

September 7, 2012

Mr. Mark Detterman

Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250

Alameda, California 94502

Roya C. Kambin Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6270 RKLG@chevron.com

RECEIVED

5:03 pm, Sep 10, 2012

Alameda County Environmental Health

RE: Third Quarter 2012 Groundwater Monitoring Report

1400 Powell Street, Emeryville, California Fuel Leak Case No.: RO0000067

Dear Mr. Detterman,

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (925) 790-6270.

Sincerely,

Roya Kambin

Union Oil of California - Project Manager

Attachment

Third Quarter 2012 Monitoring Report

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Suite 250 Alameda, California 94502-6577

ARCADIS U.S., Inc. 100 Montgomery Street

Suite 300 San Francisco California 94104 Tel 415.374.2744 Fax 415.374.2745 www.arcadis-us.com

ENVIRONMENT

Subject:

Third Quarter 2012 Groundwater Monitoring Report

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company, for itself and as Attorneyin-Fact for Union Oil Company of California (hereinafter "EMC"), ARCADIS U.S., Inc (ARCADIS) is pleased to submit the enclosed Quarterly Groundwater Monitoring Report for the following facility:

Facility No.	Case No.	<u>Location</u>	4
			E
3737	RO0000067	1400 Powell Street	L
		Emeryville, California	ć

If you have any questions, please contact Leah Ackerman at 415.432.6912.

Sincerely,

ARCADIS

Project Engineer

Leah Ackerman, P.E.

Ms. Roya Kambin, EMC (electronic copy) Mr. Najmeddin Revan, Property Owner

September 7, 2012

Contact:

Leah M. Ackerman

Phone:

415.432.6912

Email:

Leah.Ackerman@ arcadis-us.com

Our ref:

B0047937.0001

UNION OIL OF CALIFORNIA QUARTERLY MONITORING REPORT THIRD QUARTER 2012 September 7, 2012

Facility No.: 3737 Address: 1400 Powell Street, Emeryville, California

Consulting Company/Contact Person/Phone No.: ARCADIS / Leah Ackerman/ 415.432.6912

Primary Agency/Contact Person/Regulatory ID No.:

Alameda County Environmental Health / Mr.Mark

Detterman / Case No. RO 0000067

WORK PERFORMED DURING THIS REPORTING PERIOD (Third Quarter - 2012):

1. TRC Solutions (TRC) conducted groundwater monitoring and sampling on July 29, 2012. Field data sheets and general procedures are included as **Attachment A**. Six (6) monitoring wells (MW-1A through MW-3A in the shallow zone and MW-1B through MW-3B in the deep zone) were gauged, purged, and sampled during this monitoring event.

All collected groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g) by Environmental Protection Agency (EPA) Method 8260B; benzene, toluene, ethylbenzene, and total xylenes (BTEX, collectively), full scan of volatile organic compounds (VOCs) including oxygenates (methyl tertiary butyl ether [MTBE] and tertiary butyl alcohol [TBA]); 1,2-dibromoethane (EDB) and 1,2-dichloroethane (EDC), diisopropyl ether (DIPE), tert-butyl ethyl ether (ETBE), tert-amyl methyl ether (TAME), and ethanol by EPA Method 8260B; total petroleum hydrocarbons as diesel (TPH-d) and total petroleum hydrocarbons as motor oil (TPH-mo) by EPA Method 8015B with silica gel clean-up.

The site location map, the site plan, and the groundwater contour and hydrocarbon concentration maps are presented on **Figures 1** through **4**. Current Groundwater Gauging and Analytical Results are summarized in **Table 1**, Historical Groundwater Gauging and Analytical Results are summarized in **Table 2**, and Historical Groundwater Results from Antea are included as **Attachment B**. A copy of the laboratory analytical report and chain-of-custody documentation is included as **Attachment C**.

2. Four temporary monitoring wells (MWT-1 through MWT-4) were installed between July 25 and 26, 2012 as part of site assessment activities. These temporary monitoring wells were also gauged and sampled during the third quarter 2012 sampling event. The groundwater elevations of the temporary wells were included in assessing the groundwater contour and flow direction in the shallow zone (**Figure 3**). Although the analytical data for MWT-1 through MWT-4 are also presented in **Table 1**, the evaluation of the analytical data will be included in the forthcoming Site Assessment and Preferential Pathway Survey Report.

WORK PROPOSED FOR THE NEXT REPORTING PERIOD (Fourth Quarter – 2012):

1. Perform groundwater monitoring and related reporting during fourth quarter 2012.

Current Phase of Project:	Groundwater Monitoring
Site Use:	Active Service Station
Frequency of Sampling:	Groundwater – Quarterly (MW-1A through MW-3A), Semiannually (All monitoring wells)
Frequency of Monitoring:	Groundwater – Quarterly (MW-1A through MW-3A), Semiannually (All monitoring wells)
Measurable Separate-Phase Hydrocarbons (SPH) this quarter:	None
Cumulative SPH Recovered to Date:	None
SPH Recovered This Quarter:	None
Bulk Soil Removed to Date:	Six cubic yards
Bulk Soil Removed this Quarter:	None

UNION OIL OF CALIFORNIA QUARTERLY MONITORING REPORT THIRD QUARTER 2012 September 7, 2012

Facility No.: Address: 1400 Powell Street, Emeryville, California 3737 Water Wells or Surface Waters within a 2000' None Radius and Their Respective Directions: Municipal and Domestic Groundwater Use Designation: **Current Remediation Techniques:** None Permits for Discharge (No.): None Approximate Depth to Groundwater: Shallow Zone: 3.44 (MWT-3) – 7.33 (MW-2A) feet below top of casing Deep Zone: 4.36 (MW-3B) - 6.90 (MW-1B) feet below top of casing Shallow Zone: 11.60 (MW-2A) - 14.12 (MW-3A) feet Approximate Groundwater Elevation: above mean sea level Deep Zone: 11.98 (MW-1B) – 14.21 (MW-3B) feet above mean sea level Measured X Estimated Groundwater Gradient (Shallow Zone): (Magnitude) 0.055 ft/ft West-southwest (Direction) Groundwater Gradient (Deep Zone): 0.04 ft/ft (Magnitude) South (Direction)

DISCUSSION:

Groundwater conditions at the six (6) monitoring wells sampled during the third quarter 2012 remained generally consistent with previous quarters. The maximum concentration of TPH-d (310 micrograms per liter [μ g/L]), TPH-g (1,900 μ g/L), benzene (120 μ g/L), MTBE (280 μ g/L), and TBA (2,300 μ g/L) were detected in the samples collected from MW-2A. The maximum concentrations of TPH-g (1,900 μ g/L), toluene (2.1 μ g/L), ethylbenzene (14 μ g/L), and total xylenes (2.2 μ g/L) were detected in the samples collected from MW-3A. The maximum concentration of EDC (24 μ g/L) was detected in the sample collected from MW-1B and the maximum concentration of TAME (1.2 μ g/L) was detected in the sample collected from MW-1A. EDB, DIPE, ETBE, and ethanol were not detected in any of the monitoring wells.

Groundwater elevations across the site in the shallow water-bearing zone vary by approximately two and one half feet and create a hydraulic gradient of 0.055 foot per foot in the west-southwest direction. Groundwater elevations across the site in the deeper water-bearing zone vary by approximately two feet and create a hydraulic gradient of 0.04 foot per foot in the southern direction.

CONCLUSIONS AND RECOMMENDATIONS:

Dissolved hydrocarbon constituent concentrations have remained relatively consistent with previous quarters. ARCADIS recommends continued groundwater monitoring and reporting.

UNION OIL OF CALIFORNIA QUARTERLY MONITORING REPORT THIRD QUARTER 2012 September 7, 2012

Facility No.: 3737 Address: 1400 Powell Street, Emeryville, California

ATTACHMENTS:

Figure 1: Site Location Map

Figure 2: Site Plan

Figure 3: Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow Zone)
Figure 4: Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep Zone)

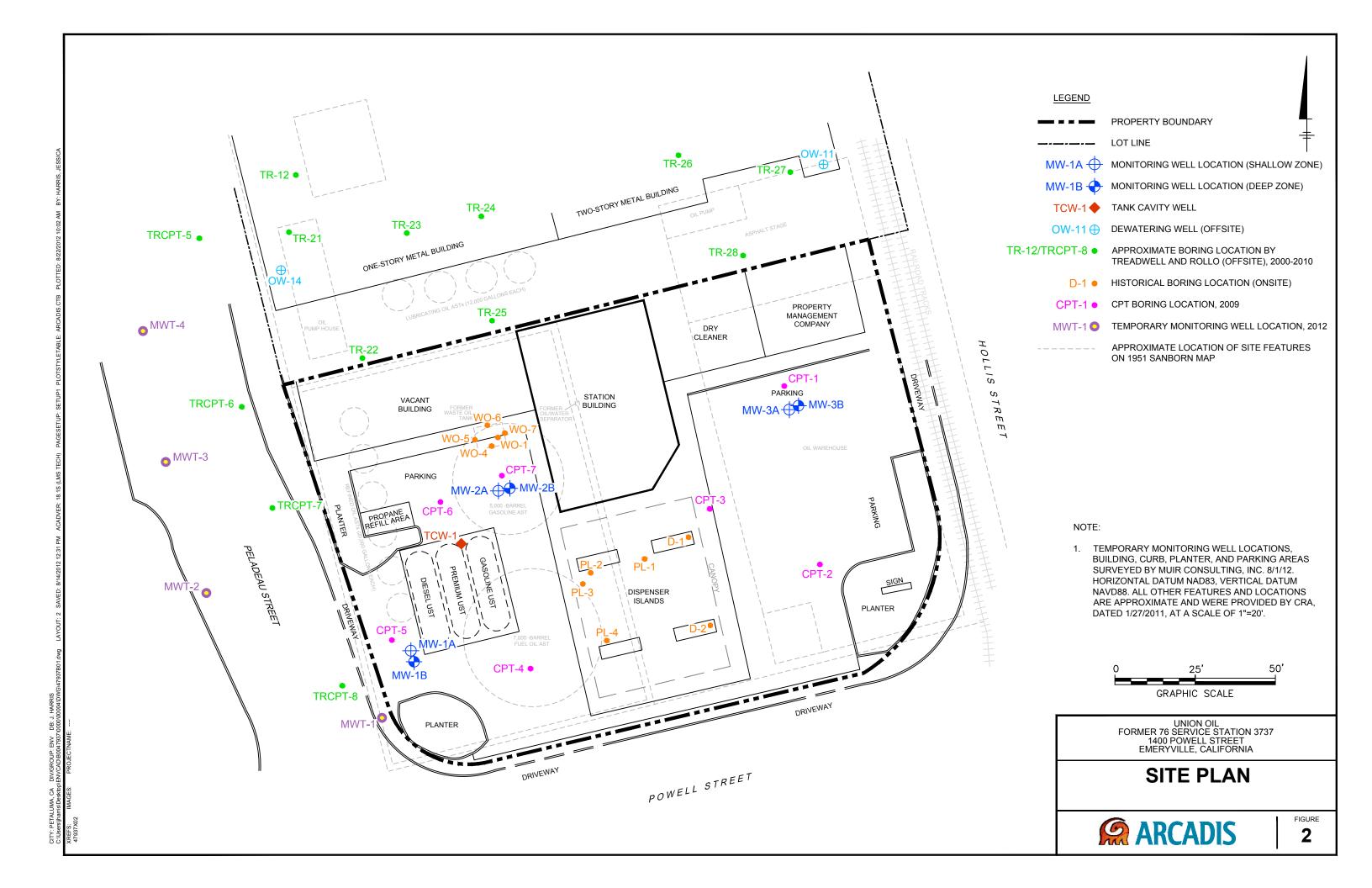
Table 1: Current Groundwater Gauging and Analytical ResultsTable 2: Historical Groundwater Gauging and Analytical Results

