

Design & Consultancy for natural and built assets

RECEIVED

By Alameda County Environmental Health 8:53 am, Dec 19, 2016

Mr. Mark Detterman Senior Hazardous Materials Specialist, PG, CEG Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

Subject:

Site Investigation and Soil Vapor Sampling Report Former Atlantic Richfield Company Station No. 4931 731 West MacArthur Boulevard Oakland, California 94609 ACEH Site No. RO0000076

Dear Mr. Detterman:

Arcadis U.S., Inc. (Arcadis) has prepared this report on behalf of the Atlantic Richfield Company, a BP affiliated company (ARCO), for the former ARCO service station listed below.

ARCO Facility No. 4931

ACEH Site No. RO0000076 Location

731 West MacArthur Blvd., Oakland, CA

I declare, to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct. If you have any questions or comments regarding the content of this report, please contact Hollis Phillips by telephone at 415.432.6903 or by e-mail at hollis.phillips@arcadis.com.

Sincerely,

Arcadis U.S., Inc.

Hollis E. Phillips, P.G. (No. 6887) Principal Geologist/Project Manager

Arcadis U.S., Inc. 100 Montgomery Street Suite 300 San Francisco California 94104 Tel 415 374 2744 www.arcadis.com

ENVIRONMENT

Date: December 16, 2016

Contact: Hollis Phillips

Phone: 415.432.6903

Email: Hollis.Phillips@arcadis.com

Our ref: GP09BPNA.C110.N0000

Atlantic Richfield Company,

a BP-affiliated company

SITE INVESTIGATION AND SOIL VAPOR SAMPLING REPORT

Former Atlantic Richfield Company Station No. 4931 731 West MacArthur Boulevard Oakland, California 94609 ACEH Site No.: RO0000076

December 16, 2016

Jamey Peterson Project Environmental Scientist

Michiele amaral

Michele Amaral Principal Toxicologist

HEThillips

Hollis E. Phillips, P.G. (No. 6887) Principal Geologist

SITE INVESTIGATION AND SOIL VAPOR SAMPLING REPORT

Prepared for:

Former Atlantic Richfield Station No. 4931 731 West MacArthur Boulevard Oakland, California 94609 ACEH Site No.: RO0000076

Prepared by: Arcadis U.S., Inc. 100 Montgomery Street Suite 300 San Francisco California 94104 Tel 415 374 2744 Fax 415 374 2745

Our Ref.: GP09BPNA.C110.Q0000

Date:

December 16, 2016

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyr	ns and Abbreviations	iii
1	Intro	oduction	1-1
	1.1	Site Background	1-1
	1.2	Summary of Completed Activities	1-2
	1.3	Pre-Field Activities	1-2
2	Soil	Boring Completions	2-3
	2.1	Soil Boring Advancement and Sampling	2-3
		2.1.1 Soil Sampling	2-4
		2.1.2 Soil Boring Abandonment	2-5
3	Soil	Vapor Assessment	3-5
	3.1	Residential House Crawl Space and Partial-Basement Inspection	3-6
	3.2	Soil Vapor Probe Installation	3-7
	3.3	Soil Vapor Probe Construction	3-7
	3.4	Soil Sampling at Vapor Probe Location	3-8
	3.5	Soil Vapor Sampling	3-8
	3.6	Shut-In Tests	3-9
	3.7	Leak Tests	3-9
	3.8	Purging	3-9
	3.9	Soil Vapor Sample Collection	3-10
4	Dec	contamination	4-11
5	Inve	estigation-Derived Waste Disposal	5-11
6	Disc	cussion of Results	6-11
	6.1	Screening Levels for Constituents of Potential Concern	6-11
		6.1.1 Soil Screening Levels	6-11
		6.1.2 Soil Vapor Screening Levels	6-12
	6.2	Soil Sample Results	6-12
	6.3	Soil Vapor Sample Results	6-13
	6.4	Leakage Results	6-14
7	Data	a Evaluation	7-15

Site Investigation and Soil Vapor Sampling Report

December 16, 2016

	7.1	Soil D	ata Ev	valuation	7-15
		7.1.1	Sepa	aration Distance Evaluation	7-15
	7.2	Soil V	apor [Data Evaluation	7-16
		7.2.1	Soil	Vapor Data Evaluation – SF-RWQCB ESLs	7-16
		7.2.2	Soil	Vapor Data Evaluation – SWRCB LTC Policy Screening Criteria	7-16
		7.2	2.2.1	Soil Vapor Data Evaluation to SWRCB LTC Policy Screening Levels	7-17
8	Con	clusion	and F	Recommendations	8-18
9	Refe	erences	S		9-20

TABLES

Table A. Depth to First Groundwater during	g Soil Boring Advancement2-4

Table 1	Soil Analytical Results
Table 2	Soil Vapor Analytical Results

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Vapor Probe Schmatic Diagram
Figure 4	Soil Sample Results
Figure 5	Soil Vapor Analytical Results – November 7, 2016

APPENDICES

Appendix A	ACPWA Drilling Permit
Appendix B	Soil Boring Logs
Appendix C	Soil Vapor Sampling Field Sheets
Appendix D	Waste Disposal Sheets
Appendix E	Laboratory Analytical Results and Chain-of-Custody Documentation

ACRONYMS AND ABBREVIATIONS

1,2-DCA	1,2-dichloroethane
ACEH	Alameda County Environmental Health
ACPWA	Alameda County Public Works Agency
Arcadis	Arcadis U.S., Inc.
ARCO	Atlantic Richfield Company
bgs	below ground surface
BP	British Petroleum
BTEX	Benzene, toluene, ethylbenzene, and xylenes
COPC	constituent of potential concern
EDB	1,2-dibromoethane
ESL	Environmental Screening Level
GRO	Gasoline range organics (C6 - C12)
HASP	Health and Safety Plan
inHg	inches of Mercury
IWM	Integrated Wastestream Management, Inc.
IDW	Investigation-derived waste
LTC Policy	Low-Threat Underground Storage Tank Case Closure Policy
µg/m³	micrograms per cubic meter
mg/kg	milligrams per kilogram
mL	milliliters
mL/min	milliliters per minute
MTBE	Methyl tert-butyl ether
%v	percent by volume
PID	Photo-ionization detector
SCM	Site Conceptual Model
SF-RWQCB	San Francisco Bay–Regional Water Quality Control Board
Site	Former ARCO Service Station No. 4931, located at 731 West MacArthur Boulevard, Oakland, California
SWRCB	State Water Resources Control Board
TAME	tert-amyl-methyl ether

TBA	Tert-butyl alcohol
TestAmerica	TestAmerica Laboratories, Inc.
TPH	Total petroleum hydrocarbons
USA-North	Underground Service Alert
USEPA	U.S. Environmental Protection Agency
UST	underground storage tank
VOC	volatile organic compound

1 INTRODUCTION

Arcadis U.S., Inc. (Arcadis) has prepared this *Site Investigation and Soil Vapor Sampling Report* for the former ARCO service station No. 4931 located at 731 West MacArthur Boulevard in Oakland, California (the 'Site'; Figure 1). This report presents the results of soil and soil vapor sampling performed at the Site between October 31, 2016 and November 7, 2016. The recent sampling activities were performed to satisfy the Alameda County Environmental Health (ACEH) May 10, 2016 (ACEH 2016a) request for further site investigation to fill data gaps identified by ACEH that it requires necessary in order to close the Site under the State Water Resources Control Board (SWRCB) Low Threat Closure (LTC) Policy. The sampling activities for this work were proposed to ACEH in the *Site Investigation Work Plan* dated July 25, 2016 (Work Plan; Arcadis 2016). ACEH approved the Work Plan with comments in its letter dated September 8, 2016 (ACEH 2016b).

Based on the most recent soil and soil vapor analytical data collected along the site boundary, volatile petroleum hydrocarbon constituent concentrations are not expected to pose adverse health effects to current and future occupants of the residence adjacent to the Site located at 721 West MacArthur Boulevard. The following sections present the information evaluated to support this conclusion.

1.1 Site Background

The Site is located at the south-eastern corner of the intersection of West MacArthur Boulevard and West Street in Oakland, California. Currently, the Site is an active Westco Gasoline-branded retail fuel dispensing facility. Site features include a service station building, three fuel dispenser islands, and four 10,000-gallon doubled-wall fiberglass gasoline underground storage tanks (USTs; Figure 2). With the exception of landscaped planters along portions of the property boundary, the Site is covered with asphalt and/or concrete.

Commercial and residential properties are in the vicinity of the Site. The Site is bound by West MacArthur Boulevard to the north-northeast and West Street to the west-northwest. Residential dwellings are located adjacent to the Site along the south and east property boundaries. An automotive repair facility, Auto Mechs, and residential dwellings are located directly west and southwest of the Site beyond West Street. A Big-O Tires-branded service center is located on the northwest corner of the intersection of West MacArthur Boulevard and West Street. An oil change service center, Insta Lube, is located on the northeast corner of the intersection of West MacArthur Boulevard and West Street. Interstate 580 is

located approximately 600 feet south-southwest of the Site and Highway 24 is located approximately 1,000 feet east of the Site (Figure 1).

As shown on Figure 2, the Site and vicinity currently have 15 groundwater monitoring wells (A-2 through A-13 and AR-1 through AR-3), one soil vapor extraction well (AV-1), nine soil vapor probes (SV-1 through SV-9), and three sub-slab vapor probes (SS-SV-1 through SS-SV-3). Available records indicate that the groundwater monitoring wells are screened at depths ranging from 5 to 40 feet below ground surface (bgs).

1.2 Summary of Completed Activities

In its May 10, 2016 letter, ACEH identified several data gaps to be filled in order to provide a complete site conceptual model (SCM). The following information is required by ACEH to provide sufficient data that would allow the Site to be eligible for [Low-Threat Closure] LTC (ACEH 2016a):

- Potential receptor separation distance from contamination; and
- Potential vapor intrusion into the offsite residential home adjacent to the Site to the east.

To investigate the data gaps identified above, the following field activities were performed:

- Installed four soil borings (SB-08 through SB-11) along the Site property line with the adjacent residential property at 721 West MacArthur Boulevard and collected soil samples from each boring;
- Measured first groundwater depths at each soil boring;
- Installed one additional soil vapor probe (SV-9) at the property line with the adjacent residential property at 721 West MacArthur Boulevard;
- Collected soil vapor samples from the three soil vapor probes (SV-7, SV-8, and SV-9) located along the property line with the adjacent residential property at 721 West MacArthur Boulevard; and
- Inspected the crawl space and partial basement of 721 West MacArthur Boulevard.

Figure 2 shows the locations of the soil borings, soil vapor probes, and the crawl space/partial basement at 721 West MacArthur Boulevard.

1.3 Pre-Field Activities

Prior to initiating drilling activities, the site-specific Health and Safety Plan (HASP) was updated in accordance with state and federal requirements for use during the proposed field activities. All necessary permits and licenses were obtained prior to the initiation of subsurface investigations including subsurface

drilling permits W2016-0742 through W2016-0743 from the Alameda County Public Works Agency (ACPWA). Permits obtained for this project are included in Appendix A.

Underground utilities and other potential subsurface obstructions in the vicinity of the proposed sample locations were located and marked prior to initiation of subsurface activities. The utility survey included identifying the boring locations using white paint and obtaining an Underground Service Alert (USA-North) ticket number. A private utility locator was contracted to identify subsurface utilities prior to installing the proposed soil borings and soil vapor probe. Field personnel identified the location, direction, and depth of utilities at the Site using a ground penetrating radar device, electromagnetic survey equipment, and a radio frequency receiver.

2 SOIL BORING COMPLETIONS

Four direct push soil borings were advanced along the Site property line adjacent to residence located at 721 West MacArthur Boulevard. At the request of ACEH in its September 8, 2016 letter, one soil boring (SB-08) was located in the area of former soil sample SW6, which was a former UST pit excavation sidewall sample collected on November 22, 1991. Because SW6 contained relatively higher residual soil petroleum hydrocarbon concentrations than other sidewall samples collected at the time of the 1991 – 1992 UST excavation, ACEH requested a soil boring at SW6 to facilitate an understanding of the magnitude of the change in soil contaminant concentrations and the risk of vapor intrusion (ACEH 2016b).

The three other soil borings (SB-09, SB-10, and SB-11) were spaced approximately 20 feet apart from each other along the site property line between soil vapor probes SV-7 and SV-8. The purpose of these soil borings was to further assess soil conditions along the northeast property line and to delineate possible petroleum hydrocarbon mass adjacent to the residence at 721 West MacArthur Boulevard. In addition, the data from these borings may be used to support the understanding of hydrogeological conditions in the immediate area of the nearby residence to determine the separation distance between the ground surface and groundwater, and to evaluate a potential source of gasoline range organics (GRO) vapor concentrations previously detected at SV-8 in May 2015 (Arcadis 2016).

2.1 Soil Boring Advancement and Sampling

Prior to drilling, the soil boring locations were cleared to a minimum depth of 6.5 feet bgs with a hand auger. Once cleared, the soil borings were advanced further with a direct-push probing rig equipped for soil sample collection. Continuous soil samples were collected in acetate sample liners from below the

hand-cleared depth of 6.5 feet bgs to the total depth of each boring. Encountered subsurface materials were logged continuously for stratigraphic characteristics (such as, contacts, moisture, staining, and odors) under the supervision of a California Professional Geologist. Additional observations were noted in the field log regarding relative volatile organic compound (VOC) concentrations as measured with a photo-ionization detector (PID) from soil headspace screenings. Soil boring logs are included in Appendix B.

Direct push soil borings were terminated at the water table, based on the observation of saturated soils and/or groundwater flowing into the bottom of the borehole. Depth to first groundwater and subsequent total depths of each boring are as followed:

Soil Boring Location	Depth to First Groundwater	Total Depth of Soil Boring				
	(feet bgs)	(feet bgs)				
SB-08	20.5	24				
SB-09	20.5	24				
SB-10	20.5	24				
SB-11	22	24				

Table A. Depth to First Groundwater during Soil Boring Advancement

2.1.1 Soil Sampling

Soil samples were collected from each soil boring for analytical testing. Generally, soil samples were collected from intervals that exhibited the most significant indications of petroleum hydrocarbon impacts based on odor, elevated PID readings, or staining. At soil borings SB-09 through SB-11, a minimum of one soil sample was collected from the interval between 0 to 5 feet bgs and one from the interval from 5 to 10 feet bgs based on specific depth interval criteria presented in the LTC Policy for direct contact and outdoor air exposure (SWRCB 2012). Additionally, one soil sample was collected from the bottom of each boring to assess the vertical extent of petroleum hydrocarbon constituent of potential concern (COPC)-impacted soils.

Additional soil samples were collected as necessary based on field observations. Soil sampling at SB-08 was generally conducted as described for the other three borings, however, a sample was specifically collected between 12 and 12.5 feet bgs to compare current soil conditions to the results from former soil sample SW6 collected on November 22, 1991. In 1991, SW6 was collected at the property boundary

between the Site and the residence at 721 West MacArthur Boulevard, and contained relatively higher concentrations of COPCs than other excavation UST pit sidewall samples collected in its vicinity.

Sampling for laboratory analytical testing was completed by United States Environmental Protection Agency (USEPA) Method 5035/5035A, which includes the placement of soil into EnCore samplers from each sampled location.

Soil samples were sealed, labelled, and placed in an ice-chilled cooler for delivery to TestAmerica Laboratories, Inc. (TestAmerica) of Pleasanton, California, a California Department of Public Health-certified analytical laboratory, under proper chain of custody procedures. Soil samples were analyzed for the following COPCs:

- Gasoline Range Organics (GRO C6-C12) using USEPA Method 8015 Modified;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) using USEPA Method 8260B;
- Methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), tert-amyl-methyl ether (TAME), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), and ethanol by USEPA Method 8260B; and
- Naphthalene by USEPA Method 8260B.

2.1.2 Soil Boring Abandonment

Upon completion of soil sampling activities, the borings were abandoned in accordance with the ACPWA requirements. The borings were grouted through a tremie pipe from the total depth to ground surface using neat cement (composed of two sacks [47 pounds] of Portland Cement and approximately 6 gallons of water), or as directed by the onsite ACPWA grout inspector. The ground surfaces at each location were restored with materials consistent with surrounding areas.

3 SOIL VAPOR ASSESSMENT

As directed in its letter dated September 8, 2016, ACEH requested the installation of an additional soil vapor probe in order to determine the potential for vapor intrusion to the residential house at 721 West MacArthur Boulevard (ACEH 2016b). The September 8, 2016 letter further directed the installation of a contingency soil vapor probe near former soil sample SW6. The contingency soil vapor probe was to be installed if concentrations of site COPCs in the soil samples collected from SB-08 exceed SWRCB LTC Policy screening criteria. As will be reported below in Section 6.2, the analyzed constituents in SB-08 soil samples were below laboratory reporting limits with the exception of one sample at 12 feet bgs which

contained a trace concentration of MTBE (0.015 milligrams per kilogram [mg/kg]). Therefore, the contingency soil vapor probe was not installed.

One permanent sampling point was installed so that repeated sampling can be conducted, as necessary, to evaluate seasonal variations. The installation and subsequent sampling was completed in accordance with the Advisory - Active Soil Gas Investigations guidance (Soil Gas Advisory; Department of Toxic Substances Control [DTSC] 2015). Soil vapor probe locations are shown on Figure 2.

3.1 Residential House Crawl Space and Partial-Basement Inspection

Prior to drilling activities, Arcadis personnel performed a reconnaissance of the crawl space and partial basement at the residential house located at 721 West MacArthur Boulevard on November 1, 2016. Permission was granted by the tenant to access the area beneath the residential house through the above ground crawl space doors along the western portion of the residence. The house is above grade and there is approximately three feet of crawl space between grade and the first-floor living space of the house. Arcadis personnel discovered that the above grade crawl space was present beneath the majority of the residence. The crawl space ground is earthen throughout. Arcadis noted three access doors and windows along the crawl space, along with crawl space vents. The ground surface of the crawl space was covered with loose debris and rubbish. Several utilities were observed entering the house through the crawl space.

An area in the southwest corner of the house is a partial basement. This feature is considered a partial basement as only part of the first-floor living space of the house is over this area and the remainder of it is over the crawl space. Furthermore, the partial basement is considered a 'daylight' basement as half of it is above ground and it contains windows and a doorway to the outside. Arcadis was not permitted to access the partial basement however, the tenant was willing to discuss the size and condition of this feature as well as allow Arcadis to inspect its exterior.

The tenant informed Arcadis that the partial basement is present in the rear of the residence and runs parallel to the gas station property. The floor area of the partial basement is approximately 12 feet by 10 feet, extending laterally from the back of the house (from the southwest corner of the residence) to 12 feet toward the street, and 10 feet from the southwest corner of the residence toward the centreline of the house. The tenant stated that the floor of the partial basement is about 3 feet bgs and that the ground surface is paved with concrete. The upper 3 feet of the basement is above ground and at the height of the crawl space.

Besides the concrete flooring, the partial basement is unfinished. The partial basement was further described as a dug-out feature beneath the house, inferring that the concrete flooring is structurally not part of the foundation; only the walls of the crawl space and partial basement form the foundation of the house. An exterior door at the rear of the residence leads into the partial basement. The bottom of this door is approximately 3 feet below the surrounding grade and the tenant stated that the partial basement's floor is flush with the bottom of the door. As such, there is a 6-foot high ceiling in the partial basement, with 3 feet of space above grade and 3 feet of space below grade. The tenant further stated that no pumps or sumps are present partial basement.

Although Arcadis was not able to visually inspect the interior partial basement, the tenant's statements appear to be accurate based on the crawl space observations and what could be observed from the windows and door located along the exterior of the residence where the tenant described the partial basement. Figure 2 outlines the areas of the crawl space and partial basement at 721 West MacArthur Boulevard.

3.2 Soil Vapor Probe Installation

Soil vapor probe SV-9 was installed on November 1, 2016. The surface materials at the soil vapor probe location were cored with a concrete coring machine that removed an approximate 4-inch diameter cylinder of the pavement and aggregate material to expose the subsoil. Once the surface materials core was removed, the soil vapor probe was installed to 8 feet bgs with a hand auger. The total depth of the soil vapor probe (8 feet bgs) was selected based on the depth of the partial basement floor being at 3 feet bgs and direction from ACEH in its September 8, 2016 letter to place the new soil vapor probe 5 feet below the partial basement foundation.

During advancement of the probe's borehole, soil samples were collected continuously from ground surface to the total completion depth with the hand auger. Retrieved soil was logged as described above in Section 2.1. The soil boring log for SV-9 is included in Appendix B.

3.3 Soil Vapor Probe Construction

The soil vapor probe was constructed with a stainless-steel soil vapor screen implant 6 inches long and 0.5-inch in diameter, with a slot size of 0.01 inch. The soil vapor screen implant was connected to Teflonlined polyethylene tubing to enable sampling at the ground surface. Valves were installed at the tube ends that can be closed when sampling is not being conducted. The vapor screen implant was set from approximately 7.25 to 7.75 feet bgs. Approximately three inches of #3 Sand were placed in the borehole

above and below the implant. A 1-foot interval of dry granular bentonite was placed above the sand pack. A limited amount (<2 inches) of hydrated granular bentonite was placed above the dry granular bentonite to secure the sand pack from the grout mixture. Following the thin layer of hydrated granular bentonite, a neat cement grout mixture was added. Near the surface, the probe was completed with approximately 6-inches of concrete and completed with a flush-mounted well box. A schematic drawing of the soil vapor probes is presented in Figure 3.

3.4 Soil Sampling at Vapor Probe Location

Soil samples from the probe location were collected for petroleum hydrocarbon assessment at the following depth intervals:

- 2.5 to 3 feet bgs;
- 4.5 to 5 feet bgs; and
- 7.5 to 8 feet bgs.

Sample intervals designated for laboratory analysis were collected with a hand auger and placed into appropriate laboratory supplied sample containers, labelled, and placed in an ice-chilled cooler for delivery to a TestAmerica, under proper chain-of-custody procedures. The selected soil samples were analyzed for the constituents stated above in Section 2.1.1.

3.5 Soil Vapor Sampling

All three soil vapor probes (SV-7, SV-8, and SV-9) located along the property boundary between the Site and the residential house at 721 West MacArthur Boulevard were sampled on November 7, 2016. Due to the introduction of atmospheric oxygen into the vadose zone during soil vapor probe installation, an equilibration time is required to allow the sand pack and tubing at SV-9 to equilibrate with the subsurface prior to sampling. A minimum of 72 hours was allowed for equilibration following soil vapor probe installation.

Soil vapor sampling was performed using laboratory-supplied 1-liter Summa canisters. Using small (1liter, or similar) Summa canisters is desirable to minimize the potential for breakthrough of ambient air into the samples as described in Section 3.6 of the Soil Gas Advisory (DTSC 2015). The laboratory-supplied Summa canisters were batch certified by the laboratory prior to field receipt.

Soil gas assembly tests were conducted at each probe prior to sample collection as recommended in Section 4.2 of the Soil Gas Advisory. These pre-sampling tests included shut-in and leak tests that were completed before soil gas samples were collected (DTSC 2015).

3.6 Shut-In Tests

Prior to purging or sampling, a shut-in test was conducted to check for leaks in the above-ground sampling system using the guidelines from Section 4.2.1 of the Soil Gas Advisory (DTSC 2015) to determine the integrity of the sampling system. During the shut-in test, the above-ground valves, lines and fittings used to collect the sample were assembled and capped. The shut-in test was conducted while the sampling canister was attached with its valve in the closed position. The system was evacuated to a minimum measured vacuum of about 100 inches of water (7.35 inches of mercury [inHg]) using a syringe as measured via a vacuum gauge connected to the system with a T-fitting. The sample train was allowed to acclimate for approximately 10 minutes and no leaks were noted. Soil vapor sampling field notes are included in Appendix C.

After the shut-in test was completed and no leaks were found, a three-way valve (connecting the syringe and sorbent tube to the sample train) was placed outside of the shroud so that the shroud helium atmosphere could establish before purging began. The remaining valves, tubing, fittings, gauges, and Summa canister were left inside the shroud. The vapor probe caps were removed and the sample train tubing was connected to the sample probe using a short piece of new silicone tubing.

3.7 Leak Tests

A leak test was used to evaluate whether ambient air was introduced into the soil gas sample during the collection process and to further determine the integrity of the sampling system. The well head and entire sampling train (valves, tubing, fittings, gauges, and Summa canister) were placed in the sampling shroud. Helium gas, as recommended by the guidelines from Subsection 4.2.2.2 of the Soil Gas Advisory (DTSC 2015), was used as a tracer compound for the leak test. The tracer compound was permitted into the shroud and monitored for concentration stability using a helium detector (model: Radio detection MGD-2002) with its port located near ground surface. Once the shroud atmosphere maintained a helium concentration between 10% to 20%, purging and sampling commenced at a soil vapor probe.

3.8 Purging

Purging consisted of removing approximately one volume of stagnant soil gas from the sampling system to ensure that samples are representative of subsurface conditions. A vacuum pump purged each probe

at a flow rate of approximately 150 to 200 milliliters per minute (mL/min). The purge volume was calculated by considering the internal volume of the sample tubing as well as the aboveground gauges and sampling equipment.

3.9 Soil Vapor Sample Collection

Following purging, the soil vapor samples were collected using evacuated 1-liter Summa canisters and TO-17 sorbent tubes with a laboratory-provided flow regulator (combined with a laboratory-provided soil vapor sampling manifold) set to collect a sample at approximately 100 mL/min. The valve on the sampling train was opened, allowing soil gas to flow into the Summa canisters until the vacuum gauge read approximately -5 inHg. Initial and final vacuum gauge readings were taken and recorded on the chain-of-custody form and on the laboratory-supplied sample labels included on each Summa canister. The TO-17 samples were collected by pulling approximately 75 milliliters (mL) of sample volume through the sorbent tubes via the syringe. Additionally, a shroud atmosphere sample was collected to verify an appropriate volume of helium (tracer gas) was present in the shroud during sample collection. Helium concentrations were maintained at approximately 6% to 21% in the shroud for the duration of purging and sampling (Appendix C).

Soil vapor samples in the sorbent tubes were placed in an ice-pack chilled cooler (Summa canisters were not placed in chilled coolers). The soil vapor samples were delivered under appropriate chain-of-custody protocols to a to Eurofins Calscience, Inc. (Calscience) of Garden Grove, California, a California Department of Public Health certified analytical laboratory, under proper chain-of-custody procedures. The soil vapor samples were analyzed for the presence of the following constituents:

- Fixed gases (methane, carbon dioxide, oxygen, and helium) using Modified ASTM Method D-1946;
- GRO using USEPA Method TO-3M;
- BTEX; MTBE, TBA; DIPE; ETBE, TAME; ethanol; 1,2-DCA; and EDB using USEPA Method TO-15; and
- Naphthalene by USEPA Method TO-17 (sorbent tubes only).

Please note that the shroud atmosphere sample was only tested for helium.

4 DECONTAMINATION

Down-hole drilling and sampling equipment was steam-cleaned prior to deployment and following the completion of each sampling location. Decontamination of non-dedicated or non-disposable field equipment was conducted using a Liquinox[®] solution and deionized water rinse before and after each sampling location to prevent cross-contamination.

5 INVESTIGATION-DERIVED WASTE DISPOSAL

Investigation-derived waste (IDW) generated during investigation activities included soil cuttings, decontamination fluids, purge/rinse water, personal protective equipment (PPE), and other disposable sampling materials. Soil cuttings derived from hand augering and direct push rig as well as wastewater from decontamination procedures were placed in 55-gallon steel drums. PPE, such as nitrile gloves, and disposable supplies, such as paper and plastic, was treated as municipal waste. Composite soil and aqueous samples of IDW were collected for waste profiling purposes. On November 30, 2016, drums were removed from the work area by Integrated Wastestream Management, Inc. (IWM). A copy of the certificates of disposal documenting proper off-site transport and disposal of the IDW is provided in Appendix D.

6 DISCUSSION OF RESULTS

A total of 19 soil samples and three soil vapor samples (plus a duplicate soil vapor sample) were collected during the recent investigation activities performed at the Site. Soil sample results are presented in Table 1 and presented on Figure 4. Soil vapor sample results are presented in Table 2 and presented on Figure 5. Laboratory analytical reports and chain of custody documentation are included in Appendix E. The results and evaluation of the analytical data are described below.

6.1 Screening Levels for Constituents of Potential Concern

6.1.1 Soil Screening Levels

Depth interval-specific soil concentrations of the primary toxic constituents of petroleum fuel releases including; benzene, ethylbenzene, and naphthalene, were compared to residential, commercial and utility worker soil screening levels presented in *Table 1 - Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health* of the SWRCB LTC Policy (SWRCB 2012). To support risk management decisions for the Site, concentrations of COPCs detected in soil samples (particularly for those COPCs without LTC Policy criteria) were also compared to San Francisco

Bay Regional Water Quality Control Board (SF-RWQCB) Environmental Screening Levels (ESLs) to assess potential direct contact exposure to commercial and construction workers at the Site (Soil Direct Exposure Human) Health Risk Screening Level – Table S-1) (SF-RWQCB 2016).

Table 1 provides soil sample results and screening levels (SF-RWQCB ESLs – Table S-1 and SWRCB LTC Policy – Table 1). Discussion of the soil sample results provided below compares COPC concentrations detected above respective laboratory reporting limits to SF-RWQCB commercial/industrial land use ESLs. SF-RWQCB construction worker ESLs and SWRCB LTC Policy screening levels are included in the corresponding data table (Table 1).

6.1.2 Soil Vapor Screening Levels

Benzene, ethylbenzene and naphthalene soil vapor concentrations were compared to applicable SWRCB LTC Policy soil gas screening criteria (SWRCB 2012). Concentrations of COPCs detected in soil vapor samples were also compared to SF-RWQCB ESLs presented in *Table SG-1: Subslab/Soil Gas Vapor Intrusion Human Health Risk Screening Levels (Volatile Chemicals Only)* to assess 'Residential Vapor Intrusion Human Health Risk' and 'Commercial/Industrial Vapor Intrusion Human Health Risk' (SF-RWQCB 2016).

6.2 Soil Sample Results

Generally, the analytical results indicate limited detected COPC concentrations in the soil samples collected, with the majority of COPCs not detected above laboratory reporting limits or at concentrations significantly below SWRCB LTC Policy criteria and SF-RWQCB ESLs. Below is a summary of the results at each sampled location:

<u>SB-08</u>: Soil samples were collected at 5 - 5.5 feet bgs, 8 - 8.5 feet bgs, 12 - 12.5 feet bgs, and 23.5 - 24 feet bgs. COPC concentrations were not detected above respective laboratory reporting limits in any of the soil samples collected from SB-08, with the exception of the sample collected at 12 -12.5 feet bgs, which contained a trace concentration of MTBE at 0.015 mg/kg.

<u>SB-09</u>: Soil samples were collected at 4 - 4.5 feet bgs, 8 - 8.5 feet bgs, 17 - 17.5 feet bgs, 19.5 - 20 feet bgs, and 23.5 - 24 feet bgs. In the sample collected at 8 - 8.5 feet bgs, GRO was detected at 87 mg/kg. This value is significantly below the SF-RWQCB soil direct contact screening level for commercial/industrial land use of 3,900 mg/kg. The remaining COPCs were not detected at concentrations above respective laboratory reporting limits.

In the sample collected at 17 - 17.5 feet bgs, GRO, benzene, ethylbenzene, xylenes, and naphthalene were detected above laboratory detection limits but at concentrations below soil screening levels. The remaining COPCs were not detected at concentrations above respective laboratory reporting limits.

In the sample collected at 19.5 - 20 feet bgs, GRO, ethylbenzene, xylenes, and naphthalene were detected above laboratory detection limits but at concentrations below soil screening levels. The remaining COPCs were not detected at concentrations above respective laboratory reporting limits.

COPC concentrations were not detected above respective laboratory reporting limits in any of the soil samples collected from SB-09 at 4 - 4.5 feet bgs and 23.5 - 24 feet bgs.

<u>SB-10</u>: Soil samples were collected at 1 - 1.5 feet bgs, 9 - 9.5 feet bgs, 20.5 - 21 feet bgs, and 23.5 - 24 feet bgs. GRO was detected at concentrations ranging from 0.440 mg/kg (23.5 – 24 feet bgs) to 990 mg/kg (20.5 - 21 feet bgs) in samples collected from SB-10. Ethylbenzene was detected at a concentration of 11 mg/kg in the sampled collected at 20.5 - 21 feet bgs. The detected concentrations of GRO and ethylbenzene are below their SF-RWQCB soil ESLs for commercial/industrial land use of 3,900 mg/kg and 22 mg/kg, respectively. All other tested constituents were not detected above respective laboratory reporting limits in any soil sample collected from SB-10.

<u>SB-11</u>: Soil samples were collected at 1.5 - 2 feet bgs, 6 - 6.5 feet bgs, and 23.5 - 24 feet bgs. Tested constituents were not detected above respective laboratory reporting limits in any of the soil samples collected from SB-11.

<u>SV-9</u>: Soil samples were collected at 2.5 - 3 feet bgs, 4.5 - 5 feet bgs, and 7.5 - 8 feet bgs. Tested constituents were not detected above respective laboratory reporting limits in any of the soil samples collected from SV-9.

6.3 Soil Vapor Sample Results

Generally, the analytical results indicated limited COPC concentrations in the soil vapor samples collected, with the majority of COPCs not detected above laboratory reporting limits or at concentrations below SWRCB LTC Policy soil gas screening criteria and SF-RWQCB ESLs. Below is a summary of the results at each sampled location.

<u>SV-7</u>: Benzene and toluene were detected at 1.6 micrograms per cubic meter (μ g/m³) and 2.0 μ g/m³, respectively. The benzene concentration is below the no bioattenuation zone and with bioattenuation zone SWRCB LTC Policy soil gas screening criteria for residential and commercial land uses. Both of the

detected concentrations are below SF-RWQCB soil gas ESLs for residential and commercial land uses. Fixed gases carbon dioxide and oxygen were detected at 1.56% volume (%v) and 18.8%v, respectively; supporting an active bioattenuation zone. The remaining COPCs were not detected in soil vapor at concentrations above respective laboratory reporting limits.

