Atlantic Richfield Company

Chuck Carmel Remediation Management Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: chuck.carmel@bp.com

By Alameda County Environmental Health at 2:41 pm, May 05, 2014

RECEIVED

April 30, 2014

Re: First Quarter 2014 Groundwater Monitoring Report Atlantic Richfield Company Station #374 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Chuck Carmel Remediation Management Project Manager

Attachment

Creating Solutions, Building Trust.

April 30, 2013

Project No. 06-88-602

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: First Quarter 2014 Monitoring Report, Atlantic Richfield Company Station #374, 6407 Telegraph Avenue, Oakland, Alameda County, California ACEH Case #RO0000078

Dear Mr. Carmel

Attached is the *First Quarter 2014 Monitoring Report* for Atlantic Richfield Company (a BP affiliated company) for Station #374 located at 6407 Telegraph Avenue, Oakland, California (Site). Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (707) 455-7290.

Sincerely, BROADBENT & ASSOCIATES, INC.

104 Sarah Jones KRISTENE PRO, TIDWELL Staff Geologist 969 CERTIFIED HYDRO Kristene Tidwell, P.G., C.H.G. Senior Geologist

Enclosures

cc: Ms. Karol Detterman, Alameda County Environmental Health (Submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

FIRST QUARTER 2014 MONITORING REPORT ATLANTIC RICHFIELD COMPANY STATION #374 OAKLAND, CALIFORNIA

Broadbent & Associates, Inc. (Broadbent) is pleased to present this *First Quarter 2014 Monitoring Report* on behalf of Atlantic Richfield Company (ARC, a BP affiliated company) for Station #374 located at 6407 Telegraph Avenue, Oakland, Alameda County, California (the Site). Monitoring activities at the Site were performed in accordance with an agency directive issued by the Alameda County Environmental Health (ACEH). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	Station #374 / 6407 Telegraph Avenue, Oakland, California
Client Project Manager / Title:	Mr. Chuck Carmel / Operations Project Manager
Broadbent Contact:	Ms. Kristene Tidwell, P.G., C.HG.
Broadbent Project No.:	06-88-602
Primary Regulatory Agency / ID No.:	ACEH / Case #RO0000078
Current phase of project:	Monitoring
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in
	report.

WORK PERFORMED THIS QUARTER (First Quarter 2014):

- 1. Submitted Fourth Quarter 2013 Status Report on January 30, 2014.
- 2. Broadbent conducted First Quarter 2014 groundwater monitoring and sampling event on February 11, 2014.
- 3. Submitted Report documenting recent soil vapor sampling activities on March 28, 2014. This report also included a request for case closure.

WORK SCHEDULED FOR NEXT QUARTER (Second Quarter 2013):

- 1. Submit First Quarter 2013 Monitoring Report (contained herein).
- 2. No sampling or environmental activities are scheduled at the Site during Second Quarter 2013.

QUARTERLY MONITORING PLAN SUMMARY:

Groundwater level gauging:	MW-1 through MW-9	(Semi-Annually, 1Q & 3Q)
Groundwater sample collection:	MW-1, MW-2, MW-4, MW-7, MW-8,	(Semi-Annually, 1Q & 3Q)
	and MW-9	
	MW-3, MW-5, and MW-6	(Annually, 3Q)

QUARTERLY RESULTS SUMMARY:

LNAPL

LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	None	(gal)
oundwater Elevation and Gradie		

Groundwater Elevation and Gradient:

4.67 (MW-6) to 7.75 (MW-1)	(ft below TOC)
Southwest	(compass direction)
0.03	(ft/ft)
-0.52	(ft since last measurement)
	4.67 (MW-6) to 7.75 (MW-1) Southwest 0.03 -0.52

Laboratory Analytical Data Summary:

Analytical results are as follows:

- GRO was detected in two wells at a maximum concentration of 250 μg/L in well MW-9
- Benzene was detected in one well at a concentration of 800 μg/L in well MW-4
- MTBE was detected in five wells at a maximum concentration of 78 $\mu g/L$ in well MW-8
- TAME was detected in one well at a concentration of 0.83 $\mu g/L$ in well MW-8
- Ethylbenzene was detected in one well at a concentration of $84\ \mu\text{g/L}$ in well MW-4
- Total xylenes were detected in one well at a concentration of 230 $\mu g/L$ in well MW-4
- Toluene was detected in one well at a concentration of 80 μg/L in well MW-4

ACTIVITIES CONDUCTED & RESULTS:

First Quarter 2014 groundwater monitoring was conducted on February 11, 2014 in accordance with the monitoring plan summary presented above. No irregularities were noted during water level gauging. Collected depth to water measurements ranged from 4.67 ft in monitoring well MW-6 to 7.75 ft in monitoring well MW-1. Resulting groundwater surface elevations ranged from 149.29 ft bgs in well MW-5 to 157.43 ft bgs in well MW-7. Groundwater elevations are summarized in Table 1. Water level elevations yielded a potentiometric groundwater gradient to the southwest at approximately 0.03 ft/ft. Historical groundwater gradient direction and magnitude data are summarized in Table 3. Field methods used during groundwater monitoring are provided in Appendix A. Field data sheets are included in Appendix B.

Groundwater samples collected from monitoring wells MW-1, MW-2, MW-4, and MW-7 through MW-9 were submitted to Test America Laboratories, Inc. (Test America) of Irvine, California for analysis of GRO, by EPA Method 8015B; BTEX, MTBE, ETBE, TAME, DIPE, TBA, EDB, 1,2-DCA, and ethanol by EPA Method 8260B. No significant irregularities were encountered during analysis of the samples. Laboratory analytical report and chain of custody record are provided in Appendix C.

Results of this sampling event are included in the laboratory analytical data summary presented above. These results indicate that the highest overall petroleum concentrations are present in well MW-4. The analytes detected this quarter are within historical concentration ranges. Further discussion of these results are presented below.

DISCUSSION:

Review of historical groundwater gradient data indicates that the gradient measured during First Quarter 2014 monitoring is consistent with predominant measurements observed historically at the Site. During First Quarter 2014, groundwater elevations decreased an average of 0.52 feet across the Site relative to measurements collected during Third Quarter 2013.

Review of historical groundwater results indicate that well MW-4 contains the highest residual concentrations of petroleum compounds due to its location near the former Underground Storage Tank (UST). Petroleum hydrocarbon concentrations from the First Quarter 2014 monitoring event were within historical ranges. Historical analytical data indicates decreasing trends for all Site wells.

Groundwater levels in many Site wells are currently above the top of their respective screen intervals. Ideally, groundwater samples would not be collected from wells where screens are flooded. In general, wells with flooded screens are older wells, where water levels over time may have risen. Additionally, these wells only periodically have flooded screens. For example, well MW-4 is one of the oldest Site wells, and has elevated residual petroleum concentrations.

The screen in this well is periodically flooded, with the concentrations noted during events when the screen is not flooded are comparable to those where the screen is flooded. Additionally, data from wells with lower hydrocarbon concentrations is comparable to site wells without flooded screens. For these reasons, the data reported herein appears valid despite the occurrence of flooded screens at the Site.

RECOMMENDATIONS:

Recently a case closure request was submitted dated March 28, 2014. The results of the recent soil vapor investigation indicates no vapor intrusion risk from site petroleum compounds. Upon concurrence from the ACEH, with the request for case closure, wells will be decommissioned and final site closure activities will be carried out.

LIMITATIONS:

The findings presented in this report are based upon observations of field personnel, points investigated, results of laboratory tests performed by Test America and our understanding of ACEH guidelines. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company (a BP affiliated company). It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

Drawing 1:	Site Location Map
Drawing 2:	Groundwater Elevation Contour and Analytical Summary Map
Table 1:	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
Table 2:	Summary of Fuel Additives Analytical Data
Table 3:	Historical Groundwater Gradient - Direction and Magnitude
Appendix A:	Field Methods
Appendix B:	Field Data Sheets and Non-Hazardous Waste Data Form
Appendix C:	Laboratory Report and Chain-of-Custody Documentation
Appendix D:	GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACRONYMS/ABBREVIATIONS:

ACEH	Alameda County Environmental Health	gal:	Gallons
ARC:	Atlantic Richfield Company	GRO:	Gasoline Range Organics (C6-12)
BAI:	Broadbent & Associates, Inc.	LNAPL:	Light Non-Aqueous Phase Liquid
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	MTBE:	Methyl Tertiary Butyl Ether
1,2-DCA:	1,2-Dichloroethane	TAME:	Tert-Amyl Methyl Ether
DIPE:	Di-Isopropyl Ether	TBA:	Tert-Butyl Alcohol
EDB:	1,2-Dibromomethane	TOC:	Top Of Casing
ft/ft:	Feet Per Foot	μg/L:	Micrograms Per Liter
UST:	Underground Storage Tank	ft bgs:	Feet Below Ground Surface

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

|--|

			Top of	Bottom of		Water Level	Concentrations in µg/L								
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-11A															
3/9/2009	Р	120.85	16.00	20.00	12.41	108.44	1,000	1.5	<1.0	13	4.8	60	9.20	12.74	
6/18/2009	Р		16.00	20.00	14.58	106.27	260	11	<5.0	6.8	<5.0	280		9.83	а
9/1/2009	Р		16.00	20.00	8.75	112.10	1,400	28	20	61	6.7	340	1.40	7.84	
11/11/2009			16.00	20.00	10.40	110.45							1.55	12.5	
2/19/2010	Р		16.00	20.00	8.90	111.95	1,300	20	17	25	<5.0	340	2.01	12.13	
7/23/2010	Р		16.00	20.00	8.37	112.48	1,300	20	22	23	<5.0	350	1.11	12.0	
3/10/2011	Р		16.00	20.00			250	<5.0	5.4	<5.0	<5.0	76	4.17	12.3	b, c (GRO)
8/8/2011	NP		16.00	20.00	14.88	105.97	730	7.3	16	11	<5.0	310	1.47	12.1	
1/16/2012	Р		16.00	20.00	14.08	106.77							1.43	13.77	
9/11/2012	Р		16.00	20.00	14.91	105.94	220	4.4	11	6.4	<2.0	280	1.36	12.76	
3/26/2013	Р		16.00	20.00	13.70	107.15	260	<2.5	4.2	<2.5	<5.0	330	5.03	12.75	
9/4/2013	Р		16.00	20.00	13.85	107.00	220	3.3	8.8	5.5	1.0	200	1.21	12.35	
3/6/2014	Р		16.00	20.00	13.53	107.32	160	1.5	4.0	2.3	<2.0	300	4.73	11.53	
MW-11B															
3/9/2009	Р	121.31	26.00	30.00	7.33	113.98	280	1.3	1.3	7.6	<0.50	240	9.56	7.14	
6/18/2009	Р		26.00	30.00	7.38	113.93	130	<5.0	<5.0	<5.0	<5.0	200		6.96	а
9/1/2009	Р		26.00	30.00	7.66	113.65	69	<5.0	<5.0	<5.0	<5.0	210	1.01	7.01	
11/11/2009	Р		26.00	30.00	7.70	113.61	55	<5.0	<5.0	<5.0	<5.0	200	0.38	6.7	
2/19/2010	Р		26.00	30.00	7.59	113.72	68	<2.5	<2.5	<2.5	<2.5	180	2.38	7.44	
7/23/2010	Р		26.00	30.00	7.42	113.89	<50	<2.5	<2.5	<2.5	<2.5	110	1.57	7.02	
3/10/2011	Р		26.00	30.00	7.25	114.06	<50	<1.0	<1.0	<1.0	<1.0	58	1.86	6.8	
8/8/2011	Р		26.00	30.00	7.24	114.07	<50	<1.0	<1.0	<1.0	<1.0	60	1.33	7.8	
1/16/2012	Р		26.00	30.00	7.96	113.35	<50	<1.0	<1.0	<1.0	<1.0	47	4.33	8.8	
9/11/2012	Р		26.00	30.00	7.61	113.70	<50	<0.50	<0.50	<0.50	<1.0	27	1.17	7.07	
3/26/2013	Р		26.00	30.00	7.57	113.74	<50	<0.50	<0.50	<0.50	<1.0	26	1.95	6.85	
9/4/2013	Р		26.00	30.00	7.78	113.53	<50	<0.50	<0.50	<0.50	<1.0	19	1.62	6.92	
3/6/2014	Р		26.00	30.00	7.72	113.59	<50	<0.50	<0.50	<0.50	<1.0	27	3.12	6.14	
MW-12A															
3/9/2009	Р	120.64	13.00	18.00	8.70	111.94	<50	<0.50	<0.50	<0.50	<0.50	41	4.62	6.76	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ANCO SEI VICE STATION $\pi 2107$, SSTO FAIX DOULEVALU, OAKIANU, CA

