

Roya C. Kambin Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6270 RKLG@chevron.com

Alameda County Health Care Services Agency Environmental Health Department Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: TOSCO 76 #3737/Chevron Union Oil Company of California Site 351780 1400 Powell Street Emeryville, CA RECEIVED

4:08 pm, Jan 12, 2012

Alameda County Environmental Health

I have reviewed the attached report dated January 10, 2012.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

og thi

Roya Kambin Union Oil of California – Project Manager

Attachment: Report

175 Technology, Suite 150 Irvine, California 92618 Telephone: (949) 648-5200 http://www.craworld.com

Fax: (949) 648-5299

Reference No. 060716

January 10, 2012

Mr. Mark Detterman Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Fourth Quarter 2011 Groundwater Monitoring and Sampling Report TOSCO 76 #3737/Chevron Union Oil Company of California Site 351780 1400 Powell Street Emeryville, California Fuel Leak Case No. RO0000067

Dear Mr. Mark Detterman:

On behalf of Chevron Environmental Management Company, for itself and as Attorney-in-Fact for Union Oil Company of California (hereinafter "EMC"), Conestoga-Rovers & Associates (CRA) is pleased to submit the *Fourth Quarter 2011 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1). Groundwater monitoring and sampling was performed by TRC Solutions (TRC) of Irvine, California. TRC's November 30, 2011 *Groundwater Monitoring Data* is included as Attachment A. Current groundwater monitoring and sampling data are presented in Table 1. Laboratory analyses were performed by BC Laboratories of Bakersfield, California. BC Laboratories' December 12, 2011 *Analytical Results* is included as Attachment B. Historical groundwater monitoring and sampling data is included as Attachment C.

RESULTS OF FOURTH QUARTER 2011 EVENT

On November 20, 2011, TRC monitored and sampled the site wells per the established schedule.

Results of the current monitoring event indicate the following:

- Groundwater Flow Direction
- Hydraulic Gradient
- Approximate Depths to Groundwater

West (shallow zone), southwest (deep zone) 0.004 (shallow zone) and 0.038 (deep zone) 5 to 6 feet below grade (fbg) (shallow zone) and 6 to 8 fbg (deep zone)

> Equal Employment Opportunity Employer

January 10, 2012

		TABLE	E A: GRO	UNDWATE	ER ANALY	FICAL DATA				
							Total			
	TPHmo	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE		
Well ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)		
ESLs	100	100	100	1	40	30	20	5		
MW-1A	<100	460	1,300	20	0.74	6.4	<1.0	40		
MW-2A	<500	1,200	1,800	440	<5.0	50	<10	160		
MW-3A	<100	330	1,200	25	0.83	17	<1.0	< 0.50		
MW-1B	<100	69	<50	< 0.50	< 0.50	< 0.50	<1.0	0.55		
MW-2B	<100	56	<50	< 0.50	< 0.50	< 0.50	<1.0	2.0		
MW-3B	<100	<100 45 <50 <0.50 <0.50 <0.50 <1.0 <0.50								
TPHmo				as motor oil						
TPHd		oleum hyd								
TPHg				as gasoline						
MTBE	Methyl tei	tiary buty	l ether							
ESLs						ronmental Concerns				
	Contamina	ted Soil and	l Groundwa	<i>ter,</i> Californi	a Regional V	Vater Quality Con	trol Board-Sa	n		
	Francisco	Bay Regior	n, Interim l	Final Novem	ber 2007, Re	vised May 2008				
µg/L		ns per Lite								
< 0.50	Below lab	oratory me	thod detec	tion limit 0.5	50					
Bold		tion exceed								

An abbreviated summary of the current sampling event is presented below in Table A:

- 2 -

CONCLUSIONS AND RECOMMENDATIONS

The results of ongoing groundwater monitoring and sampling indicate the following:

- Dissolved petroleum hydrocarbons are vertically delineated by deep zone wells MW-1B, MW-2B, MW-3B
- TPHmo, TPHd, TPHg, benzene, toluene, ethylbenzene, total xylenes, and MTBE in the deep groundwater zone are below ESLs and decreasing
- Groundwater has been monitored and sampled quarterly beginning in 2011 and hydrocarbon concentrations have been consistent and decreasing between these events.

CRA recommends continuing quarterly monitoring and sampling until the first quarter 2012 to evaluate groundwater conditions over one annual hydrologic cycle. If hydrocarbon concentrations remain consistent or decreasing, we propose a reduced monitoring schedule.

January 10, 2012

Reference No. 060716

- 3 -

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring

TRC will monitor and sample site wells per the established schedule and forward the samples to BC Labs for analyses. Upon final results, CRA will submit a groundwater monitoring and sampling report.

January 10, 2012

Reference No. 060716

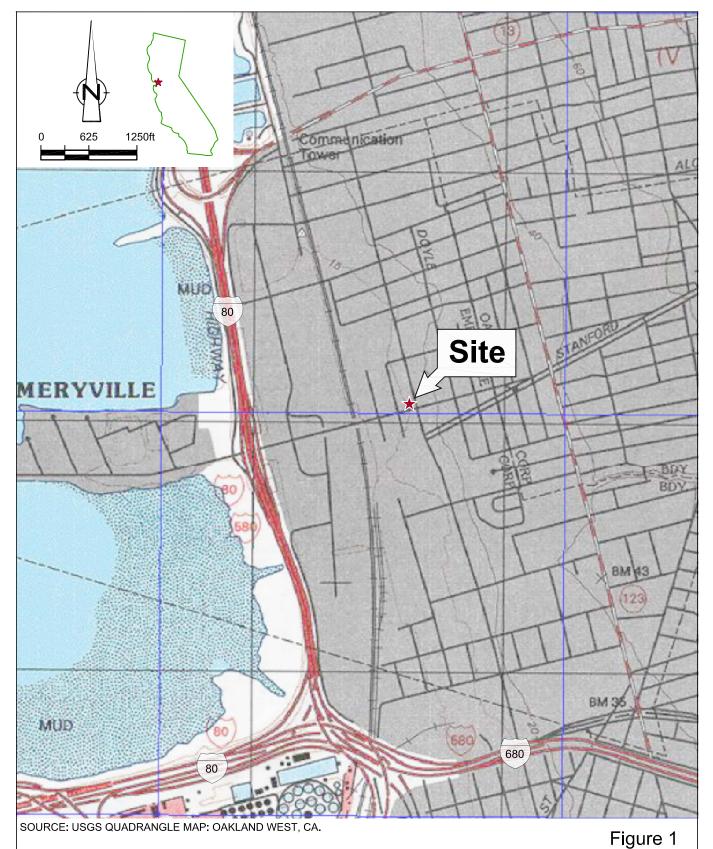
- 4 -

Please contact Jim Schneider at (949) 648-5200 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