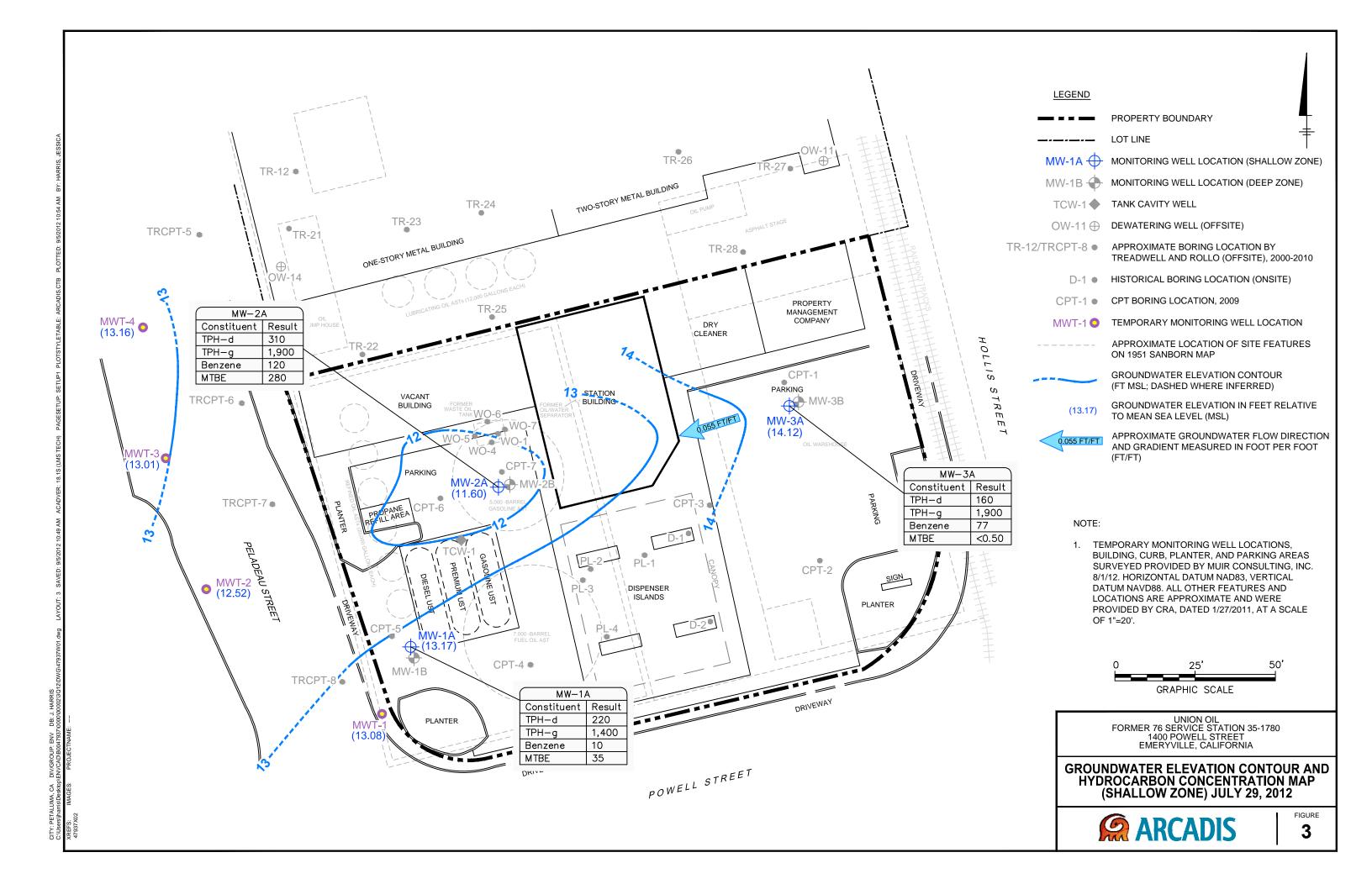
Attachment A: Field Data Sheets and General Procedures
Attachment B: Historical Groundwater Results from Antea

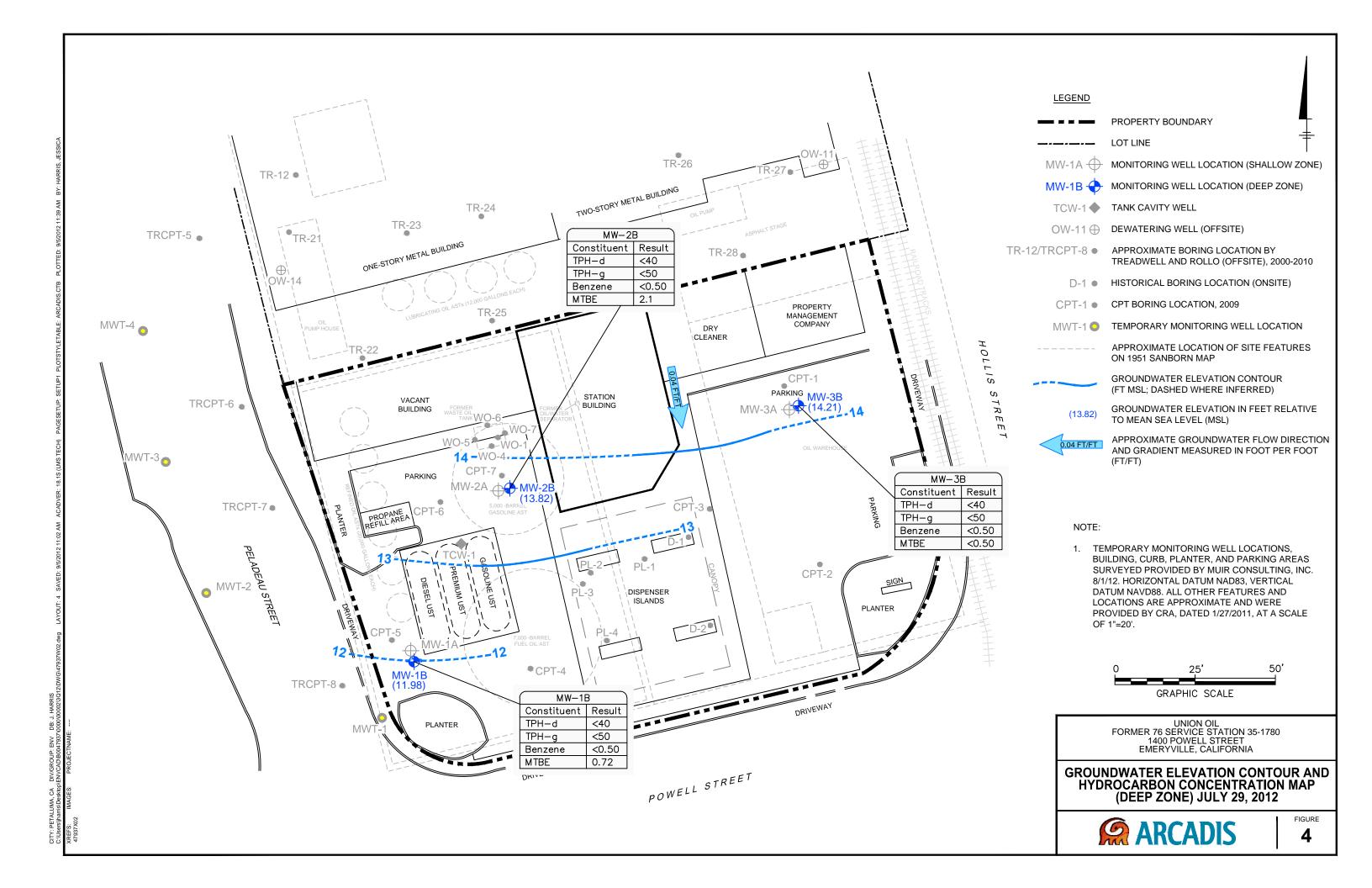
Attachment C: Laboratory Report and Chain-of-Custody Documentation

ARCADIS

Figures


CITY: PETALUMA, CA DIV/GROUP; ENV DB: J. HARRIS C::Usensilharris:Desktop:EnV/CADIB0047937/000000004DWG/47937N01.dwg LAYOUT: 1 SAVED: 8/22/2012 10:01 AM


BY: HARRIS, JESSICA


PLOTTED: 8/22/2012 10:01 AM

PAGESETUP: SETUP1 PLOTSTYLETABLE: ARCADIS.CTB

ACADVER: 18.1S (LMS TECH)

ARCADIS

Tables

Table 1 Current Groundwater Gauging and Analytical Results 76 Station 3737 1400 Powell Street, Emeryville, California

Date Date	
Well ID Sampled AMSL) (feet bgs) (feet) AMSL) (feet bgs) (feet) AMSL) (feet) (8015B/FFP) (8015B/FFP) (8015B/FFP) GC/MS) Benzene Toluene benzene Xylenes MTBE TBA EDB EDC DIPE ETBE TAME Ethanol Comm MW-1A 7/29/2012 18.74 5.57 0.00 13.17 13.24 0.07 <100 220 1,400 10 <0.50 0.8 1.9 35 80 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 1.2 <250	
MW-1A 7/29/2012 18.74 5.57 0.00 13.17 13.24 0.07 <100 220 1,400 10 <0.50 0.8 1.9 35 80 <0.50 <0.50 <0.50 <0.50 <1.2 <250	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nments
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
MW-3A 7/29/2012 18.62 4.50 0.00 14.12 14.22 0.10 <100 160 1,900 77 2.1 14 2.2 <0.50 <10 <0.50 0.94 <0.50 <0.50 <0.50 <250 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5	
MW-3B 7/29/2012 18.57 4.36 0.00 14.21 14.05 -0.16 <100 <40 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <10 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0	
MWT-1 7/29/2012 19.11 6.03 0.00 13.08 450 2,500 7.7 2.3 3.5 6.3 31 71	
MWT-2 7/29/2012 17.47 4.95 0.00 12.52 <40 3,000 70 1.6 62 8.8 11 89	
MWT-3 7/29/2012 16.45 3.44 0.00 13.01 640 2,100 1.3 0.65 0.63 2.4 1.9 17	
MWT-4 7/29/2012 17.09 3.93 0.00 13.16 690 2,800 530 5.8 100 61 0.78 560	

Note

Analytical results given in micrograms per liter ($\mu g/l$)

Standard Abbreviations

-- not analyzed, measured, or collected

< not detected at or above laboratory detection limit

bgs below ground surface
AMSL above mean sealevel
DTW depth to water
GW groundwater

LPH liquid-phase hydrocarbons

TOC top of casing (surveyed reference elevation)

Analytes

	MTBE	methyl tertiary butyl ether
	TBA	tertiary butyl alcohol
	EDB	1,2-dibromoethane
	EDC	1,2-dichloroethane (same as ethylene dichloride)
	ETBE	ethyl tertiary butyl ether
	TAME	tertiary amyl methyl ether
	DIPE	di-isopropyl ether
	TPH-g	total purgable petroleum hydrocarbons
	TPH-d	total petroleum hydrcarbons as diesel
T	PH-Motor Oil	total petroleum hydrocarbons as motor oil
	8260B	EPA Method 8260B for TPH-g and Volatile Organic Compounds
	8015B/FFP	EPA Method 8015B with silica gel clean-up for TPH-d and TPH-motor oil
	A01	PQL's and MDL's are raised due to sample dilution.
	A52	Chromatogram not typical of diesel

Table 2 Historical Groundwater Gauging and Analytical Results 76 Station 3737 1400 Powell Street, Emeryville, California