			Top of	Bottom of		Water Level	Concentrations in µg/L								
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-12A Cont.															
6/18/2009	Р	120.64	13.00	18.00	8.58	112.06	<50	<1.0	<1.0	<1.0	<1.0	40		7.92	а
9/1/2009	Р		13.00	18.00	9.21	111.43	<50	<0.50	<0.50	<0.50	<0.50	39	1.06	6.97	
11/11/2009	Р		13.00	18.00	9.15	111.49	<50	<1.0	<1.0	<1.0	<1.0	41	0.51	6.2	
2/19/2010	Р		13.00	18.00	9.13	111.51	<50	<0.50	<0.50	<0.50	<0.50	32	0.38	6.58	
7/23/2010	Р		13.00	18.00	9.18	111.46	<50	<0.50	<0.50	<0.50	<0.50	34	0.68	7.6	
3/10/2011	Р		13.00	18.00	8.43	112.21	<50	<0.50	<0.50	<0.50	<0.50	27	1.66	6.7	
8/8/2011	Р		13.00	18.00	8.33	112.31	<50	<0.50	<0.50	<0.50	<0.50	32	3.40	7.5	
1/16/2012	Р		13.00	18.00	9.12	111.52	<50	<0.50	<0.50	<0.50	<0.50	18	0.84	7.32	
9/11/2012	Р		13.00	18.00	8.95	111.69	<50	<0.50	<0.50	<0.50	<1.0	22	1.20	6.99	
3/26/2013	Р		13.00	18.00	8.68	111.96	<50	<0.50	<0.50	<0.50	<1.0	17	1.07	6.76	
9/4/2013	Р		13.00	18.00	9.14	111.50	<50	<0.50	<0.50	<0.50	<1.0	11	2.91	6.85	
3/6/2014	Р		13.00	18.00	9.14	111.50	<50	<0.50	<0.50	<0.50	<1.0	22	1.23	6.11	
MW-12B															
3/9/2009	Р	120.84	27.00	30.00	14.89	105.95	<50	<0.50	0.55	<0.50	<0.50	150	5.87	7.74	
6/18/2009	Р		27.00	30.00	13.51	107.33	140	<2.5	<2.5	<2.5	<2.5	380		8.60	а
9/1/2009	Р		27.00	30.00	9.54	111.30	89	<10	<10	<10	<10	460	0.99	6.88	
11/11/2009	Р		27.00	30.00	11.53	109.31	<50	<5.0	<5.0	<5.0	<5.0	600	1.00	6.46	
2/19/2010	Р		27.00	30.00	11.07	109.77	52	<5.0	<5.0	<5.0	<5.0	620	3.32	6.89	
7/23/2010	Р		27.00	30.00	10.75	110.09	<50	<10	<10	<10	<10	510	1.70	7.54	
3/10/2011	Р		27.00	30.00	10.05	110.79	<50	<10	<10	<10	<10	700	2.71	6.9	
8/8/2011	Р		27.00	30.00	9.35	111.49	<50	<10	<10	<10	<10	510	1.70	6.9	
1/16/2012	Р		27.00	30.00	9.45	111.39	<50	<12	<12	<12	<12	840	3.36	7.0	
9/11/2012	Р		27.00	30.00	9.31	111.53	<50	<5.0	<5.0	<5.0	<10	790	1.13	7.13	
3/26/2013	р		27.00	30.00	8.86	111.98	<50	<0.50	<0.50	<0.50	<1.0	34	4.93	7.03	
9/4/2013	Р		27.00	30.00	9.52	111.32	<50	<0.50	<0.50	<0.50	<1.0	2.9	2.96	6.97	
3/6/2014	Р		27.00	30.00	9.55	111.29	<50	<5.0	<5.0	<5.0	<10	930	3.51	6.21	
MW-13A															
3/9/2009	Р	114.55	11.50	16.50	9.53	105.02	<50	<0.50	<0.50	<0.50	<0.50	13	9.39	7.64	
6/18/2009	Р		11.50	16.50	2.88	111.67	<50	<0.50	<0.50	<0.50	<0.50	23		7.21	а

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ANCO SEI VICE STATION $\pi 2107$, SSTO FAIX DOULEVALU, OAKIANU, CA

			Top of	Bottom of		Water Level	Concentrations in µg/L								
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
MW-13A Cont.															
9/1/2009	Р	114.55	11.50	16.50	3.31	111.24	<50	<0.50	<0.50	<0.50	<0.50	34	0.96	6.90	
11/11/2009	Р		11.50	16.50	3.66	110.89	<50	<0.50	<0.50	<0.50	<0.50	21	1.79	6.5	
2/19/2010	Р		11.50	16.50	3.43	111.12	<50	<0.50	<0.50	<0.50	<0.50	15	0.92	6.69	
7/23/2010	Р		11.50	16.50	3.22	111.33	<50	<0.50	<0.50	<0.50	<0.50	24	1.4	7.0	
3/10/2011	Р		11.50	16.50	2.57	111.98	<50	<0.50	<0.50	<0.50	<0.50	12	0.76	6.7	
8/8/2011	Р		11.50	16.50	8.43	106.12	<50	<0.50	<0.50	<0.50	<0.50	29	3.59	7.2	
1/16/2012	Р		11.50	16.50	3.11	111.44	<50	<0.50	<0.50	<0.50	<0.50	37	1.25	7.08	
9/11/2012	Р		11.50	16.50	3.03	111.52	<50	<0.50	<0.50	<0.50	<1.0	64	1.50	6.98	
3/26/2013	р		11.50	16.50	2.74	111.81	<50	<0.50	<0.50	<0.50	<1.0	51	1.19	6.76	
9/4/2013	Р		11.50	16.50	3.28	111.27	<50	<0.50	<0.50	<0.50	<1.0	76	3.18	6.81	
3/6/2014	Р		11.50	16.50	3.36	111.19	<50	<0.50	<0.50	<0.50	<1.0	84	1.41	6.16	
MW-13B															
3/9/2009	Р	114.75	18.50	22.50	2.96	111.79	<50	<0.50	<0.50	<0.50	<0.50	13	8.44	6.99	
6/18/2009	Р		18.50	22.50	2.85	111.90	<50	<0.50	<0.50	<0.50	<0.50	12		6.92	а
9/1/2009	Р		18.50	22.50	3.36	111.39	<50	<0.50	<0.50	<0.50	<0.50	17	0.96	7.29	
11/11/2009	Р		18.50	22.50	3.49	111.26	<50	<0.50	<0.50	<0.50	<0.50	21	2.45	6.39	
2/19/2010	Р		18.50	22.50	3.10	111.65	<50	<0.50	<0.50	<0.50	<0.50	19	1.46	6.50	
7/23/2010	Р		18.50	22.50	2.74	112.01	<50	<0.50	<0.50	<0.50	<0.50	15	1.16	7.19	
3/10/2011	Р		18.50	22.50	3.72	111.03	<50	<0.50	<0.50	<0.50	<0.50	31	0.72	6.6	
8/8/2011	Р		18.50	22.50	2.48	112.27	<50	<0.50	<0.50	<0.50	<0.50	32	1.51	6.8	
1/16/2012	Р		18.50	22.50	3.47	111.28	<50	<0.50	<0.50	<0.50	<0.50	49	0.86	6.8	
9/11/2012	Р		18.50	22.50	3.15	111.60	<50	<0.50	<0.50	<0.50	<1.0	63	1.62	7.05	
3/26/2013	р		18.50	22.50	2.92	111.83	<50	<0.50	<0.50	<0.50	<1.0	62	1.37	6.86	
9/4/2013	Р		18.50	22.50	3.42	111.33	<50	<0.50	<0.50	<0.50	<1.0	45	3.41	7.07	
3/6/2014	Р		18.50	22.50	3.52	111.23	<50	<0.50	<0.50	<0.50	<1.0	90	1.00	6.60	

Symbols & Abbreviations: -- = Not measured/applicable/analyzed/sampled µg/L = Micrograms per liter DO = Dissolved oxygen DTW = Depth to water in ft below TOC GRO = Gasoline range organics mg/L = Milligrams per liter MTBE = Methyl tert butyl ether < = Not detected at or above specified laboratory reporting limit NP = Well not purged prior to sampling P = Well purged prior to sampling TOC = Top of casing in ft above NAVD88 datum

Footnotes:

a = DO meter not working
b = Well full of water
c = Quantitation of unknown hydrocarbons(s) in sample based on gasoline

Notes:

