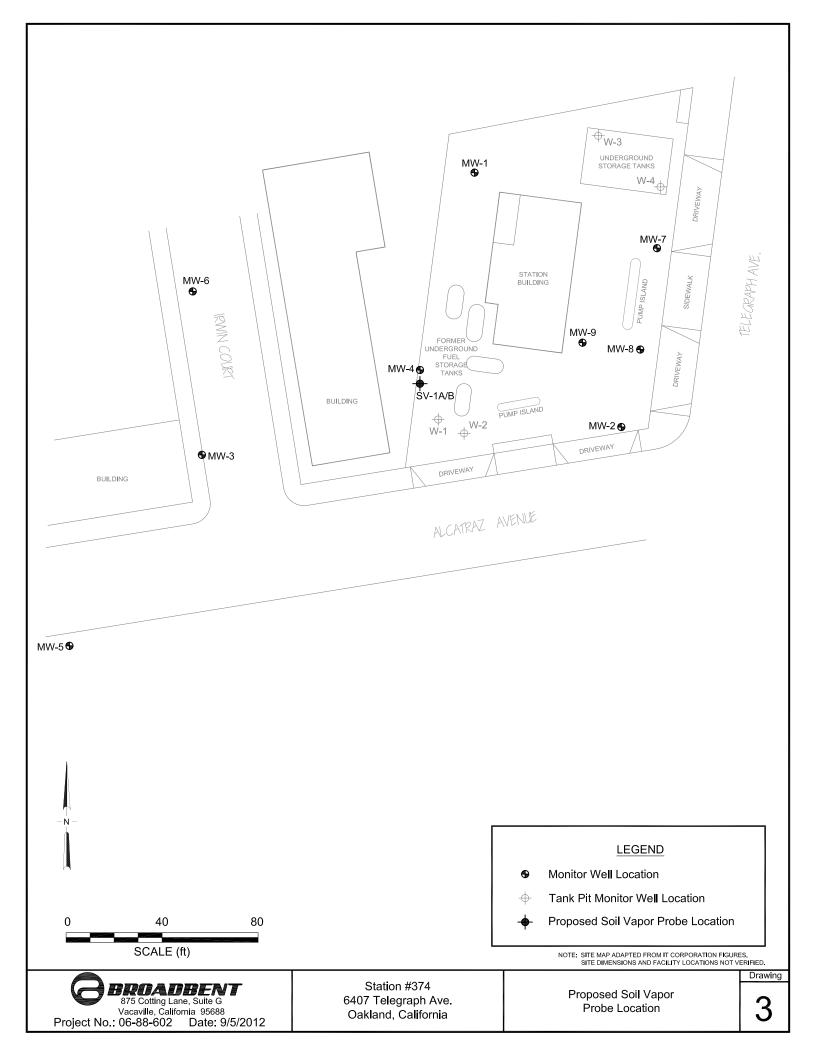
The schedule for the above-noted work shall proceed as follows:

- <u>Implementation of Soil-Vapor Assessment Activities</u>— Within 90 days of approval of this Work Plan;
- Soil-Vapor Assessment Report—Within 60 days of completing field work.

5.0 CLOSURE


The findings presented in this document are based upon: observations of field personnel from previous consultants, the points investigated, and results of analytical tests performed by various laboratories. Our services were performed in accordance with the generally accepted standard of practice at the time this document was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of BP. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.


6.0 REFERENCES


State Water Resources Control Board, 2012. Low-Threat Underground Storage Tank Case Closure Policy, April 17.

East Bay Plain Groundwater Basin Beneficial Use Evaluation Report. California Regional Water Quality Control Board – San Francisco Bay Region (SFRWQCB), June 1999.

USGS 1997. Quaternary Geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, California: a digital database By E.J. Helley and R.W. Graymer

APPENDIX A

Historical Soil and Groundwater Data

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentr	ations in µş	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-1															
6/20/2000		158.91	7.00	27.00	6.86	152.05									
9/28/2000			7.00	27.00	7.50	151.41									
12/17/2000			7.00	27.00	7.49	151.42									
3/23/2001			7.00	27.00	5.90	153.01	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2,710			
6/21/2001			7.00	27.00	7.45	151.46									
9/23/2001			7.00	27.00	8.46	150.45									
12/31/2001			7.00	27.00	5.50	153.41									
3/21/2002			7.00	27.00	4.71	154.20	<5,000	<50	< 50	<50	<50	2,000			
4/17/2002			7.00	27.00	5.54	153.37									
8/12/2002			7.00	27.00	7.77	151.14									
12/6/2002			7.00	27.00	7.65	151.26									
1/29/2003			7.00	27.00	5.88	153.03									b
5/23/2003			7.00	27.00	5.62	153.29	<10,000	<100	<100	<100	<100	1,600	1.3	7.1	
9/4/2003			7.00	27.00	7.85	151.06									
11/20/2003	P		7.00	27.00	8.17	150.74	1,600	<10	<10	<10	<10	1,500	1.7	6.7	
02/02/2004	P	164.57	7.00	27.00	6.71	157.86							1.0		f
05/14/2004	P		7.00	27.00	7.08	157.49	<2,500	<25	<25	<25	<25	1,200	1.4	6.6	
09/02/2004	P		7.00	27.00	8.12	156.45	580	< 5.0	<5.0	<5.0	< 5.0	660	3.8	6.7	
11/04/2004	P		7.00	27.00	7.38	157.19	1,700	<10	<10	<10	<10	580	6.0	6.5	
02/08/2005	P		7.00	27.00	6.60	157.97	<1,000	<10	<10	<10	<10	610	0.71	6.5	
05/09/2005	P		7.00	27.00	6.84	157.73	540	< 5.0	<5.0	<5.0	5.5	620	3.12	6.6	e
08/11/2005	P		7.00	27.00	7.36	157.21	540	<2.5	<2.5	<2.5	4.0	390	0.8	6.6	
11/18/2005	P		7.00	27.00	8.02	156.55	350	<2.5	<2.5	<2.5	<2.5	340	2.6	6.7	e
02/16/2006	P		7.00	27.00	6.44	158.13	350	<2.5	<2.5	<2.5	<2.5	340	1.6	6.7	e
5/30/2006	P		7.00	27.00	6.87	157.70	270	<2.5	<2.5	<2.5	<2.5	420	4.73	6.4	
8/24/2006	P		7.00	27.00	7.75	156.82	95	< 5.0	<5.0	<5.0	< 5.0	180	0.65	6.9	
11/1/2006	P		7.00	27.00	8.28	156.29	120	< 5.0	<5.0	<5.0	<5.0	220	1.65	7.07	
2/7/2007	NP		7.00	27.00	7.40	157.17	120	< 5.0	<5.0	<5.0	<5.0	190	1.88	7.45	e

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 374 6407 Telegraph Avenue Oakland, California (Page 1 of 2)

Sample Number	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes
				V 7	
April 1988 - Limited En	vironmental Site	Assessment			
S-05-B1	165	NA	NA	NA	NA
S-10-B1	48	NA	NA	NA.	NA
S-05-B2	260	NA	NA	NA	NA.
S-8.5-B2	60	NA	NA	NA	NA
S-05-B3	64	NA	NA	NA	NA
S-09-B3	62	NA	NA	NA	NA
S-05-B4	389	NA	NA	NA	NA
S-8.5-B4	930	NA	NA	NA	NA
June 1988 - Excavation	and Removal of U	STs			
S-11-T1A	399	14.7	20.0	20.5	91.9
S-11-T1B	8	2.57	0.74	0.39	2.75
S-12-T2A	4	0,35	0.10	0.38	0.70
S-12-T2B	75	0.91	1.77	3.61	11.92
S-12-T3A	4	2.54	0.13	< 0.05	0.13
S-12-T3B	< 2	< 0.05	< 0.05	< 0.05	< 0.05
S-12-T4A	1,097	16.3	34.5	81.6	188.2
S-12-T4A2**	795	23.1	24.9	67.1	130.9
S-12-T4B	3	0.76	< 0.05	< 0.05	< 0.05
S-13-PIT	3.6	0.738	0.038	0.154	0.566
July 1989 - Limited Sub	surface Investigation	On			
S-3.5-B1/MW-1	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-8.5-B1/MW-1	60	0.66	2.9	0.99	5.2
S-3.5-B2/MW-2	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-13.5-B2/MW-2	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-18.5-B2/MW-2	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-3.5-B3/MW-3	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-3.5-B4/MW-4	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-13.5-B4/MW-4	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-18.5-B4/MW-4	<2	< 0.05	< 0.05	< 0.05	< 0.05
S-0731-B4 (1a,b,c,d)*	21	< 0.05	< 0.05	<0.05	0.37
April 1, 1992 - Offsite I	nvestigation				
S-5.5-B5	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005
S-14.5-B5	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005
S-5.5-B6	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005

See notes on Page 2 of 2.

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES

OF SOIL SAMPLES ARCO Station 374 6407 Telegraph Avenue Oakland, California (Page 2 of 2)

Results are in parts per million (ppm).

TPHg: Total petroleum hydrocarbons as gasoline.

<: Below the reporting limits of the analytical method.

e: Signifies composite sample following aeration.

**: Resample area near sample T4A following additional excavation.

NA: Not analyzed.

Samn	le.	desi	mations:

Boring number Sample depth in feet Soil sample S-12-T4B

Tank number and location Sample depth in feet Soil sample

Table 1 Soil Analytical Data Product Line and Dispenser Excavation Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and Total Lead)

ARCO Service Station 0374 6407 Telegraph Avenue at Alcatraz Avenue Oakland, California

Sample ID	Date	Sample Depth (feet)	TPPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	Total Lead
Product Lin	Sampled	(leet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TR-A-1	9/21/95	3	NA	NA	NA	NA	NA	15
TR-A-2	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-3	9/21/95	3	<1	<0,0050	<0.0050	<0.0050	<0.0050	NA
TR-A-8	9/21/95	3	65	<0.025	0.15	0.096	6.7	NA
TR-A-9	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-10	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-11	9/21/95	3	1.9	<0.0050	<0.0050	0.0050	<0.0050	NA
TR-A-12	9/21/95	3	6.2	. <0.0050	<0.0050	0.0067	<0.0050	NA
TR-A-13	9/21/95	3	48	0.30	2,2	0.53	3.6	NA
Dundant Die								
Product Dis TR-A-4	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-6	9/21/95	3	140	<0.50	1.1	0.80	1.5	NA
TR-A-14	9/21/95	3	89	2.1	8.5	1.7	9.4	NA
TR-A-15	9/21/95	3	19	0.0089 ·	0.37	0.045	1.9	NA

ppm = Parts per million

NA = Not analyzed

< = Indicates the concentration is below the detection limit.

Table 1. Soil Sampling Analytical Data Atlantic Richfield Company Station #374 6407 Telegraph Avenue, Oakland, California

	Sampling			·			Labo	ratory An	alytical R	esults (mg	/kg)					
Soil Sample ID	Depth	Sampling					Total									
_	(feet bgs)	Date	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2 DCA	EDB	Lead
D1-2.5'	2.5	12/4/2008	120	0.15	< 0.10	1.8	9.7	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	4.76
D2-2.5'	2.5	12/4/2008	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	5.50
D3-2.5'	2.5	12/4/2008	17	0.46	< 0.10	0.91	1.8	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	11.70
D4-2.5'	2.5	12/4/2008	1,500	3.6	0.12	3.6	2.9	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	8.65
D-4 5'	5.0	12/9/2008	5,300	19	1.1	23	31	< 0.50	< 5.0	<1.0	<1.0	<1.0	<50	< 0.50	< 0.50	11.2
D5-2.5'	2.5	12/4/2008	2.9	< 0.0010	0.0019	< 0.0010	0.0021	0.0038	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	5.38
D6-2.5'	2.5	12/4/2008	1.7	0.0054	0.015	0.0037	0.021	0.0055	< 0.010	< 0.0020	< 0.0020	< 0.0020	0.19	< 0.0010	< 0.0010	5.81
PL1-3'	3.0	12/4/2008	8.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.046	0.019	< 0.0020	< 0.0020	0.0027	< 0.10	< 0.0010	< 0.0010	5.49
PL2-3'	3.0	12/4/2008	< 0.50	0.0059	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	6.03
PL3-3'	3.0	12/4/2008	6,500	18	0.74	25	12	< 0.20	<2.0	< 0.40	< 0.40	< 0.40	<20	< 0.20	< 0.20	12.20
PL-3 5'	5.0	12/9/2008	0.78	0.035	< 0.0010	0.019	0.0021	0.012	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	5.43
PL4-3'	3.0	12/4/2008	26	< 0.10	< 0.10	0.35	< 0.10	0.16	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	5.16
PL5-3'	3.0	12/4/2008	15	< 0.10	< 0.10	0.36	0.10	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	4.89
Soil Waste Composite 1	NA	12/4/2008	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	5.37
Soil Waste Composite 2	NA	12/4/2008	77	0.11	0.71	0.28	0.62	< 0.10	<1.0	< 0.20	<0.20	< 0.20	<10	< 0.10	< 0.10	8.24

NOTES:

Concentrations detected above laboratory reporting limits are in bold

bgs = Below ground surface

mg/kg = Milligrams per kilogram

NA = Not applicable

GRO = Gasoline Range Organics

MTBE = Methyl Tert-Butyl Ether

TBA = Tert-Butyl Alcohol

DIPE = Di-Isopropyl Ether

ETBE = Ethyl Tert-Butyl Ether

TAME = Tert-Amyl Methyl Ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

Laboratory Analytical Results from On-Site Soil Investigation, 13 November 2008 Atlantic Richfield Company Service Station #374, 6407 Telegraph Avenue, Oakland, California ACEH Case #RO000078

Soil Boring Samples (Concentrations in milligrams per kilogram, mg/kg)

Sample ID	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ETBE	TAME	DIPE	1.2-DCA	EDB	TBA	Ethanol
B-11-15	<0.50	<0.0010	<0.0010	<0.0010	<0.0010	0.014	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.010	<0.10
B-12-15.5	<0.50	<0.0010	<0.0010	<0.0010	<0.0010	0.0072	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	0.011	<0.10
Waste Comp.	NA	<0.0010	<0.0010	<0.0010	<0.0010	0.0084	<0.0020	<0.0020	<0.0020	NA	NA	<0.010	NA

Notes:

GRO: Gasoline Range Organics, hydrocarbon chain lengths C6-C12

MTBE: Methyl-tertiary Butyl Ether ETBE: Ethyl Tert-Butyl Ether TAME: Tert-Amyl Methyl Ether

DIPE: Di-Isopropyl Ether 1,2-DCA: 1,2-Dichloroethane

EDB: 1,2-Dibromomethane TBA: Tert-Butyl Alcohol

<: Analyte not detected above the laboratory reporting limit given

NA: Analysis not requested or performed

Laboratory Analytical Results from On-Site Soil & Ground-Water Investigation, 21 September 2009 Atlantic Richfield Company Service Station #374, 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

Soil Boring Samples (Concentrations in milligrams per kilogram, mg/kg)

				Ethyl-	Total								
Sample ID	GRO	Benzene	Toluene	benzene	Xylenes	MTBE	ETBE	TAME	DIPE	1,2-DCA	EDB	TBA	Ethanol
B-13 4.5'	1.7	0.048	0.0017	0.036	0.019	0.024	<0.0020	<0.0020	<0.0020	< 0.0010	<0.0010	0.052	<0.10
B-13 6.5'	67	0.38	<0.10	0.82	1.8	<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<1.0	<10
B-13 8.5'	1,800	8.2	71	32	190	<1.0	<2.0	<2.0	<2.0	<1.0	<1.0	<10	<100
B-14 4.5'	<0.50	0.0018	<0.0010	<0.0010	<0.0010	0.012	<0.0020	<0.0020	<0.0020	<0.0010	< 0.0010	0.014	<0.10
B-14 6.5'	0.73	0.011	<0.0010	0.0023	<0.0010	0.025	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	0.031	<0.10
B-14 8.5'	390	0.56	<0.10	6.3	0.70	<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<1.0	<10
B-15 4.5'	1,400	0.87	<0.10	4.3	3.0	<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<1.0	<10
B-15 6.5'	170	0.91	<0.10	2.8	7.5	<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<1.0	<10
B-15 8.5'	940	2.2	<1.0	13	52	<1.0	<2.0	<2.0	<2.0	<1.0	<1.0	<10	<100
ESL - DW	83	0.044	2.9	2.3	2.3	0.023	NE	NE	NE	0.0045	0.0033	0.075	NE
ESL - NDW	100	0.12	9.3	2.3	11	8.4	NE	NE	NE	0.22	0.019	100	NE

Ground-Water Grab Sample (Concentrations in micrograms per Liter, μg/L)

Sample ID	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ETBE	TAME	DIPE	1,2-DCA	EDB	ТВА	Ethanol
B-15W	19,000	3,700	54	840	1,600	250	<20	<20	<20	<20	<20	<400	<12,000
ESL - DW	100	1.0	40	30	20	5.0	NE	NE	NE	0.5	0.05	12	NE
ESL - NDW	210	46	130	43	100	1,800	NE	NE	NE	200	150	18,000	NE

Notes for both tables:

GRO: Gasoline Range Organics, hydrocarbon chain lengths C6-C12

MTBE: Methyl-tertiary Butyl Ether ETBE: Ethyl Tert-Butyl Ether

TAME: Tert-Amyl Methyl Ether

DIPE: Di-Isopropyl Ether 1,2-DCA: 1,2-Dichloroethane EDB: 1,2-Dibromomethane TBA: Tert-Butyl Alcohol

<: Analyte not detected above the laboratory reporting limit given

Conc: Concentration in Italics exceeds ESL-DW; Concentration in Bold Italics exceeds ESL-NDW

ESL - DW: Residential Environmental Screening Level (in soil or ground water, as approp.), for shallow soil, where ground water is potential drinking water resource ESL - NDW: Residential Environmental Screening Level (in soil or ground water, as approp.), for shallow soil, where ground water is not potential drinking water resource

NE: ESL not established

Table 1. Laboratory Soil Analytic Results from On-Site Investigation, November 22 to 24, 2010 ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

		Sample						Concentra	ations in (m	g/Kg)						
Boring and		Depth	GRO/			Ethyl-	Total									
Sample Date	Sample ID	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	Ethanol	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
ESL - DW			83	0.044	2.9	2.3	2.3	0.023	NE	0.075	NE	NE	NE	0.0045	0.0033	
ESL - NDW			100	0.12	9.3	2.3	11	8.4	NE	100	NE	NE	NE	0.22	0.019	
B-19																
11/23/2010	B-19-3	3	2.7	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
11/23/2010	B-19-5	5	2.6	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-6	6	< 0.50	0.0053	< 0.0010	< 0.0010	< 0.0010	0.0032	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-8	8	190	0.84	0.0065	5.5	0.044	0.015	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-9.5	9.5	250	0.19	0.0016	1.4	0.0094	0.011	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
11/23/2010	B-19-11	11	18	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	< 0.10	<0.10	DF
11/23/2010	B-19-12.5	12.5	47	0.018	< 0.0010	0.026	0.0025	0.0013	< 0.10	0.013	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
11/23/2010	B-19-14	14	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-15.5	15.5	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0034	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
MW-7																
11/22/2010	MW-7-3	3	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-7-5	5	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0017	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-7-6	6	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0023	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
11/24/2010	MW-7-8	8	650	0.0047	< 0.0010	9.2	9.3	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-9.5	9.5	< 0.50	< 0.0010	< 0.0010	0.0014	0.0014	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
11/24/2010	MW-7-11	11	< 0.50	< 0.0010	< 0.0010	0.0015	0.0017	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-12.5	12.5	< 0.50	< 0.0010	< 0.0010	0.0018	0.0021	0.0017	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	<0.0010	
11/24/2010	MW-7-14	14	1.2	< 0.0010	< 0.0010	0.0020	0.0024	0.0080	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
MW-8																
11/22/2010	MW-8-3	3	2.6	0.0099	<0.0010	< 0.0010	0.0023	0.011	<0.10	0.013	<0.0020	<0.0020	<0.0020	< 0.0010	<0.0010	
11/22/2010	MW-8-5	5	1.7	0.057	<0.0010	0.028	0.0033	0.0075	<0.10	0.013	<0.0020	<0.0020	< 0.0020	< 0.0010	<0.0010	
11/22/2010	MW-8-6	6	3.2	0.23	< 0.10	0.75	< 0.10	< 0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	<0.10	<0.10	
11/23/2010	MW-8-8	8	510	2.7	< 0.10	8.8	5.0	0.13	<10	<1.0	< 0.20	<0.20	< 0.20	<0.10	<0.10	
11/23/2010	MW-8-9.5	9.5	900	1.2	< 0.10	12	6.7	< 0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	< 0.10	<0.10	
11/23/2010	MW-8-11	11	1,400	< 0.10	< 0.10	< 0.10	0.11	< 0.10	<10	<1.0	< 0.20	<0.20	< 0.20	<0.10	<0.10	
11/23/2010	MW-8-12.5	12.5	0.93	0.0041	< 0.0010	0.0036	0.0018	0.0014	<0.10	< 0.010	< 0.0020	<0.0020	< 0.0020	< 0.0010	<0.0010	
11/23/2010	MW-8-14.5	14.5	0.57	0.022	<0.0010	0.011	0.0056	0.036	<0.10	0.011	<0.0020	<0.0020	< 0.0020	< 0.0010	<0.0010	

Table 1. Laboratory Soil Analytic Results from On-Site Investigation, November 22 to 24, 2010 ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

		Sample						Concentra	tions in (m	g/Kg)						
Boring and Sample Date	Sample ID	Depth (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	Ethanol	ТВА	DIPE	ЕТВЕ	TAME	1,2-DCA	EDB	Comments
ESL - DW ESL - NDW			83 100	0.044 0.12	2.9 9.3	2.3 2.3	2.3 11	0.023 8.4	NE NE	0.075 100	NE NE	NE NE	NE NE	0.0045 0.22	0.0033 0.019	
MW-9																
11/22/2010	MW-9-3	3	5.2	0.0069	< 0.0010	0.0012	0.0028	0.046	< 0.10	0.026	< 0.0020	<0.0020	0.0030	< 0.0010	< 0.0010	
11/22/2010	MW-9-5	5	1.4	0.0024	< 0.0010	0.0052	< 0.0010	0.031	< 0.10	0.037	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-9-6	6	3.5	0.025	< 0.0010	0.060	0.0036	0.033	< 0.10	0.036	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	MW-9-8	8	710	1.2	< 0.20	16	28	< 0.20	<20	<2.0	< 0.40	< 0.40	< 0.40	< 0.20	<0.20	
11/23/2010	MW-9-11	11	54	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	< 0.10	<0.10	DF
11/23/2010	MW-9-12.5	12.5	46	< 0.0010	< 0.0010	< 0.0010	0.0014	< 0.0010	0.12	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	MW-9-14	14	9.3	0.0012	< 0.0010	0.0013	0.0017	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	<0.0010	< 0.0010	
11/23/2010	MW-9-15.5	15.5	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.031	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	

SYMBOLS AND ABBREVIATIONS:

< = Not detected at or above specified laboratory reporting limit

GRO = Gasoline range organics

MTBE = Methyl tert-butyl ether

TBA = tert-Butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = tert-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

mg/kg = Milligrams per Kilogram

DF = Reporting limits elevated due to matrix interference

ESL - DW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil Groundwater, Interim Final-November 2007 (Revised May 2008).