Well ID	Date Sampled	TOC (feet AMSL)	DTW (feet bgs)	LPH Thickness (feet)	GW Elevation (feet AMSL)	Previous Quarter GWE (feet AMSL)	Change in Elevation (feet)	TPH-Motor Oil (8015B/FFP)	TPH-d (FFP) (8015B/FFP	TPH-g (Luft- GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	EDB	EDC	DIPE	ЕТВЕ	TAME	Ethanol	Comments
MW-1A	05/01/2011	18.74	5.68	0.00	13.06			<200	450	1,100	36	0.86	5.9	1.9	31	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	08/28/2011		5.72	0.00	13.02	13.06	0.04	170	540	840	21	0.68	3.8	1.8	55	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/20/2011		5.58	0.00	13.16	13.02	-0.14	<100	460	1,300	20	0.74	6.4	<1.0	40	79	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	02/19/2012		5.67	0.00	13.07	13.16	0.09	<100	610	1,300	20	0.91	6.8	2.5	59	80	< 0.50	< 0.50	< 0.50	< 0.50	2.0	<250	
	05/20/2012		5.50	0.00	13.24	13.07	-0.17	<100	380	1,600	18	0.81	5.1	2.7	26	39	< 0.50	< 0.50	< 0.50	< 0.50	0.76	<250	A52
	7/29/2012		5.57	0.00	13.17	13.24	0.07	<100	220	1,400	10	< 0.50	0.8	1.9	35	80	< 0.50	< 0.50	< 0.50	< 0.50	1.2	<250	
MW-1B	05/01/2011	18.88	8.51	0.00	10.37			<200	82	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	19	< 0.50	< 0.50	< 0.50	<250	
	08/28/2011		8.27	0.00	10.61	10.37	-0.24	<100	59	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	18	< 0.50	< 0.50	< 0.50	<250	
	11/20/2011		7.88	0.00	11.00	10.61	-0.39	<100	69	< 50	< 0.50	< 0.50	< 0.50	<1.0	0.55	<10	< 0.50	16	< 0.50	< 0.50	< 0.50	<250	
	02/19/2012		7.59	0.00	11.29	11.00	-0.29	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	0.87	<10	< 0.50	26	< 0.50		< 0.50	<250	
	05/20/2012		7.33	0.00	11.55	11.29	-0.26	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	0.75	<10	< 0.50	24	< 0.50	< 0.50	< 0.50	<250	
	7/29/2012		6.90	0.00	11.98	11.55	-0.43	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	0.72	<10	< 0.50	27	< 0.50	< 0.50	< 0.50	<250	
MW-2A	05/01/2011	18.93	6.40	0.00	12.53			<1000	1,500	2,800	860	4.6	< 0.50	12	220	2,500	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	A01
	08/28/2011		5.93	0.00	13.00	12.53	-0.47	<1000	1,600	2,300	690	< 5.0	< 5.0	<10	320	2,100	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2,500	A01
	11/20/2011		5.73	0.00	13.20	13.00	-0.20	< 500	1,200	1,800	440	< 5.0	< 5.0	<10	160	2,200	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2,500	A01
	02/19/2012		7.25	0.00	11.68	13.20	1.52	<100	450	2,000	460	5.1	< 0.50	5.8	280	3,200	< 0.50		< 0.50		< 0.50	<250	
	05/20/2012		7.77	0.00	11.16	11.68	0.52	<100	470	2,100	250	3.2	< 0.50	3.1	290	2,400	< 0.50	< 0.50		< 0.50	< 0.50	<250	A01, A52
	7/29/2012		7.33	0.00	11.60	11.16	-0.44	<100	310	1,900	120	1.9	12	1.4	280	2,300	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
MW-2B	05/01/2011	19.10	7.57	0.00	11.53			<200	< 50	< 50	1.2	< 0.50	< 0.50	<1.0	3.4	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	08/28/2011		5.82	0.00	13.28	11.53	-1.75	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	2.3	<10	< 0.50		< 0.50		< 0.50	<250	
	11/20/2011		5.73	0.00	13.37	13.28	-0.09	<100	56	< 50	< 0.50	< 0.50	< 0.50	<1.0	2.0	<10	< 0.50				< 0.50	<250	
	02/19/2012		5.46	0.00	13.64	13.37	-0.27	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	3.1	<10	< 0.50		< 0.50		< 0.50	<250	
	05/20/2012		5.18	0.00	13.92	13.64	-0.28	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	3.0	<10	< 0.50	< 0.50			< 0.50	<250	
	7/29/2012		5.28	0.00	13.82	13.92	0.10	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	2.1	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
MW-3A	05/01/2011	18.62	4.68	0.00	13.94			<200	460	2,700	130	2.7	98	3.6	< 0.50	<10	< 0.50	1.2	< 0.50	< 0.50	< 0.50	<250	A01
	08/28/2011		4.92	0.00	13.70	13.94	0.24	130	440	1,700	39	0.51	28	1.6	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/20/2011		4.97	0.00	13.65	13.70	0.05	<100	330	1,200	25	0.83	17	<1.0	< 0.50	<10	< 0.50	< 0.50			< 0.50	<250	
	02/19/2012		4.72	0.00	13.90	13.65	-0.25	<1000	1400	1,900	60	2.1	41	2.1	0.71	30	< 0.50	0.80	< 0.50		< 0.50	<250	A01
	05/20/2012		4.40	0.00	14.22	13.90	-0.32	<100	340	2,200	45	2.2	30	2.5	0.54	25	< 0.50	0.85	< 0.50		< 0.50	<250	A52
	7/29/2012		4.50	0.00	14.12	14.22	0.10	<100	160	1,900	77	2.1	14	2.2	< 0.50	<10	< 0.50	0.94	< 0.50	< 0.50	< 0.50	<250	
MW-3B	05/01/2011	18.57	6.68	0.00	11.89			<200	< 50	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50		< 0.50		< 0.50	<250	
	08/28/2011		7.29	0.00	11.28	11.89	0.61	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50		< 0.50		< 0.50	<250	
	11/20/2011		6.33	0.00	12.24	11.28	-0.96	<100	45	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50		< 0.50		< 0.50	<250	
	02/19/2012		4.62	0.00	13.95	12.24	-1.71	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50			< 0.50	<250	
	05/20/2012		4.52	0.00	14.05	13.95	-0.10	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50			< 0.50	<250	
	7/29/2012		4.36	0.00	14.21	14.05	-0.16	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	

Note

Analytical results given in micrograms per liter $(\mu g/l)$

Table 2 Historical Groundwater Gauging and Analytical Results 76 Station 3737 1400 Powell Street, Emeryville, California

Standard Abbreviations

-- not analyzed, measured, or collected

not detected at or above laboratory detection limit

bgs below ground surface
AMSL above mean sealevel
DTW depth to water
GW groundwater

LPH liquid-phase hydrocarbons

TOC top of casing (surveyed reference elevation)

Analytes

MTBE methyl tertiary butyl ether TBA tertiary butyl alcohol EDB 1,2-dibromoethane

EDC 1,2-dichloroethane (same as ethylene dichloride)

ETBE ethyl tertiary butyl ether
TAME tertiary amyl methyl ether

DIPE di-isopropyl ether

TPH-g total purgable petroleum hydrocarbons
TPH-d total petroleum hydrocarbons as diesel
TPH-Motor Oil total petroleum hydrocarbons as motor oil

8260B EPA Method 8260B for TPH-g and Volatile Organic Compounds
8015B/FFP EPA Method 8015B with silica gel clean-up for TPH-d and TPH-motor oil

A01 PQL's and MDL's are raised due to sample dilution.

A52 Chromatogram not typical of diesel

ARCADIS

Attachment A

Field Data Sheets and General Procedures

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

August 6, 2012

TO:

Leah Ackerman, ARCADIS CC: Angeline Tan, ARCADIS Andrea Valdivia, Arcadis

SITE:

Unocal Site 3737

Facility 351780

1400 Powell Street, Emeryville, CA

RE:

Transmittal of Groundwater Monitoring Data

Dear Ms. Ackerman,

Please find attached the field data sheets, chain of custody (COC) forms, and technical services request (TSR) form for the monitoring event that was completed on July 29, 2012. Field measurements and collection of samples submitted to the laboratory were completed in general accordance with our usual groundwater monitoring protocol which is also attached for your reference.

Please call me at 949-727-7345 if you have questions.

Sincerely,

Christina Carrillo

Groundwater Program Coordinator

GENERAL FIELD PROCEDURES

Groundwater Gauging and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater gauging and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements (Gauging)

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Unless otherwise instructed, a well that is found to contain a measureable amount of LPH (0.01 foot) is not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps. The pump intake is initially set at about 5 feet below the level of water in the casing, and is lowered as needed to compensate for falling water level. Pump depths are recorded in Field Notes.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously, using a flow cell, until they become stable in general accordance with EPA guidelines.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

GENERAL FIELD PROCEDURES

Samples are collected by lowering a new, disposable polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

Sample containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well. If wells must be gauged or sampled out of order, alternate interface probes and/or pumps are utilized and are noted in field documentation.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liquinox and water and rinsing twice. The final rinse is in deionized water.

Purge Water Disposal

Purge water is generally collected in labeled drums for disposal as non-hazardous waste. Drums may be left on site for disposal by others, or transported to a collection location at a TRC field office, in either Fullerton, California or Concord, California, for eventual transfer to a licensed treatment or recycling facility. Alternatively, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, are documented in field notes on the following pages.

FIELD MONITORING DATA SHEET

Technician: Rauliu	Job #/Task #:	189791,0035,1780	Date:	7-	- 2 -	9-12
Site # <u>3737</u>	Project Manager	AF.	Page _	1	_of	

Well#	TOC	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
MWT-4	V	0525	9,34	3,93	,		0842	24
LUNT-3	V	0532	9.80	3.44	11 TM Miles on 1 a 1 a		0944	2"
UWT-Z	V	0539	9.60	4.95	4	mag a mandale	1024	2"
MuIT-1	ν	0545	9,1do	6.03	,^^ <u></u>	1-000	1/20	Z ii
MU-3B	V	0551	23.80	4,36		·	1410	2"
110-1B	V	0556	21.70	6.90		,	1420	2"
11W-2B	V	0602	23,58	5,28	,	···—nangara	1436	2"
MW-1A	V	0608	9.70	5.57			1220	Sy
MW-3A	V	0612	9.22	4.50		,	12.03	2"
NW-ZA	V	0616	10.15	7.33			1254	2"
						75''-		
						. se		
						9		
							4	
							-	
					 \			
IELD DATA C	COMPLE	TE	QA/QC		coc	WE	LL BOX CO	ONDITION SHEETS
MANIFEST		DRUM INV	'ENTORY	•	TRAFFIC C	ONTROL		

GROUNDWATER SAMPLING FIELD NOTES

Time Start	Time Stop	Pump Depth (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, Ĉ)	рН	D.O. (mg/L)	ORP	Turbidity		
Pre-F	ourge	10 N									
17/0	1213		y	1303	23.7	8.13					
			8		<i>,</i> ————————————————————————————————————	(
			12			p					
Stati	c at Time Sa	ampled	l Tota	l Gallons Purg	ed l		Sample	Time			
	5,60			4				1410			
Comments	: Da	1 at 461.	<u> </u>		•						

Well No. MW-3A		Purge Method: HB
Depth to Water (feet):	. 3	Depth to Product (feet):
Total Depth (feet) 9.22	Ş.	LPH & Water Recovered (gallons):
Water Column (feet): 4,32		Casing Diameter (Inches): 2
80% Recharge Depth(feet): 5. 99		1 Well Volume (gallons):/

Time Start	Time Stop	Pump Depth (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbidity
Pre-l	ourge								-
0642			t	1308	23.2	6.69			
	0648		7	1788		6.54	7		
			3		geneganista	£	;		
					Y.				
Stati	c at Time S	ampled	l Tota	il Gallons Purg	ed		Sample	Time	
	4,77	-	Έ.		,	203			
Comments	1) ry 0	at 2 fds.			<u> </u>				

GROUNDWATER SAMPLING FIELD NOTES

Technician: Dasilio

Site: 3737 Project No.: 189791,0035.1780 Date: 7-29-12

Well No. 18 Purge Method: 545

Depth to Water (feet): 4.90 Depth to Product (feet): 545

Total Depth (feet) 21.70 LPH & Water Recovered (gallons): 548

Water Column (feet): 14.80 Casing Diameter (Inches): 548

Time Start Stop Water Purged (feet) (gallons) Conductivit V (µS/cm) Temperature V (µS/cm) PH D.O. (mg/L) ORP Turbidite

Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature (F,(C)	рН	D.O. (mg/L)	ORP	Turbidity
urge			·					
		3	1262	23.7	7.36			
1233		6	,	, .				
		9						
at Time S	ampled	Tota	l Gallons Pur	ged		Sample	Time	
7, 33		4				142	O	
,	1 at a	161s.						
	Stop urge 12.33 at Time S	Stop Water (feet) Furge 12.33 Stop at Time Sampled 2.33	Stop (feet) Purged (gallons) Purge 3 1233	Stop Water (feet) Purged (gallons) y (µS/cm) Purge 3 1262 1233 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Stop (feet) Purged (gallons) V (µS/cm) (F,C) Purge 3 1262 23.7 1233	Stop (feet) Purged (gallons) V (µS/cm) (F,C) PH Purge 3 1262 23.7 7.36 1233	Stop Water (feet) Purged (gallons) V (µS/cm) (F,C) PH (mg/L) Purge 3 1262 73.7 7.36 1233	Stop Water (feet) Purged (gallons) V (µS/cm) F (F,C) PH (mg/L) ORP Stop (feet) (gallons) V (µS/cm) F (F,C) PH (mg/L) ORP 1233

.12
Purge Method:
Depth to Product (feet):
LPH & Water Recovered (gallons):
Casing Diameter (Inches):
1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature (F , C)	рН	D.O. (mg/L)	ORP	Turbidity	
Pre-l	urge									
2651			1	697.3	21.9	6.95				
	0656		2	714.4	21.9	4.68				
			3	4	,			_		
Stati	c at Time S	Sampled	Tota	al Gallons Pur	ged		Sample	Time		
5.62			2			1220				
Comments	: Dey	at 2613.						· ·		

GROUNDWATER SAMPLING FIELD NOTES

Technician:	Barli
Site: 3737 Project No.:_	189791.0035.1780 Date: 7-29-12
Well No. MW-2A	Purge Method: HB
Depth to Water (feet): 7.33	Depth to Product (feet):
Total Depth (feet) /0, 15	LPH & Water Recovered (gallons):
Water Column (feet): 2,82	Casing Diameter (Inches):
80% Recharge Depth(feet): 7.89	1 Well Volume (gallons): 0, 5

Time Start	Time Stop	Pump Depth (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-Purge									
0632	0636		,5	2505	20.4	C.86.			
			1.0	_		#Western	-		
			1.5			, pr======			
Stati	c at Time Sa	ımpled	Tota	l Gallons Purge	ed.		Sample	Tina -	
	8,88			2.56-15			Sample /とう	·/	
Comments	Pre Pur	je sample	0625	Dry at	1215 H	· · · · · · · · · · · · · · · · · · ·	100	I	
		<i>"</i>		7					

Well No	Purge Method:
80% Recharge Depth(feet): 899	1 Well Volume (gallons):

Time Start	Time Stop	Pump Depth (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Pre-Purge								
1241	1244		Ч	994,5	23.1	7,30			
			8	,		,			
			12						
Stati	c at Time Sa	ampled	l Tota	l Gallons Purg	ed		Sample	Time	
	8,76		4				142	66	
Comments	119	at 4615.							

