51 D 365

PFIZER PIGMENTS INC.

A subsidiary of Pfizer Inc. 4650 SHELLMOUND ST., P.O. BOX 8215 • EMERYVILLE, CA 94662-0905 415 / 653-6151

August 17, 1988

HAZARDOUS MATERIALS/ WASTE PROGRAM.

Alameda County Division of Environmental Health Underground Storage Tank Unit 470-27th Street, Room 324 Oakland, CA 94612

Attention: Ms. Lizabeth Rose

Enclosed you will find the final report and recommendations regarding the site of the removed underground waste oil tank at the Pfizer Pigments Inc. Emeryville plant.

As described in the report, we are recommending that semi-annual monitoring of solvents in the ground-water be instituted to detect any downgradient migration. We anticipate biodegradation of the solvents in the pit area. We also recommend that absorbed oil and grease in the soil be left in place without remediation.

Please direct any questions or comments to me at the above address.

Michael S. Herzog Manager, Process Engineering

MSH/jm \wp\m\msh260

cc: G. L. Metcalf W. E. McCoy

UNDERGROUND STORAGE TANK SITE INVESTIGATION

1

1

i i

Pfizer Pigments, Inc. Emeryville, California

-

August 12, 1988

Job No. 04711

ROUX ASSOCIATES 1430 Willow Pass Road - Suite 140 Concord, California 94520 (415)685-8742

CONTENTS

Page	3
SUMMARY	-
INTRODUCTION	}
METHODS OF INVESTIGATION	5
HYDROGEOLOGIC CONDITIONS Regional Hydrogeology))
RESULTS OF LABORATORY ANALYSES	;
DISCUSSION OF GROUND-WATER CONTAMINATION	7 7 3
DISCUSSION OF SOIL CONTAMINATION	3
RECOMMENDATIONS	3
REFERENCES)

FIGURES

.

Following Page

-

i.

1.	Location of Site	3
	Location of Soil Borings and Monitoring Wells5	
	Monitoring Well Construction Diagram	
	Geologic Cross-Section A-A'11	
5.	Geologic Cross-Section B-B'11	L
6.	Distribution of Oil and Grease21	L

TABLES

T

		Following Page	2
1.	Well Construction Details	7	
2.	Water Level Measurements		
	Soil Analyses		
	Water Analyses		
5.	Physical and Chemical Properties of Sol	vents17	

APPENDICES

- Α.
- Geologic Logs Chain-of-Custody Forms в.
- C.
- Laboratory Reports Ground-water Sampling Protocols D.

SUMMARY

An underground storage tank used for storage of waste oil and a minor amount of laboratory and shop solvents was removed from the Pfizer Pigments Emeryville, California Plant in December, 1987. Following tank removal, soil contamination was detected in a sample collected from the open tank pit excavation. This report presents the results of a site investigation completed between February and July, 1988 to assess soil and ground-water contamination from the leaking underground storage tank. The investigation included the drilling and sampling of 11 soil borings and installation, development, and sampling of 6 monitoring wells.

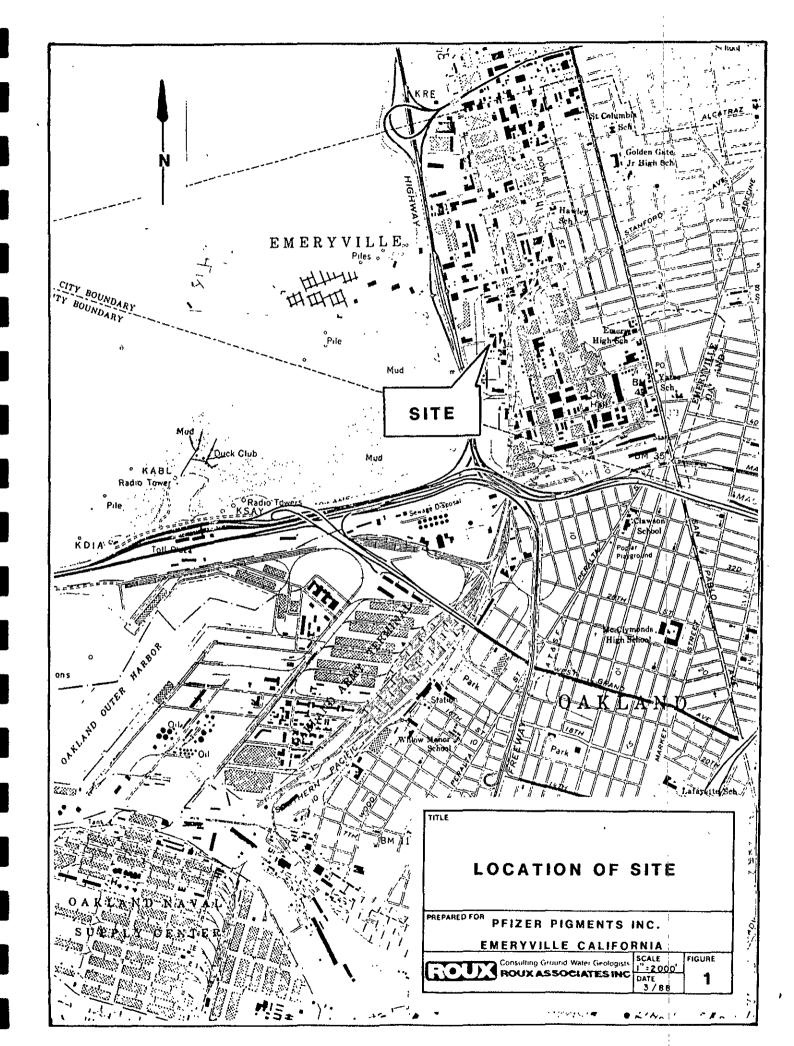
Dissolved solvents were detected within the imm liate vicinity of the former tank pit. Ground-water sampling detected acetone, 2-butanone, and hexone (MIBK) along with trace concentrations of d rlr ene monitoring well within the former tank pit. Other monitoring wells on the Site including wells downgradient from the tank pit showed Not Detected results for all analyses. Ground water appears to be partially stagnant within the tank pit area.

Monitoring of wells RW-2, RW , and I -4 is recommended to confirm that solvents do not migrate from the tank pit area and to assess the rate of degradation of solvents. Based on the minor amount of solvents estimated to be

present, natural biodegradation and dispersion are expected to reduce the dissolved solvents to acceptable levels within the period of a few years. If ground-water monitoring indicates that solvent levels do not decrease at a sufficient rate or if solvents are detected in any downgradient monitoring wells, pumping and surface treatment of the contaminated ground water is recommended.

Soils in the immediate vicinity of the tank pit had Not Detected levels of priority pollutants, base/neutrals, and total petroleum hydrocarbons. The solvents detected in ground water are below detection limits in the soils. Oil and grease were within background levels within soils in the immediate vicinity of the former tank pit indicating that little or no waste oil was discharged from the tank.

Oil and grease from an unknown, probably older source is adsorbed to soils within an area west and northwest of the former tank pit. No recent or current sources of subsurface oil are known within the immediate vicinity of the oil and grease contamination. The adsorbed oil and grease is not soluble or volatile and does not nose a the thick human of the other sources. Oil and grease was below detection limits in ground water throughout the Site. Conventional remediation of the adsorbed oil and grease is not feasible. Therefore, we recommend that the oil and grease be left in place without nonodiction


INTRODUCTION

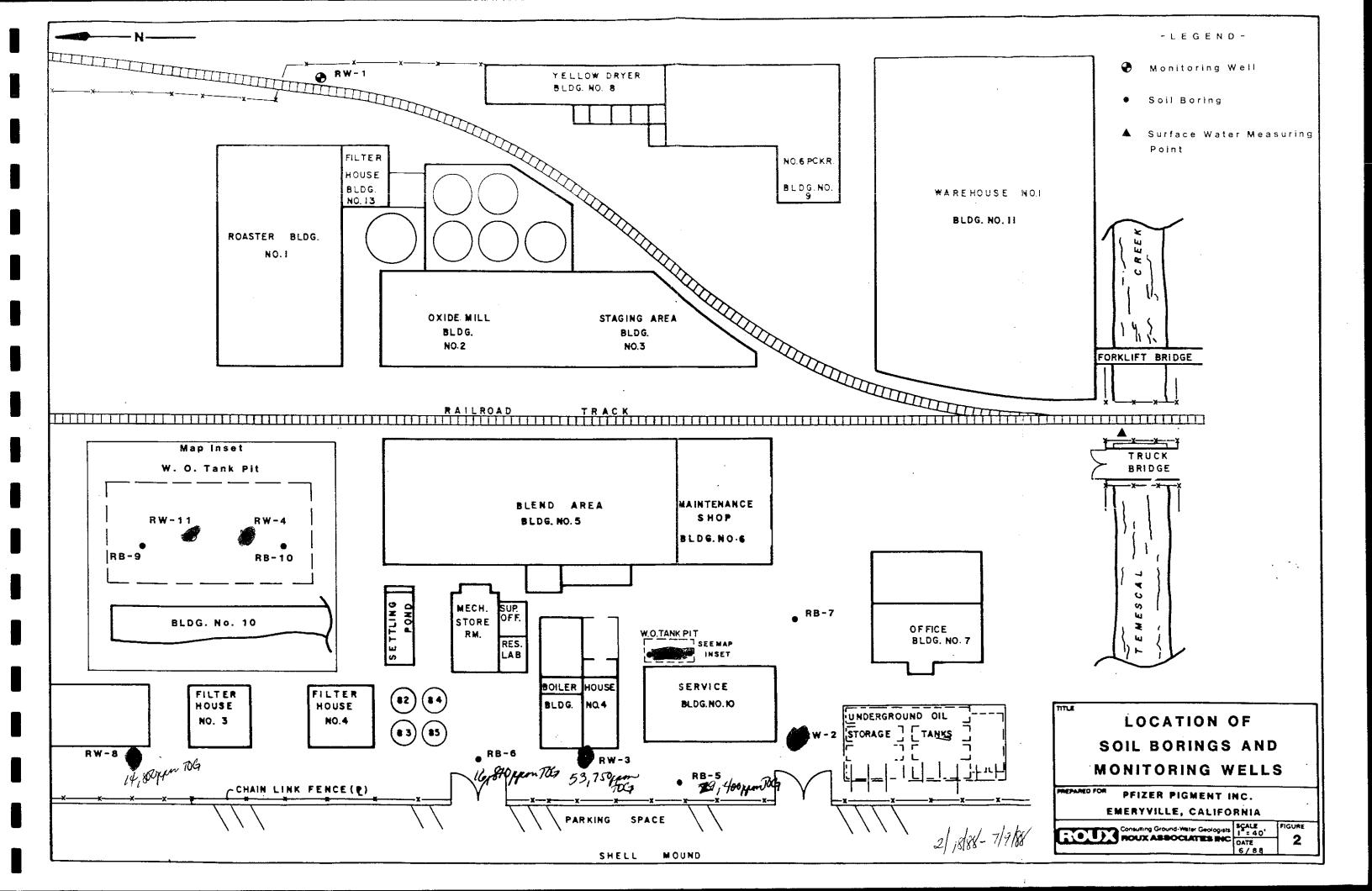
This report presents the results of a site investigation to assess soil and ground-water contamination from a leaking underground storage tank at the Pfizer Pigments Plant in Emeryville, California. The Pfizer Pigments Plant (Site) is located at 4650 Shellmound Street in a mainly industrial area of Emeryville (Figure 1). The Site is bordered on the north, south, and west by industrial businesses. A retail shopping center and vacant lot are east of the Site. San Francisco Bay is about 1000 ft west of the Plant.

An underground storage tank was removed from the Pfizer Pigments Plant on December 1, 1987. Following tank removal, a soil sample was collected from the open tank pit excavation by R. Larsen of Brown and Caldwell Laboratories. Laboratory analysis of the sample indicated that the soil contained 4 mg/kg acetone, 20 mg/kg 2-hexanone, 490 mg/kg oil and grease, and 720 mg/kg total fuel hydrocarbons. An Underground Storage Tank Unauthorized Release (Leak)/ Contamination Site Report was filed with the appropriate regulatory agencies by Pfizer Pigments Inc.

The underground storage tank was a steel tank with a capacity of about 350 gallons. The tank was placed into service in 1972. Waste oil and a minor amount of laboratory and shop solvents were stored in the tank prior to periodic offsite disposal. Storage of waste oil in the tank was discontinued in 1985; only solvents were added to the tank

during the last two years of service.

Roux Associates has been retained by Pfizer Pigments Inc. to conduct a site assessment characterizing the extent and nature of contamination from the leaking storage tank. An initial investigation that included the drilling and sampling of four soil borings was conducted February 18th and 19th, 1988. Each of the soil borings was converted to a ground-water monitoring well. Based on results from soil and ground-water sampling in the initial investigation, an additional investigation was planned. Seven soil borings were drilled and sampled between May 2nd and 5th, 1988. Two of the borings were converted to monitoring wells. Water levels have been periodically measured in the monitoring wells since installation of the wells.


METHODS OF INVESTIGATION

Subsurface soil and water conditions were investigated from February 18, 1988 through July 9, 1988 at Pfizer's Emeryville, California Plant. The investigation included the drilling of eleven soil borings, installation of six monitoring wells, soil and water sampling/analysis, and water level measurements. Soil boring and monitoring well locations are shown on Figure 2.

Soil Borings and Sampling

The soil borings were drilled and the monitoring wells were installed using a truck mounted hollow stem auger rig, under the direction of Roux Associates. California splitspoon samplers with brass tube inner liners were collected at five-foot intervals ahead of the auger flights by placing the sampler through the hollow stem of the augers to the bottom of the borehole and then by driving it into undisturbed sediments with a 140 lb. hammer. The California sampler was then withdrawn from the borehole and the inside liners removed. Both ends of one liner were immediately covered with a sheet of teflon, capped with plastic end caps and wrapped with electrical tape. The liner was then labeled and placed on ice.

The soil in the remaining liners was extruded, examined and logged by the hydrogeologist. Geologic logs are given in

Appendix A. The California sampler and liners were cleaned between uses by scrubbing with a brush and detergent solution then rinsing with clean water. The auger flights were steam cleaned prior to initial use, in between borings, and after completion of drilling. Soil cuttings generated during drilling were stored on-site in sealed drums until laboratory analyses were completed.

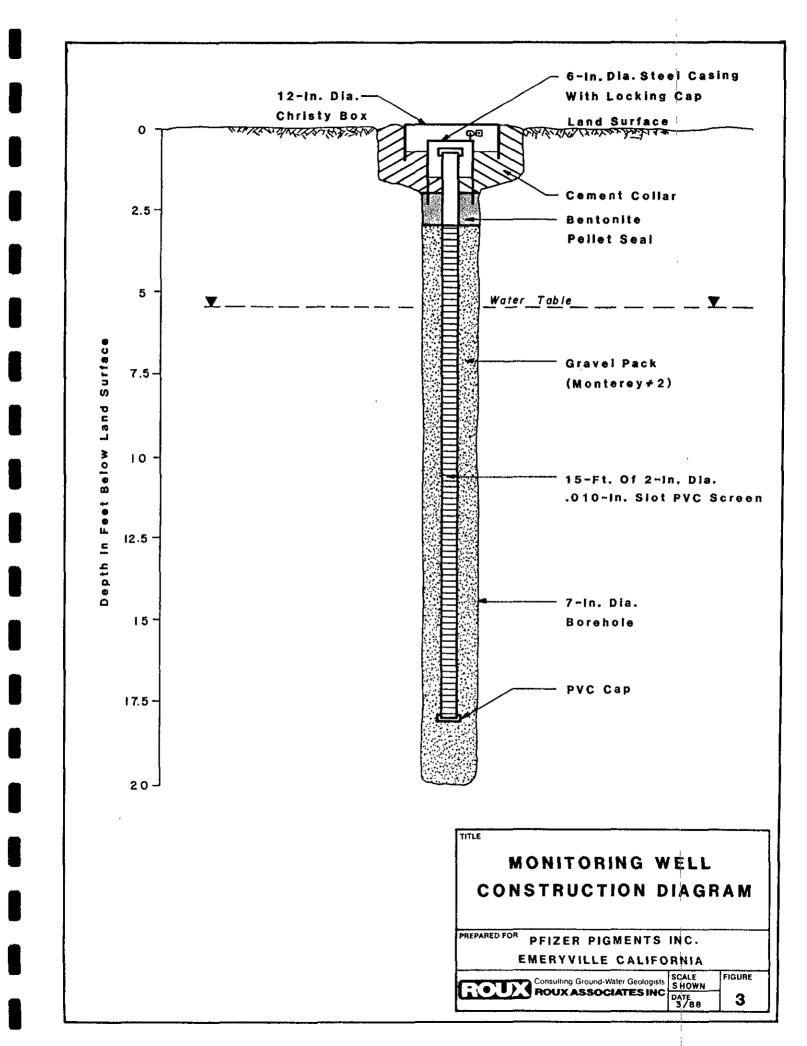
A total of 18 soil samples were submitted to Curtis and Tompkins laboratory for analysis. A chain-of-custody was maintained through delivery of the samples to the laboratory. Chain-of-custody forms are included in Appendix B. Laboratory reports are given in Appendix C. Soil analyses are discussed in a later section of the report.

