By Alameda County Environmental Health at 4:18 pm, Oct 21, 2013

MCG Investments, LLC c/o Kay & Merkle 100 The Embarcadero – Penthouse San Francisco, CA 94105 (415) 357-1200

August 30, 2013

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection, Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Letter of Transmittal for Additional Site Characterization and Monitoring Well Installation Report, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608, ACEH Fuel Leak Case No. RO0000063, GeoTracker Global ID No. T0600102099

Dear Mr. Detterman:

As required in your letters of November 8, 2012, May 2, 2012, November 19, 2010 and April 7, 2006 for plume delineation and interim remediation at the above-referenced subject site, and proposed in the AllWest Environmental, Inc. *Additional Site Characterization Workplan Addendum* dated July 31, 2012 and *Subsurface Investigation* data transmittal letter report dated February 5, 2013, we submit this transmittal letter and accompanying *Additional Site Characterization and Monitoring Well Installation Report*.

I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

MCG Investments LLC, A California limited liability Company

Watter F. Merkle

Authorized Agent

AllWest

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008

ADDITIONAL SITE CHARACTERIZATION AND MONITORING WELL INSTALLATION REPORT

Former McGrath Steel 6655 Hollis Street and 1471 67th Street Emeryville, California

Alameda County Fuel Leak Case # RO0000063 GeoTracker Facility Global ID # T0600102099

PREPARED FOR:

Mr. Walter F. Merkle MCG Investments, LLC c/o Kay & Merkle 100 The Embarcadero – Penthouse San Francisco, California 94105

ALLWEST PROJECT 13019.23 August 30, 2013

PREPARED BY

Christopher Houlihan Project Manager

REVIEWED BY:

Leonard P. Niles, PG, CHG Senior Project Manager

TABLE OF CONTENTS

I.	EXECUTIVE SUMMARY	Page 1
II.	PROJECT BACKGROUND	Page 4
	A. Site Location and Description	
	B. Site Geology and Hydrogeology	
	C. Site History and Previous Investigations	
III.	PURPOSE AND SCOPE OF WORK	Page 9
IV.	INVESTIGATIVE ACTIVITIES	Page 11
	A. Permitting and Offsite Property Access	Page 11
	B. Health and Safety and Traffic Control Plans	Page 12
	C. Underground Utility Locating	Page 12
	D. Geoprobe [®] DPT Boring Advancement and Soil Sampling	Page 12
	E. DPT Boring Groundwater Sampling	
	F. DPT Borehole Backfilling	Page 14
	G. Hollow Stem Auger Boring Advancement and Soil Sampling	Page 14
	H. Groundwater Monitoring Well Installation	Page 15
	I. Groundwater Monitoring Well Development and Sampling	
	J. Monitoring Well Head Survey	Page 17
	K. Investigative Derived Waste Containment and Disposal	Page 17
V.	QUALITY ASSURANCE / QUALITY CONTROL PROGRAM	Page 17
	A. Sample Preservation, Storage and Handling	
	B. Chain-of-Custody Program	_
VI.	ANALYTICAL METHODS	Page 18
VII.	ASSESSMENT FINDINGS	Page 19
	A. Subsurface Conditions	Page 19
	B. Laboratory Analysis and Sampling Data	Page 19
	C. Laboratory QA/QC	Page 21
VIII.	DISCUSSION	Page 21
	A. Subsurface Conditions	
	B. Soil Screening Levels	_
	C. Groundwater Screening Levels	
	D. Contaminant Distribution - Soil	Page 24
	E. Contaminant Distribution - Groundwater	

IX.		ICLUSIONS AND RECOMMENDATIONS Conclusions Recommendations	Page 25
X.	LIM	ITATIONS	Page 26
XI.	REF	ERENCES	Page 27

TABLES

Table 1:	Summary of Well Construction Details
Table 2:	Summary of Groundwater Elevation Data
Table 3:	Summary of Soil Analytical Data, Total Petroleum Hydrocarbons and VOCs
Table 4:	Summary of Soil Analytical Data, PNAs/PAHs
Table 5:	Summary of Groundwater Analytical Data, Total Petroleum Hydrocarbons and VOCs
Table 6:	Summary of Groundwater, PNAs/PAHs

FIGURES

Figure 1:	Site	Vicinity	Map
-----------	------	----------	-----

- Figure 2: Site Plan with Historical Boring and Monitoring Well Locations
- Figure 3: Groundwater Elevation Contours, August 7, 2013
- Figure 4: Soil Analytical Results
- Figure 5: TPH-g Isoconcentration Contours in Groundwater
- Figure 6: TPH-d Isoconcentration Contours in Groundwater
- Figure 7: Benzene Isoconcentration Contours in Groundwater

APPENDICES

Appendix A: Permits

Appendix B:	Standard Groundwater Monitoring Well Development and Sampling
	Procedures, Standard Geoprobe [®] DPT Sampling Procedures and
	Monitoring Well Installation Procedures

- Appendix C: Boring Logs
- Appendix D: Groundwater Development and Sampling Field Logs
- Appendix E: Laboratory Analytical Reports
- Appendix F: Monitoring Well Survey

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

2141 Mission Street, Suite 100 San Francisco, CA 94110 Tel 415.391.2510 Fax 415.391.2008

ADDITIONAL SITE CHARACTERIZATION

Former McGrath Steel 6655 Hollis Street and 1471 67th Street Emeryville, California

Alameda County Fuel Leak Case # RO0000063 GeoTracker Facility Global ID # T0600102099

I. EXECUTIVE SUMMARY

AllWest Environmental, Inc. (AllWest) conducted a subsurface investigation to further characterize site conditions in the vicinity of former underground storage tanks (USTs) located at the subject site referenced above (Figures 1 and 2). The investigation was performed in response to a request by the Alameda County Health Care Services Agency, Environmental Health Department (ACEH) in their letters of April 17, 2006, November 19, 2010 (revised December 6, 2010) and May 2, 2012.

AllWest prepared and submitted an *Additional Site Characterization Workplan Addendum* dated July 31, 2012 to the Alameda County Health Care Services Agency, Environmental Health Department (ACEH) proposing the advancement of ten (10) direct push technology (DPT) soil borings and the installation of two (2) groundwater monitoring wells at the subject site. ACEH conditionally approved the *Workplan Addendum* in their letter of November 8, 2012; however, required advancement of one (1) additional soil boring and additional shallow soil sampling intervals. One (1) additional groundwater monitoring well installation was proposed by AllWest in our *Subsurface Investigation* data package cover letter dated February 4, 2013. ACEH approved the additional well installation in their e-mail of March 14, 2013.

This executive summary is provided solely for the purpose of overview. Any party who relies on this report must read the full report. The executive summary may omit details, any one of which could be crucial to the proper understanding and risk assessment of the subject matter.

AllWest conducted a subsurface assessment at the subject property in January 2013 and August 2013 consisting of the advancement of eleven (11) DPT soil borings (B15 through B25), three (3) groundwater monitoring well installations (AMW-1, AMW-2 and AMW-3), and the collection of soil and groundwater data. The DPT borings were advanced to depths of 9 to 30 feet below ground surface (bgs) on January 16, 17, and 18, 2013. Groundwater monitoring wells AMW-1, AMW-2 and AMW-3 were installed to depths of 23 to 24 feet bgs on August 1 and 2, 2013. The new wells were developed on August 5, 2011. Groundwater samples were collected from the three new wells and one previously existing well MW-3 on August 7, 2013. Static depth to groundwater was approximately 9 to 11 feet bgs (Table 2). Groundwater flow direction was to the southeast at a gradient of 0.0167 feet per foot (Figure 3).

Total petroleum hydrocarbons as gasoline (TPH-g) was detected in soil at a maximum concentration of 2,000 milligrams per kilogram (mg/kg) in boring B20, located down-gradient from the former McGrath USTs at a depth of 12 to 12.5 feet bgs. The maximum total petroleum hydrocarbons as mineral spirits (TPH-ms) concentration detected in soil samples collected during this investigation was 1,200 mg/kg in boring B20 at 12-12.5 feet bgs and in boring B21 (located adjacent to the former McGrath USTs) at 10-10.5 feet bgs. However, these concentrations probably represent TPH-g within the TPH-ms (C9-C12) range, since gasoline-range compounds were characterized as significant, and mineral spirits were not historically stored in the McGrath USTs. The maximum total petroleum hydrocarbons as diesel (TPH-d) concentration in soil was 1,900 mg/kg in boring AMW-1, located downgradient of the former Clearprint Paper Company USTs, at a depth of 18.5-19 feet bgs (Table 1). The elevated TPH-d concentrations in soil samples from AMW-1 probably originate from an offsite source.

Toluene, ethylbenzene, and total xylenes were detected at maximum respective concentrations of 92 mg/kg, 35 mg/kg, and 210 mg/kg in soil samples from boring B20 at a depth of 12-12.5 feet bgs. Benzene and methyl tertiary butyl ether (MTBE) were detected at respective maximum concentrations of 12 mg/kg and 7.6 mg/kg in soil samples from boring B21 at a depth of 10-10.5 feet bgs. Other VOCs were detected in soil samples collected during this investigation including naphthalene, n-butyl benzene, 1,2,4-trimethylbenzene, isopropylbenzene, n-propyl benzene, 1,3,5-trimethylbenzene, 4-isopropyl toluene, acetone, and 2-butanone at respective maximum concentrations of 14 mg/kg, 9.1 mg/kg, 89 mg/kg, 0.67 mg/kg, 13 mg/kg, 29 mg/kg, 0.13 mg/kg, 0.096 mg/kg and 0.029 mg/kg. Soil analytical results for total petroleum hydrocarbons and volatile organic compounds (VOCs) are summarized in Table 3 and Figure 4.

Polynuclear aromatic hydrocarbons (PNAs/PAHs) were detected in soil samples collected during this investigation including benzo(a) anthracene, chrysene, fluoranthene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene at maximum respective concentrations of 0.013 mg/kg, 0.013 mg/kg, 0.037 mg/kg, 2.5 mg/kg, 4.3 mg/kg, 5.0 mg/kg, 1.4 mg/kg, and 0.033 mg/kg. PAH/PNA soil analytical results are summarized in Table 4.

TPH-d, benzene, toluene, ethylbenzene, total xylenes, MTBE, 2-methylnaphthalene and naphthalene were detected in soil samples at concentrations exceeding their applicable commercial/industrial Environmental Screening Levels (ESLs) where groundwater is not a drinking water resource, as established by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB, May 2013).

Approximately 0.4 feet of light non-aqueous phase liquid (LNAPL) hydrocarbons (free product) was measured in monitoring well MW-3 during the August 7, 2013 groundwater sampling event (Table 2).

TPH-g was detected in groundwater samples at a maximum concentration of 160,000 micrograms per liter (μ g/L) in boring B20, located down-gradient from the former McGrath USTs. TPH-ms was detected at a maximum concentration of 54,000 μ g/L in groundwater samples from existing monitoring well MW-3. However, these concentrations probably represent TPH-g within the TPH-ms (C9-C12) range, since gasoline-range compounds were characterized as significant, and mineral spirits were not historically stored in the McGrath USTs. TPH-d with gasoline range compounds characterized as significant was detected at a maximum concentration of 95,000 μ g/L in groundwater samples from boring B20.

Benzene and toluene were detected at maximum respective concentrations of 21,000 μ g/L and 47,000 μ g/L in groundwater samples from boring B20. Ethylbenzene and total xylenes were detected in groundwater samples from monitoring well MW-3 at maximum concentrations of 4,200 μ g/L and 24,000 μ g/L on the August 7, 2013 sampling date. Methyl tertiary butyl ether (MTBE) was detected at a maximum concentration of 140,000 μ g/L in groundwater samples from boring B21.

Other VOCs detected in groundwater samples during this investigation included tertbutyl alcohol (TBA), naphthalene, 1,2,4-trimethylbenzene, n-propyl benzene, 1,3,5trimethylbenzene, n-butyl benzene, sec-butyl benzene, isopropylbenzene, trichloroethene (TCE), 2-butanone, 1,2-dichloroethane (1,2-DCA), 1,1-dichloroethene, 1,1dichloroethane, 1,1,1-trichloroethane and trans-1,3-dichloropropene at maximum respective concentrations of 520 μ g/L, 1,100 μ g/L, 5,200 μ g/L, 620 μ g/L, 1,500 μ g/L, 27 μ g/L, 7.3 μ g/L, 15 μ g/L, 53 μ g/L, 2.4 μ g/L, 0.55 μ g/L, 140 μ g/L, 5.2 μ g/L and 5.3 μ g/L. Groundwater analytical results for total petroleum hydrocarbons and VOCs are summarized in Table 5 and Figures 5, 6 and 7.

PNAs/PAHs were detected in groundwater samples collected during this investigation including benzo(a) anthracene, fluoranthene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene at maximum respective concentrations of 0.56 μ g/L, 0.94 μ g/L, 460 μ g/L, 750 μ g/L, 1,700 μ g/L, 0.88 μ g/L and 1.0 μ g/L. PNA/PAH groundwater analytical results are summarized in Table 6.

TPH-g, TPH-ms, TPH-d, benzene, toluene, ethylbenzene, total xylenes, MTBE, 2methylnaphthalene, naphthalene and benzo (a) anthracene were detected in groundwater samples at concentrations exceeding their applicable commercial/industrial ESLs where groundwater is not a drinking water resource. Additionally, benzene, ethylbenzene, MTBE, and naphthalene were detected in groundwater samples at concentrations exceeding their applicable commercial/industrial vapor intrusion ESLs (SFRWQCB, May 2013).

AllWest concludes that soil and groundwater at the subject site vicinity is impacted by petroleum hydrocarbons and their constituents at concentrations exceeding applicable SFRWQCB commercial/industrial ESLs for sites where groundwater is not a potential drinking water resource. The downgradient extent of the adsorbed and dissolved phase petroleum hydrocarbon plume in soil and groundwater is largely defined and extends from the vicinity of the former McGrath Steel USTs to the west along 67th Street to the vicinity of monitoring well AMW-1 west of the former Clearprint Paper Company USTs. Elevated TPH-d concentrations detected in soil samples in downgradient boring AMW-1 probably originate from an offsite source. The cross-gradient extent of the adsorbed and dissolved and dissolved phase hydrocarbon plume has not been fully defined. Free product is present in monitoring well MW-3 in the vicinity of the former McGrath USTs. Free product does not appear to be significant in lateral extent.

AllWest recommends conducting quarterly groundwater monitoring at the subject site in the new monitoring wells AMW-1, AMW-2 and AMW-3 and existing monitoring well MW-3. AllWest also recommends implementing interim remedial action of free product in the vicinity of the former USTs at the subject site by installing a passive skimming device in monitoring well MW-3.

II. PROJECT BACKGROUND

A. Site Location and Description

The subject property is located at the southwest corner of the intersection of Hollis and 67th Streets in a commercial and industrial district of the City of Emeryville, Alameda County, California. A site vicinity map is included as Figure 1.

The subject property consists of two parcels (Assessor's Parcel Numbers 049-1511-01 and 049-1511-014). Parcel 01, on the southwest corner of Hollis and 67th Streets at the 6655 Hollis Street address, is developed with an approximately 4,100 square foot two-story commercial office building constructed in 1947, and a smaller metal tool shed building. Parcel 14, to the west of Parcel 1 at the 1471 67th Street address, is developed with an approximately 15,246 square foot light industrial warehouse building constructed circa 1946 [Stellar Environmental Solutions, Inc., (Stellar) *Phase I Environmental Site Assessment, 6655 Hollis Street, Emeryville, California*, June 2011 (Stellar, 2011)].

The subject property was last occupied by CMC Rebar. The property currently appears to be vacant, although a neighboring painting contracting business, Giampolini & Co., appears to be using the Parcel 14 structure. Two USTs formerly present under the sidewalk in front of the warehouse at 1471 67th Street were removed in 1996. A site plan with former UST locations and historical and current boring and monitoring well locations is included as Figure 2.

B. Site Geology and Hydrogeology

The subject site is located on a generally level parcel at an elevation of approximately 20 feet above mean seal level (msl) with a slight slope to the west towards San Francisco Bay approximately ½ mile to the west. The subject site is located within the East Bay Plain Sub-Basin of the Santa Clara Valley Groundwater Basin, an alluvial plain located along the east shore of San Francisco Bay. Although groundwater in the subject site vicinity is not currently used for drinking water purposes, the East Bay Plain Sub-Basin, including the subject site vicinity, has been designated as a zone where groundwater is a potential drinking water resource by the SFRWQCB *Water Quality Control Plan (Basin Plan)* dated June 29, 2013 (SFRWQCB, June 2013).

According to an e-mail communication on February 6, 2013 with Maurice Kaufman, director of the City of Emeryville Public Works Department, use of groundwater for drinking water purposes within the City of Emeryville is prohibited by a City ordinance due to widespread regional contamination. No plans exist for future beneficial use of groundwater within the City of Emeryville. Therefore, AllWest does not regard groundwater in the subject site vicinity as a potential drinking water resource.

The site is underlain by interbedded silty clay and silty sand to sandy silt to a depth of approximately 24 feet below ground surface (bgs). Depth to groundwater was encountered in previous subsurface investigations at the subject site vicinity at depths of approximately 6.5 to 12 feet bgs. Direction of groundwater flow in the site vicinity is to the west toward San Francisco Bay (Stellar, 2011).

Depth to first encountered groundwater in soil borings during subsurface investigations in the vicinity of the subject site during 1998 and 2005 ranged from approximately 9 to 22.5 feet bgs (WA, 1998 and 2006). Historical depth to groundwater in the Clearprint Paper Company groundwater monitoring well MW-3, located in 67th Street adjacent to the former subject property USTs at 1471 67th Street, has ranged from approximately 7 to 11 feet bgs (WA, 2006 and ACEH *Fuel Leak Site Case Closure, Clearprint Paper Co.*, June 27, 2005).

During a site visit on September 14, 2011, AllWest measured depth to water in MW-3 at 11.05 feet below top-of-casing (TOC), with approximately 3 feet of floating free product on top. During groundwater monitoring events conducted by

AllWest in July 2012 to June 2013, depth to groundwater ranged from 8.57 to 11.52 feet below TOC, with free product thickness declining from 2.65 feet to none measured.

C. Site History and Previous Investigations

From the early 1900s until circa 1946, the subject property Parcel 01 was developed as a residence, and Parcel 14 was undeveloped. Between circa 1946 and 1950, the subject property was developed with the current office and light industrial warehouse buildings. The McGrath Steel Company operated a steel warehouse and/or the Pacific Rolling Door Company from circa 1950 until about 2007. The McGrath Steel business was sold and relocated in 2007. CMC Rebar subsequently leased the subject property, but although CMC Rebar still stores some equipment in the warehouse and shop, no fabrication is currently conducted. The current subject property owner is MCG Investments, Inc. Giampolini and Company, a painting contractor located across the street from the subject site, appears to be currently using the subject site warehouse at 1471 67th Street.

Two (2) 2,000-gallon single-wall steel USTs were formerly located beneath the 67th Street sidewalk in front of the warehouse building. The diesel and gasoline USTs were installed in 1979 and 1981, respectively. The USTs were removed in July 1996 by Subsurface Environmental Corp. (SEC). No holes were noted in the USTs, but obvious discoloration and petroleum hydrocarbon odor were noted in the surrounding soil. No information was included in the SEC report regarding any product piping removal. Elevated concentrations of petroleum hydrocarbons were detected in confirmatory soil samples following the UST removal. Additional soil was over-excavated to a depth of approximately 12 feet bgs for a total of approximately 70 cubic yards of soil removed. Confirmatory soil samples collected following over-excavation contained a maximum of 15 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPH-g) and 870 mg/kg total petroleum hydrocarbons as diesel (TPH-d) [SEC, *Tank Removal Closure Report*, September 16, 1996 (SEC, 1996)].

Weiss Associates (WA) conducted a subsurface investigation at the subject property in May 1998. Three (3) soil borings (B-1, B-2 and B-5) were advanced to depths ranging from 16.5 to 24 feet bgs in the vicinity of the former USTs along the north and south sides of 67th Street. Additional borings B-6 and B-7 were attempted but encountered refusal in gravel base rock material at approximately 2 feet bgs and were not sampled. Proposed borings B-3 and B-4 were not attempted.

Petroleum hydrocarbons were detected in soil samples collected only from boring B-5 at 12 feet bgs, at concentrations of 68 mg/kg TPH-g, 120 mg/kg TPH-d, 0.28 mg/L benzene, 0.6 mg/L toluene, 0.49 mg/L xylenes and 3.8 mg/L methyl tertbutyl ether (MTBE). Petroleum hydrocarbons were detected in grab groundwater samples from all three borings, with elevated concentrations of 270,000 micrograms per liter (μ g/L) TPH-g, 1,600 μ g/L TPH-d, 21,000 μ g/L benzene, 34,000 μ g/L toluene, 6,000 μ g/L ethylbenzene, 36,000 μ g/L total xylenes and 59,000 μ g/L MTBE detected in boring B-5 (WA, 1998).

WA conducted an additional subsurface investigation in December 2005. Six (6) soil borings (B-8 through B-14) were advanced to a maximum depth of approximately 22 feet bgs in the vicinity of the former USTs and downgradient to the west, along the north and south sides of 67th Street and within the sidewalk on the south side of 67th Street. Low to moderate concentrations of petroleum hydrocarbons were detected in soil samples from all six borings, with maximum concentrations of 500 mg/kg TPH-g, 1.7 mg/kg benzene, 19 mg/kg toluene, 12 mg/kg ethylbenzene and 73 mg/kg total xylenes detected at 15 feet bgs in boring B-13; and 11 mg/kg MTBE detected at 5 feet bgs in boring B-14. Maximum concentrations of 340 mg/kg TPH-d were detected in B-8 at 10 feet bgs, and 6.2 mg/kg total petroleum hydrocarbons as mineral spirits (TPH-ms) were detected at 6.2 mg/kg in B-12 at 5 feet bgs.

Elevated concentrations of dissolved phase petroleum hydrocarbons were detected in groundwater samples from all six (6) soil borings and monitoring well MW-3. Maximum concentrations of 290,000 μ g/L TPH-g and 37,000 μ g/L total xylenes were detected in boring B-13. Maximum concentrations of 180,000 μ g/L TPHms, 24,000 μ g/L benzene, 39,000 μ g/L toluene and 6,500 μ g/L ethylbenzene were detected in boring B-12. Maximum concentrations of 12,000 μ g/L MTBE were detected in boring B-14 and well MW-3. Maximum concentrations of 100,000 μ g/L TPH-d were detected in boring B-11.

Petroleum hydrocarbon concentrations in soil and groundwater exceeded corresponding SFRWQCB Environmental ESLs for commercial/industrial land use where groundwater is not a potential drinking water resource (SFRWQCB, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Tables B and D, Interim Final November 2007, revised May 2008).

Groundwater sampling of monitoring well MW-3 was attempted by Stellar Environmental Solutions, Inc. in May 2011; however a sample was not collected due to the presence of free product in the bailer. During a site visit on September 14, 2011, AllWest measured a floating free product thickness of approximately 3 feet in MW-3, using a standard electric water level probe and observing product thickness on the tape. A precise product thickness measurement could not be made since an oil/water interface probe was not available. The free product was almost clear in appearance, emitted a gasoline-like odor, and rapidly volatilized from the probe.

Four USTs containing mineral spirits and other petroleum-based solvents (including 2,2,4-trimethylpentane) were removed in 1994 at the adjacent

Clearprint Paper Company (Clearprint) site at 1482 67th Street, located to the northwest across 67th Street from the subject site and in the downgradient direction. The USTs were located in the sidewalk along the north side of 67th Street (Figure 2). Remedial activities including soil excavation and groundwater removal were conducted.

A subsequent subsurface investigation conducted in 1995 consisted of three (3) soil borings (SB-1, SB-2 and SB-3) and the installation of three (3) groundwater monitoring wells (MW-1, MW-2 and MW-3). Although elevated concentrations of petroleum hydrocarbons including TPH-g, TPH-d, oil and grease, and benzene, toluene, ethylbenzene and xylenes (BTEX) were detected in confirmatory excavation soil samples and groundwater samples from the borings and wells, these constituents of concern (COCs) were considered by ACEH to have originated from the upgradient subject (McGrath Steel) site, since these COCs were never used in the Clearprint USTs. Petroleum hydrocarbon and BTEX concentrations in groundwater samples from monitoring wells MW-1 and MW-2 had declined to below detection limits by the final sampling events in 2004. The ACEH issued case closure for the Clearprint site in June 2005 (ACEH *Fuel Leak Site Case Closure, Clearprint Paper Co.*, June 27, 2005).

The Clearprint groundwater monitoring wells MW-1 and MW-2 were destroyed and properly abandoned by Environmental Strategies Consulting, Inc. (ESC) in June 2005 following case closure (ESC, June 23, 2005). Well MW-3 was left in place for monitoring of the subject (McGrath Steel) site.

The ACEH, in their letters of April 7, 2006 and November 19, 2010 (revised December 6, 2010), requested additional characterization of the downgradient extent and distribution of dissolved phase petroleum hydrocarbons and residual free product, and implementation of interim remedial action, at the subject site. AllWest submitted an *Additional Site Characterization and Interim Remedial Action Workplan* on September 27, 2011 (AllWest, September 2011) to the ACEH proposing advancement of five downgradient soil borings with collection of grab groundwater samples in addition to free product removal, redevelopment and sampling of existing groundwater monitoring well MW-3.

The ACEH responded to the AllWest *Additional Site Characterization and Interim Remedial Action Workplan* (AllWest, September 2011) in their letter of May 2, 2012, and requested relocation of some of the proposed downgradient borings along 67th Street to optimize the dissolved hydrocarbon plume characterization, additional UST source area characterization of LNAPL (free product) extent in soil and groundwater, characterization of the former fuel dispenser location, additional soil sample collection and analysis, and the installation of at least two additional groundwater monitoring wells to establish groundwater flow direction and monitor the down-gradient hydrocarbon plume extent. The ACEH requested a two phase approach to the work, with the soil borings to be performed first with a brief data submittal to the ACEH proposing optimal monitoring well locations, followed by the installation of the groundwater monitoring wells after ACEH approval of proposed locations.

In response to the ACEH request, AllWest prepared and submitted an *Additional Site Characterization Workplan Addendum* on July 31, 2012, proposing advancement of ten (10) DPT borings and installation of two (2) groundwater monitoring wells. It was approved conditionally by the ACEH in a letter dated November 8, 2012, who required advancement of one (1) additional soil boring and additional shallow soil sampling intervals. One (1) additional groundwater monitoring well installation was proposed by AllWest in our *Subsurface Investigation* data package cover letter dated February 4, 2013. ACEH approved the additional well installation in their e-mail of March 14, 2013.

On July 30, 2012, Blaine Tech Services, Inc. (BTS), under the supervision of AllWest, redeveloped existing monitoring well MW-3. On August 2, 2012, AllWest collected groundwater samples from monitoring well MW-3 (AllWest, August 23, 2012). AllWest subsequently collected groundwater samples from well MW-3 on December 18, 2012 and March 27 and June 27, 2013 (AllWest, January 9, April 18 and July 11, 2013). The results of these quarterly groundwater monitoring events are summarized in Tables 2 and 5.

III. PURPOSE AND SCOPE OF WORK

The purpose of this investigation was to further evaluate the extent of LNAPL, adsorbed and dissolved-phase petroleum hydrocarbons in soil and groundwater in the vicinity of the former UST and dispenser source area at the subject property, and in the hydraulically downgradient and cross-gradient directions. This proposed work was performed in response to a request by ACEH in their letters of April 7, 2006, November 19, 2010 (revised December 6, 2010), May 2, 2012 and November 8, 2012. The scope of work, as proposed, consisted of the following tasks:

- 1. Prepared a written workplan for conducting a subsurface investigation at the site. Submitted the workplan to the ACEH for review and concurrence;
- 2. Prepared site specific health and safety plans and traffic control plans;
- Obtained drilling permits from the Alameda County Public Works Agency (ACPWA), and street and sidewalk encroachment permits from the City of Emeryville Public Works Department (EPWD);
- 4. Engaged the service of Underground Service Alert (USA) and a private underground utility locator to locate and clear underground utilities within the proposed investigation area so that the potential of accidental damage to

underground utilities would be reduced during the subsurface investigation. Notified the ACEH, ACPWA and facility owners and tenants prior to the start of field work;

- Retained the service of a C-57 licensed drilling contractor, Gregg Drilling and Testing, for the advancement of eleven (11) Direct Push Technology (DPT) borings (B15 through B25) in the vicinity of the former USTs and fuel dispensers, and along 67th Street down-gradient to cross-gradient of the former USTs;
- 6. Collected soil samples at continuous intervals from each of the eleven (11) DPT borings. Retained two (2) to three (3) soil samples from each boring for possible chemical analysis. Installed temporary PVC well casings and allowed water levels to recover before monitoring potential free product. Collected and retained one "grab" groundwater sample from each DPT boring for analytical testing;
- 7. Maintained samples of all media under chain-of-custody and transported them to a Department of Health Services (DHS) certified analytical laboratory for chemical analyses. Analyzed two (2) to three (3) soil samples from each source area boring B20 through B24, and one (1) composite soil drum sample, for TPH-d and TPH-ms per EPA Method 8015B with silica gel cleanup, TPH-g with full scan VOCs including fuel oxygenates and lead scavengers per EPA Method 8260B, and PNAs/PAHs by EPA Method 8270C-SIM. Analyze one (1) to three (3) soil samples from each downgradient boring B15 through B19 and B25 for TPH-d and TPH-ms per EPA Method 8015B with silica gel cleanup, and TPH-g, BTEX and MTBE per EPA Method 8015Bm/8021B (no other VOC analysis), and PNAs/PAHs by EPA Method 8270. Analyze one composite soil drum sample for disposal profiling for LUFT 5 metals (cadmium, chromium, nickel, lead and zinc) per EPA Method 6010. Archived additional soil samples for possible analysis based on headspace screening and previous analytical results;
- 8. Analyzed one groundwater sample from each boring for TPH-d and TPH-ms per EPA Method 8015B with silica gel cleanup, and TPH-g and VOCs (full scan including fuel oxygenates and lead scavengers) per EPA method 8260B, and PNAs/PAHs by EPA Method 8270C-SIM;
- 9. At the completion of drilling removed temporary casings and backfilled the DPT borings with a "neat" cement grout slurry, and restored concrete slabs with concrete slurry;
- 10. Prepared and submitted a brief written data submittal dated February 4, 2013, presenting a summary of the laboratory analytical data, soil boring logs, and site plan with boring and proposed monitoring well locations. Uploaded the data submittal to the ACEH FTP site and GeoTracker database for ACEH approval of proposed monitoring well locations;

- 11. After obtaining ACPWA drilling permits, EPWD encroachment permits, and clearing locations of utilities per Tasks 3 and 4 above, retained the service of a C-57 licensed drilling contractor, Woodward Drilling Company, Inc., for the advancement of three (3) nominal 8-inch diameter soil borings (AMW-1, AMW-2 and AMW-3) using a truck-mounted hollow stem auger (HSA) rig along 67th Street down-gradient to cross-gradient of the former USTs. Collected soil samples during drilling for lithologic characterization and laboratory chemical analysis;
- 12. After advancing to the designated depth, completed the borings as two-inch diameter PVC groundwater monitoring wells (AMW-1, AMW-2 and AMW-3);
- 13. Developed the new wells using surge block and submersible pump methods to remove fines and improve hydraulic conductivity with the surrounding formation;
- 14. Measured groundwater levels and potential free product thickness, purged a minimum of three casing volumes and collected groundwater samples from the three new wells AMW-1, AMW-2 and AMW-3, and existing well MW-3;
- 15. Analyzed one groundwater sample from each new monitoring well AMW-1, AMW-2 and AMW-3 and existing monitoring well MW-3 for TPH-g and TPHms by analytical method 8015/8021, for TPH-d by analytical method 8015 with silica gel cleanup, for VOCs by analytical method 8260 (full scan) and for PNAs/PAHs by analytical method 8270;
- 16. Surveyed the new and existing well head elevations and locations to NAD 1983 and NAVD 1988 datum in accordance with State Water Resources Control Board (SWRCB) GeoTracker protocol;
- 17. Arranged for profiling, transport and disposal of investigative-derived waste soil and groundwater at an appropriate disposal facility;
- 18. Prepared a written report for the monitoring well installation and previous subsurface investigation describing the field activities, summarizing the laboratory analytical data, presenting investigation findings, and providing conclusions and recommendations. Uploaded the report to the ACEH FTP site and GeoTracker database.