<u>SV-8</u>: GRO was detected at 2,200,000 μ g/m³. There are not established soil gas screening criteria for GRO under the SWRCB LTC Policy, because the LTC Policy focuses on the primary individual toxic constituents of petroleum fuel releases. The GRO soil vapor concentration exceeds the SF-RWQCB ESLs for residential land use of 300,000 μ g/m³ and is below the SF-RWQCB ESLs for commercial land use of 2,500,000 μ g/m³; both assuming that a bioattenuation is not present. Fixed gases carbon dioxide and oxygen were detected at 8.39%v and 5.25%v, respectively; supporting that an active bioattenuation zone is present. The remaining COPCs were not detected at concentrations in soil vapor above respective laboratory reporting limits.

<u>SV-9</u>: GRO was detected at 68,000 µg/m³; BTEX was detected at concentrations of 30 µg/m³, 190 µg/m³, 38 µg/m³, and 130 µg/m³ (total xylenes), respectively; and MTBE was detected at a concentration of 360 µg/m³. The benzene and ethylbenzene concentrations are below the SWRCB LTC Policy soil gas screening criteria for residential and commercial land uses. In addition, all of the detected COPC soil vapor concentrations are below respective SF-RWQCB ESLs for residential and commercial land uses. Fixed gases helium, carbon dioxide, and oxygen were detected at 0.0312%v, 2.11%v and 14.1%v, respectively; supporting that an active bioattenuation zone is present. The remaining COPCs were not detected in soil vapor at concentrations above respective laboratory reporting limits.

6.4 Leakage Results

Helium was not detected above the laboratory reporting limit of 0.0100%v in samples SV-7 and SV-8. Trace levels of helium (leak check compound) were detected in SV-9 during the November 2016 event. Helium was detected in sample SV-9 at 0.0312%. The shroud atmosphere concentration was detected at 6.79%. The percent leakage was calculated using the following equation:

% Leakage =
$$\frac{Helium \ Concentration \ in \ Sample}{Helium \ Concentration \ in \ Shroud} \times 100$$

Therefore, the leakage value calculated for SV-9 was 0.46%. DTSC (2015) guidance allows up to 5% helium if quantitative tracer testing is performed. Therefore, this sample is deemed acceptable.

Helium and other fixed gas sample results from the November 7, 2016 sampling event are presented in Table 2 and in the laboratory-analytical report (Appendix E).

7 DATA EVALUATION

7.1 Soil Data Evaluation

Laboratory analysis of soil samples collected from soil borings SB-08 through SB-11 and from SV-9 indicate that soil along the property boundary between the Site and the residence at 721 West MacArthur Boulevard is not affected by site-related petroleum fuel COPCs. COPC concentrations were not detected above respective laboratory reporting limits in most all soil samples collected during the recent investigation. The limited number of detectable COPC concentrations are all significantly below their applicable SWRCB LTC Policy soil screening levels and respective SF-RWQCB ESLs. The soil sample results suggest that COPC-impacted soils are not present across the investigated area.

7.1.1 Separation Distance Evaluation

The recent soil boring investigation supports the understanding of hydrogeological conditions in the immediate area of the nearby residence by providing the data needed to determine the separation distance between 721 West MacArthur Boulevard's foundation and groundwater. Based on the depth-to-first-groundwater measurements recorded at the recent soil borings (SB-08 through SB-11) as presented above in Table A of Section 2.1, and based on the foundation details at 721 West MacArthur Boulevard, the receptor separation distance between groundwater and the residence's foundation ranges from approximately 17.5 feet bgs to 22 feet bgs. The minimum separation distance was calculated by subtracting the depth of the partial basement (3 feet bgs) from the shallowest depth-to-first-water measurement (20.5 feet bgs at SB-08 through SB-10). The maximum separation distance was calculated by subtracting the depth of the foundation at the crawl space (0 feet bgs) from the deepest depth-to-first-water measurement (22 feet bgs at SB-11).

Depths-to-first-groundwater data indicates a sizable separation distance between the 721 West MacArthur Boulevard residence's foundation and groundwater; providing a vadose zone available to support bioattenuation. Moreover, most of the residence sits 3 feet above the ground surface as it is constructed over a 3-foot-high crawl space, providing the receptor with even more separational distance between groundwater.

7.2 Soil Vapor Data Evaluation

Based on the current and expected future use of the Site, the detected soil vapor COPC concentrations were compared with human health risk-based screening levels protective of possible vapor migration concerns for residential exposures and indoor commercial workers. Most of the COPC soil vapor concentrations were either not detected above laboratory reporting limits or at concentrations below SWRCB LTC Policy soil gas screening criteria and SF-RWQCB ESLs.

7.2.1 Soil Vapor Data Evaluation – SF-RWQCB ESLs

As shown in Table 2, the only soil vapor concentration collected during the November 2016 event which exceeded a screening level was GRO at SV-8. The SV-8 soil vapor sample contained GRO concentrations above the SF-RWQCB residential vapor intrusion human health risk ESL based on no bioattenuation, however, this concentration is below the SF-RWQCB commercial/industrial vapor intrusion human health risk ESL. The recent GRO soil vapor result from SV-8 is generally consistent with its previous results. In May 2015, GRO was detected at SV-8 at a concentration that exceeded the residential vapor intrusion human health risk ESL. The primary individual toxic petroleum fuel constituents in the soil vapor sample collected from SV-8 were not detected above respective laboratory reporting limits.

Concentrations of COPCs in the soil vapor samples collected from SV-7 and SV-9 were below the respective SF-RWQCB residential and commercial/industrial vapor intrusion human health risk soil gas ESLs.

7.2.2 Soil Vapor Data Evaluation – SWRCB LTC Policy Screening Criteria

In order to evaluate applicable soil vapor sample results from SV-7, SV-8 and SV-9 to the SWRCB LTC Policy's Vapor Intrusion to Indoor Air Media-Specific Criteria, assessment to one of the four screening scenarios is required. Based on data collected during the recent investigation, site conditions meet the conditions of Scenario 4 – Direct Measurement of Soil Gas Concentrations (*Soil Gas Sampling – With Bioattenuation Zone*) as follows:

1. There is a minimum of five vertical feet of soil between the soil vapor measurement and the foundation of an existing building or ground surface of future construction:

As discussed above in Sections 3.1 and 3.2, the majority of the residence at 721 West MacArthur Boulevard is constructed over a 3-foot high crawl space. The partial basement encompasses a relatively

limited area below the residence in the rear of the house and extends to 3 feet bgs. Additionally, the walls of the crawl space (which are at surface grade) and walls of the partial basement form the foundation of the residence. A slab-on grade or other type of subsurface foundation is not present.

Given the construction of the crawl space and partial basement, there is at least 5 vertical feet of soil between the depth of the soil vapor sample with detected COPC concentrations and the residence's foundation within the footprint of the crawl spaces at all three soil vapor probes. SV-9 is set at 8 feet bgs, which is 5 feet below the bottom of the partial basement (3 feet below grade) therefore, at a minimum the soil vapor samples collected from SV-9 fulfil the criteria for collecting soil vapor samples at least 5 feet below the foundation of an existing building.

2. TPH (TPHg + TPHd) is less than 100 mg/kg (measured in at least two depths within the five-foot zone.):

Soil samples have been collected from two depths between 0 and 5 feet bgs from all three soil vapor probes (SV-7, SV-8, and SV-9) installed along the property boundary with the residence at 721 West MacArthur Boulevard. At each of these soil vapor probes, soil samples have been collected at 2.5 - 3 feet bgs and 4.5 - 5 feet bgs. As shown on Figure 4, GRO has not been detected above laboratory reporting limits (ranging from <0.200 mg/kg to <0.25 mg/kg) in the soil samples collected from SV-7, SV-8, and SV-9. These soil sample results fulfil the LTC Policy criterion that total petroleum hydrocarbons (TPH) are less than 100 mg/kg (measured in at least two depths within the five-foot zone).

3. Oxygen is greater than or equal to four percent measured at the bottom of the five-foot zone:

Oxygen concentrations in the soil vapor samples collected on November 7, 2016 were 18.8%v at SV-7, 5.25%v at SV-8, and 14.1%v at SV-9. These concentrations all exceed the LTC Policy criteria requirement of 4% and therefore support an active bioattenuation zone in the immediate area of the residence at 721 West MacArthur Boulevard.

7.2.2.1 Soil Vapor Data Evaluation to SWRCB LTC Policy Screening Levels

The recent soil vapor data indicate that site-specific conditions satisfy all the characteristics and criteria of the LTC Policy Scenario 4 (with a Bioattenuation Zone). Fulfillment of the three criteria above suggests the presence of an active bioattenuation zone beneath the Site that supports biodegradation of petroleum hydrocarbon vapors. Therefore, soil vapor concentrations of benzene, ethylbenzene, and naphthalene

may be compared to the soil vapor screening levels presented in the table *Soil Gas Criteria* within Scenario 4 - Soil Gas Sampling – With Bioattenuation Zone (SWRCB 2012).

Benzene, ethylbenzene, and naphthalene concentrations were not detected above respective SWRCB LTC Policy soil gas screening criteria based on an active bioattenuation zone for residential and commercial land use in any of the soil vapor samples collected from SV-7, SV-8, and SV-9. As noted above, GRO was detected at a concentration above the SF-RWQCB ESL (assuming no bioattenuation) for residential exposures at SV-8. However, the primary individual toxic COPCs at petroleum fuel releases are below SWRCB LTC Policy soil gas screening criteria.

As the recent soil vapor data and site conditions satisfy the SWRCB LTC Policy media-specific criteria for Petroleum Vapor Intrusion to Indoor Air, the Site can be considered low threat for the vapor-intrusion-to-indoor-air pathway. Exposure to petroleum vapors migrating from soil or groundwater to indoor air are not likely based on the recently collected soil vapor data and are not expected to pose unacceptable human health risks.

8 CONCLUSION AND RECOMMENDATIONS

A soil boring investigation and soil vapor assessment were completed at the Site in October and November 2016 to evaluate site conditions and potential vapor intrusion of site volatile COPCs into the adjacent upgradient residential property at 721 West MacArthur Boulevard. The analytical soil sample results suggest COPCs related to the Site are not expected to pose an impact to the Site or the adjacent residential property as the COPC concentrations in the soil samples collected from the recent soil borings were either not detected above respective laboratory reporting limits or were detected at concentrations below applicable SF-RWQCB ESLs and SWRCB LTC Policy soil screening levels. The soil sample results at SB-08 also indicate a reduction and likely natural attenuation of petroleum hydrocarbon concentrations beneath the Site when compared to data from the former soil sample SW6 (collected in November 1991). SW6 was a former UST pit sidewall sample collected at 12 feet bgs during the excavation of the former USTs and contained detectable concentrations of site COPCs, notably benzene at 1.0 mg/kg (Arcadis 2016). SB-08 was completed adjacent to SW6 and concentrations of site COPCs in SB-08 soil samples were nondetect except for a trace concentration of MTBE.

Soil vapor samples were collected on November 7, 2016 from three locations at the Site to evaluate vapor measurements and the potential for vapor migration of subsurface petroleum hydrocarbon constituents. This recent event was directed by ACEH in their letter dated September 8, 2016 (ACEH

2016b). Previous soil vapor sampling was completed at the Site on May 15, 2015 (Arcadis 2015). Based on the most recent analytical data collected along the Site boundary, volatile petroleum hydrocarbon constituent concentrations are not expected to pose adverse health effects to occupants of the residence adjacent to the Site located at 721 West MacArthur Boulevard. This conclusion is supported by:

- Most of the residential dwelling is constructed over a 3-foot-high crawl space (with a small partial basement area in the southwestern corner). Potential vapor intrusion of VOCs from the subsurface into this residential dwelling is unlikely due to its elevated location of the living space and dilution by atmospheric factors;
- There is a sizable bioattenuation vadose zone separation distance between the residential receptor and groundwater considering the maximum depth of the residence's foundation and depth to first groundwater;
- Site COPCs in soil vapor samples collected along the property line between the Site and the
 residential dwelling are either non-detect above laboratory reporting limits or below applicable
 SWRCB LTC Policy soil gas screening criteria for residential and commercial land uses and
 respective SF-RWQCB ESLs for residential and commercial land uses. It should also be noted that of
 all 3 soil vapor probes sampled during the recent investigation, SV-8, which contained a detection of
 GRO above its residential SF-RWQCB ESL, is located furthest away from the residential dwelling at
 721 West MacArthur Boulevard; and
- The recent soil vapor sampling data fulfils the requirements within the LTC Policy Media-Specific Criteria for Petroleum Vapor Intrusion to Indoor Air.

As directed by ACEH in their letter dated September 8, 2016 (ACEH 2016b), another soil vapor sampling event will be performed to evaluate seasonal and temporal variations in vapor concentrations at the Site. As the first two soil vapor sampling events were completed during calendar months that are diametrically opposite, the next soil vapor sampling event is proposed in May 2017 to continue with the seasonal record of soil vapor data.

Site Investigation and Soil Vapor Sampling Report

December 16, 2016

9 **REFERENCES**

- Alameda County Environmental Health (ACEH). 2016a. Subject: Request for Data and Analysis; Fuel Leak Case No. RO0000076 and GeoTracker Global ID T0600100110, ARCO #04931, 731 W Macarthur Blvd, Oakland, CA 94609. May 10.
- ACEH. 2016b. Subject: Modified Work Plan Approval; Fuel Leak Case No. RO0000076 and GeoTracker Global ID T0600100110, ARCO #04931, 731 W Macarthur Blvd, Oakland, CA 94609. September 8.
- Arcadis U.S. Inc. (Arcadis). 2015. Site Investigation Report, Former Atlantic Richfield Company Station No. 4931, 731 West MacArthur Boulevard, Oakland, California 94609. June 26.
- Arcadis. 2016. Site Investigation Work Plan, Former ARCO Service Station No. 4931, 731 West MacArthur Boulevard, Oakland, California 94609. July 25.
- San Francisco Bay Regional Water Quality Control Board (SF-RWQCB). 2016. Environmental Screening Levels Workbook (Interim Final). February.
- State of California Department of Toxic Substances Control (DTSC). 2015. Advisory: Active Soil Gas Investigations. July.
- State Water Resources Control Board (SWRCB). 2012. Low-Threat Underground Storage Tank Case Closure Policy. Adopted May 12, made effective August 17.

TABLES

Table 1 Soil Analytical Results Former Atlantic Richfield Company Station No. CA-4931 731 West MacArthur Boulevard Oakland, California 94609 ACEH Site No.: RO0000076

Sample Location/ I.D.	Date Sampled	Sample Depth	GRO	Benzene	Toluene	Ethylbenzene	Xylenes (total)	MTBE	ТВА	DIPE	ETBE	TAME	Ethanol	Naphthalene	EDB	1,2-DCA
		(feet bqs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Low-Threat Closure Policy Residential [0 to 5 feet bgs] ¹				1.9		21								9.7		
Low-Threat Closure Policy	Residential [5 to 10 fe	et bgs] ¹		2.8		32								9.7		
Low-Threat Closure Policy	Commercial/Industria	[0 to 5 feet bgs] ¹		8.2		89								45		
Low-Threat Closure Policy	Commercial/Industria	[5 to 10 feet bgs] ¹		12		134								45		
Low-Threat Closure Policy	Utility Worker [0 to 10	feet bgs]1		14		314								219		
Commercial Direct Exposu	re Screening Level ²		3,900	1.0	4,600	22	2,400	180						14	0.16	1.6
Construction Worker Direct	Exposure Soil Scree	ning Level ²	2,800	24	4,100	480	2,400	3,700						350	3.2	37
		5.0 - 5.5	<0.230	<0.0046	<0.0046	<0.0046	<0.0093	<0.0046	<0.093	<0.0046	<0.0046	<0.0046	<0.930	<0.0093	<0.0046	<0.0046
SB-08	10/31/2016	8.0 - 8.5	<0.210	<0.0042	<0.0042	<0.0042	<0.0085	<0.0042	<0.085	<0.0042	<0.0042	<0.0042	<0.850	<0.0085	<0.0042	<0.0042
30-00	10/31/2010	12.0 - 12.5	<0.200	<0.0040	<0.0040	<0.0040	<0.0079	0.015	<0.079	<0.0040	<0.0040	<0.0040	<0.790	<0.0079	<0.0040	<0.0040
		23.5 - 24.0	<0.210	<0.0043	<0.0043	<0.0043	<0.0085	<0.0043	<0.085	<0.0043	<0.0043	<0.0043	<0.850	<0.0085	<0.0043	<0.0043
	10/31/2016	4.0 - 4.5	<0.200	<0.0040	<0.0040	<0.0040	<0.0079	<0.0040	<0.079	<0.0040	<0.0040	<0.0040	<0.790	<0.0079	<0.0040	<0.0040
		8.0 - 8.5	87.0	<0.0042	<0.0042	<0.450	<0.900	<0.0042	<0.084	<0.0042	<0.0042	<0.0042	<0.840	<0.900	<0.0042	<0.0042
SB-09		17.0 - 17.5	84.0	0.410	<0.390	1.70	2.40	<0.390	<0.770	<0.390	<0.390	<0.390	<39.0*	0.930	<0.390	<0.390
		19.5 - 20.0	140	<0.380	<0.380	1.70	7.20	<0.380	<0.760	<0.380	<0.380	<0.380	<38.0*	1.40	<0.380	<0.380
		23.5 - 24.0	<0.180	< 0.0036	<0.0036	<0.0036	<0.0072	<0.0036	<0.072	<0.0036	<0.0036	<0.0036	<0.720	<0.0072	<0.0036	< 0.0036
		1.0 - 1.5	<0.180	<0.0036	<0.0036	<0.0036	<0.0071	<0.0036	<0.071	<0.0036	<0.0036	<0.0036	<0.710	<0.0071	<0.0036	<0.0036
SB-10	10/31/2016	9.0 - 9.5	4.50	<0.0038	<0.0038	<0.0038	<0.0076	<0.0038	<0.076	<0.0038	<0.0038	<0.0038	<0.760	<0.0076	<0.0038	<0.0038
		20.5 - 21.0	990	<3.60	<3.60	11.0	<7.20	<3.60	<7.20	<3.60	<3.60	<3.60	<360	<7.20	<3.60	<3.60
		23.5 - 24.5	0.440	<0.0039	<0.0039	<0.0039	<0.0077	<0.0039	<0.077	<0.0039	<0.0039	<0.0039	<0.770	<0.0077	<0.0039	<0.0039
		1.5 - 2.0	<0.200	<0.0039	<0.0039	<0.0039	<0.0078	<0.0039	<0.078	<0.0039	<0.0039	<0.0039	<0.780	<0.0078	<0.0039	< 0.0039
SB-11	11/1/2016	6.0 - 6.5	<0.200	< 0.0040	< 0.0040	<0.0040	<0.0080	<0.0040	<0.080	< 0.0040	< 0.0040	<0.0040	<0.800	<0.0080	<0.0040	<0.0040
		23.5 - 24.0	<0.170	<0.0035	<0.0035	<0.0035	<0.0070	<0.0035	<0.070	<0.0035	<0.0035	<0.0035	<0.700	<0.0070	<0.0035	<0.0035
01/0		2.5 - 3.0	<0.200	<0.0040	<0.0040	<0.0040	<0.0079	<0.0040	<0.079	<0.0040	<0.0040	<0.0040	<0.790	<0.0079	<0.0040	<0.0040
SV-9	11/1/2016	4.5 - 5.0	<0.210	<0.0042	<0.0042	<0.0042	<0.0084	<0.0042	<0.084	<0.0042	<0.0042	<0.0042	<0.840	<0.0084	<0.0042	<0.0042
		7.5 - 8.0	<0.210	<0.0042	<0.0042	<0.0042	<0.0085	<0.0042	<0.085	<0.0042	<0.0042	<0.0042	<0.850	<0.0085	<0.0042	<0.0042

Notes:

¹ State Water Resources Control Board LTC Policy, Table 1 - Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health.

² Direct exposure soil screening level (Table S-1 Soil Direct Exposure Human Health Risk Screening Levels, SF-RWQCB [Interim Final – February 2016]).

bgs = below ground surface

mg/kg = milligrams per kilogram

GRO = total petroleum hydrocarbons as gasoline range organics

MTBE = Methyl-t-Butyl Ether

TBA = Tert-Butyl Alcohol

DIPE = Diisopropyl Ether

ETBE = Ethyl-t-Butyl Ether

TAME = Tert-Amyl-Methyl Ether

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

* = Lab Control Sample or Lab Control Sample Duplicate is outside acceptance limits.

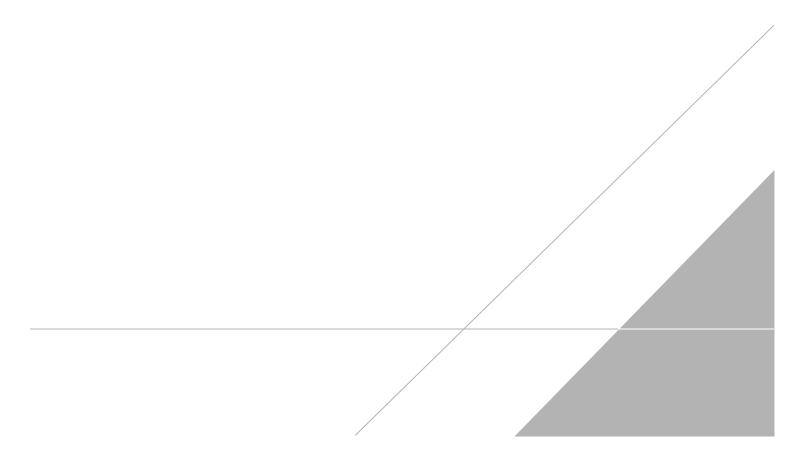
Sample ID	Depth (ft bgs)	Date Sampled	GRO (µg/m³)	Benzene (µg/m³)	Toluene (μg/m³)	Ethylbenzene (µg/m ³)	m,p- Xylenes (µg/m ³)	o- Xylenes (µg/m ³)	MTBE (µg/m³)	TBA (μg/m³)	Naphthalene (µg/m³)	Helium (%v)	Carbon Dioxide (%v)	Oxygen (%v)	Methane (%v)
SWRCB LTC	Policy Sol	il Vapor Screeni	ng Levels												
LTC No Bioattenuation Zone Soil Gas Criteria (µg/m ³) Residential ¹				85		1,100					93				
LTC No Bioattenuation Zone Soil Gas Criteria (µg/m ³) Commercial ¹				280		3,600					310				
LTC with Bioattenuation Zone Soil Gas Criteria (µg/m ³) Residential ¹				85,000		1,100,000					93,000				
LTC with Bioattenuation Zone Soil Gas Criteria (µg/m ³) Commercial ¹				280,000		3,600,000					310,000				
SF-RWQCB S	Soil Vapor	ESLs													
SF-RWQCB E	SL (Res) ²	(µg/m³)	300,000	48	160,000	560	52,000	52,000	5,400		41				
SF-RWQCB E			2,500,000	420	1,300,000	4,900	440,000	440,000	47,000		360				
An	nalytical M	ethod	TO-3	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-17		D19	946	
SV-7	5	5/15/2015	460	13	9.7	1.6 J	6.1	2.5 J	<0.67	ND (TIC)	<17	<0.19	0.25	11	<0.19
00-1	5	11/7/2016	<3,800	1.6	2.0	<2.2	<8.7	<2.2	<7.2	<6.1	<27	<0.0100	1.56	18.8	<0.500
SV-7 (DUP)	5	11/7/2016	<3,800	4.7	3.7	<3.0	<12	<3.0	<10	<8.4	<27	<0.0100	2.84	16.2	<0.500
SV-8	5	5/15/2015	490,000	<7.8	37 J	21 J	19 J	8.8 J	<40	ND (TIC)	<17	<0.19	3.4	1.3	1.4
01-0	5	11/7/2016 ^a	2,200,000	<32	<38	<43	<170	<43	<150	<120	<27	<0.0100	8.39	5.25	<0.500
SV-9	8	11/7/2016	68,000	30	190	38	97	33	360	<7.5	<27	0.0312	2.11	14.1	<0.500

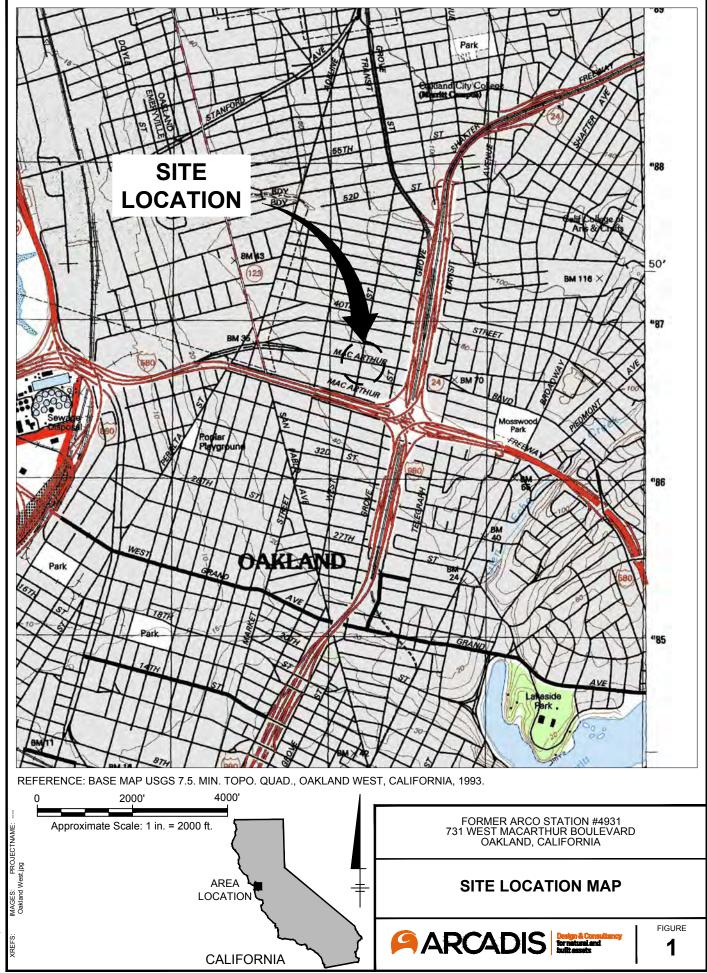
Notes:

1.SWRCB LTC Policy screening criteria for soil gas samples, residential and commercial land uses (Appendix 4).

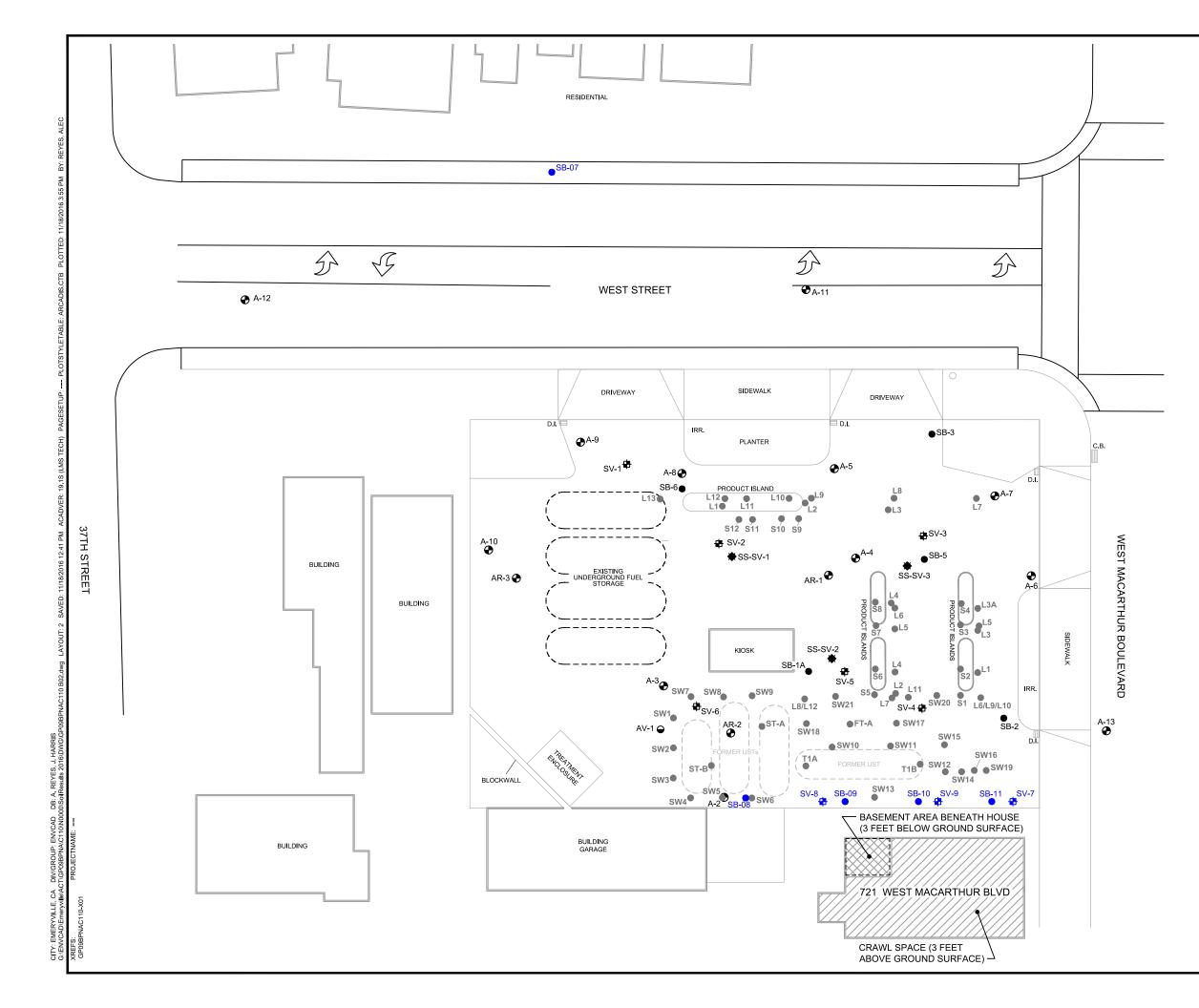
2. Residential Vapor Intrusion Human Health Risk ESL - (Table SG-1: Subslab/Soil Gas Vapor Intrusion Human Health Risk Screening Levels (Volatile Chemicals Only), SF-RWQCB [February 2016]).

3. Commercial/Industrial Vapor Intrusion Human Health Risk ESL - (Table SG-1: Subslab/Soil Gas Vapor Intrusion Human Health Risk Screening Levels (Volatile Chemicals Only), SF-RWQCB [February 2016]).


^a Reporting limit is elevated due to high levels of non-target hydrocarbons during the November 7, 2016 sampling event at SV-8.


All soil vapor sample concentrations and ESLs given in micrograms per cubic meter ($\mu g/m^3$) with the exception of fixed gases (helium, carbon dioxide, oxygen, nitrogen, and methane), which are given in percent by volume (%v).