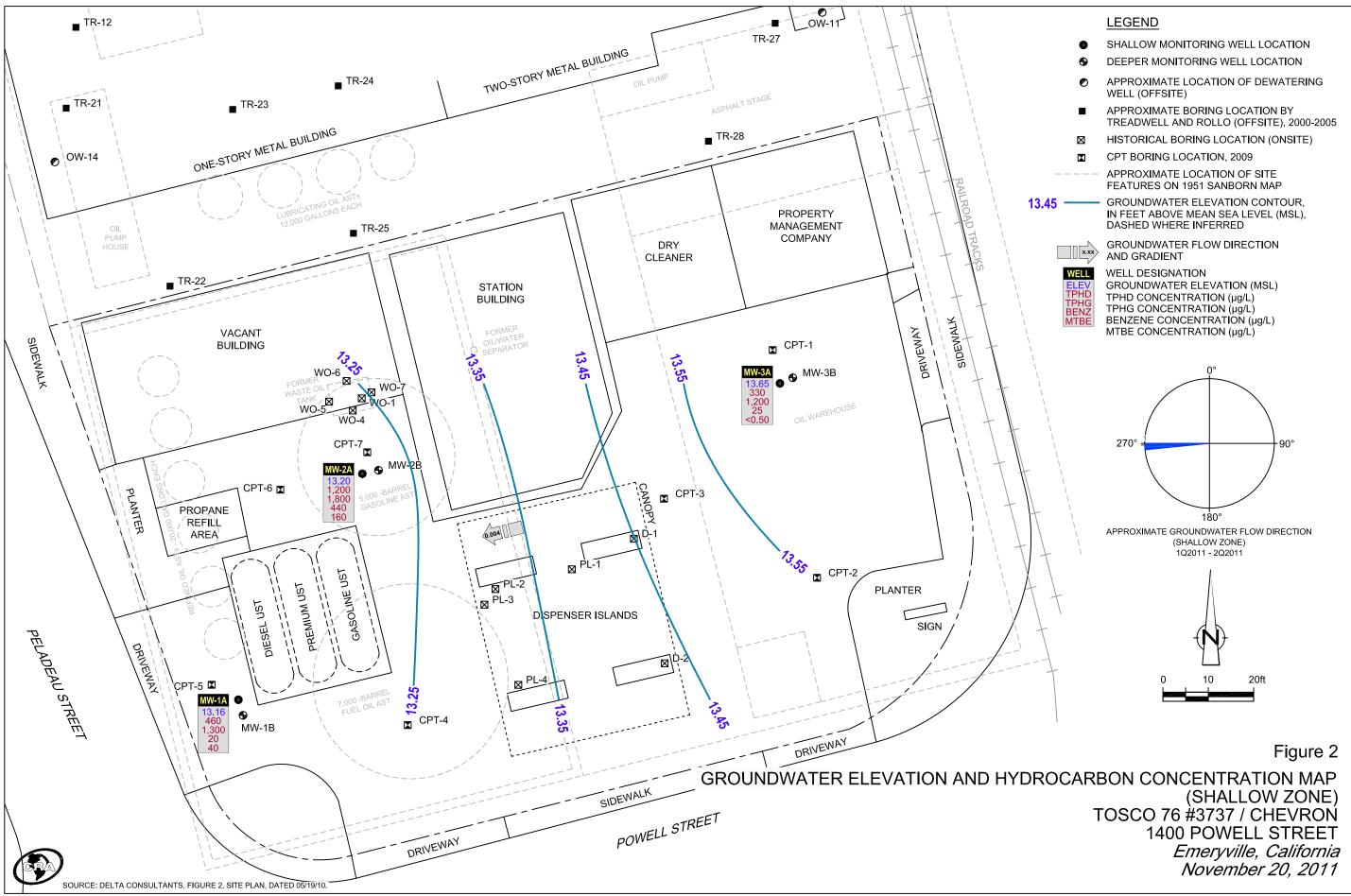
ONAL PROF VICTOR J. SCHNEIDE No. 7914

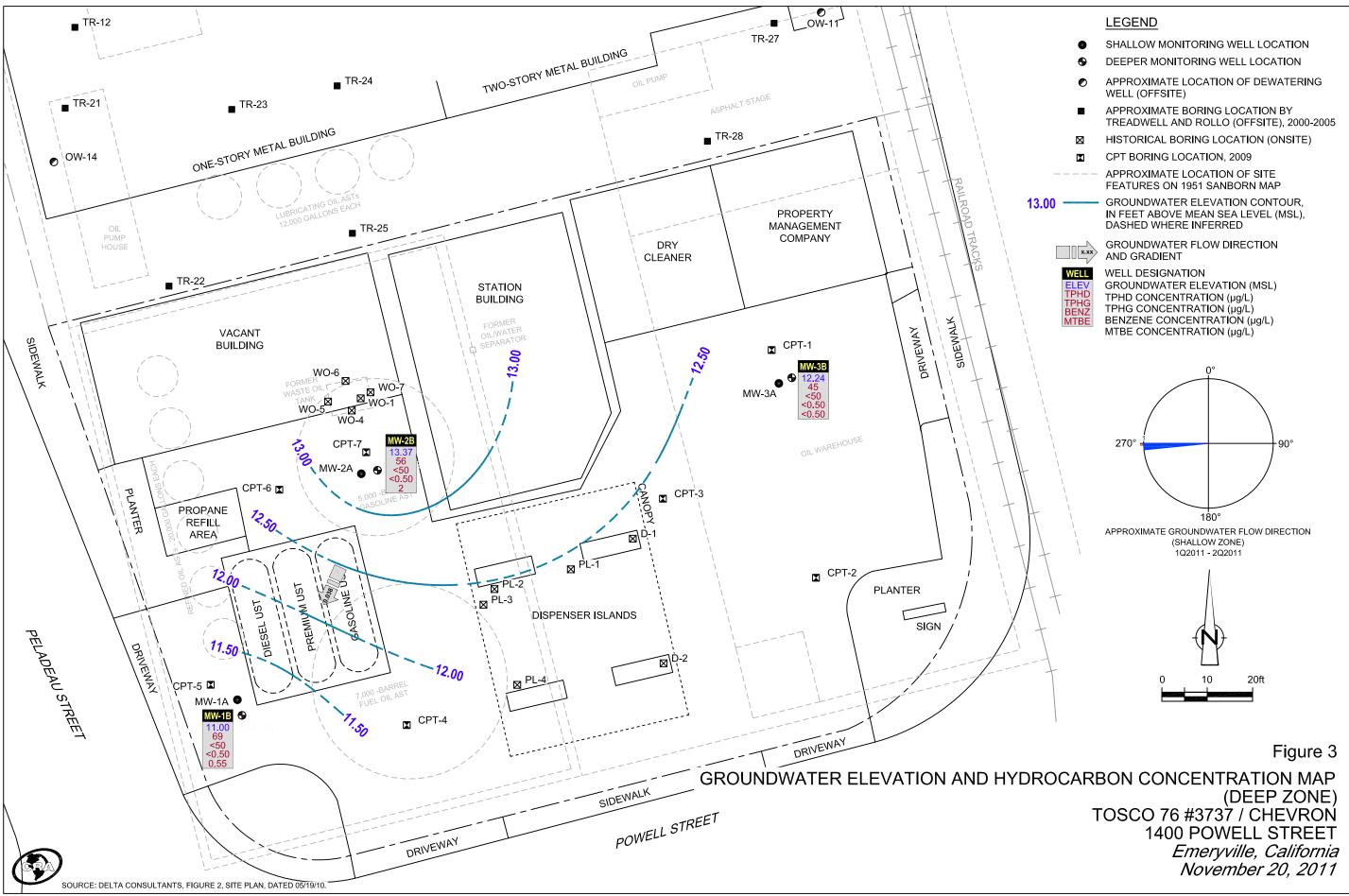

Jim Schneider, PG 7914

IH/cw/4
Encl.

Figure 1 Figure 2	Vicinity Map Groundwater Elevation and Chemical Concentration Map
Figure 3	(Shallow Zone) Groundwater Elevation and Chemical Concentration Map (Deep Zone)
Table 1	Groundwater Monitoring and Sampling Data
Attachment A Attachment B Attachment C	Monitoring Data Package Laboratory Analytical Report Historical Groundwater Monitoring and Sampling Data
cc: Ms. Roya I	Kambin, Union Oil Company of California (electronic copy)

Mr. Najmeddin Revan, Property Owner


FIGURES


VICINITY MAP TOSCO 76 #3737/CHEVRON 1400 POWELL STREET *Emeryville, California*

060716-95(004)GN-EM001 DEC 22/2011

060716-95(004)GN-EM002 DEC 22/2011

060716-95(004)GN-EM003 DEC 23/2011

TABLE

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA TOSCO 76 #3737/CHEVRON 1400 POWELL STREET, EMERYVILLE, CALIFORNIA

					HY	DROCARBO	NS	PRIMARY VOCS											GENERAL CHEMISTRY
Location	Date	тос	DTW	GWE	TPH - Motor Oil	TPH - Diesel	<i>TPH</i> ₈	В	Т	Ε	X	MTBE by SW8260	TBA	ETBE	DIPE	TAME	EDB	1,2-DCA	Ethanol
	Units	ft	ft	ft-amsl	µg∕L	µg∕L	µg∕L	µg∕L	µg/L	µg/L	µg∕L	µg/L	µg/L	µg∕L	µg∕L	µg∕L	µg∕L	µg/L	µg∕L
MW-1A	05/01/2011	18.74	5.68	13.06	<200	450	1,100	36	0.86	5.9	1.9	31	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250
MW-1A	08/28/2011	18.74	5.72	13.02	170	540	840	21	0.68	3.8	1.8	55	<10				<0.50		<250
MW-1A	11/20/2011	18.74	5.58	13.16	<100	460	1,300	20	0.74	6.4	<1.0	40	79	<0.50	<0.50	<0.50	<0.50	<0.50	<250
	0 5 (01 (0 011	10.00	0.51	10.05			-50					-0.50						10	
MW-1B	05/01/2011	18.88	8.51	10.37	<200	82	<50			< 0.50		<0.50	<10					19	<250
MW-1B MW-1B	08/28/2011 11/20/2011	18.88 18.88	8.27 7.88	10.61 11.00	<100 <100	59 69	<50 < 50			<0.50 < 0.50		<0.50 0.55	<10 <10	<0.50	<0.50	<0.50		18 16	<250 < 250
WIVY-ID	11/20/2011	10.00	7.00	11.00	<100	09	~ 50	<0.50	~0.50	\0.30	<1.0	0.35	<10	~0.50	~0.50	\0.50	~0.50	10	~250
MW-2A	05/01/2011 ¹	18.93	6.40	12.53	<1,000	1,500	2,800	860	4.6	61	12	220	2,500	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-2A	$08/28/2011^1$	18.93	5.93	13.00	<1,000	1,600	2,300	690	<5.0	53	<10	320	2,100	<5.0	<5.0	<5.0	<5.0	<5.0	<2,500
MW-2A	11/20/2011 ¹	18.93	5.73	13.20	<500	1,200	1,800	440	<5.0	50	<10	160	2,200	<5.0	<5.0	<5.0	<5.0	<5.0	<2,500
MW-2B	05/01/2011	19.10	7.57	11.53	<200	<50	<50	1.2	<0.50	< 0.50	<1.0	3.4	<10	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<250
MW-2B	08/28/2011	19.10	5.82	13.28	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	2.3	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250
MW-2B	11/20/2011	19.10	5.73	13.37	<100	56	<50	<0.50	<0.50	<0.50	<1.0	2.0	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3A	05/01/2011	18.62	4.68	13.94	<200	460	2,700	130	2.7	98	3.6	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	1.2	<250
MW-3A	08/28/2011	18.62	4.92	13.70	130	440	1,700	39	0.51	28	1.6	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250
MW-3A	11/20/2011	18.62	4.97	13.65	<100	330	1,200	25	0.83	17	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
MW-3B	05/01/2011	18.57	6.68	11.89	<200	<50	<50			< 0.50		<0.50	<10				<0.50		<250
MW-3B	08/28/2011	18.57	7.29	11.28	<100	<40	<50			< 0.50		<0.50	<10				< 0.50		<250
MW-3B	11/20/2011	18.57	6.33	12.24	<100	45	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA TOSCO 76 #3737/CHEVRON 1400 POWELL STREET, EMERYVILLE, CALIFORNIA

Page 2 of 2

					H_{1}	(DROCARBO	NS		PRIMARY VOCS						GENERAL CHEMISTRY				
Location	Date	тос	DTW	GWE	TPH - Motor Oil	TPH - Diesel	лрнg	В	Т	Ε	X	MTBE by SW8260	TBA	ETBE	DIPE	TAME	EDB	1,2-DCA	Ethanol
	Units	ft	ft	ft-amsl	µg/L	µg∕L	µg∕L	µg∕L	µg/L	µg/L	µg∕L	µg∕L	µg/L	µg∕L	µg/L	µg∕L	µg∕L	µg∕L	μ <i>g/</i> L

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 $\mu g/L$ = Micrograms per Liter

TPH - Total Petroleum Hydrocarbons

TPHg - Total Purgeable Petroleum Hydrocarbons

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene

MTBE = Methyl tert butyl ether

TBA = Tert-Butyl alcohol

DIPE = Diisopropyl ether

ETBE = Tert-Butyl ethyl ether

TAME = Tert-Amyl methyl ether

EDB = 1,2-Dibromoethane (Ethylene dibromide)

1,2-DCA = 1,2-Dichloroethane

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit

U Compound not detected.