Proje	ect No.:	189791 272	1.0035.	1780	, 10.	Dat Ieasured B	e:	-29- 3A6:1	/Z		
Project W	eather:	clou	idy		14		ge/			7	
		ie: 11W T	(itial Wat	er Level (f	t)		6.0)3	
Sam	iple Numbe	• •				Total Dept			9.66		
	Custody No					Vater Colu		b – a	3.6		
	suring Poir					meter (in)			2		
	Interval (f					ume (gal)		$c \times d^2$			
20100	. 222007 7 072 (2	-y		1.				,			
			WE	LLHEA	D CONI	DITIONS					
Casing: ok				- 41						,	
Lock:											
Standing Wa	ter: ND			<u> </u>							
Comments/F	Required M	aintenance	<u> </u>				***				
Time	Intake Depth (ft bmp)	Depth to Water (ft bmp)	Cum. Vol. Purged (gal)	Temp. (°C)	рН	Specific Cond. (µmhos/ cm)	DO (mg/L)	Redox (mV)	Color	Turbidity	
1049	8.75	6.10									
1052	1	6.20		21.18	6.89	1412					
1055		6.20		21.21	6.83	1392			1		
1058		6.22				1332					
1101		6.22	-88.0			1260					
1104		6.22	40	71.24	6.71	1206					
1107		6,22			6.68						
11/0		6.22			6.67	1141					
1113		6.22	26/51	1 .	6.66	1139			,		
	 V	Q: CL	Total		u vv	1					
	-										
Sample Time	: 112	0		L.,	1	<u> </u>				1	

Comments:

Projec	ject No.: <u>/</u> t Name: Veather:	373	+		N	Dat Ieasured B					
V	Veather:	6/01	rdy_			Pa	ge/_		f _/	····	
	Well Nan	ne: <u>ЛИ</u>	T-4	(a) Ir	nitial Wa	ter Level (f	t)		3.9	13	
Saı	mple Numb			(b) Measured Total Depth (ft) 9.34							
Chain-of	f-Custody N	o.:		(c) H	eight of	Water Colu	mn (ft) =	b – a	 	41	
Me	asuring Poi	nt:		(d) C	asing Dia	ameter (in)	1		2		
Screene	d Interval (f	ft):		(e) C	asing Vo	lume (gal)	= 0.041 ×	$c \times d^2$			
			WE.	LLHEA	D CON	DITIONS					
Casing: ok					00111				.,		
ock: No											
tanding W	ater: NO	1-2-1									
Comments/	Required M	aintenance	3:								
	1		Cum.			Specific	*-				
Time	Intake Depth (ft bmp)	Depth to Water (ft bmp)	Vol. Purged (gal)	Temp.	рН	Cond. (µmhos/ cm)	DO (mg/L)	Redox (mV)	Color	Turbidity	
	Depth (ft bmp)	Water (ft bmp)	i .	(°C)		(µmhos/	- -	1	Color	Turbidity	
Time 0821 0824	Depth	Water (ft bmp)	Purged	(°C)		(µmhos/ cm)	(mg/L)	1		Turbidity	
0821 0824	Depth (ft bmp)	Water (ft bmp)	Purged	(°C) 18.80		(µmhos/ cm)	(mg/L)	1		Turbidity	
0821 0824 0827	Depth (ft bmp)	Water (ft bmp) 3,89 4),40	Purged	(°C) 18.80 19.31	6.49	(μmhos/ cm) 	(mg/L)	1		Turbidity	
0821 0824 0827 0830	Depth (ft bmp)	Water (ft bmp) 3,89 4,40 4.58	Purged	(°C) 18.80 13.80 19.31 19.74	6.49	(μmhos/ cm) 3394 33/3	(mg/L)	1		Turbidity	
0821 0824 0827	Depth (ft bmp)	Water (ft bmp) 3,89 4,40 4.58 4,13	Purged (gal)	(°C) 18.80 19.31 19.74 19.80	 6.49 6.51 6.53	(μmhos/ cm) 3394 33/3 3230	(mg/L)	1		Turbidity	
0821 0824 0827 0830 0833	Depth (ft bmp)	Water (ft bmp) 3,89 4,40 4.58 4,43 4,90	Purged (gal)	(°C) 18.80 19.31 19.74 19.80	6.49 6.51 6.53 6.55	(μmhos/ cm) 3394 33/3 3230 3233	(mg/L)	1		- Parameter and the second sec	
0821 0824 0827 0830 0833	Depth (ft bmp)	Water (ft bmp) 3,89 4,40 4.58 4,43 4,90	Purged (gal)	(°C) 18.80 19.31 19.74 19.80	6.49 6.51 6.53 6.55	(μmhos/ cm) 3394 33/3 3230 3233	(mg/L)	1		- Parameter and the second sec	
0821 0824 0827 0830 0833	Depth (ft bmp)	Water (ft bmp) 3,89 4,40 4.58 4,43 4,90	Purged (gal)	(°C) 18.80 19.31 19.74 19.80	6.49 6.51 6.53 6.55	(μmhos/ cm) 3394 33/3 3230 3233	(mg/L)	1		- Parameter and the second sec	
0821 0824 0827 0830 0833	Depth (ft bmp)	Water (ft bmp) 3,89 4,40 4.58 4,43 4,90	Purged (gal)	(°C) 18.80 19.31 19.74 19.80	6.49 6.51 6.53 6.55	(μmhos/ cm) 3394 33/3 3230 3233	(mg/L)	1		- Parameter and the second sec	

Comments:

Project No.: 189791.003 Project Name: 3737 Weather: $cloudq$	Date: 7-29-12 Measured By: BASILIO Page 1 of 1
Well Name: MWT-3	(a) Initial Water Level (ft) 3.44
Sample Number:	(b) Measured Total Depth (ft) 9,80
Chain-of-Custody No.:	(c) Height of Water Column (ft) = $b - a$ (e. 36)
Measuring Point:	(d) Casing Diameter (in)
Screened Interval (ft):	(e) Casing Volume (gal) = $0.041 \times c \times d^2$
Screened interval (II):	(e) Casing volume (gai) = 0,041 × 0 × u-

WELLHEAD CONDITION	NS
Casing:	
Lock: No	
Standing Water: NO	
Comments/Required Maintenance:	

Time	Intake Depth (ft bmp)	Depth to Water (ft bmp)	Cum. Vol. Purged (gal)	Temp.	pН	Specific Cond. (µmhos/ cm)	DO (mg/L)	Redox (mV)	Color	Turbidity
0907	9,70	3,58			,	g/America.				
0910	9.00	3.68		18.94	7.13	2238				
0913		3,77		19.38	7.01	1931				
0916		3,79		19.52	6.91	1620				
0919		3,83		19,70	6.85	1479				
0922		3.88		19.74	6.80	1360				-
0925		3.88		19.85	6.77	1307				
0928		3,84		19,86	6.74	1251				
0931		3.84		19.83	6.73	1257				
0934		3.85		\$1 ·	6.72	1263				
0937	V	3.87	2 6/5 Total	19.85	6.71	1266				

Sample Time:	0944			 	 	
Comments:	. 		 	 	 	
		···	 	 	 	

Proje	ect No.: <u>/8</u>	9791.0	035.1	780		Dat Ieasured B	te: <u>7</u>	7-29-	12	
Project	Name:	3737	7		N	Ieasured B	8y:	Sauh	<u>ن</u>	
W	Name:	C/04	dy			Pa	ge/_	0	f <u>/</u>	
	Well Nam	ie: <u>MW</u>	T-Z_	(a) In	nitial Wa	ter Level (f	t)	4	1	75
Sam	ple Numbe	er:		(b) M	Ieasured	9.60				
	Custody N			(c) H	eight of \	Water Colu	ımn (ft) =	b – a	4.	65
Mea	suring Poir	nt:		(d) C	asing Dia	ameter (in))		2	
	Interval (f			(e) C	asing Vol	lume (gal)	= 0.041 ×	$c \times d^2$		
1.000			WE	LLHEA	D CON	DITIONS	16-5-1100		1,100,000	41-74-4
Casing: 04										
Lock: 🕢			,							
Standing Wa	ter: 1/0									
Comments/F	Required M	aintenance);		· · · · · · · · · · · · · · · · · · ·					
Time	Intake Depth (ft bmp)	Depth to Water (ft bmp)	Cum. Vol. Purged (gal)	Temp.	рН	Specific Cond. (µmhos/ cm)	DO (mg/L)	Redox (mV)	Color	Turbidity
1008	8,50	5.10	(8.7)		,		genera.			armin management
1011	***	5, 33		19.81	6.71	1149				
1014		5.40			6.69	 				
1017		5.48	2161. Total	19.89	6.69	1153				
			* 1 2 2 2 2 2 2 2 2 2							
Sample Time	: 102	4			·4-p·-					
Comments:	, ₁									

WELL BOX CONDITION REPORT

SITE NO. ADDRESS DATE	3 _14(,73 DO	7 1		0[]	5	T+.													PERFOMED BY: Bailis
DATE	7-	- 24	9-12																	PERFOMED BY: Dailio PAGE 1 OF 1
Well Name	Current Well Box Size	# of Ears	# of Slipped Ears	# of Broken Ears	# of Broken Bolts	# of Missing Bolts	Seal Damaged	Missing Lid	Broken Lld	Well Box is Exposed	Well Box is Below Grade	Unable to Access	Unable to Locale	Foundation Damaged	Paved Over	Street Well	Saw Cut Needed	Syslem Well	USA Marked Well	Comments
UNT4	8"	2		-		<u> </u>														
MWT-3	8"	2																		
MWT-2	3"																			
UWT-1	8"	2																		
MW B	12																			
Mw 3B Mw 1B	12	2		•					,					1/						
MW 2B	12	2												,						
MW-1A		2												V						
MW-3A	12"	2																	•	
MW-ZA	12"	2_					_													
																			' 	
																				

CHAIN OF CUSTODY FORM

Union Oil Company of California m 6101 Bollinger Canyon Road m San Ramon, CA 94583