Values for DO and pH were obtained through field measurements

Table 2. Summary of Fuel Additives Analytical Data

ARCO Service Station #2107, 3310 Park Boulevard, Oakland, CA

Well ID and	Concentrations in µg/L								
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-11A									
3/9/2009		<20	60	<1.0	<1.0	<1.0			
6/18/2009	<3,000	<100	280	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	340	<5.0	<5.0	5.3	<5.0	<5.0	
2/19/2010	<3,000	<100	340	<5.0	<5.0	6.1	<5.0	<5.0	
7/23/2010	<3,000	<100	350	<5.0	<5.0	6.5	<5.0	<5.0	
3/10/2011	<6,000	<100	76	<5.0	<5.0	<5.0	<5.0	<5.0	
8/8/2011	<3,000	<100	310	<5.0	<5.0	<5.0	<5.0	<5.0	
9/11/2012	<300	<20	280	<1.0	<1.0	4.1	<1.0	<1.0	
3/26/2013	<750	<50	330	<2.5	<2.5	3.9	<2.5	<2.5	
9/4/2013	<150	22	200	<0.50	<0.50	3.5	<0.50	<0.50	
3/6/2014	<300	<20	300	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-11B									
3/9/2009		<10	240	<0.50	<0.50	3.1			
6/18/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
9/1/2009	<3,000	<100	210	<5.0	<5.0	<5.0	<5.0	<5.0	
11/11/2009	<3,000	<100	200	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<1,500	<50	180	<2.5	<2.5	<2.5	<2.5	<2.5	
7/23/2010	<1,500	<50	110	<2.5	<2.5	<2.5	<2.5	<2.5	
3/10/2011	<600	<20	58	<1.0	<1.0	<1.0	<1.0	<1.0	
8/8/2011	<600	<20	60	<1.0	<1.0	<1.0	<1.0	<1.0	
1/16/2012	<600	33	47	<1.0	<1.0	<1.0	<1.0	<1.0	
9/11/2012	<150	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	26	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	19	<0.50	<0.50	<0.50	<0.50	<0.50	
3/6/2014	<150	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12A									
3/9/2009		<10	41	<0.50	<0.50	<0.50			
6/18/2009	<600	<20	40	<1.0	<1.0	<1.0	<1.0	<1.0	
9/1/2009	<300	<10	39	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<600	<20	41	<1.0	<1.0	<1.0	<1.0	<1.0	

Table 2. Summary of Fuel Additives Analytical Data

ARCO Service Station #210	7, 3310 Park Boulevard	, Oakland, CA	4
---------------------------	------------------------	---------------	---

Well ID and	Concentrations in µg/L		ions in μg/L						
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-12A Cont.									
2/19/2010	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	27	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	19	18	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	22	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	11	<0.50	<0.50	<0.50	<0.50	<0.50	
3/6/2014	<150	<10	22	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-12B									
3/9/2009		<10	150	<0.50	<0.50	<0.50			
6/18/2009	<1,500	<50	380	<2.5	<2.5	<2.5	<2.5	<2.5	
9/1/2009	<6,000	<200	460	<10	<10	<10	<10	<10	
11/11/2009	<3,000	<100	600	<5.0	<5.0	<5.0	<5.0	<5.0	
2/19/2010	<3,000	<100	620	<5.0	<5.0	5.1	<5.0	<5.0	
7/23/2010	<6,000	<200	510	<10	<10	<10	<10	<10	
3/10/2011	<6,000	<200	700	<10	<10	<10	<10	<10	
8/8/2011	<6,000	<200	510	<10	<10	<10	<10	<10	
1/16/2012	<7,500	320	840	<12	<12	<12	<12	<12	
9/11/2012	<1,500	<100	790	<5.0	<5.0	8.7	<5.0	<5.0	
3/26/2013	<150	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	2.9	<0.50	<0.50	<0.50	<0.50	<0.50	
3/6/2014	<1,500	<100	930	<5.0	<5.0	10	<5.0	<5.0	
MW-13A									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	23	<0.50	<0.50	<0.50	<0.50	<0.50	
9/1/2009	<300	<10	34	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	24	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data

ARCO Service Station #210	7, 3310 Park Boulevard	, Oakland, CA
---------------------------	------------------------	---------------

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-13A Cont.									
3/10/2011	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	29	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	26	37	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	64	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	51	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	76	<0.50	<0.50	<0.50	<0.50	<0.50	
3/6/2014	<150	<10	84	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-13B									
3/9/2009		<10	13	<0.50	<0.50	<0.50			
6/18/2009	<300	<10	12	<0.50	<0.50	<0.50	<0.50	<0.50	
9/1/2009	<300	<10	17	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	21	<0.50	<0.50	<0.50	<0.50	<0.50	
2/19/2010	<300	<10	19	<0.50	<0.50	<0.50	<0.50	<0.50	
7/23/2010	<300	<10	15	<0.50	<0.50	<0.50	<0.50	<0.50	
3/10/2011	<300	<10	31	<0.50	<0.50	<0.50	<0.50	<0.50	
8/8/2011	<300	<10	32	<0.50	<0.50	<0.50	<0.50	<0.50	
1/16/2012	<300	19	49	<0.50	<0.50	<0.50	<0.50	<0.50	
9/11/2012	<150	<10	63	<0.50	<0.50	<0.50	<0.50	<0.50	
3/26/2013	<150	<10	62	<0.50	<0.50	<0.50	<0.50	<0.50	
9/4/2013	<150	<10	45	<0.50	<0.50	<0.50	<0.50	<0.50	
3/6/2014	<150	12	90	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations: -- = Not analyzed/applicable/measurable < = Not detected above reported detection limit 1,2-DCA = 1,2-Dichloroethane µg/L = Micrograms per Liter DIPE = Diisopropyl ether EDB = 1, 2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol

Notes: All volatile organic compounds analyzed using EPA Method 8260B

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
1/31/1996	Southwest	0.04
4/10/1996	Southwest	0.04
7/16/1996	Southwest	0.03
10/14/1996	Southwest	0.03
3/27/1997	Southwest	0.04
5/27/1997	Southwest	0.03
8/12/1997	Southwest	0.04
11/17/1997	Southwest	0.03
3/16/1998	Southwest	0.03
5/12/1998	Southwest	0.04
7/27/1998	Southwest	0.04
10/15/1998	Southwest	0.02
2/18/1999	Southwest	0.05
5/24/1999	Southwest	0.03
8/27/1999	Southwest	0.03
10/26/1999	Southwest	0.03
2/3/2000	Southwest	0.047
6/20/2000	Southwest	0.035
9/28/2000	Southwest	0.034
12/17/2000	Southwest	0.032
3/23/2001	Southwest	0.034
6/21/2001	Southwest	0.032
9/23/2001	Southwest	0.029
12/31/2001	Southwest	0.043
3/21/2002	Southwest	0.038
4/17/2002	Southwest	0.031
8/12/2002	Southwest	0.032
12/6/2002	Southwest	0.020
1/29/2003	Southwest	0.027
5/23/2003	Southwest	0.039
9/4/2003	Southwest	0.033
11/20/2003	Southwest	0.029
2/2/2004	Southwest	0.043 (a)
5/14/2004	Southwest	0.037 (a)
9/2/2004	Southwest	0.027 (a)
11/4/2004	Southwest	0.034 (a)
2/8/2005	Southwest	0.061 (a)
5/9/2005	Southwest	0.08 (a)
8/11/2005	Southwest	0.06 (a)
11/18/2005	Southwest	0.07 (a)
2/16/2006	Southwest	0.09 (a)
5/30/2006	Southwest	0.06 (a)
8/24/2006	Southwest	0.03
11/1/2006	Southwest	0.02
2/7/2007	Southwest	0.03

Table 3. Summary of Groundwater Gradient - Direction and Magnitude ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
5/8/2007	Southwest	0.03
8/8/2007	Southwest	0.03
11/14/2007	Southwest	0.03
2/22/2008	Southwest	0.03
5/24/2008	Southwest	0.03
8/21/2008	Southwest	0.03
11/19/2008	Southwest	0.03
2/23/2009	Southwest	0.04
5/14/2009	Southwest	0.03
8/20/2009	Southwest	0.03
2/19/2010	West-Southwest	0.05
8/10/2010	Southwest	0.03
12/16/2010	Southwest	0.03
2/14/2011	Southwest	0.03
5/20/2011	Southwest	0.03
8/15/2011	Southwest	0.03
2/2/2012	Southwest	0.03
8/9/2012	Southwest	0.03
2/14/2013	Southwest	0.04
8/22/2013	Southwest	0.03
2/11/2014	Southwest	0.03

Table 3. Summary of Groundwater Gradient - Direction and Magnitude ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Footnotes:

a = Gradients potentially suspect due to error in MW-4 and MW-5 TOC measuring point elevations discovered third quarter 2006

Notes:

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

	and thates Quality maleater i anametere				
Parameter	Stabilization Criterion				
Temperature	± 0.2ºC (± 0.36ºF)				
рН	± 0.1 standard units				
Conductivity	± 3%				
Dissolved oxygen	± 10%				
Oxidation reduction potential	± 10 mV				
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)				

 Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

 $^{^{2}}$ According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS AND NON-HAZARDOUS WASTE DATA FORM

DAILY REPORT

Page _ l _ of _ l

Project: B	BP 374 Project No.: 06-88-602								
Field Represen	entative(s): <u>A. Martinez S. Jones</u> Day: <u>Tresday</u> Date: <u>2/11/14</u>								
Time Onsite: H	Time Onsite: From: To: TO:T								
 <u>←</u> Signed <u>←</u> UST Er <u>←</u> Proper I 	d HASP <u>×</u> Safety Glasses <u>×</u> Hard Hat <u>×</u> Steel Toe Boots <u>×</u> Safet Emergency System Shut-off Switches Located <u>×</u> Proper Gloves r Level of Barricading Other PPE (describe)	y Vest							
Weather:P	None								
TIME	WORK DESCRIPTION.								
0700	Arrive quaite / conducted bailorate	(<u>7</u>)							
0735	Set is for Samaling @ MW-1								
0815	Set up @ Mm-2								
0845	Jet up @ Mw-9								
0910	Set co @ Mnr-8								
0940	Set LD & MM-7								
1010	Set UP @ MW- 4								
1115	Completed fieldwork & offsite.								
<u></u>									
<u> </u>									
Signature:	ally mosta	Revision: 1/24/201							

GROUNDWATER MONITORING SITE SHEET

Page _____ of _____

Project: BP 374 Project No.: 06-88-602 Date: 2/11/14

Elevation:

Field Representative: AM 155 Formation recharge rate is historically:

W. L. Indicator ID #: _____ High Low (circle one)

Oil/Water Interface ID #: (List #s of all equip used.)