J Estimated value.

1 Well dewatered and only adequate pre-purge groundwater was available for TPHmo analysis: two samples collected.

CRA 060716 (4)

ATTACHMENT A

MONITORING DATA PACKAGE

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 Fax

www.TRCsolutions.com

DATE:	November 30, 2011
TO:	Michael McDonald CRA 175 Technology Drive, Suite 150
	Irvine, California 92618
SITE:	Unocal Site 3737
	Facility 351780

1400 Powell Street, Emeryville, CA

RE: Transmittal of Groundwater Monitoring Data

Dear Mr. McDonald,

Please find attached the field data sheets, chain of custody (COC) forms, and technical services request (TSR) form for the monitoring event that was completed on November 20, 2011. Field measurements and collection of samples submitted to the laboratory were completed in general accordance with our usual groundwater monitoring protocol which is also attached for your reference.

Please call me at 949-341-7440 if you have questions.

Sincerely,

Anju Farfan Groundwater Program Operations Manager

GENERAL FIELD PROCEDURES

Groundwater Gauging and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater gauging and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements (Gauging)

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Unless otherwise instructed, a well that is found to contain a measureable amount of LPH (0.01 foot) is not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps. The pump intake is initially set at about 5 feet below the level of water in the casing, and is lowered as needed to compensate for falling water level. Pump depths are recorded in Field Notes.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously, using a flow cell, until they become stable in general accordance with EPA guidelines.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

GENERAL FIELD PROCEDURES

Samples are collected by lowering a new, disposable polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

Sample containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well. If wells must be gauged or sampled out of order, alternate interface probes and/or pumps are utilized and are noted in field documentation.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liquinox and water and rinsing twice. The final rinse is in deionized water.

Purge Water Disposal

Purge water is generally collected in labeled drums for disposal as non-hazardous waste. Drums may be left on site for disposal by others, or transported to a collection location at a TRC field office, in either Fullerton, California or Concord, California, for eventual transfer to a licensed treatment or recycling facility. Alternatively, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, are documented in field notes on the following pages.

Techniciar	: <u>A. V.</u> ;	luers	Jo	b #/Task #:	193487.0	0035.178	2	Date: 11 20 11		
						- 		Page _ _ of		
Well #	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes		
MW-1B	./	0539	21.71	7.88	C WELLOW DOCTORY	- Approximate Approxim	0827	2"		
MW-3B	~	· · · · · · · · · · · · · · · · · · ·	23.90			*Soletoplanetters, s	0837	2"		
MW-2B	~	0548	23.53		C Statistic Marcovit	######################################	0415	2 ''		
MW-1A	V	0552	9.98	5.58	Station and the second second	*SidemaplePolitication = 1	0848	2"		
MW-3A	\checkmark			4.97		Cheminal Contraction	0904	2"		
MW-2A	V I	0600	10.16	5.73	Manufacture of the second s	•=====================================	0933	2"		
<u>}</u>		— — _								
					_					
								<u></u>		
							——			
				<u>-</u>						
							·····			
						·				
						<u></u>				
IELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS										
ANIFEST	DR		NTORY	TR	AFFIC CON	ITROL				
<u> </u>		<u> </u>						······································		

ĺ

				· · · - ·	R SAMPLIN A. Vidier	IG FIELD NC	DTES		·				
Site: <u>373</u>	1		Proj	ect No.: 18-	3487,0035	1780		Date:_	11/201				
Well No	MW-3A			· · · · · · · · · · · · · · · · · · ·	ĩ	d:	HB		I I				
Depth to W	ater (feet):_		4.97		Depth to Product (feet):								
Total Depth	(feet)	;	9.22		LPH & Water Recovered (gallons):								
Water Colu	mn (feet):		4,25		Casing Diam	eter (Inches):		<u>2</u>					
80% Recha	rge Depth(f	eet):	5.82		1 Well Volum	e (gallons):		Ē					
Time Start	Time Stop		Pepth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbldity			
	Purge				100 # 1		(01						
0100	0704.			2	1246	22.9	6.96						
		1		3	1 · · · · · · · · · · · · · · · · · · ·					·			
	· · · · · · · · · · · · · · · · · · ·												
Stat	c at Time S		led	Tota	I Gallon's Pur	hen		Sample	Timo				
	7.22			1010	2	gçu		0904	14110				
Comments	: Dry	4	2 gg	lons. Did	not recov	er in 2 k	iours,	······································					
Well No	``	2A	5.73		Purge Metho	d:	HB	a and a second s					
Total Depth			10,16		•	Recovered (ga	allons):		_				
Water Colu	mn (feet):		4,43			eter (Inches):_		Z	-				
80% Recha	rge Depth(fo	et):	6.62		-	e (gallons):							
Time Start	Time Stop	1	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity			
0724	Purge	200 200			2537	2011	1 00						
0161	0733			2	2523	21.2	6.89						
· · · · · · · · · · · · · · · · · · ·				3									
	· · · ·								 				
Stat	ic at Time S	amo	bled	Tota	l al Gallons Pur	raed	<u> </u>	Sample	I Time	1			
	8.7-	- 4			2	<u></u>		09					
				ted at 070			. Did not i	ecover 1	n 2 h	ours.			
went dry o	while samp	ing	, vindele _	ro collect	2nd 1320	2. amper for	11/11-2-1	трн-М	0,				
									:				

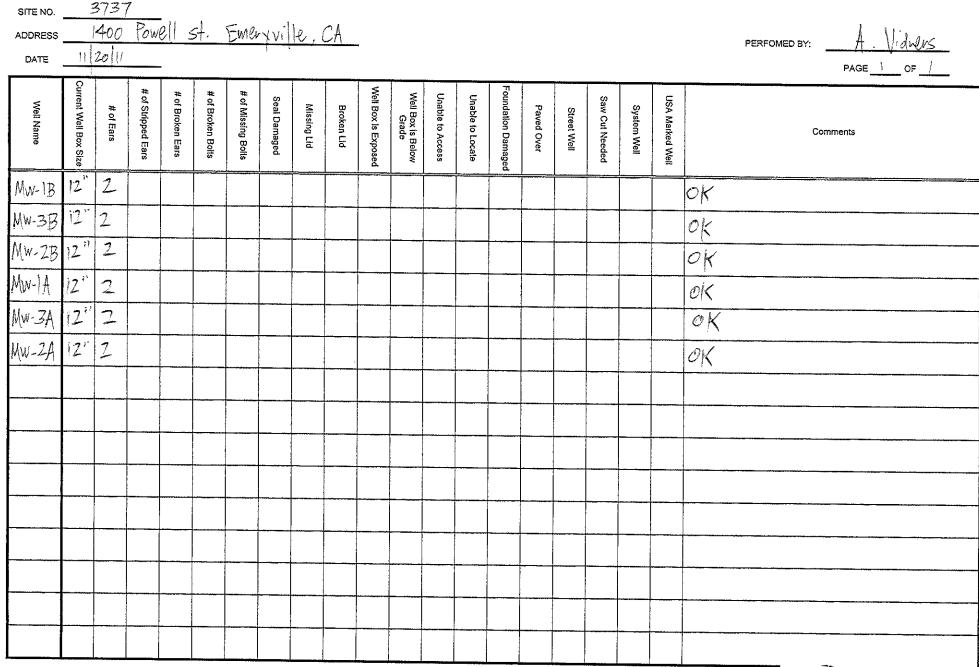
·					R SAMPLIN A. Vidue	G FIELD NO	TES		į,		
Site: <u>373</u>			Proje	ect No.:8	3487,0035,	1780		Date:_	<u>11/20/11</u>	·	
Well No	MW.1B	•		<u></u>	Purge Method	d:	Sub		<i>ŧ</i>		
Depth to Wa	ater (feet):		7.88		Depth to Proc	luct (feet):		and the contraction of the second			
Total Depth Water Colur	(feet)	-	21.71		LPH & Water	duct (feet): Recovered (ga eter (Inches): e (gallons):	lions):				
Water Colur	nn (feet):				Casing Diam	eter (Inches):		2			
80% Recha	rge Depth(fe	et):	10,65		1 Well Volum	e (gallons):					
Time Start	Time Stop	I	Pepth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity	
Pre-F 0632	ob35	2.27 2.17		<u> </u>	1221	7.6	6.78				
	00/0			6	l - dan		0/10				
				a						· · · · · · · · · · · · · · · · · · ·	
Stati	Static at Time Sampled Total Gallons Purged Sample Time										
10,		<u> </u>			3	3		082			
			3 gallon	s, Did n	of recover	in 45 m	mutes				
	r							•			
Well No	MW-3	B			Purge Metho	id:	Sub	<u></u>			
Depth to W	ater (feet):		6.33	-	Depth to Pro	duct (feet):					
Total Depth	(feet)		23.80		LPH & Wate	auct (reet): r Recovered (ga neter (Inches):	allons):		-		
Water Colu	mn (feet):		17.47		Casing Diam	neter (Inches):_	····	23			
80% Recha	rge Depth(fe	eet)	9.92		1 Well Volun	ne (gallons):					
Time Start	Time Stop		Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbidity	
	Purge	S.		*7	1.200	1/1 19	1	-			
0653	0657	-	**************************************	3	1309	20.3	6.77				
<u> </u>	<u> </u>		, , , ,	9	100 161	Course & course			<u> </u>		
		1	*								
	la at Time S	1	l		lal Gallana Du	Purged Sample Time					
Star 8	ic at Time S	am	hier I	10	Total Gallons Purged Sample Time						
Comments	- K		6 341	ons. Did		ver in 45	minute			······································	
l			+								

1. 1.