IV. INVESTIGATIVE ACTIVITIES

A. Permitting and Offsite Property Access

AllWest was unable to gain access to the offsite property occupied by the Giampolini and Co. parking lot located on the north side of 67th Street for the advancement of proposed boring B18 and monitoring well AMW-3 down-

gradient to cross-gradient from the subject property (Figure 3). Boring B18 and monitoring well AMW-3 were instead located in the sidewalk along the north side of 67th Street. Boring and well locations are shown on Figure 2.

AllWest prepared and submitted a drilling permit application to ACPWA for review and approval. AllWest prepared and submitted an encroachment permit application for street and sidewalk drilling along 67th Street to the EPWD for review and approval. Upon permit approval, AllWest notified the ACEH, ACPWA, EPWD, and the subject and adjacent property owners and tenants of the drilling schedule a minimum of 72 working hours in advance to allow scheduling of drilling and grouting inspection. Copies of the permits are included in Appendix A.

B. Health and Safety and Traffic Control Plans

AllWest updated the existing site specific health and safety plan prior to mobilizing to the site. A tailgate safety meeting was held prior to commencing work. All site personnel were required to review the health and safety plan. A traffic control and sidewalk closure plan was prepared to ensure the safety of workers, pedestrians and motorists along 67th Street.

C. Underground Utility Location

To avoid damage to underground utility installations during the course of the subsurface investigation, AllWest contacted Underground Service Alert (USA), an organization for public utility information, on the pending subsurface investigation. USA then notified public and private entities that maintain underground utilities within the site vicinity to locate and mark their installations for field identification. A private underground utility locator, Subtronic Corporation (Subtronic) of Concord, California, was also employed by AllWest to conduct magnetometer and ground penetrating radar sweep investigations to locate marked and unmarked underground utilities in the vicinity of the proposed boring locations.

D. Geoprobe[®] DPT Boring Advancement and Soil Sampling

On January 16, 17 and 18, 2013, AllWest conducted a subsurface investigation at the subject site (Figures 1 and 2), as proposed in our *Additional Site Characterization Workplan Addendum* (July 31, 2012). Eleven (11) soil borings (B15 through B25) were advanced by the direct push technology (DPT) continuous coring method to collect soil and groundwater samples to further delineate the extent of petroleum hydrocarbons and free product in the subsurface in the vicinity of the former USTs and fuel dispensers, and down-gradient to cross-gradient from the subject site. The borings were advanced to depths of 9 to 30 feet bgs to intersect the first encountered water-bearing zone. Boring locations are shown on Figure 2. Boring logs are included in Appendix C.

Gregg Drilling and Testing, Inc., a C-57 licensed drilling contractor located in Martinez, California, provided drilling services. Following coring of the concrete sidewalk slabs or asphalt pavement, all boring locations were hand-augered to 5 feet bgs to clear potential underground utilities; therefore, undisturbed soil samples could not be collected above that depth.

Soil sampling was accomplished using a nominal 5-foot long, 2-inch outside diameter (OD) stainless steel drive probe and extension rods. The drive probe is equipped with nominal 1-1/2 inch inside diameter (ID) clear plastic poly tubes that line the interior of the probe. The probe and insert tubes are together hydraulically driven using a percussion hammer in 5-foot intervals. After each drive interval the drive probe and rods are retrieved to the surface. The poly tube containing subsurface soil is then removed. The drive probe is then cleaned, equipped with a new poly tube and reinserted into the boring with extension rods as required. The apparatus is then driven following the above procedure until the desired depth is obtained. Standard DPT sampling procedures are included in Appendix B.

An AllWest environmental professional oversaw field work and drilling activities. Soil was logged in accordance with the Unified Soil Classification System (USCS). The poly tubes and soil are inspected after each drive interval with lithologic and relevant drilling observations recorded. Soil samples were screened for organic vapors using a photo-ionizer detector (PID) by taking readings of headspace vapor concentrations of the soil inside a zip-lock plastic bag. PID readings, soil staining and other relevant observations are recorded on the boring logs. Boring logs are included in Appendix C.

Selected soil sample intervals were cut from the 5-foot poly tube intervals for analytical testing. The ends of samples for possible analytical testing were sealed using TeflonTM lined plastic end caps. The samples were labeled, and stored in an iced cooler.

E. DPT Boring Groundwater Sampling

"Grab" groundwater samples were collected after the completion of soil sampling and when the borings had reached their designed depth. The steel probe and rods were removed from the boring and new, nominal ³/₄-inch ID diameter PVC solid and perforated temporary casing were lowered into the borehole. Depth to water and potential floating free product thickness were then measured using an electronic oil/water interface probe. No free product was detected in any of the borings. Following groundwater and product level measurements, a ³/₄-inch ID clear acrylic, polyethylene or Teflon[™] bailer was lowered to the groundwater surface, raised and inspected for potential product sheen or layer thickness. No sheen or free product were observed.

Groundwater samples were then collected by oscillating disposable polyethylene sample tubing fitted with a check valve. Upon retrieval of the sample, the retained water was transferred to appropriate sample bottles furnished by the analytical laboratory. Samples for TPH-g, BTEX and fuel oxygenate and additive analysis were collected in two 40-milliliter VOA vials preserved with HCl solution. Samples for TPH-d and TPH-mo analysis were collected in one 1-liter amber glass bottle preserved with HCl solution. Samples for PNAs/PAHs analysis were collected in one 1-liter unpreserved amber glass bottle. All sample bottles for volatile organic analysis had Teflon lined septum/cap and were filled such that no headspace was present. Sample bottles were labeled and immediately placed on ice to preserve the chemical characteristics of their contents.

F. DPT Borehole Backfilling

At the completion of drilling and sampling, the borings were backfilled with a "neat" Portland Type I or II cement grout slurry tremied into the borehole through a PVC pipe. Concrete sidewalk slabs were restored with concrete slurry poured flush to grade. Grouting was performed under the supervision of an ACPWA inspector.

G. Hollow Stem Auger Boring Advancement and Soil Sampling

On August 1 and 2, 2013, three (3) groundwater monitoring wells, (AMW-1, AMW-2 and AMW-3) were installed to respective depths of 24, 24, and 23 feet bgs along the north and south sides of 67th Street west-northwest to west-southwest and downgradient of the subject site. Monitoring well locations are shown on Figure 2.

Woodward Drilling Co., Inc., a C-57 licensed drilling contractor located in Rio Vista, California, provided drilling services. Following coring of the concrete sidewalk slabs or asphalt pavement, all boring locations were cleared to 5 feet bgs for potential underground utilities using an air knife and vacuum equipment and by hand-augering. Therefore, undisturbed soil samples could not be revovered above 5 feet bgs. The borings for monitoring wells AMW-1 and AMW-2 were advanced using a truck-mounted, hollow stem auger (HSA) drill rig equipped with nominal 3.75-inch ID and 8-inch outside diameter OD, hollow stem augers.

During the borehole advancement operations, an environmental professional from AllWest was present to collect representative soil samples, conduct field vapor screening and maintain a continuous log of drilling activities. Soil vapor headspace and ambient concentrations were monitored using a PID. Field activities were conducted under the direction of a California licensed Professional Geologist. Standard hollow stem auger drilling procedures are included in Appendix B. Boring logs are included in Appendix C.

Soil samples were collected for lithologic characterization and potential chemical analysis with a two-inch diameter California Modified split-spoon sampler equipped with 2-inch diameter by 6-inch long brass or stainless steel liners. Three soil samples from each boring were selected for potential laboratory analysis. Sample tubes selected for chemical analysis were sealed with Teflon[™] lined plastic end caps. Sample containers were labeled, placed in an iced cooler and transported under chain-of-custody control to the analytical laboratory.

H. Groundwater Monitoring Well Installation

Once the borings were advanced to their designated depths of 23 feet bgs (AMW-3) and 24 feet bgs (AMW-1 and AMW-2), well casings were installed through the center of the hollow stem augers. After the well casings were set, the augers were removed in sections while the sand filter pack was placed. Well casing was composed of nominal 2-inch ID schedule-40 PVC pipe. The casing screen section consisted of factory perforated 0.01-inch slots and extended for 15 foot interval above the bottom of the boring. Non-perforated (blank) well casing pipe was used to complete the well casing from the top of the screen section to the ground surface. The screened interval was selected to extend above the static water level to allow potential floating free product (LNAPL) to be monitored, while alos allowing for seasonal groundwater level variations.

The filter pack around the well screen interval consisted of pre-washed #2/12 Monterey sand placed in the annular space from the well bottom up to one foot above the screen section. The wells were then surged with a surge block to settle the sand pack, which was then topped off to maintain the one foot level above the top of the screen. An approximate two-foot hydrated bentonite pellet or chip seal was then placed in the annular space above the filter pack to prevent surface water infiltration. The remaining annular space in the borehole was then backfilled with neat Portland cement grout up to approximately one foot bgs. Grouting was performed under the supervision of an ACPWA inspector. The well casings were protected by a flush-mounted traffic-rated vault box set in a concrete annular surface seal. A water-tight locking end-cap was placed on top of each well casing to prevent surface water intrusion and unauthorized access. Standard monitoring well installation procedures are included in Appendix B. Monitoring well construction details are summarized in Table 1. Monitoring well construction diagrams are included in Appendix C.

I. Groundwater Monitoring Well Development and Sampling

On August 5, 2013, the three new groundwater monitoring wells (AMW-1, AMW-2 and AMW-3) were developed by Woodward Drilling, Inc. under

supervision of AllWest, using a surge block and submersible electric pump to remove fine sediments from the well and borehole annulus and to enhance hydraulic conductivity with the surrounding formation. Approximately 25 to 35 well casing volumes of water were purged from each well. Development was performed at least 48 hours after completion to allow the grout seals to adequately cure. Standard monitoring well development procedures are included in Appendix B.

The new groundwater monitoring wells were allowed to stabilize for a minimum of 48 hours after development prior to purging and collection of groundwater samples. Since the previous sampling event for monitoring well MW-3 occurred in the previous quarter, a groundwater sample was also collected from existing monitoring well MW-3 during this event. One groundwater sample from each well (AMW-1, AMW-2, AMW-3 and MW-3) was collected on August 7, 2013 and submitted for laboratory analysis.

Prior to well purging, an electric oil/water interface sounding probe was lowered into the well casings to measure the depth to the water and thickness of any potential floating free product to the nearest 0.01 feet below TOC. Depth to groundwater ranged from 8.94 feet below TOC in AMW-3 to 9.96 feet below TOC in AMW-2. No product or sheen were detected or observed in any of the new monitoring wells AMW-1, AMW-2 or AMW-3. Approximately 0.4 foot of free product (LNAPL) was detected in monitoring well MW-3 by the electric oil/water interface probe. Depth to groundwater and free product thickness data are included in Table 2.

A new, disposable polyethylene bailer was lowered into the well casing and partially submerged. Upon bailer retrieval, the surface water was retained and examined for any floating product or product sheen. After all initial measurements were completed and recorded, a minimum of three well casing volumes of groundwater were purged with a new, disposable polyethylene bailer. Groundwater characteristics, temperature, pH and conductivity were monitored at each well volume interval. Purging was continued until groundwater parameters stabilized to within 10%.

Groundwater sampling was conducted after water levels recovered to at least 80% of initial level, recorded prior to purging. Groundwater samples were collected from each well with new, disposable polyethylene bailers. Upon bailer retrieval, the water was transferred to appropriate sample bottles furnished by the analytical laboratory. 40-milliliter (ml) volatile organic analysis (VOA) glass vials preserved with hydrochloric acid (HCl) were used for TPH-g, TPH-ms, and VOC analysis. Samples for TPH-d analysis were collected in one 1-liter amber glass bottle preserved with HCl solution. Samples for PNAs/PAHs analysis were collected in one 1-liter unpreserved amber glass bottle. All sample bottles for VOA had Teflon lined septum/caps and were filled so that no headspace was present. The

sample bottles were then labeled and placed in an iced cooler for transport under chain-of-custody control to the analytical laboratory.

To help prevent cross-contamination, all groundwater sampling equipment that came into contact with groundwater was decontaminated prior to sampling. To minimize the possibility of cross-contamination, a new disposable bailer was used to collect each groundwater sample. All investigative derived wastes, soil (drill cuttings) and water (decontamination, development and purge water) were temporarily stored at the property in 55-gallon drums, awaiting test results to determine the proper disposal method.

Standard groundwater sampling procedures are included in Appendix C. Groundwater purging and sampling field logs are included in Appendix D.

J. Monitoring Well Head Survey

On August 13, 2013, AllWest contracted with a licensed California surveyor, Morrow Surveying of West Sacramento, California, to establish horizontal and vertical control of the three new and one existing monitoring well heads (AMW-1, AMW-2, AMW-3 and MW-3) using NAD 1983 and NAVD 1988 datum in accordance with California State Water Resources Control Board (SWRCB) GeoTracker protocol. A notch was set in the top of each PVC casing during the installation process and subsequently used as the TOC elevation reference point to measure water depths. This notch, as well as the vault box top, were surveyed to an accuracy of 0.01 feet and referenced to mean sea level (MSL) using NAVD 1988 datum. This information along with depth to water measurements were used to calculate groundwater flow direction and gradients. Monitoring well survey data is included in Table 2 and Appendix F.

K. Investigation-Derived Waste Containment and Disposal

Investigation-derived waste including soil cores, soil cuttings, decontamination rinseate, purged groundwater and free product were contained onsite in 55-gallon drums pending analytical results, profiling and transport to an appropriate disposal facility. The drums were removed from the subject site by Woodward Drilling, Inc. on August 23, 2013 and transported as non-hazardous waste to Potrero Hills Landfill in Suisun, California.

V. QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

A. Sample Preservation, Storage and Handling

To prevent the loss of constituents of interest, all soil and groundwater samples were preserved by storing in an ice chest cooled to 4°C with crushed ice

immediately after their collection and during transportation to the laboratory. Samples were stored within the cooler in separate zip-lock plastic bags to avoid cross-contamination.

B. Chain-Of-Custody Program

All samples collected for this project were transported under chain-of-custody protocol. The chain-of-custody program allows for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The document includes the signature of the collector, date and time of collection, sample number, number and type of sample containers including preservatives, parameters requested for analysis, signatures of persons and inclusive dates involved in the chain of possession. Upon delivery to the laboratory the document also includes the name of the person receiving the samples, and date and time samples were received.

VI. ANALYTICAL METHODS

All samples selected for analysis were analyzed by a State of California certified independent analytical laboratory, McCampbell Analytical, Inc., of Pittsburg, California.

All soil samples from source area borings B20 through B24 were analyzed for total petroleum hydrocarbons as diesel (TPH-d) by analytical method 8015B with silica gel cleanup, for total petroleum hydrocarbons as mineral spirits (TPH-ms) by analytical method 8015Bm, for total petroleum hydrocarbons as gasoline (TPH-g) and volatile organic compounds (VOCs) (full scan) by analytical method 8260B, and for polynuclear aromatic hydrocarbons (PNAs/PAHs) by analytical method 8270C-SIM. Soil samples from down-gradient borings B15 through B19 and B25 were analyzed for the same constituents except full-scan VOCs were not analyzed, and TPH-g, BTEX and MTBE were analyzed by analytical Method 8015Bm/8021B.

Soil samples from the hollow stem auger (HSA) borings were analyzed for TPH-g, TPH-ms, BTEX and MTBE by analytical method 8015Bm/SW8021B, for TPH-d by analytical method SW8015B with silica gel cleanup, and for PNAs/PAHs by analytical method SW8270C-SIM.

Groundwater samples from the DPT borings were analyzed for TPH-d by analytical method 8015B with silica gel cleanup, for TPH-ms by analytical method 8015Bm, and for TPH-g and full VOC scan including fuel oxygenates diisopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME) and tertiary butyl ether (TBA), and lead scavengers 1,2-dibromoethene (EDB) and 1,2-dichloroethane (EDC) by analytical method 8260B. All DPT groundwater samples were analyzed for PNAs/PAHs by Analytical method 8270C-SIM except for the

groundwater samples collected from borings B16 and B21; there was an insufficient quantity of groundwater in those borings to collect samples for PNA/PAH analysis.

Groundwater samples from the new monitoring wells AMW-1, AMW-2, AMW-3 and from the existing monitoring well MW-3 were analyzed for TPH-g and TPH-ms by analytical method SW8021B/8015Bm, for TPH-d by analytical method SW8015B with silica gel cleanup, for VOCs by analytical method 8260B, and for PNAs/PAHs by analytical method SW8270C-SIM.

One soil waste drum sample composited from corings from all DPT and HSA borings was analyzed for TPH-g and VOCs by analytical method SW8260B, and for LUFT 5 metals (cadmium, chromium, nickel, lead and zinc) by EPA Method 6010 for disposal profiling.

VII. ASSESSMENT FINDINGS

A. Subsurface Conditions

The lithology encountered in most borings during this investigation consisted of interbedded silts, clays, and sands. Occasional lenses of silty gravel and gravelly silt were encountered to depths of 12 feet bgs in borings B16, B17, B19 and B22. Gravelly clay was encountered between 13 and 18 feet bgs in B19. Silty sand was encountered between approximately 15 and 21 feet bgs in borings AMW-1, AMW-2 and AMW-3. Fine sand was encountered to a depth of approximately 9 feet bgs in boring B23. Groundwater was encountered between approximately 9 to 30 feet bgs, and rose to static levels of approximately 9 to 11 feet bgs. The direction of groundwater flow was to the southeast at a gradient of 0.0167 feet per foot (Figure 3). Boring logs are included in Appendix C. Groundwater elevation data are included in Table 2 and on Figure 3.

B. Laboratory Analysis and Sampling Data

<u>Soil</u>

TPH-g was detected in soil samples at a maximum concentration of 2,000 milligrams per kilogram (mg/kg) in boring B20, located down-gradient from the former McGrath USTs at a depth of 12 to 12.5 feet below ground surface (bgs). The maximum TPH-ms concentration detected in soil samples collected during this investigation was 1,200 mg/kg in boring B20 at 12-12.5 feet bgs and in boring B21 (located adjacent to the former McGrath USTs) at 10-10.5 feet bgs. However, these concentrations probably represent TPH-g within the TPH-ms (C9-C12) range, since gasoline-range compounds were characterized as significant, and mineral spirits were not historically stored in the McGrath USTs. The maximum TPH-d concentration detected in soil samples was 1,900 mg/kg in

boring AMW-1, located downgradient of the former Clearprint Paper Company USTs, at a depth of 18.5-19 feet bgs (Table 1).

Toluene, ethylbenzene, and total xylenes were detected in soil samples at maximum respective concentration of 92 mg/kg, 35 mg/kg, and 210 mg/kg in boring B20 at a depth of 12-12.5 feet bgs. Benzene and MTBE were detected at respective maximum concentrations of 12 mg/kg and 7.6 mg/kg in boring B21 at a depth of 10-10.5 feet bgs.

Other VOCs were detected in soil samples collected during this investigation including naphthalene, n-butyl benzene, 1,2,4-trimethylbenzene, isopropylbenzene, n-propyl benzene, 1,3,5-trimethylbenzene, 4-isopropyl toluene, acetone, and 2-butanone at respective maximum concentrations of 14 mg/kg, 9.1 mg/kg, 89 mg/kg, 0.67 mg/kg, 13 mg/kg, 29 mg/kg, 0.13 mg/kg, 0.096 mg/kg, and 0.029 mg/kg. Soil analytical results for total petroleum hydrocarbons and VOCs are summarized in Table 3 and Figure 4.

PNAs/PAHs were detected in soil samples collected during this investigation including benzo(a) anthracene, chrysene, fluoranthene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene at maximum respective concentrations of 0.013 mg/kg, 0.013 mg/kg, 0.037 mg/kg, 2.5 mg/kg, 4.3 mg/kg, 5.0 mg/kg, 1.4 mg/kg, and 0.033 mg/kg. PAH/PNA soil analytical results are summarized in Table 4. No other COCs were detected at or above laboratory reporting limits in any soil samples analyzed during this investigation. Laboratory analytical reports and chain of custody documents are included in Appendix E.

Groundwater

Approximately 0.4 feet of free product (LNAPL) was measured in monitoring well MW-3 on the August 7, 2013 groundwater sampling event. TPH-g was detected in groundwater samples at a maximum concentration of 160,000 micrograms per liter ($\mu g/L$) in boring B20, located down-gradient from the former McGrath USTs. TPH-ms was detected at a maximum concentration of 54,000 μ g/L in groundwater samples from existing monitoring well MW-3 (on the August 7, 2013 sampling date). However, these concentrations probably represent TPH-g within the TPH-ms (C9-C12) range, since gasoline-range compounds were characterized as significant, and mineral spirits were not historically stored in the McGrath USTs. TPH-d with gasoline range compounds characterized as significant was detected at a maximum concentration of 95,000 µg/L in groundwater samples from boring B20. Benzene and toluene were detected at a maximum respective concentrations of 21,000 μ g/L and 47,000 μ g/L in groundwater samples from boring B20. Ethylbenzene and total xylenes were detected in groundwater samples from existing monitoring well MW-3 at maximum concentrations of 4,200 µg/L and 24,000 µg/L on the August 7, 2013

sampling date. MTBE was detected at a maximum concentration of 140,000 μ g/L in groundwater samples from boring B21.

Other VOCs detected in groundwater samples during this investigation included tert-butyl alcohol (TBA), naphthalene, 1,2,4-trimethylbenzene, n-propyl benzene, 1,3,5-trimethylbenzene, n-butyl benzene, sec-butyl benzene, isopropylbenzene, trichloroethene (TCE), 2-butanone, 1,2-dichloroethane (1,2-DCA), 1,1-dichloroethene, 1,1-dichloroethane, 1,1,1-trichloroethane and trans-1,3-dichloropropene at maximum respective concentrations of 520 μ g/L, 1,100 μ g/L, 5,200 μ g/L, 620 μ g/L, 1,500 μ g/L, 27 μ g/L, 7.3 μ g/L, 15 μ g/L, 53 μ g/L, 2.4 μ g/L, 0.55 μ g/L, 140 μ g/L, 5.2 μ g/L, 5.3 μ g/L and 110 μ g/L. Groundwater analytical results for total petroleum hydrocarbons and VOCs are summarized in Table 5 and Figures 5, 6 and 7.

PNAs/PAHs were detected in groundwater samples collected during this investigation including benzo(a) anthracene, fluoranthene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene at maximum respective concentrations of 0.56 μ g/L, 0.94 μ g/L, 460 μ g/L, 750 μ g/L, 1,700 μ g/L, 0.88 μ g/L and 1.0 μ g/L. PNA/PAH groundwater analytical results are summarized in Table 6. No other COCs were detected at or above laboratory reporting limits in any groundwater samples analyzed during this investigation. Laboratory analytical reports and chain of custody documents are included in Appendix E.

C. Laboratory QA/QC

A review of laboratory internal quality assurance/quality control (QA/QC) report indicates the method blank and sample spike data for all analyses were within the laboratory recovery limits. The samples were also analyzed within the acceptable EPA holding times. The data from the McCampbell Analytical laboratory are considered to be of good quality. Laboratory QA/QC reports and chain-of-custody records are included in Appendix E.

VIII. DISCUSSION

A. Environmental Screening Levels

To assess if the identified constituents of concern (COCs) in soil and groundwater pose a risk to human health and the environment, concentrations were compared with ESLs for commercial/industrial land use where groundwater is not a potential drinking water resource compiled by the SFRWQCB in *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, Interim Final, May 2013. Although the SFRWQCB *Basin Plan* has designated groundwater in the site vicinity as a potential drinking water resource (SFRWQCB, June 2013), groundwater in the subject site vicinity is not currently used as a drinking water resource. According to the City of Emeryville Public Works Department, a City ordinance prohibits use of groundwater for drinking water purposes due to widespread regional contamination, and no plans exist for future beneficial use.

ESLs were developed by the SFRWQCB to address environmental protection goals. These goals include protection of human health, drinking water resources, aquatic and terrestrial biota and adverse nuisance conditions. Under most conditions, the presence of chemicals at concentrations below the corresponding ESLs can be assumed not to pose a significant threat to human health and the environment. Concentrations of chemicals above ESLs do not necessarily indicate that impacts to human health or the environment exist or that remedial measures are required, only that further evaluation is required. ESLs are not intended to be used as a "clean-up" standard.

B. Soil Screening Levels

AllWest compared soil sample analytical results to the SFRWQCB ESLs from Tables B and B-2, Shallow Soils ($\leq 3 m$ bgs), Groundwater is not a Current or Potential Source of Drinking Water, Commercial/Industrial Land Use, and Tables D and D-2 Deep Soils (>3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water, Commercial/Industrial Land Use (RWQCB, Interim Final – May 2013).

TPH-g and TPH-ms were not detected at concentrations exceeding ESLs in any of the shallow (<9.9 feet bgs) or deep (>9.9 feet bgs) soil samples collected and analyzed during this investigation. TPH-d was not detected at concentrations exceeding ESLs in any shallow (<9.9 feet bgs) soil samples analyzed during this investigation. TPH-d concentrations detected at 1,900 mg/kg in one (1) soil sample, AMW-1-18.5-19 (i.e. collected from 18.5 to 19 feet bgs in boring AMW-1), exceeded the deep soil (>9.9 feet bgs) ESL of 1,100 mg/kg.

Benzene was detected at concentrations exceeding its shallow and deep ESL of 1.2 mg/kg in six (6) soil samples, and matching the ESL in two (2) samples, at a maximum concentration of 12 mg/kg in soil sample B21-10-10.5. Toluene was detected at concentrations exceeding its shallow and deep ESL of 9.3 mg/kg in five (5) soil samples at a maximum concentration of 92 mg/kg in soil sample B20-12-12.5. Ethylbenzene was detected at concentrations exceeding its shallow and deep ESL of 4.7 mg/kg in eight (8) soil samples, at a maximum concentration of 35 mg/kg in soil sample B20-12-12.5. Total xylenes were detected at concentrations exceeding its shallow and deep ESL of 11 mg/kg in thirteen (13) soil samples, and matching the ESL in one (1) sample, at a maximum concentration of 210 mg/kg in soil sample B20-12-12.5. MTBE was detected at

concentrations exceeding its shallow and deep ESL of 8.4 mg/kg in one (1) soil sample, at a maximum concentration of 12 mg/kg in soil sample B21-21.5-22.

For PNA/PAH analyses, 2-methylaphthalene was detected at concentrations exceeding its shallow and deep ESL of 0.25 mg/kg in fourteen (14) soil samples, at a maximum concentration of 4.3 mg/kg in soil sample B20-12-12.5. Naphthalene was detected in two (2) soil samples at concentrations exceeding its shallow and deep soil ESL of 4.8 mg/kg, at a maximum concentration of 7.1 mg/kg in soil sample B20-12-12.5. None of the other COCs analyzed were detected above their non-drinking water ESLs in soil samples collected during this investigation. Soil analytical data and ESLs for sites where groundwater is and is not a drinking water resource are summarized in Tables 3 and 4. Distribution of petroleum hydrocarbons in soil is shown on Figure 4.

C. Groundwater Screening Levels

AllWest compared groundwater sample analytical results to the SFRWQCB ESLs from Tables B and B-2, Shallow Soils ($\leq 3 m bgs$), Groundwater is not a Current or Potential Source of Drinking Water, Commercial/Industrial Land Use, Tables D and D-2 Deep Soils (>3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water, Commercial/Industrial Land Use, and Table E-1, Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion, Commercial/Industrial Land Use (RWQCB, Interim Final – May 2013).

TPH-g was detected in concentrations exceeding its non-drinking water ESL of 500 μ g/L in eleven (11) groundwater samples collected during this investigation at a maximum concentration of 160,000 μ g/L in boring B20. TPH-ms was detected in concentrations exceeding its non-drinking water ESL of 500 μ g/L in ten (10) groundwater samples collected during this investigation at a maximum concentration of 54,000 μ g/L in monitoring well MW-3; however, this probably represents TPH-g within the TPH-ms range. TPH-d was detected in concentrations exceeding its non-drinking water ESL of 640 μ g/L in nine (9) groundwater samples collected during this investigation at a maximum concentration of 95,000 μ g/L in boring B20. Groundwater vapor intrusion ESLs have not been established for TPH-g, TPH-ms or TPH-d.

Benzene was detected at concentrations exceeding its non-drinking water ESL of 27 μ g/L in six (6) groundwater samples, and exceeding its vapor intrusion ESL of 210 μ g/L in five (5) samples, at a maximum concentration of 21,000 μ g/L in boring B20. Toluene was detected at concentrations exceeding its non-drinking ESL of 130 μ g/L in six (6) groundwater samples, at a maximum concentration of 47,000 μ g/L in boring B20. The commercial/industrial vapor intrusion ESL has not been established for toluene; however, it was not detected at a concentration exceeding its residential vapor intrusion ESL of 95,000 μ g/L Ethylbenzene was detected at concentrations exceeding its non-drinking exceeding its non-drinking ESL of 43 μ g/L in nine

groundwater samples, and its vapor intrusion ESL of 3,100 μ g/L in three (3) samples, at a maximum concentration of 4,200 μ g/L in monitoring well MW-3. Total xylenes were detected at concentrations exceeding its non-drinking ESL of 100 μ g/L in ten (10) groundwater samples, at a maximum concentration of 24,000 μ g/L in monitoring well MW-3. The commercial/industrial vapor intrusion ESL has not been established for xylenes; however, it was not detected at a concentration exceeding its residential vapor intrusion ESL of 37,000 μ g/L. MTBE was detected at concentrations exceeding its non-drinking ESL of 1,800 μ g/L in five groundwater samples, and its vapor intrusion ESL of 100,000 μ g/L in one (1) sample, at a maximum concentration of 140,000 μ g/L in boring B21.

2-methylnaphthalene was detected at concentrations exceeding its non-drinking ESL of 2.1 μ g/L in seven (7) groundwater samples, at a maximum concentration of 750 μ g/L in boring B20. Vapor intrusion ESLs have not been established for 2-methylnaphthalene. Naphthalene was detected at concentrations exceeding its non-drinking ESL of 4.6 μ g/L in eight (8) groundwater samples, and its vapor intrusion ESL of 1,600 μ g/L in one (1) sample, at a maximum concentration of 1,700 μ g/L in boring B20. Benzo (a) anthracene was detected in one (1) groundwater sample at concentrations exceeding its non-drinking water ESL of 0.027 μ g/L. Vapor intrusion ESLs have not been established for benzo (a) anthracene. No other COCs were detected in groundwater samples analyzed in this investigation at concentrations exceeding established applicable ESLs. Groundwater analytical data and drinking water, non-drinking water and vapor intrusion ESLs are summarized in Tables 5 and 6.