SWRCB LTC Policy = State Water Resources Control Board Low Threat Closure Policy	J = Estimated value
SF-RWQCB = San Francisco Bay Regional Water Quality Control Board	SV = Soil vapor
ESL = Environmental Screening Level	GRO = Gasoline range organics (C6-C12)
µg/m ³ = micrograms per cubic meter	MTBE = Methyl tertiary-butyl ether
%v = percent by volume	TBA = Tertiary-butyl alcohol
< = Analyte was not detected above the specified method detection limit	DUP = Duplicate sample
= Not applicable or not available	ESLs for xylenes applied to m,p-Xylenes and o-Xylene.
ft bgs= Feet below ground surface	ND (TIC)= Non Detect as a Tentatively Identified Compounds

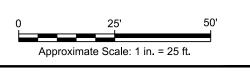


FIGURES

В≺: LAYOUT: 1 SAVED: 10/1/2012.1140.0M ACADVER: 18.15 (LMS TECH) PAGESETUP: SETUP1 PLOTSTYLETABLE: ARCADIS.CTB PLOTTED: 10/1/2012.11:59.4M CITY: FETALUMA, CA DIV/GROUP: ENV DB: J. HARRIS C.USIOSISIPIARIDENACADIRETURN-TOIEMERYVILLE, CA/GP09BPNAC110/N00003Q12/DWG/GP09BPNAC110-N01.dwg HARRIS, JESSICA

\bigcirc SOIL VAPOR EXTRACTION WELL

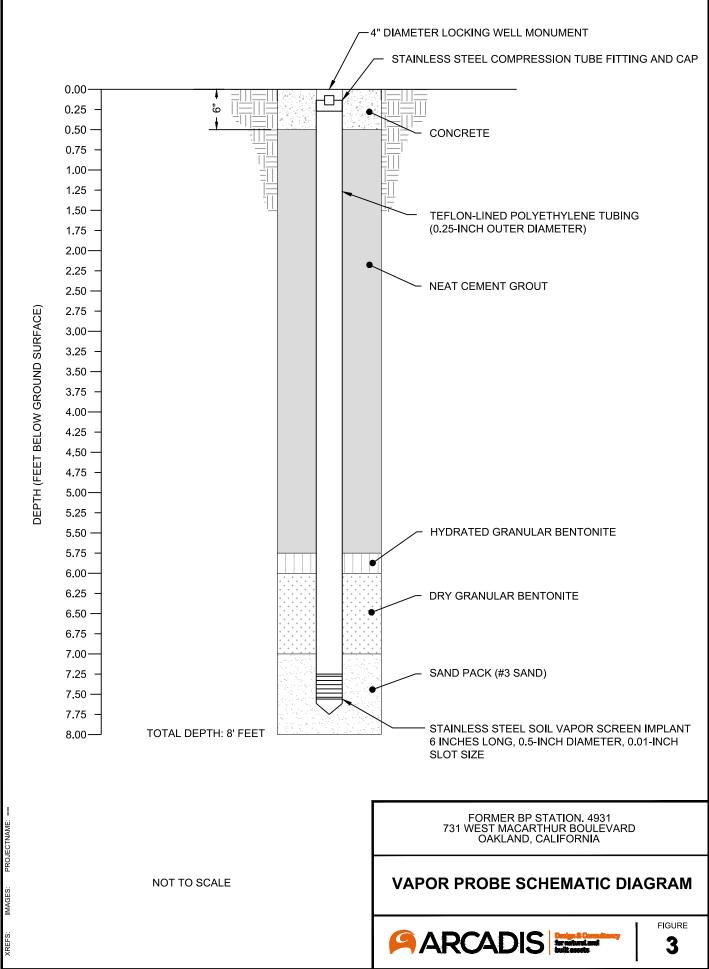
- ÷ SOIL VAPOR PROBE (ARCADIS, MAY-JUNE 2011)
- SUB-SLAB SOIL VAPOR PROBE (ARCADIS, DECEMBER 2012)
- SOIL VAPOR PROBE 4


LEGEND

 \bullet

SOIL BORING PROBE

NOTES:

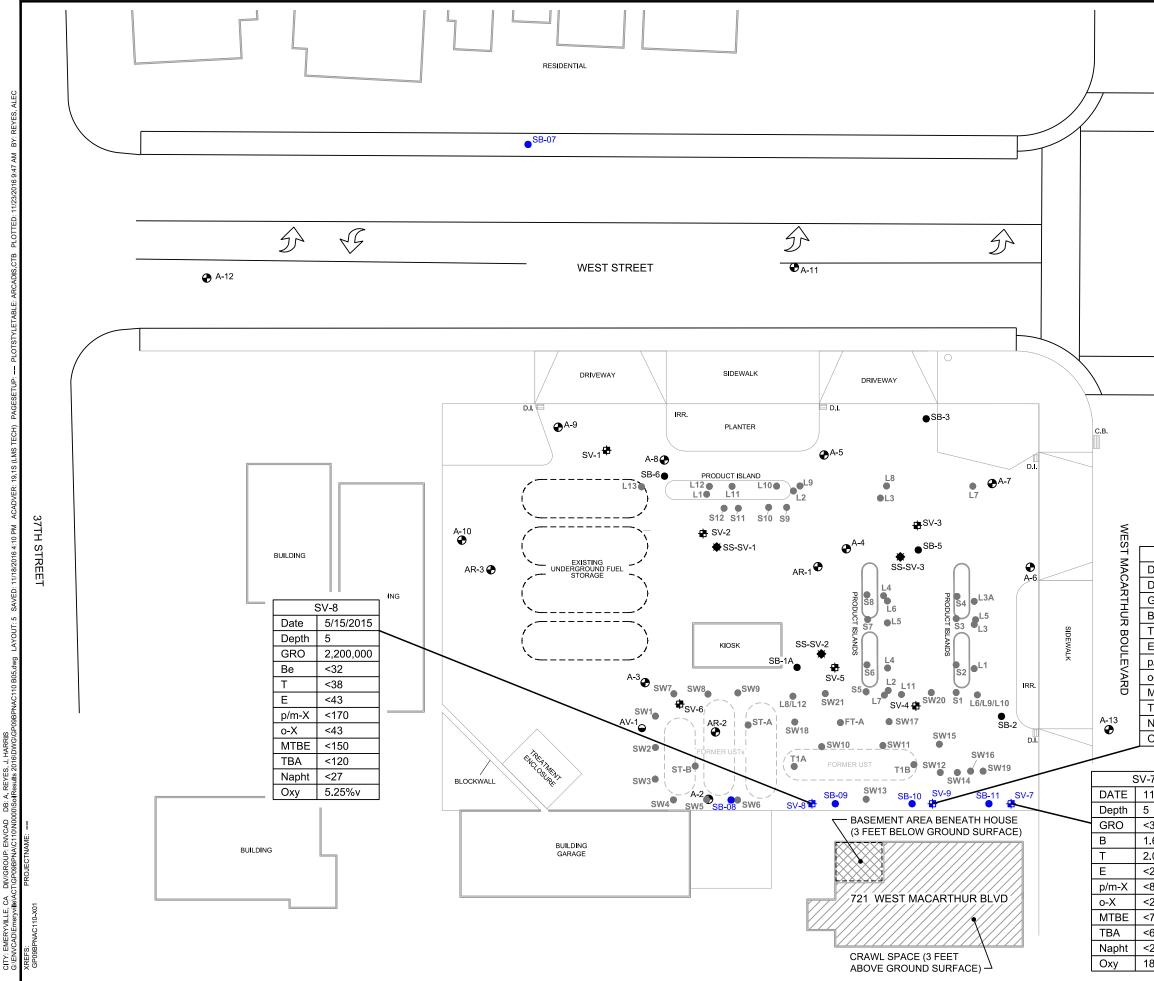

1. SITE MAP ADAPTED FROM FIGURES BY OTHERS. ALL FEATURES AND LOCATIONS ARE APPROXIMATE.

FORMER ARCO STATION No. 4391 731 WEST MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

SITE PLAN

PLOTTED: 11/21/2016 1:21 PM BY: REYES, PLOTSTYLETABLE: ARCADIS.CTB PAGESETUP ACADVER: 19.1S (LMS TECH) SAVED: 11/18/2016 4:11 PM LAYOUT: 3 sults 2016/DWG/GP09BPNAC110 T01 dwg DB: J. HARRIS 3ROUP: ENVCAD DB: J. H 09BPNA/C110/N0000/SoilR DIV/GROUP: INCAD\Emeryville\AC ENVCAD <u>CIT</u>

ALEC


gD

8

능

2016	
- 24.0	
70	
)35	
)35	
70	

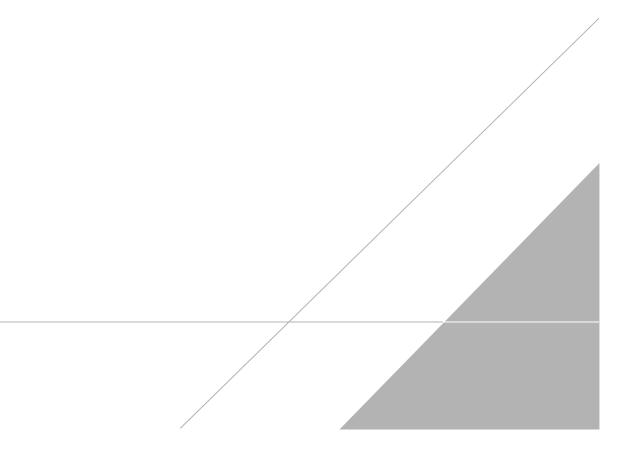
	SAMPLE LOCATION/IDENTIFICATION
Date	Date Sampled
Depth	Sample Depth (feet below ground surface)
GRO	Total Petroleum Hydrocarbons as Gasoline Range Organics (mg/kg)
В	Benzene (mg/kg)
MTBE	Methyl Tertiary Butyl Ether (mg/kg)
TBA	Tertiary Butyl Alcohol (mg/kg)

LEGEND

- MONITORING WELL
- SOIL BORING (ARCADIS, OCTOBER 2010)
- SOIL SAMPLE LOCATION
- ➡ SOIL VAPOR EXTRACTION WELL
- SOIL VAPOR PROBE (ARCADIS, MAY-JUNE 2011)
- SUB-SLAB SOIL VAPOR PROBE (ARCADIS, DECEMBER 2012)
- SOIL VAPOR PROBE
- SOIL BORING PROBE

	SAMPLE LOCATION/IDENTIFICATION
Date	Date Sampled
Depth	Sample Depth (feet below ground surface)
GRO	Total Petroleum Hydrocarbons as Gasoline Range Organics (C6-C12) (μg/m³)
В	Benzene (µg/m³)
Т	Toluene (µg/m³)
Е	Ethylbenzene (µg/m³)
p/m-X	p/m-Xylenes (µg/m³)
o-X	o-Xylenes (µg/m³)
MTBE	Methyl Tertiary Butyl Ether (µg/m ³)
TBA	Tertiary Butyl Alcohol (µg/m³)
Napht	Napthalene (µg/m3)
Оху	Oxygen (v%)

NOTES:


- 1. < =ANALYTE NOT DETECTED ABOVE REPORTING LIMIT.
- 2. ANALYTICAL METHOD: TO-15, T0-3, T0-17, D1946.
- 3. SITE MAP ADAPTED FROM FIGURES BY OTHERS. ALL FEATURES AND LOCATIONS ARE APPROXIMATE.
- 4. SOIL VAPOR ANALYTICAL RESULTS ARE SHOWN IN MICROGRAMS PER METER CUBED ($\mu g/m^3$).
- 5. OXYGEN RESULTS ARE SHOWN IN PERCENT BY VOLUME (%v)

SV-9				
Date	11/7/2016			
Depth	5			
GRO	68,000			
В	30			
Т	190			
E	38			
p/m-X	97			
o-X	33			
MTBE	360			
TBA	<7.5			
Napht	<27			
Оху	14.1%v			

	0 25' 50'
′-7	
11/7/2016	Approximate Scale: 1 in. = 25 ft.
5	
<3,800	FORMER ARCO STATION No. 4391
1.6	731 WEST MACARTHUR BOULEVARD
2.0	OAKLAND, CALIFORNIA
<2.2	
<8.7	SOIL VAPOR ANALYTICAL RESULTS
<2.2	NOVEMBER 7, 2016
<7.2	
<6.1	
<27	
18.8%v	

APPENDIX A

ACPWA Drilling Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 10/05/2016 By jamesy

Permit Numbers: W2016-0742 to W2016-0743 Permits Valid from 10/31/2016 to 11/03/2016

Application Id: Site Location: Project Start Date: Assigned Inspector: Extension Start Date: Extension Count:	1475171755893 731 W MacArthur Blvd, Oakland, CA 10/31/2016 Contact Lindsay Furuyama at (925) 956-2311 or 10/31/2016 1	City of Project Site:Oakland Completion Date:10/31/2016 Lfuruyama@groundzonees.com Extension End Date: 11/03/2016 Extended By: jamesy
Applicant:	Arcadis - Jennifer Granborg	Phone: 415-491-4530 x10
Property Owner:	100 Smith Ranch Rd #329, San Rafael, CA 949 Abdul Rahim Alazani	Phone: 510-394-7728
Client:	27081 Call Ave, Hayward, CA 94542 BP West Coast Products 501 Westlake Park Bl, Houston, TX 77079	Phone: 281-366-2000
	Receipt Number: WR2016-0506	Total Due: \$530.00 Total Amount Paid: \$530.00

Payer Name : Arcadis Paid By: CHECK

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 4 Boreholes Driller: Cascade - Lic #: 938110 - Method: DP

Work Total: \$265.00

PAID IN F

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2016-	10/05/2016	01/29/2017	4	2.00 in.	25.00 ft
0742					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

6. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Well Cons	truction-Va	por monitor	ing well-Va	por monito	ring well - 2	2 Wells		
Driller: Ca	scade Drilli	ng - Lic #: 9)38110 - Me	ethod: DP				Work Total: \$265.00
Specificatio	ns							
Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth	
			ld		Diam.			
W2016-	10/05/2016	01/29/2017	SV-10	4.00 in.	2.00 in.	1.00 ft	12.00 ft	
0743								
W2016-	10/05/2016	01/29/2017	SV-9	4.00 in.	2.00 in.	1.00 ft	12.00 ft	
0743								

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 30 days, including permit number and site map.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters

Alameda County Public Works Agency - Water Resources Well Permit

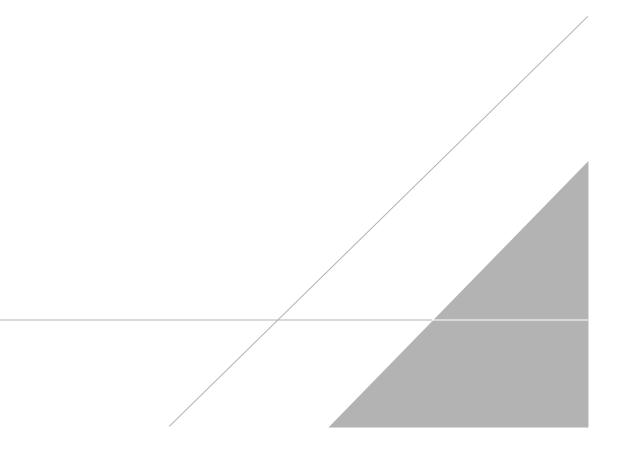
generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.


9. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

10. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX B

Soil Boring Logs

Page 1 of 1

Date	e Drill	ed:			10/31/2016				ID:	SB-08		
-	ged B	-			Cameron McGov	/ern						
	al Dep				24 feet bgs				Client:	BP		
	ehole				4 inches				Location:	CA-4931		
	ling C	-	-		Cascade Drilling	, LLC				731 West MacArthur Boulevard		
	ler's N				Juan Morales	Dine	Duck		Duciest #	Oakland, CA 94609		
	ling M npling				Hand Auger and			1	Project #:	GP09BPNA.C110.Q0000		
Jan	iping	Welli			Dual Tube / Con		5	1	Reviewed By:	Hollis Phillips, PG No. 6887		=
Depth (feet bgs)	Drilling Interval	Recovery (ft)	PID Reading (ppm)	Sample Interval	Sample ID	USCS Code	Geologic Column		Lithologi	c Description	Hydrostratigraphy	Depth (feet bas)
°∏						Asphalt ML /		Asphalt] ⁰
			0.1			SP	<u> </u>	SILT and SAND (ML/	SP), very soft, dry, nonplast	tic, very fine- to medium-grained sand.		-1
2			0.1			ML			dium stiff, dark brown, mois	t, low plasticity, little fine- to coarse-grained sand, trace		-2
3	НА	6.5	0.3			ML		clay. GRAVELLY SILT (MI	L), very soft, very low plastic	city, angular to subangular gravel (2- to 32-millimeters in		3
4			0.2					diameter), little clay.			-	-4
5			0.3	\sim							-	-5
6			0.3	\frown	SB-08-5.0-5.5						-	6
ŀ			-			ML		CLAYEY SILT (ML), :	stiff, moist, medium plasticit	y, little very fine-grained sand.	-	Ľ
7	DP	1.5	0.1								-	17
8			0.6	\ge	SB-08-8.0-8.5						-	-8
9-			0.5			ML		SILT (ML), soft, mois	t, medium plasticity, some c	lay, trace very fine-grained sand.	7 -	-9
0	DP	4	0.6									1
			0.8								-	- 1
2											-	-1
Η			0.4	\ge	SB-08-12.0-12.5						-	+
3			0.6									-11
4	DP	4	0.9									-1
5			0.8			ML)		- -	-1
6			1.7			ML		GRAVELLY SILT (MI			- -	1
7			1.0					SANDY SILT (ML) wi			-	-1
18	DP	4	1.4			ML		SANDY SILT (ML), se	oft, very moist, low plasticity	r, very fine-grained sand.		1
FI											-	+
19 -			1.5								-	- 1 -
20			1.5									2
21 -			0.6			SM		SILTY, GRAVELLY S subrounded gravel (2	SAND (SM), wet, nonplastic, 2- to 40-millimeters in diame	fine- to very coarse-grained sand, subangular to ter), poorly sorted.	$ \checkmark $	-2
2	DP	4	0.3							··· · · ·		12
23			0.2									2
FI			0.3	\geq	SB-08-23.5-24.0		• • • •	·			-	+
24		Ī						Bottom of boring at 2	4 feet bgs.			24

Abbreviations: bgs = below ground surface, DP = direct push, HA = hand auger, NA = not available/not applicable, PID = photoionization detector, ppm = parts per million, USCS = Unified Soil Classification System

Measuring point is ground surface unless otherwise noted. Depth to first groundwater = 20.5 feet bgs. Notes:

Page 1 of 1

	e Drill				10/31/2016				ID:	SB-09		
	ged B				Cameron McGov	rn			Client:	BP		
	al Dep ehole		otori		24 feet bgs				Location:			
					4 inches Cascade Drilling,				Location.	CA-4931 731 West MacArthur Boulevard		
	ling C ler's N	-	-		Juan Morales	LLC				Oakland, CA 94609		
					Hand Auger and	Diroc	t Duch		Brojoot #	GP09BPNA.C110.Q0000		
	ling M npling				Dual Tube / Cont				Project #:	Hollis Phillips, PG No. 6887		
	iping	Meth	<u> </u>			i	3		Reviewed By:	Hollis 1 Hillips, 1 G No. 0007		—
Depth (feet bgs)	Drilling Interval	Recovery (ft)	PID Reading (ppm)	Sample Interval	Sample ID	USCS Code	Geologic Column		Litholog	jic Description	Hydrostratigraphy	Depth (feet bas)
°							·~~	Asphalt				₽°
1			0.4					FILL, gravelly silt, da	rk brown.		_	H1
2Ĥ			0.5			ML		SANDY SILT (ML), v	ery stiff, light brown, moist,	, low to medium plasticity, very fine-grained sand, some	1	H2
3-			0.4					clay, trace gravels, so throughout.	ubangular to subrounded (4- to 16-millimeters in diameter), iron oxidation		L ₃
	HA	6.5										
4			0.8	\geq	SB-09-4.0-4.5	ML				noist, low to medium plasticity, very fine-grained sand,		4
5-			0.4					some clay, trace grav throughout, faint hydr	vels, subangular to subrour rocarbon odor.	nded (4- to 16-millimeters in diameter), iron oxidation		-5
6			0.5			CL						6
7			16.8			OL.		SANDY SILTY CLAY fine-grained sand.	(CL), medium stiff to stiff,	olive brown, moist, low to medium plasticity, very fine- to		Ľ,
	DP	1.5										-
8-			41.3	\geq	SB-09-8.0-8.5							
9			21.6									-9
οĤ	DP	4	40.1									1
1			127.5									Ľ
F												-
2			23.3			ML				noist, low to medium plasticity, very fine-grained sand,		H
3			11.3					some clay, trace grav throughout, faint hydr	veis, subangular to subrour rocarbon odor.	nded (4- to 16-millimeters in diameter), iron oxidation		H
4 H	DP	4	14.0									ŀŀ
5			12.5									L1
Η												-
6 -			37.6									
7			151.4	\geq	SB-09-17.0-17.5							H1
18-	DP	4	72.2									1
9			31.7			GP	ļĮĮĮ					41
20			433.9	\geq	SB-09-19.5-20.0	Gr	⊠ . [:] : : : ⊠		/EL (GP), loose, wet, suba rained sand, poorly sorted	angular to subrounded (2- to 32-millimeters in diameter), I.		
H							⊠.':	-			\bigtriangledown	-
21 H			5.7				∷ ⊠ 					
22 -	DP	4	2.4				⊠ 					2
23			1.5				⊠ . [•] . • . • ⊠					
			1.6	\geq	SB-09-23.5-24.0		⊠ . ⁻					-
24 🕂			I					Bottom of boring at 2	4 feet bgs.			

Abbreviations: bgs = below ground surface, DP = direct push, HA = hand auger, NA = not available/not applicable, PID = photoionization detector, ppm = parts per million, USCS = Unified Soil Classification System

Notes: Measuring point is ground surface unless otherwise noted. Depth to first groundwater = 20.5 feet bgs.

Page 1 of 1

	-	ed:			10/31/2016				ID:	SB-10	
	ged B				Cameron McGov	vern					
	al Dep		- 4		24 feet bgs				Client:	BP	
	ehole				4 inches				Location:	CA-4931	
	ling C	-	-		Cascade Drilling,	, LLC				731 West MacArthur Boulevard	
	ling M				Juan Morales Hand Auger and	Direc	t Duch		Project #:	Oakland, CA 94609 GP09BPNA.C110.Q0000	
	npling				Dual Tube / Cont				Reviewed By:	Hollis Phillips, PG No. 6887	
oui		metri					3 T		Reviewed by.		
Depth (feet bgs)	Drilling Interval	Recovery (ft)	PID Reading (ppm)	Sample Interval	Sample ID	USCS Code	Geologic Column		Litholog	jic Description	Hydrostratigraphy
°F								Asphalt			-
1			1.5	\succ	SB-10-1.0-1.5			FILL, gravelly silt, da	rk brown.		
2-3-	HA	6.5	0.9 0.7			ML				, low to medium plasticity, very fine-grained sand, som 4- to 16-millimeters in diameter), iron oxidation	-
4-5-6-			0.4 1.0 0.4			ML			els, subangular to subrour	noist, low to medium plasticity, very fine-grained sand, nded (4- to 16-millimeters in diameter), iron oxidation	-
7-	DP	1.5	2.7 4.3			CL		SANDY SILTY CLAY fine-grained sand.	(CL), medium stiff to stiff,	olive brown, moist, low to medium plasticity, very fine-	to
9- 10- 11-	DP	4	234.7 100.4 142.4	\ge	SB-10-9.0-9.5						
12 - 13 -			38.7 11.7			ML		SANDY SILT (ML), v some clay, trace grav throughout, faint hydr	els, subangular to subrour	noist, low to medium plasticity, very fine-grained sand, nded (4- to 16-millimeters in diameter), iron oxidation	
14 - 15 - 16 -	DP	4	5.9 2.1 1.6								
- 17 - 18 - -	DP	4	1.0 1.0								
19 - 20 - 21 -	·		2.6 588.2 607.7	\succ	SB-10-20.5-21.0	GP			/EL (GP), loose, wet, suba rained sand, poorly sorted	angular to subrounded (2- to 32-millimeters in diameter I.),
22 - 23 - 23 -	DP	4	375.9 11.3								
24			5.8	\ge	SB-10-23.5-24.0		<u>ष.</u>	Bottom of boring at 2	4 feet bgs.		

Abbreviations: bgs = below ground surface, DP = direct push, HA = hand auger, NA = not available/not applicable, PID = photoionization detector, ppm = parts per million, USCS = Unified Soil Classification System

Notes: Measuring point is ground surface unless otherwise noted. Depth to first groundwater = 20.5 feet bgs.

Page 1 of 1

Dat	e Drill	ed:			10/31/2016					00.44		
Log	iged B	By:			Cameron McGov	rern			ID:	SB-11		
Tota	al Dep	th:			24 feet bgs				Client:	BP		
Bor	ehole	Diam	eter:		4 inches				Location:	CA-4931		
Dril	ling C	ompa	iny:		Cascade Drilling,	LLC				731 West MacArthur Boulevard		
Dril	ler's N	lame:			Juan Morales					Oakland, CA 94609		
	ling M				Hand Auger and				Project #:	GP09BPNA.C110.Q0000		
San	npling	Meth	od:		Dual Tube / Cont	tinuou	S		Reviewed By:	Hollis Phillips, PG No. 6887		
Depth (feet bgs)	Drilling Interval	Recovery (ft)	PID Reading (ppm)	Sample Interval	Sample ID	USCS Code	Geologic Column		Lithologi	c Description	Hydrostratigraphy	Depth (feet bgs)
°F						ML		Asphalt				₽°
1			1.4		SB-11-1.5-2.0			SILT (ML), soft, dark organic matter throug	brown, moist, low to mediur hout.	n plasticity, some very fine- to fine-grained sand, trace		
2-			2.2		00111102.0	CL				um plasticity, some very fine- to fine-grained sand, trace	1	2
3-	НА	6.5	1.9					organic matter throug	nout.			3
4			1.3			SM	· · · · ·	SILTY SAND (SM), s	ome clav		-	-4
5			1.5					0.211 07.412 (0.1.), 0				-5
6			1.9		00.44.0.0.05							6
7			1.0	\geq	SB-11-6.0-6.5							
-	DP	1.5				ML		CLAYEY SILT (ML),	soft, olive, medium plasticity	v, some very fine-grained sand.		
8			- 1.5									F
9-			4.1									H9
10	DP	4	4.1									H10
11			22.8									11
12			12.9									H12
13			27.2									
14 -	DP	4	14.4			ML		SANDY SILT (ML). m	oist, trace subangular to su	brounded gravel (2- to 8-millimeters in diameter)	-	
-									Ç A A	, ,		-
15 -			2.7			SM		SILTY SAND (SM)			1	
16 -			1.4			ML		CLAYEY SANDY SIL	T (ML)		1	
17			1.2									H17
18	DP	4	1.0									-18
19			1.5									-19
20			1.8			GW				very moist to damp, nonplastic, fine- to very coarse-	1	H20
21			1.5				. · · [grained sand, subang	gular to subrounded, well so	rrea.		21
21	DP	4	1.3			GW	\sim	SILTY SANDY GRAV	/EL (GW), medium dense v	vet, nonplastic, fine- to very coarse-grained sand,	-	
F		4							nded (2- to 8-millimeters in		$ \nabla$	-
23 -			0.8		SB-11 00 E 04 0							H23
24			1.6	$ \frown$	SB-11-23.5-24.0			Bottom of boring at 2	4 feet bgs.		+	
25												⊥⊥25

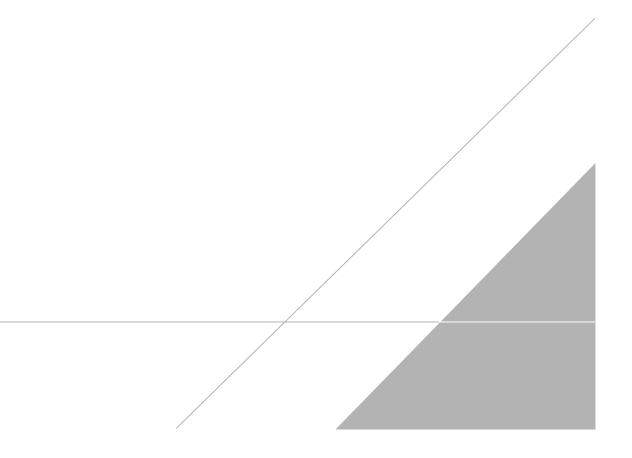
Abbreviations: bgs = below ground surface, DP = direct push, HA = hand auger, NA = not available/not applicable, PID = photoionization detector, ppm = parts per million, USCS = Unified Soil Classification System

Measuring point is ground surface unless otherwise noted. Depth to first groundwater = 22 feet bgs. Notes:

SOIL VAPOR BORING LOG

Page 1 of 1

	e Drill gged B				11/1/2016 Cameron McGo	Nore			ID:	SV-09					
	al Dep				8 feet bgs	Jvenn			Client:	BP					
	rehole		eter:		4 inches				Location:	CA-4931			_		
	lling C				Cascade Drillin	a, LLC	2			731 West Ma	cArth	ur Boulevard	_		
	ller's N	-	-		Juan Morales	<u>,</u>				Oakland, CA					
Dril	lling M	lethoo	1:		Hand Auger				Project #:	GP09BPNA.					
	npling				Teflon Tubing a	and SI	otted \$	Screen	Reviewed By:	Hollis Phillips					
Depth (feet bgs)	Drilling Interval	Recovery (ft)	PID Reading (ppm)	Sample Interval	Sample ID	USCS Code	Geologic Column	Liti	hologic Descriptior	1	Hydrostratigraphy	Soil Vapor Well Construction			
0	-		1.0			ML		Asphalt SILT (ML), soft, dark br fine- to fine-grained sar	own, moist, low to medium nd, trace organic matter thro	plasticity, some very bughout.		Concrete	-		
2	-		1.0 0.2	\ge	SV-9-2.5-3.0	CL		SILTY CLAY (CL), soft, very fine- to fine-graine	olive, moist, low to mediun d sand, trace organic matte	n plasticity, some r throughout.		Teflon-lined			
4-	HA	8	1.4 0.8	\ge	SV-9-4.5-5.0	SM		SILTY SAND (SM), dar clay.	k yellowish brown, very low	r plasticity, trace			, - -		
6	-		0.7									Hydrated Granular Bentonite Dry Granular Bentonite Sand Pack (#3 Sand	-		
8-			0.5	\ge	SV-9-7.5-8.0	CL		SILTY CLAY (CL), mec throughout. Bottom of boring at 8 fe	lium plasticity, some sand, a	trace gley staining		Stainless Steel Soil Vapor Screen Implar (0.5" diameter, 0.01" slot size)			
9-	-												-		
0-													-		
2	-												-		
3-	-												-		
14 -	-												-		


Abbreviations: bgs = below ground surface, HA = hand auger, NA = not available/not applicable, PID = photoionization detector, ppm = parts per million, USCS = Unified Soil Classification System

Notes:

Measuring point is ground surface unless otherwise noted. Groundwater was not encountered at SV-09.

APPENDIX C

Soil Vapor Sampling Field Sheets

RAE SYSTEMS MiniRAE 2000 PID CALIBRATION CERTIFICATE

SERVICE TECHNICIAN: JEB

EOUIPCO

RENTALS

DATE: 11 / 4 / 16

INSTRUMENT INFORMATION

RENTAL ID#: RAE2000. 42	SERIAL NUMBER: <u>110-01225</u> 3	LAMP:	🗙 10.6eV
			□ 11.8eV

CALIBRATION INFORMATION

CALIBRATION GAS 1:

RESPONSE TO GAS 1: **№** ppm ±2% LOT#: K002893

LOT#: NA

Isobutylene <u>job</u> ppm, in air
Hexane ____ppm, in air

ZERO AIR RESPONSE: Ø00.0ppm

NOTE: The following procedure must be performed in a clean "Fresh Air" environment. Please read the manual to familiarize yourself with the instrument.

- 1. Press the **MODE** key. The instrument goes through a warmup. It is complete once the unit reads the ppm value or READY.
- 2. To zero the instrument press and hold down both **MODE** and **N**/- keys for three seconds to enter programming mode.
- 3. The display will show "CALIBRATE/select Gas?," press the Y/+ key.
- 4. Attach the zero filter on the inlet.
- 5. The display will show "FRESH AIR CAL?," press the Y/+ key.
- 6. The unit will go through a fresh air calibration. If any it fails, verify you are in a fresh air environment and try again. If it still fails, contact EQUIPCO for technical support.
- 7. Remove the zero filter.
- 8. The instrument will now show "SPAN CAL?," If you would like to calibrate the instrument press the Y/+ key and proceed through calibration by applying the gas when prompted. If you do not want to calibrate the instrument, but you want to start sampling, press the N/- key.
- 9. Press the **MODE** key until the ppm or Ready is displayed.
- 10. Install the Hydrophobic filter. Failure to operate this instrument with the Hydrophobic filter may cause the instrument to become contaminated, and give false readings. Do NOT put the end of the probe into any liquid or directly into the soil. The instrument is now ready to sample.

THANK YOU FOR RENTING FROM EQUIPCO

This instrument has been thoroughly tested by a factory certified service technician before delivery to you. If you have any questions or difficulties please call us immediately and request technical support.

1-888-234-5678

CES LANDTECH MODEL: GEM 2000 CALIBRATION CERTIFICATE

SERVICE TECHNICIAN: JEB

DATE: 11 4/16

INSTRUMENT INFORMATION

RENTAL ID: GEM2000.05

SERIAL NUMBER: 5320

CALIBRATION INFORMATION

1..CALIBRATION GAS: 35 % CO2

GAS RESPONSE: <u>35</u> % CO₂ <u>+</u>2%

2. CALIBRATION GAS: 50 % Vol. Methane

LOT #: 573162

LOT #: 573162

GAS RESPONSE: <u>50</u>% Vol. Methane <u>+</u>2%

OXYGEN RESPONSE IN FRESH AIR ENVIRONMENT: 20.9%

OXYGEN DOWNSCALE RESPONSE CHECKED: 0% WITH 99.9% Nitrogen 🗸

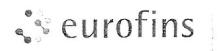
THIS INSTRUMENT HAS BEEN CALIBRATED TO STANDARDS SET FORTH BY THE MANUFACTURER

Calscience	Equipn	nent Rei	ntal Form		
Requestor: Richard Villafania Date: 10/25/	2016 Prep	ared By: 10/	25/2016 Time Req.: 4:3	39 PM	
Analysis: TO-14A: □ TO-15: Ø BTEX: □ Canisters: Canister 1L: Qty Batch: Batch: Individual: Individual: 8 SIM: SIM: Trip Blank: Trip Blank: 1		FG: ☑ Na bilers: Q 24 hr.: _ 12 hr.: _ 10 hr.: _ 3hr.: _ 1hr.: _	(individual QC requires 48 h aphathalene: ☑ Other: _ C Qty Non QC Qty TC	ours advance	
Duplicate T / T Setup:	Flow Cont - A	Adj.:			
Soil Gas Manifold: 6			l		
Notes: Include fittings for all summa canisters	5.				
Adjust soil gas manifolds to 100ml/mir	1.				
Tripblank filled with Nitrogen.					
Include (3) Air COCs. Delivery Method: Courier by: C Project Name: CA-04931 GP09BPNA.C110		(in	Ship to Arrive by: <u>11/3/2(</u> case of shipment, address mu	ist	
Client: ARCADIS - Walnut Creek (BP)		be Ship to:	completed) ARCADIS - Walnut Creek	(BP) (Defau	
Address: 2999 Oak Rd		Address:	2999 Oak Rd, Suite 300	(01) (00)44	
Suite 300					
Walnut Creek, CA 94597-2537			Walnut Creek, CA 94597-	2537	
Contact: Jacob Henry		Contact:	Cameron McGovern		
Phone#: <u>925-274-1100</u>		Phone#:	415-432-6924		
Equipment Information:					
ID EquipmentType QC Type	VACout	ID	EquipmentType	QC Type	VACout
LC833 Summa Canister 1L TripBlan	< 10	LC337 LC197	Summa Canister 1L Summa Canister 1L	Individual Individual	
LC361 Summa Canister 1L Individua	-29.5	SGM31	7 Soil Gas Manifold	QC	N/A
LC375 Summa Canister 1L Individua	-29.5	SGM20	8 Soil Gas Manifold	QC	N/A
LC002 Summa Canister 1L Individua	-29.5	SGM34		QC	N/A
LC1089 Summa Canister 1L Individua	l -29.5	SGM29		QC	N/A
LC463 Summa Canister 1L Individua	l -29.5	SGM42		QC	N/A
LC1096 Summa Canister 1L Individua	l -29.5	SGM36	5 Soil Gas Manifold	QC	N/A

7440 Lincoln Way, Garden Grove, CA 92841-1427 TEL: (714) 895-5494 FAX: (714) 894-7501

G0187172	TO-17 Sorbent Tube	Batch	N/A
G0189388	TO-17 Sorbent Tube	Batch	N/A
G0189661	TO-17 Sorbent Tube	Batch	N/A
G0186930	TO-17 Sorbent Tube	Batch	N/A
G0186857	TO-17 Sorbent Tube	Batch	N/A

By signing this form, I understand that the equipment listed above will be returned only to Calscience for analysis, and will be in the same condition as received. It is also understood that the rental period is **two weeks** from the date signed above, and must be returned within that two week period or additional rental **fees will be incurred**, as described in our Standard Fee Schedule. If a minor (one or two day) extension in the rental period is needed, you must contact your Calscience project manager before the rental period has ended to receive permission.