Ń

					r samplin Á. Víðue	G FIELD NC	OTES				
Site: 372	57		Proje	ect No.: 183	487.0035	1780		Date:_	11/20	11	
Well No	Mw-2	B			Purge Method	d:;	Sub		1	l	
Depth to W	ater (feet):	:	5.73			luct (feet):		and from the first state of the			
	(feet)				•	Recovered (ga	llone)	- Marine Constant			
	mn (feet):		• .			eter (Inches):		2	_		
80% Recha	rge Depth(fe	eet):	9,29		1 Well Volum	e (gallons):		4			
Time Start	Time Stop	Ì	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbidity	
	Purge					s /1 100g					
0715	0718			48	956.6	18.7	9,55				
<u> </u>										······	
01-1	e el Time Ce							Canania			
	<u>c at Time Sa</u> १.०५	μıμ	ieu	10(8	al Gallon's Pur	yeu		Sample 0915	TIMe		
Comments	· · · · · · · · · · · · · · · · · · ·		4 gallons	: Did not	rerover in	45 minuté	25				
			·								
	4. L						f i bra	•			
Well No	<u>Mw - 1</u>				Purge Metho	d:	HB				
Depth to W	ater (feet):		.5.58		Depth to Proc	duct (feet):					
Total Depth	(feet)		9.98		LPH & Water	Recovered (ga	allons):	1056200000000000000000000000000000000000	-		
Water Colu	mn (feet):		4.30		Casing Diam	eter (Inches):_		2			
80% Recha	rge Depth(fe	et)	6.44	29 	1 Well Volum	e (gallons):					
					•						
Time Start	Time Stop		Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity	
	Purge	900 200					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
0639	0643				833.3	19.5	7.05		 		
	CT NU			3	014.9		1,~				
						· · · · ·					
									<u> </u>		
Stat	ic at Time S	amı	pled	Tota	Total Gallons Purged Sample Time						
Comments	<u> 5.96</u> • Dw 4	ł	7 call	ns Did	2 not re	cover in r	1.5 Minu	084 405	0		
	· pry ·	1[2 galle	en>, 112	<u> </u>	UVEUV (F)	1-2 MINI	(<u>[v</u>			

L


STATEMENT OF NON-COMPLETION OF JOB

DATE OF EVENT: 1 20	SITE ID: <u>3737</u>
TECH: A. Vidwers	CALLED SUPERVISOR: YES / NO
CALLED PM: <u>YES / NO</u> NAME O	F PM:
WELL ID: <u>MW-2A</u> Well went dry while sampling amber for 8015 analysis.	1. Unable to collect 2nd 3202.
· · · · · · · · · · · · · · · · · · ·	
WELL ID:	
· · · · · · · · · · · · · · · · · · ·	
WELL ID:	
·····	

WELL BOX CONDITION REPORT

ł

COC of Union Oil Company of California a 6101 Bollinger Canyon Road a San Ramon, CA 94583 373 (87) Union Oil Site ID: Union Oil Consultant: ANALYSES REQUIRED 1745736 TPH - Diesel by EPA 8015 μ/S^{+} (a η/C^{+} cleam p-10 0,200 Site Global ID: Consultant Contact: Turnaround Time (TAT): Paur II st. Enerville, CA 2 C 24 420 224-Standard 🖾 24 Hours 🗆 المالح ! Site Address: Consultant Phone No.: alloq Amu 48 Hours 🗆 72 Hours 🗆 Sampling Company: TRC KOWE M Union Oil PM: NOVA Sampled By (PRINT): Special Instructions Artoria 1.6664 . EPA 8260B 325 740 ,270 Union Oil PM Phone No.: (M. Cabw EPA 8260B Full List with OXYS Sampler Signature: 87063 Charge Code: NWRTB- 0 5 5 7 6 4 -0- LAB BTEX/MTBE/OXYS by Ethanol by EPA 8260B BC Laboratories, Inc. TPH - G by GC/MS Project Manager: Molly Meyers This is a LEGAL document. ALL fields must be filled out CORRECTLY and 4100 Atlas Court, Bakersfield, CA 93308 COMPLETELY. Phone No. 661-327-4911 5 2 SAMPLE ID ĩ Date Notes / Comments Field Point Name Matrix DTW (yymmdd) Sample Time # of Containers `____ 1120 0627 MW-13 \times 5 Х w-s-A Х 0237 VW- 주의 W-S-A 0115 Mw-23 W-S-A 0949 MW- A W-S-A MW- RA Carl W-S-A MW-ZA 2 0133 W-S-A W-S-A W-S-A W-S-A W-S-A W-S-A W-S-A Date / Time: Relinguished By Date / Time : Relinquished By Company Company Date / Time: Company Relinguished By 11/20/11 1200 121 Date / Time: Received By Company Company Date / Time: Received By Company Date / Time : Received BV we Brow Bolabs 11-2-11 1330

CHAIN OF CUSTODY FORM

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM 26-Oct-11

Site ID: Address City: Cross Street:	Emery			Project No.: Client: Contact #: PM: PM Contact #:	183487.0035.1780 / Roya Kambin 925-790-6270 Ian Hull 510-420-3344	OOTA01
Total number Depth to Wate		ls: 6	Min. Well Diamete Max. Well Diamet Max. Well Depth (er (in.):	# of Techs, # of H Travel Time (hrs):	,
ACTIVITIES	:	Frequency		N	otes	
Gauging: Purge/Sampling No Purge/Samp	y: 🗹	Quarterly Quarterly	:			
RELATED A	стіліт	TES Note	es			· · · · · · · · · · · · · · · · · · ·
Drums:						
Other Activities:		•				
Traffic Control:					· · · · · · · · · · · · · · · · · · ·	
	erator: N	-	wan, 510-653-2251. He is a	at the station until noor).	
SITE INFOR			an only be sampled on a Su	nday per the access a	areement	
Prior to gauging, un Well MW-2A does - collect a no purge - then purge and sa	ncap all not rech sample ample th	wells and allow to arge quickly. (these will be su e well	o equilibrate for 15 minutes Ibmitted if the well does not collect post-purge samples	recharge after purging))	re-purge samples)

1

Ń

TRC SOLUTIONS TECHNICAL SERVICES REQUEST FORM

1 C

ŀ

26-Oct-11

Site ID: Address City: Cross Stre	3737 1400 Powell Street Emeryville et: Peladeau Street		Project No.: Client: Contact #: PM: PM Contact #:	183487.0035.1780 Roya Kambin 925-790-6270 Ian Hull 510-420-3344	CRA
LAB INFOR	MATION:				
Global ID:	T06019745736		•		
Lab WO:	351780				
Lab Used:	BC				
Lab Notes:	Lab Analyses: TPH-G by 8260B, Full Scan 8260B in TPH-Diesel by 8015 w/ silica gel clear unpreserved]	cluding OXYS, Etha nup, TPH-Motor Oil	nol by 8260B [Conta by 8015 w/ silica gel	ainers: 3 voas w/ HCi] cleanup [Container: tw	o 1L ambers
-					

۰,

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM

26-Oct-11

.

Site ID.:3737Address1400 Powell StreetCity:Emeryville

Cross Street Peladeau Street

		1	Gau	iging			San	npling	ĺ		Field Measurem	ients	
Benz. M	ITBE	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Pre-Purge	Post-Purge	Туре	Comments
· 0	0	✓	✓	~	~	~	~		~				
0	0					\checkmark	✓		\checkmark				· · · ·
0	2.3			\checkmark	~				V				
21	55		~	~	~	✓	✓		~		<u> </u>		
39	0				~	~	~		~		<u> </u>		
690	320							V					
-	0 0 0 21 39	0 0 0 0 0 2.3 21 55 39 0	0 0 V 0 0 V 0 2.3 V 21 55 V 39 0 V	Benz. MTBE Q1 Q2 0 0 Image: Constraint of the second s	Benz. MTBE Q1 Q2 Q3 0 0 ✓ ✓ ✓ 0 0 ✓ ✓ ✓ 0 0 ✓ ✓ ✓ 0 2.3 ✓ ✓ ✓ 21 55 ✓ ✓ ✓ 39 0 ✓ ✓ ✓	0 0 V V V 0 0 V V V 0 2.3 V V V 21 55 V V V 39 0 V V V	Benz. MTBE Q1 Q2 Q3 Q4 Q1 0 0 V V V V V V V 0 0 V	Benz. MTBE Q1 Q2 Q3 Q4 Q1 Q2 0 0 V	Benz. MTBE Q1 Q2 Q3 Q4 Q1 Q2 Q3 0 0 V	Benz. MTBE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 0 0 ✓	Benz. MTBE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Pre-Purge 0 0 V	Benz. MTBE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Pre-Purge Post-Purge 0 0 V V V V V V V Image: Constraint of the purge 0 0 V V V V V V Image: Constraint of the purge 0 0 V V V V V Image: Constraint of the purge 0 2.3 V V V V V Image: Constraint of the purge 21 55 V V V V V Image: Constraint of the purge 39 0 V V V V V Image: Constraint of the purge	Benz. MTBE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Pre-Purge Post-Purge Type 0 0 V V V V V V Image: Constraint of the state