Monitoring Well Installation

After the boreholes for the monitoring wells were advanced to the desired depth, a 15-foot long, threaded, 2inch diameter, PVC slotted (0.010 inch slot) section and an appropriate length of blank PVC riser pipe was placed in each borehole. The screen zone was gravel packed with Monterey #2 sand. A one-foot thick layer of bentonite pellets was emplaced above the sand pack. A locking 6-inch diameter, 2foot long steel pipe was then placed over the well and a Christy box was cemented in over the locking pipe finishing the well at land surface. A well construction diagram is shown on Figure 3 and well construction details are given on

Table 1.

After the monitoring wells were installed they were developed by removing five to ten casing volumes of water from the well, to insure that the well screens were open to the formation.


Ground-Water Sampling

Water samples were collected from the wells of arch 9. March 28, 1988 and June 16, 1988 after purging five volumes of water from each well. Development and purge water was stored on-site in sealed 55 gal drums until laboratory analyses were completed. Ground-water sampling protocols are given in Appendix D. A chain-of-custody was maintained through delivery of the samples to Curtis and Tompkins laboratory. Laboratory reports are given in Appendix C. Water analyses are discussed in a later section of this report.

Water level Measurements

Measuring point elevations for the six monitoring wells and the surface water measuring point at Temescal Creek have been surveyed by Roux Associates to a vertical accuracy of 0.02 feet relative to a designated datum of 100 feet elevation assigned to monitoring well -4. Water levels were measured in the monitoring wells and Temescal Creek on ten separate

Well No.	Well Diameter	Depth of Well (1)	Screen Zone (1)	Elevation of MP (2)	-
RW-1	2"	20.2'	5.2-20.2'	101.90'	21.5'
RW-2	2"	18.0'	3.0-18.0'	98.94'	21.5'
RW-3	2"	18.0'	3.0-18.0'	99.54'	21.0'
RW-4	2"	18.0'	3.0-18.0'	100.00'	21.5'
RW-8	2"	20.3'	5.3-20.3'	100.40'	21.5'
RW-11	4 "	17.0'	4.0-17.0'	99.99'	17.0'

,

i

TABLE 1 Well Construction Details

(1) Below land Surface

(2) Measuring Point (Top of Christy Box)

occasions during this investigation. Levels were measured hourly on March 7, 1988 for nine hours to record the tidal effects on water levels. :

;

Regional Hydrogeology

The Pfizer Emeryville Plant is located along the eastern edge of San Fransisco Bay at an e It 7-feet above mean sea level. The current bay shoreline is approximately 1,000 feet west of Pfizer's property. A 1936 aerial photograph of the Plant and a United States Geological Survey report I-239 both show a former shoreline located along the eastern edge of present day Shellmound Street.

The regional direction of ground-water movement is from the Berkeley Hills west towards San Francisco Bay. The Temescal Formation covers most of the land surface between the Berkeley Hills and the bay. The Temescal Formation consists of alluvial fan material deposited during the Pleistocene. The thickness of the formation ranges from 5 feet under the eastern portion of the bay to 60 feet at the base of the hills. In most of this region, the water table is found within the Temescal Formation.

The Alameda Formation composed of unconsolidated continental and marine sediments of Quaternary age underlies the Temescal Formation and the bay. The Alameda Formation's known maximum thickness is 1.50 feet and in most places is completely saturated.

Nearby Wells and Ground-water Quality

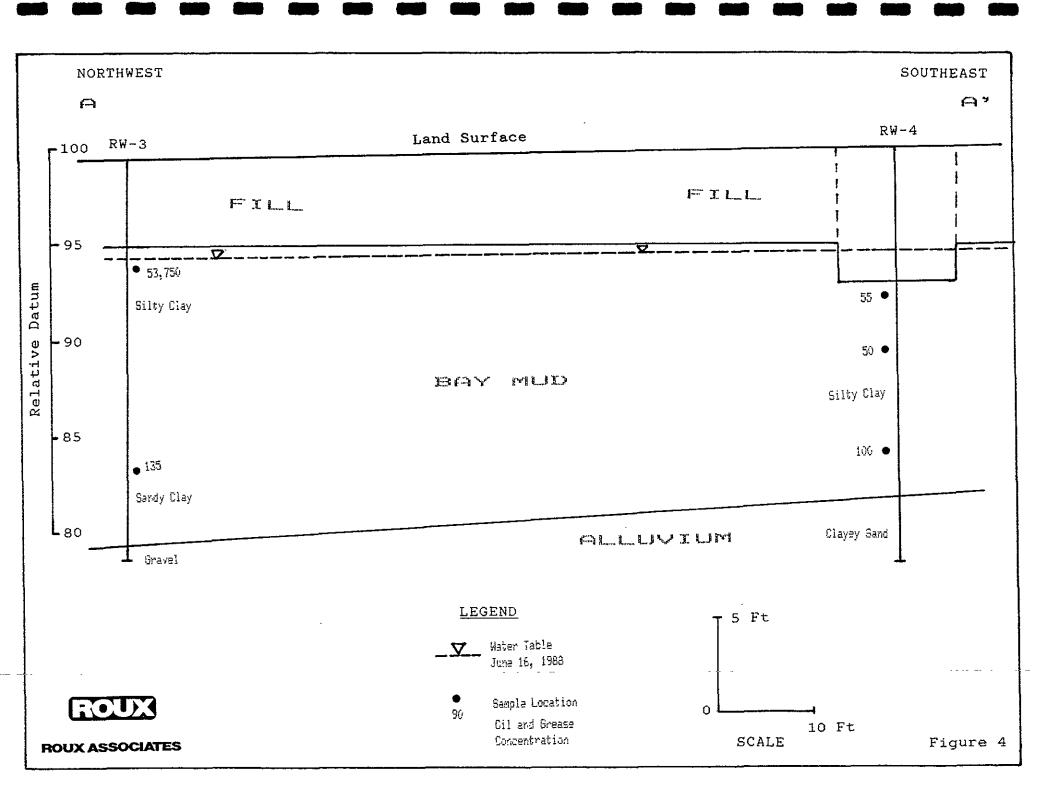
No active water supply wells are within one-mile of the Site. Industrial supply wells were used in the area several decades ago but are no longer in service. Industrial supply wells were previously located on the property directly north of the Site and at a facility about 0.7 miles south of the Site (Dept. of Water Resources well records). These two industrial supply wells extended to depths of 300 and 326 ft., respectively.

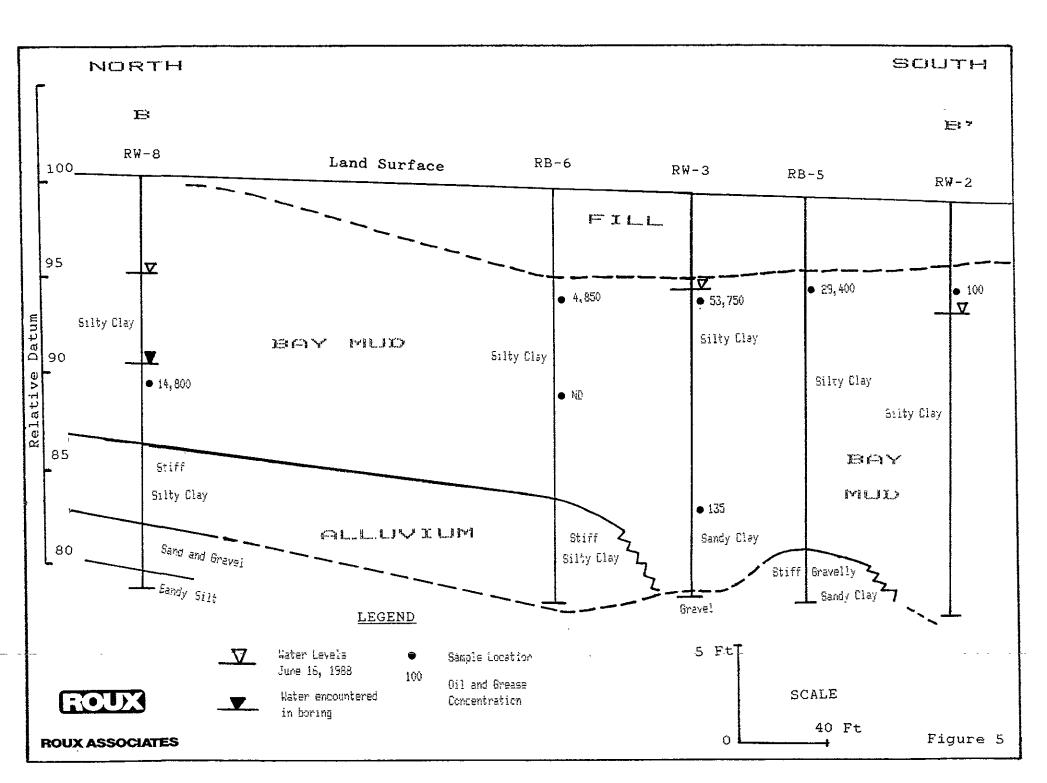
Several ground-water monitoring wells are in close proximity to the Site. The nearest monitoring wells are a series of unree wern, along Shellmound Street 14 sted a new feet west of the preparents Plant property line. An additional 15 monitoring wells are within the shopping cen and vacant lot between about 100 and 500 ft west of the Pfizer Plant. These wells range in depth from 11.5 to 17.0 ft. One monitoring well extending to a depth of 29 ft is about 0.4 miles east of the Pfizer Plant (Alameda Flood Control, personal communication).

Ground water quality in the region surrounding the Site is expected to be poor. However, the ground water is not saline; a salinity analysis from well RW-2 showed Not Detected results.

Hydrogeology of the Pfizer Site

The sediments immediately underlying the Site are artificial fill, bay mud, and alluvial fan deposits. Geologic cross-sections A-A' and B-B' are shown on Figures 4 and 5, respectively. These three units are described below:


Artificial fill consisting of gravel, sand, clay, and other miscellaneous refuse were er untered in all but one of the Soll b . The thickness of the fill under the Site averages about . The permeability of the fill varies depending on the composition but in most places it should be greater than the underlying bay mud.


Bay mud consisting of sandy clay to clay with shells and other organic matter underlies the artificial fill at the Site. Fine sediments once held in suspension in the waters of the bay were slowly deposited on the bottom of the bay forming the mud. The bay mud deposit slopes and thickens to the west towards the center of the bay and pinches out to the east. The thickness of the bay mud beneath the site appears to be about 15 feet but may be greater in places, as some of the soil borings did not fully penetrate thir unit. The permeability of the mud is low but may vary slightly with its composition. The bay mud has been cut in places by meandering 'idal channe . The old channel cuts within the bay mud may contain-coarser more permeance material.

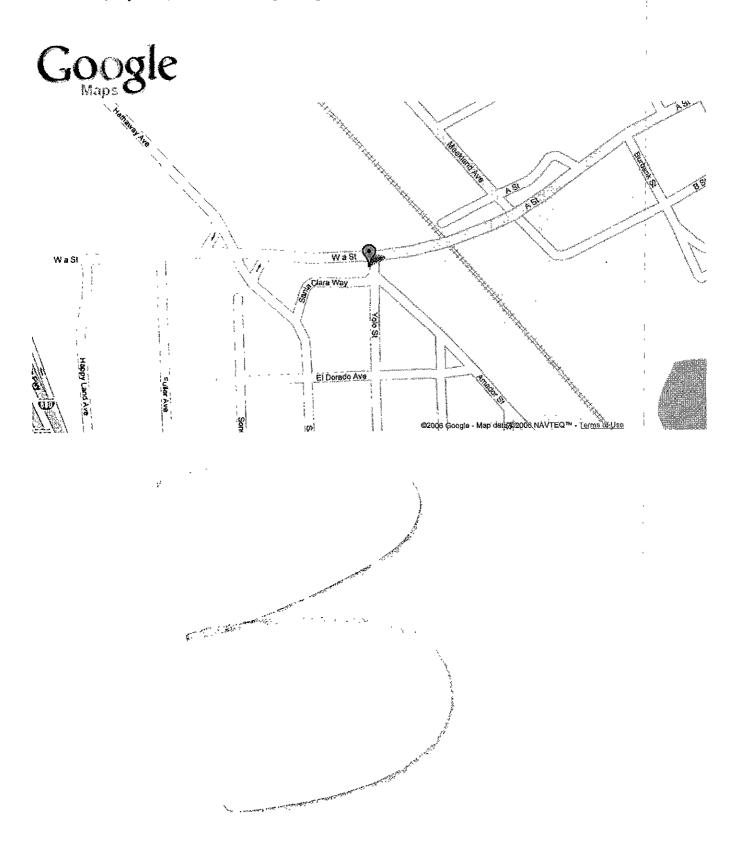

Alluvial fan sediments of the Temescal Formation underly the bay mud. According to U.S. Geological Survey

TABLE 2 Continued

. .

÷

1

RW-1 RW-2 RW-3 RW-4 RW-8 TC-1	May 3, 1988 101.90 98.94 99.54 100.00 100.40 100.92	14:00 - 14:20 6.28 5.98 5.07 3.14 5.12 7.90	95.62 92.96 94.47 96.86 95.28 93.02
RW-1 RW-2 RW-3 RW-4 RW-8 TC-1	May 26, 1988 101.90 98.94 99.54 100.00 100.40 100.92	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95.32 92.80 94.43 94.72 95.11 93.15
RW-1 RW-2 RW-3 RW-4 RW-8 TC-1	June 16, 1988 101.90 98.94 99.54 100.00 100.40 100.92	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95.2393.0394.3794.7394.8992.02
RW-1 RW-2 RW-3 RW-4 RW-8 RW-11 TC-1	July 8, 1988 101.90 98.94 99.54 100.00 100.40 99.99 100.92	10:00 - 10:30 7.08 6.09 5.24 5.41 5.58 5.55 8.22	94.82 92.85 94.30 94.59 94.82 94.44 92.70

report I-239, the fan deposit consists of interfingering lenses of yellowish brown clayey gravels, sandy or silty clays, and other sand-silt-clay mixtures. The top of this formation appears to have been encountered in the lower few feet of some soil beings. The overall permeability of the Temescal Formation is moderate, but may vary locally depending on composition.

Ground-water Flow

Water levels have been measured in the monitoring wells and Temescal Creek throughout this investigation. Table contains water level measurements, measuring point elevations and relative water level elevations, for ten different measurement periods.

Water lev nine . Only the water levels measured during high and low tides are included on Table 2. The water level data indicates that the bay's tidal water elevation changes, have no significant effect on the water elevations in the monitoring wells located on the Pfizer Plant.

TABLE 2. WATER LEVEL MEASUREMENTS

All elevations and depths shown in the following table are in feet. Monitoring well RW-4 is used as the reference point for elevations and was assigned an arbitrary value of 100 ft. All elevations shown in the table are referenced to the RW-4 datum.