ESL - NDW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil Groundwater, Interim Final-November 2007 (Revised May 2008).

NE = ESL not established

NOTES:

GRO (C6-C12) analyzed using EPA method 8015B.

Concentrations in Italics exceeds ESL-DW

Concentrations in Bold Italics exceeds ESL-NDW

Benzene, toluene, ethylbenzene, total xylenes, MTBE, ethanol and TBA analyzed using EPA method 8260B.

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in µg	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-1 Cont.															
5/8/2007	P	164.57	7.00	27.00	6.50	158.07	<500	< 5.0	<5.0	<5.0	< 5.0	420	1.21	6.94	
8/8/2007	NP		7.00	27.00	8.17	156.40	82	< 0.50	< 0.50	< 0.50	< 0.50	110	1.16	7.00	e
11/14/2007	NP		7.00	27.00	8.01	156.56	170	<2.5	<2.5	<2.5	<2.5	210	1.92	6.49	
2/22/2008	P		7.00	27.00	6.00	158.57	< 50	< 0.50	< 0.50	< 0.50	< 0.50	250	2.57	6.65	
5/24/2008	NP		7.00	27.00	7.58	156.99	< 50	< 5.0	<5.0	< 5.0	< 5.0	380	2.28	6.81	
8/21/2008	NP		7.00	27.00	8.60	155.97	< 50	<2.5	<2.5	<2.5	<2.5	170	2.16	6.98	
11/19/2008	NP		7.00	27.00	8.88	155.69	< 50	< 0.50	< 0.50	< 0.50	< 0.50	30	2.12	7.27	
2/23/2009	P		7.00	27.00	6.40	158.17	78	<2.5	<2.5	<2.5	<2.5	240	2.19	6.03	
5/14/2009	P		7.00	27.00	6.67	157.90	53	< 0.50	< 0.50	< 0.50	< 0.50	200	1.75	6.69	
8/20/2009	NP		7.00	27.00	8.25	156.32	150	<2.0	<2.0	<2.0	<2.0	170	2.14	6.25	i (GRO)
2/19/2010	P		7.00	27.00	6.07	158.50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	170	0.92	6.66	
8/10/2010	NP		7.00	27.00	7.58	156.99	< 50	<2.5	<2.5	<2.5	<2.5	230	3.86	7.1	
12/16/2010	P	164.45	7.00	27.00	6.64	157.81	< 50	<2.0	<2.0	<2.0	<2.0	140	1.20	6.86	j
2/14/2011	NP		7.00	27.00	7.10	157.35	< 50	<2.5	<2.5	<2.5	<2.5	170	1.18	6.7	
5/20/2011			7.00	27.00	6.38	158.07									
8/15/2011	NP		7.00	27.00	7.24	157.21	< 50	<2.5	<2.5	<2.5	<2.5	130	2.54	6.9	
2/2/2012	P		7.00	27.00	7.32	157.13	< 50	<1.0	<1.0	<1.0	<1.0	66	1.01	7.1	
MW-2															
6/20/2000		157.92	7.00	27.00	7.67	150.25									
9/28/2000			7.00	27.00	8.51	149.41									
12/17/2000			7.00	27.00	8.14	149.78									
3/23/2001			7.00	27.00	7.21	150.71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
6/21/2001			7.00	27.00	7.99	149.93									
9/23/2001			7.00	27.00	8.52	149.40									
12/31/2001			7.00	27.00	6.01	151.91									
3/21/2002			7.00	27.00	5.95	151.97	< 50	< 0.5	< 0.5	< 0.5	< 0.5	45			
4/17/2002			7.00	27.00	6.45	151.47									
8/12/2002			7.00	27.00	8.08	149.84									

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentr	ations in µ	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-2 Cont.															
12/6/2002		157.92	7.00	27.00	8.29	149.63									
1/29/2003			7.00	27.00	7.22	150.70									b
5/23/2003			7.00	27.00	6.85	151.07	< 50	< 0.50	< 0.50	< 0.50	< 0.50	55	1.4	7.2	
9/4/2003			7.00	27.00	7.94	149.98									
11/20/2003			7.00	27.00	8.05	149.87									
02/02/2004	P	163.46	7.00	27.00	7.00	156.46	74	< 0.50	< 0.50	< 0.50	< 0.50	37	1.1	8.9	f
05/14/2004			7.00	27.00	7.97	155.49									
09/02/2004	P		7.00	27.00	8.19	155.27	<250	<2.5	<2.5	<2.5	<2.5	67	2.7	6.9	
11/04/2004			7.00	27.00	7.54	155.92									
02/08/2005	P		7.00	27.00	6.72	156.74	< 50	< 0.50	< 0.50	< 0.50	< 0.50	30	0.86	6.7	
05/09/2005			7.00	27.00	7.16	156.30									
08/11/2005	P		7.00	27.00	7.85	155.61	< 50	< 0.50	< 0.50	< 0.50	< 0.50	35	1.0	6.6	
11/18/2005			7.00	27.00	8.23	155.23									
02/16/2006	P		7.00	27.00	6.82	156.64	< 50	< 0.50	< 0.50	< 0.50	< 0.50	39	1.3	7.0	
5/30/2006			7.00	27.00	7.23	156.23									
8/24/2006	P		7.00	27.00	8.00	155.46	60	< 0.50	< 0.50	< 0.50	< 0.50	25	0.90	6.8	
11/1/2006			7.00	27.00	8.38	155.08									
2/7/2007	NP		7.00	27.00	7.88	155.58	< 50	0.50	< 0.50	< 0.50	< 0.50	7.2	0.94	7.39	
5/8/2007			7.00	27.00	7.28	156.18									
8/8/2007	NP		7.00	27.00	8.38	155.08	88	3.2	< 0.50	< 0.50	< 0.50	7.2	0.94	7.75	
11/14/2007			7.00	27.00	8.10	155.36									
2/22/2008	P		7.00	27.00	6.75	156.71	< 50	< 0.50	< 0.50	< 0.50	< 0.50	24	2.18	7.02	
5/24/2008			7.00	27.00	7.98	155.48									
8/21/2008	NP		7.00	27.00	8.58	154.88	<50	2.6	< 0.50	< 0.50	< 0.50	4.9	2.20	7.11	
11/19/2008			7.00	27.00	8.66	154.80									
2/23/2009	P		7.00	27.00	6.67	156.79	74	1.0	< 0.50	<0.50	< 0.50	24	2.25	6.16	
5/14/2009			7.00	27.00	7.02	156.44									
8/20/2009	NP		7.00	27.00	8.41	155.05	82	2.4	< 0.50	<0.50	< 0.50	8.4	2.19	6.37	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in µ;	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-2 Cont.															
2/19/2010	NP	163.46	7.00	27.00	7.36	156.10	< 50	< 0.50	< 0.50	< 0.50	< 0.50	22	0.81	6.90	
8/10/2010	NP		7.00	27.00	7.69	155.77	< 50	< 0.50	< 0.50	< 0.50	< 0.50	23	2.40	7.67	
12/16/2010	P	163.49	7.00	27.00	7.12	156.37	< 50	< 0.50	< 0.50	< 0.50	< 0.50	17	0.69	7.06	j
2/14/2011	NP		7.00	27.00	7.35	156.14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	11	0.87	7.0	
5/20/2011			7.00	27.00	7.02	156.47									
8/15/2011	NP		7.00	27.00	7.62	155.87	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	1.45	7.1	
2/2/2012	P		7.00	27.00	7.56	155.93	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	0.85	7.3	
MW-3															
6/20/2000		153.64	7.00	27.00	6.42	147.22	< 50	< 0.5	<0.5	< 0.5	<1.0	<10			
9/28/2000			7.00	27.00	7.31	146.33									
12/17/2000			7.00	27.00	6.45	147.19	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
3/23/2001			7.00	27.00	6.01	147.63									
6/21/2001			7.00	27.00	6.80	146.84	110	5.5	< 0.5	5.4	4.1	2.5			
9/23/2001			7.00	27.00	7.32	146.32									
12/31/2001			7.00	27.00	4.48	149.16	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4.9			
3/21/2002			7.00	27.00	4.36	149.28									
4/17/2002			7.00	27.00	5.31	148.33	< 50	< 0.5	< 0.5	< 0.5	< 0.5	8.7			
8/12/2002			7.00	27.00	7.00	146.64									
12/6/2002			7.00	27.00	7.32	146.32	< 50	< 0.5	< 0.5	< 0.5	< 0.5	6.2	1.4	6.7	
1/29/2003			7.00	27.00	6.07	147.57									b
5/23/2003			7.00	27.00	6.45	147.19	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	0.9	7.7	
9/4/2003			7.00	27.00	6.93	146.71									c
11/20/2003			7.00	27.00	7.04	146.60									c
02/02/2004		159.21	7.00	27.00	5.92	153.29									f
05/14/2004			7.00	27.00	7.52	151.69									
09/02/2004	P		7.00	27.00	7.19	152.02	< 50	< 0.50	< 0.50	< 0.50	< 0.50	6.5	9.3	8.9	
11/04/2004			7.00	27.00	6.40	152.81									
02/08/2005			7.00	27.00	6.01	153.20									

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in με	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-3 Cont.															
05/09/2005		159.21	7.00	27.00	6.74	152.47									
08/11/2005	P		7.00	27.00	6.77	152.44	< 50	< 0.50	< 0.50	< 0.50	< 0.50	11	1.9	6.5	
11/18/2005			7.00	27.00	7.83	151.38									
02/16/2006			7.00	27.00	7.26	151.95									
5/30/2006			7.00	27.00	5.82	153.39									
8/24/2006	P		7.00	27.00	7.00	152.21	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.6	1.15	6.4	
11/1/2006			7.00	27.00	7.50	151.71									
2/7/2007			7.00	27.00	6.90	152.31									
5/8/2007			7.00	27.00	5.95	153.26									
8/8/2007	NP		7.00	27.00	7.47	151.74	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.21	6.93	
11/14/2007			7.00	27.00	7.05	152.16									
2/22/2008			7.00	27.00	5.50	153.71									
5/24/2008			7.00	27.00	7.03	152.18									
8/21/2008	NP		7.00	27.00	7.80	151.41	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.1	2.11	6.84	
11/19/2008			7.00	27.00	7.69	151.52									
2/23/2009			7.00	27.00	7.28	151.93									
5/14/2009			7.00	27.00	6.17	153.04									
8/20/2009	NP		7.00	27.00	7.38	151.83	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	2.05	7.01	
2/19/2010			7.00	27.00	5.31	153.90									
8/10/2010	NP		7.00	27.00	7.12	152.09	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	1.27	7.33	
12/16/2010			7.00	27.00	5.65	153.56									j
2/14/2011			7.00	27.00	6.20	153.01									
5/20/2011			7.00	27.00	5.77	153.44									
8/15/2011	P		7.00	27.00	6.41	152.80	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.04	7.0	
2/2/2012			7.00	27.00	6.34	152.87									
MW-4															
6/20/2000		156.53	7.00	27.00	7.50	149.03	20,000	5,100	440	1,000	1,700	<250			c
9/28/2000			7.00	27.00	8.20	148.33									

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in µ	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-4 Cont.															
12/17/2000		156.53	7.00	27.00	8.11	148.42	4,320	1,240	<20	27.2	249	<100			
3/23/2001			7.00	27.00	6.69	149.84									
6/21/2001			7.00	27.00	8.01	148.52	2,800	470	16	19	160	130			
9/23/2001			7.00	27.00	8.91	147.62									
12/31/2001			7.00	27.00	4.42	152.11	4,600	1,500	100	160	210	160			
3/21/2002			7.00	27.00	4.98	151.55									
4/17/2002			7.00	27.00	6.23	150.30	7,100	2,200	110	290	450	<250			
8/12/2002			7.00	27.00	8.24	148.29									
12/6/2002			7.00	27.00	8.42	148.11	1,500	410	6.8	20	29	43	1.1	6.7	a
1/29/2003			7.00	27.00	7.20	149.33									b
5/23/2003			7.00	27.00	7.18	149.35	<5,000	1,300	89	210	260	< 50	1.4	6.9	
9/4/2003			7.00	27.00	8.15	148.38									c
11/20/2003			7.00	27.00	8.73	147.80									c
02/02/2004	P	163.25	7.00	27.00	6.25	157.00	980	280	21	29	38	29	1.4	10.6	c, f, g
05/14/2004			7.00	27.00	8.38	154.87									g
09/02/2004	P		7.00	27.00	8.36	154.89	260	11	<1.0	5.5	14	28	2.4	7.4	g
11/04/2004			7.00	27.00	7.71	155.54									c, g
02/08/2005	P		7.00	27.00	6.27	156.98	7,500	1,700	320	480	920	45	0.65	6.5	g
05/09/2005			7.00	27.00	5.90	157.35									g
08/11/2005	P		7.00	27.00	7.96	155.29	3,100	1,100	41	160	110	32	0.6	6.5	g
11/18/2005			7.00	27.00	8.57	154.68									g
02/16/2006	P		7.00	27.00	6.28	156.97	9,400	1,800	130	600	420	35	0.5	6.8	g
5/30/2006		162.47	7.00	27.00	7.02	155.45									g
8/24/2006	P		7.00	27.00	8.26	154.21	3,600	1,400	21	110	70	39	1.00	6.8	
11/1/2006			7.00	27.00	8.67	153.80									
2/7/2007	NP		7.00	27.00	8.02	154.45	3,100	570	17	170	110	67	0.95	7.07	
5/8/2007			7.00	27.00	7.03	155.44									
8/8/2007	NP		7.00	27.00	8.60	153.87	2,900	630	22	67	57	72	0.93	6.79	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in µį	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-4 Cont.															
11/14/2007		162.47	7.00	27.00	8.53	153.94									
2/22/2008	P		7.00	27.00	6.25	156.22	3,900	880	39	180	92	70	2.31	6.87	
5/24/2008			7.00	27.00											d
8/21/2008	NP		7.00	27.00	8.96	153.51	3,700	1,100	26	85	130	53	2.26	6.80	
11/19/2008			7.00	27.00	9.20	153.27									
2/23/2009	P		7.00	27.00	6.35	156.12	3,000	220	9.1	23	19	39	2.21	6.51	
5/14/2009			7.00	27.00	7.00	155.47									
8/20/2009	NP		7.00	27.00	8.05	154.42	5,700	1,100	35	110	100	23	2.17	6.81	
2/19/2010	P		7.00	27.00	5.71	156.76	12,000	1,200	120	230	390	< 5.0	0.81	6.70	i
8/10/2010	NP		7.00	27.00	7.59	154.88	9,700	1,500	120	400	400	<20	3.81	6.8	
12/16/2010	P	162.48	7.00	27.00	6.83	155.65	15,000	1,800	82	270	210	<25	0.49	6.81	j
2/14/2011	NP		7.00	27.00	7.33	155.15	260	< 0.50	< 0.50	2.7	11	13	0.80	7.10	
5/20/2011			7.00	27.00	6.89	155.59									
8/15/2011	P		7.00	27.00	7.59	154.89	8,600	2,100	86	250	210	<12	1.02	7.0	1
2/2/2012	P		7.00	27.00	7.71	154.77	4,600	1,000	34	23	33	<12	0.60	7.2	
MW-5															
6/20/2000		151.33	10.00	23.00	7.84	143.49	<50	< 0.5	<0.5	< 0.5	<1.0	<10			
9/28/2000			10.00	23.00	8.37	142.96	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
12/17/2000			10.00	23.00	8.36	142.97	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
3/23/2001			10.00	23.00	7.55	143.78	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
6/21/2001			10.00	23.00	8.20	143.13	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
9/23/2001			10.00	23.00	8.68	142.65	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
12/31/2001			10.00	23.00	7.57	143.76	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
3/21/2002			10.00	23.00	6.12	145.21	< 50	< 0.5	< 0.5	< 0.5	<0.5	3.2			
4/17/2002			10.00	23.00	6.61	144.72	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
8/12/2002			10.00	23.00	8.14	143.19	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	4.1	7.6	
12/6/2002			10.00	23.00	8.65	142.68	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5	1.1	6.8	
1/29/2003			10.00	23.00	7.22	144.11	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.50	1	6.6	b