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

Date of Report: 12/12/2011

Jim Schneider

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

3737 Project: 1119316 BC Work Order: B112860 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 11/21/2011. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Molly Meyers

Contact Person: Molly Meyers **Client Service Rep**

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1119316-01 - MW-1B-W-111120	
Volatile Organic Analysis (EPA Method 8260)	7
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	10
1119316-02 - MW-3B-W-111120	
Volatile Organic Analysis (EPA Method 8260)	.11
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	14
1119316-03 - MW-2B-W-111120	
Volatile Organic Analysis (EPA Method 8260)	15
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	18
1119316-04 - MW-1A-W-111120	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	22
1119316-05 - MW-3A-W-111120	
Volatile Organic Analysis (EPA Method 8260)	23
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	26
1119316-06 - MW-2A-W-111120	
Volatile Organic Analysis (EPA Method 8260)	27
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	30
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	31
Laboratory Control Sample	34
Precision and Accuracy	. 35
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	
Method Blank Analysis	36
Laboratory Control Sample	37
Precision and Accuracy	. 38
Notes	
Notes and Definitions	.39

Chain of Custody and Cooler Receipt Form for 1119316 Page 1 of 2 Laboratories, Inc. Environmental Testing Laboratory Since 1949 JMI/

											11	1-1	93	10	1			
					OF CUSTODY FORM		Dom		••••	500		•		`		c	oc I	of)
	7			mpany of California 🖬 610		la San	Ran	ion, c	JA 94	000								
Inion Oil Site ID: 373	Arn A I in			Union Oil Consultant: CK	n Hvll				'I				T	S REC		<u>-u</u>	Turnerou	Ind Time (TAT):
Site Global ID: 060	974573	3b		Consultant Contact: 19 Consultant Phone No.: 5	10420 3344	- dan					¢	3					Standard X	
ite Global ID: 1060 Site Address: 1400 Pow	F	merville	CA	Sampling Company: TBC		10						eanur					48 Hours E	•
Inion OIL PM: Roya	Kambin			Sampled By (PRINT):	1. 111.0.	silica gel cleanop						Clean				Ī	Specia	al Instructions
Inion Oil PM Phone No.:		906270		Anc	hen Vidners	silic		260B		s			-					
				Sampler Signature:	1	2 m		EPA 8260B		Xo	8	<u>in</u>						
Charge Code: NWRTB- 0	35179	<u>36</u> -0- LAB			\sim	801		β	B	with	PV 8260B	18						
					atories, inc. er: Molly Meyers	EPA	MS	Ω.	8260	List	60	1						
This is a LEGAL document. COMPLETELY.	<u>ALL</u> fields n	nust be filled ou	t CORRECTLY and	4100 Atlas Court, E	Bakersfield, CA 93308	el by	GCI	E/0)	EPA	Full	4	S S						
				Phone No.	661-327-4911	TPH - Diesel by EPA 8015 w	TPH - G by GC/MS	BTEX/MTBE/OXYS by	Ethanol by EPA 8260B	EPA 8260B Full List with OXYS	TPH-G	PH-Motor Oil by Bol 5 w						
	SAMPLE	EID	Date	4		μ	Η	TEX	thand	PA 8;	F	÷						
Field Point Name	Matrix	DTW	(yymmdd)	Sample Time	# of Containers		F	B.				E					Notes	/ Comments
MW-1B	MS-A	-1	11/120	0817	5	X			X	X	X	X						
Mw-3B	W-S-A	-2		0837														
MW-2B	W-S-A	-3		0915												ļ		
MW-IA	W-S-A	~1		0848														
MW-3A	W-S-A	- 5		0904.														
MW-2A	V-S-A	4		0433	4	$\overline{\mathbf{N}}$			$\overline{\mathbf{V}}$	\forall	\mathbf{V}							
111 211			<u> </u>						-F		-							
	W-S-A					-			Г -	~.u				07	~ 1 5 4 5	ITIC		
	W-S-A						1					h	2	24	4151 1	, (
	W-S-A							<u> </u>		tê	βĽ		r L	9	154	<u> </u>		
	W-S-A							<u> </u>	┝╘╧	27		[.] 	L maggy dis.	_51	<u>18~(</u>	bur		
	W-S-A											$\left - \right $				<u> </u>		
	W-S-A		L	Della subbad Du	mpany Date / Time			l	Poli	nguist	ed P			ompa		<u> </u>	Date / Time:	
	ompany	Date / Time			. 1		1	~	-	<u>`</u> م	-	•						717-
	<u>RC</u>	11/20/11	1200		Be LABS 11-21-1	/ /	90	0				42		B			.Z1.11	2130
Received By Co	mpany	Date / Time:			mpany Date / Time				Rec	eived	By K	1	C	Compa	¹ /	I	Date / Time:	
How Bogan R	- (Ahs	11-21-11	13'30	IK (Kun -	Ber 11.21.1	(1	A O	0	$ \langle \rangle$	\supset	M	NAV	m	\sim	X	11.	-21-11	2130

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1119316 Page 2 of 2

BC LABORATORIES INC.		SAMPLE	RECEIF		Rev.	. No. 12	06/24/08	Page ⊥		
Submission #: (1-19316	<u> </u>									
SHIPPING INFO Federal Express □ UPS □ BC Lab Field Service ♀ Other	Hand Deliv			lo	e Chest Box		Non		:ify)	
Refrigerant: Ice 🕵 Blue Ice [None N			omment						
Custody Seals Ice Chest Intact? Yes No	Containe		None	Comme	nts:					
All samples received? Yes \square No \square	All samples	containers	intact? Ye	E Not)	Descripti	on(s) mat	ch COC?Y	es,®?No I	
COC Received r √ YES □ NO	Emissivity: _ Femperature:	. <u>98</u> ca A2	ontainer: <u>G</u>	<u>}+{A</u> _⊤ c / c	hermomete 23	er ID: <u>17</u>	7	Date/Tim Analyst I	e <u>11-21-1</u> nit <u>BLT</u>	2130
SAMPLE CONTAINERS				4	SAMPLE N 5	UMBERS	7	8	9	10
T GENERAL MINERAL/ GENERAL PHYSICA		2	3	4	5			<u> </u>		
T GENERAL MINERAL GENERAL PHISICA	<u>*</u>					1.1				
	-									
OT INORGANIC CHEMICAL METALS	-							1		
PT INORGANIC CHEMICAL METALS	-							1	1	
PT CYANIDE								1	1	
PT NITROGEN FORMS								1		
PT TOTAL SULFIDE								1		
LOZ. NITRATE / NITRITE						-4		1	1	1
PT TOTAL ORGANIC CARBON								1	1	
P <u>T TOX</u> PT CHEMICAL OXYGEN DEMAND						-#-		1		1
	· · · ·							1	1	
PtA PHENOLICS 40ml VOA VIAL TRAVEL BLANK										1
	n12	Q1Z1	A 121	AB	AR	th Z	() () (1 ()
40ml VOA VIAL	- 112								1	1
<u>QT EPA 413.1, 413.2, 418.1</u> PT ODOR								1		
RADIOLOGICAL										
BACTERIOLOGICAL					[
40 ml VOA VIAL- 504					1					
QT EPA 508/608/8080										
QT EPA 508/608/8080 QT EPA 515.1/8150										
QT EPA 525										
QT EPA 525 QT EPA 525 TRAVEL BLANK		<u> </u>								
QI EPA 525 TRAVEL BLANK 100ml EPA 547		1							1	
100ml EPA 547	-									
QT EPA 548		<u> </u>								
QT EPA 548 QT EPA 549				1	1					
QT EPA 632			1							
QT EPA 8015M					1	1	1			
QT AMBER	DC	BC	BC	BC	Bd	BOX		-		
8 OZ. JAR	- FIC	1	1		1	.INN			1	
32 OZ. JAR			1		1	11-27-	11			
SOIL SLEEVE			1		1		1.,			
		1		1				1		
PCB VIAL		1	1	1				1		
PLASTIC BAG	· · ·			1						
FERROUS IRON		+	1	1	1	1	1	-	1	
ENCORE										

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

٦

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	0 n		
1119316-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3737 MW-1B-W-111120 TRCI	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T06019 Location ID (FieldP Matrix: W Sample QC Type (S Cooler ID:	745736 oint): MW-1B
1119316-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3737 MW-3B-W-111120 TRCI	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T06019 Location ID (FieldP Matrix: W Sample QC Type (S Cooler ID:	745736 oint): MW-3B
1119316-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3737 MW-2B-W-111120 TRCI	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T06019 Location ID (FieldP Matrix: W Sample QC Type (S Cooler ID:	745736 oint): MW-2B

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	0n		
1119316-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3737 MW-1A-W-111120 TRCI	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T060197 Location ID (FieldPo Matrix: W Sample QC Type (S Cooler ID:	745736 oint): MW-1A
1119316-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3737 MW-3A-W-111120 TRCI	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T060197 Location ID (FieldPo Matrix: W Sample QC Type (S Cooler ID:	745736 oint): MW-3A
1119316-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3737 MW-2A-W-111120 TRCI	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: T060197 Location ID (FieldPo Matrix: W Sample QC Type (S Cooler ID:	745736 oint): MW-2A