WELL NO.	MEASURING POINT <u>ELEVATION</u>	DEPTH TO <u>WATER</u>	
RW-1 RW-2 RW-3 RW-4 TC-1	March 3, 1 101.90 98.94 99.54 100.00 100.92	5.90 5.77 5.00 5.25	- 09:40 96.00 93.17 94.54 94.75 93.52
March RW-1 RW-2 RW-3 RW-4 TC-1	7, 1988 07:5 101.90 98.94 99.54 100.00 100.92	6.25 5.82 5.05 5.36	Low Tide 07:52 95.65 93.12 94.49 94.64 91.75
March RW-1 RW-2 RW-3 RW-4 TC-1	7, 1988 13:5 101.90 98.94 99.54 100.00 100.92	6.26 5.81 5.04 5.40	High Tide 14:24 95.64 93.13 94.50 94.60 93.15
March RW-1 RW-2 RW-3 RW-4 TC-1	9, 1988 08:2 101.90 98.94 99.54 100.00 100.92		94.43
March RW-1 RW-2 RW-3 RW-4 TC-1	28, 1988 10:4 101.90 98.94 99.54 100.00 100.92		$\begin{array}{c} 94.12\\ 94.67\end{array}$
RW-1 RW-2 RW-3 RW-4 TC-1	April 7, 1 101.90 98.94 99.54 100.00 100.92	1988 13:45 7.28 6.05 5.44 5.11 9.20	94.62 92.89 94.10

solvents from the stagnant zones. As a result, minor quantities of solvents may be retained in ground water within the tank pit area surrounding well RW-4.

Degradation of solvents during transport may also be a factor attenuating the migration of solvents from the tank pit area. Acetone, 2-butanone, and hexone are all susceptible to biodegradation. Natural microbial action in the ground water breaks down the solvents to non-toxic compounds. Natural biodegradation may be effective in attenuating the dispersion of low concentrations of solvents. from the tank pit area.

Significant soil adsorption and volatilization of acetone, 2-butanone, and hexone (MIBK) from the ground water are unlikely due to the chemical and physical properties of the solvents. Solvents are below detection limits in soils throughout the Site indicating a lack of adsorption to soils. Volatilization may have removed some of the more volatile compounds that may have been present prior to sampling for this investigation.

Absence of Oil and Grease in Ground Water

Although relatively high levels of oil and grease were detected in soils in some areas, no oil and grease or other petroleum hydrocarbons were detected in the ground water. Each of the monitoring wells was screened across the zone containing relatively high levels of oil and grease. Oil and grease was below detection limits in ground-water samples from each monitoring well at the Pfizer Plant. Ground Water from monitoring well RW-3, the location with the highest concentrations of oil and grease in the soil, was sampled and analyzed twice for oil and grease with Not Detected results both times. Prior to the second sampling, additional well development was performed using a surge block to assure that the ground-water sample was representative.

Ground-water samples from four of the monitoring wells were also analyzed for total petroleum hydrocarbons (EPA Method 8015). Laboratory results indicated that total petroleum hydrocarbons were also below detection limits in the ground water.

DISCUSSION OF SOIL CONTAMINATION

Adsorbed oil and grease was the only contaminant detected in soils at the Pfizer Plant. Not Detected results were obtained for all soil samples analyzed for priority pollutants (EPA method 8240), base/neutrals (EPA Method 8270), and total petroleum hydrocarbons (EPA Method 8015). Significant levels (above background) of oil and grease are limited to four soil borings along the western portion of the Site. Although solvents were detected in ground water, no solvents or oil and grease were detected in soils near the former tank pit. The extent of adsorbed oil and grease is discussed below followed by a discussion of the absence of soil contamination near the former tank pit.

<u>Extent of Oil and Grease in Soils</u>

Oil and grease levels >1000 mg/kg were detected in soil samples from four soil borings in the western portion of the Site. Figure 6 shows the highest levels of oil and grease encountered in each boring. Oil and grease levels are highest within borings RW-3 and RB-5. As represented on Figure 6, oil and grease levels decrease to the north from RW-3. To the south from RB-5, oil and grease levels decrease abruptly. The highest concentration of oil and grease within Boring RB-5 was 29,400 mg/kg in the 5.0-5.5 ft sample. Further to the south, the highest concentration within RW-2

encountered in soil borings RW-3 and RW-4 contain some coarser a. more permeable zones than the bay mud encountered in soil borings RW-2 and RB-5. These permeability differences are expected to have a significant effect on rates of ground-water flow. Where the bay mud is a homogeneous clay or silty clay, the permeability is probably extremely low. Sand layers or lenses probably increase the permeability and ground-water flow rate by orders of magnitude. Therefore, permeability differences are probably the primary factor locally controlling ground-water flow within the bay mud. As a result, ground-water is expected to flow predominantly to the northwest from the tank pit through the more permeable sediments.

Under homogeneous conditions in a water table aquifer, the direction of ground-water flow can be determined from measured gradients on the surface of the water cab . Based on all available evidence, the measured gradients from monitoring wells currently located at the Si*: do not indicate the predominant direction of ground-water flow due to the effects of an upward gradient from the alluvial sediments into the overlying bay mud. Water levels in the wells are apparently affected by the upward component of flow. Because the wells penetrate the alluvium to varying depths, ranging from no penetration to about 7.5 ft, water levels from the wells cannot be compared to determine a gradient within the bay mud.

The upward gradient indicates that water does not move downward through the bay mud into the underlying alluvium from the tank pit. An upward component of flow is demonstrated in comparison of water levels in wells RW-4 and RL ... und was observed during drilling of well RW-8. Wells RW-4 and RW-11 are both located within the tank pit and are about five feet apart. Monitoring well RW-4 partially penetrates into the alluvial deposits of the Temescal Formation. Well RW-11 is screened completely within the tank pit fill and bay mud. The higher water level measured in monitoring well RW-4 shows the upward component of flow. Water was encountered while drilling the borehole for the approximately 9.5-ft below land surface, yet the water levels measured in well well and bay have been consistently between fine and ft below land surface.

Water levels in the tank pit were observed two to once feet higher than normal on four occasions during this investigation. The higher water levels were caused by ground-water mounting that performancy occurred in the area of the waste oil tank pit.

The tank pit was backfilled and has been flowing till and has a portion of the water which intermittently flows across a concrete pad just north of the tank pit and into a storm drain east of the pit, has been flowing into the edge of the pit. The water then percolated through the travell, fill to the water table creating the mound. A temporary dam was

constructed on May 5, 1988 to prevent water from entering the tank pit. The higher water level created by this mounding periodically enabled local water movement through the more permeable fill deposits normally above the water table.

RESULTS OF LABORATORY ANALYSES

A total of 18 soil samples were selected for analysis from the eleven soil borings drilled during this investigation. All analyses were performed by Curtis and Tompkins Ltd. Analytical Laboratory, San Francisco, California. Curtis and Tompkins is a Department of Health Services Certified laboratory. A total of 27 individual analyses were run on the 18 samples. Oil and Grease at concentrations ranging from 50 mg/kg to 53,750 mg/kg were the only contaminants detected in the soil samples.

Soil analyses and results are shown on Table 3 and laboratory reports are given in Appendix C. Also included in Appendix C are soil analyses of a soil sample collected on December 3, 1987 by Brown And Caldwell Laboratories from below the waste oil tank just after it was removed.

Ground Water was collected for analysis on three separate occasions from selected monitoring wells installed during this investigation. A t______ of 17 individual water analyses were performed by Curtis and Tompkins on the ground water samples. Ground Water from monitoring well RW-4 as the only water sample which contained detectable levels of contaminants. Volatile organic analysis (EPA method 624) of the F 4 sample detected three solvents at part per million levels and semi-volatile organic analysis (EPA method 625) detected trace amounts of two compounds. Water analyses and results are shown on Table 4 and laboratory reports are given in Appendix C.

TABLE 3. SOIL ANALYSES

		Depth	Total Pe	troleum Hydroca EPA 3550/8015		Oil and Grease	Volatile Organics	Base/ Neutral	
Bor	Samp ing No	le Sampled	Gasoline (ppm)	Kerosine (ppm)	Diesel (ppm)	SWWM 503 E (ppm)	EPA 8240 (ppb)	EPA 8270 (ppb)	
RW-	1 S-1	6.5-7.0	N/A	N/A	N/A	N/A	ND	N/A	-
RW-	1 S-2	7.0-7.5	ND	ND	ND	95	N/A	N/A	
RW-	1 S-3	15.0-15.5	ND	ND	ND	90	N/A	N/A	
RW-3	2 S-1	4.5-5.0	ND	ND	ND	100	ND	N/A	
RW-:	S-1	5.5-6.0	ND ND	ND	ND	53,750	ND	N/A	
RW-3	3 S-3	16.0-16.5	ND	ND	ND	135	N/A	N/A	
RW-	4 S-1	7.5-9.0	N/A	N/A	N/A	55	N/A	N/A	
RW-	S-2	10.0-12.0	ND	ND	ND	50	N/A	N/A	
RW-	4 S-3	15.0-17.0	ND	ND	ND	100	N/A	N/A	
RW-	la S-5	7.5-8.0	N/A	N/A	N/A	N/A	N/A	ND	
RW-4	la S-6	8.0-8.5	ND	ND	ND	N/A	ND	N/A	
RB-	5 S-1	5.0-5.5	N/A	N/A	N/A	29,400	N/A	N/A	
·RB-6	S-1	5.5-6.0	N/A	N/A	N/A	16,810	N/A	NZA	
RB-6	5 S-2	10.5-11.0	N/A	N/A	N/A	ND	N/A	N/A	
RB-7	S-1	6.0-6.5	N/A	N/A	N/A	ND	N/A	N/A	
RW-8	S-2	10.5-11.0	N/A	N/A	N/A	14,800	N/A	N/A	
RB-9) S-1	3.5-4.0	N/A	N/A	N/A	ND	N/A	N/A	
RB-9	S-2	6.0-6.5	N/A	N/A	N/A	N/A	ND	N/A	

N/A = Not Analyzed

ND = None Detected

TABLE 4. WATER ANALYSES

Boring	Date Sampled	TPH EPA3550 /8015 (ppm)	Oil and Grease SWWM503E (ppm)	Base/ Neutral EPA625 (ppb)	Volatile Organic EPA624 (PPO)	Salinity
RW-1	3-9-88	ND	ND	N/A	N/A	N/A
RW-2	3-9-88	ND	ND	N/A	N/A	ND
RW-3	3-9-88	ND	ND	N/A	ND	ND
RW-4	3-9-88	ND	ND	A=Trace B=5.2	C=6800 D=8220 E=44,240	N/A
RW-2	3-28-88	N/A	N/A	N/A	ND	N/A
RW-3	3-28-88	N/A	N/A	N/A	ND	N/A
RW-3	6-6-88	N/A	ND	N/A	N/A	N/A
RW-8	6-6-88	N/A	ND	N/A	N/A	N/A
<pre>N/A = Not Analyzed ND = None Detected A = Naphthalene B = 2-methylnaphthalene C = Acetone D = 2-butanone, (MEK) E = 4-methyl-2-pentanone, (MIBK), (hexone)</pre>						

DISCUSSION OF GROUND-WATER CONTAMINATION

Extent of Ground-Water Contamination

Ground-water contamination currently appears to be confined to solvents in ground water in the immediate cinity of the former waste oil tank pit. Monitoring well RW-4, which is located near the center of the tank pit, is the only monitoring well that yielded contaminated ground water. Well RW-11, an adjacent 4-inch well installed for possible use as a recovery well, was not sampled. Ground Water from monitoring well RW-4 contained acetone, 2butanone, and hexone (MIBK) (Table 4). Trace levels of naphthalene and methylnaphthalene were also detected in RW-4. No contamination was discovered in any of the other monitoring wells outside the former tank pit.

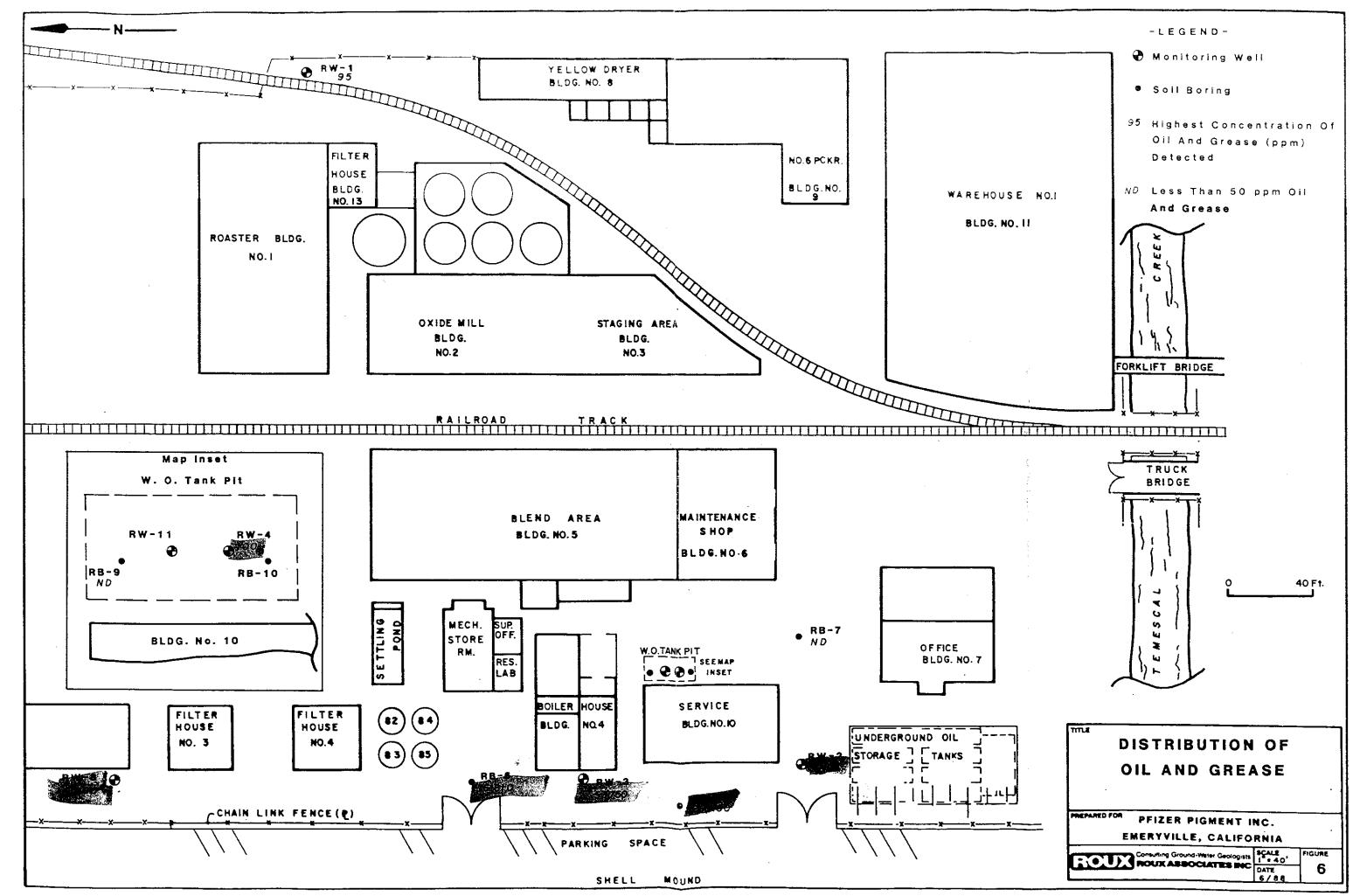
Description of Contaminants

Acetone, 2-butanone, and hexone (MIBK) are water soluble compounds with acetone and 2-butanone being the most soluble. All of these compounds are found within common solvents. Small amounts of solvents were stored in the former waste oil tank. Physical properties of the solvents are shown on Table 5.

TABLE 5. PHYSICAL AND CHEMICAL PROPERTIES OF SOLVENTS

<u>Compound</u> Acetone	<u>Density</u> 0.80	<u>Solubility</u> Miscible	<u>Vapor</u> <u>Pressure</u> 400@34.5 C	Boiling <u>Point</u> 56.2 C
2-butanone (MEK)	0.805	Vy.Soluble 100,000@25 C	71.2@20 C	76.6 C
hexone (MIBK)	0.801	Slightly Sol. 19,000@ 25 C	16@20 C	116.85 C

Source: EPA (1980)


The predominant ground-water flow direction from the former tank pit is generally the west or northwest. Therefore, a contaminant plume should generally travel from the former waste oil tank pit towards monitoring well RW-3 - W K W K However, no solvents were detected in well RW-3 or any other monitoring well outside the former tank pit.

