

By Alameda County Environmental Health 2:55 pm, Aug 22, 2016

MCG Investments, LLC c/o Kay & Merkle 100 The Embarcadero – Penthouse San Francisco, CA 94105 (415) 357-1200

August 17, 2016

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection, Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Letter of Transmittal for Data Gap Investigation Report

Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608 ACEH Fuel Leak Case No. RO0000063, GeoTracker Global ID No.

T0600102099

Dear Mr. Detterman:

As requested in your letter of March 7, 2016, we submit this transmittal letter and accompanying *Data Gap Investigation Report* for the above-reference subject site.

I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

MCG Investments LLC, A California Limited Liability Company

Walter F. Merkle Authorized Agent

AllWest Environmental

DATA GAP INVESTIGATION REPORT

Former McGrath Steel, 6655 Hollis St. & 1471 67th St., Emeryville, CA 94608

Alameda County Fuel Leak Case #RO0000063 GeoTracker Facility Global ID #T0600102099

PREPARED FOR:

Mr. Walter F. Merkle
MCG Investments, LLC
c/o Kay & Merkle
100 The Embarcadero – Penthouse
San Francisco, California 94105

ALLWEST PROJECT 16076.23/15179.23 August 3, 2016

PREPARED BY:

Florand P. Villes

Leonard P. Niles, PG, CHG

Senior Project Manager

REVIEWED BY

Marc D. Cunningham

President

US EPA Environmental Professional

TABLE OF CONTENTS

I.	EXECUTIVE SUMMARY	.Page 1
II.	PROJECT BACKGROUND	Page 3
	A. Site Location and Description	
	B. Site Geology and Hydrogeology	
	C. Site Background	
	D. Previous Investigations	
III.	PURPOSE AND SCOPE OF WORK	.Page 6
IV.	INVESTIGATIVE ACTIVITIES	. Page 8
	A. Permitting	
	B. Health and Safety Plan	
	C. Underground Utility Inspection	
	D. Geoprobe® DPT Boring Advancement and Soil Sampling	
	E. Groundwater Sampling	.Page 9
	F. Temporary Soil Vapor Probe Advancement and Installation	.Page 9
	G. Temporary Sub-Slab Soil Vapor Probe Installation	
	H. Semi-Permanent Sub-Slab Vapor Pin™ Soil Vapor Probe Installation	
	I. Soil Vapor Sampling	
	J. Borehole Backfilling	.Page 12
	K. Investigative Derived Waste Containment and Disposal	
	L. Indoor Air Quality Sampling	
	M. Sample Preservation, Storage and Handling	
	N. Chain-of-Custody Program	.Page 13
V.	ASSESSMENT FINDINGS	
	A. Subsurface Conditions	
	B. Laboratory Analyses and Sampling Data	
	C. Laboratory Quality Assurance and Quality Control	.Page 16
VI.	DISCUSSION	.Page 16
	A. Environmental Screening Levels	
	B. Contaminant Distribution	
VII.	CONCLUSIONS AND RECOMMENDATIONS	.Page 19
VIII.	LIMITATIONS	.Page 20
IX.	REFERENCES	.Page 20
TABLES	S Table 1: Summary of Soil Analytical Data, Total Petroleum Hydrocarbons and VOCs Table 2: Summary of Soil Analytical Data, PNAs/PAHs Table 3: Summary of Groundwater Analytical Data, Total Petroleum Hydrocarbons and VOCs Table 4: Summary of Groundwater, PNAs/PAHs Table 5: Summary of Soil Vapor Analytical Data Table 6: Summary of Indoor Air Quality Sample Analytical Data	
FIGURE		

Figure 1: Vicinity Map

Figure 2: Site Plan with Boring, Well and Soil Vapor Probe Locations Figure 3: Soil Analytical Results, TPH-g, TPH-d and Benzene TPH-q Isoconcentration Contours in Groundwater Figure 4: TPH-d Isoconcentration Contours in Groundwater Figure 5:

Benzene Isoconcentration Contours in Groundwater Figure 6:

Figure 7: Soil Vapor Analytical Summary, February 5-8, 2016 and May 12-13, 2016 Indoor Air Sampling Analytical Results, June 25-26, 2014 and May 13, 2016 Figure 8:

APPENDIX

Standard Geoprobe[®] DPT Soil and Groundwater Sampling Procedures Standard Geoprobe[®] DPT Soil Vapor Probe Installation and Sampling Procedures Standard Indoor Air Quality Sampling Procedures Appendix A

Appendix B

Appendix C

Appendix D **Boring Logs**

Appendix E Soil Vapor Sampling Field Logs

Appendix F Laboratory Analytical Reports and Chain-of-Custody Documentation

Appendix G Authorization for Reliance and General Condition

DATA GAP INVESTIGATION REPORT

Former McGrath Steel, 6655 Hollis St. & 1471 67th St., Emeryville, Ca 94608 Alameda County Fuel Leak Case # RO0000063 GeoTracker Facility Global ID # T0600102099

I. EXECUTIVE SUMMARY

AllWest Environmental, Inc. (AllWest) conducted a subsurface investigation on February 3 through 8, and May 12 and 13, 2016 to further characterize soil, groundwater and soil vapor conditions at the subject site referenced above (Figures 1 and 2). The purpose of the investigation was to assess the lateral and vertical extent of petroleum hydrocarbons and volatile organic compounds (VOCs) in subject site soil, soil vapor and groundwater. The second goal of the assessment was to evaluate soil vapor intrusion impact of petroleum hydrocarbons and VOCs to the subject site indoor air quality.

This work was performed in response to requests by Alameda County Health Care Services Agency (ACHCS) in their letters dated September 15, 2014, July 16, 2015 and December 15, 2015. AllWest submitted a *Data Gap Investigation Workplan* on October 30, 2015 and a *Data Gap Investigation Workplan Addendum* on January 16, 2015 summarizing the proposed scope of work. The *Data Gap Investigation Workplan* and *Addendum* were approved in the ACHCS letter dated March 7, 2016. This work was completed after approval and with oversight of the ACHCS.

This executive summary is provided solely for the purpose of overview. Any party who relies on this report must read the full report. The executive summary may omit details, any one of which could be crucial to the proper understanding and risk assessment of the subject matter.

Seven soil borings were advanced at the subject site using Geoprobe[™] direct push technology (DPT) methods on February 3, 2016. One soil boring (SB-26) was advanced to 24 feet below ground surface (bgs) in the driveway between the office and warehouse buildings. Six soil borings (SVP-1 through SVP-6) were advanced to 7 feet bgs (2 feet below the building foundations). SVP-1 through SVP-5 were located within the warehouse building at 1471 67th Street; SVP-6 was located in the driveway between the office and warehouse buildings (Figure 2).

Soil samples were collected for laboratory analysis at 4.5-5, 9.5-10, 11.5-12 and 20.5-21 feet bgs from boring SB-26; at 1.5-2 and 6.5-7 feet bgs from boring SVP-1; at 3-3.5 and 6.5-7 feet bgs from boring SVP-2; at 6.5-7 feet bgs from borings SVP-3, SVP-4 and SVP-6; and at 3.5-4 feet bgs from boring SVP-5. Groundwater was encountered at 22.5 feet bgs in boring SB-26, and a sample was collected for laboratory analysis. Borings SVP-1 through SVP-6 were completed as temporary soil vapor probes, and soil vapor samples collected from each on February 5 through 8, 2016. Five temporary sub-slab soil vapor probes SVP-7 through SVP-11 were installed below the warehouse building floor slab. A soil vapor sample was collected only from SVP-7 due to defective surface seal integrity in the other sub-slab probes. All soil vapor probes were removed and abandoned with cement grout and concrete patch following completion of sampling activities.

Since soil vapor samples were unable to be collected from four of the sub-slab probes SVP-8 through SVP-11, and the integrity of the SVP-7 sub-slab probe seal was questionable, five new semi-permanent sub-slab Vapor Pin[™] type probes SVP-12 through SVP-15 were installed and sampled on May 12 and 13, 2016 (Figure 2). To determine potential vapor intrusion impact to future occupants of the subject property buildings, indoor air quality (IAQ) samples IAQ-6 through IAQ-10 were collected inside the 6655 Hollis Street

office building and 1471 67th Street warehouse building. An outdoor ambient air (OAA) control sample OAA-2 was collected on the second floor balcony of the office building (Figure 3). The IAQ and OAA samples were collected over an 8-hour period on May 13, 2016.

Soil, groundwater, soil vapor, IAQ and OAA samples were analyzed for constituents of concern (COCs) including total petroleum hydrocarbons as gasoline (TPH-g) and volatile organic compounds (VOCs). Soil vapor samples were additionally analyzed for the leak detection gas helium, and the gases oxygen, methane and carbon dioxide to evaluate biodegradation activity.

<u>Soil Sampling Results:</u> TPH-g was detected in soil samples from all borings, but none at concentrations exceeding the most conservative California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Level (ESL) of 500 mg/kg for odor/nuisance at commercial/industrial sites, whether or not groundwater is a potential drinking water resource. A City of Emeryville ordinance prohibits use of groundwater for drinking water purposes due to widespread regional contamination, and no plans exist for future beneficial use.

Low concentrations of VOCs including benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tertiary butyl ether (MTBE), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, n-butyl benzene, sec-butyl benzene, isopropylbenzene, naphthalene, n-propyl benzene and/or tert-butyl alcohol were detected in soil samples from all borings.

The only VOC which exceeded applicable soil ESLs for commercial/industrial sites where groundwater is not a potential drinking water resource was benzene in four samples from SB-26 at 9.5-10 and 11.5-12 feet bgs, and SVP-1 and SVP-2 at 6.5-7 feet bgs. Benzene was detected at a maximum concentration of 0.56 mg/kg at 11.5-12 feet bgs in SB-26 located exterior and adjacent to the office building, which exceeded its ESL of 0.049 mg/kg based on aquatic habitat eco-toxicity impact to groundwater from soil leaching. Since the nearest aquatic habitat on the San Francisco Bay shoreline is approximately 0.25 miles downgradient, this benzene screening level is probably not applicable. The commercial/industrial land use direct exposure human health risk ESL of 1.0 mg/kg for benzene was not exceeded.

Groundwater Sampling Results: TPH-g (1,700 micrograms per liter (μg/L), benzene (310 μg/L), toluene (300 μg/L) ethylbenzene (85 μg/L), total xylenes (370 μg/L), MTBE (170 μg/L), naphthalene (7.9 μg/L) and TCE (18 μg/L) were detected in the groundwater sample from SB-26 (located upgradient of the warehouse and former UST area and exterior and adjacent to the office building). TPH-g, benzene, toluene, ethylbenzene and total xylenes concentrations exceeded their ESLs for groundwater that is <u>not</u> a potential drinking water resource. All of these ESLs with the exception of benzene are based on aquatic habitat ecotoxicity impact to groundwater from soil leaching. Given that the nearest aquatic habitat is approximately 0.25 miles downgradient, these screening levels are probably not applicable. Benzene was the only COC detected in the groundwater sample from SB-26 at concentrations exceeding its applicable groundwater vapor intrusion ESL of 9.7 μg/L for commercial/industrial land use. None of the other detected COCs exceeded their applicable vapor intrusion ESLs. Given the vertical vapor attenuation shown in the soil vapor and subslab samples described below, the benzene concentration in groundwater is not likely of concern for vapor intrusion.

Soil Vapor/Sub-Slab Sampling Results:

<u>Deep samples:</u> TPH-g, benzene, ethylbenzene, toluene, total xylenes, MTBE and/or 1,2-dichloroethane (1,2-DCA) were detected in all soil vapor samples from 7 feet bgs temporary vapor probes, at maximum concentrations exceeding their respective applicable commercial/industrial land use soil vapor ESLs. None of the other detected COCs exceeded their ESLs.

<u>Shallow Samples:</u> None of the COCs detected in any sub-slab (0.5 feet bgs) soil vapor samples exceeded ESLs with the exception of TPH-g at 220,000 µg/m³ in SVP-7.

Concentrations of COCs detected in the sub-slab (0.5 feet bgs) vapor probes were several orders of magnitude lower than those detected in adjacent soil vapor probes at 7 feet bgs; with the highest being in SVP-7 at 0.5 feet bgs in the southwest portion of the warehouse. Concentrations of oxygen, methane and carbon dioxide detected in soil vapor (sub-slab and 7 feet bgs) samples (except SVP-1) indicate the presence of a biodegradation attenuation zone to 5 feet below the building foundation.

Indoor Air Quality Sampling Results: Total petroleum hydrocarbons as gasoline (TPH-g) were detected in all of the IAQ and OAA samples, but none exceeded the commercial/industrial direct exposure human health risk indoor air ESL of 2,500 μ g/m³. Benzene was detected in all IAQ samples and the OAA control sample at a maximum concentration of 0.55 μ g/m³ in sample IAQ-9; only concentrations in samples IAQ-8 and IAQ-9 exceeded the applicable commercial/industrial indoor air ESL of 0.42 μ g/m³ (based on direct exposure human health risk). Carbon tetrachloride was detected in all IAQ and OAA samples at concentrations exceeding the applicable commercial/industrial indoor air ESL of 0.29 μ g/m³ (based on direct exposure human health risk), with a maximum concentration of 0.43 μ g/m³ in sample IAQ-9. Chloroform was detected only in sample IAQ-7 at its applicable commercial/industrial ESL of 0.53 μ g/m³. None of the other COCs detected in IAQ and OAA samples exceeded their applicable ESLs.

Concentrations of all the detected COCs were similar (within an order of magnitude) between the IAQ samples and the OAA control sample, implying an atmospheric source rather than soil vapor intrusion is likely. Concentrations of the COCs detected in IAQ samples and the OAA control sample during the May 2016 indoor air sampling event were similar (within an order of magnitude) to those detected during the June 2014 sampling event.

<u>Conclusion:</u> The results of this data gap study allow AllWest to conclude that petroleum hydrocarbon and VOC concentrations detected at 5 feet bgs or deeper in soil, groundwater and soil vapor samples beneath and adjacent to the subject site warehouse building have attenuated significantly at shallower depths (0.5 feet bgs) and do not present a significant vapor intrusion risk to future building occupants. AllWest further concludes that petroleum hydrocarbon and VOC concentrations detected in indoor air quality samples most likely originate from atmospheric sources, not from soil vapor intrusion.

II. PROJECT BACKGROUND

A. Site Location and Description

The subject property is located at the southwest corner of the intersection of Hollis and 67th Streets in a commercial and industrial district of the City of Emeryville, Alameda County, California. A site vicinity map is included as Figure 1.

The subject property consists of two parcels (Assessor's Parcel Numbers 049-1511-01 and 049-1511-014). Parcel 01, on the southwest corner of Hollis and 67th Streets at the 6655 Hollis Street address, is developed with an approximately 4,100 square foot two-story commercial office building constructed in 1947, and a smaller metal tool shed building. Parcel 14, to the west of Parcel 1 at the 1471 67th Street address, is developed with an approximately 15,246 square foot light industrial warehouse building constructed circa 1946 (Stellar, 2011).

The subject property was last occupied by CMC Rebar and is currently vacant. Two USTs formerly present under the sidewalk in front of the warehouse at 1471 67th Street were removed in 1996. A site plan with former UST locations and historical and current boring and monitoring well locations is included as Figure 2.

B. Site Geology and Hydrogeology

The subject site is located on a generally level parcel at an elevation of approximately 20 feet above mean seal level (msl) with a slight slope to the west towards San Francisco Bay approximately ½ mile to the west. The subject site is located within the East Bay Plain Sub-Basin of the Santa Clara Valley Groundwater Basin, an alluvial plain located along the east shore of San Francisco Bay. Although groundwater in the subject site vicinity is not currently used for drinking water purposes, the East Bay Plain Sub-Basin, including the subject site vicinity, has been designated as a zone where groundwater is a potential drinking water resource by the SFRWQCB Water Quality Control Plan (Basin Plan) dated June 29, 2013 (SFRWQCB, June 2013).

According to an e-mail communication on February 6, 2013 with Maurice Kaufman, director of the City of Emeryville Public Works Department, use of groundwater for drinking water purposes within the City of Emeryville is prohibited by a City ordinance due to widespread regional contamination. No plans exist for future beneficial use of groundwater within the City of Emeryville. Therefore, AllWest does not regard groundwater in the subject site vicinity as a potential drinking water resource.

The lithology encountered in most borings during subsurface investigations performed by AllWest in 2013 consisted of interbedded silts, clays, and sands. Occasional lenses of silty gravel and gravelly silt were encountered to depths of 12 feet below ground surface (bgs) in borings B16, B17, B19 and B22. Gravelly clay was encountered between 13 and 18 feet bgs in B19. Silty sand was encountered between approximately 15 and 21 feet bgs in borings AMW-1, AMW-2 and AMW-3. Fine sand was encountered to a depth of approximately 9 feet bgs in boring B23 (AllWest, 2013e). Boring and well locations are shown in Figure 2.

Groundwater was encountered during the 2013 investigations between approximately 9 to 30 feet bgs, and rose to static levels of approximately 9 to 11 feet bgs. The direction of groundwater flow was to the southeast at a gradient of 0.0167 feet per foot. During groundwater monitoring events conducted by AllWest from July 2012 to February 2015, depths to groundwater in monitoring wells at the subject site have ranged from 7.26 to 11.52 feet below top-of-casing (TOC). Groundwater flow direction has been predominantly to the southwest, but has varied to the west-northwest at gradients ranging from 0.0107 to 0.02 feet per foot.

C. Site Background

From the early 1900s until circa 1946, the subject property Parcel 01 was developed as a residence, and Parcel 14 was undeveloped. Between circa 1946 and 1950, the subject property was developed with the current office and light industrial warehouse buildings. The McGrath Steel Company operated a steel warehouse and/or the Pacific Rolling Door Company from circa 1950 until about 2007. The McGrath Steel business was sold and relocated in 2007 (Stellar, 2011). CMC Rebar subsequently leased the subject property until circa 2012-2013. The subject property has since been unoccupied.

Two (2) 2,000-gallon single-wall steel underground storage tanks (USTs) were formerly located beneath the 67th Street sidewalk in front of the warehouse building. The diesel and gasoline USTs were installed in 1979 and 1981, respectively. Fuel dispenser pumps were located adjacent to the warehouse building in the driveway between the warehouse and office buildings. The USTs were removed in July 1996 [Subsurface Environmental Corp. (SEC), *Tank Removal Closure Report*, September 16, 1996 (SEC, 1996)]. The fuel dispenser pumps were removed at an indeterminate date following the UST removals.

D. Previous Investigations

Several subsurface investigations, groundwater monitoring events and remedial actions have been performed since removal of the USTs in 1996. Summaries of previous investigations, remedial actions and monitoring activities have been included in our *Additional Site Characterization and Interim Remedial Action Workplan* (AllWest, 2011), *Additional Site Characterization Workplan Addendum* (AllWest, 2012a), *Subsurface Investigation* (AllWest, 2013b), *Additional Site Characterization and Monitoring Well Installation Report* (AllWest, 2013e), *Indoor Air Quality Monitoring Report* (AllWest, 2014e), and *First Semiannual 2015 Groundwater Monitoring Report* (AllWest, 2015). Historical soil boring and groundwater monitoring well locations are shown in Figure 2.

A brief summary of previous subsurface investigations, groundwater monitoring events and remedial activities is included below.

The two USTs were removed in July 1996 by SEC. No holes were noted in the USTs, but obvious discoloration and petroleum hydrocarbon odor were noted in the surrounding soil. No information was included in the SEC report regarding any product piping or fuel dispenser pump removals.

Elevated concentrations of petroleum hydrocarbons were detected in confirmatory soil samples following the UST removal. Additional soil was over-excavated to a depth of approximately 12 feet bgs for a total of approximately 70 cubic yards of soil removed. Confirmatory soil samples collected following over-excavation contained low to moderate concentrations of total petroleum hydrocarbons as gasoline (TPH-g) and diesel (TPH-d), (SEC, 1996).

No documentation has been reviewed by AllWest concerning removal of the product piping and fuel dispenser pumps. The site plan in the 1998 Weiss Associates report implies that these had been removed prior to their investigation; however, no explicit reference to their removal is made in the narrative of that or subsequent reports. The fuel dispenser pumps were no longer present at the time of AllWest's first site visit in September 2011. It is uncertain from the available documentation whether the product piping has been removed.

Weiss Associates (WA) conducted a subsurface investigation at the subject property in May 1998. Three soil borings (B-1, B-2 and B-5) were advanced to depths ranging from 16.5 to 24 feet bgs in the vicinity of the former USTs along the north and south sides of 67th Street. Additional borings B-6 and B-7 were attempted but encountered refusal in gravel base rock material at approximately 2 feet bgs and were not sampled. Proposed borings B-3 and B-4 were not attempted. Low concentrations of petroleum hydrocarbons were detected in soil samples collected only from boring B-5 at 12 feet bgs. Elevated concentrations of petroleum hydrocarbons were detected in grab groundwater samples from all three borings (WA, 1998).

WA conducted an additional subsurface investigation in December 2005. Six soil borings (B-8 through B-14) were advanced to a maximum depth of approximately 22 feet bgs in the vicinity of the former USTs and downgradient to the west, along the north and south sides of 67th Street and within the sidewalk on the south side of 67th Street. Low to moderate concentrations of petroleum hydrocarbons were detected in soil samples from all six borings. Elevated concentrations of dissolved phase petroleum hydrocarbons were detected in groundwater samples from all six (6) soil borings, and in monitoring well MW-3 located adjacent to the former USTs (WA, 2006).

Monitoring well MW-3 was previously installed in 1995 as part of an investigation of the former Clearprint Paper Company leaking UST (LUST) site at 1482 67th Street, located to the northwest across 67th Street from the subject site in the downgradient direction. The Clearprint LUST case was closed in 2005, and two of its three monitoring wells abandoned, leaving MW-3 intact (ACHCS *Fuel Leak Site Case Closure, Clearprint Paper Co.*, June 27, 2005).

Petroleum hydrocarbon concentrations in soil and groundwater detected in the WA investigations exceeded applicable commercial/industrial Environmental Screening Levels (ESLs) where groundwater is not a drinking water resource, as established by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB), (WA, 2006).

The ACHCS, in their letters of April 7, 2006, November 19, 2010 (revised December 6, 2010) and May 2, 2012 requested additional characterization of the downgradient extent and distribution of dissolved phase petroleum hydrocarbons and residual free product, and implementation of interim remedial action, at the subject site.

Groundwater sampling of monitoring well MW-3 was attempted by Stellar Environmental Solutions, Inc. (Stellar) in May 2011; however a sample was not collected due to the presence of free product in the bailer (Stellar, 2011). During a site visit on September 14, 2011, AllWest measured a floating free product thickness of approximately 3 feet in MW-3. Quarterly groundwater monitoring of well MW-3, and interim free product removal by bailing, was conducted by AllWest commencing in August 2012.

AllWest conducted a subsurface assessment at the subject property in January 2013 and August 2013 consisting of the advancement of eleven direct push technology (DPT) soil borings (B15 through B25), three (3) groundwater monitoring well installations (AMW-1, AMW-2 and AMW-3), and the collection of soil and groundwater samples. The DPT borings were advanced to depths of 9 to 30 feet bgs, and the groundwater monitoring wells were installed to depths of 23 to 24 feet bgs.

TPH-g, TPH-d, total petroleum hydrocarbons as mineral spirits (TPH-ms), BTEX, MTBE, 2-methylnaphthalene, naphthalene and benzo (a) anthracene were detected in soil and/or groundwater samples at elevated concentrations exceeding their applicable commercial/industrial ESLs where groundwater is not a drinking water resource. Lower concentrations of various other VOCs and polynuclear aromatic hydrocarbons (PNAs/PAHs) were also detected in soil and/or groundwater samples at concentrations not exceeding their applicable ESLs.

AllWest concluded the downgradient extent of the adsorbed and dissolved phase petroleum hydrocarbon plume in soil and groundwater was largely defined and extended from the vicinity of the former McGrath Steel USTs to the west along 67th Street to the vicinity of monitoring well AMW-1 west of the former Clearprint Paper Company USTs. The cross-gradient extent of the adsorbed and dissolved phase hydrocarbon plume had not been fully defined. AllWest recommended conducting quarterly groundwater monitoring at the subject site in the new monitoring wells AMW-1, AMW-2 and AMW-3 and existing monitoring well MW-3. AllWest also recommended implementing interim remedial action of free product in the vicinity of the former USTs at the subject site by installing a passive skimming device in monitoring well MW-3 (AllWest, 2013e).

AllWest conducted quarterly groundwater monitoring of the existing monitoring well MW-3 and new monitoring wells AMW-1, AMW-2 and AMW-3 from August 2012 to June 2014, at which time monitoring frequency was reduced to semiannual per the ACHCS letter dated September 15, 2014. AllWest subsequently conducted a semiannual groundwater monitoring event in February 2015. Interim removal of free product in well MW-3 by bailing and skimming was conducted by AllWest commencing in July 2012. Free product thickness measured in MW-3 has declined from 2.65 feet in July 2012 to none measured since December 2013. A passive hydrocarbon skimming device was installed in well MW-3 in December 2013 and was removed in February 2015. Free product has not been observed in any of the other site monitoring wells (AllWest, 2015).

AllWest conducted indoor air quality (IAQ) monitoring in June, 2014 at the subject property. Five IAQ samples were collected inside the warehouse building at 1471 67th Street. One outdoor ambient air (OAA) control sample (OAA-1) was collected on the exterior second floor balcony at the 6655 Hollis Street office building. Benzene concentrations detected in four of the five collected IAQ samples exceeded the RWQCB indoor air commercial ESL for benzene. Carbon tetrachloride exceeded its applicable ESL in all five indoor air samples as well as the outdoor ambient air sample OAA-1. Naphthalene exceeded its applicable ESL in one indoor air sample. None of the other detected VOC concentrations exceeded their respective applicable RWQCB commercial indoor air ESLs. AllWest concluded that benzene, carbon tetrachloride and several other detected VOCs were atmospheric contaminants and do not originate from the UST source area (AllWest, 2014e).

III. PURPOSE AND SCOPE OF WORK

The purpose of this proposed investigation was to further assess the potential presence and lateral and vertical extent of petroleum hydrocarbons and their VOC constituents in soil, groundwater and soil vapor at the subject site, and to evaluate potential soil vapor intrusion impact to the indoor air quality at the subject site.

The scope of work as performed consisted of the following tasks:

- Prepared a written workplan and addendum for conducting an additional subsurface investigation including soil, groundwater and soil vapor sampling at the subject site. Submitted the workplan to the ACHCS for review and concurrence;
- 2) Updated the site-specific health and safety plan;
- 3) Obtained a drilling permit from Alameda County Public Works Agency (ACPWA);
- 4) Engaged the service of Underground Service Alert (USA) and a private underground utility locator to locate and clear underground utilities within the proposed investigation area to reduce the potential of

- accidental damage to underground utilities during subsurface investigation. Notified the ACPWA, ACHCS and facility owners, maintenance personnel and tenants prior to the start of field work;
- 5) Retained the services of a C-57 licensed drilling contractor for the advancement by Geoprobe[®] DPT methods of one boring (SB-26) in the driveway between the office and warehouse buildings to approximately 24 feet bgs, and six borings (SVP-1 through SVP-6) to approximately 7 feet bgs inside the warehouse and in the driveway. Collected soil samples for analytical testing. Installed temporary PVC well screen and casing and collected a "grab" groundwater sample from SB-26 only;
- 6) Installed six temporary soil vapor probes in borings SVP-1 through SVP-6 to 7 feet bgs. Cored the concrete floor slab and installed five temporary sub-slab soil vapor probes (SVP-7 through SVP-11) and five semi-permanent sub-slab soil vapor proves (SVP-12 through SVP-16) inside of the warehouse building at 1471 67th Street to approximately 0.5 feet bgs. Soil vapor probe installations were in general accordance with California Environmental Protection Agency (CalEPA) Department of Toxic Substance Control (DTSC) Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011 and Advisory Active Soil Gas Investigations, July, 2015;
- 7) Collected six soil vapor samples from the temporary 7 feet bgs soil vapor probes SVP-1 through SVP-6, one soil vapor sample from the temporary sub-slab vapor probe SVP-7, five soil vapor samples from the semi-permanent sub-slab vapor probes SVP-12 through SVP-16, and one ambient leak detection gas sample from the SVP-6 location, using Summa canisters in general accordance with the DTSC Advisory Active Soil Gas Investigations, July, 2015. Sub-slab probes SVP-8 through SVP-11 were not sampled due to defective surface seals;
- 8) At the completion of drilling and sampling activities, removed Geoprobe[®] drive casings, temporary PVC well screen, casings and all vapor probes and tubing. Backfilled each boring with a "neat" cement grout slurry and restored the interior floor slabs by backfilling with a concrete slurry. Stored all soil spoils generated during the assessment in a drum onsite pending profiling for disposal at an appropriate offsite facility;
- 9) Collected five indoor air quality (IAQ) samples IAQ-6 through IAQ-10 from within the 6655 Hollis Street office building and 1471 67th Street warehouse building, and one outdoor ambient air (OAA) control sample OAA-2 from the exterior second floor balcony at the 6655 Hollis Street building. The IAQ and OAA samples were collected over an 8-hour period per procedures outlined in the California Department of Toxic Substances Control (DTSC) Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011;
- Maintained soil and groundwater samples under chain-of-custody and transport to a Department of Health Services (DHS) certified analytical laboratory (McCampbell Analytical of Pittsburg, California) for chemical analyses. Analyzed twelve soil samples and one groundwater sample for TPH-g and VOCs including BTEX, naphthalene, and fuel oxygenates including MTBE by EPA Method modified 8260B;
- 11) Maintained soil vapor, ambient leak detect gas, indoor air quality and outdoor ambient air control samples under chain-of-custody and transported the samples to a Department of Health Services (DHS) certified analytical laboratory (Eurofins/Calscience of Garden Grove, California) for chemical analyses. Analyzed twelve soil vapor samples for TPH-g by EPA Method TO-3(M), BTEX, naphthalene and MTBE by EPA Method TO-15(M), the leak detection gas helium by method ASTM D1946, and the gases oxygen, methane and carbon dioxide by method ASTM D1946. Analyzed one ambient leak detection gas sample for helium by method ASTM D1946. Analyzed IAQ and OAA samples for total petroleum hydrocarbons as gasoline (TPH-g) by EPA Method TO-3 (M) and full-scan volatile organic compounds (VOCs) by EPA Method TO-15 SIM; and
- 12) Prepared a written Data Gap Investigation Report describing the field activities, summarizing the laboratory data, presenting investigation findings, and providing conclusions and recommendations.

IV. INVESTIGATIVE ACTIVITIES

A. Permitting

AllWest prepared and submitted a drilling permit application for the Geoprobe[®] DPT borings to ACPWA for review and approval. Upon permit approval, AllWest notified ACPWA and ACHCS of the drilling schedule a minimum of 5 working days in advance to allow scheduling of drilling and grouting inspection. A copy of the approved ACPWA drilling permit is included in Appendix A.

B. Health and Safety Plan

AllWest prepared a site specific health and safety plan prior to mobilizing to the site. A tailgate safety meeting was given prior to commencing work. All site personnel were required to review the health and safety plan.

C. Underground Utility Inspection

To avoid damage to underground utility installations during the course of the subsurface investigation, AllWest contacted Underground Service Alert (USA), an organization for public utility information, on the pending subsurface investigation. USA then notified public and private entities that maintained underground utilities within the site vicinity to locate and mark their installations for field identification. A private underground utility locator, Subtronic, Inc. of Concord, California, was also employed by AllWest to conduct a magnetometer and GPR sweep investigation to locate marked and unmarked underground utilities in the vicinity of the proposed boring locations;

D. Geoprobe® DPT Boring Advancement and Soil Sampling

A State of California C-57 licensed drilling contractor, Environmental Control Associates (ECA) of Aptos, California, was retained to advance seven soil borings using truck-mounted Geoprobe direct push technology (DPT) equipment on February 3, 2016. One soil boring (SB-26) was advanced in the driveway between the 6655 Hollis Street office and 1471 67th Street warehouse buildings to below first encountered groundwater at a total depth of approximately 24 feet bgs. Following coring of the concrete floor slab or asphalt pavement, seven soil borings (SVP-1 through SVP-6) were advanced to 7 feet bgs (2 feet below the building foundation footings). Borings SVP-1 through SVP-5 were located within the warehouse building, and boring SVP-6 was located in the driveway between the warehouse and office buildings, adjacent to SB-26. The boring locations are shown in Figure 2.

The borings were advanced using continuous core Geoprobe® DPT sampling methods. Soil samples were collected for lithologic characterization and potential laboratory analysis using a nominal 4-foot long, 2-inch outside diameter (OD) stainless steel core barrel drive probe and extension rods. The drive probe was equipped with nominal 1 ½-inch inside diameter (ID) clear PVC plastic tubes that lined the interior of the probe. The probe and insert tubes were together hydraulically driven using a percussion hammer to the specified depth (approximately 1 foot bgs). After the specified drive interval, the drive probe and rods were retrieved to the surface. The PVC tube containing subsurface soil is then removed. Selected soil sample intervals will be cut from the PVC tube for analytical testing. The ends of samples for possible analytical testing are sealed using Teflon™ squares and plastic end caps. The samples were labeled, and stored in an iced cooler.

Soil samples were collected for laboratory analysis at depth intervals of 4.5-5, 9.5-10, 11.5-12 and 20.5-21 feet bgs from boring SB-26; at 1.5-2 and 6.5-7 feet bgs from boring SVP-1; at 3-3.5 and 6.5-7 feet bgs from boring SVP-2; at 6.5-7 feet bgs from borings SVP-3, SVP-4 and SVP-6; and at 3.5-4 feet bgs from boring SVP-5. Soil samples were collected for analysis in discrete water-bearing zones, at noticeable changes in lithology, and in zones of suspected contamination or elevated organic vapor concentrations as measured by photo-ionizer detector (PID) screening. Geoprobe® DPT soil sampling procedures are included in Appendix B.

An AllWest environmental professional oversaw field work and drilling activities. The recovered soil samples were inspected after each drive interval with lithologic and relevant drilling observations recorded. Soil samples were screened for organic vapors using a PID or other appropriate device by taking readings of headspace vapor concentrations of the soil inside a zip-lock plastic bag. PID readings, soil staining and other relevant observations were recorded on the boring logs. Boring logs are included in Appendix D.

E. Groundwater Sampling

The groundwater level was measured at approximately 22.5 feet bgs and a "grab" groundwater sample collected from the DPT boring SB-26 on February 4, 2016 after the completion of soil coring to the anticipated total depth of approximately 24 feet bgs. The rods and drive probe were removed from the borehole, and new, temporary nominal 0.5 to 0.75-inch inside diameter (ID) PVC solid well casing with a 5-foot slotted screened interval was be lowered into the borehole.

A grab groundwater sample was then collected from the temporary PVC casing using disposable polyethylene sample tubing connected to an electric peristaltic pump. Geoprobe[®] DPT groundwater sampling procedures are included in Appendix B.

Upon retrieval of the groundwater samples, the retained water was transferred to appropriate sample bottles furnished by the analytical laboratory. Samples for TPH-g and VOC analysis were collected in four 40-milliliter (ml) glass volatile organic analysis (VOA) vials preserved with hydrochloric acid (HCl). Sample bottles were labeled and immediately placed on ice to preserve the chemical characteristics of its content.

To prevent cross-contamination, all groundwater sampling equipment that comes in contact with the groundwater was decontaminated prior to sampling. To minimize the possibility of cross contamination, new disposable sample tubing was be used to collect each groundwater sample. Sampling, sample handling, storage, and transport procedures are described in Appendix B.

F. Temporary Soil Vapor Probe Advancement and Installation

Following advancement of the six borings SVP-1 to SVP-6 to 7 feet bgs (5 feet below the building foundation footings), temporary soil vapor probes SVP-1 through SVP-6 were installed in the boreholes on February 3, 2016. Probes SVP-1 through SVP-5 were located within the warehouse building at 1471 67th Street. Probe SVP-6 was located adjacent to the DPT boring SB-26 in the driveway between the 1471 67th Street warehouse and 6655 Hollis Street office buildings. The temporary soil vapor probe locations are shown in Figure 2.

A plastic soil vapor probe, ½-inch diameter by 2-inches long and tipped with a porous plastic membrane, was inserted to the bottom of the 2.25-inch diameter borehole at 5 feet bgs. The probe tip was attached to a 7-foot length of 0.25-inch OD Teflon™ tubing extending to above the top of the pavement. A fine sand filter pack approximately 1 foot thick was placed in the borehole annulus around the probe. A 1 foot layer of non-hydrated granular bentonite was used to fill the annular space above the filter pack. Hydrated granular bentonite was then used to fill the annular space above the non-hydrated bentonite to the top of the pavement. Temporary soil vapor probe installation procedures were performed in general accordance with guidelines presented in the DTSC Advisory – Active Soil Gas Investigations, July, 2015 (DTSC, 2015).

At least 2 hours were allowed to elapse prior to collecting vapor samples to allow the bentonite seal to hydrate and borehole conditions to equalize, per DTSC vapor sampling guidelines (DTSC, 2015). Temporary soil vapor probe installation procedures and schematic diagrams are included in Appendix B.

G. Temporary Sub-Slab Soil Vapor Probe Installation

A State of California C-57 licensed drilling contractor (ECA) cored through the approximately 3 to 4-inch thick concrete floor slab and approximately 2 to 4 inches into the sub-base using a power-operated Roto-Hammer 2-inch diameter coring bit at five (5) locations within the 1471 67th Street

warehouse building. The boreholes were completed as sub-slab soil vapor probes SVP-7 through SVP-11 on February 4. The sub-slab vapor probe locations are shown in Figure 2.

Plastic vapor probes, ½-inch diameter by 2-inch long and tipped with porous plastic membranes, were inserted through the 2-inch diameter boreholes into the subgrade material approximately 2 to 4 inches beneath the base of the floor slab. The probe tips were attached to approximately 6 to 8-inch lengths of 0.25-inch outside diameter (OD) Teflon™ tubing extending to about 1 inch below the top of the floor slab. The top of the Teflon™ or stainless steel tubing in each probe were attached to a brass threaded male Swagelock™ fitting and cap recessed below the concrete floor. A fine sand filter pack approximately 4 to 6 inches thick was placed in the borehole annulus around the probes. A Teflon™ sealing disk will be placed around the tubing above the filter pack.

Dry granular bentonite was placed in the borehole annulus above the Teflon™ sealing disk to approximately 1 inch above the base of the concrete floor slab. Hydrated granulated bentonite was then used to fill the annular space above the dry granular bentonite to approximately 2 inches below the top of the floor slab, and was hydrated from the surface using deionized water. Quickdrying cement/bentonite grout will then be used to fill the remaining annular space to the Swagelock fitting approximately ¾ to 1 inch below the top of the slab.

It was intended for the sub-slab probes SVP-7 through SVP-11 to be semi-permanent installations; however, due to the unexpected thinness of the concrete floor slab (only 3-4 inches thick rather than the expected 6 inches), the integrity of the surface seal was compromised in probes SVP-8 through SVP-11 due to cracks in the cement grout surface seal when the Swagelok connection fittings were tightened. Therefore, a sub-slab soil vapor sample was collected only from probe SVP-7, and none of the sub-slab probes were retained as semi-permanent installations. Additional hydrated bentonite was poured around the Swagelok fitting above the cement surface seal in SVP-7 prior to sampling to ensure an adequate seal.

At least 2 hours were allowed to elapse prior to collecting vapor samples to allow the bentonite and cement grout seal to hydrate and borehole conditions to equalize, per DTSC sub-slab vapor sampling guidelines (DTSC, 2015). Typical semi-permanent sub-slab probe construction procedures and diagram are included in Appendix B.

H. Semi-Permanent Sub-Slab Vapor Pin™ Soil Vapor Probe Installation

Due to the compromised integrity of the surface seals of the sub-slab probes SVP-7 through SVP-11, five additional semi-permanent soil vapor probes were installed on May 12, 2016 using the Cox-Colvin & Associates, Inc. Vapor Pin™, which provides a superior surface seal and can be installed in thinner slabs. A State of California C-57 licensed drilling contractor (Vironex, Inc. of Santa Ana, California) cored through the approximately 3 to 4-inch thick concrete floor slab and approximately 1 to 4 inches into the sub-base using a power-operated Roto-Hammer coring bit at five locations within the 1471 67th Street warehouse building. The borings were completed as semi-permanent sub-slab soil vapor probes SVP-12 through SVP-16. The semi-permanent sub-slab soil vapor probe locations are presented on Figure 2.

Vironex completed the semi-permanent soil vapor probes using the Cox-Colvin & Associates, Inc. Vapor Pin[™], consisting of a hollow brass sampling device with barbed nipple fitting and outer silicone sleeve installed within the floor slab. The Vapor Pin[™] is driven to the base of the floor slab, into a 5/8-inch diameter hole drilled within the slab, set within a 1 ½-inch diameter countersunk hole for flush mounting below the slab surface. Since the silicone sleeve seals the probe in the borehole, no filter pack, hydrated bentonite, or cement grout seal is required; therefore, no setting or curing time is required. A flush-mounted threaded metal cap covers the Vapor Pin[™]. A second cap seals the barbed nipple fitting. The Vapor Pin[™] installation standard operating procedure is included in Appendix B.

AllWest allowed a minimum 2-hour equilibrium period between the Vapor Pin[™] installation and soil vapor sampling activities to ensure compliance with the equilibrium times recommended in DTSC Frequently Asked Questions, 2012 Advisory – Active Soil Gas Investigations (ASGI), March 2013.

I. Soil Vapor Sampling

AllWest collected soil vapor samples from six temporary 7 feet bgs vapor probes SVP-1 through SVP-6 on February 5 through 8, 2016, one temporary sub-slab soil vapor probe SVP-7 on February 5, 2016, and five semi-permanent sub-slab soil vapor probes SVP-12 through SVP-16 on May 12 and 13, 2016 following a minimum 2-hour period after hydration of the bentonite and cement grout surface seals. Due to visible cracking of the cement surface seals when tube fittings were tightened, sampling of sub-slab probes SVP-8 through SVP-11 was not conducted. Soil vapor sampling was performed in general accordance with the DTSC *Advisory – Active Soil Gas Investigations*, July 2015. Soil vapor sampling procedures and schematic diagrams are included in Appendix B.

AllWest collected soil vapor samples from each probe in laboratory prepared 1-liter or 6-liter capacity SUMMA canisters. Prior to vapor purging and sample collection, a vacuum leak shut-in test of the flow-controller/gauge manifold assembly was performed for a minimum of 2 minutes, with a maximum allowable vacuum drop of 0.2 inches of mercury (in Hg). If maximum allowable vacuum drop was exceeded, the manifold fittings were tightened or manifold replaced and the shut-in test redone. Vacuum gauges were sensitive enough to register a minimum of 0.2 in Hg.

The approximate sampling system volume of a temporary soil vapor probe to 7 feet bgs is 240 milliliters (ml), assuming a borehole diameter of 2 inches, tubing and probe inside diameter of 0.17 inches, sand pack interval of 1 feet and porosity of 0.3, and a sample train length (internal and external tubing) of 12 feet. The approximate sampling system volume of a temporary sub-slab soil vapor probe is 70 ml, assuming a borehole diameter of 2 inches, sand pack interval of 4 inches below the concrete floor slab and porosity of 0.3, tubing and probe inside diameter of 0.17 inches, and a sample train length (internal and external tubing) of 5 feet.

The approximate sampling system volume of a Vapor Pin[™] system is 60ml, assuming a 4.5 ml/feet for 0.25-inch Outside Diameter (OD)/0.17-inch Inside Diameter (ID) sample tubing, and a 0.17-inch ID Vapor Pin probe, and 155 ml/feet for a 1-inch diameter borehole within the concrete floor slab with a 3-inch deep void space below the Vapor Pin probe.

Prior to sample collection, a maximum of three sample system volumes of soil vapor (per DTSC, 2015) were purged at a flow rate of approximately 150-200 milliliters per minute (ml/min) from each soil vapor probe, using a dedicated 6-liter capacity SUMMA purge canister. Three sample system volumes equaled approximately 720 ml from each temporary 7 feet bgs vapor probe, 210 ml from each temporary sub-slab soil vapor probe and 180 ml from each semi-permanent sub-slab soil vapor probe.

While purging and sampling, a leak detection test was conducted using helium as a leak tracer inside an airtight plastic shroud covering the entire sampling apparatus, as recommended in the DTSC *Advisory – Active Soil Gas Investigations* (DTSC, 2015). A three-way valve was fitted in the sample tubing train between the probe and SUMMA canister manifold system, with the valve handle passing through the shroud wall where it can be turned from the outside without leakage of helium. The TeflonTM inflow sample tubing was connected from the vapor probe to the three-way valve. The valve controlled two TeflonTM outflow tubes, one leading to the sample Summa canister manifold, and one leading to a purge monitoring port on the outside of the shroud.

The helium concentration within the shroud was monitored with a helium gas detection meter with a minimum precision of 0.1% to keep the concentration at approximately ±10% of the target concentration of approximately 20% (or at least three orders of magnitude above the minimum meter detection limit). The helium tracer gas was infused into the shroud at the required concentration at least 5 minutes prior to sample collection, as recommended in the DTSC *Advisory – Active Soil Gas Investigations* (DTSC, 2015).

If necessary, additional helium was infused into the shroud to maintain the desired concentration, which was monitored and recorded in the field log sample collection remarks column until sampling is completed. To verify helium detection meter accuracy, one ambient air sample was collected inside the leak detection shroud during the sampling of probe SVP-6 to measure helium

concentrations inside the shroud. A schematic diagram of the soil vapor sampling system and leak detection shroud is included in Appendix B.

Following purging of three sample system volumes, the soil vapor purge monitoring port was monitored for helium leak tracer gas concentrations using a helium gas detection meter to determine integrity of the vapor probe surface seal per DTSC *Advisory – Active Soil Gas Investigations, Appendix C* (DTSC, 2015). Soil vapor helium concentrations following purging were recorded in the sampling field logs.

Flow rates of approximately 150-200 ml/min were used to fill the sample canisters. The canisters were filled to approximate 80% of capacity (approximately 5 inches of mercury vacuum remaining). All pertinent field observations, pressure, times and readings were recorded. After filling and closing the sample valve, all SUMMA canisters were removed from the manifold, labeled with sampling information, including initial and final vacuum pressures, placed in a dark container and transported under chain-of-custody to the analytical laboratory, Eurofins/Calscience, Inc., in Garden Grove, California. The analytical laboratory recorded the final SUMMA canister vacuum upon receipt. Soil vapor sampling procedures are included in Appendix B and copies of the soil vapor sampling field logs are included in Appendix E.

J. Borehole Backfilling

At the completion of drilling and sampling activities, Geoprobe® DPT drive casings, temporary PVC well screen and casings, soil vapor probes and sample tubing were removed and the boreholes backfilled with a "neat" Portland Type I or II cement grout slurry tremied into the borehole through a PVC pipe. The level of grout was checked to ascertain if any settling has occurred and was "topped off" as required. The ACPWA was notified 72 hours in advance of the anticipated grouting time in order to schedule inspection.

K. Investigative Derived Waste Containment and Disposal

Investigative derived waste including soil cores and rinseate were contained in a secure area onsite in sealed 55-gallon drums pending analytical results, profiling and transport to an appropriate disposal facility.

L. Indoor Air Quality Sampling

Prior to indoor air quality sampling activities, AllWest performed a survey of the building layout and conditions to determine optimum IAQ sample locations. Building survey forms are included in Appendix E.

To evaluate the potential indoor air quality impact of intrusion of petroleum hydrocarbons and VOCs in the vapor phase from soil beneath the concrete building floor slabs, five IAQ samples (IAQ-6 through IAQ-10) were collected within the subject site 1471 67th Street warehouse building and 6655 Hollis Street office building, and one OAA control sample (OAA-2) collected outside the office building.

IAQ-6 was collected within the office building's main room in the center of the building, and IAQ-2 within the office building women's restroom in the southwest corner of the building. IAQ-8 and IAQ-9 were collected within a large open area in the north- and south-central portion of the warehouse building. IAQ-10 was collected within the warehouse building restroom in the northwest corner of the building. Indoor air quality sample locations are shown on Figure 3.

Although the DTSC *Vapor Intrusion Guidance* (DTSC, 2011) recommends collecting OAA samples upwind from the subject site, no suitably secure sample location exists along 67th Street in the predominantly westerly upwind direction from the subject site. Therefore, AllWest located the outdoor ambient air sample OAA-2 on the second floor balcony of the adjacent office building at 6655 Hollis Street. Although in the predominantly downwind direction east of the subject site, this was the only relatively secure and accessible outdoor sample location adjacent to the subject site.

The OAA-2 Summa canister was secured to the balcony railing by a locked chain. Outdoor ambient air control sample locations are shown on Figure 3.

AllWest collected air quality samples in laboratory prepared 6-liter capacity SUMMA canisters. Flow rates of approximately 12.5 milliliters per minute (ml/min) are used to fill the canisters over an 8 hour period. The canisters are filled to approximately 80% of capacity. Pertinent field observations, pressure, times and readings are recorded. Indoor air quality field sampling logs are included in Appendix E. Sampling was conducted in general accordance with the DTSC Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance) (DTSC, 2011).

M. Sample Preservation, Storage and Handling

To prevent the loss of constituents of interest, all soil and groundwater samples were preserved by storing in an ice chest cooled to 4°C with crushed ice immediately after their collection and during transportation to the laboratory. Samples were stored within the cooler in separate zip-lock plastic bags to avoid cross-contamination. All SUMMA canisters were removed from the manifold, labeled with sampling information, including initial and final vacuum pressures, and placed in a dark container for transport to the analytical laboratory

N. Chain-Of-Custody Program

All samples collected for this project were transported under chain-of-custody protocol. The chain-of-custody program allows for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The document includes the signature of the collector, date and time of collection, sample number, number and type of sample containers including preservatives, SUMMA canister ID numbers, initial and final SUMMA canister vacuums, parameters requested for analysis, signatures of persons and inclusive dates involved in the chain of possession. Upon delivery to the laboratory the document will also include the name of the person receiving the samples, and date and time samples were received. Chain of custody documents are included in Appendix F.

V. ASSESSMENT FINDINGS

A. Subsurface Conditions

The lithology encountered in borings during this investigation consisted of interbedded silts and clays with minor sands from below pavement to to a depth of approximately 20.5 feet bgs, sandy silt with gravel from approximately 20.5 to 23 feet bgs, fine sand from 23 to 24 feet bgs, and clay at the total explored depth of 24 feet bgs. Noticeable petroleum odor and/or elevated PID concentration measurements were observed in soil samples from borings SVP-3 at approximately 0.5 to 2 feet bgs, SVP-4 from approximately 1 to 7 feet bgs, SVP-5 from approximately 4 to 7 feet bgs, and SVP-6 at approximately 6 to 7 feet bgs.

Groundwater was encountered at approximately 22.5 feet bgs in boring SB-26.

B. Laboratory Analyses and Sampling Data

Soil

All soil samples selected for analysis were analyzed by a State of California certified independent analytical laboratory, McCampbell Analytical, Inc. (MAI), of Pittsburg, California. Twelve soil samples were analyzed for TPH-g and VOCs including BTEX, naphthalene, and fuel oxygenates including MTBE by EPA Method modified 8260B.

Low concentrations of TPH-g and VOCs including BTEX, MTBE, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, n-butyl benzene, sec-butyl benzene, isopropylbenzene, naphthalene, n-propyl benzene and/or tert-butyl alcohol were detected in soil samples from all borings at the following maximum concentrations in milligrams per kilogram (mg/kg):

Constituent of Concern	Maximum Concentration (mg/kg)	Boring ID #	Depth (Feet bgs)
TPH-g	60	SB-26	11.5-12
Benzene	0.56	SB-26	11.5-12
Ethylbenzene	1.2	SB-26	11.5-12
Toluene	3.4	SB-26	11.5-12
Total Xylenes	6.7	SB-26	11.5-12
n-Butyl benzene	0.81	SVP-4	6.5-7
sec-Butyl benzene	0.033	SVP-5	3.5-4
Isopropylbenzene	0.016	SVP_5	3.5-4
Methyl Tertiary Butyl Ether (MTBE)	0.21	SVP-3	6.5-7
Naphthalene	1.0	SB-26	11.5-12
		SVP-4	6.5-7
n-Propyl benzene	0.92	SVP-4	6.5-7
Tertiary Butyl Alcohol	0.11	SVP-5	3.5-4
(TBA)			
1,2,4-Trimethylbenzene	3.6	SVP-4	6.5-7
1,3,5-Trimethylbenzene	0.97	SVP-4	6.5-7

No other VOCs were detected in any soil samples analyzed. Soil petroleum hydrocarbon and VOC analytical data is summarized in Table 1. Historical soil polynuclear aromatics (PNAs) / polyaromatic hydrocarbons (PAHs) analytical data are summarized in Table 2. Laboratory analytical reports are included in Appendix F.

Groundwater

All groundwater samples were analyzed by a State of California certified independent analytical laboratory, MAI. One groundwater sample Analyzed for TPH-g and volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene and total xylenes (BTEX), naphthalene, and fuel oxygenates including MTBE by EPA Method modified 8260B.

TPH-g, BTEX, MTBE, naphthalene N-propyl benzene, TCE , 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were detected in the groundwater sample from SB-26 at the following concentrations in micrograms per liter (μ g/L):

Constituent of Concern	Concentration (µg/L)
TPH-g	1,700
Benzene	310
Ethylbenzene	85
Toluene	300
Total Xylenes	370
Methyl Tertiary Butyl Ether (MTBE)	170
Naphthalene	7.9
n-Propyl benzene	7.8
Trichloroethene (TCE)	18
1,2,4-Trimethylbenzene	67
1,3,5-Trimethylbenzene	21

No other VOCs were detected in the groundwater sample from SB-26. Groundwater analytical data is summarized in Table 3. Historical groundwater PNAs/PAHs analytical data are summarized in Table 4. Laboratory analytical reports are included in Appendix F.

Soil Vapor

All soil vapor sample analysis was performed by a State of California certified independent analytical laboratory, Eurofins/Calscience, Inc. (ECI) of Garden Grove, California. Twelve soil vapor samples were analyzed for TPH-g by EPA Method TO-3(M), BTEX, naphthalene and MTBE by EPA Method TO-15(M), and the leak detection gas helium and the gases oxygen, methane and carbon dioxide by method ASTM D1946. One ambient leak detection gas sample will be analyzed for helium by ASTM D1946.

TPH-g, benzene, ethylbenzene, toluene, total xylenes, MTBE, acetone, 2-butanone, 1,1-dichloroethane (1,1-DCA) 1,2-dichloroethane (1,2-DCA), ethanol, 4-ethyltoluene, isopropanol, tert-butyl alcohol (TBA), tetrachloroethene (PCE), 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were detected in soil vapor samples at the following maximum concentrations in micrograms per cubic meter (μg/m³):

Constituent of Concern	Maximum Concentration (μg/m³)	Vapor Probe ID #	Depth (Feet bgs)
TPH-g	910,000,000	SVP-3	7
Benzene	1,600,000	SVP-5	7
Ethylbenzene	810,000	SVP-5	7
Toluene	1,700,000	SVP-3	7
Total Xylenes	3,570,000	SVP-5	7
Acetone	64	SVP-7	0.5
2-Butanone	8.1	SVP-7	0.5
1,1-Dichloroethane (1,1-DCA)	1,300	SVP-6	7
1,2-Dichloroethane (1,2-DCA)	2,500	SVP-6	7
Ethanol	24	SVP-15	0.5
4-Ethyltoluene	160,000	SVP-3	7
Isopropanol	1,000,000	SVP-5	7
Methyl Tertiary Butyl Ether (MTBE)	990,000	SVP-5	7
Tert-butyl Alcohol (TBA)	6.4	SVP-16	0.5
Tetrachloroethene (PCE)	41	SVP-7	0.5
1,2,4-Trimethylbenzene	390,000	SVP-3	7
1,3,5-Trimethylbenzene	170,000	SVP-3	7

No other VOCs were detected in any soil vapor sample analyzed.

The gases helium, oxygen, methane and carbon dioxide were detected in soil vapor and ambient air samples at the following maximum (or minimum) concentrations in percent by volume (%v/v):

Constituent of Concern	Maximum Concentration (%v/v)	Vapor Probe ID #	Depth (Feet bgs)
Helium (ambient air in shroud)	7.95	SVP-6	surface
Helium (soil vapor)	0.807	SVP13	0.5
Oxygen (maximum)	19.2	SVP-12	0.5
Oxygen (minimum)	2.72	SVP-1	7
Methane	8.80	SVP-1	7
Carbon Dioxide	14.7	SVP-3	7

Soil vapor analytical data is summarized in Table 5. Laboratory analytical reports are included in Appendix F.

Indoor Air

All indoor air sample analysis was performed by a State of California certified independent analytical laboratory, Eurofins/Calscience, Inc. (ECI) of Garden Grove, California. Five IAQ

samples and one OAA control sample were analyzed for TPH-g by EPA Method TO-3(M) and VOCs by EPA Method TO-15 SIM.

TPH-g, benzene, ethylbenzene, toluene, total xylenes, MTBE, acetone, 2-butanone, 1,1-dichloroethane (1,1-DCA) 1,2-dichloroethane (1,2-DCA), ethanol, 4-ethyltoluene, isopropanol, tert-butyl alcohol (TBA), tetrachloroethene (PCE), 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were detected in IAQ and/or OAA samples at the following maximum concentrations in micrograms per cubic meter (μg/m³):

Constituent of Concern	Maximum Concentration (μg/m³)	Sample ID #	Location
TPH-g	1,400	IAQ-9	North-central warehouse
Benzene	0.55	IAQ-9	North-central warehouse
Ethylbenzene	0.28	IAQ-10	Warehouse restroom
Toluene	1.1	IAQ-6	Office main room
Total Xylenes	2.21	IAQ-10	Warehouse restroom
Carbon Tetrachloride	0.43	IAQ-9	North-central warehouse
Chloroform	0.53	IAQ-7	Office woman's restroom
Chloromethane	1.1	OAA-2	Office balcony
Dichlorodifluoromethane	1.6	IAQ-10	Warehouse restroom
Methylene Chloride	3.1	IAQ-6	Office main room
Naphthalene	0.17	IAQ-6	Office main room
Trichloroethene (TCE)	0.17	IAQ-7	Office woman's restroom
Trichlorofluoromethane	1.3	IAQ-9	North-central warehouse
1,1,2-Trichloro-1,2,2-	0.54	IAQ-9	North-central warehouse
Trifluoroethane			
1,2,4-Trimethylbenzene	0.44	IAQ-6	Office main room
1,3,5-Trimethylbenzene	0.13	IAQ-6	Office main room

No other VOCs were detected in any soil vapor sample analyzed. Indoor air analytical data is summarized in Table 6. Laboratory analytical reports are included in Appendix F.

C. Laboratory Quality Assurance and Quality Control

A review of laboratory internal quality assurance/quality control (QA/QC) report indicates the method blank and sample spike data for all analyses were within the laboratory recovery limits. The samples were also analyzed within the acceptable EPA holding times. The data from the MAI and ECI are considered to be of good quality. Laboratory QA/QC reports and chain-of-custody records are included in Appendix F.

VI. DISCUSSION

A. Environmental Screening Levels

To assess if the identified COCs in soil pose a risk to human health and the environment, AllWest compared analytical data generated during this investigation to Environmental Screening Levels (ESLs) for commercial/industrial land use. The ESLs are compiled by the Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) in *User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final – February 2016 (Rev. 3, May 23, 2016). ESLs used in this investigation were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output* (RWQCB, 2016).

Under most circumstances, the presence of a chemical at a concentration below the corresponding ESL is presumed to not pose a significant risk to human health or the environment. The ESLs for the subject suite were established with the following assumptions: commercial/industrial property

use, a 'sand scenario' soil type, shallow groundwater (<10 feet bgs) which is <u>not</u> a potential drinking water resource, and shallow AND deep direct exposure, soil depths (≤10 ft bgs and > 10 feet bgs). A City of Emeryville ordinance prohibits use of groundwater for drinking water purposes due to widespread regional contamination, and no plans exist for future beneficial use.

Soil

TPH-g was not detected in any soil samples at concentrations exceeding the applicable ESL of 500 mg/kg for commercial/industrial sites where groundwater is a potential drinking water resource according to the site-specific Tier 2 Interactive Tool, Table T2-1 (RWQCB, 2016).

The COCs which exceeded applicable soil ESLs for commercial/industrial sites where groundwater is a potential drinking water resource were benzene, toluene, total xylenes, MTBE and naphthalene.

The only COC which exceeded applicable soil ESLs for commercial/industrial sites where groundwater is <u>not</u> a potential drinking water resource was benzene. COCs exceeding applicable soil ESLs are summarized below:

Constituent of Concern	Maximum Soil Concentration (mg/kg)	Soil ESL - Drinking Water (mg/kg)	Soil ESL - Non- Drinking Water (mg/kg)
Benzene	0.56	0.044	0.049
Toluene	3.4	2.9	9.3
Total Xylenes	6.7	2.3	11
Methyl Tertiary Butyl Ether (MTBE)	0.21	0.023	0.84
Naphthalene	1.0	0.033	3.9

None of the other COCs detected in soil samples exceeded applicable ESLs. Applicable soil ESLs for COCs detected at the subject site are summarized in Tables 1 and 2.

Groundwater

TPH-g, benzene, toluene, ethylbenzene, total xylenes, MTBE, naphthalene and TCE concentrations detected in the groundwater sample from SB-26 exceeded their applicable ESLs for groundwater that is a potential drinking water resource. TPH-g, benzene, toluene, ethylbenzene and total xylenes concentrations exceeded their applicable ESLs for groundwater that is <u>not</u> a potential drinking water resource. COCs exceeding applicable groundwater ESLs are summarized below:

Constituent of Concern	SB-26 Groundwater Concentration (µg/L)	Groundwater ESL - Drinking Water (µg/L)	Groundwater ESL - Non- Drinking Water (µg/L)	Groundwater ESL - Vapor Intrusion (µg/L)
TPH-g	1,700	100	640	NE
Benzene	310	1.0	9.7	9.7
Ethylbenzene	85	30	43	110
Toluene	300	40	130	30,000
Total Xylenes	370	20	100	11,000
Methyl Tertiary Butyl Ether (MTBE)	170	5.0	180	11,000
Naphthalene	7.9	0.17	24	170
Trichloroethene (TCE)	18	5.0	49	49

NE = Not Established (Use Soil Gas ESL)

None of the other COCs detected in the groundwater sample from SB-26 exceeded applicable ESLs. Applicable groundwater ESLs for COCs detected at the subject site are summarized in Tables 3 and 4.

Soil Vapor

TPH-g, benzene, ethylbenzene, toluene, total xylenes, MTBE and 1,2-DCA were detected in soil vapor samples collected during this sampling event at concentrations exceeding their respective applicable commercial/industrial land use soil vapor ESLs, as summarized below:

Constituent of Concern	Maximum Concentration (µg/m³)	Commercial/Industrial ESL (µg/m³)		
TPH-g	910,000,000	100,000		
Benzene	1,600,000	420		
Ethylbenzene	810,000	4,900		
Toluene	1,700,000	1,300,000		
Total Xylenes	3,570,000	440,000		
Methyl Tertiary Butyl Ether (MTBE)	990,000	47,000		
1,2-Dichloroethane (1,2-DCA)	2,500	470		

All except one of the exceedances of ESLs were in soil vapor samples collected from the 7 feet bgs temporary probes. The only ESL exceedance in the 0.5 feet bgs sub-slab probes was 220,000 $\mu g/m^3$ TPH-g in SVP-7. None of the other COCs detected in soil vapor samples exceeded their applicable ESLs. Applicable soil vapor ESLs for COCs detected at the subject site are summarized in Table 5.

Concentrations of oxygen, methane and carbon dioxide detected in soil vapor samples indicate the presence of a minimum 5-foot biodegradation attenuation zone below building foundations per the State Water Resources Control Board (SWRCB) *Low-Threat Underground Storage Tank Case Closure Policy* (SWRCB, 2012), with the exception of SVP-1, which has an oxygen concentration of less than 4 percent by volume (%v/v).

Indoor Air

Benzene, carbon tetrachloride, naphthalene, and chloroform were detected in indoor air samples collected during this sampling event at concentrations exceeding their respective applicable commercial/industrial land use soil vapor ESLs, as summarized below:

Constituent of Concern	Maximum Concentration (µg/m³)	Commercial/Industrial ESL (µg/m³)				
TPH-g	1,400	100				
Benzene	0.55	0.42				
Carbon Tetrachloride	0.43	0.29				
Chloroform	0.53	0.53				

None of the other COCs detected in the indoor air samples exceeded their applicable ESLs. Applicable indoor air ESLs for COCs detected at the subject site are summarized in Table 6.

B. Contaminant Distribution

Elevated concentrations of petroleum hydrocarbons and VOCs have been detected in soil samples collected during this investigation east and upgradient of the former USTs and fuel dispensers in the vicinity of boring SB-26 between the subject site office and warehouse buildings. The upgradient extent of COCs in soil in the vicinity of the subject site office building at 6655 Hollis Street has not been fully defined. Low concentrations of petroleum hydrocarbons and VOCs have been detected in soil samples from beneath the warehouse building, cross-gradient from the former USTs, with the vertical and lateral extent to the south largely defined.

During previous investigations, the lateral extent of petroleum hydrocarbons and VOCs in soil was largely defined along 67th Street to the northwest and west of the former subject site USTs. The anomalously high TPH-d concentrations detected in the soil samples from the farthest west and downgradient boring AMW-1 appears to originate from an offsite source, possibly the former Clearprint Paper Company USTs. The extent of COCs in soil is shown in Figure 3.

Elevated concentrations of petroleum hydrocarbons and VOCs have been detected in groundwater samples collected during this investigation east and upgradient of the former USTs and fuel dispensers in the vicinity of boring SB-26 between the subject site office and warehouse buildings. The upgradient extent of COCs in groundwater in the vicinity of the subject site office building at 6655 Hollis Street has not been fully defined.

During previous investigations, the lateral extent of dissolved-phase petroleum hydrocarbons and their constituents was largely defined in the downgradient direction west of the former McGrath USTs at monitoring well AMW-1, but has not been fully defined in the cross-gradient directions to the north and particularly to the south of 67th Street. The extent of TPH-g and benzene in groundwater is shown in Figures 4 and 5.

Elevated concentrations of petroleum hydrocarbons and VOCs have been detected in soil vapor samples upgradient of the former USTs and fuel dispensers in the vicinity of vapor probe SVP-6 between the office and warehouse buildings, and in vapor probes SVP-1 through SVP-5 and SVP-7 from beneath the warehouse building, cross-gradient from the former USTs. Concentrations of COCs detected in soil vapor were generally highest in probe SVP-3 in the northwest portion of the warehouse, SVP-5 in the northeast portion adjacent to the former USTs, and SVP-1 in the southwest portion, all at a depth of 7 feet bgs.

Concentrations of COCs detected in the sub-slab vapor probe SVP-7 at 0.5 feet bgs in the southwest portion of the warehouse were significantly lower (more than an order of magnitude) than those detected in adjacent soil vapor probes at 7 feet bgs. Soil vapor probes SVP-12 through SVP-16 had no detectable COCs above their respective ESLs, indicating that COC concentrations have been significantly attenuated by several orders of magnitude at shallow depths (0.5 feet bgs), compared to those in the adjacent 7 feet bgs probes. The low COC concentrations in the sub-slab probes indicate that soil vapor intrusion is probably not significantly impacting indoor air quality in the warehouse building. The extent of COCs in soil vapor is shown in Figure 6.

Concentrations of all the detected COCs were similar (within an order of magnitude) between the IAQ samples and the OAA control sample, implying an atmospheric source rather than soil vapor intrusion is likely. Concentrations of the COCs detected in IAQ samples and the OAA control sample during the May 2016 indoor air sampling event were similar (within an order of magnitude) to those detected during the previous June 2014 sampling event. The extent of COCs in indoor air during the June 2014 and May 2016 sampling events is shown on Figure 7.

There does not appear to be a significant correlation between nature or concentrations of COCs detected in soil vapor samples during the current investigation and those detected in indoor air samples in the same vicinity.

VII. CONCLUSIONS

AllWest concludes that petroleum hydrocarbon and VOC concentrations detected at 5 feet bgs or deeper in soil, groundwater and soil vapor samples beneath and adjacent to the subject site warehouse building have attenuated significantly at shallower depths (0.5 feet bgs) and do not present a significant vapor intrusion risk to future building occupants. AllWest further concludes that petroleum hydrocarbon and VOC concentrations detected in indoor air quality samples most likely originate from atmospheric sources, not from soil vapor intrusion.

VIII. LIMITATIONS

The work described in this report was performed in accordance with the Environmental Consulting Agreement between MCG Investments, LLC (Client) (Client) and AllWest Environmental, Inc, dated September 2015. AllWest has prepared this report for the exclusive use of the Client for this particular project and in accordance with generally accepted practices at the time of the work. No other warranties, certifications or representations, either expressed or implied are made as to the professional advice offered. The services provided for the Client were limited to their specific requirements; the limited scope allows for AllWest to form no more than an opinion of the actual site conditions. No matter how much research and sampling may be performed, the only way to know about the actual composition and condition of the subsurface of a site is through excavation.

The conclusions and recommendations contained in this report are made based on observed conditions existing at the site, laboratory test results of the submitted samples, and interpretation of a limited data set. It must be recognized that changes can occur in subsurface conditions due to site use or other reasons. Furthermore, the distribution of chemical concentrations in the subsurface can vary spatially and over time. The results of chemical analysis are valid as of the date and at the sampling location only. AllWest is not responsible for the accuracy of the test data from an independent laboratory, or for any analyte quantities falling below the recognized standard detection limits or for the method utilized by the independent laboratories.

Background information that AllWest has used in preparing this report, including but not limited to previous field measurements, analytical results, site plans, and other data, has been furnished to AllWest by the Client, its previous consultants, and/or third parties. AllWest has relied on this information as furnished. AllWest is not responsible, for nor has it confirmed, the accuracy of this information.

IX. REFERENCES

Alameda County Environmental Health Services, 2005. Fuel Leak Site Case Closure, Clearprint Paper Co. June 27.

AllWest Environmental, Inc. (AllWest), 2011. Additional Site Characterization and Interim Remedial Action Workplan, Former McGrath Steel, 6655 Hollis Street, and 1471 67th Street, Emeryville, California, 94608. September 27.

AllWest, 2012a. Additional Site Characterization Workplan Addendum, Former McGrath Steel, 6655 Hollis Street, and 1471 67th Street, Emeryville, California, 94608. July 31.

AllWest, 2012b. Third Quarter 2012 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. August 23.

AllWest, 2013a Fourth Quarter 2012 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. January 9.

AllWest, 2013b. Subsurface Investigation, Former McGrath Steel, 6655 Hollis Street, Emeryville, California. February 4.

AllWest, 2013c. First Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. April 18.

AllWest, 2013d. Second Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. July 11.

AllWest, 2013e. Additional Site Characterization and Monitoring Well Installation Report, Former McGrath Steel, 6655 Hollis Street, Emeryville, California, August 30.

AllWest, 2014a. Fourth Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California. January 8.

AllWest, 2014b. Indoor Air Quality Monitoring Work Plan, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. April 1.

AllWest, 2014c. First Quarter 2014 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California. April 22.

AllWest, 2014d. Indoor Air Quality Monitoring Work Plan Addendum Letter, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. June 17.

AllWest, 2014e. Indoor Air Quality Monitoring Report, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. July 18.

AllWest, 2014f. Second Quarter 2014 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. July 21.

AllWest, 2015. First Semiannual 2015 Groundwater Monitoring Report, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. May 15.

California Regional Groundwater Quality Control Board, San Francisco Bay Region (SFRWQCB), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report. June.

SFRWQCB, 2016. User's Guide: Derivation and Application of Environmental Screening Levels, Interim Final – February 2016, Revision 3, May 23.

SFRWQCB, 2013. Water Quality Control Plan (Basin Plan), June 29.

State of California Department of Toxics Substance Control (DTSC), 2013 Frequently Asked Questions, 2012 Advisory – Active Soil Gas Investigations (ASGI), March.

State of California Department of Toxics Substance Control (DTSC) and California Regional Water Quality Control Board, Los Angeles Region (LARWQCB), 2015. *Advisory – Active Soil Gas Investigations*. July.

DTSC, 2011. Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October.

DTSC, 2009. Vapor Intrusion Mitigation Advisory, April (Section 6.3.4 revised May 8, 2009).

DTSC, 2008. Appendix L – Preliminary Environmental Assessment Workplan Sample. Preliminary Environmental Assessment Workplan, June 25.

Environmental Strategies Consulting, Inc. (ESC), 2005. *Groundwater Well Destruction at Former Clearprint Paper Company, Inc. Located at 1482 67th Street in Emergville, California*, June 23.

State of California Environmental Protection Agency (Cal EPA), 1995. *Drilling, Coring, Sampling and Logging at Hazardous Substance Release Sites.* Guidance Manual for Ground Water Investigations, July.

Cal EPA, 1995. Reporting Hydrogeologic Characterization Data from Hazardous Substance Release Sites. Guidance Manual for Ground Water Investigations, July.

Stellar Environmental Solutions, Inc., (Stellar), 2011. *Phase I Environmental Site Assessment, 6655 Hollis Street, Emeryville, California*, June.

California State Water Resources Control Board (SWRCB). 2012. Low-Threat Underground Storage Tank Closure Policy, August 17.