Relinquished By:	A	ffiliation:	CalScience	e Environmental Labs.	
Received By:		Date/Time:		Hours:	
Printed Name:	A	Affiliation:			
Alehana_	7440 Lincoln Way, Garden Grove, CA 92841-142	7 TEL: (71-	4) 895-5494	FAX: (714) 894-7501	

BATCH Sorbent Tube QC CERTIFICATION

Sorbent Tube IDs:

	G 0188692 (Certifie		
a.	0187172	018961	7
	0187156	018685)
	0147041	0186987	•
9 ²	0187852	0141389	
	0184750	0141308	
	0189388	0141770	1
	0150021	014253	3
	0186980	0184771	
	0188635		
	P		
	Method TO-17 VOC's	□ TO-17 GRO □ TÒ-17 Diesel	
	Date Certified:	06/04/16	
2. •	Date Cleaned:	08/04/10	6.2
	Data File:	04 Ang 07.0	
	Instrument ID:	Gens MM	
		4	
-	ECI Employee ID	Date	

BATCH Sorbent Tube QC CERTIFICATION

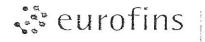
Sorbent Tube IDs:	
	1 Tube)
Method I TO-17 VOC's Date Certified: Date Cleaned: Data File: Instrument ID:	□ TO-17 GRO TO-17 Diesel <u>10/14/16</u> <u>10/14/16</u> <u>140(718.d</u> <u>вещ\$ МММ</u>

650 ECI Employee ID 11

4 ⁶.

10/31/16 Date

FLOW CONTROLLER QC CERTIFICATION


Flow Controller IDs:

561423	□ 24hr □ 12hr □ 10hr □ <200cc/min Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
125	□ 24hr	□ 8hr □ 1hr □ Adjustable
323	□ 24hr □ 12hr □ 10hr □ <200cc/min 🖉 Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
290	□ 24hr □ 12hr □ 10hr □ <200cc/min ▣ Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
365	24hr 12hr 10hr 200cc/min Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
344	□ 24hr □ 12hr □ 10hr □ <200cc/min ੲ Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
Canister ID:	LC940	
Certification Level:	□ TO-14 @ TO-15 □ TO-15 \$	SIM
Date Certified:	10/07/14	- 2
Date Cleaned:	Varing	-
Date Leak Checked:	10/10/16	-
Data File:	67-0ctog.d	-
Instrument ID:	Gay 000	-
Oven/Rack ID:	OVENL	- ,

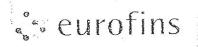
Elow controllers were cleaned per Eurofins Calscience SOP T-016. This certifies that the flow controllers referenced above contain no target analytes above the reporting limits stated in the applicable SOP.

G 58 ECI Employee ID

10 10/16 Date

FLOW CONTROLLER QC CERTIFICATION

Flow Controller IDs:


SGM 307	□ 24hr □ 12hr □ 10hr □ <200cc/min ☞ Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
290	□ 24hr □ 12hr □ 10hr □ <200cc/min & Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
208	□ 24hr □ 12hr □ 10hr □ <200cc/min ☑ Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
293	□ 24hr □ 12hr □ 10hr □ <200cc/min @ Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
345	□ 24hr □ 12hr □ 10hr □ <200cc/min 🗹 Soil Gas Manifold	□ 8hr □ 1hr □ Adjustable
31F	□ 24hr □ 12hr □ 10hr □ <200cc/min ☑ Soil Gas Manifold	⊡ 8hr ⊡ 1hr ⊡ Adjustable
Canister ID:	SLC 040	
Certification Level:	о TO-14 о TO-15 о TO-15	5 SIM
Date Certified:	- 08/23/16 Variour	
Date Cleaned:	Variour	
Date Leak Checked:	09/21/16	
Data File:	Gens Ktch OVER2	
Instrument ID:	Gens Klick	
Oven/Rack ID:	OVERZ	

Flow controllers were cleaned per Eurofins Calscience SOP T-016. This certifies that the flow controllers referenced above contain no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

"1

09/21/16 Date

INDIVIDUAL CANISTER OCCERTIFICATION

20361 Certified Canister ID: A 11 0 6L Canister Size: □ TO-14 STO-15. □ TO-15 SIM Certification Level: 9/28/16 Date Certified: 9/26/16 Date Cleaned: 10/31/16 Date Leak Checked: 28 Sept 12.00 Data File: KKK Instrument ID: 4 Oven/Rack ID:

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

Date

INDIVIDUAL CANISTER QCCERTIFICATION

	Certified Canister ID:	103	575
	Canister Size:	06L	▶ 1L
4	Certification Level:	□ TO-14	TO

Date Certified:

Date Cleaned:

Date Leak Checked:

Data File:

Instrument ID:

Oven/Rack ID:

TO-15 D TO-15 SIM 9/28/16 9/26/16 11/1/16 2851pT 11. d KKK

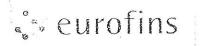
Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

Date

		с. ,
	DUALCANISTER Sertification	
Certified Canister ID:	LC 1089	
Canister Size:	0 6L D. 1L	
Certification Level:	□ TO-14 💊 TO-1	5. D TO-15 SIM
Date Certified:	9/22/16	· · · · · ·
Date Cleaned:	9/15/16	
Date Leak Checked:	11/116	
Data File:	2251pt 11.cl	· · ·
Instrument ID:	<u> </u>	
Oven/Rack ID:		

Chickinnea


Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

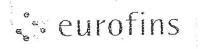
4 ECI Employee ID

i

eurofins .

Date

Caiscience


INDIVIDUAL CANISTER QCCERTIFICATION

Certified Canister ID:	2002
Canister Size:	□ 6L 🕞 1L
Certification Level:	🗆 TO-14 🕆 TO-15 🗆 TO-15 SIM
Date Certified:	9/22/16
Date Cleaned:	9/15/16
Date Leak Checked:	 11/1/16
Data File:	22. sepT12.cl
Instrument ID:	<u> </u>
Oven/Rack ID:	

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

Date

INDIVIDUAL CANISTER QCCERTIFICATION

Certified Canister ID:

Canister Size:

Certification Level:

Date Certified:

Date Cleaned:

Date Leak Checked:

Data File:

Instrument ID:

Oven/Rack ID:

IC 463	
0 6L N. 1L	
🗆 TO-14 🕆 TO-15.	D TO-15 SIM
9/22/16	- **
9/15/16	
11/16	
2251pT14.d	-
KKK	-
Ц	

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

Date

	C •	
ີຮູ້ຮ	eurofins	

INDIVIDUAL CANISTER OCCERTIEICATION

Certified Canister ID:

Canister Size:

Certification Level:

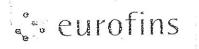
Date Certified:

Date Cleaned:

Date Leak Checked:

Data File:

Instrument ID:


Oven/Rack ID:

201096	· · · · ·	,
0 6L ~ 1L		•
□ TO-14 🕞 TO-15	0 TO-15 SIM	
9/22/16		
9/16/16	_`P`	
11/1/16		
22SOPTIS.d	· ·	0
KKK		
4		

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

11/1/16 Date

INDIVIDUAL CANISTER QCCERTIFICATION

Certified Canister ID:

Canister Size:

Certification Level:

Date Certified:

Date Cleaned:

Date Leak Checked:

Data File:

Instrument ID:

Oven/Rack ID:

2(337	
064 101	
🗆 TO-14 🖒 TO-15.	0 TO-15 SIM
9/23/16	
9/16/16	· · · · · ·
10/1/16	
22500516.d	- · · ·
KKK	
4	

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

Date

: eurofins

Caiscience

INDIVIDUAL CANISTER OCCERTIFICATION

Certified Canister ID:	70197	
Canister Size:	□ 6L \s 1L	
Certification Level:	🗆 TO-14 🕆 TO-15. 🗆 TO-15 SIM	
Date Certified:	9/22/16	
Date Cleaned:	9/15/16	141
Date Leak Checked:	11/110	
Data File:	225,pJ 13,cl	
Instrument ID:	KKL	
Oven/Rack ID:	<u> </u>	

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

4 ECI Employee ID

•

Date

Caiscience

INDIVIDUAL CANISTER ACCERTIFICATION

0 6L

20833

B 1L

Certified Canister ID:

Canister Size:

Certification Level:

Date Certified:

Date Cleaned:

Date Leak Checked:

Data File:

Instrument ID:

Oven/Rack ID:

□ TO-15 □ TO-15 SIM □ TO-14 9/28/16 9/26/16 11/1/16

28510710.d

4

Canister was cleaned per Eurofins Calscience SOP T-016. This certifies that the canister referenced above contains no target analytes above the reporting limits stated in the applicable SOP.

ECI Employee ID

Date

62 Site Visit Report Arcadis Project Number: Dates of Site Visit: 11 - 7 -16 GP09BPNA.C110 Location of Project: Arcadis Project Name: **BP 4931** 731 West MacArthur Boulevard, Oakland, CA Arcadis Personnel Present; Other Persons Present: G. Edwards C. Mcbovern Maurel Purpose of Site Visit: (SV-7, SV-8, SV-9 **Utility Locate** Date & Time: Activities: ORDO arrive Tailfate La conduct SV manifolds 0930 constructions V=4 v26 SV-7, SV-8 3.14 1. TSin 12in 12in -3.4 (3. 0625 in × 16.87 = 115,395 in? 1,946.7 ml x 778.69 ml V=Trv2 $= 8.4 (0.1875 in)^{2} 48 in$ $= 5.20 in^{3} \times 16.87 mb in^{3}/m$ = 89.38 mL868.10 ml purge volume Vo 4" @ 8' install V= 3.14 (2)2 12" 150.8 in 3 x 16.87 m/ 3 = 2543.94 ML x 0.4 (porosid = 1017,57 mL VIVEE = 3.14 (0.1875in) 84 in × 16.87 M/ms = 156.51 mL

Arcadis

92012 17/16 Site Visit Report Date & Time: Activities: He -1-20/6 1107 Canister ID: LC 375 manifold ID: SGU 423 milital pressure : -30 * PRESENCE GAUGE (Dup-20161107) ON DID SUMMA SV-7 RAMAGED - USE PRESSURE GAUGE OF con ID: LCOOZ SV-7 PARENT SUMMAT DETERMENTE WHE S&M 365 went SAMPLING IS COMPLETE . Inital Procencer: 50-8 CAN TO: LCIOG6 MANTFOLD: SGM ZOB INTTON P: - 30.) CAN ED: LCH63 + HE-2-20161107 50-9 CAN TO: LC 1089 MANTFORD: SGM317 MANEROLD: 56MZ93 ENEREAL P: -30.0 INITTALP: -30.0 1+e-3-20161107 CANPSTER 1 LC197 MANFFOLD: SGM SLIS I. PRESSURE: -30.0 F RESSURE = -5.0 400 andon

Arcadis

	ARCADIS for natural and built assets		Soil Gas Sample Collection Log				
	04013	built assets	Date:	w/7/16	Sample ID:	SV-7	
Client:		AR 13	P	Tubing Information:	States and	1/4" OD	
Site ID:		493					200 000
Location:		731 4	1. Macheth	Misc. Equipment:		Helium Detector Meter, PPE	
ARCADIS Pro	oject #:					Weter, I'I'L	Titae
Sampler's Ini	tials:	Cm/	SM	Purge Method:		Pump /	SUMN
Sample Point	Location:	SV-	7	Appx. Purge Volume:		868:08	3 ml
Sampling De	oth:	5	1.51	Tracer Gas Manufact	urer:	Equipco	
Tracer Gas:		Heliu	m (UHP)	Tracer Gas Shroud C	oncentration:	10.3 -1	BOR
				1.38.6.0			11-
Canister Size		1-1	iter	Canister ID:		LCOOL	April 1
Flow Control	er ID:	Jun	265				
Duplicate Ca	alatar Sizal		ha	Dualizata Casista ID		100	-
and the second second	w Controller ID:	56	RI	Duplicate Canister ID		1.036	/
Duplicate Flo	w controller iD.	San	365	N Harry			
Sorbent Tube	ID		\$186930	Pre-Sampling Flow R	ate	[
Sample Start		1	1 306	Post-Sampling Flow R			_
- ampic otal		1305	(30%	Total Volume	uic		
				Tracer Gas Post-Sam	nling Core		
				Lindeer Gas Fost-Sam	ping conc.		
Dup/DVP Sor	bent Tube ID	6018	7177	DVP Pre-Sampling Flo	ow Rate		
	ple Start/End	1305	1306	DVP Post-Sampling F			
				DVP Total Volume			
				Tracer Gas Post-Sam	pling Conc.		
					ping cono.	L	
	Canister			- 1	Pressure		
Time	Pressure	Temperature		Air Speed (ft/min)	Differential	PID (ppm or	
	(inches of Hg)	(°F or °C)	Humidity (%)		(inches of H ₂ O)	ppb)	
1245	-30.0			100			
1502	~5.0	<u> </u>	-				
DUP	/ - 0						
DUP		-					
			And the second				
	Nearby Ground	water Monitor	ing Wells/Wate	r Levels			
	Well ID	Depth to Gro	oundwater (ft.)	*- *****			
04 h	51	ert Ini	General OI	bservations/Notes	Stor	Final	ora
Jutin	6 (40)						_
	102		-10		1032	-10	
Jura	· tot	- 1010					
Tury	- JAIN	1218			100 Mile - 100		
	sop	· · · · · · · · · · · · · · · · · · ·				-1-0-	
IFAL R	557 : He	C 70.	27. / DE	TELTUR BERP	16: D.C	D PRM	
PID=	O:0 ppm		0				
the second se		-	NA VI				
andter	e Ct	u C	10 10				
andter	CH D	4 C	0% 4. 14.7	%	e		

4.

He-3-20161107

uum Tes Time	Observed	
Time	Vacuum (inHg)	
1.00		
	Constant A	
1.1	1 N 22	
-		
1-1-1-1		
_	and the second	
1 mar 11		
1	a na man a saria	
	a de la companya de la	
2 A		
	A COMPANY OF A COMPANY	
r nette	A CONTRACT OF A	

Time	Helium Concentration (%)
246	12.1
1247	11.8
248	12.9
1249	18.0
1250	17.9
1251	17.1
1252	13.9
1253	14.6
255	12.8
	10.3
1256	11.5
1257	10.9
1258	12.6
1259	10.7
1300	12.6
1301	11-1
130Z	10.5
303	
1910	
·	
	State State
127 12	A Street Street
11 11 11	and the second second
	and the second
	1
	1
100.000	
	An and An

+ DUP -20161107 + He - 3 - 2016 1107

50-7

ARCADIS	Design & Consultancy for natural and built assets	Soil Gas S		-	
	Date	4-7-14	Sample ID:	50-8	
lient:	AR BP	Tubing Information	Tubing Information:		
te ID:	4931				
ocation:	731 W. MALA	RTHUR Misc. Equipment:		Helium Detector, Mul Meter, PPB Rat	
RCADIS Project #:					
ampler's Initials:	CM 15N	Purge Method:		Pump / SUM	
ample Point Location:	50-7	Appx. Purge Volu	me:	868.08 M	
ampling Depth:	5'	Tracer Gas Manu	Tracer Gas Manufacturer:		
acer Gas:	Helium (UHF	D) Tracer Gas Shrou	d Concentration:	6.6 - 20.	
anister Size:	I-LATER	Canister ID:	Canister ID:		
ow Controller ID:	56M208	F. 21 811	<u></u>		
uplicate Canister Size:	1	Duplicate Conjete			
uplicate Flow Controller ID:		Duplicate Caniste	ir id:		
		5.0 5.01			
orbent Tube ID	66176857	Pre-Sampling Flo	w Rate		
ample Start/End	Hog yut	Post-Sampling Fl	ow Rate		
	WZ2 UT	Z Total Volume	Total Volume		
		Tracer Gas Post-	Sampling Conc.		
up/DVP Sorbent Tube ID	1	DVP Pre-Samplin	g Flow Rate		
up/DVP Sample Start/End		the second s	DVP Post-Sampling Flow Rate		
		DVP Total Volume	Contraction and the same of the		
		Tracer Gas Post-	Sampling Conc.		
Time Canister Pressure (inches of Hg)		elative Idity (%) Air Speed (ft/m	in) Pressure Differential (Inches of H ₂ O)	PID (ppm or ppb)	
JP JP					
Nearby Ground Well ID	water Monitoring We Depth to Groundw	ells/Water Levels	Enitial Pr SV - 08 He -201	61107: -30"	
	G	eneral Observations/Notes			
Sther Du: 57x	E INTERNET	P		10.9	
			10.52 -		
lunge start	10:58.0 11:02.3			· · · · · · · · · · · · · · · · · · ·	
EAR LIHER : 14	2 6 36.4%.	/ QUATELINE READD	NG: O PPA	^	
allect sample	: Star	t: 1109	stop = 1	118 5V-8 120 He-20	
	CHy 1 Oz	.3%		16 20	

STA

11/2/16

Shroud Helium Concentration

.

SV-8 the-1-2016/107

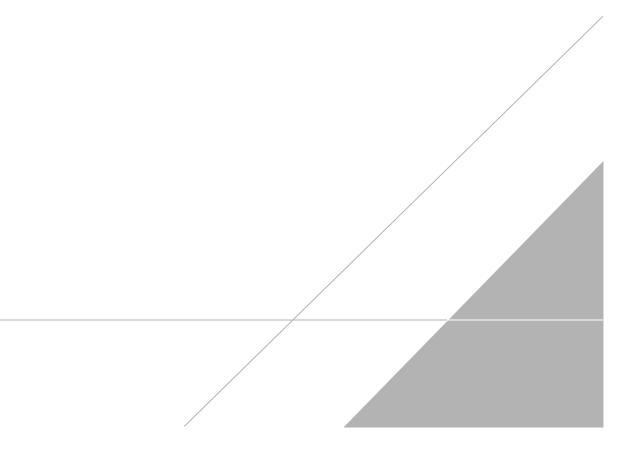
Vacuum Test

Time	Observed				
time	Vacuum (inHg)				
5.5	C				
	2. Q. C. C.				
1.1					
and the second sec					
	to be and the second				
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	and a second second second second				
	and the second design of the				
	N R COMPANY AND				
	(***** C*C) ******				
	- marine second and and				
144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144					
	and a management of the				
	a second second				
	1				
	A DECEMBER OF SHEET, SHE				
	the second second second				
	10 10 10 10 10 10 10 10 10 10 10 10 10 1				
	1. 24				
	0× · · · · ·				
	-				
th:	all in the Department				
	and the second second				

Time	Helium Concentration (%)
1109	20.7
(1)0	21.Z
[[1]]	20.0
1112	15.2
1113	15.7
1114	14-6
115	13.1
116	12.9
107	0.9
1118	11.0
1119	10.9
lite	6.6
	and an and see a second second second
-	a marine and a statement

ARCADIS Description			Soil Gas Sample Collection Log				
		built assets	Date:	11-7-16	Sample ID:	34-8-	50-0
Client:		69	0. U A	Tubing Information:		1/4" OD	
Site ID:		4931					
Location:		731 w.	MACHRTIANS	Misc. Equipment:		Helium Detecto Meter, PP	
ARCADIS Pr	oject #:						Divide
Sampler's In	itials:	Sur Cc	M	Purge Method:	and the second	Eump /	SUMMA
Sample Poin	t Location:	SU-9	Sector Sector	Appx. Purge Volume:		1174	IML
Sampling De	pth:	6'	1	Tracer Gas Manufactu	rer:	Equipco	
Tracer Gas:		Heliu	m (UHP)	Tracer Gas Shroud Co	ncentration:		
			E.H	La Sala	1		
Canister Size	9;	1-6	TRA	Canister ID:		16463	
Flow Control	ler ID:	SGM 317		1 (2,3)			
			14 T	1. 1251			
Duplicate Ca	nister Size:		199. 2	Duplicate Canister ID:		ſ	
Duplicate Flo	w Controller ID:	1	lin Gt	0121			
			P. 14	-951			
Sorbent Tub	e ID	6018	9661	Pre-Sampling Flow Ra	te		
Sample Start	/End	and the second division of the second divisio	11224	Post-Sampling Flow R			
		1-0-0		Total Volume			
				Tracer Gas Post-Samp	ling Conc.		-
Dup/DVP Sor	bent Tube ID	1		DVP Pre-Sampling Flo	w Rate		
Dup/DVP Sar	nple Start/End		1996 (DVP Post-Sampling FI	ow Rate	· · · · · · · · · · · · · · · · · · ·	
				DVP Total Volume			
				Tracer Gas Post-Samp	ling Conc.		()
Time	Canister Pressure	Temperature (°F or °C)	Relative Humidity (%)	Fluw eL Air Speed (ft/min)	Pressure Differential (inches of	PID (ppm or ppb)	
	(inches of Hg)			and and an and a second second	H ₂ O)		
1209	- 30.0		· · · · · · · · · · · · · · · · ·	100			
1219	-5.0	E.			i in the second s		
DUP		. F		and have a second	-		
DUP							
	Nearby Ground			r Levels			
	Well ID	Depth to Gro	oundwater (ft.)				
				1			
	and the second se						
			Concella	ho operations (b) - t			
541 JT 70-1	6-405	51 25-05	and the second se	bservations/Notes	EMM	P	
situt Pro	STARST	TUGG	19	578	FERIAL	. 1	
situt PU:	677425 1053	TNACA ~io	19	and the second	FDNAK -loso	, P	
SILUT FU:			19	578		P	
situt pr:			19	578		. F	
situt a: puge			19	578		, P	
situt Er: puge Isp			19	578		. P	
punge Isp	1053 -: [15 : [15	~io 1 7	19	5738 1101	-10.0	P 	
punge June Jean Th	1053 -: [15 : [15		<u>(</u> p -0 7%/ 96	STOP 1101 TECER NEWDOLNE".	-lu-0	р 28	
puge	1053 -: 115 : 115 : 115	~io 1 7	<u>t</u> p 5%/ 96	5738 1101	-lu-0	р Ж	
punge John Lean Te	1053 : [15] : [15] : [15] : [15] : [15] : [15] : [15] : [15]	~-io	<u>(</u> <u>-0</u> <u>5%/ 96</u> 7. (STOP 1101 TECER NEWDOLNE".	-lu-0	р 2%	

HE-2-20161107


5U-9 + HE-2-20161107

Time	Observed Vacuum (inHg)
Tune	Vacuum (inHg)
	11 A. 198
	S 11 1 1
	- manager - sublegy
and the second sec	
1999 - Harrison I. (* 1990)	
Castron Inc.	a management of the second
	-
	and the second start of a
	1
	The second s
	1000
5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	a second second second

Time	Helium Concentration (%)
1209	13.8
1210	12.9
1211	11.9
1712	12.4
1212	11.8
12.0	10.7
1214	10.1
1215	10.3
1216	10,1
147	14.9
1218	1.5
1219	16.4
and provide	
and the second	S
Sel Section	a and
	to Provide the States of States
10-12-14	
1. Jack and the	all second
	and the second second second
al constra	
	the second second
	in and the second
	and a second second second
1040	States and the states of the states
1. C. C. C. C. C.	and the second second
	5. 3-

APPENDIX D

Waste Disposal Sheets

IWM, Inc.

INTEGRATED WASTESTREAM MANAGEMENT, INC. 1945 CONCOURSE DRIVE, SAN JOSE, CA 95131 PHONE: 408.433.1990 FAX: 408.433.9521

CERTIFICATE OF DISPOSAL

Generator Name:	BP West Coast Products LLC	Facility Name:	BP-4931
Address:	201 Helios Way, Sixth Floor	Address:	731 West MacArthur Blvd
	Houston, TX 77079		Oakland, CA
Contact:	Hollis Phillips	Facility Contact:	Jamey Peterson, Arcadis US Inc
Phone:	510-219-7764	Phone:	707-889-6739

IWM Job #:	943
Description of Waste:	1 Drum(s) of
	Non-Hazardous
	Soil
Removal Date:	11/30/16
Ticket #:	RSVRL301116

Transporter Information

Name:	IWM, Inc.
Address:	1945 Concourse Drive
	San Jose, CA 95131
Phone:	(408) 433-1990

Disposal Facility InformationName:Republic Services Vasco Road LandfillAddress:4001 N. Vasco RoadLivermore, CA 94550Phone:(925) 447-0491

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William T. DeLon

William 2. Oe For

11/30/16 Date

Authorized Representative (Print Name and Signature)

IWM, Inc.

INTEGRATED WASTESTREAM MANAGEMENT, INC. 1945 CONCOURSE DRIVE, SAN JOSE, CA 95131 PHONE: 408.433.1990 FAX: 408.433.9521

CERTIFICATE OF DISPOSAL

Generator Name:	BP West Coast Products LLC	Facility Name:	BP-4931
Address:	201 Helios Way Sixth Floor	Address:	731 West MacArthur Blvd
	Houston, CA 77079		Oakland, CA
Contact:	Hollis Phillips	Facility Contact:	Jamey Peterson, Arcadis
Phone:	510-219-7764	Phone:	707-889-6739

IWM Job #:	943
	1 Drum(s) of
Description of Waste:	T Drum(5) 01
	Non-Hazardous
	Decon Water
Removal Date:	11/30/16
Ticket #:	SP301116-MISC

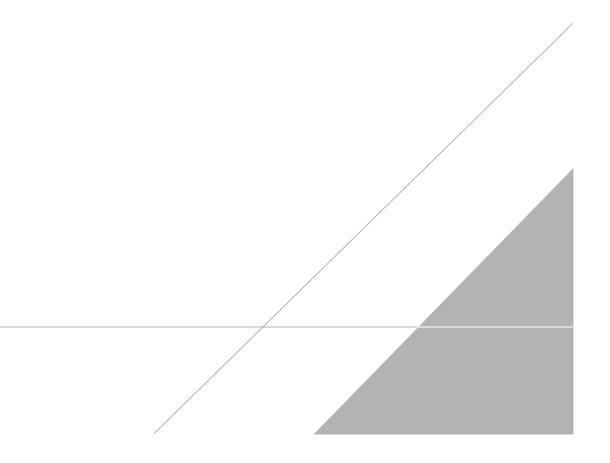
Transporter Information

Name:	IWM, Inc.
Address:	1945 Concourse Drive
	San Jose, CA 95131
Phone:	(408) 433-1990

Disposal Facility InformationName:Seaport Refining & EnvironmentalAddress:700 Seaport BlvdRedwood City, CA 94063Phone:(650) 364-1024

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William T. DeLon


William 2. Oe for

11/30/16

Authorized Representative (Print Name and Signature)

APPENDIX E

Laboratory Analytical Results and Chain-of-Custody Documentation

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-75522-2 Client Project/Site: BP #4931, Oakland

For: ARCADIS U.S., Inc. 100 Montgomery Street Suite 300 San Francisco, California 94104

Attn: Jamey Peterson

Athaema

Authorized for release by: 11/1/2016 3:01:06 PM Dimple Sharma, Senior Project Manager (925)484-1919 dimple.sharma@testamericainc.com

LINKS Review your project results through TOTOLACCESS Have a Question? Ask

The

www.testamericainc.com

Visit us at:

Expert

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

A 1
Closen
CHOSSALV
Ciccury

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-75522-2

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-75522-2

Comments

No additional comments.

Receipt

The samples were received on 10/31/2016 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client Sample ID: SB-8-5.0-5.5

Client Sample ID: SB-8-8.0-8.5

Lab Sample ID: 720-75522-10

Lab Sample ID: 720-75522-11

MS

8260B/CA_LUFT Total/NA

5

Prep Type

No Detections. Client Sample ID: SB-8-12.0-12.5 Lab Sample ID: 720-75522-12 **Result Qualifier** RL MDL Unit Dil Fac D Method 15 4.0 ug/Kg 1 Client Sample ID: SB-8-23.5-24.0 Lab Sample ID: 720-75522-13

No Detections.

Analyte

MTBE

No Detections.

This Detection Summary does not include radiochemical test results.

Date Collected: 10/31/16 09:48

Date Received: 10/31/16 15:30

Client Sample ID: SB-8-5.0-5.5

TestAmerica Job ID: 720-75522-2

Lab Sample ID: 720-75522-10 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Ethylbenzene	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Ethanol	ND		930		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
MTBE	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
TAME	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Ethyl t-butyl ether	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Toluene	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
EDB	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Xylenes, Total	ND		9.3		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
1,2-DCA	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
ТВА	ND		93		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
DIPE	ND		4.6		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Naphthalene	ND		9.3		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Gasoline Range Organics (GRO) -C6-C12	ND		230		ug/Kg		10/31/16 16:45	10/31/16 21:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		45 - 131				10/31/16 16:45	10/31/16 21:39	1
1,2-Dichloroethane-d4 (Surr)	91		60 - 140				10/31/16 16:45	10/31/16 21:39	1
Toluene-d8 (Surr)	105		58 - 140				10/31/16 16:45	10/31/16 21:39	1

Lab Sample ID: 720-75522-11 Matrix: Solid

Date Collected: 10/31/16 09:53 Date Received: 10/31/16 15:30

Client Sample ID: SB-8-8.0-8.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Ethylbenzene	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Ethanol	ND		850		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
MTBE	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
TAME	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Ethyl t-butyl ether	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Toluene	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
EDB	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Xylenes, Total	ND		8.5		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
1,2-DCA	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
ТВА	ND		85		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
DIPE	ND		4.2		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Naphthalene	ND		8.5		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Gasoline Range Organics (GRO) -C6-C12	ND		210		ug/Kg		10/31/16 16:45	10/31/16 22:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		45 - 131				10/31/16 16:45	10/31/16 22:08	1
1,2-Dichloroethane-d4 (Surr)	96		60 - 140				10/31/16 16:45	10/31/16 22:08	1
Toluene-d8 (Surr)	102		58 - 140				10/31/16 16:45	10/31/16 22:08	1

Toluene-d8 (Surr)

Client Sample ID: SB-8-12.0-12.5 Date Collected: 10/31/16 09:37 Date Received: 10/31/16 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Ethylbenzene	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Ethanol	ND		790		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
MTBE	15		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
TAME	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Ethyl t-butyl ether	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Toluene	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
EDB	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Xylenes, Total	ND		7.9		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
1,2-DCA	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
ТВА	ND		79		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
DIPE	ND		4.0		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Naphthalene	ND		7.9		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Gasoline Range Organics (GRO) -C6-C12	ND		200		ug/Kg		10/31/16 16:45	10/31/16 22:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		45 - 131				10/31/16 16:45	10/31/16 22:38	1
1,2-Dichloroethane-d4 (Surr)	94		60 - 140				10/31/16 16:45	10/31/16 22:38	1

58 - 140

102

TestAmerica Job ID: 720-75522-2

Lab Sample ID: 720-75522-12 Matrix: Solid

10/31/16 16:45 10/31/16 22:38

Client Sample ID: SB-8-23.5-24.0 Date Collected: 10/31/16 09:43 Date Received: 10/31/16 15:30

TestAmerica	Job ID:	720-75522-2

Lab Sample ID: 720-75522-13 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Ethylbenzene	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Ethanol	ND		850		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
MTBE	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
TAME	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Ethyl t-butyl ether	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Toluene	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
EDB	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Xylenes, Total	ND		8.5		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
1,2-DCA	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
ТВА	ND		85		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
DIPE	ND		4.3		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Naphthalene	ND		8.5		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Gasoline Range Organics (GRO) -C6-C12	ND		210		ug/Kg		10/31/16 16:45	10/31/16 23:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	96		45 - 131				10/31/16 16:45	10/31/16 23:08	
1,2-Dichloroethane-d4 (Surr)	94		60 - 140				10/31/16 16:45	10/31/16 23:08	1
Toluene-d8 (Surr)	99		58 - 140				10/31/16 16:45	10/31/16 23:08	-

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Matrix: Solie	d
---------------	---

			Pe	ercent Surrog
		BFB	12DCE	TOL
Lab Sample ID	Client Sample ID	(45-131)	(60-140)	(58-140)
720-75522-10	SB-8-5.0-5.5	102	91	105
720-75522-11	SB-8-8.0-8.5	101	96	102
720-75522-12	SB-8-12.0-12.5	101	94	102
720-75522-13	SB-8-23.5-24.0	96	94	99
LCS 720-212344/5	Lab Control Sample	104	86	106
LCS 720-212344/7	Lab Control Sample	106	91	107
LCSD 720-212344/6	Lab Control Sample Dup	106	87	106
LCSD 720-212344/8	Lab Control Sample Dup	106	89	106
MB 720-212344/4	Method Blank	102	91	107

Surrogate Legend

BFB = 4-Bromofluorobenzene

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

1

8

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-212344/4

Lab Sample ID: MB 720-212344 Matrix: Solid Analysis Batch: 212344	4/4				Client Sam	ple ID: Method Prep Type: To	
-	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	5.0	ug/Kg			10/31/16 19:07	1
Ethylbenzene	ND	5.0	ug/Kg			10/31/16 19:07	1
Ethanol	ND	1000	ug/Kg			10/31/16 19:07	1
MTBE	ND	5.0	ug/Kg			10/31/16 19:07	1
TAME	ND	5.0	ug/Kg			10/31/16 19:07	1
Ethyl t-butyl ether	ND	5.0	ug/Kg			10/31/16 19:07	1
Toluene	ND	5.0	ug/Kg			10/31/16 19:07	1
EDB	ND	5.0	ug/Kg			10/31/16 19:07	1
Xylenes, Total	ND	10	ug/Kg			10/31/16 19:07	1
1,2-DCA	ND	5.0	ug/Kg			10/31/16 19:07	1
ТВА	ND	100	ug/Kg			10/31/16 19:07	1
DIPE	ND	5.0	ug/Kg			10/31/16 19:07	1
Naphthalene	ND	10	ug/Kg			10/31/16 19:07	1

ND

	MB M	//B				
Surrogate	%Recovery Q	Qualifier Lii	nits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102	45	- 131		10/31/16 19:07	1
1,2-Dichloroethane-d4 (Surr)	91	60	- 140		10/31/16 19:07	1
Toluene-d8 (Surr)	107	58	- 140		10/31/16 19:07	1

250

ug/Kg

Lab Sample ID: LCS 720-212344/5 **Matrix: Solid** Analysis Batch: 212344

Gasoline Range Organics (GRO)

-C6-C12

Client Sample ID: Lab Control Sample Prep Type: Total/NA

10/31/16 19:07

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	54.4		ug/Kg		109	70 - 130
Ethylbenzene	50.0	51.7		ug/Kg		103	80 - 137
Ethanol	2000	2180		ug/Kg		109	49 - 162
m-Xylene & p-Xylene	50.0	55.0		ug/Kg		110	70 ₋ 146
MTBE	50.0	56.6		ug/Kg		113	70 ₋ 144
TAME	50.0	54.6		ug/Kg		109	70 ₋ 145
Ethyl t-butyl ether	50.0	51.5		ug/Kg		103	70 - 130
Toluene	50.0	56.6		ug/Kg		113	75 - 120
EDB	50.0	55.3		ug/Kg		111	70 ₋ 140
1,2-DCA	50.0	49.7		ug/Kg		99	70 - 130
ТВА	500	549		ug/Kg		110	63 - 130
DIPE	50.0	52.4		ug/Kg		105	70 ₋ 131
Naphthalene	50.0	57.5		ug/Kg		115	60 - 147

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		45 - 131
1,2-Dichloroethane-d4 (Surr)	86		60 - 140
Toluene-d8 (Surr)	106		58 - 140

LCS LCS

Analysis Batch: 212344

Matrix: Solid

Lab Sample ID: LCS 720-212344/7

%Rec.