D. Contaminant Distribution - Soil

The lateral extent of adsorbed-phase petroleum hydrocarbons and their constituents has been largely defined in the downgradient direction west of the former McGrath USTs at boring AMW-1, but has not been fully defined in the cross-gradient directions to the north and south of 67th Street. The highest TPH-g and TPH-d concentrations detected in soil samples during this investigation were from borings B20 and B21 located immediately downgradient from the former McGrath USTs. In the vertical distribution of TPH-g and TPH-d, the highest concentrations tend to occur at approximately 10 to 12.5 feet bgs, consistent with the capillary smear zone above first encountered groundwater. The anomalously high TPH-d concentration detected in the soil sample from 18.5 to 19 feet bgs in the downgradient boring AMW-1 appears to originate from an offsite source. The upgradient extent of petroleum hydrocarbons from the McGrath UST release appears to be defined by boring B-23. The slightly more elevated TPH-g and TPH-d concentrations in the farther upgradient boring B-24 likely originate from a separate release from the former fuel dispensers. Distribution of TPH-g, TPH-d and benzene in soil is shown on Figure 4.

E. Contaminant Distribution - Groundwater

The lateral extent of dissolved-phase petroleum hydrocarbons and their constituents has been largely defined in the downgradient direction west of the former McGrath USTs at monitoring well AMW-1, but has not been fully defined in the cross-gradient directions to the north and particularly to the south of 67th Street. The upgradient extent of dissolved-phase petroleum hydrocarbons from also not been fully defined; concentrations decline in boring B23 immediately upgradient of the former USTs, however there appears to be a separate release source in the vicinity of boring B24 and the former fuel dispensers farther upgradient. The highest dissolved-phase TPH-g, TPH-d and benzene concentrations detected in groundwater samples during this investigation were from boring B20 located immediately downgradient from the former McGrath USTs. TPH-g, TPH-d and benzene isoconcentration maps are shown as Figures 5, 6 and 7, respectively.

Approximately 0.4 feet of light non-aqueous phase liquid (LNAPL) hydrocarbons (free product) was measured in monitoring well MW-3 in the former UST vicinity during the August 7, 2013 groundwater sampling event. The lateral extent of free product appears to be limited to the Free product was not measured or observed in boring B20; however, the temporary well casing may have been installed for an insufficient time for free product to accumulate.

IX. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

AllWest conducted a subsurface assessment consisting of eleven (11) DPT borings (B15 through B25) and three (3) groundwater monitoring well installations (AMW-1, AMW-2 and AMW-3) at the subject site to further evaluate the extent of LNAPL, adsorbed and dissolved-phase petroleum hydrocarbons in soil and groundwater in the vicinity of the former UST and dispenser source area at the subject property, and in the hydraulically down-gradient and cross-gradient directions.

AllWest concludes that TPH-g, TPH-ms, TPH-d, BTEX, MTBE, 2methylnaphthalene, naphthalene and benzo (a) anthracene were identified in shallow and deep soil samples and in groundwater samples at concentrations exceeding corresponding and applicable SFRWQCB commercial/industrial nondrinking water ESL values. Benzene, ethylbenzene, MTBE and naphthalene were detected in groundwater samples exceeding corresponding commercial/industrial vapor intrusion ESLs. Therefore, a potential soil vapor intrusion impact to indoor air quality may occur within the former McGrath Steel warehouse building at 1471 67th Street and the MetalCo building at 1475 67th Street, located adjacent to the areas of COC concentrations.

The downgradient extent of the adsorbed and dissolved phase petroleum hydrocarbon plume in soil and groundwater is largely defined and extends from the vicinity of the former McGrath Steel USTs to the west along 67th Street to the vicinity of monitoring well AMW-1 west of the former Clearprint Paper Company USTs. The highest COC concentrations (with the exception of TPH-d) occur in the vicinity of the former McGrath Steel USTs and immediately downgradient. Elevated TPH-d concentrations detected in soil samples in downgradient boring AMW-1 probably originate from an offsite source. The cross-gradient extent of the adsorbed and dissolved phase hydrocarbon plume has not been fully defined, particularly south of 67th Street. Additionally, 0.4 feet of LNAPL (free product) was discovered in monitoring well MW-3 during the August 7, 2013 groundwater sampling event.

B. Recommendations

AllWest recommends conducting quarterly groundwater monitoring at the subject site in the new monitoring wells AMW-1, AMW-2 and AMW-3 and existing monitoring well MW-3. AllWest also recommends implementing interim remedial action of free product in monitoring well MW-3 with the installation of a passive product skimming device, consisting of a "sock" containing petroleum hydrocarbon-absorbing material within a 2-inch diameter by 3-foot long perforated metal canister placed in the well. AllWest recommends initially checking the skimmer "sock" on a monthly basis, and replacing it if necessary.

X. LIMITATIONS

The work described in this report is performed in accordance with the Environmental Consulting Agreement between MCG Investments, LLC (Client) and AllWest Environmental, Inc, dated June 2013. AllWest has prepared this report for the exclusive use of the Client for this particular project and in accordance with generally accepted practices at the time of the work. No other warranties, certifications or representations, either expressed or implied are made as to the professional advice offered. The services provided for the Client were limited to their specific requirements; the limited scope allows for AllWest to form no more than an opinion of the actual site conditions. No matter how much research and sampling may be performed, the only way to know about the actual composition and condition of the subsurface of a site is through excavation.

The conclusions and recommendations contained in this report are made based on observed conditions existing at the site, laboratory test results of the submitted samples, and interpretation of a limited data set. It must be recognized that changes can occur in subsurface conditions due to site use or other reasons. Furthermore, the distribution of chemical concentrations in the subsurface can vary spatially and over time. The results of chemical analysis are valid as of the date and at the sampling location only. AllWest is not responsible for the accuracy of the test data from an independent laboratory, or for any analyte quantities falling below the recognized standard detection limits or for the method utilized by the independent laboratories.

Background information that AllWest has used in preparing this report, including but not limited to previous field measurements, analytical results, site plans, and other data, has been furnished to AllWest by the Client, its previous consultants, and/or third parties. AllWest has relied on this information as furnished. AllWest is not responsible for nor has it confirmed the accuracy of this information.

XI. REFERENCES

Alameda County Environmental Health Services Fuel Leak Site Case Closure, Clearprint Paper Co., June 27, 2005

AllWest Environmental, Inc. (AllWest), Additional Site Characterization and Interim Remedial Action Workplan, Former McGrath Steel, 6655 Hollis Street, and 1471 67th Street, Emeryville, California, 94608, September 27, 2011.

AllWest, Additional Site Characterization Workplan Addendum, Former McGrath Steel, 6655 Hollis Street, and 1471 67th Street, Emeryville, California, 94608, July 31, 2012.

AllWest, *Third Quarter 2012 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608,* August 23, 2012

AllWest, Fourth Quarter 2012 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608, January 9, 2013

AllWest, Subsurface Investigation, Former McGrath Steel, 6655 Hollis Street, Emeryville, California, February 4, 2013

AllWest, First *Quarter 2013 Groundwater Monitoring, Former McGrath Steel,* 6655 Hollis Street, Emeryville, California 94608, April 18, 2013

AllWest, Second Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608, July 11, 2013

California Regional Groundwater Quality Control Board, San Francisco Bay Region (SFRWQCB), *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, June 1999.

SFRWQCB, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final – May 2013

SFRWQCB, Water Quality Control Plan (Basin Plan), June 29, 2013

Environmental Strategies Consulting, Inc. (ESC), Groundwater Well Destruction at Former Clearprint Paper Company, Inc. Located at 1482 67th Street in Emeryville, California, June 23, 2005

Stellar Environmental Solutions, Inc. (Stellar), *Phase I Environmental Site Assessment,* 6655 Hollis Street, Emeryville, California, June 2011.

Subsurface Environmental Corp., Tank Removal Closure Report, September 16, 1996

Weiss Associates (WA), Subsurface Investigation Report, August 5, 1998

WA, Site Characterization Report, March 2, 2006

TABLES

TABLE 1Summary of Well Construction DetailsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23									
Well Number Casing Diameter (inches)		Borehole Diameter (inches)	Total Depth of Well (feet bgs)	Top- Bottom of Screen (feet bgs)	Screen Length (feet)	Top- Bottom of Filter Pack (feet bgs)			
MW-3 2 8		8	29 9-29		20	7-29.5			
AMW-1	AMW-1 2 8		24	9-24 15		7-24			
AMW-2 2 8			24	9-24	15	7-24			
AMW-3 2 8 23 8-23 15 6-23									

Notes:

bgs below ground surface

TABLE 2

Summary of Groundwater Elevation Data

Former McGrath Steel

6655 Hollis Street

Emeryville, California

AllWest Project No. 13019.23

Well Number	Date	TOC Elevation (feet msl)	Ground Surface Elevation (feet msl)	Depth to Groundwater (feet below TOC)	Product Thickness (feet)	Groundwater Surface Elevation (feet msl) ^a
MW-3	10/17/1995	22.73	23.17	9.42	0.00	13.31
MW-3	11/21/1995	22.73	23.17	9.85	0.00	12.88
MW-3	12/23/1995	22.73	23.17	8.52	0.00	14.21
MW-3	1/15/1996	22.73	23.17	8.72	0.00	14.01
MW-3	2/16/1996	22.73	23.17	7.08	0.04	15.68
MW-3	3/28/1996	22.73	23.17	6.78	0.03	15.97
MW-3	8/22/2005	22.73	23.17	12.36	0.00	10.37
MW-3	12/20/2005	22.73	23.17	10.82	0.00	11.91
MW-3	9/14/2011*	22.73	23.17	11.05	3	13.93
MW-3	7/30/2012	22.73	23.17	11.52	2.65	13.20
MW-3	8/2/2012	22.73	23.17	9.22	1.12	14.35
MW-3	12/18/2012	22.73	23.17	8.91	0.00	13.82
MW-3	3/27/2013	22.73	23.17	8.57	0.20	14.31
MW-3	6/27/2013	22.73	23.17	9.90	0.00	12.83
MW-3	8/7/2013	25.55	26.00	9.09	0.41	16.77
<u>.</u>						
AMW-1	8/7/2013	22.09	22.54	9.54	0.00	12.55
						-
AMW-2	8/7/2013	23.43	23.73	9.96	0.00	13.47
<u>.</u>						
AMW-3	8/7/2013	25.16	25.50	8.94	0.00	16.22

Notes:

Groundwater level measurement only, no sampling
 TOC Top of Well Casing
 Well MW-3 ground surface and TOC elevations surveyed to feet above mean sea level (msl) per City of
 Emeryville Datum, BM#5 by Triad/Holmes Associates October 17, 1995. All ground surface and TOC elevations re-surveyed to NAD 1983 and NAVD 1988 datum by Morrow Surveying, Inc., August 13, 2013.
 a Groundwater elevation corrected for free product thickness, assuming density of 0.75 for gasoline.
 NM Not Measured

TABLE 3Summary of Soil Analytical DataTotal Petroleum Hydrocarbons and VOCsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample Name	Date	TPH-g	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethylbenzene	Total	MTBE	Other VOCs
and Depth (feet bgs)	Sampled								Xylenes		
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B15-10-10.5	1/17/2013	ND <1.0	ND <1.0	ND <1.0	NA	ND <0.005	ND <0.005	ND <0.005	0.012	ND <0.05	NA
B15-19.5-20	1/17/2013	ND <1.0	ND <1.0	2.7	NA	ND <0.005	ND <0.005	ND <0.005	0.007	ND <0.05	NA
qualifiers				e2							
B16-8.5-9	1/17/2013	110	59	3.8	NA	0.84	4.8	2.8	13	ND <0.50	NA
qualifiers		d1	d1	e4							
B16-11.5-12	1/17/2013	260	130	9.6	NA	2.9	16	5.7	24	ND <1.5	NA
qualifiers		d1	d1	e4							
B16-14.5-15	1/17/2013	140	84	3.7	NA	2.6	10	2.6	16	ND <1.0	NA
qualifiers		d1	d1	e4							
B17-8.5-9	1/16/2013	ND <1.0	ND <1.0	ND <1.0	ND <5.0	ND < 0.005	ND <0.005	ND <0.005	ND <0.005		NA
B18-10-10.5	1/16/2013	450	430	60	5.4	ND <0.50	ND <0.50	8.0	25	ND <5.0	NA
qualifiers		d2, d9	d2, d9	e4, e2	e4, e2						
B18-15.5-16	1/16/2013	ND <1.0	ND <1.0	2.4	ND <5.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA
qualifiers		d1	d1	e2	e2					<0.05	
B19-10-10.5	1/16/2013	360	350	32	ND <5.0	0.31	0.23	8.8	26	ND <1.0	NA
qualifiers		d1	d1	e4	e4						
B19-14.5-15	1/16/2013	240	240	11	ND <5.0	0.12	0.16	5.7	14	ND <1.0	NA
qualifiers		d1	d1	e4	e4						
B20-10-10.5 qualifiers	1/17/2013	480	280 d1	90 e4	NA	2.2	17	7.1	42	ND <0.50	(naphthalene), 19 (1,2,4- trimethylbenzene), 0.67 (isopropylbenzene), 2.9 (n- propyl benzene), 6.5 (1,3,5- trimethylbenzene), ND (others - varies)
B20-12-12.5 qualifiers	1/17/2013	2,000	1,200 d1	24 e4	NA	8.0	92	35	210	ND <5.0	9.1 (n-butyl benzene), 14 (naphthalene), 89 (1,2,4- trimethylbenzene), 13 (n- propyl benzene), 29 (1,3,5- trimethylbenzene), ND (others - varies)
B20-14.5-15 qualifiers	1/17/2013	27	15 d1	5.1 e4	NA	0.72	1.5	0.37	2.2	0.28	0.17 (naphthalene), 0.66 (1,2,4- trimethylbenzene), 0.21 (1,3,5- trimethylbenzene), ND (others - varies)
B21-4.5-5	1/18/2013	280	410	40	NA	ND <0.50	4.3	3.2	19	0.98	3.3 (naphthalene), 13 (1,2,4- trimethylbenzene), 1.8 (n- propyl benzene), 4.1 (1,3,5- trimethylbenzene), 1.8 (n-butyl benzene), ND (others - varies)
qualifiers			d1	e2, e4		a13	a13	a13	a13	a13	a13
B21-10-10.5	1/18/2013	1,900	1,200	180	NA	12	88	31	170	7.6	7.0 (n-butyl benzene), 9.6 (naphthalene), 68 (1,2,4- trimethylbenzene), 11 (n- propyl benzene), 23 (1,3,5- trimethylbenzene), ND (others - varies)
qualifiers			d1	e4		a13	a13	a13	a13	a13	a13

TABLE 3Summary of Soil Analytical DataTotal Petroleum Hydrocarbons and VOCsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample Name and Depth (feet	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B21-21.5-22	1/18/2013	120	340 d1	22 e4	NA	1.2 a13	4.9 a13	1.8 a13	11 a13	12 a13	0.50 (n-butyl benzene), 0.77 (naphthalene), 4.6 (1,2,4- trimethylbenzene), 0.67 (n- propyl benzene), 1.5 (1,3,5- trimethylbenzene), ND (others - varies) al 3
quantiers			ui			uis	urs	uis	urs	urs	0.54 (n-butyl benzene), 0.13 (4-
B22-4.5-5	1/18/2013	92	120	9.1	NA	0.16	ND <0.12	1.5	6.3	0.45	isopropyl toluene), 0.74 (naphthalene), 4.2 (1,2,4- trimethylbenzene), 0.16 (isopropylbenzene), 0.74 (n- propyl benzene), 1.4 (1,3,5- trimethylbenzene), ND (others
qualifiers			d1	e4		a13	a13	a13	a13	a13	varies) a13
B22-10-10.5	1/18/2013	68	280	17	NA	0.79	3.3	1.2	6.0	3.1	0.27 (n-butyl benzene), 0.47 (naphthalene), 2.6 (1,2,4- trimethylbenzene), 0.39 (n- propyl benzene), 0.85 (1,3,5- trimethylbenzene), ND (others - varies)
qualifiers			d1	e4		a13	a13	a13	a13	a13	a13
B22-14.5-15	1/18/2013	30	20	3.2	NA	1.2	1.7	0.46	2.1	1.2	0.11 (n-butyl benzene), 0.14 (naphthalene), 0.81 (1,2,4- trimethylbenzene), 0.14 (n- propyl benzene), 0.26 (1,3,5- trimethylbenzene), ND (others - varies)
qualifiers			d1	e4		a13	a13	a13	a13	a13	a13
B23-5-5.5	1/17/2013	ND <0.25	ND <1.0	ND <1.0	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND (varies)
B23-8.5-9 qualifiers	1/17/2013	0.57	ND <1.0	15 e2, e7	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND (varies)
B24-4.5-5 qualifiers	1/18/2013	0.45	ND <1.0	1.8 e2	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	0.12	0.096 (acetone), 0.029 (2- butanone), ND (others - varies)
B24-8.5-9	1/18/2013	250	230 d1	44 e4	NA	0.53 a13	6.8 a13	4.1 a13	23 a13	0.53 a13	1.2 (n-butyl benzene), 1.6 (naphthalene), 10 (1,2,4- trimethylbenzene), 1.6 (n- propyl benzene), 3.5 (1,3,5- trimethylbenzene), ND (others - varies) al 3
B24-21.5-22	1/18/2013	1.6	4.2	2.2	NA	0.022	0.11	0.032	0.19	0.24	0.065 (1,2,4-trimethylbenzene) 0.019 (1,3,5-trimethylbenzene) ND (others - varies)
qualifiers			d1	e2		a13	a13	a13	a13	a13	a13
B25-10-10.5 qualifiers	1/16/2013	16 d1	6.8 d1	3.4 e2	ND <5.0 e2	0.0088	0.034	0.30	0.015	ND <0.05	NA
B25-15-15.5	1/16/2013	ND <1.0	ND <1.0	e2 ND <1.0	e2 ND <5.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND	NA
										<0.05 ND	
AMW-1-6.5-7 qualifiers	8/2/2013	ND <1.0	ND <1.0	13 e7, e1	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	< 0.05	NA
AMW-1-12.5-13	8/2/2013	ND <1.0	ND <1.0	2.9	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA

TABLE 3Summary of Soil Analytical DataTotal Petroleum Hydrocarbons and VOCsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample Name and Depth (feet	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
qualifiers				e7, e1							
AMW-1-18.5-19	8/2/2013	3.8	7.5	1,900	NA	ND <0.005	0.0053	0.0059	0.028	ND <0.05	NA
qualifiers		d7	d7	e7, e1							
AMW-2-6.5-7	8/1/2013	ND <1.0	ND <1.0	ND <1.0	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA
AMW-2-15.5-16	8/1/2013	430	440	83	NA	1.3	8.3	10	45	ND <2.0	NA
qualifiers		d1	d1	e4, e2							
AMW-2-23-23.5	8/1/2013	ND <1.0	ND <1.0	ND <1.0	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA
AMW-3-6.5-7	8/2/2013	ND <1.0	ND <1.0	1.0	NA	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.05	NA
qualifiers				e7, e2							
AMW-3-9-9.5	8/2/2013	240	260	82 e4, e7,	NA	0.26	1.3	5.1	18	0.90	NA
qualifiers		d1	d1	e4, e7, e2							
AMW-3-12-12.5	8/2/2013	41	44	28	NA	0.078	0.28	0.96	4.6	ND <0.25	NA
qualifiers		d1	d1	e4, e2						0.20	
RWQCB Commere ESLs, ≤3 m (9.9 drinking v	9 feet) bgs,	500	500	500	2,500	0.044	2.9	3.3	2.3	0.023	0.5 (acetone) 0.059 (1,3-dichloropropene) 1.2 (naphthalene) NE or varies (others)
RWQCB Commer ESLs, >3 m (9.9 drinking v	9 feet) bgs,	580	580	530	5,000	0.044	2.9	3.3	2.3	0.023	0.5 (acetone) 0.059 (1,3-dichloropropene) 1.2 (naphthalene) NE or varies (others)
RWQCB Commer ESLs, ≤3 m (9.9 fe drinking v	eet) bgs, non-	500	500	500	2,500	1.2	9.3	4.7	11	8.4	0.5 (acetone) 1.3 (1,3-dichloropropene) 4.8 (naphthalene) NE or varies (others)
RWQCB Commer ESLs, >3 m (9.9 fe drinking v	eet) bgs, non-	2,400	2,400	1,100	5,000	1.2	9.3	4.7	11	8.4	0.5 (acetone) 1.3 (1,3-dichloropropene) 4.8 (naphthalene) NE or varies (others)

Notes:

All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California All results are reported in milligrams per kilogram (mg/kg)

TPH-g Total petroleum hydrocarbons gasoline range (C6-C12), Analytical Method SW8021B/8015Bm for soil samples collected from borings B15, B16, B17, B18, B19, B25, AMW-1, AMW-2 and AMW-3; Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23, and B24 TPH-ms Total petroleum hydrocarbons mineral spirits range (C9-C12), Analytical Method SW8021/8015Bm TPH-d Total petroleum hydrocarbons as diesel (C10-C23), Analytical Method SW8015B with silica gel cleanup TPH-mo Total petroleum hydrocarbons as motor oil (C18-C36), Analytical Method SW8015B with silica gel cleanup Methyl tertiary butyl ether, Analytical Method SW8021B/8015Bm for soil samples collected from borings B15, B16, B17, B18, B19, B25, AMW-1, MTBE AMW-2, and AMW-3; Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23 and B24 BTEX Benzene, Toluene, Ethylbenze and Total Xylenes by Analytical Method SW8021B/8015Bm for soil samples collected from borings B15, B16, B17, B18, B19, B25, AMW-1, AMW-2 and AMW-3; Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23 and B24 VOCs Volatile organic compounds, Analytical Method SW8260B for soil samples collected from borings B20, B21, B22, B23 and B24 only. ND <1.0 Not detected at or above listed reporting limit NE Not established

TABLE 3 Summary of Soil Analytical Data Total Petroleum Hydrocarbons and VOCs Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 13019.23

Sample Name and Depth (feet	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo*	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Other VOCs
bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)						

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a potential drinking water resource from Tables A and A2 and Tables C and C-2, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is not a potential drinking water resource from Tables B and B-2 and Tables D and D-2, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

* Analysis not requested by AllWest but performed anyway where listed

Laboratory Qualifiers:

- L lighter hydrocarbons contributed to the quantitation
- Y sample exhibits chromatographic pattern which does not resemble standard
- a13 reporting limit raised due to low density sample
- d1 weakly modified or unmodified gasoline is significant
- e1 unmodified or weakly modified diesel is significant
- e2 diesel range compounds are significant; no recognizable pattern
- e4 gasoline-range compounds are significant
- e7 oil-range compounds are significant

TABLE 4Summary of Soil Analytical DataPNAs/PAHsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample Name and	Date Sampled	Benzo (a) anthracene	Chrysene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
Depth (feet bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B15-10-10.5	1/17/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01
B15-19.5-20	1/17/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01
B16-8.5-9	1/17/2013	ND <0.01	ND <0.01	ND <0.01	0.097	0.19	0.23	ND <0.01	ND <0.01	ND <0.01
B16-11.5-12	1/17/2013	ND <0.01	ND <0.01	ND <0.01	0.082	0.15	0.15	ND <0.01	ND <0.01	ND <0.01
B16-14.5-15	1/17/2013	ND <0.01	ND <0.01	ND <0.01	0.039	0.069	0.075	ND <0.01	ND <0.01	ND <0.01
B17-8.5-9	1/16/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01
B18-10-10.5	1/16/2013	ND <0.10	ND <0.10	ND <0.10	0.69	1.1	0.47	ND <0.10	ND < 0.10	ND <0.10
B18-15.5-16	1/16/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01
B19-10-10.5	1/16/2013	ND < 0.10	ND <0.10	ND <0.10	0.48	0.76	0.72	ND <0.10	ND < 0.10	ND <0.10
B19-14.5-15	1/16/2013	ND <0.01	ND <0.01	ND <0.01	0.26	0.50	0.50	0.014	ND <0.01	ND <0.01
B20-10-10.5	1/17/2013	ND <0.20	ND <0.20	ND <0.20	1.7	2.9	4.5	ND <0.20	ND <0.20	ND <0.20
B20-12-12.5	1/17/2013	ND <0.20	ND <0.20	ND <0.20	2.5	4.3	7.1	ND <0.20	ND <0.20	ND <0.20
B20-14-14.5	1/17/2013	ND <0.01	ND <0.01	ND <0.01	0.085	0.16	0.22	ND <0.01	ND <0.01	ND <0.01
B21-4.5-5	1/18/2013	ND < 0.10	ND <0.10	ND <0.10	0.87	1.4	1.6	ND <0.10	ND < 0.10	ND <0.10
B21-10-10.5	1/18/2013	ND <0.20	ND <0.20	ND <0.20	2.1	3.7	5.0	ND <0.20	ND <0.20	ND <0.20
B21-21.5-22	1/18/2013	ND <0.01	ND <0.01	ND <0.01	0.27	0.50	0.43	ND <0.01	ND <0.01	ND <0.01
B22-4.5-5	1/18/2013	ND <0.01	ND <0.01	ND <0.01	0.13	0.24	0.15	ND <0.01	ND <0.01	ND <0.01
B22-10-10.5	1/18/2013	ND <0.050	ND <0.050	ND <0.050	0.26	0.41	0.67	ND <0.050	ND <0.050	ND <0.050
B22-14.5-15	1/18/2013	ND <0.01	ND <0.01	ND <0.01	0.024	0.044	0.058	ND <0.01	ND <0.01	ND <0.01
B23-5-5.5	1/17/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01
B23-8.5-9	1/17/2013	ND <0.01	ND < 0.015	0.016	ND <0.01	ND <0.01	ND <0.01	ND <0.01	0.018	ND <0.01
B24-4.5-5	1/18/2013	ND <0.01	ND <0.01	ND <0.01	0.013	0.025	0.029	ND <0.01	ND <0.01	ND <0.01
B24-8.5-9	1/18/2013	ND < 0.10	ND <0.10	ND <0.10	0.59	0.95	0.85	ND <0.10	ND <0.10	ND <0.10
B24-21.5-22	1/18/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	0.014	ND <0.01	ND <0.01	ND <0.01
B25-10-10.5	1/16/2013	0.013	0.013	0.037	0.014	0.028	0.012	0.043	0.033	ND <0.01
B25-15-15.5	1/16/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01

TABLE 4Summary of Soil Analytical DataPNAs/PAHsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample Name and Depth (feet bgs)	Date Sampled	Benzo (a) anthracene	Chrysene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AMW-1-6.5-7	8/2/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01
AMW-1-12.5-13	8/2/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND < 0.01	ND <0.01
AMW-1-18.5-19	8/2/2013	ND <1.0	ND <1.0	ND <1.0	1.2	1.5	ND <1.0	1.4	ND <1.0	ND <1.0
AMW-2-6.5-7	8/1/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND < 0.01	ND <0.01
AMW-2-15.5-16	8/1/2013	ND <0.20	ND <0.20	ND <0.20	1.4	2.4	2.5	ND <0.20	ND <0.20	ND <0.20
AMW-2-23-23.5	8/1/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND < 0.01	ND <0.01
AMW-3-6.5-7	8/2/2013	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND <0.01	ND < 0.01	ND <0.01
AMW-3-9-9.5	8/2/2013	ND <0.10	ND <0.10	ND <0.10	0.93	1.6	1.2	ND <0.10	ND < 0.10	ND <0.10
AMW-3-12-12.5	8/2/2013	ND <0.050	ND <0.050	ND <0.050	0.30	0.51	0.37	ND <0.050	ND < 0.050	ND <0.050
RWQCE Commercial/Indus ≤3 m (9.9 feet) bgs water	trial ESLs,	0.45	4.5	40	NE	0.25	1.2	11	85	Vary
RWQCE Commercial/Indus >3 m (9.9 feet) bgs water	trial ESLs,	0.45	4.5	60	NE	0.25	1.2	11	85	Vary
RWQCE Commercial/Indus ≤3 m (9.9 feet) b drinking wa	trial ESLs, ogs, non-	0.45	4.5	40	NE	0.25	4.8	11	85	Vary

TABLE 4Summary of Soil Analytical DataPNAs/PAHsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample Name and Depth (feet bgs)	Date Sampled	Benzo (a) anthracene (mg/kg)	Chrysene (mg/kg)	Fluoranthene (mg/kg)	1-Methylnaphthalene (mg/kg)	2-Methylnaphthalene (mg/kg)	Naphthalene (mg/kg)	Phenanthrene (mg/kg)	Pyrene (mg/kg)	Other PNAs/PAHs (mg/kg)
RWQCI Commercial/Indus >3 m (9.9 feet) l drinking w	trial ESLs, ogs, non-	0.45	4.5	60	NE	0.25	4.8	11	85	Vary

Notes:

All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California All results are reported in milligrams per kilogram (mg/kg)

PNAs/PAHs Polynuclear Aromatic Hydrocarbons/Polycyclic Aromatic Hydrocarbons, Analytical Method SW8270C-SIM

ND <0.01 Not detected at or above listed reporting limit

NE Not established

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a potential drinking water resource from Tables A and A-2, and Tables C and C-2, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is not a potential drinking water resource from Tables B and B-2, and Tables D and D-2, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

TABLE 5 Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs Former McGrath Steel

6655 Hollis Street

Emeryville, California AllWest Project No. 13019.23

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name	Sumptou	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3	10/17/1995	8,600	ND <100	220	NA	730	2,100	270	1,400	NA	NA
MW-3 qualifiers	8/22/2005	39,000	NA	2,500 L,Y	NA	3,100	3,800	1,100	4,700	7,200	Oxygenates - ND (varies)
MW-3 qualifiers	12/20/2005	54,000	NA	2,600 L,Y	NA	6,000	10,000	1,700	9,600	12,000	Oxygenates - ND (varies)
MW-3 qualifiers	8/2/2012	27,000	14,000 d1	33,000 e4, e2	680 e4, e2	1,300	3,800	400	4,500	630	400 (TBA), 110 (trans-1,3- dichloropropene), 250 (naphthalene), 1,100 (1,2,4- trimethylbenzene), 280 (1,3,5- trimethylbenzene), ND (others - varies)
MW-3 qualifiers	12/18/2012	21,000	12,000 d1	2,600 e4	ND <250 e4	830	1,400	450	2,600	840	140 (naphthalene), 630 (1,2,4- trimethylbenzene), 78 (n- propyl benzene), 190 (1,3,5- trimethylbenzene), ND (others - varies)
MW-3	6/27/2013	18,000	NA	2,300 e4	NA	1,900	2,000	540	2,700	1,900	520 (TBA), 170 (naphthalene), 650 (1,2,4-trimethylbenzene), 84 (n-propyl benzene), 200 (1,3,5-trimethylbenzene), ND, reporting limits vary (others)
MW-3	8/7/2013	130,000	54,000	24,000	NA	9,800	16,000	4,200	24,000	6,300	1,100 (naphthalene), 5,200 (1,2,4-trimethylbenzene), 620 (n-propyl benzene), 1,500 (1,3,5 trimethylbenzene), others ND, reporting limits vary
qualifiers		d1, b6	d1, b6	e4, b6		b6, c8	b6, c8	b6, c8	b6, c8	b6, c8	b6, c8
B15	1/17/2013	1,900 b1	1,300 d1, b1	740 e4, b1	NA	3.1 b1	32 b1	24 b1	160 b1	ND <1.2	9.8 (n-butyl benzene), 27 (naphthalene), 100 (1,2,4- trimethylbenzene), 1.8 (sec- butyl benzene), 2.6 (isopropylbenzene), 12 (n- propyl benzene), 53 (TCE), 33 (1,3,5-trimethylbenzene), ND (othere_variae) b1
B16	1/17/2013	47,000	ND <5,000	6,300	NA	2,200	5,700	1,100	5,800	900	190 (napthalene), 1,600 (1,2,4- trimethylbenzene), 180 (n- propyl benzene), 460 (1,3,5- trimethylbenzene), ND (others - varies)
qualifiers		b1	d1, b1	e4, b1		b1	b1	b1	b1	b1	b1
B17	1/16/2013	190	ND <50	320	NA	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND - varies
qualifiers		b1	b1	e7, e2, b1		b1	b1	b1	b1	b1	b1
B18	1/16/2013	8,300	4,800	1,500	NA	17	ND <12	290	1,100	ND <12	64 (naphthalene), 380 (1,2,4- trimethylbenzene), 15 (isopropylbenzene), 57 (n- propyl benzene), 100 (1,3,5- trimethylbenzene), ND (others - varies)
qualifiers		b1	d2, b1	e4, b1		b1	b1	b1	b1	b1	b1