TABLES

Sample Name and Depth (feet	Date Sampled	ТРН-g	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B15-10-10.5	1/17/2013	ND <1.0	ND <1.0	ND <1.0	NA		ND < 0.005	ND < 0.005	0.012	ND <0.05	NA	NA	NA
B15-19.5-20	1/17/2013	ND <1.0	ND <1.0	2.7	NA		ND < 0.005		0.007	ND <0.05	NA	NA	NA
qualifiers				e2									
B16-8.5-9	1/17/2013	110	59	3.8	NA	0.84	4.8	2.8	13	ND < 0.50	NA	NA	NA
qualifiers		d1	d1	e4									
B16-11.5-12	1/17/2013	260	130	9.6	NA	2.9	16	5.7	24	ND <1.5	NA	NA	NA
qualifiers		d1	d1	e4									
B16-14.5-15	1/17/2013	140	84	3.7	NA	2.6	10	2.6	16	ND <1.0	NA	NA	NA
qualifiers		d1	d1	e4									
B17-8.5-9	1/16/2013	ND <1.0	ND <1.0	ND <1.0	ND <5.0		ND < 0.005	ND < 0.005	ND < 0.005	ND <1.0	NA	NA	NA
B18-10-10.5	1/16/2013	450	430	60	5.4	ND < 0.50	ND < 0.50	8.0	25	ND < 5.0	NA	NA	NA
qualifiers		d2, d9	d2, d9	e4, e2	e4, e2								
B18-15.5-16	1/16/2013	ND <1.0	ND <1.0	2.4	ND <5.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.05	NA	NA	NA
qualifiers		d1	d1	e2	e2								
B19-10-10.5	1/16/2013	360	350	32	ND <5.0	0.31	0.23	8.8	26	ND <1.0	NA	NA	NA
qualifiers		d1	d1	e4	e4								
B19-14.5-15	1/16/2013	240	240	11	ND <5.0	0.12	0.16	5.7	14	ND <1.0	NA	NA	NA
qualifiers		d1	d1	e4	e4								0.2 (1 (11
B20-10-10.5 qualifiers	1/17/2013	480	280 d1	90 e4	NA	2.2	17	7.1	42	ND <0.50	19	6.5	2.3 (n-butyl benzene) 3.3 (naphthalene) 0.67 (isopropylbenzene) 2.9 (n-propyl benzene) ND (others - varies)
B20-12-12.5 qualifiers	1/17/2013	2,000	1,200	24 e4	NA	8.0	92	35	210	ND <5.0	89	29	9.1 (n-butyl benzene) 14 (naphthalene) 13 (n-propyl benzene) ND (others -varies)

Sample Name and Depth (feet	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B20-14.5-15 qualifiers	1/17/2013	27	15 d1	5.1 e4	NA	0.72	1.5	0.37	2.2	0.28	0.66	0.21	0.17 (naphthalene) ND (others - varies)
B21-4.5-5	1/18/2013	280	410 d1	40 e2, e4	NA	ND <0.50	4.3 a13	3.2 a13	19 a13	0.98	13	4.1	3.3 (naphthalene) 1.8 (n-propyl benzene) 1.8 (n-butyl benzene) ND (others - varies) a13
B21-10-10.5 qualifiers	1/18/2013	1,900	1,200	180 e4	NA	12 a13	88 a13	31 a13	170 a13	7.6	68	23	7.0 (n-butyl benzene) 9.6 (naphthalene) 11 (n-propyl benzene) ND (others - varies) a13
B21-21.5-22	1/18/2013	120	340 d1	22 e4	NA	1.2 a13	4.9	1.8	11 a13	12	4.6	1.5	0.50 (n-butyl benzene) 0.77 (naphthalene) 0.67 (n-propyl benzene) ND (others - varies) a13
B22-4.5-5	1/18/2013	92	120 d1	9.1 e4	NA	0.16	ND <0.12	1.5 a13	6.3 a13	0.45	4.2	1.4	0.54 (n-butyl benzene) 0.13 (4-isopropyl toluene) 0.74 (naphthalene) 0.16 (isopropylbenzene) 0.74 (n-propyl benzene) ND (others - varies) a13
B22-10-10.5 qualifiers	1/18/2013	68	280 d1	17 e4	NA	0.79 a13	3.3 a13	1.2 a13	6.0 a13	3.1 a13	2.6	0.85	0.27 (n-butyl benzene) 0.47 (naphthalene) 0.39 (n-propyl benzene) ND (others - varies) a13

Sample Name and Depth (feet	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B22-14.5-15	1/18/2013	30	20	3.2	NA	1.2	1.7	0.46	2.1	1.2	0.81	0.26	0.11 (n-butyl benzene) 0.14 (naphthalene) 0.14 (n-propyl benzene) ND (others - varies)
qualifiers B23-5-5.5	1/17/2013	ND <0.25	d1 ND <1.0	e4 ND <1.0	NA	a13 ND <0.005	a13	a13 ND <0.005	a13	a13	ND <0.005	ND <0.005	a13 ND (varies)
B23-8.5-9	1/17/2013	0.57	ND <1.0	15	NA NA			ND < 0.005					ND (varies)
qualifiers	1/1//2013	0.57	ND ~1.0	e2, e7	IVA	ND <0.003	ND <0.003	ND <0.003	ND <0.003	ND <0.003	ND <0.003	ND ~0.003	ND (varies)
B24-4.5-5 qualifiers	1/18/2013	0.45	ND <1.0	1.8 e2	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	0.12	ND <0.005	ND <0.005	0.096 (acetone) 0.029 (2-butanone) ND (others - varies)
B24-8.5-9	1/18/2013	250	230 d1	44 e4	NA	0.53	6.8 a13	4.1 a13	23	0.53	10	3.5	1.2 (n-butyl benzene) 1.6 (naphthalene) 1.6 (n-propyl benzene) ND (others - varies) a13
B24-21.5-22	1/18/2013	1.6	4.2	2.2	NA	0.022	0.11	0.032	0.19	0.24	0.065	0.019	ND (others - varies)
qualifiers	3, 20, 20 2		d1	e2		a13	a13	a13	a13	a13	*****	****	a13
B25-10-10.5	1/16/2013	16	6.8	3.4	ND <5.0	0.0088	0.034	0.30	0.015	ND < 0.05	NA	NA	NA
qualifiers		d1	d1	e2	e2								
B25-15-15.5	1/16/2013	ND <1.0	ND <1.0	ND <1.0	ND <5.0	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.05	NA	NA	NA
AMW-1-6.5-7	8/2/2013	ND <1.0	ND <1.0	13	NA	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.05	NA	NA	NA
qualifiers				e7, e1									
AMW-1-12.5-13	8/2/2013	ND <1.0	ND <1.0	2.9	NA	ND < 0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA	NA	NA
qualifiers	8/2/2013	3.8	7.5	e7, e1	NA	ND <0.005	0.0053	0.0059	0.028	ND <0.05	NA	NA	NA
AMW-1-18.5-19	8/2/2013	3.8 d7	7.5 d7	1,900	NA	ND <0.005	0.0053	0.0059	0.028	ND <0.05	INA	NA	NA
qualifiers AMW-2-6.5-7	8/1/2013	ND <1.0	ND <1.0	e7, e1 ND <1.0	NA	ND < 0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA	NA	NA
A1V1 VV -2-U.3-/	0/1/2013	11D \1.0	11D \1.0	11D \1.0	INA	11D \0.003	11D \0.003	11D \0.003	11D \0.003	ND \0.03	INA	INA	INA

Sample Name and Depth (feet	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AMW-2-15.5-16	8/1/2013	430	440	83	NA	1.3	8.3	10	45	ND <2.0	NA	NA	NA
qualifiers		d1	d1	e4, e2									
AMW-2-23-23.5	8/1/2013	ND < 1.0	ND < 1.0	ND <1.0	NA	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.05	NA	NA	NA
AMW-3-6.5-7	8/2/2013	ND < 1.0	ND < 1.0	1.0	NA	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.005	ND < 0.05	NA	NA	NA
qualifiers				e7, e2									
AMW-3-9-9.5	8/2/2013	240	260	82	NA	0.26	1.3	5.1	18	0.90	NA	NA	NA
qualifiers		d1	d1	e4, e7, e2									
AMW-3-12-12.5	8/2/2013	41	44	28	NA	0.078	0.28	0.96	4.6	ND < 0.25	NA	NA	NA
qualifiers		d1	d1	e4, e2									
SB-26A-4.5-5	2/3/2016	ND (<0.25)	NA	NA	NA	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.0087	ND (<0.0050)	ND (other, varies)
SB-26A-9.5-10	2/3/2016	2.5	NA	NA	NA	0.086	ND (<0.010)	0.12	0.54	0.013	0.29	0.091	0.034 (n-Butyl benzene) 0.067 (Naphthalene) 0.047 (n-Propyl benzene)
SB-26A-11.5-12	2/3/2016	60	NA	NA	NA	0.56	3.4	1.2	6.7	ND (<0.20)	1.9	0.58	1.0 (Naphthalene) 0.24 (n-Propyl benzene) ND (other, varies)
SB-26A-20.5-21	2/4/2016	ND (<0.25)	NA	NA	NA	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.0071	ND (<0.0050)	ND (<0.0050)	ND (other, varies)
SVP-1-1.5-2	2/3/2016	1.1	NA	NA	NA	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.021	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (other, varies)
SVP-1-6.5-7	2/3/2016	3.0	NA	NA	NA	0.056	0.25	0.15	0.72	ND (<0.010)	0.28	0.090	0.015 (n-Butyl benzene) 0.011 (Isopropylbenzene) 0.036 (Naphthalene) 0.055 (n-Propyl benzene) ND (other, varies)
SVP-2-3-3.5	2/3/2016	2.3	NA	NA	NA	0.037	ND (<0.020)	0.057	0.53	ND (<0.020)	0.20	0.085	ND (other, varies)

Sample Name and Depth (feet	Date Sampled	ТРН-g	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SVP-2-6.5-7	2/3/2016	4.0	NA	NA	NA	0.34	0.90	0.18	1.2	ND (<0.025)	0.27	0.075	0.26 (Naphthalene) 0.026 (n-Propyl benzene) ND (other, varies)
SVP-3-6.5-7	2/3/2016	1.1	NA	NA	NA	0.060	0.052	0.032	0.20	0.21	0.085	0.023	0.18 (Naphthalene) ND (other, varies)
SVP-4-6.5-7	2/4/2016	54	NA	NA	NA	ND (<0.25)	ND (<0.25)	0.59	1.4	ND (<0.25)	3.6	0.97	0.81 (N-Butyl benzene) 1.0 (Naphthalene) 0.92 (n-Propyl benzene) ND (other, varies)
SVP-5-3.5-4	2/4/2016	3.9	NA	NA	NA	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.082	0.016	ND (<0.0050)	0.11 (TBA) 0.11 (n-Butyl benzene) 0.033 (sec-Butyl benzene) 0.016 (Isopropylbenzene) 0.11 (n-Propyl benzene) ND (other varies)
SVP-6-6.5-7	2/3/2016	0.45	NA	NA	NA	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.020	0.0092	0.029	ND (<0.0050)	ND (other, varies)
SFRWQ Commercial/Indu soil/groundwater: drinking v	ustrial ESLs, ≤10 feet bgs,	500 ON	500 ON	570 SL	5,100 GC	0.044 SL	2.9 SL	1.4 SL	2.3 SL	0.023 SL	NE	NE	0.5 (acetone) SL 0.033 (naphthalene) SL NE or varies (others)
SFRWQ Commercial/Indu soil >10 feet bgs, ≤10 feet bgs drii	ustrial ESLs, groundwater	500 ON	500 ON	570 SL	5,100 GC	0.044 SL	2.9 SL	1.4 SL	2.3 SL	0.023 SL	NE	NE	0.5 (acetone) SL 0.033 (naphthalene) SL NE or varies (others)
SFRWQ Commercial/Indu soil/groundwater: non-drinkin	ustrial ESLs, ≤10 feet bgs,	500 ON	500 ON	880 DE (CW)	5,100 GC	0.049 SL	9.3 SL	1.4 SL	11 SL	0.84 SL	NE	NE	0.5 (acetone) SL 3.9 (naphthalene) SL NE or varies (others)

TABLE 1

Summary of Soil Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample Name and Depth (feet bgs)	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	benzene	1,3,5- Trimethyl- benzene	Other VOCs
~ 8 ~/		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SFRWQ Commercial/Indu soil >10 feet bgs, ≤10 feet bgs, non-c	ustrial ESLs, groundwater	500 ON	500 ON	880 DE (CW)	5,100 GC	0.049 SL	9.3 SL	1.4 SL	11 SL	0.84 SL	NE	NE	0.5 (acetone) SL 3.9 (naphthalene) SL NE or varies (others)

Notes:

All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California

All results are reported in milligrams per kilogram (mg/kg)

TPH-g Total petroleum hydrocarbons gasoline range (C6-C12), Analytical Method SW8021B/8015Bm for soil samples collected from borings B15, B16, B17,

B18, B19, B25, AMW-1, AMW-2 and AMW-3; Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23, and B24

TPH-ms Total petroleum hydrocarbons mineral spirits range (C9-C12), Analytical Method SW8021/8015Bm

TPH-d Total petroleum hydrocarbons as diesel (C10-C23), Analytical Method SW8015B with silica gel cleanup

TPH-mo Total petroleum hydrocarbons as motor oil (C18-C36), Analytical Method SW8015B with silica gel cleanup

MTBE Methyl tertiary butyl ether, Analytical Method SW8021B/8015Bm for soil samples collected from borings B15, B16, B17, B18, B19, B25, AMW-1,

AMW-2, and AMW-3; Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23 and B24

BTEX Benzene, Toluene, Ethylbenze and Total Xylenes by Analytical Method SW8021B/8015Bm for soil samples collected from borings B15, B16, B17, B18,

B19, B25, AMW-1, AMW-2 and AMW-3; Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23 and B24, SB-26 and SVP-1 through SVP-6.

VOCs Volatile organic compounds, Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23 and B24, SB-26 and SVP-1 through SVP-6 only.

TBA t-Butyl alcohol

ND (<1.0) Not detected at or above listed reporting limit

NE Not established

Laboratory Qualifiers:

- L lighter hydrocarbons contributed to the quantitation
- Y sample exhibits chromatographic pattern which does not resemble standard
- a13 reporting limit raised due to low density sample

^{*} Analysis not requested by AllWest but performed anyway where listed

TABLE 1

Summary of Soil Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample Name and Depth (feet	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)						

- d1 weakly modified or unmodified gasoline is significant
- el unmodified or weakly modified diesel is significant
- e2 diesel range compounds are significant; no recognizable pattern
- e4 gasoline-range compounds are significant
- e7 oil-range compounds are significant

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater IS a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs), Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow and deep soil depths \(\leq 10 ft \) bgs and \(> 10 ft \) bgs for direct exposure.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is NOT a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs), Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow and deep soil depths (≤10 ft bgs) for direct exposure.

DE (**COM**) = Direct Exposure Human Health Risk Levels, Commercial/Industrial Land Use (*Table S-1 - Direct Exposure Human Health Risk Levels*)

DE (CW) = Direct Exposure Human Health Risk Levels, Construction Worker/Any Land Use (Table S-1 - Direct Exposure Human Health Risk Levels)

ON = Taste and Odor Nuisance Screening Level (*Table S-4 - Odor Nuisance Levels*)

SL = Soil Leaching Screening Level (*Table S-2 - Leaching to Groundwater Levels*)

GC = Gross Contamination Screening Level (Table S-3 - Gross Contamination Levels)

TABLE 2 Summary of Soil Analytical Data PNAs/PAHs

Sample Name and Depth (feet bgs)	Date Sampled	Benzo (a) anthracene	Chrysene	Fluoranthene		2-Methylnaphthalene	-	Phenanthrene	Pyrene	Other PNAs/PAHs
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B15-10-10.5	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
B15-19.5-20	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
B16-8.5-9	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.097	0.19	0.23	ND < 0.01	ND < 0.01	ND < 0.01
B16-11.5-12	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.082	0.15	0.15	ND < 0.01	ND < 0.01	ND < 0.01
B16-14.5-15	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.039	0.069	0.075	ND < 0.01	ND < 0.01	ND < 0.01
B17-8.5-9	1/16/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
B18-10-10.5	1/16/2013	ND < 0.10	ND < 0.10	ND < 0.10	0.69	1.1	0.47	ND < 0.10	ND < 0.10	ND < 0.10
B18-15.5-16	1/16/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
B19-10-10.5	1/16/2013	ND < 0.10	ND < 0.10	ND < 0.10	0.48	0.76	0.72	ND < 0.10	ND < 0.10	ND < 0.10
B19-14.5-15	1/16/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.26	0.50	0.50	0.014	ND < 0.01	ND < 0.01
B20-10-10.5	1/17/2013	ND < 0.20	ND <0.20	ND < 0.20	1.7	2.9	4.5	ND <0.20	ND < 0.20	ND <0.20
B20-12-12.5	1/17/2013	ND < 0.20	ND <0.20	ND < 0.20	2.5	4.3	7.1	ND <0.20	ND < 0.20	ND <0.20
B20-14-14.5	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.085	0.16	0.22	ND < 0.01	ND < 0.01	ND < 0.01
B21-4.5-5	1/18/2013	ND < 0.10	ND < 0.10	ND < 0.10	0.87	1.4	1.6	ND < 0.10	ND < 0.10	ND < 0.10
B21-10-10.5	1/18/2013	ND < 0.20	ND < 0.20	ND < 0.20	2.1	3.7	5.0	ND <0.20	ND < 0.20	ND <0.20
B21-21.5-22	1/18/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.27	0.50	0.43	ND < 0.01	ND < 0.01	ND < 0.01
B22-4.5-5	1/18/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.13	0.24	0.15	ND < 0.01	ND < 0.01	ND < 0.01
B22-10-10.5	1/18/2013	ND < 0.050	ND < 0.050	ND < 0.050	0.26	0.41	0.67	ND < 0.050	ND < 0.050	ND < 0.050
B22-14.5-15	1/18/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.024	0.044	0.058	ND < 0.01	ND < 0.01	ND < 0.01
B23-5-5.5	1/17/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
B23-8.5-9	1/17/2013	ND < 0.01	ND < 0.015	0.016	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	0.018	ND < 0.01
B24-4.5-5	1/18/2013	ND < 0.01	ND < 0.01	ND < 0.01	0.013	0.025	0.029	ND < 0.01	ND < 0.01	ND <0.01
B24-8.5-9	1/18/2013	ND < 0.10	ND < 0.10	ND < 0.10	0.59	0.95	0.85	ND < 0.10	ND < 0.10	ND < 0.10
B24-21.5-22	1/18/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	0.014	ND < 0.01	ND < 0.01	ND < 0.01
B25-10-10.5	1/16/2013	0.013	0.013	0.037	0.014	0.028	0.012	0.043	0.033	ND < 0.01
B25-15-15.5	1/16/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND <0.01	ND < 0.01	ND < 0.01	ND < 0.01
AMW-1-6.5-7	8/2/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND <0.01	ND < 0.01	ND < 0.01	ND < 0.01
AMW-1-12.5-13	8/2/2013	ND < 0.01	ND <0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND <0.01	ND < 0.01	ND < 0.01

TABLE 2 Summary of Soil Analytical Data PNAs/PAHs

Sample Name and Depth (feet bgs)	Date Sampled	Benzo (a) anthracene	Chrysene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
Depth (feet bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AMW-1-18.5-19	8/2/2013	ND <1.0	ND <1.0	ND <1.0	1.2	1.5	ND <1.0	1.4	ND <1.0	ND <1.0
AMW-2-6.5-7	8/1/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
AMW-2-15.5-16	8/1/2013	ND < 0.20	ND <0.20	ND <0.20	1.4	2.4	2.5	ND <0.20	ND < 0.20	ND < 0.20
AMW-2-23-23.5	8/1/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
AMW-3-6.5-7	8/2/2013	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01
AMW-3-9-9.5	8/2/2013	ND < 0.10	ND < 0.10	ND < 0.10	0.93	1.6	1.2	ND < 0.10	ND < 0.10	ND < 0.10
AMW-3-12-12.5	8/2/2013	ND < 0.050	ND < 0.050	ND < 0.050	0.30	0.51	0.37	ND < 0.050	ND < 0.050	ND <0.050
SFRWQCB Commercial/Industrial ESLs, soil/groundwater ≤10 feet bgs, drinking water		2.9 DE (COM)	3.8 SL/GC	60 SL/GC	NE	0.25 SL	0.033 SL	11 SL	85 SL/GC	Vary
Commercial/Indus soil >10 feet bgs, g	SFRWQCB Commercial/Industrial ESLs, soil >10 feet bgs, groundwater ≤10 feet bgs drinking water		3.8 SL/GC	60 SL/GC	NE	0.25 SL	0.033 SL	11 SL	85 SL/GC	Vary
SFRWQCB Commercial/Industrial ESLs, soil/groundwater ≤10 feet bgs, non-drinking water		ercial/Industrial ESLs, undwater ≤10 feet bgs, DE (COM) SL/0		60 SL/GC	NE	0.25 SL	3.9 SL	11 SL	85 SL/GC	Vary
SFRWQC Commercial/Indus soil >10 feet bgs, g ≤10 feet bgs, non water	trial ESLs, roundwater	12 SL/GC	3.8 GC	60 SL/GC	NE	0.25 SL	3.9 SL	11 SL	85 SL/GC	Vary

TABLE 2 Summary of Soil Analytical Data PNAs/PAHs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample Name and Depth (feet bgs)	Date Sampled	Benzo (a) anthracene	Chrysene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
Depth (feet bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)

Notes:

All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California All results are reported in milligrams per kilogram (mg/kg)

PNAs/PAHs

Polynuclear Aromatic Hydrocarbons/Polycyclic Aromatic Hydrocarbons,

Analytical Method SW8270C-SIM

ND < 0.01 Not detected at or above listed reporting limit

NE Not established

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater IS a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow and deep soil depths (≤10 ft bgs) for direct exposure.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is NOT a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow and deep soil depths (≤10 ft bgs and >10 ft bgs) for direct exposure.

DE (**COM**) = Direct Exposure Human Health Risk Levels, Commercial/Industrial Land Use (*Table S-1 - Direct Exposure Human Health Risk Levels*)

DE (CW) = Direct Exposure Human Health Risk Levels, Construction Worker/Any Land Use (Table S-1 - Direct Exposure Human Health Risk Levels)

ON = Taste and Odor Nuisance Screening Level (*Table S-4 - Odor Nuisance Levels*)

SL = Soil Leaching Screening Level (*Table S-2 - Leaching to Groundwater Levels*)

GC = Gross Contamination Screening Level (*Table S-3 - Gross Contamination Levels*)

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(μg/L)
MW-3	10/17/1995	8,600	ND <100	220	NA	730	2,100	270	1,400	NA	NA
MW-3 qualifiers	8/22/2005	39,000	NA	2,500 L,Y	NA	3,100	3,800	1,100	4,700	7,200	Oxygenates - ND (varies)
MW-3 qualifiers	12/20/2005	54,000	NA	2,600 L,Y	NA	6,000	10,000	1,700	9,600	12,000	Oxygenates - ND (varies)
MW-3	8/2/2012	27,000	14,000 d1	33,000 e4, e2	680 e4, e2	1,300	3,800	400	4,500	630	400 (TBA) 110 (trans-1,3-dichloropropene) 250 (naphthalene) 1,100 (1,2,4-trimethylbenzene) 280 (1,3,5-trimethylbenzene) ND (others - varies)
MW-3	12/18/2012	21,000	12,000 d1	2,600 e4	ND <250 e4	830	1,400	450	2,600	840	140 (naphthalene) 630 (1,2,4-trimethylbenzene) 78 (n-propyl benzene) 190 (1,3,5-trimethylbenzene) ND (others - varies)
MW-3	6/27/2013	18,000	NA	2,300 e4	NA	1,900	2,000	540	2,700	1,900	520 (TBA) 170 (naphthalene) 650 (1,2,4-trimethylbenzene) 84 (n-propyl benzene) 200 (1,3,5-trimethylbenzene) ND, reporting limits vary (others)

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-3	8/7/2013	130,000 d1, b6	54,000 d1, b6	24,000 e4, b6	NA	9,800 b6, c8	16,000 b6, c8	4,200 b6, c8	24,000 b6, c8	6,300 b6, c8	1,100 (naphthalene) 5,200 (1,2,4-trimethylbenzene) 620 (n-propyl benzene) 1,500 (1,3,5-trimethylbenzene) others ND. reporting limits varv b6, c8
MW-3	11/6/2013	49,000	19,000	6,400	NA	3,200	4,900	2,100	11,000	2,600	700 (TBA), 140 (n-butyl benzene), 130 (isopropylbenzene), 690 (naphthalene), 460 (n-propyl benzene), 3,200 (1,2,4- trimethylbenzene) 1,000 (1,3,5- trimethylbenzene), others ND, reporting limits vary
qualifiers MW-3 qualifiers	3/19/2014	d1, b6 87,000 d1	d1, b6 40,000 d1	e4 11,000	NA	5,500	7,200	2,000	11,000	4,400	c8 1,500 (TBA), 480 (naphthalene), 340 (n-propyl benzene), 2,600 (1,2,4-trimethylbenzene) 780 (1,3,5-trimethylbenzene), others ND, reporting limits vary
MW-3	6/20/2014	54,000 d1	26,000 d1	12,000 e4	NA	1,100	ND <100	ND <100	5,700	2,700	790 (TBA), 420 (naphthalene), 2,300 (1,2,4-trimethylbenzene) 610 (1,3,5-trimethylbenzene), others ND, reporting limits vary

Sample / Field Point	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-3	2/28/2015	84,000 d1	21,000 d1	1,400 e4	NA	7,700	4,700	1,300	6,000	5,200	3,400 (TBA), 430 (naphthalene), 150 (n-propyl benzene), 1,400 (1,2,4-trimethylbenzene), 380 (1,3,5-trimethylbenzene), others ND. reporting limits vary
B15	1/17/2013	1,900 b1	1,300 d1, b1	740 e4, b1	NA	3.1 b1	32 b1	24	160 b1	ND <1.2	9.8 (n-butyl benzene) 27 (naphthalene) 100 (1,2,4-trimethylbenzene) 1.8 (sec-butyl benzene) 2.6 (isopropylbenzene) 12 (n-propyl benzene) 53 (TCE) 33 (1,3,5-trimethylbenzene) ND (others - varies) b1
B16 qualifiers	1/17/2013	47,000	ND <5,000 d1, b1	6,300 e4, b1	NA	2,200	5,700	1,100	5,800	900 b1	190 (napthalene) 1,600 (1,2,4-trimethylbenzene) 180 (n-propyl benzene) 460 (1,3,5-trimethylbenzene) ND (others - varies) b1
B17	1/16/2013	190	ND <50	320	NA	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND - varies
qualifiers		b1	b1	e7, e2, b1		b1	b1	b1	b1	b1	b1

Sample / Field Point	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
B18	1/16/2013	8,300 b1	4,800 d2, b1	1,500 e4, b1	NA	17	ND <12	290	1,100	ND <12	64 (naphthalene) 380 (1,2,4-trimethylbenzene) 15 (isopropylbenzene) 57 (n-propyl benzene) 100 (1,3,5-trimethylbenzene) ND (others - varies)
quanners		01	u2, 01	C4, U1		01	01	01	UI	01	27 (n-butyl benzene)
B19 qualifiers	1/16/2013	5,000 b1	3,000 d2, b1	1,300 e4, b1	NA	6.5	ND <5.0	150	350 b1	ND <5.0	44 (naphthalene) 290 (1,2,4-trimethylbenzene) 7.3 (sec-buytl benzene) 14 (isopropylbenzene) 57 (n-propyl benzene) 89 (1,3,5-trimethylbenzene) ND (others - varies) b1
B20	1/17/2013	160,000	22,000	95,000	NA	21,000	47,000	3,700	21,000	2,300	1,800 (1,2,4-trimethylbenzene)
qualifiers		b1, b6	b1, b6, d1	b1, b6, e4		b1, b6	b1, b6	b1, b6	b1, b6	b1, b6	ND (others - varies) b1, b6
B21 qualifiers	1/18/2013	41,000	16,000 d1	3,900 e4	NA	ND <2,500	6,100	ND <2,500	6,200	140,000	ND (varies)
B22	1/18/2013	110,000	17,000	8,800 e4	NA	7,700	26,000	3,500	21,000	8,100	910 (naphthalene) 2,300 (1,2,4-trimethylbenzene) 590 (1,3,5-trimethylbenzene) ND (others - varies)

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other VOCs
Name		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)
B23	1/17/2013	170	160	140	NA	ND <0.5	1.3	1.3	5.0	1.8	0.96 (n-butyl benzene) 2.1 (naphthalene) 3.0 (1,2,4-trimethylbenzene) 1.3 (sec-butyl benzene) 3.8 (isopropylbenzene) 9.3 (n-propyl benzene) 0.76 (1,3,5-trimethylbenzene) ND (others - varies)
qualifiers		b1	b1, d1	b1, e2, e4		b1	b1	bl	b1	bl	b1
B24 qualifiers	1/18/2013	17,000	7,600 d1	8,800 e4	NA	340	2,100	520	2,800	2,500	130 (naphthalene) 710 (1,2,4-trimethylbenzene) 87 (n-propyl benzene) 220 (1,3,5-trimethylbenzene) ND (others - varies)
B25	1/16/2013	270	87	340 e7, e4, e2,	NA	ND <0.5	ND <0.5	4.3	1.4	23	2.4 (2-butanone) 0.55 (1,2-DCA) 3.0 (naphthalene) 4.8 (1,2,4-trimethylbenzene) 1.5 (1,1-dichloroethene) 1.5 (n-propyl benzene) 0.83 (TCE) 1.0 (1,3,5-trimethylbenzene) ND (others - varies)
qualifiers		b1	d2, b1	67, e4, e2, b1		c8, b1	c8, b1	c8, b1	c8, b1	c8, b1	c8, b1

3/7/2013 1/6/2013 /19/2014	(μg/L) ND <50 b1 ND <50 c4 ND <50	(μg/L) ND <50 b1 ND <50 c4	(μg/L) 110 e7, e1, b1 ND <50	(μg/L) NA NA	(μg/L) ND <1.2 b1 ND <1.0	(μg/L) ND <1.2 b1 ND <1.0	(μg/L) ND <1.2 b1 ND <1.0	(μg/L) ND <1.2 b1 ND <1.0	(μg/L) 2.5 b1 2.4	(μg/L) 2.0 (1,1-dichloroethane) 39 (1,1-dichloroethene) 7.3 (TCE) ND (others, reporting limits vary) b1 2.0 (1,1-dichloroethane), 50 (1,1-dichloroethene), 7.6 (TCE), ND
1/6/2013	b1 ND <50 c4	b1 ND <50 c4	e7, e1, b1		bl	b1	b1	b1	b1	39 (1,1-dichloroethene) 7.3 (TCE) ND (others, reporting limits vary) b1 2.0 (1,1-dichloroethane), 50 (1,1-
	ND <50 c4	ND <50 c4		NA						b1 2.0 (1,1-dichloroethane), 50 (1,1-
	c4	c4	ND <50	NA	ND <1.0	ND <1.0	ND <1.0	ND <1.0	2.4	
/19/2014										(others, reporting limits vary)
		ND <50	ND <50	NA	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	83 (1,1-dichloroethene), 7.2 (TCE), ND (others, reporting limits vary)
	c2, b1	c2, b1	b1		b1	b1	b1	b1	b1	b1
/20/2014	ND <50 c2, S	ND <50 c2, S	ND <100	NA	ND <1.0	ND <1.0	ND <1.0	ND <1.0	2.3	1.8 (1,1-dichloroethane), 21 (1,1-dichloroethene), 5.4 (TCE), ND (others, reporting limits vary)
/28/2015	ND <50	ND <50	ND <50	NA	ND <0.50	ND <0.50	ND <0.50	ND <0.50	2.1	2.1 (1,1-dichloroethane), 0.82 (1,2-DCA), 36 (1,1-dichloroethene), 0.59 (DIPE), 0.59 (PCE), 6.8 (TCE), ND (others, reporting limits vary)
3/7/2013	1,300	550	210	NA	66	74	48	280	350	22 (naphthalene) 46 (1,2,4-trimethylbenzene) 6.4 (n-propyl benzene) 29 (1,3,5-trimethylbenzene ND (others. reporting limits varv) b1
		2015 ND <50 2013 1,300	2015 ND <50 ND <50 2013 1,300 550	/2015 ND <50 ND <50 ND <50	2015 ND <50 ND <50 ND <50 NA 2013 1,300 550 210 NA	2015 ND <50 ND <50 ND <50 NA ND <0.50 2013 1,300 550 210 NA 66	2015 ND <50 ND <50 ND <50 NA ND <0.50 ND <0.50 210 NA 66 74	2015 ND <50 ND <50 ND <50 NA ND <0.50 ND <0.50 ND <0.50 2013 1,300 550 210 NA 66 74 48	2015 ND <50 ND <50 ND <50 NA ND <0.50 ND <0.50 ND <0.50 ND <0.50 ND <0.50 ND <0.50	2015 ND <50 ND <50 ND <50 NA ND <0.50 ND <0.50 ND <0.50 ND <0.50 2.1 2013 1,300 550 210 NA 66 74 48 280 350

Sample / Field Point	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)
AMW-2	11/6/2013	2,200	1,400	330	NA	130	16	120	270	330	7.2 (n-butyl benzene), 7.2 (isopropylbenzene), 54 (naphthalene), 23 (n-propyl benzene), 150 (1,2,4- trimethylbenzene), 49 (1,3,5- trimethylbenzene, ND (others, reporting limits vary)
AMW-2	3/19/2014	550	430	190	NA	30	ND <5.0	17	19	300	14 (naphthalene), 6.2 (n-propyl benzene), 38 (1,2,4-trimethylbenzene), 6.0 (1,3,5-trimethylbenzene, ND (others, reporting limits varv)
AMW-2	6/20/2014	370 d1	270 d1	110 e4	NA	22	ND <5.0	11	44	380	8.4 (naphthalene), 40 (1,2,4- trimethylbenzene), ND (others, reporting limits vary)
AMW-2 qualifiers	2/28/2015	120 d1	77 d1	ND <50	NA	5.1	ND <5.0	ND <5.0	5.1	260	7.4 (1,2,4-trimethylbenzene), ND (others, reporting limits vary)

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
AMW-3	8/7/2013	2,000 d1, b1	1,000 d1, b1	340 e4, e2, b1	NA	17	72	83	360	ND <5.0	7.4 (n-butyl benzene) 18 (naphthalene) 76 (1,2,4-trimethylbenzene) 5.2 (1,1-dichloroethane) 140 (1,1-dichloroethene) 18 (n-propyl benzene) 5.3 (1,1,1-trichloroethane) 20 (TCE) 39 (1,3,5-trimethylbenzene) ND (others reporting limits vary)
AMW-3	11/6/2013	110 d1, c4	99 d1, c4	130 e4	NA	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	5.4 (1,1-dichloroethane), 180 (1,1-dichloroethene), 6.1 (1,1,1-trichloroethane), 22 (TCE), ND (others, reporting limits vary)
AMW-3	3/19/2014	140 d1, c4	110 d1, c4	130 e4	NA	ND <5.0	ND <5.0	9.3	ND <5.0	ND <5.0	240 (1,1-dichloroethene), 9.0 (naphthalene), 19 (TCE), ND (others, reporting limits vary) c8
AMW-3	6/20/2014	320 d1, c4, S	250 d1, c4, S	220	NA	13	ND <2.5	44	2.9	ND <2.5	3.4 (1,1-dichloroethane), 74 (1,1-dichloroethene), 12 (naphthalene), 7.5 (n-propyl benzene), 2.8 (1,1,1-trichloroethane), 9.9 (TCE), 6.8 (1,2,4-trimethylbenzene), ND (others, reporting limits vary)

Sample / Field Point	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
AMW-3	2/28/2015	770 d1, c4	560 d1, c4	240	NA	7.4	3.0	28	100	ND <2.5	4.4 (n-butyl benzene), 3.6 (1,1-dichloroethane), 77 (1,1-dichloroethene), 3.1 (isopropylbenzene), 16 (naphthalene), 8.9 (n-propylbenzene), 4.0 (1,1,1-trichloroethane), 13 (TCE), 57 (1,2,4-trimethylbenzene), 17 (1,3,5-trimethylbenzene), ND (others, reporting limits vary)
SB-26	2/4/2016	1,700	NA	NA	NA	310	300	85	370	170	7.9 (Naphthalene) 7.8 (n-Propyl benzene) 18 (TCE) 67 (1, 2, 4-Trimethylbenzene) 21 (1, 3, 5-Trimethylbenzene) ND (other varies)
Commercia	VQCB al/Industrial king water*	100 ON	100 ON	100 ON	50,000 GC	1.0 DE	40 DE/ON	30 DE/ON	20 DE/ON	5.0 DE/ON	0.5 (1,2-DCA) DE 12 (TBA) DE 5.0 (TCE) DE 0.5 (1,3-dichloropropene) DE 0.17 (naphthalene) DE NE or varies (others)
Commercia ESLs, no	WQCB al/Industrial n-drinking ter*	640 AHG	640 AHG	640 AHG	50,000 GC	9.7 VI	130 AHG	43 AHG	100 AHG	180 ON	53 (1,2-DCA) VI 18,000 (TBA) AHG 49 (TCE) VI 33 (1,3-dichloropropene) VI 24 (naphthalene) AHG NE or vary (others)

Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	ТРН-то	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
Commerci	WQCB al/Industrial or intrusion	NE	NE	NE	NE	9.7 VI	30,000 VI	110 VI	11,000 VI	11,000 VI	53 (1,2-DCA) 49 (TCE) VI 33 (1,3-dichloropropene) VI 170 (naphthalene) VI NE or vary (others)

Notes:

All results are reported in micrograms per liter (µg/L) [equivalent to parts per billion (ppb)], except where noted.

1,2-DCA 1,2-dichloroethane, Analytical Method SW8260B

TCE trichloroethene, Analytical Method SW8260B

TPH-g Total petroleum hydrocarbons as gasoline, Analytical Method SW8260B, except samples collected on 10/17/95, 8/22/05 and 12/20/05 Analytical Method SW8015

TPH-ms Total petroleum hydrocarbons Mineral Spirits Range (C9-C12), Analytical Method SW8015Bm

TPH-d Total petroleum hydrocarbons as diesel, C10-C23, Analytical Method SW8015B with silica gel cleanup

TPH-mo Total petroleum hydrocarbons as motor oil, C18-C36, Analytical Method SW8015B with silica gel cleanup

MTBE Methyl tertiary butyl ether, Analytical Method SW8260B

TBA Tertiary butyl alcohol, Analytical Method SW8260B

BTEX Benzene, Toluene, Ethylbenzene, Xylenes, Analytical Method SW8021B on 10/17/95 only; Analytical Method SW8260B on all other dates

VOCs Volatile organic compounds, Analytical Method SW8260B

ND <100 Not detected at or above listed reporting limit

NE Not established NA Not analyzed

Laboratory Qualifiers:

 \boldsymbol{L} - lighter hydrocarbons contributed to the quantitation

Y - sample exhibits chromatographic pattern which does not resemble standard

Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample / Field Point	Date Sampled	ТРН-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)

- b1 aqueous sample that contains greater than ~1 vol. % sediment
- b6 lighter than water immiscible sheen/product is present
- c8 sample pH is greater than 2
- d1 weakly modified or unmodified gasoline is significant
- d2 heavier gasoline range compounds are significant (aged gasoline?)
- e2 diesel range compounds are significant; no recognizable pattern
- e4 gasoline-range compounds are significant
- e7 oil range compounds are significant

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater IS a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016. These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow soil depths (<10 ft bgs) for direct exposure and vapor intrusion.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is NOT a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow soil depths (<10 ft bgs) for direct exposure and vapor intrusion.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion (Volatile Chemicals Only) for commercial/industrial land use were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow soil depths (<10 ft bgs) for direct exposure and vapor intrusion.

* The subject site lies within the City of Emeryville, where groundwater use as a drinking water resource is currently prohibited by City ordinance due to widespread regional contamination, and no plans exist for future benefical groundwater use.

Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample / Field Point	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)

^{**} Residential vapor intrusion ESL - commercial ESL for vapor intrusion not established, soil gas sampling recommended.

ON = Taste and Odor Nuisance Screening Level (*Table GW-5 - Odor Nuisance Levels*)

VI = Vapor Intrusion Human Health Risk Screening Level (*Table GW-3 - Groundwater Vapor Intrusion Human Health Risk Levels*)

GC = Gross Contamination Screening Level (*Table GW-4 - Gross Contamination Levels*)

AHG = Ecological Aquatic Habitat Screening Level (*Table GW-2 - Aquatic Habitat Goal Levels*)

TABLE 4 Summary of Groundwater Analytical Data PNAs/PAHs

Sample / Field Point Name	Date Sampled	Benzo (a) anthracene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs	
		(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
B15	1/17/2013	ND < 0.5	ND <0.5	ND < 0.5	ND < 0.5	ND <0.5	ND < 0.5	ND < 0.5	ND < 0.5	
(qualifiers)	b1									
B16	1/17/2013	NA	NA	NA	NA	NA	NA	NA	NA	
B17	1/16/2013	ND < 0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	
		1,5 0.0	110 10.3		112 0.0	112 0.0	1.2 0.0	1,2 0.0	1,2 0.0	
(qualifiers)	b1	ND 47.0	ND 15.0	22	26		ND 45.0	NID 5. 0	NID 7. 0	
B18	1/16/2013	ND <5.0	ND <5.0	22	36	67	ND <5.0	ND <5.0	ND < 5.0	
(qualifiers)	b1) ID 0.5	375 0.5			2	375 0.5		115 0.5	
B19	1/16/2013	ND <0.5	ND < 0.5	15	27	0.67	ND < 0.5	ND < 0.5	ND < 0.5	
(qualifiers)	b1					1,700				
B20	1/17/2013	ND <50	ND <50	460	460 750		ND <50	ND <50	ND <50	
(qualifiers)	b1									
B21	1/18/2013	NA	NA	NA	NA	NA	NA	NA	NA	
B22	1/18/2013	ND <50	ND <50	280	420	1,300	ND <50	ND <50	ND <50	
B23	1/17/2013	0.56	0.94	ND < 0.5	ND < 0.5	ND < 0.55	0.75	1.0	ND < 0.5	
(qualifiers)	b1									
B24	1/18/2013	ND < 5.0	ND <5.0	20	30	80	ND < 5.0	ND < 5.0	ND < 5.0	
B25	1/16/2013	ND < 0.5	ND < 0.5	4.4	6.8	12	0.88	ND < 0.5	ND < 0.5	
(qualifiers)	b1									
MW-3	8/7/2013	ND <50	ND <50	390	710	890	ND <50	ND <50	ND <50	
qualifiers	b6									
MW-3	11/6/2013	ND <25	ND <25	330	620	1,100	ND <25	ND <25	ND <25	

TABLE 4 Summary of Groundwater Analytical Data PNAs/PAHs

Sample / Field Point Name	Date Sampled	Benzo (a) anthracene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs		
		(μg/L)	$(\mu g/L) \hspace{1cm} (\mu g/L) \hspace{1cm} (\mu g/L)$		(µg/L)	(μg/L)	(μg/L)	(µg/L)	$(\mu g/L)$ $(\mu g/L)$		
qualifiers	c1										
MW-3	3/19/2014	ND <10	ND <10	80	150	360	ND <10	ND <10	ND <10		
MW-3	6/20/2014	ND <21	ND <21	110	210	410	ND <21	ND <21	ND <21		
MW-3	2/28/2015	ND <25	ND <25	700	1,400	1,100	ND <25	ND <25	ND <25		
qualifiers	c1										
AMW-1	8/7/2013	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5		
qualifiers	b1										
AMW-1	11/6/2013	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND <0.50 ND <0.50		ND < 0.50		
AMW-1	3/19/2014	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND	ND < 0.50		
AMW-1	6/20/2014	ND <2.1	ND <2.1	ND <11	ND <2.1	ND <2.1	ND <2.1	ND <2.1	ND <2.1		
AMW-1	2/28/2015	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND	ND < 0.50		
AMW-2	8/7/2013	ND < 0.5	ND < 0.5	1.5	1.6	7.7	ND < 0.5	ND < 0.5	ND < 0.5		
qualifiers	b1										
AMW-2	11/6/2013	ND < 0.50	ND < 0.50	5.4	9.2	26	ND < 0.50	ND	ND < 0.50		
AMW-2	3/19/2014	ND < 0.50	ND < 0.50	2.3	2.6	13	ND < 0.50	ND	ND < 0.50		
AMW-2	6/20/2014	ND <2.1	ND <2.1	ND <10	ND <2.1	2.1	ND <2.1	ND <2.1	ND <2.1		
AMW-2	2/28/2015	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	0.96	ND < 0.50	ND	ND < 0.50		
AMW-3	8/7/2013	ND < 0.5	ND < 0.5	3.2	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5		
qualifiers	b1										
AMW-3	11/6/2013	ND < 0.50	ND < 0.50	1.5	2.6	7.5	ND < 0.50	ND	ND < 0.50		
AMW-3	3/19/2014	ND < 0.50	ND < 0.50	2.7	2.8	6.3	ND < 0.50	ND	ND < 0.50		
AMW-3	6/20/2014	ND <1.5	ND < 1.5	ND <7.4	ND <1.5	2.3	ND <1.5	ND < 1.5	ND < 1.5		
AMW-3	2/28/2015	ND < 0.50	ND < 0.50	4.4	6.7	9.4	ND < 0.50	ND	ND < 0.50		

TABLE 4 Summary of Groundwater Analytical Data PNAs/PAHs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample / Field Point Name	Date Sampled	Benzo (a) anthracene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
		(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
Commerci	WQCB al/Industrial king water*	0.027 AHG	8.0 NE		2.1 AHG	0.17 DE	4.6 AHG	2.0 AHG	Vary
Commerci ESLs, no	WQCB al/Industrial n-drinking tter*	0.027 AHG	8.0 AHG	NE	2.1 AHG	24 AHG	4.6 AHG	2.0 AHG	Vary
Commerci	WQCB al/Industrial or intrusion	NE	NE	NE	NE	170 VI	NE	NE	Vary

Notes:

All results are reported in micrograms per liter ($\mu g/L$) [equivalent to parts per billion (ppb)], except where noted.

All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California

 $PNAs/PAHs = Polynuclear\ Aromatic\ Hydrocarbons/Polycyclic\ Aromatic\ Hydrocarbons\ by\ analytical\ method\ SW8270C-SIM$

ND (<0.5) - Not detected at or above listed reporting limit

NE - Not established

Laboratory Qualifiers:

- b1 Aqueous sample that contains greater than ${\sim}1$ vol. % sediment
- b6 Lighter than water immiscible sheen/product is present.

Summary of Groundwater Analytical Data PNAs/PAHs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 15179.23

Sample Field Po Name	nt Date Sampled	Benzo (a) anthracene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
		(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater IS a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow soil depths (<10 ft bgs) for direct exposure and vapor intrusion.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is NOT a potential drinking water resource were established using the site-specific Tier 2 Interactive Tool, *Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs)*, Interim Final, February 22, 2016, Revision 3 (May 23, 2016). These ESLs were established with the following assumptions: Commercial property use, a 'sand scenario' soil type, shallow groundwater (<10 ft below ground surface (bgs)), and shallow soil depths (<10 ft bgs) for direct exposure and vapor intrusion.

- **ON** = Taste and Odor Nuisance Screening Level (*Table GW-5 Odor Nuisance Levels*)
- VI = Vapor Intrusion Human Health Risk Screening Level (Table GW-3 Groundwater Vapor Intrusion Human Health Risk Levels)
- **GC** = Gross Contamination Screening Level (*Table GW-4 Gross Contamination Levels*)
- **AHG** = Ecological Aquatic Habitat Screening Level (*Table GW-2 Aquatic Habitat Goal Levels*)
 - * The subject site lies within the City of Emeryville, where groundwater use as a drinking water resource is currently prohibited by City ordinance due to widespread regional contamination, and no plans exist for future benefical groundwater use.

TABLE 5 Summary of Soil Vapor Analytical Data

Former McGrath Steel 6655 Hollis Street Emeryville, California

AllWest Project No. 15179.23/16076.23

Sample Number	Date	Sample Depth feet bgs	TPH-g μg/m³	Benzene µg/m³	Ethyl- benzene μg/m³	Isopropanol µg/m³	4-Ethyltoluene μg/m³	Toluene μg/m³	Xylenes (Total)* μg/m³	Napthalene μg/m³	1,2,4- Trimethyl- benzene µg/m³	1,3,5- Trimethyl- benzene µg/m³	Tetrachloro- ethane (PCE) μg/m³	MTBE μg/m³	Other VOCs µg/m³	Helium** (Leak detect gas) (% v/v)	Methane (% v/v)	Carbon Dioxide (% v/v)	Oxygen (% v/v)
SVP-1	2/5/2016	7	330,000,000	500,000	410,000	650,000	71,000	1,400,000	1,640,000	ND (<260,000)	180,000	62,000	ND (<34,000)	ND (<72,000)	ND (others, varies)	0.130	8.80	13.8	2.72
SVP-2	2/5/2016	7	13,000,000	210,000	61,000	ND (<6,100)	8,700	330,000	362,000	ND (<13,000)	21,000	9,100	ND (<1,700)	ND (<3,600)	ND (others, varies)	0.568	ND (<0.500)	ND (<0.500)	9.27
SVP-3	2/6/2016	7	910,000,000	1,100,000	720,000	1,000,000	160,000	1,700,000	3,280,000	ND (<260,000)	390,000	170,000	ND (<34,000)	ND (<72,000)	ND (others, varies)	0.0113	4.63	14.7	4.11
SVP-4	2/6/2016 - 2/8/2016	7	10,000,000	45,000	90,000	ND (<6,100)	29,000	15,000	232,000	ND (<13,000)	83,000	27,000	ND (<1,700)	12,000	ND (others, varies)	0.417	1.83	ND (<0.500)	8.30
SVP-5	2/8/2016	7	84,000,000	1,600,000	810,000	160,000	120,000	1,300,000	3,570,000	ND (<130,000)	320,000	130,000	ND (<17,000)	990,000	ND (others, varies)	0.0706	0.918	ND (<0.500)	11.3
SVP-6	2/8/2016	7	13,000,000	130,000	66,000	ND (<7,700)	14,000	220,000	301,000	ND (<16,000)	38,000	13,000	ND (<2,100)	6,900	1,300 (1,1-Dichloroethane) 2,500 (1,2-Dichloroethane) ND (others, varies)	0.0106	1.52	ND (<0.500)	7.33
SVP-6 Ambient	2/8/2016	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.95	NA	NA	NA
SVP-7	2/5/2016	0.5	220,000	20	97	ND (<17)	85	46	490	ND (<36)	290	77	41	ND (<10)	8.1 (2-Butanone) 64 (Acetone) ND (others, varies)	0.319	ND (<0.500)	3.34	18.2
SVP-12	5/12/2016	0.5	ND (<7,000)	ND (<1.6)	ND (<2.2)	51	ND (<2.5)	3.2	ND (<2.2,<8.7)	ND (<26)	ND (<7.4)	ND (<2.5)	19	ND (<7.2)	22 (Acetone) 9.6 (Ethanol)	0.0920	< 0.50	2.49	19.2
SVP-13	5/13/2016	0.5	ND (<7,000)	ND (<1.6)	ND (<2.2)	37	ND (<2.5)	2.2	ND (<2.2,<8.7)	ND (<26)	ND (<7.4)	ND (<2.5)	4.5	ND (<7.2)	26 (Acetone) 11 (Ethanol)	0.807	<0.50	7.88	15.4
SVP-14	5/13/2016	0.5	ND (<7,000)	12	11	ND (<12)	3.7	31	54.1	ND (<26)	8.9	ND (<2.5)	11	ND (<7.2)	8.9 (Acetone) 14 (Ethanol)	0.0301	<0.50	3.64	18.4
SVP-15	5/13/2016	0.5	ND (<7,000)	ND (<1.6)	ND (<2.2)	16	ND (<2.5)	ND (<1.9)	ND (<2.2,<8.7)	ND (<26)	ND (<7.4)	ND (<2.5)	ND (<3.4)	ND (<7.2)	11 (Acetone) 24 (Ethanol)	0.0232	<0.50	2.53	17.0
SVP-16	5/13/2016	0.5	ND (<7,000)	ND (<1.6)	ND (<2.2)	ND (<12)	ND (<2.5)	5.6	ND (<2.2,<8.7)	ND (<26)	ND (<7.4)	ND (<2.5)	ND (<3.4)	ND (<7.2)	6.4 (Tert-Butyl Alcohol (TBA))	0.149	<0.50	12.40	7.54
SFRWQCB ESL	Commerci	al Soil Gas	100,000 ON	420 VI	4,900 VI	NE	NE	1,300,000 VI	440,000 VI/ON	360 VI	NE	NE	2,100 VI	47,000 VI	31,000,000 (Acetone) ON 7,700 (1,1-Dichloroethane) VI 470 (1,2-Dichloroethane) VI	NE	NE	NE	NE
SWRCB LTUSTCCP		ft bgs ation Zone	NE	280,000	3,600,000	NE	NE	NE	NE	310,000	NE	NE	NE	NE	NE (Acetone) NE (1,1-Dichloroethane) NE (1,2-Dichloroethane)	NE	NE	NE	≥4.0
SWRCB LTUSTCCP	Without	ation Zone	NE	280	3,600	NE	NE	NE	NE	310	NE	NE	NE	NE	NE (Acetone) NE (1,1-Dichloroethane) NE (1,2-Dichloroethane)	NE	NE	NE	<4.0

Notes:

VOCs = Volatile Organic Compounds by EPA Method TO-15, Eurofins/Calscience, Inc., Garden Grove, CA

Helium, methane, carbon dioxide and oxygen by analytical method ASTM D1946, Eurofins/Calscience, Inc., Garden Grove, Calscience, Garden Grove, Calscience, Garden Grove, Calscience, Garden Grove, Calscience, Garden Grove, Garden Grove, Calscience, Garden Grove, Garden

 $\mu g/m^3 = Micrograms per cubic meter = 0.001 micrograms per liter$

% v/v = percent by volume

ND = Not detected at or below laboratory reporting limit

NE = Not Established

* = Quantified as o- and p/m-xylenes, detection limits listed respectively

ON = Taste and Odor Nuisance Screening Level

VI = Vapor Intrusion Human Health Risk Screening Leve

GC = Gross Contamination Screening Level

AHG = Ecological Aquatic Habitat Screening Level

NA = Not Analyzed

Bold Font = Detected values exceed regulatory screening levels

** = Leak detection gas or agent

ESL = San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for sub-slab and soil gas vapor intrusion for commercial/industrial land use were established using the Tier **Z**able SG-1 - Subslab/Soil Gas Vapor Intrusion: Human Health Risk Levels, and Table SG-2 - Subslab/Soil Gas Vapor Intrusion: Odor Nuisance Levels, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs), Interim Final, February 22, 2016, Revision 3 (May 23, 2016).

SWRCB = California State Water Resources Control Board (SWRCB) Low Threat Underground Storage Tank Case Closure Policy (LTUSTCCP) criteria for soil gas, Appendix 4, Scenario 4 - Direct Measurement of Soil Gas Concentrations, Soil Gas Sampling - with Bioattenuation Zone and No LTUSTCCP Bioattenuation Zone, August 24, 2012.

SUMMARY OF INDOOR AIR QUALITY SAMPLE ANALYTICAL DATA

FORMER McGRATH STEEL

6655 HOLLIS STREET AND 1471 67th STREET EMERYVILLE, CALIFORNIA

AllWest Project No. 16076.23

Sample ID	Sample Date	Sample Duration	Location	TPH-g (μg/m³)	1,1,2- Trichloro- 1,2,2- Trifluoro- ethane (µg/m³)	1,1-Difluro- ethane (μg/m³)	1,2,4- Trimethyl- benzene (µg/m³)	1,2-Dichloro- ethane (μg/m³)	1,3,5- Trimethyl- benzene (μg/m³)	4-Ethyl-toluene (μg/m³)	Benzene (μg/m³)	Carbon tetrachloride (µg/m³)	Chloro- methane (μg/m³)	Dichlorodifluro- methane (μg/m³)	Ethyl- benzene (μg/m³)	Methylene Chloride (μg/m³)	Naphthalene (μg/m³)	o-Xylene (μg/m³)	p/m-Xylene (µg/m3)	Toluene (µg/m3)	Trichloro- ethene (µg/m3)	Trichloro- fluoro- methane (µg/m3)	Other VOCs (µg/m³)
IAQ-1	6/25/2014- 6/26/2014	24 hours	Restroom	ND (<930)	0.53	0.11	0.53	0.15	0.13	0.20	0.79	0.50	1.0	2.2	0.31	0.22	0.50	0.38	1.4	1.9	ND (<0.13)	1.3	ND, reporting limits vary
IAQ-2	6/25/2014- 6/26/2014	24 hours	Office	ND (<930)	0.54	0.099	0.34	ND (<0.10)	ND (<0.12)	0.17	0.56	0.55	1.1	2.3	0.28	0.36	0.15	0.24	0.80	1.2	0.48	1.3	ND, reporting limits vary
IAQ-3	6/25/2014- 6/26/2014	24 hours	North wall	ND (<930)	0.56	0.12	0.15	ND (<0.10)	ND (<0.12)	ND (<0.12)	0.39	0.55	1.1	2.3	0.14	0.29	0.080	0.19	0.45	0.53	ND (<0.13)	1.3	ND, reporting limits vary
IAQ-4	6/25/2014- 6/26/2014	24 hours	Storage area	ND (<930)	0.52	0.15	0.28	ND (<0.10)	0.15	0.20	0.54	0.53	0.99	2.2	0.14	0.26	0.076	0.19	0.48	0.59	ND (<0.13)	1.2	ND, reporting limits vary
IAQ-5	6/25/2014- 6/26/2014	24 hours	South central floor area	ND (<930)	0.57	0.14	0.22	ND (<0.10)	ND (<0.12)	ND (<0.12)	0.96	0.54	1.3	2.5	0.26	0.26	0.079	0.18	0.49	0.52	ND (<0.13)	1.3	ND, reporting limits vary
OAA-1	6/25/2014- 6/26/2014	24 hours	2nd floor balcony of adjacent building	ND (<930)	0.54	0.19	0.15	ND (<0.10)	ND (<0.12)	ND (<0.12)	0.31	0.51	1.0	2.3	0.16	0.24	0.13	0.20	0.50	0.61	ND (<0.13)	1.3	ND, reporting limits vary
IAQ-6	5/13/2016	8 hours	1st floor central office counter	1,000	0.51	ND (<0.10)	0.44	ND (<0.10)	0.13	ND (<0.25)	0.41	0.42	0.94	1.4	0.21	3.1	0.17	0.36	0.80	1.1	ND (<0.13)	1.2	ND, reporting limits vary
IAQ-7	5/13/2016	8 hours	1st floor woman's bathroom	1,200	0.46	ND (<0.10)	ND (<0.25)	ND (<0.10)	ND (<0.12)	ND (<0.25)	0.30	0.38	0.99	1.4	0.13	2.6	0.092	0.22	0.44	0.94	0.17	1.1	0.53 - Chloroform
IAQ-8	5/13/2016	8 hours	warehouse - outside SW office	1,200	0.52	ND (<0.68)	ND (<0.25)	ND (<0.10)	ND (<0.12)	ND (<0.25)	0.54	0.42	0.95	1.5	ND (<0.11)	0.32	ND (<0.052)	0.16	0.26	0.36	ND (<0.13)	1.2	ND, reporting limits vary
IAQ-9	5/13/2016	8 hours	warehouse - adjacent to stairs by restroom	1,400	0.54	ND (<0.68)	ND (<0.25)	ND (<0.10)	ND (<0.12)	ND (<0.25)	0.55	0.43	1.0	1.4	0.13	0.33	0.057	0.31	0.49	0.50	ND (<0.13)	1.3	ND, reporting limits vary
IAQ-10	5/13/2016	8 hours	warehouse - restroom	1,100	0.51	ND (<0.68)	ND (<0.25)	ND (<0.10)	ND (<0.12)	ND (<0.25)	0.40	0.40	0.94	1.6	0.28	0.28	ND (<0.052)	0.91	1.3	0.37	ND (<0.13)	1.2	ND, reporting limits vary
OAA-2	5/13/2016	8 hours	2nd floor balcony of adjacent building	970	0.49	ND (<0.68)	ND (<0.25)	ND (<0.10)	ND (<0.12)	ND (<0.25)	0.30	0.40	1.1	1.4	0.12	0.27	ND (<0.052)	0.16	0.38	0.53	ND (<0.13)	1.1	ND, reporting limits vary
SFRWQCB ESLs Air Screeni Commercial/Indu	ng Levels,			100 ON	NL	NL	NL	0.47 DE	NL	NL	0.42 DE	0.29 DE	390 DE	NL	4.9 DE	12 DE	0.36 DE	440 (total xylenes) DE	440 (total xylenes) DE	1,300 DE	3.0 DE	NL	0.53 - Chloroform DE

 $\frac{\underline{Notes:}}{Laboratory\ analyses\ by\ Eurofins\ Calscience,\ Garden\ Grove,\ CA}$

 $\mu g/m^3 = micrograms per cubic meter$

TPH-g = total petroleum hydrocarbons as gasoline, analytical method TO-3M VOCs = volatile organic compounds, analytical method TO-15 SIM

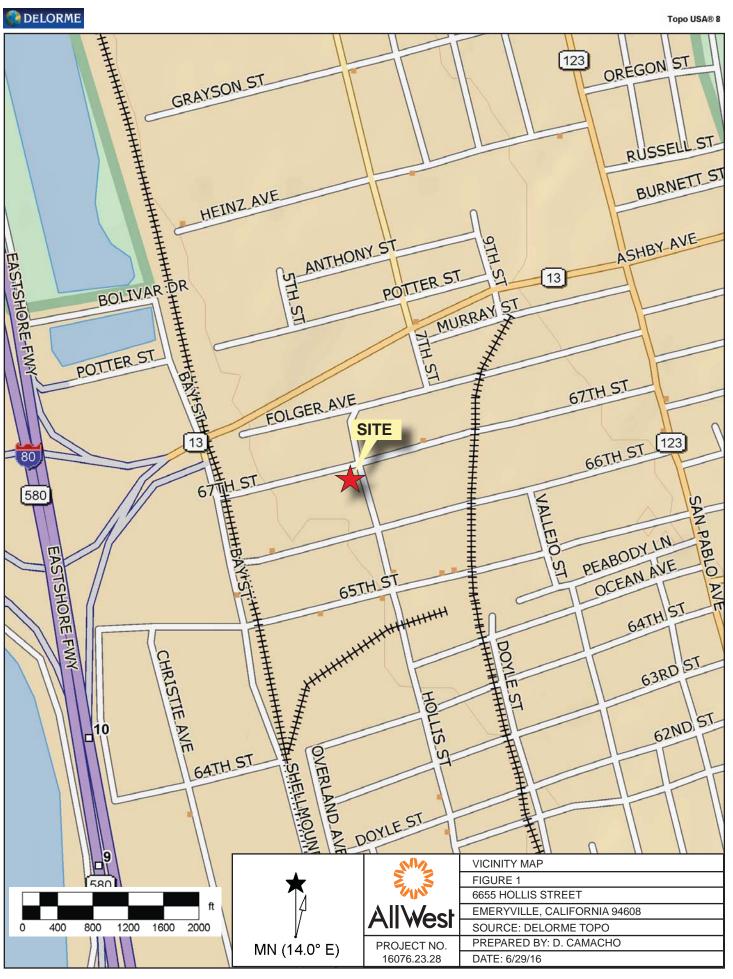
IAQ = Indoor Air Quality sample, 24-hour sampling interval (6/26/2014-6/27/2014)
OAA = Outdoor Ambient Air Control sample, 24-hour sampling interval (6/26/2014-6/27/2014)

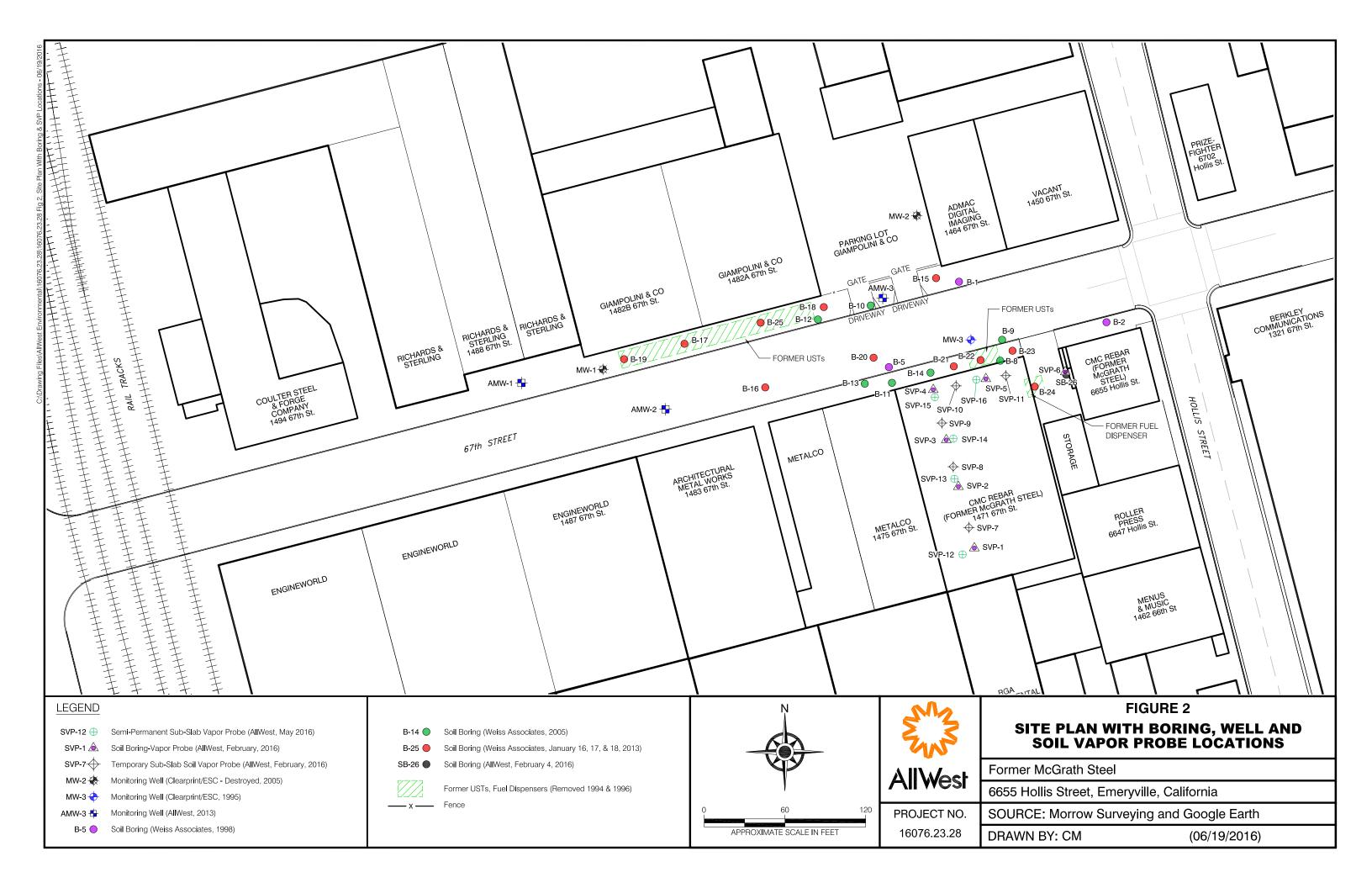
ND = Not detected above the listed reporting limit

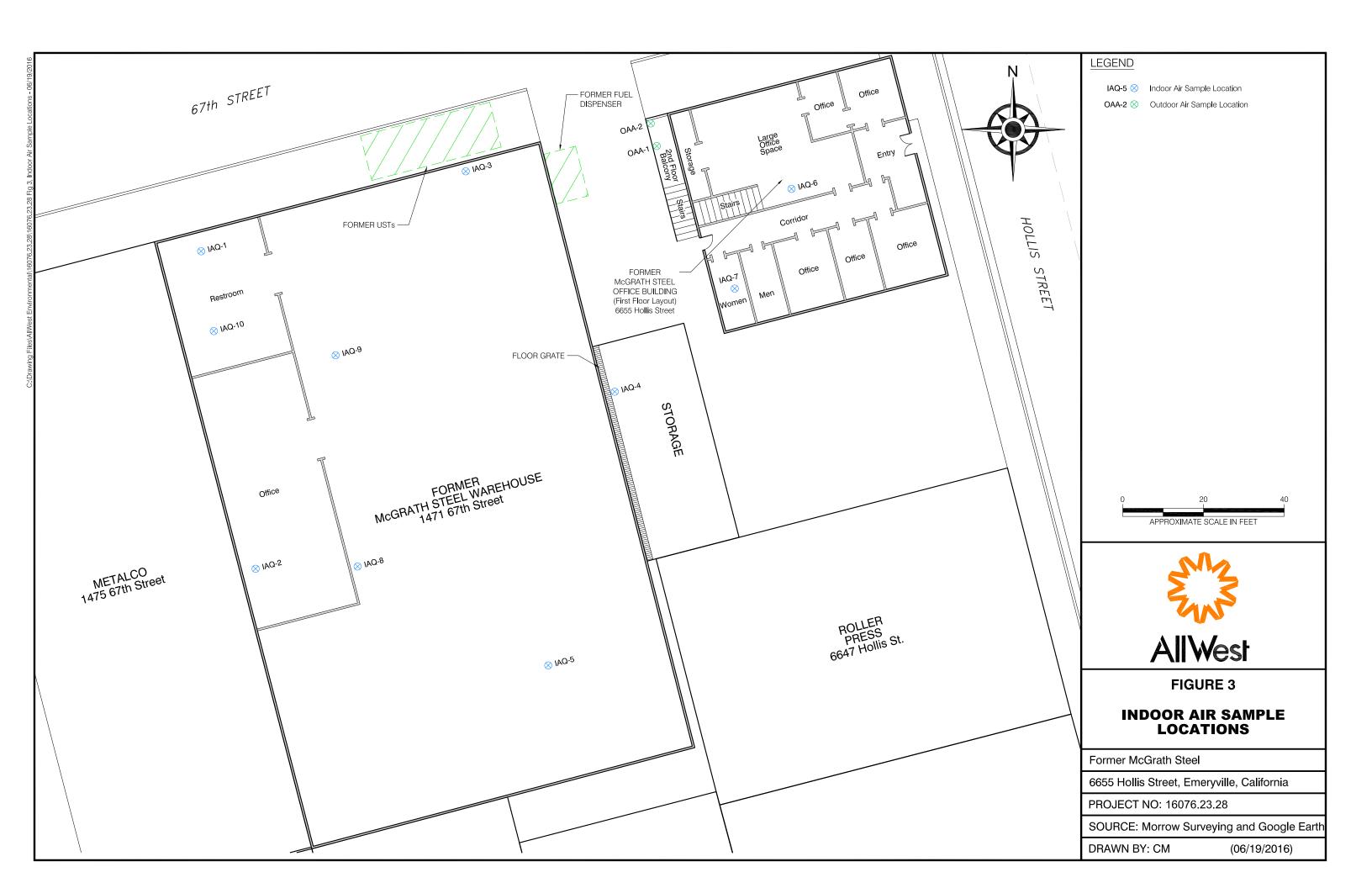
NL = Not listed

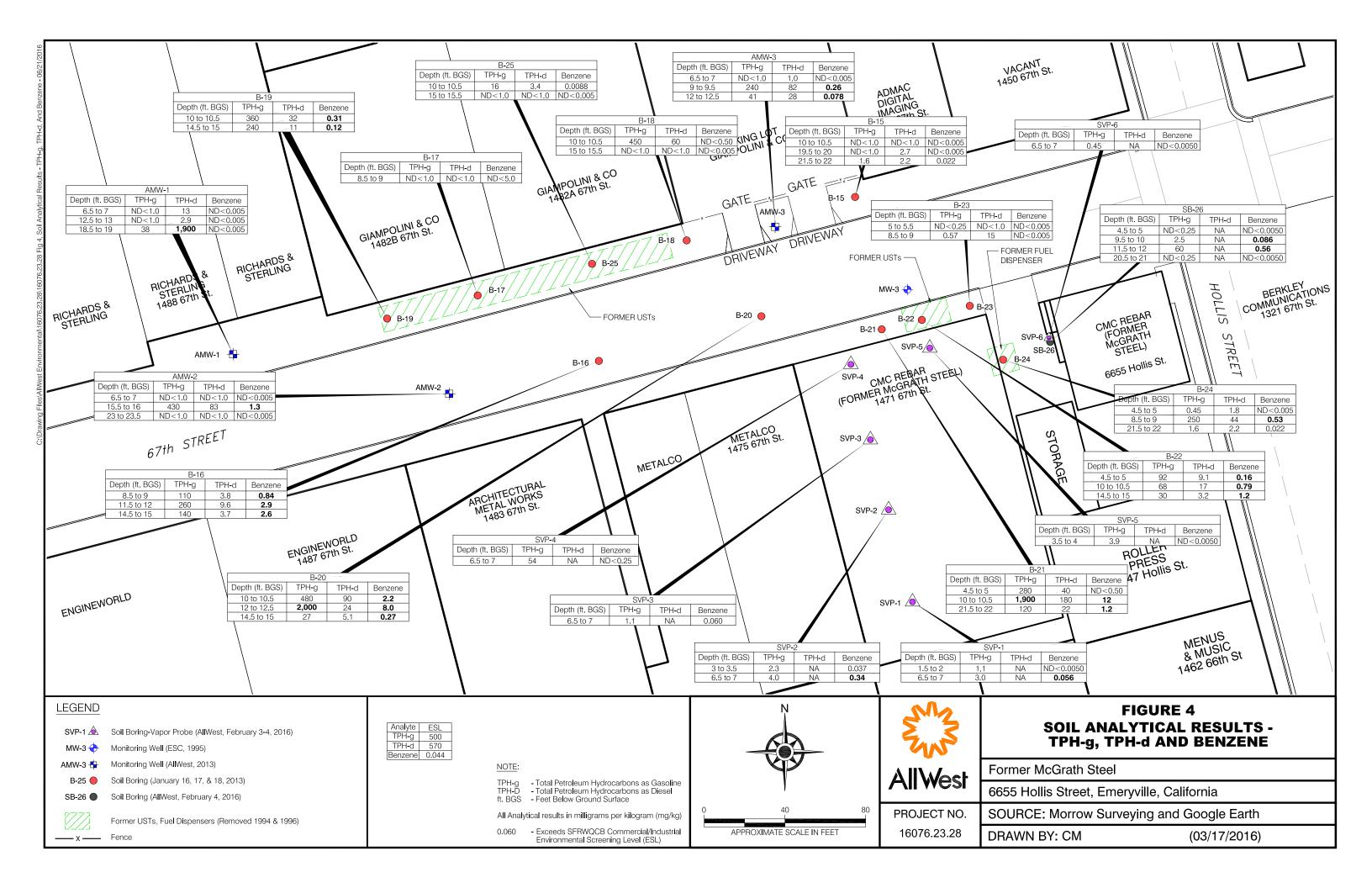
Bold Font = Detected values exceed regulatory screening levels.