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentr	ations in µ;	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-5 Cont.															
5/23/2003		151.33	10.00	23.00	7.31	144.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	6.6	
9/4/2003			10.00	23.00	9.50	141.83	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.2	6.7	
11/20/2003			10.00	23.00	8.31	143.02									
02/02/2004			10.00	23.00	6.92	144.41									c, f, h
05/14/2004			10.00	23.00	8.56	142.77									h
09/02/2004	P		10.00	23.00	8.79	142.54	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.5	6.8	h
11/04/2004			10.00	23.00	8.33	143.00									c, h
02/08/2005			10.00	23.00	7.28	144.05									h
05/09/2005			10.00	23.00	8.19	143.14									h
08/11/2005	P		10.00	23.00	8.39	142.94	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	6.6	h
11/18/2005			10.00	23.00	11.25	140.08									h
02/16/2006			10.00	23.00	9.22	142.11									h
5/30/2006			10.00	23.00	7.52	143.81									h
8/24/2006	P		10.00	23.00	7.95	143.38	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.60	6.6	
11/1/2006			10.00	23.00	8.32	143.01									
2/7/2007			10.00	23.00	8.25	143.08									
5/8/2007			10.00	23.00	7.60	143.73									
8/8/2007	P		10.00	23.00	8.12	143.21	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.26	7.31	
11/14/2007			10.00	23.00	9.10	142.23									
2/22/2008			10.00	23.00	7.48	143.85									
5/24/2008			10.00	23.00	8.12	143.21									
8/21/2008	P		10.00	23.00	8.65	142.68	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.14	6.54	
11/19/2008			10.00	23.00	11.86	139.47									
2/23/2009			10.00	23.00	10.20	141.13									
5/14/2009			10.00	23.00	9.63	141.70									
8/20/2009	P		10.00	23.00	8.52	142.81	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.01	6.47	
2/19/2010			10.00	23.00											d
8/10/2010	P		10.00	23.00	8.05	143.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.15	7.1	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in µį	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-5 Cont.															
12/16/2010		156.90	10.00	23.00	8.10	148.80									j
2/14/2011			10.00	23.00											d
5/20/2011			10.00	23.00											d
8/15/2011	P		10.00	23.00	7.91	148.99	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.46	7.4	
2/2/2012			10.00	23.00	8.08	148.82									
MW-6															
6/20/2000		153.84	5.00	15.00	4.79	149.05									
9/28/2000			5.00	15.00	5.39	148.45									
12/17/2000			5.00	15.00	4.71	149.13									
3/23/2001			5.00	15.00	4.69	149.15	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
6/21/2001			5.00	15.00	5.22	148.62									
9/23/2001			5.00	15.00	5.40	148.44									
12/31/2001			5.00	15.00	3.95	149.89									
3/21/2002			5.00	15.00	2.94	150.90	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5.2			
4/17/2002			5.00	15.00	5.11	148.73									
8/12/2002			5.00	15.00	5.23	148.61									
12/6/2002			5.00	15.00	5.29	148.55									
1/29/2003			5.00	15.00	4.79	149.05									b
5/23/2003			5.00	15.00	4.31	149.53	< 50	< 0.50	< 0.50	< 0.50	< 0.50	9.4	1	6.7	
09/04/03			5.00	15.00											d
11/20/2003			5.00	15.00	6.31	147.53									
02/02/2004		159.41	5.00	15.00	4.78	154.63									f
05/14/2004			5.00	15.00	6.29	153.12									
09/02/2004			5.00	15.00	5.79	153.62									d
11/04/2004			5.00	15.00											d
02/08/2005			5.00	15.00	5.13	154.28									
05/09/2005			5.00	15.00	4.52	154.89									
08/11/2005	P		5.00	15.00	5.02	154.39	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.9	2.1	6.6	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level			Concentra	ations in με	g/L		DO		
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-6 Cont.															
11/18/2005		159.41	5.00	15.00	6.31	153.10									
02/16/2006			5.00	15.00	4.24	155.17									
5/30/2006			5.00	15.00	4.45	154.96									
8/24/2006	P		5.00	15.00	5.18	154.23	< 50	< 0.50	< 0.50	< 0.50	< 0.50	12	3.4	6.8	
11/1/2006			5.00	15.00	6.05	153.36									
2/7/2007			5.00	15.00	5.00	154.41									
5/8/2007			5.00	15.00	4.30	155.11									
8/8/2007	NP		5.00	15.00	5.51	153.90	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.57	2.94	6.87	
11/14/2007			5.00	15.00	5.38	154.03									
2/22/2008			5.00	15.00	4.70	154.71									
5/24/2008			5.00	15.00	5.25	154.16									
8/21/2008	NP		5.00	15.00	6.14	153.27	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.99	7.13	
11/19/2008			5.00	15.00	5.94	153.47									
2/23/2009			5.00	15.00	5.00	154.41									
5/14/2009			5.00	15.00	4.60	154.81									
8/20/2009	NP		5.00	15.00	5.65	153.76	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.0	1.98	6.81	
2/19/2010			5.00	15.00	7.28	152.13									
8/10/2010	NP		5.00	15.00	5.02	154.39	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.3	1.99	6.93	
12/16/2010			5.00	15.00	4.50	154.91									j
2/14/2011			5.00	15.00	4.80	154.61									•
5/20/2011			5.00	15.00	4.29	155.12									
8/15/2011	P		5.00	15.00	4.52	154.89	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	1.55	7.1	
2/2/2012			5.00	15.00											d
MW-7															
12/16/2010	P	164.80	5.00	20.00	6.52	158.28	700	< 0.50	< 0.50	15	32	62		7.08	j
2/14/2011	NP		5.00	20.00	6.77	158.03	7,100	1,700	98	260	210	<20	1.02	6.8	
5/20/2011	NP		5.00	20.00	5.84	158.96	570	< 0.50	< 0.50	37	25	4.6	1.66	6.7	1 (GRO)
8/15/2011	P		5.00	20.00	6.96	157.84	420	<1.0	<1.0	49	6.7	14	0.58	6.9	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

			Top of	Bottom of		Water Level	~~~		Concentra	ations in µg					
Well ID and Date Monitored	P/NP	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	pН	Footnote
ESL - DW ESL - NDW							100 210	1.0 46	40 130	30 43	20 100	5.0 1,800			
MW-7 Cont.															
2/2/2012	P	164.80	5.00	20.00	7.15	157.65	< 50	< 0.50	< 0.50	< 0.50	< 0.50	6.2	0.45	7.5	
MW-8															
12/16/2010	P	164.14	5.00	20.00	6.85	157.29	520	43	< 0.50	4.1	21	150	0.46	7.12	j
2/14/2011	NP		5.00	20.00	7.30	156.84	< 50	<2.0	<2.0	<2.0	< 2.0	110	1.07	6.7	
5/20/2011	NP		5.00	20.00	6.88	157.26	< 50	<2.0	<2.0	<2.0	< 2.0	88	1.35	6.5	
8/15/2011	P		5.00	20.00	6.00	158.14	< 50	5.2	<1.0	9.7	<1.0	57	0.51	6.7	
2/2/2012	P		5.00	20.00	7.57	156.57	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.9	0.68	7.1	
MW-9															
12/16/2010	P	163.77	5.00	20.00	6.63	157.14	330	18	< 0.50	11	38	390	0.57	6.97	j
2/14/2011	NP		5.00	20.00	6.85	156.92	< 50	<4.0	<4.0	<4.0	<4.0	270	0.98	6.9	
5/20/2011	NP		5.00	20.00	6.39	157.38	66	<4.0	<4.0	<4.0	<4.0	280	1.64	6.7	1 (GRO)
8/15/2011	NP		5.00	20.00	7.09	156.68	< 50	<2.0	<2.0	<2.0	< 2.0	120	0.88	7.1	
2/2/2012	P		5.00	20.00	7.18	156.59	< 50	< 0.50	< 0.50	< 0.50	< 0.50	34	0.65	7.2	

Symbols & Abbreviations:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in ft below TOC

ft bgs = Feet below ground surface

GRO = Gasoline range organics

GWE = Groundwater elevation measured in ft

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well was not purged prior to sampling

P = Well was purged prior to sampling

TOC = Top of casing measured in ft

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

BTEX = Benzene, toluene, ethylbenzene and xylenes

ESL - DW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

ESL - NDW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

NE = ESL not established

Footnotes:

- a = Chromatogram pattern: Gasoline C6-C10 for GRO/TPH-g
- b = Beginning this quarter, groundwater samples were analyzed by EPA method 8260B for TPH-g, BTEX, and fuel oxygenates
- c = Wells gauged with ORC sock in well
- d = Well inaccessible
- e = The hydrocarbon result for GRO was partly due to individual peaks in the quantitative range
- f = Well resurveyed on 1/27/2004 to NAVD88
- g = Upon review of survey data (1/27/2004), TOC elevation for MW-4 is actually 162.47 ft.
- h = Upon review of survey data (1/27/2004), MW-5 was not surveyed from the TOC. MW-5 was surveyed from the pavement due to inaccessibility to the TOC. Therefore, survey data for MW-5 from the TOC is unavailable. Historic data prior to 5/30/2006 (change in consultant) not modified
- i = Quantitation of unknown hydrocarbon(s) in sample based on gasoline
- j = Surveyed 12/9/2010
- k = Grab groundwater sample
- 1 = Quantitated against gasoline

Notes

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12

Values for DO and pH were obtained through field measurements

The DTW's and TOC's for wells MW-5 and MW-6 were taken from Delta Environmental sampling sheets because the well logs were not available

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

Table 2. Summary of Fuel Additives Analytical Data
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-1									
3/23/2001			2,710						
3/21/2002			2,000						
5/23/2003	<20,000	<4,000	1,600	<100	<100	<100			
11/20/2003	<2,000	<400	1,500	<10	<10	<10			a
05/14/2004	<5,000	<1,000	1,200	<25	<25	<25	<25	<25	
09/02/2004	<1,000	<200	660	< 5.0	<5.0	<5.0	< 5.0	< 5.0	
11/04/2004	<2,000	<400	580	<10	<10	<10	<10	<10	
02/08/2005	<2,000	<400	610	<10	<10	<10	<10	<10	
05/09/2005	<1,000	<200	620	<5.0	<5.0	<5.0	< 5.0	< 5.0	a
08/11/2005	< 500	250	390	<2.5	<2.5	2.6	<2.5	<2.5	a
11/18/2005	< 500	<100	340	<2.5	<2.5	<2.5	<2.5	<2.5	a
02/16/2006	<1,500	<100	340	<2.5	<2.5	<2.5	<2.5	<2.5	
5/30/2006	<1,500	<100	420	<2.5	<2.5	<2.5	<2.5	<2.5	a
8/24/2006	<3,000	<200	180	<5.0	< 5.0	<5.0	< 5.0	< 5.0	
11/1/2006	<3,000	<200	220	<5.0	<5.0	<5.0	< 5.0	< 5.0	a
2/7/2007	<3,000	<200	190	<5.0	<5.0	< 5.0	< 5.0	< 5.0	
5/8/2007	<3,000	<200	420	<5.0	<5.0	<5.0	< 5.0	< 5.0	
8/8/2007	<300	<20	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/14/2007	<1,500	<100	210	<2.5	<2.5	<2.5	<2.5	<2.5	
2/22/2008	<300	<10	250	< 0.50	< 0.50	1.5	< 0.50	< 0.50	
5/24/2008	<3,000	<100	380	<5.0	<5.0	<5.0	< 5.0	< 5.0	
8/21/2008	<1,500	<50	170	<2.5	<2.5	<2.5	<2.5	<2.5	
11/19/2008	<300	<10	30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/23/2009	<1,500	<50	240	<2.5	<2.5	<2.5	<2.5	<2.5	
5/14/2009	<300	<10	200	< 0.50	< 0.50	1.3	< 0.50	< 0.50	
8/20/2009	<1,200	<40	170	<2.0	<2.0	<2.0	<2.0	<2.0	
2/19/2010	<300	<10	170	< 0.50	< 0.50	1.2	< 0.50	< 0.50	
8/10/2010	<1,500	<50	230	<2.5	<2.5	<2.5	<2.5	<2.5	
12/16/2010	<1,200	<40	140	<2.0	<2.0	<2.0	<2.0	<2.0	

Table 2. Summary of Fuel Additives Analytical Data
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-1 Cont.									
2/14/2011	<1,500	<50	170	<2.5	<2.5	<2.5	<2.5	< 2.5	
8/15/2011	<1,500	<50	130	<2.5	<2.5	<2.5	<2.5	<2.5	
2/2/2012	<600	<20	66	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-2									
3/23/2001			<2.5						
3/21/2002			45						
5/23/2003	<100	<20	55	< 0.50	< 0.50	0.53			
02/02/2004	<100	<20	37	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
09/02/2004	< 500	<100	67	<2.5	<2.5	<2.5	<2.5	< 2.5	
02/08/2005	<100	<20	30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	35	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
02/16/2006	<300	<20	39	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/24/2006	<300	<20	25	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/7/2007	<300	<20	7.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	7.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/22/2008	<300	<10	24	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	4.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/23/2009	<300	<10	24	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	8.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/19/2010	<300	<10	22	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/10/2010	<300	<10	23	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/16/2010	<300	<10	17	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/14/2011	<300	<10	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<300	<10	1.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/2/2012	<300	<10	1.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-3									
6/20/2000			<10						
12/17/2000			<2.5						

Table 2. Summary of Fuel Additives Analytical Data
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ЕТВЕ	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-3 Cont.									
6/21/2001			2.5						
12/31/2001			4.9						
4/17/2002			8.7						
12/6/2002			6.2						
5/23/2003	<100	<20	1.6	< 0.50	< 0.50	< 0.50			
09/02/2004	<100	<20	6.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
8/24/2006	<300	<20	7.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	3.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	2.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/10/2010	<300	<10	1.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<300	<10	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-4									
6/20/2000			<250						
12/17/2000			<100						
6/21/2001			130						
12/31/2001			160						
4/17/2002			<250						
12/6/2002			43						
5/23/2003	<10,000	<2,000	<50	<50	<50	<50			
02/02/2004	<500	<100	29	<2.5	<2.5	2.6	<2.5	<2.5	
02/02/2004	<200	<40	28	<1.0	<1.0	<1.0	<1.0	<1.0	
02/08/2005 08/11/2005	<5,000 <2,000	<1,000 <400	45 32	<25 <10	<25 <10	<25 <10	<25 <10	<25 <10	
								l	
02/16/2006	<6,000	<400	35	<10	<10	<10	<10	<10	
8/24/2006	<1,500	<100	39	<2.5	<2.5	<2.5	<2.5	<2.5	
2/7/2007	<6,000	<400	67	<10	<10	<10	<10	<10	
8/8/2007	<6,000	<400	72	<10	<10	<10	<10	<10	

Table 2. Summary of Fuel Additives Analytical Data
ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-4 Cont.									
2/22/2008	<6,000	<200	70	<10	<10	<10	<10	<10	
8/21/2008	<12,000	<400	53	<20	<20	<20	<20	<20	
2/23/2009	<3,000	<100	39	<5.0	<5.0	<5.0	< 5.0	< 5.0	
8/20/2009	<12,000	<400	23	<20	<20	<20	<20	<20	
2/19/2010	<3,000	<100	<5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0	
8/10/2010	<12,000	<400	<20	<20	<20	<20	<20	<20	
12/16/2010	<15,000	< 500	<25	<25	<25	<25	<25	<25	
2/14/2011	<300	<10	13	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<7,500	<250	<12	<12	<12	<12	<12	<12	
2/2/2012	<7,500	<250	<12	<12	<12	<12	<12	<12	
MW-5									
6/20/2000			<10						
9/28/2000			<2.5						
12/17/2000			<2.5						
3/23/2001			<2.5						
6/21/2001			<2.5						
9/23/2001			<2.5						
12/31/2001			<2.5						
3/21/2002			3.2						
4/17/2002			<2.5						
8/12/2002			<2.5						
12/6/2002			<2.5						
1/29/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50			
5/23/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50			
9/4/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
09/02/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	< 300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Table 2. Summary of Fuel Additives Analytical Data ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-5 Cont.									
8/21/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/10/2010	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-6									
3/23/2001			<2.5						
3/21/2002			5.2						
5/23/2003	<100	<20	9.4	< 0.50	< 0.50	< 0.50			
08/11/2005	<100	<20	7.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
8/24/2006	<300	<20	12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	0.57	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/10/2010	<300	<10	4.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<300	<10	2.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-7									
12/16/2010	<300	<10	62	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/14/2011	<1,2000	<400	<20	<20	<20	<20	<20	<20	
5/20/2011	<300	<10	4.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<600	<20	14	<1.0	<1.0	<1.0	<1.0	<1.0	
2/2/2012	<300	<10	6.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-8									
12/16/2010	<300	<10	150	< 0.50	< 0.50	1.7	< 0.50	< 0.50	
2/14/2011	<1,200	<40	110	<2.0	<2.0	<2.0	<2.0	< 2.0	
5/20/2011	<1,200	<40	88	<2.0	<2.0	<2.0	<2.0	<2.0	
8/15/2011	<600	<20	57	<1.0	<1.0	<1.0	<1.0	<1.0	
2/2/2012	<300	<10	3.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Table 2. Summary of Fuel Additives Analytical Data ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Well ID and			I		ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-9									
12/16/2010	<300	40	390	< 0.50	< 0.50	4.1	< 0.50	< 0.50	
2/14/2011	<2,400	<80	270	<4.0	<4.0	<4.0	<4.0	<4.0	
5/20/2011	<2,400	<80	280	<4.0	<4.0	<4.0	<4.0	<4.0	
8/15/2011	<1,200	<40	120	<2.0	<2.0	<2.0	<2.0	< 2.0	
2/2/2012	<300	<10	34	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Symbols & Abbreviations:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above the laboratory reporting limi
- 1,2-DCA = 1,2-Dichloroethane

ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

 $\mu g/L = Micrograms per Liter$

ESL - DW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

ESL - NDW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

NE = ESL not established

Footnotes:

a = The continuing calibration verification for ethanol was outside of client contractual limits, however, it was within method acceptance limits. The data should still be useful for its intended purpose

Notes:

All volatile organic compounds analyzed using EPA Method 8260B

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

APPENDIX B

Soil Boring and Well Construction Logs

0	Blows/ Ft.	Sample No.	USCS	DESCRIPTION	WELL
0				Asphalt (3 inches) over road base (3 inches).	
2 -			CL	Silty clay, dark gray-brown, moist, medium plasticity, stiff.	
6 -	16	S-6		OVA = .04%	
8 –			GC	Clayey gravel, dark brown, wet, dense.	
10 -	40	S-11	<u></u>	Sample was wet with gasoline.	
12 -				OVA = .02%	
14 🗕			CL	Silty clay, light brown, very moist, medium plasticity, very stiff.	
16 -	25	S-16		OVA = 20ppm	
20 -	25	S-21 I	en e		
22	2)	3-21		Wet. OVA = $10ppm$ Total Depth = $2\frac{1}{2}$ feet. Boring terminated due to ground water.	
24				Boring backfilled with sand and cement slurry.	
1					
_					

LOG OF BORING B - 1

ARCO Station No. 374

Telegraph and Alcatraz Avenues
Oakland, California

PLATE

	Blows/ Ft.	Sampli No.	e uscs	DESCRIPTION	WELL CONST.
0 1				Asphalt (3 inches) over road base (3 inches).	
2 –			CL	Silty clay, with trace sand, gray-brown, damp, medium plasticity, very stiff.	
4 -			r l		
6 –	29	S-6		OVA = .05%	
8 –	10		SC	Clayey sand, gray-brown, wet, medium dense.	
10	18	5-9.5	■ ■	OVA = 100ppm	
12					
14		S-14		No sample recovered.	
16 🗕		MINISTER AND AREA SHEET, MAKE THE PARTY OF T		Total Depth = $14\frac{1}{2}$ feet. Boring terminated due to ground water. Boring backfilled with sand and cement slurry.	
					4 Vision and the second
4					
-					
4					
-					
4					
	4 - 6 - 8 - 10 - 12 - 14 -	0 Ft. 29 4 - 29 8 - 18 10 - 14 - 14	6 - 29 S-6 8 - 18 S-9.5 10 - S-14	0 Ft. No. CL 2 - CL 4 - SC 10 - SC 12 - SC 14 - S-14	Asphalt (3 inches) over road base (3 inches). CL Silty clay, with trace sand, gray-brown, damp, medium plasticity, very stiff. SC Clayey sand, gray-brown, wet, medium dense. OVA = 100ppm No sample recovered. Total Depth = 14½ feet. Boring terminated due to ground water.

LOG OF BORING B - 2

ARCO Station No. 374
Telegraph and Alcatraz Avenues
Oakland, California

PLATE

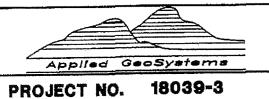
	Blows/ Ft.	Sample No.	uscs	DESCRIPTION	WELL
U -				Asphalt (3 inches) over road base (3 inches).	
2 -			CL	Silty clay, with sand and gravel, gray-brown, damp, medium plasticity, stiff.	
4 -	13	S-6			
8 -				OVA = 4 lppm	
10 -	16	s-10		Silty clay, very moist. OVA = 82ppm	
12 -				Total Depth = 11 feet. Boring backfilled with sand and cement slurry.	
14 -	in the state of th		Series Control of the		
16			The second secon		
****	**************************************				· · · · · · · · · · · · · · · · · · ·
-					
-					
-					
-					
-					
					į

LOG OF BORING B - 3
ARCO Station No. 374
Telegraph and Alcatraz Avenues
Oakland, California

PLATE

	Blows/ Ft.	Sample No.	uscs	DESCRIPTION	CONST
0 -				Asphalt (3 inches) over base rock (3 inches).	
2 -			CL	Silty clay, gray-brown, damp, medium plasticity, medium stiff.	
4 - 6 -	27	S-6	GC	Clayey gravel, gray-brown, damp, medium dense. OVA = .10%	
8 - 0 -	36	S-9.5	<u> </u>	Very moist, dense. $OVA = 1.0\%$	
12 -				Total Depth = feet. Boring terminated due to ground water. Boring backfilled with sand and cement slurry.	
_					
		A THE PERSON NAMED IN COLUMN TO THE			

18039-1


LOG OF BORING B - 4 ARCO Station No. 374

> Telegraph and Alcatraz Avenues Oakland, California

PLATE

Total depth of borin	g:28-1/2 feet [lameter of b	oring, 11 inc	hes Date drilled	7-6-89
Casing diameter	4 inches	Length:	27 feet	Slot size	0.020-inch
Screen diameter	4 inches	Length:	20 feet	_ Material type:	Sch 40 PVC
Drilling Company Kvil	haug Drilling Co	mpany, Inc. Dr	Iller Rod an	d Leroy	
Method Used: Hollov	v-Stem Auger			Field Geologist:	Becky and Keith
Signat	ure of Register	red Professio	neli	which is the second of the sec	
	Registration I	No.1	State:	CA	

Depth	Sample P.I.D. USCS Code De	escription Well Const.
. 0 -	very stiff, rootlets,	lightly damp, medium plasticity,
- 4 - - 6 -	S-3.5 18 0	lightly damp, medium plasticity, minor iron staining.
- 8· - 10·	slight plasticity, stif	clay with gravel, some mottling,
	T-15 	
- 18 - 20	S-18.5 12 0 Silty clay, some sand at medium plasticity,	
	S-18.5 12 0 Silty clay, some sand a medium plasticity,	nd gravel, light very stiff. (Section o

LOG OF BORING B-1/MW-1

ARCO Station No. 374 6407 Telegraph Avenue Oakland, California PLATE

-23	SMOTH 347		CL	Silty clay, some sand and gravel, light brown, moist, medium plasticity, stiff.	Conet.
-23	.3		[
-23 🕱	1 - 1				
1)	0		Trace gravel.	
	7				
-27	.3 5 7	0			
				Total Depth = 28-1/2 feet.	
The state of the s					
	-27	-27	-27 X 7 0	-27 x 7 0	-27 x 7 0 Total Depth = 28-1/2 feet.