TABLE 5 Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel

6655 Hollis Street Emeryville, California

AllWest Project No. 13019.23

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name	Sampleu	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B19	1/16/2013	5,000	3,000	1,300	NA	6.5	ND <5.0	150	350	ND <5.0	27 (n-butyl benzene), 44 (naphthalene), 290 (1,2,4- trimethylbenzene), 7.3 (sec- buytl benzene), 14 (isopropylbenzene), 57 (n- propyl benzene), 89 (1,3,5- trimethylbenzene), ND (others varias)
qualifiers		b1	d2, b1	e4, b1		b1	b1	b1	b1	b1	b1
B20	1/17/2013	160,000	22,000	95,000	NA	21,000	47,000	3,700	21,000	2,300	1,800 (1,2,4-trimethylbenzene), ND (others - varies)
qualifiers		b1, b6	b1, b6, d1	b1, b6, e4		b1, b6	b1, b6	b1, b6 ND	b1, b6	b1, b6	b1, b6
B21	1/18/2013	41,000	16,000	3,900	NA	ND <2,500	6,100	<2,500	6,200	140,000	ND (varies)
gualifiers B22 gualifiers	1/18/2013	110,000	d1 17,000 d1	e4 8,800 e4	NA	7,700	26,000	3,500	21,000	8,100	910 (naphthalene), 2,300 (1,2,4- trimethylbenzene), 590 (1,3,5- trimethylbenzene), ND (others varies), ND (others - varies)
B23	1/17/2013	170 b1	160 b1, d1	140 b1, e2, e4	NA	ND <0.5	1.3 b1	1.3 b1	5.0 b1	1.8	0.96 (n-butyl benzene), 2.1 (naphthalene), 3.0 (1,2,4- trimethylbenzene), 1.3 (sec- butyl benzene), 1.3 (sec- butyl benzene), 3.8 (isopropylbenzene), 9.3 (n- propyl benzene), 9.76 (1,3,5- trimethylbenzene), ND (others - ^{variae}) bl
B24 qualifiers	1/18/2013	17,000	7,600 d1	8,800 e4	NA	340	2,100	520	2,800	2,500	130 (naphthalene), 710 (1,2,4- trimethylbenzene), 87 (n- propyl benzene), 220 (1,3,5- trimethylbenzene), ND (others - varies)
B25	1/16/2013	270	87	340	NA	ND <0.5	ND <0.5	4.3	1.4	23	2.4 (2-butanone), 0.55 (1,2- DCA), 3.0 (naphthalene), 4.8 (1,2,4-trimethylbenzene), 1.5 (1,1-dichloroethene), 1.5 (n- propyl benzene), 0.83 (TCE), 1.0 (1,3,5-trimethylbenzene), ND (others - varies)
qualifiers		b1	d2, b1	e7, e4, e2, b1		c8, b1	c8, b1	c8, b1	c8, b1	c8, b1	c8, b1
AMW-1	8/7/2013	ND <50	ND <50	110	NA	ND <1.2	ND <1.2	ND <1.2	ND <1.2	2.5	2.0 (1,1-dichloroethane), 39 (1,1-dichloroethene), 7.3 (TCE), ND (others, reporting limits varv)
qualifiers		b1	b1	e7, e1, b1		b1	b1	b1	b1	b1	b1
AMW-2	8/7/2013	1,300	550	210	NA	66	74	48	280	350	22 (naphthalene), 46 (1,2,4- trimethylbenzene), 6.4 (n- propyl benzene), 29 (1,3,5- trimethylbenzene, ND (others, reporting limits vary)
qualifiers		d1, b1	d1, b1	e4, e2, b1		b1	b1	b1	b1	b1	b1

TABLE 5 Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel

6655 Hollis Street Emeryville, California

AllWest Project No. 13019.23

Sample / Field Point	Date Sampled	TPH-g	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other VOCs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
AMW-3	8/7/2013	2,000	1,000	340	NA	17	72	83	360 ND <5.0		7.4 (n-butyl benzene), 18 (naphthalene), 76 (1,2,4- trimethylbenzene), 5.2 (1,1- dichloroethane), 140 (1,1- dichloroethane), 140 (1,1- dichloroethane), 18 (n-propyl benzene), 5.3 (1,1,1- trichloroethane), 20 (TCE), 39 (1,3,5-trimethylbenzene), ND (others, reporting limits vary)
qualifiers		d1, b1	d1, b1	e4, e2, b1							
Commercia	QCB al/Industrial king water*	100	100	100	100	1.0	40	30	20	5.0	0.5 (1,2-DCA), 12 (TBA), 5.0 (TCE), 0.5 (1,3- dichloropropene) 6.2 (naphthalene) NE or varies (others)
Commercia ESLs, not	QCB al/Industrial n-drinking ter*	500	500	640	640	27	130	43	100	1,800	100 (1,2-DCA), 18,000 (TBA), 130 (TCE), 24 (1,3-dichloropropene) 24 (naphthalene) NE or yary (others)
Commercia	QCB al/Industrial or intrusion	NE	NE	NE	NE	270	NE (95,000**)	3,100	NE (37,000**)	100,000	1,000 (1,2-DCA), 1,300 (TCE), 260 (1,3-dichloropropene) 1,600 (naphthalene) NE or vary (others)

Notes:

All results are reported in micrograms per liter (µg/L) [equivalent to parts per billion (ppb)], except where noted.

1,2-DCA 1,2-dichloroethane, Analytical Method SW8260B

TCE trichloroethene, Analytical Method SW8260B

TPH-g Total petroleum hydrocarbons as gasoline, Analytical Method SW8260B, except samples collected on 10/17/95, 8/22/05 and 12/20/05 Analytical Method SW8015Bm

TPH-ms Total petroleum hydrocarbons Mineral Spirits Range (C9-C12), Analytical Method SW8015Bm

TPH-d Total petroleum hydrocarbons as diesel, C10-C23, Analytical Method SW8015B with silica gel cleanup

TPH-mo Total petroleum hydrocarbons as motor oil, C18-C36, Analytical Method SW8015B with silica gel cleanup

MTBE Methyl tertiary butyl ether, Analytical Method SW8260B

TBA Tertiary butyl alcohol, Analytical Method SW8260B

BTEX Benzene, Toluene, Ethylbenzene, Xylenes, Analytical Method SW8021B on 10/17/95 only; Analytical Method SW8260B on all other dates

VOCs Volatile organic compounds, Analytical Method SW8260B

ND <100 Not detected at or above listed reporting limit

NE Not established

NA Not analyzed

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a potential drinking water resource from Tables A and F-1a, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is not a potential drinking water resource from Tables B and F-1b, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion (Volatile Chemicals Only) for commercial/industrial land use from Table E-1, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater . RWQCB, Interim Final - May 2013.

* The subject site lies within the City of Emeryville, where groundwater use as a drinking water resource is currently prohibited by City ordinance due to widespread

TABLE 5Summary of Groundwater Analytical DataTotal Petroleum Hydrocarbons and VOCsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Date Ethyl-Total Sample / TPH-g **TPH-ms** TPH-d TPH-mo Benzene Toluene MTBE Other VOCs Field Point Sampled benzene Xylenes Name (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) $(\mu g/L)$ (µg/L)

regional contamination, and no plans exist for future benefical groundwater use.

** Residential vapor intrusion ESL - commercial ESL for vapor intrusion not established, soil gas sampling recommended.

Laboratory Qualifiers:

L - lighter hydrocarbons contributed to the quantitation

Y - sample exhibits chromatographic pattern which does not resemble standard

b1 - aqueous sample that contains greater than ${\sim}1$ vol. % sediment

b6 - lighter than water immiscible sheen/product is present

c8 - sample pH is greater than 2

d1 - weakly modified or unmodified gasoline is significant

d2 - heavier gasoline range compounds are significant (aged gasoline?)

e2 - diesel range compounds are significant; no recognizable pattern

e4 - gasoline-range compounds are significant

e7 - oil range compounds are significant

TABLE 6Summary of Groundwater Analytical DataPNAs/PAHsFormer McGrath Steel6655 Hollis StreetEmeryville, CaliforniaAllWest Project No. 13019.23

Sample / Field Point	Date Sampled	Benzo (a) anthracene	Fluoranthene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Other PNAs/PAHs
Nama		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B15	1/17/2013	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5
(qualifiers)	b1								
B16	1/17/2013	NA	NA	NA	NA	NA	NA	NA	NA
B17	1/16/2013	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5
(qualifiers)	b1								
B18 (qualifiers)	1/16/2013 b1	ND <5.0	ND <5.0	22	36	67	ND <5.0	ND <5.0	ND <5.0
B19 (qualifiers)	1/16/2013 b1	ND <0.5	ND <0.5	15	27	0.67	ND <0.5	ND <0.5	ND <0.5
B20 (qualifiers)	1/17/2013 b1	ND <50	ND <50	460	750	1,700	ND <50	ND <50	ND <50
B21	1/18/2013	NA	NA	NA	NA	NA	NA	NA	NA
B22	1/18/2013	ND <50	ND <50	280	420	1,300	ND <50	ND <50	ND <50
B23 (qualifiers)	1/17/2013 b1	0.56	0.94	ND <0.5	ND <0.5	ND <0.55	0.75	1.0	ND <0.5
B24	1/18/2013	ND <5.0	ND <5.0	20	30	80	ND <5.0	ND <5.0	ND <5.0
B25 (qualifiers)	1/16/2013 b1	ND <0.5	ND <0.5	4.4	6.8	12	0.88	ND <0.5	ND <0.5
MW-3 qualifiers	8/7/2013 b6	ND <50	ND <50	390	710	890	ND <50	ND <50	ND <50
AMW-1 qualifiers	8/7/2013 b1	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5
AMW-2 qualifiers	8/7/2013 b1	ND <0.5	ND <0.5	1.5	1.6	7.7	ND <0.5	ND <0.5	ND <0.5
AMW-3 qualifiers	8/7/2013 b1	ND <0.5	ND <0.5	3.2	ND <0.5	ND <0.5	ND <0.5	ND <0.5	ND <0.5
RW	QCB al/Industrial king water*	0.027	8.0	NE	2.1	6.2	4.6	2.0	Vary
Commercia ESLs, not	QCB al/Industrial n-drinking ter*	0.027	8.0	NE	2.1	24	4.6	2.0	Vary

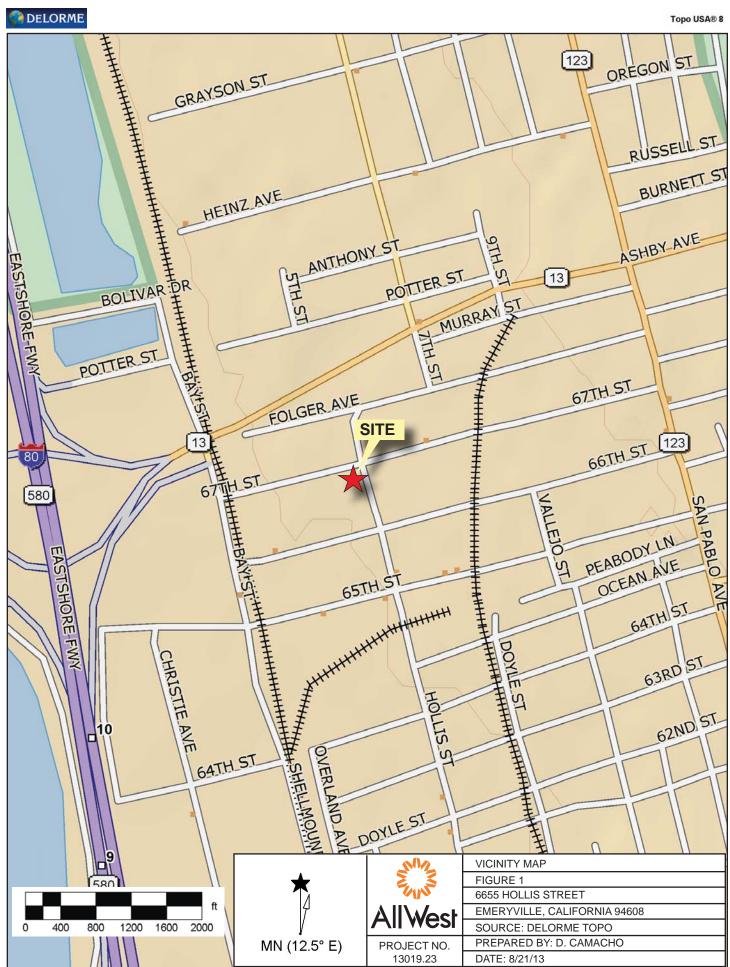
Notes: All results are reported in micrograms per liter (µg/L) [equivalent to parts per billion (ppb)], except where noted.

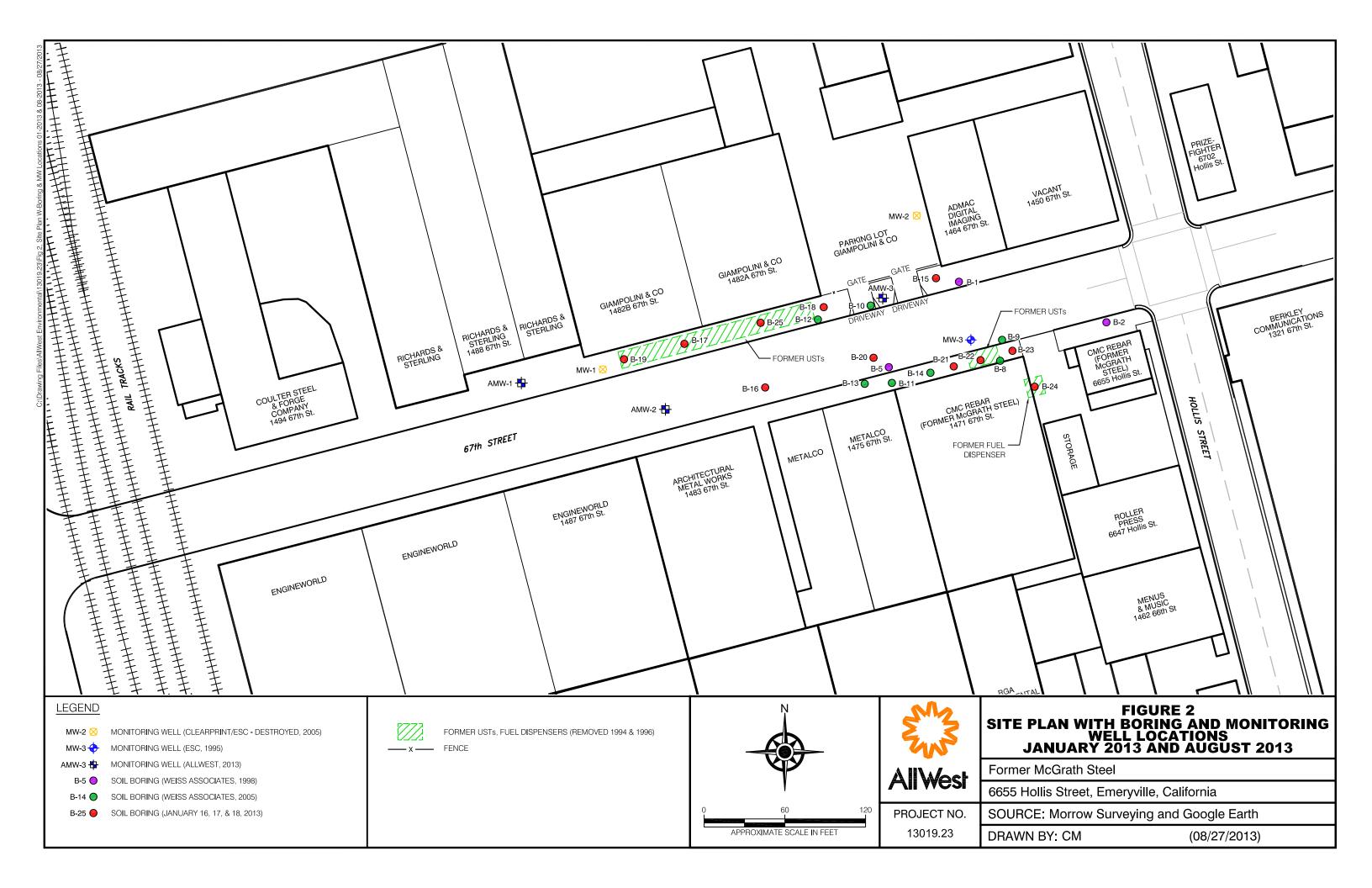
All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California

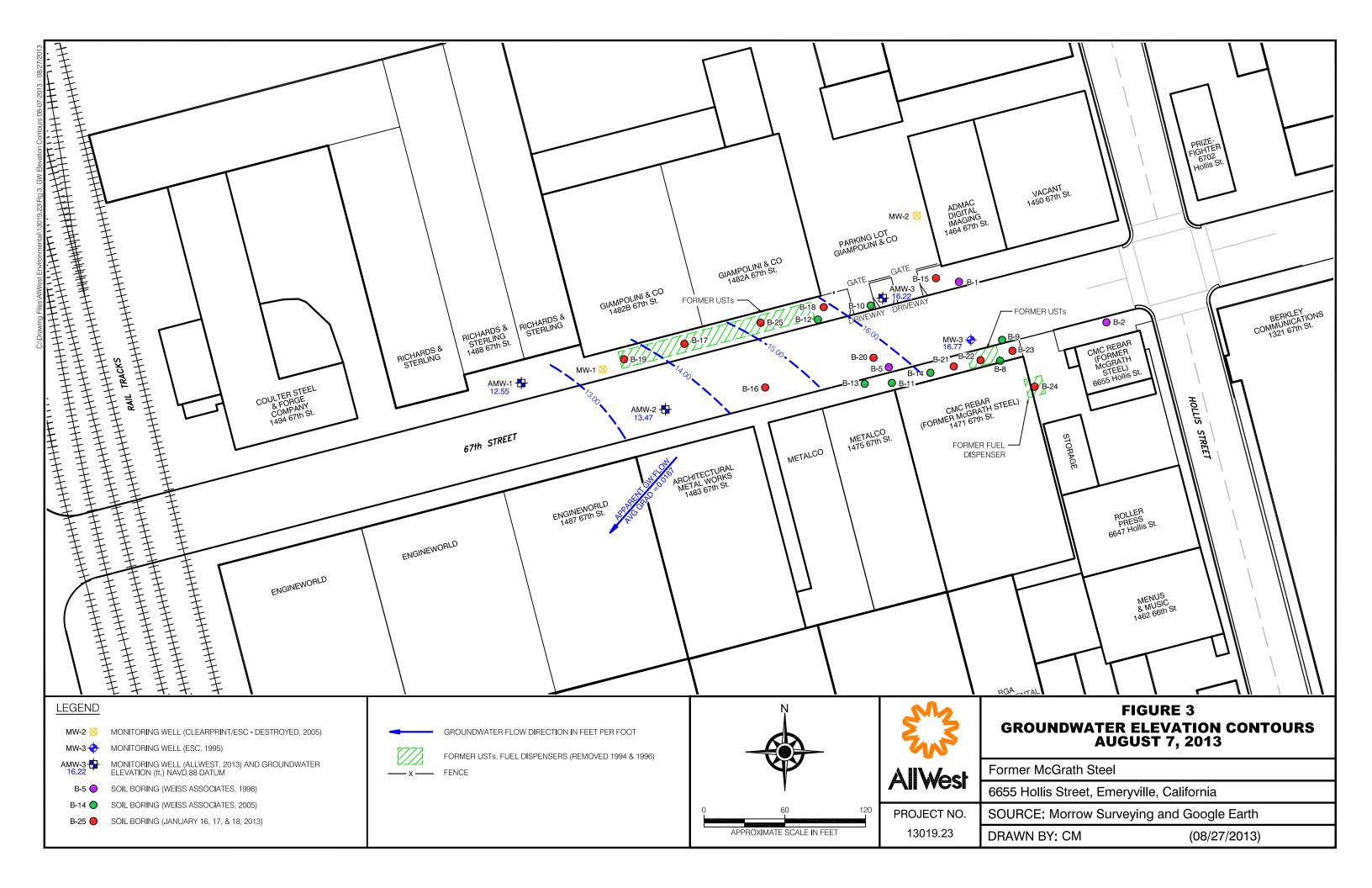
PNAs/PAHs = Polynuclear Aromatic Hydrocarbons/Polycyclic Aromatic Hydrocarbons by analytical method SW8270C-SIM

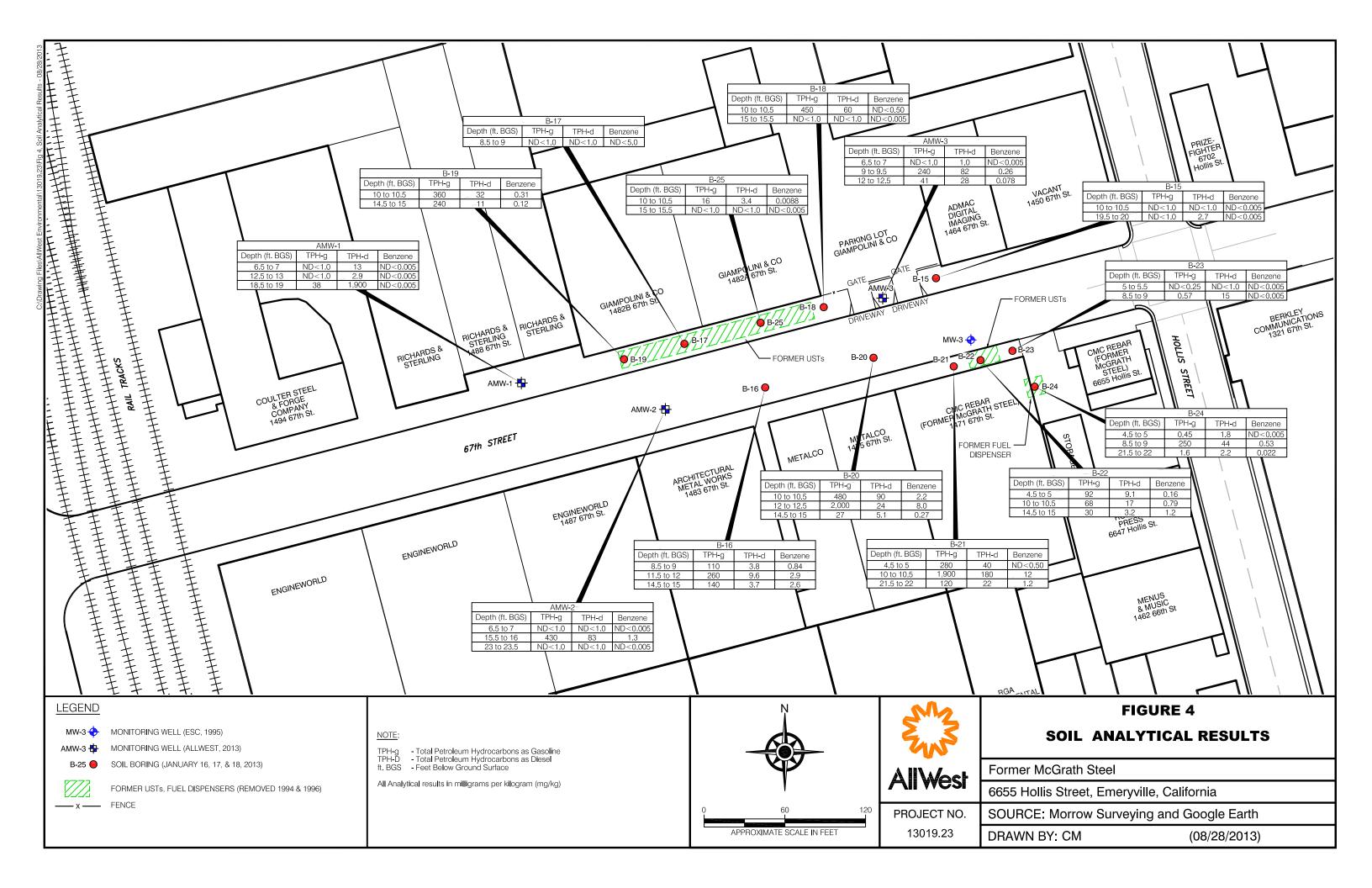
ND (<0.5) - Not detected at or above listed reporting limit

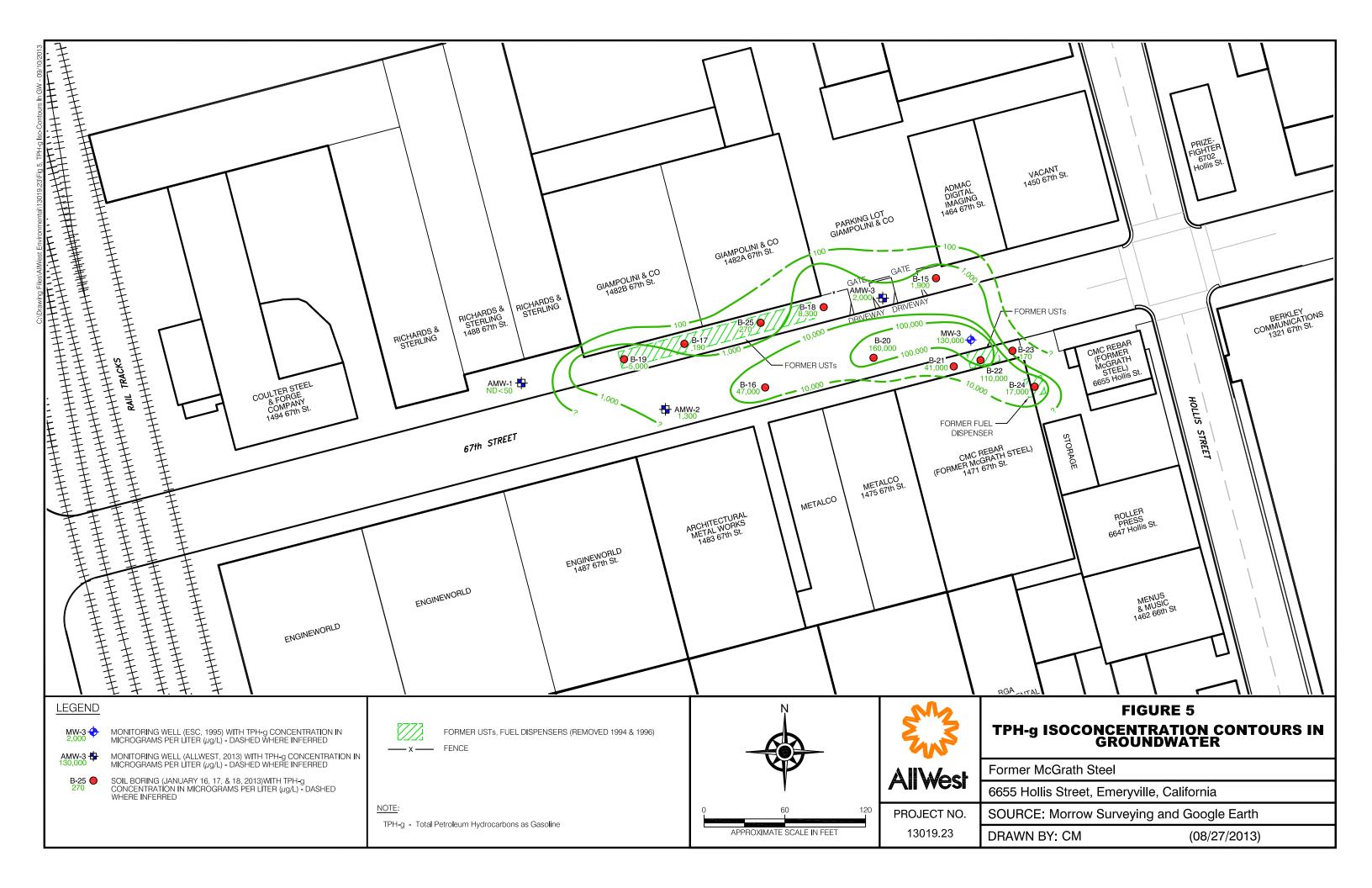
NE - Not established

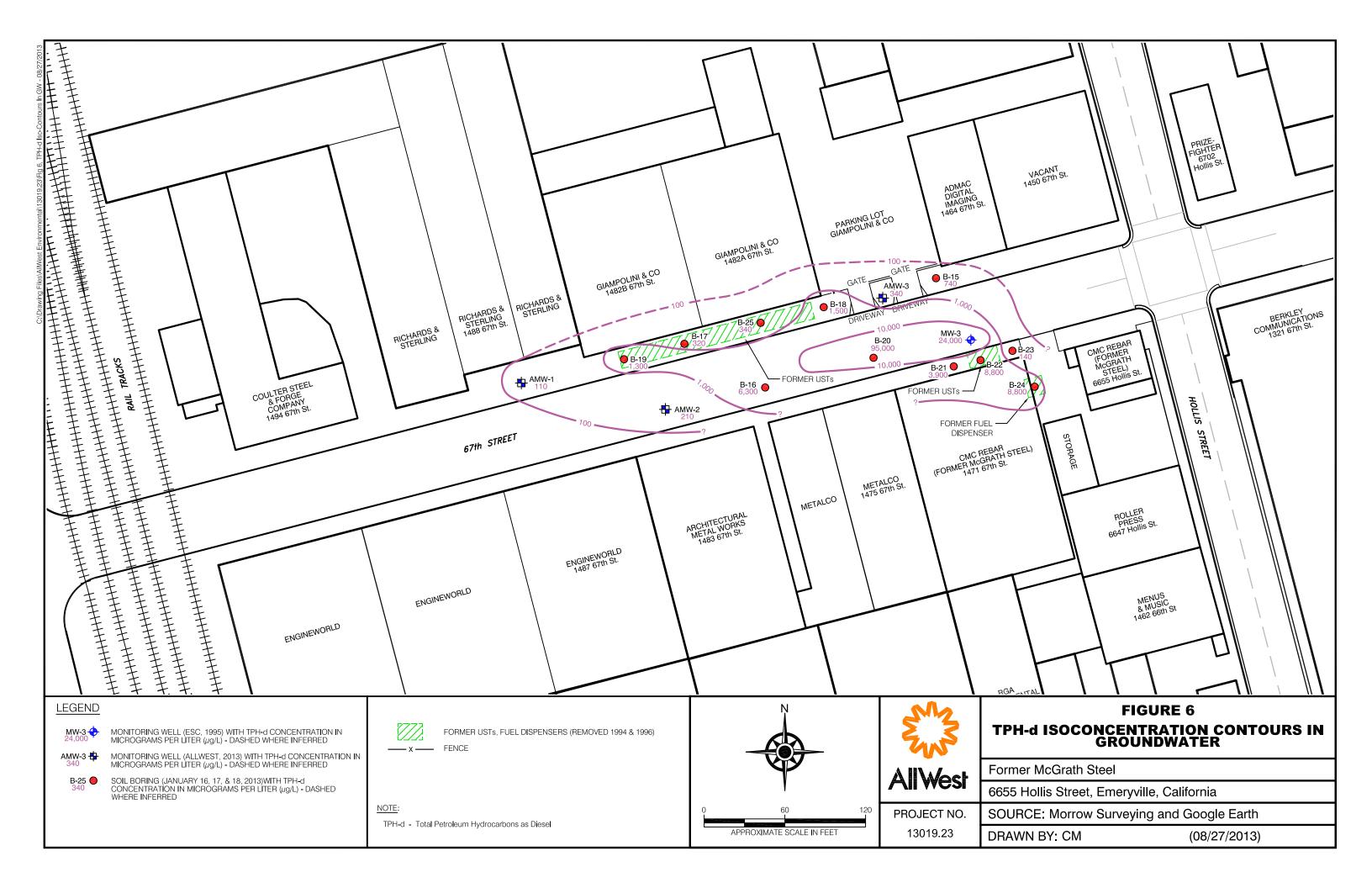

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a potential drinking water resource from Tables A and F-1a, *Screening for Environmental Concerns at Sites with Contaminated Soil and* San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is not a potential drinking water resource from Tables B and F-1b, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. RWQCB, Interim Final - May 2013.