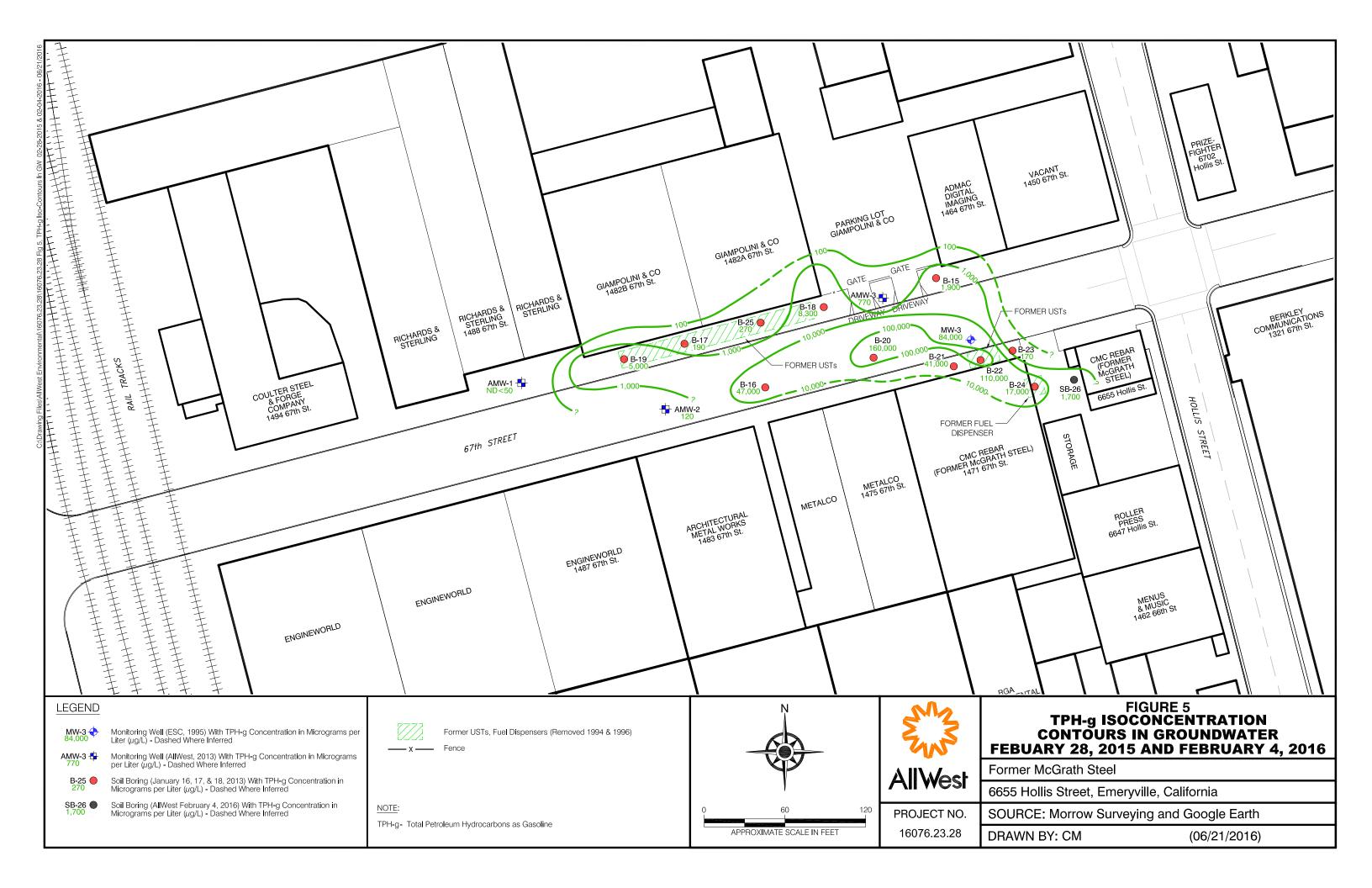
ON = Taste and Odor Nuisance Screening Level

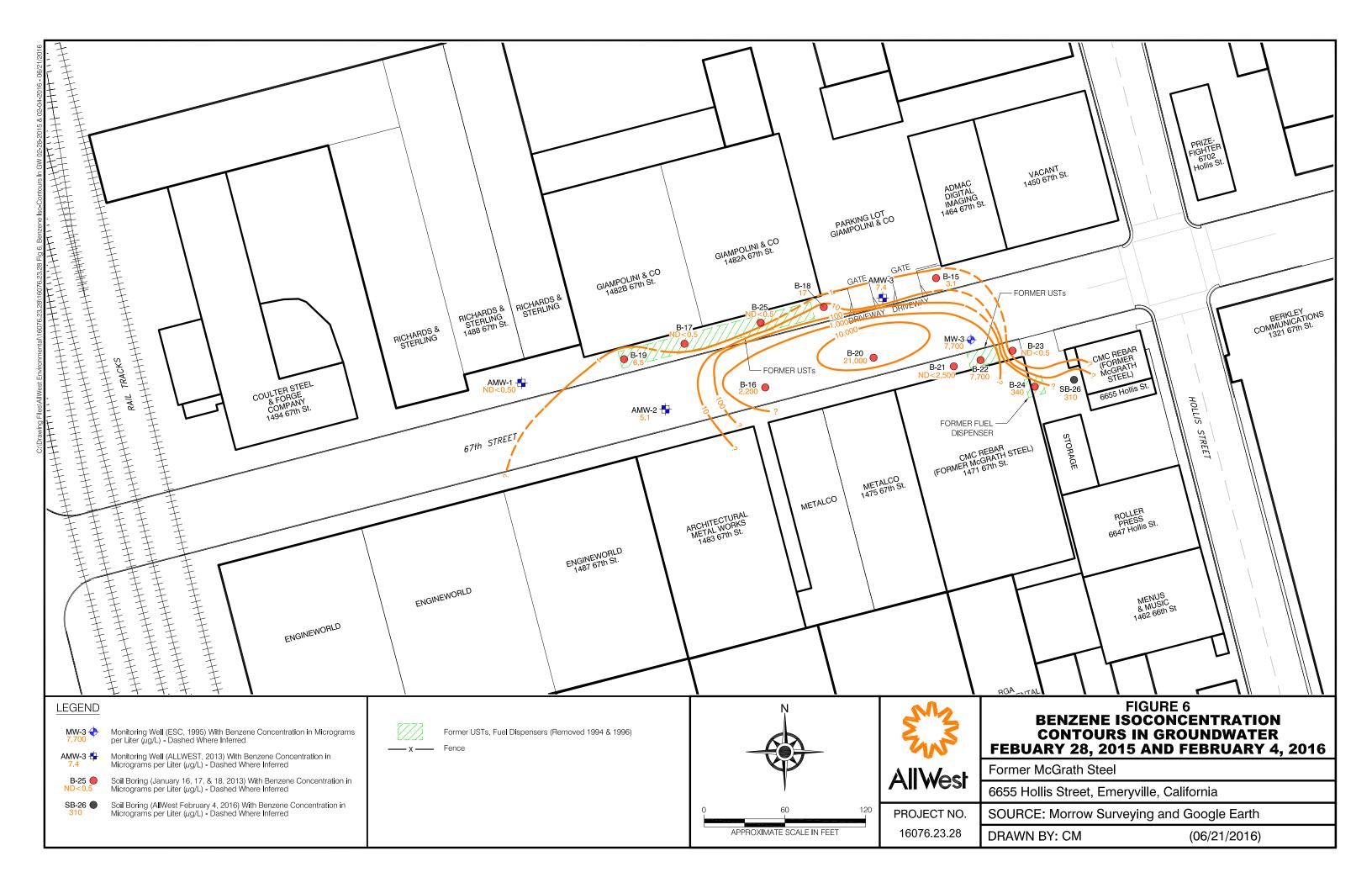

DE = Direct Exposure Human Health Risk Screening Level

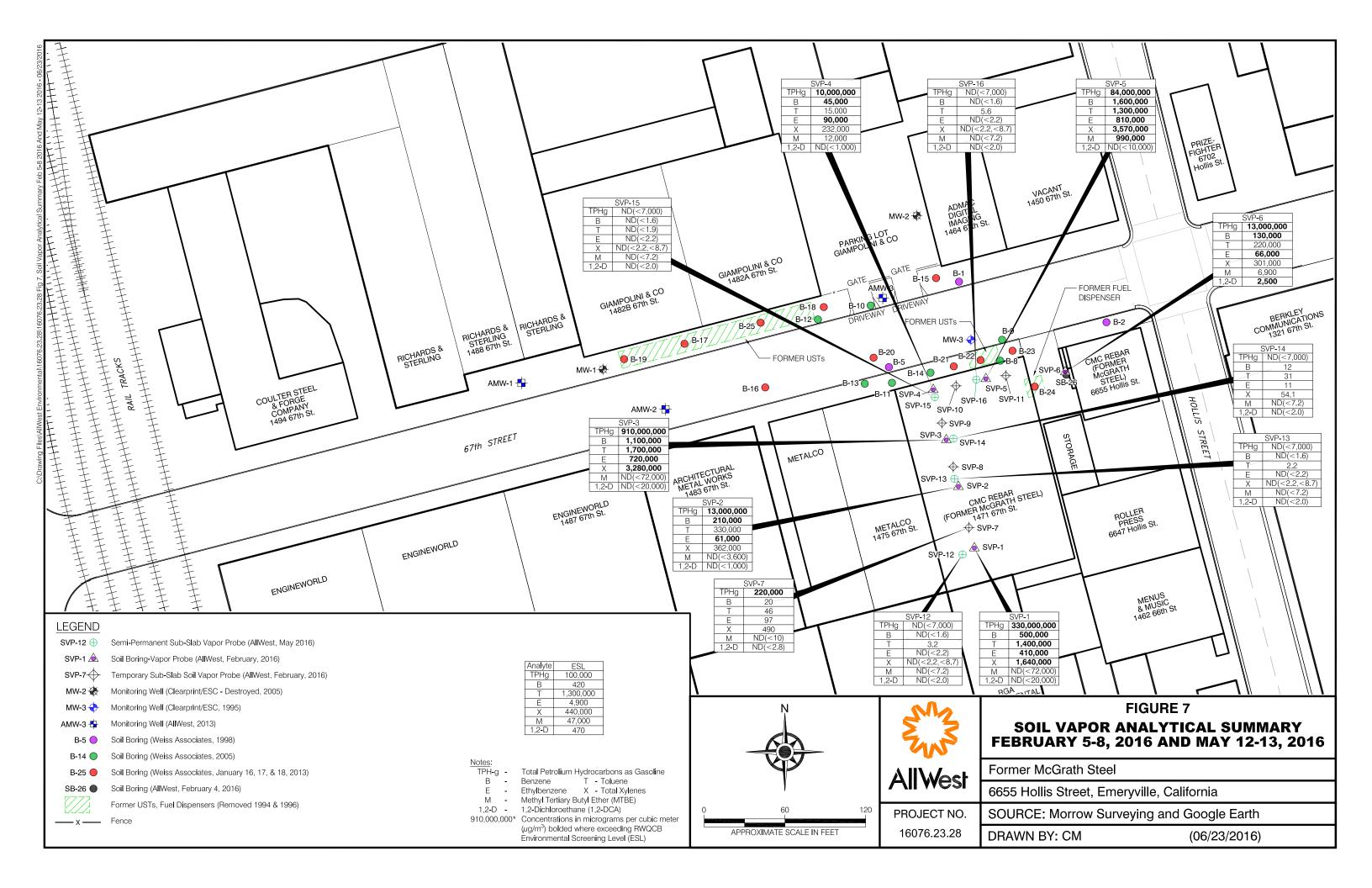

GC = Gross Contamination Screening Level
AHG = Ecological Aquatic Habitat Screening Level

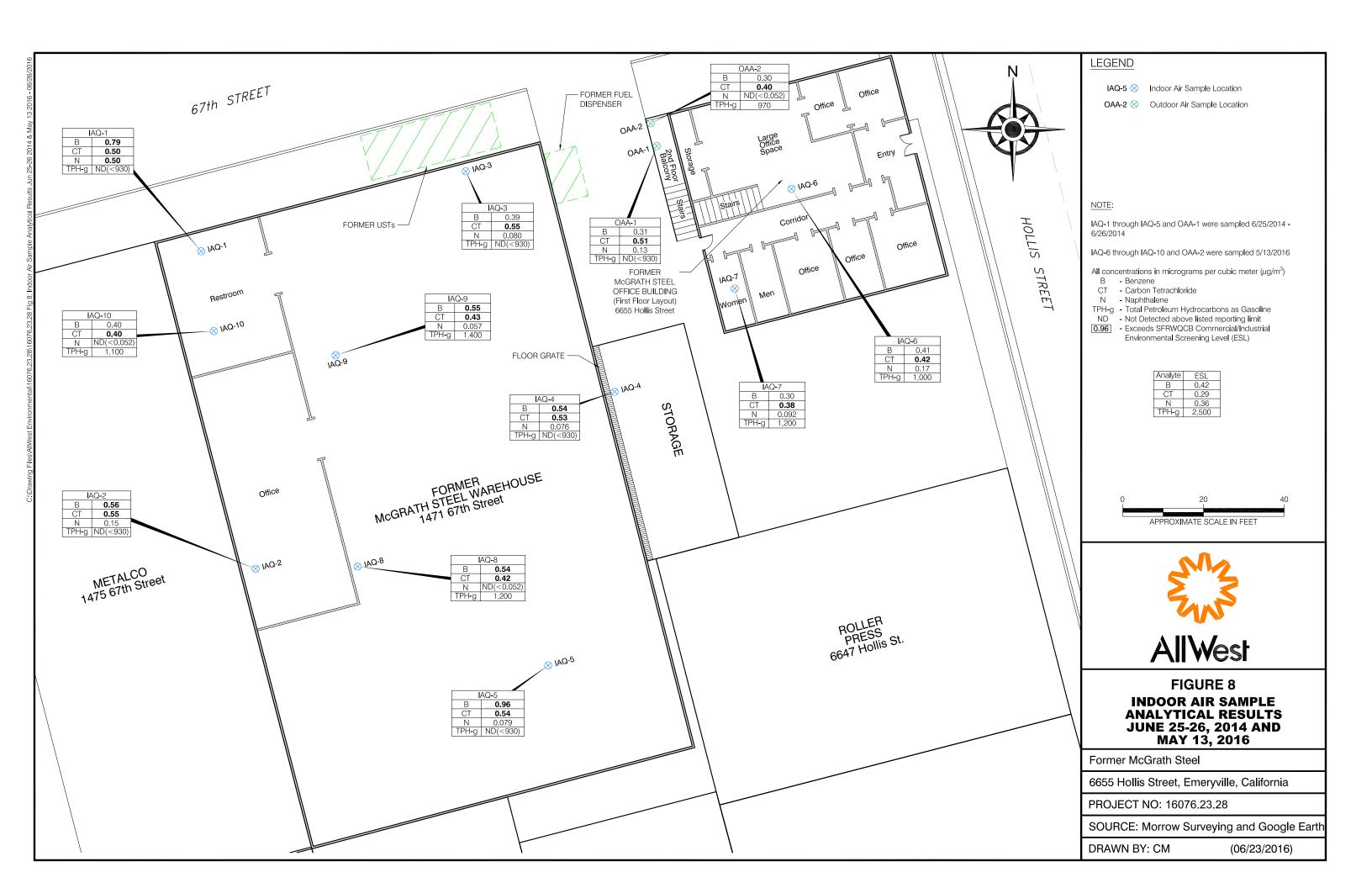

SFRWQCB ESLs = Regional Water Quality Control Board, San Francisco Bay Region, User's Guide: Derivation and Application of Environmental Screening Levels (Volatile Chemicals Only), Commercial/Industrial Direct Exposure Risk Levels , and Table IA-1 - Indoor Air Odor Nuisance Levels, Interim Final - February 2016, Revision 3 (May 23, 2016).


FIGURES









APPENDIX A

STANDARD GEOPROBE™ DPT SAMPLING PROCEDURES

Soil Sampling

Direct push technology (DPT) soil core sampling using GeoprobeTM or similar methods is accomplished using a nominal 4-foot long, 2-inch diameter stainless steel drive probe and extension rods. The drive probe is equipped with nominal 1-1/2 inch diameter clear plastic poly tubes that line the interior of the probe. The probe and insert tubes are together pneumatically driven using a percussion hammer in 4-foot intervals. After each drive interval the drive probe and rods are retrieved to the surfaced. The poly tube containing subsurface soil is then removed. The drive probe is then cleaned, equipped with a new poly tube and reinserted into the boring with extension rods as required. The apparatus is then driven following the above procedure until the desired depth is obtained. The poly tubes and soil are inspected after each drive interval with lithologic and relevant drilling observations recorded. Soil samples are screened for organic vapors using an organic vapor meter (OVM), photo-ionization detector (PID) or other appropriate device. OVM/PID readings, soil staining and other relevant observations are recorded. Selected soil sample intervals can be cut from the 4-foot intervals for possible analytical or geotechnical testing or other purposes.

The soils contained in the sample liners are then classified according to the Uniform Soil Classification System and recorded on the soil boring logs.

Sample liners selected for laboratory analyses are sealed with Teflon sheets, plastic end caps, and silicon tape. The sealed sample liner is then labeled, sealed in a plastic bag, and placed in an ice chest cooled to 4°C with crushed ice for temporary field storage and transportation. The standard chain-of-custody protocol is maintained for all soil samples from the time of collection to arrival at the laboratory.

Groundwater Sampling

Groundwater sampling is performed after the completion of soil sampling and when the boring has reached its desired depth. The steel probe and rods are then removed from the boring and new, nominal 1-inch diameter PVC solid and perforated temporary casing is lowered into the borehole. Alternatively, a retractable screen sampling device such as a HydropunchTM can be driven to the desired depth and pulled back to expose the screened interval. Depth to water is then measured using an electronic groundwater probe. Groundwater samples are collected using a stainless steel bailer, disposable TeflonTM bailer, or check valve or peristaltic pump with disposable TeflonTM or polyethylene sample tubing.

After the retrieval of the bailer, groundwater contained in the bailer (or discharged from sample tubing) is decanted into laboratory provided containers. The containers are then sealed with Teflon coated caps with no headspace, labeled, and placed in an ice chest for field storage and transportation to a state certified analytical laboratory. The standard chain-of-custody protocols are followed from sample collection to delivery to the laboratory. A new bailer (or sample tubing) is used for each groundwater sampling location to avoid cross contamination.

APPENDIX B

STANDARD GEOPROBE® AND SUB-SLAB PROBE SOIL VAPOR SAMPLING PROCEDURES

Geoprobe® DPT PRT Temporary Soil Vapor Probe Advancement

The Geoprobe® Direct Push Technology (DPT) Post Run Tubing (PRT) soil vapor sampling process involves driving into the subsurface a disposable Geoprobe® DPT sampling probe with expendable tip and a PRT adapter that are connected to 4-foot sections of Geoprobe® 1.25-inch inside diameter (ID) extension rods. The PRT adapter has a reverse-thread adapter at the upper end to allow the connection of flexible soil vapor sampling tubing with a PRT tubing adaptor after the installation (post-run) of the tip. The entire sampling assembly, the sampling tip, PRT adapter, and the Geoprobe® extension rods, is driven into the subsurface by a truck-mounted hydraulic percussion hammer. The sampler is driven to the desired depth as additional rods are connected. At the desired sampling depth, typically 5 feet below ground surface (bgs) a sufficient length of disposable flexible 0.25-inch OD polyethylene, Nylaflow[™] or Teflon[™] sample tubing is first lowered through the center of the extension rod and connected to the PRT adapter. Only TeflonTM sample tubing is to be used if naphthalene analysis is intended. The extension rod is then retracted 3 to 4 inches to create a small void around the PRT adapter and the expendable sampling tip for extracting a soil vapor sample from that location. Bentonite chips will be used to fill the annular space between the probe and the subgrade material to the ground surface. The bentonite will then be hydrated with distilled water. The temporary Geoprobe PRT soil vapor probe will be sampled at least 2 hours following driving of the probe, to allow vapor conditions to equalize in subsurface materials and the bentonite surface seal to hydrate in general accordance with guidelines presented in the CalEPA Department of Toxic Substance Control (DTSC) Advisory – Active Soil Gas Investigations, July, 2015.

Geoprobe® DPT Borehole Advancement and Temporary Soil Vapor Probe Installation

Alternatively, borings will be advanced using truck-mounted or limited access Geoprobe[®] DPT equipment, or a hand-operated slide hammer, to drive 1-inch outside diameter (OD) rods and probes with expendable steel tips to 5 feet bgs, without recovering soil cores. Or, borings will be advanced using Geoprobe[®] DPT continuous coring equipment using a nominal 4-foot or 5-foot long, 2-inch OD stainless steel core barrel drive sampler and extension rods. The drive probe will be equipped with nominal 1 ½-inch inside diameter (ID) clear PETG plastic tubes that line the interior of the probe. Continuous soil sample cores are recovered for potential lithologic characterization and laboratory analysis. After the probes or core barrels are advanced to the specified depth, typically 5 feet bgs, the probes and drive rods are removed, leaving the borehole open with the expendable probe tip (if used) at the bottom.

Plastic or stainless steel soil vapor probes, ½-inch diameter by 2-inches long and tipped with porous plastic membranes, are then inserted to the bottom of the 1-inch diameter boreholes at 5 feet bgs. The probe tips are attached to 7-foot lengths of flexible 0.25-inch OD polyethylene, Nylaflow[™] or Teflon[™] tubing extending to the top of the floor slab. Only Teflon[™] sample tubing is to be used if naphthalene analysis is intended. A fine sand filter pack is placed in the borehole annulus around the probe. Hydrated bentonite chips are then used to fill the annular space above the filter pack to the top of the floor slab. The bentonite is allowed to hydrate and borehole conditions to equalize for 2 hours prior to sampling activities, per DTSC vapor sampling guidelines. Temporary soil vapor probe installation procedures will be performed in general accordance with guidelines presented in the DTSC *Advisory – Active Soil Gas Investigations*, July, 2015.

Sub Slab Soil Vapor Probe Installation

Semi-permanent sub-slab soil vapor probes are emplaced as follows: A 1-inch diameter hole is drilled through the concrete floor slab using a portable electric drill. The boreholes are advanced approximately 0.5 feet bgs into the subgrade material beneath the floor slab. Stainless steel or plastic vapor probes 2 inches long by 0.5 inches in diameter, tipped with porous plastic membranes, will be inserted to the bottom of each sub-slab borehole. The probe tips will be attached to lengths of 0.25-inch diameter Teflon[™] or stainless steel tubing extending to approximately 1 inch below the top of the floor slab. The top of the TeflonTM or stainless steel tubing in each probe will be attached to a brass threaded male SwagelockTM fitting and cap recessed below the concrete floor. A fine sand filter pack approximately 2 to 4 inches thick will be placed in the borehole annulus around the probes. A TeflonTM sealing disk will be placed around the tubing above the filter pack.

Dry granular bentonite will be placed in the borehole annulus above the TeflonTM sealing disk to above the base of the concrete floor slab. Hydrated granulated bentonite will then be used to fill the annular space above the dry granular to approximately 2 inches above the bottom of the floor slab, and will be hydrated from the surface using deionized water. Quick-drying cement/bentonite grout will then be used to fill the remaining annular space to the Swagelock fitting approximately ¾ to 1 inch below the top of the slab. A watertight plastic cap or metal vault box will be installed flush with the top of the floor slab within a 2 to 4-inch diameter countersunk hole to protect the probe fitting. At least 2 hours will elapse prior to collecting vapor samples to allow the bentonite and cement grout seal to hydrate and borehole conditions to equalize, per DTSC sub-slab vapor sampling guidelines (DTSC, 2011).

Soil Vapor Sampling via Summa Canister

Soil vapor sampling procedures will be similar for Geoprobe[®] PRT and continuously cored temporary soil vapor probes, and semi-permanent sub-slab soil vapor probes, and will be in general accordance with *DTSC Advisory – Active Soil Gas Investigations*, July 2015. Soil vapor sampling will not be performed if significant precipitation (greater than ½ inch in a 24 hour period) has occurred within the previous five days. The soil vapor probe TeflonTM sample tubing will be connected to the sample manifold system via threaded SwageLokTM connectors.

AllWest will collect soil vapor samples in laboratory prepared 1-liter capacity SUMMA canisters. Prior to vapor purging and sample collection, a vacuum leak shut-in test of the flow-controller/gauge manifold assembly will be performed for a minimum of 1 minute, with a no allowable observed vacuum drop of 0.2 inches of mercury (in Hg). If any noticeable vacuum drop is observed, the manifold fittings will be tightened or manifold replaced and the shut-in test redone. Vacuum gauge sensitivity will register a minimum of 0.5 inches of mercury (in Hg). The sampling system configuration is shown in the attached schematic diagram.

Prior to sample collection, approximately 3 sampling system volumes of soil vapor will be purged at a flow rate of approximately 150-200 milliliters per minute (ml/min) from each vapor probe using a dedicated 6-liter capacity SUMMA purge canister (approximately 200 ml per in Hg vacuum). A 3-way valve (with the handle mounted outside the leak detection shroud) will be opened to divert the flow of purged soil vapor from the probe to the purge Summa canister, after opening the purge Summa valve. Typical sampling system volumes are 4.5 ml/feet for ¼-inch OD/0.17-inch ID tubing, and 200 ml/feet for a 2-inch diameter borehole with sand filter pack (minus tubing volume). Assuming a 2-inch diameter borehole with a 0.5 feet sand filter pack interval, the typical system volume would be approximately 130 ml for a 5-feet bgs

temporary probe, and 115 ml for a 1–feet bgs sub-slab probe, including 2-3 feet of tubing above grade. Therefore, 3 system volumes would typically be approximately 350 to 400 milliliters (ml) depending on tubing length and borehole diameter, depth and filter pack interval.

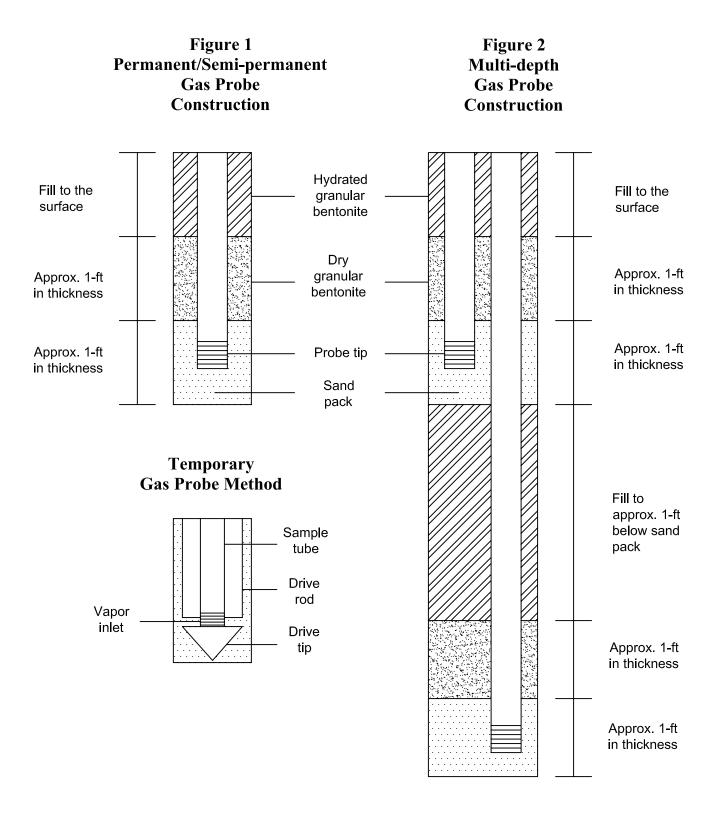
During purging and sampling, a leak detection test is conducted using helium as a leak tracer inside an airtight plastic shroud covering the entire sampling apparatus, as recommended in the DTSC Advisory - Active Soil Gas Investigations (DTSC Appendix C, 2015). The leak detection shroud configuration is shown in the attached schematic diagram. The helium concentration within the shroud is monitored with a helium gas detection meter with a minimum precision of 0.1% to keep the ambient concentration at approximately 10% to 20% (or at least two orders of magnitude above the minimum meter detection limit). The helium tracer gas will be infused into the shroud at the required concentration at least 5 minutes prior to purging and sample collection. The ambient helium concentration within the shroud will be maintained throughout the purge and sample periods to within $\pm 10\%$ of the target concentration.

Depending upon helium availability, other leak detection gases such as isopropyl alcohol (IPA) or difluoroethane (DFA, commonly known as DustOff) may be substituted. Ambient concentrations of IPA within the shroud or purged soil vapor will be measured with a photo-ionization detector (PID); DFA concentrations are not measurable with a PID. The same volume of IPA (typically a cotton ball soaked with 5 milliliters of IPA) or DFA (typically a 5-second aerosol can discharge) will be used for each sample to maintain consistent ambient concentrations within the shroud.

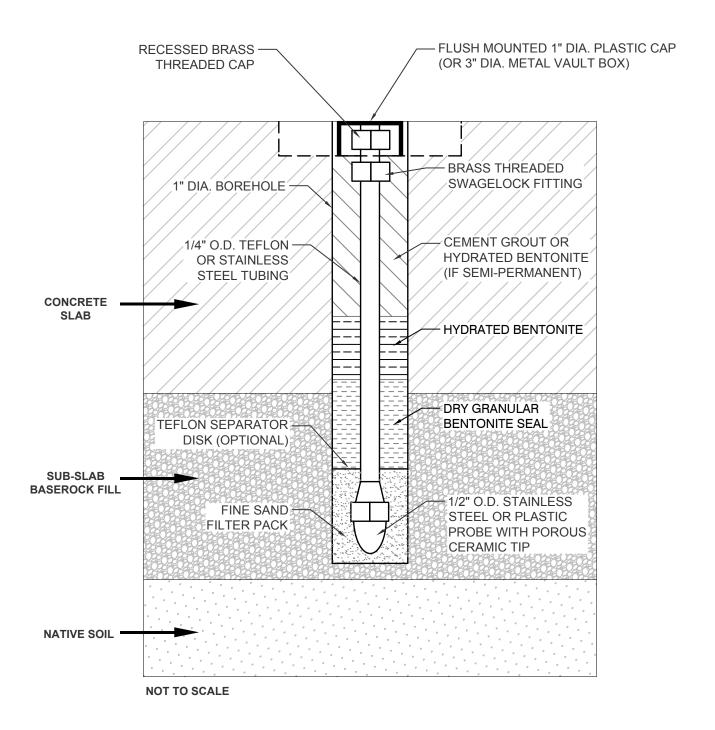
Immediately following purging of 3 sampling system volumes of soil vapor, a leak test of the probe seal will be conducted by using the 3-way valve to divert the flow of purged soil vapor from the probe to the helium detection meter via a monitoring port on the outside of the shroud. If the measured purged soil vapor helium concentration is less than 5% of the ambient shroud concentration, the soil vapor probe seal is presumed to be acceptable (per DTSC Appendix C, 2015), and sampling will proceed. If the measured purged soil vapor helium concentration is greater than 5% of the ambient shroud concentration, the soil vapor probe seal is presumed to be defective, and the probe should be reinstalled and re-sampled.

Following the purged soil vapor readings and acceptable vapor probe seal leak test, the 3-way and purge Summa valves will be closed, sample Summa valve opened, and additional helium added to the shroud to bring the ambient concentration back up to within $\pm 10\%$ of the target concentration. The 3-way valve will then be turned to divert soil vapor from the probe to the sample Summa canister. To verify helium detection (or PID if used) meter accuracy, one (1) ambient air sample per day is usually collected using a 1-liter SUMMA canister with a 150-200 ml/min flow restrictor inside the leak detection shroud during the sampling of one probe to measure ambient helium (or IPA or DFA if used instead) concentrations inside the shroud.

Flow rates of approximately 150-200 ml/min are used to fill the sample canisters. The canisters are filled to approximate 80% of capacity (approximately 5 inches of mercury vacuum remaining), at which point first the 3-way valve, then the sample Summa valve are closed. All pertinent field observations, pressure, times and readings are recorded. After filling and closing the sample valve, all SUMMA canisters are removed from the manifold, labeled with sampling information, including initial and final vacuum pressures, placed in a dark container and transported under chain-of-custody to the analytical laboratory. The analytical laboratory will record the final SUMMA canister vacuum upon receipt.


Soil Vapor Sampling via TenaxTM Sorbent Tubes

For collecting soil vapor samples in sorbent tubes for analysis by EPA Method TO-17, the sampling manifold setup, shut-in leak checks, system purging and leak detect shroud setup are similar to that using Summa canisters. However, instead of using Summa canisters for sample collection, samples are collected in stainless steel sample tubes filled with TenaxTM sorbent material. The sorbent tubes are attached with SwagelockTM fittings to the sample manifold downstream from the gauges, filters, flow restrictors, and purge canister or pump, and within the leak detection shroud. In areas of suspected high contaminant concentrations, two (2) TenaxTM sorbent tubes may be placed in series to prevent contaminant breakthrough. A vacuum pump, 100 ml syringe or second SUMMA sample purge canister is attached to the downstream end of the TenaxTM sorbent tubes. If the sample manifold train is too large to fit in the leak detection shroud, the pump, syringe or second sample purge SUMMA may be located outside the shroud with the sample train tubing passing through the shroud wall.


A cotton ball saturated with approximately 5 ml isopropyl alcohol (IPA) and placed inside the shroud will be used as the leak detection gas agent. A photo-ionization detector (PID) is used to monitor IPA concentrations within the leak detection shroud, or purged soil vapor through access ports in the shroud via the 3-way valve. The 3-way valve is used to divert purged soil vapor to either the purge Summa canister during purging, or to the purged soil vapor monitoring port following purging for probe seal leak detection by monitoring IPA concentrations with a PID, as described in the Summa canister sampling section.

Flow rates of approximately 50 to 100 ml/min are used to fill the sorbent tubes with a total sample volume of approximately 1 to 4 liters, depending on the desired laboratory detection limits. The sampling system vacuum should not exceed 100 inches of water (or 7.4 in Hg). All pertinent field observations, pressure, times, and ambient and soil vapor IPA (PID) concentration readings are recorded. After the desired sample volume is withdrawn through the sorbent tubes, the tubes are removed from the manifold, capped with SwagelockTM caps, wrapped in aluminum foil, placed in a sealed plastic tube container, labeled with sampling information, placed in an ice chest cooled to 4°C with crushed ice, and transported under chain-of-custody to the analytical laboratory.

Soil Gas Probe Emplacement Methods

General Schematic of Sub-Slab Vapor Probe

STANDARD OPERATING PROCEDURE

SOIL VAPOR SAMPLING

SUB-SLAB PROBE

SOURCE: ALLWEST

PREPARED BY: C. MONAHAN 07/09/2013

Standard Operating Procedure Installation and Extraction of the Vapor Pin[™]

May 20, 2011

Scope:

This standard operating procedure describes the installation and extraction of the Vapor Pin^{TM1} for use in sub-slab soil-gas sampling.

Purpose:

The purpose of this procedure is to assure good quality control in field operations and uniformity between field personnel in the use of the Vapor Pin[™] for the collection of subslab soil-gas samples.

Equipment Needed:

- Assembled Vapor Pin[™] [Vapor Pin[™] and silicone sleeve (Figure 1)];
- Hammer drill;
- 5/8-inch diameter hammer bit (Hilti™ TE-YX 5/8" x 22" #00206514 or equivalent);
- 1½-inch diameter hammer bit (Hilti™ TE-YX 1½" x 23" #00293032 or equivalent) for flush mount applications;
- 3/4-inch diameter bottle brush;
- Wet/dry vacuum with HEPA filter (optional);
- Vapor Pin[™] installation/extraction tool;
- Dead blow hammer;
- Vapor Pin[™] flush mount cover, as necessary;
- Vapor Pin[™] protective cap; and
- VOC-free hole patching material (hydraulic cement) and putty knife or trowel.

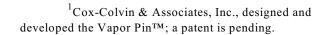


Figure 1. Assembled Vapor PinTM.

Installation Procedure:

- 1) Check for buried obstacles (pipes, electrical lines, etc.) prior to proceeding.
- 2) Set up wet/dry vacuum to collect drill cuttings.
- 3) If a flush mount installation is required, drill a 1½-inch diameter hole at least 1¾-inches into the slab.
- 4) Drill a 5/8-inch diameter hole through the slab and approximately 1-inch into the underlying soil to form a void.
- 5) Remove the drill bit, brush the hole with the bottle brush, and remove the loose cuttings with the vacuum.
- 6) Place the lower end of Vapor Pin[™] assembly into the drilled hole. Place the small hole located in the handle of the extraction/installation tool over the Vapor Pin[™] to protect the barb fitting and cap, and tap the Vapor Pin[™] into place using a

dead blow hammer (Figure 2). Make sure the extraction/installation tool is aligned parallel to the Vapor Pin^{TM} to avoid damaging the barb fitting.

Figure 2. Installing the Vapor PinTM.

For flush mount installations, unscrew the threaded coupling from the installation/extraction handle and use the hole in the end of the tool to assist with the installation (Figure 3).

Figure 3. Flush-mount installation.

During installation, the silicone sleeve will form a slight bulge between the slab and the Vapor Pin^{TM} shoulder. Place the protective cap on Vapor Pin^{TM} to prevent vapor loss prior to sampling (Figure 4).

Figure 4. Installed Vapor PinTM.

- 7) For flush mount installations, cover the Vapor Pin[™] with a flush mount cover.
- 8) Allow 20 minutes or more (consult applicable guidance for your situation) for the sub-slab soil-gas conditions to equilibrate prior to sampling.
- 9) Remove protective cap and connect sample tubing to the barb fitting of the Vapor Pin[™] (Figure 5).

Figure 5. Vapor PinTM sample connection.

10) Conduct leak tests [(e.g., real-time monitoring of oxygen levels on extracted sub-slab soil gas, or placement of a water

dam around the Vapor Pin^{TM}) Figure 6]. Consult your local guidance for possible tests.

Figure 6. Water dam used for leak detection.

11) Collect sub-slab soil gas sample. When finished sampling, replace the protective cap and flush mount cover until the next sampling event. If the sampling is complete, extract the Vapor Pin™.

Extraction Procedure:

 Remove the protective cap, and thread the installation/extraction tool onto the barrel of the Vapor Pin™ (Figure 7). Continue

Figure 7. Removing the Vapor PinTM.

turning the tool to assist in extraction, then pull the Vapor Pin^{TM} from the hole (Figure 8).

Figure 8. Extracted Vapor PinTM.

- 2) Fill the void with hydraulic cement and smooth with the trowel or putty knife.
- 3) Prior to reuse, remove the silicone sleeve and discard. Decontaminate the Vapor Pin[™] in a hot water and Alconox[®] wash, then heat in an oven to a temperature of 130° C.

The Vapor Pin[™] to designed be used repeatedly; however, replacement parts and supplies will be required periodically. These parts are available on-line at www.CoxColvin.com.

Replacement Parts:

Vapor Pin[™] Kit Case - VPC001 Vapor Pins[™] - VPIN0522 Silicone Sleeves - VPTS077 Installation/Extraction Tool - VPIE023 Protective Caps - VPPC010 Flush Mount Covers - VPFM050 Water Dam - VPWD004 Brush - VPB026

STANDARD VAPOR PINTM SUB-SLAB PROBE INSTALLATION AND SOIL VAPOR SAMPLING PROCEDURES

Vapor PinTM Sub-Slab Soil Vapor Probe Installation

The Cox-Colvin Vapor PinTM semi-permanent sub-slab soil vapor probes are emplaced as follows: For a flush-mount installation, a 1 ½-inch diameter countersunk hole is drilled at least 1 3/4 inches into the concrete floor slab using a portable electric drill. A 5/8-inch diameter hole is then drilled below the countersunk hole through the concrete floor slab using a portable electric drill, and approximately 1-inch into the underlying soil to form a void. The concrete corings are removed using a brush or vacuum. Place the lower end of Vapor PinTM assembly into the drilled hole. Place the small hole located in the handle of the extraction/installation tool over the Vapor PinTM to protect the barb fitting and cap, and tap the Vapor PinTM into place using a dead blow hammer. Make sure the extraction/installation tool is aligned parallel to the Vapor PinTM to avoid damaging the barb fitting.

For flush mount installations, unscrew the threaded coupling from the installation/extraction handle and use the hole in the end of the tool to assist with the installation. During installation, the silicone sleeve will form a slight bulge between the slab and the Vapor PinTM shoulder. Place the protective plastic cap on the Vapor PinTM barbed fitting to prevent vapor loss prior to sampling. For flush mount installations, cover the Vapor PinTM with a threaded metal flush mount cover. Allow 2 hours or more (per DTSC sub-slab vapor sampling guidelines) for the sub-slab soil-gas conditions to equilibrate prior to sampling.

Vapor PinTM Sub-Slab Soil Vapor Sampling via Summa Canister

Soil vapor sampling procedures will be in general accordance with *DTSC Advisory – Active Soil Gas Investigations*, July 2015. Soil vapor sampling will not be performed if significant precipitation (greater than ½ inch in a 24 hour period) has occurred within the previous five days. The 0.25-inch outside diameter (OD)/0.17-inch inside diameter (ID) Teflon sample tubing will be placed over the Vapor PinTM barbed fitting. Since the 0.17-inch ID tubing may be too small and too rigid to fit over the barbed fitting, it may be necessary to construct a connector sleeve using a short length of 3/8-inch OD/3/16-inch ID flexible silicone Masterflex[®] or similar tubing to fit over both the Vapor PinTM barbed fitting and the end of the 0.25-inch OD/0.17-inch ID sample tubing. The sample tubing will then be connected to the sample manifold system via threaded SwageLokTM connectors.

AllWest will collect soil vapor samples in laboratory prepared 1-liter capacity SUMMA canisters. Prior to vapor purging and sample collection, a vacuum leak shut-in test of the flow-controller/gauge manifold assembly will be performed for a minimum of 1 minute, with a no allowable observed vacuum drop of 0.2 inches of mercury (in Hg). If any noticeable vacuum drop is observed, the manifold fittings will be tightened or manifold replaced and the shut-in test redone. Vacuum gauge sensitivity will register a minimum of 0.5 inches of mercury (in Hg). The sampling system configuration is shown in the attached schematic diagram.

Prior to sample collection, approximately 3 sampling system volumes of soil vapor will be purged at a flow rate of approximately 150-200 milliliters per minute (ml/min) from each vapor probe using a dedicated 6-liter capacity SUMMA purge canister (approximately 200 ml per in Hg vacuum). A 3-way valve (with the handle mounted outside the leak detection shroud) will be opened to divert the flow of purged soil vapor from the probe to the purge Summa canister, after opening the purge Summa valve. Typical sampling system volumes are 4.5 ml/feet for ¼-inch OD/0.17-inch ID tubing and 0.17-inch ID Vapor PinTM probe,

and 155 ml/feet for a 1-inch diameter borehole within the concrete floor slab. Assuming a 1-inch diameter borehole with a 3-inch deep void space in the floor slab below the Vapor PinTM probe, the typical system volume would be approximately 60 ml including 5 feet of tubing and manifold above grade. Therefore, 3 system volumes would typically be approximately 180 milliliters (ml) depending on sample tubing and manifold length, borehole diameter, and floor slab borehole void depth below the installed Vapor PinTM probe.

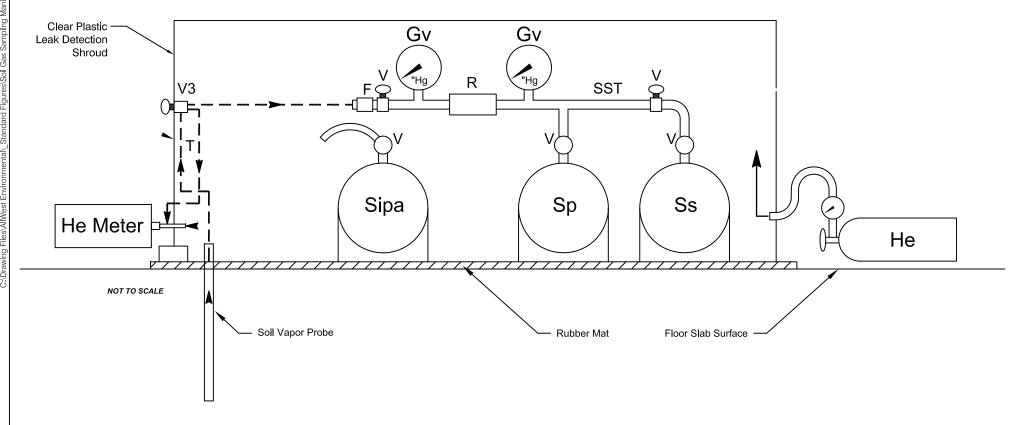
During purging and sampling, a leak detection test is conducted using helium as a leak tracer inside an airtight plastic shroud covering the entire sampling apparatus, as recommended in the DTSC Advisory - Active Soil Gas Investigations (DTSC Appendix C, 2015). The leak detection shroud configuration is shown in the attached schematic diagram. The helium concentration within the shroud is monitored with a helium gas detection meter with a minimum precision of 0.1% to keep the ambient concentration at approximately 10% to 20% (or at least two orders of magnitude above the minimum meter detection limit). The helium tracer gas will be infused into the shroud at the required concentration at least 5 minutes prior to purging and sample collection. The ambient helium concentration within the shroud will be maintained throughout the purge and sample periods to within $\pm 10\%$ of the target concentration.

Depending upon helium availability, other leak detection gases such as isopropyl alcohol (IPA) or difluoroethane (DFA, commonly known as DustOff) may be substituted. Ambient concentrations of IPA within the shroud or purged soil vapor will be measured with a photo-ionization detector (PID); DFA concentrations are not measurable with a PID. The same volume of IPA (typically a cotton ball soaked with 5 milliliters of IPA) or DFA (typically a 5-second aerosol can discharge) will be used for each sample to maintain consistent ambient concentrations within the shroud.

Immediately following purging of 3 sampling system volumes of soil vapor, a leak test of the probe seal will be conducted by using the 3-way valve to divert the flow of purged soil vapor from the probe to the helium detection meter via a monitoring port on the outside of the shroud. If the measured purged soil vapor helium concentration is less than 5% of the ambient shroud concentration, the soil vapor probe seal is presumed to be acceptable (per DTSC Appendix C, 2015), and sampling will proceed. If the measured purged soil vapor helium concentration is greater than 5% of the ambient shroud concentration, the soil vapor probe seal is presumed to be defective, and the probe should be reinstalled and re-sampled.

Following the purged soil vapor readings and acceptable vapor probe seal leak test, the 3-way and purge Summa valves will be closed, sample Summa valve opened, and additional helium added to the shroud to bring the ambient concentration back up to within $\pm 10\%$ of the target concentration. The 3-way valve will then be turned to divert soil vapor from the probe to the sample Summa canister. To verify helium detection (or PID if used) meter accuracy, one (1) ambient air sample per day is usually collected using a 1-liter SUMMA canister with a 150-200 ml/min flow restrictor inside the leak detection shroud during the sampling of one probe to measure ambient helium (or IPA or DFA if used instead) concentrations inside the shroud.

Flow rates of approximately 150-200 ml/min are used to fill the sample canisters. The canisters are filled to approximate 80% of capacity (approximately 5 inches of mercury vacuum remaining), at which point first the 3-way valve, then the sample Summa valve are closed. All pertinent field observations, pressure, times and readings are recorded. After filling and closing the sample valve, all SUMMA canisters are removed from the manifold, labeled with sampling information, including initial and final vacuum pressures, placed in a dark container and transported under chain-of-custody to the analytical laboratory. The analytical laboratory will record the final SUMMA canister vacuum upon receipt.



Soil Vapor Sampling via TenaxTM Sorbent Tubes

For collecting soil vapor samples in sorbent tubes for analysis by EPA Method TO-17, the sampling manifold setup, shut-in leak checks, system purging and leak detect shroud setup are similar to that using Summa canisters. However, instead of using Summa canisters for sample collection, samples are collected in stainless steel sample tubes filled with TenaxTM sorbent material. The sorbent tubes are attached with SwagelockTM fittings to the sample manifold downstream from the gauges, filters, flow restrictors, and purge canister or pump, and within the leak detection shroud. In areas of suspected high contaminant concentrations, two (2) TenaxTM sorbent tubes may be placed in series to prevent contaminant breakthrough. A vacuum pump, 100 ml syringe or second SUMMA sample purge canister is attached to the downstream end of the TenaxTM sorbent tubes. If the sample manifold train is too large to fit in the leak detection shroud, the pump, syringe or second sample purge SUMMA may be located outside the shroud with the sample train tubing passing through the shroud wall.

A cotton ball saturated with approximately 5 ml isopropyl alcohol (IPA) and placed inside the shroud will be used as the leak detection gas agent. A photo-ionization detector (PID) is used to monitor IPA concentrations within the leak detection shroud, or purged soil vapor through access ports in the shroud via the 3-way valve. The 3-way valve is used to divert purged soil vapor to either the purge Summa canister during purging, or to the purged soil vapor monitoring port following purging for probe seal leak detection by monitoring IPA concentrations with a PID, as described in the Summa canister sampling section.

Flow rates of approximately 50 to 100 ml/min are used to fill the sorbent tubes with a total sample volume of approximately 1 to 4 liters, depending on the desired laboratory detection limits. The sampling system vacuum should not exceed 100 inches of water (or 7.4 in Hg). All pertinent field observations, pressure, times, and ambient and soil vapor IPA (PID) concentration readings are recorded. After the desired sample volume is withdrawn through the sorbent tubes, the tubes are removed from the manifold, capped with SwagelockTM caps, wrapped in aluminum foil, placed in a sealed plastic tube container, labeled with sampling information, placed in an ice chest cooled to 4°C with crushed ice, and transported under chain-of-custody to the analytical laboratory.

LEGEND

 F
 =
 Filter

 V
 =
 Valve

 V3
 =
 Valve - 3-Way

 Gp
 =
 Pressure Gauge

 R
 =
 Flow Regulator

 Gv
 =
 Vacuum Gauge

 Sp
 =
 Purge Summa Canister

 Ss
 =
 Sample Summa Canister

Sipa = Ambient Air Helium Leak Detect Gas Summa Canister

He Meter = Helium detector for He concentration readings - Shroud Ambient & Purged Soul Vapor

T = Disposable Teflon or Polyethylene Tubing SST = Stainless Steel Tubing and Fittings

He = Helium tank, leak detect gas, regulator and tubing

SOIL VAPOR SAMPLING

HELIUM SHROUD

SOURCE: ALLWEST

PREPARED BY: C. RAMELB / C. MONAHAN

APPENDIX C

STANDARD INDOOR AIR QUALITY SAMPLING PROCEDURES

Indoor air quality (IAQ) sampling is conducted in general accordance with the DTSC *Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)*, October 2011. Prior to collecting IAQ samples, AllWest will perform a survey of the building layout and conditions to determine optimum IAQ sample locations, and conduct an inventory of chemicals at the site that may affect IAQ sample data. Building and chemical survey forms per the DTSC *Vapor Intrusion Guidance* will be utilized.

To evaluate the potential indoor air quality impact of intrusion of petroleum hydrocarbons and VOCs in the vapor phase from soil beneath the concrete floor slab in site buildings, IAQ samples and typically one outdoor ambient air (OAA) control sample will be collected during two semiannual monitoring events at the subject site. IAQ samples will typically be located in the center of building spaces to evaluate conditions in primary work areas, addition to locations in restrooms or near floor drains to evaluate preferential pathway conduits such as sewer lines. IAQ and OAA samples will be collected in approximately the same locations during both sampling events.

During each sampling event, at least one outdoor OAA sample will be collected in a secure exterior area in the presumed upwind direction away from building walls or foundation slabs, inaccessible to the public, chosen to ensure that the SUMMA canister is not stolen or tampered with overnight. The OAA sample will be secured by lock and chain to an immovable object. OAA sample collection will start at least 30 minutes prior to the start of IAQ sampling, and will be terminated 30 minutes after the last IAQ sample.

AllWest will collect air quality samples in laboratory prepared SIM-certified 6-liter capacity SUMMA canisters. Flow rates of approximately 3.5 milliliters per minute (ml/min) are used to fill the canisters over a 24 hour period. The canisters are filled to approximate 80% of capacity. All pertinent field observations, pressure, times and readings are recorded. Sample containers are labeled, placed in a dark container and transported under chain-of-custody control to the California State-certified analytical laboratory, Calscience Environmental Laboratories, Inc. (Calscience) in Garden Grove, California. Other certified analytical laboratories may be used if necessary. An example of an indoor air quality field sampling log is included in Appendix C.

A second IAQ monitoring event will be performed approximately six months from the first event in order to evaluate any seasonal variability in sub-slab vapor conditions, as recommended in the DTSC *Vapor Intrusion Guidance* (DTSC, October 2011). The scope of work, number of samples and sampling methodology will be similar to those described above, except that samples will be collected over an 8-hour period at flow rates of 10.4 ml/min.

APPENDIX D

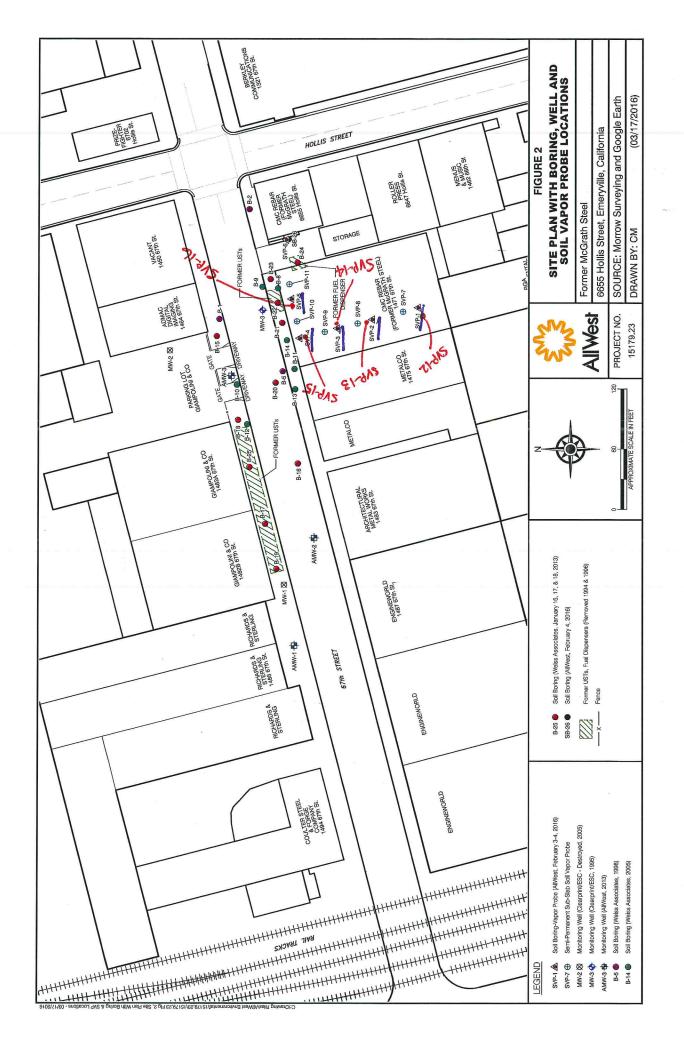
AllWe	\$ 2 S	an Fr	/lissio	on St Ste sco, CA 415-39 91-2008	94110	BORING NUMBER SB-26 PAGE 1 OF 1
CLIENT	Walte	r Merl	kle			PROJECT NAME Former McGrath Steel
PROJEC1	NUM	BER	151	79.23		PROJECT LOCATION Emeryville, CA
DATE ST	ARTE	D _2/3	3/16		COMPLETED 2/3/16	GROUND ELEVATION _0 ft HOLE SIZE _2.25
					-	
					CHECKED BY Leonard Niles	
NOTES					CHECKED BY LECONARD MICES	
NOTES _						AFTER DRILLING
O DEPTH (ft)	NUMBER	U.S.C.S.	GRAPHIC	500		MATERIAL DESCRIPTION
			p. N.	0.3_	Concrete.	0.:
<u>-</u> -		ML			(ML) Dark brown, SILT, some organic	s, trace fine sand, damp.
A).GP				2.0		-2.(
<u>М</u>	•		111		(ML) Dark gray, Sandy SILT, very fine	grained sand, damp.
GENERAL BH / TP / WELL - GINT STD US.GDT - 3/25/16 11:46 - C:\USERS\PUBLIC\DOCUMENT\S\BENTLE\Y\CIN\T\PROJECTS\HOLUS-EMERYVILLE (EMERYVILLE CA).GPJ C		ML CL CL		9.0	Color change to orangeish-brown, stro (CL) Light brown, Silty CLAY, low plas (CL) Grayish brown, Clay, with gravel, Very strong petroleum odor.	ticity, moist.
3.GDT - 3/25/16 11:46 - C:UUS		 CL 		18.0 19.0	(CL) Gray, Silty CLAY, trace very fine (ML) Brown, Clayey SILT, moist.	
20		ML			(ME) Brown, Olayby OLET, Molet.	
S		L		20.5		20.5
TP / WELL - GIN		ML			(ML) Dark gray, Sandy SILT, with grav	
<u></u>				<u> 23.0</u> ∷:	(SP) Brown, SAND, very fine grained,	
SAL F		SP	777	23.8 24.0	(CL) Brown, CLAY, very plastic, moist	
L L			,		(OL) BIOWII, OLAT, very plastic, moist	Bottom of borehole at 24.0 feet.
<u></u>						

GENERAL BH / TP / WELL - GINT STD US, GDT - 3/15/16 16:31 - C:USERS/PUBLIC/DOCUMENTS/BENTLEY/GINT/PROJECTS/HOLLIS-EMERYVILLE (EMERYVILLE CA), GPJ

APPENDIX E

eurofins |

	eurofins										AIRC	AIR CHAIN-OF-CUSTODY RECORD	LSNO-	00	Y REC	ORD
,		Calscience				WONC	WO NO. / LAB USE ONLY	>				DATE:	- 1	5 13 16	٥	
7440 For co	7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us.	841-1427 • (714) 895-5494 mation, contact us26_sales@eur	ofinsus.com or c	all us.								PAGE:			P.	2
LABOF	LABORATORY CLIENT:	ALIANS TAI				CLIENT	CLIENT PROJECT NAME / NO.:	=/NO::				P.O. NO.:				
ADDRE	ESS:	ONWIGHT					Hour	HOMIS EMERYNIUS	RAMIN	P		1609	16076.23.28	3.2	80	
ス	214 MISSION ST, CIETOO					PROJE	PROJECT CONTACT:					LAB CONTACT OR QUOTE NO.	OR QUOTE	NO:		
Ë	SAN FRANCISCO, CA	STATE STATE	STATE: CA		9410		LEGUA	LEGNARD NILES	K							
画	(415)391-2510 E-MALL	LARDEA	DETTI C	Z		PROJE	PROJECT ADDRESS:	ROJECT ADDRESS:				SAMPLER(S): (PRINT)	PRINT)	The state of	5	
TURN	AROUND TIME (Rush surcharges may apply	oly to any TAT not "STANDARD");					22 000					אוער	- 1	3		
S C C S	124 HR	48 HR 72 HR	□ 5 DAYS	STANDARD	3D	CILIC	EMBIEN VILLE	AMM		STATE:	ZIP:		02	FOU	REQUESTED ANALYSES	0
2	COELI EDF LI OI HEK														4	
LAB	SAMPLEID	FIELD ID / POINT OF COLLECTION	MATRIX Indoor (I) Soil Vap. (SV)	SAM	SAMPLING EQUIPMENT Canister Size	ENT Flow Controller	START	START SAMPLING INFORMATION Can Time Time	Canister Pressure	STOP	STOP SAMPLING INFORMATION Can Time Pres	Canister Pressure	T) E-OT	17)21-01	17)21-01 PIQ MT2A	
	CVP-12		Ambient (A)	2	OF 01 15	CAN 191. Tholic	T Is It		(gr.iii)	51211		n L	= ×		/ ×	
	CVP-13			SMR 4		GEM 180 5/13/16	5/13/16	0965	36	5 13 16	1	N.	X		\ \ \ \	
	SVP-14			1810	5	SEM 266 51 13/16	51316		30	5136		4	X	×	×	
	SVP-15		3	0243		Samon Sisle	ह्याड्या	1216	30	5/13/16	1250	9	×	X	×	
	3VP 16		NS	DSAC		SQMOZE	ક્રોક્રોહ	1342	30	5/13/16	1410	2	X	X	<u> </u>	
	5]															
														-		


Time:

Date:

Received by: (Signature/Affiliation)

Received by: (Signature/Affiliation)

Relinquished by: (Signature)

2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008

Project No:	16076.23.28		Project Name: HOULS EMERYVILLE
Date:5	2/16	,	Vapor Probe No: SVP-12 Serial No: SAMPLE: 0104
Regulatory	Agencies: ALFME	DA COUNTY	
Contractor:	CASCADE DELL	UNG	
Hole Diame	ter: 11/2"	Total I	Depth: 5" Grout/Bentonite: N/A
Probe Diam	eter: <mark>/g"</mark>	Line L	ength: Purge Volume:
Tracer Gas:	HEUUM		Flow Regulator: SGM 196 (ml/min) Leak Test: Pass/Fail
Laboratory	Name and Numb	er: <u>EUROFIN</u>	
		SA	AMPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
1438		30Hg	BEGIN LEAKTECT
1946	8 MIN	30Hg	END LEAK TEST - PASS.
1448		,	BEGAN INJECTING HELIUM INTO SHROUD.
14575		30Hg	He @ 25.8%, BEGAN PURGING
1459	4MIN	2649	END PURGE. HO C 45 790 OG NAMENHOUSE
1505		,	BEGAN SAMPLING, He e 41.1%
1520		2419	11.0 21.10
1541	3 MIN	5.5Hg	He @ 29.676, 026 DOWNHOLE, 29.390
Remarks:			
	1		
Samulan C	400 A h 4		
ampier: _3	MRA BLOOM		

2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008

	CASCADE DEL	MNA	
Hole Diame	ter: <u>1½"</u>	Total	Depth: _5" Grout/Bentonite: N/A
Probe Diam	neter:	Line I	Length: Purge Volume:
Tracer Gas:	HELIUM		Flow Regulator: 150-200 (ml/min) Leak Test Pass/Fa
Laboratory	Name and Numb	er:	Sellet 180
		SA	AMPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
		01.9	
1615		26Hg	BEGAN LEAK TEST.
1615		26Hg 20.5 Hg	BEGAN LEAK TEST. BAD FLOW RESTRICTOR.
		9 .	BEGAN LEAK TEST. BAD FLOW RESTRICTOR.
1615		20.5 Hg 20.5 Hg	BAD FLOW RESTRICTOR.
1615		20.5 Hg 20.5 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST
1615	5 MIN	20.5 Hg 20.5 Hg 19.5 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST - PASS
1615 1624 0950 0955		20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST - PASS He: 25.5%, 0% (DOWNHOLE) BEGIN PURSUANT
1615 1624 0850 0855 6900		20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg 19.5 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST -PASS He: 25.5%, 0% (DOWNHOLE), BEGIN PURGING END PURGE, 19.8% BEGIN SAMPLING
1615 1624 0950 0955 6900 0905 0920	5 MIN	20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg 16 Hg 22.5 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST -PASS He: 25.5%, 0% (DOWNHOLE), BEGIN PURGING END PURGE, 19.8%, BEGIN SAMPLING He: 21.6% He: 20%
0950 0955 6900 0905 0920 0935 emarks: Se	5 MIN	20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg 16 Hg 22.5 Hg 10 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST - PASS He: 25.5%, 0% (DOWNHOLE), BEGIN PURGING END PURGE, 19.8%, BEGIN SAMPLING He: 21.6% He: 20%
0950 0955 6900 0905 0920 0935 emarks: Se	5 MIN	20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg 16 Hg 22.5 Hg 10 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST - PASS He: 25.5%, 0% (DOWNHOLE), BEGIN PURGING END PURGE, 19.8%, BEGIN SAMPLING He: 21.6%
0950 0955 6900 0905 0920 0935 emarks: Se	5 MIN	20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg 16 Hg 22.5 Hg 10 Hg	BAD FLOW RESTRICTOR. BEGIN LEAK-TEST END LEAK-TEST - PASS He: 25.5%, 0% (DOWNHOLE), BEGIN PURGING END PURGE, 19.8%, BEGIN SAMPLING He: 21.6% He: 20%
0950 0955 6900 0905 0920 0935 emarks: Se	5 MIN	20.5 Hg 20.5 Hg 19.5 Hg 19.5 Hg 16 Hg 22.5 Hg 10 Hg	BAD FLOW RESTRICTOR. BEGIN LEAKTEST END LEAKTEST - PASS He: 25.5%, 0% (DOWNHOLE), BEGIN PURGING END PURGE, 19.8%, BEGIN SAMPLING He: 21.6% He: 20%

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

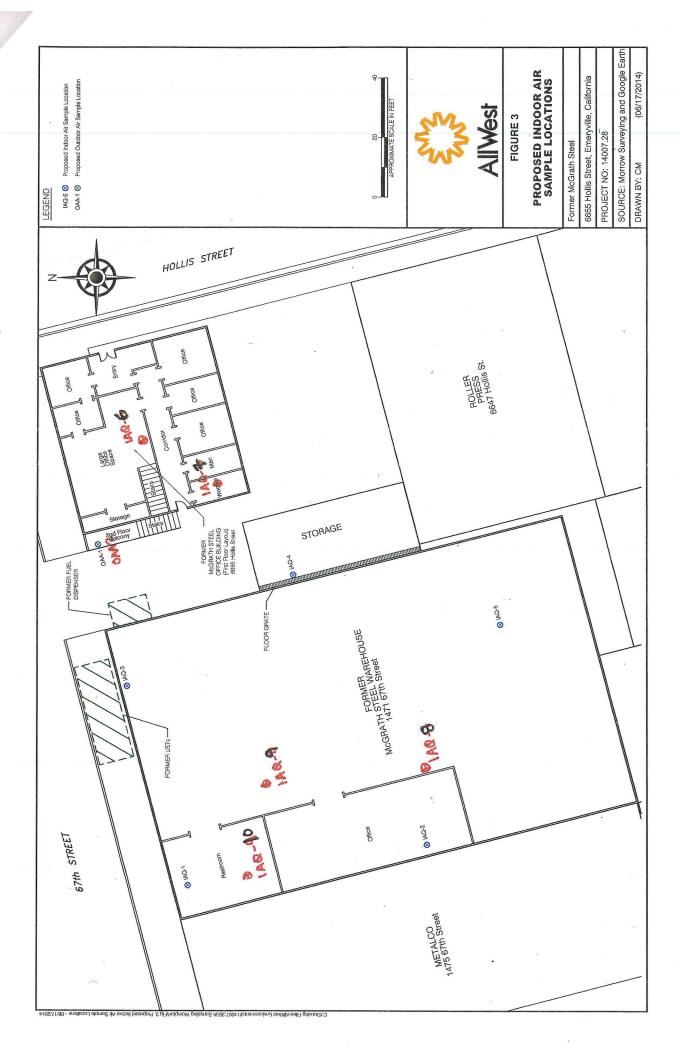
2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008

Project No	:		Project Name: Hous EMERYVIUE
Date: _ 5	13 16		Vapor Probe No: SVP-14 Serial No: SAMPLE: D219
Regulatory	Agencies: ALEN	1EDA COUN	TY ENVIRONMENTAL HEACTH
	: CASCADE DE		The march
			Depth:5" Grout/Bentonite:N/A
Probe Dian	neter:	Line I	ength: 6' Purge Volume:
Tracer Gas	: Helum		Flow Regulator: 150-200 (ml/min) Leak Test: Pass/Fail
Laboratory	Name and Numb		
		SA	AMPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
1022	~	16 Hg	BEGIN LEAK TEST
1027	5 MIN	1649	END LEAK TEST - PASSED
1030	-	1649	BEGAN PURGING; He 20.1%
1033	3MIN	13Hg	END PURGE; He: 19.0%
1036		30Hz	BEGAN SAMPLING; He: 23.370
1056	20MIN	11 Hg	He: 21.1%
1107	31 MIN	4Hg	END SAMPLE; He: 19.670, 070 DOWNHOLE
Remarks:			

2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008

Project No:			Project Name: HOULS EMBEWILLE
Date:5	[13]16		
Regulatory	Agencies: AUM	EDA COUN	TY ENVIRONMENTAL HEALTH
Contractor:	CASCADE DE	ILLING	
Hole Diame	ter: 11/2"	Total	Depth:5"_ Grout/Bentonite:N/ A
Probe Diam	eter:\/o"	Line I	Length: Purge Volume:
	HELIUM		Flow Regulator: 150-200 (ml/min) Leak Test Pass/Fail
Laboratory	Name and Numb	er: <u>Eurof</u>	INS
C. T.	Subseque State of Sta	Programme and the second secon	AMPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
1202	_	13119	BEGIN LEAK TEST
1207	5 MIN	1349	END LEAKTEST - IASS
1210	-	1349	Boath Purge: He: 20.5%
1215	5 MIN	10ttes	END PURGE, He: 21.7%
1216		30Hg	BEGIN SAMPLING; He: 196%
1231	15 MIN	20Hg	He: 19.8%
1250	34 MIN	649	END SAMPLE; He: 18.6%, 0% DOWNHOLE
Remarks:			
Sampler: S	ANCER BLUOM		

2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008


			Project Name: HOLUS EMERYVILLE
Date:5	13/16	_	Vapor Probe No: SVP-16 Serial No: SAMPLE: D59L
Regulatory	Agencies: ALEN	MEDA COUNT	IY ENURONMENTAL HEALTH
	: CASCADE DE		
	eter:\ ¹ / ₂ "		Depth: _5
	neter:		
Tracer Gas:	HELIUM		Flow Regulator: 150.200 (ml/min) Leak Test: Pass/Fail
Laboratory	Name and Numb		SGM025
Start Time	Time Elapsed	Pressure	MPLE COLLECTION
	- me mapseu	100 200 200 100 100 100 100 100 100 100	Remarks
		Inela	
1324	5 Minl	10 Hg	BEGIN LEAKTEST
1324	5 MIN	10 Hg	BEGIN LEAK TEST END LEAK TEST-PASS
1324		10 Hg	BEGIN LEAK TEST END LEAK TEST-PASS BEGIN PURGING; He: 20.0%
1324 1329 1335	5 MIN 5 MIN	10 Hg 10Hg 7Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He: 18.9%
1324 1329 1335 1340		10 Hg 10Hg 7Hg 30Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGE; He: 18.9% BEGIN SAMPLING; He: 19.5%
1324 1329 1335 1340 1342	5 MIN	10 Hg 10Hg 7Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He:18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402	5 MIN 20 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAK TEST END LEAK TEST-PASS BEGIN PURGING; He: 20.0% END PURGE; He: 18.9% BEGIN SAMPLING; He: 19.5%
1324 1329 1335 1340 1342 1402 1410	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He:18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402 1410	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAK TEST END LEAK TEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He:18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402 1410	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAK TEST END LEAK TEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He: 18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402 1410	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He:18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402 1410	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAK TEST END LEAK TEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He: 18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402 1410	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He:18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%
1324 1329 1335 1340 1342 1402	5 MIN 20 MIN 28 MIN	10 Hg 10Hg 7Hg 30Hg	BEGIN LEAKTEST END LEAKTEST-PASS BEGIN PURGING; He: 20.0% END PURGEF; He:18.9% BEGIN SAMPLING; He: 19.5% He: 19.9%

eurofins ::

AIR CHAIN-OF-CUSTODY RECORD REQUESTED P 16076.23.28 BUDOM AB CONTACT OR QUOTE NO DATE: 5 SAMPLER(S): (PRINT SACA PAGE: P.O. NO. \$ HOUS EMERYNUT STATE LEONARD NILES bess towns of EMERINANA CLIENT PROJECT NAME / NO WO NO. / LAB USE ONLY PROJECT ADDRESS: 9410 M STANDARD LEONARDO ALLWETTI.COM For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us. □ 5 DAYS STATE: \$ ALLWEST ENVIRONMENTAL 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 D 72 HR Calscience rges may apply to any TAT not "STANDARI 214 MISSION ST, STELLO □ 48 HR OTISAN FRANCISCO COELT EDF COTHER SPECIAL INSTRUCTIONS: (415)391-2510 □ 24 HR ☐ SAME DAY

A ANN+TWWIT) MIZ ZI-OT Time: Time: HUL) E-01 Pressure (in Hg) 7 N n STOP SAMPLING INFORMATION M 4 Date: Date: Date: 5 13 14 1543 5/13/12/16/06 5/13/16 1554 511316 1615 5/13/16 1621 1635 Pressure (in Hg) 30 8 30 30 30 FC 236 5/13/16 0752 FC247 5||3|||6 6754 FC231 5[13][6 6816 5 B 1 0836 5/13/16/0835 5/13/14/832 Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) FC 472 FC133 FC561 Controller 6L or 1L 5 3 3 Size 3 SIMOSE 0744 SIMOOS 5470 D206 Media 1520 0 Indoor (I) Soil Vap. (SV) Ambient (A) 4 POINT OF COLLECTION IN STATE OF THE PARTY OF THE PA SAMPLEID 1 AQ-10 OAA-2 148-9 Relinquished by: (Signature) 140-8 140-7 1 0 V Relinquished LAB USE ONLY

2014-07-01 Revision

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

			Project Name: HOULS EMERYVILLE
Date:5	13/16		Site Location: 6655 HOULS ST
Sample ID	No: IAQ-DER	6	Canister Type: bl Summa Serial No: Db73
Regulatory	Agencies:		
Indoor/Out	door: INDOOK	Buildir	ng Name/Location:
Initial Vacu	ium: <u>30</u> (°	'Hg) Final V	Vacuum:("Hg) Canister Volume: (L)
Sampling In	nterval (hrs): 🧏	Flow R	egulator: <u>FC 238</u> (ml/min) Regulator Serial No: <u>FC 238</u>
	Name and Location		
Laboratory	Analyses:		
		SA	MPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
0752		30Hg	START INDOOR AIR SAMPLING
1543	7HR 51 MIN	5Hej	END INDOOR AIR SAMPUNG
Remarks:			
Sampler: S	ARA BLODA	1	

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

			Project Name: HOLUS EMERYVILLE
Date: 5	13/16		Site Location: 6655 HOLLIS ST.
Sample ID	No: IAQ-DE	租子	Canister Type: 6 Summa Serial No: D206
Regulatory	Agencies:		
Indoor/Out	door: INDOOK	Buildir	ng Name/Location: WOMAN'S BATHICOM
Initial Vacu	um: <u>30</u> (Vacuum: ("Hg) Canister Volume: (L)
			degulator:(ml/min) Regulator Serial No: FC247
	÷		MPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
1554	SHR	30Hg 12Hg	START INDOOR AIR SAMPLING END INDOOR AIR SAMPLING
		2	
,			
Remarks:			

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

Project No:			Project Name: HOULS EMERYVILLE
Date:	5 13 16		Site Location: 6655 HOULS ST.
Sample ID	No: DAG BA	6	Canister Type: LL SummA Serial No: D251
Regulatory	Agencies:		
Indoor/Out	door: <u>OUTDOOR</u>	Buildi	ng Name/Location: OUTSIDE BALCONY
Initial Vacu	um: <u>30</u> ('		Vacuum:("Hg) Canister Volume:(L)
			Regulator:(ml/min) Regulator Serial No: FC23
	Name and Location		
Laboratory	Analyses:		
		SA	MPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
0016		30Hg	START OUTDOOR AIR SAMPLING
1615	7HR 59MIN	5 ttg	END OUTDOR AUR SAMPLING
	п		
Remarks			
1			
Sampler:	SAMA BLACK	• •	

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

	=		Project Name: HOLUS EMERYNUE
Date:5	13/16		Site Location: 6655 Hours ST.
Sample ID	No: <u>IAQ - 8</u>		Canister Type: 6 Serial No: 51M088
Regulatory	Agencies: ACEL		Contractor:
Indoor/Out	door: INDOOK	Buildir	ng Name/Location: S CENTER WAU- ON CAGE
			Vacuum:5("Hg) Canister Volume:6(L)
Sampling In	iterval (hrs): 8	Flow R	legulator:(ml/min) Regulator Serial No: FC561
	Name and Locati		
Laboratory	Analyses:		
			MPLE COLLECTION
Start Time	Time Elapsed	Pressure	Remarks
		- H	
0832	THE MAN	30Hg	BEGIN INDOOR AIR SAMPLING
1621	7tle 49MIN	30 Hg 5 Hg	END INDOOR AIR SAMPLING
	7112 49 MIN		END INDOOR AIR SAMPLING
	7the 49 MIN		BEGIN INDOOR AIR SAMPUNG END INDOOR AIR SAMPUNG
	7HR 49MIN		END INDOOR AIR SAMPLING
	7the 49 MIN		BEGIN INDOOR AIR SAMPUNG END INDOOR AIR SAMPUNG
1621		5 Hg'	END INDOOR ALP SAMPLING
1621	7HR 49MIN	5 Hg'	END INDOOR ALP SAMPLING
1621		5 Hg'	END INDOOR ALP SAMPLING
1621		5 Hg'	END INDOOR ALP SAMPLING
1621		5 Hg'	END INDOOR ALP SAMPLING
1621		5 Hg'	END INDOOR ALP SAMPLING

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

Project No:			Project Name: HOULS EMERYVILLE	
Date:	5 13 16		Site Location: 6655 Hous ST	
Sample ID No: 1AQ - 9			Canister Type: 66 Summ A Serial No: D794	
Regulatory	Agencies: ACE	H	Contractor:	
Indoor/Outdoor: INDOOR			ng Name/Location: BETWEEN SVP-3 & SVP-4	
Initial Vacuum:("Hg) Final Vacuum:("Hg) Canister Volume:(L)				
Sampling Interval (hrs): 8 Flow Regulator:(ml/min) Regulator Serial No: FC472				
Laboratory	Name and Locati			
Laboratory	Analyses:			
			AMPLE COLLECTION	
Start Time	Time Elapsed	Pressure	Downsta	
0935		30Hg	Remarks	
1635	8the	9 Hg	END INDOOR AIR SAMPLING	
Remarks:				
Sampler: .	ARA BLOOM	A		
1 7	12 0001	<u> </u>		

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel 415.391.2510 Fax 415.391.2008

Project No:			Project Name: HOULS EMERYVILLE		
Date:	5 13 16		Site Location: 4655 HOLUS ST.		
Sample ID No: <u> </u>			Canister Type: 61 SUMMA Serial No: 51M008		
Regulatory Agencies: ACEH Contractor:					
Indoor/Outdoor: NOOOR Building Name/Location: WAREHOWE BATHROOM					
Initial Vacuum:					
Sampling Interval (hrs): 8 Flow Regulator:(ml/min) Regulator Serial No: FC233					
Laboratory Name and Location: EWROFINS					
Laboratory	Analyses:				
SAMPLE COLLECTION					
Start Time	Time Elapsed	Pressure	Remarks		
0836		30thg	BEGIN INDOOR AIR SAMPLING		
1606	THE 30 MIN	5 Hg	END INDOOR AIR SAMPLING		
Remarks:					
Sampler:	'ARA BLOOM	×			

APPENDIX L - BUILDING SURVEY FORM

Preparer's Name: SARA BLOOM	Date/Time Prepared: 5 13 16				
Affiliation: ALLWEST	Phone Number:				
Occupant Information					
Occupant Name: VACANT	Interviewed: Yes No				
Mailing Address: 6655 Hours ST					
City: State: CA	Zip Code:				
Phone: Email:					
Owner/Landlord Information (Check if same as occupant □)					
Occupant Name:	Interviewed: ☐ Yes ☐ No				
Mailing Address:					
City: State: Phone: Email:	Zip Code:				
Phone: Email:					
Building Type (Check appropriate boxes)					
☐ Residential ☐ Residential Duplex ☐ Apartment Building ☐ Mobile Home ☒ Commercial (office) ☐ Commercial (warehouse) ☐ Industrial ☐ Strip Mall ☐ Split Level ☐ Church ☐ School					
Building Characteristics					
Approximate Building Age (years): Number	er of Stories: 2				
Approximate Building Area (square feet):	Number of Elevators:				
Foundation Type (Check appropriate boxes)					
□ Slab-on-Grade 🗮 Crawl Space □ Basement					
Basement Characteristics (Check appropriate boxes)					
□ Dirt Floor □ Sealed □ Wet Surfaces □ Sump Pump □ Concrete Cracks □ Floor Drains					
Factors Influencing Indoor Air Quality					
Is there an attached garage?	☐ Yes No				
Is there smoking in the building?	☐ Yes ♣No				
Is there new carpet or furniture? Have clothes or drapes been recently dry cleaned?	Yes No Describe:				
Has painting or staining been done with the last six months?	☐ Yes Й No Describe:				
Has the building been recently remodeled?	☐ Yes ☒ No Describe:				
Has the building ever had a fire?	☐ Yes ☒ No				
Is there a hobby or craft area in the building?	☐ Yes 🗹 No Describe:				
Is gun cleaner stored in the building?	☐ Yes 💆 No				
Is there a fuel oil tank on the property?	☐ Yes ☒ No				
Is there a septic tank on the property? □ Yes 🎽 No Has the building been fumigated or sprayed for pests recently? □ Yes 🞽 No Describe:					
Do any building occupants use solvents at work?	☐ Yes ☐ No Describe:				
Do any banding decupants use solvents at work:					

Draw the general floor plan of the building and denote doors, windows, indoor air contaminant sources and fi		Indicate locations of
		e -
Primary Type of Energy Used (Check appropriate bo	oxes)	
☐ Natural Gas ☐ Fuel Oil ☐ Propane 💢 Electricity	y □ Wood □ Kerosene	
Meteorological Conditions		
Describe the general weather conditions during the inc	loor air sampling event.	
General Comments		
Provide any other information that may be of important building. THE BINULUMG IS CURRENTLY VACANT THE HOMELESS IN PECENT MONTHS/	BUT HAS BUE INH	
NO ELECTRICITY / POWER. ALL DOOK.	s/Windows were c	rated during

APPENDIX L - BUILDING SURVEY FORM

Preparer's Name:	Date/Time Prepared: 5 13 16 Phone Number: (415) 391-2510
Occupant Information	
Occupant Name: VACANT Mailing Address: VACANT	Interviewed: ☐ Yes ☐ No
Mailing Address: GTM ST. City: EMERY WAS State Phone: Email	e: Zip Code: ail:
Owner/Landlord Information (Check if same as o	
Occupant Name: NA Mailing Address:	Interviewed: ☐ Yes ☐ No
City: State	e: Zip Code: ail:
Building Type (Check appropriate boxes)	
□ Residential □ Residential Duplex □ Apartmer Commercial (warehouse) □ Industrial □ Strip	nt Building □ Mobile Home □ Commercial (office) Mall □ Split Level □ Church □ School
Building Characteristics	
Approximate Building Age (years): Approximate Building Area (square feet):	Number of Stories: Number of Elevators:
Foundation Type (Check appropriate boxes)	
X Slab-on-Grade ☐ Crawl Space ☐ Basement	
Basement Characteristics (Check appropriate box	res)
□ Dirt Floor □ Sealed □ Wet Surfaces □ Sum	p Pump ☐ Concrete Cracks ☐ Floor Drains
Factors Influencing Indoor Air Quality	
Is there an attached garage? Is there smoking in the building? Is there new carpet or furniture? Have clothes or drapes been recently dry cleaned? Has painting or staining been done with the last six Has the building been recently remodeled? Has the building ever had a fire? Is there a hobby or craft area in the building? Is gun cleaner stored in the building? Is there a fuel oil tank on the property? Is there a septic tank on the property? Has the building been fumigated or sprayed for pest Do any building occupants use solvents at work?	☐ Yes Й No Describe: ☐ Yes Й No

Samp	lina	Locations
------	------	-----------

Draw the general floor plan of the building and denote locations of sample collection. doors, windows, indoor air contaminant sources and field instrument readings.	Indicate locations of
Primary Type of Energy Used (Check appropriate boxes)	
□ Natural Gas □ Fuel Oil □ Propane ♠ Electricity □ Wood □ Kerosene Meteorological Conditions	
Describe the general weather conditions during the indoor air sampling event.	
General Comments	
Provide any other information that may be of importance in understanding the indebuilding. NO ELECTRICITY POWER. ALL DOORS WERE CLOSED, HOW LIPER WINDOWS WERE OPEN.	