The possibility of a solvent plume moving through the alluvial sediments beneath the downgradient monitoring wells was considered but rejected. Water level measurements in wells RW-11 and RW-4 indicate an upward hydraulic gradient from the alluvial sediments into the overlying bay mud. An upward gradient from the alluvial sediments to the bay mud was also observed during drilling of well RW-8.

The absence of detectable levels of solvents in monitoring wells downgradient from the tank pit indicates that solvents are not migrating from the tank pit at significant concentrations. The rate of hydrodynamic dispersion of solvents from the tank pit area is probably low. Ground water containing dissolved solvents appears to be partially stagnant within the area of the former tank pit.

The bay mud contains many low permeability clayey zones. These low permeability zones may immobilize contaminated water causing some dissolved solvents to stagnate within the vicinity of the tank pit. Sampling of the monitoring well in the tank pit may draw some of the immobile water containing

[•]

was 100 mg/kg in the 4.5-5.0 ft sample, which is probably a background level.

Higher concentrations of oil and grease were limited to depths of about 4 to 10 ft below land surface. In each soil boring, the zone of observed oil and grease was within the zone of probable water table fluctuations and capillary fringe. Samples below the water table generally had oil and grease levels less than 200 mg/kg.

Low levels of oil and grease (<200 mg/kg) were detected in 7 of 9 soil borings across the Site including the upgradient boring, RW-1. The low levels of oil and grease were also detected fairly uniformly in soil samples from both below and above the water table. Based on the hydrogeology of the Site and the lack of solubility of the oil and grease, this unusual distribution of apparent oil and grease probably is an artifact caused by organic matter within the soils. Some organic soils contain compounds that appear as oil and grease in laboratory analyses. Therefore, the low levels of oil and grease throughout much of the Site are probably background levels caused by organic material in the soils.

Absence of Soil Contamination Near Former Tank Pit

Soils within the immediate vicinity of the former waste oil tank pit do not contain detectable levels of volatile organics, base/neutrals, or total petroleum hydrocarbons. Oil and grease is within background levels (<100 mg/kg) or Not Detected in borings near the former tank pit. Four soil borings were drilled within or in close proximity to the former tank pit (Figure 2). Two of the borings, RW-4 and RW-11, are within the backfill material in the central portion of the tank pit and penetrate below the tank pit into native soils. The base of the tank pit is about 7 feet be a lar surface. Borings RB-9 and RB-10 are within a few feet of the eastern and western edges, respectively, of the tank pit. These two borings are outside the tank pit excavation within the older artificial fill and underlying native soils.

Soil samples collected from the four borings near the tank pit during this investigation were analyzed for priority pollutants (EPA Method 8240), base/neutrals (EPA Method 8270), total petroleum hydrocarbons (EPA Method 8015), and oil and grease (Method SWWM 503E). All laboratory results for soil samples from the four borings were Not Detected, except for background levels of oil and grease (Appendic 4) However, a soil sample collected by Brown & Caldwell Laboratories on December 3, 1987 immediately following tank removal contained a ppm acetone, 20 ppm 2-Hexanone, and ppm oil and grease, and 720 ppm total petroleum hydrocarbons

The reason for this apparent inconsistency in laboratory results is unknown. The possibility that contaminants were desorbed from soils and transported from the pit area during the short time period between the initial tank pit sample collection and sampling during this

investigation is unlikely. Possible causes for the inconsistency include differences in laboratory procedures, laboratory error, or different sampling locations. The drilling of four soil borings during this investigation within the tank pit makes different sampling locations an unlikely explanation. Differences in laboratory procedures or laboratory error appear to be the most likely source of the inconsistency in laboratory results. Laboratory results from this investigation have been confirmed by repeated sampling and duplication of results. No details of the laboratory procedures used to analyze the initial sample from the tank pit were available.

The lack of oil and grease contamination in the vicinity of the leaking waste oil tank indicates that waste oil was probably not discharged from the tank. During inspection of the tank following removal, a probable tank leak was observed about 6-inches above the base of the tank. Physical separation of the solvents and waste oil due to density differences would cause the waste oil to float on top of the solvents in . Therefore, only s probably have been discharged from a tank leak near the base. In addition, only solvents were placed in the tank during the last two years of operation; waste oil was not added to the tank during that time period.

Source of Oil and Grease Contamination

The source of oil and grease in soil beneath the Pfizer Plant is unknown. We speculate that an older unknown source may at some time in the past have caused the oil and grease contamination in the soil. The oil and grease could have been emplaced with the overlying fill material. No recent or current sources of subsurface oil other than the Pfizer waste oil tank were identified in the immediate vicinity of the oil and grease contamination. The absence of oil and grease contamination in the vicinity of the tank pit area indicates that the removed waste oil tank was not the source of the oil and grease. In addition, the hydrogeology of the Site and the observed extent of the oil and grease also indicate it is highly unlikely that the removed tank was the source of the oil and grease.

During earlier Plant operations, a boiler that may have had an underground fuel line carrying Bunker C oil was previously located about 30 to 40 ft. north of the tank pit. The boiler was fueled from an above-ground welded steel tank. Both the boiler and above-ground tank were removed in 1971 or 1972. An infrared analysis of oil and grease in the soil was indeterminate as to the type of oil.

A former waste oil tank leak has been identified on the property west of the Pfizer Plant. The waste oil tank on the former trucking site was about 480 ft west of the Pfizer Plant. Based on data from the former trucking site, it appears unlikely that the waste oil migrated eastward to the Pfizer Plant at the concentrations observed.

Oil and Grease Migration and Exposure Pathways

The oil and grease encountered in borings RW-3, RB-5, RB-6, and RW-8 is adsorbed to soils within the zone of water table fluctuation and the capillary fringe zone. The adsorbed oil and grease does not appear to be water soluble. Repeated ground water sampling of monitoring wells within the area of adsorbed oil and grease have not detected oil and grease in the ground water.

The adsorbed oil and grease is not volatile; photoionization detector readings of soil vapors from contaminated soils were generally similar or less than levels for ambient air. Most samples had no odor; samples with higher concentrations of oil and grease had a faint odor. Volatile organic compounds were not detected by the priority pollutants analysis (EPA 8240) of the 5.5-6.0 ft. soil sample from RW-3 which contained the highest levels of oil and grease at the Site.

Based on these results, the adsorbed oil and grease in soils does not pose a risk to human health or the environment. The adsorbed oil and grease is fixed in the soil and is not currently migrating from the Site. In addition, there are no pathways for exposure to the adsorbed oil and grease in the subsurface. Potential exposure to the

ī.

contamination should be limited to direct exposure during any excavations or drilling that extend into the zone of oil and grease.

RECOMMENDATIONS

We recommend that a monitoring program be implemented to 1) monitor potential migration of solvents downgradient from the former tank pit and to determine the rate of degradation of solvents in the immediate vicinity of the tank pit. Repeated ground-water sampling of monitoring well RW-4, located near the center of the former tank pit is expected to show a decrease in solvent concentrations with time. We believe that solvents are biodegrading within the immediate vicinity of the tank pit. In order to assure that solvents are not migrating from the Site, downgradient monitoring wells RW-2 and RW-3 should be monitored simultaneously with RW-4. We recommend that all wells be sampled and analyzed for priority pollutants (EPA Method 624) on a semi-annual basis until solvent concentrations are below acceptable limits.

If the solvent concentrations do not decrease at an appreciable rate or if solvents are detected in any downgradient monitoring wells, we recommend that a pump and surface treatment system be implemented.

2) The adsorbed oil and grease is effectively contained in the subsurface beneath the Pfizer Plant. Because the adsorbed oil and grease is not soluble or volatile, the soil contamination does not pose a hazard to ground water, surface water, human health, or the environment. Therefore, we recommend that the adsorbed oil and grease be left in place without remediation.

RESPECTFULLY SUBMITTED, ROUX ASSOCIATES WEST, INC.

V hush

Paul V. Supple Hydrogeologist

T. Wielsham ber

Jerry T. Wickham Senior Hydrogeologist Cal. Reg. Geologist No. 3766 Cal. CEG No. 1177

GEOLOGIC LOGS

.

.

APPENDIX A

.

1

REFERENCES

Alameda County Flood Control, Calvin Hickenbottom (personal communication - February 9, 1988)

Alton Geoscience (1988), Report on Additional Site Characterization Studies at P.I.E. Nationwide Property, 5500 Eastshore Freeway, Emeryville, California, submitted April 28, 1988.

Radbruch, Dorothy H. (1957), Areal and Engineering Geology of the Oakland West Quadrangle, California, U.S. Geological Survey Miscellaneous Investigations Map I-239.

U.S. Environmental Protection Agency (1980), Subtitle C Resource and Conservation Recovery Act of 1976. Listing of Hazardous Waste, Background Document for RCRA, section 261.31 and 261.32. Office of Solid Waste, Washington, D.C.

CONSU	JLTII Y	NG GI	ROUND WAT	ER GEOLOGI	515		WEI	LLOG			
					WE	LL_	DATA				
WELL NO	: RW	-1				Date DTW MP (2					
Date:	Pfiz of 1 Dy: Je	er Pigf	zer Emeryville ments Inc. ickham		Hole Diameter: Final Depth: 2 Casing Diamete Casing Length: Screen Setting Screen Slot & Well Status: M	0.2' r: 2' 4.9' : 5.2'- Type: .	010 inch	PVC			
M.P. E1	evatio				SAM			DEVELOPMENT			
Driller	: Exce	ltech	'18/88 End: 2/ 8-53 Hollow St		Type: Cal. spl Hammer: 140 lb. Fall: 30 in.		'n				
Elev,	SAMPLE				Strata Change &	Depth	s	AMPLE DESCRIPTION			
(1)	No.	Rec.	Depth	Blows 6	Gen. Desc.	(f1.)					
					Fill			h brown Sandy Clay with Gravel, tains brick fragments. (fill)			
	1	. 2 ⁿ	5.0-6.5'	0,2,2		5 -		k gray to black Clay, scattered some gravel, scattered charcoal;			
	2	10"	6.5-7.5	Pushed	Clay		shells m ft., bec	ome graver, scattered tharebal; ost prominent between 2.5 and 5 omes gray, firmer , more cohesive out 7 ft.			
	3	10"	10.0-11.5	4, 5, 8		10 -					
	4	10"	15.0-16.5	8, 12, 14	Clay	15		brown mottled Clay, firm, d gravel, wet; gradational change clay.			
	5	18"	20.0-21.5"	10, 14, 15	Sandy Clay		-	brown mottled Sandy Clay with kets, stiff, wet.			
					、			red water in boring at about 7 fors in any samples or during			
						Ē					
REMA		<u> </u>	in feet rolati	<u>]</u>				······································			

CONSU RALI	JLTII X	46 GF 488	OCIATE	S INC	515		WELL LOG				
100	<u></u>			<u> </u>	WE	LL	DATA G W READINGS				
WELL NO		•				Hole Diameter: 7" Final Depth: 18'					
Project Date:	: 047	11 Pfi:	zer Emeryville		Casing Diamet	Casing Diameter: 2"					
Client:		er Pig	ments Inc.		Casing Length Screen Settin		-18.01				
Page 1 Logged		anny U	ickham		Screen Slot &	1. 3.0 Type:	.010 inch PVC				
Locatio	m:	•			Well Status:		ring				
M.P. El			,94 /18/88 End: 2/	18/88	SAM	PLE	R DEVELOPMENT				
Driller	Exc	eltech			Type: Cal. sp Hammer: 140 1	-	אכ				
Type of	' K1 <u>9</u> :	r(0011	p-J3 NOTION SU	em nuger	Fall: 30 i						
Elev.	<u> </u>	· · · · · · · · · · · · ·	SAMPLE		Strata Change &	Depth	SAMPLE DESCRIPTION				
(1)	No.	Rec.	Depth	Blows 6	Gen. Desc.	(f1.)					
							Black Silty Clay, scattered gravel;				
					Fill		Contains ceramic tile and copper wire. (fill)				
	1	- 18 ⁿ	4.5-6.0'	2,2,3		5_	Dark gray Clay, Contains roots, wood				
							fragments, charcoal and chert pebbles,				
					Clay		moist. highly cohesive; becomes silty clay in lower half with less wood				
							fragments; organic smell, no contaminant				
		1.01	10.0-11.5'	755		10	odor.				
	2	18"	10*0-11*9.	3,5,5							
						-					
i						-	Gray Clay wiyh sand pockets, contains				
						15-					
	3	24"	15.0~17.0	3, 3, 3, 5	Clay	·	cohesive; becomes bluish gray towards base, stiffer; no odor.				
					, and the second s						
I			00 0 01 F1	456							
	4	18"	20.0-21.5'	4,5,6		20_					
							B. O. B. = 21.5'				
						_	Encountered water in boring at about 5'				
					1]	CUCOMMERCA MARCE, IN DOLLING AN ADDAR D				
					1						
						-					
]					
						-					
						-					
EMA	RKS	• (1) i	in feet relation from top of P	ve to a comm	on dotum						

			SOCIATE	ER GEOLOGI			WELL LOC	5			
					WE	<u>LL</u>		and the second			
HELL NO	: Rk	-3				-	Dot	te DTW MP(2) Elev.			
⁹ ro iect	: 047	11 Pfi	zer Emeryville		Hole Diameter: Final Depth:		·				
Date:			-		Casing Diamete	n: 2"					
		er Pig	ments Inc.		Casing Length: Screen Setting		18.69				
Page 1 (Logged 1		erry W:	ickham								
location	1:				Well Status: M	Screen Slot & Type: .010 inch PVC Well Status: Monitoring					
M.P. Ele			9.54 /18/88 End: 2/	18/88	SAM	IPLE	R DEV	VELOPMENT			
Driller			10/00 5101 57	10/00	Type: Cal. spl		n				
Type of	Rig:	Mobil	B-53 Hollow St	em Auger	Hammer: 140 lb Fall: 30 in						
Elev.	 1		SAMPLE			7					
(1)	No	Rec.	Depth	Blows 6	Strata Chonge & Gen. Desc.	Depth (f1.)	SAMPLE D	ESCRIPTION			
	ĺ					_					
	ļ				Fill	-	Brown Sandy Clay (fill)	•			
						-					
						5-					
	1	18"	5.5-7.0	1,1,1	Silty Clay	- J -	Black Silty Clay, wet, o	cohesive; strong			
		1					odor.				
		1				-					
						-					
	2	18"	10.0-11.5		Sandy Clay	10 -	Gray Sandy Clay, uniform pebbles, roots, and plan				
	۲.	10	10. V-11. J.			_	henoreal toosal and him	un it nämennest vienen			
					— — — — —						
						-					
						15 -					
	3	18"	15.0-16.5	3,4,6	Sandy Clay		Greenish gray Sandy Clay pockets, scattered roots				
							fragments, and greenish				
							wet; sand layer about 1.				
1	4	12"	20.0~21.0	8,507.51		20					
					Gravel		Orange brown Clayey Grav	vel, pebble size,			
						-	loose.				
						-1	B. O. B. = 21. 0 ⁵				
ĺ]	Concernational contains in how	ive at about 51			
						_	Encountered water in bor	าเน็สง ของสงเห			
						-					
						-					
]					
						_					
EMAI	<u>a v c</u>			1		<u> </u>	<u></u>	······································			
si m A i	nn J		in feet relati trom top of P	ve to a commo VC casino				:			