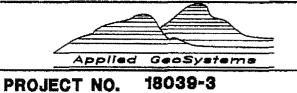
Applied GeoSystems
PROJECT NO. 18039-3

LOG OF BORING B-1/MW-1

ARCO Station No. 374
6407 Telegraph Avenue
Oakland, California

PLATE

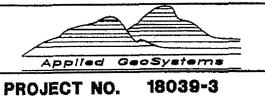
Total depth of boring	0: <u>28-1/2 fee</u> t	Diameter of t	orings 11 inc	hes Date drilled :	7-6-89
Casing diameter:	4 inches	Lengthı	27 feet	Slot size:	
Screen dismeter:	4 inches	Length:_	20 feet	Material type:	
Drilling Company Kvill	naug Drilling Co	mpany, Inc.Dr	Illeri Rod an	d Leroy	
Method Used: Hollow				Field Geologist	Becky and Keith
Signatu	ire of Register	ed Professio	nøli		Dooky and Keltin
	Registration M	lo.ı	State	CA	


Depth	Semple No.	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -		Т 6		CL	Sandy clay, dark brown, damp, slight plasticity, very stiff.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 4 -	S-3.5	6 10 12	0			2
- 8 -	S-8.5	7 20 25	0	V	Silty clay, with some gravel, light brown, damp, hard.	
	S-13.5	5 7 15	0		Very stiff.	
- 16 - - 18 - - 20 -	5-18.5	7 20 25	0	₹	Silty clay with gravel, brown, moist, hard. (Section continues downward	

LOG OF BORING B-2/MW-2

ARCO Station No. 374 6407 Telegraph Avenue Oakland, California PLATE

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const
				CL	Silty clay with gravel, brown, moist, hard.	
-22-	1	.3				
-24-	S-23 X	12	0		Silty clay, some fine gravel, dark brown, stiff.	
-26-		4.0				
-58	S-27 🛪	.10 20 25	0		Silty clay with sand, medium brown, slightly damp, slight plasticity, hard.	****
-30 -					Total Depth = $28-1/2$ feet.	
-32						
-34 -					•	
-36-						
-38-						
- 40 -				majore (Parlicipality)		
-42 -					•	
-44						
-46-						
-48-						
.50 _						
			İ			



LOG OF BORING B-2/MW-2 PLATE

ARCO Station No. 374 6407 Telegraph Avenue Oakland, California

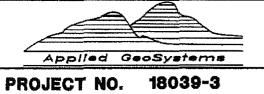
Total depth of borin	0 28-1/2 feet D	lameter of b	orings 11 inc	hes Date drilled	7-7-89
Casing diameter:	4 inches	Length:	27 feet	Slot size:	0.020-inch
Screen diameter:	4 inches	Length:	20 feet	Material type:	Sch 40 PVC
Drilling Companyi Kvii	haug Drilling Con	npany, Inc. Dr i	Iller: Rod ar	nd Leroy	
Method Used: Hollov	v—Stem Auger			_ Field Geologist:	Becky and Keith
Signat	ure of Register	ed Professio	nalı		
	Registration N	0.1	State:	CA	

Depth	Sample No.	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -					Out and a // inches) and because he // inches	→
- 2 -		3		CL	Concrete (4 inches) over baserock (6 inches). Silty clay, with sand and some gravel, medium brown, damp, slight plasticity, stiff, rootlets.	7 V V V
- 4 -	S3,5	10 10	0			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 6 -				•		
- 8 -	S-8.5	2 4 8	0	<u>=</u>	Damp.	
10-						
12-	H	4 6				
14-	S-13.5	10	8.5		Some mottling, moist.	
- 16 -	-	1.6				
- 18 - - 20 -	S-18.5	15	9.1		Silty clay, minor gravel, light to medium brown, damp, medium plasticity, stiff.	
					(Section continues downwar	(b

LOG OF BORING B-3/MW-3
ARCO Station No. 374
6407 Telegraph Avenue
Oakland, California

PLATE

-23 🕱	3,1078 . 6 . 8 . 12	0	CL	Silty clay, minor gravel, light to medium brown, damp, medium plasticity, stiff.	
	·6 8 12	0			
	12	0			
				Very stiff.	
П					
-27	.5 10 12			Silty clay with sand, slight plasticity.	And her bill to make briefly
				Total Depth = $28-1/2$ feet.	
ورواوات					
- A Committee of the Action of			A CONTRACTOR OF THE CONTRACTOR		
		·		,	
			T-O'Childe Lord (All Control of the		
					Total Depth = 28-1/2 feet.


PROJECT NO. 18039-3

LOG OF BORINGB-3/MW-3
ARCO Station No. 374

ARCO Station No. 374 6407 Telegraph Avenue Oakland, California PLATE

Total depth of boring	<u> 27-1/2</u>	feet Dlamet	er of borlr	ig: 11	inches Date drilled	7-7-89
Casing diameteri	4 inch	es Len	gth:	27 fee	et Slot alze.	0.020-inch
Screen diameter:	4 inch	es Len	igth: 2	0 feet	Material type:	Sch 40 PVC
Drilling CompanyiKvill	naug Drilli	ng Company,	Inc.Driller	Rod	and Leroy	
Method Used: Hollow	-Stem A	iger	•		Fleid Geologist,	Becky and Keith
Signatu	ire of Re	glatered Pro	ofessionalı			
	Registre	tion No.	***************************************	State	CA	

Depth	Sampi No.		P.J.D.	USCS Code	Description	Well Const.
- 0 -				CL	Silty clay, some sand and fine—grained gravel, very dark brown, slightly damp, slight plasticity, stiff.	70 00
2 -					and the same of th	V V V V V V V V V V V V V V V V V V V
- 4 -	3.5	8	0			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
6 -						
8 -	8.5	T 3	0	=		
10-				<u></u>		
	S-13.5	10	41.6	GM	Sandy gravel, some silt, medium brown, very moist, medium dense, obvious odor.	
- 16 -						
- 18 -	S-18.5	T 1:	5 0		Wet, dense.	
- 20 -	7					
					(Section continues downwar	rd) 🗮 🚟

LOG OF BORING B-4/MW-4

ARCO Station No. 374 6407 Telegraph Avenue Oakland, California PLATE

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const.
				GM	Sandy gravel, some silt, medium brown, very moist, medium dense.	
-55-		, 6 10		CL	Silty clay, some sand and gravel, very stiff.	
-24-	S-23.5	15	0			
-26-	Ţ	.7 20				
-28	S-27	20	0		Grades more gravelly. Total Depth = 27-1/2 feet.	
					· · · · · · · · · · · · · · · · · · ·	
-30 -						
-32 -	¥					
-34 –						
-36-						
-38-						
- 4 0 -						
-42-					,	
-44-						
-46-						
- 48-						
-50 -						

Applied GeoSystems 18039-3 PROJECT NO.

LOG OF BORINGB-4/MW-4 PLATE

ARCO Station No. 374 6407 Telegraph Avenue Oakland, California

Depth of boring: 25-1/2 feet Diameter of	boring: 10 inc	hes Date drilled: 4/1/92
Well depth: 23 feet Material type:	Sch 40 PVC	_ Casing diameter: 4 inches
Screen interval: 10 to 23 feet	Slot size:	0.020-inch
Drilling Company: Gregg Drilling	Driller:	Steve Stone
Method Used: Hollow—Stem Auger		Field Geologist: Rob Campbell
Signature of Registered Profes Registration No.: RCE 04	V	

	No	ole z	BIOW	P.I.D.	USCS Code	Description	Well Const.
- 0 -			-			Paved street: Alcatraz Avenue Asphalt (6 inches).	7,9
_					SW	Gravelly sand, gray, damp, very dense: Fill (Baserock).	
- 2 -					CL	Silty clay with trace of coarse—grained sand, dark blue—gray, damp, medium plasticity, very stiff.	20 00 0 0 0
- 4 -						Color change to light brown at 4 feet.	
- 6 -	S-5.5	∏ 7 18 36 22	3 2	0		Color change to light brown mottled with green, hard; caliche nodules present.	7
- 8 -					<u>v</u>	Color change to green at 7-1/2 feet. (Water level - 4/9/92).	
- 10 -	S-10	5 110 20	'	0	_	Color change to dark green at 10 feet, moist.	
- 12 -							
				}		Color change to light brown at 13 feet.	
· 14 -	5-14.5	T 6		0	CL	Sandy clay with silt, light brown, very moist, medium plasticity, hard.	
- 16 -		Ш29			CL	Gravelly clay with sand, light brown, very moist, low plasticity, hard.	
18		8			CL	Silty clay with sand, light brown, very moist, low plasticity, very stiff.	
20 -	S-19	10 112		0	<u>▼</u>	Clayey sand, brown, wet, medium dense.	
				-	СН	Silty clay, light brown, very moist, high plasticity, hard.	

(Section continues downward)

Working to Restore Nature

PROJECT:

60025.05

LOG OF BORING B-5/MW-5

ARCO Station 374 6407 Telegraph Avenue Oakland, California

PLATE

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const.
-22 -				СН	Silty clay, light brown, very moist, high plasticity, hard.	
-24 -	S-24.5	10 22 35	0	ML	Sandy silt with clay, brown, moist, low plasticity, hard.	
- 26 -		35			Total depth = $25-1/2$ feet.	
- 88 –						
-30 -				To the state of th		
-32				A SPACE TO		
34 -		To the state of th		- Landerson Control of the Control o		
36-						
38-						
40 -						
42						
44						
46						
48-				**************************************		
50 -						

Working to Restore Nature

PROJECT 60025.05

LOG OF BORING B-5/MW-5

ARCO Station 374
6407 Telegraph Avenue
Oakland, California

PLATE

Depth of boring: 17 feet	Diameter of	boring: 10 inc	hes Date drilled: 4/1/92								
Well depth: 15 feet	_ Material type:	Sch 40 PVC	_ Casing diameter: 4 inches								
Screen interval: 5 to 15	feet	Slot size:	0.020-inch								
Drilling Company: Gregg	Drilling	Driller:	Steve Stone								
Method Used: Hollow	v-Stem Auger		Field Geologist: Rob Campbell								
Signature of Registered Professional											
Registro	Registration No.: RCE 044600 State: CA										

Depti	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 - - 2 - - 4 - - 6 - - 10 -	S-5.5		4 6 9 11 18 25 4 8 16	0 0	SW CL CL GP	Paved Street: Irwin Court. Asphalt (7 inches). Gravelly sand, gray, damp, very dense: Fill (baserock). Silty clay, dark brown mottled with green, moist, medium plasticity, stiff. Color change to light brown at 3-1/2 feet. (Water level - 4/9/92) Sandy clay with silt, light brown, moist, low plasticity, stiff; some organic fragments and root holes. Sandy gravel with some silt, light brown, wet, dense.	
- 14 - - 16 - - 18 -	S-15	X	6 12 18 11 25 32	0	CL	Silty clay with gravel, light brown, very moist, medium plasticity, hard. Total depth = 17 feet.	

R		SA	A
Working	lo l	Restore	Matture

60025.05 PROJECT:

LOG OF BORING B-6/MW-6

ARCO Station 374 6407 Telegrapf Avenue Oakland, California

PLATE

SOIL BORING LOG Boring					Boring	No. B	-11	Sheet: 1 of 1			
Clie	nt	ARCO	D 374			Da	ıte	November 13, 2008 RSI rig type: Geoprobe GH-40			
Add	ress		Telegra	nph Ave	nue	-	illing Co.				
			ind, CA			 Driller		Juan Morales			
Proj	ect No.	E374				_	ethod	Direct Push borehole diameter: 3"			
	ged By:		Bittinge)r		-	mpler:	Acetate Liner			
	Pack		16 ft. t		·····			FORTION AND ADDRESS OF THE PROPERTY OF THE PRO			
		<u> </u>				-			A72-72-77-		
	Sample		Sa	mple							
Туре		- Blow Count		Recov.	Well Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID		
								Descriptions of materials and conditions	(PPM		
						1		Airknife to 5' bgs.			
					Sec.	2		mixed fill material (fine grained soil, sand, and gravel mixtures) with plastic			
			1		200	_		and other debris			
			ļ			3					
						4					
			Ī	1			CL	SILTY CLAY fill material, olive brown to greenish gray, dry to moist			
						5					
					1.40	— 6					
]	~~~~~			1							
					100	7					
			'		1 1 3	8					
					*						
		 			.X₽	— ⁹	GP	GRAVEL (crushed rock fill material), fine gravel particle size, very wet			
					* ****	10					

		 			No.	11					
						12					
									+		
						— ¹³ [
					o e e e e e e e e e e e e e e e e e e e	14					
					· #						
s	B11-15		9:03		April 1	15	CL	SILTY CLAY, grayish brown (13.5' to 15'), light olive brown with orange iron			
					e they	16		oxide stains (15'-16'), wet (13.5'-15'), moist (15'-16'), stiff	4.2		
	l				1				1		
						17					
						18					
									11		
						— ¹⁹	ŀ.				
\bot						20					
			F	Recoven	,		,	Comments: total depth = 16'			
			c	Sample							
			Ü	.ampic		•					

STRATUS ENVIRONMENTAL, INC.

sc	IL BORI	NG LC	G		Boring	No. B	-12	Sheet: 1 of 1	
Clie	ent	ARCC	374			Da	te	November 13, 2008	·····
Add	iress		Telegra	ph Ave	nue	- Dri	lling Co.	RSI rig type: Geoprobe GH-40	·····
		Oakla	nd, CA		/mwakanka a anga a a a a a a a a a a a a a a a a	Dri	ller	Juan Morales	
Proj	ject No.	E374				Me	thod	Direct Push borehole diameter: 3"	
Log	ged By:	Scott	Bittinge	Γ		Sa	mpler;	Acetate Liner	
Wel	l Pack	grout:	16 ft. t	o 0 ft.	······································	•			
	Sample	Blow	Sai	mple	<u> </u>	Danéh			
Туре	No.	Count	Time	Recov.	Well Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
						1		Airknife to 5' bgs.	
					444.	_2 		mixed fill material (fine grained soil, sand, and gravel mixtures) with plastic and other debris	
					Total Marie	_3 4			***
						5	CL	SILTY CLAY fill material, olive brown to greenish gray, dry to moist	
					4. If	6 			
			·		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
						9			
		*******		*******	197-	10	GP	GRAVEL (crushed rock fill material), fine gravel particle size, very wet	-
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			********	- War	11  12			
						13			
						14			
S	B12-15.5		9:50		and the second	15 16	CL	SILTY CLAY, light olive brown, damp to moist, stiff	6.3
						17			
					44.4	18	-	***************************************	
						- ¹⁹   - ₂₀			-
			f	Recover	у]			Comments: total depth = 16'	
			8	Sample			The state of the s		

STRATUS ENVIRONMENTAL, INC. SOIL BORING LOG

Boring No. B-13

Sheet: 1 of 1

	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	***************************************	
Client	ARCO 374	Date	September 21, 2009
Address	6407 Telegraph Avenue	Drilling Co.	RSI Drilling rig type: Powerprobe 6600
	Oakland, CA	Driller	Gilberto
Project No.	E374	Method	Geoprobe Hole Diameter: 2 inches
Logged By:	Collin Fischer	Sampler:	Continuous Core

	Sample	Blow	s	ample	Depth				
Туре	No.	Count		Recov.	Scale	Lithologic Column		PID	
							Descriptions of Materials and Conditions Cleared to 6.5' bgs with air knife.	(PPM	
			ļ	+	1				
							Silty clay with sand, CL, (0'-5.5'), dark gray, moist, medium plasticity		
			<del> </del>	<del> </del>	3	CL	60% clay, 30% silt, 10% medium grained sand		
					4				
s	B-13 4.5'	N/A	1400	400				18	
	D-13 4.5	IN/A	1120	100	5				
					6	//			
s	B-13 6.5'	N/A	1130	100		SC	Clayey sand with silt and gravel, SC, (5.5'-7.5'), dark gray, moist, HC odor	48	
					7		50% medium grained sand, 25% clay, 15% silt, 10% medium gravel		
					8	ML			
S	B-13 8.5'	N/A	1515	100			Clayey silt, ML, (7.5'-8.5'), dark gray, moist, medium plasticity, HC odor	3800	
					-9		60% silt, 40% clay		
					10	20		İ	
			- January			sc	Clayey sand with silt and gravel, SC, (8.5'-12.5'), dark gray, moist to wet		
						ľ	50% coarse grained sand, 25% clay, 15% silt, 10% coarse gravel		
					12	ļ.			
					13				
						-			
}					14	1	City also with a second Ol 140 Pt 140 Pt		
					15	13	Silty clay with gravel, CL, (12.5'-18'), dark yellowish brown, moist, medium plasticity 70% clay 30% silt		
						CL			
					16	-			
						]			
					18				
					19				
								- <del> </del>	
					20				
			R	ecovery _		C	comments: Failed water sample from temporary screen interval from 8'-18' bgs.		
							•		
			Sa	ample	_				
							STRATILE		
							STRATUS ENVIRONMENTAL, INC.		
						1			
								;	

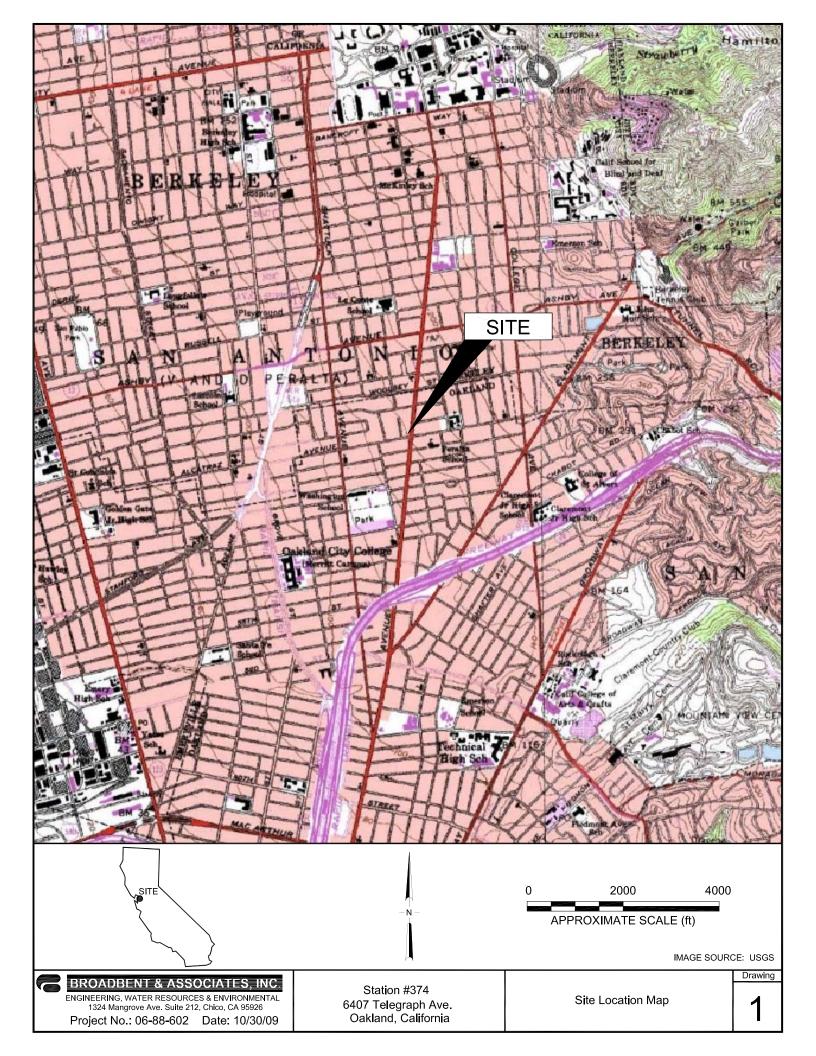
Client	ARCO 374	Date	September 21, 2009
Address	6407 Telegraph Avenue	Driffing Co.	RSI Drilling rig type: Powerprobe 6600
	Oakland, CA	Driller	Gilberto
Project No.	E374	Method	Geoprobe Hole Diameter: 2 inches
Logged By:	Collin Fischer	Sampler:	Continuous Core