APPENDIX M - BUILDING SCREENING FORM

	Occupant of E	Building VACANT	
	Address	55 Hours St	
	City FME	service, ca	
	Field Investiga	ator SARA BUOM Date 5	13 16
	Field Instrument Reading	Measurement Location (Ambient Air, Foundation Opening, or Consumer Product)	If Consumer Product, Potential Volatile Ingredients
		DUAL PUMP FLUIDII	
		GAS CAN - NO LID, EMPTY	
		SPILVED LASER JET INK	
		WHITE POWDER ON CUPBOARD SHELF	
		LAUNDRY DETERGENT	
OFFIC	E Z	LYSOL SPRAY	
BLDG		HOT SHOT PLUS INDUSTRIAL CUEANER	
		SPEAN PAINT CANS	
		PAINT CANS (LIDS OFF)	
		MOTOR OIL -2 STROKE, 2/3 FULL, UD OFF	
		•	
OUTS	-	PAINT CHIPPER/BLASTER	
\$ WAKE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
WAREH	WE -	GREASE/OIL STAINS ON SLAB OF WAREHOU	i E
	~		
	,	٠	
	Comments:		

APPENDIX F

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1602146

Report Created for: All West Environmental, Inc

2141 Mission Street, Ste 100 San Francisco, CA 94110

Project Contact: Sara Bloom

Project P.O.:

Project Name: 15179.23; Hollis

Project Received: 02/03/2016

Analytical Report reviewed & approved for release on 02/09/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: All West Environmental, Inc

Project: 15179.23; Hollis

WorkOrder: 1602146

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

S Surrogate spike recovery outside accepted recovery limits

c7 Surrogate value diluted out of range

Glossary of Terms & Qualifier Definitions

Client: All West Environmental, Inc

Project: 15179.23; Hollis

WorkOrder: 1602146

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.

F2 LCS recovery for this compound is outside of acceptance limits.

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
SB-26A @ 4.5'-5'	1602146-001A	Soil	02/03/201	6 09:40	GC16	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		0.10	1		02/05/2016 14:29
tert-Amyl methyl ether (TAME)	ND		0.0050	1		02/05/2016 14:29
Benzene	ND		0.0050	1		02/05/2016 14:29
Bromobenzene	ND		0.0050	1		02/05/2016 14:29
Bromochloromethane	ND		0.0050	1		02/05/2016 14:29
Bromodichloromethane	ND		0.0050	1		02/05/2016 14:29
Bromoform	ND		0.0050	1		02/05/2016 14:29
Bromomethane	ND		0.0050	1		02/05/2016 14:29
2-Butanone (MEK)	ND		0.020	1		02/05/2016 14:29
t-Butyl alcohol (TBA)	ND		0.050	1		02/05/2016 14:29
n-Butyl benzene	ND		0.0050	1		02/05/2016 14:29
sec-Butyl benzene	ND		0.0050	1		02/05/2016 14:29
tert-Butyl benzene	ND		0.0050	1		02/05/2016 14:29
Carbon Disulfide	ND		0.0050	1		02/05/2016 14:29
Carbon Tetrachloride	ND		0.0050	1		02/05/2016 14:29
Chlorobenzene	ND		0.0050	1		02/05/2016 14:29
Chloroethane	ND		0.0050	1		02/05/2016 14:29
Chloroform	ND		0.0050	1		02/05/2016 14:29
Chloromethane	ND		0.0050	1		02/05/2016 14:29
2-Chlorotoluene	ND		0.0050	1		02/05/2016 14:29
4-Chlorotoluene	ND		0.0050	1		02/05/2016 14:29
Dibromochloromethane	ND		0.0050	1		02/05/2016 14:29
1,2-Dibromo-3-chloropropane	ND		0.0040	1		02/05/2016 14:29
1,2-Dibromoethane (EDB)	ND		0.0040	1		02/05/2016 14:29
Dibromomethane	ND		0.0050	1		02/05/2016 14:29
1,2-Dichlorobenzene	ND		0.0050	1		02/05/2016 14:29
1,3-Dichlorobenzene	ND		0.0050	1		02/05/2016 14:29
1,4-Dichlorobenzene	ND		0.0050	1		02/05/2016 14:29
Dichlorodifluoromethane	ND		0.0050	1		02/05/2016 14:29
1,1-Dichloroethane	ND		0.0050	1		02/05/2016 14:29
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		02/05/2016 14:29
1,1-Dichloroethene	ND		0.0050	1		02/05/2016 14:29
cis-1,2-Dichloroethene	ND		0.0050	1		02/05/2016 14:29
trans-1,2-Dichloroethene	ND		0.0050	1		02/05/2016 14:29
1,2-Dichloropropane	ND		0.0050	1		02/05/2016 14:29
1,3-Dichloropropane	ND		0.0050	1		02/05/2016 14:29
2,2-Dichloropropane	ND		0.0050	1		02/05/2016 14:29

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
SB-26A @ 4.5'-5'	1602146-001A	Soil	02/03/2010	6 09:40	GC16	116226
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND		0.0050	1		02/05/2016 14:29
cis-1,3-Dichloropropene	ND		0.0050	1		02/05/2016 14:29
trans-1,3-Dichloropropene	ND		0.0050	1		02/05/2016 14:29
Diisopropyl ether (DIPE)	ND		0.0050	1		02/05/2016 14:29
Ethylbenzene	ND		0.0050	1		02/05/2016 14:29
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		02/05/2016 14:29
Freon 113	ND		0.0050	1		02/05/2016 14:29
Hexachlorobutadiene	ND		0.0050	1		02/05/2016 14:29
Hexachloroethane	ND		0.0050	1		02/05/2016 14:29
2-Hexanone	ND		0.0050	1		02/05/2016 14:29
Isopropylbenzene	ND		0.0050	1		02/05/2016 14:29
4-Isopropyl toluene	ND		0.0050	1		02/05/2016 14:29
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		02/05/2016 14:29
Methylene chloride	ND		0.0050	1		02/05/2016 14:29
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		02/05/2016 14:29
Naphthalene	ND		0.0050	1		02/05/2016 14:29
n-Propyl benzene	ND		0.0050	1		02/05/2016 14:29
Styrene	ND		0.0050	1		02/05/2016 14:29
1,1,1,2-Tetrachloroethane	ND		0.0050	1		02/05/2016 14:29
1,1,2,2-Tetrachloroethane	ND		0.0050	1		02/05/2016 14:29
Tetrachloroethene	ND		0.0050	1		02/05/2016 14:29
Toluene	ND		0.0050	1		02/05/2016 14:29
1,2,3-Trichlorobenzene	ND		0.0050	1		02/05/2016 14:29
1,2,4-Trichlorobenzene	ND		0.0050	1		02/05/2016 14:29
1,1,1-Trichloroethane	ND		0.0050	1		02/05/2016 14:29
1,1,2-Trichloroethane	ND		0.0050	1		02/05/2016 14:29
Trichloroethene	ND		0.0050	1		02/05/2016 14:29
Trichlorofluoromethane	ND		0.0050	1		02/05/2016 14:29
1,2,3-Trichloropropane	ND		0.0050	1		02/05/2016 14:29
1,2,4-Trimethylbenzene	0.0087		0.0050	1		02/05/2016 14:29
1,3,5-Trimethylbenzene	ND		0.0050	1		02/05/2016 14:29
Vinyl Chloride	ND		0.0050	1		02/05/2016 14:29
Xylenes, Total	ND		0.0050	1		02/05/2016 14:29

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis WorkOrder: 1602146

Extraction Method: SW5030B Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-26A @ 4.5'-5'	1602146-001A Soil	02/03/2016 09:40 GC16	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
<u>Surrogates</u>	REC (%)	<u>Limits</u>	
Dibromofluoromethane	98	70-130	02/05/2016 14:29
Toluene-d8	116	70-130	02/05/2016 14:29
4-BFB	95	70-130	02/05/2016 14:29
Benzene-d6	93	60-140	02/05/2016 14:29
Ethylbenzene-d10	109	60-140	02/05/2016 14:29
1.2-DCB-d4	74	60-140	02/05/2016 14:29

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Analytes Result RL DE Date Analytes Acetone ND 0.20 2 02/08/2016 tert-Amyl methyl ether (TAME) ND 0.010 2 02/08/2016 Benzene 0.086 0.010 2 02/08/2016 Bromobenzene ND 0.010 2 02/08/2016 Bromodichloromethane ND 0.010 2 02/08/2016 Bromodichloromethane ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 2-Butanone (MEK) ND 0.010 2 02/08/2016 1-Butyl alcohol (TEA) ND 0.10 2 02/08/2016 1-Butyl benzene 0.034 0.010 2 02/08/2016 1et-Hutyl benzene ND 0.010 2 02/08/2016 1et-Hutyl benzene ND 0.010 2 02/08/2016 Carbon Tetrachloride <th>Client ID</th> <th>Lab ID</th> <th>Matrix</th> <th>Date Co</th> <th>llected Instrument</th> <th>Batch ID</th>	Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
Acetone	SB-26A @ 9.5'-10'	1602146-003A	Soil	02/03/201	6 10:00 GC16	116226
tert-Amyl methyl ether (TAME) ND 0.010 2 02/08/2016 Benzene 0.086 0.010 2 02/08/2016 Bromobenzene ND 0.010 2 02/08/2016 Bromodichloromethane ND 0.010 2 02/08/2016 Bromoform ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 2-Butanone (MEK) ND 0.040 2 02/08/2016 1-Butyl alcohol (TBA) ND 0.040 2 02/08/2016 1-Butyl benzene 0.034 0.010 2 02/08/2016 1-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Chlorobenzene	<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	Acetone	ND		0.20	2	02/08/2016 23:06
Bromobenzene ND	tert-Amyl methyl ether (TAME)	ND		0.010	2	02/08/2016 23:06
Bromochloromethane ND 0.010 2 02/08/2016 Bromodichloromethane ND 0.010 2 02/08/2016 Bromoform ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 2-Butanone (MEK) ND 0.040 2 02/08/2016 1-Butyl alcohol (TBA) ND 0.010 2 02/08/2016 n-Butyl benzene 0.034 0.010 2 02/08/2016 n-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloroformethane	Benzene	0.086		0.010	2	02/08/2016 23:06
Bromodichloromethane ND 0.010 2 02/08/2016 Bromoform ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 2-Butanone (MEK) ND 0.040 2 02/08/2016 1-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 n-Butyl benzene 0.034 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chlorobersene ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chlorotoluene ND 0.010 2 02/08/2016 2-Chlorotoluene <	Bromobenzene	ND		0.010	2	02/08/2016 23:06
Bromoform ND 0.010 2 02/08/2016 Bromomethane ND 0.010 2 02/08/2016 2-Butanone (MEK) ND 0.040 2 02/08/2016 L-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 L-Butyl benzene 0.034 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorostenzene ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chlorofotluene ND 0.010 2 02/08/2016 Chlorofotluene ND	Bromochloromethane	ND		0.010	2	02/08/2016 23:06
Bromomethane	Bromodichloromethane	ND		0.010	2	02/08/2016 23:06
2-Butanone (MEK) ND 0.040 2 02/08/2016 t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 n-Butyl benzene 0.034 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chlorotehane ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene	Bromoform	ND		0.010	2	02/08/2016 23:06
t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 n-Butyl benzene 0.034 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chloroberzene ND 0.010 2 02/08/2016 Chloroferm ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chlorotoluene ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropro	Bromomethane	ND		0.010	2	02/08/2016 23:06
n-Butyl benzene 0.034 0.010 2 02/08/2016 sec-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chlorotoluene ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1/2-Dibromo-3-chloropropane ND 0.010 2 02/08/2016 1/2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1/2-Dibrom	2-Butanone (MEK)	ND		0.040	2	02/08/2016 23:06
sec-Butyl benzene ND 0.010 2 02/08/2016 tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chloroethane ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.010 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobe	t-Butyl alcohol (TBA)	ND		0.10	2	02/08/2016 23:06
tert-Butyl benzene ND 0.010 2 02/08/2016 Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chloroethane ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chlorothuene ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1	n-Butyl benzene	0.034		0.010	2	02/08/2016 23:06
Carbon Disulfide ND 0.010 2 02/08/2016 Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chloroethane ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloromethane ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromochthane ND 0.010 2 02/08/2016 1,2-Dibromorethane ND 0.0080 2 02/08/2016 1,2-Dibromomethane (EDB) ND 0.010 2 02/08/2016 1,2-Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzen	sec-Butyl benzene	ND		0.010	2	02/08/2016 23:06
Carbon Tetrachloride ND 0.010 2 02/08/2016 Chlorobenzene ND 0.010 2 02/08/2016 Chloroethane ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chlorotoluene ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromoethane ND 0.010 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0880 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichloroethane	tert-Butyl benzene	ND		0.010	2	02/08/2016 23:06
Chlorobenzene ND 0.010 2 02/08/2016 Chloroethane ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloromethane ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dibromoethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 <td< td=""><td>Carbon Disulfide</td><td>ND</td><td></td><td>0.010</td><td>2</td><td>02/08/2016 23:06</td></td<>	Carbon Disulfide	ND		0.010	2	02/08/2016 23:06
Chloroethane ND 0.010 2 02/08/2016 Chloroform ND 0.010 2 02/08/2016 Chloromethane ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dibromoethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane ND 0.0080 2 02/08/2016 <	Carbon Tetrachloride	ND		0.010	2	02/08/2016 23:06
Chloroform ND 0.010 2 02/08/2016 Chloromethane ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 1,2-Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane ND 0.0080 2 02/08/2016	Chlorobenzene	ND		0.010	2	02/08/2016 23:06
Chloromethane ND 0.010 2 02/08/2016 2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dibromoethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichlorotethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.0080 2 02/08/2016 1,1-Dichloroethane ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016	Chloroethane	ND		0.010	2	02/08/2016 23:06
2-Chlorotoluene ND 0.010 2 02/08/2016 4-Chlorotoluene ND 0.010 2 02/08/2016 Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 1,2-Dibromoethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	Chloroform	ND		0.010	2	02/08/2016 23:06
4-Chlorotoluene ND 0.010 2 02/08/2016 Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	Chloromethane	ND		0.010	2	02/08/2016 23:06
Dibromochloromethane ND 0.010 2 02/08/2016 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 0s-1,2-Dichloroethene ND 0.010 2 02/08/2016	2-Chlorotoluene	ND		0.010	2	02/08/2016 23:06
1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	4-Chlorotoluene	ND		0.010	2	02/08/2016 23:06
1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 1,1-Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,2-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	Dibromochloromethane	ND		0.010	2	02/08/2016 23:06
Dibromomethane ND 0.010 2 02/08/2016 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,2-Dibromo-3-chloropropane	ND		0.0080	2	02/08/2016 23:06
1,2-Dichlorobenzene ND 0.010 2 02/08/2016 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,2-Dibromoethane (EDB)	ND		0.0080	2	02/08/2016 23:06
1,3-Dichlorobenzene ND 0.010 2 02/08/2016 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	Dibromomethane	ND		0.010	2	02/08/2016 23:06
1,4-Dichlorobenzene ND 0.010 2 02/08/2016 Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,2-Dichlorobenzene	ND		0.010	2	02/08/2016 23:06
Dichlorodifluoromethane ND 0.010 2 02/08/2016 1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,3-Dichlorobenzene	ND		0.010	2	02/08/2016 23:06
1,1-Dichloroethane ND 0.010 2 02/08/2016 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,4-Dichlorobenzene	ND		0.010	2	02/08/2016 23:06
1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	Dichlorodifluoromethane	ND		0.010	2	02/08/2016 23:06
1,1-Dichloroethene ND 0.010 2 02/08/2016 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,1-Dichloroethane	ND		0.010	2	02/08/2016 23:06
cis-1,2-Dichloroethene ND 0.010 2 02/08/2016	1,2-Dichloroethane (1,2-DCA)	ND		0.0080	2	02/08/2016 23:06
	1,1-Dichloroethene	ND		0.010	2	02/08/2016 23:06
trans-1,2-Dichloroethene ND 0.010 2 02/08/2016	cis-1,2-Dichloroethene	ND		0.010	2	02/08/2016 23:06
	trans-1,2-Dichloroethene	ND		0.010	2	02/08/2016 23:06
1,2-Dichloropropane ND 0.010 2 02/08/2016	1,2-Dichloropropane	ND		0.010	2	02/08/2016 23:06
1,3-Dichloropropane ND 0.010 2 02/08/2016	1,3-Dichloropropane	ND		0.010	2	02/08/2016 23:06
2,2-Dichloropropane ND 0.010 2 02/08/2016	2,2-Dichloropropane	ND		0.010	2	02/08/2016 23:06

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-26A @ 9.5'-10'	1602146-003A	Soil	02/03/20	16 10:00 GC16	116226
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.010	2	02/08/2016 23:06
cis-1,3-Dichloropropene	ND		0.010	2	02/08/2016 23:06
trans-1,3-Dichloropropene	ND		0.010	2	02/08/2016 23:06
Diisopropyl ether (DIPE)	ND		0.010	2	02/08/2016 23:06
Ethylbenzene	0.12		0.010	2	02/08/2016 23:06
Ethyl tert-butyl ether (ETBE)	ND		0.010	2	02/08/2016 23:06
Freon 113	ND		0.010	2	02/08/2016 23:06
Hexachlorobutadiene	ND		0.010	2	02/08/2016 23:06
Hexachloroethane	ND		0.010	2	02/08/2016 23:06
2-Hexanone	ND		0.010	2	02/08/2016 23:06
Isopropylbenzene	ND		0.010	2	02/08/2016 23:06
4-Isopropyl toluene	ND		0.010	2	02/08/2016 23:06
Methyl-t-butyl ether (MTBE)	0.013		0.010	2	02/08/2016 23:06
Methylene chloride	ND		0.010	2	02/08/2016 23:06
4-Methyl-2-pentanone (MIBK)	ND		0.010	2	02/08/2016 23:06
Naphthalene	0.067		0.010	2	02/08/2016 23:06
n-Propyl benzene	0.047		0.010	2	02/08/2016 23:06
Styrene	ND		0.010	2	02/08/2016 23:06
1,1,1,2-Tetrachloroethane	ND		0.010	2	02/08/2016 23:06
1,1,2,2-Tetrachloroethane	ND		0.010	2	02/08/2016 23:06
Tetrachloroethene	ND		0.010	2	02/08/2016 23:06
Toluene	ND		0.010	2	02/08/2016 23:06
1,2,3-Trichlorobenzene	ND		0.010	2	02/08/2016 23:06
1,2,4-Trichlorobenzene	ND		0.010	2	02/08/2016 23:06
1,1,1-Trichloroethane	ND		0.010	2	02/08/2016 23:06
1,1,2-Trichloroethane	ND		0.010	2	02/08/2016 23:06
Trichloroethene	ND		0.010	2	02/08/2016 23:06
Trichlorofluoromethane	ND		0.010	2	02/08/2016 23:06
1,2,3-Trichloropropane	ND		0.010	2	02/08/2016 23:06
1,2,4-Trimethylbenzene	0.29		0.010	2	02/08/2016 23:06
1,3,5-Trimethylbenzene	0.091		0.010	2	02/08/2016 23:06
Vinyl Chloride	ND		0.010	2	02/08/2016 23:06
Xylenes, Total	0.54		0.010	2	02/08/2016 23:06

Analytical Report

Client: All West Environmental, Inc

Date Prepared: 2/3/16

Date Received: 2/3/16 17:45

Project: 15179.23; Hollis WorkOrder: 1602146

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID Mat	rix Date Collected Instrument	Batch ID
SB-26A @ 9.5'-10'	1602146-003A Soil	02/03/2016 10:00 GC16	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	103	70-130	02/08/2016 23:06
Toluene-d8	102	70-130	02/08/2016 23:06
4-BFB	114	70-130	02/08/2016 23:06
Benzene-d6	95	60-140	02/08/2016 23:06
Ethylbenzene-d10	97	60-140	02/08/2016 23:06
1,2-DCB-d4	84	60-140	02/08/2016 23:06

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-26A @ 11.5'-12'	1602146-004A	Soil	02/03/20	16 10:07	GC18	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		4.0	40		02/08/2016 14:14
tert-Amyl methyl ether (TAME)	ND		0.20	40		02/08/2016 14:14
Benzene	0.56		0.20	40		02/08/2016 14:14
Bromobenzene	ND		0.20	40		02/08/2016 14:14
Bromochloromethane	ND		0.20	40		02/08/2016 14:14
Bromodichloromethane	ND		0.20	40		02/08/2016 14:14
Bromoform	ND		0.20	40		02/08/2016 14:14
Bromomethane	ND		0.20	40		02/08/2016 14:14
2-Butanone (MEK)	ND		0.80	40		02/08/2016 14:14
t-Butyl alcohol (TBA)	ND		2.0	40		02/08/2016 14:14
n-Butyl benzene	ND		0.20	40		02/08/2016 14:14
sec-Butyl benzene	ND		0.20	40		02/08/2016 14:14
tert-Butyl benzene	ND		0.20	40		02/08/2016 14:14
Carbon Disulfide	ND		0.20	40		02/08/2016 14:14
Carbon Tetrachloride	ND		0.20	40		02/08/2016 14:14
Chlorobenzene	ND		0.20	40		02/08/2016 14:14
Chloroethane	ND		0.20	40		02/08/2016 14:14
Chloroform	ND		0.20	40		02/08/2016 14:14
Chloromethane	ND		0.20	40		02/08/2016 14:14
2-Chlorotoluene	ND		0.20	40		02/08/2016 14:14
4-Chlorotoluene	ND		0.20	40		02/08/2016 14:14
Dibromochloromethane	ND		0.20	40		02/08/2016 14:14
1,2-Dibromo-3-chloropropane	ND		0.16	40		02/08/2016 14:14
1,2-Dibromoethane (EDB)	ND		0.16	40		02/08/2016 14:14
Dibromomethane	ND		0.20	40		02/08/2016 14:14
1,2-Dichlorobenzene	ND		0.20	40		02/08/2016 14:14
1,3-Dichlorobenzene	ND		0.20	40		02/08/2016 14:14
1,4-Dichlorobenzene	ND		0.20	40		02/08/2016 14:14
Dichlorodifluoromethane	ND		0.20	40		02/08/2016 14:14
1,1-Dichloroethane	ND		0.20	40		02/08/2016 14:14
1,2-Dichloroethane (1,2-DCA)	ND		0.16	40		02/08/2016 14:14
1,1-Dichloroethene	ND		0.20	40		02/08/2016 14:14
cis-1,2-Dichloroethene	ND		0.20	40		02/08/2016 14:14
trans-1,2-Dichloroethene	ND		0.20	40		02/08/2016 14:14
1,2-Dichloropropane	ND		0.20	40		02/08/2016 14:14
1,3-Dichloropropane	ND		0.20	40		02/08/2016 14:14
2,2-Dichloropropane	ND		0.20	40		02/08/2016 14:14

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
SB-26A @ 11.5'-12'	1602146-004A	Soil	02/03/20	16 10:07	GC18	116226
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND		0.20	40		02/08/2016 14:14
cis-1,3-Dichloropropene	ND		0.20	40		02/08/2016 14:14
trans-1,3-Dichloropropene	ND		0.20	40		02/08/2016 14:14
Diisopropyl ether (DIPE)	ND		0.20	40		02/08/2016 14:14
Ethylbenzene	1.2		0.20	40		02/08/2016 14:14
Ethyl tert-butyl ether (ETBE)	ND		0.20	40		02/08/2016 14:14
Freon 113	ND		0.20	40		02/08/2016 14:14
Hexachlorobutadiene	ND		0.20	40		02/08/2016 14:14
Hexachloroethane	ND		0.20	40		02/08/2016 14:14
2-Hexanone	ND		0.20	40		02/08/2016 14:14
Isopropylbenzene	ND		0.20	40		02/08/2016 14:14
4-Isopropyl toluene	ND		0.20	40		02/08/2016 14:14
Methyl-t-butyl ether (MTBE)	ND		0.20	40		02/08/2016 14:14
Methylene chloride	ND		0.20	40		02/08/2016 14:14
4-Methyl-2-pentanone (MIBK)	ND		0.20	40		02/08/2016 14:14
Naphthalene	1.0		0.20	40		02/08/2016 14:14
n-Propyl benzene	0.24		0.20	40		02/08/2016 14:14
Styrene	ND		0.20	40		02/08/2016 14:14
1,1,1,2-Tetrachloroethane	ND		0.20	40		02/08/2016 14:14
1,1,2,2-Tetrachloroethane	ND		0.20	40		02/08/2016 14:14
Tetrachloroethene	ND		0.20	40		02/08/2016 14:14
Toluene	3.4		0.20	40		02/08/2016 14:14
1,2,3-Trichlorobenzene	ND		0.20	40		02/08/2016 14:14
1,2,4-Trichlorobenzene	ND		0.20	40		02/08/2016 14:14
1,1,1-Trichloroethane	ND		0.20	40		02/08/2016 14:14
1,1,2-Trichloroethane	ND		0.20	40		02/08/2016 14:14
Trichloroethene	ND		0.20	40		02/08/2016 14:14
Trichlorofluoromethane	ND		0.20	40		02/08/2016 14:14
1,2,3-Trichloropropane	ND		0.20	40		02/08/2016 14:14
1,2,4-Trimethylbenzene	1.9		0.20	40		02/08/2016 14:14
1,3,5-Trimethylbenzene	0.58		0.20	40		02/08/2016 14:14
Vinyl Chloride	ND		0.20	40		02/08/2016 14:14
Xylenes, Total	6.7		0.20	40		02/08/2016 14:14

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SB-26A @ 11.5'-12'	1602146-004A	Soil	02/03/2016 10:07 GC18	116226
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Qualifiers</u>	<u>Limits</u>	
Dibromofluoromethane	123		70-130	02/08/2016 14:14
Toluene-d8	103		70-130	02/08/2016 14:14
4-BFB	86		70-130	02/08/2016 14:14
Benzene-d6	131		60-140	02/08/2016 14:14
Ethylbenzene-d10	134		60-140	02/08/2016 14:14
1,2-DCB-d4	176	S	60-140	02/08/2016 14:14
Analyst(s): KF			Analytical Comments: c7	

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
SVP-6 @ 6.5'-7'	1602146-006A	Soil	02/03/201	6 11:20	GC18	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		0.10	1		02/08/2016 10:57
tert-Amyl methyl ether (TAME)	ND		0.0050	1		02/08/2016 10:57
Benzene	ND		0.0050	1		02/08/2016 10:57
Bromobenzene	ND		0.0050	1		02/08/2016 10:57
Bromochloromethane	ND		0.0050	1		02/08/2016 10:57
Bromodichloromethane	ND		0.0050	1		02/08/2016 10:57
Bromoform	ND		0.0050	1		02/08/2016 10:57
Bromomethane	ND		0.0050	1		02/08/2016 10:57
2-Butanone (MEK)	ND		0.020	1		02/08/2016 10:57
t-Butyl alcohol (TBA)	ND		0.050	1		02/08/2016 10:57
n-Butyl benzene	ND		0.0050	1		02/08/2016 10:57
sec-Butyl benzene	ND		0.0050	1		02/08/2016 10:57
tert-Butyl benzene	ND		0.0050	1		02/08/2016 10:57
Carbon Disulfide	ND		0.0050	1		02/08/2016 10:57
Carbon Tetrachloride	ND		0.0050	1		02/08/2016 10:57
Chlorobenzene	ND		0.0050	1		02/08/2016 10:57
Chloroethane	ND		0.0050	1		02/08/2016 10:57
Chloroform	ND		0.0050	1		02/08/2016 10:57
Chloromethane	ND		0.0050	1		02/08/2016 10:57
2-Chlorotoluene	ND		0.0050	1		02/08/2016 10:57
4-Chlorotoluene	ND		0.0050	1		02/08/2016 10:57
Dibromochloromethane	ND		0.0050	1		02/08/2016 10:57
1,2-Dibromo-3-chloropropane	ND		0.0040	1		02/08/2016 10:57
1,2-Dibromoethane (EDB)	ND		0.0040	1		02/08/2016 10:57
Dibromomethane	ND		0.0050	1		02/08/2016 10:57
1,2-Dichlorobenzene	ND		0.0050	1		02/08/2016 10:57
1,3-Dichlorobenzene	ND		0.0050	1		02/08/2016 10:57
1,4-Dichlorobenzene	ND		0.0050	1		02/08/2016 10:57
Dichlorodifluoromethane	ND		0.0050	1		02/08/2016 10:57
1,1-Dichloroethane	ND		0.0050	1		02/08/2016 10:57
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		02/08/2016 10:57
1,1-Dichloroethene	ND		0.0050	1		02/08/2016 10:57
cis-1,2-Dichloroethene	ND		0.0050	1		02/08/2016 10:57
trans-1,2-Dichloroethene	ND		0.0050	1		02/08/2016 10:57
1,2-Dichloropropane	ND		0.0050	1		02/08/2016 10:57
1,3-Dichloropropane	ND		0.0050	1		02/08/2016 10:57
2,2-Dichloropropane	ND		0.0050	1		02/08/2016 10:57

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Col	lected Instrument	Batch ID
SVP-6 @ 6.5'-7'	1602146-006A	Soil	02/03/2010	6 11:20 GC18	116226
<u>Analytes</u>	Result		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		0.0050	1	02/08/2016 10:57
cis-1,3-Dichloropropene	ND		0.0050	1	02/08/2016 10:57
trans-1,3-Dichloropropene	ND		0.0050	1	02/08/2016 10:57
Diisopropyl ether (DIPE)	ND		0.0050	1	02/08/2016 10:57
Ethylbenzene	ND		0.0050	1	02/08/2016 10:57
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	02/08/2016 10:57
Freon 113	ND		0.0050	1	02/08/2016 10:57
Hexachlorobutadiene	ND		0.0050	1	02/08/2016 10:57
Hexachloroethane	ND		0.0050	1	02/08/2016 10:57
2-Hexanone	ND		0.0050	1	02/08/2016 10:57
Isopropylbenzene	ND		0.0050	1	02/08/2016 10:57
4-Isopropyl toluene	ND		0.0050	1	02/08/2016 10:57
Methyl-t-butyl ether (MTBE)	0.0092		0.0050	1	02/08/2016 10:57
Methylene chloride	ND		0.0050	1	02/08/2016 10:57
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	02/08/2016 10:57
Naphthalene	ND		0.0050	1	02/08/2016 10:57
n-Propyl benzene	ND		0.0050	1	02/08/2016 10:57
Styrene	ND		0.0050	1	02/08/2016 10:57
1,1,1,2-Tetrachloroethane	ND		0.0050	1	02/08/2016 10:57
1,1,2,2-Tetrachloroethane	ND		0.0050	1	02/08/2016 10:57
Tetrachloroethene	ND		0.0050	1	02/08/2016 10:57
Toluene	ND		0.0050	1	02/08/2016 10:57
1,2,3-Trichlorobenzene	ND		0.0050	1	02/08/2016 10:57
1,2,4-Trichlorobenzene	ND		0.0050	1	02/08/2016 10:57
1,1,1-Trichloroethane	ND		0.0050	1	02/08/2016 10:57
1,1,2-Trichloroethane	ND		0.0050	1	02/08/2016 10:57
Trichloroethene	ND		0.0050	1	02/08/2016 10:57
Trichlorofluoromethane	ND		0.0050	1	02/08/2016 10:57
1,2,3-Trichloropropane	ND		0.0050	1	02/08/2016 10:57
1,2,4-Trimethylbenzene	0.029		0.0050	1	02/08/2016 10:57
1,3,5-Trimethylbenzene	ND		0.0050	1	02/08/2016 10:57
Vinyl Chloride	ND		0.0050	1	02/08/2016 10:57
Xylenes, Total	0.020		0.0050	1	02/08/2016 10:57

Analytical Report

Client: All West Environmental, Inc

WorkOrder:

1602146

Date Received: 2/3/16 17:45

Extraction Method: SW5030B

Date Prepared: 2/3/16

Analytical Method: SW8260B

Project: 15179.23; Hollis Unit: mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SVP-6 @ 6.5'-7'	1602146-006A Soil	02/03/2016 11:20 GC18	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	117	70-130	02/08/2016 10:57
Toluene-d8	116	70-130	02/08/2016 10:57
4-BFB	88	70-130	02/08/2016 10:57
Benzene-d6	113	60-140	02/08/2016 10:57
Ethylbenzene-d10	105	60-140	02/08/2016 10:57
1,2-DCB-d4	104	60-140	02/08/2016 10:57

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Acatone	Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
Acetone	SVP-1 @1.5'-2'	1602146-007A	Soil	02/03/201	6 12:42	GC18	116226
tert-Amyl methyl ether (TAME) ND 0.0050 1 02/08/2016 11: Benzene ND 0.0050 1 02/08/2016 11: Bromobenzene ND 0.0050 1 02/08/2016 11: Bromochloromethane ND 0.0050 1 02/08/2016 11: Bromoform ND 0.0050 1 02/08/2016 11: Bromoform ND 0.0050 1 02/08/2016 11: Bromomethane ND 0.0050 1 02/08/2016 11: 2-Butanone (MEK) ND 0.0050 1 02/08/2016 11: 2-Butanone (MEK) ND 0.050 1 02/08/2016 11: Butyl school (TBA) ND 0.050 1 02/08/2016 11: Beutyl benzene ND 0.0050 1 02/08/2016 11: Bert-Butyl benzene ND 0.0050 1 02/08/2016 11: Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11:	<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	Acetone	ND		0.10	1		02/08/2016 11:35
Bromobenzene ND	tert-Amyl methyl ether (TAME)	ND		0.0050	1		02/08/2016 11:35
Bromochloromethane	Benzene	ND		0.0050	1		02/08/2016 11:35
Bromodichloromethane	Bromobenzene	ND		0.0050	1		02/08/2016 11:35
Bromoform ND	Bromochloromethane	ND		0.0050	1		02/08/2016 11:35
Bromomethane	Bromodichloromethane	ND		0.0050	1		02/08/2016 11:35
2-Butanone (MEK) ND 0.020 1 02/08/2016 11: L-Butyl alcohol (TBA) ND 0.055 1 02/08/2016 11: n-Butyl benzene ND 0.0050 1 02/08/2016 11: sec-Butyl benzene ND 0.0050 1 02/08/2016 11: carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorothane ND 0.0050 1 02/08/2016 11: Chlorothane ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chlorothane ND 0.0050 1 02/08/2016 11:	Bromoform	ND		0.0050	1		02/08/2016 11:35
t-Butyl alcohol (TBA) ND 0.050 1 02/08/2016 11: n-Butyl benzene ND 0.0050 1 02/08/2016 11: sec-Butyl benzene ND 0.0050 1 02/08/2016 11: Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorobenzene ND 0.0050 1 02/08/2016 11: Chloroethane ND 0.0050 1 02/08/2016 11: Chlorotoluene ND 0.0050 1 02/08/2016 11: Chlorotoluene ND 0.0050 1 02/08/2016 11:	Bromomethane	ND		0.0050	1		02/08/2016 11:35
n-Butyl benzene ND 0.0050 1 02/08/2016 11: sec-Butyl benzene ND 0.0050 1 02/08/2016 11: tert-Butyl benzene ND 0.0050 1 02/08/2016 11: Carbon Disuffide ND 0.0050 1 02/08/2016 11: Carbon Disuffide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorobenzene ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 3-Chlorotoluene ND 0.0050 1 02/08/2016 11: 12-Dibromo-chloromethane ND 0.0050 1 02/08/	2-Butanone (MEK)	ND		0.020	1		02/08/2016 11:35
sec-Butyl benzene ND 0.0050 1 02/08/2016 11: tert-Butyl benzene ND 0.0050 1 02/08/2016 11: Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorobenzene ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: Chlorotoluene ND 0.0050 1 02/08/2016 11: Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 1,2-Dibromoethane ND 0.0050 1 02/08/2016 11:<	t-Butyl alcohol (TBA)	ND		0.050	1		02/08/2016 11:35
tert-Butyl benzene ND 0.0050 1 02/08/2016 11: Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorobenzene ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chlorotethane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 2-Chloromethane ND 0.0050 1 02/08/2016 11: 1-2-Dibromos-3-chloropropane ND 0.0050 1 02/08/2016 11: 1-2-Dibromos-3-chloropropane ND 0.0040 1 02/08/2016 11: 1-2-Dibromosethane (EDB) ND 0.0040 1<	n-Butyl benzene	ND		0.0050	1		02/08/2016 11:35
Carbon Disulfide ND 0.0050 1 02/08/2016 11: Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorobenzene ND 0.0050 1 02/08/2016 11: Chloroethane ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chloromethane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 <th< td=""><td>sec-Butyl benzene</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td></td><td>02/08/2016 11:35</td></th<>	sec-Butyl benzene	ND		0.0050	1		02/08/2016 11:35
Carbon Tetrachloride ND 0.0050 1 02/08/2016 11: Chlorobenzene ND 0.0050 1 02/08/2016 11: Chloroferma ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chlorotoluene ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 1-2-Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1-2-Dibromochlane ND 0.0050 1 02/08/2016 11: 1-2-Dibromoethane ND 0.0040 1 02/08/2016 11: 1-2-Dibromoethane ND 0.0040 1 02/08/2016 11: 1-2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1-2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1-3-Dichlorobenzene ND 0.0050 1 <	tert-Butyl benzene	ND		0.0050	1		02/08/2016 11:35
Chlorobenzene ND 0.0050 1 02/08/2016 11: Chloroethane ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chlorothane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 1,2-Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 <td>Carbon Disulfide</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>02/08/2016 11:35</td>	Carbon Disulfide	ND		0.0050	1		02/08/2016 11:35
Chloroethane ND 0.0050 1 02/08/2016 11: Chloroform ND 0.0050 1 02/08/2016 11: Chloromethane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 1-2-Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1-2-Dibromochlane (EDB) ND 0.0040 1 02/08/2016 11: 1-2-Dibloromethane (EDB) ND 0.0050 1 02/08/2016 11: 1-2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1-2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1-3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1-1-Dichlorodifluoromethane ND 0.0050	Carbon Tetrachloride	ND		0.0050	1		02/08/2016 11:35
Chloroform ND 0.0050 1 02/08/2016 11: Chloromethane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 1-2-Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,1-Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichlorotethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorotethane ND <	Chlorobenzene	ND		0.0050	1		02/08/2016 11:35
Chloromethane ND 0.0050 1 02/08/2016 11: 2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: 1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethene ND 0.005	Chloroethane	ND		0.0050	1		02/08/2016 11:35
2-Chlorotoluene ND 0.0050 1 02/08/2016 11: 4-Chlorotoluene ND 0.0050 1 02/08/2016 11: Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibrlomoethane (EDB) ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethane ND	Chloroform	ND		0.0050	1		02/08/2016 11:35
4-Chlorotoluene ND 0.0050 1 02/08/2016 11: Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibromomethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethene ND	Chloromethane	ND		0.0050	1		02/08/2016 11:35
Dibromochloromethane ND 0.0050 1 02/08/2016 11: 1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: 1,2-Dibromomethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethene ND	2-Chlorotoluene	ND		0.0050	1		02/08/2016 11:35
1,2-Dibromo-3-chloropropane ND 0.0040 1 02/08/2016 11: 1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: Dibromomethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND	4-Chlorotoluene	ND		0.0050	1		02/08/2016 11:35
1,2-Dibromoethane (EDB) ND 0.0040 1 02/08/2016 11: Dibromomethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	Dibromochloromethane	ND		0.0050	1		02/08/2016 11:35
Dibromomethane ND 0.0050 1 02/08/2016 11: 1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,2-Dibromo-3-chloropropane	ND		0.0040	1		02/08/2016 11:35
1,2-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,2-Dibromoethane (EDB)	ND		0.0040	1		02/08/2016 11:35
1,3-Dichlorobenzene ND 0.0050 1 02/08/2016 11: 1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	Dibromomethane	ND		0.0050	1		02/08/2016 11:35
1,4-Dichlorobenzene ND 0.0050 1 02/08/2016 11: Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,2-Dichlorobenzene	ND		0.0050	1		02/08/2016 11:35
Dichlorodifluoromethane ND 0.0050 1 02/08/2016 11: 1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,3-Dichlorobenzene	ND		0.0050	1		02/08/2016 11:35
1,1-Dichloroethane ND 0.0050 1 02/08/2016 11: 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,4-Dichlorobenzene	ND		0.0050	1		02/08/2016 11:35
1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 02/08/2016 11: 1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	Dichlorodifluoromethane	ND		0.0050	1		02/08/2016 11:35
1,1-Dichloroethene ND 0.0050 1 02/08/2016 11: cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,1-Dichloroethane	ND		0.0050	1		02/08/2016 11:35
cis-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		02/08/2016 11:35
trans-1,2-Dichloroethene ND 0.0050 1 02/08/2016 11: 1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,1-Dichloroethene	ND		0.0050	1		02/08/2016 11:35
1,2-Dichloropropane ND 0.0050 1 02/08/2016 11: 1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	cis-1,2-Dichloroethene	ND		0.0050	1		02/08/2016 11:35
1,3-Dichloropropane ND 0.0050 1 02/08/2016 11:	trans-1,2-Dichloroethene	ND		0.0050	1		02/08/2016 11:35
P. 1. 1. T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1,2-Dichloropropane	ND		0.0050	1		02/08/2016 11:35
2,2-Dichloropropane ND 0.0050 1 02/08/2016 11:	1,3-Dichloropropane	ND		0.0050	1		02/08/2016 11:35
	2,2-Dichloropropane	ND		0.0050	1		02/08/2016 11:35

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Coll	lected Instrument	Batch ID
SVP-1 @1.5'-2'	1602146-007A	Soil	02/03/2016	12:42 GC18	116226
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.0050	1	02/08/2016 11:35
cis-1,3-Dichloropropene	ND		0.0050	1	02/08/2016 11:35
trans-1,3-Dichloropropene	ND		0.0050	1	02/08/2016 11:35
Diisopropyl ether (DIPE)	ND		0.0050	1	02/08/2016 11:35
Ethylbenzene	ND		0.0050	1	02/08/2016 11:35
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	02/08/2016 11:35
Freon 113	ND		0.0050	1	02/08/2016 11:35
Hexachlorobutadiene	ND		0.0050	1	02/08/2016 11:35
Hexachloroethane	ND		0.0050	1	02/08/2016 11:35
2-Hexanone	ND		0.0050	1	02/08/2016 11:35
Isopropylbenzene	ND		0.0050	1	02/08/2016 11:35
4-Isopropyl toluene	ND		0.0050	1	02/08/2016 11:35
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	02/08/2016 11:35
Methylene chloride	ND		0.0050	1	02/08/2016 11:35
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	02/08/2016 11:35
Naphthalene	ND		0.0050	1	02/08/2016 11:35
n-Propyl benzene	ND		0.0050	1	02/08/2016 11:35
Styrene	ND		0.0050	1	02/08/2016 11:35
1,1,1,2-Tetrachloroethane	ND		0.0050	1	02/08/2016 11:35
1,1,2,2-Tetrachloroethane	ND		0.0050	1	02/08/2016 11:35
Tetrachloroethene	ND		0.0050	1	02/08/2016 11:35
Toluene	ND		0.0050	1	02/08/2016 11:35
1,2,3-Trichlorobenzene	ND		0.0050	1	02/08/2016 11:35
1,2,4-Trichlorobenzene	ND		0.0050	1	02/08/2016 11:35
1,1,1-Trichloroethane	ND		0.0050	1	02/08/2016 11:35
1,1,2-Trichloroethane	ND		0.0050	1	02/08/2016 11:35
Trichloroethene	ND		0.0050	1	02/08/2016 11:35
Trichlorofluoromethane	ND		0.0050	1	02/08/2016 11:35
1,2,3-Trichloropropane	ND		0.0050	1	02/08/2016 11:35
1,2,4-Trimethylbenzene	ND		0.0050	1	02/08/2016 11:35
1,3,5-Trimethylbenzene	ND		0.0050	1	02/08/2016 11:35
Vinyl Chloride	ND		0.0050	1	02/08/2016 11:35
Xylenes, Total	0.021		0.0050	1	02/08/2016 11:35

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SVP-1 @1.5'-2'	1602146-007A Soil	02/03/2016 12:42 GC18	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	120	70-130	02/08/2016 11:35
Toluene-d8	114	70-130	02/08/2016 11:35
4-BFB	89	70-130	02/08/2016 11:35
Benzene-d6	116	60-140	02/08/2016 11:35
Ethylbenzene-d10	106	60-140	02/08/2016 11:35
1,2-DCB-d4	104	60-140	02/08/2016 11:35

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

SVP-1	Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
Acetone	SVP-1 @ 6.5'-7'	1602146-008A	Soil	02/03/201	6 12:50	GC16	116226
tert-Amyl methyl ether (TAME) ND 0.010 2 02/08/2016 11:23 Benzene 0.056 0.010 2 02/08/2016 11:23 Bromobenzene ND 0.010 2 02/08/2016 11:23 Bromochloromethane ND 0.010 2 02/08/2016 11:23 Bromodichloromethane ND 0.010 2 02/08/2016 11:23 Bromomethane ND 0.010 2 02/08/2016 11:23 Bromomethane ND 0.010 2 02/08/2016 11:23 Bromobilide ND 0.010 2 02/08/2016 11:23 Bromyl benzene 0.015 0.010 2 02/08/2016 11:23 Bent-Butyl benzene ND 0.010 2 02/08/2016 11:23 Bert-Butyl benzene ND 0.010	Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene 0.056 0.010 2 02/08/2016 11:23 Bromobenzene ND 0.010 2 02/08/2016 11:23 Bromochioromethane ND 0.010 2 02/08/2016 11:23 Bromochioromethane ND 0.010 2 02/08/2016 11:23 Bromoferm ND 0.010 2 02/08/2016 11:23 Bromomethane ND 0.010 2 02/08/2016 11:23 Bromomethane ND 0.040 2 02/08/2016 11:23 Bromomethane ND 0.040 2 02/08/2016 11:23 Bethance (MEK) ND 0.040 2 02/08/2016 11:23 Bromodichlore ND 0.10 2 02/08/2016 11:23 Bromodichlore ND 0.010 2 02/08/2016 11:23	Acetone	ND		0.20	2		02/08/2016 11:23
Bromobenzene ND	tert-Amyl methyl ether (TAME)	ND		0.010	2		02/08/2016 11:23
Bromochloromethane ND 0.010 2 02/08/2016 11:23 Bromodichloromethane ND 0.010 2 02/08/2016 11:23 Bromoform ND 0.010 2 02/08/2016 11:23 Bromoform ND 0.010 2 02/08/2016 11:23 2-Butanone (MEK) ND 0.040 2 02/08/2016 11:23 2-Butanone (MEK) ND 0.010 2 02/08/2016 11:23 1-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 11:23 sec-Butyl benzene 0.015 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 cer-Butyl benzene ND 0.010 2 02/08/2016 11:23 cer-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorotehane ND 0.010 2<	Benzene	0.056		0.010	2		02/08/2016 11:23
Bromodichloromethane ND 0.010 2 02/08/2016 11:23 Bromoform ND 0.010 2 02/08/2016 11:23 Bromomethane ND 0.010 2 02/08/2016 11:23 B-Butanone (MEK) ND 0.040 2 02/08/2016 11:23 t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 11:23 t-Butyl benzene 0.015 0.010 2 02/08/2016 11:23 ser-Butyl benzene ND 0.010 2 02/08/2016 11:23 tert-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chlorofotiuene ND 0.010 2	Bromobenzene	ND		0.010	2		02/08/2016 11:23
Bromoform ND 0.010 2 02/08/2016 11:23 Bromomethane ND 0.010 2 02/08/2016 11:23 2-Butanone (MEK) ND 0.040 2 02/08/2016 11:23 Butyl cohol (TBA) ND 0.010 2 02/08/2016 11:23 n-Butyl benzene 0.015 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chlorothane ND 0.010 2 02/08/2016 11:23 Chlorothane ND 0.010 2 02/08/2016 11:23 Chlorotoluene ND 0.010 2 02/08/2016 11:23 Chlorotoluene ND 0.010 2 02/08/2016	Bromochloromethane	ND		0.010	2		02/08/2016 11:23
Bromomethane ND	Bromodichloromethane	ND		0.010	2		02/08/2016 11:23
2-Butanone (MEK) ND 0.040 2 02/08/2016 11:23 t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 11:23 n-Butyl benzene 0.015 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 Earth-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroftane ND 0.010 2 02/08/2016 11:23 Chloroftuene ND 0.010 2 02/	Bromoform	ND		0.010	2		02/08/2016 11:23
t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 11:23 sec-Butyl benzene 0.015 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chloromethane ND 0.010 2 02/08/2016 11:23 Chlorothane ND 0.0080 2 02/08/2016 11:23 Chlorothane ND 0.0080 2 02/08/2016 11:23 Chlorothane ND 0.0080 2 02/08/2016 11:23 Chlorothane ND 0.010 2 02/08/2016 11:23 Chlorothane	Bromomethane	ND		0.010	2		02/08/2016 11:23
n-Butyl benzene 0.015 0.010 2 02/08/2016 11:23 sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 tert-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroferm ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chloroformethane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 1/2-Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1/2-Dibromochloromethane ND 0.0080 2	2-Butanone (MEK)	ND		0.040	2		02/08/2016 11:23
sec-Butyl benzene ND 0.010 2 02/08/2016 11:23 tert-Butyl benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chlorotethane ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chloromethane ND 0.010 2 02/08/2016 11:23 C-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 <td>t-Butyl alcohol (TBA)</td> <td>ND</td> <td></td> <td>0.10</td> <td>2</td> <td></td> <td>02/08/2016 11:23</td>	t-Butyl alcohol (TBA)	ND		0.10	2		02/08/2016 11:23
tert-Buly benzene ND 0.010 2 02/08/2016 11:23 Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chlorotethane ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chlorotoluene ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane ND 0.0080 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 <td>n-Butyl benzene</td> <td>0.015</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 11:23</td>	n-Butyl benzene	0.015		0.010	2		02/08/2016 11:23
Carbon Disulfide ND 0.010 2 02/08/2016 11:23 Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroethane ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chlorofothane ND 0.010 2 02/08/2016 11:23 Chlorofothane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 1,2-Dibromoethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromoethane ND 0.010 2 <	sec-Butyl benzene	ND		0.010	2		02/08/2016 11:23
Carbon Tetrachloride ND 0.010 2 02/08/2016 11:23 Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroethane ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chloromethane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 1-2-Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 </td <td>tert-Butyl benzene</td> <td>ND</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 11:23</td>	tert-Butyl benzene	ND		0.010	2		02/08/2016 11:23
Chlorobenzene ND 0.010 2 02/08/2016 11:23 Chloroethane ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chloromethane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 1/2-Dibromo-3-chloropropane ND 0.010 2 02/08/2016 11:23 1/2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 <td>Carbon Disulfide</td> <td>ND</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 11:23</td>	Carbon Disulfide	ND		0.010	2		02/08/2016 11:23
Chloroethane ND 0.010 2 02/08/2016 11:23 Chloroform ND 0.010 2 02/08/2016 11:23 Chloromethane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 </td <td>Carbon Tetrachloride</td> <td>ND</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 11:23</td>	Carbon Tetrachloride	ND		0.010	2		02/08/2016 11:23
Chloroform ND 0.010 2 02/08/2016 11:23 Chloromethane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 1-Chlorotoluene ND 0.0080 2 02/08/2016 11:23 1-Chlorotoperpane ND 0.0080 2 02/08/2016 11:23 1-Chlorobenzene ND 0.010 2 02/08/2016 11:23 1-Chlorobenzene ND 0.010 2 02/08/2016 11:23 1-Chlorotfiluoromethane ND 0.010 2 02/08/2016 11:23 1-Chlorotethane ND 0.010 2 02/08/2016 11:23 1-Chlorotethane ND 0.010 2 <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>0.010</td><td>2</td><td></td><td>02/08/2016 11:23</td></td<>	Chlorobenzene	ND		0.010	2		02/08/2016 11:23
Chloromethane ND 0.010 2 02/08/2016 11:23 2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene	Chloroethane	ND		0.010	2		02/08/2016 11:23
2-Chlorotoluene ND 0.010 2 02/08/2016 11:23 4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dibrlorobenzene ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene N	Chloroform	ND		0.010	2		02/08/2016 11:23
4-Chlorotoluene ND 0.010 2 02/08/2016 11:23 Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichl	Chloromethane	ND		0.010	2		02/08/2016 11:23
Dibromochloromethane ND 0.010 2 02/08/2016 11:23 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane (1,2-DCA) ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloroprop	2-Chlorotoluene	ND		0.010	2		02/08/2016 11:23
1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 11:23 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 Dibromomethane ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane	4-Chlorotoluene	ND		0.010	2		02/08/2016 11:23
1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 11:23 Dibromomethane ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	Dibromochloromethane	ND		0.010	2		02/08/2016 11:23
Dibromomethane ND 0.010 2 02/08/2016 11:23 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,2-Dibromo-3-chloropropane	ND		0.0080	2		02/08/2016 11:23
1,2-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,2-Dibromoethane (EDB)	ND		0.0080	2		02/08/2016 11:23
1,3-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	Dibromomethane	ND		0.010	2		02/08/2016 11:23
1,4-Dichlorobenzene ND 0.010 2 02/08/2016 11:23 Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,2-Dichlorobenzene	ND		0.010	2		02/08/2016 11:23
Dichlorodifluoromethane ND 0.010 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethane ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,3-Dichlorobenzene	ND		0.010	2		02/08/2016 11:23
1,1-Dichloroethane ND 0.010 2 02/08/2016 11:23 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,4-Dichlorobenzene	ND		0.010	2		02/08/2016 11:23
1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 11:23 1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	Dichlorodifluoromethane	ND		0.010	2		02/08/2016 11:23
1,1-Dichloroethene ND 0.010 2 02/08/2016 11:23 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,1-Dichloroethane	ND		0.010	2		02/08/2016 11:23
cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,2-Dichloroethane (1,2-DCA)	ND		0.0080	2		02/08/2016 11:23
trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 11:23 1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,1-Dichloroethene	ND		0.010	2		02/08/2016 11:23
1,2-Dichloropropane ND 0.010 2 02/08/2016 11:23 1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	cis-1,2-Dichloroethene	ND		0.010	2		02/08/2016 11:23
1,3-Dichloropropane ND 0.010 2 02/08/2016 11:23	trans-1,2-Dichloroethene	ND		0.010	2		02/08/2016 11:23
<u>```</u>	1,2-Dichloropropane	ND		0.010	2		02/08/2016 11:23
2,2-Dichloropropane ND 0.010 2 02/08/2016 11:23	1,3-Dichloropropane	ND		0.010	2		02/08/2016 11:23
	2,2-Dichloropropane	ND		0.010	2		02/08/2016 11:23

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Coll	lected Instrument	Batch ID
SVP-1 @ 6.5'-7'	1602146-008A	Soil	02/03/2016	6 12:50 GC16	116226
<u>Analytes</u>	Result		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		0.010	2	02/08/2016 11:23
cis-1,3-Dichloropropene	ND		0.010	2	02/08/2016 11:23
trans-1,3-Dichloropropene	ND		0.010	2	02/08/2016 11:23
Diisopropyl ether (DIPE)	ND		0.010	2	02/08/2016 11:23
Ethylbenzene	0.15		0.010	2	02/08/2016 11:23
Ethyl tert-butyl ether (ETBE)	ND		0.010	2	02/08/2016 11:23
Freon 113	ND		0.010	2	02/08/2016 11:23
Hexachlorobutadiene	ND		0.010	2	02/08/2016 11:23
Hexachloroethane	ND		0.010	2	02/08/2016 11:23
2-Hexanone	ND		0.010	2	02/08/2016 11:23
Isopropylbenzene	0.011		0.010	2	02/08/2016 11:23
4-Isopropyl toluene	ND		0.010	2	02/08/2016 11:23
Methyl-t-butyl ether (MTBE)	ND		0.010	2	02/08/2016 11:23
Methylene chloride	ND		0.010	2	02/08/2016 11:23
4-Methyl-2-pentanone (MIBK)	ND		0.010	2	02/08/2016 11:23
Naphthalene	0.036		0.010	2	02/08/2016 11:23
n-Propyl benzene	0.055		0.010	2	02/08/2016 11:23
Styrene	ND		0.010	2	02/08/2016 11:23
1,1,1,2-Tetrachloroethane	ND		0.010	2	02/08/2016 11:23
1,1,2,2-Tetrachloroethane	ND		0.010	2	02/08/2016 11:23
Tetrachloroethene	ND		0.010	2	02/08/2016 11:23
Toluene	0.25		0.010	2	02/08/2016 11:23
1,2,3-Trichlorobenzene	ND		0.010	2	02/08/2016 11:23
1,2,4-Trichlorobenzene	ND		0.010	2	02/08/2016 11:23
1,1,1-Trichloroethane	ND		0.010	2	02/08/2016 11:23
1,1,2-Trichloroethane	ND		0.010	2	02/08/2016 11:23
Trichloroethene	ND		0.010	2	02/08/2016 11:23
Trichlorofluoromethane	ND		0.010	2	02/08/2016 11:23
1,2,3-Trichloropropane	ND		0.010	2	02/08/2016 11:23
1,2,4-Trimethylbenzene	0.28		0.010	2	02/08/2016 11:23
1,3,5-Trimethylbenzene	0.090		0.010	2	02/08/2016 11:23
Vinyl Chloride	ND		0.010	2	02/08/2016 11:23
Xylenes, Total	0.72		0.010	2	02/08/2016 11:23

Analytical Report

Client: All West Environmental, Inc

15179.23; Hollis

WorkOrder:

1602146

Date Received: 2/3/16 17:45

Extraction Method: SW5030B

Date Prepared: 2/3/16

Project:

Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SVP-1 @ 6.5'-7'	1602146-008A Soil	02/03/2016 12:50 GC16	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	104	70-130	02/08/2016 11:23
Toluene-d8	106	70-130	02/08/2016 11:23
4-BFB	101	70-130	02/08/2016 11:23
Benzene-d6	88	60-140	02/08/2016 11:23
Ethylbenzene-d10	87	60-140	02/08/2016 11:23
1,2-DCB-d4	77	60-140	02/08/2016 11:23

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

tert-Amyl methyl ether (TAME) ND 0.020 4 02/08/2016 12:00 Benzene 0.037 0.020 4 02/08/2016 12:00 Bromobenzene ND 0.020 4 02/08/2016 12:00 Bromochloromethane ND 0.020 4 02/08/2016 12:00 Bromodichloromethane ND 0.020 4 02/08/2016 12:00 Bromodern ND 0.020 4 02/08/2016 12:00 Brown ND 0.020 4 02/08/2016 12:00	Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
Acetone	SVP-2 @3'-3.5	1602146-009A	Soil	02/03/20	16 13:15	GC16	116226
tert-Amyl methyl ether (TAME) ND 0.020 4 02/08/2016 12:00 Benzene 0.037 0.020 4 02/08/2016 12:00 Bromobenzene ND 0.020 4 02/08/2016 12:00 Bromochloromethane ND 0.020 4 02/08/2016 12:00 Bromodichloromethane ND 0.020 4 02/08/2016 12:00 Bromodern ND 0.020 4 02/08/2016 12:00 Brown ND 0.020 4 02/08/2016 12:00	<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	Acetone	ND		0.40	4		02/08/2016 12:03
Bromobenzene ND 0.020 4 0.2/08/2016 12:00 Bromochloromethane ND 0.020 4 0.2/08/2016 12:00 Bromochloromethane ND 0.020 4 0.2/08/2016 12:00 Bromoform ND 0.020 4 0.2/08/2016 12:00 Bromomethane ND 0.020 4 0.2/08/2016 12:00 2-Butanone (MEK) ND 0.080 4 0.2/08/2016 12:00 2-Butanone (MEK) ND 0.080 4 0.2/08/2016 12:00 1-Butyl benzene ND 0.020 4 0.2/08/2016 12:00 n-Butyl benzene ND 0.020 4 0.2/08/2016 12:00 carbon Disuffide ND 0.020 4 0.2/08/2016 12:00 Carbon Disuffide ND 0.020 4 0.2/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 0.2/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 0.2/08/2016 12:00 Chlorothenzene ND 0.020 4 </td <td>tert-Amyl methyl ether (TAME)</td> <td>ND</td> <td></td> <td>0.020</td> <td>4</td> <td></td> <td>02/08/2016 12:03</td>	tert-Amyl methyl ether (TAME)	ND		0.020	4		02/08/2016 12:03
Bromochloromethane ND 0.020 4 02/08/2016 12:00 Bromodichloromethane ND 0.020 4 02/08/2016 12:00 Bromoform ND 0.020 4 02/08/2016 12:00 Bromomethane ND 0.020 4 02/08/2016 12:00 2-Butanone (MEK) ND 0.080 4 02/08/2016 12:00 2-Butanone (MEK) ND 0.020 4 02/08/2016 12:00 1-Butyl alcohol (TBA) ND 0.020 4 02/08/2016 12:00 1-Butyl benzene ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorothare ND 0.020 4	Benzene	0.037		0.020	4		02/08/2016 12:03
Bromodichloromethane	Bromobenzene	ND		0.020	4		02/08/2016 12:03
Bromoform ND	Bromochloromethane	ND		0.020	4		02/08/2016 12:03
Bromomethane	Bromodichloromethane	ND		0.020	4		02/08/2016 12:03
2-Butanone (MEK) ND 0.080 4 02/08/2016 12:00 t-Butyl alcohol (TBA) ND 0.20 4 02/08/2016 12:00 n-Butyl benzene ND 0.020 4 02/08/2016 12:00 sec-Butyl benzene ND 0.020 4 02/08/2016 12:00 tert-Butyl benzene ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorostenae ND 0.020 4 02/08/2016 12:00 Chlorostelane ND 0.020 4 02/	Bromoform	ND		0.020	4		02/08/2016 12:03
t-Butyl alcohol (TBA) ND 0.20 4 02/08/2016 12:00 n-Butyl benzene ND 0.020 4 02/08/2016 12:00 sec-Butyl benzene ND 0.020 4 02/08/2016 12:00 sec-Butyl benzene ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chlorothane ND 0.020 4 02/08/2016 1	Bromomethane	ND		0.020	4		02/08/2016 12:03
n-Butyl benzene ND 0.020 4 02/08/2016 12:00 sec-Butyl benzene ND 0.020 4 02/08/2016 12:00 tert-Butyl benzene ND 0.020 4 02/08/2016 12:00 tert-Butyl benzene ND 0.020 4 02/08/2016 12:00 tert-Butyl benzene ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 Dibromochlane (EDB) ND 0.016 4 02/08/2016 12:00 Dibromomethane (EDB) ND 0.016 4 02/08/2016 12:00 Dibromomethane ND 0.020 4 02/08/2016 12:00 Dibromomethane ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/	2-Butanone (MEK)	ND		0.080	4		02/08/2016 12:03
sec-Butyl benzene ND 0.020 4 02/08/2016 12:00 tert-Butyl benzene ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chlorobethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloroformethane ND 0.020 4 02/08/2016 12:00 Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.020 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 <t< td=""><td>t-Butyl alcohol (TBA)</td><td>ND</td><td></td><td>0.20</td><td>4</td><td></td><td>02/08/2016 12:03</td></t<>	t-Butyl alcohol (TBA)	ND		0.20	4		02/08/2016 12:03
tert-Butyl benzene ND 0.020 4 02/08/2016 12:00 Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 Chlorotoluene ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 <td< td=""><td>n-Butyl benzene</td><td>ND</td><td></td><td>0.020</td><td>4</td><td></td><td>02/08/2016 12:03</td></td<>	n-Butyl benzene	ND		0.020	4		02/08/2016 12:03
Carbon Disulfide ND 0.020 4 02/08/2016 12:00 Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chlorotoluene ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 1,2-Dibromoethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromoethane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane ND 0.020 4	sec-Butyl benzene	ND		0.020	4		02/08/2016 12:03
Carbon Tetrachloride ND 0.020 4 02/08/2016 12:00 Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chlorotoluene ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020	tert-Butyl benzene	ND		0.020	4		02/08/2016 12:03
Chlorobenzene ND 0.020 4 02/08/2016 12:00 Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 1/2-Dibromo-3-chloropropane ND 0.020 4 02/08/2016 12:00 1/2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dichlorobentane (EDB) ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichloroethane ND 0.020	Carbon Disulfide	ND		0.020	4		02/08/2016 12:03
Chloroethane ND 0.020 4 02/08/2016 12:00 Chloroform ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 Dibromomethane ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020	Carbon Tetrachloride	ND		0.020	4		02/08/2016 12:03
Chloroform ND 0.020 4 02/08/2016 12:00 Chloromethane ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 1,2-Dibromoethane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethane ND 0.020 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>0.020</td> <td>4</td> <td></td> <td>02/08/2016 12:03</td>	Chlorobenzene	ND		0.020	4		02/08/2016 12:03
Chloromethane ND 0.020 4 02/08/2016 12:00 2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Diblromoethane (EDB) ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethene ND	Chloroethane	ND		0.020	4		02/08/2016 12:03
2-Chlorotoluene ND 0.020 4 02/08/2016 12:00 4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dibrlomoethane ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethane ND 0.016 4 02/08/2016 12:00 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:00 cis-1,2-Dichloroethene ND	Chloroform	ND		0.020	4		02/08/2016 12:03
4-Chlorotoluene ND 0.020 4 02/08/2016 12:00 Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 Dibromomethane ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethane ND 0.016 4 02/08/2016 12:00 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:00 cis-1,2-Dichloroethene ND	Chloromethane	ND		0.020	4		02/08/2016 12:03
Dibromochloromethane ND 0.020 4 02/08/2016 12:00 1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 1,2-Dibromomethane ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:00 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:00 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:00 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:00 trans-1,2-Dichloroethen	2-Chlorotoluene	ND		0.020	4		02/08/2016 12:03
1,2-Dibromo-3-chloropropane ND 0.016 4 02/08/2016 12:00 1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:00 Dibromomethane ND 0.020 4 02/08/2016 12:00 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:00 Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethane ND 0.016 4 02/08/2016 12:00 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:00 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:00 1,2-Dichloroethene ND 0.020 4 02/08/2016 12:00 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:00 1,3-Dichloropropane ND </td <td>4-Chlorotoluene</td> <td>ND</td> <td></td> <td>0.020</td> <td>4</td> <td></td> <td>02/08/2016 12:03</td>	4-Chlorotoluene	ND		0.020	4		02/08/2016 12:03
1,2-Dibromoethane (EDB) ND 0.016 4 02/08/2016 12:03 Dibromomethane ND 0.020 4 02/08/2016 12:03 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:03 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloropethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>0.020</td> <td>4</td> <td></td> <td>02/08/2016 12:03</td>	Dibromochloromethane	ND		0.020	4		02/08/2016 12:03
Dibromomethane ND 0.020 4 02/08/2016 12:03 1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:03 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,2-Dibromo-3-chloropropane	ND		0.016	4		02/08/2016 12:03
1,2-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:03 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,2-Dibromoethane (EDB)	ND		0.016	4		02/08/2016 12:03
1,3-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:03 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	Dibromomethane	ND		0.020	4		02/08/2016 12:03
1,4-Dichlorobenzene ND 0.020 4 02/08/2016 12:03 Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:03 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,2-Dichlorobenzene	ND		0.020	4		02/08/2016 12:03
Dichlorodifluoromethane ND 0.020 4 02/08/2016 12:03 1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,3-Dichlorobenzene	ND		0.020	4		02/08/2016 12:03
1,1-Dichloroethane ND 0.020 4 02/08/2016 12:03 1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,4-Dichlorobenzene	ND		0.020	4		02/08/2016 12:03
1,2-Dichloroethane (1,2-DCA) ND 0.016 4 02/08/2016 12:03 1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	Dichlorodifluoromethane	ND		0.020	4		02/08/2016 12:03
1,1-Dichloroethene ND 0.020 4 02/08/2016 12:03 cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,1-Dichloroethane	ND		0.020	4		02/08/2016 12:03
cis-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,2-Dichloroethane (1,2-DCA)	ND		0.016	4		02/08/2016 12:03
trans-1,2-Dichloroethene ND 0.020 4 02/08/2016 12:03 1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,1-Dichloroethene	ND		0.020	4		02/08/2016 12:03
1,2-Dichloropropane ND 0.020 4 02/08/2016 12:03 1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	cis-1,2-Dichloroethene	ND		0.020	4		02/08/2016 12:03
1,3-Dichloropropane ND 0.020 4 02/08/2016 12:03	trans-1,2-Dichloroethene	ND		0.020	4		02/08/2016 12:03
<u>- 1 </u>	1,2-Dichloropropane	ND		0.020	4		02/08/2016 12:03
2,2-Dichloropropane ND 0.020 4 02/08/2016 12:03	1,3-Dichloropropane	ND		0.020	4		02/08/2016 12:03
	2,2-Dichloropropane	ND		0.020	4		02/08/2016 12:03