WELL ID RECORD				W	ELL GA	UGING	RECOR	D	NOTES	
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)	
Mw-1					0745		1	7.75	26,77	
MW-Z					0520	-	-	7.12	26.35	
Mw-3					1059	-	(5.79	26.80	
MW-4					1015	500	-	7.13	26.97	
MW-5					1112	-	-	7.61	23.10	
Mw-6					1107	-	-	4.67	14.65	
MW-7					0945	-		7.37	19.80	
MW-8					0915	-	-	7.56	19.40	
Mw-9					0849	-	-	7.07	19.35	
										2
				C						
* Device used to	measure	LNAPL	thicknes	s:	Bailer	an a	Oil/Wat	er Interfa	ice Meter	(circle one)
If bailer used,	note bail	er dimens	sions (inc	ches):	Entry D	Diameter			Cham	ber Diameter
	and the second se	A REAL PROPERTY AND INCOME.		the second s	and the second second second	State of the local division of the local div	the second s	A CONTRACTOR OF THE OWNER		

Signature:

GROUNDWATER SAMPLING DATA SHEET Page _ _ _ of _ _ _

						the second s		and the second design of the s	
Project:	BP 3	374		1.1	Project No .:	06-8	3-602	Date:	2/11/14
Field Repre	esentative:	AM	155						
Well ID:	Mw-1		Start Time:	-	End Time:	-	Total Tim	e (minutes):	-
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	<u>×</u>	Flow Cell		
×	Disp. Tubing		12V Pump	7	Peristaltic Pump	Other/ID#:			
WELL HEA	D INTEGRITY	(cap, lock, vau	t, etc.)	Comments:					
Good	Improvement Nee	eded (c	ircle one)						
PURGING/	SAMPLING MI	ETHOD P	redetermined Wel		w-Flow Other:			(circle d	one)
	PREDETERN	AINED WEL	L VOLUME				LO	W-FLOW	
Casing I	Diameter Unit Volu	me (gal/ft) (cir	cle one)			Previous Low-H	Flow Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep	th (a):		26.77 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a b	Initial Depth to	Water (b):		7.75 (ft)
Total Well Dep	oth (a):			(ft)	" 目	Pump In-take D	bepth = b + (a-b)/2	2:	17.26 (ft)
Initial Depth to	Water (b):			(ft)		Maximum Allo	wable Drawdowr	u = (a-b)/8;	<u>2.31</u> (ft)
Water Column	Height (WCH) = (a	- b):		(ft)	E	Low-Flow Purg	e Rate:		(Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gal)		Comments:			
Three Casing	Volumes = WCV x	3:	·	(gal)	Ē				
Five Casing V	Volumes = WCV x 5	5:	<u>.</u>	(gal)	★目	*Low-flow purge re	tte should be within	range of instruments	used but should not
Pump Depth (if	f pump used):			(ft)		exceed 0.25 gpm. L	Drawdown should no	t exceed Maximum A	Allowable Drawdown.
		G	ROUNDWAT	TER STABIL	IZATION PAR	AMETER RE	CORD		Nomea
(24:00)	Cumulative Vol.	Temperature	рН	Conductivity	DO ma/l	ORP	Turbidity	Oder col	NOTES
0757		11. 70	910	0.517	S 9L		6 O		or, sheen or other
0754	0.5	17.42	8.55	0.795	3.34	38	6.0		
0756	1-0	17.66	8.02	0.783	2.62	55	0.0		
0758	1.5	17.77	7.56	6.777	2.75	68	0.0		
0300	2.0	17.80	7.24	0.774	2.10	79	0.0		
0205	2.5	17.91	1.04	0.173	1.02	87	0.0		
						-			
			·						
Previous Stabili	zed Parameters								
PURGE CO	MPLETION RI	ECORD 🗡	Low Flow & Pa	rameters Stable	3 Casing Vo	olumes & Parame	ters Stable	5 Casing Volum	ies
			Other:						
	SAN	APLE COLL	ECTION REC	CORD			GEOCHEMIC	CAL PARAM	ETERS
Depth to Water	at Sampling:	<u>8.13 (f</u>	:)			Para	meter	Time	Measurement
Sample Collect	ed Via: Disp	. Bailer l	Dedicated Pump	Fubing		DO (mg/L)			
Disp. Pur	np Tubing Othe	ar:				Ferrous Iron (m	ig/L)		
Sample ID:	MW-1		Sample Collection	on Time: 080	05 (24:00)	Redox Potentia	l (mV)		
Containers (#): 6 VOA (S preserved or unpreserved) Liter Amber						Alkalinity (mo	L)		
	Other:			Other:	-3.35-17(7, (Other:			
	Other		-	Other		Other			
				, outer,		Julien			1
Signature:	alley	im	to		and the second				Revision: 3/15/2013

GROUNDWATER SAMPLING DATA SHEET Page 3_ of 7_

Project:	BP 3	74			Project No .:	06-88	-602	Date:	2/11/14
Field Repre	esentative:	AM	51		- 200				
Well ID:	Mw-7	2	Start Time:	~	End Time:	6	Total Tim	e (minutes):	-
DUDOFF					-				
PURGEEQ	QUIPMENT		Disp. Bailer		120V Pump	<u>×</u>	Flow Cell		
	Disp. Tubing		12V Pump	<u>×</u>	Peristaltic Pump	Other/ID#:			
WELL HEA	AD INTEGRITY	(cap, lock, vau	lt, etc.)	Comments:	1				
									1
PURGING	SAMPLING M	ETHOD P	redetermined We	Il Volume Lo	W-Flow Other:			(circle d	one)
0.1	PREDETERN	AINED WEL	LVOLUME				LO	W-FLOW	
	Lameter Unit Volu	me (gal/II) (ch	cle one)	Out		Previous Low-	How Purge Rate:		(lpm)
1 (0.04)	6"1(1.50)	2 (0.17)	3 (0.38)	Other:	b	Total Well Dep	oth (a):		7.12 (ft)
Total Well Der	oth (a):	8 1(2.00)	12 ((3.81)	(<u></u>)	a	Pump In take I	$b = b + (a - b)^{\prime}$.	(f)
Initial Depth to	o Water (b):		1	(ft)	E V.	Maximum Allo	wable Drawdowr	$(a_{-}b)/8$	7 40 (ft)
Water Column	Height (WCH) = (a)	- b):		(ft)	= =	Low-Flow Pure	e Rate	(<i>a 0)</i> ,0.	0.25 (Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gal)	Ē	Comments:			, r/
Three Casing	g Volumes = WCV x	3:		(gal)					
Five Casing	Volumes = WCV x 5	5:		(gal)		*Low-flow purge r	ate should be within	range of instruments	used but should not
Pump Depth (i	f pump used):			(ft)		exceed 0.25 gpm.	Drawdown should no	t exceed Maximum A	Illowable Drawdown.
		C	ROUNDWAT	FER STABIL	IZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or O	°C	l a	µS or mS	mg/L	mV	NTU	Odor, col	or, sheen or other
0325	0.0	18.25	6.94	0.636	4.02	139	0-0		
0927	0.5	17.03	6.34	0.031	767	141	0.0		
0301	1.5	19.68	6 69	0 675	2.36	147	0.0		
0833	2.0	19.80	6.65	0.623	232	150	0.6		
Previous Stabil	ized Parameters								
PURGE CC	MPLETION RE	ECORD >	Low Flow & Pa	rameters Stable	3 Casing Vo	lumes & Parame	ters Stable	5 Casing Volum	PS
		_	Other:			iunes et i urunt		o casing rolan	
	SAN	APLE COLL	ECTION REC	ORD		1	GEOCHEMIC	AL PARAM	ETERS
Depth to Water	r at Sampling:	36 "				Pare	meter	Time	Measurement
Sample Collec	ted Via: Disr	Bailer	Dedicated Pump	Tubing			imeter	Time	Weasurement
	ma Tubing Othe		scontated rump	aong		Earmourn Incord	а Л)		
Disp. Put	mp rubing Othe	1.	0 1 0 11 1	m: @] @	35 (0100)	remous from (n	ig/L)		
Sample ID:	MW-C		Sample Collection	on Time:	<u>) (24:00)</u>	Redox Potentia	u (mV)		
Containers (#):	. <u> </u>	preserved or	unpreserved)	Liter An	nber	Alkalinity (mg	(L)		
	Other:			_ Other:		Other:			
	Other:			_ Other:		Other:			
Signature:	alo	F M	z de			_			Revision: 3/15/2013

GROUNDWATER SAMPLING DATA SHEET Page <u>4</u> of <u>7</u>

Project:	RP 3	74			Project No.:	16.88	- 607	Date:	2/11/14	
Field Repre	sentative:	ΔΛ	ST			00 00				
Well ID:	60. o		Start Time	-	End Time	-	Total Tim	ne (minutes):	-	
	1.000 - 0			,						
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	*	Flow Cell			
<u>×</u>	Disp. Tubing		12V Pump	<u>×</u>	Peristaltic Pump	Other/ID#:				
WELL HEA	D INTEGRITY	(cap, lock, vau	t, etc.)	Comments:						
Good	Improvement Nee	eded (c	ircle one)							
PURGING/	SAMPLING MI	ETHOD P	redetermined We	II Volume 🔟	w-Elow Other:			(circle d	me)	
	PREDETERM	INED WEL	L VOLUME				LO	W-FLOW		
Casing E	Diameter Unit Volu	me (gal/ft) (cir	cle one)			Previous Low-F	low Purge Rate:		(lpm)	
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:	h	Total Well Dep	th (a):		<u>26.97 (ft)</u>	
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a	Initial Depth to	Water (b):		1705 (ft)	
Total Well Dep	th (a):			(ft)		Pump In-take D	epth = b + (a-b)/	/2:	17.05 (ft)	
Initial Depth to	Water (b):	(attache		(ft)		Maximum Allo	wable Drawdow	n = (a-b)/8:	<u> </u>	
Water Column	Height (WCH) = (a	- b):		(ft)	I I	Low-Flow Purg	e Rate:		(Lpm)*	
Water Column	Volume (WCV) = V	VCH x Unit Vol	ime:	(gal)		Comments:	2			
Three Casing	volumes = wCv x	3:	1.5 <u></u>	(gal)	Ē			<i>f</i> :	and has should use	
Five Casing V	7 on times = wcv x of x	4	8- <mark></mark>	(gai) (ft)	♥日	*Low-flow purge ro	ite snouia de within	range of instruments	usea oui snouia noi	
Pump Depui (ii	pump used):					AMETED DE		от ехсеей махітит н	mowable Drawaown.	
Time	Cumulativa Vol	Tomporatura	ROUNDWA.	Conductivity	IZATION PAR				NOTES	
(24:00)	gal of	°C	pri	uS or mS	mg/I	mV	NTU	Odor, col	or, sheen or other	
1021	0.0	10 12	6.65	0.736	3.11	124	0.0	Mod. 1	te adar	
1025	0.5	19.29	6.61	0.734	1.58	44	0.0			
1025	1.0	19.59	6.60	0.734	1.24	-24	0.0			
1027	1.5	19.42	6.57	0.734	1.07	-59	0.0			
1029	20	19.44	6.36	0.734	1.03	-66	0.0			
				· · · · · · · · · · · · · · · · · · ·						
Previous Stabili	zed Parameters					3				
PURGE CO	MPLETION RI	FCORD ×	Low Flow & P	arameters Stable	3 Casing V	olumes & Parame	ters Stable	5 Casing Volum	les	
I UNGL CO			Othom	arameters Stable		oranies ce i uranie				
	C 4 1			2000			CEOCHEMI	CAL DADAM	ETEDS	
	SAN	7 22	ECTION REC	LUKD			JEUCHEIMI			
Depth to Water	at Sampling:	1.30_(f	t)			Para	meter	Time	Measurement	
Sample Collect	ed Via: Disp	. Bailer	Dedicated Pump	Tubing		DO (mg/L)				
👝 Disp. Pur	np Tubing Othe				Ferrous Iron (m	ig/L)				
Sample ID: Sample Collection Time:(24						Redox Potentia	I (mV)			
Containers (#): VOA (<u>K</u> preserved or unpreserved) Liter Amber						Alkalinity (mg/L)				
	Other:			Other:		Other:				
	Other:			Other:		Other:				
			3		Part However, and	1. 1959/15389 <i>8</i> .				
Signature:	ally	1 ma	do			<u></u>			Revision: 3/15/2013	