Limits

64 - 120

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

8

Analyte Added Result Qualifier Unit D %Rec 1000 961 ug/Kg 96 Gasoline Range Organics (GRO) -C6-C12 LCS LCS %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 106 45 - 131 1.2-Dichloroethane-d4 (Surr) 91 60 - 140 Toluene-d8 (Surr) 107 58 - 140 Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 720-212344/6

Spike

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Solid Analysis Batch: 212344

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	54.4		ug/Kg		109	70 - 130	0	20
Ethylbenzene	50.0	52.3		ug/Kg		105	80 - 137	1	20
Ethanol	2000	2000		ug/Kg		100	49 - 162	9	20
m-Xylene & p-Xylene	50.0	55.6		ug/Kg		111	70 - 146	1	20
МТВЕ	50.0	57.6		ug/Kg		115	70 - 144	2	20
TAME	50.0	55.7		ug/Kg		111	70 - 145	2	20
Ethyl t-butyl ether	50.0	52.2		ug/Kg		104	70 - 130	1	20
Toluene	50.0	57.2		ug/Kg		114	75 - 120	1	20
EDB	50.0	56.6		ug/Kg		113	70 - 140	2	20
1,2-DCA	50.0	50.2		ug/Kg		100	70 - 130	1	20
ТВА	500	545		ug/Kg		109	63 - 130	1	20
DIPE	50.0	52.4		ug/Kg		105	70 - 131	0	20
Naphthalene	50.0	60.4		ug/Kg		121	60 - 147	5	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		45 - 131
1,2-Dichloroethane-d4 (Surr)	87		60 - 140
Toluene-d8 (Surr)	106		58 - 140

106

Lab Sample ID: LCSD 720-212344/8 **Matrix: Solid** Analysis Batch: 212344

Toluene-d8 (Surr)

,			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)			1000	991		ug/Kg		99	64 - 120	3	20
-C6-C12											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	106		45 - 131								
1,2-Dichloroethane-d4 (Surr)	89		60 - 140								

58 - 140

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

GC/MS VOA

Analysis Batch: 212344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	_
720-75522-10	SB-8-5.0-5.5	Total/NA	Solid	8260B/CA_LUFT MS	212353	
720-75522-11	SB-8-8.0-8.5	Total/NA	Solid	8260B/CA_LUFT MS	212353	
720-75522-12	SB-8-12.0-12.5	Total/NA	Solid	8260B/CA_LUFT MS	212353	
720-75522-13	SB-8-23.5-24.0	Total/NA	Solid	8260B/CA_LUFT MS	212353	
MB 720-212344/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS		
LCS 720-212344/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS		
LCS 720-212344/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS		
LCSD 720-212344/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS		
LCSD 720-212344/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS		

Prep Batch: 212353

Lab Sample I	D Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
720-75522-10	SB-8-5.0-5.5	Total/NA	Solid	5035		
720-75522-11	SB-8-8.0-8.5	Total/NA	Solid	5035		
720-75522-12	SB-8-12.0-12.5	Total/NA	Solid	5035		
720-75522-13	SB-8-23.5-24.0	Total/NA	Solid	5035		

Date Collected: 10/31/16 09:48

Client Sample ID: SB-8-5.0-5.5

Lab Sample ID: 720-75522-10 Matrix: Solid

Lab Sample ID: 720-75522-11

Lab Sample ID: 720-75522-12

Matrix: Solid

Matrix: Solid

Date Receive	Date Received: 10/31/16 15:30							
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212353	10/31/16 16:45	BSY	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212344	10/31/16 21:39	JRM	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212344	10/31/16 21:39	JRM	TAL P

Client Sample ID: SB-8-8.0-8.5 Date Collected: 10/31/16 09:53 Date Received: 10/31/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212353	10/31/16 16:45	BSY	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212344	10/31/16 22:08	JRM	TAL PLS

Client Sample ID: SB-8-12.0-12.5 Date Collected: 10/31/16 09:37 Date Received: 10/31/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212353	10/31/16 16:45	BSY	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212344	10/31/16 22:38	JRM	TAL PLS

Client Sample ID: SB-8-23.5-24.0 Date Collected: 10/31/16 09:43 Date Received: 10/31/16 15:30

Lab Sample ID: 720-75522-13 Matrix: Solid

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212353	10/31/16 16:45	BSY	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212344	10/31/16 23:08	JRM	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Page 15 of 19

Certification Summary TestAmerica Job ID: 720-75522-2

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-18

Laboratory

TAL PLS

Protocol

SW846

5
8
9
12
13

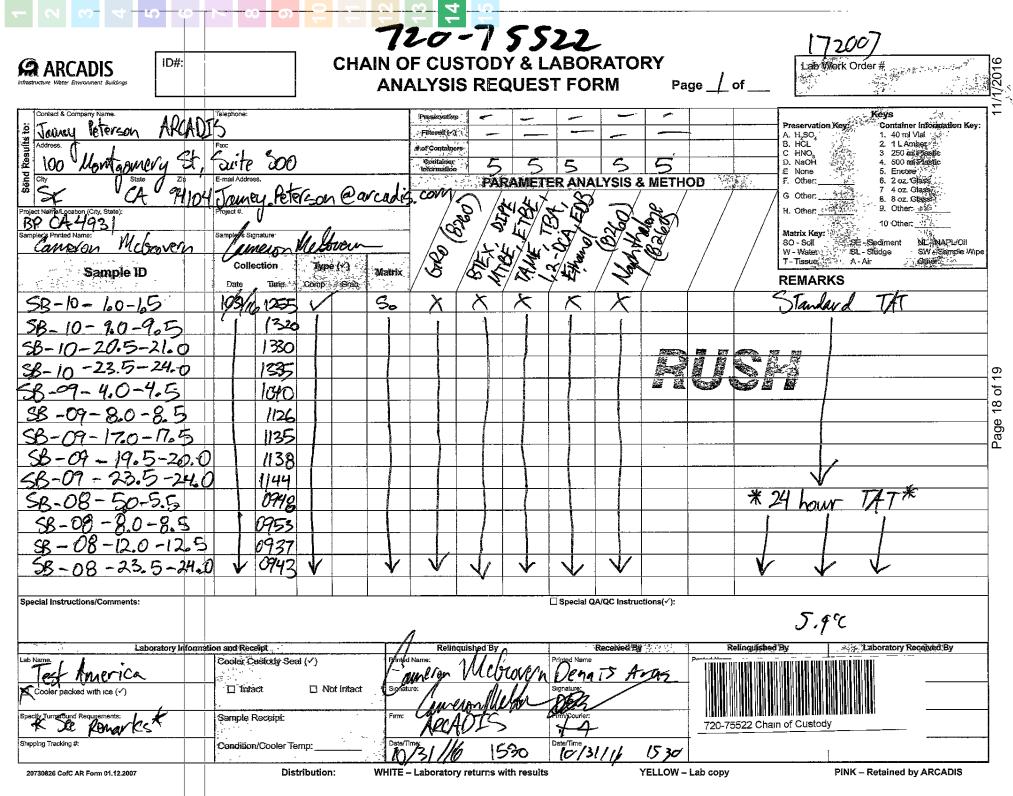
 Method
 Method Description

 8260B/CA_LUFTM
 8260B / CA LUFT MS

S

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.


Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Lab Sample ID	Client Sample ID	Matrix	Collected Received
720-75522-10	SB-8-5.0-5.5	Solid	10/31/16 09:48 10/31/16 15:30
720-75522-11	SB-8-8.0-8.5	Solid	10/31/16 09:53 10/31/16 15:30
720-75522-12	SB-8-12.0-12.5	Solid	10/31/16 09:37 10/31/16 15:30
720-75522-13	SB-8-23.5-24.0	Solid	10/31/16 09:43 10/31/16 15:30

Client: ARCADIS U.S., Inc.

Login Number: 75522 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-75522-2

List Source: TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-75522-1 Client Project/Site: BP #4931, Oakland

For: ARCADIS U.S., Inc. 100 Montgomery Street Suite 300 San Francisco, California 94104

Attn: Jamey Peterson

Athaema

Authorized for release by: 11/8/2016 2:48:29 PM Dimple Sharma, Senior Project Manager (925)484-1919

dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	16
QC Sample Results	18
QC Association Summary	28
Lab Chronicle	30
Certification Summary	32
Method Summary	33
Sample Summary	34
Chain of Custody	35
Receipt Checklists	37

3

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.

Glossarv

Quaimer	Quaimer Description	
*	LCS or LCSD is outside acceptance limits.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	13
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 720-75522-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-75522-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 10/31/2016 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.9° C.

GC/MS VOA

Method 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 720-212509 recovered outside control limits for the following analytes: Ethanol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: SB-10-1.0-1.5

No Detections.

lient Sample ID: SB-10-9.0-9	9.5					Lab Sample ID: 720-75522-			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO) -C6-C12	4500		190		ug/Kg	1	_	8260B/CA_LUFT MS	Total/NA
lient Sample ID: SB-10-20.5	-21.0					La	ab	Sample ID: 7	20-75522
lient Sample ID: SB-10-20.5		Qualifier	RL	MDL	Unit	La Dil Fac		Sample ID: 7	20-75522
		Qualifier	RL 3600	MDL	Unit ug/Kg		D		

Client Sample ID: SB-10-23.5-24.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO) -C6-C12	440		190		ug/Kg	1		8260B/CA_LUFT MS	Total/NA

Client Sample ID: SB-9-4.0-4.5

No Detections.

Client Sample ID: SB-9-8.0-8.5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Gasoline Range Organics (GRO)	87000	23000	ug/Kg	100	8260B/CA_LUFT	Total/NA
-C6-C12					MS	

Client Sample ID: SB-9-17.0-17.5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	410		390		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	1700		390		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	2400		770		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Naphthalene	930		770		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C6-C12	84000		19000		ug/Kg	100		8260B/CA_LUFT MS	Total/NA

Client Sample ID: SB-9-19.5-20.0

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Ethylbenzene	1700	380	ug/Kg	100	8260B/CA_LUFT	Total/NA
					MS	
Xylenes, Total	7200	760	ug/Kg	100	8260B/CA_LUFT	Total/NA
					MS	
Naphthalene	1400	760	ug/Kg	100	8260B/CA_LUFT	Total/NA
					MS	

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-75522-1

Lab Sample ID: 720-75522-5

Lab Sample ID: 720-75522-6

Lab Sample ID: 720-75522-7

TestAmerica Pleasanton

Lab Sample ID: 720-75522-8

Detection Summary

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO) -C6-C12	140000	·	19000		ug/Kg	100		8260B/CA_LUFT MS	Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

RL

3.6

3.6

710

3.6

3.6

3.6

3.6

3.6

7.1

3.6

71

3.6

7.1

180

Result Qualifier

ND

Client Sample ID: SB-10-1.0-1.5

Analyte

Benzene

Ethanol

MTBE

TAME

Toluene

1,2-DCA

EDB

TBA

DIPE

Ethylbenzene

Ethyl t-butyl ether

Xylenes, Total

Naphthalene

-C6-C12

Gasoline Range Organics (GRO)

Client Sample ID: SB-10-1.0-1.5	Lab Sample ID: 720-75522-1
Date Collected: 10/31/16 12:55	Matrix: Solid
Date Received: 10/31/16 15:30	
Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS	

D

Prepared

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43 10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

MDL Unit

ug/Kg

Matri	x: Solid	
Analyzed	Dil Fac	5
11/02/16 15:57	1	
11/02/16 15:57	1	6
11/02/16 15:57	1	
11/02/16 15:57	1	
11/02/16 15:57	1	
11/02/16 15:57	1	8
11/02/16 15:57	1	
11/02/16 15:57	1	9
11/02/16 15:57	1	
11/02/16 15:57	1	
11/02/16 15:57	1	
11/02/16 15:57	1	
11/02/16 15:57	1	
11/02/16 15:57	1	
Analyzed	Dil Fac	13

TestAmerica Job ID: 720-75522-1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	96		45 - 131	10/31/16 18:43	11/02/16 15:57	1	
1,2-Dichloroethane-d4 (Surr)	103		60 - 140	10/31/16 18:43	11/02/16 15:57	1	
Toluene-d8 (Surr)	100		58 - 140	10/31/16 18:43	11/02/16 15:57	1	

Result Qualifier

Client Sample ID: SB-10-9.0-9.5

Analyte

Client Sample ID: SB-10-9.0-9.5	Lab Sample ID: 720-75522-2
Date Collected: 10/31/16 13:20	Matrix: Solid
Date Received: 10/31/16 15:30	
Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS	

D

Prepared

MDL Unit

TestAmerica Job ID: 720-75522-1

-				-	-	
Benzene	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Ethylbenzene	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Ethanol	ND	760	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
МТВЕ	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
TAME	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Ethyl t-butyl ether	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Toluene	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
EDB	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Xylenes, Total	ND	7.6	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
1,2-DCA	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
ТВА	ND	76	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
DIPE	ND	3.8	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Naphthalene	ND	7.6	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
Gasoline Range Organics (GRO)	4500	190	ug/Kg	10/31/16 18:43	11/01/16 05:35	1
-C6-C12						
Surrogate	%Recovery	Qualifier Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106	45 - 131		10/31/16 18:43	11/01/16 05:35	1
	100	00 110		10/01/10 10 10	11/01/10 05 05	

RL

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106	45 - 131	10/31/16 18:43	11/01/16 05:35	1
1,2-Dichloroethane-d4 (Surr)	106	60 - 140	10/31/16 18:43	11/01/16 05:35	1
Toluene-d8 (Surr)	106	58 - 140	10/31/16 18:43	11/01/16 05:35	1

Client Sample ID: SB-10-20.5-21.0

Date Collected: 10/31/16 13:30 Date Received: 10/31/16 15:30

1,2-DCA

Xylenes, Total

Naphthalene

Gasoline Range Organics (GRO)

TBA

DIPE

Analyte	Result	Qualifier F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
Ethylbenzene	11000	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
Ethanol	ND	3600	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
МТВЕ	ND	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
TAME	ND	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
Ethyl t-butyl ether	ND	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
Toluene	ND	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000
EDB	ND	36	0	ug/Kg		10/31/16 18:43	11/01/16 13:35	1000

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

7200

3600

7200

3600

7200

180000

-C6-C12					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed
4-Bromofluorobenzene	100		66 - 148	10/31/16 18:43	11/01/16 13:35
1,2-Dichloroethane-d4 (Surr)	93		62 - 137	10/31/16 18:43	11/01/16 13:35
Toluene-d8 (Surr)	98		65 - 141	10/31/16 18:43	11/01/16 13:35

ND

ND

ND

ND

ND

990000

11/01/16 13:35

11/01/16 13:35

11/01/16 13:35

11/01/16 13:35

11/01/16 13:35

11/01/16 13:35

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

TestAmerica Job ID: 720-75522-1

Matrix: Solid

1000

1000

1000

1000

1000

1000

Dil Fac

1000

1000 1000

Client Sample ID: SB-10-23.5-24.0

Date Collected: 10/31/16 13:35 Date Received: 10/31/16 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Ethylbenzene	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Ethanol	ND		770		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
MTBE	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
TAME	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Ethyl t-butyl ether	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Toluene	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
EDB	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Xylenes, Total	ND		7.7		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
1,2-DCA	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
ТВА	ND		77		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
DIPE	ND		3.9		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Naphthalene	ND		7.7		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Gasoline Range Organics (GRO) -C6-C12	440		190		ug/Kg		10/31/16 18:43	11/02/16 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	110		45 - 131	10/31/16 18:43	11/02/16 16:27	1	
1,2-Dichloroethane-d4 (Surr)	104		60 - 140	10/31/16 18:43	11/02/16 16:27	1	
Toluene-d8 (Surr)	106		58 - 140	10/31/16 18:43	11/02/16 16:27	1	
—							

Lab Sample ID: 720-75522-4

Matrix: Solid

RL

4.0

4.0

790

4.0

4.0

4.0

4.0

4.0

7.9

4.0

79

4.0

7.9

200

Limits

45 - 131

60 - 140

58 - 140

MDL Unit

ug/Kg

D

Prepared

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

Prepared

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

Client Sample ID: SB-9-4.0-4.5

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Result Qualifier

ND

98

102

104

Qualifier

%Recovery

Date Collected: 10/31/16 10:40 Date Received: 10/31/16 15:30

Analyte

Benzene

Ethanol

MTBE

TAME

Toluene

1,2-DCA

EDB

TBA

DIPE

Ethylbenzene

Ethyl t-butyl ether

Xylenes, Total

Naphthalene

-C6-C12

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Gasoline Range Organics (GRO)

TestAmerica	Job ID:	720-7552	22-1

Lab Sample ID: 720-75522-5 Matrix: Solid

Analyzed

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

Analyzed

11/02/16 16:57

11/02/16 16:57

11/02/16 16:57

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

8
9

Client Sample ID: SB-9-8.0-8.5

Date Collected: 10/31/16 11:26 Date Received: 10/31/16 15:30

Toluene-d8 (Surr)

10/31/16 18:40

11/03/16 21:56

100

Lab Sample ID:	720-75522-6
	Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
Ethylbenzene	ND		450		ug/Kg		10/31/16 18:40	11/03/16 21:56	100
Ethanol	ND		840		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
MTBE	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
TAME	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
Ethyl t-butyl ether	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
Toluene	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
EDB	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
Xylenes, Total	ND		900		ug/Kg		10/31/16 18:40	11/03/16 21:56	100
1,2-DCA	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
ТВА	ND		84		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
DIPE	ND		4.2		ug/Kg		10/31/16 18:43	11/02/16 00:32	1
Naphthalene	ND		900		ug/Kg		10/31/16 18:40	11/03/16 21:56	100
Gasoline Range Organics (GRO) -C6-C12	87000		23000		ug/Kg		10/31/16 18:40	11/03/16 21:56	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111		45 - 131				10/31/16 18:43	11/02/16 00:32	1
4-Bromofluorobenzene	107		66 - 148				10/31/16 18:40	11/03/16 21:56	100
1,2-Dichloroethane-d4 (Surr)	93		60 - 140				10/31/16 18:43	11/02/16 00:32	1
1,2-Dichloroethane-d4 (Surr)	88		62 - 137				10/31/16 18:40	11/03/16 21:56	100
Toluene-d8 (Surr)	104		58 _ 140				10/31/16 18:43	11/02/16 00:32	1

65 - 141

107

11/8/2016

Client Sample ID: SB-9-17.0-17.5

Date Collected: 10/31/16 11:35 Date Received: 10/31/16 15:30

Lab Sample ID: 720-75522-7 Matrix: Solid

TestAmerica Job ID: 720-75522-1

Method: 8260B/CA_LUFTMS - 82	260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	410		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Ethylbenzene	1700		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Ethanol	ND	*	39000		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
МТВЕ	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
TAME	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Ethyl t-butyl ether	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Toluene	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
EDB	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Xylenes, Total	2400		770		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
1,2-DCA	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
ТВА	ND		770		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
DIPE	ND		390		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Naphthalene	930		770		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Gasoline Range Organics (GRO) -C6-C12	84000		19000		ug/Kg		10/31/16 18:40	11/03/16 22:25	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106		66 - 148				10/31/16 18:40	11/03/16 22:25	100

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	106	66 - 148	10/31/16 18:40	11/03/16 22:25	100	2
1,2-Dichloroethane-d4 (Surr)	92	62 - 137	10/31/16 18:40	11/03/16 22:25	100	
Toluene-d8 (Surr)	107	65 - 141	10/31/16 18:40	11/03/16 22:25	100	

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Client Sample ID: SB-9-19.5-20.0

Date Collected: 10/31/16 11:38 Date Received: 10/31/16 15:30

Toluene-d8 (Surr)

Lab Sample ID: 720-75522-8
Matrix: Solid

Method: 8260B/CA_LUFTMS - 82					11	_	Durana	American	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Ethylbenzene	1700		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Ethanol	ND	*	38000		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
MTBE	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
TAME	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Ethyl t-butyl ether	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Toluene	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
EDB	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Xylenes, Total	7200		760		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
1,2-DCA	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
ТВА	ND		760		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
DIPE	ND		380		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Naphthalene	1400		760		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Gasoline Range Organics (GRO) -C6-C12	140000		19000		ug/Kg		10/31/16 18:40	11/03/16 22:55	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		66 - 148				10/31/16 18:40	11/03/16 22:55	100
1,2-Dichloroethane-d4 (Surr)	89		62 - 137				10/31/16 18:40	11/03/16 22:55	100

65 - 141

107

100

10/31/16 18:40 11/03/16 22:55

3.6

3.6

720

3.6

3.6

3.6

3.6

3.6

7.2

3.6

72

3.6

7.2

180

ND

Client Sample ID: SB-9-23.5-24.0

Benzene

Ethanol

MTBE

TAME

Toluene

1,2-DCA

EDB

TBA

DIPE

Ethylbenzene

Ethyl t-butyl ether

Xylenes, Total

Naphthalene

-C6-C12

Gasoline Range Organics (GRO)

Date Collected: 10/31/16 11:4	44					Mati	rix: Solid
Date Received: 10/31/16 15:3	30						
Method: 8260B/CA LUFTM	S - 8260B / CA LUFT MS						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

ug/Kg

Analyzed	Dil Fac	Ī
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	Ē
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	-
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	
11/01/16 23:02	1	

TestAmerica Job ID: 720-75522-1

Lab Sample ID: 720-75522-9

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

10/31/16 18:43

Surrogate	%Recovery	Qualifier	Limits	Prepared	i Ai	nalyzed	Dil Fac	
4-Bromofluorobenzene	99		45 - 131	10/31/16 18	:43 11/0	1/16 23:02	1	
1,2-Dichloroethane-d4 (Surr)	101		60 - 140	10/31/16 18	:43 11/0	1/16 23:02	1	
Toluene-d8 (Surr)	102		58 - 140	10/31/16 18	:43 11/0	1/16 23:02	1	

Matrix: Solid

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Prep Type: Total/NA

				Percent Surro	gate Recovery (Acceptance Limits)
		BFB	12DCE	TOL	
Lab Sample ID	Client Sample ID	(45-131)	(60-140)	(58-140)	
720-75522-1	SB-10-1.0-1.5	96	103	100	
720-75522-2	SB-10-9.0-9.5	106	106	106	
720-75522-4	SB-10-23.5-24.0	110	104	106	
720-75522-5	SB-9-4.0-4.5	98	102	104	
720-75522-6	SB-9-8.0-8.5	111	93	104	
720-75522-9	SB-9-23.5-24.0	99	101	102	
LCS 720-212344/5	Lab Control Sample	104	86	106	
LCS 720-212344/7	Lab Control Sample	106	91	107	
LCS 720-212411/6	Lab Control Sample	109	96	106	
LCS 720-212411/8	Lab Control Sample	106	97	107	
LCS 720-212422/5	Lab Control Sample	104	88	107	
LCS 720-212422/7	Lab Control Sample	105	89	107	
LCSD 720-212344/6	Lab Control Sample Dup	106	87	106	
LCSD 720-212344/8	Lab Control Sample Dup	106	89	106	
LCSD 720-212411/7	Lab Control Sample Dup	107	95	106	
LCSD 720-212411/9	Lab Control Sample Dup	107	97	107	
LCSD 720-212422/6	Lab Control Sample Dup	107	89	107	
LCSD 720-212422/8	Lab Control Sample Dup	105	91	107	
MB 720-212344/4	Method Blank	102	91	107	
MB 720-212411/5	Method Blank	100	101	101	
MB 720-212422/4	Method Blank	105	87	107	

Surrogate Legend

BFB = 4-Bromofluorobenzene

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Matrix: Solid

				Percent Surr
		BFB	12DCE	TOL
Lab Sample ID	Client Sample ID	(66-148)	(62-137)	(65-141)
720-75522-3	SB-10-20.5-21.0	100	93	98
720-75522-6	SB-9-8.0-8.5	107	88	107
720-75522-7	SB-9-17.0-17.5	106	92	107
720-75522-8	SB-9-19.5-20.0	109	89	107
LCS 720-212355/5	Lab Control Sample	98	91	97
LCS 720-212355/7	Lab Control Sample	99	94	97
LCS 720-212509/5	Lab Control Sample	104	96	107
LCS 720-212509/7	Lab Control Sample	103	96	107
LCSD 720-212355/6	Lab Control Sample Dup	97	91	97
LCSD 720-212355/8	Lab Control Sample Dup	99	95	97
LCSD 720-212509/6	Lab Control Sample Dup	109	94	107
LCSD 720-212509/8	Lab Control Sample Dup	104	91	106
MB 720-212355/4	Method Blank	96	90	96
	Method Blank	100	99	108

BFB = 4-Bromofluorobenzene

Prep Type: Total/NA

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

> 12DCE = 1,2-Dichloroethane-d4 (Surr) TOL = Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-212344/4

Matrix: Solid Analysis Batch: 212344

Analysis Baton. 212044									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0		ug/Kg			10/31/16 19:07	1
Ethylbenzene	ND		5.0		ug/Kg			10/31/16 19:07	1
Ethanol	ND		1000		ug/Kg			10/31/16 19:07	1
MTBE	ND		5.0		ug/Kg			10/31/16 19:07	1
TAME	ND		5.0		ug/Kg			10/31/16 19:07	1
Ethyl t-butyl ether	ND		5.0		ug/Kg			10/31/16 19:07	1
Toluene	ND		5.0		ug/Kg			10/31/16 19:07	1
EDB	ND		5.0		ug/Kg			10/31/16 19:07	1
Xylenes, Total	ND		10		ug/Kg			10/31/16 19:07	1
1,2-DCA	ND		5.0		ug/Kg			10/31/16 19:07	1
ТВА	ND		100		ug/Kg			10/31/16 19:07	1
DIPE	ND		5.0		ug/Kg			10/31/16 19:07	1
Naphthalene	ND		10		ug/Kg			10/31/16 19:07	1
Gasoline Range Organics (GRO)	ND		250		ug/Kg			10/31/16 19:07	1
-C6-C12									

	MB MB					-
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	102	45 - 131		10/31/16 19:07	1	
1,2-Dichloroethane-d4 (Surr)	91	60 - 140		10/31/16 19:07	1	
Toluene-d8 (Surr)	107	58 - 140		10/31/16 19:07	1	

Lab Sample ID: LCS 720-212344/5 Matrix: Solid

Analysis Batch: 212344 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Benzene 50.0 54.4 ug/Kg 109 70 - 130 Ethylbenzene 50.0 51.7 ug/Kg 103 80 - 137 2000 Ethanol 2180 ug/Kg 109 49 - 162 50.0 m-Xylene & p-Xylene 55.0 ug/Kg 110 70 - 146 MTBE 50.0 56.6 70 - 144 ug/Kg 113 TAME 50.0 70 - 145 54.6 ug/Kg 109 Ethyl t-butyl ether 50.0 51.5 ug/Kg 103 70 - 130 Toluene 50.0 56.6 ug/Kg 113 75 - 120 EDB 50.0 55.3 ug/Kg 111 70 _ 140 1,2-DCA 50.0 49.7 99 70 - 130 ug/Kg ТВА 500 549 110 63 - 130 ug/Kg DIPE 50.0 52.4 ug/Kg 105 70 - 131 50.0 Naphthalene 57.5 ug/Kg 115 60 - 147

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		45 _ 131
1,2-Dichloroethane-d4 (Surr)	86		60 - 140
Toluene-d8 (Surr)	106		58 - 140

TestAmerica Pleasanton

Page 18 of 37

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

8

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

_											
Lab Sample ID: LCS 720-212	344/7						Client	Sample	ID: Lab C	ontrol Sa	ample
Matrix: Solid									Prep T	ype: Tot	al/N/
Analysis Batch: 212344											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)			1000	961		ug/Kg		96	64 - 120		
-C6-C12											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	106		45 - 131								
1,2-Dichloroethane-d4 (Surr)	91		60 - 140								
Toluene-d8 (Surr)	107		58 - 140								
Lab Sample ID: LCSD 720-21	2344/6					Clie	nt Sam	ple ID:	Lab Contro	I Sample	e Dur
Matrix: Solid								· · · ·		ype: Tot	
Analysis Batch: 212344											
-			Spike	LCSD	LCSD				%Rec.		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			50.0	54.4		ug/Kg		109	70 - 130	0	2
Ethylbenzene			50.0	52.3		ug/Kg		105	80 - 137	1	20
Ethanol			2000	2000		ug/Kg		100	49 - 162	9	20
m-Xylene & p-Xylene			50.0	55.6		ug/Kg		111	70 - 146	1	20
MTBE			50.0	57.6		ug/Kg		115	70 - 144	2	20
TAME			50.0	55.7		ug/Kg		111	70 - 145	2	20
Ethyl t-butyl ether			50.0	52.2		ug/Kg		104	70 ₋ 130	1	20
Toluene			50.0	57.2		ug/Kg		114	75 - 120	1	2
EDB			50.0	56.6		ug/Kg		113	70 - 140	2	20
1,2-DCA			50.0	50.2		ug/Kg		100	70 ₋ 130	1	20
ТВА			500	545		ug/Kg		109	63 - 130	1	20
DIPE			50.0	52.4		ug/Kg		105	70 - 131	0	20
Naphthalene			50.0	60.4		ug/Kg		121	60 - 147	5	20
	1050	LCSD									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene		Quanner	45 - 131								
1,2-Dichloroethane-d4 (Surr)	87		60 - 140								
Toluene-d8 (Surr)	106		58 - 140								
	100		JU - 140								
Lab Sample ID: LCSD 720-21	2344/8					Clie	nt Sam		Lab Contro	l Sampl	
Matrix: Solid										ype: Tot	
Analysis Batch: 212344										,	
			Spike	LCSD	LCSD				%Rec.		RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)			1000	991		ug/Kg		99	64 - 120	3	20
-C6-C12				001		-9-19				÷	_`

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		45 _ 131
1,2-Dichloroethane-d4 (Surr)	89		60 _ 140
Toluene-d8 (Surr)	106		58 - 140

Client Sample ID: Method Blank Prep Type: Total/NA

8

Lab Sample ID: MB 720-212355/4

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Solid Analysis Batch: 212355

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		500		ug/Kg			11/01/16 08:49	100
Ethylbenzene	ND		500		ug/Kg			11/01/16 08:49	100
Ethanol	ND		50000		ug/Kg			11/01/16 08:49	100
MTBE	ND		500		ug/Kg			11/01/16 08:49	100
TAME	ND		500		ug/Kg			11/01/16 08:49	100
Ethyl t-butyl ether	ND		500		ug/Kg			11/01/16 08:49	100
Toluene	ND		500		ug/Kg			11/01/16 08:49	100
EDB	ND		500		ug/Kg			11/01/16 08:49	100
Xylenes, Total	ND		1000		ug/Kg			11/01/16 08:49	100
1,2-DCA	ND		500		ug/Kg			11/01/16 08:49	100
ТВА	ND		1000		ug/Kg			11/01/16 08:49	100
DIPE	ND		500		ug/Kg			11/01/16 08:49	100
Naphthalene	ND		1000		ug/Kg			11/01/16 08:49	100
Gasoline Range Organics (GRO) -C6-C12	ND		25000		ug/Kg			11/01/16 08:49	100

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		66 - 148		11/01/16 08:49	100
1,2-Dichloroethane-d4 (Surr)	90		62 - 137		11/01/16 08:49	100
Toluene-d8 (Surr)	96		65 - 141		11/01/16 08:49	100

Lab Sample ID: LCS 720-212355/5 Matrix: Solid Analysis Batch: 212355

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	5000	5380		ug/Kg		108	76 - 122	
Ethylbenzene	5000	5080		ug/Kg		102	76 - 137	
Ethanol	200000	192000		ug/Kg		96	70 - 130	
m-Xylene & p-Xylene	5000	5160		ug/Kg		103	71 ₋ 142	
MTBE	5000	5540		ug/Kg		111	71 - 146	
TAME	5000	5390		ug/Kg		108	70 ₋ 130	
Ethyl t-butyl ether	5000	4870		ug/Kg		97	70 - 130	
Toluene	5000	4990		ug/Kg		100	77 - 120	
EDB	5000	5910		ug/Kg		118	70 - 138	
1,2-DCA	5000	5060		ug/Kg		101	67 - 126	
ТВА	50000	51400		ug/Kg		103	70 ₋ 130	
DIPE	5000	4460		ug/Kg		89	70 - 130	
Naphthalene	5000	5070		ug/Kg		101	62 - 151	

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	98	66 - 148
1,2-Dichloroethane-d4 (Surr)	91	62 - 137
Toluene-d8 (Surr)	97	65 - 141

Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Solid									Fieh I	ype: To	
Analysis Batch: 212355			Spike	LCS	LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO) -C6-C12			100000	98100		ug/Kg		98	61 - 120		
00012											
		LCS									
Surrogate 4-Bromofluorobenzene	% Recovery 	Qualifier	Limits 66 - 148								
1.2-Dichloroethane-d4 (Surr)			62 - 137								
Toluene-d8 (Surr)	94 97		62 - 137 65 - 141								
Lab Sample ID: LCSD 720-21	2355/6					Clie	nt Sam	nnle ID:	Lab Contro	l Sampl	e Dun
Matrix: Solid						one	Juli			ype: To	
Analysis Batch: 212355										,	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			5000	5410		ug/Kg		108	76 - 122	0	20
Ethylbenzene			5000	5080		ug/Kg		102	76 - 137	0	20
Ethanol			200000	190000		ug/Kg		95	70 - 130	1	20
m-Xylene & p-Xylene			5000	5150		ug/Kg		103	71 - 142	0	20
MTBE			5000	5540		ug/Kg		111	71 - 146	0	20
TAME			5000	5340		ug/Kg		107	70 - 130	1	20
Ethyl t-butyl ether			5000	4840		ug/Kg		97	70 - 130	1	20
Toluene			5000	5010		ug/Kg		100	77 - 120	1	20
EDB			5000	5880		ug/Kg		118	70 - 138	0	20
1,2-DCA			5000	5090		ug/Kg		102	67 _ 126	1	20
ТВА			50000	50500		ug/Kg		101	70 - 130	2	20
DIPE			5000	4430		ug/Kg		89	70 - 130	1	20
Naphthalene			5000	5360		ug/Kg		107	62 - 151	6	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	97		66 - 148								
1,2-Dichloroethane-d4 (Surr)	91		62 - 137								
Toluene-d8 (Surr)	97		65 - 141								
Lab Sample ID: LCSD 720-21	2355/8					Clie	nt Sam	nple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 212355											
			Spike		LCSD		_		%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO) -C6-C12			100000	99900		ug/Kg		100	61 - 120	2	20
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	99		66 - 148								
1,2-Dichloroethane-d4 (Surr)	95		62 - 137								
			0- 444								