Union Oil Site ID:				Union Oil Consultant: 🦠	sometime.							AN	ALYS	ES RE	QUIRE	D				
		<u> 75 730</u>		Consultant Contact:	1. Miker alson				72			, ,	100			Ti	irnaroun	d Time (T	ΆΤ);	
Site Address:				Consultant Phone No.:]			N.		1		, ,			Stan	dard 🗂	24 Ho	ours 🗆		
		10.11C		Sampling Company: TRC				34/3		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100			48 H	ours 🗆	72 Ho	ours 🗆		
	JK 24.	milian.		Sampled By (PRINT):						100	1 .	3	1 .	915 19				Special I	nstruction	ns
Union Oil PM Phone No.:					7240		17	2608	<i>*/</i> /	g		1								
Charge Code: NWRTB- 0	(<u>)</u> (2)			Sampler Signature:	015		EPA 8260B	<i>Year</i> .	h OXY	•	-	1								
				BC Laborat	ories, Inc.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	Sby	60B	st wit	3.5		143							
This is a LEGAL document. AL	.L fields n	nust be filled out	CORRECTLY and	Project Manager 4100 Atlas Court, Ba Phone No. 6	Diesel by EPA 8015	y GC/MS	BTEX/MTBE/OXYS by	Ethanol by EPA 8260B	EPA 8260B Full List with OXYS			Meksi								
S	AMPLE	E ID				ä	-G by	SMT	d jou	3260		- m	14.							
Field Point Name	Matrix	DTW	Date (yymmdd)	Sample Time	# of Containers	TPH	HdT	8TE)	Ethar	EPA (Notes / 0	Commen	ts	
	Ŵ-S-A		16429	1120	er e	X	X				J. 1	X								
	W-S-A			1024	<u> </u>	X					27.									
11. 7. 3.	W-S-A			()4/4/	6	>					X									
341:17 - 41	W-S-A			0.342		X					X	,	0000							
4.1111 10	w-s-A			1220	<u> </u>			1	1			1	X							
	W-S-A		[1420	5			74	\times				\times				, , ,			
16216	W-S-A			, 254				j., 196	Х,				X							
24026	W-S-A			7436	\$		ļ	>	\times				\geq							
1162 277	W-S-A		<u> </u>	1203				1	Z				\geq							
6/10-58	W-S-A		17	1410			\bigvee	\geq	Ž4			W	\times							
	W-S-A																			
	W-S-A																			
Relinquished By Comp	. •	Date / Time:	The fact of the A	Relinquished By Comp	pany Date / Time :				Relin	nquish	ed By	/	C	ompa	ny	Date / T	me:			
	7	7/21/12	it was general	<u> </u>																
Received By Compa	•	Date / Time:		Received By Comp	pany Date / Time :				Rece	eived E	Зу	-	(Compa	any	Date / T	me:			

TRC SOLUTIONS TECHNICAL SERVICES REQUEST FORM

26-Jul-12

Site ID: Address City: Cross Street	3737 1400 Powell S Emeryville Peladeau Stre			Project No.: Cllent: Contact #: PM: PM Contact #:	189791.0035.1780 Roya Kambin 925-790-6270 Leah Ackerman 925-296-7828	0 / 00TA01 Arcadis
Total number Depth to Wate		10	Min. Well Diameter Max. Well Diamete Max. Well Depth (fi	r (in.):	# of Techs, # of Travel Time (hrs	s):
ACTIVITIES	: Freque	ency	wax. wen beput (it		Hotel PO	# :
Gauging: Purge/Samplin No Purge/Sam						
RELATED A	CTIVITIES	Note				
Drums:	V					
Other Activities Traffic Control:		-1 thru i	NAVACT A			
	erator: Mr. Najmedo	din Ravar	n, 510-653-2251. He is at	the station until noon		
SITE INFOR		lt can o	nly be sampled on a Sund	lay nor the access on	rooment	
Prior to gauging, u Well MW-2A does - collect a no purge - then purge and s - if the well rechard 3Q12 additional w Low-flow purging a Field parameters of Emily Short, ARCA	not recharge quickle sample (these will ample the well ges after purging, pleils MWT-1, MWT-2 and sampling. TD of turing purging: pH, the sampling of the sampling.	y. be submease colle MTW-3, f wells is emperatuat 7:00 Al	quilibrate for 15 minutes. Itted if the well does not re ect post-purge samples (so MTW-4: no more than 10 feet. are, conductivity M to begin these wells.	charge after purging,	oratory and discard the	pre-purge samples)

TRC SOLUTIONS **TECHNICAL SERVICES REQUEST FORM**

26-Jul-12

Site ID:

3737

Cross Street Peladeau Street

189791.0035.1780 / 00TA01

Address

1400 Powell Street

Project No.: Client:

Roya Kambin

City:

Emeryville

Contact #:

925-790-6270

PM:

Leah Ackerman

Arcadis

PM Contact #: 925-296-7828

LAB INFORMATION:

Global ID: T06019745736

Lab WO: 351780

Lab Used: BC

Lab Notes: Lab Analyses for MWT-1, MWT-2, MWT-3, MWT-4: TPH-G by 8260B, BTEX/MTBE by 8260B [Containers: 3 voas w/ HCl]

TPH-Diesel by 8015 w/ silica gel cleanup [Container: one 1L ambers unpreserved] TPH-Diesel by 8015 [Containers: two 1L ambers unpreserved]

Lab Analyses for all other wells:

TPH-G by 8260B, BTEX/MTBE/OXYS by 8260B, EDB/EDC by 8260B, Ethanol by 8260B [Containers: 3 voas w/ HCI] TPH-Diesel by 8015 w/ silica gel cleanup, TPH-Motor Oil by 8015 w/ silica gel cleanup [Container: two 1L ambers

unpreserved]

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM

26-Jul-12

Site ID.: Address

3737 1400 Powell Street

City: Emeryville

Cross Street Peladeau Street

					Gau	ging			San	pling		1	Field Measuren	nents	•
Well IDs	Benz.	MTBE		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Pre-Purge	Post-Purge	Туре	Comments
MWT-4			Î	V	V	V	V	V	V	V	✓				
MWT-3				V	V	Y	V	V	V	V	✓				
MWT-2			_Ĺ	V	V	V	\checkmark	V	\mathbf{Z}	V	✓				
MWT-1				✓	✓	V	V	V	V	V	V				
MW-3B	0		0	V	V	V	V	V	V	\mathbf{V}	V				
MW-1B	0	0.7	75	V	V	V	V		V	V	V				
MW-2B	0		3	V	✓	✓	V	V	V	V	✓				
MW-1A	18	2	26	✓	V	V	V	V	V	✓	✓				
MW-3A	45	0.5	54	✓	V	V	V	V	\mathbf{Z}	V	V				
MW-2A	250	29	90	V	V	V	V	☑	V	V	✓				

ARCADIS

Attachment B

Historical Groundwater Results from Antea

Table 2

Summary of Current Groundwater Analytical Data

Chevron Branded Service Station No. 3737 1400 Powell Street Emeryville, California

																									p-			1,2,4-	1,3,5
											Ethyl-										n-Butyl-	sec-Butyl-		Isopropyl-	Isopropyl-		n-Propyl-	Trimethyl-	Trimethyl-
Sample			Depth to	TOC	Groundwater	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	benzene	Xylenes	MTBE	TAME	TBA	DIPE	Ethanol	ETBE	EDB	1,2-DCA	benzene	benzene	Chloroform	benzene	toluene	Napthalene	benzene	benzene	benzene
ID	Date	Time	Water	Elevation	Elevation	(μ g/L)	(μ g/L)	(μ g/L)	(μg/L)	(μg/ L)	(μg/ L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μg/ L)	(μg/L)	(μg/L)	(μg/ L)	(μ g/L)	(μ g/L)	(μ g/L)
MW-1A	1/26/2011	2:20	5.8	18.743	12.94	960	450	A52 <200	8.4	<0.50	1.9	1.6	50	1.4	62	<0.50	<250	<0.50	<0.50	<0.50	2.2	1.2	<0.50	4.2	1.8	1.8	7.3	1.0	1.2
MW-1B	1/26/2011	1:20	9.46	18.884	9.42	<50	<50	<200	<0.50	< 0.50	<0.50	<1.0	0.66	<0.50	<10	< 0.50	<250	<0.50	< 0.50	24	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-2A	1/26/2011	10:33	8.02	18.925	10.91	2,500	1,200	<1000	100	2.2	28	9.0	140	<0.50	1,300	< 0.50	<250	<0.50	< 0.50	<0.50	6.6	3.9	2.5	14	7.6	17	23	2.5	2.4
MW-2B	1/26/2011	2:10	5.51	19.099	13.59	<50	<50	<200	0.55	<0.50	<0.50	<1.0	3.4	<0.50	<10	<0.50	<250	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-3A	1/26/2011	2:30	4.75	18.616	13.87	3,100	830	<200	160	<5.0	96	<10	<5.0	<5.0	<100	<5.0	<2500	<5.0	<5.0	<5.0	<5.0	6.2	<5.0	40	9.2	<5.0	54	<5.0	<5.0
MW-3B	1/26/2011	1:35	7.33	18.571	11.24	<50	57	<200	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<10	<0.50	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
COMP	1/26/2011	1:15	NA	NA	NA	1,200	350	<200	13	0.57	5.4	1.5	6.0	<0.50	92	<0.50	15,000	<0.50	<0.50	3.6	5.3	2.3	<0.50	4.0	2.9	5.6	8.4	0.60	0.52
ESL						100	100	100	1	40	30	20	5	NA	12	NA	NA	NA	0.05	0.5	NA	NA	70	NA	NA	17	NA	NA	NA

Notes:

Depth to water measured in feet below top of casing

Groundwtaer elevation measured in feet above mean sea level

Bold concentrations indicate detection above laboratory reporting limit

(μg/L) micrograms per liter

TPH-D Total Petroleum Hydrocarbons as Diesel
TPH-MO Total Petroleum Hydrocarbons as Motor Oil
TPH-G Total Petroleum Hydrocarbons as Gasoline

MTBE methyl tertiary butyl ether
TBA tertiary buty alcohol
ETBE ethyl tertiary butyl ether
DIPE di-isopropyl ether
TAME tertiary amyl ethyl ether
EDB ethylene dibromide
1,2-DCA 1,2-dichloroethane

ESL Regional Water Quality Control Board - San Francisco Region Environmental Screening Level

A52 Data Qualifier: Chromatogram not typical of diesel

 ${\sf ESL}\ based\ on\ residential\ land\ use,\ shallow\ soil,\ and\ groundwater\ as\ a\ potential\ drinking\ resource.$

TPH-D and TPH-MO analysis by Environmental Protection Agency (EPA) Test Method 8015 with Silica Gel Cleanup

All other analyses by EPA Method 8260B.

Samples were analyzed for a full VOC Scan by EPA Method 8260B with oxygenates and lead scavengers. All Oxygenates and lead scavenger data are summarized, only VOCs with detections are presented in table. Data qualifiers regarding sample dilution, surrogate recovery, or quality control are not presented in table. Please refer to laboratory reports for full explanation of qualifiers.

ARCADIS

Attachment C

Laboratory Report and Chain-of-Custody Documentation

Date of Report: 08/10/2012

Leah Ackerman

Arcadis 2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

3737 Project:

1214106 BC Work Order: B127493 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 7/31/2012. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

molly meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	7
Sample Results	
1214106-01 - MWT-1-W-120729	
Volatile Organic Analysis (EPA Method 8260)	11
Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons (Silica Gel Treated)	13
1214106-02 - MWT-2-W-120729	
Volatile Organic Analysis (EPA Method 8260)	14
Total Petroleum Hydrocarbons	15
Total Petroleum Hydrocarbons (Silica Gel Treated)	16
1214106-03 - MWT-3-W-120729	
Volatile Organic Analysis (EPA Method 8260)	17
Total Petroleum Hydrocarbons	18
Total Petroleum Hydrocarbons (Silica Gel Treated)	19
1214106-04 - MWT-4-W-120729	
Volatile Organic Analysis (EPA Method 8260)	20
Total Petroleum Hydrocarbons	21
Total Petroleum Hydrocarbons (Silica Gel Treated)	22
1214106-05 - MW-1A-W-120729	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	24
1214106-06 - MW-1B-W-120729	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	26
1214106-07 - MW-2A-W-120729	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	28
1214106-08 - MW-2B-W-120729	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	30
1214106-09 - MW-3A-W-120729	_
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	
1214106-10 - MW-3B-W-120729	0.4
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	0.4
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	40
Total Petroleum Hydrocarbons	4.
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	43
Total Petroleum Hydrocarbons (Silica Gel Treated)	4.
Method Blank Analysis	
Laboratory Control Sample	45