GROUNDWATER SAMPLING DATA SHEET

Page <u>5</u> of <u>7</u>

Project: Field Repres Well ID: PURGE EQU	BP 3 sentative: Mw-	74 Am	155		Project No.:	06-88-	- 602	Date:	2/11/14
Field Repress Well ID: PURGE EQU	sentative:	AM	153						
Well ID:	Mw-								
PURGE EQU		l	Start Time:	-	End Time:	-	Total Tim	e (minutes):	
WELL HEAD	IIPMENT		Dian Bailar		100V D				
WELL HEAL	Disp. Tubing		12V Pump	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	120V Pump		Flow Cell		
Good	DINTECTITV	(con look you	12 v Fump		Peristanic Pump	Other/ID#:			
A CONTRACTOR OF A CONTRACTOR OFTA CONT	Improvement Ner	(cap, lock, vau)	t, etc.)	Comments:					1000 100
PURGING/S	AMPI ING MI		adotorminad Wal	Volume da					
I UKOINO/S	PREDETERN	INED WELL		volume to	w-Flow Other:	1	LO	(circle o	ne)
Casing D	iameter Unit Volu	me (gal/ft) (cir			1 0 1	Duaniana I and E	LU	w-FLOW	(1-
1" (0.04)	1 25" (0.08)	2" (0 17)	3"1(0.38)	Other:		Total Wall Dant	low Purge Kate:		(ipi
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"I()	b	Initial Depth to	Water (b):		7.37
Total Well Dept	h (a):	0 ((100)	12 ((0.01)	(ft)	a	Pump In-take D	epth = b + $(a-b)/2$) .	13.58
Initial Depth to V	Water (b):			(ft)	¥.v.	Maximum Alloy	vable Drawdown	(a-b)/8:	1,55
Water Column F	leight (WCH) = (a	- b):		(ft)	= =	Low-Flow Purge	e Rate:	(= 0)/01	9.25 (Lpm
Water Column V	volume (WCV) = V	VCH x Unit Volu	ime:	(gal)	E	Comments:			a
Three Casing V	Volumes = WCV x	3:		(gal)					
Five Casing Vo	olumes = WCV x 5	8		(gal)		*Low-flow purge ra	te should be within	range of instruments	used but should not
Pump Depth (if J	pump used):			(ft)		exceed 0.25 gpm. D	rawdown should no	t exceed Maximum A	llowable Drawdown.
		G	ROUNDWAT	ER STABILI	ZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	Temperature	pH	Conductivity	DO	ORP	Turbidity	1	NOTES
(24:00)	gal or(L)	°C		µS or mS	mg/L	mV	NTU	Odor, colo	or, sheen or other
0933	0.0	19.35	6.85	0.901	1.97	152	0.0	Lt. HC a	iden
4957	0.5	10 86	6.00	0.909	2.18	150	0.0		
1959	1.5	19.30	6.00	0.906	197	170	0.0		
1001	2.6	19.52	6.94	0.907	1.90	146	0.0		
Previous Stabilize	ed Parameters				-10-00 F.A.				
PURGE CON	IPI ETION RE	COPD *	Low Flow & Dos	mmotom Ctable	2 Contro M	۱			
I UNGE CON	II LETION RE		Low Flow & Pal	ameters Stable	3 Casing Vo	numes & Paramet	ers Stable	5 Casing Volume	28
	CAN			000					
	SAIV	IPLE COLLE	ECTION REC	ORD			JEOCHEMIC	CAL PARAMI	ETERS
Depth to Water a	t Sampling:	(ft)			Parar	neter	Time	Measurement
Sample Collected	d Via: Disp.	. Bailer E	Dedicated Pump T	ubing		DO (mg/L)			
Disp. Pump	o Tubing Other	:	and the second			Ferrous Iron (mg	g/L)		
Sample ID:	Mn-7	No.	Sample Collectio	n Time:10	<u>(24:00)</u>	Redox Potential	(mV)		
Containers (#): _	6_VOA (🗲	preserved or	unpreserved)	Liter Am	ber	Alkalinity (mg/L	.)		
-	Other:			Other:		Other:			
	Other:			Other:		Other:			tala antiga da serie de serie

GROUNDWATER SAMPLING DATA SHEET

Page <u>6</u> of <u>7</u>

Project:	BP 3	374			Project No.	06-88	-607	Date:	2/11/14
Field Repre	esentative:	A 4	. /<+				0.6		0/1/1/
Wall ID:			Stort Time			-	T . 1 T	<i>.</i> •	
wen iD:	mur- 8		Start Time:	~	End Time		Total Tim	e (minutes):	
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	X	Flow Cell		
	Disp. Tubing		12V Pump	Y.	Peristaltic Pump	Other/ID#:			
WELL HEA	AD INTEGRIT	Y (cap, lock, vau	lt, etc.)	Comments:					
Good	Improvement No	eded (a	ircle one)						
PURGING	SAMPLING M	ETHOD P	redetermined We	Il Volume do	w-Flow Other			(circle)	on <i>a</i>)
	PREDETERI	MINED WEL	L VOLUME		Uniter.		IO	W FLOW	me)
Casing	Diameter Unit Vol	ume (gal/ft) (cir	cle one)			Previous Low-	Flow Purge Rate:	W-I'LOW	(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Den	th (a):		19.4 0 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	()	b	Initial Depth to	Water (b):		7.56 (ft)
Total Well Dep	oth (a):			(ft)	a E	Pump In-take D	Depth = b + (a-b)/2	2:	13.48 (ft)
Initial Depth to	Water (b):		<u> </u>	(ft)	¥_	Maximum Allo	wable Drawdown	a = (a-b)/8:	1.48 (ft)
Water Column	Height (WCH) = (a	ı - b):		(ft)	-	Low-Flow Purg	e Rate:		0.25 (Lpm)*
Water Column	Volume (WCV) =	WCH x Unit Vol	ume:	(gal)	Ē	Comments:	-		
Three Casing	g Volumes = WCV :	x 3:		(gal)	E				
Five Casing	Volumes = WCV x	5:	-	(gał)	▼ 目	*Low-flow purge ro	ate should be within	range of instruments	used but should not
Pump Depth (i	f pump used):			(ft)	07 - 547-54	exceed 0.25 gpm. L	Drawdown should no	t exceed Maximum A	Mlowable Drawdown.
		G	ROUNDWAT	FER STABIL	IZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	Temperature	pH	Conductivity	DO	ORP	Turbidity		NOTES
(24:00) AG 24	gal or	10 0.1	0.0	μS or the	mg/L	mV	NTU	Odor, col	or, sheen or other
0420	0.0	20 22	-7.78	6.95 2	2. 8. t	174	107		
0923	1.0	2042	1.00	6 429	1 0 2	104	100		
0420	1.5	20.56	6.26	0.439	1.00	100	107		
1927	2.0	2063	6.72	0.438	1.93	112	105		
0106				0 00	1.70		100		
									199
									/
Res. 1								th	
S.		<u>*</u>					100	and the second second second	i a a
		1. Alexandre							
C.A. T. Martin	X		2					1. 19 Mar 19	
A State of the	26		24						
Previous Stabili	zed Parameters			1.12					
PURGE CO	MPLETION R	ECORD &	Low Flow & Pa	rameters Stable	3 Casing V	lumer & Darama	tere Stable	5 Coging Volum	90
	1		Other:	initial stable		stantes et l'aranne		5 Casing Volum	5
	SAN	ADLECOLL	ECTION REC	OPD	and the second	1	CEOCHEMIC		ETEDO
Danth to Wilton		786	Le HON REC	OKD			JEOCHEMIC	AL PARAM	ETERS
Depin to water	at Samping:	<u></u> (ft)	dine -	14	Para	meter	Time	Measurement
Sample Collect	ed Via: Disj	o. Bailer I	Dedicated Pump T	ubing		DO (mg/L)			
C Disp. Pun	np Tubing_Othe	97:			Sala	Ferrous Iron (m	g/L)		
Sample ID:	MW-8		Sample Collection	on Time: 09.	20 (24:00)	Redox Potential	(mV)		
Containers (#):	6 VOA (🛰	_ preserved or	unpreserved)	Liter Am	ber	Alkalinity (mg/	L)		
	Other:	4	-	Other:		Other:			
	Other:		-	Other:	1	Other:			
0.	and and	~		5					
Signature:	alle	+ m	anto	Contract of the Party States of the States	Northern Contraction of Contractiono				Revision: 3/15/2013

GROUNDWATER SAMPLING DATA SHEET

Page <u>7</u> of <u>7</u>

Project:	BP 3	74			Project No .:	06-8	8-602	Date:	2/11/14
Field Repr	esentative:	An	155						
Well ID:	Mw-9		Start Time:		End Time:	~	Total Tim	e (minutes):	~
PURGE E	QUIPMENT		Disp. Bailer		120V Pump	X	Flow Cell		
×	🛓 Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#	#:		
WELL HE	AD INTEGRITY	l (cap, lock, vau	lt, etc.)	Comments:					
Good	Improvement Ne	eded (c	vircle one)						
PURGING	/SAMPLING M	ETHOD P	redetermined We	Il Volume	w-Elow Other:			(circle o	ne)
	PREDETERN	MINED WEL	L VOLUME		100 100 D		LO	W-FLOW	
Casing	Diameter Unit Volu	ıme (gal/ft) (cir	cle one)			Previous Low	-Flow Purge Rate:		(lp
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well De	epth (a):		19.35
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	'[()	a	Initial Depth	to Water (b):		7.07
Total Well De	pth (a):			(ft)		Pump In-take	Depth = b + (a-b)/2	2:	13.2) (
Initial Depth to	o Water (b):			(ft)		Maximum Al	lowable Drawdown	=(a-b)/8:	1.53 (
Water Column	Height (WCH) = (a	- b):		(ft)		Low-Flow Pu	rge Rate:		0.25 (Lpm
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gal)		Comments:			
Three Casing	g Volumes = WCV x	3:		(gal)	Ē				
Pump Donth (v olumes = w C v x c):		(gal)	★ 🗄	*Low-flow purge	rate should be within i	ange of instruments	used but should not
Fump Depth ()	r pump usea):			(ft)		exceed 0.25 gpm	Drawdown should not	exceed Maximum Al	lowable Drawdown.
Time	Cumulating Val	G	ROUNDWAT	ER STABIL	ZATION PARA	AMETER R	ECORD		
(24:00)	cumulative vol.	1 emperature	рН	Conductivity	DO	ORP	Turbidity	N	IOTES
0854		101 18	6 1.80	μs or ms	mg/L	mV	NTU	Odor, colo	r, sheen or other
0856	0.5	19.51	6.75	0.90	1.59	152	0.0		
0859	1.0	19.69	6.9.5	0 899	128	46	73./		
6900	1.5	19.74	7.04	6.898	1.17	4	0.6	111	
2000	2.0	19.75	7-07	0.898	1-12	-18	0.0		
Previous Stabili	zed Parametery								
DIIDGECO	MDI ETION DE	COPD	1			1.05 1000			
IUNULUU	MFLEIION KE	CORD 🛓	Low Flow & Par	ameters Stable	3 Casing Vol	umes & Param	eters Stable	5 Casing Volumes	i i i i i i i i i i i i i i i i i i i
		and the second second	Other:						
	SAM	IPLE COLLE	ECTION RECO	ORD			GEOCHEMIC.	AL PARAME	TERS
Depth to Water	at Sampling:	7. Z) (ft)				Par	ameter	Time	Measurement
Sample Collect	ed Via: Disp.	Bailer D	edicated Pump Tu	ubing		DO (mg/L)			
🗶 Disp. Pun	p Tubing Other	:			Ì	Ferrous Iron (r	ng/L)		
Sample ID:	Mw-9		Sample Collection	Time 090	25 (24.00)	Redov Dotont			
Containers (#):	VOA (preserved or	unpreserved)	Liton A	<u>(27.00)</u>	Allealia's			
	Other	p. 0001 red 01	_ unpreserveu)	Liter Amt		Aikaiinity (mg	/L)		
	Others			Other:		Other:			
	Ouler:			Other:		Other			