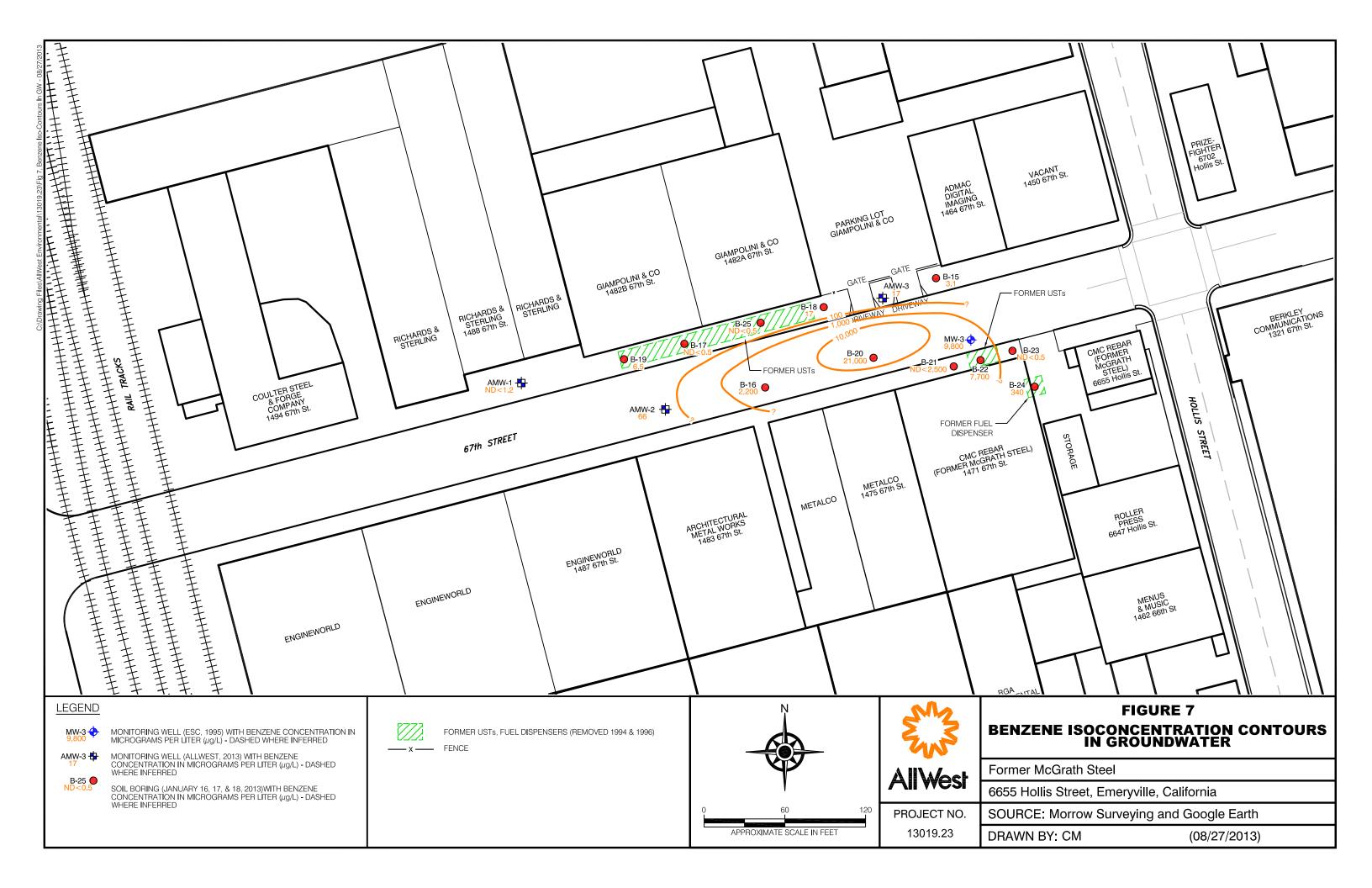

Laboratory Qualifiers:


b1 - Aqueous sample that contains greater than ~1 vol. % sediment


b6 - Lighter than water immiscible sheen/product is present.


FIGURES





APPENDIX A

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/30/2012 By jamesy

Permit Numbers: W2012-0833 Permits Valid from 12/19/2012 to 12/21/2012

Application Id: Site Location: Project Start Date: Assigned Inspector:	1354308570816 6655 Hollis Street 12/19/2012 Contact Steve Miller at (510) 670-5517 or	Complet	ject Site:Emeryville ion Date:12/21/2012	
Applicant:	AllWest Environmental, Inc Christopher		Phone: 415-391-2510	
Property Owner: Client:	Houlihan 530 Howard Street #300, San Francisco, Walter Merkle MCG Investments, Kay & Merkle, 100 The ** same as Property Owner **		Phone: 415-357-1200 rancisco, CA 94105	
	Receipt Number: WR2012	Total Due:	Paid	\$265.00 \$265.00

	Total Duc.	ψ200.00
Receipt Number: WR2012-0388	Total Amount Paid:	\$265.00
Payer Name : Marc Cunningham		PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 11 Boreholes Driller: Gregg Drilling & Testing, Inc. - Lic #: 485165 - Method: DP

Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2012-	11/30/2012	03/19/2013	11	2.50 in.	25.00 ft
0833					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no

case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	d on: 07/12/2013 By priest	Permit Numbers: W2013-0502 to W2013-0504 Permits Valid from 07/30/2013 to 07/31/2013
Application Id: Site Location:	1373326704868 6655 Hollis Street/Former McGrath Steel	City of Project Site: Emeryville
Project Start Date: Assigned Inspector:	07/30/2013 Contact Steve Miller at (510) 670-5517 or steve	Completion Date:07/31/2013 em@acpwa.org
Applicant:	AllWest Environmental, Inc Christopher	Phone: 415-391-2510
Property Owner: Client: Contact:	Houlihan 530 Howard Street, Suite 300, San Francisco, Walter Merkle MCG Investments, Kay & Merkle, 100 The Emb ** same as Property Owner ** Christopher Houlihan	Phone: 415-357-1200

	Total Due:	\$1191.00
Receipt Number: WR2013-0239	Total Amount Paid:	\$1191.00
Payer Name : Marc Cunningham	Paid By: MC	PAID IN FULL
, , , , , , , , , , , , , , , , , , , ,	•	

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells Driller: Woodward Drilling - Lic #: 710079 - Method: hstem

Work Total: \$1191.00

Specificatio	ns						
Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth
			ld		Diam.		
W2013-	07/12/2013	10/28/2013	AMW-1	8.00 in.	2.00 in.	7.00 ft	30.00 ft
0502							
W2013-	07/12/2013	10/28/2013	AMW-2	8.00 in.	2.00 in.	7.00 ft	30.00 ft
0503							
W2013-	07/12/2013	10/28/2013	AMW-3	8.00 in.	2.00 in.	7.00 ft	30.00 ft
0504							

07/40/0040 D.

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the

permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

City of Emeryville • Department of Public Works **Encroachment** Permit Permit No.2/30/147 Date 1-10-12 Application Fee.....\$ 167 AllWest tuvivonmental APPLICANT Long Term Permit Fee, Beyond 30 days \$ CONTACT PERSON (1) s Houlihan "No Parking Signs" Qty Total.....\$ ADDRESS 530 Howard St., SFCA 94105 Permit Inspection Deposit (2 hr. min.)....\$ スロン PHONE 415-391-2510 Cost Recovery Estimate.....\$ FAX 415-391-2008 Arborist Recovery Estimate.....\$ **Required Security Deposit:** \$\$1,000 cash.....\$ 1000 OWNER/DEVELOPER OF FACILITIE alter Merkle 10 Kay □ \$10,000 Bond, Bond # □100% Perf. Bond, ADDRESS 100 The Embarcader Bond Value: Bond # 94105 Total Payment Required......\$_ Received: \$1369 Date 1110113 415 -357-1200 Receipt # CONTRACTOR PERFORMING WORK Failure to obtain approval of a Final Inspection of the work grega Drilling covered by this Encroachment Permit within one (1) year of CONTACT PERSON the estimated completion date shall result in the loss of the ADDRESS 950 Howe Rd, Martinez C security deposit which shall be retained by the City of Emeryville. PHONE 925 - 335 - 048 OFAX 925 - 313 - 0302 LICENSE NO. 485165 CLASS C-57 ☆Yes □No CURRENT CITY BUSINESS LICENSE ON FILE Wes $\square N_0$ PROVIDE PROOF OF INSURANCE EST. START DATE 1/16/13 EST. COMPLETION DATE 1/16/13 EST. COST IN CITY R/W LOCATION OF WORK 6655 Hollis St., and 67th St., Emergville, CA CHECK ALL THAT APPLY #Traffic Control DSurvey & Sidewalk Detour Dumpster DTemporary No Parking Derivate Facilities on Public Right of Way Derivation 🖉 Sidewalk Deriveway Approach Derive & Gutter Dedestrian Ramp DWater Service DGas Service DElectric Service Roof Drain Utility Maintenance Fence Excavation Obstruction DAccess Road DMonitoring Well Sewer Lateral Storm Drain Crane Block Party FULLY DESCRIBE PROPOSED WORK WITHIN CITY RIGHT-OF-WAY (additional space on reverse if needed): Attach 3 complete sets of plans 8 1/2 X 11, if applicable. Five (5) soil borings in sidewalk along north side of 67th Street. Three (3) soil borings in sidewalk, two(2) borings in street along south side of 67th St. 2.5-inch diameter boreholes. Temporary No Parking signs on both sides of street. Sidewalk parking is Common on this street. Boreholes will be patched in sidewalks. Street boreholes will be repaired with concrete and darkened with lampblack to match surrounding asphalt. I hereby agree to protect and indemnify the City of Emeryville and hold it harmless in every way from all claim or suits for injury or damage to persons or property as set forth in the Standard Provisions. I agree not to begin construction until all materials to be used are on hand; to perform all work in accordance with the plans submitted (if any), the Standard Provisions to Encroachment Permit, and all applicable Special Conditions of Approval, and to pay all inspection and engineering costs in addition to those paid at the time of

all applicable Special Conditions of Approval, and to pay all inspection and engineering costs in addition to those paid at the time of issuance of this permit. I for the agree to complete the work to the satisfaction of the City Engineer and if for any reason the City of Emeryville is required to complete this work, I will pay all costs for such work/

Applicant Signature Applicant Signature 2 Date Date 1/4/13 After final inspection is approved, please contact the Public Works Department at 510-596-4330 to determine final cost, and

After final inspection is approved, please contact the Public Works Department at 510-596-4330 to determine final cost, and for final payment or reimbursement of deposit.

FOR CITY USE ONLY • Temporary Permit #days	oLong Term Permit
The following documents are attached and incorporated into this permit and have been standard Provisions to Encroachment Permit Special Conditions of Approval City Standard Details (List Details)	en given to the applicant:
□Other Remarks	
□ 48 HOUR NOTICE PRIOR TO START OF WORK, □ PROVIDE CONSTRUCTION SCHEDULE 5 DAYS PRIOR TO START OF WO □ AS-BUILT PLANS REQUIRED ■ PLEASE CALL FOR INSPECTION AT 510-596-4333 DEANS 9455-2 □ PLEASE NOTIFY POLICE (510-596-3700) AND FIRE (510-596-3750) 24 HOU	\$ 7286
This permit is void unless the work is completed before , 20 This permit is to be strictly construed and no other work than is specifically mention. APPROVED	ed is hereby authorized. ATE_11013 DATE

CITY OF EMERYVILLE • DEPARTMENT OF PUBLIC WORKS ENCROACHMENT PERMIT -# 415-391-2008

FOR CITY USE ONLY 105 APPLICANT ronmen Permit No2/20112 Date \ CONTACT PERSON(stopher Houlibara days u Long Term Permit Temporary Permit # - #300 ADDRESS 530 Permit Administrative Fee.....\$ Jan Francisco 94105 "No Parking" Signs..... x \$ PHONE 415-341-2510 EMAIL C nan@ Permit Inspection Deposit (2 hr. min.).....\$ Com all west 1 OWNER/DEVELOPER Walter Merkle Cost Recovery Estimate\$ Arborist Recovery Estimate\$ ADDRESS 7/2 Kan: Merkle , 100 The Em barca Long Term Permit Fee (mos. x)\$ San Francisco CA 94105 Tree Removal Fee PHONE 415-357-1200 EMAIL WMERKLE 6 Tree Protection Deposit (value x 3 + \$10,000) \$ cmlaw 200. com CONTRACTOR DOING WORK IN LOD dward Drilling Required Security Deposit: 1000 2-\$1,000 cash.....\$ CONTACT PERSON Regan Woodward □ \$10,000 Bond.....Bond #_ ADDRESS 550 River Road o100% Performance Bond, Bond # 9457 Rio Vista. CA Bond Value \$____ PHONE 737-374-4300 EMAIL ryan @woodwarddnili Total Payment Required......\$____ UCENSE NO. 710079 CLASS C 19815 Date 1(20)13 Amt. Received:\$ 1373 Recept# intes, aNo CURRENT CITY BUSINESS LICENSE ON FILE Business License – Certificate of Insurance PROVIDE PROOF OF INSURANCE oxes ono EST. START DATE 7/30/13 EST. COMPLETION DATE 7 EST. COST IN CITY RW 67th Street LOCATION OF WORK_ meryvil CHECK ALL CONDITIONS THAT APPLY: 1/ Traffic Control Burvey Midewalk Detour Dumpster of emporary No Parking D Construction Midewalk Detour Dumpster of u Private Facilities on Public Right of Way u Driveway Approach uCurb & Gutter uPedestrian Ramp uWater Service uFence Excavation uElectric Service uRcef Drain uUtility Maintenance uAccess Road uMonitoring Well u Sewer Lateral uCrane u Storm Drain uBlock Party uGas Service FULLY DESCRIBE PROPOSED WORK WITHIN CITY RIGHT-OF-WAY (additional space on reverse if needed): Attach 3 complete sets of plans 8 1/2 X 11, if applicable. Three (3) groundwater monitoring wells with 9-inch manholes (fraffic-rated, flush), Wells will be up to 30 feet deep. Two (2) wells in sidewalk along north side of 67th Street. One (1) well in street or sidewalk (atilities permitting) south side of 67th Street. Temporany No Parking signs in all work zones. Welle to be designated AMW-1, AMW -2 and AMW-3.

I hereby agree to protect and indemnify the City of Emeryville and hold it hampless in every way from all claim or suits for injury or damage to persons or property as set forth in the Standard Provisions. I agree not to begin construction until all materials to be used are on hand, to perform all work in accordance with the plans submitted (if any), the Standard Provisions to Encroachment Permit, and all applicable Special Conditions of Approval, and to pay all inspection and engineering costs in addition to those paid at the time of issuance of this permit. I further agree to complete the work to the satisfaction of the City Engineer and if for any reason the City of Emeryville is required to complete this work. I will pay all costs for such work.

Date 7

Applicant Signature

ALC DE LA COLORIZACIÓN DE LA COL	ocuments are attached and inco	prporated into this permit and	have been given to the applicant:
	rovisions to Encroachment Pe	·····	
city Standa	rd Details (List Details)	Handout, Urban Runo	ff BMP's
oOther		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Remarks	Pothole undersit	ound utilities	- prior to
	drilling CPF	well 15 adju	acent to utility)
		V	07
	20084400000 meneromono ana ana amin'ny fanina amin'ny fanina dia amandra mandra fanin'ny soratra amin'ny fanina		99999999999999999999999999999999999999
48 HOUR N	OTICE PRIOR TO START OF W	ÓRK	
a PROVIDE C	ONSTRUCTION SCHEDULE 5	DAYS PRIOR TO START OF	WORK
O ASSESUILT P	ANS REQUIRED		
PLEASE CA	L FOR INSPECTION AT 510-5	96-4333	
O PLEASE NO	TIFY POLICE (510-596-3700) A	ND FIRE (510-596-3750) 24	HOURS IN ADVANCE.
	oid unless the work is completed		20/3
This permit is t	be strictly construed and no of	her work than is specifically r	fentioned is hereby authorized.
			· - · ·
After final ins	ection is approved, please co	intact the Public Works Dep	partment at 510-596-4330 to determi
Endland and	v this Encroachment Permit with	in one (1) year of the estimation	o obtain approval of a Final Inspection ted completion date shall result in the
final cost, and work covered i	T meres were an an one as received in the section of the section o	w the City of Emerwille	
work covered i	deposit which shall be retained b	y and where an wrightly the.	
work covered i of the security	deposit which shall be retained b	No. in	DATE 27/0/4/
work covered i	deposit which shall be retained b	ITLE	DATE 27/1/4/

. .

· · ·

с в 4-1

APPENDIX B

STANDARD GEOPROBETM DPT SAMPLING PROCEDURES

Soil Sampling

Direct push technology (DPT) soil core sampling using GeoprobeTM or similar methods is accomplished using a nominal 4-foot long, 2-inch diameter stainless steel steel drive probe and extension rods. The drive probe is equipped with nominal 1-1/2 inch diameter clear plastic poly tubes that line the interior of the probe. The probe and insert tubes are together pneumatically driven using a percussion hammer in 4-foot intervals. After each drive interval the drive probe and rods are retrieved to the surfaced. The poly tube containing subsurface soil is then removed. The drive probe is then cleaned, equipped with a new poly tube and reinserted into the boring with extension rods as required. The apparatus is then driven following the above procedure until the desired depth is obtained. The poly tubes and soil are inspected after each drive interval with lithologic and relevant drilling observations recorded. Soil samples are screened for organic vapors using an organic vapor meter (OVM), photo-ionization detector (PID) or other appropriate device. OVM/PID readings, soil staining and other relevant observations are recorded. Selected soil sample intervals can be cut from the 4-foot intervals for possible analytical or geotechnical testing or other purposes.

The soils contained in the sample liners are then classified according to the Uniform Soil Classification System and recorded on the soil boring logs.

Sample liners selected for laboratory analyses are sealed with Teflon sheets, plastic end caps, and silicon tape. The sealed sample liner is then labeled, sealed in a plastic bag, and placed in an ice chest cooled to 4° C with crushed ice for temporary field storage and transportation. The standard chain-of-custody protocol is maintained for all soil samples from the time of collection to arrival at the laboratory.

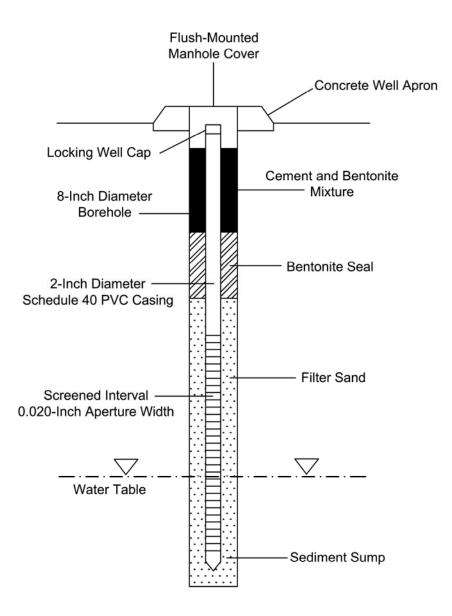
Groundwater Sampling

Groundwater sampling is performed after the completion of soil sampling and when the boring has reached its desired depth. The steel probe and rods are then removed from the boring and new, nominal 1-inch diameter PVC solid and perforated temporary casing is lowered into the borehole. Alternatively, a retractable screen sampling device such as a HydropunchTM can be driven to the desired depth and pulled back to expose the screened interval. Depth to water is then measured using an electronic groundwater probe. Groundwater samples are collected using a stainless steel bailer, disposable TeflonTM bailer, or check valve or peristaltic pump with disposable TeflonTM or polyethylene sample tubing.

After the retrieval of the bailer, groundwater contained in the bailer (or discharged from sample tubing) is decanted into laboratory provided containers. The containers are then sealed with Teflon coated caps with no headspace, labeled, and placed in an ice chest for field storage and transportation to a state certified analytical laboratory. The standard chain-of-custody protocols are followed from sample collection to delivery to the laboratory. A new bailer (or sample tubing) is used for each groundwater sampling location to avoid cross contamination.

Soil Sampling with Hollow-Stem Auger

A soil boring is advanced with a truck-mounted drill rig using 8-inch outside diameter (O.D.), 3.75-inch inside diameter (I.D.), and 5-foot long hollow stem augers. The augers are advanced with a center plug at the lead auger section and drilling rods inside the hollow stem to create an open borehole with the augers as the boring casing. After the augers are advanced to the desired sampling depth, the center plug is removed and a soil sampler is attached to the drilling rod. The soil sampler contains three 2-inch diameter and 6-inch long brass tubes is driven 18 inches beyond the auger depth. The brass tube acts as the sample container to contain the soil core generated during the sampler drive. After the retrieval of the soil sampler, the brass tube containing the soil core is removed and sealed with Teflon tape and plastic end caps. The soil sample is then placed in an ice chest for field storage and transport to the laboratory. New sample tubes are use during each soil sampling drive to prevent cross-contamination.


Groundwater Monitoring Well Installation

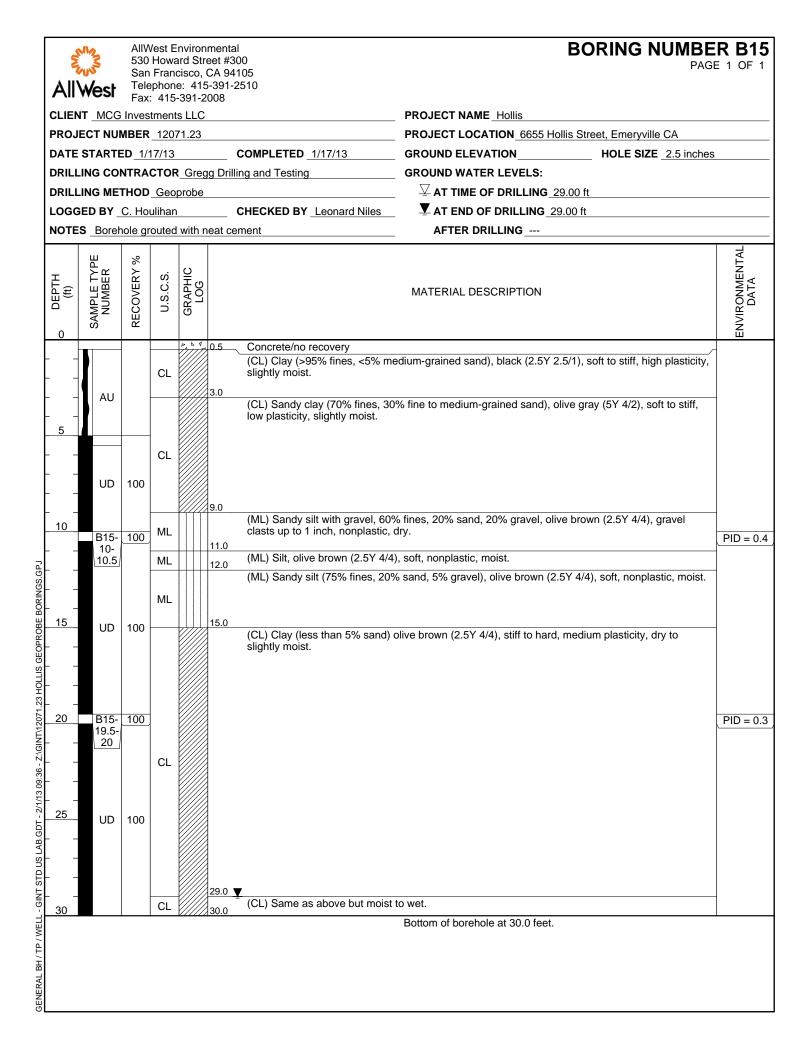
A groundwater monitoring well will be installed in each of the boreholes after the designated boring termination depth is reached. The well will be installed through the center of the hollow stem augers. After the well casing has been set, the augers will be removed in sections while the sand filter pack is being placed. Well casing composed of 2-inch diameter schedule-40 PVC pipes will be employed. The screen section of the casing will have factory perforated 0.02-inch slots and extend 10 feet below and 5 feet above the groundwater table. The blank section (non-perforated well casing pipe) will complete the well casing up to the ground surface. The length of screen and blank section of well casing will be adjusted in the field in accordance with groundwater and soil conditions encountered.

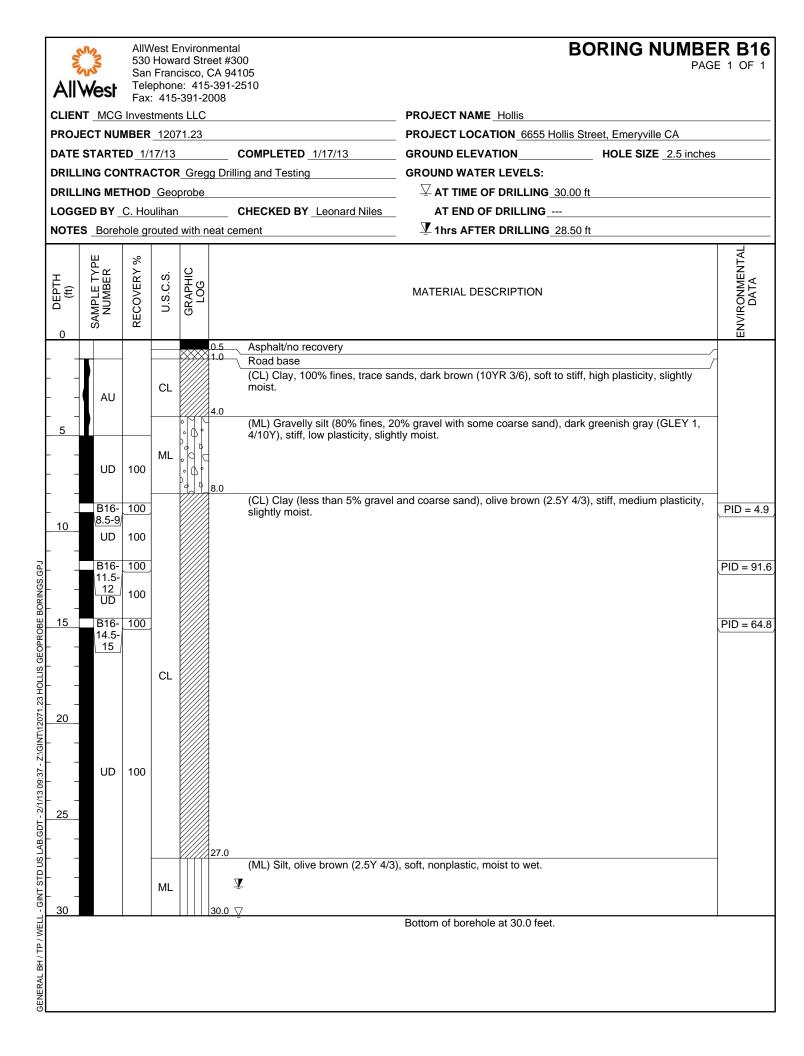
The filter pack around the well screen will be pre-washed #3 Monterey sand placed from the bottom of the well up to one foot above the screen section. A 1foot bentonite seal will then be placed above the filter pack to prevent surface water infiltration. The remaining length of the annular space in the borehole will be backfilled with neat cement grout up to 2 feet below the ground surface. The uppermost two feet of the well casing will be protected by a traffic-rated Christy box set in concrete. A water-tight locking end-cap will be placed on top of the well casing to prevent surface water intrusion and unauthorized access. A diagram of typical groundwater monitoring well construction is included in Appendix A.

