

August 3, 2015

Mr. Mark Detterman Alameda County Health Care Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Perjury Statement for the Indoor Air Survey Sampling Event 2 Letter of Findings—

1475 and 1483 67th Street, Emeryville, California.

Dear Mr. Detterman:

Stellar Environmental Solutions, Inc. (Stellar Environmental), on behalf of the Corder Family Emeryville Properties, LP, is providing this cover to the letter report of findings on the "Indoor Air Survey Sampling Event 2 Letter of Findings—1475 and 1483 67th Street, Emeryville, California" dated July 8, 2015, to enable the report to meet the requirements to upload the report to the Geotracker site of the Responsible Party (RP) site upgradient of the impacted Corder properties. The RP site responsible for the impact to the Corder property is known as the McGrath Site (Alameda County Fuel Leak Case #RO0000063; Global ID T0600102099).

We declare, under penalty of perjury, that the information and/or recommendations contained in this report are true and correct to the best of our knowledge. Please call us at (510) 644-3123, if you have any questions.

Sincerely,

Manager of Corder Family Management Company, LLC, General Partner of Corder Family Emeryville Properties, LP.

Richard S. Makdisi, P.G.

Principal Geochemist and President

(hunder Mer-

GEOSCIENCE & ENGINEERING CONSULTING

July 8, 2015

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Department of Environmental Health Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Ms. Erin M. Corder-Schaefer Manager of Corder Family Management Company, LLC, General Partner of Corder Family Emeryville Properties, LP 2156 Corte Dorado Espuela Alpine, CA 91901

Subject: Indoor Air Survey Sampling Event 2 Letter of Findings—1475 and 1483 67th Street,

Emeryville, California.

Dear Mr. Detterman and Ms. Corder-Schaefer:

INTRODUCTION AND BACKGROUND

This June 2015 indoor air monitoring event at the two Corder property buildings downgradient from known former McGrath Steel underground fuel storage tank (UFST) site is the second indoor air monitoring event conducted by Stellar Environmental Solutions, Inc. (Stellar Environmental), the first one being in October 2014. This survey has been commissioned by Corder Family Emeryville Properties, LLC. The indoor air monitoring was initially prompted by known McGrath Steel hydrocarbon plume site (Alameda County Fuel Leak Case #RO0000063; Global ID T0600102099) and specifically the June 2014 indoor air results reported by AllWest Environmental at the adjacent McGrath Steel office and warehouse complex located at 6655/Hollis Street/1471 67th Street. The concern is the impact of the McGrath Steel hydrocarbon plume on the downgradient Corder properties.

Leakage from the McGrath Steel former underground fuel storage tanks (UST) system under the 67th Street sidewalk that was removed in 1996 became apparent in numerous subsequent

Ms. Erin M. Corder-Shaefer Corder Family Emeryville Properties, LP July 8, 2015 Page 2 of 6

investigations. The hydrocarbon leak resulted in fuel hydrocarbon contamination of soil and groundwater beneath 67th Street and the plume is also indicated to be beneath at least part of the 1475 and 1483 67th Street, Corder property buildings, and to be impacting indoor air quality.

The AllWest indoor air survey is described in the July 21, 2014 AllWest document, "<u>Indoor air Quality Monitoring Report, Former McGrath Steel, 6655 Hollis and 1471 67th Street, Emeryville, California (Alameda County Fuel Leak Case #RO0000063)". However, it should be noted that AllWest conducted a 24-hour indoor air test that is typically used for evaluating indoor air impacts to residential land use versus the 8-hour indoor air test called for in regulatory guidance to evaluate commercial land use spaces. The five AllWest indoor air samples were all located within the McGrath Steel property. Regulatory oversight of this case is being provided by Mr. Mark Detterman of Alameda County Environmental Health Services (ACEHS).</u>

Benzene concentrations in four of the five AllWest indoor air samples exceeded the Regional Water Quality Control Board-San Francisco Bay Region (Water Board) indoor air commercial Environmental Screening Levels (ESLs) for benzene of 0.42 µg/m³. Benzene did not exceed its applicable ESL in the sample collected along the north wall of the warehouse building, adjacent to the former UST source area locations, or in the outdoor ambient air sample. According to the AllWest report, based on uniform concentrations in indoor and outdoor air samples, and on benzene concentrations being lowest in the sample location closest to the original UST source area, it was AllWest's opinion that benzene, carbon tetrachloride and several other detected VOCs were atmospheric contaminants which did not originate from the known UST source area.

Based on a review of the July 2014 AllWest indoor air quality report and of subsurface investigations conducted at the McGrath site to date by Weiss Associates (1998-2005) and AllWest (2013-2014), Stellar Environmental recommended indoor air sampling of the buildings adjacent to the 1471 67th Street McGrath warehouse as the logical next step to address the issue of whether the known hydrocarbon plume from the former McGrath Steel site is impacting the indoor air in adjacent buildings at 1475 and 1483 67th Street.

The indoor air samples IA-1 through IA-4 collected in November 2014 by Stellar Environmental all contained concentrations of benzene above the "commercial property" ESL of $0.42 \,\mu\text{g/m}^3$, ranging from $1.1 \,\mu\text{g/m}^3$ to $9.5 \,\mu\text{g/m}^3$. This compares with the lower $0.54 \,\mu\text{g/m}^3$ to $0.79 \,\mu\text{g/m}^3$ benzene range reported by the July 2014 AllWest study. The November 2014 outdoor control sample OA-1 contained $1.3 \,\mu\text{g/m}^3$ benzene. Three out of four of the indoor air samples exceeded the $100 \,\mu\text{g/m}^3$ commercial ESL for TPH as gasoline with concentrations ranging from $61 \,\mu\text{g/m}^3$ to $360 \,\mu\text{g/m}^3$. The outdoor sample contained $140 \,\mu\text{g/m}^3$ TPHg. One sample exceeded the naphthalene ESL of $0.36 \,\mu\text{g/m}^3$ at a concentration of $0.88 \,\mu\text{g/m}^3$, with the outdoor control sample

Ms. Erin M. Corder-Shaefer Corder Family Emeryville Properties, LP July 8, 2015 Page 3 of 6

containing $0.17 \mu g/m^3$ naphthalene. Detections of toluene, ethylbenzene and xylenes did not exceed their respective ESLs in any of the samples.

The indoor air sample with the highest concentrations of the constituents analyzed for was sample IA-4 located in the front office of 1483 67th Street. Sample IA-3 located in the office area of 1475 67th Street contained the lowest concentrations.

The 1475 67th Street building adjoins directly to the west of the McGrath warehouse and is a 15,000 square foot industrial building constructed in the 1940's. The building is occupied by Metalco, a metal anodizing business. 1483 67th Street adjoins directly to the west of the Metalco building and is a 13,000 square foot industrial structure occupied by Architectural Metal Works, which is a metal working shop for the building industry. Figure 1 presents the general site location. Figure 2 is a site map of the property and surrounding sites.

The specific goals of this second Stellar Environmental were to:

- Follow the California Department of Toxic Substance Control (DTSC) guidance for conducting indoor air sampling in commercial buildings;
- Collect four indoor air samples and one outdoor ambient air sample during normal office working hours (8:00 am to 4:00 pm);
- Analyze the indoor air quality samples for established contaminants in the subsurface using EPA Method TO-15 for Total Petroleum Hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, total xylenes and naphthalene for which there are existing indoor air regulatory ESLs and
- Compare the sampling results to 2013 RWQCB indoor air guidance ESLs for commercial property.