			ROUND WAT	ER GEOLOGI	STS		WELL LOG				
				<u></u>	WE	LL					
WELL NO	: RW	-4			11_1 _ T	711	Date DTW MP(2) Elev.W.				
Project	047	11 Pfi	zer Emeryville			le Diameter: 7" nal Depth: 18"					
Date:					Casing Diamete						
Client: Page 1 (er Pig	ments Inc.		Casing Length: Screen Setting		0-18.01				
Logged I	By: J	erry V	ickham		Screen Slot &						
Location M.P. Ele		on: 10	00.00		Well Status: M						
Drilling	Stai	rt: 2,	/19/88 End: 2/	19788	Type: Cal. spl						
Driller: Type of			B-53 Hollow St	em Auger	Hammer: 140 lt		20				
					Fall: 30 ir	T					
Elev.					Strata Change &	Depth	SAMPLE DESCRIPTION				
(1)	No.	Rec.	Depth	Blows 6	Gen. Desc.	(f1.)					
							Gravel, dry. (fill)				
					F.1.1		District Convert und (6:11)				
					Fill		Clayey Gravel, wet.(fill)				
		. 				5	Gravel cobble-size, wet. (fill)				
	i	18"	7.5-9.0'	3,4,4							
	-				Silty Clay		Very dark gray Silty Clay, wet; moderate Contaminant odor.				
						_	Consemittate profit				
	2	18"	10.0-11.5			10	Greenish Gray Silty Clay with sand and				
	ũ	10	1010.1110		Silty Clay		shell layers, scattered gravel; fraint				
]						-	odor.				
						· -{					
	,	101	15.0-16.5 ¹	P Q 10 54	Silty Clay	15-	Gray Silty Clay, scattered pebbles,				
	3	18"	19.0-19.9,		Sifty Glay	Ĩ	abundant wood fragments.				
						-					
	4	18"	20.0-21.5'	14,20,20	Clayey Sand	20-	Greenish gray mottled Clayey Sand, contains sand layers and sand pockets,				
							scattered pebbles; much slower drilling				
						_	than soils above. 8.0.8.= 21.5'				
						-					
[Encountered water in boring at about 3^{1+}				
						-					
						-					
						_					
]]	•				
						_					
EMAR	KS	(1);	n feet relativ	re to a commo	n datum						
		(2)	rom top of P	VC casing							