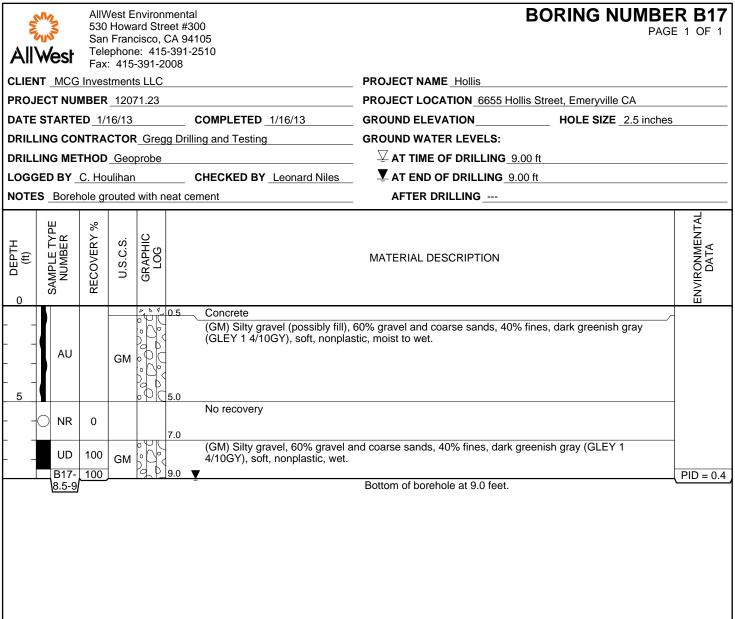
Groundwater Monitoring Well Diagram (Generalized)

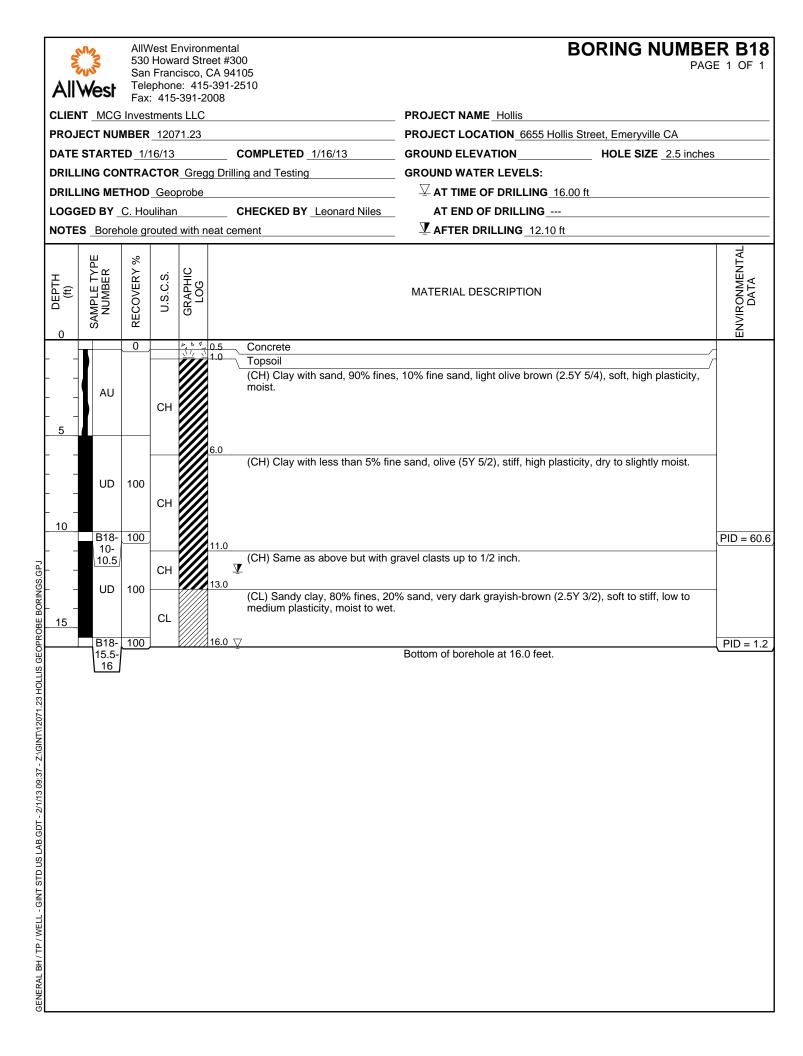
Groundwater Monitoring Well Development

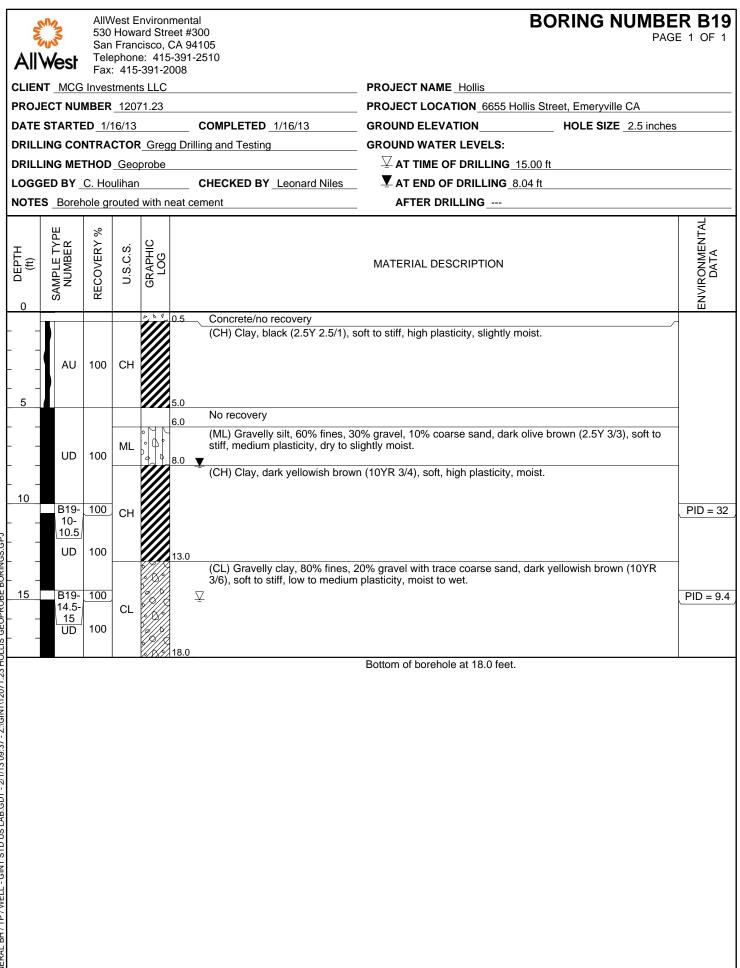
Groundwater monitoring wells will be developed with the combination of surging and pumping actions. The wells will be alternately surged with a surging block for five minutes and pumped with a submersible pump for two minutes. The physical characteristics of the groundwater, such as water color and clarity, pH, temperature, and conductivity, will be monitored during well development. Well development will be considered complete when the groundwater is relatively sediment-free and groundwater characteristic indicators are stabilized (consecutive readings within 10% of each other).

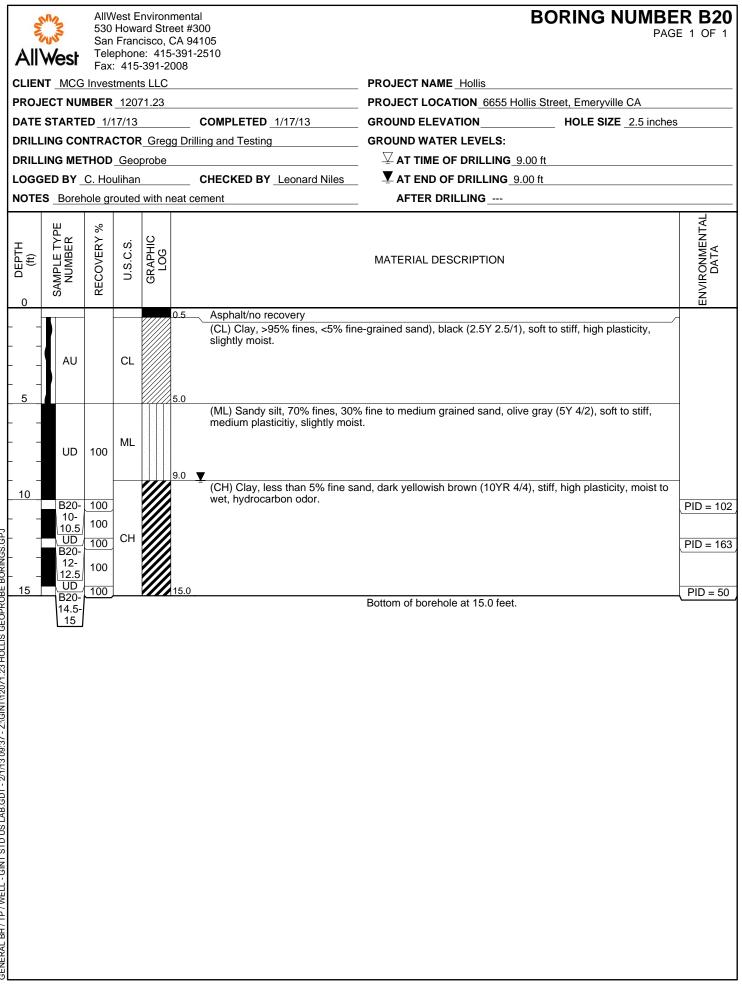

Groundwater will be sampled from the developed wells no sooner than 48 hours after well development to allow stabilization of groundwater conditions. Prior to groundwater sampling, a proper purging process will be performed at each well. The purpose of well purging is to remove fine grained materials from the well casing and to allow fresh and more representative water to recharge the well. Prior to well purging, an electric water depth sounder will be lowered into the well casing to measure the depth to the water to the nearest 0.01 feet. A clear poly bailer will then be lowered into the well casing and partially submerged. Upon retrieval of the clear bailer, the surface of the water column retained in the bailer will be carefully examined for any floating product or product sheen.

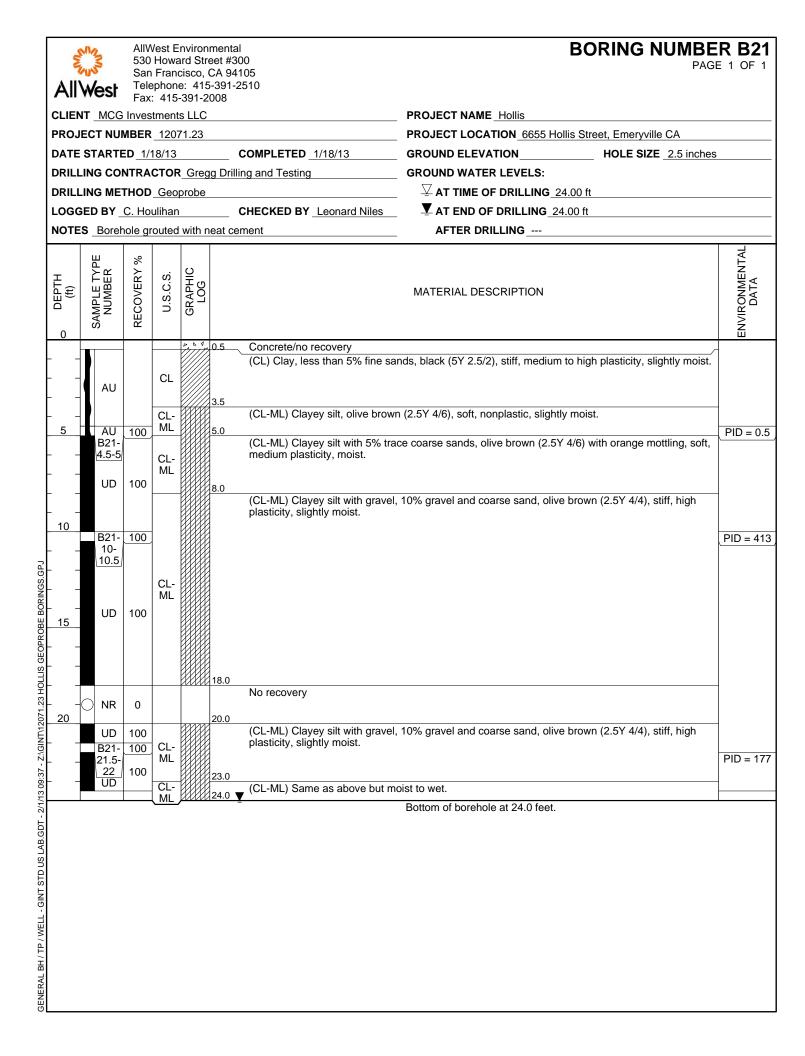

After all initial measurements are completed and recorded, the well will be purged by an electrical submersible pump or a bailer. A minimum of 3 well volumes of groundwater will be purged and groundwater characteristics (temperature, pH, and conductivity) monitored at each well volume interval. Purging is considered complete when indicators are stabilized (consecutive readings within 10% of each other) and the purged water is relatively free of sediments.

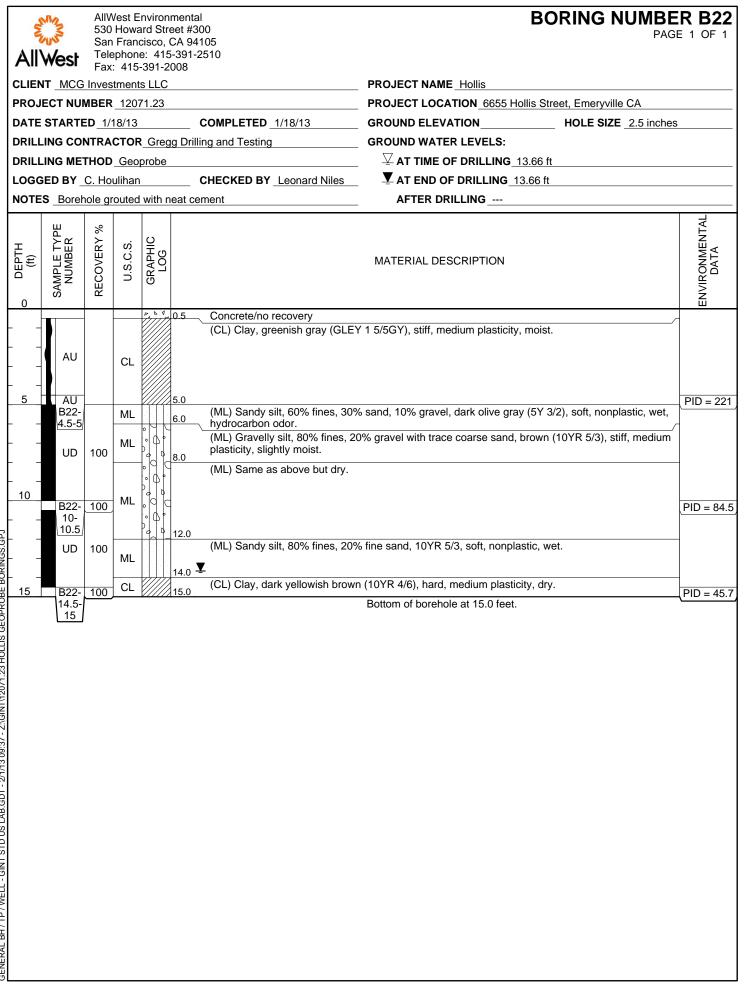

Groundwater sampling will be conducted after the water level has recovered to at least 80% of the initial level, recorded prior to purging. The groundwater sample will be collected by a disposable bailer. Upon retrieval of the bailer, the retained water will be carefully transferred to appropriate sample bottle furnished by the analytical laboratory. All sample bottles will have a Teflon lined septum/cap and be filled such that no headspace is present. Then the sample bottles will be labeled and immediately placed on ice to preserve the chemical characteristics of its content.

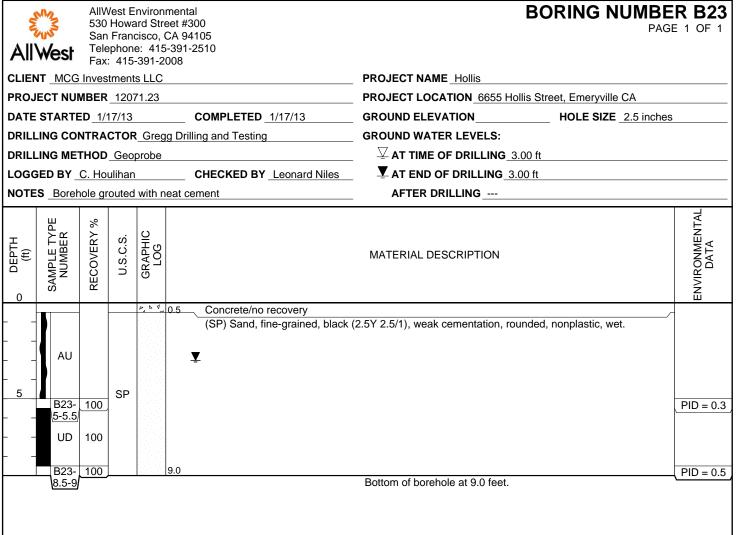

To prevent cross contamination, all groundwater sampling equipment that comes in contact with the groundwater will be thoroughly decontaminated prior to sampling. A disposable bailer will be used to collect the groundwater samples. Sample handling, storage, and transport procedures described in the following sections will be employed. All well development and purging water will be temporarily stored on-site in 55-gallon drums awaiting test results to determine the proper disposal method.

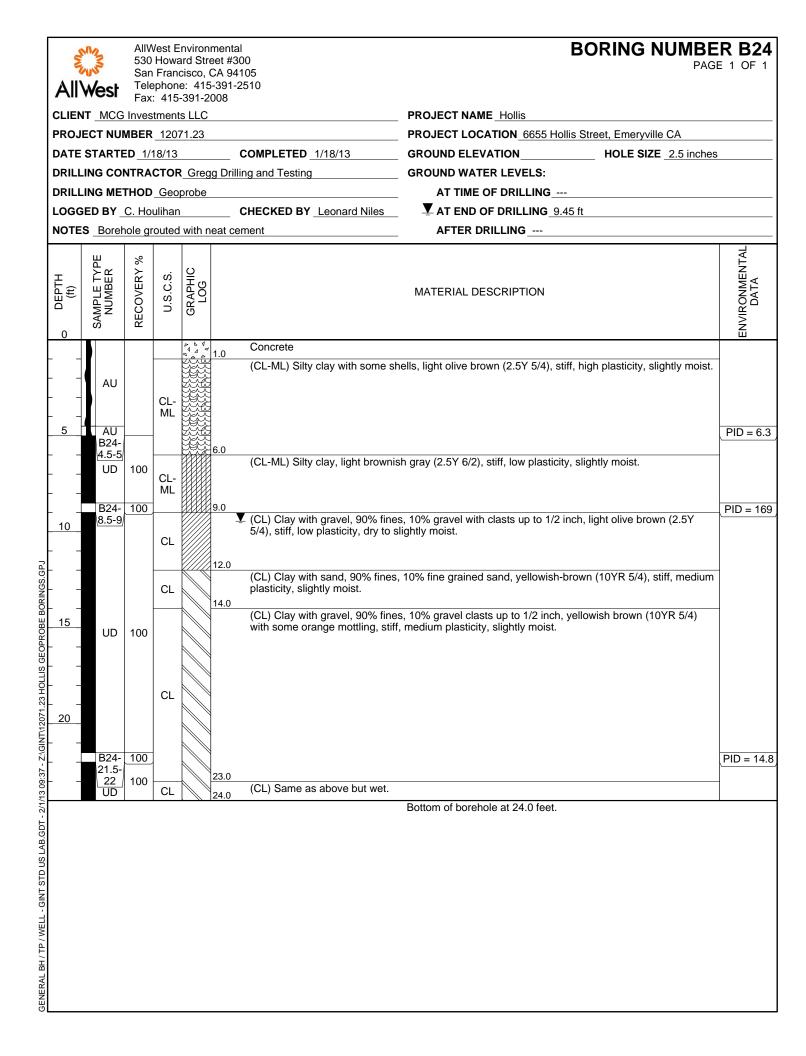

APPENDIX C

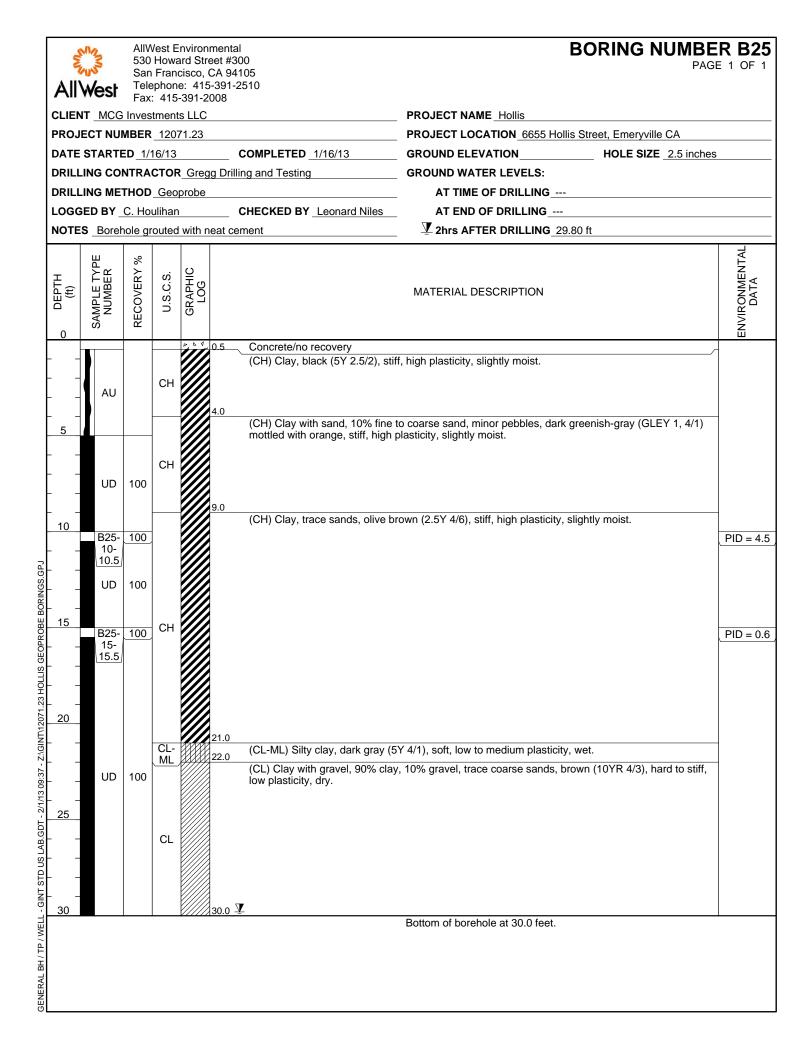


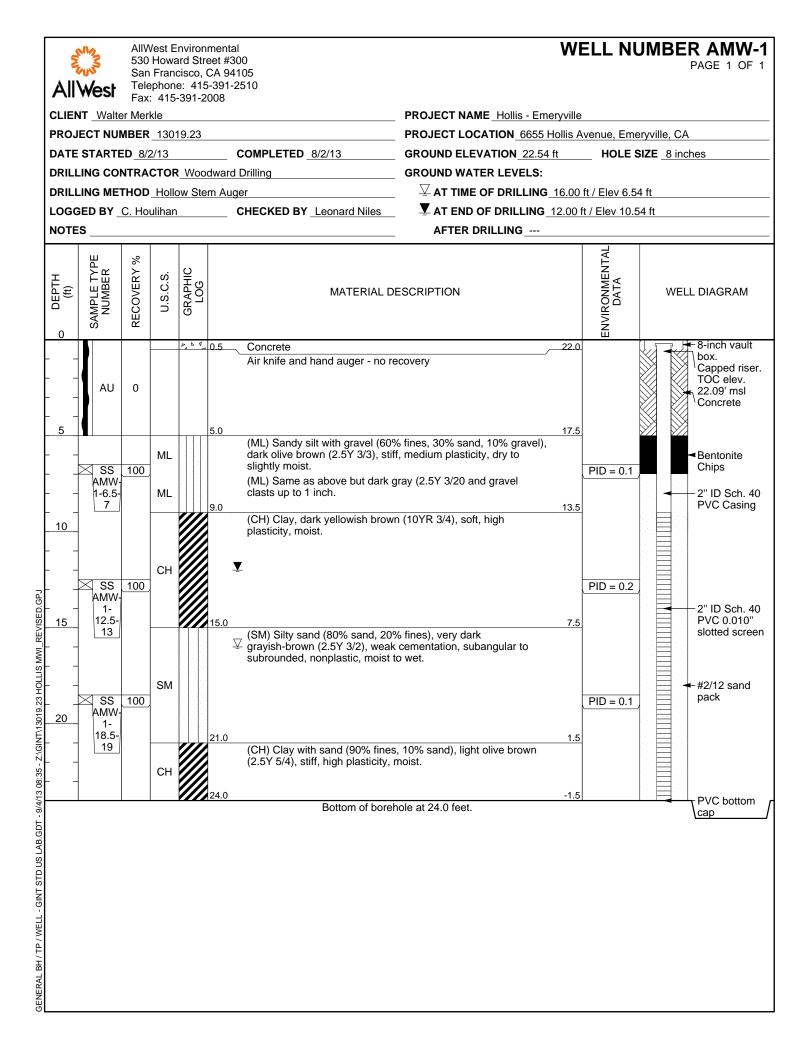


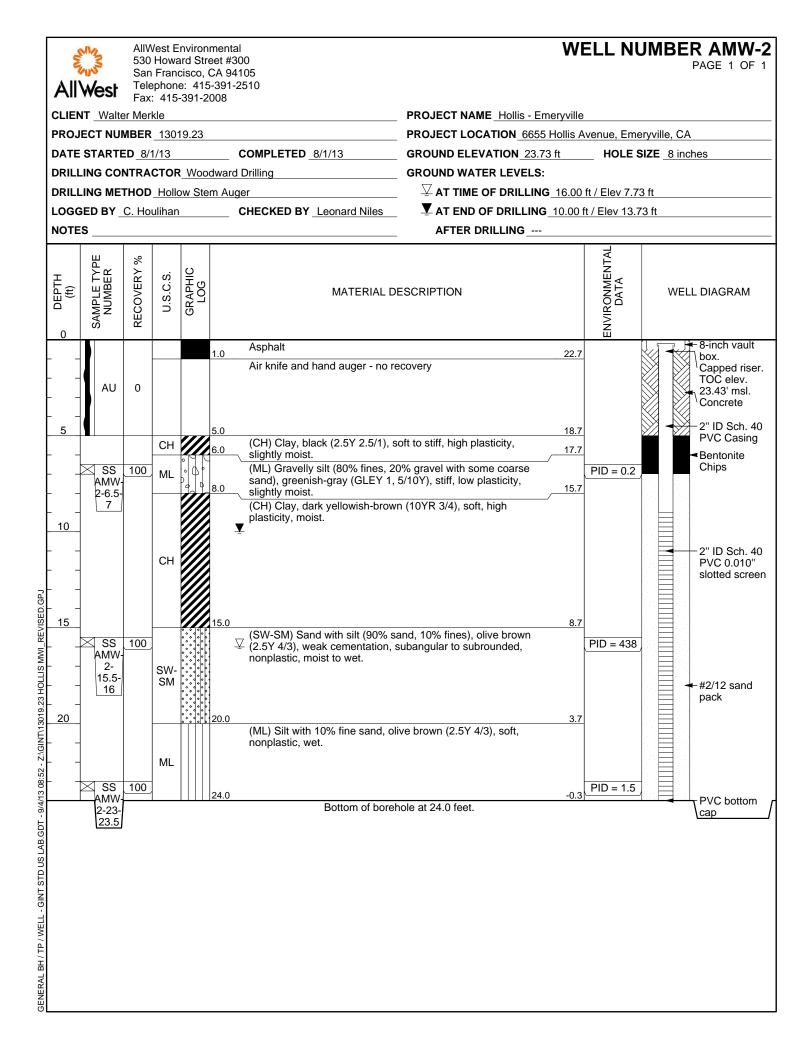


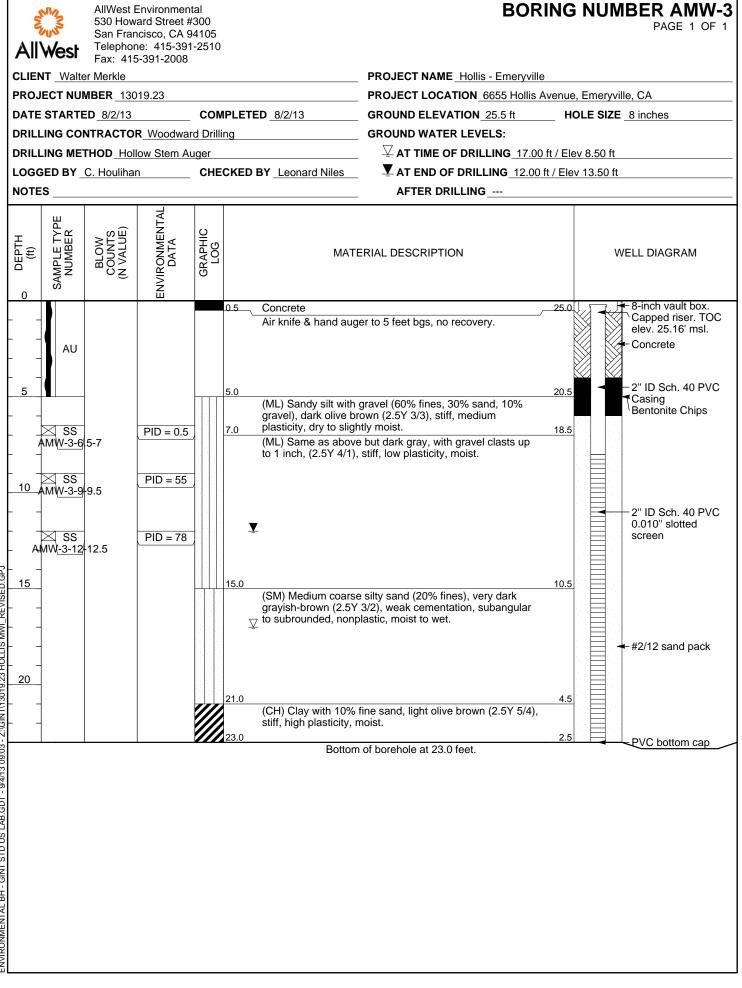





GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 2/1/13 09:37 - Z:\GINT/12071.23 HOLLIS GEOPROBE BORINGS.GP.