und and	^{bp}	Labora	tory Mar	age	eme	ent	Pro 0	6-88	am -602	La	MP	' Cl	nain	of	Cu: Rea	sto Due	dy F		ord dd/yy)					Pa Rush TA1	age <u> </u> : Yes	_of No
10		B	P Facility No	_				37	4						La	b Wo	ork Ore	der Ni	umber						•	
b Name	: Test America			Faci	ity Ad	dress:	64	07 Te	elegra	ph Av	enue			-				Co	onsultan	t/Conti	ractor:		Broad	lbent and Associates, Inc		
b Addre	ss: 17461 Derian Avenue Suite #1	00, Irvine, CA 9	2614	City,	State	, ZIP C	ode:		C	aklan	d, CA	4						Co	onsultan	t/Conti	ractor	Projec	t No:	06-88-602	•	
D PM:	Kathleen Robb			Lead	Regu	latory	Agen	cy:	A	CEH								Ad	ldress:	875	Cotting) Lane	, Suite	G, Vacaville, CA 95688		
Phone	949-261-1022			Calif	ornia (Global	ID No).:	Т	06001	0010	06						Co	onsultan	t/Conti	ractor	PM:	Kriste	ne Tidwell		
Shipp	ing Accnt: 1103-6633-7			Enfo	s Prop	oosal N	lo:	00)5TP-	0001									Phone	: 707-	455-72	290		Fax: 707-455	-7295	
Bottle	Order No:			Acco	unting	, Mode		I	Provis	sion _	x	000	с-вU	0	000-	RM _		En	nail EDI	D To:	kt	idwell	@broa	dbenlinc.com and to	ab.entosdoc	@bp.com
er Info	:			Stag	e: (Exectu	te (40)	A	ctivity	: 1	Projec	t Spend	d (80)				Inv	voice To):		BP	<u>x</u>	Contracto	or	
Projec	t Manager (PM): Chuck Carmel				Mat	rix		No.	Cont	aine	rs / P	Prese	rvative	,			Re	ques	ted An	alyse	s			Report Type	& QC Lev	rel
PM Ph	one: 925-275-3804				T					T				T										S	tandard <u>x</u>	-
PME	nail: chuck.carmel@bp.com			1				ainer								8260	826							Full Data P	ackage	
ab Io.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well	Total Number of Con	Unpreserved	H2SO4	HNO3	HCI	Methanol			BTEX/5 FO + EDB by	1,2-DCA & Ethanol by							Comr Note: If sample not collec Sample' in comments an and initial any preprinted	nents ted, indicate d single-strike sample descr	No out iption.
M	V-1	2/11/2014	0305		x		/ 6	3				x			x	x	x									
M	V-2	2/11/2014	0835		x		/ 6	3				x			x	×	x									
M	V-4	2/11/2014	1030		x		/ 6	3				x			x	x	x			_						anner -
M	V-7	2/11/2014	1005		x		y e	3				x			x	x	x									
M	V-8	2/11/2014	0935		x		y e	3				x		1	x	x	x	_			-					
M	V-9	2/11/2014	0905		x		y e	3				x			x	x	x									
TE	-374-02112014				x		n 2	2				x							_	-	-			On	Hold	
							_				_					\rightarrow	_	_	-	-	-	-	-			
										_	_		_			\rightarrow			_	-	-	-	-			
							_		_		_			_	-	_				-		-	-			
				-										_		-		_		1	1		Byd	Affiliation	Date	Time
mpler's	Name: Alex Martinez			-		Re	linqu	lishe	d By	/ Aff	iliati	Ion		_	Date	•	Time			-	ACCE	pred	ByII		Date	
mpler's	Company: Broadbent and As	sociates	-	4	U	15F	-U	r	est.	2	~~~~	Ē	AI	2,	m	14	1700	<u>_</u>								
ipment	Method: Fed Ex	Ship Date:	2/11/2014											_		-				-		-33.55				
ipment	Tracking No: 8025 23	44 183	;5					-					-				-									
pecial	Instructions:						-																1		od: Vcc / N	
	THIS LINE LAB LISE ONLY.	ustody Seals In	Place: Yes / N	0	Te	mp B	ank: \	/es/	No		Cool	er Ter	np on F	Receipt	t:		°F/0		Trip	Blank	: Yes /	No	3	MS/MSD Sample Submitt	eu: res/No	

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-70171-1 Client Project/Site: ARCO 0374, Oakland

For: Broadbent & Associates, Inc. 875 Cotting Lane Suite G Vacaville, California 95688

Attn: Kristene Tidwell

tæthlein

Authorized for release by: 2/27/2014 9:39:19 AM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	11
Lab Chronicle	12
QC Sample Results	14
QC Association Summary	17
Definitions/Glossary	18
Certification Summary	19
Chain of Custody	20
Receipt Checklists	21

Sample Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland TestAmerica Job ID: 440-70171-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	3
440-70171-1	 MW-1	Water	02/11/14 08:05	02/12/14 10:00	
440-70171-2	MW-2	Water	02/11/14 08:35	02/12/14 10:00	
440-70171-3	MW-4	Water	02/11/14 10:30	02/12/14 10:00	5
440-70171-4	MW-7	Water	02/11/14 10:05	02/12/14 10:00	J
440-70171-5	MW-8	Water	02/11/14 09:35	02/12/14 10:00	
440-70171-6	MW-9	Water	02/11/14 09:05	02/12/14 10:00	
					8
					9
				1	13

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-70171-1

Comments

No additional comments.

Receipt

The samples were received on 2/12/2014 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

Method(s) 8015B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-8 (440-70171-5).

No other analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

2 3 4 5 6 7 8 9

Lab Sample ID: 440-70171-1 Matrix: Water

Date	Collected:	02/11/14	08:05
Date	Received:	02/12/14	10:00

Client Sample ID: MW-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/17/14 09:44	1
1,2-Dichloroethane	ND		0.50	ug/L			02/17/14 09:44	1
Benzene	ND		0.50	ug/L			02/17/14 09:44	1
Ethanol	ND		150	ug/L			02/17/14 09:44	1
Ethylbenzene	ND		0.50	ug/L			02/17/14 09:44	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/17/14 09:44	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/17/14 09:44	1
m,p-Xylene	ND		1.0	ug/L			02/17/14 09:44	1
Methyl-t-Butyl Ether (MTBE)	26		0.50	ug/L			02/17/14 09:44	1
o-Xylene	ND		0.50	ug/L			02/17/14 09:44	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			02/17/14 09:44	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			02/17/14 09:44	1
Toluene	ND		0.50	ug/L			02/17/14 09:44	1
Xylenes, Total	ND		1.0	ug/L			02/17/14 09:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		80 - 120		-		02/17/14 09:44	1
Dibromofluoromethane (Surr)	95		76 - 132				02/17/14 09:44	1
Toluene-d8 (Surr)	108		80 - 128				02/17/14 09:44	1
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/19/14 11:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		65 - 140		-		02/19/14 11:06	1

0.50

0.50

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID: MW-2

Date Collected: 02/11/14 08:35

Date Received: 02/12/14 10:00

1,2-Dibromoethane (EDB)

1,2-Dichloroethane

Analyte

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

Lab Sample ID: 440-70171-2

Analyzed

02/17/14 11:09

02/17/14 11:09

Matrix: Water

Dil Fac

1

1

5

Benzene	ND		0.50	ug/L		02/17/14 11:09	1	
Ethanol	ND		150	ug/L		02/17/14 11:09	1	
Ethylbenzene	ND		0.50	ug/L		02/17/14 11:09	1	
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L		02/17/14 11:09	1	8
Isopropyl Ether (DIPE)	ND		0.50	ug/L		02/17/14 11:09	1	
m,p-Xylene	ND		1.0	ug/L		02/17/14 11:09	1	9
Methyl-t-Butyl Ether (MTBE)	7.5		0.50	ug/L		02/17/14 11:09	1	
o-Xylene	ND		0.50	ug/L		02/17/14 11:09	1	
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L		02/17/14 11:09	1	
tert-Butyl alcohol (TBA)	ND		10	ug/L		02/17/14 11:09	1	
Toluene	ND		0.50	ug/L		02/17/14 11:09	1	
Xylenes, Total	ND		1.0	ug/L		02/17/14 11:09	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	111		80 - 120			02/17/14 11:09	1	
Dibromofluoromethane (Surr)	101		76 - 132			02/17/14 11:09	1	
Toluene-d8 (Surr)	109		80 - 128			02/17/14 11:09	1	
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						

Unit

ug/L

ug/L

D

Prepared

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	 ug/L			02/19/14 17:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		65 - 140				02/19/14 17:07	1

5.0

5.0

5.0

1500

5.0

5.0

5.0

10

5.0

5.0

5.0

100

5.0

10

RL

50

Limits

80 - 120

76 - 132

80 - 128

Limits

65 - 140

Unit

ug/L

Unit

ug/L

D

D

Prepared

Prepared

Prepared

Prepared

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Method: 8015B/5030B - Gasoline Range Organics (GC)

Result Qualifier

ND

ND

800

ND

84

ND

ND

220

ND

8.6

ND

ND

80

230

113

101

108

140

100

%Recovery

Result Qualifier

Qualifier

Qualifier

%Recovery

5

Dil Fac

10

10

10

10

10

10

10

10

10

1

1

Dil Fac

Dil Fac

02/17/14 11:37	10	9
02/17/14 11:37	10	
02/17/14 11:37	10	
02/17/14 11:37	10	
02/17/14 11:37	10	
02/17/14 11:37	10	
02/17/14 11:37	10	
Analyzed	Dil Fac	
02/17/14 11:37	10	13

Client Sample ID: MW-4 Date Collected: 02/11/14 10:30 Date Received: 02/12/14 10:00

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Isopropyl Ether (DIPE)

tert-Butyl alcohol (TBA)

1,2-Dichloroethane

Analyte

Benzene

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Surrogate

Analyte

Surrogate

Xylenes, Total

Toluene-d8 (Surr)

GRO (C6-C12)

Ethanol

Lab	Sample	ID:	440-70171-3
			Matrix: Water

Analyzed

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

02/17/14 11:37

Analyzed

02/19/14 17:35

Analyzed

02/19/14 17:35

TestAmerica Irvine

0.50

0.50

0.50

150

0.50

0.50

0.50

1.0

0.50

0.50

0.50

Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID: MW-7

Date Collected: 02/11/14 10:05

Date Received: 02/12/14 10:00

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

Isopropyl Ether (DIPE)