Table of Contents

	Precision and Accuracy	46
Notes		
	Notes and Definitions	47

CHK BY

					OF CUSTODY FORM														
	***		Union Oil Cor	mpany of California 🗷 610	1 Bollinger Canyon Road	u Sar	ı Rar	non,	CA 94	1583					CC)C	<u></u>	of	
	<u> 737</u>			Union Oil Consultant:	freadis							ANAI	YSES R	EQUIRE	ΞD				
		45 73		Consultant Contact: 20	ah Ackornan	_			100		1	,	200			Turna	around ⁻	ijme (T/	AT):
		ll 5%		Consultant Phone No.: 9	25 - 2 <i>96 - 7828</i>]			82609		$M = \frac{3}{3}$	12	1 3			Standar	d-i	24 Ho	urs 🗆
		11.11E		Sampling Company: TRC		1			360	- 1	0	11/2	20		L	48 Hour	rs 🗆	72 Ho	urs 🗆
Union Oil PM: Socya	i Ka	mbsin	٠	Sampled By (PRINT):	ailis			<u></u>			3260	12	<i>§</i> .0			Sp	eclal ins	truction	ıs
Union Oll PM Phone No.:			ra				W	3260	RH.	ε		20	505						
Charge Code: NWRTB- 0	rge Code: NWRTB- 0 <u>3 5 / 78 0</u> -0- LAB			Sampler Signature:			8260	BTEX/MTBE/OXYS by EPA 8250B	18/18	Full List with OXYS	2	15108	13/						
				BC Laboratories, Inc.			8	ě.	809	it will	17156	prog	2						
This is a LEGAL document	t. <u>ALL</u> fleids π	rust be filled or	ut CORRECTLY and		er: Mally Meyers	1 11	Gentars	X	A 82	=	17	7	á						
COMPLETELY.					akersfield, CA 93308 561-327-4911	selb	100 100 100 100 100 100 100 100 100 10	BEC	딢		7	1,050	water						
	SAMPLE	ID			***************************************	- Diesel by EPA 8015	-G by	TM2	ig i	3260	× .	~N	110						
Field Point Name	Matrix	DTW	Date (yymmdd)	Sample Time	# of Containers	표	Ŧ	EEG	Ethanol by EPA 8260B	EPA 8260B	园,	三				M-	tes / Co		
NWT-1	M-S-A	w. 171	12-07-29	1/20	# OI CONTAINE IS	∇	X					\pm	`			IND	168 / CC	mment	. <u>s</u>
UW.T-2	W-S-A		1	1024	6	X					Χľ	1							
LINT-3	W-S-A	· · · · · · · · · · · · · · · · · · ·		0944	6	X					X	$\dagger \dagger$							
MUT-4	W-S-A			0842	6	X	\sqcap			\neg	ŹΓ	T						***	
MW-1a	W-S-A			0551	3			X	X				$\langle $						
1110-1B	W-S-A			1420	5			X	X				Ž			,			
MWZa	W-S-A			1254	5		П	X	X				X						
11W-2B	W-S-A			1436	5			X	X				X.						
MW.3A	W-S-A			1203	5			\times	\geq				X _						
MW-3B	₩/-S-A		V	1410	5		V	\geq	X			$\langle \rangle$	$\times $						
	W-S-A																		
	W-S-A																		
Relinguished By Co	отрапу О	Date / Time	Placed Stuple	Relinquished By Com	pany Date / Time :				Relln	quishe	d By		Compa	ny	Dat	te / Time:	:		
(TW) 7	7(C)	7/29/12			3 chab 73+12-1	83	Ó		2	. C	<u>کر</u>	بب	لمل	B	<u>رر</u> ٠	7.31	1.12	21	30 l
1 - 1 /	mpany	/Date //Time:	th l	Received By Com	pany Date / Time :					ived B	•	T	Comp	any	Dat	te / Time	:		
Struy Bogan	BCLAD	7-31-1		RLRuga	LBU 7:31.1	121	(8	30	K	<u> 011</u>	n_	_	BC	<u> </u>	7-:	31-12	<u>, </u>	213	o

MU

Chain of Custody and Cooler Receipt Form for 1214106 Page 2 of 3

BC LABORATORIES INC. Submission #: フーノリフレ		COOL	R RECEI	PT FORM	Л	Rev. No. 12			ge / O	17
SHIPPING INFORI Federal Express (1 UPS (1 BC Lab Field Service (2 Other (1	MATION Hand Deliv] (Specify)	ery 🗆			lce Chest Box	Ø		AINER ne □ er □ (Spe	cify)	
Refrigerant: Ice 7 Blue Ice [None	: D C	ther 🗆	Comm	ents:					
	Containe		None/L	2 Comn	nents:					
All samples received? Yes No 🗅	All samples	containers	intact? Ye	Nn I	3	Descrinti	onisi mate	h COC? Ya	No.	n
	nissivity: <u>C</u> Temperature									
SAMPLE CONTAINERS		2	3		SAMPLE N		7	В	5	10
OT CENEDAL MINERAL CENEDAL BUYSICAL	1		3	4	6	6		<u> </u>	9	10
OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS PT CYANIDE										
PT NITROGEN FORMS	1					-				
PT NITROGEN FORMS PT TOTAL SULFIDE	1									
20z- NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
PT TOX										
PT CHEMICAL OXYGEN DEMAND										1
PIA PHENOLICS										
40ml VOA VIAL TRAVEL BLANK										
40ml VOA VIAL	A : 3	A . 3	A . 3	A 13	A 13	A . 3	A 3	A 13	A 3	A 3
QT EPA 413.1, 413.2, 418.1										
PT ODOR				<u>ļ</u>						ļ
RADIOLOGICAL									ļ	
BACTERIOLOGICAL									ļ	
40 ml VOA VIAL- 504				ļ						
QT EPA 508/608/8080										_
QT EPA 515.1/8150	_			ļ			ļ	<u></u>		-
QT EPA 525	I					1				-
QT EPA 525 TRAVEL BLANK				-	<u> </u>		-	-		-
100ml EPA 547	1			-						
100ml EPA 531.1							ļ·	<u> </u>		
QT EPA 548	1			<u> </u>		 				-
QT EPA 549		 		-	<u> </u>		1		-	+
QT EPA 632	-	à		 	1	-				-
QT EPA 8015M	B,C	BCD	0 4	0-			+	-	+	-
QT AMBER	10,0	עטען	8 4	B	1		+	1		-
8 OZ. JAR	1			-	+	-	+	 	-	
32 OZ. JAR	1				 	<u> </u>	+		-	
SOIL SLEEVE	-				-		-		-	-
PCB VIAL	-	 						+	 	_
PLASTIC BAG			-	+	-	 	+	·	-	+
FERROUS IRON	+	 	 		-	 	 	 		
ENCORE										

MAL

Chain of Custody and Cooler Receipt Form for 1214106 Page 3 of 3

	□ Non				ice Chest Box			ne □ er □ (Spe	cify)	
Intact? Yes 17 No [7]		e 🗆 (Other 🗆	Comm	ents:					
	Contain		None	Comr	nents:					
All samples received? Yeș 🗇 No 🗆 👚	All sample:	containers	intact? Y	gs€ No I		Description	on(s) mate	h COC? Ye	No i	
	missivity: <u>C</u> Temperatur	0.95	Container:	OHA.	Thermom	eter ID: <u> </u>	17	Date/Time		
SAMPLE CONTAINERS		,			SAMPLE N	IUMBERS				
SAMPLE CONTAINED	1 .1	2	3	4	5	6	7	8	9	10
DT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED	-							_		
QT INORGANIC CHEMICAL METALS	1							i i		
PT INORGANIC CHEMICAL METALS						· ·				
PT CYANIDE										
PT NITROGEN FORMS										
PT TOTAL SULFIDE										
202. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
рт тох										
PT CHEMICAL OXYGEN DEMAND		ļ								
PLA PHENOLICS	_}		ļ						ı	
40ml VOA VIAL TRAVEL BLANK	_		ļ	<u> </u>						
40ml VOA VIAL	<u> </u>	1	1 1	1 '	()	1 1		1 ()	'	1 1
QT EPA 413.1, 413.2, 418.1			-	<u> </u>					ļ	
PT ODOR	_	-	-		ļ			-		
RADIOLOGICAL		 	 	1		ļ		<u> </u>		
BACTERIOLOGICAL									-	
40 ml VOA VIAL- 504	-				1					
QT EPA 508/608/8080	-		+					-		
QT EPA 515.1/8150	-	<u> </u>	-		-	<u> </u>			-	-
QT EPA 525			<u> </u>	-	 					
QT EPA 525 TRAVEL BLANK			-			 				1
100ml EPA 547 100mt EPA 531.1				1	<u> </u>	1	-		-	1
QT EPA 548		 					-	 	68.46.4	1
QT EPA 549	1			<u> </u>	 					
QT EPA 632 -										
QT EPA 8015M		ė,		1		 			1	
QT AMBER	1		D	CD	30	BC	BC	BC	BC	BC
8 OZ. JAR				1 - 1	, -	1.				1
32 OZ. JAR			1				1			
SOIL SLEEVE				1						
PCB VIAL										
PLASTIC BAG										
FERROUS IRON										<u> </u>
ENCORE										
Comments:	Bn	-Military C. S. C. C. Colonial Co. S.	ulan "Va 1994 Sall sedana bulancilo (Liddus		2					

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737 Project Number: 351780 Project Manager: Leah Ackerman

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1214106-01 **COC Number:**

> **Project Number:** 3737 Sampling Location:

Sampling Point: MWT-1-W-120729

Sampled By:

TRCI

07/31/2012 21:30 Receive Date: Sampling Date: 07/29/2012 11:20

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MWT-1

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1214106-02 **COC Number:**

> **Project Number:** 3737 Sampling Location:

MWT-2-W-120729 Sampling Point:

TRCI Sampled By:

07/31/2012 21:30 Receive Date: 07/29/2012 10:24 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order: Global ID: T06019745736

Location ID (FieldPoint): MWT-2

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1214106-03 COC Number:

3737 **Project Number:** Sampling Location:

MWT-3-W-120729 Sampling Point:

TRCI Sampled By:

Receive Date: 07/31/2012 21:30 07/29/2012 09:44 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order: Global ID: T06019745736

Matrix: W

Sample QC Type (SACode): CS

Location ID (FieldPoint): MWT-3

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737 Project Number: 351780 Project Manager: Leah Ackerman

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1214106-04 **COC Number:**

> **Project Number:** 3737 Sampling Location:

Sampling Point: MWT-4-W-120729

Sampled By:

TRCI

07/31/2012 21:30 Receive Date: Sampling Date: 07/29/2012 08:42

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MWT-4

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1214106-05 **COC Number:**

> **Project Number:** 3737 Sampling Location:

MW-1A-W-120729 Sampling Point:

TRCI Sampled By:

07/31/2012 21:30 Receive Date: 07/29/2012 12:20 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID: T06019745736 Location ID (FieldPoint): MW-1A

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1214106-06 COC Number:

3737 **Project Number:** Sampling Location:

MW-1B-W-120729 Sampling Point:

TRCI Sampled By:

Receive Date: 07/31/2012 21:30 07/29/2012 14:20 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order: Global ID: T06019745736

Matrix: W

Sample QC Type (SACode): CS

Location ID (FieldPoint): MW-1B

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737 Project Number: 351780 Project Manager: Leah Ackerman

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1214106-07 **COC Number:**

> **Project Number:** 3737 Sampling Location:

Sampling Point: MW-2A-W-120729

Sampled By:

TRCI

07/31/2012 21:30 Receive Date: Sampling Date: 07/29/2012 12:54

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-2A

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1214106-08 **COC Number:**

> **Project Number:** 3737 Sampling Location:

MW-2B-W-120729 Sampling Point:

TRCI Sampled By:

07/31/2012 21:30 Receive Date: 07/29/2012 14:36 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID: T06019745736 Location ID (FieldPoint): MW-2B

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Sample Depth:

1214106-09 COC Number:

> 3737 **Project Number:** Sampling Location:

MW-3A-W-120729 Sampling Point:

TRCI Sampled By:

Receive Date: 07/31/2012 21:30

07/29/2012 12:03 Sampling Date:

Water Lab Matrix: Water Sample Type: Delivery Work Order: Global ID: T06019745736