65 - 141

97

RL

5.0

5.0

5.0

5.0

5.0

5.0

5.0

10

5.0

100

5.0

10

250

1000

MDL Unit

ug/Kg

D

Prepared

Lab Sample ID: MB 720-212411/5

Analysis Batch: 212411

Matrix: Solid

Analyte

Benzene

Ethanol

MTBE

TAME

Toluene

1,2-DCA

EDB

TBA

DIPE

Ethylbenzene

Ethyl t-butyl ether

Xylenes, Total

Naphthalene

-C6-C12

EDB

TBA

DIPE

Gasoline Range Organics (GRO)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

MB MB Result Qualifier

ND

Client Sample ID: Method Blank

Analyzed

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

11/01/16 19:34

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

	MB	МВ						2
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	100		45 - 131	-		11/01/16 19:34	1	
1,2-Dichloroethane-d4 (Surr)	101		60 - 140			11/01/16 19:34	1	
Toluene-d8 (Surr)	101		58 - 140			11/01/16 19:34	1	

Lab Sample ID: LCS 720-212411/6 Matrix: Solid

Analysis Batch: 212411 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Benzene 50.0 53.7 ug/Kg 107 70 - 130 Ethylbenzene 50.0 53.9 ug/Kg 108 80 - 137 Ethanol 2000 2450 ug/Kg 122 49 - 162 m-Xylene & p-Xylene 50.0 57.3 ug/Kg 115 70 - 146 MTBE 50.0 56.5 ug/Kg 113 70 - 144 TAME 50.0 55.0 ug/Kg 110 70 - 145 70 - 130 Ethyl t-butyl ether 50.0 52.8 ug/Kg 106 Toluene 50.0 56.3 ug/Kg 113 75 - 120 50.0 57.7 ug/Kg 115 70 - 140 1,2-DCA 50.0 56.5 113 70 - 130 ug/Kg 572 500 114 63 - 130 ug/Kg 50.0 52.4 ug/Kg 105 70 - 131 Naphthalene 50.0 57.7 ug/Kg 115 60 - 147 100

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	109		45 - 131
1,2-Dichloroethane-d4 (Surr)	96		60 - 140
Toluene-d8 (Surr)	106		58 - 140

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-212 Matrix: Solid									ID: Lab Co Prep T	ype: Tot	
Analysis Batch: 212411										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·····,····			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)			1000	1030		ug/Kg		103	64 - 120		
-C6-C12											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	106		45 _ 131								
1,2-Dichloroethane-d4 (Surr)	97		60 - 140								
Toluene-d8 (Surr)	107		58 _ 140								
Lab Sample ID: LCSD 720-21	2/11/7					Clie	nt Sam	nle ID: I	Lab Contro	d Sampl	0 Du
Matrix: Solid	24107					Olle	int Gain	ipie ib.		ype: Tot	
Analysis Batch: 212411									i i cp i	ypc. 100	
			Spike	LCSD	LCSD				%Rec.		RF
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Benzene			50.0	54.0		ug/Kg		108	70 - 130	0	
Ethylbenzene			50.0	53.7		ug/Kg		107	80 - 137	0	:
Ethanol			2000	2280		ug/Kg		114	49 - 162	7	:
n-Xylene & p-Xylene			50.0	57.1		ug/Kg		114	70 - 146	0	
МТВЕ			50.0	57.1		ug/Kg		114	70 - 144	1	:
ГАМЕ			50.0	54.8		ug/Kg		110	70 - 145	0	
Ethyl t-butyl ether			50.0	52.8		ug/Kg		106	70 - 130	0	
Toluene			50.0	56.8		ug/Kg		114	75 - 120	1	
EDB			50.0	56.5		ug/Kg		113	70 - 140	2	:
1,2-DCA			50.0	55.1		ug/Kg		110	70 - 130	2	
ТВА			500	564		ug/Kg		113	63 - 130	1	:
DIPE			50.0	52.7		ug/Kg		105	70 - 131	1	1
Naphthalene			50.0	57.3		ug/Kg		115	60 - 147	1	
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	107		45 - 131								
1,2-Dichloroethane-d4 (Surr)	95		60 - 140								
Toluene-d8 (Surr)	106		58 - 140								
Lab Sample ID: LCSD 720-21	2411/9					Clie	nt Sam	nple ID: I	Lab Contro	I Sampl	e Du
Matrix: Solid										ype: Tot	
Analysis Batch: 212411										,	

		S ріке	LUSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO) -C6-C12		1000	1030		ug/Kg		103	64 - 120	0	20
	LCSD LCSD									

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		45 _ 131
1,2-Dichloroethane-d4 (Surr)	97		60 - 140
Toluene-d8 (Surr)	107		58 - 140

Lab Sample ID: MB 720-212422/4

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

2 3 4 5

8

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid
Analysis Batch: 212422

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0		ug/Kg			11/02/16 08:30	1
Ethylbenzene	ND		5.0		ug/Kg			11/02/16 08:30	1
Ethanol	ND		1000		ug/Kg			11/02/16 08:30	1
MTBE	ND		5.0		ug/Kg			11/02/16 08:30	1
TAME	ND		5.0		ug/Kg			11/02/16 08:30	1
Ethyl t-butyl ether	ND		5.0		ug/Kg			11/02/16 08:30	1
Toluene	ND		5.0		ug/Kg			11/02/16 08:30	1
EDB	ND		5.0		ug/Kg			11/02/16 08:30	1
Xylenes, Total	ND		10		ug/Kg			11/02/16 08:30	1
1,2-DCA	ND		5.0		ug/Kg			11/02/16 08:30	1
ТВА	ND		100		ug/Kg			11/02/16 08:30	1
DIPE	ND		5.0		ug/Kg			11/02/16 08:30	1
Naphthalene	ND		10		ug/Kg			11/02/16 08:30	1
Gasoline Range Organics (GRO) -C6-C12	ND		250		ug/Kg			11/02/16 08:30	1

	MB	MB					2
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	105		45 - 131		11/02/16 08:30	1	
1,2-Dichloroethane-d4 (Surr)	87		60 - 140		11/02/16 08:30	1	
Toluene-d8 (Surr)	107		58 - 140		11/02/16 08:30	1	

Lab Sample ID: LCS 720-212422/5 Matrix: Solid Analysis Batch: 212422

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene		51.7		ug/Kg		103	70 - 130
Ethylbenzene	50.0	48.6		ug/Kg		97	80 - 137
Ethanol	2000	1840		ug/Kg		92	49 - 162
m-Xylene & p-Xylene	50.0	51.8		ug/Kg		104	70 ₋ 146
МТВЕ	50.0	55.6		ug/Kg		111	70 - 144
TAME	50.0	53.8		ug/Kg		108	70 ₋ 145
Ethyl t-butyl ether	50.0	49.8		ug/Kg		100	70 _ 130
Toluene	50.0	52.2		ug/Kg		104	75 - 120
EDB	50.0	53.3		ug/Kg		107	70 - 140
1,2-DCA	50.0	47.8		ug/Kg		96	70 - 130
ТВА	500	514		ug/Kg		103	63 - 130
DIPE	50.0	47.8		ug/Kg		96	70 ₋ 131
Naphthalene	50.0	54.9		ug/Kg		110	60 - 147
L	CS LCS						

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		45 - 131
1,2-Dichloroethane-d4 (Surr)	88		60 - 140
Toluene-d8 (Surr)	107		58 _ 140

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-2124	422/7						Client	Sample	D: Lab Co		
Matrix: Solid									Prep T	ype: Tot	al/N/
Analysis Batch: 212422									~ -		
A			Spike		LCS	11 14		0/ D	%Rec.		
Analyte	- <u> </u>		Added		Qualifier		D	%Rec	Limits		
Gasoline Range Organics (GRO) -C6-C12			1000	954		ug/Kg		95	64 - 120		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	105		45 _ 131								
1,2-Dichloroethane-d4 (Surr)	89		60 - 140								
Toluene-d8 (Surr)	107		58 - 140								
Lab Sample ID: LCSD 720-21	2422/6					Clie	nt Sam	ple ID:	Lab Contro	ol Sample	e Du
Matrix: Solid									Prep T	ype: Tot	al/N
Analysis Batch: 212422											
			Spike		LCSD				%Rec.		RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene			50.0	51.6		ug/Kg		103	70 - 130	0	2
Ethylbenzene			50.0	49.9		ug/Kg		100	80 - 137	3	:
Ethanol			2000	1720		ug/Kg		86	49 - 162	7	2
m-Xylene & p-Xylene			50.0	53.4		ug/Kg		107	70 - 146	3	2
ИТВЕ			50.0	57.7		ug/Kg		115	70 _ 144	4	2
TAME			50.0	55.3		ug/Kg		111	70 - 145	3	2
Ethyl t-butyl ether			50.0	50.4		ug/Kg		101	70 - 130	1	2
Toluene			50.0	54.1		ug/Kg		108	75 _ 120	4	2
EDB			50.0	55.4		ug/Kg		111	70 - 140	4	2
1,2-DCA			50.0	48.6		ug/Kg		97	70 - 130	2	2
ТВА			500	505		ug/Kg		101	63 - 130	2	2
DIPE			50.0	48.1		ug/Kg		96	70 - 131	0	2
Naphthalene			50.0	58.2		ug/Kg		116	60 - 147	6	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	107		45 - 131								
1,2-Dichloroethane-d4 (Surr)	89		60 - 140								
Toluene-d8 (Surr)	107		58 - 140								
Lab Sample ID: LCSD 720-21	2422/8					Clie	nt Sam	ple ID:	Lab Contro		
Matrix: Solid									Prep T	ype: Tot	al/N
Analysis Batch: 212422											
			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)			1000	963		ug/Kg		96	64 - 120	1	2

Gasoline Range Organics (GRO) -C6-C12

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		45 - 131
1,2-Dichloroethane-d4 (Surr)	91		60 _ 140
Toluene-d8 (Surr)	107		58 - 140

Client Sample ID: Method Blank Prep Type: Total/NA 5

8

Lab Sample ID: MB 720-212509/4

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Solid Analysis Batch: 212509

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		500		ug/Kg			11/03/16 19:27	100
Ethylbenzene	ND		500		ug/Kg			11/03/16 19:27	100
Ethanol	ND		50000		ug/Kg			11/03/16 19:27	100
МТВЕ	ND		500		ug/Kg			11/03/16 19:27	100
TAME	ND		500		ug/Kg			11/03/16 19:27	100
Ethyl t-butyl ether	ND		500		ug/Kg			11/03/16 19:27	100
Toluene	ND		500		ug/Kg			11/03/16 19:27	100
EDB	ND		500		ug/Kg			11/03/16 19:27	100
Xylenes, Total	ND		1000		ug/Kg			11/03/16 19:27	100
1,2-DCA	ND		500		ug/Kg			11/03/16 19:27	100
ТВА	ND		1000		ug/Kg			11/03/16 19:27	100
DIPE	ND		500		ug/Kg			11/03/16 19:27	100
Naphthalene	ND		1000		ug/Kg			11/03/16 19:27	100
Gasoline Range Organics (GRO) -C6-C12	ND		25000		ug/Kg			11/03/16 19:27	100

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		66 - 148		11/03/16 19:27	100
1,2-Dichloroethane-d4 (Surr)	99		62 - 137		11/03/16 19:27	100
Toluene-d8 (Surr)	108		65 - 141		11/03/16 19:27	100

Lab Sample ID: LCS 720-212509/5 Matrix: Solid Analysis Batch: 212509

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	5000	5390		ug/Kg		108	76 - 122
Ethylbenzene	5000	5410		ug/Kg		108	76 _ 137
Ethanol	200000	287000	*	ug/Kg		144	70 - 130
n-Xylene & p-Xylene	5000	5760		ug/Kg		115	71 ₋ 142
МТВЕ	5000	4310		ug/Kg		86	71 _ 146
ГАМЕ	5000	4250		ug/Kg		85	70 _ 130
Ethyl t-butyl ether	5000	3730		ug/Kg		75	70 _ 130
oluene	5000	5690		ug/Kg		114	77 - 120
EDB	5000	5580		ug/Kg		112	70 _ 138
,2-DCA	5000	5580		ug/Kg		112	67 - 126
ВА	50000	61600		ug/Kg		123	70 _ 130
DIPE	5000	4250		ug/Kg		85	70 _ 130
Japhthalene	5000	5560		ug/Kg		111	62 - 151
o-Xylene	5000	5640		ug/Kg		113	71 ₋ 142

	203	203	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		66 - 148
1,2-Dichloroethane-d4 (Surr)	96		62 - 137
Toluene-d8 (Surr)	107		65 - 141

D	%Rec	Limits	
_	108	76 - 122	
		/	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-212	509/7						•		D: Lab Co		
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 212509											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)			100000	85700		ug/Kg		86	61 _ 120		
-C6-C12											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	103		66 - 148								
1,2-Dichloroethane-d4 (Surr)	96		62 - 137								
Toluene-d8 (Surr)	107		65 - 141								
Matrix: Solid	2509/6						int San	ipie ib. i	Lab Contro Prep T	ype: To	
Lab Sample ID: LCSD 720-21 Matrix: Solid Analysis Batch: 212509	2509/6						int San	ipie iD. i	Prep T		tal/NA
Matrix: Solid Analysis Batch: 212509	2509/6		Spike		LCSD			-	Prep T %Rec.	ype: To	tal/NA RPD
Matrix: Solid Analysis Batch: 212509 Analyte	2509/6		Added	Result	LCSD Qualifier	Unit	<u>D</u>	%Rec	Prep T %Rec. Limits	ype: To	tal/NA RPD Limit
Matrix: Solid Analysis Batch: 212509 Analyte Benzene			Added	Result 5470		- <mark>Unit</mark> ug/Kg		%Rec 109	Prep T %Rec. Limits 76 - 122	RPD	tal/NA RPD Limit
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene			Added	Result 5470 5530	Qualifier	Unit ug/Kg ug/Kg		%Rec 109 111	Prep T %Rec. Limits 76 - 122 76 - 137	RPD 2	tal/NA RPD Limit 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol			Added 5000 5000 200000	Result 5470 5530 278000	Qualifier	Unit ug/Kg ug/Kg ug/Kg		%Rec 109 111 139	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130	RPD 1 2 3	tal/NA RPD Limit 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene			Added 5000 5000 200000 5000	Result 5470 5530 278000 5910	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142	RPD 1 2 3 2	tal/NA RPD Limit 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE			Added 5000 200000 5000 5000 5000	Result 5470 5530 278000 5910 4470	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146	RPD 1 2 3 2 4	tal/NA RPD Limit 20 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE TAME			Added 5000 200000 5000 5000 5000 5000	Result 5470 5530 278000 5910 4470 4460	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89 89	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146 70 - 130	RPD 1 2 3 2 4 5	tal/NA RPD Limit 20 20 20 20 20 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE TAME Ethyl t-butyl ether			Added 5000 200000 5000 5000 5000 5000 5000	Result 5470 5530 278000 5910 4470 4460 3930	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89 89 79	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146 70 - 130 70 - 130	RPD 1 2 3 2 4 5 5	tal/NA RPD Limit 20 20 20 20 20 20 20 20 20 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE TAME Ethyl t-butyl ether Toluene	2509/6		Added 5000 200000 5000 5000 5000 5000 5000	Result 5470 5530 278000 5910 4470 4460 3930 5770	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89 89 79 79 115	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146 70 - 130 70 - 130 70 - 130 77 - 120	RPD 1 2 3 2 4 5 5 1	tal/NA RPD Limit 20 20 20 20 20 20 20 20 20 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE TAME Ethyl t-butyl ether Toluene EDB	2509/6		Added 5000 200000 5000 5000 5000 5000 5000 5	Result 5470 5530 278000 5910 4470 4460 3930 5770 5490	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89 89 79 115 110	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146 70 - 130 70 - 130 77 - 120 70 - 138	RPD 1 2 3 2 4 5 5 1 2	tal/NA RPE Limit 20 20 20 20 20 20 20 20 20 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE TAME Ethyl t-butyl ether Toluene EDB 1,2-DCA	2509/6		Added 5000 200000 5000 5000 5000 5000 5000 5000 5000 5000	Result 5470 5530 278000 5910 4470 4460 3930 5770 5490 5410	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89 89 79 115 110 108	Kec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146 70 - 130 77 - 120 70 - 138 67 - 126	RPD 1 2 3 2 4 5 5 1 2 3	tal/NA RPE Limit 20 20 20 20 20 20 20 20 20 20 20 20 20
Matrix: Solid Analysis Batch: 212509 Analyte Benzene Ethylbenzene Ethanol m-Xylene & p-Xylene MTBE TAME Ethyl t-butyl ether Toluene EDB	2509/6		Added 5000 200000 5000 5000 5000 5000 5000 5	Result 5470 5530 278000 5910 4470 4460 3930 5770 5490	Qualifier	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		%Rec 109 111 139 118 89 89 79 115 110	Prep T %Rec. Limits 76 - 122 76 - 137 70 - 130 71 - 142 71 - 146 70 - 130 70 - 130 77 - 120 70 - 138	RPD 1 2 3 2 4 5 5 1 2	tal/NA

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	109		66 - 148
1,2-Dichloroethane-d4 (Surr)	94		62 - 137
Toluene-d8 (Surr)	107		65 - 141

Lab Sample ID: LCSD 720-212509/8 Matrix: Solid

Ana	lysis	Batch:	212509

o-Xylene

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	100000	91700		ug/Kg		92	61 - 120	7	20
-C6-C12									

5000

5820

ug/Kg

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		66 - 148
1,2-Dichloroethane-d4 (Surr)	91		62 - 137
Toluene-d8 (Surr)	106		65 - 141

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

71 - 142

3

20

116

GC	MS	VOA

Analysis Batch: 212344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-75522-2	SB-10-9.0-9.5	Total/NA	Solid	8260B/CA_LUFT	212353
				MS	
MB 720-212344/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-212344/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-212344/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-212344/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-212344/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	

Prep Batch: 212353

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
720-75522-2	SB-10-9.0-9.5	Total/NA	Solid	5035		

Analysis Batch: 212355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
720-75522-3	SB-10-20.5-21.0	Total/NA	Solid	8260B/CA_LUFT	212374	
MB 720-212355/4	Method Blank	Total/NA	Solid	MS 8260B/CA_LUFT MS		14
LCS 720-212355/5	Lab Control Sample	Total/NA	Solid	MS 8260B/CA_LUFT MS		
LCS 720-212355/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS		
LCSD 720-212355/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS		
LCSD 720-212355/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS		

Prep Batch: 212374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-75522-3	SB-10-20.5-21.0	Total/NA	Solid	5035	
720-75522-6	SB-9-8.0-8.5	Total/NA	Solid	5035	
720-75522-9	SB-9-23.5-24.0	Total/NA	Solid	5035	

Analysis Batch: 212411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-75522-6	SB-9-8.0-8.5	Total/NA	Solid	8260B/CA_LUFT	212374
				MS	
720-75522-9	SB-9-23.5-24.0	Total/NA	Solid	8260B/CA_LUFT	212374
				MS	
MB 720-212411/5	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-212411/6	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-212411/8	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-212411/7	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-212411/9	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client Sample ID

SB-10-23.5-24.0

SB-9-4.0-4.5

Method Blank

Lab Control Sample

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample Dup

SB-10-1.0-1.5

Analysis Batch: 212422

Lab Sample ID

720-75522-1

720-75522-4

720-75522-5

MB 720-212422/4

LCS 720-212422/5

LCS 720-212422/7

LCSD 720-212422/6

LCSD 720-212422/8

Method

MS

MS

MS

MS

MS

MS

MS

MS

8260B/CA_LUFT

8260B/CA_LUFT

8260B/CA_LUFT

8260B/CA_LUFT

8260B/CA_LUFT

8260B/CA_LUFT

8260B/CA_LUFT

8260B/CA_LUFT

Prep Batch

212439

212439

212439

Prep	Batch:	212439

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-75522-1	SB-10-1.0-1.5	Total/NA	Solid	5035	
720-75522-4	SB-10-23.5-24.0	Total/NA	Solid	5035	
720-75522-5	SB-9-4.0-4.5	Total/NA	Solid	5035	

Analysis Batch: 212509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-75522-6	SB-9-8.0-8.5	Total/NA	Solid	8260B/CA_LUFT	212518
				MS	
720-75522-7	SB-9-17.0-17.5	Total/NA	Solid	8260B/CA_LUFT	212518
				MS	
720-75522-8	SB-9-19.5-20.0	Total/NA	Solid	8260B/CA_LUFT	212518
				MS	
MB 720-212509/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-212509/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-212509/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-212509/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-212509/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	

Prep Batch: 212518

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-75522-6	SB-9-8.0-8.5	Total/NA	Solid	5035	
720-75522-7	SB-9-17.0-17.5	Total/NA	Solid	5035	
720-75522-8	SB-9-19.5-20.0	Total/NA	Solid	5035	

lient Sampl	e ID: SB-10	-1.0-1.5					La	ab Sample	ID: 720-75522-1
ate Collected:	10/31/16 12:5	5							Matrix: Solid
Date Received:	10/31/16 15:3	0							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212439	10/31/16 18:43	JRM	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	212422	11/02/16 15:57	JRM	TAL PLS	
Client Sampl	e ID: SB-10	-9.0-9.5					La	ab Sample	ID: 720-75522-2
Date Collected:									Matrix: Solid
Date Received:									
_									
	Batch	Batch	_	Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst		
Total/NA	Prep	5035			212353	10/31/16 18:43	BSY	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	212344	11/01/16 05:35	JRM	TAL PLS	
Client Sampl	e ID: SB-10	-20.5-21.0					La	ab Sample	ID: 720-75522-3
Date Collected:	10/31/16 13:3	0							Matrix: Solid
Date Received:	10/31/16 15:3	0							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep				212374	10/31/16 18:43		TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1000	212355	11/01/16 13:35	LPL	TAL PLS	
_	-	-							
Client Sampl							La	ab Sample	ID: 720-75522-4
Date Collected:	10/31/16 13:3	5							Matrix: Solid
Date Received:	10/31/16 15:3	0							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212439	10/31/16 18:43	JRM	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	212422	11/02/16 16:27	JRM	TAL PLS	
Client Sampl	e ID: SB-9-4	L0-4.5					:	ab Sample	ID: 720-75522-5
Date Collected:									Matrix: Solid
Date Received:									
_	Batah	Batch		Dilution	Patak	Prepared			
Bron Tuno	Batch	Batch	Dur	Dilution	Batch	•	Analyst	Lab	
Prep Type Total/NA	Type Prep	Method 5035	Run	Factor	Number 212439	or Analyzed	Analyst JRM	- Lab TAL PLS	
	Prep Analysis			1			JRM JRM	TAL PLS TAL PLS	
Total/NA 	Analysis	8260B/CA_LUFTMS		1	212422	11/02/16 16:57	JKIVI	TAL PLS	
Client Sampl	e ID: SB-9-8	8.0-8.5					La	ab Sample	ID: 720-75522-6
Date Collected:	10/31/16 11:2	6						•	Matrix: Solid
Date Received:	10/31/16 15:3	0							
_									

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212374	10/31/16 18:43	LPL	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212411	11/02/16 00:32	JRM	TAL PLS

TestAmerica Pleasanton

Date Collected Date Received Г

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212439	10/31/16 18:43	JRM	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212422	11/02/16 16:57	JRM	TAL PLS

Client Samp Date Collected Date Received

				Lab Chro	nicle				
Client: ARCADI Project/Site: BP	IS U.S., Inc. ^D #4931, Oaklar	nd					T	estAmerica Jo	b ID: 720-75522-1
Client Samp	le ID: SB-9-8	.0-8.5					Li	ab Sample I	D: 720-75522-6
Date Collected	I: 10/31/16 11:2 I: 10/31/16 15:3	26						-	Matrix: Solid
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212518	10/31/16 18:40	BSY	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		100	212509	11/03/16 21:56	JRM	TAL PLS	
Client Samp	le ID: SB-9-1	17.0-17.5					Li	ab Sample I	D: 720-75522-7
	l: 10/31/16 11:3 l: 10/31/16 15:3	-							Matrix: Solid
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212518	10/31/16 18:40	BSY	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		100	212509	11/03/16 22:25	JRM	TAL PLS	
Client Samp Date Collected Date Received:	I: 10/31/16 11:3	38					La	ab Sample II	D: 720-75522-8 Matrix: Solid
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212518	10/31/16 18:40	BSY	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		100	212509	11/03/16 22:55	JRM	TAL PLS	
Client Samp	le ID: SB-9-7	23.5-24.0					L;	ab Sample I	D: 720-75522-9
Date Collected Date Received:									Matrix: Solid
_	Batch	Batch		Dilution	Batch	Prepared			

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212374	10/31/16 18:43	LPL	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212411	11/01/16 23:02	JRM	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-18

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Lab Sample ID

720-75522-1

720-75522-2

720-75522-3

720-75522-4

720-75522-5

720-75522-6

720-75522-7

720-75522-8

720-75522-9

Client Sample ID

SB-10-1.0-1.5

SB-10-9.0-9.5

SB-10-20.5-21.0

SB-10-23.5-24.0

SB-9-4.0-4.5

SB-9-8.0-8.5

SB-9-17.0-17.5

SB-9-19.5-20.0

SB-9-23.5-24.0

TestAmerica Job ID: 720-75522-1

Received

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

10/31/16 15:30

Collected

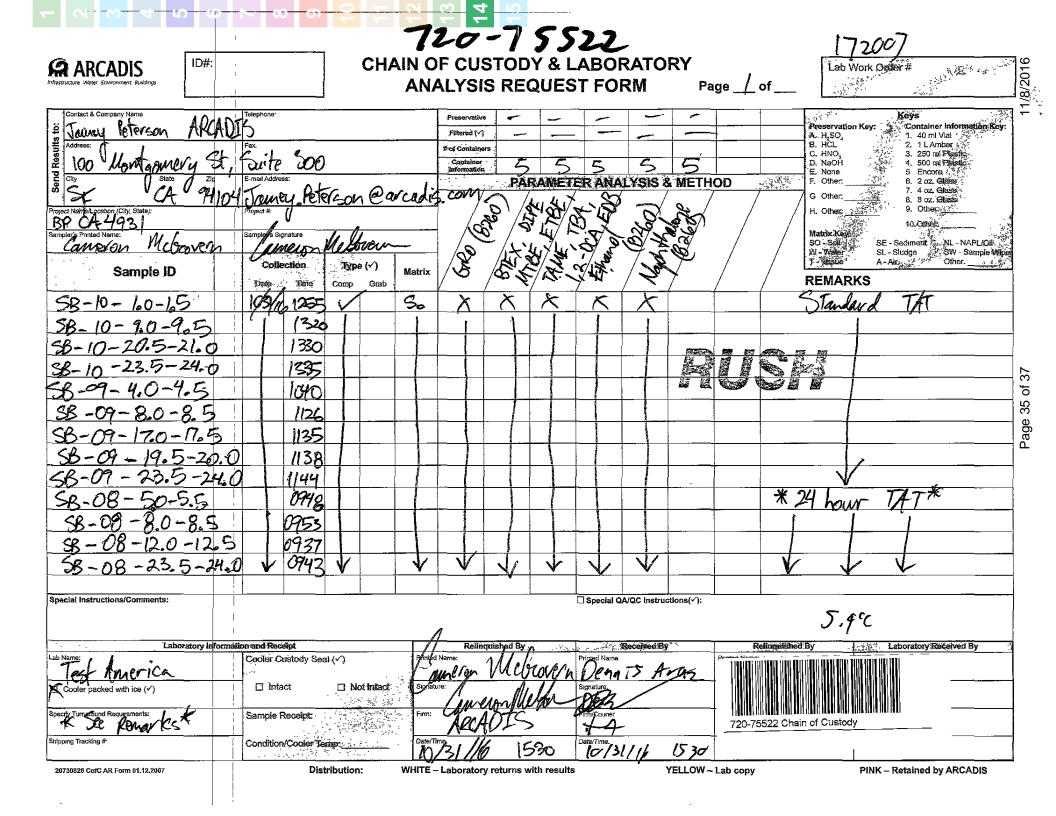
10/31/16 12:55

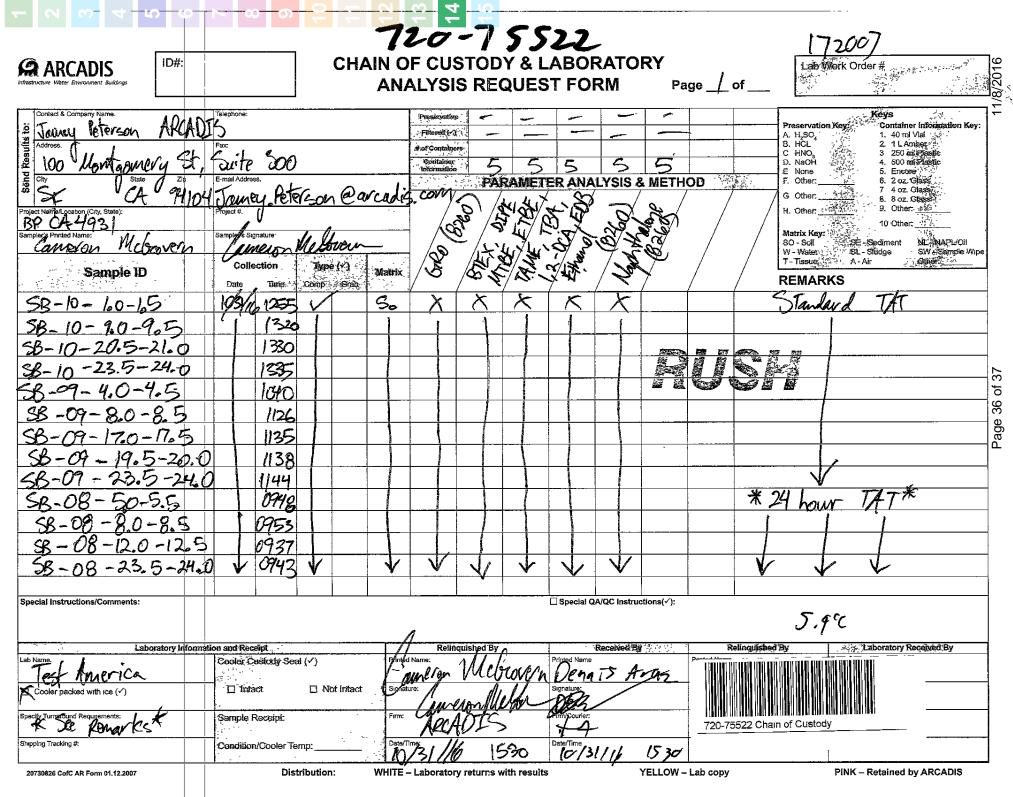
10/31/16 13:20

10/31/16 13:30

10/31/16 13:35

10/31/16 10:40


10/31/16 11:26


10/31/16 11:35

10/31/16 11:38

10/31/16 11:44

5	
8	
9	
13	

.

Login Sample Receipt Checklist

Client: ARCADIS U.S., Inc.

Login Number: 75522 List Number: 1

Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-75522-1

List Source: TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-75551-1 Client Project/Site: BP #4931, Oakland

For: ARCADIS U.S., Inc. 100 Montgomery Street Suite 300 San Francisco, California 94104

Attn: Jamey Peterson

Athaema

Authorized for release by: 11/9/2016 5:45:01 PM Dimple Sharma, Senior Project Manager (925)484-1919 dimple.sharma@testamericainc.com

LINKS Review your project results through TOTOLACCESS Have a Question?

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

The

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	15
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	ŏ
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	9
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-75551-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-75551-1

Comments

No additional comments.

Receipt

The samples were received on 11/1/2016 12:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: SB-11-1.5-2.0	Lab Sample ID: 720-75551-1
No Detections.	
Client Sample ID: SB-11-6.0-6.5	Lab Sample ID: 720-75551-2
No Detections.	
Client Sample ID: SB-11-23.5-24.0	Lab Sample ID: 720-75551-3
No Detections.	
Client Sample ID: SV-9-2.5-3.0	Lab Sample ID: 720-75551-4
No Detections.	
Client Sample ID: SV-9-4.5-5.0	Lab Sample ID: 720-75551-5
No Detections.	
Client Sample ID: SV-9-7.5-8.0	Lab Sample ID: 720-75551-6
No Detections.	