JUNE 2015 INDOOR AIR SAMPLING

Air Sampling Location Rationale

This indoor air investigation and associated report is informed from the initial Stellar Environmental November 2014 indoor air sampling event. The specific locations of the indoor air survey samples reproduced, to the extend practical, the same locations at three of the four indoor air sampling locations from where the samples were collected in November 2014. This approach is recommended to confirm seasonal variations in the indoor air contaminants of concern (COC). The sample point IA-4a location was selected to evaluate if there appears to be any significant difference in the indoor air concentrations further inside the building away from

Ms. Erin M. Corder-Shaefer Corder Family Emeryville Properties, LP July 8, 2015 Page 4 of 6

the previous 2014 sample IA-4 that showed the highest hydrocarbon concentrations. Sample IA-4 was in a small office while IA-4a is located further inside the open warehouse space architecture of the building and serves as a better indicator of the extent of the vapor intrusion. from the McGrath Steel facility hydrocarbon plume. Figure 3 depicts the sample locations.

Indoor Air Sampling Protocol

Mr. Henry Pietropaoli, of Stellar Environmental completed the sampling setup at 8:00 am on Thursday June 18, 2015 and retrieved the sampling apparatus at 4:00 pm the same day, after checking the sampling canisters during the day to make sure they were operating properly. Photodocumentation of the sampling event is attached.

The indoor air sampling program generally followed the DTSC guidance entitled: the *Evaluation* and *Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, August, 2011). The protocol used, included:

- Samples were collected for analysis using Environmental Protection Agency (EPA) method TO-15 [used for integrated (greater than a few minutes) sampling events], which includes the contaminants of concern: benzene, toluene, ethylbenzene, and total xylenes. In addition, TPHg and Naphthalene were included as analytes. These gasoline related compounds have a higher relative vapor pressure than diesel fuel, the other McGrath site contaminant, and are more likely to find their way into indoor air space from beneath the surface.
- The indoor and outdoor air samples were collected over an 8-hour period using 6-liter Summa® canister with a calibrated flow controller set at 11.5 milliliters per minute with the sample intake positioned approximately 3-5 feet above the building floor; and
- The samples were collected during the average period when the building would typically be occupied from 8:00 am until 4:00 pm.

The five air samples were maintained at ambient temperature, out of direct sunlight and transported by courier to McCampbell Analytical of Pittsburg, California, a laboratory certified by the State of California Environmental Laboratory Accreditation Program (ELAP) for the analytical method utilized in this investigation.

REGULATORY CONSIDERATIONS

In December 2004, the Office of Environmental Health Hazard Assessment (OEHHA) on behalf of the California Environmental Protection Agency (CAL EPA) established their own risk

Ms. Erin M. Corder-Shaefer Corder Family Emeryville Properties, LP July 8, 2015 Page 5 of 6

equivalent to the Water Boards Environmental Screening Levels (ESLs), which are called California Human Health Screening Levels (CHHSLs). The Water Board also established their Environmental Screening Levels (ESL's) which have superseded CHHSLs in that DTSC stopped updating them by 2013.

The Water Board ESLs were most recently updated in December 2013 and now include values for indoor air for gasoline range petroleum hydrocarbons (TPG-gasoline) and their benzene, toluene, ethylbenzene and xylenes (BTEX) components. The concentrations from this survey are compared to the Water Board 2013 Environmental Screening Levels (ESL) guidance as that has superseded the CHHSLs, which are no longer being updated. The CHHSL and ESLs historically had very similar values. In addition, the California Occupational Safety and Health Administration (CAL OSHA) has also established Permissible Exposure Limits (PELs) that reflect the maximum permitted 8-hour average concentration limit of an airborne contaminant associated with a given industry. The PELs are to be applied to occupational exposure (such as exposure to dry cleaner chemicals for workers at dry cleaners or petroleum exposure for workers at a petroleum service station) and are not applicable in this case. The CAL OSHA standards, while more conservative, are similar to the federal OSHA standards. Both the Cal OSHA standards and federal standards are law versus guidance and are significantly less conservative than the Cal EPA Water Board ESL's the indoor air sample sin this report are compared against.

It is important to note that neither CHHSLs nor ESLs, were conceived as a cleanup criteria nor stipulate regulatory agency action. Rather, the ESLs are Tier 1 conservative screening criteria used to evaluate sites for potential human health or environmental exposure concerns where releases of hazardous materials to soils or groundwater have occurred. And they serve as indicators source of contamination concerns that can carry environmental liability.

INDOOR AIR SAMPLING ANALYTICAL RESULTS AND DISCUSSION

The indoor air samples IA-1a through IA-4a for the current study all contained concentrations of benzene above the "commercial property" ESL of $0.42~\mu g/m^3$, ranging from $0.69~\mu g/m^3$ to $1.7~\mu g/m^3$ in the Corder Family Emeryville property buildings downagradnt of the McGrath petroleum UST site. This is a decrease from the November 2014 Stellar Environmental benzene results which ranged from $1.1~\mu g/m^3$ to $9.5~\mu g/m^3$ in those building although one of the locations changed. The downgradient indoor air samples showed higher concentrations compared with the $0.54~\mu g/m^3$ to $0.79~\mu g/m^3$ benzene range reported by the July 2014 AllWest study at the McGrath facility, suggesting the McGrath facility sourced petroleum plume is migrating beneath the downgradient Corder properties.

Ms. Erin M. Corder-Shaefer Corder Family Emeryville Properties, LP July 8, 2015 Page 6 of 6

The outdoor control sample OA-1 contained 0.7 $\mu g/m^3$ benzene. All four of the indoor air samples exceeded the 100 $\mu g/m^3$ commercial ESL for TPH as gasoline with concentrations ranging from 190 $\mu g/m^3$ to 320 $\mu g/m^3$. The outdoor sample contained 100 $\mu g/m^3$ TPHg. One sample (IA-4a) exceeded the naphthalene ESL of 0.36 $\mu g/m^3$ at a concentration of 0.52 $\mu g/m^3$, with the outdoor control sample containing 0.21 $\mu g/m^3$ naphthalene. Detections of toluene, ethylbenzene and xylenes did not exceed their respective ESLs in any of the samples.

The indoor air sample with the highest concentrations of the constituents analyzed for was sample IA-4a located by the west wall of the shop of 1483 67th Street. The November 2104 results showed the highest results in this same building but in the front office. Sample IA-3 located in the office area of 1475 67th Street contained the lowest range of concentrations.

As part of the indoor air testing process, the outdoor control sample is collected to provide a meaningful comparison between indoor air and outdoor air concentrations. This comparison is considered in terms of the cumulative indoor air risk associated with the target volatile chemicals. Specific risk considerations would include the exposure scenario being evaluated (e.g., residential, industrial/commercial, school-based) and the risk associated with target volatile chemicals measured in outdoor air for the appropriate exposure scenario. When conducting a vapor intrusion/indoor air assessment, the outdoor ambient air data are used to interpret the measured indoor air concentrations, not to adjust the indoor air concentrations for risk assessment purposes. In the case of the current indoor air sampling results, outdoor air COC concentrations in sample OA-1a were lower than any of the indoor air sample concentrations. This comparison suggests that a vapor intrusion mechanism is involved in the contribution to the indoor air total COC concentrations detected inside the subject buildings.