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-2 @3'-3.5	1602146-009A	Soil	02/03/20	16 13:15 GC16	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.020	4	02/08/2016 12:03
cis-1,3-Dichloropropene	ND		0.020	4	02/08/2016 12:03
trans-1,3-Dichloropropene	ND		0.020	4	02/08/2016 12:03
Diisopropyl ether (DIPE)	ND		0.020	4	02/08/2016 12:03
Ethylbenzene	0.057		0.020	4	02/08/2016 12:03
Ethyl tert-butyl ether (ETBE)	ND		0.020	4	02/08/2016 12:03
Freon 113	ND		0.020	4	02/08/2016 12:03
Hexachlorobutadiene	ND		0.020	4	02/08/2016 12:03
Hexachloroethane	ND		0.020	4	02/08/2016 12:03
2-Hexanone	ND		0.020	4	02/08/2016 12:03
Isopropylbenzene	ND		0.020	4	02/08/2016 12:03
4-Isopropyl toluene	ND		0.020	4	02/08/2016 12:03
Methyl-t-butyl ether (MTBE)	ND		0.020	4	02/08/2016 12:03
Methylene chloride	ND		0.020	4	02/08/2016 12:03
4-Methyl-2-pentanone (MIBK)	ND		0.020	4	02/08/2016 12:03
Naphthalene	ND		0.020	4	02/08/2016 12:03
n-Propyl benzene	ND		0.020	4	02/08/2016 12:03
Styrene	ND		0.020	4	02/08/2016 12:03
1,1,1,2-Tetrachloroethane	ND		0.020	4	02/08/2016 12:03
1,1,2,2-Tetrachloroethane	ND		0.020	4	02/08/2016 12:03
Tetrachloroethene	ND		0.020	4	02/08/2016 12:03
Toluene	ND		0.020	4	02/08/2016 12:03
1,2,3-Trichlorobenzene	ND		0.020	4	02/08/2016 12:03
1,2,4-Trichlorobenzene	ND		0.020	4	02/08/2016 12:03
1,1,1-Trichloroethane	ND		0.020	4	02/08/2016 12:03
1,1,2-Trichloroethane	ND		0.020	4	02/08/2016 12:03
Trichloroethene	ND		0.020	4	02/08/2016 12:03
Trichlorofluoromethane	ND		0.020	4	02/08/2016 12:03
1,2,3-Trichloropropane	ND		0.020	4	02/08/2016 12:03
1,2,4-Trimethylbenzene	0.20		0.020	4	02/08/2016 12:03
1,3,5-Trimethylbenzene	0.085		0.020	4	02/08/2016 12:03
Vinyl Chloride	ND		0.020	4	02/08/2016 12:03
Xylenes, Total	0.53		0.020	4	02/08/2016 12:03

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SVP-2 @3'-3.5	1602146-009A Soil	02/03/2016 13:15 GC16	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	105	70-130	02/08/2016 12:03
Toluene-d8	102	70-130	02/08/2016 12:03
4-BFB	99	70-130	02/08/2016 12:03
Benzene-d6	95	60-140	02/08/2016 12:03
Ethylbenzene-d10	92	60-140	02/08/2016 12:03
1,2-DCB-d4	85	60-140	02/08/2016 12:03

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID			Date Collected Instrument 02/03/2016 13:25 GC18		Batch ID
SVP-2 @ 6.5'-7'	1602146-010A					116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		0.50	5		02/08/2016 12:19
tert-Amyl methyl ether (TAME)	ND		0.025	5		02/08/2016 12:19
Benzene	0.34		0.025	5		02/08/2016 12:19
Bromobenzene	ND		0.025	5		02/08/2016 12:19
Bromochloromethane	ND		0.025	5		02/08/2016 12:19
Bromodichloromethane	ND		0.025	5		02/08/2016 12:19
Bromoform	ND		0.025	5		02/08/2016 12:19
Bromomethane	ND		0.025	5		02/08/2016 12:19
2-Butanone (MEK)	ND		0.10	5		02/08/2016 12:19
t-Butyl alcohol (TBA)	ND		0.25	5		02/08/2016 12:19
n-Butyl benzene	ND		0.025	5		02/08/2016 12:19
sec-Butyl benzene	ND		0.025	5		02/08/2016 12:19
tert-Butyl benzene	ND		0.025	5		02/08/2016 12:19
Carbon Disulfide	ND		0.025	5		02/08/2016 12:19
Carbon Tetrachloride	ND		0.025	5		02/08/2016 12:19
Chlorobenzene	ND		0.025	5		02/08/2016 12:19
Chloroethane	ND		0.025	5		02/08/2016 12:19
Chloroform	ND		0.025	5		02/08/2016 12:19
Chloromethane	ND		0.025	5		02/08/2016 12:19
2-Chlorotoluene	ND		0.025	5		02/08/2016 12:19
4-Chlorotoluene	ND		0.025	5		02/08/2016 12:19
Dibromochloromethane	ND		0.025	5		02/08/2016 12:19
1,2-Dibromo-3-chloropropane	ND		0.020	5		02/08/2016 12:19
1,2-Dibromoethane (EDB)	ND		0.020	5		02/08/2016 12:19
Dibromomethane	ND		0.025	5		02/08/2016 12:19
1,2-Dichlorobenzene	ND		0.025	5		02/08/2016 12:19
1,3-Dichlorobenzene	ND		0.025	5		02/08/2016 12:19
1,4-Dichlorobenzene	ND		0.025	5		02/08/2016 12:19
Dichlorodifluoromethane	ND		0.025	5		02/08/2016 12:19
1,1-Dichloroethane	ND		0.025	5		02/08/2016 12:19
1,2-Dichloroethane (1,2-DCA)	ND		0.020	5		02/08/2016 12:19
1,1-Dichloroethene	ND		0.025	5		02/08/2016 12:19
cis-1,2-Dichloroethene	ND		0.025	5		02/08/2016 12:19
trans-1,2-Dichloroethene	ND		0.025	5		02/08/2016 12:19
1,2-Dichloropropane	ND		0.025	5		02/08/2016 12:19
1,3-Dichloropropane	ND		0.025	5		02/08/2016 12:19
2,2-Dichloropropane	ND		0.025	5		02/08/2016 12:19

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SVP-2 @ 6.5'-7'	1602146-010A	Soil	02/03/201	l6 13:25 GC18	116226
Analytes	Result		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		0.025	5	02/08/2016 12:19
cis-1,3-Dichloropropene	ND		0.025	5	02/08/2016 12:19
trans-1,3-Dichloropropene	ND		0.025	5	02/08/2016 12:19
Diisopropyl ether (DIPE)	ND		0.025	5	02/08/2016 12:19
Ethylbenzene	0.18		0.025	5	02/08/2016 12:19
Ethyl tert-butyl ether (ETBE)	ND		0.025	5	02/08/2016 12:19
Freon 113	ND		0.025	5	02/08/2016 12:19
Hexachlorobutadiene	ND		0.025	5	02/08/2016 12:19
Hexachloroethane	ND		0.025	5	02/08/2016 12:19
2-Hexanone	ND		0.025	5	02/08/2016 12:19
Isopropylbenzene	ND		0.025	5	02/08/2016 12:19
4-Isopropyl toluene	ND		0.025	5	02/08/2016 12:19
Methyl-t-butyl ether (MTBE)	ND		0.025	5	02/08/2016 12:19
Methylene chloride	ND		0.025	5	02/08/2016 12:19
4-Methyl-2-pentanone (MIBK)	ND		0.025	5	02/08/2016 12:19
Naphthalene	0.26		0.025	5	02/08/2016 12:19
n-Propyl benzene	0.026		0.025	5	02/08/2016 12:19
Styrene	ND		0.025	5	02/08/2016 12:19
1,1,1,2-Tetrachloroethane	ND		0.025	5	02/08/2016 12:19
1,1,2,2-Tetrachloroethane	ND		0.025	5	02/08/2016 12:19
Tetrachloroethene	ND		0.025	5	02/08/2016 12:19
Toluene	0.90		0.025	5	02/08/2016 12:19
1,2,3-Trichlorobenzene	ND		0.025	5	02/08/2016 12:19
1,2,4-Trichlorobenzene	ND		0.025	5	02/08/2016 12:19
1,1,1-Trichloroethane	ND		0.025	5	02/08/2016 12:19
1,1,2-Trichloroethane	ND		0.025	5	02/08/2016 12:19
Trichloroethene	ND		0.025	5	02/08/2016 12:19
Trichlorofluoromethane	ND		0.025	5	02/08/2016 12:19
1,2,3-Trichloropropane	ND		0.025	5	02/08/2016 12:19
1,2,4-Trimethylbenzene	0.27		0.025	5	02/08/2016 12:19
1,3,5-Trimethylbenzene	0.075		0.025	5	02/08/2016 12:19
Vinyl Chloride	ND		0.025	5	02/08/2016 12:19
Xylenes, Total	1.2		0.025	5	02/08/2016 12:19

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID	
SVP-2 @ 6.5'-7'	1602146-010A Soil	02/03/2016 13:25 GC18	116226	
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed	
<u>Surrogates</u>	REC (%)	<u>Limits</u>		
Dibromofluoromethane	119	70-130	02/08/2016 12:19	
Toluene-d8	103	70-130	02/08/2016 12:19	
4-BFB	91	70-130	02/08/2016 12:19	
Benzene-d6	128	60-140	02/08/2016 12:19	
Ethylbenzene-d10	119	60-140	02/08/2016 12:19	
1,2-DCB-d4	132	60-140	02/08/2016 12:19	

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

SVP-3 @ 6.5-7 1602146-011 Soil	Client ID	Lab ID Matrix 1602146-011A Soil		Date Collected Instrument 02/03/2016 13:54 GC18			Batch ID
Acetone	SVP-3 @ 6.5'-7'						116226
tert-Amyl methyl ether (TAME) ND 0.010 2 02/08/2016 13:36 Benzene 0.060 0.010 2 02/08/2016 13:36 Bromobenzene ND 0.010 2 02/08/2016 13:36 Bromodchloromethane ND 0.010 2 02/08/2016 13:36 Bromodchloromethane ND 0.010 2 02/08/2016 13:36 Bromodrichloromethane ND 0.010 2 02/08/2016 13:36 Brotzlinde ND 0.010 2 02/08/2016 13:36 Carbon Disuffide ND	<u>Analytes</u>	Result		<u>RL</u>	DF		Date Analyzed
Benzene	Acetone	ND		0.20	2		02/08/2016 13:36
Bromobenzene ND 0.010 2 02/08/2016 13:36 Bromochloromethane ND 0.010 2 02/08/2016 13:36 Bromodichloromethane ND 0.010 2 02/08/2016 13:36 Bromoform ND 0.010 2 02/08/2016 13:36 Bromomethane ND 0.010 2 02/08/2016 13:36 2-Butanone (MEK) ND 0.040 2 02/08/2016 13:36 2-Butanone (MEK) ND 0.040 2 02/08/2016 13:36 2-Butanone (MEK) ND 0.010 2 02/08/2016 13:36 2-Butanone (MEK) ND 0.010 2 02/08/2016 13:36 8-Butyl benzene ND 0.010 2 02/08/2016 13:36 8-Butyl benzene ND 0.010 2 02/08/2016 13:36 6-Butyl benzene ND 0.010 2 02/08/2016 13:36 6-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/	tert-Amyl methyl ether (TAME)	ND		0.010	2		02/08/2016 13:36
Bromochloromethane ND 0.010 2 02/08/2016 13:36 Bromodichloromethane ND 0.010 2 02/08/2016 13:36 Bromoform ND 0.010 2 02/08/2016 13:36 Bromomethane ND 0.010 2 02/08/2016 13:36 2-Butanone (MEK) ND 0.040 2 02/08/2016 13:36 1-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 13:36 1-Butyl alcohol (TBA) ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 cer-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Chlorotherene ND 0.010 2 <td>Benzene</td> <td>0.060</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 13:36</td>	Benzene	0.060		0.010	2		02/08/2016 13:36
Bromodichloromethane ND 0.010 2 02/08/2016 13:36 Bromoform ND 0.010 2 02/08/2016 13:36 Bromomethane ND 0.010 2 02/08/2016 13:36 Z-Butanone (MEK) ND 0.040 2 02/08/2016 13:36 t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 13:36 t-Butyl benzene ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 tert-Butyl benzene ND 0.010 2 02/08/2016 13:36 tert-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorothane ND 0.010 2 02/08/2016 13:36 Chlorotofuere ND 0.010 2	Bromobenzene	ND		0.010	2		02/08/2016 13:36
Bromoform ND 0.010 2 02/08/2016 13:36 Bromomethane ND 0.010 2 02/08/2016 13:36 2-Butanone (MEK) ND 0.040 2 02/08/2016 13:36 I-Butyl cohol (TBA) ND 0.10 2 02/08/2016 13:36 I-Butyl benzene ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chlorothane ND 0.010 2 02/08/2016 13:36 Chlorothane ND 0.010 2 02/08/2016 13:36 Chlorotoluene ND 0.010 2 02/08/2016 13:36 Chlorotoluene ND 0.010 2 02/08/2016 13:	Bromochloromethane	ND		0.010	2		02/08/2016 13:36
Bromomethane ND	Bromodichloromethane	ND		0.010	2		02/08/2016 13:36
2-Butanone (MEK) ND 0.040 2 02/08/2016 13:36 t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 13:36 n-Butyl benzene ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 tert-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chlorothane ND 0.010 2 02/08/2016 13:36 Chlorotoluene ND 0.010 2 02/08/2016	Bromoform	ND		0.010	2		02/08/2016 13:36
t-Butyl alcohol (TBA) ND 0.10 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chlorobethane ND 0.010 2 02/08/2016 13:36 Chlorothane ND 0.010 2 02/08/2016 13:36 Chlorothorothane ND 0.010 2 02/08/2016 13:36 Chlorothorothoromethane ND 0.010 2 02/08/2016 13:36 Chlorothorothoromethane ND 0.010 2 02/08/2016 13:36 Chlorothorothoromethane ND 0.0080 2 02/08/2016 13:36 Chlorothorothoromethane ND 0.0080 2 02/08/2016 13:36 Chlorothorothane ND 0.0080 2 02/08/2016 13:36 Chlorothorothane ND 0.010 2 02/08/2016 13:36 Chlorothorothane ND 0.010 2 02/08/2016 13:36 Chlorothorothane ND 0.010 2 02/08/2016 13:36 Chlorothane ND 0.010 2 02/08/201	Bromomethane	ND		0.010	2		02/08/2016 13:36
n-Butyl benzene ND 0.010 2 02/08/2016 13:36 sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 tert-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chlorotethane ND 0.010 2 02/08/2016 13:36 Chloromethane ND 0.010 2 02/08/2016 13:36 Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 1/2-Dibromochloromethane ND 0.010 2 02/08/2016 13:36 Dibromomochloromethane ND 0.0080 2 </td <td>2-Butanone (MEK)</td> <td>ND</td> <td></td> <td>0.040</td> <td>2</td> <td></td> <td>02/08/2016 13:36</td>	2-Butanone (MEK)	ND		0.040	2		02/08/2016 13:36
sec-Butyl benzene ND 0.010 2 02/08/2016 13:36 tert-Butyl benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chlorotethane ND 0.010 2 02/08/2016 13:36 Chloroform ND 0.010 2 02/08/2016 13:36 Chloromethane ND 0.010 2 02/08/2016 13:36 Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromochlaromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromochlaromethane (EDB) ND 0.0080	t-Butyl alcohol (TBA)	ND		0.10	2		02/08/2016 13:36
tert-Buly benzene ND 0.010 2 02/08/2016 13:36 Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chloroethane ND 0.010 2 02/08/2016 13:36 Chloroform ND 0.010 2 02/08/2016 13:36 Chloromethane ND 0.010 2 02/08/2016 13:36 Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 1/2-Dibromo-S-chloropropane ND 0.010 2 02/08/2016 13:36 1/2-Dibromo-S-chloropropane ND 0.0080 2 02/08/2016 13:36 1/2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1/2-Dibrlorobenzene ND 0.010	n-Butyl benzene	ND		0.010	2		02/08/2016 13:36
Carbon Disulfide ND 0.010 2 02/08/2016 13:36 Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chloroethane ND 0.010 2 02/08/2016 13:36 Chloroform ND 0.010 2 02/08/2016 13:36 Chlorofothure ND 0.010 2 02/08/2016 13:36 2-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 1,2-Dibromoethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromoethane ND 0.010 2 <td>sec-Butyl benzene</td> <td>ND</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 13:36</td>	sec-Butyl benzene	ND		0.010	2		02/08/2016 13:36
Carbon Tetrachloride ND 0.010 2 02/08/2016 13:36 Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chloroethane ND 0.010 2 02/08/2016 13:36 Chloroform ND 0.010 2 02/08/2016 13:36 Chloromethane ND 0.010 2 02/08/2016 13:36 C-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010	tert-Butyl benzene	ND		0.010	2		02/08/2016 13:36
Chlorobenzene ND 0.010 2 02/08/2016 13:36 Chloroethane ND 0.010 2 02/08/2016 13:36 Chloroform ND 0.010 2 02/08/2016 13:36 Chloroformethane ND 0.010 2 02/08/2016 13:36 2-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dichlorobentane (EDB) ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 </td <td>Carbon Disulfide</td> <td>ND</td> <td></td> <td>0.010</td> <td>2</td> <td></td> <td>02/08/2016 13:36</td>	Carbon Disulfide	ND		0.010	2		02/08/2016 13:36
Chloroethane ND 0.010 2 02/08/2016 13:36 Chloroform ND 0.010 2 02/08/2016 13:36 Chloromethane ND 0.010 2 02/08/2016 13:36 2-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 Dibromomethane ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010	Carbon Tetrachloride	ND		0.010	2		02/08/2016 13:36
Chloroform ND 0.010 2 02/08/2016 13:36 Chloromethane ND 0.010 2 02/08/2016 13:36 2-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane ND	Chlorobenzene	ND		0.010	2		02/08/2016 13:36
Chloromethane ND 0.010 2 02/08/2016 13:36 2-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,1-Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane	Chloroethane	ND		0.010	2		02/08/2016 13:36
2-Chlorotoluene ND 0.010 2 02/08/2016 13:36 4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dibrlorobenzene ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND<	Chloroform	ND		0.010	2		02/08/2016 13:36
4-Chlorotoluene ND 0.010 2 02/08/2016 13:36 Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroeth	Chloromethane	ND		0.010	2		02/08/2016 13:36
Dibromochloromethane ND 0.010 2 02/08/2016 13:36 1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 Dibromomethane ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorothane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloropropa	2-Chlorotoluene	ND		0.010	2		02/08/2016 13:36
1,2-Dibromo-3-chloropropane ND 0.0080 2 02/08/2016 13:36 1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 Dibromomethane ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroptopane ND 0.010 2 02/08/2016 13:36 1,3-Dichloroprop	4-Chlorotoluene	ND		0.010	2		02/08/2016 13:36
1,2-Dibromoethane (EDB) ND 0.0080 2 02/08/2016 13:36 Dibromomethane ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	Dibromochloromethane	ND		0.010	2		02/08/2016 13:36
Dibromomethane ND 0.010 2 02/08/2016 13:36 1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,2-Dibromo-3-chloropropane	ND		0.0080	2		02/08/2016 13:36
1,2-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,2-Dibromoethane (EDB)	ND		0.0080	2		02/08/2016 13:36
1,3-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	Dibromomethane	ND		0.010	2		02/08/2016 13:36
1,4-Dichlorobenzene ND 0.010 2 02/08/2016 13:36 Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,2-Dichlorobenzene	ND		0.010	2		02/08/2016 13:36
Dichlorodifluoromethane ND 0.010 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethane ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,3-Dichlorobenzene	ND		0.010	2		02/08/2016 13:36
1,1-Dichloroethane ND 0.010 2 02/08/2016 13:36 1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,4-Dichlorobenzene	ND		0.010	2		02/08/2016 13:36
1,2-Dichloroethane (1,2-DCA) ND 0.0080 2 02/08/2016 13:36 1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	Dichlorodifluoromethane	ND		0.010	2		02/08/2016 13:36
1,1-Dichloroethene ND 0.010 2 02/08/2016 13:36 cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,1-Dichloroethane	ND		0.010	2		02/08/2016 13:36
cis-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,2-Dichloroethane (1,2-DCA)	ND		0.0080	2		02/08/2016 13:36
trans-1,2-Dichloroethene ND 0.010 2 02/08/2016 13:36 1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,1-Dichloroethene	ND		0.010	2		02/08/2016 13:36
1,2-Dichloropropane ND 0.010 2 02/08/2016 13:36 1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	cis-1,2-Dichloroethene	ND		0.010	2		02/08/2016 13:36
1,3-Dichloropropane ND 0.010 2 02/08/2016 13:36	trans-1,2-Dichloroethene	ND		0.010	2		02/08/2016 13:36
	1,2-Dichloropropane	ND		0.010	2		02/08/2016 13:36
2,2-Dichloropropane ND 0.010 2 02/08/2016 13:36	1,3-Dichloropropane	ND		0.010	2		02/08/2016 13:36
	2,2-Dichloropropane	ND		0.010	2		02/08/2016 13:36

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Coll	lected Instrument	Batch ID
SVP-3 @ 6.5'-7'	1602146-011A	Soil	02/03/2016	3 13:54 GC18	116226
Analytes	Result		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		0.010	2	02/08/2016 13:36
cis-1,3-Dichloropropene	ND		0.010	2	02/08/2016 13:36
trans-1,3-Dichloropropene	ND		0.010	2	02/08/2016 13:36
Diisopropyl ether (DIPE)	ND		0.010	2	02/08/2016 13:36
Ethylbenzene	0.032		0.010	2	02/08/2016 13:36
Ethyl tert-butyl ether (ETBE)	ND		0.010	2	02/08/2016 13:36
Freon 113	ND		0.010	2	02/08/2016 13:36
Hexachlorobutadiene	ND		0.010	2	02/08/2016 13:36
Hexachloroethane	ND		0.010	2	02/08/2016 13:36
2-Hexanone	ND		0.010	2	02/08/2016 13:36
Isopropylbenzene	ND		0.010	2	02/08/2016 13:36
4-Isopropyl toluene	ND		0.010	2	02/08/2016 13:36
Methyl-t-butyl ether (MTBE)	0.21		0.010	2	02/08/2016 13:36
Methylene chloride	ND		0.010	2	02/08/2016 13:36
4-Methyl-2-pentanone (MIBK)	ND		0.010	2	02/08/2016 13:36
Naphthalene	0.18		0.010	2	02/08/2016 13:36
n-Propyl benzene	ND		0.010	2	02/08/2016 13:36
Styrene	ND		0.010	2	02/08/2016 13:36
1,1,1,2-Tetrachloroethane	ND		0.010	2	02/08/2016 13:36
1,1,2,2-Tetrachloroethane	ND		0.010	2	02/08/2016 13:36
Tetrachloroethene	ND		0.010	2	02/08/2016 13:36
Toluene	0.052		0.010	2	02/08/2016 13:36
1,2,3-Trichlorobenzene	ND		0.010	2	02/08/2016 13:36
1,2,4-Trichlorobenzene	ND		0.010	2	02/08/2016 13:36
1,1,1-Trichloroethane	ND		0.010	2	02/08/2016 13:36
1,1,2-Trichloroethane	ND		0.010	2	02/08/2016 13:36
Trichloroethene	ND		0.010	2	02/08/2016 13:36
Trichlorofluoromethane	ND		0.010	2	02/08/2016 13:36
1,2,3-Trichloropropane	ND		0.010	2	02/08/2016 13:36
1,2,4-Trimethylbenzene	0.085		0.010	2	02/08/2016 13:36
1,3,5-Trimethylbenzene	0.023		0.010	2	02/08/2016 13:36
Vinyl Chloride	ND		0.010	2	02/08/2016 13:36
Xylenes, Total	0.20		0.010	2	02/08/2016 13:36

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Analytical Method: SW8260B

Extraction Method: SW5030B

Unit: mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SVP-3 @ 6.5'-7'	1602146-011A Soil	02/03/2016 13:54 GC18	116226
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	120	70-130	02/08/2016 13:36
Toluene-d8	107	70-130	02/08/2016 13:36
4-BFB	88	70-130	02/08/2016 13:36
Benzene-d6	110	60-140	02/08/2016 13:36
Ethylbenzene-d10	100	60-140	02/08/2016 13:36
1,2-DCB-d4	105	60-140	02/08/2016 13:36

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis WorkOrder: 1602146

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

TPH(g) by Purge & Trap and GC/MS						
Client ID	Lab ID	Matrix	Date Collec	ted Instrument	Batch ID	
SB-26A @ 4.5'-5'	1602146-001A	Soil	02/03/2016 09	0:40 GC16	116226	
Analytes	Result		<u>RL</u> DI	=	Date Analyzed	
TPH(g)	ND		0.25 1		02/05/2016 14:29	
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	109		70-130		02/05/2016 14:29	
Benzene-d6	102		60-140		02/05/2016 14:29	
Analyst(s): KBO						
Client ID	Lab ID	Matrix	Date Collec	ted Instrument	Batch ID	
SB-26A @ 9.5'-10'	1602146-003A	Soil	02/03/2016 10	0:00 GC18	116226	
Analytes	Result		<u>RL</u> <u>DI</u>		Date Analyzed	
TPH(g)	2.5		0.25 1		02/05/2016 17:29	

SB-26A @ 9.5'-10'	1602146-003A Soil	02/03/2016 10:00 GC18	116226	
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed	
TPH(g)	2.5	0.25 1	02/05/2016 17:29	
Surrogates	REC (%)	<u>Limits</u>		
Dibromofluoromethane	109	70-130	02/05/2016 17:29	
Benzene-d6	108	60-140	02/05/2016 17:29	

<u>Anal</u>	yst(<u>s):</u>	KF

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-26A @ 11.5'-12'	1602146-004A	Soil	02/03/20	016 10:07 GC16	116226
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	60		10	40	02/08/2016 22:26
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	114		70-130		02/08/2016 22:26
Benzene-d6	129		60-140		02/08/2016 22:26
Analyst(s): KF					

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

TPH(g) by Purge & Trap and GC/MS						
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID		
SVP-6 @ 6.5'-7'	1602146-006A	Soil	02/03/2016 11:20 GC18	116226		
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed		
TPH(g)	0.45		0.25 1	02/06/2016 13:06		
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	111		70-130	02/06/2016 13:06		
Benzene-d6	108		60-140	02/06/2016 13:06		
Analyst(s): KF						
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID		
SVP-1 @1.5'-2'	1602146-007A	Soil	02/03/2016 12:42 GC18	116226		

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-1 @1.5'-2'	1602146-007A Soil 02/03/2016 12:42 GC18		16 12:42 GC18	116226	
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	1.1		0.25	1	02/06/2016 13:44
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	113		70-130		02/06/2016 13:44
Benzene-d6	109		60-140		02/06/2016 13:44

Analyst(s): KF

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-1 @ 6.5'-7'	1602146-008A	Soil	02/03/20	16 12:50 GC18	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	3.0		0.25	1	02/06/2016 14:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	110		70-130		02/06/2016 14:22
Benzene-d6	103		60-140		02/06/2016 14:22
Analyst(s): KF					

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/3/16 17:45

Date Prepared: 2/3/16

Project: 15179.23; Hollis

WorkOrder: 1602146

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

TPH(g) by Purge & Trap and GC/MS				
I oh ID	Matrix	Data Callacted		

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-2 @3'-3.5	1602146-009A	Soil	02/03/201	16 13:15 GC18	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	2.3		0.25	1	02/06/2016 15:01
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Dibromofluoromethane	111		70-130		02/06/2016 15:01
Benzene-d6	101		60-140		02/06/2016 15:01

Analyst(s): KF

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-2 @ 6.5'-7'	1602146-010A	Soil	02/03/201	16 13:25 GC18	116226
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	4.0		0.25	1	02/06/2016 15:39
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	110		70-130		02/06/2016 15:39
Benzene-d6	107		60-140		02/06/2016 15:39

Analyst(s): KF

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-3 @ 6.5'-7'	1602146-011A	Soil	02/03/20	16 13:54 GC18	116226
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	1.1		0.25	1	02/06/2016 16:17
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	109		70-130		02/06/2016 16:17
Benzene-d6	104		60-140		02/06/2016 16:17
Analyst(s): KF					

Quality Control Report

Client: All West Environmental, Inc

Date Prepared: 2/3/16 **Date Analyzed:** 2/4/16

Instrument: GC18, GC28

Matrix: Soil

Project: 15179.23; Hollis

WorkOrder: 1602146

BatchID: 116226

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg
Sample ID: MB/LCS-116226

1602146-011AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0611	0.0050	0.050	-	122, F2	53-116
Benzene	ND	0.0594	0.0050	0.050	-	119	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.248	0.050	0.20	-	124	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0546	0.0050	0.050	-	109	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0558	0.0040	0.050	-	112	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0609	0.0040	0.050	-	122	58-135
1,1-Dichloroethene	ND	0.0533	0.0050	0.050	-	107	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	_	0.0050	-	-	-	_

Quality Control Report

Client: All West Environmental, Inc

Date Prepared: 2/3/16 **Date Analyzed:** 2/4/16

Instrument: GC18, GC28

Matrix: Soil

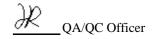
Project: 15179.23; Hollis

WorkOrder: 1602146

BatchID: 116226

Extraction Method: SW5030B

Analytical Method: SW8260B


Unit: mg/kg

Sample ID: MB/LCS-116226

1602146-011AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0629	0.0050	0.050	-	126	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0624	0.0050	0.050	-	125	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0590	0.0050	0.050	-	118	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0513	0.0050	0.050	-	103	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0594	0.0050	0.050	-	119	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-

Quality Control Report

Client: All West Environmental, Inc

Date Prepared: 2/3/16 **Date Analyzed:** 2/4/16 **Instrument:** GC18, GC28

Matrix: Soil

Project: 15179.23; Hollis

WorkOrder: 1602146 **BatchID:** 116226

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

Sample ID: MB/LCS-116226

1602146-011AMS/MSD

QC Summary	Report for	SW8260B
------------	------------	---------

		v 1					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.125	0.150		0.12	100	120	70-130
Toluene-d8	0.136	0.135		0.12	109	108	70-130
4-BFB	0.0110	0.0124		0.012	88	99	70-130
Benzene-d6	0.105	0.125		0.10	105	125	60-140
Ethylbenzene-d10	0.115	0.116		0.10	115	116	60-140
1,2-DCB-d4	0.0872	0.108		0.10	87	108	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0584	0.0579	0.050	ND<0.010	117,F1	116,F1	56-94	0.718	20
Benzene	NR	NR	0.050	0.05987	NR	NR	60-106	NR	20
t-Butyl alcohol (TBA)	0.304	0.318	0.20	ND<0.10	134	141,F1	56-140	4.40	20
Chlorobenzene	0.0503	0.0489	0.050	ND<0.010	101	98	61-108	2.91	20
1,2-Dibromoethane (EDB)	0.0502	0.0505	0.050	ND<0.0080	100	101	54-119	0.609	20
1,2-Dichloroethane (1,2-DCA)	0.0586	0.0581	0.050	ND<0.0080	117,F1	116,F1	48-115	0.872	20
1,1-Dichloroethene	0.0497	0.0487	0.050	ND<0.010	99	97	46-111	2.07	20
Diisopropyl ether (DIPE)	0.0577	0.0588	0.050	ND<0.010	115,F1	118,F1	53-111	1.84	20
Ethyl tert-butyl ether (ETBE)	0.0567	0.0584	0.050	ND<0.010	113,F1	117,F1	61-104	2.82	20
Methyl-t-butyl ether (MTBE)	NR	NR	0.050	0.2056	NR	NR	58-107	NR	20
Toluene	NR	NR	0.050	0.05215	NR	NR	64-114	NR	20
Trichloroethene	0.0545	0.0526	0.050	ND<0.010	109	105	60-116	3.56	20
Surrogate Recovery									
Dibromofluoromethane	0.152	0.152	0.12		121	122	70-130	0.504	20
Toluene-d8	0.129	0.131	0.12		103	105	70-130	1.29	20
4-BFB	0.0115	0.0119	0.012		92	95	88-121	3.94	20
Benzene-d6	0.114	0.116	0.10		114	116	60-140	1.16	20
Ethylbenzene-d10	0.106	0.106	0.10		106	106	60-140	0	20
1,2-DCB-d4	0.0992	0.101	0.10		99	101	60-140	1.75	20

McCampbell Analytical, Inc.

CLIENT: All West Environmental, Inc

ANALYTICAL QC SUMMARY REPORT

Date: 09-Feb-16

Work Order: 1602146

BatchID: 116226 **Project:** 15179.23; Hollis

SampleID MB-116226 Batch ID: 116226	TestCode: 8260gas_s TestNo: SW8260B		its: mg/kg D: GC18_		Prep Date: 2/3/2016 Analysis Date: 2/4/2016					
Analyte	Result	PQL SPKValue SPKRefV	al %REC	Limits	RPDRefVal %RPD RPDLimit (Qual				
TPH(g)	ND	0.25		-						
Surrogate Recovery										
Dibromofluoromethane	0.139	0.125	111	70 - 130						
Benzene-d6	0.120	0.1	120	60 - 140						

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

_Angela Rydelius, Lab Manager

CLIENT: All West Environmental, Inc

ANALYTICAL QC SUMMARY REPORT

Work Order: 1602146

Project: 15179.23; Hollis **BatchID:** 116226

SampleID LCS-116226 Batch ID: 116226	TestCode: 8260gas_s TestNo: SW8260B	Units: r Run ID: G					Prep Date: 2/3/2016 Analysis Date: 2/4/2016
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qual
VOC (C6-C12)	2.91	0.25	3.2	0	91	74 - 142	
Surrogate Recovery							
Dibromofluoromethane	0.141		0.125		113	70 - 130	
Benzene-d6	0.117		0.1		117	60 - 140	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1602146 ClientCode: AWE

	☐ WaterTrax	WriteOn	✓ EDF	Excel	EQuIS	y Email	HardCopy	ThirdParty	☐J-flag
Report to:				В	Bill to:		Requ	uested TAT:	5 days;
Sara Bloom All West Environmental, Inc 2141 Mission Street, Ste 100 San Francisco, CA 94110 (415) 391-2510 FAX: (415) 391-2008	cc/3rd Party: L PO: ProjectNo: 1	ara@allwest1.co eonard@allwest 5179.23; Hollis		e@allwest1.	Darlene Torio All West Enviro 2141 Mission S San Francisco, darlene@allwe	Street, Ste 100 CA 94110	_ ****	e Received: e Logged:	02/03/2016 02/03/2016

				Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1602146-001	SB-26A @ 4.5'-5'	Soil	2/3/2016 9:40		Α	Α	Α									
1602146-003	SB-26A @ 9.5'-10'	Soil	2/3/2016 10:00		Α	Α										
1602146-004	SB-26A @ 11.5'-12'	Soil	2/3/2016 10:07		Α	Α										
1602146-006	SVP-6 @ 6.5'-7'	Soil	2/3/2016 11:20		Α	Α										
1602146-007	SVP-1 @1.5'-2'	Soil	2/3/2016 12:42		Α	Α										
1602146-008	SVP-1 @ 6.5'-7'	Soil	2/3/2016 12:50		Α	Α										
1602146-009	SVP-2 @3'-3.5	Soil	2/3/2016 13:15		Α	Α										
1602146-010	SVP-2 @ 6.5'-7'	Soil	2/3/2016 13:25		Α	Α										
1602146-011	SVP-3 @ 6.5'-7'	Soil	2/3/2016 13:54		Α	Α										

Test Legend:

1 8260B_S	2 8260GAS_S	3 PREDF REPORT	4
5	6	7	8
9	10	11	12

The following SampIDs: 001A, 003A, 004A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Alexandra Iniguez

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:ALL WEST ENVIRONMENTAL, INCQC Level: LEVEL 2Work Order: 1602146Project:15179.23; HollisClient Contact: Sara BloomDate Logged: 2/3/2016

Comments: Contact's Email: sara@allwest1.com

		WaterTrax	□WriteOn ▼ EDF	Excel]Fax ✓Email	HardC	opyThirdPart	y 🗀	J-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1602146-001A	SB-26A @ 4.5'-5'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 9:40	5 days	
1602146-002A	SB-26A @ 6.5'-7	Soil		1	Acetate Liner		2/3/2016 9:50		✓
1602146-003A	SB-26A @ 9.5'-10'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 10:00	5 days	
1602146-004A	SB-26A @ 11.5'-12'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 10:07	5 days	
1602146-005A	SB-26A @15.5'-16'	Soil		1	Acetate Liner		2/3/2016 10:21		•
1602146-006A	SVP-6 @ 6.5'-7'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 11:20	5 days	
1602146-007A	SVP-1 @1.5'-2'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 12:42	5 days	
1602146-008A	SVP-1 @ 6.5'-7'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 12:50	5 days	
1602146-009A	SVP-2 @3'-3.5	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 13:15	5 days	
1602146-010A	SVP-2 @ 6.5'-7'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 13:25	5 days	
1602146-011A	SVP-3 @ 6.5'-7'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/3/2016 13:54	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD M 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 TURN AROUND TIME 5 DAY RUSH 24 HR 48 HR 72 HR Website: www.mccampbell.com Email: main@mccampbell.com GeoTracker EDF \(\bar{\Delta} \) PDF \(\Boxed \) Excel \(\Boxed \) Write On (DW) \(\Boxed \) Telephone: (877) 252-9262 Fax: (925) 252-9269 Check if sample is effluent and "J" flag is required Report To: Len Niles/Sara Bloom Other Bill To: Darlene Torio **Analysis Request** Comments Company: AllWest Environmental **Indicate 2141 Mission Street, Ste 100 EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners GAR Total Petroleum Oil & Grease (1664 / 5520 E/B&F) here if these San Francisco, CA 94110 E-Mail: leonard@/sara@/darlene@allwest1.com samples are Filter sample for DISSOLVED metals analysis 3 Tele: (415) 391-2510 Fax: (415)391-2008 CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) potentially LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) EPA 524.2 / 624 / 8260 (VOCs) + TPA Project Name: Calle De Luma HOLLIS MTBE / BTEX ONLY (EPA 602 / 8021) Project #: 15T053.25 15179.23 dangerous to Total Petroleum Hydrocarbons (418.1) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) EPA 515 / 8151 (Acidic Cl Herbicides) 8270 SIM / 8310 (PAHs / PNAs) handle: Project Location: Santa Clara, CA EMERIVILLE, CA BTEX & TPH as Gas (602 / 8021 + EPA 505/ 608 / 8081 (CI Pesticides) Lead (200.7 / 200.8 / 6010 / 6020) EPA 525.2 / 625 / 8270 (SVOCs) markburn EPA 507 / 8141 (NP Pesticides) Sampler Signature: METHOD SAMPLING MATRIX PRESERVED Type Containers TPH as Diesel (8015) # Containers LOCATION/ SAMPLE ID Field Point Name Date Time Sludge Water Other HNO₃ Other HCL ICE Soil SB-26AC 4.5'-5' 2/3/16 X 0940 SB-26AC6.5'-7' 0950 **GU6H** CB-26A @ 95'-10" X 1000 X SB- 26 AC 11.51-12' 1007 HOLD SB-26AC 15.5'-16' 1021 SYP-6 @ 65'-7' X 1120 SVP-101.5'-2' X 1242 SYP-126.5-7" X 1250

SVP-2@3'-3.51			1315	ı													Х								
SVP-206.51-71			1325	1													X								
SYP-3 @ 6.5'-7'			1354	١													X								
**MAI clients MUST gloved, open air, samp allowing us to work sa	le handling by N																								,
Relinquished By:	_	Date: 2/3/16	Time:	Rece	iyed By:		1	6			• GC		ONDIT	ION_ BSENT	_					COMN	1ENT	rs:		-	
Relinquished By:	12	Date: -3-/6	Time:	Rece	eived By:	L.	K	1	,)	AP	PROP			LAB_ INERS_										
Refinquished By:		Date:	Time:	Rece	eived By:			0					VATIO	VOAS	O&G	MET _pH<2_		ОТНЕ	R	2					
														#1#										Page 41	of

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	All West Environmer 15179.23; Hollis 1602146 Bernie Cummins (MA	Matrix: <u>Soil</u>			Date and Time Received: Date Logged: Received by: Logged by:	2/3/2016 15:15 2/3/2016 Alexandra Iniguez Alexandra Iniguez	
		Chain of C	ustod	y (COC) I	nformation		
Chain of custody	present?		Yes	•	No 🗆		
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌		
Chain of custody agrees with sample labels?		Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌		
Date and Time o	f collection noted by Cl	lient on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗆		
		Sampl	e Rece	eipt Infor	<u>mation</u>		
Custody seals in	tact on shipping contain	ner/cooler?	Yes		No 🗆	NA 🗸	
Shipping contain	er/cooler in good condi	ition?	Yes	•	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	✓	No 🗌		
Sufficient sample volume for indicated test?		Yes	•	No 🗌			
		Sample Preservation	on and	Hold Tir	me (HT) Information		
All samples rece	ived within holding time	e?	Yes	✓	No 🗌		
Sample/Temp Bl	ank temperature			Temp	: 10.9°C	NA 🗌	
Water - VOA vial	ls have zero headspace	e / no bubbles?	Yes		No 🗌	NA 🗹	
Sample labels ch	necked for correct prese	ervation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal: <2;	522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹	
Samples Receive	ed on Ice?	(I.e. Town	Yes	✓	No 🗆		
LICMD2 Complet		(Ісе Туре	e: vvE	TICE)		
UCMR3 Samples Total Chlorine		upon receipt for EPA 522?	Yes		No 🗌	NA 🗹	
Free Chlorine t 300.1, 537, 539		upon receipt for EPA 218.7,	Yes		No 🗌	NA 🗹	
* NOTE: If the "N	lo" box is checked, see	e comments below.					
Comments:		======			======	======	_===

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1602296

Report Created for: All West Environmental, Inc

2141 Mission Street, Ste 100 San Francisco, CA 94110

Project Contact: Leonard Niles

Project P.O.:

Project Name: 15179.23

Project Received: 02/09/2016

Analytical Report reviewed & approved for release on 02/16/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: All West Environmental, Inc

Project: 15179.23 **WorkOrder:** 1602296

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

S Surrogate spike recovery outside accepted recovery limits b1 aqueous sample that contains greater than ~1 vol. % sediment

c7 Surrogate value diluted out of range

Glossary of Terms & Qualifier Definitions

Client: All West Environmental, Inc

Project: 15179.23 **WorkOrder:** 1602296

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00

Date Prepared: 2/9/16 **Project:** 15179.23

WorkOrder: 1602296

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Collect	ted Instrument	Batch ID	
SB-26A@20.5-21'	1602296-001A	Soil	02/04/2016	GC16	116419	
Analytes	Result		<u>RL</u> <u>DF</u>	-	Date Analyzed	
Acetone	ND		0.10 1		02/12/2016 04:33	
tert-Amyl methyl ether (TAME)	ND		0.0050 1		02/12/2016 04:33	
Benzene	ND		0.0050 1		02/12/2016 04:33	
Bromobenzene	ND		0.0050 1		02/12/2016 04:33	
Bromochloromethane	ND		0.0050 1		02/12/2016 04:33	
Bromodichloromethane	ND		0.0050 1		02/12/2016 04:33	
Bromoform	ND		0.0050 1		02/12/2016 04:33	
Bromomethane	ND		0.0050 1		02/12/2016 04:33	
2-Butanone (MEK)	ND		0.020 1		02/12/2016 04:33	
t-Butyl alcohol (TBA)	ND		0.050 1		02/12/2016 04:33	
n-Butyl benzene	ND		0.0050 1		02/12/2016 04:33	
sec-Butyl benzene	ND		0.0050 1		02/12/2016 04:33	
tert-Butyl benzene	ND		0.0050 1		02/12/2016 04:33	
Carbon Disulfide	ND		0.0050 1		02/12/2016 04:33	
Carbon Tetrachloride	ND		0.0050 1		02/12/2016 04:33	
Chlorobenzene	ND		0.0050 1		02/12/2016 04:33	
Chloroethane	ND		0.0050 1		02/12/2016 04:33	
Chloroform	ND		0.0050 1		02/12/2016 04:33	
Chloromethane	ND		0.0050 1		02/12/2016 04:33	
2-Chlorotoluene	ND		0.0050 1		02/12/2016 04:33	
4-Chlorotoluene	ND		0.0050 1		02/12/2016 04:33	
Dibromochloromethane	ND		0.0050 1		02/12/2016 04:33	
1,2-Dibromo-3-chloropropane	ND		0.0040 1		02/12/2016 04:33	
1,2-Dibromoethane (EDB)	ND		0.0040 1		02/12/2016 04:33	
Dibromomethane	ND		0.0050 1		02/12/2016 04:33	
1,2-Dichlorobenzene	ND		0.0050 1		02/12/2016 04:33	
1,3-Dichlorobenzene	ND		0.0050 1		02/12/2016 04:33	
1,4-Dichlorobenzene	ND		0.0050 1		02/12/2016 04:33	
Dichlorodifluoromethane	ND		0.0050 1		02/12/2016 04:33	
1,1-Dichloroethane	ND		0.0050 1		02/12/2016 04:33	
1,2-Dichloroethane (1,2-DCA)	ND		0.0040 1		02/12/2016 04:33	
1,1-Dichloroethene	ND		0.0050 1		02/12/2016 04:33	
cis-1,2-Dichloroethene	ND		0.0050 1		02/12/2016 04:33	
trans-1,2-Dichloroethene	ND		0.0050 1		02/12/2016 04:33	
1,2-Dichloropropane	ND		0.0050 1		02/12/2016 04:33	
1,3-Dichloropropane	ND		0.0050 1		02/12/2016 04:33	
2,2-Dichloropropane	ND		0.0050 1		02/12/2016 04:33	

(Cont.)

Analytical Report

Client: All West Environmental, Inc

15179.23

Date Received: 2/9/16 16:00 **Date Prepared:** 2/9/16

Project:

WorkOrder: 1602296 Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Collect	ed Instrument	Batch ID
SB-26A@20.5-21'	1602296-001A	Soil	02/04/2016	GC16	116419
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND		0.0050 1		02/12/2016 04:33
cis-1,3-Dichloropropene	ND		0.0050 1		02/12/2016 04:33
trans-1,3-Dichloropropene	ND		0.0050 1		02/12/2016 04:33
Diisopropyl ether (DIPE)	ND		0.0050 1		02/12/2016 04:33
Ethylbenzene	ND		0.0050 1		02/12/2016 04:33
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		02/12/2016 04:33
Freon 113	ND		0.0050 1		02/12/2016 04:33
Hexachlorobutadiene	ND		0.0050 1		02/12/2016 04:33
Hexachloroethane	ND		0.0050 1		02/12/2016 04:33
2-Hexanone	ND		0.0050 1		02/12/2016 04:33
Isopropylbenzene	ND		0.0050 1		02/12/2016 04:33
4-Isopropyl toluene	ND		0.0050 1		02/12/2016 04:33
Methyl-t-butyl ether (MTBE)	0.0071		0.0050 1		02/12/2016 04:33
Methylene chloride	ND		0.0050 1		02/12/2016 04:33
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		02/12/2016 04:33
Naphthalene	ND		0.0050 1		02/12/2016 04:33
n-Propyl benzene	ND		0.0050 1		02/12/2016 04:33
Styrene	ND		0.0050 1		02/12/2016 04:33
1,1,1,2-Tetrachloroethane	ND		0.0050 1		02/12/2016 04:33
1,1,2,2-Tetrachloroethane	ND		0.0050 1		02/12/2016 04:33
Tetrachloroethene	ND		0.0050 1		02/12/2016 04:33
Toluene	ND		0.0050 1		02/12/2016 04:33
1,2,3-Trichlorobenzene	ND		0.0050 1		02/12/2016 04:33
1,2,4-Trichlorobenzene	ND		0.0050 1		02/12/2016 04:33
1,1,1-Trichloroethane	ND		0.0050 1		02/12/2016 04:33
1,1,2-Trichloroethane	ND		0.0050 1		02/12/2016 04:33
Trichloroethene	ND		0.0050 1		02/12/2016 04:33
Trichlorofluoromethane	ND		0.0050 1		02/12/2016 04:33
1,2,3-Trichloropropane	ND		0.0050 1		02/12/2016 04:33
1,2,4-Trimethylbenzene	ND		0.0050 1		02/12/2016 04:33
1,3,5-Trimethylbenzene	ND		0.0050 1		02/12/2016 04:33
Vinyl Chloride	ND		0.0050 1		02/12/2016 04:33
Xylenes, Total	ND		0.0050 1		02/12/2016 04:33

Analytical Report

Client: All West Environmental, Inc

15179.23

WorkOrder: **Extraction Method: SW5030B**

1602296

Date Received: 2/9/16 16:00 **Date Prepared:** 2/9/16

Project:

Analytical Method: SW8260B

Unit:

mg/kg

Client ID	Lab ID Matr	ix Date Collected Instrument	Batch ID
SB-26A@20.5-21'	1602296-001A Soil	02/04/2016 GC16	116419
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	103	70-130	02/12/2016 04:33
Toluene-d8	113	70-130	02/12/2016 04:33
4-BFB	113	70-130	02/12/2016 04:33
Benzene-d6	102	60-140	02/12/2016 04:33
Ethylbenzene-d10	101	60-140	02/12/2016 04:33
1,2-DCB-d4	70	60-140	02/12/2016 04:33

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00 **Date Prepared:** 2/9/16 **Project:** 15179.23

WorkOrder: 1602296
Extraction Method: SW5030B
Analytical Method: SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Batch ID	
SVP-4@6.5'-7'	1602296-002A	Soil	02/04/2016 14:33 GC16		116419
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND		5.0	50	02/12/2016 05:13
tert-Amyl methyl ether (TAME)	ND		0.25	50	02/12/2016 05:13
Benzene	ND		0.25	50	02/12/2016 05:13
Bromobenzene	ND		0.25	50	02/12/2016 05:13
Bromochloromethane	ND		0.25	50	02/12/2016 05:13
Bromodichloromethane	ND		0.25	50	02/12/2016 05:13
Bromoform	ND		0.25	50	02/12/2016 05:13
Bromomethane	ND		0.25	50	02/12/2016 05:13
2-Butanone (MEK)	ND		1.0	50	02/12/2016 05:13
t-Butyl alcohol (TBA)	ND		2.5	50	02/12/2016 05:13
n-Butyl benzene	0.81		0.25	50	02/12/2016 05:13
sec-Butyl benzene	ND		0.25	50	02/12/2016 05:13
tert-Butyl benzene	ND		0.25	50	02/12/2016 05:13
Carbon Disulfide	ND		0.25	50	02/12/2016 05:13
Carbon Tetrachloride	ND		0.25	50	02/12/2016 05:13
Chlorobenzene	ND		0.25	50	02/12/2016 05:13
Chloroethane	ND		0.25	50	02/12/2016 05:13
Chloroform	ND		0.25	50	02/12/2016 05:13
Chloromethane	ND		0.25	50	02/12/2016 05:13
2-Chlorotoluene	ND		0.25	50	02/12/2016 05:13
4-Chlorotoluene	ND		0.25	50	02/12/2016 05:13
Dibromochloromethane	ND		0.25	50	02/12/2016 05:13
1,2-Dibromo-3-chloropropane	ND		0.20	50	02/12/2016 05:13
1,2-Dibromoethane (EDB)	ND		0.20	50	02/12/2016 05:13
Dibromomethane	ND		0.25	50	02/12/2016 05:13
1,2-Dichlorobenzene	ND		0.25	50	02/12/2016 05:13
1,3-Dichlorobenzene	ND		0.25	50	02/12/2016 05:13
1,4-Dichlorobenzene	ND		0.25	50	02/12/2016 05:13
Dichlorodifluoromethane	ND		0.25	50	02/12/2016 05:13
1,1-Dichloroethane	ND		0.25	50	02/12/2016 05:13
1,2-Dichloroethane (1,2-DCA)	ND		0.20	50	02/12/2016 05:13
1,1-Dichloroethene	ND		0.25	50	02/12/2016 05:13
cis-1,2-Dichloroethene	ND		0.25	50	02/12/2016 05:13
trans-1,2-Dichloroethene	ND		0.25	50	02/12/2016 05:13
1,2-Dichloropropane	ND		0.25	50	02/12/2016 05:13
1,3-Dichloropropane	ND		0.25	50	02/12/2016 05:13
2,2-Dichloropropane	ND		0.25	50	02/12/2016 05:13

(Cont.)

Analytical Report

Client: All West Environmental, Inc

15179.23

Date Received: 2/9/16 16:00 **Date Prepared:** 2/9/16

Project:

WorkOrder: 1602296
Extraction Method: SW5030B
Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID	
SVP-4@6.5'-7'	1602296-002A	Soil	02/04/20	016 14:33 GC16	116419	
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
1,1-Dichloropropene	ND		0.25	50	02/12/2016 05:13	
cis-1,3-Dichloropropene	ND		0.25	50	02/12/2016 05:13	
trans-1,3-Dichloropropene	ND		0.25	50	02/12/2016 05:13	
Diisopropyl ether (DIPE)	ND		0.25	50	02/12/2016 05:13	
Ethylbenzene	0.59		0.25	50	02/12/2016 05:13	
Ethyl tert-butyl ether (ETBE)	ND		0.25	50	02/12/2016 05:13	
Freon 113	ND		0.25	50	02/12/2016 05:13	
Hexachlorobutadiene	ND		0.25	50	02/12/2016 05:13	
Hexachloroethane	ND		0.25	50	02/12/2016 05:13	
2-Hexanone	ND		0.25	50	02/12/2016 05:13	
Isopropylbenzene	ND		0.25	50	02/12/2016 05:13	
4-Isopropyl toluene	ND		0.25	50	02/12/2016 05:13	
Methyl-t-butyl ether (MTBE)	ND		0.25	50	02/12/2016 05:13	
Methylene chloride	ND		0.25	50	02/12/2016 05:13	
4-Methyl-2-pentanone (MIBK)	ND		0.25	50	02/12/2016 05:13	
Naphthalene	1.0		0.25	50	02/12/2016 05:13	
n-Propyl benzene	0.92		0.25	50	02/12/2016 05:13	
Styrene	ND		0.25	50	02/12/2016 05:13	
1,1,1,2-Tetrachloroethane	ND		0.25	50	02/12/2016 05:13	
1,1,2,2-Tetrachloroethane	ND		0.25	50	02/12/2016 05:13	
Tetrachloroethene	ND		0.25	50	02/12/2016 05:13	
Toluene	ND		0.25	50	02/12/2016 05:13	
1,2,3-Trichlorobenzene	ND		0.25	50	02/12/2016 05:13	
1,2,4-Trichlorobenzene	ND		0.25	50	02/12/2016 05:13	
1,1,1-Trichloroethane	ND		0.25	50	02/12/2016 05:13	
1,1,2-Trichloroethane	ND		0.25	50	02/12/2016 05:13	
Trichloroethene	ND		0.25	50	02/12/2016 05:13	
Trichlorofluoromethane	ND		0.25	50	02/12/2016 05:13	
1,2,3-Trichloropropane	ND		0.25	50	02/12/2016 05:13	
1,2,4-Trimethylbenzene	3.6		0.25	50	02/12/2016 05:13	
1,3,5-Trimethylbenzene	0.97		0.25	50	02/12/2016 05:13	
Vinyl Chloride	ND		0.25	50	02/12/2016 05:13	
Xylenes, Total	1.4		0.25	50	02/12/2016 05:13	

Analytical Report

Client: All West Environmental, Inc WorkOrder:

1602296

Date Received: 2/9/16 16:00

Extraction Method: SW5030B Analytical Method: SW8260B

Date Prepared: 2/9/16 **Project:** 15179.23

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID	
SVP-4@6.5'-7'	1602296-002A	Soil	02/04/2016 14:33 GC16	116419	
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed	
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	106		70-130	02/12/2016 05:13	
Toluene-d8	98		70-130	02/12/2016 05:13	
4-BFB	112		70-130	02/12/2016 05:13	
Benzene-d6	218	S	60-140	02/12/2016 05:13	
Ethylbenzene-d10	210	S	60-140	02/12/2016 05:13	
1,2-DCB-d4	142	S	60-140	02/12/2016 05:13	
Analyst(s): KF			Analytical Comments: c7		

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00

WorkOrder: 1602296
Extraction Method: SW5030B

Date Prepared: 2/9/16

15179.23

Project:

Analytical Method: SW8260B **Unit:** mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID	
SVP-5@3.5'-4'	1602296-003A	Soil	02/04/201	6 14:41	GC16	116419	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
Acetone	ND		0.10	1		02/11/2016 04:30	
tert-Amyl methyl ether (TAME)	ND		0.0050	1		02/11/2016 04:30	
Benzene	ND		0.0050	1		02/11/2016 04:30	
Bromobenzene	ND		0.0050	1		02/11/2016 04:30	
Bromochloromethane	ND		0.0050	1		02/11/2016 04:30	
Bromodichloromethane	ND		0.0050	1		02/11/2016 04:30	
Bromoform	ND		0.0050	1		02/11/2016 04:30	
Bromomethane	ND		0.0050	1		02/11/2016 04:30	
2-Butanone (MEK)	ND		0.020	1		02/11/2016 04:30	
t-Butyl alcohol (TBA)	0.11		0.050	1		02/11/2016 04:30	
n-Butyl benzene	0.11		0.0050	1		02/11/2016 04:30	
sec-Butyl benzene	0.033		0.0050	1		02/11/2016 04:30	
tert-Butyl benzene	ND		0.0050	1		02/11/2016 04:30	
Carbon Disulfide	ND		0.0050	1		02/11/2016 04:30	
Carbon Tetrachloride	ND		0.0050	1		02/11/2016 04:30	
Chlorobenzene	ND		0.0050	1		02/11/2016 04:30	
Chloroethane	ND		0.0050	1		02/11/2016 04:30	
Chloroform	ND		0.0050	1		02/11/2016 04:30	
Chloromethane	ND		0.0050	1		02/11/2016 04:30	
2-Chlorotoluene	ND		0.0050	1		02/11/2016 04:30	
4-Chlorotoluene	ND		0.0050	1		02/11/2016 04:30	
Dibromochloromethane	ND		0.0050	1		02/11/2016 04:30	
1,2-Dibromo-3-chloropropane	ND		0.0040	1		02/11/2016 04:30	
1,2-Dibromoethane (EDB)	ND		0.0040	1		02/11/2016 04:30	
Dibromomethane	ND		0.0050	1		02/11/2016 04:30	
1,2-Dichlorobenzene	ND		0.0050	1		02/11/2016 04:30	
1,3-Dichlorobenzene	ND		0.0050	1		02/11/2016 04:30	
1,4-Dichlorobenzene	ND		0.0050	1		02/11/2016 04:30	
Dichlorodifluoromethane	ND		0.0050	1		02/11/2016 04:30	
1,1-Dichloroethane	ND		0.0050	1		02/11/2016 04:30	
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		02/11/2016 04:30	
1,1-Dichloroethene	ND		0.0050	1		02/11/2016 04:30	
cis-1,2-Dichloroethene	ND		0.0050	1		02/11/2016 04:30	
trans-1,2-Dichloroethene	ND		0.0050	1		02/11/2016 04:30	
1,2-Dichloropropane	ND		0.0050	1		02/11/2016 04:30	
1,3-Dichloropropane	ND		0.0050	1		02/11/2016 04:30	
2,2-Dichloropropane	ND		0.0050	1		02/11/2016 04:30	

(Cont.)

Analytical Report

Client: All West Environmental, Inc

15179.23

Date Received: 2/9/16 16:00 **Date Prepared:** 2/9/16

Project:

WorkOrder: 1602296
Extraction Method: SW5030B
Analytical Method: SW8260B

Unit: mg/kg

Client ID	Lab ID	Matrix	Date Col	llected I1	nstrument	Batch ID
SVP-5@3.5'-4'	1602296-003A	Soil	02/04/201	6 14:41 G	C16	116419
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND		0.0050	1		02/11/2016 04:30
cis-1,3-Dichloropropene	ND		0.0050	1		02/11/2016 04:30
trans-1,3-Dichloropropene	ND		0.0050	1		02/11/2016 04:30
Diisopropyl ether (DIPE)	ND		0.0050	1		02/11/2016 04:30
Ethylbenzene	ND		0.0050	1		02/11/2016 04:30
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		02/11/2016 04:30
Freon 113	ND		0.0050	1		02/11/2016 04:30
Hexachlorobutadiene	ND		0.0050	1		02/11/2016 04:30
Hexachloroethane	ND		0.0050	1		02/11/2016 04:30
2-Hexanone	ND		0.0050	1		02/11/2016 04:30
Isopropylbenzene	0.016		0.0050	1		02/11/2016 04:30
4-Isopropyl toluene	ND		0.0050	1		02/11/2016 04:30
Methyl-t-butyl ether (MTBE)	0.082		0.0050	1		02/11/2016 04:30
Methylene chloride	ND		0.0050	1		02/11/2016 04:30
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		02/11/2016 04:30
Naphthalene	ND		0.0050	1		02/11/2016 04:30
n-Propyl benzene	0.11		0.0050	1		02/11/2016 04:30
Styrene	ND		0.0050	1		02/11/2016 04:30
1,1,1,2-Tetrachloroethane	ND		0.0050	1		02/11/2016 04:30
1,1,2,2-Tetrachloroethane	ND		0.0050	1		02/11/2016 04:30
Tetrachloroethene	ND		0.0050	1		02/11/2016 04:30
Toluene	ND		0.0050	1		02/11/2016 04:30
1,2,3-Trichlorobenzene	ND		0.0050	1		02/11/2016 04:30
1,2,4-Trichlorobenzene	ND		0.0050	1		02/11/2016 04:30
1,1,1-Trichloroethane	ND		0.0050	1		02/11/2016 04:30
1,1,2-Trichloroethane	ND		0.0050	1		02/11/2016 04:30
Trichloroethene	ND		0.0050	1		02/11/2016 04:30
Trichlorofluoromethane	ND		0.0050	1		02/11/2016 04:30
1,2,3-Trichloropropane	ND		0.0050	1		02/11/2016 04:30
1,2,4-Trimethylbenzene	0.016		0.0050	1		02/11/2016 04:30
1,3,5-Trimethylbenzene	ND		0.0050	1		02/11/2016 04:30
Vinyl Chloride	ND		0.0050	1		02/11/2016 04:30
Xylenes, Total	ND		0.0050	1		02/11/2016 04:30

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00

WorkOrder: 1602296
Extraction Method: SW5030B
Analytical Method: SW8260B
Unit: mg/kg

Date Prepared: 2/9/16 **Project:** 15179.23

Client ID	Lab ID	Matrix	Date Collected Instrume	ent Batch ID
SVP-5@3.5'-4'	1602296-003A Soil		02/04/2016 14:41 GC16	116419
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed
<u>Surrogates</u>	REC (%)		<u>Limits</u>	
Dibromofluoromethane	105		70-130	02/11/2016 04:30
Toluene-d8	110		70-130	02/11/2016 04:30
4-BFB	116		70-130	02/11/2016 04:30
Benzene-d6	86		60-140	02/11/2016 04:30
Ethylbenzene-d10	89		60-140	02/11/2016 04:30
1,2-DCB-d4	67		60-140	02/11/2016 04:30

1602296

Analytical Report

Client: All West Environmental, Inc WorkOrder:

Date Received:2/9/16 16:00Extraction Method:SW5030BDate Prepared:2/13/16Analytical Method:SW8260B

Project: 15179.23 **Unit:** μg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SB-26	1602296-004A	Water	02/04/20	016 09:12 GC16	116686
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND		100	10	02/13/2016 15:55
tert-Amyl methyl ether (TAME)	ND		5.0	10	02/13/2016 15:55
Benzene	310		5.0	10	02/13/2016 15:55
Bromobenzene	ND		5.0	10	02/13/2016 15:55
Bromochloromethane	ND		5.0	10	02/13/2016 15:55
Bromodichloromethane	ND		5.0	10	02/13/2016 15:55
Bromoform	ND		5.0	10	02/13/2016 15:55
Bromomethane	ND		5.0	10	02/13/2016 15:55
2-Butanone (MEK)	ND		20	10	02/13/2016 15:55
t-Butyl alcohol (TBA)	ND		20	10	02/13/2016 15:55
n-Butyl benzene	ND		5.0	10	02/13/2016 15:55
sec-Butyl benzene	ND		5.0	10	02/13/2016 15:55
tert-Butyl benzene	ND		5.0	10	02/13/2016 15:55
Carbon Disulfide	ND		5.0	10	02/13/2016 15:55
Carbon Tetrachloride	ND		5.0	10	02/13/2016 15:55
Chlorobenzene	ND		5.0	10	02/13/2016 15:55
Chloroethane	ND		5.0	10	02/13/2016 15:55
Chloroform	ND		5.0	10	02/13/2016 15:55
Chloromethane	ND		5.0	10	02/13/2016 15:55
2-Chlorotoluene	ND		5.0	10	02/13/2016 15:55
4-Chlorotoluene	ND		5.0	10	02/13/2016 15:55
Dibromochloromethane	ND		5.0	10	02/13/2016 15:55
1,2-Dibromo-3-chloropropane	ND		2.0	10	02/13/2016 15:55
1,2-Dibromoethane (EDB)	ND		5.0	10	02/13/2016 15:55
Dibromomethane	ND		5.0	10	02/13/2016 15:55
1,2-Dichlorobenzene	ND		5.0	10	02/13/2016 15:55
1,3-Dichlorobenzene	ND		5.0	10	02/13/2016 15:55
1,4-Dichlorobenzene	ND		5.0	10	02/13/2016 15:55
Dichlorodifluoromethane	ND		5.0	10	02/13/2016 15:55
1,1-Dichloroethane	ND		5.0	10	02/13/2016 15:55
1,2-Dichloroethane (1,2-DCA)	ND		5.0	10	02/13/2016 15:55
1,1-Dichloroethene	ND		5.0	10	02/13/2016 15:55
cis-1,2-Dichloroethene	ND		5.0	10	02/13/2016 15:55
trans-1,2-Dichloroethene	ND		5.0	10	02/13/2016 15:55
1,2-Dichloropropane	ND		5.0	10	02/13/2016 15:55
1,3-Dichloropropane	ND		5.0	10	02/13/2016 15:55
2,2-Dichloropropane	ND		5.0	10	02/13/2016 15:55

(Cont.)