Client Sample ID: SB-11-1.5-2.0

Date Collected: 11/01/16 10:40 Date Received: 11/01/16 12:50

Lab Sample ID: 720-75551-1 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Ethylbenzene	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Ethanol	ND		780		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
МТВЕ	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
TAME	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Ethyl t-butyl ether	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Toluene	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
EDB	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Xylenes, Total	ND		7.8		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
1,2-DCA	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
ТВА	ND		78		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
DIPE	ND		3.9		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Naphthalene	ND		7.8		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
Gasoline Range Organics (GRO)	ND		200		ug/Kg		11/01/16 23:59	11/04/16 11:07	1	
-C6-C12										
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	95		45 - 131				11/01/16 23:59	11/04/16 11:07	1	
1,2-Dichloroethane-d4 (Surr)	100		60 - 140				11/01/16 23:59	11/04/16 11:07	1	
Toluene-d8 (Surr)	104		58 - 140				11/01/16 23:59	11/04/16 11:07	1	

Client Sample ID: SB-11-6.0-6.5

Date Collected: 11/01/16 10:52 Date Received: 11/01/16 12:50

Lab Sample ID: 720-75551-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Ethylbenzene	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Ethanol	ND		800		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
МТВЕ	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
TAME	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Ethyl t-butyl ether	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Toluene	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
EDB	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Xylenes, Total	ND		8.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
1,2-DCA	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
ТВА	ND		80		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
DIPE	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Naphthalene	ND		8.0		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
Gasoline Range Organics (GRO)	ND		200		ug/Kg		11/01/16 23:59	11/04/16 11:37	1	
-C6-C12										
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	102		45 - 131				11/01/16 23:59	11/04/16 11:37	1	
1,2-Dichloroethane-d4 (Surr)	105		60 - 140				11/01/16 23:59	11/04/16 11:37	1	
Toluene-d8 (Surr)	104		58 - 140				11/01/16 23:59	11/04/16 11:37	1	

Client Sample ID: SB-11-23.5-24.0

TAME

Toluene

1,2-DCA

EDB

TBA

Ethyl t-butyl ether

Xylenes, Total

Date Collected: 11/01/16 11:00 Date Received: 11/01/16 12:50								Matri	x: Solid	
Method: 8260B/CA_LUFTMS - 82	60B / CA LUFT	MS								5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Benzene	ND		3.5		ug/Kg		11/01/16 23:59	11/04/16 12:07	1	
Ethylbenzene	ND		3.5		ug/Kg		11/01/16 23:59	11/04/16 12:07	1	6
Ethanol	ND		700		ug/Kg		11/01/16 23:59	11/04/16 12:07	1	
МТВЕ	ND		3.5		ug/Kg		11/01/16 23:59	11/04/16 12:07	1	

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

DIPE	ND	3.5	ug/Kg	11/01/16 23:59	11/04/16 12:07	1
Naphthalene	ND	7.0	ug/Kg	11/01/16 23:59	11/04/16 12:07	1
Gasoline Range Organics (GRO) -C6-C12	ND	170	ug/Kg	11/01/16 23:59	11/04/16 12:07	1
Surrogate	%Recovery 0	Qualifier Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene		Qualifier Limits 45 - 131		Prepared 11/01/16 23:59	Analyzed	Dil Fac
						Dil Fac

3.5

3.5

3.5

3.5

7.0

3.5

70

ND

ND

ND

ND

ND

ND

ND

13

1

1

1

1

1

1

1

11/04/16 12:07

11/04/16 12:07

11/04/16 12:07

11/04/16 12:07

11/04/16 12:07

11/04/16 12:07

11/04/16 12:07

Lab Sample ID: 720-75551-3

11/01/16 23:59

11/01/16 23:59

11/01/16 23:59

11/01/16 23:59

11/01/16 23:59

11/01/16 23:59

11/01/16 23:59

11/9/2016

Client Sample ID: SV-9-2.5-3.0

Date Collected: 11/01/16 09:00 Date Received: 11/01/16 12:50

Lab Sample ID: 720-75551-4

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	1
Ethylbenzene	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	1
Ethanol	ND		790		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
МТВЕ	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
TAME	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
Ethyl t-butyl ether	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
Toluene	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
EDB	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
Xylenes, Total	ND		7.9		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
1,2-DCA	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
ТВА	ND		79		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
DIPE	ND		4.0		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
Naphthalene	ND		7.9		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
Gasoline Range Organics (GRO)	ND		200		ug/Kg		11/01/16 23:59	11/04/16 12:37	1	
-C6-C12										
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	98		45 - 131				11/01/16 23:59	11/04/16 12:37	1	
1,2-Dichloroethane-d4 (Surr)	108		60 - 140				11/01/16 23:59	11/04/16 12:37	1	
Toluene-d8 (Surr)	100		58 - 140				11/01/16 23:59	11/04/16 12:37	1	

TestAmerica Job ID: 720-75551-1

5 6

Client Sample ID: SV-9-4.5-5.0

Date Collected: 11/01/16 09:05 Date Received: 11/01/16 12:50

Lab Sample	ID:	720-75551-5
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Ethylbenzene	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Ethanol	ND		840		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
MTBE	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
TAME	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Ethyl t-butyl ether	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Toluene	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
EDB	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Xylenes, Total	ND		8.4		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
1,2-DCA	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
ТВА	ND		84		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
DIPE	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Naphthalene	ND		8.4		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
Gasoline Range Organics (GRO)	ND		210		ug/Kg		11/01/16 23:59	11/04/16 13:07	1
-C6-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		45 - 131				11/01/16 23:59	11/04/16 13:07	1
1,2-Dichloroethane-d4 (Surr)	107		60 - 140				11/01/16 23:59	11/04/16 13:07	1
Toluene-d8 (Surr)	103		58 _ 140				11/01/16 23:59	11/04/16 13:07	1

Client Sample ID: SV-9-7.5-8.0

Date Collected: 11/01/16 09:10 Date Received: 11/01/16 12:50

Lab Sample ID: 720-75551-6 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	7
Ethylbenzene	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
Ethanol	ND		850		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
МТВЕ	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
TAME	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
Ethyl t-butyl ether	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
Toluene	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
EDB	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
Xylenes, Total	ND		8.5		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
1,2-DCA	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
ТВА	ND		85		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
DIPE	ND		4.2		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
Naphthalene	ND		8.5		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
Gasoline Range Organics (GRO)	ND		210		ug/Kg		11/01/16 23:59	11/04/16 13:36	1	
-C6-C12										
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	99		45 - 131				11/01/16 23:59	11/04/16 13:36	1	
1,2-Dichloroethane-d4 (Surr)	106		60 - 140				11/01/16 23:59	11/04/16 13:36	1	
Toluene-d8 (Surr)	100		58 - 140				11/01/16 23:59	11/04/16 13:36	1	

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Matrix: Solid

				Percent Surroga	te Recovery (Acc
		BFB	12DCE	TOL	
Lab Sample ID	Client Sample ID	(45-131)	(60-140)	(58-140)	
720-75551-1	SB-11-1.5-2.0	95	100	104	
720-75551-2	SB-11-6.0-6.5	102	105	104	
720-75551-3	SB-11-23.5-24.0	97	99	101	
720-75551-4	SV-9-2.5-3.0	98	108	100	
720-75551-5	SV-9-4.5-5.0	101	107	103	
720-75551-6	SV-9-7.5-8.0	99	106	100	
LCS 720-212527/5	Lab Control Sample	107	92	107	
LCS 720-212527/7	Lab Control Sample	105	95	107	
LCSD 720-212527/6	Lab Control Sample Dup	105	91	107	
LCSD 720-212527/8	Lab Control Sample Dup	106	96	107	
MB 720-212527/4	Method Blank	100	93	106	
Surrogate Legend					

BFB = 4-Bromofluorobenzene

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-212527/4

Matrix: Solid Analysis Batch: 212527

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0		ug/Kg			11/04/16 08:39	1
Ethylbenzene	ND		5.0		ug/Kg			11/04/16 08:39	1
Ethanol	ND		1000		ug/Kg			11/04/16 08:39	1
MTBE	ND		5.0		ug/Kg			11/04/16 08:39	1
TAME	ND		5.0		ug/Kg			11/04/16 08:39	1
Ethyl t-butyl ether	ND		5.0		ug/Kg			11/04/16 08:39	1
Toluene	ND		5.0		ug/Kg			11/04/16 08:39	1
EDB	ND		5.0		ug/Kg			11/04/16 08:39	1
Xylenes, Total	ND		10		ug/Kg			11/04/16 08:39	1
1,2-DCA	ND		5.0		ug/Kg			11/04/16 08:39	1
ТВА	ND		100		ug/Kg			11/04/16 08:39	1
DIPE	ND		5.0		ug/Kg			11/04/16 08:39	1
Naphthalene	ND		10		ug/Kg			11/04/16 08:39	1
Gasoline Range Organics (GRO) -C6-C12	ND		250		ug/Kg			11/04/16 08:39	1

	MB MB					-
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	100	45 - 131		11/04/16 08:39	1	
1,2-Dichloroethane-d4 (Surr)	93	60 - 140		11/04/16 08:39	1	
Toluene-d8 (Surr)	106	58 - 140		11/04/16 08:39	1	

Lab Sample ID: LCS 720-212527/5 Matrix: Solid

Analysis Batch: 212527 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Benzene 50.0 54.8 ug/Kg 110 70 - 130 Ethylbenzene 50.0 53.6 ug/Kg 107 80 - 137 2000 2590 Ethanol ug/Kg 129 49 - 162 50.0 m-Xylene & p-Xylene 57.4 ug/Kg 115 70 - 146 MTBE 50.0 49.5 ug/Kg 70 - 144 99 TAME 50.0 47.1 94 70 - 145 ug/Kg Ethyl t-butyl ether 50.0 41.8 ug/Kg 84 70 - 130 Toluene 50.0 57.3 ug/Kg 115 75 - 120 EDB 50.0 58.3 ug/Kg 117 70 _ 140 1,2-DCA 50.0 54.3 109 70 - 130 ug/Kg TBA 617 500 123 63 - 130 ug/Kg DIPE 50.0 43.4 ug/Kg 87 70 - 131 Naphthalene 50.0 56.3 60 - 147 ug/Kg 113 o-Xylene 50.0 56.1 ug/Kg 112 70 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene			45 _ 131
1,2-Dichloroethane-d4 (Surr)	92		60 - 140
Toluene-d8 (Surr)	107		58 - 140

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-212 Matrix: Solid	527/7						Client	Sample	Drop T		
Analysis Batch: 212527									Prepr	ype: To	lai/NA
Analysis Balch. 212327			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO) -C6-C12			1000	908		ug/Kg		91	64 - 120		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	105		45 _ 131								
1,2-Dichloroethane-d4 (Surr)	95		60 - 140								
Toluene-d8 (Surr)	107		58 - 140								
Lab Sample ID: LCSD 720-21 Matrix: Solid Analysis Batch: 212527	202110					Circ	in our			ype: To	tal/NA
			Spike		LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			50.0	54.4		ug/Kg		109	70 - 130	1	20
Ethylbenzene			50.0	53.4		ug/Kg		107	80 - 137	0	20
Ethanol			2000	2550		ug/Kg		128	49 - 162	1	20
m-Xylene & p-Xylene			50.0	56.8		ug/Kg		114	70 ₋ 146	1	20
MTBE			50.0	47.0		ug/Kg		94	70 ₋ 144	5	20
TAME			50.0	47.2		ug/Kg		94	70 - 145	0	20
Ethyl t-butyl ether			50.0	40.5		ug/Kg		81	70 ₋ 130	3	20
Toluene			50.0	57.4		ug/Kg		115	75 ₋ 120	0	20
EDB			50.0	58.7		ug/Kg		117	70 <u>-</u> 140	1	20
1,2-DCA			50.0	53.8		ug/Kg		108	70 ₋ 130	1	20
TBA			500	609		ug/Kg		122	63 - 130	1	20
DIPE			50.0	43.5		ug/Kg		87	70 _ 131	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		45 - 131
1,2-Dichloroethane-d4 (Surr)	91		60 - 140
Toluene-d8 (Surr)	107		58 - 140

Lab Sample ID: LCSD 720-212527/8 Matrix: Solid

Naphthalene

o-Xylene

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	1000	884		ug/Kg		88	64 - 120	3	20
-C6-C12									

50.0

50.0

57.8

55.3

ug/Kg

ug/Kg

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		45 - 131
1,2-Dichloroethane-d4 (Surr)	96		60 - 140
Toluene-d8 (Surr)	107		58 - 140

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

60 - 147

70 - 140

3

1

20

20

116

111

TestAmerica Pleasanton

3 4 5

8 9

GC/MS VOA

Analysis Batch: 212527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
720-75551-1	SB-11-1.5-2.0	Total/NA	Solid	8260B/CA_LUFT MS	212537	
720-75551-2	SB-11-6.0-6.5	Total/NA	Solid	8260B/CA_LUFT MS	212537	
720-75551-3	SB-11-23.5-24.0	Total/NA	Solid	8260B/CA_LUFT MS	212537	
720-75551-4	SV-9-2.5-3.0	Total/NA	Solid	8260B/CA_LUFT MS	212537	
720-75551-5	SV-9-4.5-5.0	Total/NA	Solid	8260B/CA_LUFT MS	212537	
720-75551-6	SV-9-7.5-8.0	Total/NA	Solid	8260B/CA_LUFT MS	212537	
MB 720-212527/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS		
LCS 720-212527/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS		
LCS 720-212527/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS		
LCSD 720-212527/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS		
LCSD 720-212527/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS		1

Prep Batch: 212537

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-75551-1	SB-11-1.5-2.0	Total/NA	Solid	5035	
720-75551-2	SB-11-6.0-6.5	Total/NA	Solid	5035	
720-75551-3	SB-11-23.5-24.0	Total/NA	Solid	5035	
720-75551-4	SV-9-2.5-3.0	Total/NA	Solid	5035	
720-75551-5	SV-9-4.5-5.0	Total/NA	Solid	5035	
720-75551-6	SV-9-7.5-8.0	Total/NA	Solid	5035	

	e ID: SB-11	-1.5-2.0					La	ab Sample I	D: 720-75551-
ate Collected:	11/01/16 10:4	0							Matrix: Soli
ate Received:	11/01/16 12:5	0							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212537	11/01/16 23:59	JRM	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	212527	11/04/16 11:07	JRM	TAL PLS	
Client Sample	• ID: SB-11	-6.0-6.5					La	ab Sample I	D: 720-75551-2
Date Collected:									Matrix: Soli
Date Received:									
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			212537	11/01/16 23:59	JRM	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	212527	11/04/16 11:37	JRM	TAL PLS	
Client Sample Date Collected:							La	ab Sample I	D: 720-75551- Matrix: Soli
Date Received: '	11/01/16 12:50	D							
Date Received: '	11/01/16 12:50 Batch) Batch		Dilution	Batch	Prepared			
Date Received: ' - Prep Type	Batch		Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Date Received: '		Batch	Run			Prepared or Analyzed 11/01/16 23:59	Analyst JRM	Lab TAL PLS	
Ргер Туре	Batch Type	Batch Method	Run		Number	or Analyzed			
Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 5035 8260B/CA_LUFTMS	Run	Factor	Number 212537	or Analyzed	JRM JRM	TAL PLS TAL PLS	D: 720-75551-
Prep Type Total/NA Total/NA Client Sample	Batch Type Prep Analysis	Batch Method 5035 8260B/CA_LUFTMS	Run	Factor	Number 212537	or Analyzed	JRM JRM	TAL PLS TAL PLS	
Prep Type Total/NA Total/NA Client Sample Date Collected:	Batch Type Prep Analysis D: SV-9-2 11/01/16 09:0	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0	Run	Factor	Number 212537	or Analyzed	JRM JRM	TAL PLS TAL PLS	
Prep Type Total/NA Total/NA Client Sample Date Collected:	Batch Type Prep Analysis D: SV-9-2 11/01/16 09:0	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0	Run	Factor	Number 212537	or Analyzed	JRM JRM	TAL PLS TAL PLS	
Prep Type Total/NA	Batch Type Prep Analysis D: SV-9-2 11/01/16 09:0 11/01/16 12:50	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0	Run	1	Number 212537 212527	or Analyzed 11/01/16 23:59 11/04/16 12:07	JRM JRM	TAL PLS TAL PLS	D: 720-75551-4 Matrix: Soli
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received:	Batch Type Prep Analysis PID: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 Batch		1	Number 212537 212527 Batch	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared	JRM JRM	TAL PLS TAL PLS ab Sample I	
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received:	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 0 Batch Method		1	Number 212537 212527 Batch Number	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed	JRM JRM La	TAL PLS TAL PLS ab Sample I	
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 0 Batch Method 5035 8260B/CA_LUFTMS		Dilution	Number 212537 212527 Batch Number 212537	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59	JRM JRM La Analyst JRM JRM	TAL PLS TAL PLS Ab Sample I TAL PLS TAL PLS TAL PLS	Matrix: Soli
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Client Sample Date Collected:	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis DI: SV-9-4 11/01/16 09:0	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 0 Batch Method 5035 8260B/CA_LUFTMS 4.5-5.0 5		Dilution	Number 212537 212527 Batch Number 212537	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59	JRM JRM La Analyst JRM JRM	TAL PLS TAL PLS Ab Sample I TAL PLS TAL PLS TAL PLS	Matrix: Soli
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Client Sample Date Collected:	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis DI: SV-9-4 11/01/16 09:0 11/01/16 12:50	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 Batch Method 5035 8260B/CA_LUFTMS 4.5-5.0 5 0		Factor 1 Dilution Factor 1	Number 212537 212527 Batch Number 212537 212537	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59 11/04/16 12:37	JRM JRM La Analyst JRM JRM	TAL PLS TAL PLS Ab Sample I TAL PLS TAL PLS TAL PLS	Matrix: Soli
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received:	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis DI: SV-9-4 11/01/16 09:0 11/01/16 12:50 Batch	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 Batch Method 5035 8260B/CA_LUFTMS 4.5-5.0 5 0 Batch Batch	Run	Factor 1 Dilution Factor 1 Dilution	Number 212537 212527 Batch Number 212537 212537 212537 212537 8atch Batch Batch	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59 11/04/16 12:37 Prepared Prepared	JRM JRM La Analyst JRM JRM	TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Soli
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: 7 Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: 7 Prep Type	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis DI: SV-9-4 11/01/16 09:0 11/01/16 12:50 Batch Type	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 Batch Method 5035 8260B/CA_LUFTMS 4.5-5.0 5 0 Batch Method		Factor 1 Dilution Factor 1	Number 212537 212527 Batch Number 212537 212527 Batch Number	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59 11/04/16 12:37 Prepared or Analyzed	JRM JRM La Analyst JRM JRM La	TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Soli
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: * Prep Type Total/NA Client Sample Date Collected: Date Received: *	Batch Type Prep Analysis D: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis D: SV-9-4 11/01/16 09:0 11/01/16 09:0 11/01/16 12:50 Batch Type Prep	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 Batch Method 5035 8260B/CA_LUFTMS 4.5-5.0 5 0 Batch Method 5035 8260B/CA_LUFTMS	Run	Factor 1 Dilution Factor 1 Dilution Factor Factor	Number 212537 212527 Batch Number 212527 Batch Number 212527	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59 11/04/16 12:37 Prepared or Analyzed 11/01/16 23:59	JRM JRM La Analyst JRM JRM La Analyst JRM	TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	
Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: 7 Prep Type Total/NA Total/NA Client Sample Date Collected: Date Received: 7 Prep Type	Batch Type Prep Analysis DI: SV-9-2 11/01/16 09:0 11/01/16 12:50 Batch Type Prep Analysis DI: SV-9-4 11/01/16 09:0 11/01/16 12:50 Batch Type	Batch Method 5035 8260B/CA_LUFTMS 2.5-3.0 0 Batch Method 5035 8260B/CA_LUFTMS 4.5-5.0 5 0 Batch Method	Run	Factor 1 Dilution Factor 1 Dilution	Number 212537 212527 Batch Number 212537 212527 Batch Number	or Analyzed 11/01/16 23:59 11/04/16 12:07 Prepared or Analyzed 11/01/16 23:59 11/04/16 12:37 Prepared or Analyzed	JRM JRM La Analyst JRM JRM La	TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Soli D: 720-75551-

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			212537	11/01/16 23:59	JRM	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	212527	11/04/16 13:36	JRM	TAL PLS

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-18

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #4931, Oakland TestAmerica Job ID: 720-75551-1

720-75551-1SB-11-1.5-2.0Solid11720-75551-2SB-11-6.0-6.5Solid11720-75551-3SB-11-23.5-24.0Solid11720-75551-4SV-9-2.5-3.0Solid11720-75551-5SV-9-4.5-5.0Solid11		ceived 3
720-75551-1SB-11-1.5-2.0Solid11720-75551-2SB-11-6.0-6.5Solid11720-75551-3SB-11-23.5-24.0Solid11720-75551-4SV-9-2.5-3.0Solid11720-75551-5SV-9-4.5-5.0Solid11		coived
720-75551-2 SB-11-6.0-6.5 Solid 11 720-75551-3 SB-11-23.5-24.0 Solid 11 720-75551-4 SV-9-2.5-3.0 Solid 11 720-75551-5 SV-9-4.5-5.0 Solid 11	01/16 10:40 11/01/	Ceiveu
720-75551-3 SB-11-23.5-24.0 Solid 11 720-75551-4 SV-9-2.5-3.0 Solid 11 720-75551-5 SV-9-4.5-5.0 Solid 11		/16 12:50
720-75551-4 SV-9-2.5-3.0 Solid 11 720-75551-5 SV-9-4.5-5.0 Solid 11	01/16 10:52 11/01/	/16 12:50
720-75551-5 SV-9-4.5-5.0 Solid 11	01/16 11:00 11/01/	/16 12:50 5
	01/16 09:00 11/01/	/16 12:50
	01/16 09:05 11/01/	/16 12:50
720-75551-6 SV-9-7.5-8.0 Solid 11	01/16 09:10 11/01/	/16 12:50
		8
		9
		_
		13

						172029
ARCADIS ID#	£:			Y & LABORAT	A b	Lab Work Order #
Infrastructure Water Environment Buildings		ANA	LYSIS RE	DUEST FORM	Page <u>[-</u> of <u> </u>	Lab Work Order #
Contact & Company Name	Telephone	770-				Preservation Key: Container Information Key:
100 Januy Reterson Ar Address 100 Montgonory 2 States States States	Fax		Filtered (*) # of Containers	3		A. H.SO2 1, Waithhal
100 Mon gowary	T. Buite 300		Container 5			D. NaOH 4. 508 biPlastic
SF AF	The E-mail Address	on@arcalis.	PAI	RAMETER ANALYSIS	& METHOD	F. Other: 6. 2 oz Glass G. Other: 8. 8 ez Glass
Project Name/Location (City, State)	Project#			J. Jeg		H. Other: 9. Other 10. Other
Sangler's Printed Name:	Sampier's Signature:	11 Loon	A LE R	A CONTRACTOR		Matrix Key: SQ - Soil SE - Sediment ME-MAPL/Oil
Sample ID	Collection	Type (*) Matrix	Se 20	Jol		T-Tissue A. Ar Other
		omp Grab				REMARKS
<u>SB-11-1.5-2.0</u>	1/16 1040	v 50	× ×	×		
5B-11-6.0-6.0 5B-11-23.5-24	0 1052					
5V-9-25-30						
SV -9 - 4.5-5.						
SV-9-7.5-8.0			\mathbf{V} \mathbf{V}	V		3
					<u> </u>	
					ustody	
Special Instructions/Comments:				Special QA/QC Inst		5.42
RVO(s = b)	ER, MIBE, U	HE, ETBE	, THE, TBA	1, 1,2-00A, EDB	, Ethanol via (8	3,46)
Laboratory	Cooler Custody Seal () Epinted I	Relinquished By-	Printed Name.	By Relinquish Printed Name	ed.By Laboratory Received By
Cooler packed with Ice (~)	Intact	I Not Infact	wan Mclou	///// Signature:	Signature:	Joan Mulley
			uneron Mit	WG		Jozen Amble
Specify Turpebuhd Requirements	Sample Receipt		AKADIS	Firm/Courier.	Firm/Courier	Firm
Shipping Tracking #:	Condition/Cooler Temp	Date In	<u>%/16 125</u>	Date/Time	Date/Time	Datelime:
20730826 CofC AR Form 01.12.2007	Distrib	ution: WHITE -	Laboratory returns w	ith results	YELLOW – Lab copy	PINK – Retained by ARCADIS

Login Sample Receipt Checklist

Client: ARCADIS U.S., Inc.

Login Number: 75551 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-75551-1

List Source: TestAmerica Pleasanton

WORK ORDER NUMBER: 16-11-0723

Calscience

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Arcadis, US Inc. Client Project Name: CA-04931 GP09BPNA.C110 Attention: Jamey Peterson 100 Smith Ranch Road Suite 329 San Rafael, CA 94903-1925

Richard Villey)

Approved for release on 11/22/2016 by: Richard Villafania Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🔅 eurofins

Calscience

Contents

	oject Name: ler Number:	CA-04931 GP09BPNA.C110 16-11-0723	
1	Work Ord	der Narrative	3
2	Sample S	Summary	4
3		mple Data	5 5
4		Control Sample Data	7 7
5	Sample A	Analysis Summary	8
6	Glossary	of Terms and Qualifiers	9
7	Chain-of-	Custody/Sample Receipt Form	10

Work Order: 16-11-0723

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/09/16. They were assigned to Work Order 16-11-0723.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Client:	Arcadis, US Inc.	Work Order:	16-11-0723
	100 Smith Ranch Road, Suite 329	Project Name:	CA-04931 GP09BPNA.C110
	San Rafael, CA 94903-1925	PO Number:	
		Date/Time Received:	11/09/16 10:00
		Number of Containers:	5
Attn:	Jamey Peterson		

Attn:	Jamey Peterson
-------	----------------

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SV-7	16-11-0723-1	11/07/16 13:05	1	Air
SV-8	16-11-0723-2	11/07/16 11:22	1	Air
SV-9	16-11-0723-3	11/07/16 12:23	1	Air
DUP-20161107	16-11-0723-4	11/07/16 13:05	1	Air
EB-20161107	16-11-0723-5	11/07/16 13:30	1	Air

Return to Contents

Arcadis, US Inc.			Date Re	eceived:			11/09/16
100 Smith Ranch Road, Suite 329			Work O	rder:			16-11-0723
San Rafael, CA 94903-1925			Prepara	tion:			N/A
			Method:			E	PA TO-17 (M
			Units:				ug/m3
Project: CA-04931 GP09BPNA.C1	10					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-7	16-11-0723-1-A	11/07/16 13:05	Air	GC/MS MMM	N/A	11/09/16 19:47	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Naphthalene		ND		27	1.00		
<u>Surrogate</u> 1,4-Bromofluorobenzene		<u>Rec. (%)</u> 91		<u>Control Limits</u> 57-129	<u>Qualifiers</u>		
SV-8	16-11-0723-2-A	11/07/16 11:22	Air	GC/MS MMM	N/A	11/09/16 20:30	161109L01
Parameter		Result		RL	 <u>DF</u>	-	alifiers
Naphthalene		ND		27	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
1,4-Bromofluorobenzene		77		57-129			
SV-9	16-11-0723-3-A	11/07/16 12:23	Air	GC/MS MMM	N/A	11/09/16 21:12	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Naphthalene		ND		27	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		90		57-129			
DUP-20161107	16-11-0723-4-A	11/07/16 13:05	Air	GC/MS MMM	N/A	11/09/16 19:04	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Naphthalene		ND		27	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		115		57-129			
EB-20161107	16-11-0723-5-A	11/07/16 13:30	Air	GC/MS MMM	N/A	11/09/16 18:22	161109L01
				RL	DF	Qua	alifiers
Parameter		<u>Result</u>					
		<u>Result</u> ND		27	1.00		
<u>Parameter</u> Naphthalene <u>Surrogate</u>							

Arcadis, US Inc.			Date Re	ceived:			11/09/16
100 Smith Ranch Road, Suite 329			Work Or	der:			16-11-0723
San Rafael, CA 94903-1925			Preparat	tion:			N/A
			Method:			E	PA TO-17 (M)
			Units:				ug/m3
Project: CA-04931 GP09BPNA.C1	10					Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-178-50	N/A	Air	GC/MS MMM	N/A	11/09/16 17:27	161109L01
Comment(s): - MB data is reported in n	g/sample.						
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qua</u>	lifiers
Naphthalene		ND		2.0	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		87		57-129			

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0723
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-17 (M)
Project: CA-04931 GP09BPNA.C110		Page 1 of 1

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD B	atch Number
099-15-178-50	LCS	Air		GC/MS MMM	N/A	11/0	9/16 15:21	161109L01	
099-15-178-50	LCSD	Air		GC/MS MMM	N/A	11/0	9/16 16:02	161109L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Naphthalene	100.0	91.44	91	97.05	97	40-190	6	0-35	

RPD: Relative Percent Difference. CL: Control Limits

 Work Order: 16-11-0723
 Page 1 of 1

 Method EPA TO-17 (M)
 Extraction N/A
 Chemist ID 953
 Instrument GC/MS MMM
 Analytical Location 2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Calscience

Work Order: 16-11-0723

Glossary of Terms and Qualifiers

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. Х % Recovery and/or RPD out-of-range. Ζ Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

> A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

🖈 eurofins										AIR C	HAIN-OF		STOD	YREC	ORD
	Calscience				WON	O. / LAB USE ONL					DATE	:/	<u>' /-</u>	7/16	
7440 Lincoln Way, Garden Grove, CA 928-	41-1427 • (714) 895-5494					16-	11-0 7	23			PAGE	:	<u> </u>	of _/	۸
For courier service / sample drop off inform	ation, contact us26_sales@euro	finsus.com or c	all us.		CLIEN	IT PROJECT NAM		<u> </u>	and the second		P.O. NO.:				
AKADI	IS					BP	CA-4	A21			Grog	RD,	IA .	clia.	กกล
IOO Montaomer	u St. Sui	te 300			PROJ	ECT CONTACT:	01-1	121			LAB CONTAC	TORQUO	TE NO.:	Clio, (200
San Francisco	STATE:	L	^{ZIP:} 941	nel		Tempy	Pato	~ (Rehan	d	V		
	E-MAIL D.L	. 6	~~ `	4		ECT ADDRESS:	- (009	******		SAMPLER(S):	(PRINT)			
URNAROUND TIME (Rush surcharges may apply		son C	v arca	dis.cor	2 73	3 W. 1	Var Art	hur B	Ind		(mur	Sull	1 k	alrn	
SAME DAY 24 HR	48 HR 🔲 72 HR 🛛	5 DAYS	STAND	ARD	CITY:	1.		-71	STATE:	ZIP:	Contac	Ť		UESTEI	
	UNITS:					Oak lan	d		04					LYSES	
PECIAL INSTRUCTIONS:	11	1		<								R			
- TO-17 - all samples	Sorbent Tu	be E	ample	1											
Mad	11 L -	nr i	<i>`</i> ^									R			
- an samples	s collect i	5mL	the state	soil la	por.										
•			\mathcal{O}	,	,										
												lene			
												\$			
		MATRIX	SA	MPLING EQUIPM	ENT	START S	SAMPLING INFO		STOP S	AMPLING INFO	RMATION	擇			
AB ISE SAMPLE ID	FIELD ID / POINT OF COLLECTION	Indoor (I) Soil Vap. (SV)	Media	Canister Size	Flow Controller		Time	Canister Pressure		Time	Canister Pressure	1.3			
NLY		Ambient (A)	ID	6L or 1L	ID	Date	(24 hr clock)	(in Hg)	Date	(24 hr clock)	(in Hg)		╞───┼		
SV-7		SV	GOIB	6930	_	1/7/16	1305		11/7/1b			ΙX.	┣──╋		
2 <u>SV-8</u>	·	L-/	<u>G018</u>	6857			1122		┠──┼──				┝──┼		
SV-9	<u> </u>		501	<u>B4661</u>	<u></u>		1223		 			$\mathbf{H}_{\mathbf{F}}$			
+ Dup-2016/107	SV-7	¥	GOI	6/112			1305					Į¥.	┣──╋		
5 EB - 2016/107		<u>/</u> t	5018	9388		11/1/16	1330					<u>IV</u>	┟──┼		
			 		<u> </u>								┝─┼		
			 				ļ						┣───┣		
						<u> </u>									
						<u> </u>				ļ		_	┇───┤		
				Peoplined by:	: (Signature/Aff	iliation) -				Date			Time:		
Refinquished by: (Signature)	Joven 11/	4/16	1340	Keceived by						l	17110	2	131	40	
Relinquished by: (Signature)	/ • ·	-			(Signature/Aff				· 1	Date	19/15		Time	1000	<u> </u>
Relinquished by: (Signature)	11/8/16	0	900	1 1	NG (Signatura)	/ /		(91	Date			l. Time:		-
keiinquished by: (Signature)				Receivearby:	: (Signature/A f f	mation)				Date	5.				
			· · · · · · · · · · · · · · · · · · ·	1											

1

Return to Contents

Page 11 of 12 0723 ORIGIN ID:SMFA (925) 330-87 SEAN MAUREL ARCADIS (GPO3BPNA.C110.Q000) 60'1 2939 OAK RD STE 300 WALNUT CREEK, CA 94597 UNITED STATES US 60<u>.</u>11 08NQV16 0 LE 01722 art # 156297-455 M1206/A15 - 20 60 08:01 01 ₁₅ SAMPLE CONTROL 0 6**†£**14 EUROFINS CALSCIENCE 7440 LINCOLN WAY 4 GARDEN GROVE CA 92841 TANA DILA DI DILA DILA DILA DI FedEx WED - 09 NOV 10:30A <u>тяк#</u> 7845 8460 0760 PRIORITY OVERNIGHT 92 APVA 92841 CA-US SNA

🔹 eurofins			WORK ORDER	NUMBER:	16-1	ge 1201	7133
• *	Calscience	SAMPLE RECEIPT			OOLER		
CLIENT:	Arcadis			DA	ге: 11 <i>і</i>	091	2016
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs	riteria: 0.0°C – 6. 3A (CF: 0.0°C); 1 side temperature o side temperature o ed at ambient tem	0°C, not frozen except sedir Temperature (w/o CF): <u>4</u> - criteria (PM/APM contacted criteria but received on ice/c perature; placed on ice for tr	G°C (w/ CF):́ by:) hilled on same day o			Samp	
	sent and Intact sent and Intact	□ Present but Not Intact □ Present but Not Intact	☑ Not Present ☑ Not Present	□ N/A □ N/A		ed by:	
COC document(s) re □ Sampling date	OC) document(s eceived complete □ Sampling tim) received with samples ne □ Matrix □ Number of	containers		. 🖆	No □ □	N/A □ □
Sampler's name ind Sample container la Sample container(s)	icated on COC bel(s) consistent intact and in goo	elinquished □ No relinquis with COC		······			
Proper containers for Sufficient volume/ma Samples received w	or analyses reque ass for analyses r rithin holding time	sted equested			. 0		
□ pH □ Residu Proper preservation Unpreserved aqu	al Chlorine □ D chemical(s) note ueous sample(s) r	vses received within 15-minu issolved Sulfide □ Dissolve d on COC and/or sample co received for certain analyses	ed Oxygen ntainer		. 🗆		D
Container(s) for cer □ Volatile Organ	tain analysis free iics □ Dissolved	als □ Dissolved Metals of headspace Gases (RSK-175) □ Diss Ferrous Iron (SM 3500) □	olved Oxygen (SM 4	500)	🗖		Ø
Tedlar™ bag(s) free	e of condensation		• • • • • • • • • • • • • • • • • • • •	nk Lot Numb			ط ر
□ 125PB znna □ 2 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ Container: A = Ambe Preservative: b = buff	□ VOAh □ VOA 50AGB □ 250CC □ 1AGBna₂ □ □ 8ozCGJ □ 16c Canister □ Sorb r, B = Bottle, C = C fered, f = filtered, h	na₂ □ 100PJ □ 100PJna₂ BB □ 250CGBs □ 250PB 1AGBs □ 1PB □ 1PBna zCGJ □ Sleeve () □ ent Tube □ PUF □ lear, E = Envelope, G = Glass, = HCl, n = HNO ₃ , na = NaOH, x = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znr	□ 125AGB □ 125A □ 250PBn □ 500A □ □ EnCores [®] () □ Other Matrix (J = Jar, P = Plastic, an $na_2 = Na_2S_2O_3, p = H_3$	GBh □ 125/ GB □ 500AG □ □ □ TerraCores [©]): d z = Ziploc/Re PO₄, Label	AGBp GJ GJ GJ G G C C C C C C	125PB AGJs □ Bag :ed by: _/	