Table 1 shows the concentrations of indoor air and ambient contaminants detected during the 8-hour sampling event of November 14, 2014 and for June 18, 2015. Table 1 also shows the ESLs indoor air standards for the detected contaminants. Photo-documentation and laboratory analytical results and chain-of-custody record are attached.

CONCLUSIONS AND RECOMMENDATIONS

Based on the indoor air results, there is some risk of exposure from benzene, naphthalene and TPH-gasoline vapor intrusion to occupants of both buildings, based on their respective concentrations being above the regulatory ESLs with benzene as the primary risk driver. In general, once ESLs are exceeded, the need for a type of additional investigative and corrective actions are generally driven by the potential risk associated with the contamination, with input by the regulatory agency providing oversight, which in this case is the ACEHS.

Ms. Erin M. Corder-Shaefer Corder Family Emeryville Properties, LP July 8, 2015 Page 7 of 6

The two indoor air sampling events, coupled with the Allwest monitoring events since 2013 shows the flow direction of the groundwater to be to the southwest, projecting beneath the 1475 and 1483 67th Street Corder buildings. The geometry and concentration of the hydrocarbons in groundwater beneath the Corder buildings needs to be evaluated to gain a better perspective of the environmental liability and risks associated with it not being mitigated and the most effective way to remediate the plume.

Indoor air risk can be mitigated by the increasing mechanical means such as increasing air exchange rates so that the air inside the buildings is flushed more frequently. The effectiveness of this can be gauged by future air monitoring under the recommended increased air exchange conditions. The only effective manner to reduce the longer term risk is through remediation of the hydrocarbon groundwater plume that is the source of the benzene and TPHg vapor intrusion.

Based on the findings of this and the previous investigations, Stellar Environmental recommends conducting another indoor air sampling event within 6 months, by December 2015. Also recommended is the installation of six to eight investigatory bores to soil (capillary fringe) and grab-groundwater data in the 1475 and 1483 67th Street spaces to delineate the plume better. As the lines of evidence all point to the upgradient McGrath Steel site as being responsible, the McGrath Steel Responsible Parties (RP) should ideally be directed to complete the work with active ACEHS oversight. We trust this review assists you in evaluating the salient environmental issues associated with the subject site. Please call the undersigned directly at (510) 644-3123 if you have any questions regarding this report of findings.

Sincerely,

Steve Bittman.

Senior Geologist & Project Manager

Smill S. Mildin

Richard S. Makdisi, P.G.

Principal Geochemist & President

Table 1
Indoor Air Sample Analytical Results –November 14, 2014 and June 18, 2015
Eight Hour Test
1475 and 1483 67th Street, Emeryville, California

	NOVEMBER 14. 2014 TO-15 INDOOR AIR SURVEY										
	Indoor Air Sample- NE Corner 1475 67 th Street Building	Central 1475 67 th Street Building	Indoor Air Sample- Office in NW Corner 1475 67 th Street Building	Office in 1483 67 th Street Building	Outdoor Air (Ambient) Sample- in Front of 1475 67 th Street Building	2013 Commercial					
Analyte	IA-1	IA-2	IA-3	IA-4	OA-1	ESL					
Benzene	3.0	1.2	1.1	9.5	1.3	0.42					
Toluene	16	4.2	8.2	17	2.5	1,300					
Ethyl Benzene	3.2	0.64	0.58	4.3	0.65	4.9					
Total Xylenes	16	3.3	3.0	21	3.4	440					