APPENDIX D

		line and the second						
23			NFV	ELOPME	NT	DROIECT NO	: 13019	72
				TABLE	LVE	Page $_$ of $_$		<u> </u>
AllWest								
SITE NAME:	Hollis					LOCATION:	Emergyi	ille CA
WELL I.D.:	AMW-			/		DATE DEVEL	OPED: J 🗞	15/13
DEVELOPED		dular	dÆ	na		DATE COMPL		5/13
LOCK NUMB				·			H TO WATER	
INITIAL DEP		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		13.42			TO WATER (f	
FINAL DEPT				23.69			DPURGE (gallo	ns): 21,74
CASING VOL	LUME (gallons	s): '/ .	1	-		ACTUAL PUR	GE (gallons):	25
DEVELOPME	ENT	QUAR	TERI	LY	BI	ANNUAL	OTHER	
SAMPLE TYP	PE: Ground	water _	- Barran	·	Surfa	ace Water	Oth	ier
CASING DIA	METER: 2"		3"	4'	,			
Casing Volum	e	(0.16)		(0.38)	(0	.66)		
(gallons per fo	ot):	r (. ,	[×]			
	0.16	(13.5)		= 2.17				
	· · · · · · · · · · · · · · · · · · ·	·]	FIELD MI	EASU	REMENTS		
VOLUME (gal)	TIME	TEMI (degrees	1	PH (units)	COl	NDUCTIVITY (mS/cm)	DTW (feet)	TURBIDITY (NTU)
5.	1355	22.9		(.74	1	538		Silty/cloudy
16	1406	22.		1257		521		City Ciscay
15	1465	72-1		6.48	;	SA 1		ripa.5
. 20	14(6	22.6	e l	6.40	{	497		C POC
25	1415	22,		6.44		1485		<u>Ofeor</u>
						f		
		1000 A						
		Anno an						
		-Vera and a state of the state						
					Mine March	·		
				OTHER I	NFOI	RMATION		
ODOR: No	5re			FI	NAL	TURBIDITY: _(<u>Clear</u>	
P	URGING EQ	UIPMEN				SAM	PLING EQUIP	MENT
Centrifugal		_Bailer (7 _Bailer (1				entrifugal Pump	Bailer (T	
disposable)	- ump		v C 0			ubmersible Pump eristaltic Pump	Bailer (P	VC or disposable)
Peristalitic P	'ump	_Bailer (S	Stainle	ss Steel)		urge Pump	Baller (S	tamiess Steel)
Purge Pump	A		-			r:		
Other:								
Comments:								

silva						
E.S		DEV	/ELOPMEr	NT PROJECT NO	13019.2	3
AllWest			TABLE	Page of	1 1	
SITE NAME:	Hallis		8.99599499999999999999999999999999999999	LOCATION:	ASI	IL CA
WELL I.D.:	TAML	3-2		DATE DEVEL	OPED:	
DEVELOPED	BY: John	sdward /	mA-	DATE COMPL		for the second se
LOCK NUME	BER:			INITIAL DEPT	H TO WATER	(feet): 9.67
INITIAL DEP				FINAL DEPTH		
FINAL DEPT				CALCULATED		
CASING VOI	LUME (gallor	ns): 2.23	•	ACTUAL PUR	GE (gallons):	
DEVELOPME	ENT	QUARTER	RLY	BIANNUAL	OTHER	
SAMPLE TYI		1		Surface Water	Oth	ner
CASING DIA	METER: 2	., 3"	4"			
Casing Volum	e	(0.16)	(0.38)	(0.66)		
(gallons per fo	ot):	(13.91)=	= 1 1 2			
	0,16	<u>(13-91)</u>		CASUREMENTS		
	T	TEM	T T			· · · · · · · · · · · · · · · · · · ·
VOLUME (gal)	TIME	TEMP (degrees C)	PH (units)	CONDUCTIVITY (mS/cm)	DTW (feet)	TURBIDITY (NTU)
<u> </u>	1300	20.9	6.56	2221		Silty
10	1310	20.5	6-38	245		Silfy
<u> </u>	1315	20-5	6.33	2065		L Sitts
	1320	26.4	6.30	2009	[Slightly silty
25	1325	20.4	6-29	456		- Clear
·				- 22 - 60- 10 - 10 - 10 - 10 - 10 - 10 - 10		······································
		· · · · · · · · · · · · · · · · · · ·				
· ·						
				· · · · · · · · · · · · · · · · · · ·		
			OTHER I	NFORMATION		
odor: Na	me.		FI	NAL TURBIDITY:	Clonie	
	URGING EC	UIPMENT			PLING EQUII	PMENT
Centrifugal		Bailer (Teflo Bailer (PVC		Centrifugal Pump Submersible Pump	Bailer (' Bailer ('	Teflon) PVC or disposable)
disposable)		· · · · · · · · · · · · · · · · · · ·		Peristaltic Pump		Stainless Steel)
Peristalitic		Bailer (Stain	less Steel)	Purge Pump		• •
Purge Pump Other:				Other:	······	
Comments:				l		
						·

DEVELOPMENT PROJECT NO: 3019.23 AllWest DEVELOPMENT Page of SITE NAME: + ollis LOCATION: Emergy ille, C	
AllWest TABLE Page of	
DOCTORING LOCATION. LWEVERIDITIE.	4
WELL I.D.: A'MW- 3 / DATE DEVELOPED: 8/5/13	<u> </u>
DEVELOPED BY: Needward (PA DATE COMPLETED: 8/5/13	
LOCK NUMBER: INITIAL DEPTH TO WATER (feet): 8.	7/
INITIAL DEPTH TO BOTTOM (feet): 7,2,4 FINAL DEPTH TO WATER (feet): 8,4	
EDIAL DEDENIATO DOTTONA (C.)	<u></u>
CASING VOLUME (gallons): 2.18 ACTUAL PURGE (gallons): 35	<u> </u>
DEVELOPMENT QUARTERLY BIANNUAL OTHER	
SAMPLE TYPE: Groundwater Surface Water Other	
CASING DIAMETER: 2" 3" 4"	
Casing Volume (0.16) (0.38) (0.66)	
(gallons per foot)	
0.16(13.65) = 2.18	
FIELD MEASUREMENTS	
VOLUME TIME TEMP PH CONDUCTIVITY DTW/(C) TUDDUD	
(gal) TIME (degrees C) (units) (mS/cm) DTW (feet) TURBID	ITY (NTU)
5 0940 20.0 6.50 1950 Silt	2/
10 0947 70:0 6.42 1925 Sil	PUL
15 0952 70.5 (0.30 1887 Site	
20 0959 20.4 6.33 1812 514	Ž.
25 1002 20.4 6.30 1/32 slight	2 Sitter
35 1012 20.3 6.29 1592 Slight	12 oilta
	0 9
OTHER INFORMATION	
ODOR: FINAL TURBIDITY: Slightly silts	1_
PURGING EQUIPMENT SAMPLING EQUIPMENT)
Centrifugal PumpBailer (Teflon)Centrifugal PumpBailer (Teflon)	
Submersible PumpBailer (PVC orSubmersible PumpBailer (PVC or dispo	sable)
disposable)Peristaltic PumpBailer (Stainless Stee	
Peristalitic Pump Bailer (Stainless Steel) Purge Pump	
Purge Pump Other:	
Other:	
Comments:	<u> </u>

TIME SAMPLE DEPTH TO WA CALCULATED ACTUAL PURC DEVELOPMEN	TER (feet): 9.9 PURGE (gallons) GE (gallons) 7	touli 54	hay	LOCATION DATE PUR DATE SAM DEPTH TO WATER CO	ge of $I: E_{Mensure} \cup I[e]$ GED: 8/7/13 IPLED: 8/7/13 BOTTOM (feet): 27 IUMNI HEIGHT (feet)	
SITE NAME: PROJECT NO: PURGED/SAMI TIME SAMPLE DEPTH TO WA CALCULATED ACTUAL PURC DEVELOPMEN	PLED BY: C. + D: 1400 TER (feet): G. 1 PURGE (gallons) GE (gallons) 7	touli 54	hay	DATE SAM DEPTH TO WATER CO	IPLED: 8/7/13 BOTTOM (feet): 23	
PURGED/SAMI TIME SAMPLE DEPTH TO WA CALCULATED ACTUAL PURC DEVELOPMEN	PLED BY: C. + D: 1400 TER (feet): G. 1 PURGE (gallons) GE (gallons) 7	touli 54	hay	DATE SAM DEPTH TO WATER CO	IPLED: 8/7/13 BOTTOM (feet): 23	
TIME SAMPLE DEPTH TO WA CALCULATED ACTUAL PURC DEVELOPMEN	D: 1400 TER (feet): 9.9 PURGE (gallons) GE (gallons) 7	54	han 72	DEPTH TO WATER CO	BOTTOM (feet): 23	3.69
DEPTH TO WA CALCULATED ACTUAL PURC DEVELOPMEN	TER (feet): 9.9 PURGE (gallons) GE (gallons) 7		72	WATER CO		5.69
CALCULATED ACTUAL PURC DEVELOPMEN	PURGE (gallons)		72_			
ACTUAL PURC	GE (gallons) 7		f Surrennes	CASING V	OLUME (gallons): L.	
DEVELOPMEN			•		<u>(ganono)</u>	
SAMPLE TYPE	·	JARTER		BIANNUAL	OTHER	
	: Groundwate	r	Su	rface Water	Other	
CASING DIAM Casing Volume	ETER: 2" <u> </u>	<u> </u>	(0.38) 4" _	(0.66)		
(gallons per foot).			¥3	= 6.792	
		and the second sec		SUREMENTS		
VOLUME (gal)		EMP grees C)	pH	CONDUCTIVI (µS)	TY DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)
2	1309 2	2.0	6.58	1491		Cleave
4	1330 2 1348 2	1.9	6.42	1539	· · · · · · · · · · · · · · · · · · ·	Silty
SAMPLE DEPT 80% RECHARC ODOR: <u>אס</u> א	H TQ WATER (BE: (Y/N C SAMPLE	feet): <u>9</u> SA BOTTLI	SAMPLE INF 60 Ana MPLE TURB E/PRESERVA	IVSES: 8015 WI DITY: 5:14 TIVE: 440As/	PH-g, ms by 8 s.g.; VOCS 82	215, 1PH-0 60, PAHS 8270 2LA/non-
PI	URGING EQUI	PMENT		SA	MPLING EQUIPME	[:] NT
Centrifugal P Submersible I Peristalitic Pu Purge Pump Other;	Pump <u>Ba</u> Imp Ba	iler (Teflo iler (PVC iler (Stainl	or disposable)	Centrifugal Pu Submersible P Peristaltic Pun Purge Pump Other:	ump <u></u> Bailer (PV	C or disposable)
Comments:						
· ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·		

Sugar All West			PURGE TA	BLE	WELL ID: <u>AMW</u> Page of	2_
SITE NAME: PROJECT NO	: 13019.1	23		LOCATI DATE P	ON: Frenny. URGED: 8/2/1	lle, CA
PURGED/SAM	MPLED BY:	C. Houli	nan		AMPLED: 8/7/	13
TIME SAMPL					TO BOTTOM (feet):	
DEPTH TO W			* 1		COLUMN HEIGHT	
ACTUAL PUI		allons): 6.7	4	CASING	VOLUME (gallons):	2.25
<u>.</u>	(GE (guitoiis)	ŝ				
DEVELOPME	ENT	QUARTERI	LY	BIANNUAL	OTHER _	
SAMPLE TYF	PE: Ground	water L	Su	urface Water	Othe	pr
CASING DIA	METER: 2'	, 1 3,,	4"			
Casing Volum		(0.16)	(0.38)	(0.66)		
(gallons per fo	ot):	Lug Li	~ ~ ~	×3	- (74	
	0.16(
			FILLU WILA	SUREMENTS	DISSOL VI	FD
VOLUME (gal)	TIME	TEMP (degrees C)	pН	CONDUCTI (µS)	VITY OXYGEN (mg/L)	
2	1018	20.3	6.51	2337		clear
<u> </u>	1029	20.6	6.44			Cloudy
6	1038	20.6	6.35	2113		Claudy
				· · · ·		V
SAMPLE DEF 80% RECHAF ODOR: C	PTH TO WAT RGE: YN ME SAM	ER (feet): <u>1</u> SA IPLE BOTTLE	SAMPLE INI), 32 An MPLE TURB E/PRESERVA	FORMATION alyses: <u>Sois w</u> IDITY: <u>Cloue</u> TIVE: <u>4 N</u> DA	TPH-g, ms bu Is.g., Vocs by 8 ly THCL, 1-LA/H	8015, TPH-0 260, PAHS 8271 c1, 1-4/4000e
	PURGING E	QUIPMENT			SAMPLING EQUIP	MENT
Centrifugal Submersible Peristalitic Purge Pump Other:	e Pump Pump	Bailer (Teflor ∠Bailer (PVC o Bailer (Stainl	or disposable)	Peristaltic I	e Pump Bailer Pump Bailer	
Comments:				l		
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	*****			
						r

AllWest SITE NAME:	Hallis	Emerya	PURGE TA		Page	ID: <u>AMh)-</u> 3 Lof menyville	CA-
PROJECT NO	1 1 prost 10 months	23 23		DATE P	URGED:	877/13	
PURGED/SAN		L'Hauli	han		AMPLEI		,
TIME SAMPL	Sector Sector	<u> </u> 	******			TOM (feet): 22 IN HEIGHT (feet)	8
DEPTH TO W CALCULATE			76			$\overline{\text{ME}(\text{gallons})}$: \int_{-6}^{6}	
ACTUAL PUR		6				(ganonb): [.	
DEVELOPME	NT	QUARTER	LY	BIANNUAL		OTHER	
SAMPLE TYP	'E: Ground	water	Su	urface Water _		Other	
CASING DIAI Casing Volume (gallons per foe	e ot)•	(0.16)	(0.38) (0.38) -	(0.66)	×3	= 5.976	
			FIELD MEAS	SUREMENTS	\$		
VOLUME (gal)	TIME	TEMP (degrees C)	pH	CONDUCTI (µS)	IVITY	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)
2	0915	19.7	6.46	980		· · · · · · · · · · · · · · · · · · ·	Sitty
4	6924	19.7	6.44	1856		•	silty
<u> </u>	0940	6	6.41	14 PL			Silto
				-			
80% KECHAR	GET IN	SA	MPLE IURB	DDTT: 50	\overline{n}	g, ms by 80 015, VOCS 8260 , ZILA 1010	
I	PURGING EC	QUIPMENT			SAMPL	ING EQUIPMEN	ΥT
Centrifugal Submersible Peristalitic I Purge Pump Other:	Pump	Bailer (Teflor Bailer (PVC Bailer (Stainl	or disposable)	Centrifuga Submersib Peristaltic Purge Pum Other:	le Pump Pump p		or disposable)
Comments:	**************************************			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
				· ·			
				·			

AllWest			PURGE TAB	LE		ID: <u>MW - 3</u> _ of _ <u>1</u>	
SITE NAME: PROJECT NO PURGED/SAM TIME SAMPL DEPTH TO W CALCULATE ACTUAL PUF	MPLED BY: (ED: 1239 ATER (feet): D PURGE (gal	. Haulil 9.09	124	DATE P DATE S DEPTH WATER	URGED AMPLE TO BOT COLUN	destand and and the second s	.22.
DEVELOPME SAMPLE TYP CASING DIAI Casing Volume (gallons per for	ENT PE: Groundw METER: 2"	QUARTERI vater (0.16)	Sur:	face Water			
	Unio		FIELD MEAS				
VOLUME (gal)	TIME	TEMP (degrees C)	pH	CONDUCTI (µS)		DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)
369	1120 1148 1215	19.1 19.4 19.4	6.61 6.15 6.10	2113 1916 1852			Silty silta silta
				······			
80% RECHAF		SA	SAMPLE INFO	DITY: <u>Sil</u>	u .	15.g., VOCS 8	260, PAHS 8270 , ILA/none
	U PURGING EQ			€r.		, ING EQUIPME	NT
Centrifugal Submersible Peristalitic Purge Pump Other:	Pump e Pump Pump	_Bailer (Teflo _Bailer (PVC _Bailer (Stainl	or disposable) ess Steel)	Centrifuga Submersib Peristaltic Purge Pum Other:	l Pump le Pump Pump	Bailer (Tef	
Comments: _])TP 8.68)TW 9.09	O.4 pre	1 feet of duct(LNA	product, P2) befo	sk. res	immed, ba ampling.	ailed

APPENDIX E

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	Client Project ID: #12071.23; Hollis	Date Sampled: 01/17/13
530 Howard Street, Ste.300		Date Received: 01/18/13
550 Howard Bacer, Sec.500	Client Contact: Leonard Niles	Date Reported: 01/28/13
San Francisco, CA 94105	Client P.O.:	Date Completed: 01/25/13

WorkOrder: 1301437

January 29, 2013

Dear Leonard:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #12071.23; Hollis,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	ИсС	am	pbe	ell	А	nc	aly	/tic	CC	ıl,	In	С							Cł	ΗA		C)F	CI	US	TC	D	Y	RE	C	OF	RD			
	1534 Wil		•													τι	RN	AR	OUN	DT	IME	: RU	SH	24	4 HR	4	8 HR	7	2 HR		DAY	Y 🔽	10 D.	AY [
₩ ¥	ww.mcc	ampb	ell.com	1/1	mair	@m	icco	amp	bell	.co	m					Ge	oTrac	cker I	EDF[PDF		EDD		Writ	e On	(DW		EQ	uIS [
	Telepho	one: (87	77) 252-	926	52 / F	ax:	(925	5) 25	2-92	269		1		-																		Clair	n #		
									1	5	01	4	3	1		En	luen	t San	The .	Requ	in ing	, ,		_					iu ri	ojeci	· 🖵 ·	Cian			_
	nard I	Viles	\$			I To:		arr		_	ime	_			_		_					_	_	Ana	lysis	Req	uest	_	_	_	_	_			
Company: Ail	West				0	ave	210	20	114	ses.	+1	- (0	7	_		2	6							ot										
530 How	and St	- #2	300		C	ho	46	ha	inf	va	llw	est	12	1CO	m	MTBE	1.3	/B&				~			H						si.				
SF, CA 94		10				Mail							st.	1.0	Con	10	2	20 E				ener			F			(00)	20)		nalys				
Tele: (415) 30				-		x: (oject						8				8015 or 8260) /	10	1/28	1	8021		ong		es)	3		(s	/ 60	/ 60		alsa				
Project #: 20 Project Location:			11. 1	24		rcha			_	10	2						HEL	1664	(415	60/ 8	les)	l's		bicid	S	~	PNA	6010	5010	20)	met				
Sampler Signatur	e. Olto	yvi	Asia	2	2	r cha	se o	Tuei	m					-	_		20	ase (bons	A 82	sticie	ocloi	ides)	Her	3	0Cs	Hs /	18.0	8/	/ 60	ED				
Sampler Signatur		0	PLING	F			M	IAT	RIX					ETH		Gas (8021/	25	Gre	ocarl	(EP.	1 Pes	: An	estici	e CI	(V0	(SV)	(PAI	/ 20(/ 200	6010	OLV				
		SAM	FLING		<u> </u>							\neg	PRE	SER	VED	Gal	(8015)	Sil &	lydro	NLY	81 (C	CB's	A D	Veidi	8260	8270	3310	00.7	00.7	0.8/	DISS				
SAMPLE ID	Location/			lers	ter	5	Drinking Water									38		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA \$260/ \$021)	505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	8141 (NP Pesticides)	8151 (Acidic CI Herbicides)	524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	5 Metals (200.7 / 200.8 / 6010 / 6020)	Metals (200.7 / 200.8 / 6010 / 6020)	Filter sample for DISSOLVED metals analysis				
	Field Point Name	Date	Time	Containers	Ground Water	Waste Water	M SI	Sea / Water								& TPH	TPH as Diesel	etrolo	etrol	BTJ	5/ 60	8 / 8(507/8	515/8	4.2 /	5.2/	(E)	7 Me	Met	200.	dun				
				on	ounc	ste	nkir	11	_		Sludge	ler	H	HNO ₅	ler	BTEX &	H as	alP	al P	BE	A 50	A 60	A 50	A 51		A 52		MI	LUFT	tals	ter s:				
		N 15		#	6	Wa	Dri	Ses	Soil	Air	Slu	Other	HCL	Ŧ	Other	E	TP	Tot	Tot	W	EPA	EP	EPA	EPA	EPA	EPA	EPA	2	В	Me	Fil				
B15-10-10.5-	7	1/17/13	0830	1					X							X	X										X								
B15-14.5-20-	-7	1	0850	1					\times							Х	Х										${}^{\!$								
B16-8,5-9-	7		1022	1					\times							\times	\times										\times								
BIG-11.5-12-			1041	1					\times							\times	\times										\times								
B16-14.5-15-	\rightarrow		1054	۱					\times							\times	\times										\times								
B20-10-10.5-	->		1325	1					\times								\times								\times		\ge								
B20-12-12-5-	~		1336	1					\times								\times								\ge		\ge								
B20-14.5-15-	->		1341						\times								\times								\ge		\times								
B23-5-5.5	7		455	1			. 3		\times								\times								\times		\times								
B23-8.5-9-	-7	V	1507	i.					\times								\times								\times		\times								
		-					_	-											_		-	-		-	-	_	-			-		-	-		-
**MAI clients MUST	disclose any	dangerou	is chemica	ls kn	own t	o be p	resen	t in t	heir s	ubmi	tted s	amp	oles in	n con	centr	ation	s tha	t may	caus	e imn	nediat	e har	m or	serio	us fut	ure h	ealth	enda	ngern	nenta	as a re	sult o	f bri	ef,	
gloved, open air, samp us to work safely.	le handling	by MAI s	taff. Non-c	lisclo	osure i	neurs	an ir	nmed	iate S	250 s	urch	arge	and	the c	lient	is sul	Diect	to full	legal	liabi	lity fo	r har	m sut	fered	l. Tha	ink y	ou foi	r you	rund	ersta	nding	and to	or all	owing	4
Relinquished By:	- A .	Date:	Time:	1	Rece	ived I	By:		_	-		_		/ 1 -	CE/t		\bigcirc	100								C	OMM	MEN'	FS:						
the	AA	1 81	3143	.0	-	~	1	2	_				Y			O CO) SPA		BSE	NT																
Relinquished By	/	Date:	/ Time:		Rece	ived I	By:			~		1						CON																	
1	2	(118)	7172	20	(,	b	A	1	5	Y								LAI		-															
Relinquished By:	1	Date:	Time:		Rece	ived I	iy:			1	1							vo	AS	0&0	G N	1ETA	LS	оті	HER	Н	AZA	RDO	US:						
	1					V								Р	RES	ERV.	ATI0	N	_		p	H<2_		-									_		

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				W	orkOr	der: 1	301437		Clie	ntCode	e: AWE				
	WaterTrax	WriteOn	✓ EDF	E>	kcel		EQuIS	√	Email		HardCopy	Third	dParty	J-fl	ag
Report to:					Bill	l to:					Req	uested TA	AT:	5	days
Leonard Niles All West Environmental, Inc 530 Howard Street, Ste.300 San Francisco, CA 94105 (415) 391-2510 FAX: (415) 391-	cc: PO: ProjectNo: #1	onard@allwes 2071.23; Holli				All W 530 F San F	ne Toric est Envi loward \$ rancisc ne@allw	ironme Street, o, CA §	Ste.300 94105			e Receiv e Printed		01/18/2 01/18/2	
				Γ				Rec	quested	Tests (S	ee legend	below)			
Lab ID Clier	nt ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7 8	3 9	10	11	12
	0.40 5	0	4/47/0040 0.00		•		•	•	•					-	

1301437-001	B15-10-10.5	Soil	1/17/2013 8:30	Α		Α	Α	А			
1301437-002	B15-19.5-20	Soil	1/17/2013 8:50	Α		Α		А			
1301437-003	B16-8.5-9	Soil	1/17/2013 10:22	Α		Α		А			
1301437-004	B16-11.5-12	Soil	1/17/2013 10:41	Α		Α		Α			
1301437-005	B16-14.5-15	Soil	1/17/2013 10:54	Α		Α		Α			
1301437-006	B20-10-10.5	Soil	1/17/2013 13:25	Α	Α			Α			
1301437-007	B20-12-12.5	Soil	1/17/2013 13:36	Α	Α			Α			
1301437-008	B20-14.5-15	Soil	1/17/2013 13:41	Α	Α			Α			
1301437-009	B23-5-5.5	Soil	1/17/2013 14:55	Α	Α			А			
1301437-010	B23-8.5-9	Soil	1/17/2013 15:07	Α	Α			Α			

Test Legend:

1	8270D-PNA_S
6	
11	

2	GAS8260_S
7	
12	

3	G-MBTEX_S
8	

PREDF REPORT

4

9

5	TPH(D)WSG_S
10	

The following SampIDs: 006A, 007A, 008A, 009A, 010A contain testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Date	and Time Receive	d: 1/18/2013 5	:36:24 PM
Project Name:	#12071.23; Hollis				LogIr	n Reviewed by:		Zoraida Cortez
WorkOrder N°:	1301437	Matrix: <u>Soil</u>			Carri	er: <u>Rob Pringle</u>	(MAI Courier)	
		<u>Cha</u>	<u>in of Cւ</u>	<u>ustody (C</u>	OC) Information	ation		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	ibels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No			
			<u>Sample</u>	Receipt	Information	1		
Custody seals in	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🖌	
Shipping contain	er/cooler in good cond	ition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No			
Sample containe	ers intact?		Yes	✓	No			
Sufficient sample	e volume for indicated	test?	Yes	✓	No			
		Sample Pres	ervatio	<u>n and Ho</u>	old Time (HT) Information		
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	3°C			
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes		No 🗌	No VOA vials su	bmitted 🗹	
Sample labels ch	necked for correct pres	ervation?	Yes	✓	No			
Metal - pH accep	otable upon receipt (p⊢	I<2)?	Yes		No		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No			
		(Ісе Тур	e: WE	TICE))			
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

	ll Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com			
All West Environmental, Inc	Client H	Project II	D: #12	2071.23; Hollis	Date Sample	ed: 01/17/13			
520 H 1 G 200					Date Received: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:	Leona	rd Niles	Date Extract	ted: 01/18/13			
San Francisco, CA 94105	Client F	Client P.O.: Date Analy							
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	Target I ist)*				
Extraction Method: SW5030B	volatile Organ	•		od: SW8260B	Taiget List)	Work Order: 13014	137		
		, mary c	eur meur		7.006	Wolk Orden 1901	157		
Lab ID Client ID					0-10.5				
Matrix					oil				
	C	DE	Reporting			C *	DE	Reporting	
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit	
Acetone	ND<5.0	100	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.50	100	0.005	
Benzene	2.2	100	0.005	Bromobenzene		ND<0.50	100	0.005	
Bromochloromethane	ND<0.50	100	0.005	Bromodichlorometha	ane	ND<0.50	100	0.005	
Bromoform	ND<0.50	100	0.005	Bromomethane		ND<0.50	100	0.005	
2-Butanone (MEK)	ND<2.0	100	0.02	t-Butyl alcohol (TBA	A)	ND<5.0	100	0.05	
n-Butyl benzene	2.3	100	0.005	sec-Butyl benzene		ND<0.50	100	0.005	
tert-Butyl benzene	ND<0.50	100	0.005	Carbon Disulfide		ND<0.50	100	0.005	
Carbon Tetrachloride	ND<0.50	100	0.005	Chlorobenzene		ND<0.50	100	0.005	
Chloroethane	ND<0.50	100	0.005	Chloroform		ND<0.50	100	0.005	
Chloromethane	ND<0.50	100	0.005	2-Chlorotoluene Dibromochloromethane		ND<0.50	100	0.005	
4-Chlorotoluene	ND<0.50	100	0.005	1,2-Dibromoethane (EDB)		ND<0.50	100	0.005	
1,2-Dibromo-3-chloropropane	ND<0.40	100	0.004	1,2-Dibromoetnane (EDB)		ND<0.40	100	0.004	
Dibromomethane	ND<0.50	100	0.005			ND<0.50	100	0.005	
1,3-Dichlorobenzene	ND<0.50	100	0.005	1,4-Dichlorobenzene		ND<0.50	100	0.005	
Dichlorodifluoromethane 1,2-Dichloroethane (1,2-DCA)	ND<0.50	100	0.005	1,1-Dichloroethane		ND<0.50	100	0.005	
	ND<0.40 ND<0.50	100 100	0.004	1,1-Dichloroethene trans-1,2-Dichloroet	hana	ND<0.50 ND<0.50	100 100	0.005	
cis-1,2-Dichloroethene				,					
1,2-Dichloropropane	ND<0.50 ND<0.50	100 100	0.005	1,3-Dichloropropane 1,1-Dichloropropene		ND<0.50 ND<0.50	100 100	0.005	
2,2-Dichloropropane cis-1,3-Dichloropropene	ND<0.50	100	0.005	trans-1,3-Dichloropr		ND<0.50	100	0.005	
Diisopropyl ether (DIPE)	ND<0.50	100	0.005	Ethylbenzene	opene	7.1	100	0.005	
Ethyl tert-butyl ether (ETBE)	ND<0.50	100	0.005	Freon 113		ND<10	100	0.003	
Hexachlorobutadiene	ND<0.50	100	0.005	Hexachloroethane		ND<0.50	100	0.005	
2-Hexanone	ND<0.50	100	0.005	Isopropylbenzene		0.67	100	0.005	
4-Isopropyl toluene	ND<0.50	100	0.005	Methyl-t-butyl ether	(MTRF)	ND<0.50	100	0.005	
Methylene chloride	ND<0.50	100	0.005	4-Methyl-2-pentanon	. ,	ND<0.50	100	0.005	
Naphthalene	3.3	100	0.005	n-Propyl benzene	ic (MIDR)	2.9	100	0.005	
Styrene	ND<0.50	100	0.005	1,1,1,2-Tetrachloroe	thane	ND<0.50	100	0.005	
1,1,2,2-Tetrachloroethane	ND<0.50	100	0.005	Tetrachloroethene	ununo	ND<0.50	100	0.005	
Toluene	17	100	0.005	1,2,3-Trichlorobenze	ne	ND<0.50	100	0.005	
1,2,4-Trichlorobenzene	ND<0.50	100	0.005	1,1,1-Trichloroethan		ND<0.50	100	0.005	
1,1,2-Trichloroethane	ND<0.50	100	0.005	Trichloroethene	~	ND<0.50	100	0.005	
Trichlorofluoromethane	ND<0.50	100	0.005	1,2,3-Trichloropropa	ine	ND<0.50	100	0.005	
1,2,4-Trimethylbenzene	19	100	0.005	1,3,5-Trimethylbenz		6.5	100	0.005	
Vinyl Chloride	ND<0.50	100	0.005	Xylenes, Total		42	100	0.005	
<u></u>	112 (0100			ecoveries (%)		12	100	0.000	
%SS1:	11		ogate K	%SS2:		10	7		
%SS3:	90			70.552.		10	1		
%555: Comments:	90	,]					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