Matrix: W

Sample QC Type (SACode): CS

Location ID (FieldPoint): MW-3A

Arcadis Reported: 08/10/2012 10:07

2999 Oak Rd, Suite 300 Project: 3737
Walnut Creek, CA 94597 Project Number: 351780
Project Manager: Leah Ackerman

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1214106-10 COC Number: ---

Project Number: 3737 Sampling Location: ---

Sampling Point: MW-3B-W-120729

Sampled By: TRCI

Receive Date: 07/31/2012 21:30 **Sampling Date:** 07/29/2012 14:10

Sample Depth: --Lab Matrix: Water

Sample Type: Water Delivery Work Order: Global ID: T06019745736

Location ID (FieldPoint): MW-3B

Matrix: W

Sample QC Type (SACode): CS

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1214106-01	Client Sampl	e Name:	3737, MWT-1-W-12	0729, 7/29/2012	11:20:00AM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	7.7	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	3.5	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	31	ug/L	0.50	EPA-8260	ND		1
Toluene	2.3	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	6.3	ug/L	1.0	EPA-8260	ND		1
t-Butyl alcohol	71	ug/L	10	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons (C6-C12)	2500	ug/L	250	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surrogate)	107	%	75 - 125 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surrogate)	99.6	%	75 - 125 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)	109	%	80 - 120 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	99.6	%	80 - 120 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	126	%	80 - 120 (LCL - UCL)	EPA-8260		S09	1
4-Bromofluorobenzene (Surrogate)	105	%	80 - 120 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	08/01/12	08/01/12 14:41	JMC	MS-V12	1	BVH0130
2	EPA-8260	08/01/12	08/01/12 18:29	JMC	MS-V12	5	BVH0130

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

08/10/2012 10:07 Reported:

Project: 3737 Project Number: 351780 Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons

BCL Sample ID:	1214106-01	Client Sampl	e Name:	3737, MWT-1-W-12				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	1100	ug/L	200	EPA-8015B/TPH d	ND	A01,A52	1
Tetracosane (Surroga	te)	97.4	%	30 - 150 (LCL - UCL)	EPA-8015B/TPH d		A01	1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/02/12	08/09/12 00:00	MK1	GC-5	4.950	BVH0592	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-01	Client Sampl	e Name:	3737, MWT-1-W-12				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	450	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	88.3	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1
Capric acid (Reverse	Surrogate)	0	%	0 - 2 (LCL - UCL)	EPA-8015B/TPH d			1

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B/TPHd	08/03/12	08/08/12 22:42	MK1	GC-5	1	BVH0608			

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1214106-02	Client Sampl	e Name:	3737, MWT-2-W-12	0729, 7/29/2012	10:24:00AM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	70	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	62	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	11	ug/L	0.50	EPA-8260	ND		1
Toluene	1.6	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	8.8	ug/L	1.0	EPA-8260	ND		1
t-Butyl alcohol	89	ug/L	10	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons (C6-C12)	3000	ug/L	250	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surrogate)	106	%	75 - 125 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surrogate)	102	%	75 - 125 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)	99.3	%	80 - 120 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	104	%	80 - 120 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	127	%	80 - 120 (LCL - UCL)	EPA-8260		S09	1
4-Bromofluorobenzene (Surrogate)	112	%	80 - 120 (LCL - UCL)	EPA-8260			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 14:24	JMC	MS-V12	1	BVG2132	
2	EPA-8260	08/01/12	08/01/12 18:11	JMC	MS-V12	5	BVG2132	

Reported: 08/10/2012 10:07

Project Number: 351780
Project Manager: Leah Ackerman

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

Arcadis

Total Petroleum Hydrocarbons

BCL Sample ID:	1214106-02	Client Sampl	e Name:	3737, MWT-2-W-12	0729, 7/29/2012 1	0:24:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	780	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	85.7	%	30 - 150 (LCL - UCL)	EPA-8015B/TPH d			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/02/12	08/08/12 19:59	MK1	GC-5	1	BVH0592	

Reported: 08/10/2012 10:07

Project Number: 351780
Project Manager: Leah Ackerman

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

Arcadis

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-02	Client Sampl	e Name:	3737, MWT-2-W-12	0729, 7/29/2012 1	0:24:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Diesel Range Organio	cs (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	ate)	7.2	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d		S09	1
Capric acid (Reverse	Surrogate)	0	%	0 - 2 (LCL - UCL)	EPA-8015B/TPH d			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/03/12	08/09/12 00:43	MK1	GC-5	1	BVH0608	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1214106-03	Client Sample	e Name:	3737, MWT-3-W-12	0729, 7/29/2012	9:44:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.3	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		0.63	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		1.9	ug/L	0.50	EPA-8260	ND		1
Toluene		0.65	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		2.4	ug/L	1.0	EPA-8260	ND		1
t-Butyl alcohol		17	ug/L	10	EPA-8260	ND		1
Total Purgeable Petrole Hydrocarbons (C6-C12)		2100	ug/L	250	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (S	Surrogate)	106	%	75 - 125 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (S	Surrogate)	106	%	75 - 125 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		105	%	80 - 120 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		102	%	80 - 120 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	116	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	110	%	80 - 120 (LCL - UCL)	EPA-8260			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 14:06	JMC	MS-V12	1	BVG2132	
2	EPA-8260	08/01/12	08/01/12 17:54	JMC	MS-V12	5	BVG2132	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project Number: 351780
Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons

BCL Sample ID:	1214106-03	Client Sampl	e Name:	3737, MWT-3-W-12	0729, 7/29/2012	9:44:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	900	ug/L	200	EPA-8015B/TPH d	ND	A01,A52	1
Tetracosane (Surroga	te)	100	%	30 - 150 (LCL - UCL)	EPA-8015B/TPH d		A01	1

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/02/12	08/09/12 00:14	MK1	GC-5	5	BVH0592	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

08/10/2012 10:07 Reported:

Project: 3737

Project Number: 351780 Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-03	Client Sampl	e Name:	3737, MWT-3-W-12	0729, 7/29/2012	9:44:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	640	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	122	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1
Capric acid (Reverse	Surrogate)	0	%	0 - 2 (LCL - UCL)	EPA-8015B/TPH d			1

	Run							
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/03/12	08/08/12 23:08	MK1	GC-5	1	BVH0608	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project Number: 351780
Project Manager: Leah Ackerman

BCL Sample ID: 1214106-04	Client Sampl	e Name:	3737, MWT-4-W-12	0729, 7/29/2012	8:42:00AM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	530	ug/L	6.2	EPA-8260	ND	A01	1
Ethylbenzene	100	ug/L	6.2	EPA-8260	ND	A01	1
Methyl t-butyl ether	0.78	ug/L	0.50	EPA-8260	ND		2
Toluene	5.8	ug/L	0.50	EPA-8260	ND		2
Total Xylenes	61	ug/L	1.0	EPA-8260	ND		2
t-Butyl alcohol	560	ug/L	10	EPA-8260	ND		2
Total Purgeable Petroleum Hydrocarbons (C6-C12)	2800	ug/L	620	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Surrogate)	103	%	75 - 125 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surrogate)	102	%	75 - 125 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)	96.8	%	80 - 120 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	97.6	%	80 - 120 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	107	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	128	%	80 - 120 (LCL - UCL)	EPA-8260		S09	2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 17:36	JMC	MS-V12	12.500	BVG2132	
2	EPA-8260	08/01/12	08/01/12 13:49	JMC	MS-V12	1	BVG2132	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

Reported:

Project Number: 351780
Project Manager: Leah Ackerman

08/10/2012 10:07

Total Petroleum Hydrocarbons

BCL Sample ID:	1214106-04	Client Sampl	e Name:	3737, MWT-4-W-12	0729, 7/29/2012	8:42:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	1500	ug/L	200	EPA-8015B/TPH d	ND	A01,A52	1
Tetracosane (Surroga	te)	109	%	30 - 150 (LCL - UCL)	EPA-8015B/TPH d		A01	1

			Run			QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/02/12	08/09/12 00:28	MK1	GC-5	4.800	BVH0592	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-04	Client Sampl	e Name:	3737, MWT-4-W-12	0729, 7/29/2012	8:42:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	690	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surrogat	re)	88.5	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1
Capric acid (Reverse S	Surrogate)	0	%	0 - 2 (LCL - UCL)	EPA-8015B/TPH d			1

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	08/03/12	08/08/12 23:20	MK1	GC-5	1	BVH0608	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1214106-05	Client Sampl	e Name:	3737, MW-1A-W-12	20729, 7/29/2012	12:20:00PM		
Constituent		Decult	Unita	PO!	Method	MB	Lab	D #
		Result	Units	PQL		Bias	Quals	Run #
Benzene		10	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		0.80	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		35	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		1.9	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		1.2	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		80	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petrole Hydrocarbons (C6-C12)		1400	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	105	%	75 - 125 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		103	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	108	%	80 - 120 (LCL - UCL)	EPA-8260			1

			Run			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	08/01/12	08/01/12 13:31	JMC	MS-V12	1	BVG2132			

Reported: 08/10/2012 10:07

2999 Oak Rd, Suite 300 Project: 3737
Walnut Creek, CA 94597 Project Number: 351780
Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-05	Client Sampl	le Name:	3737, MW-1A-W-12	20729, 7/29/2012 1	2:20:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		220	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surroga	te)	83.5	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/03/12	08/09/12 00:06	MWB	GC-13	1	BVH0624	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1214	106-06 Clie	nt Sample	Name:	3737, MW-1B-W-12	0729, 7/29/2012	2:20:00PM		Run # 1 1 1 1 1 1 1 1 1 1 1 1 1
Constituent	R	esult	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		27	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		0.72	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons (C6-C12)		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogat	te)	103	%	75 - 125 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	!	99.3	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surroga	te)	97.1	%	80 - 120 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 13:14	JMC	MS-V12	1	BVG2132	

Reported: 08/10/2012 10:07

2999 Oak Rd, Suite 300 Project: 3737
Walnut Creek, CA 94597 Project Number: 351780
Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-06	Client Sampl	e Name:	3737, MW-1B-W-12	20729, 7/29/2012	2:20:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		ND	ug/L	40	EPA-8015B/FFP	ND		1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogat	e)	91.7	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/03/12	08/09/12 00:28	MWB	GC-13	1	BVH0624	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1214106-07	Client Sampl	e Name:	3737, MW-2A-W-12	0729, 7/29/2012	12:54:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		120	ug/L	2.5	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		2
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		2
Ethylbenzene		12	ug/L	0.50	EPA-8260	ND		2
Methyl t-butyl ether		280	ug/L	2.5	EPA-8260	ND	A01	1
Toluene		1.9	ug/L	0.50	EPA-8260	ND		2
Total Xylenes		1.4	ug/L	1.0	EPA-8260	ND		2
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		2
t-Butyl alcohol		2300	ug/L	10	EPA-8260	ND		2
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		2
Ethanol		ND	ug/L	250	EPA-8260	ND		2
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		2
Total Purgeable Petro Hydrocarbons (C6-C1		1900	ug/L	50	Luft-GC/MS	ND		2
1,2-Dichloroethane-d4	(Surrogate)	104	%	75 - 125 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4	(Surrogate)	106	%	75 - 125 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate	:)	99.1	%	80 - 120 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate	2)	103	%	80 - 120 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene	e (Surrogate)	98.7	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	e (Surrogate)	105	%	80 - 120 (LCL - UCL)	EPA-8260			2

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 17:19	JMC	MS-V12	5	BVG2132	
2	EPA-8260	08/01/12	08/01/12 12:57	JMC	MS-V12	1	BVG2132	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-07	Client Sampl	Client Sample Name: 3737, MW-2A-W-120729, 7/29/2012 12:54:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		310	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surrogat	te)	92.3	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/03/12	08/09/12 00:50	MWB	GC-13	1	BVH0624	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 121	4106-08	Client Sampl	e Name:	3737, MW-2B-W-12	20729, 7/29/2012	2:36:00PM		
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		2.1	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons (C6-C12)		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrog	ate)	100	%	75 - 125 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.7	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	98.2	%	80 - 120 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 12:39	JMC	MS-V12	1	BVG2132	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-08	Client Sampl	e Name:	3737, MW-2B-W-12	20729, 7/29/2012	2:36:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
TPH - Diesel (FFP)		ND	ug/L	40	EPA-8015B/FFP	ND		1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogat	te)	87.2	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/03/12	08/09/12 01:13	MWB	GC-13	1	BVH0624	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1214106-09	Client Sample	e Name:	3737, MW-3A-W-12	0729, 7/29/2012	12:03:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		77	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		0.94	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		14	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		2.1	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		2.2	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petrol Hydrocarbons (C6-C12		1900	ug/L	250	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4	(Surrogate)	112	%	75 - 125 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4	(Surrogate)	99.6	%	75 - 125 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)	110	%	80 - 120 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	102	%	80 - 120 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene	(Surrogate)	118	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	(Surrogate)	108	%	80 - 120 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	08/01/12	08/01/12 12:22	JMC	MS-V12	1	BVG2132
2	EPA-8260	08/01/12	08/01/12 17:01	JMC	MS-V12	5	BVG2132