JUNE 18, 2015 TO-15 INDOOR AIR SURVEY

61

0.19

360

0.88

140

0.17

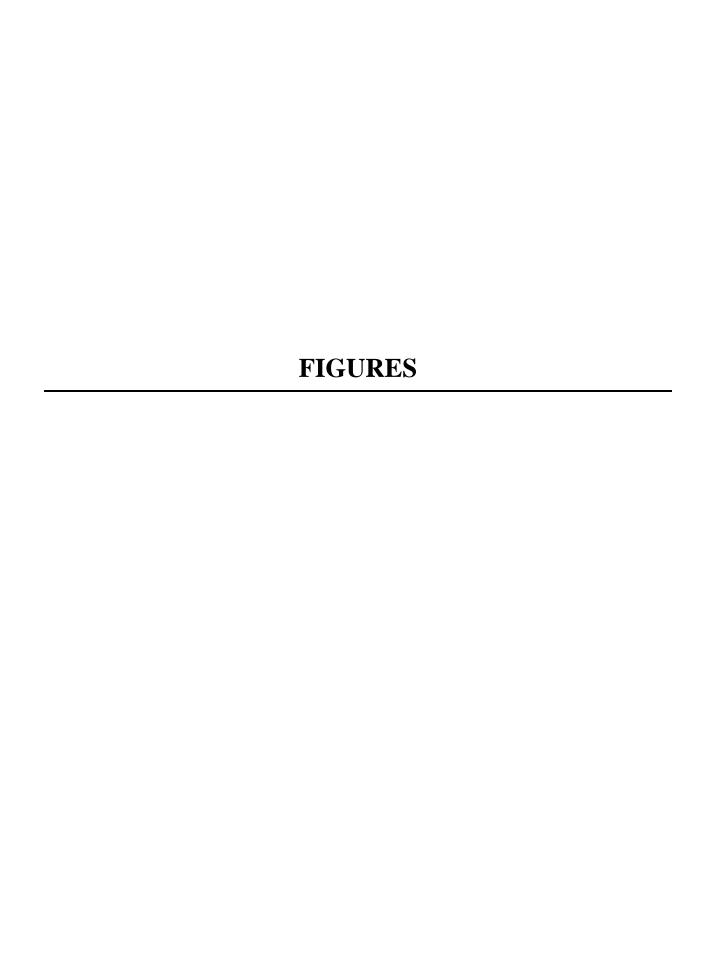
100

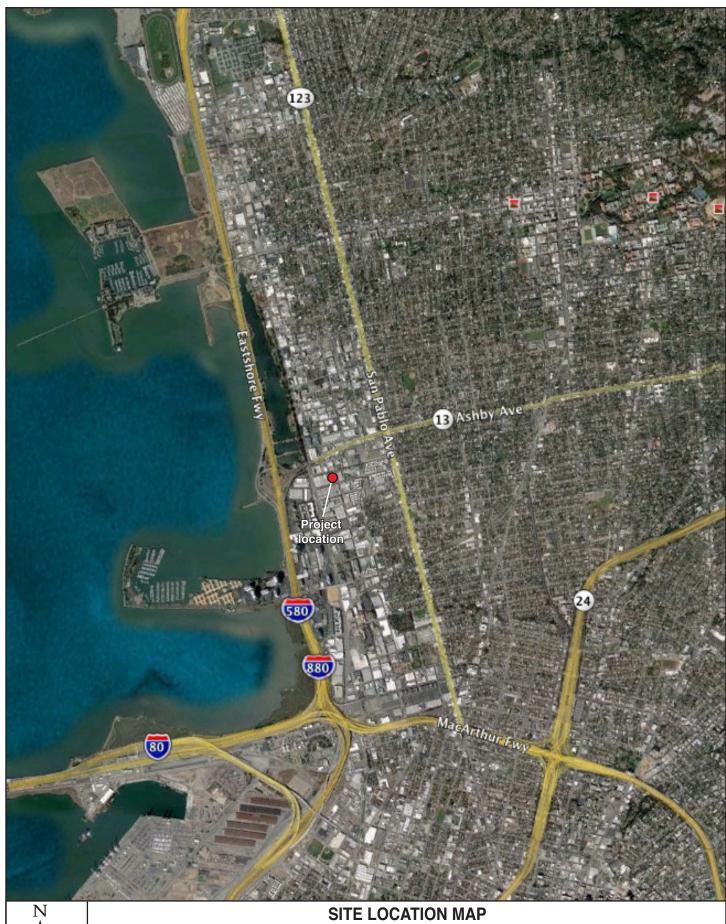
0.36

Total TPHg

Naphthalene

240

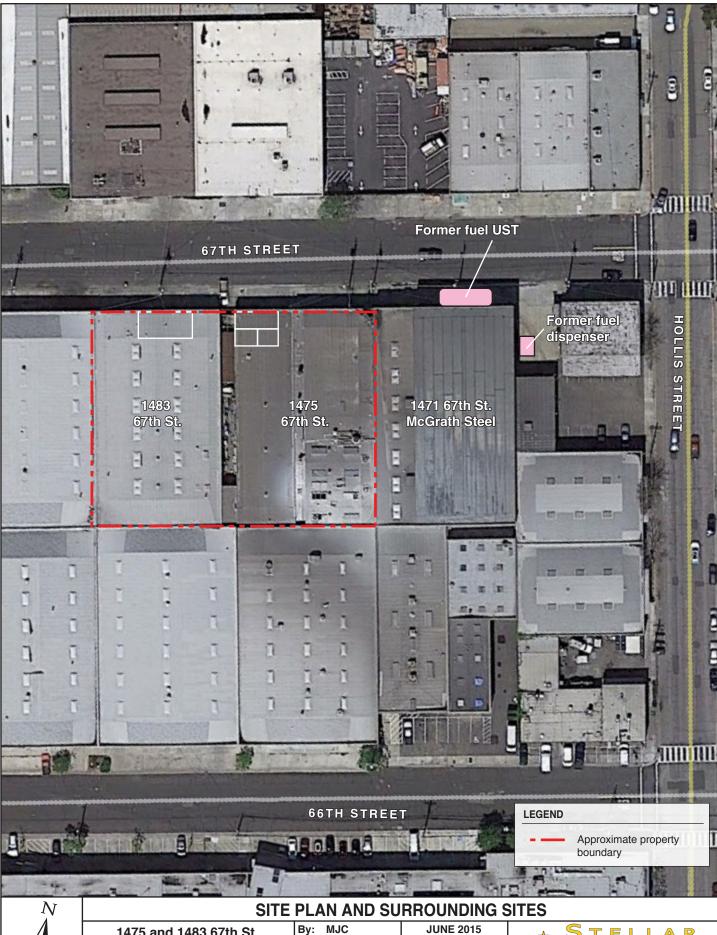

0.18


150

0.15

	Indoor Air Sample- NE Corner 1475 67 th Street Building	Central 1475 67 th Street Building	Indoor Air Sample- Office in NW Corner 1475 67 th Street Building	Mid-point, west wall 1483 67 th	Outdoor Air (Ambient) Sample- in Front of 1475 67 th Street Building	2013 Commercial
Analyte	IA-1A	IA-2A	IA-3A	IA-4A*	OA-1A	ESL
Benzene	1.0	0.69	0.91	1.7	0.70	0.42
Toluene	6.0	3.2	3.2	17	1.9	1,300
Ethyl Benzene	0.86	0.56	0.51	2.3	0.60	4.9
Total Xylenes	4.2	2.7	2.3	12	2.8	440
Total TPHg	190	210	220	320	100	100
Naphthalene	0.27	0.21	0.28	0.52	0.21	0.36

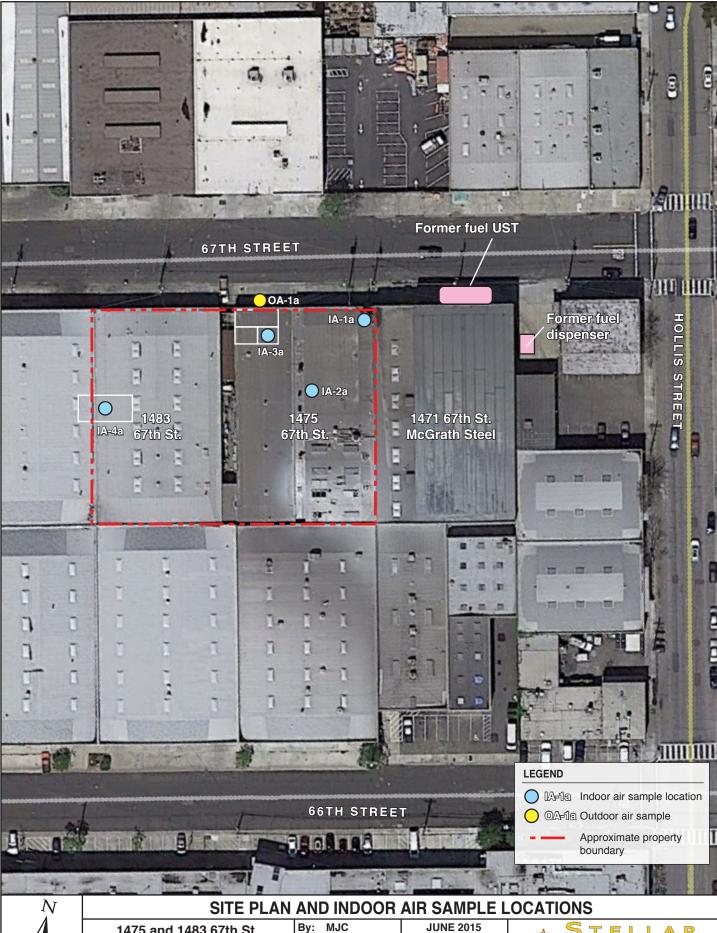
Notes: All values in μ g/m³ **Bold** type designated exceeding guidance value. Cal/OSHA PEL = California Occupational Safety and Health Administration Permissible Exposure Limit ESL = Water Board Environmental Screening Level for commercial properties (December 2013). NA= There is no number available for this contaminant. All concentrations are reported in micrograms per cubic meter (μ g/m³). Samples denoted with < are below the laboratory detection limit. All limits are the lowest possible detection limit possible by the laboratory. Samples were collected in the breathing zone between 3.5 and 5.feet above the top of the floor. * after the smaple 1A-4A denoted that this sample was not in the same location in June 2015 and November 2014.