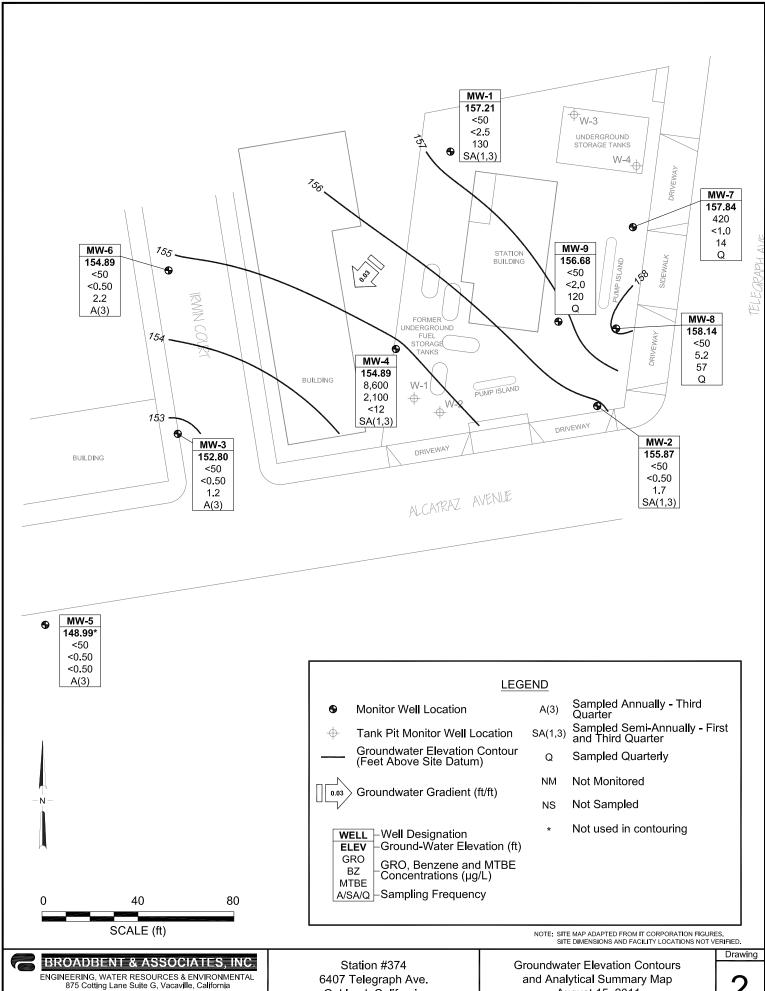
	Sample	T	Sample					<del></del>
Туре		Blow Count		Recov.	Depth Scale	Lithologic Column		PID
7.			1	1		Column	Descriptions of Materials and Conditions Cleared to 6.5' bgs with air knife.	(PPM)
			ļ		_1		***************************************	
					_ ₂			
							Silty clay with sand, CL, (0'-5.5'), dark gray, moist, medium plasticity	
				ļ	³	CL	60% clay, 30% silt, 10% medium grained sand	
					4			
S	B-14 4.5'	N/A	0940	100				0
	***				5			
					6			
S	B-14 6.5'	N/A	0950	100			Clayey silt, ML, (5.5'-7'), dark gray, moist, medium plasticity, HC odor	
					7		60% silt 40% clay	
					8	ML		
S	B-14 8.5'	N/A	1100	100			Clayey silt with sand and gravel, ML, (7'-11'), dark gray, moist, medium plasticity	62
				********	⁹		HC odor, 50% silt, 30% clay, 10% fine grained sand, 10% medium gravel	
					10			
		†			11			
					12	].		
					13			
					14	50	A1	
					15	SC	Clayey sand with silt and gravel, SC, dark yellowish brown, wet 50% coarse grained sand, 25% clay, 15% silt, 10% coarse gravel	
						1		
					16	-		
					— ₁₇			
						-	***************************************	
					18	-		
					19			
						1-		
				<del>_</del>	20			
			R	ecovery		c	Comments: Failed water sample from temporary screen intervals from 4.5'-14.5'	
						a	nd 8'-18' bgs.	
			S	ample				
				7				
							STRATILE	
							STRATUS ENVIRONMENTAL, INC.	ļ
							ZIVO INCIDIO INITAL, HVC.	Í

Client	ARCO 374	Date	September 21, 2009
Address	6407 Telegraph Avenue	Drilling Co.	RSI Drilling rig type: Powerprobe 6600
	Oakland, CA	Driller	Gilberto
Project No.	E374	Method	Geoprobe Hole Diameter: 2 inches
Logged By:	Collin Fischer	Sampler:	Continuous Core

	Sample	Blow	S	ample	De45		,	
Туре	No.	Count		Recov.	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID
					1		Cleared to 6.5' bgs with air knife.	(PPM)
				ļ	_2		C:16 1	
				**********	3 3	CL	Silty clay with sand, CL, (0'-5.5'), dark gray, moist, medium plasticity 60% clay, 30% silt, 10% medium grained sand	
S	B-15 4.5'	N/A	1015	100	5			163
S	B-15 6.5'	N/A	1025	100	 6			
					7		Clayey silt, ML, (5.5'-9.5'), dark gray, moist, medium plasticity, HC odor	82
s	B-15 8.5'	N/A	1210	100	8	ML	60% silt, 40% clay	
					9			146
					10 11		Clayey sand with silt and gravel, SC, (9.5'-11.5'), dark gray, wet, HC odor 50% medium grained sand, 25% clay, 15% silt, 10% coarse gravel	
					12	sc	growth dard, 20% day, 10% dar, 10% doarse graver	
					13		Clayey sand with silt and gravel, SC, (11.5'-15'), dark yellowish brown, moist	
					14	-	50% medium to coarse grained sand, 25% clay, 15% silt, 10% coarse gravel	
				**********	15  16			
					17	CL 5	Silty clay, CL, (15'-18'), dark yellowish brown, moist, medium plasticity 70% clay, 30% silt	
					18			
					19			
L_				ecovery	20			
			, K	ecovery D			comments: Water sample taken from temporary screen interval (8'-18') bgs.	
			Sa	ample —	J			
						-	STRATUS ENVIRONMENTAL, INC.	

PR	OJECT NAME: <u>E</u>	BP/ARCO 374	<u> </u>			SITE AL	DDRESS: 6407 Telegraph Ave., Oaklan	d, CA		
PR	OJECT NUMBER	:06-88-60	2			LEGAL	DESC:	APN:		
LO	GGED BY:A	aron Sonerho	lm			FACILIT	Y ID OR WAIVER:	_ NOI NUMBER:	NOI NUMBER:	
DA	TE: <u>11/24/2</u>	010 ST	ART:	0745		DRILLIN	NG COMPANY: Gregg	DRILLER: _	Jason	
WE	ELL <b>I</b> D: <u>B-16/M</u>	W-7	STOP:	101	5		NG METHOD: Hollow Stem Auger SAI		t Spoon	
DEPTH (FEET)			PID NOISTURE COLOR		CONSI	GRAIN SIZE	CLASSIFICATION	REMARKS & ODORS		
1 —	NITE GROUT				Gray to					
3 —	BENTONITE	MW-7-3	0.0 ppm	Moist	Gray to Dk. Gray		Silty clay - clayey silt with sand	CL		
5 —		MW-7-5	0.0 ppm							
6 — 7 —	AND	MW-7-6	8.7 ppm	_			Clayey silt with some sand and gravel	ML		
8 —	#2/12 8	MW-7-8	385 ppm	<u></u> Moist	Gray - Dk. gray	Stiff	Clayey silt with sand grading to silty san gravel	d and		
9 —		MW-7-9.5	0.0 ppm	Moist	Brown - Reddish brown	Med. Dense	Sand, fine grained poorly graded with tra	ace silt SP		
11 —		MW-7-11	9.4 ppm		Brown Dark brown		Silty sand with gravel	SM		
12 — 13 —		MW-7-12.5	0.0 ppm	Very moist		Very stiff	Clayey silt and sand and gravel	CL		
14 —		MW-7-14	0.0 ppm							
15 — 16 —		MW-7-15.5	0.0 ppm				Silty sands with gravels, fine to coarse g	grained SM		
17 —	SCREEN	MW-7-17	0.0 ppm							
18 — 19 —	0.01"	MW-7-18.5	0.0 ppm	Very moist to wet		Stiff	Wet at 18 feet Silty clay with gravel	CL		
20 _		MW-7-20	0.0 ppm							

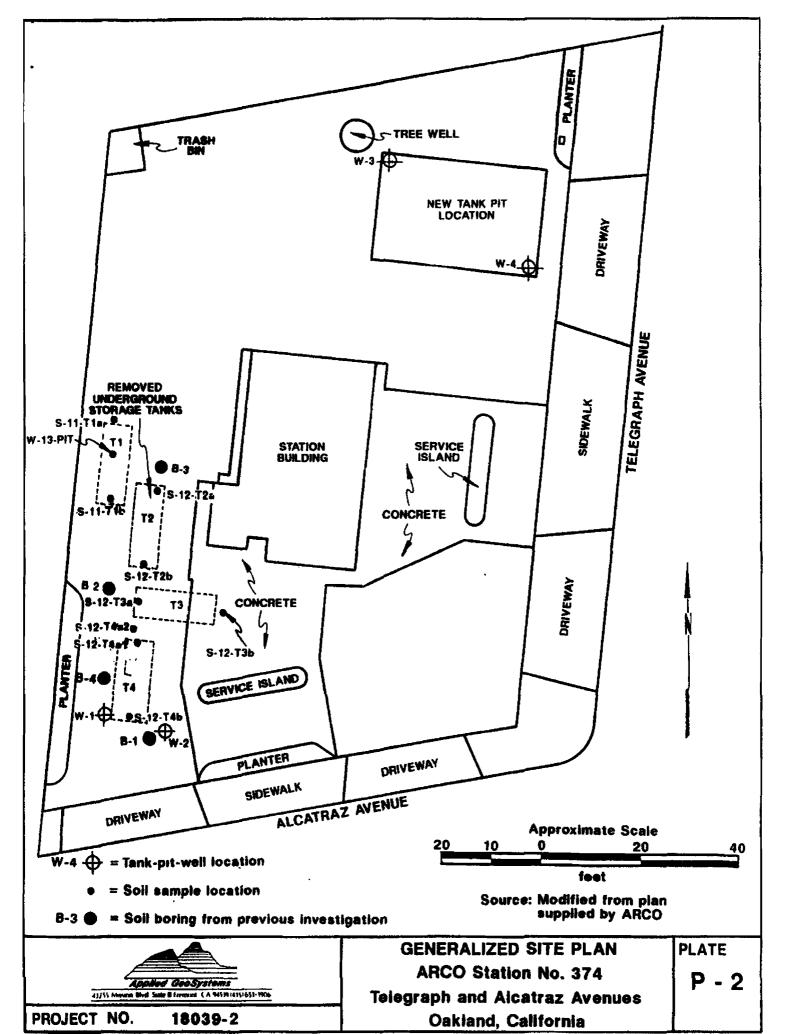

	DJECT NAME: <u>BP/ARC</u>				SITE A					
PRO	OJECT NUMBER:06	-88-602			LEGAL	DESC:	NOI NUMBER:			
LOG	GGED BY: Aaron So	onerholm			FACILIT	TY ID OR WAIVER:				
DAT	ΓΕ: <u>11/23/2010</u>	START:	1300		DRILLIN	NG COMPANY: Gregg				
WELL ID: <u>B-17/MW-8</u> STOP: <u>1700</u>						DRILLING METHOD: Hollow Stem Auger SAMPLE METHOD: Split Spoo				
EPTH EET)	MONITOR WELL CONSTRUCTION SAMP DIAMETER: 4"	LE ID PID	MOIST	JRE COLOR	CONSI	STENCY GRAIN SIZE	CLASSIFICATION	REMARKS ODORS		
			4.							
_	GROUT									
_	- RB			Gray to Dk. Gray						
-	MM-									
_	/\frac{1}{2}   / / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8-3 14.8 ppm	n			Silty clay with sand	CL			
_										
-										
_	MW-	8-5 26.3 ppm	וי							
_	MW	8-6 79.0 ppm	ı			Clayey silt with fine to coarse sand and gra	vel ML			
-										
_	N S N N N N N N N N N N N N N N N N N N			Craaniah						
_	WW WW	8-8 563 ppm	M <del>o</del> ist	Greenish gray to	Stiff					
-				dk. gray						
_	MW-8	3-9.5 334 ppm		Brown - Reddish	Med. dense	Sand, poorly graded, fine grained with trace	ce silt SP			
_				brown	dense		· — — — <del> </del>			
ı —	MW-	8-11 710 ppm				Silty sand with occasional gravel	SM			
-							OWI			
2 —	NAV O	40.5	NA-!-4	Brown with	Very					
- 3 —	MW-8	-12.5 8.1 ppm	Moist	greenish gray	stiff	Clayey silt	ML			
-				Brown -						
<b>ا</b>	MW-	3-14 0.0 ppm		reddish brown						
5 —			Very							
-	MW-8	-15.5 0.0 ppm		Greenish gray	Med. dense	Silty sand with gravel	SM			
; —						Wet at 16.5 feet				
· _	MW-	3-17 0.0 ppm				770t dt 10.0 100t				
-	∹INTERVAL∴									
-	0.01" MW-8	-18.5 0.0 ppm	Moist		Stiff	Silty Clay with fine to coarse grained sand				
) —							CI			
- )	NAIA/	20 00								
	MW-	3-20 0.0 ppm		Brown						

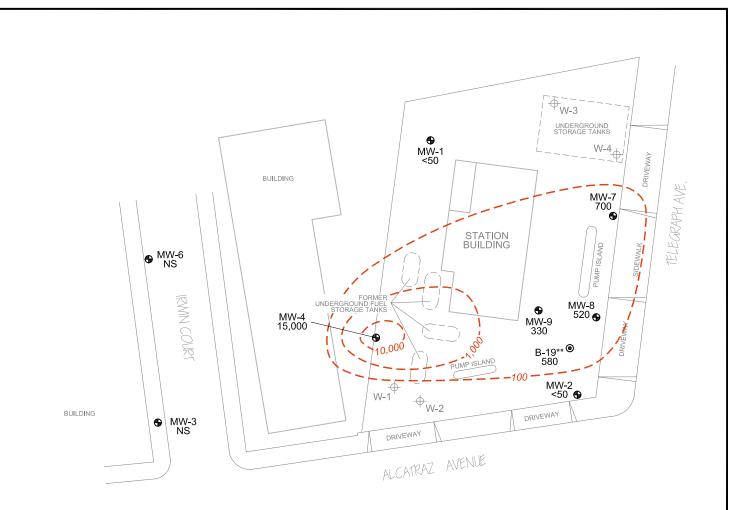

	BENT & AS B, WATER RESO BP/ARCO 374	URCES & EN	NVIRONME			OGIC AND MONITOR W DDRESS: _6407 Telegraph Ave., Oa				
PROJECT NUMBE	R: <u>06-88-60</u>					DESC:	APN:			
LOGGED BY:	Aaron Sonerho	lm			FACILIT	Y ID OR WAIVER:	NOI NUMBER:			
DATE:11/23/	2010 S	ΓART:	0910		DRILLIN	IG COMPANY: Gregg	DRILLER:	Jason		
WELL ID:B-18/MW-9 STOP:1200					DRILLIN	DRILLING METHOD: Hollow Stem Auger SAMPLE METHOD: Split Spoon				
DEPTH (FEET) MONITOR WELL CONSTRUCTION DIAMETER: _4"		PID	MOIST	JRE COLOR	CONSIL	GRAIN SIZE	CLASSIFICATION	REMARKS & ODORS		
1 — BENTONITE GROUT	MW-9-3 MW-9-5	24.9 ppm 13.5 ppm 75.0 ppm	Moist	Gray to Dk. Gray		Silty clay Silty clay Silty clay with sand and gravel	CL			
7 — SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDAN SUNDA	MW-9-8	1386 ppm	▼ - Moist	Gray to Brown	Stiff	Clayey silt with occasional sand and No recovery at 9.5'	d gravel			
11	MW-9-11	2475 ppm		Brown - Reddish brown	Firm					
13	MW-9-12.5	3794 ppm		Dk. gray to greenish gray						
14	MW-9-14	14.5 ppm	Moist	Brown	Med. dense	Silty sand with coarse gravel	SM			
15 —		1.6 ppm	Very moist	Brown to Reddish brown						
17 SCREEN	. MW-9-17	0.0 ppm	∑ Wet			Wet at 17 feet Sandy gravel with trace silt				
18 — "INTERVAL" 19 — "10 INTERVAL"	MW-9-18.5	0.0 ppm			Med. dense	Silty sand with gravel	SM			
20	MW-9-20	0.0 ppm			Hard	Silty clay with gravel	CL			
TOTAL BORING D	EPTH: 20	).0'	PA	GE NO: _	1 OF	1 Y ESTIMATE	D GROUNDWATER DEP	TH: <u>7.31'</u>		

PROJECT NAME: <u>BP/ARCO 374</u> PROJECT NUMBER: 06-88-602										
LOGGED BY:										
						FACILITY ID OR WAIVER: NOI NUMBER:				
						DRILLING COMPANY: Gregg DRILLER: Jason				
WEL	L ID: <u>B-19</u>		STOP:		.3		NG METHOD: Hollow Stem Auger SAMPLE METH		Spoon	
PTH EET)	SOIL BORING	SAMPLE ID	PID	MOIST	JRE COLOR	CONSI	GRAIN SIZE	CATION	REMARKS ODORS	
_	5									
_	GROUT			Moist	Gray to Dk. Gray	Stiff	Silty clay with sand	CL		
_		B-19-3	12.8 ppm							
_		B-19-5	7.0 ppm				Silty clay or clayey silt with some and gravel			
_		B-19-6	17.5 ppm			Stiff	Clayey silt with coarse sand			
_										
			4602		Crov to			ML		
_		B-19-8	ppm	<u></u>	Gray to Dk. gray					
		D 40 0 5	5896	_	Brown -			_		
_		B-19-9.5	ppm		Reddish brown					
_		B-19-11	4558	Moist to		Q+iff	Silty clay - clayey silt with thin sand and fine gravel	CL		
_		D-10-11	ppm	very moist		Sun	lenses			
_		B-19-12.5	514							
			ppm							
_		B-19-14	7.7 ppm		Brown - reddish		Silty clay - clayey silt with occasional coarse sand			
_					brown			-		
_		B-19-15.5	4.5 ppm			Very stiff	Silty sands, coarse sand and gravel	SM		
_				Very						
		B-19-17	0.0 ppm	moist to	Lt <u>.</u> Brown					
_				Wet ∑			Wet at 17.5 feet			
_		B-19-18.5	0.0 ppm			Stiff	Sandy silt to clayey silt	-		
_								ML		
		B-19-20	0.0 ppm				Silt - clayey silt			

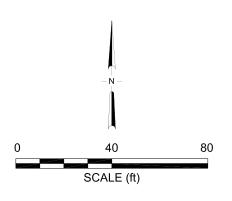
## APPENDIX C

Geologic Cross-Sections and Historic Site Figures




Oakland, California


Project No.: 06-88-602 Date: 8/31/2011

August 15, 2011









### **LEGEND**

- Monitor Well Location
- → Tank Pit Monitor Well Location
- Soil Boring Location

 $^{\mbox{MW-9}}_{\mbox{330}}$  Well ID with GRO Concentration (µg/L)

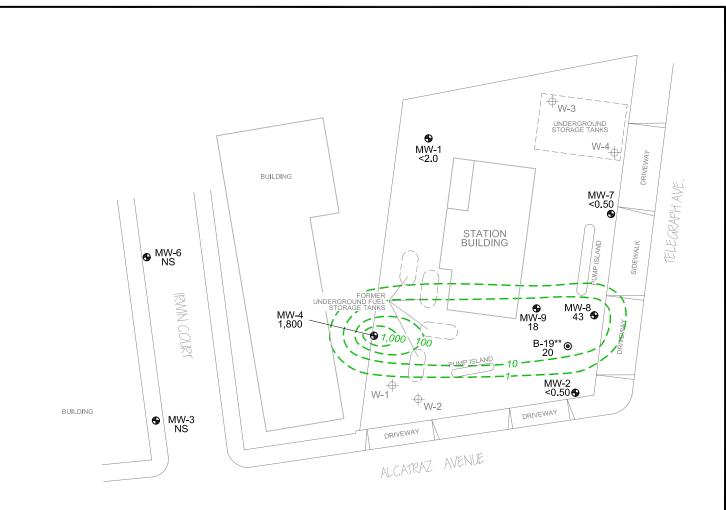
— GRO Isoconcentration Contour (µg/L)

NS Not Sampled

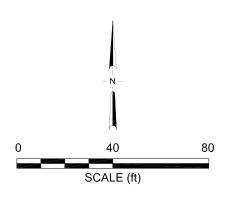
** Grab Groundwater Sample

NOTE: SITE MAP ADAPTED FROM STANTEC FIGURES.
SITE DIMESIONS AND FACILITY LOCATIONS NOT VERIFIED.