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-09	Client Sampl	e Name:	3737, MW-3A-W-12	W-120729, 7/29/2012 12:03:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
TPH - Diesel (FFP)		160	ug/L	40	EPA-8015B/FFP	ND	A52	1		
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1		
Tetracosane (Surrogat	te)	81.8	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1		

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/03/12	08/09/12 01:35	MWB	GC-13	1	BVH0624	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1214106	6-10 Client Samp	le Name:	3737, MW-3B-W-12	20729, 7/29/2012	2:10:00PM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol	ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Ethanol	ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons (C6-C12)	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	103	%	75 - 125 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	103	%	80 - 120 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	99.7	%	80 - 120 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	08/01/12	08/01/12 12:04	JMC	MS-V12	1	BVG2132	

2999 Oak Rd, Suite 300

Reported: 08/10/2012 10:07

Project: 3737 Project Number: 351780

Walnut Creek, CA 94597 Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1214106-10	Client Sampl	e Name:	3737, MW-3B-W-12	20729, 7/29/2012	2:10:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		ND	ug/L	40	EPA-8015B/FFP	ND		1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogat	e)	54.8	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/03/12	08/09/12 01:58	MWB	GC-13	1	BVH0624	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals		
QC Batch ID: BVG2132								
Benzene	BVG2132-BLK1	ND	ug/L	0.50				
1,2-Dibromoethane	BVG2132-BLK1	ND	ug/L	0.50				
1,2-Dichloroethane	BVG2132-BLK1	ND	ug/L	0.50				
Ethylbenzene	BVG2132-BLK1	ND	ug/L	0.50				
Methyl t-butyl ether	BVG2132-BLK1	ND	ug/L	0.50				
Toluene	BVG2132-BLK1	ND	ug/L	0.50				
Total Xylenes	BVG2132-BLK1	ND	ug/L	1.0				
t-Amyl Methyl ether	BVG2132-BLK1	ND	ug/L	0.50				
t-Butyl alcohol	BVG2132-BLK1	ND	ug/L	10				
Diisopropyl ether	BVG2132-BLK1	ND	ug/L	0.50				
Ethanol	BVG2132-BLK1	ND	ug/L	250				
Ethyl t-butyl ether	BVG2132-BLK1	ND	ug/L	0.50				
Total Purgeable Petroleum Hydrocarbons (C6-	BVG2132-BLK1	ND	ug/L	50				
1,2-Dichloroethane-d4 (Surrogate)	BVG2132-BLK1	102	%	75 - 125	(LCL - UCL)			
Toluene-d8 (Surrogate)	BVG2132-BLK1	102	%	80 - 120	(LCL - UCL)			
4-Bromofluorobenzene (Surrogate)	BVG2132-BLK1	95.5	%	80 - 120	80 - 120 (LCL - UCL) 80 - 120 (LCL - UCL)			
QC Batch ID: BVH0130								
Benzene	BVH0130-BLK1	ND	ug/L	0.50				
Ethylbenzene	BVH0130-BLK1	ND	ug/L	0.50				
Methyl t-butyl ether	BVH0130-BLK1	ND	ug/L	0.50				
Toluene	BVH0130-BLK1	ND	ug/L	0.50				
Total Xylenes	BVH0130-BLK1	ND	ug/L	1.0				
t-Butyl alcohol	BVH0130-BLK1	ND	ug/L	10				
Total Purgeable Petroleum Hydrocarbons (C6-I	BVH0130-BLK1	ND	ug/L	50				
1,2-Dichloroethane-d4 (Surrogate)	BVH0130-BLK1	106	%	75 - 125	(LCL - UCL)			
Toluene-d8 (Surrogate)	BVH0130-BLK1	99.3	%	80 - 120	(LCL - UCL)			
4-Bromofluorobenzene (Surrogate)	BVH0130-BLK1	97.6	%	80 - 120	(LCL - UCL)			

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

	_		-		-		-			
				Spike		Percent	Control Limits Percent Lab			
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BVG2132										
Benzene	BVG2132-BS1	LCS	24.620	25.000	ug/L	98.5		70 - 130		
Toluene	BVG2132-BS1	LCS	22.810	25.000	ug/L	91.2		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BVG2132-BS1	LCS	10.100	10.000	ug/L	101		75 - 125		
Toluene-d8 (Surrogate)	BVG2132-BS1	LCS	10.040	10.000	ug/L	100		80 - 120		
4-Bromofluorobenzene (Surrogate)	BVG2132-BS1	LCS	10.660	10.000	ug/L	107		80 - 120		
QC Batch ID: BVH0130										
Benzene	BVH0130-BS1	LCS	27.780	25.000	ug/L	111		70 - 130		
Toluene	BVH0130-BS1	LCS	27.250	25.000	ug/L	109		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BVH0130-BS1	LCS	9.9700	10.000	ug/L	99.7		75 - 125		
Toluene-d8 (Surrogate)	BVH0130-BS1	LCS	9.7800	10.000	ug/L	97.8		80 - 120		
4-Bromofluorobenzene (Surrogate)	BVH0130-BS1	LCS	10.740	10.000	ug/L	107		80 - 120		

Arcadis Reported: 08/10/2012 10:07

2999 Oak Rd, Suite 300 Project: 3737
Walnut Creek, CA 94597 Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVG2132	Use	d client samp	ole: N								
Benzene	− MS	1213312-26	ND	26.700	25.000	ug/L		107		70 - 130	
	MSD	1213312-26	ND	25.540	25.000	ug/L	4.4	102	20	70 - 130	
Toluene	MS	1213312-26	ND	25.010	25.000	ug/L		100		70 - 130	
	MSD	1213312-26	ND	24.780	25.000	ug/L	0.9	99.1	20	70 - 130 75 - 125 75 - 125 80 - 120 80 - 120	
1,2-Dichloroethane-d4 (Surrogate)	MS	1213312-26	ND	10.000	10.000	ug/L		100		75 - 125	30 30 30 25 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30
	MSD	1213312-26	ND	9.5800	10.000	ug/L	4.3	95.8		75 - 125	
Toluene-d8 (Surrogate)	MS	1213312-26	ND	9.9300	10.000	ug/L		99.3		80 - 120	
	MSD	1213312-26	ND	10.040	10.000	ug/L	1.1	100		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1213312-26	ND	10.440	10.000	ug/L		104		80 - 120	130 130 130 130 130 125 125 120 120 120 130 130 130 130 130
	MSD	1213312-26	ND	10.850	10.000	ug/L	3.9	108		80 - 120 80 - 120	
QC Batch ID: BVH0130	Use	d client samp	ole: N								
Benzene	MS	1214103-01	ND	30.900	25.000	ug/L		124		70 - 130	
	MSD	1214103-01	ND	30.200	25.000	ug/L	2.3	121	20	70 - 130	
Toluene	MS	1214103-01	ND	29.360	25.000	ug/L		117		70 - 130	
	MSD	1214103-01	ND	28.740	25.000	ug/L	2.1	115	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1214103-01	ND	9.9300	10.000	ug/L		99.3		75 - 125	
	MSD	1214103-01	ND	9.8100	10.000	ug/L	1.2	98.1		75 - 125	
Toluene-d8 (Surrogate)	MS	1214103-01	ND	10.280	10.000	ug/L		103		80 - 120	
	MSD	1214103-01	ND	9.9500	10.000	ug/L	3.3	99.5		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1214103-01	ND	11.000	10.000	ug/L		110		80 - 120	
	MSD	1214103-01	ND	10.460	10.000	ug/L	5.0	105		80 - 120	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVH0624						
TPH - Diesel (FFP)	BVH0624-BLK1	ND	ug/L	40		
TPH - Motor Oil	BVH0624-BLK1	ND	ug/L	100		
Tetracosane (Surrogate)	BVH0624-BLK1	88.6	%	37 - 134	(LCL - UCL)	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

							Control Limits				
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BVH0624											
TPH - Diesel (FFP)	BVH0624-BS1	LCS	337.12	500.00	ug/L	67.4		52 - 128			
Tetracosane (Surrogate)	BVH0624-BS1	LCS	22.809	20.000	ug/L	114		37 - 134			

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 08/10/2012 10:07

Project: 3737

Project Number: 351780
Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVH0624	Use	d client samp	ole: N								
TPH - Diesel (FFP)	MS	1213312-46	ND	300.48	500.00	ug/L		60.1		50 - 127	
	MSD	1213312-46	ND	313.07	500.00	ug/L	4.1	62.6	24	50 - 127	
Tetracosane (Surrogate)	MS	1213312-46	ND	19.343	20.000	ug/L		96.7		37 - 134	
	MSD	1213312-46	ND	20.324	20.000	ug/L	4.9	102		37 - 134	

Arcadis 2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737 Project Number: 351780 Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVH0592						
Diesel Range Organics (C12 - C24)	BVH0592-BLK1	ND	ug/L	40		
Tetracosane (Surrogate)	BVH0592-BLK1	121	%	30 - 150	(LCL - UCL)	

Arcadis 2999 Oak Rd, Suite 300

Walnut Creek, CA 94597

Reported: 08/10/2012 10:07 Project: 3737

Project Number: 351780
Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control Limits Percent Lab			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Quals	
QC Batch ID: BVH0592											
Diesel Range Organics (C12 - C24)	BVH0592-BS1	LCS	423.42	500.00	ug/L	84.7		50 - 140			
Tetracosane (Surrogate)	BVH0592-BS1	LCS	21.255	20.000	ug/L	106		30 - 150			

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

				<u>'</u>								
									Cont	ontrol Limits		
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BVH0592	Use	Used client sample: N										
Diesel Range Organics (C12 - C24)	 MS	1210608-96	ND	489.97	500.00	ug/L		98.0		50 - 140		
	MSD	1210608-96	ND	350.42	500.00	ug/L	33.2	70.1	30	50 - 140	Q02	
Tetracosane (Surrogate)	MS	1210608-96	ND	23.775	20.000	ug/L		119		30 - 150		
	MSD	1210608-96	ND	18.466	20.000	ug/L	25.1	92.3		30 - 150		

Arcadis 2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVH0608						
Diesel Range Organics (C12 - C24)	BVH0608-BLK1	ND	ug/L	40		
Tetracosane (Surrogate)	BVH0608-BLK1	93.6	%	28 - 139	(LCL - UCL)	
Capric acid (Reverse Surrogate)	BVH0608-BLK1		%	0 - 2	2 (LCL - UCL)	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project Number: 351780
Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

								Control Limits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BVH0608										
Diesel Range Organics (C12 - C24)	BVH0608-BS1	LCS	253.11	500.00	ug/L	50.6		48 - 125		
Tetracosane (Surrogate)	BVH0608-BS1	LCS	16.751	20.000	ug/L	83.8		28 - 139		
Capric acid (Reverse Surrogate)	BVH0608-BS1	LCS	ND	100.00	ug/L			0 - 2		

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 08/10/2012 10:07

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Precision & Accuracy

								•	Cont		
		Source	Source		Spike			Percent	COIN	Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVH0608	Use	ed client samp	ole: N								
Diesel Range Organics (C12 - C24)	MS MS	1213312-47	ND	221.87	500.00	ug/L		44.4		36 - 130	
	MSD	1213312-47	ND	296.41	500.00	ug/L	28.8	59.3	30	36 - 130	
Tetracosane (Surrogate)	MS	1213312-47	ND	14.174	20.000	ug/L		70.9		28 - 139	
	MSD	1213312-47	ND	22.030	20.000	ug/L	43.4	110		28 - 139	
Capric acid (Reverse Surrogate)	MS	1213312-47	ND	ND	100.00	ug/L				0 - 2	
	MSD	1213312-47	ND	ND	100.00	ug/L				0 - 2	

Reported: 08/10/2012 10:07

> Project: 3737 Project Number: 351780

Project Manager: Leah Ackerman

Notes And Definitions

2999 Oak Rd, Suite 300

Walnut Creek, CA 94597

Arcadis

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

PQL's and MDL's are raised due to sample dilution. A01

A52 Chromatogram not typical of diesel. A57 Chromatogram not typical of motor oil.

Q02 Matrix spike precision is not within the control limits.

S09 The surrogate recovery on the sample for this compound was not within the control limits.