N

1475 and 1483 67th St. Emeryville, CA

By: MJC JUNE 2015
Figure 1


2014-56-03

1475 and 1483 67th St. Emeryville, CA

MJC JUNE 2019 Figure 2

ENVIRONMENTAL SOLUTIONS, INC

GEOSCIENCE & ENGINEERING CONSULTING

2014-56-02

1475 and 1483 67th St. Emeryville, CA

Figure 3

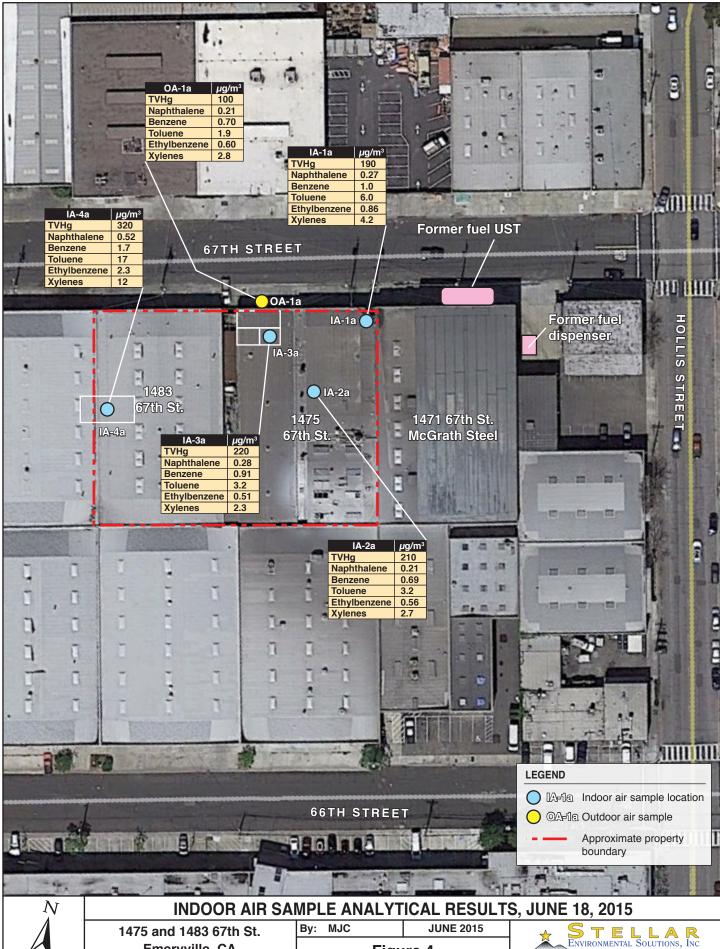
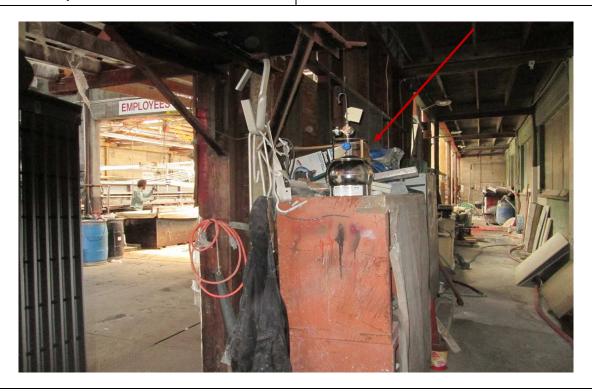



Figure 4

SEE GEOSCIENCE & ENGINEERING CONSULTING

2014-56-06

Emeryville, CA



Subject: Indoor air sampling location (IA-1a) in NE corner 1475 67th Street

Site: 1475/1483 67th Street, Emeryville, California

Date Taken: June 18, 2015 Project No.: SES 2014-56

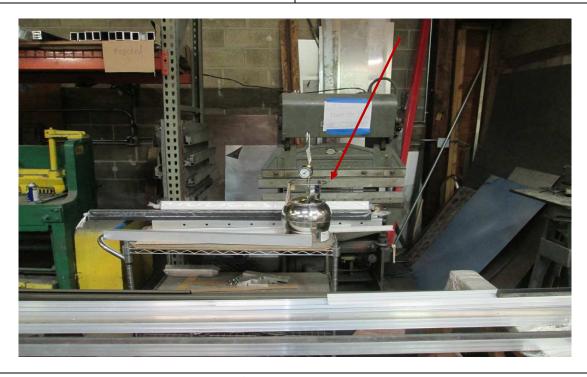
Photographer: H. Pietropaoli Photo No.: 01

Subject: Indoor ambient air sampling location (IA-2a) near 1475 67th Street building center

Site: 1475/1483 67th Street, Emeryville, California

Date Taken: June 18, 2015 Project No.: SES 2014-56

Photographer: H. Pietropaoli Photo No.: 02



Subject: Indoor air sampling location (IA-3a) in 1475 67th Street sales office near 67th Street.

Site: 1475/1483 67th Street, Emeryville, California

Date Taken: June 18, 2015 Project No.: SES 2014-56

Photographer: H. Pietropaoli Photo No.: 03

Subject: Indoor air sampling location (IA-4a) in 1483 67th Street by the west wall.

Site: 1475/1483 67th Street,, Emeryville, California

Date Taken: June 18, 2015 Project No.: SES 2014-56

Photographer: H. Pietropaoli Photo No.: 04

Subject: Outdoor air sampling location (OA-1a) above front door at 1475 67th Street

Site: 1475/1483 67th Street, Emeryville, California

Date Taken: June 18, 2015

Photographer: H. Pietropaoli

Photo No.: 05

STELLAR ENVIRONMENTAL SOLUTIONS, INC.

LABORATORY ANALYTICAL RESULTS, CHAIN OF CUSTODYRECORD

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1506896

Report Created for: Stellar Environmental Solutions

2198 Sixth St. #201 Berkeley, CA 94710

Project Contact: Henry Pietropaoli

Project P.O.:

Project Name: #2014-56; Corder

Project Received: 06/19/2015

Analytical Report reviewed & approved for release on 06/29/2015 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Stellar Environmental Solutions

Project: #2014-56; Corder

WorkOrder: 1506896

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Quality Control Qualifiers

F2 LCS recovery for this compound is outside of acceptance limits.

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506896Project:#2014-56; CorderExtraction Method:TO15Date Received:6/19/15 20:48Analytical Method:TO15

Date Prepared: 6/24/15-6/25/15 **Unit:** μg/m³

	7	ΓPH gas in μ	g/m³			
Client ID	Lab ID	Matrix	Date Collected			Batch ID
OA-1a	1506896-001A	Indoor Air	06/18/2015 16:05			106870
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
14.01	14.01					AK
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)		100		36	1	06/24/2015 21:38
Surrogates		REC (%)		<u>Limits</u>		
1,2-DCA-d4		100		70-130		06/24/2015 21:38
IA-4a	1506896-002A	Indoor Air	06/18/2015 16:07	GC24		106870
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
14.36	14.36					AK
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)		320		36	1	06/24/2015 22:39
<u>Surrogates</u>		REC (%)		<u>Limits</u>		
1,2-DCA-d4		101		70-130		06/24/2015 22:39
IA-3a	1506896-003A	Indoor Air	06/18/2015 16:08	GC24		106870
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
13.53	13.53					AK
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)		220		36	1	06/24/2015 23:37
<u>Surrogates</u>		REC (%)		<u>Limits</u>		
1,2-DCA-d4		98		70-130		06/24/2015 23:37

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Stellar Environmental Solutions

Project: #2014-56; Corder **Date Received:** 6/19/15 20:48 **Date Prepared:** 6/24/15-6/25/15

WorkOrder: 1506896

Extraction Method: TO15 **Analytical Method:** TO15

Unit: μg/m³

		•		12
IVH	$\alpha \alpha c$	ın	$\mathbf{H} \mathbf{\alpha} \mathbf{n}$	mo
TPH	245		42/	
	8		F-8'	

Client ID	Lab ID	Matrix	Date Collected	Instrumer	Batch ID	
IA-2a	1506896-004A	Indoor Air	06/18/2015 16:10	0 GC24		106870
Initial Pressure (psia)	Final Pressure	Final Pressure (psia)				Analyst(s)
12.78	12.78					AK
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(a)		210		36	1	06/25/2015 00:39

<u>Surrogates</u>	REC (%)	<u>Limits</u>
-------------------	---------	---------------

1,2-DCA-d4 96 70-130 06/25/2015 00:39

IA-1a	1506896-005A Indoor Air 06/18/2015 16:11 GC24		106870		
Initial Pressure (psia)				Analyst(s)	
13.12	13.12				AK
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	190		36	1	06/25/2015 01:36
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
1,2-DCA-d4	97		70-130		06/25/2015 01:36