1,2-Dichloroethane

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

o-Xylene

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

12

ND

ND

110

Lab Sample ID: 440-70171-4

Analyzed

02/17/14 12:05

02/17/14 12:05

02/17/14 12:05

02/17/14 12:05

02/19/14 18:04

Matrix: Water

Dil Fac

1

1

1

1

5

02/17/14 12:05	1	
02/17/14 12:05	1	
02/17/14 12:05	1	
02/17/14 12:05	1	8
02/17/14 12:05	1	
02/17/14 12:05	1	9
02/17/14 12:05	1	
	02/17/14 12:05 02/17/14 12:05 02/17/14 12:05 02/17/14 12:05 02/17/14 12:05 02/17/14 12:05 02/17/14 12:05	02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1 02/17/14 12:05 1

tert-Butyl alcohol (TBA)	ND		10	ug/L			02/17/14 12:05	1
Toluene	ND		0.50	ug/L			02/17/14 12:05	1
Xylenes, Total	ND		1.0	ug/L			02/17/14 12:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		80 - 120		-		02/17/14 12:05	1
Dibromofluoromethane (Surr)	98		76 - 132				02/17/14 12:05	1
Toluene-d8 (Surr)	105		80 - 128				02/17/14 12:05	1
Method: 8015B/5030B - Gasol	ine Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/19/14 18:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

65 - 140

4-Bromofluorobenzene (Surr)

TestAmerica Irvine

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID: MW-8

Date Collected: 02/11/14 09:35

Date Received: 02/12/14 10:00

Lab Sample ID: 440-70171-5

Matrix: Water

2 3 4 5 6 7 8 9

Method: 8260B/5030B - Volatile	Organic Comp	ounds (GC/	MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/17/14 12:33	1
1,2-Dichloroethane	ND		0.50	ug/L			02/17/14 12:33	1
Benzene	ND		0.50	ug/L			02/17/14 12:33	1
Ethanol	ND		150	ug/L			02/17/14 12:33	1
Ethylbenzene	ND		0.50	ug/L			02/17/14 12:33	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/17/14 12:33	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/17/14 12:33	1
m,p-Xylene	ND		1.0	ug/L			02/17/14 12:33	1
Methyl-t-Butyl Ether (MTBE)	78		0.50	ug/L			02/17/14 12:33	1
o-Xylene	ND		0.50	ug/L			02/17/14 12:33	1
Tert-amyl-methyl ether (TAME)	0.83		0.50	ug/L			02/17/14 12:33	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			02/17/14 12:33	1
Toluene	ND		0.50	ug/L			02/17/14 12:33	1
Xylenes, Total	ND		1.0	ug/L			02/17/14 12:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			80 - 120		-		02/17/14 12:33	1
Dibromofluoromethane (Surr)	102		76 - 132				02/17/14 12:33	1
Toluene-d8 (Surr)	109		80 - 128				02/17/14 12:33	1
Method: 8015B/5030B - Gasolir	e Range Organ	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/19/14 18:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		65 - 140		-		02/19/14 18:33	1

0.50

0.50

0.50

150

0.50

0.50

0.50

1.0

0.50

0.50

0.50

0.50

10

Unit

ug/L

D

Prepared

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID: MW-9

Date Collected: 02/11/14 09:05

Date Received: 02/12/14 10:00

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Isopropyl Ether (DIPE)

tert-Butyl alcohol (TBA)

1,2-Dichloroethane

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

o-Xylene

Toluene

Surrogate

Xylenes, Total

Toluene-d8 (Surr)

Lab Sample ID: 440-70171-6

Analyzed

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

02/17/14 13:01

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

02/17/14 13:01 1.0 ug/L Limits Prepared Analyzed Dil Fac 80 - 120 02/17/14 13:01 76 - 132 02/17/14 13:01 80 - 128 02/17/14 13:01 RL Unit D Prepared Analyzed Dil Fac

Method: 8015B/5030B - Gasoline Range Organics (GC) Analyte Result Qualifier

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

39

ND

ND

ND

ND

ND

119

99

107

Qualifier

%Recovery

GRO (C6-C12)	250	50	ug/L		02/19/14 19:01	1
Surrogate	%Recovery Qualif	ifier Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	65 - 140			02/19/14 19:01	1

TestAmerica Irvine

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Method Description

Volatile Organic Compounds (GC/MS)

Gasoline Range Organics (GC)

Method

8260B/5030B

8015B/5030B

Protocol References:

Laboratory References:

Laboratory

TAL IRV

TAL IRV

Protocol

SW846

SW846

5
6
7
8
9

Lab Sample ID: 440-70171-1 Matrix: Water

Client Sample ID: MW-1 Date Collected: 02/11/14 08:05 Date Received: 02/12/14 10:00

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	162590	02/17/14 09:44	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	163102	02/19/14 11:06	TL	TAL IRV

Client Sample ID: MW-2 Date Collected: 02/11/14 08:35 Date Received: 02/12/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	162590	02/17/14 11:09	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	163102	02/19/14 17:07	TL	TAL IRV

Client Sample ID: MW-4

Date Collected: 02/11/14 10:30 Date Received: 02/12/14 10:00

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		10	10 mL	10 mL	162590	02/17/14 11:37	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	163102	02/19/14 17:35	TL	TAL IRV

Client Sample ID: MW-7

Date Collected: 02/11/14 10:05 Date Received: 02/12/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	162590	02/17/14 12:05	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	163102	02/19/14 18:04	TL	TAL IRV

Client Sample ID: MW-8

Date Collected: 02/11/14 09:35 Date Received: 02/12/14 10:00

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	162590	02/17/14 12:33	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	163102	02/19/14 18:33	TL	TAL IRV

Client Sample ID: MW-9 Date Collected: 02/11/14 09:05 Date Received: 02/12/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	162590	02/17/14 13:01	MM1	TAL IRV

 OZ/19/14 11:06
 TL
 TAL IRV
 7

 Lab Sample ID: 440-70171-2 Matrix: Water
 3
 3

 Prepared
 Matrix: Water
 9

 or Analyzed
 Analyst
 Lab
 1

 02/17/14 11:09
 MM1
 TAL IRV
 1

 02/19/14 17:07
 TL
 TAL IRV
 1

Lab Sample ID: 440-70171-3 Matrix: Water

Lab Sample ID: 440-70171-4

Lab Sample ID: 440-70171-5

Lab Sample ID: 440-70171-6

Matrix: Water

Matrix: Water

Matrix: Water

_ 13

TestAmerica Irvine

Client Sample ID: MW-9 Lab Sample ID: 440-70171-6 Date Collected: 02/11/14 09:05 Matrix: Water Date Received: 02/12/14 10:00 Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8015B/5030B 1 10 mL 10 mL 163102 02/19/14 19:01 TL TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TestAmerica Irvine

3 4 5

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-162590/4 Matrix: Water						Client Sa	ample ID: Metho Prep Type: T	d Blank otal/NA
Analysis Batch: 162590								
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			02/17/14 08:12	1
1,2-Dichloroethane	ND		0.50	ug/L			02/17/14 08:12	1
Benzene	ND		0.50	ug/L			02/17/14 08:12	1
Ethanol	ND		150	ug/L			02/17/14 08:12	1
Ethylbenzene	ND		0.50	ug/L			02/17/14 08:12	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			02/17/14 08:12	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			02/17/14 08:12	1
m,p-Xylene	ND		1.0	ug/L			02/17/14 08:12	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			02/17/14 08:12	1
o-Xylene	ND		0.50	ug/L			02/17/14 08:12	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			02/17/14 08:12	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			02/17/14 08:12	1
Toluene	ND		0.50	ug/L			02/17/14 08:12	1
Xylenes, Total	ND		1.0	ug/L			02/17/14 08:12	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		80 - 120		-		02/17/14 08:12	1
Dibromofluoromethane (Surr)	92		76 - 132				02/17/14 08:12	1
Toluene-d8 (Surr)	107		80 - 128				02/17/14 08:12	1
_ Lab Sample ID: LCS 440-162590/5 Matrix: Water Analysis Batch: 162590					CI	ient Sample	ID: Lab Control Prep Type: T	Sample otal/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	25.4		ug/L		102	70 - 130	
1,2-Dichloroethane	25.0	24.6		ug/L		99	57 - 138	
Benzene	25.0	23.1		ug/L		92	68 - 130	
Ethanol	250	226		ug/L		90	50 - 149	
Ethylbenzene	25.0	24.9		ug/L		100	70 - 130	
Ethyl-t-butyl ether (ETBE)	25.0	20.7		ug/L		83	60 - 136	
Isopropyl Ether (DIPE)	25.0	20.5		ug/L		82	58 - 139	
m,p-Xylene	50.0	48.8		ug/L		98	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	21.8		ug/L		87	63 - 131	
o-Xylene	25.0	24.4		ug/L		97	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	20.9		ug/L		84	57 _ 139	
tert-Butyl alcohol (TBA)	125	124		ug/L		99	70 - 130	
Toluene	25.0	23.1		ug/L		92	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	94		76 - 132
Toluene-d8 (Surr)	110		80 - 128

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-70171-1 MS Matrix: Water	-1 MS Client Sample ID: MW-1 Prep Type: Total/NA									
Analysis Batch: 162590	Sample	Sampla	Spike	ме	ме				% Boo	
Analyte	Bosult	Oualifier	Added	Rosult	Qualifier	Unit	п	%Pec	/inite	
					Quaimer			110		
1,2-Dibromoethane (EDB)	ND		25.0	27.0		ug/L		110	70 - 131	
1,2-Dichloroethane	ND		25.0	26.0		ug/L		104	56 - 146	
Benzene	ND		25.0	24.1		ug/L		97	66 - 130	
Ethanol	ND		250	224		ug/L		90	54 ₋ 150	
Ethylbenzene	ND		25.0	27.6		ug/L		110	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	23.3		ug/L		93	70 ₋ 130	
Isopropyl Ether (DIPE)	ND		25.0	23.5		ug/L		94	64 - 138	
m,p-Xylene	ND		50.0	53.4		ug/L		107	70 ₋ 133	
Methyl-t-Butyl Ether (MTBE)	26		25.0	54.1		ug/L		111	70 ₋ 130	
o-Xylene	ND		25.0	26.5		ug/L		106	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		25.0	23.9		ug/L		96	68 - 133	
tert-Butyl alcohol (TBA)	ND		125	134		ug/L		107	70 ₋ 130	
Toluene	ND		25.0	24.8		ug/L		99	70 - 130	
	MS	MS								

1110	1110	
%Recovery	Qualifier	Limits
		80 - 120
99		76 - 132
111		80 - 128
		%Recovery Qualifier 110 99 111