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00Date Prepared: 2/13/16Project: 15179.23

WorkOrder: 1602296 Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/L$

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-26	1602296-004A	Water	02/04/20	16 09:12 GC16	116686
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		5.0	10	02/13/2016 15:55
cis-1,3-Dichloropropene	ND		5.0	10	02/13/2016 15:55
trans-1,3-Dichloropropene	ND		5.0	10	02/13/2016 15:55
Diisopropyl ether (DIPE)	ND		5.0	10	02/13/2016 15:55
Ethylbenzene	85		5.0	10	02/13/2016 15:55
Ethyl tert-butyl ether (ETBE)	ND		5.0	10	02/13/2016 15:55
Freon 113	ND		5.0	10	02/13/2016 15:55
Hexachlorobutadiene	ND		5.0	10	02/13/2016 15:55
Hexachloroethane	ND		5.0	10	02/13/2016 15:55
2-Hexanone	ND		5.0	10	02/13/2016 15:55
Isopropylbenzene	ND		5.0	10	02/13/2016 15:55
4-Isopropyl toluene	ND		5.0	10	02/13/2016 15:55
Methyl-t-butyl ether (MTBE)	170		5.0	10	02/13/2016 15:55
Methylene chloride	ND		5.0	10	02/13/2016 15:55
4-Methyl-2-pentanone (MIBK)	ND		5.0	10	02/13/2016 15:55
Naphthalene	7.9		5.0	10	02/13/2016 15:55
n-Propyl benzene	7.8		5.0	10	02/13/2016 15:55
Styrene	ND		5.0	10	02/13/2016 15:55
1,1,1,2-Tetrachloroethane	ND		5.0	10	02/13/2016 15:55
1,1,2,2-Tetrachloroethane	ND		5.0	10	02/13/2016 15:55
Tetrachloroethene	ND		5.0	10	02/13/2016 15:55
Toluene	300		5.0	10	02/13/2016 15:55
1,2,3-Trichlorobenzene	ND		5.0	10	02/13/2016 15:55
1,2,4-Trichlorobenzene	ND		5.0	10	02/13/2016 15:55
1,1,1-Trichloroethane	ND		5.0	10	02/13/2016 15:55
1,1,2-Trichloroethane	ND		5.0	10	02/13/2016 15:55
Trichloroethene	18		5.0	10	02/13/2016 15:55
Trichlorofluoromethane	ND		5.0	10	02/13/2016 15:55
1,2,3-Trichloropropane	ND		5.0	10	02/13/2016 15:55
1,2,4-Trimethylbenzene	67		5.0	10	02/13/2016 15:55
1,3,5-Trimethylbenzene	21		5.0	10	02/13/2016 15:55
Vinyl Chloride	ND		5.0	10	02/13/2016 15:55
Xylenes, Total	370		5.0	10	02/13/2016 15:55

Analytical Report

Client: All West Environmental, Inc

 Date Received:
 2/9/16 16:00

 Date Prepared:
 2/13/16

 Project:
 15179.23

WorkOrder: 1602296
Extraction Method: SW5030B
Analytical Method: SW8260B

Unit: $\mu g/L$

	8 1		8 /	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SB-26	1602296-004A	Water	02/04/2016 09:12 GC16	116686
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>	
Dibromofluoromethane	103		70-130	02/13/2016 15:55
Toluene-d8	98		70-130	02/13/2016 15:55
4-BFB	92		70-130	02/13/2016 15:55
Analyst(s): KF			Analytical Comments: b1	

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00 **Date Prepared:** 2/9/16 **Project:** 15179.23

WorkOrder: 1602296

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

TPH(g)	by P	urge &	Trap and	d GC/MS
--------	------	--------	----------	---------

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-26A@20.5-21'	1602296-001A	Soil	02/04/20 ⁻	16 GC16	116419
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		0.25	1	02/11/2016 03:50
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	114		70-130		02/11/2016 03:50
Benzene-d6	111		60-140		02/11/2016 03:50

Analyst(s): AK

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVP-4@6.5'-7'	1602296-002A	Soil	02/04/2016 14:33 GC16		116419
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	54		12	50	02/12/2016 05:13
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	117		70-130		02/12/2016 05:13
Benzene-d6	122		60-140		02/12/2016 05:13

Analyst(s): KF

Client ID	Lab ID	Lab ID Matrix Date Collected Instrument			
SVP-5@3.5'-4'	3.5'-4' 1602296-003A Soil 02/04/2016 14:41 GC16		16 14:41 GC16	116419	
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	3.9		0.25	1	02/11/2016 04:30
Surrogates	REC (%)		<u>Limits</u>		
Dibromofluoromethane	116		70-130		02/11/2016 04:30
Benzene-d6	97		60-140		02/11/2016 04:30
Analyst(s): AK					

Analytical Report

Client: All West Environmental, Inc

Date Received: 2/9/16 16:00

Date Prepared: 2/13/16 **Project:** 15179.23

WorkOrder: 1602296

Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** μg/L

TPH(g) by Purge & Trap and GC/MS

(g) w j = m g orr									
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID				
SB-26	1602296-004A	Water	02/04/20	116686					
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed				
TPH(g)	1700		50	1	02/13/2016 01:20				
Surrogates	<u>REC (%)</u>		<u>Limits</u>						
Dibromofluoromethane	114		70-130		02/13/2016 01:20				
Analyst(s): AK			Analytical Com	ments: b1					

Quality Control Report

Client: All West Environmental, Inc

Date Prepared: 2/9/16Date Analyzed: 2/9/16Instrument: GC16Matrix: Soil

Project: 15179.23

WorkOrder: 1602296

BatchID: 116419

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Sample ID: MB/LCS-116419

1602280-009AMS/MSD

QC Summary Report for SW8260B

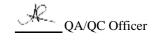
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0415	0.0050	0.050	-	83	53-116
Benzene	ND	0.0469	0.0050	0.050	-	94	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.202	0.050	0.20	-	101	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0446	0.0050	0.050	-	89	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0456	0.0040	0.050	-	91	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0461	0.0040	0.050	-	92	58-135
1,1-Dichloroethene	ND	0.0418	0.0050	0.050	-	84	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	_	_	_	_

1602296

Quality Control Report

Client: All West Environmental, Inc WorkOrder:

Date Prepared: 2/9/16 BatchID:


Date Prepared:2/9/16BatchID:116419Date Analyzed:2/9/16Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260BMatrix:SoilUnit:mg/kg

Project: 15179.23 **Sample ID:** MB/LCS-116419

1602280-009AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0454	0.0050	0.050	-	91	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0448	0.0050	0.050	-	90	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0434	0.0050	0.050	-	87	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0481	0.0050	0.050	-	96	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0445	0.0050	0.050	-	89	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	_	-	_	_

Quality Control Report

Client: All West Environmental, Inc

Date Prepared: 2/9/16Date Analyzed: 2/9/16Instrument: GC16Matrix: Soil

Project: 15179.23

WorkOrder: 1602296

BatchID: 116419

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Sample ID: MB/LCS-116419

1602280-009AMS/MSD

QC Summary	Report for	SW8260B
------------	------------	---------

	•	τ 1						
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
Surrogate Recovery								
Dibromofluoromethane	0.127	0.126		0.12	102	100	70-130	
Toluene-d8	0.148	0.141		0.12	119	113	70-130	
4-BFB	0.0138	0.0148		0.012	111	118	70-130	
Benzene-d6	0.109	0.111		0.10	109	111	60-140	
Ethylbenzene-d10	0.110	0.127		0.10	110	127	60-140	
1,2-DCB-d4	0.0738	0.0807		0.10	74	81	60-140	

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0416	0.0437	0.050	ND	83	87	56-94	4.92	20
Benzene	0.0412	0.0449	0.050	ND	82	90	60-106	8.68	20
t-Butyl alcohol (TBA)	0.168	0.179	0.20	ND	84	90	56-140	6.21	20
Chlorobenzene	0.0478	0.0489	0.050	ND	95	98	61-108	2.33	20
1,2-Dibromoethane (EDB)	0.0460	0.0465	0.050	ND	92	93	54-119	1.19	20
1,2-Dichloroethane (1,2-DCA)	0.0444	0.0440	0.050	ND	89	88	48-115	0.713	20
1,1-Dichloroethene	0.0276	0.0356	0.050	ND	55	71	46-111	25.6,F1	20
Diisopropyl ether (DIPE)	0.0378	0.0418	0.050	ND	76	84	53-111	9.96	20
Ethyl tert-butyl ether (ETBE)	0.0401	0.0436	0.050	ND	80	87	61-104	8.58	20
Methyl-t-butyl ether (MTBE)	0.0395	0.0433	0.050	ND	79	87	58-107	9.18	20
Toluene	0.0438	0.0463	0.050	ND	88	93	64-114	5.62	20
Trichloroethene	0.0428	0.0466	0.050	ND	86	93	60-116	8.39	20
Surrogate Recovery									
Dibromofluoromethane	0.137	0.137	0.12		110	109	70-130	0.455	20
Toluene-d8	0.155	0.154	0.12		124	123	70-130	0.915	20
4-BFB	0.0118	0.0118	0.012		94	95	88-121	0.314	20
Benzene-d6	0.0926	0.103	0.10		93	103	60-140	10.3	20
Ethylbenzene-d10	0.116	0.118	0.10		116	118	60-140	1.66	20
1,2-DCB-d4	0.0972	0.0955	0.10		97	95	60-140	1.81	20

Quality Control Report

Client: All West Environmental, Inc

Date Prepared:2/13/16Date Analyzed:2/12/16Instrument:GC16

Matrix: Water

Project: 15179.23

WorkOrder: 1602296 **BatchID:** 116686

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: µg/L

Sample ID: MB/LCS-116686

1602484-003AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	11.6	0.50	10	-	116	54-140
Benzene	ND	11.1	0.50	10	-	111	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	47.9	2.0	40	-	120	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	10.3	0.50	10	-	103	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	10.7	0.50	10	-	107	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	11.8	0.50	10	-	118	66-125
1,1-Dichloroethene	ND	10.4	0.50	10	-	104	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-

Quality Control Report

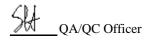
Client: All West Environmental, Inc

Date Prepared: 2/13/16Date Analyzed: 2/12/16Instrument: GC16Matrix: Water

Project: 15179.23

WorkOrder: 1602296 **BatchID:** 116686

Extraction Method: SW5030B **Analytical Method:** SW8260B


Unit: $\mu g/L$

Sample ID: MB/LCS-116686

1602484-003AMS/MSD

QC Summary Report for SW8260B

		01 8 11 02 0 02					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
Diisopropyl ether (DIPE)	ND	11.8	0.50	10	-	118	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	11.8	0.50	10	-	118	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	11.4	0.50	10	-	114	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	9.97	0.50	10	-	100	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	10.6	0.50	10	-	106	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-

Quality Control Report

Client: All West Environmental, Inc

Date Prepared:2/13/16Date Analyzed:2/12/16Instrument:GC16Matrix:Water

Project: 15179.23

WorkOrder: 1602296

BatchID: 116686 **Extraction Method:** SW5030B

Analytical Method: SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-116686

1602484-003AMS/MSD

QC Summary	Report for	SW8260B
	- I	

		7 I					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	26.2	26.9		25	105	108	70-130
Toluene-d8	25.8	24.9		25	103	99	70-130
4-BFB	2.27	2.58		2.5	91	103	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	11.1	11.6	10	ND	111	116	69-139	4.50	20
Benzene	10.4	10.9	10	ND	105	109	69-141	4.24	20
t-Butyl alcohol (TBA)	48.2	50.7	40	ND	120	127	41-152	5.24	20
Chlorobenzene	9.76	10.0	10	ND	98	100	77-120	2.80	20
1,2-Dibromoethane (EDB)	10.2	10.6	10	ND	102	106	76-135	3.22	20
1,2-Dichloroethane (1,2-DCA)	11.3	11.8	10	ND	113	119	73-139	4.38	20
1,1-Dichloroethene	9.75	10.2	10	ND	98	102	59-140	4.97	20
Diisopropyl ether (DIPE)	11.3	11.5	10	ND	113	115	72-140	2.42	20
Ethyl tert-butyl ether (ETBE)	11.3	11.7	10	ND	113	117	71-140	3.69	20
Methyl-t-butyl ether (MTBE)	11.1	11.6	10	ND	111	116	73-139	4.63	20
Toluene	9.33	9.62	10	ND	91	94	71-128	3.14	20
Trichloroethene	9.90	10.2	10	ND	99	102	64-132	3.26	20
Surrogate Recovery									
Dibromofluoromethane	26.8	27.2	25		107	109	73-131	1.38	20
Toluene-d8	24.5	24.5	25		98	98	72-117	0	20
4-BFB	2.59	2.67	2.5		104	107	74-116	3.14	20

CLIENT: All West Environmental, Inc

ANALYTICAL QC SUMMARY REPORT

Date: 16-Feb-16

Work Order: 1602296

Project: 15179.23 **BatchID:** 116419

SampleID MB-116419	TestCode: 8260gas_s	Units: mg/kg	Prep Date: 2/9/2016
Batch ID: 116419	TestNo: SW8260B	Run ID: GC16_160212D	Analysis Date: 2/9/2016
Analyte	Result	PQL SPKValue SPKRefVal %REC Limits	RPDRefVal %RPD RPDLimit Qual
TPH(g)	ND	0.25	

Surrogate Recovery				
Dibromofluoromethane	0.140	0.125	112	70 - 130
Benzene-d6	0.114	0.1	114	60 - 140

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: All West Environmental, Inc

ANALYTICAL QC SUMMARY REPORT

Work Order: 1602296 **Project:** 15179.23

BatchID: 116419

SampleID LCS-116419 Batch ID: 116419	TestCode: 8260gas_s TestNo: SW8260B				mg/kg GC16_1	160212D	Prep Date: 2/9/2016 Analysis Date: 2/9/2016
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qual
VOC (C6-C12)	2.72	0.25	3.2	0	85	74 - 142	
Surrogate Recovery							
Dibromofluoromethane	0.140		0.125		112	70 - 130	
Benzene-d6	0.117		0.1		117	60 - 140	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Angela Rydelius, Lab Manager

CLIENT: All West Environmental, Inc

ANALYTICAL QC SUMMARY REPORT

Work Order: 1602296 **Project:** 15179.23

BatchID: 116686

SampleID	MB-116686	TestCode: 8260GAS_W	Units:	μg/L	Prep Date: 2/13/2016
Batch ID:	116686	TestNo: SW8260B	Run ID:	GC16_160213A	Analysis Date: 2/12/2016
Analyte		Result	PQL SPKValue SPKRefVal	%REC Limits	RPDRefVal %RPD RPDLimit Qual
TPH(g)		ND	50	-	

Surrogate Recovery

Dibromofluoromethane 25 29.0 116 70 - 130

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

CLIENT: All West Environmental, Inc

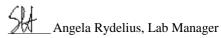
ANALYTICAL QC SUMMARY REPORT

Work Order: 1602296 **Project:** 15179.23

BatchID: 116686

SampleID LCS-116686	TestCode: 8260GAS_W			Units:	μg/L		Prep Date: 2/13/2016
Batch ID: 116686	TestNo: SW8260B			Run ID:	GC16_1	60213A	Analysis Date: 2/12/2016
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qual
VOC (C6-C12)	574	50	644	0	89	75 - 105	
Surrogate Recovery							
Dibromofluoromethane	29.9		25		120	70 - 130	

Qualifiers: ND - Not Detected at the Reporting Limit


S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1602296 ClientCode: AWE

WaterTrax WriteOn Excel EquIS Fmail HardCopy ThirdParty J-flag

Report to: Bill to: Requested TAT: 5 days;

Leonard Niles Email: Leonard@allwest1.com Darlene Torio

All West Environmental, Inc cc/3rd Party: All West Environmental, Inc

 2141 Mission Street, Ste 100
 PO:
 2141 Mission Street, Ste 100
 Date Received:
 02/09/2016

 San Francisco, CA 94110
 ProjectNo: 15179.23
 San Francisco, CA 94110
 Date Logged:
 02/09/2016

(415) 391-2510 FAX: (415) 391-2008 darlene@allwest1.com

								Re	quested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1602296-001	SB-26A@20.5-21'	Soil	2/4/2016		Α		Α		Α							
1602296-002	SVP-4@6.5'-7'	Soil	2/4/2016 14:33		Α		Α									
1602296-003	SVP-5@3.5'-4'	Soil	2/4/2016 14:41		Α		Α									
1602296-004	SB-26	Water	2/4/2016 9:12			Α		Α								

Test Legend:

1 8260B_S	2	8260B_W	3	8260GAS_S	4	8260GAS_W
5 PREDF REPORT	6		7		8	
9	10		11		12	
Project Manager:					F	Prepared by: Briana Cutino

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	ALL WEST ENVIRONMENTAL, INC	QC Level: LEVEL 2	Work Order: 1602296
Project:	15179.23	Client Contact: Leonard Niles	Date Logged: 2/9/2016

Comments: Contact's Email: Leonard@allwest1.com

		☐WaterTrax	WriteOn	Excel	Fax J Email	HardCo	opyThirdPart	у 🗀	J-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1602296-001A	SB-26A@20.5-21'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/4/2016	5 days	
1602296-002A	SVP-4@6.5'-7'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/4/2016 14:33	5 days	
1602296-003A	SVP-5@3.5'-4'	Soil	TPH(g) & 8260 (Basic List) by P&T GCMS	1	Acetate Liner		2/4/2016 14:41	5 days	
1602296-004A	SB-26	Water	TPH(g) & 8260 (Basic List) by P&T GCMS	4	VOA w/ HCl		2/4/2016 9:12	5 days	1%+

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

AWA M	[cCAMP]	BELL	ANA	LYI	TIC	٩L	, IN	C.					T					(H	ΑI	N (OF	`C	US	ST	OI	ΟY	R	E	$\overline{\mathbf{CO}}$	RD		_
		1534 WII	LOW PA	SS RO	AD \	of	12	1	al					TI	UR	N A	AR				M												这
Wel Wel	bsite: www.mo	campbell	l.com En	1305-17 1ail: m	ain@	mee	ampb	ell.c	om	0			1							~	L .				Н				48 F		72		
	ephone: (877				Fax:								1	G	eoT	ra	cke	er E	CDF														$V_{\mathcal{I}} \square$
								_					4												mpl	e is	effl	uen	t an		_	_	required
Report To: LEN		21	В	ill To	: D/	1121	EN	F -	101	210)		+	_	_	_			A	nal	ysis	Req	ues	<u>t</u>	_		_		-	0	her	+	Comments
Company: ALL	VEST EN	<u> </u>											-								, l											1	**Indicate
2141 MISS													- 1	BE		&F)					EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners											- 1	here if these
	SAN FRANCISCO, CA 9410 E-Mail:							-	8015) / MTBE		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)					ong							_		Filter sample for DISSOLVED metals analysis			samples are					
Tele: (415) 39	6.23			ax: (. 27)							- 1	12)		5520		_	<u>-</u>		rs / C			TP#S	١		CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)		ana			potentially dangerous to
Project #: 1517	7.65	a. =			t Nan	ie:							- 1	8		64/	18.1	OCs	802		oclo		ides	=		(AS)	10/	10 / 6		etals			handle:
Project Location:				17									- 1 3	021		e (16	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	'; Ar	(Sa	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs) +	Cs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	9 / 80	09/	(020	D m		1	
Sampler Signature: METHOD						-13	as Gas (602 / 8021		reas	arbo	3021	PA	Pesti	NE	EPA 507 / 8141 (NP Pesticides)	CIH)OC	EPA 525.2 / 625 / 8270 (SVOCs)	AHS	200.8	8.00	Lead (200.7 / 200.8 / 6010 / 6020)	LVE		1								
SAMPLING MATRIX PRESERV							D S)9) sı		& G	droc	8 / 01	.Y (F	(CI)	0 8,1	Pesi	idic	09	20 (S	10 (P	17.0	117	9109	SSO		1	1						
	LOCATION/			rs	Type Containers								7	Is Ga	TPH as Diesel (8015)	liO l	H,	/ 80	ONI	8081	PCB	S	(Ac	1 / 82	1 82	/83	(200	(200	0.8	r DI		1	
SAMPLE ID	Field Point			Containers	ntai									H.	sel (lenn	lenn	/ 601	rex	/ 80	3082	8141	8151	/ 624	/ 625	SIM	etals	etals	7 / 20	ole fo		1	
>	Name	Date	Time	nta	ပိ	r		ae a	<u> </u>			واع		BTEX & TPH	s Die	etro	etro	02.2	. / B	9 /50	08 / 3	/ 10	15/	24.2	25.2	3270	17 M	5 M	200.	Samı		1	1
				ပိ	ype	Water	Soil	Sludge	Other	ICE	HCL	HNO3	Offiler	LEX	PH a	otal	otal	PA 5	TBE	PA 5	PA 6	PA 5	PA 5	PA 5	PA 5	PA 2	AM	UFT	ead (lter		1	
				#	T	Λ	S <	S	0	ĭ	H	m 9	2	ğ	F	Ţ	Ĭ	E	Σ	E	Э	Œ	Э	<u> </u>	Θ	Ξ	Ü	ם	7	臣		\perp	
5B-26AC20.5-2		2/4/16		ı			X																	χ								1	
SVP-401.517 SVP-503.5-4		1	1433	١			χ																	X								_	
SVP-5@3.5-4		L	1441	1			>																	X									
SB-26		2416	0912	4		Х			П															X									
													\top																			T	
									\vdash		\neg	\top	\top	\top																		+	
							_	+	\vdash		\dashv	+	+	+																		†	
							+	+	\vdash			+	+	+								_		_				_			_	+	
							+	-	-	\vdash	-	+	╀	-									-					-			-	+	
				_							_	4	_	_	_													_			_	+	
													4	_																		4	
													\perp																				
**MAI clients MUST	disclose any dar	narous che	amicale kn	own to	he nre	cent	in the	ie enl	mit	tad c	amn	lac in	con	.con	trati	one	that	may	cons	a im	madi	ata h	orm	or se	rion	e futi	ure h	ealtl	ı enc	lange	rment	96	a result of brief
gloved, open air, samp	le handling by !	MAI staff.	Non-disclo	sure in	icurs a	n im	media	te \$2:	50 sı	ırch	amp	and t	he c	clien	t is s	ubje	ect to	full	legal	lliab	ility	for h	arm	suffe	red.	Tha	nk y	ou f	or yo	ur ui	derst	and	ing and for
allowing us to work sa	fely.																																
Relinquished By:		Date;	Time:	Rece	ived B	v; 2	4	16	, /	130	5			ICE	Z/t°												- 6	CON	имн	NTS			
	Relinquished By: Date: Time: Received By: 24/16 11500					-						ION													•								
Relinquished By:		Date:	Time:	Rece	ived B	y:2	7				/)	1	DEC	CHL	ORI	NAT		INL														
17	451	FU	0/97	//	1	-	ññ	TI	1	-	ć	-	-					CO	D D	INE	DC		_										
Relinquished By:		Date:	Time:		ived B			100					7	rke	ESEI	VE	יוו ט	LA	ь														
														nn	ece:	D 17 4	TIC		OAS	O	&G			S	OTE	IER							
		l	l											rKE	COL	VA	TIO	17				pH<	-4										

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	All West Environmental, Inc			Date and Time Received:	2/9/2016 14:45
Project Name: WorkOrder №:	15179.23 1602296 Matrix: Soil/Water			Date Logged: Received by:	2/9/2016 Maria Venegas
Carrier:	Bernie Cummins (MAI Courier)			Logged by:	Briana Cutino
	Chain of C	ustody	y (COC) lı	<u>nformation</u>	
Chain of custody	present?	Yes	•	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	by Client on COC?	Yes	✓	No 🗆	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name r	noted on COC?	Yes	✓	No 🗌	
	Sampl	le Rece	eipt Infori	mation_	
Custody seals into	act on shipping container/cooler?	Yes		No 🗆	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	r containers/bottles?	Yes	✓	No 🗌	
Sample container	s intact?	Yes	✓	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Tin	ne (HT) Information	
All samples receive	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp:	2°C	NA 🗌
Water - VOA vials	s have zero headspace / no bubbles?	Yes	✓	No 🗆	NA 🗌
Sample labels che	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	on receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive		Yes	✓	No 🗌	
	(Ice Type	e: WE	TICE)		
UCMR3 Samples Total Chlorine to	: ested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine to 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, ?	Yes		No 🗆	NA 🗹
* NOTE: If the "No	o" box is checked, see comments below.				
Comments:				=======	========

Calscience

WORK ORDER NUMBER: 16-02-0790

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AllWest Environmental, Inc.

Client Project Name: Hollis / 15179.23

Attention: Leonard Niles

2141 Mission Street, Suite 100 San Francisco, CA 94110-6331

Vikas Patel

Approved for release on 02/17/2016 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Hollis / 15179.23 Work Order Number: 16-02-0790

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 ASTM D-1946 Fixed Gases (Air). 4.2 ASTM D-1946 (M) Fixed Gases (H2 and/or He) (Air). 4.3 EPA TO-15 Full List (Air). 4.4 EPA TO-3 (M) TPH Gasoline (Air).	9 11 13 31
5	Quality Control Sample Data. 5.1 Sample Duplicate. 5.2 LCS/LCSD.	32 32 33
6	Summa Canister Vacuum Summary	41
7	Glossary of Terms and Qualifiers	42
8	Chain-of-Custody/Sample Receipt Form	43

Work Order Narrative

Work Order: 16-02-0790 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 02/10/16. They were assigned to Work Order 16-02-0790.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: AllWest Environmental, Inc. Work Order: 16-02-0790 2141 Mission Street, Suite 100 Project Name: Hollis / 15179.23

San Francisco, CA 94110-6331 PO Number:

Date/Time 02/10/16 09:35 Received:

Number of 8 Containers:

Attn: Leonard Niles

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SVP-1	16-02-0790-1	02/05/16 13:31	1	Air
SVP-7	16-02-0790-2	02/05/16 12:12	1	Air
SVP-2	16-02-0790-3	02/05/16 17:08	1	Air
SVP-3	16-02-0790-4	02/06/16 12:58	1	Air
SVP-4	16-02-0790-5	02/08/16 07:30	1	Air
SVP-5	16-02-0790-6	02/08/16 09:22	1	Air
SVP-6	16-02-0790-7	02/08/16 10:15	1	Air
SVP-6-AMBIENT-HE	16-02-0790-8	02/08/16 10:15	1	Air

Client: AllWest Environmental, Inc.

Work Order: 16-02-0790

2141 Mission Street, Suite 100

Project Name: Hollis / 15179.23

San Francisco, CA 94110-6331

Received: 02/10/16

Attn: Leonard Niles Page 1 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
SVP-1 (16-02-0790-1)						
Methane	8.80		0.500	%v	ASTM D-1946	N/A
Carbon Dioxide	13.8		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.72		0.500	%v	ASTM D-1946	N/A
Helium	0.130		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	180000		74000	ug/m3	EPA TO-15	N/A
1,3,5-Trimethylbenzene	62000		25000	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	71000		25000	ug/m3	EPA TO-15	N/A
Benzene	500000		16000	ug/m3	EPA TO-15	N/A
Ethylbenzene	410000		22000	ug/m3	EPA TO-15	N/A
Toluene	1400000		19000	ug/m3	EPA TO-15	N/A
o-Xylene	340000		22000	ug/m3	EPA TO-15	N/A
p/m-Xylene	1300000		87000	ug/m3	EPA TO-15	N/A
Isopropanol	650000		120000	ug/m3	EPA TO-15	N/A
TPH as Gasoline	330000000		1400000	ug/m3	EPA TO-3M	N/A
SVP-7 (16-02-0790-2)						
Carbon Dioxide	3.34		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	18.2		0.500	%v	ASTM D-1946	N/A
Helium	0.319		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	290		10	ug/m3	EPA TO-15	N/A
1,3,5-Trimethylbenzene	77		3.4	ug/m3	EPA TO-15	N/A
2-Butanone	8.1		6.1	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	85		3.4	ug/m3	EPA TO-15	N/A
Acetone	64		6.6	ug/m3	EPA TO-15	N/A
Benzene	20		2.2	ug/m3	EPA TO-15	N/A
Ethylbenzene	97		3.0	ug/m3	EPA TO-15	N/A
Tetrachloroethene	41		4.7	ug/m3	EPA TO-15	N/A
Toluene	46		2.6	ug/m3	EPA TO-15	N/A
o-Xylene	130		3.0	ug/m3	EPA TO-15	N/A
p/m-Xylene	360		12	ug/m3	EPA TO-15	N/A
TPH as Gasoline	220000		7000	ug/m3	EPA TO-3M	N/A

^{*} MDL is shown

Client: AllWest Environmental, Inc.

Work Order: 16-02-0790

Project Name:

2141 Mission Street, Suite 100

Hollis / 15179.23

San Francisco, CA 94110-6331

Received: 02/10/16

Attn: Leonard Niles Page 2 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
SVP-2 (16-02-0790-3)						
Oxygen (+ Argon)	9.27		0.500	%v	ASTM D-1946	N/A
Helium	0.568		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	21000		3700	ug/m3	EPA TO-15	N/A
1,3,5-Trimethylbenzene	9100		1200	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	8700		1200	ug/m3	EPA TO-15	N/A
Ethylbenzene	61000		1100	ug/m3	EPA TO-15	N/A
o-Xylene	82000		1100	ug/m3	EPA TO-15	N/A
p/m-Xylene	280000		4300	ug/m3	EPA TO-15	N/A
Benzene	210000		3200	ug/m3	EPA TO-15	N/A
Toluene	330000		3800	ug/m3	EPA TO-15	N/A
TPH as Gasoline	13000000		70000	ug/m3	EPA TO-3M	N/A
SVP-3 (16-02-0790-4)						
Methane	4.63		0.500	%v	ASTM D-1946	N/A
Carbon Dioxide	14.7		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	4.11		0.500	%v	ASTM D-1946	N/A
Helium	0.0113		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	390000		74000	ug/m3	EPA TO-15	N/A
1,3,5-Trimethylbenzene	170000		25000	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	160000		25000	ug/m3	EPA TO-15	N/A
Benzene	1100000		16000	ug/m3	EPA TO-15	N/A
Ethylbenzene	720000		22000	ug/m3	EPA TO-15	N/A
Toluene	1700000		19000	ug/m3	EPA TO-15	N/A
o-Xylene	680000		22000	ug/m3	EPA TO-15	N/A
p/m-Xylene	2600000		87000	ug/m3	EPA TO-15	N/A
Isopropanol	1000000		120000	ug/m3	EPA TO-15	N/A
TPH as Gasoline	910000000		3500000	ug/m3	EPA TO-3M	N/A

^{*} MDL is shown

Client: AllWest Environmental, Inc.

Work Order: 16-02-0790

Project Name:

2141 Mission Street, Suite 100

Hollis / 15179.23

San Francisco, CA 94110-6331

Received: 02/10/16

Attn: Leonard Niles Page 3 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
SVP-4 (16-02-0790-5)						
Methane	1.83		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	8.30		0.500	%v	ASTM D-1946	N/A
Helium	0.417		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	83000		3700	ug/m3	EPA TO-15	N/A
1,3,5-Trimethylbenzene	27000		1200	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	29000		1200	ug/m3	EPA TO-15	N/A
Benzene	45000		800	ug/m3	EPA TO-15	N/A
Ethylbenzene	90000		1100	ug/m3	EPA TO-15	N/A
Toluene	15000		940	ug/m3	EPA TO-15	N/A
o-Xylene	52000		1100	ug/m3	EPA TO-15	N/A
p/m-Xylene	180000		4300	ug/m3	EPA TO-15	N/A
Methyl-t-Butyl Ether (MTBE)	12000		3600	ug/m3	EPA TO-15	N/A
TPH as Gasoline	10000000		70000	ug/m3	EPA TO-3M	N/A
SVP-5 (16-02-0790-6)						
Methane	0.918		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	11.3		0.500	%v	ASTM D-1946	N/A
Helium	0.0706		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	320000		37000	ug/m3	EPA TO-15	N/A
1,3,5-Trimethylbenzene	130000		12000	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	120000		12000	ug/m3	EPA TO-15	N/A
Benzene	1600000		8000	ug/m3	EPA TO-15	N/A
Ethylbenzene	810000		11000	ug/m3	EPA TO-15	N/A
Toluene	1300000		9400	ug/m3	EPA TO-15	N/A
o-Xylene	770000		11000	ug/m3	EPA TO-15	N/A
p/m-Xylene	2800000		43000	ug/m3	EPA TO-15	N/A
Methyl-t-Butyl Ether (MTBE)	990000		36000	ug/m3	EPA TO-15	N/A
Isopropanol	160000		61000	ug/m3	EPA TO-15	N/A
TPH as Gasoline	84000000		350000	ug/m3	EPA TO-3M	N/A

^{*} MDL is shown

Client: AllWest Environmental, Inc.

2141 Mission Street, Suite 100

San Francisco, CA 94110-6331

Work Order: 16-02-0790

Project Name: Hollis / 15179.23

Received: 02/10/16

Attn: Leonard Niles Page 4 of 4

Client SampleID							
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction	
SVP-6 (16-02-0790-7)							
Methane	1.52		0.500	%v	ASTM D-1946	N/A	
Oxygen (+ Argon)	7.33		0.500	%v	ASTM D-1946	N/A	
Helium	0.0106		0.0100	%v	ASTM D-1946 (M)	N/A	
1,1-Dichloroethane	1300		1300	ug/m3	EPA TO-15	N/A	
1,2,4-Trimethylbenzene	38000		4600	ug/m3	EPA TO-15	N/A	
1,2-Dichloroethane	2500		1300	ug/m3	EPA TO-15	N/A	
1,3,5-Trimethylbenzene	13000		1500	ug/m3	EPA TO-15	N/A	
4-Ethyltoluene	14000		1500	ug/m3	EPA TO-15	N/A	
Benzene	130000		1000	ug/m3	EPA TO-15	N/A	
Ethylbenzene	66000		1400	ug/m3	EPA TO-15	N/A	
o-Xylene	71000		1400	ug/m3	EPA TO-15	N/A	
p/m-Xylene	230000		5400	ug/m3	EPA TO-15	N/A	
Methyl-t-Butyl Ether (MTBE)	6900		4500	ug/m3	EPA TO-15	N/A	
Toluene	220000		2400	ug/m3	EPA TO-15	N/A	
TPH as Gasoline	13000000		70000	ug/m3	EPA TO-3M	N/A	
SVP-6-AMBIENT-HE (16-02-0790-8)							
Helium	7.95		0.0100	%v	ASTM D-1946 (M)	N/A	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Oxygen (+ Argon)

Analytical Report

AllWest Environmental, Inc.

2141 Mission Street, Suite 100

San Francisco, CA 94110-6331

Preparation:

Method:

Units:

Page 1 of 2

110,000.11007 10110.20						. ago 1 0. 2		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SVP-1	16-02-0790-1-A	02/05/16 13:31	Air	GC 65	N/A	02/10/16 13:12	160210L01	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Methane		8.80		0.500	1.00			
Carbon Dioxide		13.8		0.500	1.00			
Oxygen (+ Argon)		2.72		0.500	1.00			
SVP-7	16-02-0790-2-A	02/05/16 12:12	Air	GC 65	N/A	02/10/16 13:47	160210L01	
Parameter		Result		RL	<u>DF</u>	Qua	alifiers	
Methane		ND		0.500	1.00			
Carbon Dioxide		3.34		0.500	1.00			
Oxygen (+ Argon)		18.2		0.500	1.00			
SVP-2	16-02-0790-3-A	02/05/16 17:08	Air	GC 65	N/A	02/10/16 14:07	160210L01	
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers	
Methane		ND		0.500	1.00			
Carbon Dioxide		ND		0.500	1.00			

SVP-3	16-02-0790-4-A	02/06/16 12:58	Air	GC 65	N/A	02/16/16 14:08	160216L01
Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	<u>alifiers</u>
Methane		4.63		0.500	1.00		
Carbon Dioxide		14.7		0.500	1.00		
Oxygen (+ Argon)		4.11		0.500	1.00		
SVP-4	16-02-0790-5-A	02/08/16	Air	GC 65	N/A	02/10/16	160210L01

0.500

1.00

9.27

SVP-4	16-02-0790-5-A	02/08/16 07:30	Air	GC 65	N/A	02/10/16 14:53	160210L01
Parameter		Result		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Methane		1.83		0.500	1.00		
Carbon Dioxide		ND		0.500	1.00		
Oxygen (+ Argon)		8.30		0.500	1.00		

 AllWest Environmental, Inc.
 Date Received:
 02/10/16

 2141 Mission Street, Suite 100
 Work Order:
 16-02-0790

 San Francisco, CA 94110-6331
 Preparation:
 N/A

 Method:
 ASTM D-1946

 Units:
 %v

Project: Hollis / 15179.23 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-5	16-02-0790-6-A	02/08/16 09:22	Air	GC 65	N/A	02/10/16 15:32	160210L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Methane		0.918		0.500	1.00		
Carbon Dioxide		ND		0.500	1.00		
Oxygen (+ Argon)		11.3		0.500	1.00		
SVP-6	16-02-0790-7-A	02/08/16 10:15	Air	GC 65	N/A	02/10/16 15:50	160210L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Methane		1.52		0.500	1.00		
Carbon Dioxide		ND		0.500	1.00		
Oxygen (+ Argon)		7.33		0.500	1.00		
Method Blank	099-16-444-350	N/A	Δir	GC 65	N/A	02/10/16	1602101.01

Method Blank	099-16-444-350	N/A	Air	GC 65	N/A	02/10/16 11:04	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Methane		ND		0.500	1.00		
Carbon Dioxide		ND		0.500	1.00		
Oxygen (+ Argon)		ND		0.500	1.00		

Method Blank	099-16-444-354	N/A	Air	GC 65	N/A	02/16/16 10:38	160216L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Methane		ND		0.500	1.00		
Carbon Dioxide		ND		0.500	1.00		
Oxygen (+ Argon)		ND		0.500	1.00		

AllWest Environmental, Inc.				02/10/16			
2141 Mission Street, Suite 100			Work O	rder:			16-02-0790
San Francisco, CA 94110-6331			Prepara	tion:			N/A
			Method:			AST	M D-1946 (M)
			Units:				%v
Project: Hollis / 15179.23						Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-1	16-02-0790-1-A	02/05/16 13:31	Air	GC 55	N/A	02/10/16 13:11	160210L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Helium		0.130		0.0100	1.00		
SVP-7	16-02-0790-2-A	02/05/16 12:12	Air	GC 55	N/A	02/10/16 14:20	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Helium		0.319		0.0100	1.00		
SVP-2	16-02-0790-3-A	02/05/16 17:08	Air	GC 55	N/A	02/10/16 15:14	160210L01
<u>Parameter</u>		Result	-	<u>RL</u>	<u>DF</u>	Qua	alifiers
Helium		0.568		0.0100	1.00		
SVP-3	16-02-0790-4-A	02/06/16 12:58	Air	GC 55	N/A	02/10/16 16:40	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Helium		0.0113		0.0100	1.00		
SVP-4	16-02-0790-5-A	02/08/16 07:30	Air	GC 55	N/A	02/10/16 18:20	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Helium		0.417		0.0100	1.00		
SVP-5	16-02-0790-6-A	02/08/16 09:22	Air	GC 55	N/A	02/10/16 20:10	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Helium		0.0706		0.0100	1.00		
SVP-6	16-02-0790-7-A	02/08/16 10:15	Air	GC 55	N/A	02/10/16 17:31	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Helium		0.0106		0.0100	1.00		
SVP-6-AMBIENT-HE	16-02-0790-8-A	02/08/16 10:15	Air	GC 55	N/A	02/10/16 21:29	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Helium		7.95		0.0100	1.00		

AllWest Environmental, Inc.

2141 Mission Street, Suite 100

San Francisco, CA 94110-6331

Preparation:

Method:

Units:

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-872-905	N/A	Air	GC 55	N/A	02/10/16 10:40	160210L01
<u>Parameter</u>		Result	F	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Helium		ND	0	.0100	1.00		

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A EPA TO-15

02/10/16

Units:

ug/m3 Page 1 of 18

Project: Hollis / 15179.23

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-1	16-02-0790-1-A	02/05/16 13:31	Air	GC/MS KKK	N/A	02/11/16 20:14	160211L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
1,1,1-Trichloroethane		ND		27000	10000		
1,1,2,2-Tetrachloroethane		ND		69000	10000		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		110000	10000		
1,1,2-Trichloroethane		ND		27000	10000		
1,1-Dichloroethane		ND		20000	10000		
1,1-Dichloroethene		ND		20000	10000		
1,2,4-Trimethylbenzene		180000		74000	10000		
1,2-Dibromoethane		ND		38000	10000		
Dichlorotetrafluoroethane		ND		140000	10000		
1,2-Dichlorobenzene		ND		30000	10000		
1,2-Dichloroethane		ND		20000	10000		
1,2-Dichloropropane		ND		23000	10000		
1,3,5-Trimethylbenzene		62000		25000	10000		
1,3-Dichlorobenzene		ND		30000	10000		
1,4-Dichlorobenzene		ND		30000	10000		
2-Butanone		ND		44000	10000		
2-Hexanone		ND		61000	10000		
4-Ethyltoluene		71000		25000	10000		
4-Methyl-2-Pentanone		ND		61000	10000		
Acetone		ND		48000	10000		
Benzene		500000		16000	10000		
Benzyl Chloride		ND		78000	10000		
Bromodichloromethane		ND		34000	10000		
Bromoform		ND		52000	10000		
Bromomethane		ND		19000	10000		
Carbon Disulfide		ND		62000	10000		
Carbon Tetrachloride		ND		31000	10000		
Chlorobenzene		ND		23000	10000		
Chloroethane		ND		13000	10000		
Chloroform		ND		24000	10000		
Chloromethane		ND		10000	10000		
Dibromochloromethane		ND		43000	10000		
Dichlorodifluoromethane		ND		25000	10000		
Ethylbenzene		410000		22000	10000		
Hexachloro-1,3-Butadiene		410000 ND		160000	10000		

RL: Reporting Limit.

DF: Dilution Factor.

 AllWest Environmental, Inc.
 Date Received:
 02/10/16

 2141 Mission Street, Suite 100
 Work Order:
 16-02-0790

 San Francisco, CA 94110-6331
 Preparation:
 N/A

 Method:
 EPA TO-15

 Units:
 ug/m3

 Project: Hollis / 15179.23
 Page 2 of 18

	5	5.		0 110
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Methylene Chloride	ND	170000	10000	
Styrene	ND	64000	10000	
Tetrachloroethene	ND	34000	10000	
Toluene	1400000	19000	10000	
t-1,2-Dichloroethene	ND	20000	10000	
Trichloroethene	ND	27000	10000	
Trichlorofluoromethane	ND	56000	10000	
Vinyl Acetate	ND	70000	10000	
Vinyl Chloride	ND	13000	10000	
c-1,3-Dichloropropene	ND	23000	10000	
c-1,2-Dichloroethene	ND	20000	10000	
o-Xylene	340000	22000	10000	
t-1,3-Dichloropropene	ND	45000	10000	
p/m-Xylene	1300000	87000	10000	
Methyl-t-Butyl Ether (MTBE)	ND	72000	10000	
Isopropanol	650000	120000	10000	
1,1-Difluoroethane	ND	54000	10000	
Naphthalene	ND	260000	10000	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	68-134		
1,2-Dichloroethane-d4	108	67-133		
Toluene-d8	100	70-130		

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A

Units:

EPA TO-15 ug/m3

02/10/16

Project: Hollis / 15179.23

Page 3 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-7	16-02-0790-2-A	02/05/16 12:12	Air	GC/MS KKK	N/A	02/11/16 17:43	160211L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
1,1,1-Trichloroethane		ND	3.8		1.38		
1,1,2,2-Tetrachloroethane		ND	9.5		1.38		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	16		1.38		
1,1,2-Trichloroethane		ND	3.8		1.38		
1,1-Dichloroethane		ND	2.8		1.38		
1,1-Dichloroethene		ND	2.7		1.38		
1,2,4-Trimethylbenzene		290	10		1.38		
1,2-Dibromoethane		ND	5.3		1.38		
Dichlorotetrafluoroethane		ND	19		1.38		
1,2-Dichlorobenzene		ND	4.1		1.38		
1,2-Dichloroethane		ND	2.8		1.38		
1,2-Dichloropropane		ND	3.2		1.38		
1,3,5-Trimethylbenzene		77	3.4		1.38		
1,3-Dichlorobenzene		ND	4.1		1.38		
1,4-Dichlorobenzene		ND	4.1		1.38		
2-Butanone		8.1	6.1		1.38		
2-Hexanone		ND	8.5		1.38		
4-Ethyltoluene		85	3.4		1.38		
4-Methyl-2-Pentanone		ND	8.5		1.38		
Acetone		64	6.6		1.38		
Benzene		20	2.2		1.38		
Benzyl Chloride		ND	11		1.38		
Bromodichloromethane		ND	4.6		1.38		
Bromoform		ND	7.1		1.38		
Bromomethane		ND	2.7		1.38		
Carbon Disulfide		ND	8.6		1.38		
Carbon Tetrachloride		ND	4.3		1.38		
Chlorobenzene		ND	3.2		1.38		
Chloroethane		ND	1.8		1.38		
Chloroform		ND	3.4		1.38		
Chloromethane		ND	1.4		1.38		
Dibromochloromethane		ND	5.9		1.38		
Dichlorodifluoromethane		ND	3.4		1.38		
Ethylbenzene		97	3.0		1.38		
Hexachloro-1,3-Butadiene		ND	22		1.38		

RL: Reporting Limit.

DF: Dilution Factor.

1,4-Bromofluorobenzene

1,2-Dichloroethane-d4

Toluene-d8

Analytical Report

AllWest Environmental, Inc.	Da	te Received:		02/10/16		
2141 Mission Street, Suite 100	Wo	ork Order:		16-02-0790		
San Francisco, CA 94110-6331	Pre	eparation:		N/A		
		thod:		EPA TO-15		
	Un			ug/m3		
Project: Hollis / 15179.23	On	ito.				
110Ject. 110III3 / 13173.23				Page 4 of 18		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>		
Methylene Chloride	ND	24	1.38			
Styrene	ND	8.8	1.38			
Tetrachloroethene	41	4.7	1.38			
Toluene	46	2.6	1.38			
t-1,2-Dichloroethene	ND	2.7	1.38			
Trichloroethene	ND	3.7	1.38			
Trichlorofluoromethane	ND	7.8	1.38			
Vinyl Acetate	ND	9.7	1.38			
Vinyl Chloride	ND	1.8	1.38			
c-1,3-Dichloropropene	ND	3.1	1.38			
c-1,2-Dichloroethene	ND	2.7	1.38			
o-Xylene	130	3.0	1.38			
t-1,3-Dichloropropene	ND	6.3	1.38			
p/m-Xylene	360	12	1.38			
Methyl-t-Butyl Ether (MTBE)	ND	10	1.38			
Isopropanol	ND	17	1.38			
1,1-Difluoroethane	ND	7.5	1.38			
Naphthalene	ND	36	1.38			
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			

106

108

99

68-134

67-133

70-130

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

N/A EPA TO-15

02/10/16

16-02-0790

Units:

ug/m3

Project: Hollis / 15179.23

Page 5 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-2	16-02-0790-3-A	02/05/16 17:08	Air	GC/MS KKK	N/A	02/11/16 03:03	160210L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
1,1,1-Trichloroethane		ND	•	1400	500		
1,1,2,2-Tetrachloroethane		ND	:	3400	500		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	į	5700	500		
1,1,2-Trichloroethane		ND	•	1400	500		
1,1-Dichloroethane		ND		1000	500		
1,1-Dichloroethene		ND	9	990	500		
1,2,4-Trimethylbenzene		21000	3	3700	500		
1,2-Dibromoethane		ND		1900	500		
Dichlorotetrafluoroethane		ND	7	7000	500		
1,2-Dichlorobenzene		ND		1500	500		
1,2-Dichloroethane		ND		1000	500		
1,2-Dichloropropane		ND		1200	500		
1,3,5-Trimethylbenzene		9100		1200	500		
1,3-Dichlorobenzene		ND		1500	500		
1,4-Dichlorobenzene		ND		1500	500		
2-Butanone		ND	2	2200	500		
2-Hexanone		ND	3	3100	500		
4-Ethyltoluene		8700		1200	500		
4-Methyl-2-Pentanone		ND	(3100	500		
Acetone		ND	2	2400	500		
Benzyl Chloride		ND	3	3900	500		
Bromodichloromethane		ND		1700	500		
Bromoform		ND	2	2600	500		
Bromomethane		ND	(970	500		
Carbon Disulfide		ND	3	3100	500		
Carbon Tetrachloride		ND		1600	500		
Chlorobenzene		ND		1200	500		
Chloroethane		ND	(660	500		
Chloroform		ND		1200	500		
Chloromethane		ND		520	500		
Dibromochloromethane		ND		2100	500		
Dichlorodifluoromethane		ND		1200	500		
Ethylbenzene		61000		1100	500		
Hexachloro-1,3-Butadiene		ND		3000	500		
Methylene Chloride		ND		3700	500		

RL: Reporting Limit.

DF: Dilution Factor.

Toluene-d8

Analytical Report

AllWest Environmental, Inc.			Date Re	eceived:			02/10/16
2141 Mission Street, Suite 100			Work O	rder:			16-02-0790
San Francisco, CA 94110-6331			Prepara	tion:			N/A
·			Method:				EPA TO-15
			Units:				ug/m3
Project: Hollis / 15179.23			•			Pa	age 6 of 18
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Styrene		ND		3200	500		
Tetrachloroethene		ND		1700	500		
t-1,2-Dichloroethene		ND		990	500		
Trichloroethene		ND		1300	500		
Trichlorofluoromethane		ND		2800	500		
Vinyl Acetate		ND		3500	500		
Vinyl Chloride		ND		640	500		
c-1,3-Dichloropropene		ND		1100	500		
c-1,2-Dichloroethene		ND		990	500		
o-Xylene		82000		1100	500		
t-1,3-Dichloropropene		ND		2300	500		
p/m-Xylene		280000		4300	500		
Methyl-t-Butyl Ether (MTBE)		ND		3600	500		
Isopropanol		ND		6100	500		
1,1-Difluoroethane		ND		2700	500		
Naphthalene		ND		13000	500		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		101		68-134			
1,2-Dichloroethane-d4		110		67-133			
Toluene-d8		101		70-130			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-2	16-02-0790-3-A	02/05/16 17:08	Air	GC/MS KKK	N/A	02/11/16 18:31	160211L01
Parameter		Result		RL	DF	Qua	alifiers
Benzene		210000		3200	2000		
Toluene		330000		3800	2000		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		117		68-134			
1,2-Dichloroethane-d4		105		67-133			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

70-130

104

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A EPA TO-15

02/10/16

Units:

ug/m3

Project: Hollis / 15179.23

Page 7 of 18

Parameter	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1,1,1-Trichloroethane ND 69000 10000 1,1,2-Trichloroethane ND 69000 10000 1,1,2-Trichloroethane ND 110000 10000 1,1-Dichloroethane ND 27000 10000 1,1-Dichloroethane ND 20000 10000 1,1-Dichloroethane ND 20000 10000 1,2-Dichloroethane ND 38000 10000 1,2-Dichloroethane ND 38000 10000 1,2-Dichloroethane ND 30000 10000 1,2-Dichloroethane ND 30000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloroethane ND 23000 10000 1,2-Dichloroethane ND 23000 10000 1,2-Dichloroethane ND 23000 10000 1,2-Dichloroethane ND 30000 10000 1,2-Dichloroethane ND 30000 10000 1,2-Dichloroethane ND 30000 10000 1,2-Dichloroethane ND 30000 10000	SVP-3	16-02-0790-4-A		Air	GC/MS KKK	N/A	02/11/16 21:07	160211L01
1,1,2,2-Tetrachloroethane ND 69000 10000 1,1,2-Tricholoro-1,2,2-Trifludorethane ND 27000 10000 1,1,2-Tricholoroethane ND 27000 10000 1,1-Dichloroethane ND 20000 10000 1,1-Dichloroethane ND 20000 10000 1,2-Hrimethybenzone 390000 74000 10000 1,2-Dichloroethane ND 38000 10000 1,2-Dichlorobenzene ND 140000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloropenzene ND 20000 10000 1,2-Dichloroethane ND 23000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloroethane ND 30000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichloroethane ND 30000 10000 2-Buanone ND 46000 10000 2-Hexanone ND 61000 <t< td=""><td><u>Parameter</u></td><td></td><td>Result</td><td></td><td>RL</td><td><u>DF</u></td><td>Qua</td><td><u>llifiers</u></td></t<>	<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 27000 10000 1,1,2-Trichloroethane ND 27000 10000 1,1-Dichloroethane ND 20000 10000 1,1-Dichloroethane ND 20000 10000 1,2-Hirmethylbenzene 390000 74000 10000 1,2-Dichloroethane ND 38000 10000 Dichloroetrafluoroethane ND 30000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloroethane ND 20000 10000 1,3-Dichloroethane ND 23000 10000 1,3-Dichloroethane ND 23000 10000 1,3-Dichlorobenzene ND 30000 10000 1,3-Dichlorobenzene ND 30000 10000 1,3-Dichlorobenzene ND 40000 10000 2-Bustanone ND 61000 10000 4-Ethytoluene 160000 25000 10000 4-Ethytoluene 160000 10000	1,1,1-Trichloroethane		ND		27000	10000		
1,1,2-Trichloroethane ND 27000 10000 1,1-Dichloroethane ND 20000 10000 1,2-Hrimethylbenzene 390000 74000 10000 1,2-Hrimethylbenzene 390000 74000 10000 1,2-Dichloroethane ND 38000 10000 Dichloroethane ND 30000 10000 1,2-Dichlorobenzene ND 30000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloropenzene ND 23000 10000 1,3-Frimethylbenzene 170000 25000 10000 1,3-Frimethylbenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Hexanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Hethylv2-Pentanone ND 61000 10000 4-Ethyltoluene 160000 25000 <td< td=""><td>1,1,2,2-Tetrachloroethane</td><td></td><td>ND</td><td></td><td>69000</td><td>10000</td><td></td><td></td></td<>	1,1,2,2-Tetrachloroethane		ND		69000	10000		
1,1-Dichloroethane ND 20000 10000 1,1-Dichloroethene ND 20000 10000 1,2-Dichromethane 39000 74000 10000 1,2-Dichromethane ND 38000 10000 Dichlorotetrafluoroethane ND 140000 10000 1,2-Dichlorobenzene ND 30000 10000 1,2-Dichloropenzene ND 23000 10000 1,2-Dichloropenzene ND 23000 10000 1,3-Dichlorobenzene ND 30000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 2-Hexanone ND 61000 10000 4-Methyl-2-Pentanone ND 61000 10000 Actone ND 48000 10000 Benzyl Choide ND 78000 10000 Benz	1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		110000	10000		
1,1-Dichloroethene ND 20000 10000 1,2-A-Trimethylbenzene 390000 74000 10000 1,2-Dichloroethane ND 38000 10000 Dichlorotetrafluoroethane ND 30000 10000 1,2-Dichloroptopane ND 20000 10000 1,2-Dichloroptopane ND 23000 10000 1,3-5-Trimethylbenzene 170000 25000 10000 1,3-5-Ichlorobenzene ND 30000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 40000 10000 2-Butanone ND 40000 10000 2-Butanone ND 40000 10000 4-Ethyltoluene 160000 25000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 48000 10000 Benzene 1100000 16000 <t< td=""><td>1,1,2-Trichloroethane</td><td></td><td>ND</td><td></td><td>27000</td><td>10000</td><td></td><td></td></t<>	1,1,2-Trichloroethane		ND		27000	10000		
1,2,4-Trimethylbenzene 390000 74000 10000 1,2-Dibromoethane ND 38000 10000 Dichlorotetrafluoroethane ND 140000 10000 1,2-Dichlorobenzene ND 30000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloropropane ND 23000 10000 1,3-Frimethylbenzene 170000 25000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 46000 10000 4-Ethyltoluene 160000 25000 10000 4-Ethyltoluene 100000 25000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 <td>1,1-Dichloroethane</td> <td></td> <td>ND</td> <td></td> <td>20000</td> <td>10000</td> <td></td> <td></td>	1,1-Dichloroethane		ND		20000	10000		
1.2-Disromethane ND 38000 10000 Dichlorotetrafluoroethane ND 140000 10000 1.2-Dichlorobenzene ND 30000 10000 1.2-Dichlorotenzene ND 20000 10000 1.2-Dichloroptropane ND 23000 10000 1.3-Dichlorobenzene ND 30000 10000 1.3-Dichlorobenzene ND 30000 10000 1.3-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Butanone ND 44000 10000 4-Ethyltoluene 160000 25000 10000 4-Ethyltoluene 160000 25000 10000 4-Ethyltoluene 160000 25000 10000 4-Ethyltoluene 160000 25000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 34000 10000	1,1-Dichloroethene		ND		20000	10000		
Dichlorotetrafluoroethane ND 140000 10000 1,2-Dichlorobenzene ND 30000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloropropane ND 23000 10000 1,3-5-Trimethylbenzene 170000 25000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Butanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 4-Methyl-2-Pentanone ND 48000 10000 Benzene 1100000 16000 10000 Benzene ND 48000 10000 Benzyl Chloride ND 34000 10000 Bromodichloromethane ND 34000 10000 <td>1,2,4-Trimethylbenzene</td> <td></td> <td>390000</td> <td></td> <td>74000</td> <td>10000</td> <td></td> <td></td>	1,2,4-Trimethylbenzene		390000		74000	10000		
1,2-Dichlorobenzene ND 30000 10000 1,2-Dichloroethane ND 20000 10000 1,2-Dichloropropane ND 23000 10000 1,3-Frimethylbenzene 170000 25000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 61000 10000 Benzyl Chloride ND 78000 10000 Benzyl Chloride ND 34000 10000 Bromodichloromethane ND 34000 10000 Bromodrame ND 19000 10000 Bromodrame ND 19000 10000 Bromodrame ND 31000 10000 Carbon Tetrachloride ND 30000 10000 Chlorobenzene	1,2-Dibromoethane		ND		38000	10000		
1,2-Dichloroethane ND 20000 10000 1,2-Dichloropropane ND 23000 10000 1,3-5-Trimethylbenzene 170000 25000 10000 1,4-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 4-Methyl-2-Pentanone ND 61000 10000 4-Methyl-2-Pentanone ND 61000 10000 Benzene 1100000 16000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromodichloromethane ND 31000 10000 Carbon Disulfide ND 31000 10000	Dichlorotetrafluoroethane		ND		140000	10000		
1,2-Dichloropropane ND 23000 10000 1,3,5-Trimethylbenzene 170000 25000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 4-Methyl-2-Pentanone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Beromoform ND 34000 10000 Bromoform ND 52000 10000 Bromoform ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 13000 10000 Chloroc	1,2-Dichlorobenzene		ND		30000	10000		
1,3,5-Trimethylbenzene 170000 25000 10000 1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 34000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 13000 10000 Chlorochtane ND 13000 10000 Chlorochtane ND 43000 10000 Chlorochtane ND	1,2-Dichloroethane		ND		20000	10000		
1,3-Dichlorobenzene ND 30000 10000 1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzyle 1100000 16000 10000 Benzyle Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 34000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 13000 10000 Chloroform ND 23000 10000 Chloroform ND 13000 10000 Chloroform ND 43000 10000 Chloromethane ND 43000 </td <td>1,2-Dichloropropane</td> <td></td> <td>ND</td> <td></td> <td>23000</td> <td>10000</td> <td></td> <td></td>	1,2-Dichloropropane		ND		23000	10000		
1,4-Dichlorobenzene ND 30000 10000 2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 34000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 33000 10000 Chlorotethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 43000 10000 Chloromethane ND 43000 10000 Dibromochloromethane ND 4	1,3,5-Trimethylbenzene		170000		25000	10000		
2-Butanone ND 44000 10000 2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroform ND 13000 10000 Chloroformethane ND 10000 10000 Chloromethane ND 43000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000	1,3-Dichlorobenzene		ND		30000	10000		
2-Hexanone ND 61000 10000 4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 31000 10000 Chlorothane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Chloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	1,4-Dichlorobenzene		ND		30000	10000		
4-Ethyltoluene 160000 25000 10000 4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 13000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 43000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	2-Butanone		ND		44000	10000		
4-Methyl-2-Pentanone ND 61000 10000 Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chlorothane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 43000 10000 Dibromochloromethane ND 43000 10000 Ethylbenzene 720000 22000 10000	2-Hexanone		ND		61000	10000		
Acetone ND 48000 10000 Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 13000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 43000 10000 Dibromochloromethane ND 43000 10000 Ethylbenzene 720000 22000 10000	4-Ethyltoluene		160000		25000	10000		
Benzene 1100000 16000 10000 Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 31000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ettylbenzene 720000 22000 10000	4-Methyl-2-Pentanone		ND		61000	10000		
Benzyl Chloride ND 78000 10000 Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 62000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Acetone		ND		48000	10000		
Bromodichloromethane ND 34000 10000 Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 62000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Benzene		1100000		16000	10000		
Bromoform ND 52000 10000 Bromomethane ND 19000 10000 Carbon Disulfide ND 62000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Benzyl Chloride		ND		78000	10000		
Bromomethane ND 19000 10000 Carbon Disulfide ND 62000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Bromodichloromethane		ND		34000	10000		
Carbon Disulfide ND 62000 10000 Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Bromoform		ND		52000	10000		
Carbon Tetrachloride ND 31000 10000 Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Bromomethane		ND		19000	10000		
Chlorobenzene ND 23000 10000 Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Carbon Disulfide		ND		62000	10000		
Chloroethane ND 13000 10000 Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Carbon Tetrachloride		ND		31000	10000		
Chloroform ND 24000 10000 Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Chlorobenzene		ND		23000	10000		
Chloromethane ND 10000 10000 Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Chloroethane		ND		13000	10000		
Dibromochloromethane ND 43000 10000 Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Chloroform		ND			10000		
Dichlorodifluoromethane ND 25000 10000 Ethylbenzene 720000 22000 10000	Chloromethane		ND		10000	10000		
Ethylbenzene 720000 22000 10000	Dibromochloromethane		ND		43000	10000		
Ethylbenzene 720000 22000 10000	Dichlorodifluoromethane		ND		25000	10000		
•	Ethylbenzene							
	Hexachloro-1,3-Butadiene		ND		160000	10000		

RL: Reporting Limit.

DF: Dilution Factor.

AllWest Environmental, Inc.	Date Received:	02/10/16
2141 Mission Street, Suite 100	Work Order:	16-02-0790
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: Hollis / 15179.23		Page 8 of 18

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Methylene Chloride	ND	170000	10000	
Styrene	ND	64000	10000	
Tetrachloroethene	ND	34000	10000	
Toluene	1700000	19000	10000	
t-1,2-Dichloroethene	ND	20000	10000	
Trichloroethene	ND	27000	10000	
Trichlorofluoromethane	ND	56000	10000	
Vinyl Acetate	ND	70000	10000	
Vinyl Chloride	ND	13000	10000	
c-1,3-Dichloropropene	ND	23000	10000	
c-1,2-Dichloroethene	ND	20000	10000	
o-Xylene	680000	22000	10000	
t-1,3-Dichloropropene	ND	45000	10000	
p/m-Xylene	2600000	87000	10000	
Methyl-t-Butyl Ether (MTBE)	ND	72000	10000	
Isopropanol	1000000	120000	10000	
1,1-Difluoroethane	ND	54000	10000	
Naphthalene	ND	260000	10000	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	68-134		
1,2-Dichloroethane-d4	108	67-133		
Toluene-d8	100	70-130		

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method: 02/10/16 16-02-0790 N/A EPA TO-15

ug/m3

Units: ug/ Page 9 of 18

Project: Hollis / 15179.23

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-4	16-02-0790-5-A	02/08/16 07:30	Air	GC/MS KKK	N/A	02/11/16 03:53	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
1,1,1-Trichloroethane		ND		1400	500		
1,1,2,2-Tetrachloroethane		ND	;	3400	500		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		5700	500		
1,1,2-Trichloroethane		ND		1400	500		
1,1-Dichloroethane		ND		1000	500		
1,1-Dichloroethene		ND	(990	500		
1,2,4-Trimethylbenzene		83000	;	3700	500		
1,2-Dibromoethane		ND		1900	500		
Dichlorotetrafluoroethane		ND	-	7000	500		
1,2-Dichlorobenzene		ND		1500	500		
1,2-Dichloroethane		ND		1000	500		
1,2-Dichloropropane		ND		1200	500		
1,3,5-Trimethylbenzene		27000		1200	500		
1,3-Dichlorobenzene		ND		1500	500		
1,4-Dichlorobenzene		ND		1500	500		
2-Butanone		ND	2	2200	500		
2-Hexanone		ND	;	3100	500		
4-Ethyltoluene		29000		1200	500		
4-Methyl-2-Pentanone		ND	;	3100	500		
Acetone		ND	2	2400	500		
Benzene		45000	8	800	500		
Benzyl Chloride		ND	;	3900	500		
Bromodichloromethane		ND		1700	500		
Bromoform		ND	2	2600	500		
Bromomethane		ND	9	970	500		
Carbon Disulfide		ND	;	3100	500		
Carbon Tetrachloride		ND		1600	500		
Chlorobenzene		ND		1200	500		
Chloroethane		ND	(660	500		
Chloroform		ND		1200	500		
Chloromethane		ND		520	500		
Dibromochloromethane		ND	2	2100	500		
Dichlorodifluoromethane		ND		1200	500		
Ethylbenzene		90000		1100	500		
Hexachloro-1,3-Butadiene		ND	8	8000	500		

RL: Reporting Limit.

DF: Dilution Factor.

1,2-Dichloroethane-d4

Toluene-d8

Analytical Report

AllWest Environmental, Inc.	Da	te Received:		02/10/16	
2141 Mission Street, Suite 100	Wo	ork Order:		16-02-0790	
San Francisco, CA 94110-6331	Pre		N/A		
	Me		EPA TO-15		
	Un			ug/m3	
Project: Hollis / 15179.23	On	но.		Page 10 of 18	
1 10,000. 110.110 / 10110.20					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Methylene Chloride	ND	8700	500		
Styrene	ND	3200	500		
Tetrachloroethene	ND	1700	500		
Toluene	15000	940	500		
t-1,2-Dichloroethene	ND	990	500		
Trichloroethene	ND	1300	500		
Trichlorofluoromethane	ND	2800	500		
Vinyl Acetate	ND	3500	500		
Vinyl Chloride	ND	640	500		
c-1,3-Dichloropropene	ND	1100	500		
c-1,2-Dichloroethene	ND	990	500		
o-Xylene	52000	1100	500		
t-1,3-Dichloropropene	ND	2300	500		
p/m-Xylene	180000	4300	500		
Methyl-t-Butyl Ether (MTBE)	12000	3600	500		
Isopropanol	ND	6100	500		
1,1-Difluoroethane	ND	2700	500		
Naphthalene	ND	13000	500		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	104	68-134			

109

101

67-133

70-130

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A

Units:

EPA TO-15 ug/m3

02/10/16

Project: Hollis / 15179.23

Page 11 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-5	16-02-0790-6-A	02/08/16 09:22	Air	GC/MS KKK	N/A	02/11/16 05:35	160210L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>lifiers</u>
1,1,1-Trichloroethane		ND		14000	5000		
1,1,2,2-Tetrachloroethane		ND		34000	5000		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		57000	5000		
1,1,2-Trichloroethane		ND		14000	5000		
1,1-Dichloroethane		ND		10000	5000		
1,1-Dichloroethene		ND		9900	5000		
1,2,4-Trimethylbenzene		320000		37000	5000		
1,2-Dibromoethane		ND		19000	5000		
Dichlorotetrafluoroethane		ND		70000	5000		
1,2-Dichlorobenzene		ND		15000	5000		
1,2-Dichloroethane		ND		10000	5000		
1,2-Dichloropropane		ND		12000	5000		
1,3,5-Trimethylbenzene		130000		12000	5000		
1,3-Dichlorobenzene		ND		15000	5000		
1,4-Dichlorobenzene		ND		15000	5000		
2-Butanone		ND		22000	5000		
2-Hexanone		ND		31000	5000		
4-Ethyltoluene		120000		12000	5000		
4-Methyl-2-Pentanone		ND		31000	5000		
Acetone		ND		24000	5000		
Benzene		1600000		8000	5000		
Benzyl Chloride		ND		39000	5000		
Bromodichloromethane		ND		17000	5000		
Bromoform		ND		26000	5000		
Bromomethane		ND		9700	5000		
Carbon Disulfide		ND		31000	5000		
Carbon Tetrachloride		ND		16000	5000		
Chlorobenzene		ND		12000	5000		
Chloroethane		ND		6600	5000		
Chloroform		ND		12000	5000		
Chloromethane		ND		5200	5000		
Dibromochloromethane		ND		21000	5000		
Dichlorodifluoromethane		ND		12000	5000		
Ethylbenzene		810000		11000	5000		
Hexachloro-1,3-Butadiene		ND		80000	5000		

RL: Reporting Limit.

DF: Dilution Factor.

AllWest Environmental, Inc.	Date Received:	02/10/16
2141 Mission Street, Suite 100	Work Order:	16-02-0790
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: Hollis / 15179.23		Page 12 of 18

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Methylene Chloride	ND	87000	5000	
Styrene	ND	32000	5000	
Tetrachloroethene	ND	17000	5000	
Toluene	1300000	9400	5000	
t-1,2-Dichloroethene	ND	9900	5000	
Trichloroethene	ND	13000	5000	
Trichlorofluoromethane	ND	28000	5000	
Vinyl Acetate	ND	35000	5000	
Vinyl Chloride	ND	6400	5000	
c-1,3-Dichloropropene	ND	11000	5000	
c-1,2-Dichloroethene	ND	9900	5000	
o-Xylene	770000	11000	5000	
t-1,3-Dichloropropene	ND	23000	5000	
p/m-Xylene	2800000	43000	5000	
Methyl-t-Butyl Ether (MTBE)	990000	36000	5000	
Isopropanol	160000	61000	5000	
1,1-Difluoroethane	ND	27000	5000	
Naphthalene	ND	130000	5000	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	68-134		
1,2-Dichloroethane-d4	108	67-133		
Toluene-d8	101	70-130		

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A

Units:

EPA TO-15 ug/m3

02/10/16

Project: Hollis / 15179.23

Page 13 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-6	16-02-0790-7-A	02/08/16 10:15	Air	GC/MS KKK	N/A	02/11/16 04:41	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	lifiers
1,1,1-Trichloroethane		ND		1700	625		
1,1,2,2-Tetrachloroethane		ND		4300	625		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		7200	625		
1,1,2-Trichloroethane		ND		1700	625		
1,1-Dichloroethane		1300		1300	625		
1,1-Dichloroethene		ND		1200	625		
1,2,4-Trimethylbenzene		38000		4600	625		
1,2-Dibromoethane		ND	:	2400	625		
Dichlorotetrafluoroethane		ND		8700	625		
1,2-Dichlorobenzene		ND		1900	625		
1,2-Dichloroethane		2500		1300	625		
1,2-Dichloropropane		ND		1400	625		
1,3,5-Trimethylbenzene		13000		1500	625		
1,3-Dichlorobenzene		ND		1900	625		
1,4-Dichlorobenzene		ND		1900	625		
2-Butanone		ND	:	2800	625		
2-Hexanone		ND	;	3800	625		
4-Ethyltoluene		14000		1500	625		
4-Methyl-2-Pentanone		ND	;	3800	625		
Acetone		ND	;	3000	625		
Benzene		130000		1000	625		
Benzyl Chloride		ND		4900	625		
Bromodichloromethane		ND	:	2100	625		
Bromoform		ND	;	3200	625		
Bromomethane		ND		1200	625		
Carbon Disulfide		ND	;	3900	625		
Carbon Tetrachloride		ND	;	2000	625		
Chlorobenzene		ND		1400	625		
Chloroethane		ND		820	625		
Chloroform		ND		1500	625		
Chloromethane		ND		650	625		
Dibromochloromethane		ND	:	2700	625		
Dichlorodifluoromethane		ND		1500	625		
Ethylbenzene		66000		1400	625		
Hexachloro-1,3-Butadiene		ND		10000	625		

RL: Reporting Limit.

DF: Dilution Factor.

1,2-Dichloroethane-d4

Toluene-d8

Analytical Report

AllWest Environmental, Inc.			Date Re	eceived:			02/10/16		
2141 Mission Street, Suite 100		Work Order:					16-02-0790		
San Francisco, CA 94110-6331		Preparation:					N/A		
,			Method:				EPA TO-15		
			Units:				ug/m3		
Project: Hollis / 15179.23			Ornio.			Pag	ge 14 of 18		
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers		
Methylene Chloride		ND		11000	625				
Styrene		ND		4000	625				
Tetrachloroethene		ND		2100	625				
t-1,2-Dichloroethene		ND		1200	625				
Trichloroethene		ND		1700	625				
Trichlorofluoromethane		ND		3500	625				
Vinyl Acetate		ND		4400	625				
Vinyl Chloride		ND		800	625				
c-1,3-Dichloropropene		ND		1400	625				
c-1,2-Dichloroethene		ND		1200	625				
o-Xylene		71000		1400	625				
t-1,3-Dichloropropene		ND		2800	625				
p/m-Xylene		230000		5400	625				
Methyl-t-Butyl Ether (MTBE)		6900		4500	625				
Isopropanol		ND		7700	625				
1,1-Difluoroethane		ND		3400	625				
Naphthalene		ND		16000	625				
Surrogate		Rec. (%)		Control Limits	Qualifiers				
1,4-Bromofluorobenzene		105		68-134					
1,2-Dichloroethane-d4		108		67-133					
Toluene-d8		101		70-130					
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
SVP-6	16-02-0790-7-A	02/08/16 10:15	Air	GC/MS KKK	N/A	02/11/16 19:20	160211L01		
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers		
Toluene		220000		2400	1250				
Surrogate		Rec. (%)		Control Limits	Qualifiers				
1,4-Bromofluorobenzene		106		68-134					

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

67-133

70-130

107

98

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A

02/10/16

EPA TO-15

Units:

ug/m3

Project: Hollis / 15179.23

Page 15 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-021-16536	N/A	Air	GC/MS KKK	N/A	02/10/16 14:36	160210L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
1,1,1-Trichloroethane		ND	2.7	7	1.00		
1,1,2,2-Tetrachloroethane		ND	6.9)	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	11		1.00		
1,1,2-Trichloroethane		ND	2.7	7	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
1,2,4-Trimethylbenzene		ND	7.4	ļ	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
1,3,5-Trimethylbenzene		ND	2.5	5	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
2-Butanone		ND	4.4	ļ	1.00		
2-Hexanone		ND	6.1		1.00		
4-Ethyltoluene		ND	2.5	5	1.00		
4-Methyl-2-Pentanone		ND	6.1	I	1.00		
Acetone		ND	4.8	3	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	ļ	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9)	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1	I	1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4	ļ	1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
Ethylbenzene		ND	2.2	2	1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		
Methylene Chloride		ND	17		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

AllWest Environmental, Inc.	Date Received:	02/10/16
2141 Mission Street, Suite 100	Work Order:	16-02-0790
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: Hollis / 15179.23		Page 16 of 18

·				
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Styrene	ND	6.4	1.00	
Tetrachloroethene	ND	3.4	1.00	
t-1,2-Dichloroethene	ND	2.0	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
Vinyl Acetate	ND	7.0	1.00	
Vinyl Chloride	ND	1.3	1.00	
c-1,3-Dichloropropene	ND	2.3	1.00	
c-1,2-Dichloroethene	ND	2.0	1.00	
o-Xylene	ND	2.2	1.00	
t-1,3-Dichloropropene	ND	4.5	1.00	
p/m-Xylene	ND	8.7	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Isopropanol	ND	12	1.00	
1,1-Difluoroethane	ND	5.4	1.00	
Benzene	ND	1.6	1.00	
Naphthalene	ND	26	1.00	
Toluene	ND	1.9	1.00	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	101	68-134		
1,2-Dichloroethane-d4	107	67-133		
Toluene-d8	101	70-130		

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

02/10/16 16-02-0790 N/A

ug/m3

Method: EPA TO-15 Units:

Project: Hollis / 15179.23

Page 17 of 18

Parameter	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1,1,1-Trichloroethane ND 2.7 1,00 1,1,2-Trichloroethane ND 6.9 1.00 1,1,2-Trichloroethane ND 11 1.00 1,1-Dichloroethane ND 2.7 1.00 1,1-Dichloroethane ND 2.0 1.00 1,2-Trimethybenzene ND 7.4 1.00 1,2-Hormethybenzene ND 7.4 1.00 1,2-Dichloroethane ND 3.8 1.00 1,2-Dichloroethane ND 1.4 1.00 1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloroethane ND 2.3 1.00 1,2-Dichloroethane ND 2.3 1.00 1,2-Dichloroethane ND 2.3 1.00 1,2-Dichloroethane ND 2.3 1.00 1,2-Dichloroethane ND 2.5 1.00 1,2-Dichloroethane ND 2.5 1.00 1,4-Dic	Method Blank	095-01-021-16545	N/A	Air	GC/MS KKK	N/A	02/11/16 15:51	160211L01
1,1,2,2-Tetrachloroethane ND 6.9 1.00 1,1,2-Trichloro-1,2,2-Tiflutorethane ND 11 1.00 1,1,2-Trichloroethane ND 2,7 1.00 1,1-Dichloroethane ND 2,0 1.00 1,1-Dichloroethene ND 2,0 1.00 1,1-Dichloroethane ND 7,4 1.00 1,2-Dichloroethane ND 3,8 1.00 1,2-Dichloroethane ND 14 1.00 1,2-Dichloroethane ND 3,0 1.00 1,2-Dichloroethane ND 2,0 1.00 1,2-Dichloroethane ND 2,0 1.00 1,2-Dichloroethane ND 2,0 1.00 1,2-Dichloroethane ND 2,5 1.00 1,2-Dichloroethane ND 2,5 1.00 1,2-Dichloroethane ND 3,0 1.00 1,3-S-Trimethylbenzene ND 3,0 1.00 1,4-Dichloroethane ND 3,0 1.00	<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1,1 1.00 1,1,2-Trichloroethane ND 2,7 1.00 1,1,2-Trichloroethane ND 2,0 1.00 1,1-Dichloroethane ND 2,0 1.00 1,2-Trimethytbenzene ND 7,4 1.00 1,2-Dirhoroethane ND 3,8 1.00 1,2-Dichloroethane ND 14 1.00 1,2-Dichloroethane ND 2,0 1.00 1,2-Dichloropane ND 2,0 1.00 1,3-Dichlorobenzene ND 2,3 1.00 1,3-Dichlorobenzene ND 2,3 1.00 1,3-Dichlorobenzene ND 3,0 1.00 1,3-Dichlorobenzene ND 3,0 1.00 2-Butanone ND 3,0 1.00 2-Butanone ND 4,4 1.00 2-Hexanone ND 4,4 1.00 4-Ethytoluene ND 6,1 1.00 4-Ethytoluene	1,1,1-Trichloroethane		ND	2.7	•	1.00		
1,1,2-Trichloroethane ND 2.7 1.00 1,1-Dichloroethane ND 2.0 1.00 1,1-Dichloroethane ND 2.0 1.00 1,2-Trimethylbenzene ND 7.4 1.00 1,2-Pibromoethane ND 3.8 1.00 Dichlorotetrafluoroethane ND 14 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloroptoethane ND 2.0 1.00 1,2-Dichloroptoethane ND 2.0 1.00 1,2-Dichloroptoethane ND 2.3 1.00 1,2-Dichloroptoethane ND 2.3 1.00 1,2-Dichloroptoethane ND 2.3 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Hexanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Me	1,1,2,2-Tetrachloroethane		ND	6.9	1	1.00		
1,1-Dichloroethane ND 2.0 1.00 1,1-Dichloroethene ND 2.0 1.00 1,1-Dichloroethene ND 7.4 1.00 1,2-Dichloroethane ND 3.8 1.00 Dichlorotetrafluoroethane ND 1.4 1.00 1,2-Dichloroethane ND 3.0 1.00 1,2-Dichloroptopane ND 2.3 1.00 1,2-Dichloroptopapane ND 2.3 1.00 1,3-Dichlorobenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Hethyloluene ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 1.6 1.00 Benzane ND 7.8 <td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td> <td></td> <td>ND</td> <td>11</td> <td></td> <td>1.00</td> <td></td> <td></td>	1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	11		1.00		
1,1-Dichloroethene ND 2.0 1.00 1,2-A-Timethytbenzene ND 7.4 1.00 1,2-Dichromoethane ND 3.8 1.00 Dichlorotetraflurorethane ND 14 1.00 1,2-Dichloroethane ND 3.0 1.00 1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3,5-Trimethytbenzene ND 2.3 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 4.4 1.00 4-Ethyltoluene ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 1.6 1.00 Benzene ND 7.8	1,1,2-Trichloroethane		ND	2.7	•	1.00		
1,2,4-Trimethylbenzene ND 7,4 1,00 1,2-Distormoethane ND 3,8 1,00 Dichlorotettaffluoroethane ND 1,4 1,00 1,2-Dichloropenzene ND 3,0 1,00 1,2-Dichloropropane ND 2,3 1,00 1,2-Dichloropropane ND 2,3 1,00 1,3-Dichlorobenzene ND 3,0 1,00 1,3-Dichlorobenzene ND 3,0 1,00 1,4-Dichlorobenzene ND 3,0 1,00 2-Butanone ND 4,4 1,00 2-Hexanone ND 4,4 1,00 4-Ethylfoluene ND 6,1 1,00 4-Ethylfoluene ND 4,8 1,00 Benzene ND 1,6 1,00 Benzyl Chloride ND <td< td=""><td>1,1-Dichloroethane</td><td></td><td>ND</td><td>2.0</td><td>1</td><td>1.00</td><td></td><td></td></td<>	1,1-Dichloroethane		ND	2.0	1	1.00		
1,2-Dibromoethane ND 3.8 1.00 Dichlorotetrafluoroethane ND 14 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichlorotenane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethytlouene ND 6.1 1.00 4-Ethytlouene ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 4.8 1.00 Benzene ND 7.8 1.00 Beromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 1.9 1.00 Bromodistide ND 2.2 1.00	1,1-Dichloroethene		ND	2.0	1	1.00		
Dichlorotetrafluoroethane ND 14 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-5-Trimethylbenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 4.4 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 4.4 1.00 4-Ethyltoluene ND 6.1 1.00 4-Ethyltoluene ND 6.1 1.00 4-Ethyltoluene ND 4.8 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzene ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 6.2	1,2,4-Trimethylbenzene		ND	7.4		1.00		
1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloropropane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-Frimethylbenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Hethyltoluene ND 4.8 1.00 Benzene ND 1.6 1.00 Benzene ND 7.8 1.00 Beromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 1.9 1.00 Bromomethane ND 3.1 1.00	1,2-Dibromoethane		ND	3.8	1	1.00		
1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-5-Trimethylbenzene ND 2.5 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyloluene ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzene ND 7.8 1.00 Bermodichloromethane ND 3.4 1.00 Bromodichloromethane ND 1.9 1.00 Carbon Disulfide ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobethane ND 1.3 1.00 Chloroform ND 2.4 1.00	Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichloropropane ND 2.3 1.00 1,3,5-Trimethylbenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 5.2 1.00 Bromodichloromethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chloroferme ND 1.3 1.00 Chlorofethane ND 2.4	1,2-Dichlorobenzene		ND	3.0	1	1.00		
ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Hethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 4-Methyl-2-Pentanone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzene ND 7.8 1.00 Benzene ND 3.4 1.00 Beromofichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromoform ND 5.2 1.00 Bromoform ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 3.1 1.00 Chlorobenzene ND 1.3 1.00 Chloroform ND 2.3 1.00 Chloroform ND 2.4 1.00 Chloroform ND 2.4 1.00 Chloroform ND 4.3 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane	1,2-Dichloroethane		ND	2.0	1	1.00		
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,5-Dichlorobenzene 1,5-Di	1,2-Dichloropropane		ND	2.3		1.00		
1,4-Dichlorobenzene 2-Butanone ND 3.0 1.00 2-Hexanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 5.2 1.00 Bromodichloromethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 3.1 1.00 Chlorobenzene ND 3.3 1.00 Chloroform ND 2.3 1.00 Chloroform Chloromethane ND 1.3 1.00 Chloromethane ND 1.3 1.00 Chloromethane ND 1.3 1.00 Chloromethane ND 1.0 1.00 Chloromethane ND 1.00 Chlorometh	1,3,5-Trimethylbenzene		ND	2.5	i	1.00		
2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromomethane ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chloroberaene ND 3.1 1.00 Chloroferm ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 4.3 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	1,3-Dichlorobenzene		ND	3.0	1	1.00		
2-Hexanone ND 6.1 1.00 4-Ethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 1.3 1.00 Chloroform ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dibromochloromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	1,4-Dichlorobenzene		ND	3.0	1	1.00		
4-Ethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 1.3 1.00 Chlorothane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	2-Butanone		ND	4.4		1.00		
4-Methyl-2-Pentanone ND 6.1 1.00 Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 3.1 1.00 Chlorothane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	2-Hexanone		ND	6.1		1.00		
Acetone ND 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chlorothane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	4-Ethyltoluene		ND	2.5	;	1.00		
Benzene ND 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	4-Methyl-2-Pentanone		ND	6.1		1.00		
Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Acetone		ND	4.8	1	1.00		
Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Benzene		ND	1.6	i	1.00		
Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Benzyl Chloride		ND	7.8	1	1.00		
Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Bromodichloromethane		ND	3.4		1.00		
Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Bromoform		ND	5.2	!	1.00		
Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Bromomethane		ND	1.9	1	1.00		
Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Carbon Disulfide		ND	6.2		1.00		
Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Carbon Tetrachloride		ND	3.1		1.00		
Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Chlorobenzene		ND	2.3		1.00		
Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Chloroethane		ND	1.3		1.00		
Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Chloroform		ND			1.00		
Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00	Chloromethane		ND	1.0)	1.00		
DichlorodifluoromethaneND2.51.00EthylbenzeneND2.21.00	Dibromochloromethane			4.3	1	1.00		
Ethylbenzene ND 2.2 1.00	Dichlorodifluoromethane		ND	2.5				
Hexachloro-1,3-Butadiene ND 16 1.00	Ethylbenzene					1.00		
	Hexachloro-1,3-Butadiene		ND	16		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