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: 1506896 **Project:** #2014-56; Corder **Extraction Method: TO15 Date Received:** 6/19/15 20:48 **Analytical Method:** TO15

		I mit.	II o/m³		
Volatile Or	ganic Comp		μβ/ΙΙΙ		
Lab ID	Matrix		Instrun	nent	Batch ID
1506896-001A	Indoor Air	06/18/2015 16:05	GC24		106870
Final Pressure	e (psia)				Analyst(s)
14.01					AK
	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
	0.70		0.032	1	06/24/2015 21:38
	0.60		0.44	1	06/24/2015 21:38
	ND		0.37	1	06/24/2015 21:38
	0.21		0.11	1	06/24/2015 21:38
	1.9		0.38	1	06/24/2015 21:38
	2.8		1.3	1	06/24/2015 21:38
	REC (%)		<u>Limits</u>		
	97		70-130		06/24/2015 21:38
	101		70-130		06/24/2015 21:38
	106		70-130		06/24/2015 21:38
1506896-002A	Indoor Air	06/18/2015 16:07	GC24		106870
Final Pressure	e (psia)				Analyst(s)
14.36					AK
	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
	1.7		0.032	1	06/24/2015 22:39
	2.3		0.44	1	06/24/2015 22:39
	ND		0.37	1	06/24/2015 22:39
	0.52		0.11	1	06/24/2015 22:39
	Lab ID 1506896-001A Final Pressure 14.01 1506896-002A Final Pressure	Lab ID Matrix 1506896-001A Indoor Air Final Pressure (psia) 14.01 Result (0.70 (0.60 (0.60 (0.21 (0.21 (0.21 (0.21 (0.23 (0.24 (0.23 (0.24	1506896-001A Indoor Air 06/18/2015 16:05 Final Pressure (psia) 14.01 Result 0.70 0.60 ND 0.21 1.9 2.8 REC (%) 97 101 106 1506896-002A Indoor Air 06/18/2015 16:07 Final Pressure (psia) 14.36 Result 1.7 2.3 ND	Lab ID Matrix Date Collected Instruction Instru	Volatile Organic Compounds in μg/m³ Lab ID Matrix Date Collected Instrument

17

12

97

99

107

REC (%)

0.38

1.3

Limits

70-130

70-130

70-130

Toluene

Xylenes, Total

Surrogates

1,2-DCA-d4

Toluene-d8

4-BFB

06/24/2015 22:39

06/24/2015 22:39

06/24/2015 22:39

06/24/2015 22:39

06/24/2015 22:39

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: 1506896 **Project:** #2014-56; Corder **Extraction Method: TO15 Date Received:** 6/19/15 20:48 **Analytical Method:** TO15

Date Prepared: 6/24/15-6/25/15			Unit:	μg/m³	i	
	Volatile O	rganic Comp	ounds in μg/m³			
Client ID	Lab ID	Matrix	Date Collected	Instrur	nent	Batch ID
IA-3a	1506896-003A	Indoor Air	06/18/2015 16:08	GC24		106870
Initial Pressure (psia)	Final Pressur	e (psia)				Analyst(s)
13.53	13.53					AK
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene		0.91		0.032	1	06/24/2015 23:37
Ethylbenzene		0.51		0.44	1	06/24/2015 23:37
Methyl-t-butyl ether (MTBE)		ND		0.37	1	06/24/2015 23:37
Naphthalene		0.28		0.11	1	06/24/2015 23:37
Toluene		3.2		0.38	1	06/24/2015 23:37
Xylenes, Total		2.3		1.3	1	06/24/2015 23:37
Surrogates		REC (%)		<u>Limits</u>		
1,2-DCA-d4		95		70-130		06/24/2015 23:37
Toluene-d8		100		70-130		06/24/2015 23:37
4-BFB		109		70-130		06/24/2015 23:37
IA-2a	1506896-004A	Indoor Air	06/18/2015 16:10	GC24		106870
Initial Pressure (psia)	Final Pressur	e (psia)				Analyst(s)
12.78	12.78					AK
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene		0.69		0.032	1	06/25/2015 00:39
Ethylbenzene		0.56		0.44	1	06/25/2015 00:39
Methyl-t-butyl ether (MTBE)		ND		0.37	1	06/25/2015 00:39
Naphthalene		0.21		0.11	1	06/25/2015 00:39
Toluene		3.2		0.38	1	06/25/2015 00:39
Xylenes, Total		2.7		1.3	1	06/25/2015 00:39
		550 (0/)				

REC (%)

93

108

Limits

70-130

70-130

70-130

Surrogates

1,2-DCA-d4

Toluene-d8

4-BFB

06/25/2015 00:39

06/25/2015 00:39

06/25/2015 00:39

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Stellar Environmental Solutions

Project: #2014-56; Corder **Date Received:** 6/19/15 20:48 **Date Prepared:** 6/24/15-6/25/15

WorkOrder: 1506896

Extraction Method: TO15 **Analytical Method:** TO15

Unit: $\mu g/m^3$

Volatile Organic Compounds in μg/m ³									
Client ID	Lab ID	Matrix	Date Collected	Instrument		Batch ID			
IA-1a	1506896-005A	Indoor Air	06/18/2015 16:11	GC24		106870			
Initial Pressure (psia) Final Pressure (e (psia)			Analyst(s)				
13.12	13.12					AK			
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed			
Benzene		1.0		0.032	1	06/25/2015 01:36			
Ethylbenzene		0.86		0.44	1	06/25/2015 01:36			
Methyl-t-butyl ether (MTBE)		ND		0.37	1	06/25/2015 01:36			
Naphthalene		0.27		0.11	1	06/25/2015 01:36			
Toluene		6.0		0.38	1	06/25/2015 01:36			
Xylenes, Total		4.2		1.3	1	06/25/2015 01:36			
<u>Surrogates</u>		REC (%)		<u>Limits</u>					
1,2-DCA-d4		94		70-130		06/25/2015 01:36			
Toluene-d8		101		70-130		06/25/2015 01:36			
4-BFB		108		70-130		06/25/2015 01:36			

nL/L

Soilgas

Quality Control Report

Unit:

Client:Stellar Environmental SolutionsWorkOrder:1506896Date Prepared:6/26/15BatchID:106870Date Analyzed:6/24/15Extraction Method:TO15Instrument:GC24Analytical Method:TO15