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1119	316-01 Client Samp	e Name:	3737, MW-1	B-W-111120, 11/20/2011	8:27:00AM		
Constituent	Desult	l lucito	DOI	Mathad	MB	Lab	D #
Constituent Benzene	Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run # 1
Bromobenzene	ND	ug/L	0.50	EPA-8260	ND		1
Bromochloromethane	ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane	ND	ug/L	0.50	EPA-8260	ND		1
Bromoform	ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane	ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride	ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Chloroform	ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane	ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene	ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene	ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane	ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	16	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane	ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane	ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane	ND	ug/L	0.50	EPA-8260	ND		1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	119316-01	Client Sampl	e Name:	3737, MW-1	B-W-111120, 11/20/2011	8:27:00AM		
Ormatiturent		Descrit	11	DOI	Madha d	MB	Lab	- <i>"</i>
1,1-Dichloropropene		Result ND	Units ug/L	PQL 0.50	EPA-8260	Bias ND	Quals	Run # 1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
p-Isopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		0.55	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoro	pethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1119316-01	Client Sampl	e Name:	3737, MW-1B-W-11	1120, 11/20/2011	8:27:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleur Hydrocarbons	n	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	urrogate)	86.2	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		92.6	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	urrogate)	88.8	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/02/11	12/02/11 18:25	JCC	MS-V4	1	BUL0061	

Laboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1119316-01	Client Sampl	e Name:	3737, MW-1B-W-11	1120, 11/20/2011	8:27:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		69	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surrogat	e)	90.8	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

					QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	11/23/11	12/06/11 12:23	MWB	GC-2	1	BUL0302	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1119316-02	Client Sampl	e Name:	3737, MW-3	3B-W-111120, 11/20/2011	8:37:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND	Quais	<u> </u>
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloroprop	ane	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	119316-02	Client Sampl	e Name:	3737, MW-3	B-W-111120, 11/20/2011	8:37:00AM		
Constituent		Desult	l lucito		Mathad	MB	Lab	D #
1,1-Dichloropropene		Result ND	Units ug/L	PQL 0.50	EPA-8260	Bias ND	Quals	Run #1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
p-Isopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluor	oethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID:	1119316-02	Client Sampl	e Name:	3737, MW-3B-W-11	1120, 11/20/2011	8:37:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleur Hydrocarbons	m	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	urrogate)	83.2	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		90.7	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	Surrogate)	93.3	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/02/11	12/02/11 17:56	JCC	MS-V4	1	BUL0061	

Laboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1119316-02	Client Sampl	e Name:	3737, MW-3B-W-11	1120, 11/20/2011	8:37:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		45	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surrogat	e)	76.2	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

					QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	11/23/11	12/06/11 12:46	MWB	GC-2	0.980	BUL0302	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	119316-03	Client Sampl	e Name:	3737, MW-2	B-W-111120, 11/20/2011	9:15:00AM		
Constituent		Desult	Unite	DOI	Mathad	MB	Lab	D
Constituent Benzene		Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run # 1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropar	ne	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1119316-03	Client Sampl	e Name:	3737, MW-2	2B-W-111120, 11/20/2011	9:15:00AM		
Constituent		Bocult	Unito		Mathad	MB	Lab	D #
Constituent1,1-Dichloropropene		Result ND	Units ug/L	PQL 0.50	EPA-8260	Bias ND	Quals	Run # 1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
p-lsopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		2.0	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluc	roethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID:	1119316-03	Client Sampl	e Name:	3737, MW-2B-W-11	1120, 11/20/2011	9:15:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleur Hydrocarbons	ı	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	irrogate)	81.5	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		91.1	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	urrogate)	92.5	%	86 - 115 (LCL - UCL)	EPA-8260			1

Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/02/11	12/02/11 17:27	JCC	MS-V4	1	BUL0061	

Laboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1119316-03	Client Sampl	e Name:	3737, MW-2B-W-111120, 11/20/2011 9:15:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		56	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surrogat	e)	87.3	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	11/23/11	12/06/11 13:09	MWB	GC-2	0.990	BUL0302	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID:	1119316-04	Client Sampl	e Name:	3737, MW-1	A-W-111120, 11/20/2011	8:48:00AM		
Constituent		Dervit	11 14 -		M - 411	MB	Lab	
Constituent Benzene		Result 20	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	<u>Run #</u> 1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene		10	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		3.4	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloroprop	ane	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID: 1119	9316-04 Clien	t Sample Name:	3737, 1	MW-1A-W-111120, 11/20/2	011 8:48:00AM		
Constituent		o		R# - 411	MB	Lab	D "
1,1-Dichloropropene		sult Unit	-	Method EPA-8260	Bias ND	Quals	Run # 1
cis-1,3-Dichloropropene	Ν	ID ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene	Ν	ID ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene	Ν	ID ug/L	1.0	EPA-8260	ND		1
Ethylbenzene	6	.4 ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene	Ν	ID ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene	:	24 ug/L	0.50	EPA-8260	ND		1
p-Isopropyltoluene	1	.4 ug/L	0.50	EPA-8260	ND		1
Methylene chloride	Ν	ID ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether	4	l0 ug/L	0.50	EPA-8260	ND		1
Naphthalene	0.	.69 ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene	:	36 ug/L	0.50	EPA-8260	ND		1
Styrene	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane	Ν	ID ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene	Ν	ID ug/L	0.50	EPA-8260	ND		1
Toluene	0.	.74 ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane	Ν	ID ug/L	0.50	EPA-8260	ND		1
Trichloroethene	Ν	ID ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane	Ν	ID ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoroeth	nane N	ID ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene	Ν	ID ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene	5	.7 ug/L	0.50	EPA-8260	ND		1
Vinyl chloride	Ν	ID ug/L	0.50	EPA-8260	ND		1
Total Xylenes	N	ID ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether	N	ID ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		79 ug/L	10	EPA-8260	ND		1
Diisopropyl ether	Ν	ID ug/L	0.50	EPA-8260	ND		1
Ethanol	Ν	ID ug/L	250	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID: 11	19316-04	Client Sampl	e Name:	3737, MW-1A-W-11	3737, MW-1A-W-111120, 11/20/2011			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		1300	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrog	gate)	88.7	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		93.5	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	97.3	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/02/11	12/02/11 16:59	JCC	MS-V4	1	BUL0061	

Laboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1119316-04	Client Sampl	e Name:	3737, MW-1A-W-111120, 11/20/2011 8:48:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		460	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surrogat	e)	73.7	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

	Run						QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	11/23/11	12/06/11 13:32	MWB	GC-2	0.950	BUL0302	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

12/12/2011 10:15 Reported: Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 11	19316-05 Client Sam	ple Name:	3737, MW-3	A-W-111120, 11/20/2011	9:04:00AM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ug/L	0.50	EPA-8260	ND	Quals	<u></u>
Bromobenzene	ND	ug/L	0.50	EPA-8260	ND		1
Bromochloromethane	ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane	ND	ug/L	0.50	EPA-8260	ND		1
Bromoform	ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane	ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene	1.3	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride	ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Chloroform	ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane	ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene	ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene	ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane	ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane	ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane	ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane	ND	ug/L	0.50	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1119316-05	Client Sample	e Name:	3737, MW-3	A-W-111120, 11/20/2011	9:04:00AM		
Constituent		Result	Units	PQL	Method	MB	Lab	D #
1,1-Dichloropropene		ND	ug/L	0.50	EPA-8260	Bias ND	Quals	Run # 1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		17	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		7.9	ug/L	0.50	EPA-8260	ND		1
p-lsopropyltoluene		0.92	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		7.0	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		0.83	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluo	roethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		3.8	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID:	1119316-05	Client Sampl	e Name:	3737, MW-3A-W-111120, 11/20/2011 9:04:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleu Hydrocarbons	m	1200	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	irrogate)	85.1	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		101	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	urrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260			1

	Run						QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	12/02/11	12/02/11 16:30	JCC	MS-V4	1	BUL0061			

Laboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1119316-05	Client Sampl	e Name:	3737, MW-3A-W-11	1120, 11/20/2011	9:04:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		330	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND	A57	1
Tetracosane (Surrogat	e)	65.4	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	11/23/11	12/06/11 13:56	MWB	GC-2	0.970	BUL0302	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