CONSULTING GROUND WATER GEOLOGIST	.5	GEOLOGIC LOG						
COX ASSOCIATES	W	ELL	DATA G W READINGS					
Study No. Date			Date DTW MP(2) Elev.					
Study No Dote Project O4711 Emeryville, CA	Final Depth							
Client Pfizer Pigments Inc								
Page 0f	-		·					
ogged ByJerry_Wickham	1							
Vell No		-						
.0C	_ Weil Statu	<u>soi</u>	1 boring					
1.P. Elevation	90	MPLE						
rilling Started 5/2/88 Ended 5/2/88	Type CA	• spli	t spoor					
rillerBay Area Exploration	_ Hammer	140	lb.					
ypeOfRig <u>CME-55 Hollow Stem Auger</u>	Fail	30	in.					
	Strata Change	Depth	SAMPLE DESCRIPTION					
	3 Gen. Desc.	(ft.)	SAMPLE DESCRIPTION					
	Fill		Asphalt & road base					
		_	Dark gray Silty Clay, Faint odor					
1 18" 4.0'-5.5' 1, 5, 6		_	Slight mottling.					
		_						
	Silty	5 -	Greenish gray Silty Clay, some					
	-	_	gravel, mottled, grades to black					
	Clay	-	mottled greenish gray clay at 4.					
		_	Some O & G odor, wood frgments in shoe.					
		-						
2 18" 9.5'-11.0 1, 1, 2		10 _						
	Silty	[sand, some root fibres, charcoal,					
	-	^`	wood fragments, very sticky below 10'.					
	Clay	-						
		{						
3 18" 14.5'-16.0 0, 0, 2		15 -						
		-						
	~~~~~~	-	Greenish gray Gravelly sandy cla					
	Sandy		very stiff, sand pockets.					
4 18" 19.5'-21' 5, 10, 12	Clay	20 -						
			BOB 21'					
		25 -						
		-						
		_						
EMARKS: (1) in fect relative to a common	datum	A						
(2) from top of PVC casing								

Projec					1 11	WELL DATA GW					
Projec	No.		D	ot e					DTW MP(2) Elev.W.		
			ll_Emeryvil		Final Depth	(ft.)					
Client			zer Pigment:		Casing Diar	Casing Diam. (in.)					
			0 f		Casing Len	Casing Length (ft.)					
			Jerry Wick	nam		Screen Setting (ft.)					
Well No.			<u>RB-6</u>		Screen Slo	Screen Slot & Type					
Loc		<u> </u>			— Well Statu			T			
M.P. Ele	vatio	on	<u> </u>	F /2 /00	_  <u>SA</u>	MPLE		DEVE	LOPMENT		
			5/2/88 En								
			cea Explorat					]	,		
Type Of	Rig		E-55 Hollow	Stell Auge	<u>r</u> Fall		in.				
Elev.		•	SAMPLE		Strata Change	Depth	s	AMPLE DES	CRIPTION		
(1)	No.	Rec.	Depth(ft.)	Blows/6"	& Gen. Desc.	(ft.)					
								gray Gravelly ents, dry.	Clay, brick		
					Fi11				•		
				(push)		-					
	1	18"	5.0'-6.5'	0,0,0		5-		Silty Clay, s			
					Silty			mottling, fair es uniform bla	t odor at top,		
					Clay	-	obvio				
							Dark (	v, some sand			
	<b>^</b>	1011	10.0'-11.5	1 0 1 2	01144		root, 10.2',	y, some sand nd layer at			
	Z	10	10.0 11.0	0,1,2	Silty Clay	10-	10.2 ,	II Sauc.			
						_					
					Gravel			sh gray Grave , wet possibl			
	3	18"	15'-16.5'	3,7,8		15 -	SULLEU	, wet possibly	y cavings.		
						_					
	4	18"	16.5'-18'	1,4,5		- 1	т.J 1 -				
					Silty	-	-	yellowish-browed, very stiff	wn Silty Clay,		
					Clay	-			, sandy clay in		
	5	18"	20'-21.5'	4,6,10		20 -	places		· · · ·		
							B.O.B.	21.5'			
						-					
						-					
						25 -					
Ì											

.

		ROUND WAT	ER GEOLOGIS	STS	، G	EOLO	GIC LO	G
Study No.	<u></u>		ote	Hole Diam. Final Depth	(in.)			READINGS( W MP(2) Elev.W.
Poge Logged B Well No	1 y	1 Emeryvil er Pigments O1 Jerry_Wic RB-7	]	Casing Len Screen Sett	gth (ft.) ling (ft.) t 8 Type	1 boring		
M.P. Elevati Drilling Star Driller <u> </u>	on rted 3 _{ay_A}	5/2/88 Er	ded _5/2/88 ution / Stem_Auge	<u>SA</u> TypeCA Hammer	SAMPLER           Fype         CA. split spoor           fammer         140         1b.           fall         30         in.		DEVELOP	MENT
Elev. (I) No	. Rec.	SAMPLE Depth(ft.)	Blows/6"	Strata Change & Gen. Desc.	Depth (ft.)	SAM	PLE DESCRI	PTION
1 2 3 4 5	NR NR 18'' 18''	10'-11.5' 12'-13.5' 13.5-15' 15'-16.5'	WОН WОН 0, 1, 2	Fill Silty Clay Sandy Clay Silty		Yellow-b shell/bo Light gra Silt, so plant fil Gray sand silty cla Gray sand	, sandy clay ( rown Silty Cla he layer, char ay Silty Clay he yellow-brow bres, charcoal dy (very fine) ay, apparently	y, mottled coal layer. to Clayer n Mottling, clay to layered. grading to
6	18"	20'-21.5'	2, 3, 6	Clay	20  25  		gray silty cl	ay, charcoa

		ROUND WAT		515	GEOLOGIC LOG						
Study No. Project Client Page	04 Pf 1	711 Emeryv izer Pigmer 01	ote ille, CA ats Inc.	Hole Diam. Final Depth Casing Dian Casing Lan	(in.) (ft.) n. (in.) gth (ft.)	20.3	G M Date	READINGS			
Wall No, Loc, M.P. Elevati Drilling Star Driller	on <u>-</u> 5 ted <u>-</u> Bay- CM	<del>Area Exploi</del> E-55 Hollo	uded 5/3/88	Screen Slot Well Status SA TypeCA Hammer	n Slot & Type <u>010 in.</u> itotus <u>monitorin</u> SAMPLER CA split spoon er <u>140</u> 1b.		PVC				
Elev	Rec.	SAMPLE Depth(ft)	Blows/6"	Strata Change 8. Gen. Desc.	Depth (ft.)	SA	MPLE DES	CRIPTION			
	18"	5.0'-6.5' 10'-11.5' 15'-16.5'		Silty Clay Silty Clay Silty Clay Silty Clay		no odor Black S fibris Dark gr well pr coal, w Light y mottled	s, moist Silty Clay, w petroleum of cay Silty Cla ceserved plan wood fragment rellowish-bro l, some sand mics observe	odor. ny, some pebble: nt fibres, char- s. own Silty Clay			
4	18"	20'-21.5'		Sand and Gravel Sandy Silt	20 -	and gra Sandy c brown, cohesiv B. O. B	vel. layey Silt, no pebbles, e. . 21.5'	wish-brown sand light yellowish very fine sand, t approx. 9.5'			

, Ì

2()!! X		ROUND WAT	ER GEOLOGIS	STS	G	GEOLOGIC LOG						
Project Client Page Ogged B Vell No, Soc, t.P. Elevati Prilling Stat Priller Sype Of Rig	0471 Pfiz y on ried B C	1 Emeryvi1 er Pigment Jerry Wick RB-9 5/3/88 E ay Area Ex ME-55 Holl	1	Hole Diam. Final Depth Casing Diar Casing Len Screen Sett Screen Stor Well Statu Type CA. Hammer 1	(in.) (ft.) n. (in.) gth (ft.) ing (ft.) t & Type s MPLE split 40 0	Soil_boring ER t-spoon ib. in.						
Elev (I) No		SAMPLE Depth (fl.)	Blows/6"	Strata Change & Gen. Desc.	Depth (ft.)							
1 2 3	18"	2.5'-4' 5'-6.5' 7.5'-9'	1,1, 2 1, 1, 2 0,0,1	Fill Silty Clay		Gravelly Fill Dark gray silty clay, back shell sand layer and dark gray fine sa layer, no pebbles or organic fib no order. Very dark grey Silty clay, abund organic fibrers, faint organic odor B. O. B. 9 feet						

			OCIATE	<u> </u>	W	FII	DATA	T	G W	/ READ	
Projec	: <u>04</u>	<u>711</u>	Emeryville,	c1e CA	Hole Diam . Final Depth	(in.) (ft.)			Date	DTW MP(2)	
Page -		1	10	Inc.	Casing Len	gth (ft.) _	<u></u>				
Well No	0		<u>RB-10</u>		Screen Sio Well Statu	t & Type					
Drilling Driller	Star	ted Bay/	Area_Explor			_140			DEVE	LOPMENT	•
			55 Hollow S	rem Auger	<u></u>	1  1					
Elev. (I)			Depth (ft.)	Blows/6"	Strata Change & Gen. Desc.	Depth (ft.)	S		E DES	CRIPTION	
	1 3	18"	3.0-4.5' 5.0'-6.5' 10'-11.5'	1, 1, 2	Fill Silty Clay Sand		Dark Dark ish g lamin charc or oi meter	gray S ray mo ae or p oal, o 1 odor · ish gra es.	layer ilty Cl ttling, pockets rganic , no re	at 3 feet ay, some g fine sand , scattere odor, no s nding on H , scattere	l ed solvent PID
REMA	RKS	: (1)	in feet relati		an datum	25 _ - - - - -					

ROUX ASSOCIAT	TER GEOLOGIS		GEOLOGIC LOG					
Study No Project04711 Emery StientPfizer Pigm PogeOf Logged ByJerry Vell NoRW-11 Loc	Dote ville, CA ents Co. 1 Wickham Ended _5/5/88 ation	Hole Diam. Final Depth Casing Diar Casing Len Screen Sett Screen Slo Well Statu Mell Statu Type CA Hammer	WELL DATA         Hole Diam. (in.)       8         Final Depth (ft.)       17         Casing Diam. (in.)       4         Casing Length (ft.)       3.5         Screen Setting (ft.)       4-13         Screen Setting (ft.)       4-13         Screen Slot & Type 010 inch P         Well Status         Type       CA split spoon         Hammer       140       1b.         Fall       30       in.			O gallons with		
Elev. SAMPLE (1) No. Rec. Depth (ff	.) Blows/6"	Strata Change & Gen. Desc.	Depth (ft.)	SAN	APLE DES	CRIPTION		
1       6"       5"-6.5"         2       10"       10"-11.5         3       18"       15-16.5"	1, 2, 3	Fill Silty Sand Silty Clay		6 feet. shelly solvent Greenis fibres, 11.5 fee Gray-br wood fr. B. O. B	5-foot sa sand and gr odor. h gray Silt gravelly s et, no odor own Silty C agments, no	lay, abundant odor.		

APPENDIX B

١

CHAIN-OF-CUSTODY FORMS

Page 1 of 2

ROUX ASSOCIATES INC

	CHAIN	OF CUS	TODY R	ECORD							
Projec	t No. 04711	-									
Project Title Pfizer - Emeryville											
Sample Source Soil samples from Arilling											
Collectors Name Jerny Wickham / Jun Wechlam print signature											
Field	nformation										
Metho	d Of Shipping <u>In c</u>	ooler			<del></del>						
•	uished By:		Rece	ived By:							
sign Jevy Wichham sign Likets for Rock Associatus for Cunter Tangka und.											
		10	Dat	ce/Time <u>2/19/88</u>	LOIS AM						
Sample Designation	Sample Location	Date	Time	Analyte	No. Of Containers						
1-6.5-7.0	RW-1	2-18-88	0840	8240 Method Z	1 Liner						
2-7.0-7.5	RW - 1	2-18-88	0840	TPH 3550/8015 Heth3 611 & Grouse 503E Moth5 TPH 3550/8015 Moth3	1 Liner						
3-15-15.5	kw - 1	2-18-88	0910	Oil Concess 503EMeth &	<u>s I Liner</u>						
1-4.5-51	RW-Z	2-18-88	1130	TPH 3550 (2015 Molts) 011 6 6 0 0 503 E Molts	3.1 Lince						
1-5.5-6	RW-3	2-18-88	1510	TPH 3550 /8015Mch3 Cil & Chias 503E Milh 5 TPH 3550 /8015 Milh 5							
3-16-16.51	RW-3	2-18-88	1537	Oile Grease 503EHell TEHB550/8015 Meth3	5 1 Linan						
2-10-121	RW-4	2-19-88		011 & Grease 503 ENeths TPH 355018015 Maha	I Linch						
3-15-17'	RW-4	2-19-88	0805	Oil e Graze 503E Mall							

Comments:

Page 2 of 2

ROUX	ASSOCIATES	INC
------	------------	-----

	CHAIN	OF CUS	TODY R	ECORD	1
Proje	ct No. 04711				
Projec	st Title <u>Pfizer</u>	Emery	<u>wille</u>		·
Samp	le Source Soil sau	mples	From	dnilling	
Collec	stors Name Jerry	Wietho print	. <u>m_/</u>	Jour Michshauss Sgnature	********
Field	Information	<u></u>			
Metho	d Of Shipping <u>Ju</u> c	coler			
	uished By:			eived By:	
		m	_ sig: _ for	C I N (	d.
Date	/Time 2-19-86- 10	0	Dat	e/Time 2/19/88 101	HM
Date Sample Designation	/Time <u>'2-19-86 10</u> Sample Location	Date	_ Dat	e/Time <u>2/19/88 101</u> Analyte	No. Of Containers
Sample	1	Date	Time	1	No. Of Containers
Sample Designation $1 - 7.5 - q^{\prime}$	Sample Location	Date 2-19-88	Time 0745 0955	Analyte Oile Grase 303EMdLS 8270	No. Of Containers
Sample Designation 1-7.5-q' 57.5-q'	Sample Location RW-4	Date 2-19-88	Time 0745 0955	Analyte Oile Grase 303EMell S 8270 TPH 3550/5015Meth 3	No. Of Containers
Sample Designation 1-7.5-q' 57.5-q'	Sample Location RW-4 RW4a	Date 2-19-88 2-19-85	Time 0745 0955	Analyte Oile Grase 303EMell S 8270 TPH 3550/5015Meth 3	No. Of Containers 1 Liner 1 Liner
Sample Designation 1-7.5-q' 57.5-q'	Sample Location RW-4 RW4a	Date 2-19-88 2-19-85	Time 0745 0955	Analyte Oile Grase 303EMell S 8270 TPH 3550/5015Meth 3	No. Of Containers 1 Liner 1 Liner
Sample Designation 1-7.5-q' 57.5-q'	Sample Location RW-4 RW4a	Date 2-19-88 2-19-85	Time 0745 0955	Analyte Oile Grase 303EMell S 8270 TPH 3550/5015Meth 3	No. Of Containers 1 Liner 1 Liner
Relinq sign	uished By:	<u>coler</u>	sig	" Skleb	<u>д</u> 1

.

,

Comments:

	CHAIN	OF CUS	TODY RI	ECORD	
Projec	t No. 04711	-		· . ·	
Projec	t Title	- 61	Weryv	Ilc	
Sampi	e Source	Aunter	Fron	Monitoring	wells
Collec	tors Name PAUL	Supple print	<u> </u>	Signature /	· · ·
Field I	nformation	- Wost	edy P	THE REAL PROPERTY OF THE REAL	<u></u>
Metho	d Of Shipping		<u></u>		·
Relinq	ulshed By:		Rece	ived By:	,
sign .	Cray hayla	incrites	_ sigr	Paila 1	
for _ Date	ROUX (155 /Time 2/9/88	1,45 P		e/Time <u>() - 5 - 7 - 7</u>	······································
Sample Designation	Sample Location	Date	Time	Analyte	No. Of Containers
RW-1	•	3/9/88	12.00	01 + Grease TPH 3550/2015	1 quart plast
				•	· ·
RW-2		3/9/22	12.20PA	0,1 + GrEASE TPH 2550 (2015	18t plactic
			· · · · · · · · · · · · · · · · · · ·	Salinity	
RW-3		3/9/88	1.00 PM	0.1 + GICASE TEH 3550/8015	19t plastic
				SALINITY EPA 624	2 VOA vints
Rw-4		39/28	1,30 PM	0,1 + GREASE TPH 3556/8015	1 of plastic 1 pt AMACC
, <u></u>				EPA G24 EPA G25	2 VOA VIALS

Comments:

	CHAIN	OF CUS	TODY R	ECORD	:
Project	No04711				·
Project	Title <u>PFizer</u>	, Emp	ryville		
Sample	Source	A water	From	Monitorine	wells
	ors Name PAUL			- And And	1
		, buut		signatur 9p	
	iformation		· · · ·		
•	I Of Shipping		Rece	ived By:	
sign _	Barl Augh		_ sigi	n theman A. M.	hand .
	ROUX Associat Time 3/28/88	<u>res</u> 1.00 PN	_ for \ Dat	e/Time <u>3/23/</u>	AMPRINS
Sample Designation	Sample Location	Date	Time	Analyte	No. Of Containers
W-2		3/22/88	12.15PM	EPA 624	2 VOA VIA
				EPA 624	
W-3		3/28/88	12.30 PM	LEFA 607	2 VOA VIA
1				 	
			×		
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				

_

4 A

CHAIN O	F CUS	TODY	RECORD
---------	-------	------	--------

Projec	t No04711	'			
Projec	t Title	- G.Mer	y ville	<u>, C.A.</u>	
		SAmples	From	drilling	
	tors Name <u>Paul</u>	print	/	Sail Augu signature	1 
Field I	nformation		њ. у 		
Relinq	d Of Shipping uished By:		Rece	ived By:	
sign for Date	- ROUX Association	s 2. 35 PM	for.		un CA
Sample Designation	Sample Location	Date	Time	Analyte	No. Of Containers
<u>Designation</u> 5.0 - 5.5'	 RR - 5	5/2/88	9.50 AM	OIL + Grease Suiw M 503 E	1
5.5'-6.0'	RB-G	5/2/88	11.05 AM	11	1
0.5-11.0'	RB-6	5/2/88	11, 15 AM	11	1
5.0-6.5		5/2/88		· \	1
0.5'-11.0'		5/3/88		11	1
3.5'-4.0'		5/3/88	12.25 BM	Hold will CALL by 5/6/88	1
6.0'- 6.5'		5/3/88	12.38PM	Hold Will CALL 64 5/6/88	1

Comments:

÷.	CHAIN	OF CUS	TODY R	ECORD	
	t No. 04711		, ,	· .	
Projec	t Title PFIZE	E.N	Acrill	e, CA.	
Sampl	e Source	Awriter	From	1 Monitoring 1	<u>vells</u>
Collec	e Source <u>Urbun</u> tors Name <u>RAUI</u>	Sugg print	ple /	signature	<u> </u>
Field (	d Of Shipping				
-	uished By:		Rece	n Apsterita	
sign for Date	ROUX ACCOC	intes 0955	for	<i>y</i> 4	
Sample Designation	* /	Date	Time	Analyte	No. Of Containers
Rw-8		6/16/88	0940	OIL AND GEORGE	2
RW-3		6/16/88	0950	DIL AND Greace	2
	· · ·	<u></u>			
. <u></u>	·		 		
				·	
	· · · · · · · · · · · · · · · · · · ·	·	<u> </u>	· · · ·	

Comments:

APPENDIX C

.

,

.

LABORATORY REPORTS

14237 DUX ASSOCIATES		DATE RECE	IVED: 02/	/19/88
1, PFIZER-EMERYVI	ILLE I	DATE ANALY DATE REPON PAGE 1 of	YZED: 02/ RTED: 03/	/26/88
nalysis for Petro	oleum Hydro	carbons		
ences: O&G: Oil a	and Grease,	SWWM 503	E arbons. I	EPA 3550/801
1711. 100		um ngaroot		
CLIENT ID				O&G (mg/Kg)
	ND(10)	ND(10)	ND(10)	95
				90 100
				53,750
	· · ·	• •	ND(10)	135
-4, 2-10-12	ND(10)	ND(10)	ND(10)	50
-4, 3-15-17	ND(10)	ND(10)	ND(10)	100
	ences: O&G: Oil a TPH: Tot CLIENT ID 7-1, 2-7.07.5 7-1, 3-15-15.5 7-2, 1-4.5-5 7-3, 1-5.5-6 7-3, 3016-16.5	Inalysis for Petroleum Hydro         Sences: O&G: Oil and Grease, TPH: Total Petrole         CLIENT ID       GASOLINE (mg/Kg)         I-1, 2-7.07.5       ND(10)         I-1, 3-15-15.5       ND(10)         I-2, 1-4.5-5       ND(10)         I-3, 1-5.5-6       ND(10)         I-3, 3016-16.5       ND(10)	Inalysis for Petroleum Hydrocarbons         Sences: O&G: Oil and Grease, SWWM 503 TPH: Total Petroleum Hydroca         CLIENT ID       GASOLINE KEROSINE (mg/Kg) (mg/Kg)         I-1, 2-7.07.5       ND(10) ND(10)         I-1, 3-15-15.5       ND(10) ND(10)         I-2, 1-4.5-5       ND(10) ND(10)         I-3, 1-5.5-6       ND(10) ND(10)         I-3, 3016-16.5       ND(10) ND(10)	Inalysis for Petroleum Hydrocarbons         Sences: O&G: Oil and Grease, SWWM 503 E         TPH: Total Petroleum Hydrocarbons, I         CLIENT ID       GASOLINE KEROSINE DIESEL (mg/Kg) (mg/Kg) (mg/Kg)         I-1, 2-7.07.5       ND(10)       ND(10)         I-1, 3-15-15.5       ND(10)       ND(10)         I-2, 1-4.5-5       ND(10)       ND(10)         I-3, 1-5.5-6       ND(10)       ND(10)         I-3, 3016-16.5       ND(10)       ND(10)