BROADBENT & ASSOCIATES, INC.


ENGINEERING, WATER RESOURCES & ENVIRONMENTAL 1324 Mangrove Ave. Suite 212, Chico, California 95926

Project No.: 06-88-602 Date: 12/30/2010


Station #374 6407 Telegraph Ave. Oakland, California

GRO Isoconcentration Contours December 16, 2010 Drawing





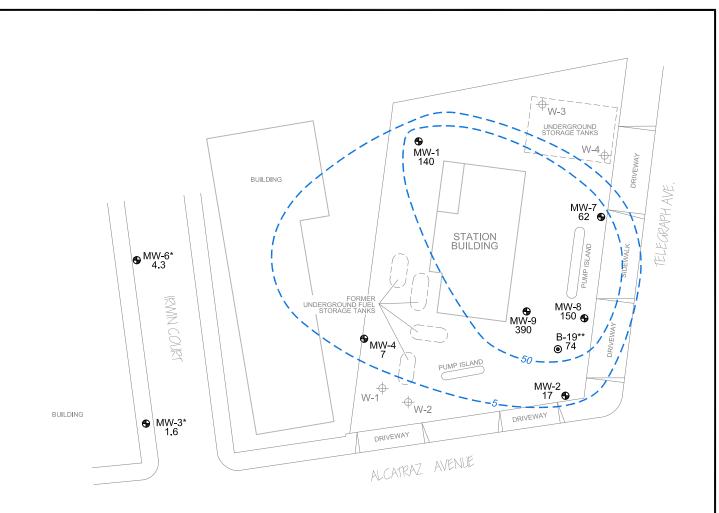




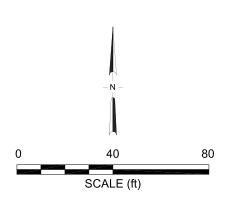
## **LEGEND**

- Monitor Well Location
- Tank Pit Monitor Well Location
- Soil Boring Location
- $^{\mbox{MW-9}}_{\mbox{18}}$  Well ID with Benzene Concentration (µg/L)
- Benzene Isoconcentration Contour (μg/L)
- NS Not Sampled
- ** Grab Groundwater Sample

NOTE: SITE MAP ADAPTED FROM STANTEC FIGURES.
SITE DIMESIONS AND FACILITY LOCATIONS NOT VERIFIED.




ENGINEERING, WATER RESOURCES & ENVIRONMENTAL 1324 Mangrove Ave. Suite 212, Chico, California 95926


Project No.: 06-88-602 Date: 12/30/2010

Station #374 6407 Telegraph Ave. Oakland, California

Benzene Isoconcentration Contours December 16, 2010 Drawing





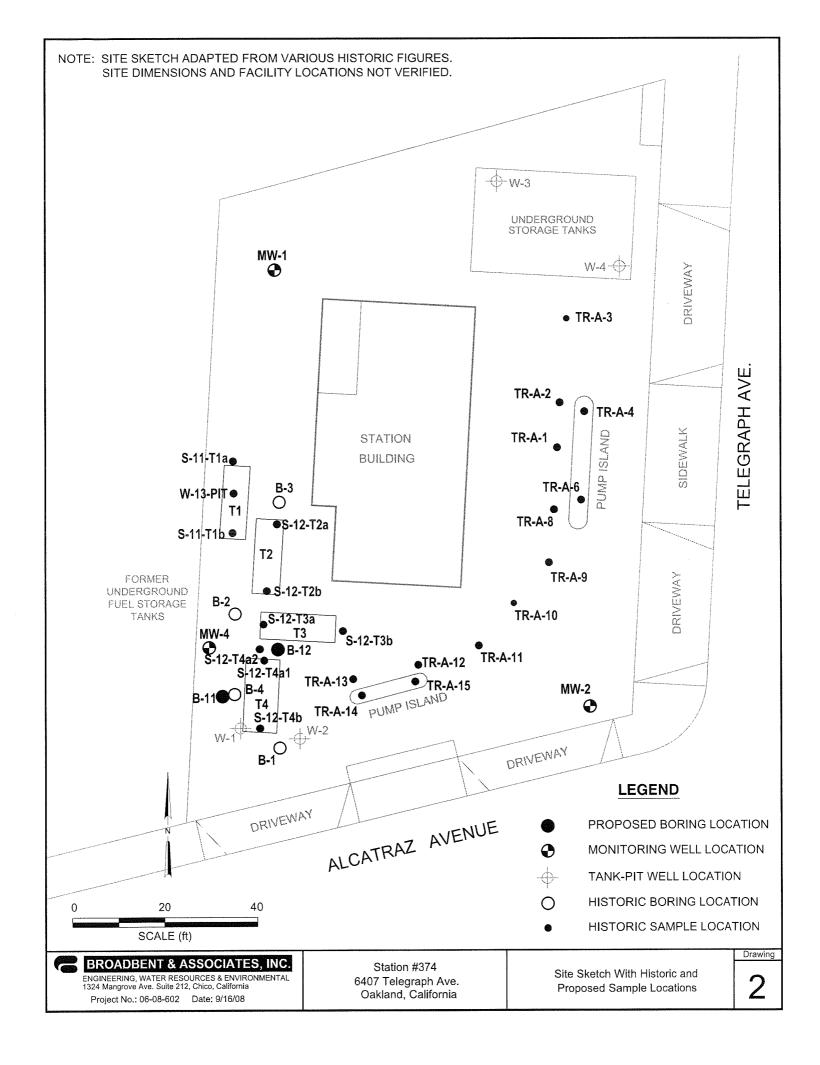


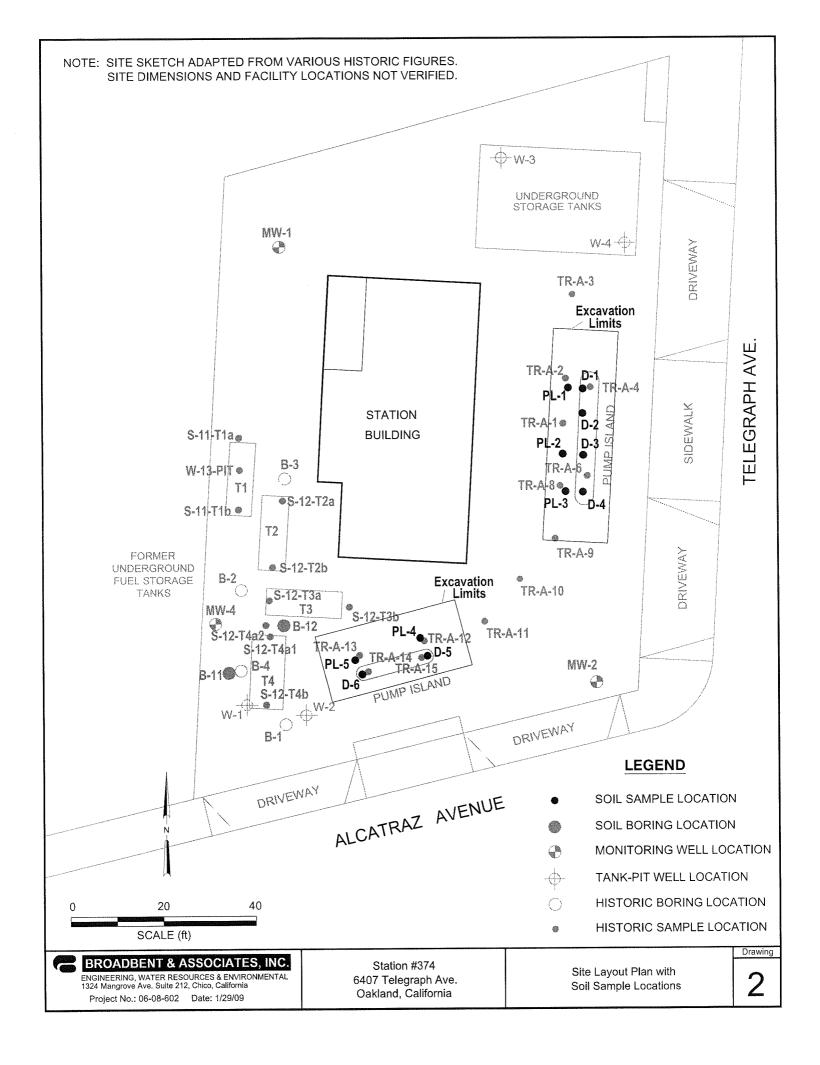
### **LEGEND**

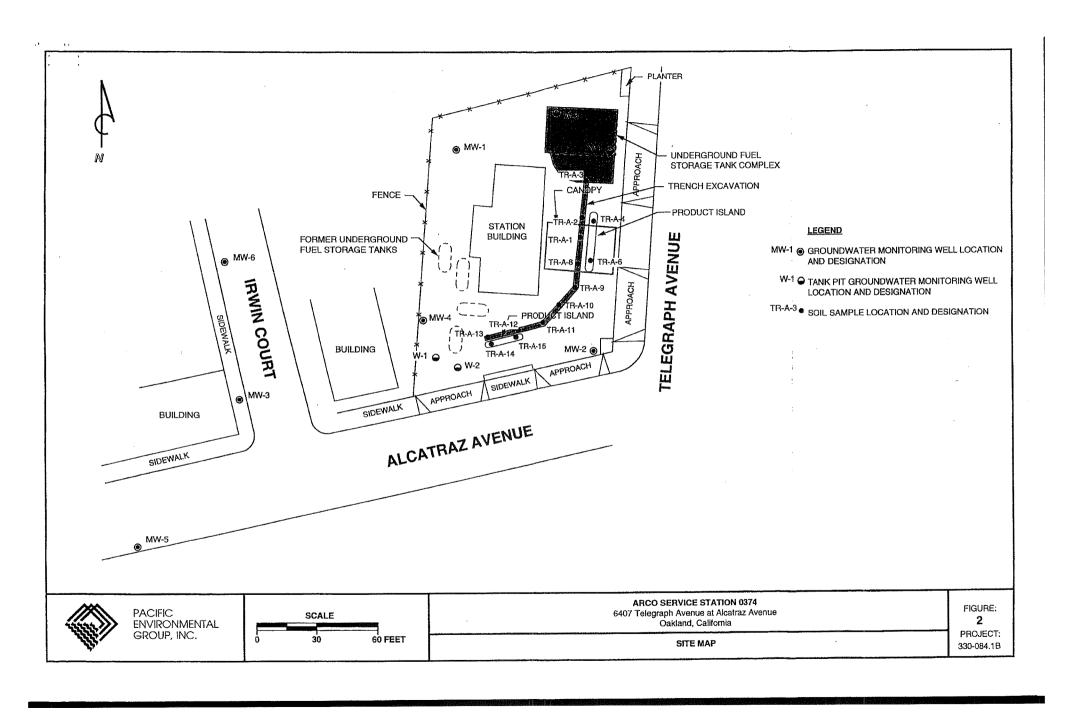
- Monitor Well Location
- → Tank Pit Monitor Well Location
- Soil Boring Location
- $^{\mbox{MW-9}}_{\mbox{390}}$  Well ID with MTBE Concentration (µg/L)
- MTBE Isoconcentration Contour (µg/L)
- NS Not Sampled
- * Well Sampled 8/10/2010
- ** Grab Groundwater Sample

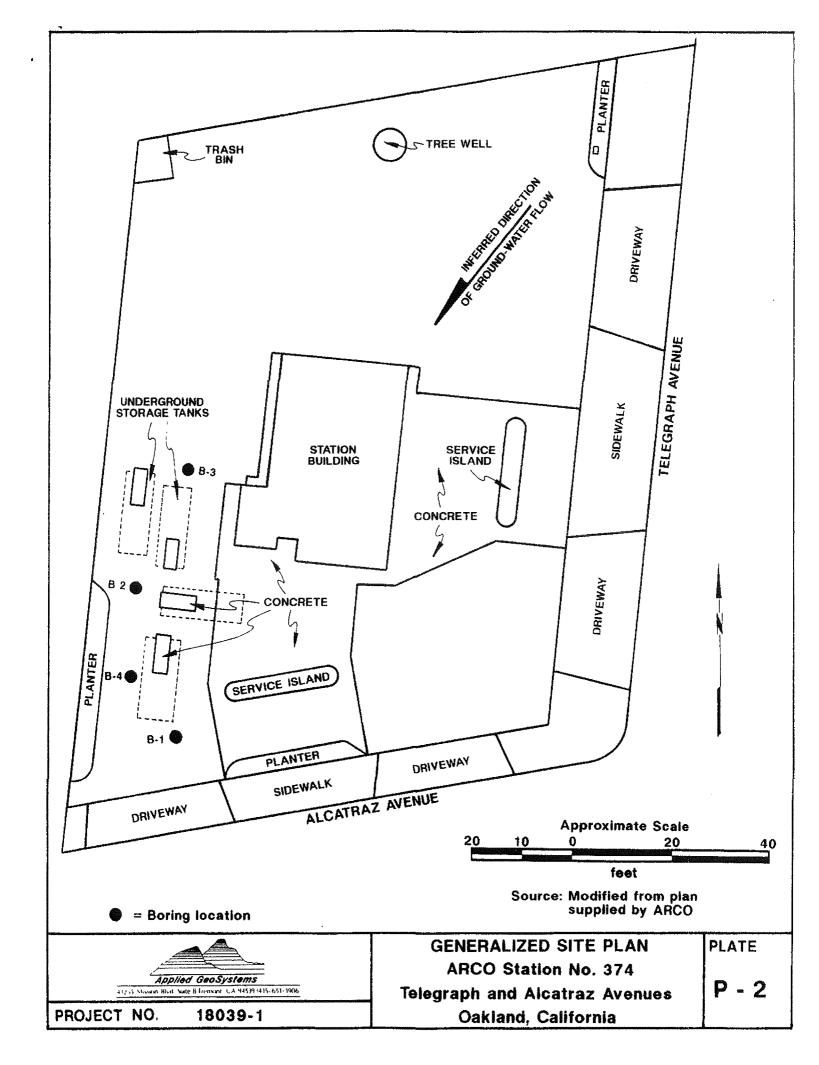
NOTE: SITE MAP ADAPTED FROM STANTEC FIGURES.
SITE DIMESIONS AND FACILITY LOCATIONS NOT VERIFIED.

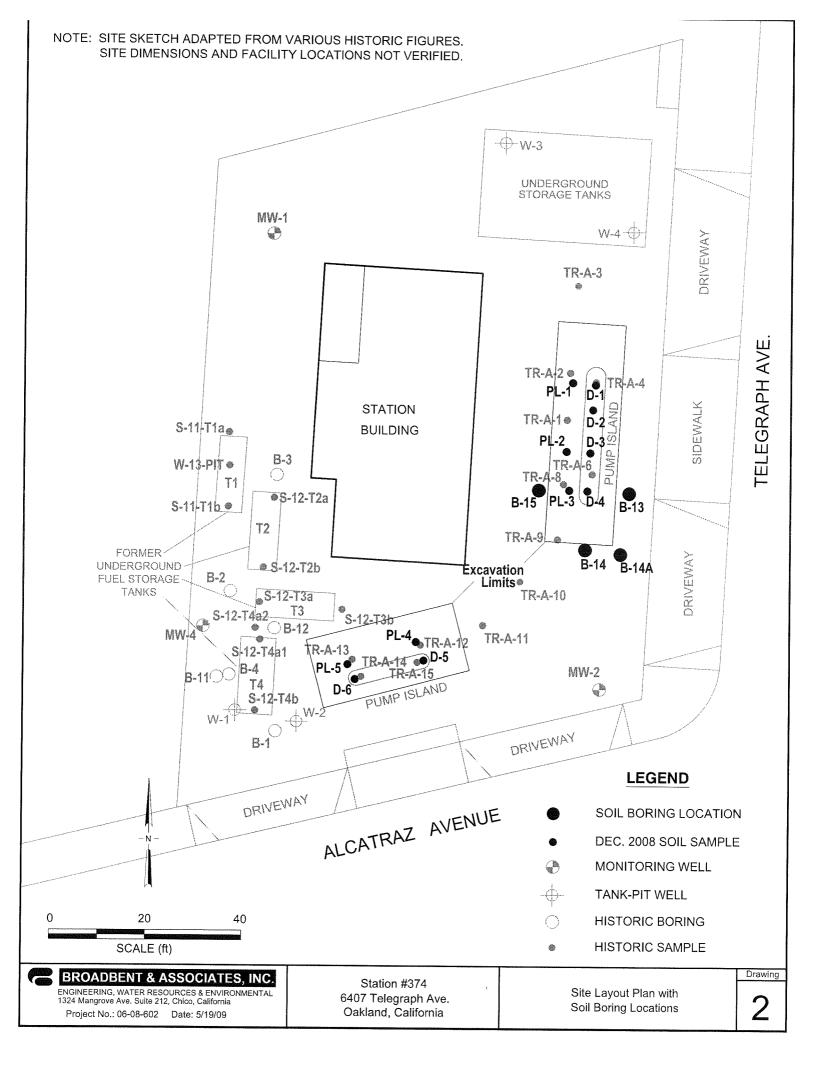


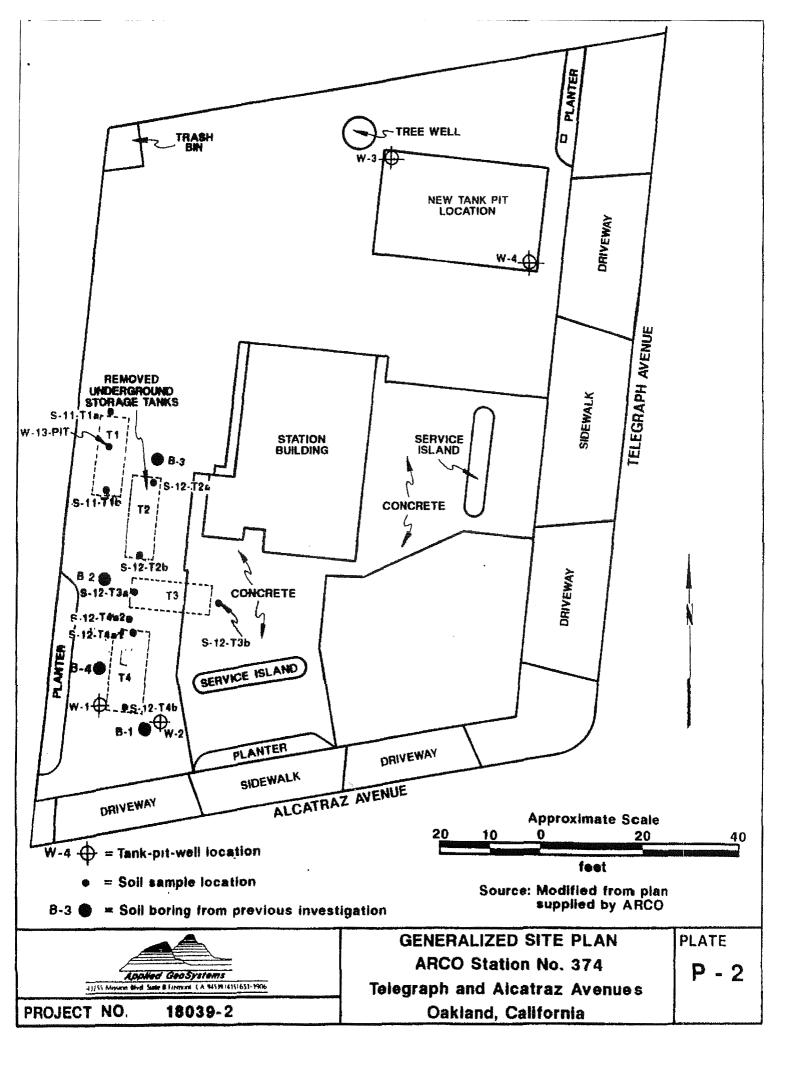

ENGINEERING, WATER RESOURCES & ENVIRONMENTAL 1324 Mangrove Ave. Suite 212, Chico, California 95926