Project: #2014-56; Corder **Sample ID:** MB/LCS-106870

QC Summary Report for TO15 MB LCS RL **SPK** MB SS LCS LCS Analyte Result Result Val %REC %REC Limits ND 25 Acetone Acrolein ND 22.9 0.50 25 92 60-140 ND 25 100 Acrylonitrile 25.1 0.50 _ 60-140 tert-Amyl methyl ether (TAME) ND 27.0 0.50 25 107 60-140 ND 22.7 25 91 Benzene 0.50 60-140 Benzyl chloride ND 31.7 0.50 25 127 60-140 Bromodichloromethane ND 24.6 0.50 25 _ 98 60-140 **Bromoform** ND 30.6 0.50 25 122 60-140 Bromomethane ND 20.0 0.50 25 80 60-140 25 1,3-Butadiene ND 24.2 0.50 97 60-140 -2-Butanone (MEK) ND 25 t-Butyl alcohol (TBA) ND 27.3 10 25 109 60-140 _ Carbon Disulfide ND 0.50 101 60-140 25.3 25 ND 0.50 25 102 60-140 Carbon Tetrachloride 25.4 _ Chlorobenzene ND 27.0 0.50 25 108 60-140 Chloroethane ND 18.1 0.50 25 72 60-140 Chloroform ND 21.7 0.50 25 87 60-140 Chloromethane ND 26.7 0.50 25 107 60-140 25 ND 20.6 5.0 82 60-140 Cyclohexane Dibromochloromethane ND 30.2 0.50 25 121 60-140 ND 1,2-Dibromo-3-chloropropane 29.8 0.012 25 119 60-140 ND 1,2-Dibromoethane (EDB) 26.4 0.50 25 105 60-140 ND 25 121 1,2-Dichlorobenzene 30.3 0.50 60-140 1.3-Dichlorobenzene ND 30.6 0.50 25 122 60-140 1,4-Dichlorobenzene ND 30.0 0.50 25 _ 120 60-140 Dichlorodifluoromethane ND 26.7 0.50 25 107 60-140 1,1-Dichloroethane ND 26.0 0.50 25 104 60-140 ND 25 1,2-Dichloroethane (1,2-DCA) 22.8 0.50 91 60-140 ND 25.9 0.50 25 104 60-140 1,1-Dichloroethene ND cis-1,2-Dichloroethene 26.4 0.50 25 106 60-140 trans-1,2-Dichloroethene ND 25 105 60-140 26.2 0.50 ND 22.3 0.50 25 89 60-140 1,2-Dichloropropane _ ND cis-1,3-Dichloropropene 27.6 0.50 25 110 60-140 trans-1,3-Dichloropropene ND 25 104 60-140 26.1 0.50 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 25.8 0.50 25 103 60-140 ND Diisopropyl ether (DIPE) 23.8 0.50 25 95 60-140 -1,4-Dioxane ND 25.0 0.50 25 100 60-140 Ethanol ND 50 ND 0.50 Ethyl acetate 25.5 25 102 60-140 Ethyl tert-butyl ether (ETBE) ND 24.5 0.50 25 98 60-140

Matrix:

Soilgas

Matrix:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

nL/L

Quality Control Report

Unit:

Client:Stellar Environmental SolutionsWorkOrder:1506896Date Prepared:6/26/15BatchID:106870Date Analyzed:6/24/15Extraction Method:TO15Instrument:GC24Analytical Method:TO15

Project: #2014-56; Corder **Sample ID:** MB/LCS-106870

	QC Sur	nmary Repor	t for TO15				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethylbenzene	ND	27.2	0.50	25	-	109	60-140
4-Ethyltoluene	ND	29.6	0.50	25	-	119	60-140
Freon 113	ND	26.0	0.50	25	-	104	60-140
Heptane	ND	24.2	5.0	25	-	97	60-140
Hexachlorobutadiene	ND	35.7	0.50	25	-	143, F2	60-140
Hexane	ND	25.0	5.0	25	-	100	60-140
2-Hexanone	ND	26.9	0.50	25	-	108	60-140
4-Methyl-2-pentanone (MIBK)	ND	31.0	0.50	25	-	124	60-140
Methyl-t-butyl ether (MTBE)	ND	26.9	0.50	25	-	107	60-140
Methylene chloride	ND	24.4	0.50	25	-	98	60-140
Methyl methacrylate	ND	25.9	0.50	25	-	104	60-140
Naphthalene	ND	64.9	1.0	50	-	130	60-140
Propene	ND	-	50	-	-	-	-
Styrene	ND	27.9	0.50	25	-	112	60-140
1,1,1,2-Tetrachloroethane	ND	25.3	0.50	25	-	101	60-140
1,1,2,2-Tetrachloroethane	ND	25.7	0.50	25	-	103	60-140
Tetrachloroethene	ND	25.5	0.50	25	-	102	60-140
Tetrahydrofuran	ND	24.0	0.50	25	-	96	60-140
Toluene	ND	26.3	0.50	25	-	105	60-140
1,2,4-Trichlorobenzene	ND	36.0	0.50	25	-	144, F2	60-140
1,1,1-Trichloroethane	ND	31.0	0.50	25	-	124	60-140
1,1,2-Trichloroethane	ND	25.3	0.50	25	-	101	60-140
Trichloroethene	ND	23.3	0.50	25	-	93	60-140
Trichlorofluoromethane	ND	23.7	0.50	25	-	95	60-140
1,2,4-Trimethylbenzene	ND	29.5	0.50	25	-	118	60-140
1,3,5-Trimethylbenzene	ND	27.1	0.50	25	-	108	60-140
Vinyl Acetate	ND	27.2	0.50	25	-	109	60-140
Vinyl Chloride	ND	20.2	0.50	25	-	81	60-140
Xylenes, Total	ND	83.8	1.5	75	=	112	60-140
Surrogate Recovery							
1,2-DCA-d4	495	491		500	99	98	60-140
Toluene-d8	510	501		500	102	100	60-140
4-BFB	508	503		500	102	101	60-140

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page	1	of	
------	---	----	--

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1506896 ClientCode: SESB

		WaterTrax	WriteOn	☐ EDF	Exc	cel		EQuIS	✓	Email	HardCo	ру	ThirdP	arty	☐J-fla	ıg
eport to:						Bil	l to:					Requ	ested TAT:	:	5 c	days
Henry Pietropao Stellar Environm 2198 Sixth St. #2 Berkeley, CA 94 510-644-3123	ental Solutions 201	cc/3rd Party: PO:	pietropaoli@st 2014-56; Cord	ellar-environmenta er	al.com; ı		Stellar 2198 S Berkel	Sixth St. ey, CA 9	nental \$ #201 94710	Solutions ironmental			Received Printed:	' :	06/19/2 06/19/2	
	O!' ID		•• • • • • • • • • • • • • • • • • • • •						Red		sts (See leg					
ab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6) /	8	9	10	11	

									40.0000	,	(,	,			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1506896-001	OA-1a	Indoor Air	6/18/2015 16:05		Α	Α										
1506896-002	IA-4a	Indoor Air	6/18/2015 16:07		Α	Α										
1506896-003	IA-3a	Indoor Air	6/18/2015 16:08		Α	Α										
1506896-004	IA-2a	Indoor Air	6/18/2015 16:10		Α	Α										
1506896-005	IA-1a	Indoor Air	6/18/2015 16:11		Α	Α										
								•				•		•		•

Test Legend:

1 15_SCAN-SIM_Indoor(ug/m	2 GAS_SCAN-SIM_INDOOR(U	3	4	5
6	7	8	9	10
11	12			

The following SamplDs: 001A, 002A, 003A, 004A, 005A contain testgroup.