ND = NONE DETECTED. LIMIT OF DETECTION IS INDICATED IN PARENTHESES. N/R = NOT REQUESTED.

QA/QC SUMMARY

Duplicate: Relative % Difference Spike: % Recovery

Ì

Laboratory ectør Dj

5 92

Laboratory Dyrector

Wilmington

.

Curtis & Tompkins, Ltd.

LABORATORY NUMBER: 14237-1 CLIENT: ROUX ASSOCIATES PROJECT #: 04711, PFIZER-EMERYVILLE SAMPLE ID: RW-1, 1-6.5-70'

	RECEIVED: 02/19/88
DATE	EXTRACTED: 03/04/88
DATE	ANALYZED: 03/04/88
	REPORTED: 03/10/88
	2 of 7

EPA Method 8240: Volatile Organics in Soils & Wastes

COMPOUND	Result ug/kg	LOD ug/kg
benzene carbon tetrachloride chlorobenzene 1,2-dichloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2,2-tetrachloroethane chloroethane 2-chloroethylvinyl ether chloroform 1,1-dichloroethene 1,2-trans-dichloroethene 1,2-trans-dichloroethene 1,3-dichloropropane 1,3-dichloropropene ethylbenzene methylene chloride chloromethane bromomethane bromotichloromethane fluorotrichloromethane tetrachloroethene toluene trichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500$
vinyl chloride	ND	500
Non-Priority Hazardous Pollutant S acetone 2-butanone carbon disulfide 2-hexanone 4-methyl-2-pentanone styrene vinyl acetate total xylenes	ND ND ND ND ND ND ND ND ND	1000 1000 500 500 500 500 500 500
QA/QC: Spike Recov 1,2 Dichloroethane-d4 Toluene-d8: Bromofluorobenzene	ery %	104 99 108

Curtis & Tompkins, Ltd.

91 90 98

LABORATORY NUMBER: 14237-4 CLIENT: ROUX ASSOCIATES PROJECT #: 04711, PFIZER-EMERYVILLE SAMPLE ID: RW-2, 3-15-15.5' DATE RECEIVED: 02/19/88 DATE EXTRACTED: 03/04/88 DATE ANALYZED: 03/04/88 DATE REPORTED: 03/10/88 PAGE 3 of 7

EPA Method 8240: Volatile Organics in Soils & Wastes

COMPOUND	Result ug/kg	LOD ug/kg
benzene	ND	500
carbon tetrachloride	ND	500
chlorobenzene	ND	500
1,2-dichloroethane	ND	500
1,1,1-trichloroethane	ND	500
1,1-dichloroethane	ND	500
1,1,2-trichloroethane	ND	500
1,1,2,2-tetrachloroethane	ND	500
chloroethane	ND	500
2-chloroethylvinyl ether	ND	1000
chloroform	ND	500
1,1-dichloroethene	ND	500
1,2-trans-dichloroethene	ND	500
1,2-dichloropropane	ND	500
1,3-dichloropropene	ND	500
ethylbenzene	ND	500
methylene chloride	ND	1000
chloromethane	ND	500
bromomethane	ND	500
bromoform	ND	500
bromodichloromethane	ND	500
fluorotrichloromethane	ND	500
chlorodibromomethane	ND	. 500
tetrachloroethene	ND	500
toluene	ND	500
trichloroethene	ND	500
vinyl chloride	ND	500

Non-Priority Hazardous Pollutant Substances List Compounds

acetone	ND	1000
2-butanone	ND	1000
carbon disulfide	ND	500
2-hexanone	ND	500
4-methyl-2-pentanone	ND	500
styrene	ND	500
vinyl acetate	ND	500
total xylenes	ND	500
coord without		

QA/QC: Spike Recovery %

1,2 Dichloroethane-d4	
Toluene-d8:	
Bromofluorobenzene	



LABORATORY NUMBER: 14237-5 CLIENT: ROUX ASSOCIATES PROJECT #: 04711, PFIZER-EMERYVILLE SAMPLE ID: RW-3, 1-5.5-6'

4-methyl-2-pentanone

1,2 Dichloroethane-d4

Bromofluorobenzene

styrene

vinyl acetate

total xylenes

Toluene-d8:

DATE RECEIVED: 02/19/88 DATE EXTRACTED: 03/04/88 DATE ANALYZED: 03/04/88 DATE REPORTED: 03/10/88 PAGE 4 of 7

500

500

500

500

94

92

105

ND

ND

ND

ND

EPA Method 8240: Volatile Organics in Soils & Wastes

COMPOUND	Resul ug/kg	
benzene	ND	500
carbon tetrachloride	ND	500
chlorobenzene	ND	500
1,2-dichloroethane	ND	500
1,1,1-trichloroethane	ND	500
1,1-dichloroethane	ND	500
1,1,2-trichloroethane	ND	500
1,1,2,2-tetrachloroethane	ND	500
chloroethane	ND	500
2-chloroethylvinyl ether	ND	1000
chloroform	ND	500
1,1-dichloroethene	ND	500
1,2-trans-dichloroethene	ND	500
1,2-dichloropropane	ND	500
1,3-dichloropropene	ND	500
ethylbenzene	ND	500
methylene chloride	ND	1000
chloromethane	ND	500
bromomethane	ND	500
bromoform	ND	500
bromodichloromethane	ND	500
fluorotrichloromethane	ND	500
chlorodibromomethane	ND	500
tetrachloroethene	ND	500
toluene	ND	500
trichloroethene	ND	500
vinyl chloride	ND	500
Non-Priority Hazardous Pollutant	Substances	List Compounds
acetone	ND	1000
2-butanone	ND	1000
carbon disulfide	ND	500
2-hexanone	ND	500
	ND	500

QA/QC: Spike Recovery %

Curtis & Tompkins, Ltd.

LABORATORY NUMBER: 14237-11 CLIENT: ROUX ASSOCIATES PROJECT #: 04711, PFIZER-EMERYVILLE SAMPLE ID: RW-4a, 6-8-8.5'

	RECEIVED: 02/19/88
DATE	EXTRACTED: 03/04/88
DATE	ANALYZED: 03/04/88
DATE	REPORTED: 03/10/88
	5 of 7

EPA Method 8240: Volatile Organics in Soils & Wastes

COMPOUND	Result ug/kg	LOD ug/kg
benzene	ND	500
carbon tetrachloride	ND	500
chlorobenzene	ND	500
1,2-dichloroethane	ND	500
1,1,1-trichloroethane	ND	500
1,1-dichloroethane	ND	500
1,1,2-trichloroethane	ND	500
1,1,2,2-tetrachloroethane	ND	500
chloroethane	ND	500
2-chloroethylvinyl ether	ND	1000
chloroform	ND	500
	ND	500
1,1-dichloroethene	ND	500
1,2-trans-dichloroethene	ND	500
1,2-dichloropropane	ND	500
1,3-dichloropropene	ND	500
ethylbenzene	ND	1000
methylene chloride	ND ND	500
chloromethane	ND	500
bromomethane	ND	500
bromoform	ND	500
bromodichloromethane	ND	500
fluorotrichloromethane	ND	500
chlorodibromomethane	ND	500
tetrachloroethene		500
toluene	ND	500
trichloroethene	ND	500
vinyl chloride	ND	500
Non-Priority Hazardous Pollutant Subs	tances Li	st Compound's
acetone	ND	1000
2-butanone	ND	1000
carbon disulfide	ND	500
	ND	500
2-hexanone	ND	500
4-methyl-2-pentanone	ND	500
styrene	ND	500
vinyl acetate	ND	500
total xylenes		500
QA/QC: Spike Recovery	8	<u> </u>
1,2 Dichloroethane-d4		97
Toluene-d8:		93
Bromofluorobenzene		104

LABORATORY NUMBER: 14237-10 CLIENT: ROUX ASSOCIATES PROJECT ID: 04711, PFIZER-EMERYVILLE SMAPLE ID: RW-4a, 5-7.5-8' Curtis & Tompkins, Ltd. DATE RECEIVED: 02/19/88 DATE EXTRACTED: 02/26/88 DATE ANALYZED: 02/26/88 DATE REPORTED: 03/10/88 Page 6 of 7

.

EPA METHOD 827	0: BASE/NEUTRAL	AND ACID	EXTRACTABLES I	N SOILS & WASTES
EXTRACTION MET	THOD: EPA 3550 SC	ONICATION	RESIL	TOD

PhenolND2-ChlorophenolND2.NitrophenolND2,4-DimethylphenolND2,4-DichlorophenolND2,4-fo-TrichlorophenolND2,4,6-TrichlorophenolND2,4-fo-TrichlorophenolND2,4-DinitrophenolND2,4-DinitrophenolND2,4-DinitrophenolND2,4-DinitrophenolND2-Methyl-4,6-dinitrophenolNDPentachlorophenolNDBASE/NEUTRAL COMPOUNDSNDBis (2-chloroethyl)etherND1,3-DichlorobenzeneND1,4-DichlorobenzeneND1,2-chloroethaneNDNitrobenzeneNDNitrobenzeneNDNitrobenzeneNDSis (2-chloroethoxy)methaneNDNitrobenzeneNDNitrobenzeneNDNitrobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-TrichlorobenzeneNDJ.2,4-Trichlorob	ACID COMPOUNDS	RESULT mg/kg	LOD mg/kg
Bis(2-chloroethyl)etherND1,3-DichlorobenzeneND1,4-DichlorobenzeneND1,2-DichlorobenzeneNDBis(2-chloroisopropyl)etherNDN-nitrosodi-n-propylamineNDHexachloroethaneNDNitrobenzeneNDIsophoroneNDBis(2-chloroethoxy)methaneND1,2,4-TrichlorobenzeneNDHexachlorocylopentadieneNDHexachlorocylopentadieneND2-ChloronaphthaleneNDDimethyl phthalateND2,6-DinitrotolueneND2,4-DinitrotolueneND2,4-DinitrotolueneNDYYNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td>2-Chlorophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol</td> <td>ND ND ND ND ND ND ND ND</td> <td>$\begin{array}{c} 0.33 \\ 0.33 \\ 1.65 \\ 0.33 \\ 0.33 \\ 0.33 \\ 1.65 \\ 1.65 \\ 1.65 \\ 1.65 \\ 1.65 \end{array}$</td>	2-Chlorophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol	ND ND ND ND ND ND ND ND	$\begin{array}{c} 0.33 \\ 0.33 \\ 1.65 \\ 0.33 \\ 0.33 \\ 0.33 \\ 1.65 \\ 1.65 \\ 1.65 \\ 1.65 \\ 1.65 \end{array}$
bis(2+chlorobenzeneND1,3-DichlorobenzeneND1,2-DichlorobenzeneNDBis(2-chloroisopropyl)etherNDN-nitrosodi-n-propylamineNDHexachloroethaneNDNitrobenzeneNDIsophoroneNDBis(2-chloroethoxy)methaneND1,2,4-TrichlorobenzeneNDNaphthaleneNDHexachlorocyclopentadieneNDHexachlorocyclopentadieneND2-ChloronaphthaleneNDDimethyl phthalateNDAcenaphthyleneND2,6-DinitrotolueneND2,4-DinitrotolueneNDFluoreneND	BASE/NEUTRAL COMPOUNDS		
Diethyl phthalateND4-Chlorophenylphenyl etherNDN-NitrosodiphenylamineND1,2-DiphenylhydrazineND4-Bromophenylphenyl etherND	<pre>1,3-Dichlorobenzene 1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether N-nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene Hexachlorocyclopentadiene 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene Acenaphthene 2,4-Dinitrotoluene Fluorene Diethyl phthalate 4-Chlorophenylphenyl ether N-Nitrosodiphenylamine 1,2-Diphenylhydrazine</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

LABORATORY NUMBER: 14237-10 SMAPLE ID: RW-4a, 5-7.5-8'	EPA 8270 page 7 of 7
BASE/NEUTRAL COMPOUNDS	RESULT LOD mg/kg mg/kg
Hexachlorobenzene Phenanthrene Anthracene Dibutylphthalate Fluoranthene Benzidine Pyrene Butylbenzylphthalate Benzo (a) anthracene 3,3'-Dichlorobenzidine Chrysene Bis (2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	ND0.33ND0.33ND0.33ND0.33ND0.33ND1.65ND0.33ND0.33ND1.65ND0.33ND0.33ND0.33ND0.33ND0.33ND0.33ND0.33ND0.33ND0.33ND1.65ND1.65ND1.65ND1.65
HSL COMPOUNDS Benzoic Acid 2-Methylphenol 4-Methylphenol 2,4,5-Trichlorophenol Aniline Benzyl Alcohol 4-Chloroaniline 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Dibenzofuran 4-Nitroaniline	ND3.3ND0.33ND0.33ND0.33ND1.65ND0.66ND0.33ND1.65ND1.65ND1.65ND1.65ND1.65ND1.65ND1.65ND1.65ND1.65

Curtis & Tompkins, Ltd.

ND = None Detected, Limit of Detection (LOD) appears in far right column

	QA/QC	SUMMARY		
Compound 2-Flourophenol 2,4,6-tribromophenol Nitrobenzene-d5	&Recovery 62 105 64		Compound 2-Flourobiphenyl Terphenyl-d14	%Recovery 70 82

.

	ROUX ASSOCIATE ID: 0 4711, PFI		DA1	TE ANALYZED: TE REPORTED: SE 1 of 6	
	of Analysis for eferences: O&G: TPH:	_	e, EPA 413	1.1	
LAB ID	CLIENT ID:	GASOLINE (mg/L)		DIESEL (mg/L)	O&G (mg/L
14321-1 14321-2 14321-3 14321-4	RW-2 RW-3	ND(0.05) ND(0.05) ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	ND(20) ND(20) ND(20) ND(20)
SALINITY:	SMWW 210C				
			SALINITY (g/Kg)		,
14321-2 14321-3	RW-2 RW-3		ND(1) ND(1)		
ND = Not	Detected; Limit	of detection	indicated	in parenthe	ses.
		QA/QC	SUMMARY		
Duplicate Spike: %	: Relative % Di Recovery	fference	TPH 21 116	0& -	G 7 -
				,	

San Francisco

Wilmington

Los Angeles

.



LABORATORY NUMBER: 14321-3 CLIENT: ROUX ASSOCIATES SAMPLE ID: RW-3 PROJECT ID: 0 4711, PFIZER-EMERYVILLE

RECEIVED:	03/09/88
ANALYZED:	03/21/88
<b>REPORTED:</b>	03/29/88
2 of 6	
	ANALYZED: REPORTED:

COMPOUND	Result Detection ug/L Limit	
benzene	ug/L ND 5	
carbon tetrachloride	ND 5 ND 5	
chlorobenzene	ND 5	
	ND 5	
1,2-dichloroethane	ND 5	
1,1,1-trichloroethane	ND 5 ND 5	
1,1-dichloroethane	ND         5           ND         5           ND         5           ND         5           ND         5	
1,1,2-trichloroethane	ND 5	
1,1,2,2-tetrachloroethane chloroethane	ND 5	
	ND 10	
2-chloroethylvinyl ether	ND 5	
chloroform	ND 5	
1,1-dichloroethene	ND 5 ND 5	
1,2-trans-dichloroethene	ND 5	
1,2-dichloropropane	ND 5	
1,3-dichloropropene ethylbenzene	ND 5	
methylene chloride	ND 10	
chloromethane	ND 5	
bromomethane	ND 5	
bromoform	ND 5	
bromodichloromethane	ND 5	
fluorotrichloromethane	ND 5	
chlorodibromomethane	ND 5	
tetrachloroethene	ND 5	
toluene	ND 5	
trichloroethene	ND 5	
vinyl chloride	ND 5	
vinyi chidilde		
Non-Priority Hazardous Pollutant	Substances List Compounds	
acetone	ND 10	
2-butanone	ND 10	
carbon disulfide	ND 5	
2-hexanone	ND 5	
4-methyl-2-pentanone	ND 5 ND 5 ND 5 ND 5 ND 5 ND 5	
styrene	ND 5	
vinyl acetate	ND 5	
total xylenes	ND 5	
QA/QC Summary	Spike Recovery %	
1,2 Dichloroethane-d4		-
Toluene-d8	101	
Bromofluorobenzene	101	
promorranorobenzene	TOT	



LABORATORY NUMBER: 14321-4 CLIENT: ROUX ASSOICATES SAMPLE ID: RW-4 PROJECT ID: 0 4711, PFIZER-EMERYVILLE

1

DATE	RECEIVED:	03/09/88
DATE	ANALYZED:	03/21/88
DATE	REPORTED:	03/29/88
PAGE	3 of 6	

COMPOUND	Result Detection ug/L Limit ug/L
,	
benzene	ND 5
carbon tetrachloride	ND 5
chlorobenzene	ND 5
1,2-dichloroethane	ND       5
1,1,1-trichloroethane	ND 5
	ND 5
1,1-dichloroethane	
1,1,2-trichloroethane	ND 5
1,1,2,2-tetrachloroethane	ND 5
chloroethane	
2-chloroethylvinyl ether	ND 10
chloroform	ND 5
	ND 5
1,1-dichloroethene	
1,2-trans-dichloroethene	ND 5
1,2-dichloropropane	ND 5 ND 5 ND 5 ND 5
1,3-dichloropropene	ND 5
ethylbenzene	ND 5
methylene chloride	ND 10
chloromethane	
bromomethane	ND 5
	ND       5         ND       5
bromoform	ND 5
bromodichloromethane	
fluorotrichloromethane	ND 5
chlorodibromomethane	ND 5
tetrachloroethene	ND 5
toluene '	
trichloroethene	ND 5
vinyl chloride	ND 5
Non-Priority Hazardous Pollutant	Substances List Compounds
	<b>A</b> AAA <b>A A</b>
acetone	2,000 10
2-butanone	1,000 10
carbon disulfide	ND 5
2-hexanone	ND 5
4-methyl-2-pentanone	8,600 5
	ND 5
styrene	
vinyl acetate	
total xylenes	ND 5
QA/QC Summary	Spike Recovery %
و الله الحار الله الحار الحار الله الحار الحر الله الحار الحر الله الحار الحر الله الله الحر الله الله والله ال و الله الحار الله الله الحار الحر الحار الحر الحار الحار الحار الحر الله الحار الحر الله الله وعلى الحر الله ال	۔۔۔ اسا ہی کے اسا ہی کہ اس باب ہے اس اس اس اس اس بنیا ہی جو میں یہ جو ان کہ اس میں پیچ اس باب ہی جو اس سے جو ان کی بی پر
1,2 Dichloroethane-d4	112
Toluene-d8	100
Bromofluorobenzene	106
PT OWDT T WOT ON OUT OUT O	



LABORATORY NUMBER: 14321-4(RERUN) CLIENT: ROUX ASSOCIATES SAMPLE ID: RW-4 PROJECT ID: 0 4711, PFIZER-EMERYVILLE DATE RECEIVED: 03/09/88 DATE ANALYZED: 03/23/88 DATE REPORTED: 03/29/88 PAGE 4 of 6

COMPOUND	Result Detection ug/L Limit ug/L
benzene	ND 15
carbon tetrachloride	ND 15
chlorobenzene	ND 15
	ND 15
1,2-dichloroethane	ND 15
1,1,1-trichloroethane	ND 15
1,1-dichloroethane	ND 15
1,1,2-trichloroethane	
1,1,2,2-tetrachloroethane	
chloroethane	
2-chloroethylvinyl ether	
chloroform	ND 15
1,1-dichloroethene	ND 15
1,2-trans-dichloroethene	ND 15
1,2-dichloropropane	ND 15
1,3-dichloropropene	ND 15
ethylbenzene	ND 15
methylene chloride	ND 30
chloromethane	ND 15
bromomethane	ND 15
bromoform	ND 15
bromodichloromethane	ND 15
fluorotrichloromethane	ND 15
chlorodibromomethane	ND 15
tetrachloroethene	ND 15
toluene	ND 15
trichloroethene	ND 15
vinyl chloride	ND 15
Non-Priority Hazardous Pollutant	Substances List Compounds
acetone	6,800 30
2-butanone	8,200 30
carbon disulfide	ND 15
2-hexanone	ND 15
	44,200 15
4-methyl-2-pentanone	ND 15
styrene	ND 15 ND 15
vinyl acetate	ND 15
total xylenes	
QA/QC Summary	Spike Recovery %
1,2 Dichloroethane-d4	112
Toluene-d8	98
Bromofluorobenzene	94



LABORATORY NUMBER: 14321-4 CLIENT: ROUX ASSOCIATES PROJECT ID: 0 4711, PFIZER-EMERYVILLE SAMPLE ID: RW-4 DATE RECEIVED: 03/09/88 DATE EXTRACTED: 03/23/88 DATE ANALYZED: 03.23.88 DATE REPORTED: 10/23/87 Page 5 of 6

EPA METHOD 625: BASE/NEUTRAL AND ACID EXTRACTABLES IN WATER EXTRACTION METHOD: EPA 3510 LIQUID/LIQUID RESULT LOD

ACID COMPOUNDS	RESULT ug/L	LOD ug/L
Phenol 2-Chlorophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol Pentachlorophenol	ND ND ND ND ND ND ND ND ND ND	5 25 5 10 5 25 25 25 25
BASE/NEUTRAL COMPOUNDS		
<pre>Bis(2-chloroethyl)ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether N-nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene Naphthalene Hexachlorocyclopentadiene 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene Acenaphthene 2,4-Dinitrotoluene Fluorene Diethyl phthalate 4-Chlorophenylphenyl ether</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
N-Nitrosodiphenylamine 1,2-Diphenylhydrazine 4-Bromophenylphenyl ether	ND ND ND	5 5 5 5