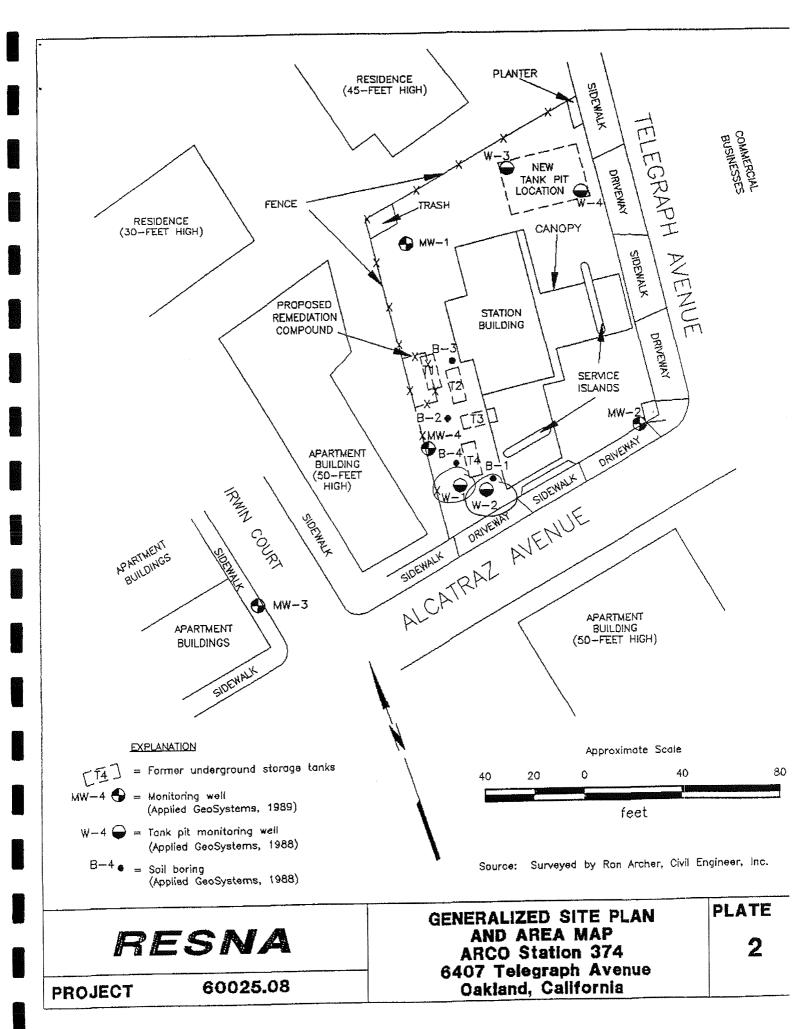

Project No.: 06-88-602 Date: 12/31/2010

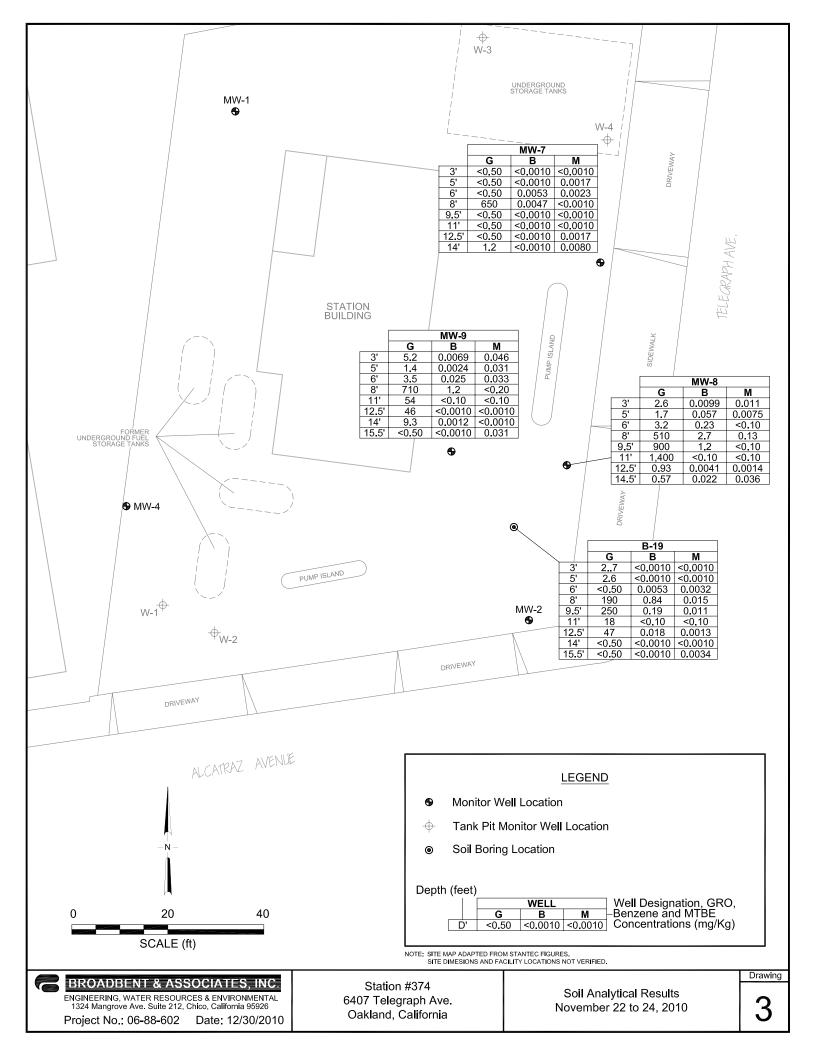

Station #374 6407 Telegraph Ave. Oakland, California

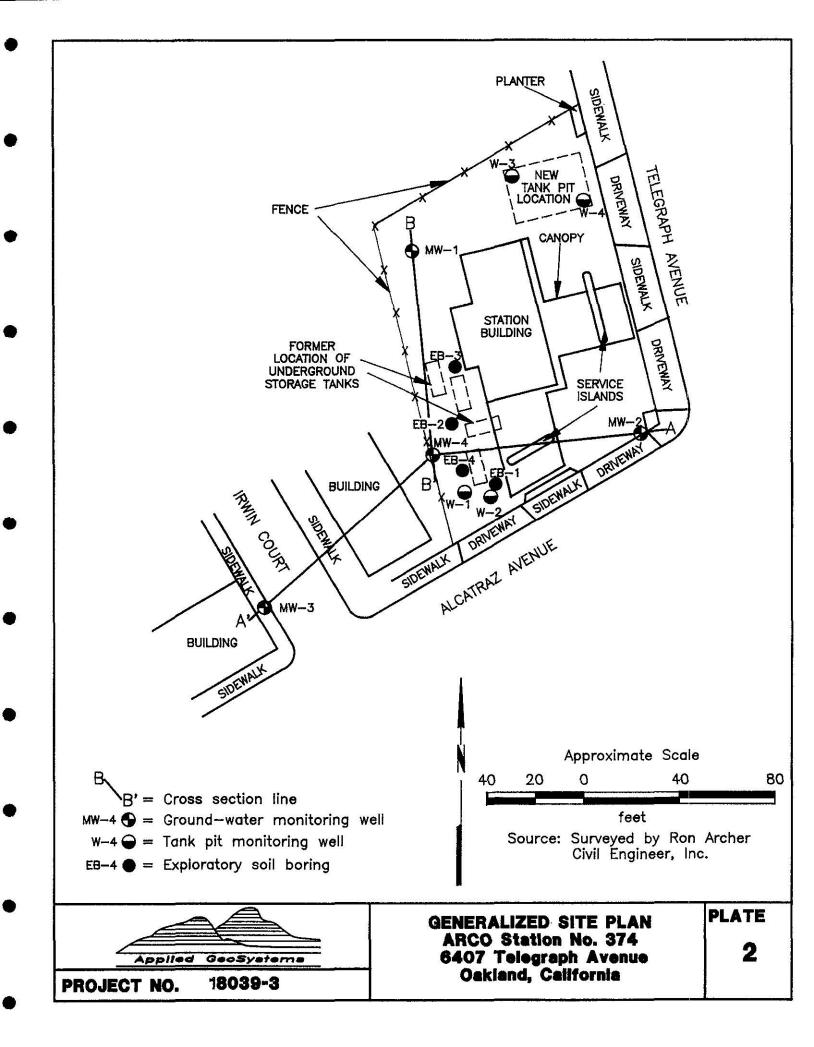

MTBE Isoconcentration Contours December 16, 2010 Drawing

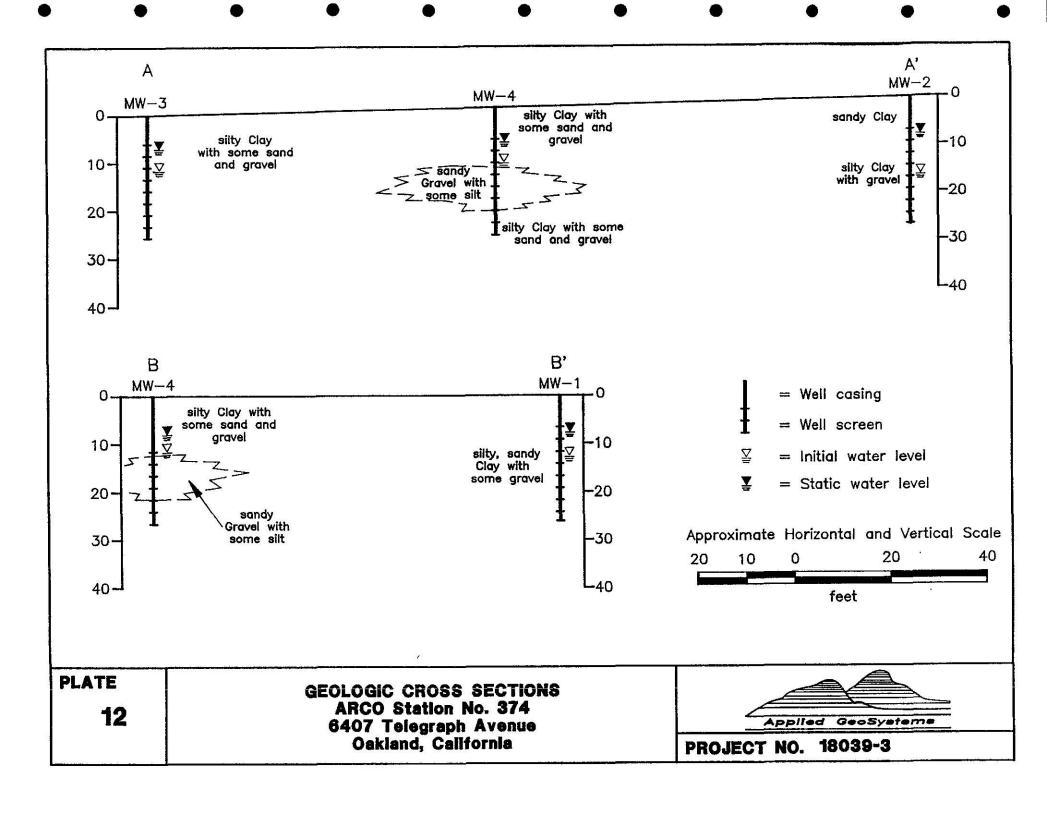













# APPENDIX D

**Draft Closure Checklist** 

	ncy Name : Alameda County Environmental Health	Date: 10/25/12				
Cas	e Worker: Dilan Roe	Fuel Leak Case No: RO00	00078			
Site	Name: Arco 374	GeoTracker Global ID: T06	00100106			
Site Address: 6407 Telegraph Avenue, Berkeley, CA USTCF Claim No:						
The	☐ PASS ☐ FAIL - DRAFT  The site does [does not comply] with the requirements of the Low-Threat Underground Storage Tank Case Closure Policy (LTCP) as described below.¹					
Gen	eral Criteria (must be satisfied by all candidate sites)		T			
a.	Is the unauthorized release located within the service a public water system?	irea of a	⊠ Yes □ No			
	If Yes, then Provide Name of Water System:					
	Water system info will be presented upon completion of prevision of this checklist.	oposed field work and				
İ						
	If Yes, are there Site Specific Conditions that Need to I Evaluation?	be Considered in				
	Does the property owner use the water system? X Yes	s □ No				
	Do property owners in the vicinity of the site use the water					
	Are there other sources of water for property owners in the	ne vicinity of the site?				
	☐ Irrigation Wells ☐ Water Supply Wells					
	☐ Other Capture Systems:					
	Pertinent Information Provided:					
	DWR Well Search ⊠ Yes □ No					
	Name/Date Of Document:					
	Reference Lists will be compiled upon completion of work and revision of this checklist.	proposed field				

# General Criteria (continued)

ALAMEDA COUNTY ENVIRONMENTAL HEALTH'S LOW THREAT CLOSURE POLICY CHECKLIST

Does the unauthorized release consist only of petroleum?		⊠ Yes □ No
If No, then List Other Contaminants:		
☐ Chlorobenzene ☐ PCE ☐ TCE ☐ Chloroform	☐ Vinyl Chloride	
☐ Bromoform ☐ Other		
If Other, then:		
☐ PCBs ☐ Phenol ☐ 1,4-dioxane ☐ Dibenzofurans	Dioxins	
☐ Metals:		
Other SVOCs:		
☐ Other VOCs:		
Pertinent Information Provided:		
Description of Site History, Types of Products or Chemicals Used at the Site	☐ Yes ☐ No	
History of Types of Releases other than Petroleum	☐ Yes ☐ No	
Tabulation and Discussion of Sampling Results for All Chemicals other than Petroleum	☐ Yes ☐ No	
Name/Date of Document:		
eral Criteria (continued)		

If No, t	then Explain:	
Pertine	ent Information Provided:	
Descrip	ption of the history of release(s) and the actions that ⊠ Yes ☐ No aken to stop each release not provided or incomplete	
Evalua concer	ation and accounting for changing contaminant	
	Name/Date of Document:	
	Reference Lists will be compiled upon completion of proposed field work and revision of this checklist.	

			☐ Yes ☐ No
If No, then,			
Removal Methods Tried:	☐ HVDPE ☐ Skimmer ☐ Baili	ing	
	☐ Absorbent Materials ☐ Did Not	t Try to Remove FP	
	Other		
If Other, then Explain:			
Pertinent Information P	rovided:		
	on and monitoring activities en to assess whether free	☐ Yes ☐ No	
Data including tables and and measurements of fre	d figures showing any observation be product.	☐ Yes ☐ No	
Description of corrective free product, dates of rer	action(s) that were taken to remove noval actions, and volumes removed	☐ Yes ☐ No	
	free product removal is practicable, scription of the conditions that prevent	☐ Yes ☐ No	
Name(s)/Date(s) of	Document(s):		

If No, Then:		
GW Not Evaluated		
☐ Groundwater Assessment Incomplete – Areal Extent of Co Defined	ntamination Not	
☐ Hydrogeology Not Adequately Defined		
☐ Potential Receptors Not Identified		
☐ Soil Assessment Incomplete – Aerial Extent Not Defined		
Soil Assessment Incomplete – Depth Unknown		
⊠ Soil Vapor Not Evaluated		
☐ Other		
Pertinent Information Provided:		
Sensitive Receptor Survey	☑ Yes ☐ No	
Preferential Pathway Study	☐ Yes ⊠ No	
Cross Sections	☐ Yes ⊠ No	
Bore Logs	Yes □ No	
Rose Diagrams	☐ Yes ⊠ No	
Monitoring Well Construction Logs	⊠ Yes □ No	
Table Providing Details of Monitoring Well Network	⊠ Yes □ No	
Evaluation of Groundwater Flow Direction and Gradient	⊠ Yes □ No	
Description of Type and Effectiveness of Corrective Action	⊠ Yes □ No	
Name(s)/Date(s) of Documents:		
Reference Lists will be compiled upon completion of proposed field work and revision of this checklist.		

Has secondary source been removed to the extent practicable?	
The secondary source is the petroleum-impacted soil, free product, or groundwater that acts as a long-term source releasing contamination to the surrounding area. Unless site conditions prevent secondary source removal petroleum-release sites are required to undergo secondary source removal to the maximum extent practicable.	
If No, then identify Impediments to Removing Secondary Source:	
☐ Remediation Has Not Been Attempted	
☐ Remediation Was Designed Incorrectly	
☐ Remediation Was Shut Off Prematurely	
☐ Poor Remediation O&M	
☐ Other	
If Other, then:	
Site Conditions Prevent Secondary Source Removal Yes No  (e.g., physical or infrastructural constraints exist whose removal or relocation would be technically or economically infeasible)	
Pertinent Information Provided:	
Pertinent Information Provided:  History of corrective actions for the site including the types	
History of corrective actions for the site including the types	
History of corrective actions for the site including the types of cleanup actions taken, dates of the actions, and mass removed  ☐ Yes ☐ No	
History of corrective actions for the site including the types of cleanup actions taken, dates of the actions, and mass removed  Figures depicting the location of the removal action  ☐ Yes ☐ No  Confirmation sampling results which demonstrate the	
History of corrective actions for the site including the types of cleanup actions taken, dates of the actions, and mass removed  Figures depicting the location of the removal action  Confirmation sampling results which demonstrate the effectiveness of secondary source removal  Narrative description of the actions and areas of success   Yes □ No	
History of corrective actions for the site including the types of cleanup actions taken, dates of the actions, and mass removed  Figures depicting the location of the removal action  Confirmation sampling results which demonstrate the effectiveness of secondary source removal  Narrative description of the actions and areas of success or infeasibility of actions  Long-term monitoring data for in-situ corrective actions that demonstrate the concentrations have not rebounded following the cessation of corrective actions	
History of corrective actions for the site including the types of cleanup actions taken, dates of the actions, and mass removed  Figures depicting the location of the removal action  Confirmation sampling results which demonstrate the effectiveness of secondary source removal  Narrative description of the actions and areas of success or infeasibility of actions  Long-term monitoring data for in-situ corrective actions that demonstrate the concentrations have not rebounded	

g. Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	⊠ Yes □
Pertinent Information Required:  Sufficient data including tables and figures to assess    ✓ Yes ☐ No whether MTBE is or was present in soil and groundwater at the site	
Name(s)/Dates(s) of Document(s):  Reference Lists will be compiled upon completion of proposed field work and revision of this checklist.	