Return to Contents

2016-09-23 Revision

Calscience

WORK ORDER NUMBER: 16-11-0727

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Arcadis, US Inc. Client Project Name: CA-04931 GP09BPNA.C110 Attention: Jamey Peterson 100 Smith Ranch Road Suite 329 San Rafael, CA 94903-1925

Richard Villey)

Approved for release on 11/17/2016 by: Richard Villafania Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🛟 eurofins

Client Project Name:

Calscience

CA-04931 GP09BPNA.C110

Contents

Work Orde	er Number: 16-11-0727	
1	Work Order Narrative.	3
2	Sample Summary	4
3	Client Sample Data. 3.1 ASTM D-1946 Fixed Gases (Air). 3.2 ASTM D-1946 (M) Fixed Gases (H2 and/or He) (Air). 3.3 EPA TO-15 Full List (Air). 3.4 EPA TO-3 (M) GRO (Air).	5 5 7 9 13
4	Quality Control Sample Data. 4.1 Sample Duplicate. 4.2 LCS/LCSD.	14 14 15
5	Summa Canister Vacuum Summary	21
6	Sample Analysis Summary.	22
7	Glossary of Terms and Qualifiers.	23
8	Chain-of-Custody/Sample Receipt Form	24

Work Order: 16-11-0727

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/09/16. They were assigned to Work Order 16-11-0727.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Calscience

Client:	Arcadis, US Inc.	Work Order:	16-11-0727
	100 Smith Ranch Road, Suite 329	Project Name:	CA-04931 GP09BPNA.C110
	San Rafael, CA 94903-1925	PO Number:	GP09BPNA.C110.Q0000
		Date/Time Received:	11/09/16 10:00
		Number of Containers:	8
Attn:	Jamey Peterson		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SV-7	16-11-0727-1	11/07/16 13:02	1	Air
SV-8	16-11-0727-2	11/07/16 11:18	1	Air
SV-9	16-11-0727-3	11/07/16 12:19	1	Air
He-1-20161107	16-11-0727-4	11/07/16 11:20	1	Air
He-2-20161107	16-11-0727-5	11/07/16 12:19	1	Air
He-3-20161107	16-11-0727-6	11/07/16 12:59	1	Air
Trip Blank-20161107	16-11-0727-7	11/07/16 00:00	1	Air
DUP-20161107	16-11-0727-8	11/07/16 13:02	1	Air

Return to Contents

		Date Re	ceived:			11/09/16	
		Work O	rder:		16-11-0727		
		Prepara	tion:			N/A	
		Method:				ASTM D-1946	
		Units:				%v	
10					Pa	age 1 of 2	
Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
16-11-0727-1-A	11/07/16 13:02	Air	GC 65	N/A	11/11/16 12:24	161110L01	
	Result		RL	DF	Qua	alifiers	
	ND		0.500	1.00			
	1.56		0.500	1.00			
	18.8		0.500	1.00			
16-11-0727-2-A	11/07/16 11:18	Air	GC 65	N/A	11/11/16 12:42	161110L01	
· · · ·	Result	-	RL	DF	Qua	alifiers	
	ND		0.500	1.00			
	8.39		0.500	1.00			
	5.25		0.500	1.00			
16-11-0727-3-A	11/07/16 12:19	Air	GC 65	N/A	11/11/16 13:03	161110L01	
	Result		<u>RL</u>	DF	Qua	alifiers	
	ND		0.500	1.00			
	2.11		0.500	1.00			
	14.1		0.500	1.00			
16-11-0727-7-A	11/07/16 00:00	Air	GC 65	N/A	11/11/16 13:53	161110L01	
	Result		RL	DF	Qua	alifiers	
	ND		0.500	1.00			
	ND		0.500	1.00			
	1.20		0.500	1.00			
16-11-0727-8-A	11/07/16 13:02	Air	GC 65	N/A	11/11/16 14:16	161110L01	
	13.02						
	Result		RL	DF	Qua	alifiers	
	-		<u>RL</u> 0.500	<u>DF</u> 1.00	Qua	<u>alifiers</u>	
	Result				Qua	alifiers	
	Number 16-11-0727-1-A 16-11-0727-2-A 16-11-0727-3-A 16-11-0727-7-A	10 Lab Sample Date/Time Collected 16-11-0727-1-A 11/07/16 1.56 18.8 16-11-0727-2-A 11/07/16 18.8 16-11-0727-3-A 11/07/16 8.39 5.25 16-11-0727-3-A 11/07/16 12:19 Result ND 8.39 5.25 16-11-0727-7-A 11/07/16 2.11 14.1	Work Or Prepara Method: Units: 10 10 Lab Sample Date/Time Collected Matrix 16-11-0727-1-A 11/07/16 Air 16-11-0727-2-A 11/07/16 Air 16-11-0727-2-A 11/07/16 Air 16-11-0727-3-A 11/07/16 Air 110 14.1 Air 110 14.1 Air	Preparation: Method: Units: 10 Lab Sample Number Date/Time Collected Matrix Instrument 16-11-0727-1-A 11/07/16 Air GC 65 Result ND 0.500 1.56 0.500 18.8 0.500 18.8 0.500 16-11-0727-2-A 11/07/16 Air GC 65 18.8 0.500 18.8 0.500 16-11-0727-2-A 11/07/16 Air GC 65 16-11-0727-2-A 11/07/16 Air GC 65 16-11-0727-3-A 11/07/16 Air GC 65 16-11-0727-7-A 11/07/16 Air GC 65 11/07/16 Air GC 65 14.1 ND 0.500 2.11 0.500 14.1 0.500 14.1 0.500 16-11-0727-7-A 11/07/16 Air GC 65 16-11-0727-7-A 11/07/16 Air GC 65 ND 0.500 0.500 14.1 0.500 ND 0.500 0.500 1.20 0.500 ND 0.500 <td>Work Order: Preparation: Method: Units: Preparation: Method: Units: 10 Lab Sample Date/Time Collected Matrix Instrument Date Prepared 16-11-0727-1-A 11/07/16 Air GC 65 N/A 16-11-0727-1-A 11/07/16 Air GC 65 N/A 16-11-0727-2-A 11/07/16 Air GC 65 N/A 16-11-0727-2-A 11/07/16 Air GC 65 N/A 16-11-0727-2-A 11/07/16 Air GC 65 N/A 16-11-0727-3-A 11/07/16 Air GC 65 N/A 100 .500 1.00 1.00 1.00 11.1 0.500 1.00 1.00 1.00 11.1 0.500 1.00 1.00 11.20 <</td> <td>Work Order: Preparation: Method: Units: Preparation: Method: Units: Preparation: Method: Units: Preparation: Prepared Prepared Pate/Time Analyzed 10 Date/Time Matrix Instrument Prepared Pate/Time Analyzed 16-11-0727-1-A 11/07/16 Air GC 65 N/A 11/17/16 Result RL DE Quation Quation 16-11-0727-2-A 11/07/16 Air GC 65 N/A 11/17/16 16-11-0727-2-A 11/07/16 Air GC 65 N/A 11/17/16 16-11-0727-3-A 11/07/16 Air GC 65 N/A 11/17/16 11/11 0.500 1.00 1.00 1.00 1.00 2.11 0.500 1.00 1.00 1.00 1.0</td>	Work Order: Preparation: Method: Units: Preparation: Method: Units: 10 Lab Sample Date/Time Collected Matrix Instrument Date Prepared 16-11-0727-1-A 11/07/16 Air GC 65 N/A 16-11-0727-1-A 11/07/16 Air GC 65 N/A 16-11-0727-2-A 11/07/16 Air GC 65 N/A 16-11-0727-2-A 11/07/16 Air GC 65 N/A 16-11-0727-2-A 11/07/16 Air GC 65 N/A 16-11-0727-3-A 11/07/16 Air GC 65 N/A 100 .500 1.00 1.00 1.00 11.1 0.500 1.00 1.00 1.00 11.1 0.500 1.00 1.00 11.20 <	Work Order: Preparation: Method: Units: Preparation: Method: Units: Preparation: Method: Units: Preparation: Prepared Prepared Pate/Time Analyzed 10 Date/Time Matrix Instrument Prepared Pate/Time Analyzed 16-11-0727-1-A 11/07/16 Air GC 65 N/A 11/17/16 Result RL DE Quation Quation 16-11-0727-2-A 11/07/16 Air GC 65 N/A 11/17/16 16-11-0727-2-A 11/07/16 Air GC 65 N/A 11/17/16 16-11-0727-3-A 11/07/16 Air GC 65 N/A 11/17/16 11/11 0.500 1.00 1.00 1.00 1.00 2.11 0.500 1.00 1.00 1.00 1.0	

Return to Contents

Arcadis, US Inc. Date Receive				eived:			11/09/16		
100 Smith Ranch Road, Suit	e 329		Work Order:				16-11-0727		
San Rafael, CA 94903-1925			Preparation:				N/A		
			Method:				ASTM D-1946		
			Units:				%v		
Project: CA-04931 GP09BP1	NA.C110					Pa	age 2 of 2		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Method Blank	099-16-444-509	N/A	Air	GC 65	N/A	11/10/16 19:09	161110L01		
Parameter		Result	<u></u> <u></u>	<u>RL</u>	DF	Qua	alifiers		
Methane		ND	0	.500	1.00				
Carbon Dioxide			0	.500	1.00				
Carbon Dioxide		ND	0	.500	1.00				

Arcadis, US Inc.			Date Re	ceived:			11/09/16
100 Smith Ranch Road, Suite 329			Work Or	der:			16-11-0727
San Rafael, CA 94903-1925			Preparat	tion:			N/A
			Method:			AST	M D-1946 (M)
			Units:				%v
Project: CA-04931 GP09BPNA.C1	10					Pa	ge 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-7	16-11-0727-1-A	11/07/16 13:02	Air	GC 55	N/A	11/09/16 20:16	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0100	1.00		
SV-8	16-11-0727-2-A	11/07/16 11:18	Air	GC 55	N/A	11/09/16 19:39	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0100	1.00		
SV-9	16-11-0727-3-A	11/07/16 12:19	Air	GC 55	N/A	11/09/16 18:36	161109L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Helium		0.0312		0.0100	1.00		
He-1-20161107	16-11-0727-4-A	11/07/16 11:20	Air	GC 55	N/A	11/09/16 15:29	161109L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Helium		10.5		0.0200	2.00		
He-2-20161107	16-11-0727-5-A	11/07/16 12:19	Air	GC 55	N/A	11/09/16 17:14	161109L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Helium		6.79		0.0100	1.00		
He-3-20161107	16-11-0727-6-A	11/07/16 12:59	Air	GC 55	N/A	11/09/16 16:54	161109L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Helium		7.89		0.0100	1.00		
Trip Blank-20161107	16-11-0727-7-A	11/07/16 00:00	Air	GC 55	N/A	11/09/16 17:37	161109L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Helium		ND		0.0100	1.00		
DUP-20161107	16-11-0727-8-A	11/07/16 13:02	Air	GC 55	N/A	11/09/16 17:58	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0100	1.00		

Arcadis, US Inc.			Date Rece	eived:	11/09/16		
100 Smith Ranch Road, Suite 3	329		Work Ord	er:	16-11-0727		
San Rafael, CA 94903-1925			Preparatio	on:	N/A		
			Method:			AST	M D-1946 (M)
			Units:				%v
Project: CA-04931 GP09BPNA	C110					Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-872-1000	N/A	Air	GC 55	N/A	11/09/16 10:45	161109L01
Parameter		<u>Result</u>	Ē	<u>RL</u>	DF	Qua	lifiers
Helium		ND	C	0.0100	1.00		

Return to Contents

Calscience

	Data Dagaiwadi	11/00/10
Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: CA-04931 GP09BPNA.C110		Page 1 of 4

Project: CA-04931 GP09BPNA.C110

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-7	16-11-0727-1-A	11/07/16 13:02	Air	GC/MS NN	N/A	11/11/16 18:35	161111L01
Parameter		Result	Ē	<u>RL</u>	DF	Qua	lifiers
Benzene		ND	1	.6	1.00		
Ethylbenzene		ND	2	2.2	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	7	.2	1.00		
o-Xylene		ND	2	2.2	1.00		
p/m-Xylene		ND	8	8.7	1.00		
Xylenes (total)		ND	2	2.2	1.00		
Tert-Butyl Alcohol (TBA)		ND	6	5.1	1.00		
Toluene		2.0	1	.9	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		78	6	8-134			
1,2-Dichloroethane-d4		90	6	57-133			
Toluene-d8		89	7	0-130			

SV-8	16-11-0727-2-A	11/07/16 11:18	Air GC/MS NN	N/A	11/12/16 17:02	161112L04
Comment(s): - Reporting limit is elevate	d due to high levels	of non-target hy	drocarbons.			
Parameter		<u>Result</u>	<u>RL</u>	DF	<u>Qua</u>	alifiers
Benzene		ND	32	20.0		
Ethylbenzene		ND	43	20.0		
Methyl-t-Butyl Ether (MTBE)		ND	140	20.0		
o-Xylene		ND	43	20.0		
p/m-Xylene		ND	170	20.0		
Xylenes (total)		ND	43	1.00		
Tert-Butyl Alcohol (TBA)		ND	120	20.0		
Toluene		ND	38	20.0		
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		92	68-134			
1,2-Dichloroethane-d4		94	67-133			
Toluene-d8		126	70-130			

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: CA-04931 GP09BPNA.C110		Page 2 of 4

Project: CA-04931 GP09BPNA.C110

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-9	16-11-0727-3-A	11/07/16 12:19	Air	GC/MS NN	N/A	11/11/16 19:36	161111L01
Parameter		Result	ļ	RL	DE	Qua	lifiers
Benzene		30		2.0	1.23		
Ethylbenzene		38	2	2.7	1.23		
Methyl-t-Butyl Ether (MTBE)		360	8	3.9	1.23		
o-Xylene		33	2	2.7	1.23		
p/m-Xylene		97		11	1.23		
Xylenes (total)		130	2	2.7	1.00		
Tert-Butyl Alcohol (TBA)		ND	-	7.5	1.23		
Toluene		190	2	2.3	1.23		
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		101	(68-134			
1,2-Dichloroethane-d4		90	(67-133			
Toluene-d8		116	-	70-130			

Trip Blank-20161107	16-11-0727-7-A	11/07/16 00:00	Air GC/MS	S NN N/A	11/11/16 17:44	161111L01
Parameter		Result	<u>RL</u>	DF	Qua	lifiers
Benzene		ND	1.6	1.00		
Ethylbenzene		ND	2.2	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	7.2	1.00		
o-Xylene		ND	2.2	1.00		
p/m-Xylene		ND	8.7	1.00		
Xylenes (total)		ND	2.2	1.00		
Tert-Butyl Alcohol (TBA)		ND	6.1	1.00		
Toluene		ND	1.9	1.00		
Surrogate		<u>Rec. (%)</u>	Control Lim	nits Qualifiers		
1,4-Bromofluorobenzene		77	68-134			
1,2-Dichloroethane-d4		90	67-133			
Toluene-d8		91	70-130			

Co	0.00		
2	SC	ien	ICP
	130		

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: CA-04931 GP09BPNA.C110		Page 3 of 4

Project: CA-04931 GP09BPNA.C110

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DUP-20161107	16-11-0727-8-A	11/07/16 13:02	Air	GC/MS NN	N/A	11/11/16 20:37	161111L01
Parameter		Result	ļ	RL	DF	Qua	alifiers
Benzene		4.7		2.2	1.39		
Ethylbenzene		ND	;	3.0	1.39		
Methyl-t-Butyl Ether (MTBE)		ND		10	1.39		
o-Xylene		ND	;	3.0	1.39		
p/m-Xylene		ND		12	1.39		
Xylenes (total)		ND	:	3.0	1.00		
Tert-Butyl Alcohol (TBA)		ND	8	3.4	1.39		
Toluene		3.7	:	2.6	1.39		
<u>Surrogate</u>		<u>Rec. (%)</u>	9	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		79	(68-134			
1,2-Dichloroethane-d4		86	(67-133			
Toluene-d8		88	-	70-130			

Method Blank	095-01-021-17716	N/A	Air	GC/MS NN	N/A	11/11/16 15:35	161111L01
Parameter		<u>Result</u>	RL		DF	Qua	alifiers
Benzene		ND	1.6	;	1.00		
Ethylbenzene		ND	2.2	2	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	7.2	2	1.00		
o-Xylene		ND	2.2	<u>!</u>	1.00		
p/m-Xylene		ND	8.7		1.00		
Xylenes (total)		ND	2.2	2	1.00		
Tert-Butyl Alcohol (TBA)		ND	6.1		1.00		
Toluene		ND	1.9)	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		77	68 [.]	-134			
1,2-Dichloroethane-d4		89	67	-133			
Toluene-d8		89	70-	-130			

Calscience

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: CA-04931 GP09BPNA.C110		Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-021-17728	N/A	Air	GC/MS NN	N/A	11/12/16 15:04	161112L04
Parameter		Result	<u> </u>	RL	DF	Qua	lifiers
Benzene		ND		1.6	1.00		
Ethylbenzene		ND	:	2.2	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	-	7.2	1.00		
o-Xylene		ND	:	2.2	1.00		
p/m-Xylene		ND	:	3.7	1.00		
Xylenes (total)		ND	:	2.2	1.00		
Tert-Butyl Alcohol (TBA)		ND	(5.1	1.00		
Toluene		ND		1.9	1.00		
Surrogate		<u>Rec. (%)</u>	9	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		79	(68-134			
1,2-Dichloroethane-d4		89	(67-133			
Toluene-d8		92	-	70-130			

Arcadis, US Inc.			Date Re	ceived:			11/09/16
100 Smith Ranch Road, Suite 329)		Work O	rder:			16-11-0727
San Rafael, CA 94903-1925			Prepara	tion:			N/A
			Method:				EPA TO-3M
			Units:				ug/m3
Project: CA-04931 GP09BPNA.C	110					Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-7	16-11-0727-1-A	11/07/16 13:02	Air	GC 38	N/A	11/10/16 14:03	161110L01
Parameter		Result		RL	DE	Qua	alifiers
Gasoline Range Organics (C6-C12)		ND		3800	1.00		
SV-8	16-11-0727-2-A	11/07/16 11:18	Air	GC 38	N/A	11/09/16 18:08	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Gasoline Range Organics (C6-C12)		2200000		7600	2.00		
SV-9	16-11-0727-3-A	11/07/16 12:19	Air	GC 38	N/A	11/09/16 16:57	161109L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Gasoline Range Organics (C6-C12)		68000		3800	1.00		
Trip Blank-20161107	16-11-0727-7-A	11/07/16 00:00	Air	GC 38	N/A	11/09/16 15:00	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Gasoline Range Organics (C6-C12)		ND		3800	1.00		
DUP-20161107	16-11-0727-8-A	11/07/16 13:02	Air	GC 38	N/A	11/09/16 16:21	161109L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Gasoline Range Organics (C6-C12)		ND		3800	1.00		
Method Blank	099-14-431-664	N/A	Air	GC 38	N/A	11/09/16 10:58	161109L01
Parameter		Result		RL	DF	Qua	alifiers
Gasoline Range Organics (C6-C12)		ND		3800	1.00		
Method Blank	099-14-431-665	N/A	Air	GC 38	N/A	11/10/16 13:00	161110L01
Parameter		Result		RL	DE	Qua	alifiers
Gasoline Range Organics (C6-C12)		ND		3800	1.00		

Quality Control - Sample Duplicate

Arcadis, US Inc.			Date Received	1:		11/09/16
100 Smith Ranch Road, S	Suite 329		Work Order:			16-11-0727
San Rafael, CA 94903-19	25		Preparation:			N/A
			Method:			EPA TO-3M
Project: CA-04931 GP098	BPNA.C110					Page 1 of 1
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
SV-8	Sample	Air	GC 38	N/A	11/09/16 18:08	161109D01
SV-8	Sample Duplicate	Air	GC 38	N/A	11/09/16 18:48	161109D01
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers

2342000

8

0-20

Gasoline Range Organics (C6-C12)

Sample Conc. 2160000

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	ASTM D-1946
Project: CA-04931 GP09BPNA.C110		Page 1 of 6

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared Date	Analyzed	LCS/LCSD B	atch Number
099-16-444-509	LCS	Air		GC 65	N/A	11/10	0/16 18:25	161110L01	
099-16-444-509	LCSD	Air		GC 65	N/A	11/10	0/16 18:48	161110L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Methane	4.500	4.467	99	4.361	97	80-120	2	0-30	
Carbon Dioxide	15.00	15.41	103	15.13	101	80-120	2	0-30	
Oxygen (+ Argon)	4.010	3.853	96	4.230	105	80-120	9	0-30	

🛟 eurofins

Parameter

Helium

Quality Control - LCS/LCSD

Arcadis, US Inc.			Date Receiv	ved:		11/09/16
100 Smith Ranch Road, Suite 329 Work Order:				16-11-0727		
San Rafael, CA 94903-19	25		Preparation	1:		N/A
						ASTM D-1946 (M)
Project: CA-04931 GP09E	BPNA.C110					Page 2 of 6
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-872-1000	LCS	Air	GC 55	N/A	11/09/16 10:05	161109L01
099-12-872-1000	LCSD	Air	GC 55	N/A	11/09/16 10:25	161109L01

LCSD <u>%Rec.</u>

94

LCSD Conc.

0.9436

<u>%Rec. CL</u>

80-120

<u>RPD</u>

2

RPD CL

0-30

Qualifiers

1.000

 Spike Added
 LCS
 Conc.
 LCS

 1.000
 0.9282
 93

Return to Contents

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-15
Project: CA-04931 GP09BPNA.C110		Page 3 of 6

Project: CA-04931 GP09BPNA.C110

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD B	atch Number
095-01-021-17716	LCS	Air		GC/MS NN	N/A	11/1 ⁻	1/16 12:46	161111L01	
095-01-021-17716	LCSD	Air		GC/MS NN	N/A	11/1 ⁻	1/16 13:39	161111L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	79.87	72.26	90	71.98	90	70-130	0	0-30	
Ethylbenzene	108.6	108.4	100	107.1	99	70-130	1	0-30	
Methyl-t-Butyl Ether (MTBE)	90.13	74.35	82	74.53	83	68-130	0	0-30	
o-Xylene	108.6	105.8	97	105.0	97	69-130	1	0-30	
p/m-Xylene	217.1	224.4	103	221.0	102	70-132	2	0-30	
Tert-Butyl Alcohol (TBA)	151.6	121.3	80	121.8	80	66-144	0	0-30	
Toluene	94.21	92.91	99	91.06	97	70-130	2	0-30	

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-15
Project: CA-04931 GP09BPNA.C110		Page 4 of 6

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared Date	Analyzed	LCS/LCSD B	atch Number
095-01-021-17728	LCS	Air		GC/MS NN	N/A	11/12	2/16 12:17	161112L04	
095-01-021-17728	LCSD	Air		GC/MS NN	N/A	11/12	2/16 13:10	161112L04	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	79.87	77.01	96	76.06	95	70-130	1	0-30	
Ethylbenzene	108.6	113.1	104	113.3	104	70-130	0	0-30	
Methyl-t-Butyl Ether (MTBE)	90.13	77.78	86	78.68	87	68-130	1	0-30	
o-Xylene	108.6	110.5	102	110.4	102	69-130	0	0-30	
p/m-Xylene	217.1	232.6	107	230.1	106	70-132	1	0-30	
Tert-Butyl Alcohol (TBA)	151.6	127.6	84	128.6	85	66-144	1	0-30	
Toluene	94.21	95.19	101	94.94	101	70-130	0	0-30	

🛟 eurofins	
	Calscience

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-3M
Project: CA-04931 GP09BPNA.C110		Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared	Date Ana	alyzed	LCS Batch I	Number
099-14-431-664	LCS	Air	GC 38	N/A		11/09/16	10:12	161109L01	
Parameter		Spike Added	Conc. Recove	ered	LCS %Re	: <u>C.</u>	%Rec.	CL	<u>Qualifiers</u>
Gasoline Range Organics (C6-C12)		382400	314200		82		80-120)	

🛟 eurofins	
	Calscience

Arcadis, US Inc.	Date Received:	11/09/16
100 Smith Ranch Road, Suite 329	Work Order:	16-11-0727
San Rafael, CA 94903-1925	Preparation:	N/A
	Method:	EPA TO-3M
Project: CA-04931 GP09BPNA.C110		Page 6 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared Da	te Analyzed	LCS Batch Number	
099-14-431-665	LCS	Air	GC 38	N/A	11/	/10/16 12:05	161110L01	
Parameter		Spike Added	Conc. Recov	rered	LCS %Rec.	<u>%Rec.</u>	CL Qualifiers	
Gasoline Range Organics (C6-C1	2)	382400	426600		112	80-120)	

🛟 eurofins

Calscience

Summa Canister Vacuum Summary

Work Order: 16-11-0727

Work Order: 16-11-0727				Page 1 of 1
Sample Name	Vacuum Out	Vacuum In	Equipment	Description
SV-7	-29.50 in Hg	-6.50 in Hg	LC002	Summa Canister 1L
SV-8	-29.50 in Hg	-5.40 in Hg	LC1096	Summa Canister 1L
SV-9	-29.50 in Hg	-5.00 in Hg	LC463	Summa Canister 1L
He-1-20161107	-29.50 in Hg	-5.00 in Hg	LC375	Summa Canister 1L
He-2-20161107	-29.50 in Hg	-5.80 in Hg	LC1089	Summa Canister 1L
He-3-20161107	-29.50 in Hg	-7.00 in Hg	LC197	Summa Canister 1L
Trip Blank-20161107	10.00 psi	9.50 psi	LC833	Summa Canister 1L
DUP-20161107	-29.50 in Hg	-6.40 in Hg	LC361	Summa Canister 1L

Calscience

Work Order: 16-11-0727				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
ASTM D-1946	N/A	1074	GC 65	2
ASTM D-1946 (M)	N/A	929	GC 55	2
ASTM D-1946 (M)	N/A	1078	GC 55	2
EPA TO-15	N/A	866	GC/MS NN	2
EPA TO-3M	N/A	929	GC 38	2
EPA TO-3M	N/A	1074	GC 38	2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

🔅 eurofins

Calscience

Glossary of Terms and Qualifiers

Work Order: 16-11-0727

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. Х % Recovery and/or RPD out-of-range. Ζ Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

🔅 eurofins										AIR C	HAIN-OF				ORD	
Calscience				WO NO. / LAB USE ONLY				DATE: 11/7/16								
7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us.				16-11-0727				PAGE: OF					-			
LABORATORY CLIENT: ARCADIS			CLIENT		-			P.O. NO.:					ha			
ADDRESS:	$c_1 \cap l$	300				<u>BP</u>	<u>CA-4</u>	931		GAPO9 BP NA. CHO. 200					po	
OTY: C E	STATE	<u>au</u>	^{ZIP:} 9410		PROJE	PROJECT CONFACT:				LAB CONTACT OR QUO			VII.C :			
TEL: Jen traincis	E-MAIL 06				PROJE	PROJECT ADDRESS PROJECT ADDRES				SAMPLER(S): (PRINT)				da Ta		
TURNAROUND TIME (Rush surcharges m	ay apply to any TAT not (STANDARD"):	Son @ "	avcadia	5.Cow	2 7	31 W.	Mac K	thur l	Lvd,		ALARIC	n l	NG	ORV	2	9
	1/	5 DAYS	STANDAF	RD	CITY:			<u></u>	STATE: Z	<u>(</u> P: (A STREET	REQU	JESTE	2	1
						Oa kla	ind		<u>CA</u>			Ř.		LYSES		
	Cameron. McGro	Jern@	ar cad	i is (du	h						•				146	Ĩ.
			4	13.000	- X							17	द्री	No.	10	
											•	t	ŝ	$P[\bar{\mathcal{R}}]$		ľ
												Ó	D,	42	E.	\vdash
	·												IJ	RF	N.	
												3		ZA	\bigcirc	
		MATRIX	SAM	PLING EQUIPN	VENT	START S	AMPLING INFO		STOP SA	MPLING INFOR	MATION	÷	0			
LAB USE SAMPLE ID ONLY	FIELD ID / POINT OF COLLECTION	Indoor (I) Soil Vap. (SV)	Media	Canister Size	Flow Controller		Time	Canister Pressure		Time	Canister Pressure	E	E.	19	+	
1 SV-7		Ambient (A)	$\frac{1}{1000}$	6L or 1L	Struze		(24 hr clock)	(in Hg)		(24 hr clock)	(in Hg) - 5	X		×	-	1
$2 \leq \sqrt{-8}$			C109/	<u> </u>	SG11 208	14 1/10	llog	1	1 1	ling	-5		$\frac{1}{1}$	$\frac{1}{1}$		
3 SV-9			C463		SGM 317		1208			1219	-6		\mathbf{V}	V		
4 He - 1- 2016/10	07 SV-8	AL	L375		KM423		1109			120	-6				\varkappa	
+He-2-20161			C1089		GM293		1208			1219	~5					Į
6 He - 3-2016	1107 SV-7	VL	<u>C197</u>	<u> </u>	SGM345	Y_	1245	V		1259	-5				V	
1x784/001/02/02/00	0161107	A	6833	<u></u>		¥.		-10	Y I	and the second s	10	X	<u> </u>	X		1
8 DUP-2016/10	7 SV-7	SV L	2361	\mathbf{V}		V	1245	-30		1302	-7	X	<u>×</u> .	<u>×</u>		1
												┠─┤	<u> </u>		-	
Relinquished by: (Signature)	1			Received by	: (Signature/Affili	ation)		L		Date:		┖──┼	Time:			Page
Relinquished by: (Signaterie)	500 11/7/	16 134	10		r: (Signature/Affili		- <i>u</i> _l	17/16	1340	- Data	-		7			ge 2
Refinquished by: (Signatere)	10/ 1/81	14 0	900	Received by	: (Signature/Affili				(a)		1109	116	Time:	1000	Ð	24 of
Relinquished by: (Signature)				Received by	: (Signature/Affili	ation)				Date		·	Time:			26
			<u> </u>]

4.

100

Return to Contents

0727

S.

N.Y.

5.80 (2.3)

: eurofins			R NUMBER:	16-1 [°]	ge 26 of	127
Calscience	PLE RECEIPT	CHECKLIST	C	OOLER	<u> </u>	F
CLIENT: Arcadls			DA	г е: 11 /	109_1	2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, no Thermometer ID: SC3A (CF: 0.0°C); Tempera □ Sample(s) outside temperature criteria (□ Sample(s) outside temperature criteria (□ Sample(s) received at ambient temperature Ambient Temperature: □ Air □ Filter	ature (w/o CF): (PM/APM contacted but received on ice/c	°C (w/ CF): by:) hilled on same day (□ Samj ed by:	
CUSTODY SEAL: Cooler	esent but Not Intact esent but Not Intact	☑ Not Present ☑ Not Present	□ N/A □ N/A		ed by: ed by: <u>[[</u>	1
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) receive COC document(s) received complete				Yes	No □ □	N/A □ □
□ No analysis requested □ Not relinquis Sampler's name indicated on COC Sample container label(s) consistent with CO Sample container(s) intact and in good condi Proper containers for analyses requested Sufficient volume/mass for analyses requested	shed □ No relinquis DC tion	hed date □ No reli				
Samples received within holding time Aqueous samples for certain analyses rec □ pH □ Residual Chlorine □ Dissolved Proper preservation chemical(s) noted on CC Unpreserved aqueous sample(s) received	eived within 15-minu d Sulfide □ Dissolvo DC and/or sample co d for certain analyses	ute holding time ed Oxygen ntainer				ے لا
 □ Volatile Organics □ Total Metals □ I Container(s) for certain analysis free of head □ Volatile Organics □ Dissolved Gases □ Carbon Dioxide (SM 4500) □ Ferrous 	space (RSK-175) □ Diss	olved Oxygen (SM 4	500)			Ø
Tedlar [™] bag(s) free of condensation		(Trip Bla	ink Lot Numb	er:)
Aqueous: \Box VOA \Box VOAh \Box VOAna ₂ \Box \Box 125PBznna \Box 250AGB \Box 250CGB \Box 2 \Box 500PB \Box 1AGB \Box 1AGBna ₂ \Box 1AGBs Solid: \Box 4ozCGJ \Box 8ozCGJ \Box 16ozCGJ \Box Air: \Box Tedlar TM \Box Canister \Box Sorbent Tube Container: A = Amber, B = Bottle, C = Clear, E = Preservative: b = buffered, f = filtered, h = HCl, n s = H ₂ SO ₄ , u = ultra-pure, x = Na ₂ S	50CGBs □ 250PB □ 1PB □ 1PBna □ Sleeve () □ e □ PUF □ Envelope, G = Glass, = HNO ₃ , na = NaOH,	□ 250PBn □ 500A □ □ EnCores [®] () Other Matrix () J = Jar, P = Plastic, ar na₂ = Na₂S₂O₃, p = H₃	.GB □ 500AG □ □ TerraCores [®]): [nd Z = Ziploc/Re ₃ PO ₄ , Labele	J [] 500 [()] sealable f ed/Check	AGJs] □ 3ag	1053

Return to Contents

Arcadis U.S., Inc.

100 Montgomery Street Suite 300 San Francisco, California 94104 Tel 415 374 2744 Fax 415 374 2745

www.arcadis.com

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type:	GEO_REPORT
<u>Report Title:</u>	Site Investigation and Soil Vapor Sampling Report 121616
<u>Report Type:</u>	Site Investigation
<u>Report Date:</u>	12/16/2016
Facility Global ID:	T0600100110
Facility Name:	ARCO #04931
File Name:	CA 4931 161216 BP - Site Investigation and Soil Vapor Sampling Report.pdf
<u>Organization</u> Name:	ARCADIS
<u>Username:</u>	ARCADISBP
IP Address:	199.116.168.108
<u>Submittal</u> Date/Time:	12/16/2016 1:24:36 PM
<u>Confirmation</u> <u>Number:</u>	3424264729

Copyright © 2016 State of California