LABORATORY NUMBER: 14321-4 SAMPLE ID: RW-4	EPA 625 page 6 of 6
BASE/NEUTRAL COMPOUNDS	RESULT LOD ug/L ug/L
Hexachlorobenzene	ND 5
Phenanthrene	ND 5 ND 5 ND 5 ND 5 ND 5
Anthracene	ND 5
Dibutylphthalate	
Fluoranthene	ND 5 ND 25
Benzidine Pyrene	ND 25 ND 5
Butylbenzylphthalate	ND 5
Benzo (a) anthracene	ND 5
3,3'-Dichlorobenzidine	ND 25
Chrysene	ND 5
Bis (2-ethylhexyl)phthalate	ND 5 ND 5
Di-n-octyl phthalate	ND 5
Benzo (b) fluoranthene	ND 5
Benzo (k) fluoranthene	ND 5
Benzo (a) pyrene	ND 5 ND 25
Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene	ND 25
Benzo (ghi) perylene	ND 25
HSL COMPOUNDS	
Benzoic Acid	ND 50
2-Methylphenol	ND 5
4-Methylphenol	ND 5
2,4,5-Trichlorophenol	ND 5
Aniline	ND 5
Benzyl Alcohol	ND 25
4-Chloroaniline	ND 10
2-Methylnaphthalene	5.2 5
2-Nitroanline	ND 25
3-Nitroaniline	ND 25 ND 5
Dibenzofuran 4-Nitroaniline	ND 5 ND 25
A-MTCTOGHTTTHG	

Curlis & Tompkins, Ltd.

1

ND = None Detected, Limit of Detection (LOD) appears in far right column

QA/QC SUMMARYCompoundRecovery,%CompoundRecovery,%2-Flourophenol612-Flourobiphenyl662,4,6-tribromophenol57Terphenyl50Nitrobenzene-d5898950

LABORATORY CERTIFICATE Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878 290 Division Street, San Francisco, CA 94103, Phone (415) 861-1863

Laboratory No. 14438 Preliminary No. Reported > 04/08/88 Sampled Received > 03/28/88

For > ROUX ASSOCIATES

Report on > 2 WATER SAMPLES

Mark

> Job Location: PFIZER-EMERYVILLE
Job Number: 04711

See Attached Results

Laboratory Director



LABORATORY NUMBER: 14438-1 CLIENT: ROUX ASSOCIATES SAMPLE ID: RW-2 Job ID: 04711, PFIZER-EMERYVILLE DATE RECEIVED: 03/28/88 DATE ANALYZED: 04/01/88 DATE REPORTED: 04/08/88 PAGE 1 of 2

EPA METHOD 624: VOLATILE ORGANICS IN WATER

COMPOUND	Result ug/L	
benzene	ND	uy/11 5
carbon tetrachloride	ND	
chlorobenzene	ND	5 5 5 5 5 5 5 5 5
1,2-dichloroethane	ND	5
1,1,1-trichloroethane	ND	5
1,1-dichloroethane	ND	5
1,1,2-trichloroethane	ND	5
1,1,2-Crichioroethano	ND	5
1,1,2,2-tetrachloroethane	ND	5
chloroethane	ND	10
2-chloroethylvinyl ether	ND.	5
chloroform	ND	5 5 [°]
1,1-dichloroethene		5
1,2-trans-dichloroethene	ND	5 5 5
1,2-dichloropropane	ND	5
1,3-dichloropropene	ND	5
ethylbenzene	ND	
methylene chloride	ND	10
chloromethane	ND	5
bromomethane	ND	5
bromoform	ND	5
bromodichloromethane	ND	5 5 5 5 5 5 5 5 5 5 5 5 5 5
fluorotrichloromethane	ND	5
chlorodibromomethane	ND	5
tetrachloroethene	ND	5
toluene	ND	5
trichloroethene	ND	5
vinyl chloride	ND	5
Non-Priority Hazardous Pollutant	Substances	List Compounds
acetone	ND	10
2-butanone	ND	10
carbon disulfide	ND	5
	ND .	5
2-hexanone	ND	
4-methyl-2-pentanone	ND	5 5 5
styrene	ND	ž
vinyl acetate	ND	5
total xylenes	RD	2
QA/QC:	Average Spi	ke Recovery %
1.2 Dichloroethane-d4		121
1,2 Dichloroethane-d4		105
Toluene-d8		97

Bromofluorobenzene

97

Curtis & Tompkins, Ltd.

LABORATORY NUMBER: 14438-2 CLIENT: ROUX ASSOCIATES SAMPLE ID: RW-3 Job ID: 04711, PFIZER-EMERYVILLE DATE RECEIVED: 03/28/88 DATE ANALYZED: 04/01/88 DATE REPORTED: 04/08/88 PAGE 2 of 2

		Result	Detection
		ug/L	Limit
	COMPOUND		ug/L
		ND	5
ł	benzene	ND	5
	carbon tetrachloride	ND	с 5
	chlorobenzene		5
	1,2-dichloroethane	ND	5
	1,1,1-trichloroethane	ND	2
	1,1-dichloroethane	ND	5
	1,1,2-trichloroethane	ND	5
Þ	1,1,2,2-tetrachloroethane	ND	5 5 5 5 5 5 5 5 5
	chloroethane	ND	
	2-chloroethylvinyl ether	ND	10
	chloroform	ND	5
		ND	5
	1,1-dichloroethene	ND	5 5 5 5
-	1,2-trans-dichloroethene	ND	5
	1,2-dichloropropane	ND	5
ł	1,3-dichloropropene	ND	5
	ethylbenzene	ND	10
	methylene chloride	ND	5
ł	chloromethane	ND	5
	bromomethane		
	bromoform	ND	5 5 5
	bromodichloromethane	ND	
	fluorotrichloromethane	ND	2
	chlorodibromomethane	ND	5
	tetrachloroethene	ND	5
	toluene	ND	5
	trichloroethene	ND	5
	vinyl chloride	ND	5
	-		
	Non-Priority Hazardous Pollutant	Substances	List Compounds
	MOH-FLIOLICY MAZALAGAD LOLLCOMPT		
		ND	10
	acetone	ND	10
	2-butanone	ND	5
	carbon disulfide	ND	5
	2-hexanone	ND	5
	4-methy1-2-pentanone	ND	5
	styrene	ND	5
	vinyl acetate	ND	5
	total xylenes	ND	5
í		Amorra Co	ite Recovery &
į,	QA/QC:	Average 3p.	ike Recovery %
			141
	1,2 Dichloroethane-d4		141 105
	Toluene-d8		
	Bromofluorobenzene		97

ct		<b>NS, Ltd.,</b> Analytico San Francisco, CA 94103	al Laboratories, Since 1878 , Phone (415) 861-1863	
CLIENT: REPORT O	RY NUMBER: 14635 ROUX ASSOCIATES N: 6 SOIL SAMPLES ID: 04711, PFIZER-EMER		DATE RECEIVED: 05/05/88 DATE ANALYZED: 05/10/88 DATE REPORTED: 05/18/88 PAGE 1 OF 2	
OIL & GREASE ANALYSIS IN SOIL METHOD: SMWW 503A				
C&T ID	SAMPLE ID RB-5 @5.0-5.5	29,400	ASE, mg/Kg	
T#DDDD=T	KD-0 60.0-0.0	23,100		
	RB-6 @5.5-6.0	4,850	(Rerun) scorted G/8/88	
14635-2	RB-6 @5.5-6.0 RB-6 @10.5-11.0	·	(Rerun) scorted G/8/88 16,810 mg/kg	
14635-2 14635-3		4,850	(Rerun) icported 6/8/88 16,810 mg/kg	
14635-2 14635-3 14635-4	RB-6 @10.5-11.0	4,850 ND(50)	(Rerun) scorted G/0/08 16,810 mg/kg	

ND = NONE DETECTED. LIMIT OF DETECTION IS INDICATED IN PARENTHESES.

LABORATORY FIRECTOR

Wilmington



.

LABORATORY NUMBER: 14635-7 CLIENT: ROUX ASSOCIATES SAMPLE ID: RW-9 @6.0-6.5 JOB #: 04711, PFIZER-EMERYVILLE DATE RECEIVED: 05/05/88 DATE EXTRACTED: 05/17/88 DATE ANALYZED: 05/17/88 DATE REPORTED: 05/18/88 PAGE 2 OF 2

EPA Method 8240: Volatile Organics in Soils & Wastes

	COMPOUND	Result ug/kg	LOD ug/kg
	hangana	ND	500
	benzene carbon tetrachloride	ND	500
	chlorobenzene	ND	500
	1,2-dichloroethane	ND	500
	1,1,1-trichloroethane	ND	500
		ND	500
	1,1-dichloroethane	ND	500
	1,1,2-trichloroethane 1,1,2,2-tetrachloroethane	ND	500
	chloroethane	ND	500
		ND	1000
	2-chloroethylvinyl ether	ND	500
	chloroform	ND	500
	1,1-dichloroethene	ND	500
	1,2-trans-dichloroethene	ND	500
	1,2-dichloropropane	ND	500
	1,3-dichloropropene	ND	500
	ethylbenzene	ND	1000
	methylene chloride	ND	500
	chloromethane	ND	500
	bromomethane	ND	500
	bromoform	ND	500
	bromodichloromethane	ND	500
•	fluorotrichloromethane	ND	500
	chlorodibromomethane	ND	500
	tetrachloroethene	ND	500
	toluene	ND	500
	trichloroethene	ND	500
	vinyl chloride		200
	Non-Priority Hazardous Pollutant	Substances List	Compounds
	acetone	ND	1000
	2-butanone	ND	1000
	carbon disulfide	ND	500
	2-hexanone	ND	500
	4-methyl-2-pentanone	ND	500
		ND	500
	styrene	ND	500
	vinyl acetate	ND	500
	total xylenes	7475	
	QA/QC: Surrogate Sp.	ike Recoverv *	
	1,2 Dichloroethane-d4	The weeks and a	78
	Toluene-d8:		96
	TOTROUG_AD+		

Toluene-d8: 96 Bromofluorobenzene 89

		& Tompkins, Ltd., Analy 290 Division Street, San Francisco, CA 94	the second s	a second s	e 1878
	LABORATORY NUMBER CLIENT: ROUX ASSO REPORT ON: 2 WATER PROJECT #: 04711 PROJECT TITLE: PF	CIATES	DATE	RECEIVED: ANALYZED: REPORTED:	06-16-88
	OIL & GREASE ANALY	YSIS, SMWW 503 A		===============	
I	LAB ID	CLIENT ID		OIL & (mg)	GREASE /L)
	14903-1	RW - 8		ND (	20)
	14903-2	RW - 3		ND (	20)

ND = None Detected; Limit of Detection is Indicated in Parentheses.

LABORATORY DIRECTOR

Wilmington

RECEIVED

DEC 2 2 1987

BROWN AND CALDWELL LABORATORIES

# EMERYVILLE, CALIF.

## **ANALYTICAL REPORT**

1255 POWELL STREET EMERYVILLE, CA 94608 * (415) 428-2300

LOG NO: E87-12-088

Received: 03 DEC 87 Reported: 18 DEC 87

Purchase Order: EM-62946

Mr. Michael Herzog Pfizer Pigments Inc. 4650 Shellmound Street Emeryville, California 94608

REPORT OF ANALYTICAL RESU
---------------------------

Page 1

LOG NO	SAMPLE DESCRIPTION, SOIL SAMPLES		DATE SAMPLED
12-088-1	Waste Oil Tank Excavation Core		03 DEC 87
PARAMETER		12-088-1	
011 and Greater Total Fuel	ase, mg/kg Hydrocarbons, mg/kg	490 720	

BROWN AND CALDWELL LABORATORIES

#### 20

1255 POWELL STREET EMERYVILLE, CA 94608 • (415) 428-2300

## LOG NO: E87-12-088

ANALYTICAL REPORT

Received: 03 DEC 87 Reported: 18 DEC 87

۰.

Purchase Order: EM-62946

Mr. Michael Herzog Pfizer Pigments Inc. 4650 Shellmound Street Emeryville, California 94608

~, ~

#### REPORT OF ANALYTICAL RESULTS

#### rage z

	DATE SAMPLED
	03 DEC 87
12-088-1	
12.07.87 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	
<0.2 <0.2 <0.2 <0.2 <2 <2	
<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	
<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	
	12.07.87 <pre></pre> <pre>(0.2</pre> <pre>&lt;0.2</pre> <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2

Page 2

BROWN AND CALDWELL LABORATORIES

### ANALYTICAL REPORT

1255 POWELL STREET EMERYVILLE, CA 94608 • (415) 428-2300

## LOG NO: E87-12-088

Received: 03 DEC 87 Reported: 18 DEC 87

Purchase Order: EM-62946

Mr. Michael Herzog Pfizer Pigments Inc. 4650 Shellmound Street Emeryville, California 94608

#### REPORT OF ANALYTICAL RESULTS

Page 3

LOG NO SAMPLE DESCRIPTION, SOIL SAMPLES		DATE SAMPLED
12-088-1 Waste Oil Tank Excavation Core		03 DEC 87
PARAMETER	12-088-1	
Tetrachloroethylene, mg/kg Trichloroethylene, mg/kg Trichlorofluoromethane, mg/kg Toluene, mg/kg Vinyl chloride, mg/kg trans-1,2-Dichloroethylene, mg/kg trans-1,3-Dichloropropene, mg/kg	<0.2 <0.2 <0.2 <0.2 0.2 <0.2 <0.2 <0.2 <	
<pre>Semi-Quantified Results ** 2-Hexanone, mg/kg Acetone, mg/kg ** Quantification based upon comparison of to that of the nearest internal standard.</pre>	20 4 tal ion count of the	compound with

Ila Black For Fisher, Laboratory Director Steve

APPENDIX D

.

GROUND-WATER SAMPLING PROTOCOLS

GROUNDWATER SAMPLING PROCEDURE - Volatile Organic Compounds

- (1) Identify the well and enter presampling information in the field notebook and sampling form. Fill out other items on sampling form.
- (2) Inspect protective casing and note any items of concerns such as lock missing or casing bent.
- (3) Cut a slit in one corner of a dedicated plastic sheet and slip it over and around the well or place near the well, creating a clean surface onto which the sampling equipment can be positioned. Do not kick, transfer, drop or in any way let soil or other material fall onto this sheet unless it comes from inside the well. Do not place any meters, tools, equipment, etc., on the sheet unless they have been cleaned with a clean rag to remove any sediments.
- (4) Clean the top of the well off with a clean rag and remove the cap or plug, placing it on the plastic sheet.
- (5) Clean the first 10 feet of the steel tape with a clean rag, then wash with distilled water and measure the depth to water. Record this and compute the volume of water in the well.
- (6) Existing wells will be purged by the hydrogeologist on site. All monitoring wells will be pumped or bailed before sampling and a minimum of five to ten casing volumes will be removed, if the recharge rate is adequate to accomplish this within a reasonable amount of time. Hand bailers, submersible pumps, etc. will be clean and sediment-free prior to use. Dedicated equipment will be used if normal cleaning methods are not adequate to remove potential crosscontamination.
- (7) Record the physical appearance of the water on the field data form (color, odor, turbidity, etc.) as it is pumped or bailed.
- (8) Prepare the bottles for receiving their samples (labels, place on ice, etc.).
- (9) After the well has been purged and developed, an appropriate bailer for the constituents to be analyzed for will be used to collect the groundwater sample. This bailer will have been thoroughly precleaned. Immediately prior to lowering the bailer

in the well, rinse three volumes of distilled water through the bailer. In addition, the first three bailer volumes obtained from the well should be discarded. Use non-absorbent polyethylene cord to lower the bailer into the well. This cord will be discarded after use in the well.

- (10) Lower the bailer into the well gently making certain to only submerge it far enough to fill it completely.
- (11) Standard 40 ml, pre-cleaned, volatile organic sample bottles with teflon caps, are required. Fill the bottles to the top creating a convex surface with no air bubbles. Place the cap on tightly. Gently turn the bottle over and tap lightly on the soft surface to insure that no air bubbles are present.
- (12) Label the bottle with location number, date and other pertinent information. Record all information on the sampling data form. Cool the sample immediately on ice. Maintain the samples in a secure area and deliver to the laboratory within 24 hours.
- (13) After the last sample is collected, measure and record the temperature, conductivity, pH, and the physical appearance of the water.
- (14) Replace the well cap and cover the well, locking the protective cap.
- (15) Rinse out the bailer and/or pump with clean water.
- (16) Discard the cord, rags, gloves, and plastic sheeting in an appropriate manner.
- (17) Complete sampling data form.

GROUND-WATER SAMPLING PROCEDURE - GENERAL Constituents

- 1. Identify the well and enter the number in the field notebook.
- 2. Cut a slit in one corner of a new plastic sheet and slip it over and around the well, creating a clean surface onto which the sampling equipment can be positioned. **Do not kick, transfer, drop or in any way let soil or other material fall onto this sheet unless it comes from inside the well. Do not place any meters, tools, equipment, etc. on the sheet unless they have been cleaned with a <u>clean</u> rag to remove any sediments.**
- Clean the top of the well off with a clean rag and remove the cap or plug placing it on the plastic sheet.
- 4. Clean the first 10 feet of the steel tape with a clean rag, then wash with distilled water and measure the depth to water. Record this and compute the volume of water in the well.
- 5. Existing wells will be purged by the hydrogeologist on site. All monitoring wells will be pumped or bailed before sampling. A minimum of five to ten casing volumes will be removed prior to sampling. Hand bailers, submersible pumps, etc. are expected to be clean and sediment-free prior to use.
- Record the physical appearance of the water (color, smell, turbidity, etc.) as it is pumped or bailed.
- 7. Prepare the bottles for receiving their samples (labels, place on ice, etc.).
- 8. After the well has been purged and developed, a stainless steel bailer with a plugged bottom will be used to collect the ground-water sample. This bailer will have been thoroughly pre-cleaned. Immediately prior to lowering in the well, rinse three volumes of distilled water through the bailer. In addition, the first three bailer volumes obtained from the well should be discarded. Use non-absorbent polyethylene cord to lower the bailer into the well. This cord will be discarded after use in the well.

- 9. Use appropriate sampling bottles as provided by the laboratory, as required for each sampling site. Use vinyl electrical tape to further strengthen the seal.
- 10. Label the bottle with location number, date and other pertinent information. Record all information in field notebook. Cool the sample immediately on ice (if required). Maintain the samples in a secured area at ambient conditions and deliver to the laboratory within twenty-four hours.
- 11. After the last sample is collected, measure and record the temperature, conductivity, pH, and the physical appearance of the water.
- 12. Replace the well cap and cover the well.

÷.

- 13. Rinse out the bailer and/or pump with clean water.
- 14. Discard the cord, rags, gloves, and plastic sheeting in an appropriate manner.