<u>Surrogate</u>

Toluene-d8

1,4-Bromofluorobenzene

1,2-Dichloroethane-d4

Analytical Report

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Project: Hollis / 15179.23	Date Received: Work Order: Preparation: Method: Units:		Work Order: Preparation: Method:		Work Order: Preparation: Method:		02/10/16 16-02-0790 N/A EPA TO-15 ug/m3 Page 18 of 18
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>			
Methylene Chloride	ND	17	1.00				
Styrene	ND	6.4	1.00				
Tetrachloroethene	ND	3.4	1.00				
Toluene	ND	1.9	1.00				
t-1,2-Dichloroethene	ND	2.0	1.00				
Trichloroethene	ND	2.7	1.00				
Trichlorofluoromethane	ND	5.6	1.00				
Vinyl Acetate	ND	7.0	1.00				
Vinyl Chloride	ND	1.3	1.00				
c-1,3-Dichloropropene	ND	2.3	1.00				
c-1,2-Dichloroethene	ND	2.0	1.00				
o-Xylene	ND	2.2	1.00	•			
t-1,3-Dichloropropene	ND	4.5	1.00				
p/m-Xylene	ND	8.7	1.00				
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00				
Isopropanol	ND	12	1.00				
1,1-Difluoroethane	ND	5.4	1.00				
Naphthalene	ND	26	1.00				

Rec. (%)

99

105

101

Control Limits

68-134

67-133

70-130

Qualifiers

							00/40/40
AllWest Environmental, Inc.				eceived:			02/10/16
2141 Mission Street, Suite 100		V	Vork O	rder:			16-02-0790
San Francisco, CA 94110-6331		F	Prepara	tion:			N/A
		N	/lethod:				EPA TO-3M
		ι	Jnits:				ug/m3
Project: Hollis / 15179.23						Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-1	16-02-0790-1-A	02/05/16 13:31	Air	GC 13	N/A	02/10/16 13:42	160210L01
<u>Parameter</u>		Result	•	RL	<u>DF</u>	Qu	<u>alifiers</u>
TPH as Gasoline		330000000		1400000	200		
SVP-7	16-02-0790-2-A	02/05/16 12:12	Air	GC 13	N/A	02/10/16 14:45	160210L01
Parameter		Result		RL	<u>DF</u>	Qu	alifiers
TPH as Gasoline		220000		7000	1.00		
SVP-2	16-02-0790-3-A	02/05/16 17:08	Air	GC 13	N/A	02/10/16 15:08	160210L01
<u>Parameter</u>		Result		RL	DF	Qu	alifiers
TPH as Gasoline		13000000		70000	10.0		
SVP-3	16-02-0790-4-A	02/06/16 12:58	Air	GC 13	N/A	02/10/16 16:18	160210L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qu	<u>alifiers</u>
TPH as Gasoline		910000000		3500000	500		
SVP-4	16-02-0790-5-A	02/08/16 07:30	Air	GC 13	N/A	02/10/16 15:19	160210L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
TPH as Gasoline		10000000		70000	10.0		
SVP-5	16-02-0790-6-A	02/08/16 09:22	Air	GC 13	N/A	02/10/16 15:45	160210L01
Parameter		Result	· · ·	<u>RL</u>	<u>DF</u>	Qu	alifiers
TPH as Gasoline		84000000		350000	50.0		
SVP-6	16-02-0790-7-A	02/08/16 10:15	Air	GC 13	N/A	02/10/16 16:51	160210L01
<u>Parameter</u>		Result RL DF		Qu	alifiers		
TPH as Gasoline		13000000		70000	10.0		
Method Blank	098-01-005-6944	N/A	Air	GC 13	N/A	02/10/16 10:02	160210L01
Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
TPH as Gasoline		ND		7000	1.00		

Quality Control - Sample Duplicate

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 02/10/16 16-02-0790 N/A

Method:

EPA TO-3M

Project: Hollis / 15179.23

Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
16-02-0791-1	Sample	Air	GC 13	N/A	02/10/16 12:10	160210D02
16-02-0791-1	Sample Duplicate	Air	GC 13	N/A	02/10/16 12:22	160210D02
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
TPH as Gasoline		7851000	8148000	4	0-20	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 02/10/16 16-02-0790 N/A

Method:

ASTM D-1946

Project: Hollis / 15179.23

Page 1 of 8

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date P	repared Date	Analyzed	LCS/LCSD B	atch Number
099-16-444-350	LCS	Air		GC 65	N/A	02/1	0/16 10:30	160210L01	
099-16-444-350	LCSD	Air		GC 65	N/A	02/1	0/16 10:47	160210L01	
Parameter	Spike Add	ed LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Methane	4.500	4.183	93	4.183	93	80-120	0	0-30	
Carbon Dioxide	15.00	15.24	102	15.50	103	80-120	2	0-30	
Oxygen (+ Argon)	4.010	3.851	96	3.843	96	80-120	0	0-30	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-02-0790 N/A

ASTM D-1946

02/10/16

Page 2 of 8

Project:	Hollis /	15179.23
----------	----------	----------

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date P	repared Date	Analyzed	LCS/LCSD B	atch Number
099-16-444-354	LCS	Air		GC 65	N/A	02/1	6/16 10:03	160216L01	
099-16-444-354	LCSD	Air		GC 65	N/A	02/1	6/16 10:20	160216L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Methane	4.500	4.138	92	4.121	92	80-120	0	0-30	
Carbon Dioxide	15.00	14.87	99	15.10	101	80-120	2	0-30	
Oxygen (+ Argon)	4.010	4.011	100	3.890	97	80-120	3	0-30	

AllWest Environmental, Inc.
2141 Mission Street, Suite 100
San Francisco, CA 94110-6331

Date Received:
Work Order:
Preparation:
Method:

16-02-0790 N/A

ASTM D-1946 (M)

02/10/16

Project: Hollis / 15179.23 Page 3 of 8

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date P	repared [Date Analyzed	LCS/LCSD E	Batch Number
099-12-872-905	LCS	Air		GC 55	N/A	0	2/10/16 09:51	I 160210L01	
099-12-872-905	LCSD	Air		GC 55	N/A	0	2/10/16 10:13	3 160210L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec.	CL RPD	RPD CL	Qualifiers
Helium	1.000	0.8937	89	0.9262	93	80-120	4	0-30	
Hydrogen	1.000	0.8930	89	0.9243	92	80-120	3	0-30	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

Method:

02/10/16 16-02-0790 N/A EPA TO-15

Project: Hollis / 15179.23 Page 4 of 8

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-021-16536	LCS		Air	GC/	MS KKK	N/A	02/10/1	16 11:51	160210L01	
095-01-021-16536	LCSD		Air	GC/	MS KKK	N/A	02/10/	16 12:46	160210L01	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
1,1,1-Trichloroethane	136.4	133.7	98	132.6	97	70-130	60-140	1	0-30	
1,1,2,2-Tetrachloroethane	171.6	168.0	98	169.1	99	63-130	52-141	1	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	191.6	193.9	101	192.7	101	70-136	59-147	1	0-30	
1,1,2-Trichloroethane	136.4	144.6	106	144.2	106	70-130	60-140	0	0-30	
1,1-Dichloroethane	101.2	102.6	101	101.8	101	70-130	60-140	1	0-30	
1,1-Dichloroethene	99.12	97.56	98	96.31	97	70-135	59-146	1	0-30	
1,2,4-Trimethylbenzene	122.9	124.4	101	126.6	103	60-132	48-144	2	0-30	
1,2-Dibromoethane	192.1	195.8	102	197.4	103	70-133	60-144	1	0-30	
Dichlorotetrafluoroethane	174.8	182.1	104	178.8	102	51-135	37-149	2	0-30	
1,2-Dichlorobenzene	150.3	139.5	93	143.0	95	48-138	33-153	3	0-30	
1,2-Dichloroethane	101.2	107.9	107	106.1	105	70-132	60-142	2	0-30	
1,2-Dichloropropane	115.5	117.8	102	117.5	102	70-130	60-140	0	0-30	
1,3,5-Trimethylbenzene	122.9	118.2	96	118.8	97	62-130	51-141	0	0-30	
1,3-Dichlorobenzene	150.3	145.9	97	147.2	98	56-134	43-147	1	0-30	
1,4-Dichlorobenzene	150.3	143.1	95	143.2	95	52-136	38-150	0	0-30	
2-Butanone	73.73	80.11	109	79.26	108	66-132	55-143	1	0-30	
2-Hexanone	102.4	101.9	100	103.3	101	70-136	59-147	1	0-30	
4-Ethyltoluene	122.9	120.8	98	121.2	99	68-130	58-140	0	0-30	
4-Methyl-2-Pentanone	102.4	106.6	104	106.0	103	70-130	60-140	1	0-30	
Acetone	59.39	60.22	101	60.32	102	67-133	56-144	0	0-30	
Benzyl Chloride	129.4	114.8	89	117.0	90	38-158	18-178	2	0-30	
Bromodichloromethane	167.5	180.7	108	179.7	107	70-130	60-140	1	0-30	
Bromoform	258.4	269.1	104	269.2	104	63-147	49-161	0	0-30	
Bromomethane	97.08	120.3	124	119.0	123	70-139	58-150	1	0-30	
Carbon Disulfide	77.85	84.18	108	83.89	108	68-146	55-159	0	0-30	
Carbon Tetrachloride	157.3	160.4	102	159.6	101	70-136	59-147	0	0-30	
Chlorobenzene	115.1	114.5	99	115.6	100	70-130	60-140	1	0-30	
Chloroethane	65.96	82.72	125	82.78	125	65-149	51-163	0	0-30	
Chloroform	122.1	123.0	101	122.0	100	70-130	60-140	1	0-30	
Chloromethane	51.63	63.58	123	60.24	117	69-141	57-153	5	0-30	
Dibromochloromethane	213.0	216.2	102	217.8	102	70-138	59-149	1	0-30	
Dichlorodifluoromethane	123.6	129.4	105	127.4	103	67-139	55-151	2	0-30	
Ethylbenzene	108.6	109.2	101	110.2	102	70-130	60-140	1	0-30	
Hexachloro-1,3-Butadiene	266.6	295.3	111	307.1	115	44-146	27-163	4	0-30	
Methylene Chloride	86.84	79.81	92	79.46	92	69-130	59-140	0	0-30	
Styrene	106.5	100.8	95	101.0	95	65-131	54-142	0	0-30	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method: 02/10/16 16-02-0790 N/A EPA TO-15

Project: Hollis / 15179.23

Page 5 of 8

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Tetrachloroethene	169.6	160.6	95	164.2	97	70-130	60-140	2	0-30	
t-1,2-Dichloroethene	99.12	99.86	101	98.92	100	70-130	60-140	1	0-30	
Trichloroethene	134.3	135.4	101	135.3	101	70-130	60-140	0	0-30	
Trichlorofluoromethane	140.5	150.5	107	150.0	107	63-141	50-154	0	0-30	
Vinyl Acetate	88.03	87.17	99	86.04	98	58-130	46-142	1	0-30	
Vinyl Chloride	63.91	79.67	125	78.02	122	70-134	59-145	2	0-30	
c-1,3-Dichloropropene	113.5	121.5	107	121.0	107	70-130	60-140	0	0-30	
c-1,2-Dichloroethene	99.12	94.70	96	94.62	95	70-130	60-140	0	0-30	
o-Xylene	108.6	109.4	101	110.4	102	69-130	59-140	1	0-30	
t-1,3-Dichloropropene	113.5	126.2	111	125.8	111	70-147	57-160	0	0-30	
p/m-Xylene	217.1	223.4	103	224.1	103	70-132	60-142	0	0-30	
Methyl-t-Butyl Ether (MTBE)	90.13	91.56	102	91.02	101	68-130	58-140	1	0-30	
Isopropanol	61.45	60.06	98	59.87	97	57-135	44-148	0	0-30	
1,1-Difluoroethane	67.54	76.19	113	75.60	112	70-131	60-141	1	0-30	
Benzene	79.87	79.32	99	79.11	99	70-130	60-140	0	0-30	
Naphthalene	131.1	148.9	114	154.1	118	24-144	4-164	3	0-30	
Toluene	94.21	91.70	97	93.25	99	70-130	60-140	2	0-30	

Total number of LCS compounds: 53
Total number of ME compounds: 0

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

Method:

02/10/16 16-02-0790 N/A EPA TO-15

Project: Hollis / 15179.23

Page 6 of 8

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-021-16545	LCS		Air	GC/	MS KKK	N/A	02/11/1	16 12:59	160211L01	
095-01-021-16545	LCSD		Air	GC/	MS KKK	N/A	02/11/1	16 13:54	160211L01	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
1,1,1-Trichloroethane	136.4	132.2	97	130.8	96	70-130	60-140	1	0-30	
1,1,2,2-Tetrachloroethane	171.6	171.3	100	166.2	97	63-130	52-141	3	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	191.6	192.4	100	191.8	100	70-136	59-147	0	0-30	
1,1,2-Trichloroethane	136.4	143.2	105	140.5	103	70-130	60-140	2	0-30	
1,1-Dichloroethane	101.2	102.0	101	101.2	100	70-130	60-140	1	0-30	
1,1-Dichloroethene	99.12	95.65	96	94.94	96	70-135	59-146	1	0-30	
1,2,4-Trimethylbenzene	122.9	132.8	108	125.0	102	60-132	48-144	6	0-30	
1,2-Dibromoethane	192.1	198.2	103	193.7	101	70-133	60-144	2	0-30	
Dichlorotetrafluoroethane	174.8	178.8	102	177.4	101	51-135	37-149	1	0-30	
1,2-Dichlorobenzene	150.3	151.6	101	142.1	95	48-138	33-153	6	0-30	
1,2-Dichloroethane	101.2	106.1	105	105.1	104	70-132	60-142	1	0-30	
1,2-Dichloropropane	115.5	117.9	102	115.8	100	70-130	60-140	2	0-30	
1,3,5-Trimethylbenzene	122.9	122.6	100	117.4	96	62-130	51-141	4	0-30	
1,3-Dichlorobenzene	150.3	154.7	103	146.4	97	56-134	43-147	6	0-30	
1,4-Dichlorobenzene	150.3	153.5	102	143.9	96	52-136	38-150	6	0-30	
2-Butanone	73.73	78.69	107	78.38	106	66-132	55-143	0	0-30	
2-Hexanone	102.4	104.9	102	101.8	99	70-136	59-147	3	0-30	
4-Ethyltoluene	122.9	123.6	101	119.5	97	68-130	58-140	3	0-30	
4-Methyl-2-Pentanone	102.4	106.5	104	104.3	102	70-130	60-140	2	0-30	
Acetone	59.39	59.09	99	59.26	100	67-133	56-144	0	0-30	
Benzene	79.87	78.73	99	77.45	97	70-130	60-140	2	0-30	
Benzyl Chloride	129.4	123.8	96	114.9	89	38-158	18-178	7	0-30	
Bromodichloromethane	167.5	179.3	107	176.8	106	70-130	60-140	1	0-30	
Bromoform	258.4	269.1	104	262.6	102	63-147	49-161	2	0-30	
Bromomethane	97.08	109.9	113	117.4	121	70-139	58-150	7	0-30	
Carbon Disulfide	77.85	83.37	107	83.36	107	68-146	55-159	0	0-30	
Carbon Tetrachloride	157.3	158.9	101	157.0	100	70-136	59-147	1	0-30	
Chlorobenzene	115.1	116.3	101	113.8	99	70-130	60-140	2	0-30	
Chloroethane	65.96	70.41	107	82.97	126	65-149	51-163	16	0-30	
Chloroform	122.1	121.2	99	120.2	98	70-130	60-140	1	0-30	
Chloromethane	51.63	56.32	109	60.63	117	69-141	57-153	7	0-30	
Dibromochloromethane	213.0	218.3	103	212.7	100	70-138	59-149	3	0-30	
Dichlorodifluoromethane	123.6	127.1	103	126.3	102	67-139	55-151	1	0-30	
Ethylbenzene	108.6	110.1	101	108.3	100	70-130	60-140	2	0-30	
Hexachloro-1,3-Butadiene	266.6	301.5	113	298.3	112	44-146	27-163	1	0-30	
Methylene Chloride	86.84	79.63	92	78.74	91	69-130	59-140	1	0-30	

RPD: Relative Percent Difference.

CL: Control Limits

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

Method:

02/10/16 16-02-0790 N/A EPA TO-15

Project: Hollis / 15179.23

Page 7 of 8

<u>Parameter</u>	<u>Spike</u> Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
Styrene	106.5	101.4	95	99.86	94	65-131	54-142	2	0-30	
Tetrachloroethene	169.6	165.5	98	161.0	95	70-130	60-140	3	0-30	
Toluene	94.21	93.11	99	91.32	97	70-130	60-140	2	0-30	
t-1,2-Dichloroethene	99.12	98.61	99	98.22	99	70-130	60-140	0	0-30	
Trichloroethene	134.3	134.3	100	131.8	98	70-130	60-140	2	0-30	
Trichlorofluoromethane	140.5	148.3	106	147.4	105	63-141	50-154	1	0-30	
Vinyl Acetate	88.03	85.45	97	85.05	97	58-130	46-142	0	0-30	
Vinyl Chloride	63.91	78.74	123	78.43	123	70-134	59-145	0	0-30	
c-1,3-Dichloropropene	113.5	121.4	107	119.3	105	70-130	60-140	2	0-30	
c-1,2-Dichloroethene	99.12	93.51	94	93.61	94	70-130	60-140	0	0-30	
o-Xylene	108.6	109.2	101	107.9	99	69-130	59-140	1	0-30	
t-1,3-Dichloropropene	113.5	125.8	111	124.1	109	70-147	57-160	1	0-30	
p/m-Xylene	217.1	224.8	104	220.9	102	70-132	60-142	2	0-30	
Methyl-t-Butyl Ether (MTBE)	90.13	90.40	100	90.34	100	68-130	58-140	0	0-30	
Isopropanol	61.45	60.54	99	59.53	97	57-135	44-148	2	0-30	
1,1-Difluoroethane	67.54	75.23	111	74.41	110	70-131	60-141	1	0-30	
Naphthalene	131.1	151.6	116	149.5	114	24-144	4-164	1	0-30	

Total number of LCS compounds: 53
Total number of ME compounds: 0

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

Quality Control - LCS

AllWest Environmental, Inc.

Date Received:

02/10/16

2141 Mission Street, Suite 100

Work Order:

16-02-0790

San Francisco, CA 94110-6331

Preparation:

N/A

Method:

EPA TO-3M

Project: Hollis / 15179.23 Page 8 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared Date	e Analyzed LCS B	atch Number
098-01-005-6944	LCS	Air	GC 13	N/A	02/1	0/16 09:46 16021	0L01
Parameter		Spike Added	Conc. Recov	<u>rered</u>	LCS %Rec.	%Rec. CL	Qualifiers
TPH as Gasoline		932500	901300		97	80-120	

Summa Canister Vacuum Summary

Work Order: 16-02-0790				Page 1 of 1
Sample Name	Vacuum Out	Vacuum In	Equipment	Description
SVP-1	-29.50 in Hg	-1.90 in Hg	LC680	Summa Canister 1L
SVP-7	-29.50 in Hg	-4.20 in Hg	LC894	Summa Canister 1L
SVP-2	-29.50 in Hg	-3.20 in Hg	LC1053	Summa Canister 1L
SVP-3	-29.50 in Hg	-3.00 in Hg	SLC138	Summa Canister 1L
SVP-4	-29.50 in Hg	-21.00 in Hg	LC569	Summa Canister 1L
SVP-5	-29.50 in Hg	-22.00 in Hg	LC778	Summa Canister 1L
SVP-6	-29.50 in Hg	-4.50 in Hg	LC207	Summa Canister 1L
SVP-6-AMBIENT-HE	-29.50 in Hg	-9.00 in Hg	LC072	Summa Canister 1L

SG

Glossary of Terms and Qualifiers

Work Order: 16-02-0790 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

X % Recovery and/or RPD out-of-range.

The sample extract was subjected to Silica Gel treatment prior to analysis.

- Z Analyte presence was not confirmed by second column or GC/MS analysis.
 - Solid Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Page 43 of 46 102 2014-07-01 Revision REQUESTED 0935 **ANALYSES** 2/5-8 6 SAZA BUDIN LAB CONTACT OR QUOTE NO 15179.23 Date: 02/10/1/2 DATE: PAGE: SAMPLY NOWINE 4- ASTM DPA46 (0, CA) <u>ہ</u> ج 10.5 1- TO-15 2- TO-3 3- ASTMA9946 (HE) Ñ 23 Ŋ Ś WIE FOLLOWING SCALE FOR 2210 1015 2 | 5 | 16 | 1258 la₁ वाबट 2/8/16 2/8/16 2/5/10 2/8/1 2/5/16 1540 AROVE 30 | 2 | 5 | 16 2 IF INSUFFICENT 16-02-0790 Canister Pressure (in Hg) 30 30 30 8 PRIORITY 30 3 33 LEONARD CALLWETTI. COM / SARA CALLWETTI. OM 655 HOLLIS ST. 18 LEGNARD NILES 1252 1204 1010 0822 2101 ENER JAINE * SITTLE WO NO, / LAB USE ONLY SGMO11 2/8/16 SGM 18412 18/16 SAM 25 15 11 1 SEM ONT 2 ILLIN SGM145|2|6|16 SAN 2017/15/16 SGM249/2/5/116 36M268215/16 PROJECT CONTACT Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) Received by: (Signature/Affiliation SVP-4. SAMPLE PURGE WAS DONE OVER MUCHPLE DAYS Controller 6L or 1L Size **3年** X STANDARD 2212 0897 -c894 <u>co72</u> L1052 S1013 .0207 C569 (055) For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us. Indoor (I) Soil Vap. (SV) Ambient (A) STOP 2/L/16:1604 □ 5 DAYS 2/8/16:0730 2 S 8 S 3 Mg/m3 5VP-6-Ambient 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 2141 MISSION ST. ,STEIDS FIELD ID / POINT OF COLLECTION ALLWEST ENMISONMENTAL □ 48 HR □ 72 HR Calscience S - d \ S SVP-7 2-205 -He ON SAN FRANCISCO 2/6/16:1354 2/8/16: 6710 Relinquehed by: (Signature) SVP-P-EMBER COELT EDF DOTHER □ SAME DAY □ 24 HR eurofins eurofins AIS) 391-2510 START SAMPLEID Relinquished by: (Signature) Relinquished by: (Signature) 5~ dvs SVP-4 5VP-7 SVP-2 2VP-5 Syp-b -He LAB USE ORLY ĮV

Return to Contents

AIR CHAIN-OF-CUSTODY RECORD

Ship From

CAL SCIENCE- CONCORD

2/9/2016

Ship From

CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE

2/9/2016

Ship From

CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY **GARDEN GROVE, CA 92841**

COD: \$0.00 Weight: 0 lb(s) Reference: ALL WEST

Delivery Instructions:

Signature Type: REQUIRED

800-322-5555 www.gso.com

Tracking #: 530855123

NPS

800-322-5555 www.gso.com

Tracking #: 530855124

NPS

800-322-5555 www.gso.com

Tracking #: 530855125

NPS

ORC **GARDEN GROVE**

D92845A

48063644

Print Date: 2/9/2016 1:34 PM

Calscience

WORK ORDER NUMBER: 16-02- 0790

SAMPLE RECEIPT CHECKLIST

COOLER <u></u> OF <u></u>

CLIENT: ALL West		DAT	E: 02 /	<u>/o</u>	/ 2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sedion Thermometer ID: SC4B (CF: +0.3°C); Temperature (w/o CF): ☐ Sample(s) outside temperature criteria (PM/APM contacted ☐ Sample(s) outside temperature criteria but received on ice/o ☐ Sample(s) received at ambient temperature; placed on ice for the Ambient Temperature: ☑ Air ☐ Filter	chilled on same day of		⊐ Blank Checked		
Custody SEAL: Cooler Present and Intact Present but Not Intact Sample(s) Present and Intact Present but Not Intact	□ Not Present □ Not Present	□ N/A	Checked Checked		\sim
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of				No 🗆	N/A
□ No analysis requested □ Not relinquished ☑ No relinquished □ No relinquished ☑ No relinquished □ No					
Aqueous samples for certain analyses received within 15-minum ph Residual Chlorine Dissolved Sulfide Dissolved Proper preservation chemical(s) noted on COC and/or sample con Unpreserved aqueous sample(s) received for certain analyses	ute holding time ed Oxygen ontainer	.,			4
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals Container(s) for certain analysis free of headspace	olved Oxygen (SM 450	0)			4
Tedlar™ bag(s) free of condensation		Lot Numbe		<u> </u>)
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, Preservative: b = buffered, f = filtered, h = HCl, n = HNO₃, na = NaOH, s = H₂SO₄ u = ultra-pure, znna = Zn(CH₂CO₂)₂ + NaOH	□ 250PBn □ 500AGE □ □ □ □ EnCores® () □ □ Other Matrix (J = Jar, P = Plastic, and Z na₂ = Na₂S₂O₃, p = H₃PC	3 □ 500AGJ	□ 500A() [) [GJs g d by:	300

to Contents

Vikas Patel

From: Leonard Niles <leonard@allwest1.com>
Sent: Friday, February 12, 2016 11:34 AM

To: Erick Ovalle

Cc: Vikas Patel; 'Sara Bloom'

Subject: RE: Sample receipt confirmation / 16-02-0790 / Hollis / 15179.23

Erick,

Sample SVP-4 was started 2/6/16 at 1354 and ended 2/8/16 at 0730. The sample was temporarily stopped from 1604 on 2/6/16 to 0710 on 2/8/16. This was in the Special Instructions section on the COC, sorry for the confusion. I don't know where the 2/5/16 ending date came from, that isn't on the COC for that sample.

Len

Leonard Niles, P.G., C.H.G. Senior Project Manager AllWest Environmental, Inc.

2141 Mission Street, Suite 100 San Francisco, CA 94110 office (415) 391-2510 x204 fax (415) 391-2008 Leonard@AllWest1.com

From: Erick Ovalle [mailto:ErickOvalle@eurofinsUS.com]

Sent: Thursday, February 11, 2016 10:22 AM

To: 'Leonard Niles'; Sara Bloom

Cc: Vikas Patel

Subject: Sample receipt confirmation / 16-02-0790 / Hollis / 15179.23

Sample receipt confirmation attached. Please review and advise of any changes required.

Sample 4 (SVP-4) has a starting date of 02/06/16 and an ending time of 02/05/16. Please confirm the date that the sample ended.

Please call with any questions or concerns.

Best Regards, Erick Ovalle Project Manager Assistant

Eurofins Calscience, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427

Calscience

WORK ORDER NUMBER: 16-05-1214

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AllWest Environmental, Inc.

Client Project Name: Hollis Emeryville / 16076.23.28

Attention: Leonard Niles

2141 Mission Street, Suite 100 San Francisco, CA 94110-6331

Vikas Patel

Approved for release on 05/24/2016 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Hollis Emeryville / 16076.23.2	28
---	----

Work Order Number: 16-05-1214

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 ASTM D-1946 Fixed Gases (Air). 4.2 ASTM D-1946 (M) Fixed Gases (H2 and/or He) (Air). 4.3 EPA TO-15 Full List (Air). 4.4 EPA TO-3 (M) TPH Gasoline (Air).	7 7 9 10 22
5	Quality Control Sample Data. 5.1 Sample Duplicate. 5.2 LCS/LCSD.	23 23 24
6	Summa Canister Vacuum Summary	29
7	Sample Analysis Summary	30
8	Glossary of Terms and Qualifiers	31
9	Chain-of-Custody/Sample Receipt Form	32

Work Order Narrative

Work Order: 16-05-1214 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/17/16. They were assigned to Work Order 16-05-1214.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: AllWest Environmental, Inc.

Work Order: Project Name:

16-05-1214 Hollis Emeryville / 16076.23.28

2141 Mission Street, Suite 100 San Francisco, CA 94110-6331

PO Number:

Date/Time

05/17/16 11:25

Received:

Containers:

5 Number of

Leonard Niles Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SVP-12	16-05-1214-1	05/12/16 15:41	1	Air
SVP-13	16-05-1214-2	05/13/16 09:42	1	Air
SVP-14	16-05-1214-3	05/13/16 11:07	1	Air
SVP-15	16-05-1214-4	05/13/16 12:50	1	Air
SVP-16	16-05-1214-5	05/13/16 14:10	1	Air

Detections Summary

Client: AllWest Environmental, Inc. Work Order: 16-05-1214

2141 Mission Street, Suite 100 Project Name: Hollis Emeryville / 16076.23.28

San Francisco, CA 94110-6331 Received: 05/17/16

Attn: Leonard Niles Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
SVP-12 (16-05-1214-1)						
Carbon Dioxide	2.49		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	19.2		0.500	%v	ASTM D-1946	N/A
Helium	0.0920		0.0100	%v	ASTM D-1946 (M)	N/A
Acetone	22		4.8	ug/m3	EPA TO-15	N/A
Tetrachloroethene	19		3.4	ug/m3	EPA TO-15	N/A
Toluene	3.2		1.9	ug/m3	EPA TO-15	N/A
Isopropanol	51		12	ug/m3	EPA TO-15	N/A
Ethanol	9.6		9.4	ug/m3	EPA TO-15	N/A
SVP-13 (16-05-1214-2)						
Carbon Dioxide	7.88		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	15.4		0.500	%v	ASTM D-1946	N/A
Helium	0.807		0.0100	%v	ASTM D-1946 (M)	N/A
Acetone	26		4.8	ug/m3	EPA TO-15	N/A
Tetrachloroethene	4.5		3.4	ug/m3	EPA TO-15	N/A
Toluene	2.2		1.9	ug/m3	EPA TO-15	N/A
Isopropanol	37		12	ug/m3	EPA TO-15	N/A
Ethanol	11		9.4	ug/m3	EPA TO-15	N/A
SVP-14 (16-05-1214-3)						
Carbon Dioxide	3.64		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	18.4		0.500	%v	ASTM D-1946	N/A
Helium	0.0301		0.0100	%v	ASTM D-1946 (M)	N/A
1,2,4-Trimethylbenzene	8.9		7.4	ug/m3	EPA TO-15	N/A
4-Ethyltoluene	3.7		2.5	ug/m3	EPA TO-15	N/A
Acetone	8.9		4.8	ug/m3	EPA TO-15	N/A
Benzene	12		1.6	ug/m3	EPA TO-15	N/A
Ethylbenzene	11		2.2	ug/m3	EPA TO-15	N/A
Tetrachloroethene	11		3.4	ug/m3	EPA TO-15	N/A
Toluene	31		1.9	ug/m3	EPA TO-15	N/A
o-Xylene	8.1		2.2	ug/m3	EPA TO-15	N/A
p/m-Xylene	46		8.7	ug/m3	EPA TO-15	N/A
Ethanol	14		9.4	ug/m3	EPA TO-15	N/A
SVP-15 (16-05-1214-4)						
Carbon Dioxide	2.53		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	17.0		0.500	%v	ASTM D-1946	N/A
Helium	0.0232		0.0100	%v	ASTM D-1946 (M)	N/A
Acetone	11		4.8	ug/m3	EPA TO-15	N/A
Isopropanol	16		12	ug/m3	EPA TO-15	N/A
Ethanol	24		9.4	ug/m3	EPA TO-15	N/A

^{*} MDL is shown

Detections Summary

Client: AllWest Environmental, Inc. Work Order: 16-05-1214

2141 Mission Street, Suite 100 Project Name: Hollis Emeryville / 16076.23.28

San Francisco, CA 94110-6331 Received: 05/17/16

Attn: Leonard Niles Page 2 of 2

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
0)/D 40 (40 05 4044 5)						
SVP-16 (16-05-1214-5)						
Carbon Dioxide	12.4		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	7.54		0.500	%v	ASTM D-1946	N/A
Helium	0.149		0.0100	%v	ASTM D-1946 (M)	N/A
Toluene	5.6		1.9	ug/m3	EPA TO-15	N/A
Tert-Butyl Alcohol (TBA)	6.4		6.1	ug/m3	EPA TO-15	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Qualifiers

Analytical Report

05/17/16 AllWest Environmental, Inc. Date Received: 2141 Mission Street, Suite 100 Work Order: 16-05-1214 San Francisco, CA 94110-6331 Preparation: N/A Method: **ASTM D-1946** Units: Page 1 of 2

Project: Hollis Emeryville / 16076.23.28

<u>Parameter</u>

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-12	16-05-1214-1-A	05/12/16 15:41	Air	GC 65	N/A	05/18/16 15:54	160518L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Methane		ND		0.500	1.00		
Carbon Dioxide		2.49		0.500	1.00		
Oxygen (+ Argon)		19.2		0.500	1.00		
SVP-13	16-05-1214-2-A	05/13/16 09:42	Air	GC 65	N/A	05/18/16 16:14	160518L01
Parameter		Result	-	RL	DF	Qua	alifiers
Methane							
Methane		ND		0.500	1.00		
Carbon Dioxide		ND 7.88		0.500 0.500			
					1.00		

SVP-16	16-05-1214-5-A	05/13/16 14:10	Air	GC 65	N/A	05/18/16 17:32	160518L01
Oxygen (+ Argon)		17.0		0.500	1.00		
Carbon Dioxide		2.53		0.500	1.00		
Methane		ND		0.500	1.00		
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
SVP-15	16-05-1214-4-A	05/13/16 12:50	Air	GC 65	N/A	05/18/16 17:10	160518L01
Oxygen (+ Argon)		18.4		0.500	1.00		
Carbon Dioxide		3.64		0.500	1.00		
Methane		ND		0.500	1.00		

<u>RL</u>

<u>DF</u>

Result

SVP-16	16-05-1214-5-A	05/13/16 14:10	Air	GC 65	N/A	05/18/16 17:32	160518L01
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Methane		ND	C).500	1.00		
Carbon Dioxide		12.4	C).500	1.00		
Oxygen (+ Argon)		7.54	C	0.500	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 AllWest Environmental, Inc.
 Date Received:
 05/17/16

 2141 Mission Street, Suite 100
 Work Order:
 16-05-1214

 San Francisco, CA 94110-6331
 Preparation:
 N/A

 Method:
 ASTM D-1946

 Units:
 %v

Project: Hollis Emeryville / 16076.23.28 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-444-400	N/A	Air	GC 65	N/A	05/18/16 10:55	160518L01
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Methane		ND	C	.500	1.00		
Carbon Dioxide		ND	C	.500	1.00		
Oxygen (+ Argon)		ND	C	.500	1.00		

05/17/16

AllWest Environmental, Inc.

Analytical Report

Date Received:

7 mr v oot Environmental, mo								
2141 Mission Street, Suite 100			Work O	rder:		16-05-1214		
San Francisco, CA 94110-6331		Prepara	ition:		N/A			
•			Method:			AST	TM D-1946 (M)	
			Units:				%v	
Project: Hollis Emeryville / 16076	.23.28		O mo			Pa	age 1 of 1	
.,							-5	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SVP-12	16-05-1214-1-A	05/12/16 15:41	Air	GC 55	N/A	05/18/16 22:33	160518L01	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Helium		0.0920		0.0100	1.00			
SVP-13	16-05-1214-2-A	05/13/16 09:42	Air	GC 55	N/A	05/18/16 22:06	160518L01	
Parameter		Result	-	RL	<u>DF</u>	Qua	alifiers	
Helium		0.807		0.0100	1.00			
SVP-14	16-05-1214-3-A	05/13/16 11:07	Air	GC 55	N/A	05/18/16 19:28	160518L01	
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers	
Helium		0.0301		0.0100	1.00			
SVP-15	16-05-1214-4-A	05/13/16 12:50	Air	GC 55	N/A	05/18/16 18:27	160518L01	
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers	
Helium		0.0232		0.0100	1.00			
SVP-16	16-05-1214-5-A	05/13/16 14:10	Air	GC 55	N/A	05/18/15 17:33	160518L01	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Helium		0.149		0.0100	1.00			
Method Blank	099-12-872-938	N/A	Air	GC 55	N/A	05/18/15 10:40	160518L01	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Helium		ND		0.0100	1.00			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-05-1214 N/A EPA TO-15

05/17/16

Units:

ug/m3 Page 1 of 12

Project: Hollis Emeryville / 16076.23.28

Date/Time Date/Time Lab Sample Instrument Date Prepared QC Batch ID Client Sample Number Matrix Number Collected Analyzed 05/12/16 15:41 SVP-12 GC/MS II 05/22/16 16-05-1214-1-A Air N/A 160521L02 06:05 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers 1,1,1-Trichloroethane ND 2.7 1.00 ND 1.00 1,1,2,2-Tetrachloroethane 6.9 ND 11 1,1,2-Trichloro-1,2,2-Trifluoroethane 1.00 1,1,2-Trichloroethane ND 2.7 1.00 ND 2.0 1,1-Dichloroethane 1.00 1,1-Dichloroethene ND 2.0 1.00 1,2,4-Trimethylbenzene ND 7.4 1.00 1.2-Dibromoethane ND 3.8 1.00 Dichlorotetrafluoroethane ND 14 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3,5-Trimethylbenzene ND 2.5 1.00 ND 1,3-Dichlorobenzene 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 ND 2-Butanone 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyltoluene ND 2.5 1.00 4-Methyl-2-Pentanone ND 1.00 6.1 Acetone 22 4.8 1.00 Benzene ND 1.6 1.00 Benzyl Chloride 7.8 ND 1.00 Bromodichloromethane ND 1.00 3.4 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 ND Chloroethane 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 1.00 4.3 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene ND 2.2 1.00 Hexachloro-1,3-Butadiene ND 16 1.00

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Description	Description	0
Project: Hollis Emeryville / 16076.23.28		Page 2 of 12
	Units:	ug/m3
	Method:	EPA TO-15
San Francisco, CA 94110-6331	Preparation:	N/A
2141 Mission Street, Suite 100	Work Order:	16-05-1214
AllWest Environmental, Inc.	Date Received:	05/17/16

Froject. Hollis Efficient ville / 10070.23.20				Fage 2 01 12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Methylene Chloride	ND	17	1.00	
Styrene	ND	6.4	1.00	
Tetrachloroethene	19	3.4	1.00	
Toluene	3.2	1.9	1.00	
t-1,2-Dichloroethene	ND	2.0	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
Vinyl Acetate	ND	7.0	1.00	
Vinyl Chloride	ND	1.3	1.00	
c-1,3-Dichloropropene	ND	2.3	1.00	
c-1,2-Dichloroethene	ND	2.0	1.00	
o-Xylene	ND	2.2	1.00	
t-1,3-Dichloropropene	ND	4.5	1.00	
p/m-Xylene	ND	8.7	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Isopropanol	51	12	1.00	
1,1-Difluoroethane	ND	5.4	1.00	
Diisopropyl Ether (DIPE)	ND	8.4	1.00	
Ethanol	9.6	9.4	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	8.4	1.00	
Naphthalene	ND	26	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00	
Tert-Butyl Alcohol (TBA)	ND	6.1	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	89	68-134		
1,2-Dichloroethane-d4	103	67-133		
Toluene-d8	88	70-130		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-05-1214 N/A EPA TO-15

05/17/16

Units:

ug/m3 Page 3 of 12

Project: Hollis Emeryville / 16076.23.28

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-13	16-05-1214-2-A	05/13/16 09:42	Air	GC/MS II	N/A	05/22/16 06:57	160521L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
1,1,1-Trichloroethane		ND	2.7	7	1.00		
1,1,2,2-Tetrachloroethane		ND	6.9)	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	11		1.00		
1,1,2-Trichloroethane		ND	2.7	7	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
1,2,4-Trimethylbenzene		ND	7.4	1	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
1,3,5-Trimethylbenzene		ND	2.5	5	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
2-Butanone		ND	4.4	1	1.00		
2-Hexanone		ND	6.1	I	1.00		
4-Ethyltoluene		ND	2.5	5	1.00		
4-Methyl-2-Pentanone		ND	6.1	I	1.00		
Acetone		26	4.8	3	1.00		
Benzene		ND	1.6	6	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	1	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9	9	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1	l	1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4	1	1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
Ethylbenzene		ND	2.2	2	1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

1,1-Difluoroethane

Ethanol

Naphthalene

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Butyl Alcohol (TBA)

Tert-Amyl-Methyl Ether (TAME)

Analytical Report

AllWest Environmental, Inc.				05/17/16		
2141 Mission Street, Suite 100				16-05-1214		
San Francisco, CA 94110-6331	F	reparation:		N/A		
,	N	lethod:		EPA TO-15		
		Inits:		ug/m3		
Project: Hollis Emeryville / 16076.23.28			Page 4 of 12			
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>		
Methylene Chloride	ND	17	1.00			
Styrene	ND	6.4	1.00			
Tetrachloroethene	4.5	3.4	1.00			
Toluene	2.2	1.9	1.00			
t-1,2-Dichloroethene	ND	2.0	1.00			
Trichloroethene	ND	2.7	1.00			
Trichlorofluoromethane	ND	5.6	1.00			
Vinyl Acetate	ND	7.0	1.00			
Vinyl Chloride	ND	1.3	1.00			
c-1,3-Dichloropropene	ND	2.3	1.00			
c-1,2-Dichloroethene	ND	2.0	1.00			
o-Xylene	ND	2.2	1.00			
t-1,3-Dichloropropene	ND	4.5	1.00			
p/m-Xylene	ND	8.7	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00			
Isopropanol	37	12	1.00			

ND

ND

11

ND

ND

ND

ND

5.4

8.4

9.4

8.4

26

8.4

6.1

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Qualifiers

Surrogate	Rec. (%)	Control Limits
1,4-Bromofluorobenzene	91	68-134
1,2-Dichloroethane-d4	104	67-133
Toluene-d8	88	70-130

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

16-05-1214 N/A

Method: Units: EPA TO-15 ug/m3

05/17/16

Project: Hollis Emeryville / 16076.23.28

Page 5 of 12

11-107 Season 11-107 Parameter Result RL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1,1,1-Trichloroethane ND 2,7 1,00 1,1,2-Trichloroethane ND 6,9 1,00 1,1,2-Trichloroethane ND 11 1,00 1,1-E-Trichloroethane ND 2,7 1,00 1,1-Dichloroethane ND 2,0 1,00 1,1-Dichloroethane ND 2,0 1,00 1,2-L-Trimethylbenzene 8,9 7,4 1,00 1,2-Dichloroethane ND 3,8 1,00 1,2-Dichloroethane ND 1,4 1,00 1,2-Dichloroethane ND 3,0 1,00 1,2-Dichloroethane ND 2,0 1,00 1,2-Dichloroethane ND 2,0 1,00 1,2-Dichloroethane ND 2,0 1,00 1,2-Dichloroethane ND 2,3 1,00 1,2-Dichloroethane ND 2,3 1,00 1,2-Dichloroethane ND 2,3 1,00 1,3-Dichloroethane ND 4,4 1,00 2	SVP-14	16-05-1214-3-A		Air	GC/MS II	N/A	05/22/16 07:48	160521L02
1,1,2,2-Tetrachloroethane ND 6.9 1.00 1,1,2-Trichloro-1,2,2-Trillucorethane ND 11 1.00 1,1,2-Trichloro-1,2,2-Trillucorethane ND 2.7 1.00 1,1-Dichloroethane ND 2.0 1.00 1,1-Dichloroethane ND 2.0 1.00 1,1-Dichloroethane ND 3.8 1.00 1,2-Dichloroethane ND 3.8 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloropthane ND 2.0 1.00 1,2-Dichloropthane ND 2.0 1.00 1,2-Dichloropthane ND 2.3 1.00 1,2-Dichlorobenzene ND 2.5 1.00 1,3-5-Trimethylbenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 4.4 1.00 1,4-Dichlorobenzene ND 6.1 1.00<	<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 11 1,00 1,1,2-Trichloroethane ND 2.7 1,00 1,1,1-Dichloroethane ND 2.0 1,00 1,1-Dichloroethane ND 2.0 1,00 1,2-Hrimethythenzene 8.9 7.4 1,00 1,2-Dirhoroethane ND 3.8 1,00 1,2-Dichloroethane ND 3.0 1,00 1,2-Dichloroethane ND 3.0 1,00 1,2-Dichloropapane ND 2.3 1,00 1,3-Dichlorobenzene ND 2.3 1,00 1,3-Dichlorobenzene ND 3.0 1,00 1,4-Dichlorobenzene ND 3.0 1,00 1,4-Dichlorobenzene ND 3.0 1,00 2-Butanone ND 4.4 1,00 2-Hexanone ND 6.1 1,00 4-Ethylotlolene 3.7 2.5 1,00 4-Kethylotlolene 3.9 4.8 1,00 Benzyl	1,1,1-Trichloroethane		ND	2.7	7	1.00		
1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane		ND	6.9)	1.00		
1,1-Dichloroethane ND 2.0 1.00 1,1-Dichloroethene ND 2.0 1.00 1,1-Dichloroethene ND 2.0 1.00 1,2-Dichloroethane ND 3.8 1.00 Dichlorotetrafluoroethane ND 1.4 1.00 1,2-Dichloroethane ND 3.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-Dichlorobenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Butanone ND 6.1 1.00 2-Hexanone ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzone ND 7.8	1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	11		1.00		
1,1-Dichloroethene ND 2.0 1.00 1,2,4-Trimethytbenzene 8.9 7.4 1.00 1,2-Dichroroethane ND 3.8 1.00 Dichloroteraflurorethane ND 14 1.00 1,2-Dichloroethane ND 3.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-5-Trimethytbenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 3.0 1.00 2-Hexanone ND 4.4 1.00 2-Etwanone ND 6.1 1.00 4-Ethylfoluene 3.7 2.5 1.00 4-Ethylfoluene 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzene ND 3.4	1,1,2-Trichloroethane		ND	2.7	7	1.00		
1,2,4-Trimethylbenzene 8.9 7.4 1.00 1,2-Dishloroethane ND 3.8 1.00 Dichlorotetrafluoroethane ND 14 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloroptenzene ND 2.0 1.00 1,2-Dichloroppane ND 2.3 1.00 1,3-5-Trimethylbenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Bustanone ND 4.4 1.00 2-Bustanone ND 6.1 1.00 4-Ethyltoluene 3.7 2.5 1.00 4-Ethyltoluene 3.7 2.5 1.00 4-Ethyltoluene 8.9 4.8 1.00 Benzyl Chloride ND 7.8 1.00 Benzyl Chloride ND 7.8 1.00 Bermodichloromethane ND	1,1-Dichloroethane		ND	2.0)	1.00		
1,2-Dibromothane ND 3.8 1.00 1,2-Dichlorobetrafluoroethane ND 14 1.00 1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloropropane ND 2.0 1.00 1,3-Dichloropropane ND 2.3 1.00 1,3-Dichlorobenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Eutanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethytlouene 3.7 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 8-Benzene 12 1.6 1.00 8-Benzene 12 1.6 1.00 8-Benzene ND 7.8 1.00 8-Benzene ND 3.4 1.00 8-Bromofichloromethane ND 3.4 1.00 8-Bromofichloromethane ND 3.1 1.00 8-Bromofichloromethane ND 1.9 1.00 8-Bromofichloromethane ND 3.1 1.00 8-Bromofichloromethane ND 2.3 1.00 8-Bromofichloromethane ND 1.3 1.00 8-Bromofichloromethane ND 1.0 1.00 9-Bromofichloromethane ND 1.0 1.00 9-Bromofichloromethane ND 1.0 1.00 9-Bromofichloromethane ND 1.0 1.00 9-Bromofichloromethane ND	1,1-Dichloroethene		ND	2.0)	1.00		
Dichlorotetraffluoroethane ND 14 1.00 1.2-Dichlorobenzene ND 3.0 1.00 1.00 1.2-Dichlorobenzene ND 2.0 1.00 1.00 1.2-Dichloroethane ND 2.3 1.00 1.00 1.2-Dichloropropane ND 2.5 1.00 1.3-Dichlorobenzene ND 2.5 1.00 1.00 1.3-Dichlorobenzene ND 3.0 1.00 1.00 1.4-Dichlorobenzene ND 3.0 1.00 1.00 1.4-Dichlorobenzene ND 4.4 1.00	1,2,4-Trimethylbenzene		8.9	7.4	ļ	1.00		
1,2-Dichlorobenzene ND 3.0 1.00 1,2-Dichloroerthane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-Frimethylbenzene ND 2.5 1.00 1,3-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Hethyltoluene 3.7 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 4-Rectone 8.9 4.8 1.00 Benzyl Chloride ND 7.8 1.00 Bernondichloromethane ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromomethane ND 1.9 1.00 Carbon Tetrachloride ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chloroebrane ND 1.3 1.00 Chloroethane ND 1.3	1,2-Dibromoethane		ND	3.8	3	1.00		
1,2-Dichloroethane ND 2.0 1.00 1,2-Dichloropropane ND 2.3 1.00 1,3-Dichlorobenzene ND 2.5 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1,4-Dichlorobenzene ND 3.0 1.00 2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyloluene 3.7 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzene 12 1.6 1.00 Bermodichloromethane ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 4.3 1.00	Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichloropropane ND 2.3 1.00 1,3,5-Trimethylbenzene ND 2.5 1.00 1,3,5-Trimethylbenzene ND 3.0 1.00 1.00 1,4-Dichlorobenzene ND 3.0 1.00 1.	1,2-Dichlorobenzene		ND	3.0)	1.00		
ND 2.5 1.00 1.0	1,2-Dichloroethane		ND	2.0)	1.00		
1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 3,0 1,00 1,4-Dichlorobenzene ND 4,4 1,00 2-Hexanone ND 6,1 1,00 4-Hexanone ND 6,1 1,00 4-Hexanone ND 6,1 1,00 4-Hexanone ND 6,1 1,00 4-Hexanone ND 6,1 1,00 4-Methyl-2-Pentanone ND 6,1 1,00 Acetone 8,9 4,8 1,00 Benzene 12 1,6 1,00 Benzene ND 7,8 1,00 Benzene ND 7,8 1,00 Benzenoromichloromethane ND 7,8 1,00 Benzenoromichloromethane ND 7,8 1,00 Benzenoromichloromethane ND 1,9 1,00 Carbon Disulfide ND 1,9 1,00 Carbon Tetrachloride ND 3,1 1,00 Chlorobenzene ND 1,3 1,00 Chlorobenzene ND 1,3 1,00 Chlorotom ND 2,3 1,00 Chlorotom Chlorotom ND 1,3 1,00 Chlorotom Chlorotom ND 1,0 1,00 Chlorotomethane ND 1,00 Chloro	1,2-Dichloropropane		ND	2.3	3	1.00		
1,4-Dichlorobenzene	1,3,5-Trimethylbenzene		ND	2.5	5	1.00		
2-Butanone ND 4.4 1.00 2-Hexanone ND 6.1 1.00 4-Ethyltoluene 3.7 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromomethane ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chloroberaene ND 3.1 1.00 Chlorobethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 4.3 1.00 Dibromochloromethane ND 4.3 1.00 Dicklorodifluoromethane ND 2.5 1.00 Ethylbezene 11 2.2 1.00 <td>1,3-Dichlorobenzene</td> <td></td> <td>ND</td> <td>3.0</td> <td>)</td> <td>1.00</td> <td></td> <td></td>	1,3-Dichlorobenzene		ND	3.0)	1.00		
ND 6.1 1.00 1.0	1,4-Dichlorobenzene		ND	3.0)	1.00		
4-Ethyltoluene 3.7 2.5 1.00 4-Methyl-2-Pentanone ND 6.1 1.00 Acetone 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 3.1 1.00 Chlorothane ND 1.3 1.00 Chlorothane ND 1.0 1.00 Chlorothane ND 1.0 1.00 Chlorothane ND 1.0 1.00 Chlorothane ND 1.0 1.00 Chloromethane ND 1.0 1.00 Chlorothoromethane ND 1.0 1.00 Chlorothoromethane ND 2.5 1.00 Ethylbenzene 11 1 2.2 1.00	2-Butanone		ND	4.4	ļ	1.00		
4-Methyl-2-Pentanone ND 6.1 1.00 Acetone 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 3.1 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 1.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	2-Hexanone		ND	6.1	ſ	1.00		
Acetone 8.9 4.8 1.00 Benzene 12 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromodichloromethane ND 5.2 1.00 Bromodichloromethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 3.1 1.00 Chlorothane ND 1.3 1.00 Chloroform ND 1.3 1.00 Chloroform ND 1.3 1.00 Chloroform ND 1.3 1.00 Chloroform ND 1.3 1.00 Chlorothane ND 1.0 1.00 Chlorothane ND 1.0 1.00 Chloromethane ND 1.0 1.00 Chlorodifluoromethane ND 1.00 Chlorodifluorome	4-Ethyltoluene		3.7	2.5	5	1.00		
Benzene 12 1.6 1.00 Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chlorothane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	4-Methyl-2-Pentanone		ND	6.1		1.00		
Benzyl Chloride ND 7.8 1.00 Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Acetone		8.9	4.8	3	1.00		
Bromodichloromethane ND 3.4 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Benzene		12	1.6	3	1.00		
Bromoform ND 5.2 1.00 Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Benzyl Chloride		ND	7.8	3	1.00		
Bromomethane ND 1.9 1.00 Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Bromodichloromethane		ND	3.4	ļ	1.00		
Carbon Disulfide ND 6.2 1.00 Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Bromoform		ND	5.2	2	1.00		
Carbon Tetrachloride ND 3.1 1.00 Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Bromomethane		ND	1.9)	1.00		
Chlorobenzene ND 2.3 1.00 Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Carbon Disulfide		ND	6.2	2	1.00		
Chloroethane ND 1.3 1.00 Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Carbon Tetrachloride		ND	3.1		1.00		
Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Chlorobenzene		ND	2.3	3	1.00		
Chloroform ND 2.4 1.00 Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Chloroethane		ND	1.3	3	1.00		
Chloromethane ND 1.0 1.00 Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Chloroform					1.00		
Dibromochloromethane ND 4.3 1.00 Dichlorodifluoromethane ND 2.5 1.00 Ethylbenzene 11 2.2 1.00	Chloromethane		ND	1.0)	1.00		
Ethylbenzene 11 2.2 1.00	Dibromochloromethane					1.00		
Ethylbenzene 11 2.2 1.00	Dichlorodifluoromethane		ND					
<i>,</i>	Ethylbenzene							
110 1100	Hexachloro-1,3-Butadiene		ND	16		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1214
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 6 of 12

Project: Hollis Emeryville / 16076.23.28				Page 6 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Methylene Chloride	ND	17	1.00	
Styrene	ND	6.4	1.00	
Tetrachloroethene	11	3.4	1.00	
Toluene	31	1.9	1.00	
t-1,2-Dichloroethene	ND	2.0	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
Vinyl Acetate	ND	7.0	1.00	
Vinyl Chloride	ND	1.3	1.00	
c-1,3-Dichloropropene	ND	2.3	1.00	
c-1,2-Dichloroethene	ND	2.0	1.00	
o-Xylene	8.1	2.2	1.00	
t-1,3-Dichloropropene	ND	4.5	1.00	
p/m-Xylene	46	8.7	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Isopropanol	ND	12	1.00	
1,1-Difluoroethane	ND	5.4	1.00	
Diisopropyl Ether (DIPE)	ND	8.4	1.00	
Ethanol	14	9.4	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	8.4	1.00	
Naphthalene	ND	26	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00	
Tert-Butyl Alcohol (TBA)	ND	6.1	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	95	68-134		
1,2-Dichloroethane-d4	103	67-133		
Toluene-d8	88	70-130		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-05-1214 N/A EPA TO-15

Units:

ug/m3

05/17/16

Project: Hollis Emeryville / 16076.23.28

Page 7 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-15	16-05-1214-4-A	05/13/16 12:50	Air	GC/MS II	N/A	05/22/16 08:41	160521L02
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
1,1,1-Trichloroethane		ND	2	.7	1.00		
1,1,2,2-Tetrachloroethane		ND	6	.9	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	1	1	1.00		
1,1,2-Trichloroethane		ND	2	.7	1.00		
1,1-Dichloroethane		ND	2	.0	1.00		
1,1-Dichloroethene		ND	2	.0	1.00		
1,2,4-Trimethylbenzene		ND	7	.4	1.00		
1,2-Dibromoethane		ND	3	.8	1.00		
Dichlorotetrafluoroethane		ND	1	4	1.00		
1,2-Dichlorobenzene		ND	3	.0	1.00		
1,2-Dichloroethane		ND	2	.0	1.00		
1,2-Dichloropropane		ND	2	.3	1.00		
1,3,5-Trimethylbenzene		ND		.5	1.00		
1,3-Dichlorobenzene		ND	3	.0	1.00		
1,4-Dichlorobenzene		ND		.0	1.00		
2-Butanone		ND	4	.4	1.00		
2-Hexanone		ND	6	.1	1.00		
4-Ethyltoluene		ND	2	.5	1.00		
4-Methyl-2-Pentanone		ND	6	.1	1.00		
Acetone		11	4	.8	1.00		
Benzene		ND		.6	1.00		
Benzyl Chloride		ND	7	.8	1.00		
Bromodichloromethane		ND		.4	1.00		
Bromoform		ND	5	.2	1.00		
Bromomethane		ND	1	.9	1.00		
Carbon Disulfide		ND		.2	1.00		
Carbon Tetrachloride		ND	3	.1	1.00		
Chlorobenzene		ND		.3	1.00		
Chloroethane		ND	1	.3	1.00		
Chloroform		ND		.4	1.00		
Chloromethane		ND		.0	1.00		
Dibromochloromethane		ND		.3	1.00		
Dichlorodifluoromethane		ND		.5	1.00		
Ethylbenzene		ND		.2	1.00		
Hexachloro-1,3-Butadiene		ND	1		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Ethanol

Naphthalene

Ethyl-t-Butyl Ether (ETBE)

Tert-Butyl Alcohol (TBA)

Tert-Amyl-Methyl Ether (TAME)

Analytical Report

AllWest Environmental, Inc.	,			05/17/16		
2141 Mission Street, Suite 100				16-05-1214		
San Francisco, CA 94110-6331	Р	reparation:		N/A		
	M	ethod:		EPA TO-15		
	U	nits:		ug/m3		
Project: Hollis Emeryville / 16076.23.28				Page 8 of 12		
Parameter	Result	<u>RL</u>	<u>DF</u>	Qualifiers		
Methylene Chloride	ND	17	1.00			
Styrene	ND	6.4	1.00			
Tetrachloroethene	ND	3.4	1.00			
Toluene	ND	1.9	1.00			
t-1,2-Dichloroethene	ND	2.0	1.00			
Trichloroethene	ND	2.7	1.00			
Trichlorofluoromethane	ND	5.6	1.00			
Vinyl Acetate	ND	7.0	1.00			
Vinyl Chloride	ND	1.3	1.00			
c-1,3-Dichloropropene	ND	2.3	1.00			
c-1,2-Dichloroethene	ND	2.0	1.00			
o-Xylene	ND	2.2	1.00			
t-1,3-Dichloropropene	ND	4.5	1.00			
p/m-Xylene	ND	8.7	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00			
Isopropanol	16	12	1.00			
1,1-Difluoroethane	ND	5.4	1.00			
Diisopropyl Ether (DIPE)	ND	8.4	1.00			

24

ND

ND

ND

ND

9.4

8.4

26

6.1

1.00

1.00

1.00

1.00

1.00

Qualifiers

Surrogate	Rec. (%)	Control Lim
1,4-Bromofluorobenzene	101	68-134
1,2-Dichloroethane-d4	98	67-133
Toluene-d8	86	70-130

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

Units:

N/A EPA TO-15 ug/m3

05/17/16

16-05-1214

Project: Hollis Emeryville / 16076.23.28

Page 9 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-16	16-05-1214-5-A	05/13/16 14:10	Air	GC/MS II	N/A	05/22/16 09:35	160521L02
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
1,1,1-Trichloroethane		ND	2.7	7	1.00		
1,1,2,2-Tetrachloroethane		ND	6.9	9	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	11		1.00		
1,1,2-Trichloroethane		ND	2.7	7	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
1,2,4-Trimethylbenzene		ND	7.4	4	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
1,3,5-Trimethylbenzene		ND	2.5	5	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
2-Butanone		ND	4.4	4	1.00		
2-Hexanone		ND	6.	1	1.00		
4-Ethyltoluene		ND	2.5	5	1.00		
4-Methyl-2-Pentanone		ND	6.	1	1.00		
Acetone		ND	4.8	3	1.00		
Benzene		ND	1.6	6	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	4	1.00		
Bromoform		ND	5.2		1.00		
Bromomethane		ND	1.9	9	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.	1	1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4		1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3		1.00		
Dichlorodifluoromethane		ND	2.5		1.00		
Ethylbenzene		ND	2.2		1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1214
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 10 of 12

Project: Hollis Emeryville / 16076.23.28				Page 10 of 12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Methylene Chloride	ND	17	1.00	
Styrene	ND	6.4	1.00	
Tetrachloroethene	ND	3.4	1.00	
Toluene	5.6	1.9	1.00	
t-1,2-Dichloroethene	ND	2.0	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
Vinyl Acetate	ND	7.0	1.00	
Vinyl Chloride	ND	1.3	1.00	
c-1,3-Dichloropropene	ND	2.3	1.00	
c-1,2-Dichloroethene	ND	2.0	1.00	
o-Xylene	ND	2.2	1.00	
t-1,3-Dichloropropene	ND	4.5	1.00	
p/m-Xylene	ND	8.7	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Isopropanol	ND	12	1.00	
1,1-Difluoroethane	ND	5.4	1.00	
Diisopropyl Ether (DIPE)	ND	8.4	1.00	
Ethanol	ND	9.4	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	8.4	1.00	
Naphthalene	ND	26	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00	
Tert-Butyl Alcohol (TBA)	6.4	6.1	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	88	68-134		
1,2-Dichloroethane-d4	100	67-133		
Toluene-d8	87	70-130		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

16-05-1214 N/A

05/17/16

Method:

EPA TO-15

Units:

ug/m3 Page 11 of 12

Project: Hollis Emeryville / 16076.23.28

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-021-16918	N/A	Air	GC/MS II	N/A	05/21/16 18:16	160521L02
Parameter		Result	RL		<u>DF</u>	Qua	lifiers
1,1,1-Trichloroethane		ND	2.7	7	1.00		
1,1,2,2-Tetrachloroethane		ND	6.9)	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	11		1.00		
1,1,2-Trichloroethane		ND	2.7	7	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
1,2,4-Trimethylbenzene		ND	7.4	ļ	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
1,3,5-Trimethylbenzene		ND	2.5	5	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
2-Butanone		ND	4.4	ļ	1.00		
2-Hexanone		ND	6.1		1.00		
4-Ethyltoluene		ND	2.5	5	1.00		
4-Methyl-2-Pentanone		ND	6.1		1.00		
Acetone		ND	4.8	3	1.00		
Benzene		ND	1.6	3	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	ļ	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9)	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1	l	1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4	ļ	1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
Ethylbenzene		ND	2.2	2	1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

1,2-Dichloroethane-d4

Toluene-d8

Analytical Report

AllWest Environmental, Inc.	Da	te Received:	05/17/16		
2141 Mission Street, Suite 100	W	ork Order:	16-05-1214 N/A		
San Francisco, CA 94110-6331	Pr				
			EPA TO-15		
	Method: Units:			ug/m3	
Project: Hollis Emeryville / 16076.23.28		iito.	Page 12 of 12		
Froject. Hollis Emeryville / 100/0.23.20					
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Methylene Chloride	ND	17	1.00		
Styrene	ND	6.4	1.00		
Tetrachloroethene	ND	3.4	1.00		
Toluene	ND	1.9	1.00		
t-1,2-Dichloroethene	ND	2.0	1.00		
Trichloroethene	ND	2.7	1.00		
Trichlorofluoromethane	ND	5.6	1.00		
Vinyl Acetate	ND	7.0	1.00		
Vinyl Chloride	ND	1.3	1.00		
c-1,3-Dichloropropene	ND	2.3	1.00		
c-1,2-Dichloroethene	ND	2.0	1.00		
o-Xylene	ND	2.2	1.00		
t-1,3-Dichloropropene	ND	4.5	1.00		
p/m-Xylene	ND	8.7	1.00		
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00		
Isopropanol	ND	12	1.00		
1,1-Difluoroethane	ND	5.4	1.00		
Diisopropyl Ether (DIPE)	ND	8.4	1.00		
Ethanol	ND	9.4	1.00		
Ethyl-t-Butyl Ether (ETBE)	ND	8.4	1.00		
Naphthalene	ND	26	1.00		
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00		
Tert-Butyl Alcohol (TBA)	ND	6.1	1.00		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	88	68-134			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

103

90

67-133

70-130

AllWest Environmental, Inc.

2141 Mission Street, Suite 100

San Francisco, CA 94110-6331

Preparation:

Method:

Units:

Units:

Page 1 of 1

Project: Hollis Emeryville / 16076.23.28							Page 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SVP-12	16-05-1214-1-A	05/12/16 15:41	Air	GC 13	N/A	05/18/16 09:49	160518L01	
<u>Parameter</u>	·	Result		RL	<u>DF</u>	Qua	alifiers	
TPH as Gasoline		ND		7000	1.00			
SVP-13	16-05-1214-2-A	05/13/16 09:42	Air	GC 13	N/A	05/18/16 10:01	160518L01	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
TPH as Gasoline		ND		7000	1.00			
SVP-14	16-05-1214-3-A	05/13/16 11:07	Air	GC 13	N/A	05/18/16 10:15	160518L01	
<u>Parameter</u>		Result	-	RL	<u>DF</u>	Qua	alifiers	
TPH as Gasoline		ND		7000	1.00			
SVP-15	16-05-1214-4-A	05/13/16 12:50	Air	GC 13	N/A	05/18/16 10:25	160518L01	
<u>Parameter</u>		Result		RL	<u>DF</u>	Qualifiers		
TPH as Gasoline		ND		7000	1.00			
SVP-16	16-05-1214-5-A	05/13/16 14:10	Air	GC 13	N/A	05/18/16 10:35	160518L01	
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers	
TPH as Gasoline		ND		7000	1.00			

Method Blank	098-01-005-7132	N/A	Air	GC 13	N/A	05/18/16 09:34	160518L01
Parameter		Result		RL	<u>DF</u>	Qua	<u>alifiers</u>
TPH as Gasoline		ND		7000	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Quality Control - Sample Duplicate

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

16-05-1214 N/A

05/17/16

Method:

EPA TO-3M

Project: Hollis Emeryville / 16076.23.28

Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
16-05-1303-1	Sample	Air	GC 13	N/A	05/18/16 15:13	160518D01
16-05-1303-1	Sample Duplicate	Air	GC 13	N/A	05/18/16 15:27	160518D01
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
TPH as Gasoline		336100	376900	11	0-20	

Quality Control - LCS/LCSD

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

16-05-1214 N/A

05/17/16

Method:

ASTM D-1946

Project: Hollis Emeryville / 16076.23.28

Page 1 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared Date	e Analyzed	LCS/LCSD B	atch Number
099-16-444-400	LCS	Air		GC 65	N/A	05/1	8/16 10:10	160518L01	
099-16-444-400	LCSD	Air		GC 65	N/A	05/1	8/16 10:36	160518L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Methane	4.500	3.650	81	3.657	81	80-120	0	0-30	
Carbon Dioxide	15.00	14.66	98	15.01	100	80-120	2	0-30	
Carbon Monoxide	6.990	7.050	101	7.032	101	80-120	0	0-30	
Oxygen (+ Argon)	4.010	3.950	99	3.900	97	80-120	1	0-30	
Nitrogen	69.50	65.01	94	64.64	93	80-120	1	0-30	

ASTM D-1946 (M)

Quality Control - LCS/LCSD

AllWest Environmental, Inc.

Date Received:

05/17/16

2141 Mission Street, Suite 100

Work Order:

16-05-1214

San Francisco, CA 94110-6331

Preparation:

N/A

Method:

Project: Hollis Emeryville / 16076.23.28 Page 2 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD B	atch Number
099-12-872-938	LCS	Air		GC 55	N/A	05/18	8/16 09:42	160518L01	
099-12-872-938	LCSD	Air		GC 55	N/A	05/18	8/15 10:09	160518L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Helium	1.000	0.9601	96	0.9729	97	80-120	1	0-30	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 05/17/16 16-05-1214 N/A

Method:

EPA TO-15

Project: Hollis Emeryville / 16076.23.28

Page 3 of 5

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-021-16918	LCS		Air	G	C/MS II	N/A	05/21/1	6 15:13	160521L02	
095-01-021-16918	LCSD		Air	G	C/MS II	N/A	05/21/1	16 16:04	160521L02	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
1,1,1-Trichloroethane	136.4	140.4	103	138.6	102	70-130	60-140	1	0-30	
1,1,2,2-Tetrachloroethane	171.6	160.6	94	152.8	89	63-130	52-141	5	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	191.6	201.6	105	199.1	104	70-136	59-147	1	0-30	
1,1,2-Trichloroethane	136.4	130.4	96	128.9	94	70-130	60-140	1	0-30	
1,1-Dichloroethane	101.2	92.50	91	91.18	90	70-130	60-140	1	0-30	
1,1-Dichloroethene	99.12	103.9	105	101.6	103	70-135	59-146	2	0-30	
1,2,4-Trimethylbenzene	122.9	131.1	107	125.2	102	60-132	48-144	5	0-30	
1,2-Dibromoethane	192.1	200.6	104	191.0	99	70-133	60-144	5	0-30	
Dichlorotetrafluoroethane	174.8	194.6	111	190.0	109	51-135	37-149	2	0-30	
1,2-Dichlorobenzene	150.3	179.5	119	167.8	112	48-138	33-153	7	0-30	
1,2-Dichloroethane	101.2	107.8	107	106.7	105	70-132	60-142	1	0-30	
1,2-Dichloropropane	115.5	100.8	87	99.78	86	70-130	60-140	1	0-30	
1,3,5-Trimethylbenzene	122.9	130.2	106	124.9	102	62-130	51-141	4	0-30	
1,3-Dichlorobenzene	150.3	185.5	123	175.8	117	56-134	43-147	5	0-30	
1,4-Dichlorobenzene	150.3	178.5	119	166.8	111	52-136	38-150	7	0-30	
2-Butanone	73.73	68.52	93	67.27	91	66-132	55-143	2	0-30	
2-Hexanone	102.4	102.3	100	97.57	95	70-136	59-147	5	0-30	
4-Ethyltoluene	122.9	129.6	105	124.0	101	68-130	58-140	4	0-30	
4-Methyl-2-Pentanone	102.4	98.25	96	96.54	94	70-130	60-140	2	0-30	
Acetone	59.39	56.17	95	56.18	95	67-133	56-144	0	0-30	
Benzene	79.87	75.55	95	74.72	94	70-130	60-140	1	0-30	
Benzyl Chloride	129.4	134.3	104	123.6	95	38-158	18-178	8	0-30	
Bromodichloromethane	167.5	175.2	105	172.7	103	70-130	60-140	1	0-30	
Bromoform	258.4	336.0	130	320.6	124	63-147	49-161	5	0-30	
Bromomethane	97.08	97.46	100	95.71	99	70-139	58-150	2	0-30	
Carbon Disulfide	77.85	67.17	86	66.36	85	68-146	55-159	1	0-30	
Carbon Tetrachloride	157.3	174.9	111	172.4	110	70-136	59-147	1	0-30	
Chlorobenzene	115.1	114.7	100	110.1	96	70-130	60-140	4	0-30	
Chloroethane	65.96	66.75	101	65.12	99	65-149	51-163	2	0-30	
Chloroform	122.1	118.1	97	116.4	95	70-130	60-140	1	0-30	
Chloromethane	51.63	50.29	97	48.35	94	69-141	57-153	4	0-30	
Dibromochloromethane	213.0	235.0	110	225.6	106	70-138	59-149	4	0-30	
Dichlorodifluoromethane	123.6	120.1	97	117.9	95	67-139	55-151	2	0-30	
Ethylbenzene	108.6	108.5	100	104.1	96	70-130	60-140	4	0-30	
Hexachloro-1,3-Butadiene	266.6	392.2	147	329.6	124	44-146	27-163	17	0-30	ME
Methylene Chloride	86.84	80.34	93	80.10	92	69-130	59-140	0	0-30	

RPD: Relative Percent Difference.

CL: Control Limits

Quality Control - LCS/LCSD

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method: 05/17/16 16-05-1214 N/A EPA TO-15

Project: Hollis Emeryville / 16076.23.28

Page 4 of 5

<u>Parameter</u>	<u>Spike</u> Added	LCS Conc	<u>. LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
Styrene	106.5	108.5	102	103.5	97	65-131	54-142	5	0-30	
Tetrachloroethene	169.6	208.8	123	201.1	119	70-130	60-140	4	0-30	
Toluene	94.21	84.12	89	80.75	86	70-130	60-140	4	0-30	
t-1,2-Dichloroethene	99.12	89.14	90	87.38	88	70-130	60-140	2	0-30	
Trichloroethene	134.3	138.3	103	136.2	101	70-130	60-140	2	0-30	
Trichlorofluoromethane	140.5	164.7	117	160.8	115	63-141	50-154	2	0-30	
Vinyl Acetate	88.03	78.68	89	77.09	88	58-130	46-142	2	0-30	
Vinyl Chloride	63.91	63.45	99	61.33	96	70-134	59-145	3	0-30	
c-1,3-Dichloropropene	113.5	120.6	106	118.9	105	70-130	60-140	1	0-30	
c-1,2-Dichloroethene	99.12	89.50	90	87.64	88	70-130	60-140	2	0-30	
o-Xylene	108.6	104.6	96	100.2	92	69-130	59-140	4	0-30	
t-1,3-Dichloropropene	113.5	130.2	115	128.1	113	70-147	57-160	2	0-30	
p/m-Xylene	217.1	216.9	100	208.9	96	70-132	60-142	4	0-30	
Methyl-t-Butyl Ether (MTBE)	90.13	95.31	106	93.58	104	68-130	58-140	2	0-30	
Isopropanol	61.45	58.54	95	58.03	94	57-135	44-148	1	0-30	
1,1-Difluoroethane	67.54	60.53	90	59.26	88	70-131	60-141	2	0-30	
Diisopropyl Ether (DIPE)	104.5	88.71	85	87.58	84	63-130	52-141	1	0-30	
Ethanol	188.4	177.8	94	178.4	95	37-139	20-156	0	0-30	
Ethyl-t-Butyl Ether (ETBE)	104.5	101.1	97	99.83	96	67-130	56-140	1	0-30	
Naphthalene	131.1	139.7	107	114.0	87	24-144	4-164	20	0-30	
Tert-Amyl-Methyl Ether (TAME)	104.5	105.5	101	104.4	100	69-130	59-140	1	0-30	

153.4

101

66-144

53-157

0-30

Total number of LCS compounds: 58
Total number of ME compounds: 1

Tert-Butyl Alcohol (TBA)

Total number of ME compounds allowed: 3

151.6

154.6

102

LCS ME CL validation result: Pass

Quality Control - LCS

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

16-05-1214 N/A

05/17/16

Method:

EPA TO-3M

Project: Hollis Emeryville / 16076.23.28

Page 5 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Pr	repared Date	Analyzed	LCS Batch No	umber
098-01-005-7132	LCS	Air	GC 13	N/A	05/18	/16 09:21	160518L01	
<u>Parameter</u>		Spike Added	Conc. Recov	ered L	.CS %Rec.	%Rec.	<u>CL</u> <u>C</u>	<u>Qualifiers</u>
TPH as Gasoline		932500	847100	9	91	80-120)	

Summa Canister Vacuum Summary

Work Order: 16-05-1214 Page 1 of				
Sample Name	Vacuum Out	Vacuum In	Equipment	Description
SVP-12	-29.50 in Hg	-4.00 in Hg	D104	Summa Canister 6L
SVP-13	-29.50 in Hg	-5.50 in Hg	SIM054	Summa Canister 6L
SVP-14	-29.50 in Hg	-3.20 in Hg	D182	Summa Canister 6L
SVP-15	-29.50 in Hg	-5.30 in Hg	D243	Summa Canister 6L
SVP-16	-29.50 in Ha	-4.80 in Ha	D596	Summa Canister 6L

Sample Analysis Summary Report

Work Order: 16-05-1214	Page 1 of 1			
Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-1946	N/A	929	GC 65	2
ASTM D-1946	N/A	1074	GC 65	2
ASTM D-1946 (M)	N/A	460	GC 55	2
ASTM D-1946 (M)	N/A	1074	GC 55	2
EPA TO-15	N/A	866	GC/MS II	2
ЕРА ТО-3М	N/A	1078	GC 13	2

Ζ

Glossary of Terms and Qualifiers

Work Order: 16-05-1214 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Analyte presence was not confirmed by second column or GC/MS analysis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Time:

Date

Received by: (Signature/Affiliation)

Received by: (Signature/Affiliation

led by: (Signature)

Relinquished by: (Signature)

Received by: (Signature/Affiliation)

020

ns	
Ę	
2	
eu	

AIR CHAIN-OF-CUSTODY RECORD REQUESTED ATH D. (20, (0, 3H) JAPIO MT24 SARA BLOOM Q 16046.23.28 LAB CONTACT OR QUOTE NO SAMPLER(S): (PRINT) DATE: PAGE: (in Hg) Sis ٥ S 4 642 1107 15/13/16 1250 子 <u>쟢</u> 5 113 16 5/13/6 11/21/5 5 13 16 \$ Hornis Emeryville Pressure (in Hg) 8 32 05 30 36 LEGNARD NILES 16-05-1214 LB55 HOLLIS ST. EMBEN VILLE 1505 1342 **9965** SEM 266 5/13/16 1036 SGMOII 5/13/16 126 SGM 1806 5/13/16 WO NO. / LAB USE ONLY <u>ડ</u>્યમ 194 જ પ્રાથાહ S4M025 | 5113 | 16 Controller 6L or 1L 3 ટ 5 Size 410 ☐ 5 DAYS XSTANDARD SIM054 0243 08C D B 2810 Media SAN FRANCISCO, CA CATHENSIS LEONARD BALLWETTI. COM 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us Indoor (I) Soil Vap. (SV) Ambient (A) 2 2 33 3 FIELD ID / POINT OF COLLECTION D 72 HR Calscience ALWEST ENVIRONMENTAL 244 MISSION ST, CTE100 ☐ 48 HR UNITS COELT EDF COTHER SPECIAL INSTRUCTIONS: ☐ SAME DAY ☐ 24 HR SVP-15 SAMPLEID 246-13 5VP-14 SVP-12 3VP 41 LAB USE ONLY (8) W

2014-07-01 Revision

Time. C.Z.