If Yes, then Describe Nuisance Condition:		
Pertinent Information Required:		
Sufficient data to evaluate whether site contamination is present in locations that currently exist or potentially could exist in the future to pose nuisance conditions during common or reasonably expected site activities.	⊠ Yes □ No	
Descriptions of the type and vertical and lateral extent of shallow soil	⊠ Yes □ No	
Data on the lateral extent of surface soil contamination	☐ Yes ☐ No	
Discussion of odors or visual evidence of contamination	☐ Yes ☐ No	
Preferential pathway and utility conduit surveys	☐ Yes ⊠ No	
Review of potential points for exposure (such as groundwater seeps into basements)	⊠ Yes □ No	
Current use of the site	⊠ Yes □ No	
Expected use of the site	⊠ Yes □ No	
Description of surface water runoff from the property to storm drains or other sites	⊠ Yes □ No	
Name(s)/Date(s) of Documents:		
Reference Lists will be compiled upon complet field work and revision of this checklist.	tion of proposed	

1. Media Specific Criteria: Groundwater

Exemption – Soil Only Case (Release has <u>not</u> Affected Groundwater)  Sites with soil that does not contain sufficient mobile constituents [leachate, vapors, or light non-aqueous-phase liquids (LNAPL)] to cause groundwater to exceed the groundwater criteria in this policy shall be considered low-threat sites for the groundwater medium. For older releases, the absence of current groundwater impact is often a good indication that residual concentrations present in the soil are not a source for groundwater pollution.	☐ Yes ⊠ No
If Site Does Not Qualify for Soil Only Exemption, then, Is the contaminant plume stable or decreasing in areal extent (i.e. has the contaminant mass expanded to its maximum extent defined as the distance from the release where attenuation exceeds migration)?	⊠ Yes □ No
Has sufficient data been presented to demonstrate that site characterization activities have defined the horizontal and vertical extent of the plume?  Has plume stability has been demonstrated using a valid technical analysis that considers:	
The accuracy of data from the wells ⊠ Yes □ No	
Placement within the plume ⊠ Yes □ No	
Changes in areal extent of the plume ⊠ Yes □ No	
Valid concentration trends within the plume (Note:plotting of decreasing concentrations using data from a single well is not likely to be sufficient)	
Have the following factors been considered:	
Seasonal variability ⊠ Yes □ No	
Water level changes ⊠ Yes □ No	
Sampling methods ⊠ Yes □ No	
Well construction ⊠ Yes □ No	
Other factors that can affect data quality   ☐ Yes ☐ No	
Has a recent well survey that uses all available wells from	
Are supply wells located within 2,000 feet of the site ☐ Yes ☒ No presented on a site figure with a table identifying each well along with the well construction details been presented?	
Media Specific Criteria: Groundwater (continued)	

If the Contaminant Plume is Stable or Decreasing, then		
Does it meet all of the additional characteristics of one of the five (5) classes of sites listed below?	⊠ Yes □ No	
(1) a. Is < 100 feet in length	☐ Yes ☐ No	
b. There is no free product	☐ Yes ☐ No	
c. The nearest existing water supply well is > 250 feet from the defined plume boundary	☐ Yes ☐ No	
<ul> <li>d. The nearest existing surface water body is &gt; 250 feet from the defined plume boundary</li> </ul>	☐ Yes ☐ No	
(2) a. Is < 250 feet in length	☐ Yes ☐ No	
b. There is no free product	☐ Yes ☐ No	
<ul> <li>c. The nearest existing water supply well is &gt; 1,000 feet from the defined plume boundary</li> </ul>	☐ Yes ☐ No	
<ul> <li>d. The nearest existing surface water body is &gt; 1,000 feet from the defined plume boundary</li> </ul>	☐ Yes ☐ No	
e. The dissolved concentration of benzene is <3,000 µg/L	☐ Yes ☐ No	
f. The dissolved concentration of MTBE is is <1,000 μg/L	☐ Yes ☐ No	
(3) a. Is < 250 feet in length	☐ Yes ☐ No	
<ul> <li>b. Free product has been removed to the maximum extent practicable, may still be present below the site where the release originated, but does not extend off-site</li> </ul>	☐ Yes ☐ No	
<ul> <li>The plume has been stable or decreasing for a minimum of 5 years</li> </ul>	☐ Yes ☐ No	
<ul> <li>d. The nearest existing water supply well is &gt; 1,000 feet from the defined plume boundary</li> </ul>	☐ Yes ☐ No	
e. The nearest existing surface water body is > 1,000 feet from the defined plume boundary	☐ Yes ☐ No	
<ul> <li>f. The property owner is willing to accept a land use restriction if the regulatory agency requires a land use restriction as a condition for closure</li> </ul>	☐ Yes ☐ No	
(continued on next page)  Media Specific Criteria: Groundwater (continued):		

(4) a. Is < 1,000 feet in length	⊠ Yes □ No				
b. There is no free product	⊠ Yes □ No				
<ul> <li>The nearest existing water supply well or surface water body is &gt; 1,000 feet from the defined plume boundary</li> </ul>	⊠ Yes □ No				
d. The nearest existing surface water body is > 1,000 feet from the defined plume boundary	⊠ Yes □ No				
e. The dissolved concentration of benzene is <1,000 μg/L	⊠ Yes □ No				
f. The dissolved concentration of MTBE is <1,000 μg/L	⊠ Yes □ No				
(5) The regulatory agency determines, based on an analysis of site specific conditions, that the site under current and reasonable anticipated near-term future scenarios, the contaminant plume poses a low threat to human health and safety and to the environment and water quality objectives will be achieved within a reasonable time frame.	☐ Yes ☐ No				
If the Site Does Not Meet any of the 5 Groundwater Specif Additional Questions Below	ic Criteria Scenarios Listed	d Above, then Answer the			
Plume Length (That Exceeds Water Quality Objectives):					
	and < 250 Feet  □ ≥ 10	00 Feet and < 250 Feet			
☐ ≥ 1,000 Feet ☐ ≥ Unknown					
Free Product in Groundwater:  Yes  No Un	known				
Free Product Has Been Removed to the Maximum Extent Practicable:   No Unknown					
For Sites with Free Product, the Plume has Been Stable or Decreasing for 5-Years:   No Unknown					
For Sites with Free Product, owner Willing to Accept a Land U	lse Restriction (if Required):				
☐ No ☐ Unknown					
Free Product Extends Offsite:					
Benzene Concentration:  □ ≥ 1,000 μg/L and < 3,000 μg/L □ ≥ 3,000 μg/L □ Unknown					
MTBE Concentration:  □ ≥ 1,000 μg/L  □ Unknown					
Nearest Supply Well (From Plume Boundary):					
	nknown				
Nearest Surface Water Body (From Plume Boundary):					
☐ ≤ 250 Feet ☐ > 250 Feet and ≤ 1,000 Feet ☐	Unknown				
2. Media Specific Criteria: Petroleum Vapor Intrusion to I	ndoor Air				

The low-threat vapor-intrusion criteria described below apply to sites where the release originated and impacted or potentially impacted adjacent parcels when: (1) existing building are occupied or may be reasonably expected to be occupied in the future, or (2) buildings for human occupancy are reasonably expected to be constructed in the near future. Appendices 1 through 4 (attached) illustrate four potential exposure scenarios and describe characteristics and criteria associated with each scenario. **EXEMPTION – Active Commercial Petroleum Facility** ☐ Yes ☐ No According to the Policy, exposures to petroleum vapors associated with historical fuel system UNKNOWN releases are comparatively insignificant relative to exposures from small surface spills and fugitive vapor releases that typically occur at active fueling facilities. Therefore, satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk. Do release characteristics pose an unacceptable health risk to facility users or nearby facilities? ☐ Yes ☐ No If Yes, Provide Explanation: High residual concentrations in groundwater are present on the border of a property where a residential exposure pathway exists Criteria below will be evaluated upon completion of proposed soil vapor sampling activities.

2. Media Specific Criteria: Petroleum Vapor Intrusion to Indoor Air (continued)			
If Site <u>Does Not Qualify for</u> Vapor Intrusion to Indoor Air <u>Exemption</u> , then,			
Does the release site meet one of the three petroleum vapor intrusion to indoor air specific criteria listed below (a, b, or c)?	☐ Yes		
a. Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of Scenarios 1 through 3 or all of the applicable characteristics and criteria of Scenario 4?	□No		
If YES, check applicable scenarios:   1  2  3  4			
Scenario 1: Unweathered LNAPL in Groundwater (App. 1)			
The bioattenuation zone is a continuous zone provides a separation of at least 30 feet vertically between the LNAPL in groundwater and the foundation of existing or potential buildings; and			
Total TPH (TPH-g and TPH-d combined) are less than 100 mg/kg throughout the entire depth of the bioattenuation zone			
Scenario 2: Unweathered LNAPL in Soil (App. 2)			
The boattenuation zone is a continuous zone that provides a separation of at least 30 feet vertically between the LNAPL in soil and the foundation of existing or potential buildings; and			
Total TPH (TPH-g and TPH-d combined) are <100 mg/kg throughout the entire lateral and vertical extent of the bioattenuation zone			
Scenario 3: Dissolved Phase Benzene Concentrations in Groundwater (App. 3) Yes No			
Defining the Bioattenuation Zone For Sites without Oxygen Data or Where Oxygen is <4%			
Figure A: For Benzene concentrations < 100 μg/l			
a. The bioattenuation zone is a continuous zone that provides a separation of at least 5 feet vertically between the dissolved phase benzene and the foundation of existing or potential buildings; and			
<b>b.</b> Contains total TPH (TPH-g and TPH-d combined) < 100 mg/kg throughout the entire depth of the bioattenuation zone			
Figure B: For Benzene concentrations ≥ 100 μg/L but < 1,000 μg/L			
a. The bioattenuation zone is a continuous zone that provides a separation of at least 10 feet vertically between the dissolved phase benzene and the foundation of existing or potential buildings			
Defining the Bioattenuation Zone For Sites with Oxygen ≥ 4%			
Figure C: For Benzene concentrations < 1,000 μg/L  1. A continuous zone that provides a separation of at least 10 feet vertically between			
the dissolved phase benzene and the foundation of existing or potential buildings			
2. Contains total TPH (TPH-g and TPH-d combined) < 100 mg/kg throughout the entire depth of the bioattenuation zone			
Scenario 4: Direct Measurement of Soil Gas Concentrations (see Next Page)			

			usion to Indoor Air (con	tillada,		
. Do site-specific conditions at the release site satisfy all of the applicable characteristics and of <b>Scenarios 1 through 3</b> <u>or</u> all of the applicable characteristics and criteria of <b>Scenario 4</b>						
Scenario 4: Direct Measurement of Soil Gas Concentrations (App 4)						
			to the Policy, when apply ed from the following local	-		
	Was the soil gas	sample obtained fron	n the following locations	s:		
		lected at least 5 feet be	ting building: Soil gas elow the bottom of the	☐ Yes ☐ No		
		nstruction: Soil gas sa eet below ground surfa	ample collected from at ce	☐ Yes ☐ No		
	If no, then pro	vide justification for	the validity of the soil ga	as data:		
	Soil Gas Sam					
	Jon Jus Juni	pling Protocol				
		pling Protocol samples collected in a	ccordance with	☐ Yes ☐ No		
	Were soil gas	_		☐ Yes ☐ No		
	Were soil gas	samples collected in a		☐ Yes ☐ No		
	Were soil gas s	samples collected in a		☐ Yes ☐ No		
	Were soil gas s	samples collected in a		☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)	samples collected in acry – Active Soil Gas Inv	vestigations	☐ Yes ☐ No		
Soil	Were soil gas s DTSC Advisor (April 2012)	samples collected in a	vestigations	☐ Yes ☐ No		
_	Were soil gas s DTSC Advisor (April 2012)	samples collected in acry – Active Soil Gas Inv	vestigations	☐ Yes ☐ No		
_	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – With	samples collected in acry – Active Soil Gas Invested  ne aation zone satisfied?				
_	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wit Are the following c 1. There is a min	samples collected in acry – Active Soil Gas Invested in acry – Active Soil Gas Invested in Bioattenuation Zorriteria for a bioattenuimum of five vertical fe	ne netion zone satisfied? eet of soil between the	☐ Yes ☐ No		
_	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wit Are the following c  1. There is a min soil vapor mea	ch Bioattenuation Zor riteria for a bioattenu	ne net of soil between the addition of an existing			
_	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – With Are the following c  1. There is a min soil vapor mea building or gro	ch Bioattenuation Zor riteria for a bioattenu imum of five vertical fe isurement and the four und surface of future of	ne vestigations  ne vation zone satisfied? vet of soil between the indation of an existing construction; and	☐ Yes ☐ No		
_	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – With Are the following c  1. There is a min soil vapor mea building or gro  2. TPH (TPHg +	ch Bioattenuation Zor riteria for a bioattenu imum of five vertical fe isurement and the four und surface of future of TPHd) is less than 100	ne netion zone satisfied? net of soil between the notation of an existing construction; and one make (measured in)			
_	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – With Are the following c  1. There is a min soil vapor mea building or gro  2. TPH (TPHg + at least two de	ch Bioattenuation Zor riteria for a bioattenu imum of five vertical fe isurement and the four und surface of future of TPHd) is less than 100 opths within the five-foo	ne net of soil between the ndation of an existing construction; and of male many many many many many many many many	☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wite Are the following c  1. There is a min soil vapor mea building or gro 2. TPH (TPHg + at least two de 3. Oxygen is ≥ 49	ch Bioattenuation Zor riteria for a bioattenu imum of five vertical fe isurement and the four und surface of future of TPHd) is less than 100 epths within the five-foot measured at the bot	ne net of soil between the ndation of an existing construction; and of zone; and tom of the five-foot zone	☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wite Are the following c  1. There is a min soil vapor mea building or gro 2. TPH (TPHg + at least two de 3. Oxygen is ≥ 49	ch Bioattenuation Zor riteria for a bioattenu imum of five vertical fe isurement and the four und surface of future of TPHd) is less than 100 pths within the five-food measured at the bot Gas Criteria listed be	ne net of soil between the ndation of an existing construction; and of measured in ot zone; and tom of the five-foot zone plow:	☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wite Are the following c  1. There is a min soil vapor mea building or gro 2. TPH (TPHg + at least two de 3. Oxygen is ≥ 49 yes, then use Soil	ch Bioattenuation Zor riteria for a bioattenu imum of five vertical fe isurement and the four und surface of future of TPHd) is less than 100 epths within the five-food measured at the bot Gas Criteria listed be	ne net of soil between the not zone; and tom of the five-foot zone elow:  Commercial	☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wite Are the following c  1. There is a min soil vapor mea building or gro 2. TPH (TPHg + at least two de 3. Oxygen is ≥ 49 yes, then use Soil  Constituent	ch Bioattenuation Zorriteria for a bioattenuitimum of five vertical feasurement and the four und surface of future of TPHd) is less than 100 opths within the five-foo measured at the bot Gas Criteria listed be Residential	vestigations  ne vation zone satisfied?  vet of soil between the indation of an existing construction; and indicated in ot zone; and itom of the five-foot zone velow:  Commercial contration (µg/m³)	☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wit Are the following c  1. There is a min soil vapor mea building or gro  2. TPH (TPHg + at least two de  3. Oxygen is ≥ 49  yes, then use Soil  Constituent Benzene	ch Bioattenuation Zorriteria for a bioattenuation immum of five vertical feasurement and the four und surface of future of TPHd) is less than 100 epths within the five-foom measured at the bot Gas Criteria listed be Residential Soil Gas Concers	ne net of soil between the ndation of an existing construction; and of the five-foot zone alow:  Commercial entration (µg/m³) <280,000	☐ Yes ☐ No		
	Were soil gas s DTSC Advisor (April 2012)  I Gas Criteria – Wite Are the following c  1. There is a min soil vapor mea building or gro 2. TPH (TPHg + at least two de 3. Oxygen is ≥ 49 yes, then use Soil  Constituent	ch Bioattenuation Zorriteria for a bioattenuitimum of five vertical feasurement and the four und surface of future of TPHd) is less than 100 opths within the five-foo measured at the bot Gas Criteria listed be Residential	vestigations  ne vation zone satisfied?  vet of soil between the indation of an existing construction; and indicated in ot zone; and itom of the five-foot zone velow:  Commercial contration (µg/m³)	☐ Yes ☐ No		

# 2. Media Specific Criteria: Petroleum Vapor Intrusion to Indoor Air (continued) Soil Gas Criteria - No Bioattenuation Zone Residential Commercial Constituent Soil Gas Concentration (µg/m³) Benzene <85 <280 Ethylbenzene <1,100 <3,600 <310 Napthalene <93 **Pertinent Information Provided:**

2. Media Specific Criteria: Petroleum Vapor Intrusion to Indoor Air (continued)			
b. Has a site-specific risk assessment for the vapor intrusion pathway be demonstrates that human health is protected to the satisfaction of the		☐ Yes ⊠ No	
Was the risk assessment conducted in accordance with the DTSC Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (October 2011)?	☐ Yes ☐ No		
Were the following DTSC Guidance recommendations followed:			
Use of multiple lines of evidence (i.e., soil gas, soil matrix, and groundwater data) to reasonably estimate the level of risk posed by vapor intrusion	☐ Yes ☐ No		
Use of maximum contaminant concentrations (i.e., data collected above the source)	☐ Yes ☐ No		
Use of reasonable site-specific input parameters in the California version of the USEPA's Vapor Intrusion Model by Johnson and Ettinger, created by the DTSC to include California-specific chemical toxicity factors	☐ Yes ☐ No		
Calculation of cumulative health effects conducted	☐ Yes ☐ No		
Use of data representing seasonable variability before making a final risk determination as short term measurements rarely represent long-term conditions	☐ Yes ☐ No		
No preferential pathways exist at the site	☐ Yes ☐ No		
Knowledge of adjacent building construction (e.g., slab-on-grade, crawl spaces, etc.)	☐ Yes ☐ No		
Pertinent Information Provided:			

2. M	2. Media Specific Criteria: Petroleum Vapor Intrusion to Indoor Air (continued)		
ı F	As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that be be betroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	e Yes No	
	Mitigation Measures:		
	Institutional Controls:		
	Deed Restrictions ☐ Yes ☐ No		
	Engineering Controls:		
	Pertinent Information Provided		

2. Media Specific Criteria: Petroleum Vapor Intrusion to Indoor Air (continued)		
Additional Questions – Please indicate only those conditions that do not meet the policy criteria		
Soil Gas Samples:		
☐ No soil gas samples ☐ Taken incorrectly ☐ Not taken at two depths within 5 foot zone		
Exposure Type:		
☐ Residential ☐ Commercial		
Free Product:		
☐ In Groundwater ☐ In Soil ☐ Unknown		
TPH in the Bioattenuation Zone:		
□ ≥ 100 mg/kg □ Unknown		
Bioattenuation Zone Thickness:		
☐ 30 Feet BioZone Compromised ☐ Unknown		
Oxygen Data in Bioattenuation Zone:		
☐ No Oxygen Data ☐ Oxygen < 4% ☐ Oxygen ≥ 4%		
Benzene in Groundwater:		
☐ ≥ 100 μg/L and < 1,000 μg/L ☐ ≥ 1,000 μg/L ☐ Unknown		
Soil Gas Benzene:		
□ ≥ 85 μg/m³ and < 280 μg/m³ $□$ ≥ 280 μg/m³ and < 85,000 μg/m³ $□$ ≥ 85,000 μg/m³ and < 280,000 μg/m³		
☐ ≥ 280,000 μg/m³ ☐ Unknown		
Soil Gas Ethylbenzene:		
□ ≥ 1,100 μg/m ³ and < 3,600 μg/m ³ $□$ ≥ 3,600 μg/m ³ and < 1,100,000 μg/m ³		
$\square$ ≥ 1,100,000 μg/m³ and < 3,600,000 $\square$ ≥ 3,600,000 μg/m³ $\square$ Unknown		
Soil Gas Napthalene:		
□ ≥ 93 μg/m³ and < 310 μg/m³ $□$ ≥ 310 μg/m³ and < 93,000 μg/m³ $□$ ≥ 93,000 μg/m³ and < 310,000 μg/m³		
$\square \ge 310,000 \text{ μg/m}^3$ $\square$ Unknown		

Media-Specific Criteria: Direct Contact and Outdoor Air Exposure					
3.	The	irect Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposure if site-specific conditions satisfy one of he three classes of sites (a through c).			
	a.	Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs)?	☑ Yes ☐ No ☐ NA ☐ UND		
	b.	Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	☑ Yes ☐ No ☐ NA ☐ UND		
	C.	As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	☑ Yes ☐ No ☐ NA ☐ UND		
Media-Specific Criteria: Direct Contact and Outdoor Air Exposure					

Additional Questions – Indicate only those conditions that do not meet the policy				
Exposure Type:				
☐ Residential ☐ Commercial ☐ Utility Worker				
Petroleum Constituents in Soil:				
□ ≤ 5 Feet bgs □ Unknown				
Soil Concentrations of Benzene:				
☐ > 1.9 mg/kg and ≤ 2.8 mg/kg ☐ > 2.8 mg/kg and ≤ 8.2 mg/kg ☐ > 12 mg/kg and ≤ 14 mg/kg				
☐ > 14 mg/kg				
Soil Concentrations of EthylBenzene:				
$\square$ > 21 mg/kg and $\le$ 32 mg/kg $\square$ > 32 mg/kg and $\le$ 89 mg/kg $\square$ > 89 mg/kg and $\le$ 134 mg/kg				
☐ > 134 mg/kg and ≤ 314 mg/kg ☐ > 314 mg/kg ☐ Unknown				
Soil Concentrations of Naphthalene:				
$\square$ > 9.7 mg/kg and $\le$ 45 mg/kg $\square$ > 45 mg/kg and $\le$ 219 mg/kg $\square$ > 219 mg/kg $\square$ Unknown				
Soil Concentrations of PAH:				
$\square$ > 0.063 mg/kg and $\le$ 0,68 mg/kg $\square$ > 0.68 mg/kg and $\le$ 4.5 mg/kg $\square$ > 4.5 mg/kg				
□ Unknown     □				
Area of Impacted Soil :				

### Notes:

¹This site [complies/does not comply] with the State Water Resources Control Board (SWRCB) policies and state law. Section 25296.10 of the Health and Safety Code requires that sites be cleaned up to protect human health, safety, and the environment. The current site conceptual model based on information contained in the case file databases (Alameda County Environmental Health ftp site and SWRCB GeoTracker website), is not adequate to determine that residual petroleum constituents at the site do not pose a significant risk to human health, safety, or the environment. See Attachment 2 for details.