Lab Sample ID: 440-70171-1 MSD Matrix: Water

Analysis Batch: 162590

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	27.6		ug/L		110	70 - 131	0	25
1,2-Dichloroethane	ND		25.0	25.8		ug/L		103	56 - 146	1	20
Benzene	ND		25.0	23.9		ug/L		96	66 - 130	1	20
Ethanol	ND		250	218		ug/L		87	54 _ 150	3	30
Ethylbenzene	ND		25.0	27.7		ug/L		111	70 - 130	1	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	22.9		ug/L		92	70 - 130	2	25
Isopropyl Ether (DIPE)	ND		25.0	23.0		ug/L		92	64 - 138	2	25
m,p-Xylene	ND		50.0	52.5		ug/L		105	70 - 133	2	25
Methyl-t-Butyl Ether (MTBE)	26		25.0	52.1		ug/L		103	70 - 130	4	25
o-Xylene	ND		25.0	26.7		ug/L		107	70 - 133	1	20
Tert-amyl-methyl ether (TAME)	ND		25.0	23.2		ug/L		93	68 - 133	3	30
tert-Butyl alcohol (TBA)	ND		125	133		ug/L		106	70 - 130	1	25
Toluene	ND		25.0	24.8		ug/L		99	70 - 130	0	20
	MCD	MCD									

MSD	WSD	
%Recovery	Qualifier	Limits
109		80 - 120
98		76 - 132
105		80 - 128
	%Recovery 109 98 105	MSD MSD %Recovery Qualifier 109 98 105

Client Sample ID: MW-1 Prep Type: Total/NA

Method: 8015B/5030B - Gasoline Range Organics (GC)

_ Lab Sample ID: MB 440-163102/ Matrix: Water	30									Client	Sample ID: Prep T	Method ype: To	Blank tal/NA
Analysis Batch: 163102													
		ΜВ	МВ										
Analyte	Re	sult	Qualifier	RL		Unit		D	Р	repared	Analyz	ed	Dil Fac
GRO (C6-C12)		ND		50		ug/L					02/19/14	10:38	1
		ΜВ	МВ										
Surrogate	%Reco	very	Qualifier	Limits					P	repared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)		99		65 - 140				-			02/19/14	10:38	1
_ _ I ah Sample ID: I CS 440-163102	2/29							CI	iont	Sample	o ID: Lab C	ontrol S	amnlo
Matrix: Water								0	ient	Campi	Pren T	vne: To	tal/NΔ
Analysis Batch: 163102											i icp i	ypc. 10	
Analysis Batch. 100102				Spike	LCS	LCS					%Rec.		
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
GRO (C4-C12)				800	809		ug/L		-	101	80 - 120		
•	LCS	LCS											
Surrogate	%Recovery	Qual	ifier	Limits									
4-Bromofluorobenzene (Surr)	100			65 - 140									
											Client Sar	nple ID:	MW-1
Matrix: Water											Prep T	vpe: To	tal/NA
Analysis Batch: 163102												,	
2	Sample	Sam	ole	Spike	MS	MS					%Rec.		
Analyte	Result	Qual	ifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
GRO (C4-C12)	ND			800	756		ug/L		_	91	65 _ 140		
	MS	мs											
Surrogate	%Recovery	Qual	ifier	Limits									
4-Bromofluorobenzene (Surr)	108			65 - 140									
_ _ I ah Sample ID: 440-70171-1 MS	П										Client Sar	nnle ID:	MW-1
Matrix: Water	-										Pren T	vpe: To	tal/NA
Analysis Batch: 163102												, , , , , , , , , , , , , , , , , , , ,	
	Sample	Sam	ole	Spike	MSD	MSD					%Rec.		RPD
Analyte	Result	Qual	ifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	ND			800	794		ug/L		—	96	65 - 140	5	20
		M00											
Surragata	W Becowern:	NISD	ifior	Limito									
Surroyate	<i>m</i> recovery	Qual	mer	Linnis									

 4-Bromofluorobenzene (Surr)
 106
 65 - 140

GC/MS VOA

Analysis Batch: 162590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-70171-1	MW-1	Total/NA	Water	8260B/5030B	
440-70171-1 MS	MW-1	Total/NA	Water	8260B/5030B	
440-70171-1 MSD	MW-1	Total/NA	Water	8260B/5030B	
440-70171-2	MW-2	Total/NA	Water	8260B/5030B	
440-70171-3	MW-4	Total/NA	Water	8260B/5030B	
440-70171-4	MW-7	Total/NA	Water	8260B/5030B	
440-70171-5	MW-8	Total/NA	Water	8260B/5030B	
440-70171-6	MW-9	Total/NA	Water	8260B/5030B	
LCS 440-162590/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-162590/4	Method Blank	Total/NA	Water	8260B/5030B	

GC VOA

Analysis Batch: 163102

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-70171-1		Total/NA	Water	8015B/5030B	
440-70171-1 MS	MW-1	Total/NA	Water	8015B/5030B	
440-70171-1 MSD	MW-1	Total/NA	Water	8015B/5030B	
440-70171-2	MW-2	Total/NA	Water	8015B/5030B	
440-70171-3	MW-4	Total/NA	Water	8015B/5030B	
440-70171-4	MW-7	Total/NA	Water	8015B/5030B	
440-70171-5	MW-8	Total/NA	Water	8015B/5030B	
440-70171-6	MW-9	Total/NA	Water	8015B/5030B	
LCS 440-163102/29	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-163102/30	Method Blank	Total/NA	Water	8015B/5030B	

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Glossary

Project/Site: A	RCO 0374, Oakland	2
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	5
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	ð
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	9
ML	Minimum Level (Dioxin)	
NC	Not Calculated	10
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-14
Arizona	State Program	9	AZ0671	10-13-14
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	01-23-14 *
Hawaii	State Program	9	N/A	01-29-15 *
Nevada	State Program	9	CA015312007A	07-31-14
New Mexico	State Program	6	N/A	01-31-14 *
Northern Mariana Islands	State Program	9	MP0002	01-31-14 *
Oregon	NELAP	10	4005	01-29-15
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

 * Expired certification is currently pending renewal and is considered valid.

TestAmerica Irvine

1		BP Site BF	e Node Path: P Facility No:					06-	88-6 374	02					Req I Lab)ue [Worl)ate (r c Orde	nm/do er Nun	l/yy): nber:		·		Rusi	h TAT: Yes_	No_
b N	arne: Test America			Facil	iity Ad	ddres	ss:	6407	Teleç	graph.	Aveni	xê						Cons		Contra	tor:	Broa	dbent and Associate	es, Inc.	
b A	dress: 17461 Derian Avenue Suite #10	0, Irvine, CA 92	2614	City,	State	e, Zli	P Co	de:		Oakl	and, C	A						Cons	ultant/	Contra	tor Pro	ect No:	06-88-602		
) P	vi: Kathleen Robb			Leac	Reg	julato	ory Aç	gency:	_	ACE	н							Addr	ess:	875 Co	tting La	ne, Suite	e G, Vacaville, CA 9	5688	
P	none: 949-261-1022			Calif	California Global ID No.: T0600100106					Consultant/Contractor PM: Kris								iene Tidwell							
s	ipping Accent: 1103-6633-7	cnt: 1103-6633-7			Enfos Proposal No: 005TP-0001									Phone: 707-455-7290 Fax: 707-455-7295											
в	ottle Order No:			Acco	Suntin	ng Ma	ode:		Pro	vision	<u>x</u>	00	C-BU		OC-RI	и		Ema	EDD	To:	ktidw	ell@broa	adbentinc.com a	nd to lab.enfoso	oc@bp.cor
her				Stag	e:	Exe	ctute	(40)		Activ	ity:	Proje	ct Spen	(80)				linvoi	ce To:		E	3Px	Co	ntractor	
Pr	oject Manager (PM): Chuck Carmel			[Ma	trix	_	N	o. Co	ntair	iers /	Pres	ervativ	•			Req	ueste	d Ana	lyses			Report	Type & QC L	evel
PN	1 Phone: 925-275-3804													Ţ										Standard _	x
' PN	f Email: <u>chuck.carmel@bp.com</u>						1~	lainer				ļ			8260	926		[1	Full C)ata Package _	
.ab No.	Sample Description	Date	Time	Soil / Solid	Waler / Liquid	Air / Vapor	Is this location a we	Total Number of Co	Peveseidun	H2SO4	HNO3	HCI	Methanol	GRO by 8015M	BTEX/5 FO + EDB b	1,2-DCA & Ethanol 1							Note: If sample no Sample" in commu and initial any pres	Comments at collected, Indica and single-sti printed sample de	e "No ike out acription.
	MW-1	2/11/2014	0305		x		У	6				x		×	×	×								an an an Anna an Anna Anna Anna Anna Anna Anna	, 1911, 191 1 , 19 1
	MW-2	2/11/2014	0835		x		У	6				×		×	×	×								a an ann ann an an an an an an an an an	, den de la composition de la
_	MW-4	2/11/2014	1030		×		у	6		<u> </u>		×		×	×	×								H CHILING AND	
	MW-7	2/11/2014	1005		x		у	6	L.			×		×	x	×							440-70171 C	hain of Custo	dy
	MW-8	2/11/2014	0935		x		<u>y</u>	6		<u> </u>		×			×	×		<u> </u>					···· ·· ·	- I	
	MW-9	2/11/2014	0905		x	L	y y	6		-	<u> </u>	×		×	×	<u> </u>	┢								
	TB-374-02112014				x		n	2	_	1_	\vdash	×				1		<u> </u>					L	On Hold	
	<u> </u>	L				└──	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		┢─┼		4-	\downarrow	+		-		-	<u> </u>			
	L						<u> </u>	L		_	_	<u> </u>	┢━╌╁╸			-				-+					
	└── ·──-					┣_	_	┢	.			_	┝╌┼		<u> </u>	╀╌		<u> </u>							
	L	L	l	 		<u> </u>	<u> </u>	L_		1		<u> </u>	<u> </u> ,	┥	<u> </u>	┢	<u> </u>	┼╌							
'np	er's Name: Alex Martinez				~		Helir 		ned	By / 4		tion		-	Jate		ime		7	AI		а ву / /			
mρ	er's Company: Broadbent and Ass	Sociates		4	U	19		ĽĽ,	0	<u>l</u> e			<u>sa</u> i	- 2/	n/ <u>14</u>	\mathbb{H}^{i}	00	┢े	/ n	260	<u>sll</u>		7AL	2/12/14	
ipm	ent Method: Fed Ex	Ship Date:	2/11/2014	┟										-		╀╌		┣							
ipir:	ent Tracking No: 3025 23	44 183	<u> </u>	L														L							

2/27/2014

Client: Broadbent & Associates, Inc.

Login Number: 70171 List Number: 1

Creator: Gonzales, Steve

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

Job Number: 440-70171-1

List Source: TestAmerica Irvine

APPENDIX D

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

GEOTRACKER ESI

UPLOADING A EDF FILE

Copyright © 2014 State of California

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS							
Processi Your fil	ng is complete. No errors were found! le has been successfully submitted!						
Submittal Type:	GEO_WELL						
Report Title:	First Quarter 2014 Groundwater Monitoring Report						
Facility Global ID:	T0600100106						
Facility Name:	ARCO #0374						
<u>File Name:</u>	geo_well.zip						
Organization Name:	Broadbent & Associates, Inc.						
<u>Username:</u>	BROADBENT-C						
IP Address:	69.170.11.178						
Submittal Date/Time:	4/23/2014 4:51:20 PM						
Confirmation Number:	4909837841						

Copyright © 2014 State of California