17/10

Oge Wee

20

800-322-5555 www.gso.com

Ship From

ALLWEST ENVIRONMENTAL DARLENE TORIO 2141 MISSION ST STE 100 SAN FRANCISCO, CA 94110

Ship To EUROFINS CALSCIENCE, INC. SAMPLE RECEIVING Tracking #: 531931965

PDS

ORC

A

COCIDEN STATE OCCUDIONAL

800-322-5555 www.gso.com

Ship From

ALLWEST ENVIRONMENTAL DARLENE TORIO 2141 MISSION ST STE 100 SAN FRANCISCO, CA 94110

Ship To EUROFINS CALSCIENCE, INC. SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: 16076.23.28 Delivery Instructions:

Signature Type: REQUIRED

Tracking #: 531931966

PDS

ORC

Δ

GARDEN GROVE

D92845A

51865043

Print Date: 5/16/2016 10:39 AM

Package 4 of 4

Page 34 of 34 WORK ORDER NUMBER: 16-05- 12

SAMPLE RECEIPT CHECKLIST	CC	OLER	_ <i>U</i> _c)F <u>()</u>
CLIENT: Allwest Env'l.	DAT	E: 05	117	/ 2016
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF):°C (w/ CF): Sample(s) outside temperature criteria (PM/APM contacted by:) Sample(s) outside temperature criteria but received on ice/chilled on same day of Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: Air □ Filter			□ Sam	
CUSTODY SEAL: Cooler	□ N/A □ N/A	Checke	ed by:	836
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers			No	N/A
□ No analysis requested □ Not relinquished ☑ No relinquished date ☑ No relinquished Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested				0 0
Sufficient volume/mass for analyses requested Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen		Ø		
Proper preservation chemical(s) noted on COC and/or sample container				J.
Container(s) for certain analysis free of headspace ☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 450 ☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Ha	00) ch)			<u>,</u>
Tedlar™ bag(s) free of condensation	k Lot Number			.Z∕ \
Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGB □ 125AGB □ 125AGB □ 125AGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve (□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Bh □ 125AG B □ 500AGJ □ _ TerraCores® (B p	125PB AGJs 	

Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag Preservative: \mathbf{b} = buffered, \mathbf{f} = filtered, \mathbf{h} = HCl, \mathbf{n} = HNO₃, \mathbf{na} = NaOH, $\mathbf{na_2}$ = Na₂S₂O₃, \mathbf{p} = H₃PO₄, Labeled/Checked by:

 $s = H_2SO_4$, u = ultra-pure, $znna = Zn(CH_3CO_2)_2 + NaOH$

Reviewed by: 4%

Calscience

WORK ORDER NUMBER: 16-05-1215

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AllWest Environmental, Inc.

Client Project Name: Hollis Emeryville / 16076.23.28

Attention: Leonard Niles

2141 Mission Street, Suite 100 San Francisco, CA 94110-6331

Vikas Patel

Approved for release on 05/25/2016 by:

Vikas Patel Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Hollis Emeryville / 16076.23.28
Work Order Number:	16-05-1215

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA TO-15 SIM (Air). 4.2 EPA TO-3 (M) TPH Gasoline (Air).	8 8 22
5	Quality Control Sample Data5.1 Sample Duplicate5.2 LCS/LCSD	23 23 24
6	Summa Canister Vacuum Summary	27
7	Sample Analysis Summary	28
8	Glossary of Terms and Qualifiers	29
9	Chain-of-Custody/Sample Receipt Form	30

Work Order Narrative

Work Order: 16-05-1215 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/17/16. They were assigned to Work Order 16-05-1215.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: AllWest Environmental, Inc.

Work Order:

16-05-1215

2141 Mission Street, Suite 100

Project Name:

Hollis Emeryville / 16076.23.28

San Francisco, CA 94110-6331 PO Number:

Date/Time Received:

05/17/16 11:25

Number of

Containers:

6

Attn: Leonard Niles

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
IAQ-6	16-05-1215-1	05/13/16 15:43	1	Air
IAQ-7	16-05-1215-2	05/13/16 15:54	1	Air
IAQ-8	16-05-1215-3	05/13/16 16:15	1	Air
IAQ-9	16-05-1215-4	05/13/16 16:21	1	Air
IAQ-10	16-05-1215-5	05/13/16 16:35	1	Air
OAA-2	16-05-1215-6	05/13/16 16:06	1	Air

Detections Summary

Client: AllWest Environmental, Inc. Work Order: 16-05-1215

2141 Mission Street, Suite 100 Project Name: Hollis Emeryville / 16076.23.28

San Francisco, CA 94110-6331 Received: 05/17/16

Attn: Leonard Niles Page 1 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
IAO 6 (46 05 4045 4)						
IAQ-6 (16-05-1215-1) Dichlorodifluoromethane	1.4		0.12		EDA TO 45 CIM	N/A
	1.4			ug/m3	EPA TO 15 SIM	
Chloromethane	0.94		0.052	ug/m3	EPA TO 15 SIM	N/A
Trichlorofluoromethane	1.2		0.14	ug/m3	EPA TO-15 SIM	N/A
Methylene Chloride	3.1		0.087	ug/m3	EPA TO-15 SIM	N/A
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.51		0.19	ug/m3	EPA TO-15 SIM	N/A
1,2,4-Trimethylbenzene	0.44		0.25	ug/m3	EPA TO-15 SIM	N/A
1,3,5-Trimethylbenzene	0.13		0.12	ug/m3	EPA TO-15 SIM	N/A
Benzene	0.41		0.080	ug/m3	EPA TO-15 SIM	N/A
Carbon Tetrachloride	0.42		0.063	ug/m3	EPA TO-15 SIM	N/A
Toluene	1.1		0.19	ug/m3	EPA TO-15 SIM	N/A
Ethylbenzene	0.21		0.11	ug/m3	EPA TO-15 SIM	N/A
p/m-Xylene	0.80		0.11	ug/m3	EPA TO-15 SIM	N/A
o-Xylene	0.36		0.11	ug/m3	EPA TO-15 SIM	N/A
Naphthalene	0.17		0.052	ug/m3	EPA TO-15 SIM	N/A
TPH as Gasoline	1000		930	ug/m3	EPA TO-3M	N/A
IAQ-7 (16-05-1215-2)						
Dichlorodifluoromethane	1.4		0.12	ug/m3	EPA TO-15 SIM	N/A
Chloromethane	0.99		0.052	ug/m3	EPA TO-15 SIM	N/A
Trichlorofluoromethane	1.1		0.14	ug/m3	EPA TO-15 SIM	N/A
Methylene Chloride	2.6		0.087	ug/m3	EPA TO-15 SIM	N/A
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.46		0.19	ug/m3	EPA TO-15 SIM	N/A
Chloroform	0.53		0.12	ug/m3	EPA TO-15 SIM	N/A
Benzene	0.30		0.080	ug/m3	EPA TO-15 SIM	N/A
Carbon Tetrachloride	0.38		0.063	ug/m3	EPA TO-15 SIM	N/A
Toluene	0.94		0.19	ug/m3	EPA TO-15 SIM	N/A
Trichloroethene	0.17		0.13	ug/m3	EPA TO-15 SIM	N/A
Ethylbenzene	0.13		0.11	ug/m3	EPA TO-15 SIM	N/A
p/m-Xylene	0.44		0.11	ug/m3	EPA TO-15 SIM	N/A
o-Xylene	0.44		0.11	ug/m3	EPA TO-15 SIM	N/A
Naphthalene	0.22		0.052	ug/m3	EPA TO-15 SIM	N/A
·				ŭ		
TPH as Gasoline	1200		930	ug/m3 ug/m3	EPA TO-15 SIM	N/A N/A

^{*} MDL is shown

Detections Summary

Client: AllWest Environmental, Inc. Work Order: 16-05-1215

2141 Mission Street, Suite 100 Project Name: Hollis Emeryville / 16076.23.28

San Francisco, CA 94110-6331 Received: 05/17/16

Attn: Leonard Niles Page 2 of 3

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
IAQ-8 (16-05-1215-3)						
Dichlorodifluoromethane	1.5		0.12	ug/m3	EPA TO-15 SIM	N/A
Chloromethane	0.95		0.052	ug/m3	EPA TO-15 SIM	N/A
Trichlorofluoromethane	1.2		0.14	ug/m3	EPA TO-15 SIM	N/A
Methylene Chloride	0.32		0.087	ug/m3	EPA TO-15 SIM	N/A
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.52		0.19	ug/m3	EPA TO-15 SIM	N/A
Benzene	0.54		0.080	ug/m3	EPA TO-15 SIM	N/A
Carbon Tetrachloride	0.42		0.063	ug/m3	EPA TO-15 SIM	N/A
Toluene	0.36		0.19	ug/m3	EPA TO-15 SIM	N/A
p/m-Xylene	0.26		0.11	ug/m3	EPA TO-15 SIM	N/A
o-Xylene	0.16		0.11	ug/m3	EPA TO-15 SIM	N/A
TPH as Gasoline	1200		930	ug/m3	EPA TO-3M	N/A
IAQ-9 (16-05-1215-4)						
Dichlorodifluoromethane	1.4		0.12	ug/m3	EPA TO-15 SIM	N/A
Chloromethane	1.0		0.052	ug/m3	EPA TO-15 SIM	N/A
Trichlorofluoromethane	1.3		0.14	ug/m3	EPA TO-15 SIM	N/A
Methylene Chloride	0.33		0.087	ug/m3	EPA TO-15 SIM	N/A
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.54		0.19	ug/m3	EPA TO-15 SIM	N/A
Benzene	0.55		0.080	ug/m3	EPA TO-15 SIM	N/A
Carbon Tetrachloride	0.43		0.063	ug/m3	EPA TO-15 SIM	N/A
Toluene	0.50		0.19	ug/m3	EPA TO-15 SIM	N/A
Ethylbenzene	0.13		0.11	ug/m3	EPA TO-15 SIM	N/A
p/m-Xylene	0.49		0.11	ug/m3	EPA TO-15 SIM	N/A
o-Xylene	0.31		0.11	ug/m3	EPA TO-15 SIM	N/A
Naphthalene	0.057		0.052	ug/m3	EPA TO-15 SIM	N/A
TPH as Gasoline	1400		930	ug/m3	EPA TO-3M	N/A
IAQ-10 (16-05-1215-5)						
Dichlorodifluoromethane	1.6		0.12	ug/m3	EPA TO-15 SIM	N/A
Chloromethane	0.94		0.052	ug/m3	EPA TO-15 SIM	N/A
Trichlorofluoromethane	1.2		0.14	ug/m3	EPA TO-15 SIM	N/A
Methylene Chloride	0.28		0.087	ug/m3	EPA TO-15 SIM	N/A
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.51		0.19	ug/m3	EPA TO-15 SIM	N/A
Benzene	0.40		0.080	ug/m3	EPA TO-15 SIM	N/A
Carbon Tetrachloride	0.40		0.063	ug/m3	EPA TO-15 SIM	N/A
Toluene	0.37		0.19	ug/m3	EPA TO-15 SIM	N/A
Ethylbenzene	0.28		0.11	ug/m3	EPA TO-15 SIM	N/A
p/m-Xylene	1.3		0.11	ug/m3	EPA TO-15 SIM	N/A
o-Xylene	0.91		0.11	ug/m3	EPA TO-15 SIM	N/A
TPH as Gasoline	1100		930	ug/m3	EPA TO-3M	N/A

^{*} MDL is shown

Detections Summary

Client: AllWest Environmental, Inc.

Work Order: 16-05-1215 Hollis Emeryville / 16076.23.28 Project Name: 2141 Mission Street, Suite 100

Received: 05/17/16 San Francisco, CA 94110-6331

Attn: Leonard Niles Page 3 of 3

Client SampleID							
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction	
OAA-2 (16-05-1215-6)							
Dichlorodifluoromethane	1.4		0.12	ug/m3	EPA TO-15 SIM	N/A	
Chloromethane	1.1		0.052	ug/m3	EPA TO-15 SIM	N/A	
Trichlorofluoromethane	1.1		0.14	ug/m3	EPA TO-15 SIM	N/A	
Methylene Chloride	0.27		0.087	ug/m3	EPA TO-15 SIM	N/A	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.49		0.19	ug/m3	EPA TO-15 SIM	N/A	
Benzene	0.30		0.080	ug/m3	EPA TO-15 SIM	N/A	
Carbon Tetrachloride	0.40		0.063	ug/m3	EPA TO-15 SIM	N/A	
Toluene	0.53		0.19	ug/m3	EPA TO-15 SIM	N/A	
Ethylbenzene	0.12		0.11	ug/m3	EPA TO-15 SIM	N/A	
p/m-Xylene	0.38		0.11	ug/m3	EPA TO-15 SIM	N/A	
o-Xylene	0.16		0.11	ug/m3	EPA TO-15 SIM	N/A	
TPH as Gasoline	970		930	ug/m3	EPA TO-3M	N/A	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 05/17/16 16-05-1215

Method:

N/A EPA TO-15 SIM

Units:

ug/m3

Project: Hollis Emeryville / 16076.23.28

Page 1 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IAQ-6	16-05-1215-1-A	05/13/16 15:43	Air	GC/MS KK	N/A	05/18/16 22:50	160518L01
Parameter		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
Dichlorodifluoromethane		1.4		0.12	1.00		
Chloromethane		0.94		0.052	1.00		
Vinyl Chloride		ND		0.026	1.00		
Chloroethane		ND		0.066	1.00		
Trichlorofluoromethane		1.2		0.14	1.00		
1,1-Dichloroethene		ND		0.099	1.00		
Methylene Chloride		3.1		0.087	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.51		0.19	1.00		
t-1,2-Dichloroethene		ND		0.099	1.00		
1,1-Dichloroethane		ND		0.10	1.00		
c-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform		ND		0.12	1.00		
1,2-Dichloroethane		ND		0.10	1.00		
1,1,1-Trichloroethane		ND		0.14	1.00		
1,2,4-Trimethylbenzene		0.44		0.25	1.00		
1,3,5-Trimethylbenzene		0.13		0.12	1.00		
4-Ethyltoluene		ND		0.25	1.00		
Chlorobenzene		ND		0.12	1.00		
1,1-Difluoroethane		ND		0.68	1.00		
Benzene		0.41		0.080	1.00		
Carbon Tetrachloride		0.42		0.063	1.00		
Bromodichloromethane		ND		0.17	1.00		
1,1,2-Trichloroethane		ND		0.14	1.00		
Toluene		1.1		0.19	1.00		
Dibromochloromethane		ND		0.21	1.00		
Trichloroethene		ND		0.13	1.00		
Tetrachloroethene		ND		0.17	1.00		
Ethylbenzene		0.21		0.11	1.00		
p/m-Xylene		0.80		0.11	1.00		
1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
o-Xylene		0.36		0.11	1.00		
Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
Naphthalene		0.17		0.052	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1215
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15 SIM
	Units:	ug/m3
Proiect: Hollis Emeryville / 16076.23.28		Page 2 of 14

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	85	45-153	
1,2-Dichloroethane-d4	101	37-163	
Toluene-d8	91	73-121	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

16-05-1215 N/A

05/17/16

Method:

EPA TO-15 SIM

Units:

ug/m3 Page 3 of 14

Project: Hollis Emeryville / 16076.23.28

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IAQ-7	16-05-1215-2-A	05/13/16 15:54	Air	GC/MS KK	N/A	05/18/16 23:49	160518L01
Parameter		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
Dichlorodifluoromethane		1.4		0.12	1.00		
Chloromethane		0.99		0.052	1.00		
Vinyl Chloride		ND		0.026	1.00		
Chloroethane		ND		0.066	1.00		
Trichlorofluoromethane		1.1		0.14	1.00		
1,1-Dichloroethene		ND		0.099	1.00		
Methylene Chloride		2.6		0.087	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.46		0.19	1.00		
t-1,2-Dichloroethene		ND		0.099	1.00		
1,1-Dichloroethane		ND		0.10	1.00		
c-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform		0.53		0.12	1.00		
1,2-Dichloroethane		ND		0.10	1.00		
1,1,1-Trichloroethane		ND		0.14	1.00		
1,2,4-Trimethylbenzene		ND		0.25	1.00		
1,3,5-Trimethylbenzene		ND		0.12	1.00		
4-Ethyltoluene		ND		0.25	1.00		
Chlorobenzene		ND		0.12	1.00		
1,1-Difluoroethane		ND		0.68	1.00		
Benzene		0.30		0.080	1.00		
Carbon Tetrachloride		0.38		0.063	1.00		
Bromodichloromethane		ND		0.17	1.00		
1,1,2-Trichloroethane		ND		0.14	1.00		
Toluene		0.94		0.19	1.00		
Dibromochloromethane		ND		0.21	1.00		
Trichloroethene		0.17		0.13	1.00		
Tetrachloroethene		ND		0.17	1.00		
Ethylbenzene		0.13		0.11	1.00		
p/m-Xylene		0.44		0.11	1.00		
1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
o-Xylene		0.22		0.11	1.00		
Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
Naphthalene		0.092		0.052	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1215
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15 SIM
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 4 of 14

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	89	45-153	
1,2-Dichloroethane-d4	102	37-163	
Toluene-d8	90	73-121	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 05/17/16 16-05-1215 N/A

EPA TO-15 SIM

Units:

Method:

ug/m3

Project: Hollis Emeryville / 16076.23.28

Page 5 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IAQ-8	16-05-1215-3-A	05/13/16 16:15	Air	GC/MS KK	N/A	05/19/16 00:44	160518L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
Dichlorodifluoromethane		1.5		0.12	1.00		
Chloromethane		0.95		0.052	1.00		
Vinyl Chloride		ND		0.026	1.00		
Chloroethane		ND		0.066	1.00		
Trichlorofluoromethane		1.2		0.14	1.00		
1,1-Dichloroethene		ND		0.099	1.00		
Methylene Chloride		0.32		0.087	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.52		0.19	1.00		
t-1,2-Dichloroethene		ND		0.099	1.00		
1,1-Dichloroethane		ND		0.10	1.00		
c-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform		ND		0.12	1.00		
1,2-Dichloroethane		ND		0.10	1.00		
1,1,1-Trichloroethane		ND		0.14	1.00		
1,2,4-Trimethylbenzene		ND		0.25	1.00		
1,3,5-Trimethylbenzene		ND		0.12	1.00		
4-Ethyltoluene		ND		0.25	1.00		
Chlorobenzene		ND		0.12	1.00		
1,1-Difluoroethane		ND		0.68	1.00		
Benzene		0.54		0.080	1.00		
Carbon Tetrachloride		0.42		0.063	1.00		
Bromodichloromethane		ND		0.17	1.00		
1,1,2-Trichloroethane		ND		0.14	1.00		
Toluene		0.36		0.19	1.00		
Dibromochloromethane		ND		0.21	1.00		
Trichloroethene		ND		0.13	1.00		
Tetrachloroethene		ND		0.17	1.00		
Ethylbenzene		ND		0.11	1.00		
p/m-Xylene		0.26		0.11	1.00		
1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
o-Xylene		0.16		0.11	1.00		
Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
Naphthalene		ND		0.052	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1215
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15 SIM
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 6 of 14

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	86	45-153	
1,2-Dichloroethane-d4	102	37-163	
Toluene-d8	93	73-121	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method: 05/17/16 16-05-1215

EPA TO-15 SIM

Units:

ug/m3

N/A

Project: Hollis Emeryville / 16076.23.28

Page 7 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IAQ-9	16-05-1215-4-A	05/13/16 16:21	Air	GC/MS KK	N/A	05/19/16 01:41	160518L01
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Dichlorodifluoromethane		1.4		0.12	1.00		
Chloromethane		1.0		0.052	1.00		
Vinyl Chloride		ND		0.026	1.00		
Chloroethane		ND		0.066	1.00		
Trichlorofluoromethane		1.3		0.14	1.00		
1,1-Dichloroethene		ND		0.099	1.00		
Methylene Chloride		0.33		0.087	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.54		0.19	1.00		
t-1,2-Dichloroethene		ND		0.099	1.00		
1,1-Dichloroethane		ND		0.10	1.00		
c-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform		ND		0.12	1.00		
1,2-Dichloroethane		ND		0.10	1.00		
1,1,1-Trichloroethane		ND		0.14	1.00		
1,2,4-Trimethylbenzene		ND		0.25	1.00		
1,3,5-Trimethylbenzene		ND		0.12	1.00		
4-Ethyltoluene		ND		0.25	1.00		
Chlorobenzene		ND		0.12	1.00		
1,1-Difluoroethane		ND		0.68	1.00		
Benzene		0.55		0.080	1.00		
Carbon Tetrachloride		0.43		0.063	1.00		
Bromodichloromethane		ND		0.17	1.00		
1,1,2-Trichloroethane		ND		0.14	1.00		
Toluene		0.50		0.19	1.00		
Dibromochloromethane		ND		0.21	1.00		
Trichloroethene		ND		0.13	1.00		
Tetrachloroethene		ND		0.17	1.00		
Ethylbenzene		0.13		0.11	1.00		
p/m-Xylene		0.49		0.11	1.00		
1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
o-Xylene		0.31		0.11	1.00		
Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
Naphthalene		0.057		0.052	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1215
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15 SIM
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 8 of 14

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	82	45-153	
1,2-Dichloroethane-d4	100	37-163	
Toluene-d8	92	73-121	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 05/17/16 16-05-1215

N/A EPA TO-15 SIM

Units:

Method:

ug/m3

Project: Hollis Emeryville / 16076.23.28

Page 9 of 14

Name	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Dichlorodifluoromethane 1.6 0.12 1.00 Chloromethane 0.944 0.052 1.00 Vinyl Chloride ND 0.026 1.00 Chloroethane ND 0.066 1.00 Trichlorofluoromethane 1.2 0.14 1.00 1.1-Dichloroethane ND 0.0999 1.00 Methylene Chloride 0.28 0.087 1.00 1.1,2-Trichloro-1,2,2-Trifluoroethane 0.51 0.19 1.00 1.1,2-Trichloro-1,2,2-Trifluoroethane ND 0.1999 1.00 1,1-Dichloroethane ND 0.10 1.00 1,1-Dichloroethane ND 0.10 1.00 1,1-Trichloroethane ND 0.12 1.00 1,2,2-Trichloroethane ND 0.14 1.00 1,2,2-Trichloroethane ND 0.12 1.00 1,1,1-Trichloroethane ND 0.12 1.00 1,1,1-Difluoroethane ND 0.12 1.00 Chlorobenzne ND 0.12 <th>IAQ-10</th> <th>16-05-1215-5-A</th> <th></th> <th>Air</th> <th>GC/MS KK</th> <th>N/A</th> <th>05/19/16 02:35</th> <th>160518L01</th>	IAQ-10	16-05-1215-5-A		Air	GC/MS KK	N/A	05/19/16 02:35	160518L01
Chloromethane 0.94 0.052 1.00 Viryl Chloride ND 0.026 1.00 Chloroethane ND 0.066 1.00 Trichlorofulcomethane 1.2 0.14 1.00 1.1-Dichloroethane ND 0.099 1.00 Methylene Chloride 0.28 0.087 1.00 1,1-2-Trichloro-1,2,2-Trifluoroethane 0.51 0.19 1.00 1,1,2-Trichloroethane ND 0.099 1.00 1,1-Dichloroethane ND 0.10 1.00 1,1-Dichloroethane ND 0.12 1.00 1,2-Dichloroethane ND 0.10 1.00 1,2-Dichloroethane ND 0.10 1.00 1,2-Dichloroethane ND 0.14 1.00 1,2-Printelhylbenzene ND 0.14 1.00 1,2-L-Trimethylbenzene ND 0.12 1.00 4-Ethylbulene ND 0.12 1.00 Chlorobenzene ND 0.68 1.00	<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Vinyl Chloride ND 0.026 1.00 Chloroethane ND 0.066 1.00 Trichlorofluoromethane 1.2 0.14 1.00 1,1-Dichloroethene ND 0.099 1.00 Methylene Chloride 0.28 0.087 1.00 1,1,2-Trichloro-1,2,2-Trifluorethane 0.51 0.19 1.00 1,1-Dichloroethane ND 0.099 1.00 1,1-Dichloroethane ND 0.10 1.00 1,1-Dichloroethane ND 0.099 1.00 Chloroform ND 0.12 1.00 1,1-Erichloroethane ND 0.12 1.00 1,2-Firimethylbenzene ND 0.12 1.00 1,1-Erichloroethane ND 0.12 1.00 4-Ethyltoluene ND 0.12 1.00 Chlorobenzene ND 0.68 1.00 Benzene ND 0.14 1.00 Carbon Tetrachloride ND 0.14 1.00 <t< td=""><td>Dichlorodifluoromethane</td><td></td><td>1.6</td><td></td><td>0.12</td><td>1.00</td><td></td><td></td></t<>	Dichlorodifluoromethane		1.6		0.12	1.00		
Chloroethane ND 0.066 1.00 Trichlorofluoromethane 1.2 0.14 1.00 1,1-Dichloroethene ND 0.099 1.00 Methylene Chloride 0.28 0.087 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane 0.51 0.19 1.00 1,1,2-Dichloroethane ND 0.099 1.00 1,1-Dichloroethane ND 0.099 1.00 Chloroform ND 0.12 1.00 Chloroform ND 0.12 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,1,2-Trichloroethane ND 0.14 1.00 1,1,2-Trichloroethane ND 0.12 1.00 1,1,1-Trichloroethane ND 0.12 1.00 4-Liptloluene ND 0.12 1.00 Chlorobenzene ND 0.12 1.00 4-Liptloluene ND 0.68 1.00	Chloromethane		0.94		0.052	1.00		
Trichloroffluoromethane 1.2 0.14 1.00 1.1-Dichloroethene ND 0.099 1.00 Methylene Chloride 0.28 0.087 1.00 1.1,2-Trichloro-1,2,2-Triffluoroethane 0.51 0.19 1.00 1.1,2-Dichloroethane ND 0.099 1.00 1.1-Dichloroethane ND 0.099 1.00 Chloroform ND 0.10 1.00 1,2-Dichloroethane ND 0.10 1.00 1,2-Dichloroethane ND 0.10 1.00 1,2-Trinethylbenzene ND 0.14 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.12 1.00 4-Ethyltoluene ND 0.12 1.00 4-Ethyltoluene ND 0.68 1.00 Chlorobenzene ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride ND 0.17 1.00	Vinyl Chloride		ND		0.026	1.00		
1,1-Dichloroethene ND 0.099 1.00 Methylene Chloride 0.28 0.087 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane 0.51 0.19 1.00 b-1,2-Dichloroethane ND 0.099 1.00 1,1-Dichloroethane ND 0.099 1.00 Chloroform ND 0.12 1.00 Chloroform ND 0.12 1.00 1,1-Trichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,2,4-Trimethylbenzene ND 0.12 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.12 1.00 Chlorobenzene ND 0.12 1.00 1,1-Diffluoroethane ND 0.68 1.00 Benzene 0.40 0.083 1.00 Bernodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Tolluene 0.37 0.19 1.00 Dibromochlo	Chloroethane		ND		0.066	1.00		
Methylene Chloride 0.28 0.087 1.00 1.1,2-Trichloro-1,2,2-Trifluoroethane 0.51 0.19 1.00 t-1,2-Dichloroethane ND 0.099 1.00 t-1,2-Dichloroethane ND 0.099 1.00 Chloroform ND 0.12 1.00 Chloroform ND 0.10 1.00 1,2-Dichloroethane ND 0.14 1.00 1,2-Pichloroethane ND 0.14 1.00 1,2-A-Trimethylbenzene ND 0.14 1.00 1,2,4-Trimethylbenzene ND 0.25 1.00 4-Ethyloluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 1,1-Difluoroethane ND 0.68 1.00 1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.083 1.00 Bromodichloromethane ND 0.17 1.00 Toluene 0.37 0.19 1.00 Dib	Trichlorofluoromethane		1.2		0.14	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane 0.51 0.19 1.00 1-1,2-Dichloroethane ND 0.099 1.00 1,1-Dichloroethane ND 0.10 1.00 -1,2-Dichloroethane ND 0.099 1.00 Chloroform ND 0.12 1.00 1,2-Dichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,1,2-Trichloroethane ND 0.25 1.00 1,1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.063 1.00 Carbon Tetrachloride ND 0.17 1.00 Bromodichloromethane ND 0.14 1.00 Tolluene 0.37 0.19 1.00 Dibromochloromethane ND 0.13 1.00 Tetrachloro	1,1-Dichloroethene		ND		0.099	1.00		
L-1,2-Dichloroethene ND 0.099 1.00 1,1-Dichloroethane ND 0.10 1.00 c-1,2-Dichloroethene ND 0.0999 1.00 Chloroform ND 0.12 1.00 1,1-Dichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,1,1-Trichloroethane ND 0.12 1.00 1,2,4-Trimethylbenzene ND 0.12 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.12 1.00 Chlorobenzene ND 0.12 1.00 Chlorobenzene ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.13 1.00 Trichloro	Methylene Chloride		0.28		0.087	1.00		
1,1-Dichloroethane ND 0.10 1.00 c-1,2-Dichloroethene ND 0.0999 1.00 Chloroform ND 0.12 1.00 1,1-Dichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,2,4-Trimethylbenzene ND 0.25 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.12 1.00 Chlorobenzene ND 0.12 1.00 H-Ethyltoluorethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.13 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Tetrachloroethene	1,1,2-Trichloro-1,2,2-Trifluoroethane		0.51		0.19	1.00		
C-1,2-Dichloroethene ND 0.099 1.00 Chloroform ND 0.12 1.00 1,2-Dichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,1,2-Trichloroethane ND 0.25 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride ND 0.17 1.00 Bromodichloromethane ND 0.14 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.13 1.00 Trichloroethene ND 0.17 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene <td>t-1,2-Dichloroethene</td> <td></td> <td>ND</td> <td></td> <td>0.099</td> <td>1.00</td> <td></td> <td></td>	t-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform ND 0.12 1.00 1,2-Dichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,2,4-Trimethylbenzene ND 0.25 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 Chlorobenzene ND 0.68 1.00 1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.13 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 Poyn-Xylene <t< td=""><td>1,1-Dichloroethane</td><td></td><td>ND</td><td></td><td>0.10</td><td>1.00</td><td></td><td></td></t<>	1,1-Dichloroethane		ND		0.10	1.00		
1,2-Dichloroethane ND 0.10 1.00 1,1,1-Trichloroethane ND 0.14 1.00 1,2,4-Trimethylbenzene ND 0.25 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 Chlorobenzene ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.17 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 0-Xylene 0.91	c-1,2-Dichloroethene		ND		0.099	1.00		
1,1,1-Trichloroethane ND 0.14 1.00 1,2,4-Trimethylbenzene ND 0.25 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 Chlorobenzene ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Tetrachloroethene ND 0.17 1.00 P/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 0-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene <t< td=""><td>Chloroform</td><td></td><td>ND</td><td></td><td>0.12</td><td>1.00</td><td></td><td></td></t<>	Chloroform		ND		0.12	1.00		
1,2,4-Trimethylbenzene ND 0.25 1.00 1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE)	1,2-Dichloroethane		ND		0.10	1.00		
1,3,5-Trimethylbenzene ND 0.12 1.00 4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	1,1,1-Trichloroethane		ND		0.14	1.00		
4-Ethyltoluene ND 0.25 1.00 Chlorobenzene ND 0.12 1.00 1,1-Diffluoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	1,2,4-Trimethylbenzene		ND		0.25	1.00		
Chlorobenzene ND 0.12 1.00 1,1-Diffuoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 0-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	1,3,5-Trimethylbenzene		ND		0.12	1.00		
1,1-Difluoroethane ND 0.68 1.00 Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	4-Ethyltoluene		ND		0.25	1.00		
Benzene 0.40 0.080 1.00 Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Chlorobenzene		ND		0.12	1.00		
Carbon Tetrachloride 0.40 0.063 1.00 Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	1,1-Difluoroethane		ND		0.68	1.00		
Bromodichloromethane ND 0.17 1.00 1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Benzene		0.40		0.080	1.00		
1,1,2-Trichloroethane ND 0.14 1.00 Toluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Carbon Tetrachloride		0.40		0.063	1.00		
Tolluene 0.37 0.19 1.00 Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Bromodichloromethane		ND		0.17	1.00		
Dibromochloromethane ND 0.21 1.00 Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	1,1,2-Trichloroethane		ND		0.14	1.00		
Trichloroethene ND 0.13 1.00 Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Toluene		0.37		0.19	1.00		
Tetrachloroethene ND 0.17 1.00 Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Dibromochloromethane		ND		0.21	1.00		
Ethylbenzene 0.28 0.11 1.00 p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Trichloroethene		ND		0.13	1.00		
p/m-Xylene 1.3 0.11 1.00 1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Tetrachloroethene		ND		0.17	1.00		
1,1,2,2-Tetrachloroethane ND 0.17 1.00 o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	Ethylbenzene		0.28		0.11	1.00		
o-Xylene 0.91 0.11 1.00 Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	p/m-Xylene		1.3		0.11	1.00		
Hexachloro-1,3-Butadiene ND 0.27 1.00 Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
Methyl-t-Butyl Ether (MTBE) ND 0.090 1.00	o-Xylene		0.91		0.11	1.00		
	Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Naphthalene ND 0.052 1.00	Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
	Naphthalene		ND		0.052	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1215
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15 SIM
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 10 of 14

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	91	45-153	
1,2-Dichloroethane-d4	103	37-163	
Toluene-d8	94	73-121	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation:

Method:

05/17/16 16-05-1215

N/A

EPA TO-15 SIM

Units:

ug/m3 Page 11 of 14

Project: Hollis Emeryville / 16076.23.28

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
OAA-2	16-05-1215-6-A	05/13/16 16:06	Air	GC/MS KK	N/A	05/19/16 03:31	160518L01
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Dichlorodifluoromethane		1.4		0.12	1.00		
Chloromethane		1.1		0.052	1.00		
Vinyl Chloride		ND		0.026	1.00		
Chloroethane		ND		0.066	1.00		
Trichlorofluoromethane		1.1		0.14	1.00		
1,1-Dichloroethene		ND		0.099	1.00		
Methylene Chloride		0.27		0.087	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.49		0.19	1.00		
t-1,2-Dichloroethene		ND		0.099	1.00		
1,1-Dichloroethane		ND		0.10	1.00		
c-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform		ND		0.12	1.00		
1,2-Dichloroethane		ND		0.10	1.00		
1,1,1-Trichloroethane		ND		0.14	1.00		
1,2,4-Trimethylbenzene		ND		0.25	1.00		
1,3,5-Trimethylbenzene		ND		0.12	1.00		
4-Ethyltoluene		ND		0.25	1.00		
Chlorobenzene		ND		0.12	1.00		
1,1-Difluoroethane		ND		0.68	1.00		
Benzene		0.30		0.080	1.00		
Carbon Tetrachloride		0.40		0.063	1.00		
Bromodichloromethane		ND		0.17	1.00		
1,1,2-Trichloroethane		ND		0.14	1.00		
Toluene		0.53		0.19	1.00		
Dibromochloromethane		ND		0.21	1.00		
Trichloroethene		ND		0.13	1.00		
Tetrachloroethene		ND		0.17	1.00		
Ethylbenzene		0.12		0.11	1.00		
p/m-Xylene		0.38		0.11	1.00		
1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
o-Xylene		0.16		0.11	1.00		
Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
Naphthalene		ND		0.052	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.

2141 Mission Street, Suite 100

San Francisco, CA 94110-6331

Preparation:

Method:

Units:

Units:

Page 12 of 14

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	88	45-153	
1,2-Dichloroethane-d4	96	37-163	
Toluene-d8	94	73-121	

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: 05/17/16 16-05-1215 N/A

Method:

EPA TO-15 SIM

Units:

ug/m3

Project: Hollis Emeryville / 16076.23.28

Page 13 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-052-1563	N/A	Air	GC/MS KK	N/A	05/18/16 20:49	160518L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	lifiers
Dichlorodifluoromethane		ND		0.12	1.00		
Chloromethane		ND		0.052	1.00		
Vinyl Chloride		ND		0.026	1.00		
Chloroethane		ND		0.066	1.00		
Trichlorofluoromethane		ND		0.14	1.00		
1,1-Dichloroethene		ND		0.099	1.00		
Methylene Chloride		ND		0.087	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		0.19	1.00		
t-1,2-Dichloroethene		ND		0.099	1.00		
1,1-Dichloroethane		ND		0.10	1.00		
c-1,2-Dichloroethene		ND		0.099	1.00		
Chloroform		ND		0.12	1.00		
1,2-Dichloroethane		ND		0.10	1.00		
1,1,1-Trichloroethane		ND		0.14	1.00		
1,2,4-Trimethylbenzene		ND		0.25	1.00		
1,3,5-Trimethylbenzene		ND		0.12	1.00		
4-Ethyltoluene		ND		0.25	1.00		
Chlorobenzene		ND		0.12	1.00		
1,1-Difluoroethane		ND		0.68	1.00		
Benzene		ND		0.080	1.00		
Carbon Tetrachloride		ND		0.063	1.00		
Bromodichloromethane		ND		0.17	1.00		
1,1,2-Trichloroethane		ND		0.14	1.00		
Toluene		ND		0.19	1.00		
Dibromochloromethane		ND		0.21	1.00		
Trichloroethene		ND		0.13	1.00		
Tetrachloroethene		ND		0.17	1.00		
Ethylbenzene		ND		0.11	1.00		
p/m-Xylene		ND		0.11	1.00		
1,1,2,2-Tetrachloroethane		ND		0.17	1.00		
o-Xylene		ND		0.11	1.00		
Hexachloro-1,3-Butadiene		ND		0.27	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.090	1.00		
Naphthalene		ND		0.052	1.00		

DF: Dilution Factor.

MDL: Method Detection Limit.

AllWest Environmental, Inc.	Date Received:	05/17/16
2141 Mission Street, Suite 100	Work Order:	16-05-1215
San Francisco, CA 94110-6331	Preparation:	N/A
	Method:	EPA TO-15 SIM
	Units:	ug/m3
Project: Hollis Emeryville / 16076.23.28		Page 14 of 14

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	81	45-153	
1,2-Dichloroethane-d4	98	37-163	
Toluene-d8	101	73-121	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

05/17/16

05/18/16 09:34

160518L02

Qualifiers

AllWest Environmental, Inc.

Method Blank

TPH as Gasoline

<u>Parameter</u>

Analytical Report

Date Received:

2141 Mission Street, Suite 100 San Francisco, CA 94110-6331			Work Or Prepara	16-05-1215 N/A			
			Method: Units:				EPA TO-3M
Project: Hollis Emeryville / 16076.23.28						Pa	ug/m3 age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
IAQ-6	16-05-1215-1-A	05/13/16 15:43	Air	GC 13	N/A	05/18/16 10:48	160518L02
<u>Parameter</u>		Result	RL DF		DF	<u>Qualifiers</u>	
TPH as Gasoline		1000		930	1.00		
IAQ-7	16-05-1215-2-A	05/13/16 15:54	Air	GC 13	N/A	05/18/16 10:58	160518L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH as Gasoline		1200		930	1.00		
IAQ-8	16-05-1215-3-A	05/13/16 16:15	Air	GC 13	N/A	05/18/16 11:08	160518L02
<u>Parameter</u>		Result		<u>RL</u>	DF	Qua	alifiers
TPH as Gasoline		1200		930	1.00		
IAQ-9	16-05-1215-4-A	05/13/16 16:21	Air	GC 13	N/A	05/18/16 11:24	160518L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH as Gasoline		1400		930	1.00		
IAQ-10	16-05-1215-5-A	05/13/16 16:35	Air	GC 13	N/A	05/18/16 11:36	160518L02
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH as Gasoline		1100		930	1.00		
OAA-2	16-05-1215-6-A	05/13/16 16:06	Air	GC 13	N/A	05/18/16 11:51	160518L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
TPH as Gasoline		970		930	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

099-15-709-17

N/A

Result

ND

Air

GC 13

<u>RL</u>

930

N/A

<u>DF</u>

1.00

Quality Control - Sample Duplicate

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-05-1215 N/A

EPA TO-3M

05/17/16

Project: Hollis Emeryville / 16076.23.28

Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
IAQ-6	Sample	Air	GC 13	N/A	05/18/16 10:48	160518D02
IAQ-6	Sample Duplicate	Air	GC 13	N/A	05/18/16 13:40	160518D02
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
TPH as Gasoline		1021	1196	16	0-20	

Quality Control - LCS/LCSD

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331

Project: Hollis Emeryville / 16076.23.28

Date Received: Work Order: Preparation: 05/17/16 16-05-1215 N/A

Method:

EPA TO-15 SIM

Page 1 of 3

Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-052-1563	LCS		Air	GC/	MS KK	N/A	05/18/1	16 19:06	160518L01	
095-01-052-1563	LCSD		Air	GC/	MS KK	N/A	05/18/1	16 19:58	160518L01	
<u>Parameter</u>	Spike Added	LCS Conc	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Dichlorodifluoromethane	2.473	1.744	71	2.182	88	50-150	33-167	22	0-30	
Chloromethane	1.033	0.8194	79	0.8068	78	50-150	33-167	2	0-30	
Vinyl Chloride	1.278	0.9315	73	1.157	91	44-140	28-156	22	0-33	
Chloroethane	1.319	1.166	88	1.193	90	50-150	33-167	2	0-30	
Trichlorofluoromethane	2.809	2.599	93	2.640	94	50-150	33-167	2	0-30	
1,1-Dichloroethene	1.982	1.836	93	1.840	93	50-150	33-167	0	0-30	
Methylene Chloride	1.737	1.446	83	1.458	84	50-150	33-167	1	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	3.832	3.546	93	3.580	93	50-150	33-167	1	0-30	
t-1,2-Dichloroethene	1.982	1.770	89	1.772	89	50-150	33-167	0	0-30	
1,1-Dichloroethane	2.024	1.753	87	1.625	80	50-150	33-167	8	0-30	
c-1,2-Dichloroethene	1.982	1.538	78	1.544	78	35-165	13-187	0	0-35	
Chloroform	2.441	1.949	80	1.967	81	50-150	33-167	1	0-30	
1,2-Dichloroethane	2.024	1.664	82	1.668	82	28-166	5-189	0	0-40	
1,1,1-Trichloroethane	2.728	2.309	85	2.332	86	50-150	33-167	1	0-30	
1,2,4-Trimethylbenzene	2.458	2.009	82	2.004	82	50-150	33-167	0	0-30	
1,3,5-Trimethylbenzene	2.458	2.229	91	2.253	92	50-150	33-167	1	0-30	
4-Ethyltoluene	2.458	2.121	86	2.152	88	50-150	33-167	1	0-30	
Chlorobenzene	2.302	1.926	84	1.926	84	50-150	33-167	0	0-30	
1,1-Difluoroethane	1.351	1.411	104	1.068	79	50-150	33-167	28	0-30	
Benzene	1.597	1.274	80	1.283	80	27-153	6-174	1	0-34	
Carbon Tetrachloride	3.146	2.651	84	2.667	85	7-187	0-217	1	0-31	
Bromodichloromethane	3.350	2.820	84	2.814	84	50-150	33-167	0	0-30	
1,1,2-Trichloroethane	2.728	2.262	83	2.273	83	27-171	3-195	0	0-38	
Toluene	1.884	1.509	80	1.501	80	28-154	7-175	1	0-42	
Dibromochloromethane	4.259	3.673	86	3.665	86	50-150	33-167	0	0-30	
Trichloroethene	2.687	2.146	80	2.186	81	43-139	27-155	2	0-31	
Tetrachloroethene	3.391	2.952	87	2.921	86	34-154	14-174	1	0-33	
Ethylbenzene	2.171	1.820	84	1.808	83	27-153	6-174	1	0-46	
p/m-Xylene	4.342	3.838	88	3.822	88	21-165	0-189	0	0-51	
1,1,2,2-Tetrachloroethane	3.433	3.015	88	3.025	88	50-150	33-167	0	0-30	
o-Xylene	2.171	1.957	90	1.961	90	22-160	0-183	0	0-48	
Hexachloro-1,3-Butadiene	5.333	5.691	107	5.961	112	50-150	33-167	5	0-30	
Methyl-t-Butyl Ether (MTBE)	1.803	1.782	99	1.432	79	50-150	33-167	22	0-30	
Naphthalene	2.621	3.170	121	3.292	126	40-190	15-215	4	0-30	

Quality Control - LCS/LCSD

 AllWest Environmental, Inc.
 Date Received:
 05/17/16

 2141 Mission Street, Suite 100
 Work Order:
 16-05-1215

 San Francisco, CA 94110-6331
 Preparation:
 N/A

 Method:
 EPA TO-15 SIM

 Project: Hollis Emeryville / 16076.23.28
 Page 2 of 3

Total number of LCS compounds: 34

Total number of ME compounds: 0

Total number of ME compounds allowed: 2

LCS ME CL validation result: Pass

Quality Control - LCS

AllWest Environmental, Inc. 2141 Mission Street, Suite 100 San Francisco, CA 94110-6331 Date Received: Work Order: Preparation: Method:

16-05-1215 N/A EPA TO-3M

05/17/16

Project: Hollis Emeryville / 16076.23.28

Page 3 of 3

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-709-17	LCS	Air	GC 13	N/A	05/18/16 09:21	160518L02
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Gasoline		932500	831000	89	80-120)

Summa Canister Vacuum Summary

Work Order: 16-05-1215				Page 1 of 1
Sample Name	Vacuum Out	Vacuum In	Equipment	Description
IAQ-6	-29.50 in Hg	-4.00 in Hg	D673	Summa Canister 6L
AQ-7	-29.50 in Hg	-10.20 in Hg	D206	Summa Canister 6L
AQ-8	-29.50 in Hg	-5.40 in Hg	SIM088	Summa Canister 6L
AQ-9	-29.50 in Hg	-7.00 in Hg	D794	Summa Canister 6L
AQ-10	-29.50 in Hg	-4.30 in Hg	SIM008	Summa Canister 6L
OAA-2	-29.50 in Ha	-5.60 in Ha	D251	Summa Canister 6I

Sample Analysis Summary Report

Work Order: 16-05-1215		Page 1 of 1		
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA TO-15 SIM	N/A	326	GC/MS KK	2
EPA TO-3M	N/A	1078	GC 13	2

Glossary of Terms and Qualifiers

Work Order: 16-05-1215 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2014-07-01 Revision

727

117/12

U B B D

3

Received by: (Signature/Affiliation)

(059

Relinquished by: (Signature)

eurofins ...

AIR CHAIN-OF-CUSTODY RECORD

FILL LITTH AND ALYSES REQUESTED DATE: 5/13/16 16076.23.28 SAPA BUDOM Time 91-Q1 (B-HIL) SAMPLER(S): (PRINT PAGE: 5 S T FU Date: 16.06 1543 1271 5/13/16/1635 \$ TOME EMERYMUNE 2 CES best thous of 16-05-1215 EMERYNIVE LEONARD 6454 のたか | 5||3||1| 083¢ 5/13/16/0835 5/13/14 08/16 5/13/11/832 PROJECT ADDRES FC247 5 13 Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) 75年2 元 230 FC233 Resel FC231 Controller چ 4410 3 Size □ 5 DAYS X STANDARD LEONARD & ALLWETTI . COM SIMOSE SIMOGE **P**744 0173 **D206** 0221 Media 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us Indoor (I) Soil Vap. (SV) Ambient (A) STATE: Þ ALVERT ENVIRONMENTA □ 48 HR □ 72 HR FIELD ID / POINT OF COLLECTION Calscience 214 MISSION ST, STE100 ONSAN FRANCISCO COELT EDF COTHER SPECIAL INSTRUCTIONS: (415)391-2510 □ SAME DAY □ 24 HR SAMPLEID 188-10 0AA-2 149-8 148-9 140-7 1 - BX

LAB USE ONLY

Q,

Return to Contents

PDS

,

Ship From
ALLWEST ENVIRONMENTAL
DARLENE TORIO
2141 MISSION ST
STE 100
SAN FRANCISCO, CA 94110

Ship To EUROFINS CALSCIENCE, INC. SAMPLE RECEIVING

COLDER STRIE OPERAICHT

Ship From

ALLWEST ENVIRONMENTAL DARLENE TORIO 2141 MISSION ST STE 100 SAN FRANCISCO, CA 94110

Ship To EUROFINS CALSCIENCE, INC. SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: 16076.23.28 Delivery Instructions:

Signature Type: REQUIRED

800-322-5555 www.gso.com

Tracking #: 531931963

ORC

KC -

800-322-5555 www.gso.com

Tracking #: 531931964

PDS

ORC

GARDEN GROVE

D92845A

51865041

Print Date: 5/16/2016 10:39 AM

ontents

WORK ORDER NUMBER: 16-05- 12 | 5

SAMPLE RECEIPT CHECKLIST

COOLER O OF O

CLIENT: All west Env'1.	DATE: 05 /	<u>/7</u> / 2016
TEMPERATURE: (Criteria: 0.0°C - 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2A (CF: 0.0°C); Temperature (w/o CF):°C (w/ CF): □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of samplin □ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter	ng	Sample
CUSTODY SEAL: Cooler	Checked Checked	by: <u>876</u> by: <u>300</u>
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Sampling date Sampling time Matrix Number of containers		No N/A
□ No analysis requested □ Not relinquished ☑ No relinquished date ☑ No relinquished Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested		
Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container	0	
Unpreserved aqueous sample(s) received for certain analyses ☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals Container(s) for certain analysis free of headspace		
Tedlar™ bag(s) free of condensation		
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 50 □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve (□ □ □ □ □ □ □ □ □ □ □ □ □ □ Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ □ □ Other Matrix (□ □ Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziplo Preservative: b = buffered, f = filtered, h = HCl, n = HNO₃, na = NaOH, na₂ = Na₂S₂O₃, p = H₃PO₄, Lass = H₂SO₄, u = ultra-pure, znna = Zn(CH₃CO₂)₂ + NaOH	125AGBp	6Js

Calscience

WORK ORDER NUMBER: 16-05 1254

SAMPLE ANOMALY REPORT

DATE: 05 / 17 / 2016

Sample(s) NOT RECEIVED but listed on COC Sample(s) received but NOT LISTED on COC Holding time expired (list client or ECI sample ID and analysis) Insufficient sample amount for requested analysis (list analysis) Improper container(s) used (list analysis) Improper preservative used (list analysis) No preservative noted on COC or label (list analysis and notify lab) Sample container(s) not labeled Client sample label(s) illegible (list container type and analysis) Client sample label(s) do not match COC (comment) Project information Client sample and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume Leaking (not transferred; duplicate bag submitted)		Comments
Sample(s) received but NOT LISTED on COC Holding time expired (list client or ECI sample ID and analysis) Insufficient sample amount for requested analysis (list analysis) Improper container(s) used (list analysis) Improper preservative used (list analysis) Improper preservative noted on COC or label (list analysis and notify lab) Sample container(s) not labeled Client sample label(s) illegible (list container type and analysis) Client sample label(s) do not match COC (comment) Project information Client sample ID Sampling date and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume	SAMPLES, CONTAINERS, AND LABELS:	Comments
Holding time expired (list client or ECI sample ID and analysis) Insufficient sample amount for requested analysis (list analysis) Improper container(s) used (list analysis) Improper preservative used (list analysis) Improper preservative used (list analysis) Improper preservative used (list analysis) No preservative noted on COC or label (list analysis and notify lab) Sample container(s) not labeled Client sample label(s) illegible (list container type and analysis) Client sample label(s) do not match COC (comment) Project information Client sample ID Sampling date and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume		
Insufficient sample amount for requested analysis (list analysis) Improper container(s) used (list analysis) Improper preservative used (list analysis and notify lab) Improper preservative used (list analysis) Improper preservative use		
□ Improper container(s) used (list analysis) □ Improper preservative used (list analysis) □ No preservative noted on COC or label (list analysis and notify lab) □ Sample container(s) not labeled □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ Holding time expired (list client or ECI sample ID and analysis)	
□ Improper preservative used (list analysis) □ No preservative noted on COC or label (list analysis and notify lab) □ Sample container(s) not labeled □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ Insufficient sample amount for requested analysis (list analysis)	
□ No preservative noted on COC or label (list analysis and notify lab) □ Sample container(s) not labeled □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ Improper container(s) used (list analysis)	
□ Sample container(s) not labeled □ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ Improper preservative used (list analysis)	
□ Client sample label(s) illegible (list container type and analysis) □ Client sample label(s) do not match COC (comment) □ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ No preservative noted on COC or label (list analysis and notify lab)	
Client sample label(s) do not match COC (comment) Project information Client sample ID Sampling date and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume	☐ Sample container(s) not labeled	
□ Project information □ Client sample ID □ Sampling date and/or time □ Number of container(s) □ Requested analysis □ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ Client sample label(s) illegible (list container type and analysis)	
Client sample ID Sampling date and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume	☑ Client sample label(s) do not match COC (comment)	
Sampling date and/or time Number of container(s) Requested analysis Sample container(s) compromised (comment) Broken Water present in sample container Air sample container(s) compromised (comment) Flat Very low in volume	☐ Project information	(a) () () () () () () () () ()
□ Sampling date and/or time OZES 1 476 □ Number of container(s)	☑ Client sample ID	
□ Requested analysis	☐ Sampling date and/or time	Da 5/13/16 0754/1554
□ Sample container(s) compromised (comment) □ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume	☐ Number of container(s)	
□ Broken □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume □ State	☐ Requested analysis	
 □ Water present in sample container □ Air sample container(s) compromised (comment) □ Flat □ Very low in volume 	☐ Sample container(s) compromised (comment)	
☐ Air sample container(s) compromised (comment) ☐ Flat ☐ Very low in volume ☐ Very low in volume	☐ Broken	
□ Flat □ Very low in volume □ The state of	☐ Water present in sample container	
□ Very low in volume	☐ Air sample container(s) compromised (comment)	
·	□ Flat	
☐ Leaking (not transferred; duplicate bag submitted)	☐ Very low in volume	
	☐ Leaking (not transferred; duplicate bag submitted)	
□ Leaking (transferred into ECI Tedlar™ bags*)	☐ Leaking (transferred into ECI Tedlar™ bags*)	-
□ Leaking (transferred into client's Tedlar™ bags*)	□ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	* Transferred at client's request.	
MISCELLANEOUS: (Describe) Comments	MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	HEADSBACE.	
(Containers with bubble > 6 mm or 1/4 inch for volatile organic or dissolved gas analysis) (Containers with bubble for other analysis)	• • • • • • • • • • • • • • • • • • • •	(Containers with bubble for other analysis)
ECI ECI Total ECI ECI Total ECI Sample ID Container ID Number** Requested Analysis	ECI ECI Total ECI ECI Total	
Sample ID Container ID Number** Sample ID Container ID Number** Sample ID Container ID Number**	Sample ID Container ID Number** Sample ID Container ID Number	Complete Comment
Comments:Reported by: 300	Comments:	Reported by: 300
** Record the total number of containers (i.e., vials or bottles) for the affected sample. Reported by: 300 Reviewed by: £34	for the affected comple	Reviewed by: £3/

o Contents

Vikas Patel

From: Leonard Niles <leonard@allwest1.com>
Sent: Thursday, May 19, 2016 7:12 AM

To: Erick Ovalle

Cc: Vikas Patel; 'Sara Bloom'

Subject: RE: Sample receipt confirmation / 16-05-1215 / Hollis Emeryville / 16076.23.28

Eric,

The correct sample ID should be IAQ-7. The "IAQ-WBTH" was an earlier designation that should have been changed.

Thanks,

Len

Leonard Niles, P.G., C.H.G. Senior Project Manager AllWest Environmental, Inc.

2141 Mission Street, Suite 100 San Francisco, CA 94110 office (415) 391-2510 x204 fax (415) 391-2008 Leonard@AllWest1.com

From: Erick Ovalle [mailto:ErickOvalle@eurofinsUS.com]

Sent: Wednesday, May 18, 2016 11:04 AM

To: 'Leonard Niles'; Sara Bloom

Cc: Vikas Patel

Subject: Sample receipt confirmation / 16-05-1215 / Hollis Emeryville / 16076.23.28

Sample receipt confirmation attached. Please review and advise of any changes required.

APPENDIX G

APPLICATION FOR AUTHORIZATION TO USE

REPORT TITLE:	DATA GAP INVEST	TIGATION REPORT	
	6655 Hollis St. & 147 Emeryville, CA 9460		
PROJECT NUMBER:	16076.23		
То:	AllWest Environmental 2141 Mission Street, S San Francisco, CA 94	Suite 100	
From (Applicant):			
	(Please clearly identify use or copy this docum	y name and address of person/entity applying for permission to ment)	
Ladies and Gentlemen:			
Applicant states they have to methodology, findings and comments are the states and comments are the states are		report and had the opportunity to discuss with AllWest the report's	
Applicant hereby applies for the purpose for which you w		AllWest's work product, as described above, for the purpose of (state his product):	ere
provisions in the General Co finding, or conclusion issued agreeable, please sign belo	onditions to the Work Aut d by AllWest shall be subj w and return one copy of	rk product under the strict understanding that Applicant is bound by all thorization Agreement provided below. Every report, recommendation, ject to the limitations stated in the Agreement and subject report(s). If this letter to us along with the applicable fees. Upon receipt and if st may withhold permission at its sole discretion or require additional re	
	ssue the report in the nan	able in advance, will apply. If desired, for an additional \$150 report me of the Applicant; the report date, however, will remain the same. All not approved.	
REQUES	STED BY	APPROVED BY	
Applicant	Company	AllWest Environmental, Inc.	
Print Name	e and Title	Print Name and Title	
Signature	and Date	Signature and Date	

5/15/15 Page 1 of 4

GENERAL CONDITIONS TO THE WORK AUTHORIZATION AGREEMENT

It is hereby agreed that the Client retains AllWest to provide services as set forth in the Work Authorization attached hereto (the "Work"). This contract shall be controlled by the following terms and conditions, and these terms and conditions shall also control any further assignments performed pursuant to this Work Authorization. Client's signature on this Work Authorization constitutes Client's agreement to the all terms to this contract, including these General Conditions.

FEES AND COSTS

1. AllWest shall charge for work performed by its personnel at the rates identified in the Work Authorization. These rates are subject to reasonable increases by AllWest upon giving Client 30 days advance notice. Reimbursable Costs will be charged to the Client in addition to the fees for the basic services under this Agreement and all Additional Services (defined below) under the Agreement. Reimbursable Costs include, but are not limited to, expenses for travel, including transportation, meals, lodging, long distance telephone and other related expenses, as well as the costs of reproduction of all drawings for the Client's use, costs for specifications and type-written reports, permit and approval fees, automobile travel reimbursement, costs and fees of subcontractors, and soil and other materials testing. No overtime is accrued for time spent in travel. All costs incurred which relate to the services or materials provided by a contractor or subcontractor to AllWest shall be invoiced by AllWest on the basis of cost plus twenty percent (20%). Automobile travel reimbursement shall be at the rate of fifty- eight cents (\$0.58) per mile. All other reimbursable costs shall be invoiced and billed by AllWest at the rate of 1.1 times the direct cost to AllWest. Reimbursable costs will be charged to the client only as outlined in the Work Authorization if the scope of work is for Phase I Environmental Site Assessment, Property Condition Assessment, Seismic Assessment or ALTA survey. Invoices for work performed shall be submitted monthly. Payment will be due upon receipt of invoice. Client shall pay interest on the balance of unpaid invoices which are overdue by more than 30 days, at a rate of 18% per annum as well as all attorney fees and costs incurred by AllWest to secure payment of unpaid invoices. AllWest may waive such fees at its sole discretion.

STANDARD OF CARE

2. AllWest will perform its work in accordance with the standard of care of its industry, as it is at the time of the work being performed, and applicable in the locale of the work being performed. AllWest makes no other warranties, express or implied regarding its work.

LIMITATION OF REMEDIES

3. Client expressly agrees that to the fullest extent permitted by law, Client's remedies for any liability incurred by AllWest, and/or its employees or agents, for any and all claims arising from AllWest's services, shall be \$50,000 or its fees, whichever is greater.

Client may request a higher limitation of remedies, but must do so in writing. Upon such written request, AllWest may agree to increase this limit in exchange for a mutually negotiated higher fee commensurate with the increased risk to AllWest. Any such agreed increase in fee and limitation of remedies amount must be memorialized by written agreement which expressly amends the terms of this clause.

As used in this section, the term "limitation of remedies" shall apply to claims of any kind, including, but not limited to, claims brought in contract, tort, strict liability, or otherwise, for any and all injuries, claims, losses, expenses, or damages whatsoever arising out of or in any way related to AllWest's services or the services of AllWest's subcontractors, consultants, agents, officers, directors, and employees from any cause(s). AllWest shall not be liable for any claims of loss of profits or any other indirect, incidental, or consequential damages of any nature whatsoever. Client & AllWest have specifically negotiated this limitation.

INDEMNIFICATION

4. Notwithstanding any other provision of this Agreement, Client agrees, to the fullest extent permitted by law, to waive any claim against, release from any liability or responsibility for, and , indemnify and hold harmless AllWest, its employees, agents and sub-consultants (collectively, Consultant) from and against any and all damages, liabilities, claims, actions or costs of any kind, including reasonable attorney's fees and defense costs, arising or alleged to arise out of or to be in any way connected with the Project or the performance or non-performance of Consultant of any services under this Agreement, excepting only any such liabilities determined by a court or other forum of competent jurisdiction to have been caused by the negligence or willful misconduct of Consultant. This provision shall be in addition to any rights of indemnity that Consultant may have under the law and shall survive and remain in effect following the termination of this Agreement for any reason. Should any part of this provision be determined to be unenforceable, AllWest and Client agree that the rest of the provision shall apply to the maximum extent permitted by law. The Client's duty to defend AllWest shall arise immediately upon tender of any matter potentially covered by the above obligations to indemnify and hold harmless.

MEDIATION & JUDICIAL REFERENCE

5. In an effort to resolve any conflicts or disputes that arise regarding the performance of this agreement, the Client & AllWest agree that all such disputes shall be submitted to non-binding mediation, using a mutually agreed upon mediation service experienced in the resolution of construction disputes. Unless the parties mutually agree otherwise, such mediation shall be a condition precedent to the initiation of any other adjudicative proceedings. It is further agreed that any dispute that is not settled pursuant to such mediation shall be adjudicated by a court appointed referee in accordance with the Judicial Reference procedures as set forth in California Code of Civil Procedure Section 638 et seq. The parties hereby mutually agree to waive any right to a trial by jury regarding any dispute arising out of this agreement.

The parties further agree to include a similar mediation, Judicial Reference & waiver of jury trial provision in their agreements with other independent contractors & consultants retained for the project and require them to similarly agree to these dispute resolution procedures. The cost of said Mediation shall be split equally between the parties. This agreement to mediate shall be specifically enforceable under the prevailing law of the jurisdiction in which this agreement was signed.

HAZARDOUS WASTE

6. Client acknowledges that AllWest and its sub-contractors have played no part in the creation of any hazardous waste, pollution sources, nuisance, or chemical or industrial disposal problem, which may exist, and that AllWest has been retained for the sole purpose of performing the services set out in the scope of work within this Agreement, which may include, but is not necessarily limited to such services as assisting the Client in assessing any problem which may exist and in assisting the

Client in formulating a remedial program. Client acknowledges that while necessary for investigations, commonly used exploration methods employed by AllWest may penetrate through contaminated materials and serve as a connecting passageway between the contaminated material and an uncontaminated aquifer or groundwater, possibly inducing cross contamination. While back-filling with grout or other means, according to a state of practice design is intended to provide a seal against such passageway, it is recognized that such a seal may be imperfect and that there is an inherent risk in drilling borings of performing other exploration methods in a hazardous waste site.

AllWest will not sign or execute hazardous waste manifests or other waste tracking documents on behalf of Client unless Client specifically establishes AllWest as an express agent of Client under a written agency agreement approved by AllWest. In addition, Client agrees that AllWest shall not be required to sign any documents, no matter requested by whom, that would have the effect of AllWest providing any form of certification, guarantee, or warranty as to any matter or to opine on conditions for which the existence AllWest cannot ascertain. Client also agrees that it shall never seek or otherwise attempt to have AllWest provide any form of such certification, guarantee or warranty in exchange for resolution of any disputes between Client and AllWest, or as a condition precedent to making payment to AllWest for fees and costs owing under this Agreement.

Client understands and agrees that AllWest is not, and has no responsibility as, a generator, operator, treater, storer, transporter, arranger or disposer of hazardous or toxic substances found or identified at the site, including investigation-derived waste. The Client shall undertake and arrange for the removal, treatment, storage, disposal and/or treatment of hazardous material and investigation derived waste (such as drill cuttings) and further, assumes full responsibility for such wastes to the complete exclusion of any responsibility, duty or obligation upon AllWest. AllWest's responsibilities shall be limited to recommendations regarding such matters and assistance with appropriate arrangements if authorized by Client.

FORCE MAJUERE

7. Neither party shall be responsible for damages or delays in performance under this Agreement caused by acts of God, strikes, lockouts, accidents or other events or condition (other than financial inability) beyond the other Party's reasonable control.

TERMINATION

8. This Agreement may be terminated by either party upon ten (10) days' written notice should the other party substantially fail to perform in accordance with its duties and responsibilities as set forth in this Agreement and such failure to perform is through no fault of the party initiating the termination. Client agrees that if it chooses to terminate AllWest for convenience, and AllWest has otherwise satisfactorily performed its obligations under this Agreement to that point, AllWest shall be paid no less than eighty percent (80%) of the contract price, provided, however, that if AllWest shall have completed more than eighty percent of the Work at the time of said termination, AllWest shall be compensated as provided in the Work Authorization for all services performed prior to the termination date which fall within the scope of work described in the Work Authorization and may as well, at its sole discretion and in accordance with said Schedule of Fees, charge Client, and Client agrees to pay AllWest's reasonable costs and labor in winding up its files and removing equipment and other materials from the Project.

Upon notice of termination by Client to AllWest, AllWest may issue notice of such termination to other consultants, contractors, subcontractors and to governing agencies having jurisdiction over the Project, and take such other actions as are reasonably necessary in order to give notice that AllWest is no longer associated with the Project and to protect AllWest from claims of liability from the work of others.

DOCUMENTS

9. Any documents prepared by AllWest, including, but not limited to proposals, project specifications, drawings, calculations, plans and maps, and any ideas and designs incorporated therein, as well as any reproduction of the above are instruments of service and shall remain the property of AllWest and AllWest retains copyrights to these instruments of service. AllWest grants to Client a non-exclusive license to use these instruments of service for the purpose of completing and maintaining the Project. The Client shall be permitted to retain a copy of any instruments of service, but Client expressly agrees and acknowledges that the instruments of service may not be used by the Client on other projects, or for any other purpose, except the project for which they were prepared, unless Client first obtains a written agreement expanding the license to such use from AllWest, and with appropriate compensation to AllWest. Client further agrees that such instruments of service shall not be provided to any third parties without the express written permission of AllWest.

Client shall furnish, or cause to be furnished to AllWest all documents and information known to Client that relate to the identity, location, quantity, nature, or characteristics of any asbestos, PCBs, or any other hazardous materials or waste at, on or under the site. In addition, Client will furnish or cause to be furnished such reports, data, studies, plans, specifications, documents and other information on surface or subsurface site conditions, e.g., underground tanks, pipelines and buried utilities, required by AllWest for proper performance of its services. IF Client fails to provide AllWest with all hazardous material subject matter reports including geotechnical assessments in its possession during the period that AllWest is actively providing its services (including up to 30 days after its final invoice), Client shall release AllWest from any and all liability for risks and damages the Client incurs resulting from its reliance on AllWest's professional opinion. AllWest shall be entitled to rely upon Client - provided documents and information in performing the services required in this Agreement; however, AllWest assumes no responsibility or liability for the accuracy or completeness of Client-provided documents. Client-provided documents will remain the property of the Client.

ACCESS TO PROJECT

10. Client grants to AllWest the right of access and entry to the Project at all times necessary for AllWest to perform the Work. If Client is not the owner of the Project, then Client represents that Client has full authority to grant access and right of entry to AllWest for the purpose of AllWest's performance of the Work. This right of access and entry extends fully to any agents, employees, contractors or subcontractors of AllWest upon reasonable proof of association with AllWest. Client's failure to provide such timely access and permission shall constitute a material breach of this Agreement excusing AllWest from performance of its duties under this Agreement.

CONFIDENTIAL INFORMATION

11. Both Client and AllWest understand that in conjunction with AllWest's performance of the Work on the project, both Client and AllWest may receive or be exposed to Proprietary Information of the other. As used herein, the term "Proprietary Information" refers to any and all information of a confidential, proprietary or secret nature which may be either applicable to, or relate in any way to: (a) the personal, financial or other affairs of the business of each of the Parties, or (b) the

research and development or investigations of each of the Parties. Proprietary Information includes, for example and without limitation, trade secrets, processes, formulas, data, know-how, improvements, inventions, techniques, software technical data, developments, research projects, plans for future development, marketing plans and strategies. Each of the Parties agrees that all Proprietary Information of the other party is and shall remain exclusively the property of that other party. The parties further acknowledge that the Proprietary Information of the other party is a special, valuable and unique asset of that party, and each of the Parties agrees that at all times during the terms of this Agreement and thereafter to keep in confidence and trust all Proprietary Information of the other party, whether such Proprietary Information was obtained or developed by the other party before, during or after the term of this Agreement. Each of the Parties agrees not to sell, distribute, disclose or use in any other unauthorized manner the Proprietary Information of the other party. AllWest further agrees that it will not sell, distribute or disclose information or the results of any testing obtained by AllWest during the performance of the Work without the prior written approval of Client unless required to do so by federal, state or local statute, ordinance or regulation.

INDEPENDENT CONTRACTOR

12. Both Client and AllWest agree that AllWest is an independent contractor in the performance of the Work under this Agreement. All persons or parties employed by AllWest in connection with the Work are the agents, employees or subcontractors of AllWest and not of Client. Accordingly, AllWest shall be responsible for payment of all taxes arising out of AllWest's activities in performing the Work under this Agreement.

ENTIRE AGREEMENT

13. This Agreement contains the entire agreement between the Parties pertaining to the subject matter contained in it and supersedes and replaces in its entirety all prior and contemporaneous proposals, agreements, representations and understandings of the Parties. The Parties have carefully read and understand the contents of this Agreement and sign their names to the same as their own free act.

INTEGRATION

14. This is a fully integrated Agreement. The terms of this Agreement may be modified only by a writing signed by both Parties. The terms of this Agreement were fully negotiated by the Parties and shall not be construed for or against the Client or AllWest but shall be interpreted in accordance with the general meaning of the language in an effort to reach the intended result.

MODIFICATION / WAIVER / PARTIAL INVALIDITY

15. Failure on the part of either party to complain of any act or omission of the other, or to declare the other party in default, shall not constitute a waiver by such party of its rights hereunder. If any provision of this Agreement or its application be unenforceable to any extent, the Parties agree that the remainder of this Agreement shall not be affected and shall be enforced to the greatest extent permitted by law.

INUREMENT / TITLES

16. Subject to any restrictions on transfers, assignments and encumbrances set forth herein, this Agreement shall inure to the benefit of and be binding upon the undersigned Parties and their respective heirs, executors, legal representatives, successors and assigns. Paragraph titles or captions contained in this Agreement are inserted only as a matter of convenience, and for reference only, and in no way limit, define or extend the provisions of any paragraph. , et al., incurred in that action or proceeding, in addition to any other relief to which it or they may be entitled.

AUTHORITY

17. Each of the persons executing this Agreement on behalf of a corporation does hereby covenant and warrant that the corporation is duly authorized and existing under the laws of its respective state of incorporation, that the corporation has and is qualified to do business in its respective state of incorporation, that the corporation has the full right and authority to enter into this Agreement, and that each person signing on behalf of the corporation is authorized to do so. If the Client is a joint venture, limited liability company or a partnership, the signatories below warrant that said entity is properly and duly organized and existing under the laws of the state of its formation and pursuant to the organizational and operating document of the entity, and the laws of the state of its formation, said signatory has authority act on behalf of and commit the entity to this Agreement.

COUNTERPARTS

18. This Agreement may be signed in counterparts by each of the Parties hereto and, taken together, the signed counterparts shall constitute a single document.

THIRD PARTY BENEFICIARIES / CONTROLLING LAW

19. There are no intended third party beneficiaries of this Agreement. The services, data & opinions expressed by AllWest are for the sole use of the client, are for a particular project and may not be relied upon by anyone other than the client. This Agreement shall be controlled by the laws of the State of California and any action by either party to enforce this Agreement shall be brought in San Francisco County, California.

TIME BAR TO LEGAL ACTION

20. Any legal actions by either party against the other related to this Agreement, shall be barred after one year has passed from the time the claimant knew or should have known of its claim, and under no circumstances shall be initiated after two years have passed from the date by which AllWest completes its services.