12/12/2011 10:15 Reported: Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1119316-06	Client Sampl	e Name:	3737, MW-2	A-W-111120, 11/20/2011	9:33:00AM		
Constituent		Decult			Mathad	MB	Lab	D #
Constituent Benzene		Result 440	Units ug/L	PQL 5.0	Method EPA-8260	Bias ND	Quals A01	Run # 1
Bromobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Bromochloromethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Bromodichloromethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Bromoform		ND	ug/L	5.0	EPA-8260	ND	A01	1
Bromomethane		ND	ug/L	10	EPA-8260	ND	A01	1
n-Butylbenzene		6.3	ug/L	5.0	EPA-8260	ND	A01	1
sec-Butylbenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
tert-Butylbenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Carbon tetrachloride		ND	ug/L	5.0	EPA-8260	ND	A01	1
Chlorobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Chloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Chloroform		ND	ug/L	5.0	EPA-8260	ND	A01	1
Chloromethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
2-Chlorotoluene		ND	ug/L	5.0	EPA-8260	ND	A01	1
4-Chlorotoluene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Dibromochloromethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dibromo-3-chloroprop	ane	ND	ug/L	10	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Dibromomethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dichlorobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,3-Dichlorobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,4-Dichlorobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Dichlorodifluoromethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,1-Dichloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,1-Dichloroethene		ND	ug/L	5.0	EPA-8260	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/L	5.0	EPA-8260	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Total 1,2-Dichloroethene		ND	ug/L	10	EPA-8260	ND	A01	1
1,2-Dichloropropane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,3-Dichloropropane		ND	ug/L	5.0	EPA-8260	ND	A01	1
2,2-Dichloropropane		ND	ug/L	5.0	EPA-8260	ND	A01	1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1119316-06	Client Sampl	e Name:	3737, MW-2	A-W-111120, 11/20/2011	9:33:00AM		
O an a titura di			11. 14	DO :	N . 41 - 1	MB	Lab	- <i>"</i>
1,1-Dichloropropene		Result ND	Units ug/L	PQL 5.0	EPA-8260	Bias ND	Quals A01	Run # 1
cis-1,3-Dichloropropene		ND	ug/L	5.0	EPA-8260	ND	A01	1
trans-1,3-Dichloropropend	2	ND	ug/L	5.0	EPA-8260	ND	A01	1
Total 1,3-Dichloropropene		ND	ug/L	10	EPA-8260	ND	A01	1
Ethylbenzene		50	ug/L	5.0	EPA-8260	ND	A01	1
Hexachlorobutadiene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Isopropylbenzene		13	ug/L	5.0	EPA-8260	ND	A01	1
p-lsopropyltoluene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Methylene chloride		ND	ug/L	10	EPA-8260	ND	A01	1
Methyl t-butyl ether		160	ug/L	5.0	EPA-8260	ND	A01	1
Naphthalene		ND	ug/L	5.0	EPA-8260	ND	A01	1
n-Propylbenzene		12	ug/L	5.0	EPA-8260	ND	A01	1
Styrene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,1,1,2-Tetrachloroethane	;	ND	ug/L	5.0	EPA-8260	ND	A01	1
1,1,2,2-Tetrachloroethane	;	ND	ug/L	5.0	EPA-8260	ND	A01	1
Tetrachloroethene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Toluene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2,3-Trichlorobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,1,1-Trichloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,1,2-Trichloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Trichloroethene		ND	ug/L	5.0	EPA-8260	ND	A01	1
Trichlorofluoromethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2,3-Trichloropropane		ND	ug/L	10	EPA-8260	ND	A01	1
1,1,2-Trichloro-1,2,2-triflu	oroethane	ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,3,5-Trimethylbenzene		6.5	ug/L	5.0	EPA-8260	ND	A01	1
Vinyl chloride		ND	ug/L	5.0	EPA-8260	ND	A01	1
Total Xylenes		ND	ug/L	10	EPA-8260	ND	A01	1
t-Amyl Methyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
t-Butyl alcohol		2200	ug/L	100	EPA-8260	ND	A01	1
Diisopropyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Ethanol		ND	ug/L	2500	EPA-8260	ND	A01	1

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

BCL Sample ID: 11	19316-06	Client Sampl	e Name:	3737, MW-2A-W-11	1120, 11/20/2011	9:33:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Total Purgeable Petroleum Hydrocarbons		1800	ug/L	500	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Surro	gate)	77.3	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		93.8	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	93.8	%	86 - 115 (LCL - UCL)	EPA-8260			1

				QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/02/11	12/02/11 16:01	JCC	MS-V4	10	BUL0061	

Laboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1119316-06	Client Sampl	e Name:	3737, MW-2A-W-11	1120, 11/20/2011	9:33:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
TPH - Diesel (FFP)		1200	ug/L	200	EPA-8015B/FFP	ND	A01,A52	1		
TPH - Motor Oil		ND	ug/L	500	EPA-8015B/FFP	ND	A01	1		
Tetracosane (Surrogat	e)	72.6	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP		A01	1		

Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	11/23/11	12/07/11 10:31	MWB	GC-13	5	BUL0302	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BUL0061						
Benzene	BUL0061-BLK1	ND	ug/L	0.50		
Bromobenzene	BUL0061-BLK1	ND	ug/L	0.50		
Bromochloromethane	BUL0061-BLK1	ND	ug/L	0.50		
Bromodichloromethane	BUL0061-BLK1	ND	ug/L	0.50		
Bromoform	BUL0061-BLK1	ND	ug/L	0.50		
Bromomethane	BUL0061-BLK1	ND	ug/L	1.0		
n-Butylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
sec-Butylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
tert-Butylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
Carbon tetrachloride	BUL0061-BLK1	ND	ug/L	0.50		
Chlorobenzene	BUL0061-BLK1	ND	ug/L	0.50		
Chloroethane	BUL0061-BLK1	ND	ug/L	0.50		
Chloroform	BUL0061-BLK1	ND	ug/L	0.50		
Chloromethane	BUL0061-BLK1	ND	ug/L	0.50		
2-Chlorotoluene	BUL0061-BLK1	ND	ug/L	0.50		
4-Chlorotoluene	BUL0061-BLK1	ND	ug/L	0.50		
Dibromochloromethane	BUL0061-BLK1	ND	ug/L	0.50		
1,2-Dibromo-3-chloropropane	BUL0061-BLK1	ND	ug/L	1.0		
1,2-Dibromoethane	BUL0061-BLK1	ND	ug/L	0.50		
Dibromomethane	BUL0061-BLK1	ND	ug/L	0.50		
1,2-Dichlorobenzene	BUL0061-BLK1	ND	ug/L	0.50		
1,3-Dichlorobenzene	BUL0061-BLK1	ND	ug/L	0.50		
1,4-Dichlorobenzene	BUL0061-BLK1	ND	ug/L	0.50		
Dichlorodifluoromethane	BUL0061-BLK1	ND	ug/L	0.50		
1,1-Dichloroethane	BUL0061-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BUL0061-BLK1	ND	ug/L	0.50		
1,1-Dichloroethene	BUL0061-BLK1	ND	ug/L	0.50		
cis-1,2-Dichloroethene	BUL0061-BLK1	ND	ug/L	0.50		
trans-1,2-Dichloroethene	BUL0061-BLK1	ND	ug/L	0.50		
Total 1,2-Dichloroethene	BUL0061-BLK1	ND	ug/L	1.0		
1,2-Dichloropropane	BUL0061-BLK1	ND	ug/L	0.50		
1,3-Dichloropropane	BUL0061-BLK1	ND	ug/L	0.50		
2,2-Dichloropropane	BUL0061-BLK1	ND	ug/L	0.50		
1,1-Dichloropropene	BUL0061-BLK1	ND	ug/L	0.50		

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BUL0061						
cis-1,3-Dichloropropene	BUL0061-BLK1	ND	ug/L	0.50		
trans-1,3-Dichloropropene	BUL0061-BLK1	ND	ug/L	0.50		
Total 1,3-Dichloropropene	BUL0061-BLK1	ND	ug/L	1.0		
Ethylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
Hexachlorobutadiene	BUL0061-BLK1	ND	ug/L	0.50		
Isopropylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
p-Isopropyltoluene	BUL0061-BLK1	ND	ug/L	0.50		
Methylene chloride	BUL0061-BLK1	ND	ug/L	1.0		
Methyl t-butyl ether	BUL0061-BLK1	ND	ug/L	0.50		
Naphthalene	BUL0061-BLK1	ND	ug/L	0.50		
n-Propylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
Styrene	BUL0061-BLK1	ND	ug/L	0.50		
1,1,1,2-Tetrachloroethane	BUL0061-BLK1	ND	ug/L	0.50		
1,1,2,2-Tetrachloroethane	BUL0061-BLK1	ND	ug/L	0.50		
Tetrachloroethene	BUL0061-BLK1	ND	ug/L	0.50		
Toluene	BUL0061-BLK1	ND	ug/L	0.50		
1,2,3-Trichlorobenzene	BUL0061-BLK1	ND	ug/L	0.50		
1,2,4-Trichlorobenzene	BUL0061-BLK1	ND	ug/L	0.50		
1,1,1-Trichloroethane	BUL0061-BLK1	ND	ug/L	0.50		
1,1,2-Trichloroethane	BUL0061-BLK1	ND	ug/L	0.50		
Trichloroethene	BUL0061-BLK1	ND	ug/L	0.50		
Trichlorofluoromethane	BUL0061-BLK1	ND	ug/L	0.50		
1,2,3-Trichloropropane	BUL0061-BLK1	ND	ug/L	1.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	BUL0061-BLK1	ND	ug/L	0.50		
1,2,4-Trimethylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
1,3,5-Trimethylbenzene	BUL0061-BLK1	ND	ug/L	0.50		
Vinyl chloride	BUL0061-BLK1	ND	ug/L	0.50		
Total Xylenes	BUL0061-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BUL0061-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BUL0061-BLK1	ND	ug/L	10		
Diisopropyl ether	BUL0061-BLK1	ND	ug/L	0.50		
Ethanol	BUL0061-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BUL0061-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BUL0061-BLK1	ND	ug/L	50		

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BUL0061						
1,2-Dichloroethane-d4 (Surrogate)	BUL0061-BLK1	82.7	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BUL0061-BLK1	91.1	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BUL0061-BLK1	93.4	%	86 - 115	6 (LCL - UCL)	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