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: STELLAR ENVIRONMENTAL SOLUTIONS OC Level: LEVEL 2 **Work Order:** 1506896 **Project:** #2014-56; Corder Client Contact: Henry Pietropaoli **Date Received:** 6/19/2015 **Comments:** Contact's Email: hpietropaoli@stellar-environmental.com; rmakdisi@stellar-□Fax □WaterTrax ☐ WriteOn □EDF □ Excel ✓ Email HardCopy ☐ ThirdParty □ J-flag

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1506896-001A	OA-1a	Indoor Air	TO15 + TPHgas for Indoor Air	1	6L Summa		6/18/2015 16:05	5 days	
1506896-002A	IA-4a	Indoor Air	TO15 + TPHgas for Indoor Air	1	6L Summa		6/18/2015 16:07	5 days	
1506896-003A	IA-3a	Indoor Air	TO15 + TPHgas for Indoor Air	1	6L Summa		6/18/2015 16:08	5 days	
1506896-004A	IA-2a	Indoor Air	TO15 + TPHgas for Indoor Air	1	6L Summa		6/18/2015 16:10	5 days	
1506896-005A	IA-1a	Indoor Air	TO15 + TPHgas for Indoor Air	1	6L Summa		6/18/2015 16:11	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

						0	91	00	CH	AII	1	OF	CL	IST	O[YC	recori)
_ McCar	npb	ell /	Analytica	I, Inc.	9	0	(4							г.		T []:	
		L / D'''	C=- 0/F/F 1	701	TU	RN	ARC	UNI	O TIN	1E:	RUS	SH LLJ	1 1	Day l	ا زلیا	2 Day L] 3 Day [] :	5 DAY
1534 Willow	/ Pass Ro	d. / Pitts	ain@mccampbell	com	Geo	Trac	ker E	DF Ç			PDF		M	ED	D 🛄		EQuIS 🛄 10	DAY 🖳
Telephone:	(877) 2	52-9262	2 / Fax: (925) 252-92	269	IIS	T Cle	an H	Fun	d Proj	ect [⊒⊬CI	aim#	X	14				
					-				lysis					2	TIAL	C	hroud SN#	
Report To:			Bill To: SAV	ne	\vdash		1	Ana	lysis	Keq	Teste	iu T		3	Oth		nroud SIN#	
Company: Stellar to	-Viro	neva		0 1	1		CO,		rcle	LL				20			ase Specify unit	s if different than
2198 5	1xth.	54	Berkeley E-Mail:	, C/F	1		de,	ane,	e cii	circle) uL/L			.c.	0			OCs is ug/m3 and	
Tele: (510) 644-3	122		Fax: ()		1		lehy	Eth	leas	circl		ne,	mat	N			c check default is	
Project #: 2014-56	123		Project Name: 6	Corder	18		malc	ane,	0 (P	ase	3	lora 13	Aro	1				
Project Location: 1475	5 + 14	183	67ths+ E		g/m	/m3	Fon	etha	e, C	(ple	K (2)	Nort ng/n	J/or n3	1				
Sampler Signature:	Her		tupm/i		VOCs by TO-15 (ug/m3)	8010 by TO-15 (ug/m3)	LEED (inc. 4PCH, Formaldehyde,	Lotal VOCs) Fixed Gas: CO2, Methane, Ethane,	Ethylene, Acetylene, CO or indicate in notes) uL/L	Fixed Gas: O2, N2 (please	Helium Leak Check (%)	Leak Check (IPA, Norflorane, 1.1-difluroethane) ug/m3	APH: Aliphatic and/or Aromatic (please circle) ug/m3	5				
	Colle		,	12.5 m/mi	0-1	21-5	LEED (inc. 4PC	CO	lin n	02,	ak C	k (IF	hatio	0	Ma	trix	Car	nnister
Field Sample ID				12.5 m/min Sampler Kit SN# manifold	by T	E E	in i	Gas:	ne, A	Gas:	Les Les	hec	Alip	F	sı	<u></u>	Pressur	e/ Vacuum
(Location)	Date	Time	Canister SN#	manifold	CS	10 b	ED :	tal (nyleı indi	pay ?	lium	ak C	H: ,	Other:	Soilgas	Indoor Air	Initial	Final
	Date	Time		, , , , , , , , ,	S	80	TE	Fig	Et or		He He	13 :	A.F.	ō	So	Ind		
OA-la	6/18/10	1605	4753		\Box									X		X	-29	-2
TA - 4a	1/3	1607	4741											X		×	-30	-1,5
TA-3a		1608	24772		\Box									X		X	-28	-/
IA-2a	1	1610	3651		\Box	\neg				\neg				X		X	-30	-5
TA - 1a	1/	1/11	L4766		T	\neg		1		_				V		X	-30	-4.5
1A	V	1611	2 1 7 6 6		+	+	1	-		$\neg \uparrow$	+	 		1				
	+				$\forall \uparrow$	+		+		\dashv	+	-						
	+				+	+	-	+		\dashv	+	-			_			
3)					++	+	-	+-		-	+-	-						
12					\vdash	+	-	-		\dashv	-							
					\vdash	\dashv	-	+		-	-	-	-					-
					\vdash		_	-		+	-			_				-
					\perp													
Relinquished By:	Date:	Time:	Received By	1	Ta		′0C) .			7	Vorle	Ordo	r#:				1 21	c to
Relinquished By:	Date:	1330	Received By:		-	100	5										100	3/10
Reinquished By:	-/cs -	1-	Accerved by:											400			+ Me	er o
1196	175	1605	1/2		-		•						0	_ N	one _		Com	merciel
Relinquished By:	Date:	Time:	Received By:		Sh	ippe	d Via	:		20	UV	1-0	2				1	5/1
																	1	103
A	Ana	120	- all.	EPH CAS	~	sp	614	al	ere	1	37	EX	CV	ni	TB	E	62 TO	15/CDX
	MAHOL	18		1		1			,				1				7	1000

Page 12 of 13

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

WorkOrder №: Chain of custody p	#2014-56; Corder 1506896 M	latrix: <u>Indoor Air</u>			LogIn Revi	ewed by:	Jena Alfaro
Chain of custody p	1506896 M	atrix: Indoor Air					
					Carrier:	Bernie Cummir	ns (MAI Courier)
		Chain of C	ustody	y (COC) I	<u>nformation</u>		
	resent?		Yes	•	No 🗆		
Chain of custody s	igned when relinquished	d and received?	Yes	✓	No 🗌		
Chain of custody a	grees with sample label	s?	Yes	•	No 🗆		
Sample IDs noted	by Client on COC?		Yes	✓	No 🗌		
Date and Time of o	collection noted by Clien	it on COC?	Yes	✓	No 🗌		
Sampler's name no	oted on COC?		Yes	•	No 🗌		
		<u>Sampl</u>	e Rece	eipt Infor	mation		
Custody seals inta-	ct on shipping container	/cooler?	Yes		No 🗌		NA 🗹
Shipping container	cooler in good condition	n?	Yes	✓	No 🗌		
Samples in proper	containers/bottles?		Yes	✓	No 🗌		
Sample containers	intact?		Yes	✓	No 🗌		
Sufficient sample v	olume for indicated test	1?	Yes	•	No 🗆		
		Sample Preservation	on and	Hold Tir	ne (HT) Info	<u>rmation</u>	
All samples receive	ed within holding time?		Yes	✓	No 🗆		
Sample/Temp Blar	nk temperature			Temp:			NA 🗸
Water - VOA vials	have zero headspace /	no bubbles?	Yes		No 🗆		NA 🗹
Sample labels che	cked for correct preserv	ation?	Yes	✓	No 🗌		
pH acceptable upo	on receipt (Metal: <2; 52	2: <4; 218.7: >8)?	Yes		No 🗌		NA 🗸
Samples Received	I on Ice?		Yes		No 🗸		
UCMR3 Samples:							
Total Chlorine te	sted and acceptable up	on receipt for EPA 522?	Yes		No 🗌		NA 🗹
Free Chlorine tes 300.1, 537, 539?		on receipt for EPA 218.7,	Yes		No 🗌		NA 🗸
* NOTE: If the "No	" box is checked, see co	omments below.					