								Control I	<u>imits</u>	
Constituent	QC Sample ID	Type	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
		Туре	Result	Level	Units	Recovery	NFU	Necovery	AFU	Quais
QC Batch ID: BUL0061										
Benzene	BUL0061-BS1	LCS	20.630	25.000	ug/L	82.5		70 - 130		
Bromodichloromethane	BUL0061-BS1	LCS	19.110	25.000	ug/L	76.4		70 - 130		
Chlorobenzene	BUL0061-BS1	LCS	24.080	25.000	ug/L	96.3		70 - 130		
Chloroethane	BUL0061-BS1	LCS	22.810	25.000	ug/L	91.2		70 - 130		
1,4-Dichlorobenzene	BUL0061-BS1	LCS	22.150	25.000	ug/L	88.6		70 - 130		
1,1-Dichloroethane	BUL0061-BS1	LCS	19.860	25.000	ug/L	79.4		70 - 130		
1,1-Dichloroethene	BUL0061-BS1	LCS	22.130	25.000	ug/L	88.5		70 - 130		
Toluene	BUL0061-BS1	LCS	20.390	25.000	ug/L	81.6		70 - 130		
Trichloroethene	BUL0061-BS1	LCS	21.260	25.000	ug/L	85.0		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BUL0061-BS1	LCS	8.0300	10.000	ug/L	80.3		76 - 114		S09
Toluene-d8 (Surrogate)	BUL0061-BS1	LCS	9.2200	10.000	ug/L	92.2		88 - 110		
4-Bromofluorobenzene (Surrogate)	BUL0061-BS1	LCS	9.5300	10.000	ug/L	95.3		86 - 115		

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608 Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BUL0061	Use	d client same	le: N								
Benzene	ш MS	1119461-15	ND	18.690	25.000	ug/L		74.8		70 - 130	
	MSD	1119461-15	ND	19.580	25.000	ug/L	4.7	78.3	20	70 - 130	
Bromodichloromethane	MS	1119461-15	ND	19.810	25.000	ug/L		79.2		70 - 130	
	MSD	1119461-15	ND	19.790	25.000	ug/L	0.1	79.2	20	70 - 130	
Chlorobenzene	MS	1119461-15	ND	23.590	25.000	ug/L		94.4		70 - 130	
	MSD	1119461-15	ND	23.480	25.000	ug/L	0.5	93.9	20	70 - 130	
Chloroethane	MS	1119461-15	ND	19.270	25.000	ug/L		77.1		70 - 130	
	MSD	1119461-15	ND	21.560	25.000	ug/L	11.2	86.2	20	70 - 130	
1,4-Dichlorobenzene	MS	1119461-15	ND	22.300	25.000	ug/L		89.2		70 - 130	
	MSD	1119461-15	ND	21.570	25.000	ug/L	3.3	86.3	20	70 - 130	
1,1-Dichloroethane	MS	1119461-15	ND	18.140	25.000	ug/L		72.6		70 - 130	
	MSD	1119461-15	ND	19.030	25.000	ug/L	4.8	76.1	20	70 - 130	
1,1-Dichloroethene	MS	1119461-15	ND	19.760	25.000	ug/L		79.0		70 - 130	
	MSD	1119461-15	ND	21.120	25.000	ug/L	6.7	84.5	20	70 - 130	
Toluene	MS	1119461-15	ND	20.120	25.000	ug/L		80.5		70 - 130	
	MSD	1119461-15	ND	20.080	25.000	ug/L	0.2	80.3	20	70 - 130	
Trichloroethene	MS	1119461-15	ND	21.170	25.000	ug/L		84.7		70 - 130	
	MSD	1119461-15	ND	21.540	25.000	ug/L	1.7	86.2	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1119461-15	ND	8.4000	10.000	ug/L		84.0		76 - 114	
	MSD	1119461-15	ND	8.4700	10.000	ug/L	0.8	84.7		76 - 114	
Toluene-d8 (Surrogate)	MS	1119461-15	ND	9.3500	10.000	ug/L		93.5		88 - 110	
	MSD	1119461-15	ND	9.4800	10.000	ug/L	1.4	94.8		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1119461-15	ND	9.9900	10.000	ug/L		99.9		86 - 115	
	MSD	1119461-15	ND	9.6800	10.000	ug/L	3.2	96.8		86 - 115	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/2011 10:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BUL0302						
TPH - Diesel (FFP)	BUL0302-BLK1	ND	ug/L	40		
TPH - Motor Oil	BUL0302-BLK1	ND	ug/L	100		
Tetracosane (Surrogate)	BUL0302-BLK1	80.3	%	37 - 134	(LCL - UCL)	

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

								Control L	<u>_imits</u>	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BUL0302										
TPH - Diesel (FFP)	BUL0302-BS1	LCS	404.77	500.00	ug/L	81.0		52 - 128		
Tetracosane (Surrogate)	BUL0302-BS1	LCS	16.968	20.000	ug/L	84.8		37 - 134		

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported:12/12/201110:15Project:3737Project Number:351780Project Manager:Jim Schneider

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

									<u>Cont</u>	rol Limits		
		Source	Source		Spike			Percent		Percent I	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Q	Quals	
QC Batch ID: BUL0302	Use	d client samp	ole: N									
TPH - Diesel (FFP)	MS	1119798-08	ND	425.73	500.00	ug/L		85.1		50 - 127		
	MSD	1119798-08	ND	424.39	500.00	ug/L	0.3	84.9	24	50 - 127		
Tetracosane (Surrogate)	MS	1119798-08	ND	17.454	20.000	ug/L		87.3		37 - 134		
	MSD	1119798-08	ND	17.316	20.000	ug/L	0.8	86.6		37 - 134		

Quality Control Report - Precision & Accuracy

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Conestoga-Rovers & Associates 5900 Hollis St. Suite A Emeryville, CA 94608

Reported: 12/12/2011 10:15 Project: 3737 Project Number: 351780 Project Manager: Jim Schneider

Notes And Definitions

MDL	Method Detection Limit
ND	Analyte Not Detected at or above the reporting limit
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
A01	PQL's and MDL's are raised due to sample dilution.
A52	Chromatogram not typical of diesel.
A57	Chromatogram not typical of motor oil.
S09	The surrogate recovery on the sample for this compound was not within the control limits.

ATTACHMENT C

HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

Table 2

Summary of Current Groundwater Analytical Data Chevron Branded Service Station No. 3737

1400 Powell Street

Emeryville, California

																									p-			1,2,4-	1,3,5
											Ethyl-										n-Butyl-	sec-Butyl-		Isopropyl-	Isopropyl-		n-Propyl-	Trimethyl-	Trimethyl-
Sample			Depth to	тос	Groundwater	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	benzene	Xylenes	MTBE	TAME	TBA	DIPE	Ethanol	ETBE	EDB	1,2-DCA	benzene	benzene	Chloroform	benzene	toluene	Napthalene	benzene	benzene	benzene
ID	Date	Time	Water	Elevation	Elevation	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-1A	1/26/2011	2:20	5.8	18.743	12.94	960	450	A52 <200	8.4	<0.50	1.9	1.6	50	1.4	62	<0.50	<250	<0.50	<0.50	<0.50	2.2	1.2	<0.50	4.2	1.8	1.8	7.3	1.0	1.2
MW-1B	1/26/2011	1:20	9.46	18.884	9.42	<50	<50	<200	< 0.50	<0.50	<0.50	<1.0	0.66	<0.50	<10	<0.50	<250	<0.50	<0.50	24	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-2A	1/26/2011	10:33	8.02	18.925	10.91	2,500	1,200	<1000	100	2.2	28	9.0	140	<0.50	1,300	<0.50	<250	<0.50	<0.50	<0.50	6.6	3.9	2.5	14	7.6	17	23	2.5	2.4
MW-2B	1/26/2011	2:10	5.51	19.099	13.59	<50	<50	<200	0.55	<0.50	<0.50	<1.0	3.4	<0.50	<10	<0.50	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-3A	1/26/2011	2:30	4.75	18.616	13.87	3,100	830	<200	160	<5.0	96	<10	<5.0	<5.0	<100	<5.0	<2500	<5.0	<5.0	<5.0	<5.0	6.2	<5.0	40	9.2	<5.0	54	<5.0	<5.0
MW-3B	1/26/2011	1:35	7.33	18.571	11.24	<50	57	<200	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<10	<0.50	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
COMP	1/26/2011	1:15	NA	NA	NA	1,200	350	<200	13	0.57	5.4	1.5	6.0	<0.50	92	<0.50	15,000	<0.50	<0.50	3.6	5.3	2.3	<0.50	4.0	2.9	5.6	8.4	0.60	0.52
ESL						100	100	100	1	40	30	20	5	NA	12	NA	NA	NA	0.05	0.5	NA	NA	70	NA	NA	17	NA	NA	NA

Notes:

Depth to water measured in feet below top of casing

Groundwtaer elevation measured in feet above mean sea level

Bold concentrations indicate detection above laboratory reporting limit

(µg/L) micrograms per liter TPH-D

Total Petroleum Hydrocarbons as Diesel TPH-MO Total Petroleum Hydrocarbons as Motor Oil

TPH-G Total Petroleum Hydrocarbons as Gasoline

MTBE methyl tertiary butyl ether

TBA tertiary buty alcohol

ETBE ethyl tertiary butyl ether

DIPE di-isopropyl ether

TAME tertiary amyl ethyl ether

EDB ethylene dibromide

1,2-DCA 1,2-dichloroethane

Regional Water Quality Control Board - San Francisco Region Environmental Screening Level ESL

A52 Data Qualifier: Chromatogram not typical of diesel

ESL based on residential land use, shallow soil, and groundwater as a potential drinking resource.

TPH-D and TPH-MO analysis by Environmental Protection Agency (EPA) Test Method 8015 with Silica Gel Cleanup

All other analyses by EPA Method 8260B.

Samples were analyzed for a full VOC Scan by EPA Method 8260B with oxygenates and lead scavengers. All Oxygenates and lead scavenger data are summarized, only VOCs with detections are presented in table. Data qualifiers regarding sample dilution, surrogate recovery, or quality control are not presented in table. Please refer to laboratory reports for full explanation of qualifiers.