McCampbel	Analytica	l <u>, Inc.</u>		Toll Free Teleph	Pass Road, Pittsburg, one: (877) 252-9262 / npbell.com / E-mail: n			
All West Environmental, Inc	Client Project ID: #12071.23; Hollis				Date Sample	d: 01/17/13		
				Date Receive	ed: 01/18/13			
530 Howard Street, Ste.300	Client C	Date Extracte	ed: 01/18/13					
San Francisco, CA 94105	Client F	P.O.:			Date Analyze	ed: 01/23/13		
	Volatile Organ	ics by P&	&T an	d GC/MS (Basic '	Target List)*			
Extraction Method: SW5030B		-		od: SW8260B		Work Order: 1301	437	
)			7-007A		107	
Lab ID Client ID				B20-1				
Matrix				B20-1				
	C , , , , *	DE	Reporting			C (() *	DE	Reporting
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit
Acetone	ND<50	1000	0.05	tert-Amyl methyl eth	er (TAME)	ND<5.0	1000	0.005
Benzene	8.0	1000	0.005	Bromobenzene		ND<5.0	1000	0.005
Bromochloromethane	ND<5.0	1000	0.005	Bromodichlorometha	ine	ND<5.0	1000	0.005
Bromoform	ND<5.0	1000	0.005	Bromomethane		ND<5.0	1000	0.005
2-Butanone (MEK)	ND<20	1000	0.02	t-Butyl alcohol (TBA	x)	ND<50	1000	0.05
n-Butyl benzene	9.1	1000	0.005	sec-Butyl benzene		ND<5.0	1000	0.005
tert-Butyl benzene	ND<5.0	1000	0.005	Carbon Disulfide		ND<5.0	1000	0.005
Carbon Tetrachloride	ND<5.0	1000	0.005	Chlorobenzene		ND<5.0	1000	0.005
Chloroethane	ND<5.0	1000	0.005	Chloroform		ND<5.0	1000	0.005
Chloromethane	ND<5.0	1000	0.005	2-Chlorotoluene	ND<5.0	1000	0.005	
4-Chlorotoluene	ND<5.0	1000	0.005	Dibromochlorometha	ND<5.0	1000	0.005	
1,2-Dibromo-3-chloropropane	ND<4.0	1000	0.004	1,2-Dibromoethane (ND<4.0	1000	0.004	
Dibromomethane	ND<5.0	1000	0.005	1,2-Dichlorobenzene	ND<5.0	1000	0.005	
1,3-Dichlorobenzene	ND<5.0	1000	0.005	1,4-Dichlorobenzene	ND<5.0	1000	0.005	
Dichlorodifluoromethane	ND<5.0	1000	0.005	1,1-Dichloroethane		ND<5.0	1000	0.005
1,2-Dichloroethane (1,2-DCA)	ND<4.0	1000	0.004	1,1-Dichloroethene		ND<5.0	1000	0.005
cis-1,2-Dichloroethene	ND<5.0	1000	0.005	trans-1,2-Dichloroeth		ND<5.0	1000	0.005
1,2-Dichloropropane	ND<5.0	1000	0.005	1,3-Dichloropropane		ND<5.0	1000	0.005
2,2-Dichloropropane	ND<5.0	1000	0.005	1,1-Dichloropropene		ND<5.0	1000	0.005
cis-1,3-Dichloropropene	ND<5.0	1000	0.005	trans-1,3-Dichloropro	opene	ND<5.0	1000	0.005
Diisopropyl ether (DIPE)	ND<5.0	1000	0.005	Ethylbenzene		35	1000	0.005
Ethyl tert-butyl ether (ETBE)	ND<5.0	1000	0.005	Freon 113		ND<100	1000	0.1
Hexachlorobutadiene	ND<5.0	1000	0.005	Hexachloroethane		ND<5.0	1000	0.005
2-Hexanone	ND<5.0	1000	0.005	Isopropylbenzene		ND<5.0	1000	0.005
4-Isopropyl toluene	ND<5.0	1000	0.005	Methyl-t-butyl ether		ND<5.0	1000	0.005
Methylene chloride	ND<5.0	1000	0.005	4-Methyl-2-pentanor	ne (MIBK)	ND<5.0	1000	0.005
Naphthalene	14	1000	0.005	n-Propyl benzene	1	13 ND 50	1000	0.005
Styrene	ND<5.0	1000	0.005	1,1,1,2-Tetrachloroet	nane	ND<5.0	1000	0.005
1,1,2,2-Tetrachloroethane	ND<5.0	1000	0.005	Tetrachloroethene		ND<5.0	1000	0.005
Toluene	92 ND 50	1000	0.005	1,2,3-Trichlorobenze		ND<5.0	1000	0.005
1,2,4-Trichlorobenzene	ND<5.0	1000	0.005	1,1,1-Trichloroethan	e	ND<5.0	1000	0.005
1,1,2-Trichloroethane	ND<5.0	1000	0.005	Trichloroethene		ND<5.0	1000	0.005
Trichlorofluoromethane	ND<5.0	1000	0.005	1,2,3-Trichloropropa		ND<5.0	1000	0.005
1,2,4-Trimethylbenzene	89 ND <5 0	1000	0.005	1,3,5-Trimethylbenze	ene	29	1000	0.005
Vinyl Chloride	ND<5.0	1000	0.005	Xylenes, Total		210	1000	0.005
			ogate Re	ecoveries (%)				
%SS1:	12			%SS2:		10	4	
%SS3:	96	5						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	Analytica	l, Inc	<u>-</u>	Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com		
All West Environmental, Inc	Client F	Project I	D: #12	2071.23; Hollis	Date Sample	ed: 01/17/13		
520 H 1.0 / 0/ 200			Date Receiv	red: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:	Leonai	rd Niles	Date Extract	ted: 01/18/13		
San Francisco, CA 94105	Client F	P.O.:			xed: 01/25/13			
	Volatile Organi	ics by P	&T an	d GC/MS (Basic	2			
Extraction Method: SW5030B	, onume organi	•		od: SW8260B	Turger List)	Work Order: 1301	437	
Lab ID				130143	37-008A			
Client ID				B20-1	4.5-15			
Matrix				S	oil			
Compound	Concentration *	DF	Reporting Limit	Compor	und	Concentration *	DF	Reporting Limit
Acetone	ND<1.0	20	0.05	tert-Amyl methyl eth		ND<0.10	20	0.005
Benzene	0.72	20	0.005	Bromobenzene	(/	ND<0.10	20	0.005
Bromochloromethane	ND<0.10	20	0.005	Bromodichlorometha	ane	ND<0.10	20	0.005
Bromoform	ND<0.10	20	0.005	Bromomethane		ND<0.10	20	0.005
2-Butanone (MEK)	ND<0.40	20	0.02	t-Butyl alcohol (TBA	A)	ND<1.0	20	0.05
n-Butyl benzene	ND<0.10	20	0.005	sec-Butyl benzene		ND<0.10	20	0.005
tert-Butyl benzene	ND<0.10	20	0.005	Carbon Disulfide		ND<0.10	20	0.005
Carbon Tetrachloride	ND<0.10	20	0.005	Chlorobenzene		ND<0.10	20	0.005
Chloroethane	ND<0.10	20	0.005	Chloroform		ND<0.10	20	0.005
Chloromethane	ND<0.10	20	0.005	2-Chlorotoluene	ND<0.10	20	0.005	
4-Chlorotoluene	ND<0.10	20	0.005	Dibromochloromethane		ND<0.10	20	0.005
1,2-Dibromo-3-chloropropane	ND<0.080	20	0.004	1,2-Dibromoethane	(EDB)	ND<0.080	20	0.004
Dibromomethane	ND<0.10	20	0.005	1,2-Dichlorobenzene		ND<0.10	20	0.005
1,3-Dichlorobenzene	ND<0.10	20	0.005	1,4-Dichlorobenzene		ND<0.10	20	0.005
Dichlorodifluoromethane	ND<0.10	20	0.005	1,1-Dichloroethane		ND<0.10	20	0.005
1,2-Dichloroethane (1,2-DCA)	ND<0.080	20	0.004	1,1-Dichloroethene		ND<0.10	20	0.005
cis-1,2-Dichloroethene	ND<0.10	20	0.005	trans-1,2-Dichloroet	hene	ND<0.10	20	0.005
1,2-Dichloropropane	ND<0.10	20	0.005	1,3-Dichloropropane	e	ND<0.10	20	0.005
2,2-Dichloropropane	ND<0.10	20	0.005	1,1-Dichloropropene	2	ND<0.10	20	0.005
cis-1,3-Dichloropropene	ND<0.10	20	0.005	trans-1,3-Dichloropr	ropene	ND<0.10	20	0.005
Diisopropyl ether (DIPE)	ND<0.10	20	0.005	Ethylbenzene		0.37	20	0.005
Ethyl tert-butyl ether (ETBE)	ND<0.10	20	0.005	Freon 113		ND<2.0	20	0.1
Hexachlorobutadiene	ND<0.10	20	0.005	Hexachloroethane		ND<0.10	20	0.005
2-Hexanone	ND<0.10	20	0.005	Isopropylbenzene		ND<0.10	20	0.005
4-Isopropyl toluene	ND<0.10	20	0.005	Methyl-t-butyl ether	(MTBE)	0.28	20	0.005
Methylene chloride	ND<0.10	20	0.005	4-Methyl-2-pentanon	ne (MIBK)	ND<0.10	20	0.005
Naphthalene	0.17	20	0.005	n-Propyl benzene		ND<0.10	20	0.005
Styrene	ND<0.10	20	0.005	1,1,1,2-Tetrachloroe	thane	ND<0.10	20	0.005
1,1,2,2-Tetrachloroethane	ND<0.10	20	0.005	Tetrachloroethene		ND<0.10	20	0.005
Toluene	1.5	20	0.005	1,2,3-Trichlorobenze		ND<0.10	20	0.005
1,2,4-Trichlorobenzene	ND<0.10	20	0.005	1,1,1-Trichloroethan	ie	ND<0.10	20	0.005
1,1,2-Trichloroethane	ND<0.10	20	0.005	Trichloroethene		ND<0.10	20	0.005
Trichlorofluoromethane	ND<0.10	20	0.005	1,2,3-Trichloropropa		ND<0.10	20	0.005
1,2,4-Trimethylbenzene	0.66	20	0.005	1,3,5-Trimethylbenz	ene	0.21	20	0.005
Vinyl Chloride	ND<0.10	20	0.005	Xylenes, Total		2.2	20	0.005
		Suri	ogate Re	ecoveries (%)				
%SS1:	11	9		%SS2:		10	5	
%SS3:	94	1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	ll Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph	Pass Road, Pittsburg, Cone: (877) 252-9262 / F npbell.com / E-mail: ma	ax: (925) 252-9269		
All West Environmental, Inc	Client I	Project ID): #12	2071.23; Hollis	Date Sampled	: 01/17/13		
520 H 1 G					Date Received	l: 01/18/13		
530 Howard Street, Ste.300	Client C	Client Contact: Leonard Niles Date Extract						
San Francisco, CA 94105	Client I	Client P.O.: Date Analyzed						
	Volatile Organ	ics by Pð	&Т an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B		Analytic	cal Metho	od: SW8260B		Work Order: 1301	437	
Lab ID				130143	7-009A			
Client ID				B23-	5-5.5			
Matrix				S	oil			
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	·	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	ND	1.0	0.004	
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroet	hene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	•	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropr	opene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	(MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanor	ne (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenze	ene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	e	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa		ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	ene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005
		Surro	gate R	ecoveries (%)				
%SS1:	11			%SS2:		11	4	
%SS3:	98	8						
Comments:								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	ll Analytica Quality Counts''	l, Inc	<u>.</u>	Toll Free Teleph	Pass Road, Pittsburg, one: (877) 252-9262 / npbell.com / E-mail: n				
All West Environmental, Inc	Client I	Project I	D: #12	2071.23; Hollis	Date Sample	d: 01/17/13			
520 Harring Street Sta 200					Date Received: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:	Leonar	rd Niles	Date Extracte	ed: 01/18/13			
San Francisco, CA 94105	Client H	P.O.:	ed: 01/22/13						
	Volatile Organ	ics by P	&T an	d GC/MS (Basic '	Target List)*				
Extraction Method: SW5030B	8	•		od: SW8260B	8 /	Work Order: 1301	437		
Lab ID				130143	7-010A				
Client ID				B23-					
Matrix				S					
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl eth		ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ine	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	0	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	/	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometha	ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005	
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroeth	nene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropre	opene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005			ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanor	ne (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroet	hane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenze		ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	e	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa		ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenze	ene	ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005	
			ogate Re	ecoveries (%)					
%SS1:	11			%SS2:		11	7		
%SS3:	10	1							
Comments:									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	McCampbell Analytical, Inc. "When Quality Counts"					94565-1701 (925) 252-9269 mccampbell.com			
All West Environmental, Inc	Client Pr	oject ID:	#12071	.23; Hollis	Date Sampled:	01/17/13			
530 Howard Street, Ste.300		Date Receive					l: 01/18/13		
550 Howard Street, Ste.500	Client Co	ontact: Leo	onard N	ïles	Date Extracted:	01/22/13			
San Francisco, CA 94105	Client P.	0.:			Date Analyzed:	01/23/13-01/	/25/13		
Polynuclear Extraction Method: SW3550B	-	cocarbons (_	SIM Mode by G	C/MS Work Order: 130	1437		
Lab ID	1301437-001A	1301437-0	002A	1301437-003A	1301437-004A				
Client ID	B15-10-10.5	B15-19.5	5-20	B16-8.5-9	B16-11.5-12		Limit for		
Matrix	S	S		S	S				
DF	1	1		1	1	S	W		
Compound			Concer	ntration		mg/kg	ug/L		
Acenaphthene	ND	ND		ND	ND	0.01	NA		
Acenaphthylene	ND	ND		ND	ND	0.01	NA		
Anthracene	ND	ND		ND	ND	0.01	NA		
Benzo (a) anthracene	ND	ND	ĺ	ND	ND	0.01	NA		
Benzo (b) fluoranthene	ND	ND	ĺ	ND	ND	0.01	NA		
Benzo (k) fluoranthene	ND	ND		ND	ND	0.01	NA		
Benzo (g,h,i) perylene	ND	ND	ĺ	ND	ND	0.01	NA		
Benzo (a) pyrene	ND	ND		ND	ND	0.01	NA		
Chrysene	ND	ND		ND	ND	0.01	NA		
Dibenzo (a,h) anthracene	ND	ND		ND	ND	0.01	NA		
Fluoranthene	ND	ND		ND	ND	0.01	NA		
Fluorene	ND	ND		ND	ND	0.01	NA		
Indeno (1,2,3-cd) pyrene	ND	ND		ND	ND	0.01	NA		
1-Methylnaphthalene	ND	ND		0.097	0.082	0.01	NA		
2-Methylnaphthalene	ND	ND		0.19	0.15	0.01	NA		
Naphthalene	ND	ND		0.23	0.15	0.01	NA		
Phenanthrene	ND	ND		ND	ND	0.01	NA		
Pyrene	ND	ND		ND	ND	0.01	NA		
		Surrogate	Recove	eries (%)					
%SS1	81	81		77	84				
%SS2	81	80		78	85				
Comments									

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

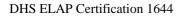
McCampbell . "When Qua	Analytical Analytical	<u>, Inc.</u>		Toll Free Telephor	ass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bell.com / E-mail: main@	(925) 252-9269	
All West Environmental, Inc	Client Pr	roject ID: #	ŧ12071	.23; Hollis	Date Sampled:	01/17/13	
530 Howard Street, Ste.300					Date Received: 01/18/13		
550 Howard Sileet, Sie.500	Client Co	ontact: Leo	nard N	liles	Date Extracted:	01/22/13	
San Francisco, CA 94105	Client P.	0.:			Date Analyzed:	01/23/13-01/	25/13
Polynuclear Extraction Method: SW3550B	•	rocarbons (SIM Mode by G	C/MS Work Order: 1301	437
Lab ID	1301437-005A	1301437-0	06A	1301437-007A	1301437-008A		
Client ID	B16-14.5-15	B20-10-10	0.5	B20-12-12.5	B20-14.5-15	Reporting DF	
Matrix	S	S		S	S		
DF	1	20		20	1	S	W
Compound		(Conce	ntration		mg/kg	ug/L
Acenaphthene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Acenaphthylene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Anthracene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Benzo (a) anthracene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Benzo (b) fluoranthene	ND	ND<0.20	0	ND<0.20	ND	0.01	NA
Benzo (k) fluoranthene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Benzo (g,h,i) perylene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Benzo (a) pyrene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Chrysene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Dibenzo (a,h) anthracene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Fluoranthene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Fluorene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
Indeno (1,2,3-cd) pyrene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
1-Methylnaphthalene	0.039	1	1.7	2.5	0.085	0.01	NA
2-Methylnaphthalene	0.069	2	2.9	4.3	0.16	0.01	NA
Naphthalene	0.075	4	4.5	7.1	0.22	0.01	NA
Phenanthrene	ND	ND<0.20	0	ND<0.20	ND	0.01	NA
Pyrene	ND	ND<0.2	0	ND<0.20	ND	0.01	NA
		Surrogate 1	Recove	eries (%)			
%SS1	83	97		101	86		
%SS2	84	87		79	85		
Comments							

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	Analytical lity Counts''	<u>, Inc.</u>	Toll Free Telepl	v Pass Road, Pittsburg, CA none: (877) 252-9262 / Fax: mpbell.com / E-mail: main@	(925) 252-9269		
All West Environmental, Inc	Client Pr	roject ID: #	12071.23; Hollis	Date Sampled:	01/17/13		
520 Harring Starter Star 200				Date Received:	Date Received: 01/18/13		
530 Howard Street, Ste.300	Client Co	ontact: Leon	nard Niles	Date Extracted:	01/22/13		
San Francisco, CA 94105	Client P.	0.:		Date Analyzed:	01/23/13-01/	25/13	
Polynuclear Extraction Method: SW3550B	-	rocarbons (] alytical Method: {	PAHs / PNAs) using	g SIM Mode by G	C/MS Work Order: 1301	437	
Lab ID	1301437-009A	1301437-0			Work Order. 1501	-57	
Client ID	B23-5-5.5	B23-8.5-			Reporting DF		
Matrix	S	S			21		
DF	1	1			S	W	
Compound		(Concentration		mg/kg	ug/L	
Acenaphthene	ND	ND			0.01	NA	
Acenaphthylene	ND	ND			0.01	NA	
Anthracene	ND	ND			0.01	NA	
Benzo (a) anthracene	ND	ND			0.01	NA	
Benzo (b) fluoranthene	ND	ND			0.01	NA	
Benzo (k) fluoranthene	ND	ND			0.01	NA	
Benzo (g,h,i) perylene	ND	ND			0.01	NA	
Benzo (a) pyrene	ND	ND			0.01	NA	
Chrysene	ND	ND<0.01	5		0.01	NA	
Dibenzo (a,h) anthracene	ND	ND			0.01	NA	
Fluoranthene	ND	0.0	016		0.01	NA	
Fluorene	ND	ND			0.01	NA	
Indeno (1,2,3-cd) pyrene	ND	ND			0.01	NA	
1-Methylnaphthalene	ND	ND			0.01	NA	
2-Methylnaphthalene	ND	ND			0.01	NA	
Naphthalene	ND	ND			0.01	NA	
Phenanthrene	ND	ND			0.01	NA	
Pyrene	ND	0.0	018		0.01	NA	
		Surrogate I	Recoveries (%)				
%SS1	81	72					
%SS2	82	66					
Comments							

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.


ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Mc Mc	Campbell Ana "When Quality Con	lytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg, C ne: (877) 252-9262 / Fa pbell.com / E-mail: mai	ax: (925) 252-9269	
All West Environmental, Inc		Client Project ID: #12071.23; Hollis		Date Sampled: 01/17/13			
530 Howard Street, Ste.300 San Francisco, CA 94105				Date Received: 01/18/13			
		Client Contact: Le	Date Extracted 01/18/13 Date Analyzed 01/22/13-01/23/13				
		Client P.O.:					
Extraction method: SW			z Trap and GC/MS* ethods: SW8260B		Wo	rk Order:	1301437
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments
006A	B20-10-10.5	S	480		100	94	
007A	B20-12-12.5	S	2000	1	1000	92	
008A	B20-14.5-15	S	27		20	93	
009A	B23-5-5.5	S	ND		1	100	
010A	B23-8.5-9	S	0.57		1	103	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	0.25	mg/kg

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

	Analytic ulity Counts''	IVTICAL, INC. Toll Free Telephone			Pass Road, Pittsburg, CA 94565-1701 one: (877) 252-9262 / Fax: (925) 252-9269 pbell.com / E-mail: main@mccampbell.com			
All West Environmental, Inc	Clie	Client Project ID: #12071.23; Hollis			Date Sampled: 01/17/13			
530 Howard Street, Ste.300					Date Received: 01/18/13			
,	Clie	ent Contact: Le	onard Niles	Date Extra	Date Extracted: 01/18/13			
San Francisco, CA 94105		ent P.O.:		Date Anal	Date Analyzed: 01/19/13-01/23/13			
Gasoline Range (C6-C12) I Extraction Method: SW5030B	Mineral Spi	-	-C12) Volatile d: SW8021B/8015Bm	Hydrocarbons wi	th BTEX & MT Work Order:			
Lab ID	1301437-0	01A 1301437	-002A 130143	7-003A 1301437-	004A			
Client ID	B15-10-10	.5 B15-19.	5-20 B16-	B16-11.5	Reporting	Reporting Limit for DF =1		
Matrix	S	S	S	S				
DF	1	1	1	0 10	S	W		
Compound	Concentration					ug/L		
TPH(g)	ND	ND	11	0 260	1.0	NA		
TPH(mineral spirits)	ND	ND	5	9 130	1.0	NA		
МТВЕ	ND	ND	ND<	0.50 ND<1	.5 0.05	NA		
Benzene	ND	ND	0.8	34 2.9	0.005	NA		
Toluene	ND	ND	4.	8 16	0.005	NA		
Ethylbenzene	ND	ND	2.	8 5.7	0.005	NA		
Xylenes	0.012	0.00	7 1	3 24	0.005	NA		
		Surrogate Rec	overies (%)					
%SS:	93	103		##				
Comments			d	1 d1				
water and vapor samples are reported in μ nd all TCLP & SPLP extracts in mg/L. cluttered chromatogram; sample peak coe urrogate Standard; DF = Dilution Factor		-				Ĩ		

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

	Campbell Analytical, Inc. "When Quality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
All West Environmental, Inc		Client Pr	oject ID:	#1207	1.23; Hollis	Date Sampled:	01/17/13					
530 Howard Street, Ste.300						Date Received:	01/18/13					
		Client Co	ontact: Le	eonard Niles Date Extracted: 01/18/13								
San Francisco, CA 94105		Client P.	0.:			Date Analyzed:	01/19/13-0	01/23/13				
Gasoline Range (C6-C12) M Extraction Method: SW5030B	/linera	-	Range (C9		-	carbons with BT	EX & MTI Work Order:					
Lab ID	13014	-37-005A										
Client ID B16-14.5-15							Reporting DF					
Matrix		S										
DF		20					S	W				
Compound			Conce	entration	·	mg/Kg	ug/L					
TPH(g)		140					1.0	NA				
TPH(mineral spirits)		84					1.0	NA				
MTBE	ND<1.0					0.05	NA					
Benzene	2.6						0.005	NA				
Toluene		10					0.005	NA				
Ethylbenzene		2.6					0.005	NA				
Xylenes		16					0.005	NA				
		Surro	gate Rec	overies	s (%)							
%SS:		#										
Comments		d1										
and all TCLP & SPLP extracts in mg/L.	cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of											
The following descriptions of the TDU -have												

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

<u> Мс</u>	Campbell Anal "When Quality Cou	l <u>ytical, Inc.</u> unts''		Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail:	/ Fax: (925	5) 252-9269		
All West Envir	conmental, Inc	Client Project ID:	D: #12071.23; Hollis Date Sampled: 01/17/13					
530 Howard St	treet Ste 300			ved: 01	/18/13			
550 110 ward 50		Client Contact: Lo	eonard Niles	Date Extrac	ted 01	/18/13		
San Francisco,	CA 94105	Client P.O.:		Date Analyz	zed 01	/19/13-0	01/23/13	
	Mineral Spirits Ra	•	atile Hydrocarbons as I	Mineral Spir	its*			
Extraction method: SV		Analytical m	nethods: SW8015Bm		Wo	ork Order:	1301437	
Lab ID	Client ID	Matrix	TPH(mineral spiri	ts)	DF	% SS	Comments	
006A	B20-10-10.5	280		20	#	d1		
007A	B20-12-12.5	S	1200		100	#	d1	
008A	B20-14.5-15	S	15		10	109	d1	
009A	B23-5-5.5	S		1	97			
010A	B23-8.5-9	S	ND		1	101		

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

<u> Мс</u>	Campbell Anal "When Quality Con			/ Pass Road, Pitts none: (877) 252-9 mpbell.com / E-n	262 / Fax:	(925) 252-	9269
All West Enviro	onmental, Inc	Client Project ID	: #12071.23; Hollis	Date San	npled:	01/17/1	3
530 Howard Str	eet, Ste.300		Date Rec	eived:	01/18/1	3	
		Client Contact: L	eonard Niles	Date Extr	racted	01/18/1	3
San Francisco, O	CA 94105	Client P.O.:		Date Ana	lyzed	01/19/1	3-01/25/13
Extraction method: SV		le Petroleum Hyd Analytical 1	rocarbons with Silica (methods: SW8015B	Gel Clean-I	U p*	Work Orde	er: 1301437
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments
1301437-001A	B15-10-10.5	S	ND		1	101	
1301437-002A	B15-19.5-20	S	2.7		1	113	e2
1301437-003A	B16-8.5-9	S		1	105	e4	
1301437-004A	B16-11.5-12	S		1	102	e4	
1301437-005A	B16-14.5-15	S	3.7		1	104	e4
1301437-006A	B20-10-10.5	S	90		1	102	e4
1301437-007A	B20-12-12.5	S	24		1	97	e4
1301437-008A	B20-14.5-15	S	5.1		1	103	e4
1301437-009A	B23-5-5.5	S	ND		1	102	
1301437-010A	B23-8.5-9	S	15		2	95	e7,e2
Reporti	ing Limit for DF $=1$;	W	NA			N	٨
ND mea	ans not detected at or the reporting limit	S S	1.0			mg/	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant. e7) oil range compounds are significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix: Soil				BatchID: 74102			WorkOrder: 1301437			
EPA Method: SW8260B Extraction: S	SW5030B					;	Spiked Sam	ple ID:	1301422-002A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
, and yee	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
tert-Amyl methyl ether (TAME)	ND	0.050	74.9	78.5	4.73	82.8	56 - 94	30	70 - 130		
Benzene	ND	0.050	82.6	87.1	5.25	102	60 - 106	30	70 - 130		
t-Butyl alcohol (TBA)	ND	0.20	75.1	76	1.19	78.3	56 - 140	30	70 - 130		
Chlorobenzene	ND	0.050	81.4	85	4.35	98.6	61 - 108	30	70 - 130		
1,2-Dibromoethane (EDB)	ND	0.050	76.4	84.6	10.2	91.2	54 - 119	30	70 - 130		
1,2-Dichloroethane (1,2-DCA)	ND	0.050	89.1	97	8.51	107	48 - 115	30	70 - 130		
1,1-Dichloroethene	ND	0.050	84.7	88.7	4.56	106	46 - 111	30	70 - 130		
Diisopropyl ether (DIPE)	ND	0.050	85.7	88.8	3.63	98.3	53 - 111	30	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND	0.050	81.6	85.4	4.56	95.1	61 - 104	30	70 - 130		
Methyl-t-butyl ether (MTBE)	ND	0.050	81.6	85	4.16	92.7	58 - 107	30	70 - 130		
Toluene	ND	0.050	82.9	88.4	6.48	102	64 - 114	30	70 - 130		
Trichloroethene	ND	0.050	91.4	93.5	2.34	108	60 - 116	30	70 - 130		
%SS1:	116	0.12	114	114	0	117	70 - 130	30	70 - 130		
%SS2:	113	0.12	115	115	0	117	70 - 130	30	70 - 130		
%SS3:	93	0.012	93	102	9.39	102	70 - 130	30	70 - 130		

BATCH 74102 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301437-006A	01/17/13 1:25 PM	01/18/13	01/23/13 5:25 AM	1301437-007A	01/17/13 1:36 PM	01/18/13	01/23/13 6:06 AM
1301437-008A	01/17/13 1:41 PM	01/18/13	01/25/13 2:01 AM	1301437-009A	01/17/13 2:55 PM	01/18/13	01/22/13 2:46 PM
1301437-010A	01/17/13 3:07 PM	01/18/13	01/22/13 3:30 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	V.O. Sample Matrix: Soil QC Matrix: Soil				BatchID: 74051 Wo			WorkO	orkOrder: 1301437	
EPA Method: SW8015B								Spiked Sam	ple ID:	1301371-057A
Analyte	S	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyte		mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)		ND	40	99.5	99.8	0.318	110	70 - 130	30	70 - 130
%SS:		96	25	92	92	0	103	70 - 130	30	70 - 130
All target compounds in the Method Blank on NONE	f this extraction batch	were ND l	ess than th	e method	RL with th	ne following	g exception	ns:		

BATCH 74051 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301437-001A	01/17/13 8:30 AM	01/18/13	01/19/13 3:52 PM	1301437-002A	01/17/13 8:50 AM	01/18/13	01/23/13 12:35 AM
1301437-003A	01/17/13 10:22 AM	01/18/13	01/22/13 5:02 PM	1301437-004A	01/17/13 10:41 AM	01/18/13	01/22/13 8:37 PM
1301437-005A	01/17/13 10:54 AM	01/18/13	01/23/13 12:11 AM	1301437-006A	01/17/13 1:25 PM	01/18/13	01/25/13 4:15 PM
1301437-007A	01/17/13 1:36 PM	01/18/13	01/23/13 1:22 AM	1301437-008A	01/17/13 1:41 PM	01/18/13	01/22/13 6:13 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	V.O. Sample Matrix: Soil QC Matrix: Soil				BatchID	: 74119		WorkOrder: 1301437	
EPA Method: SW8015B Extraction:	SW3550B/36	30C				;	Spiked Sam	ple ID:	1301437-009A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	ND	40	114	112	1.01	103	70 - 130	30	70 - 130
%SS:	102	25	104	103	0.776	92	70 - 130	30	70 - 130
All target compounds in the Method Blank of this extraction NONE	batch were ND	less than th	e method	RL with th	ne following	g exceptior	15:		

BATCH 74119 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301437-009A	01/17/13 2:55 PM	01/18/13	01/20/13 2:58 AM	1301437-010A	01/17/13 3:07 PM	01/18/13	01/20/13 10:43 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil	QC Matrix	Matrix: Soil			BatchID: 74149			WorkOrder: 1301437		
EPA Method: SW8270C-SIM Extraction: S	W3550B					;	Spiked Sam	ple ID:	1301437-001A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Benzo (a) pyrene	ND	0.20	79.1	82.6	4.25	64.6	30 - 130	30	30 - 130	
Chrysene	ND	0.20	94.5	97.6	3.21	83	30 - 130	30	30 - 130	
1-Methylnaphthalene	ND	0.20	99.5	104	4.49	84.4	30 - 130	30	30 - 130	
2-Methylnaphthalene	ND	0.20	83.2	86.3	3.73	70.4	30 - 130	30	30 - 130	
Phenanthrene	ND	0.20	93.5	103	9.31	87.5	30 - 130	30	30 - 130	
Pyrene	ND	0.20	84.8	88.1	3.79	74.2	30 - 130	30	30 - 130	
%SS1:	81	0.50	79	81	2.40	71	30 - 130	30	30 - 130	
%SS2:	81	0.50	80	84	4.06	72	30 - 130	30	30 - 130	
All target compounds in the Method Blank of this extraction be NONE	atch were ND	less than th	e method	RL with the	he following	g exception	15:			

BATCH 74149 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301437-001A	01/17/13 8:30 AM	01/22/13	01/23/13 12:16 AM	1301437-002A	01/17/13 8:50 AM	01/22/13	01/23/13 12:44 AM
1301437-003A	01/17/13 10:22 AM	01/22/13	01/23/13 1:11 AM	1301437-004A	01/17/13 10:41 AM	01/22/13	01/23/13 3:29 PM
1301437-005A	01/17/13 10:54 AM	01/22/13	01/23/13 3:57 PM	1301437-006A	01/17/13 1:25 PM	01/22/13	01/24/13 12:37 PM
1301437-007A	01/17/13 1:36 PM	01/22/13	01/24/13 1:05 PM	1301437-008A	01/17/13 1:41 PM	01/22/13	01/23/13 4:24 PM
1301437-009A	01/17/13 2:55 PM	01/22/13	01/23/13 3:55 AM	1301437-010A	01/17/13 3:07 PM	01/22/13	01/25/13 1:25 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 74100	100 WorkOrder: 1301437				
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1301422-002A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	0.60	103	105	2.11	109	70 - 130	20	70 - 130		
MTBE	ND	0.10	75	93.9	19.8	113	70 - 130	20	70 - 130		
Benzene	ND	0.10	104	101	2.79	106	70 - 130	20	70 - 130		
Toluene	ND	0.10	101	99.4	1.18	105	70 - 130	20	70 - 130		
Ethylbenzene	ND	0.10	102	98	4.36	101	70 - 130	20	70 - 130		
Xylenes	ND	0.30	102	102	0	105	70 - 130	20	70 - 130		
%SS:	110	0.10	107	100	6.11	102	70 - 130	20	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exception	ns:				

			BATCH 74100 SI	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301437-001A	01/17/13 8:30 AM	01/18/13	01/23/13 7:26 PM	1301437-002A	01/17/13 8:50 AM	01/18/13	01/23/13 8:55 PM
1301437-003A	01/17/13 10:22 AM	01/18/13	01/19/13 10:05 PM	1301437-004A	01/17/13 10:41 AM	01/18/13	01/19/13 9:35 PM
1301437-005A	01/17/13 10:54 AM	01/18/13	01/19/13 11:04 PM	1301437-006A	01/17/13 1:25 PM	01/18/13	01/19/13 11:34 PM
1301437-007A	01/17/13 1:36 PM	01/18/13	01/19/13 3:09 PM	1301437-008A	01/17/13 1:41 PM	01/18/13	01/19/13 4:09 PM
1301437-009A	01/17/13 2:55 PM	01/18/13	01/23/13 9:25 PM	1301437-010A	01/17/13 3:07 PM	01/18/13	01/23/13 10:24 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

_QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	Client Project ID: #12071.23; Hollis	Date Sampled:	01/18/13
530 Howard Street, Ste.300		Date Received:	01/18/13
550 Howard Succe, Ste.500	Client Contact: Leonard Niles	Date Reported:	01/28/13
San Francisco, CA 94105	Client P.O.:	Date Completed:	01/28/13

WorkOrder: 1301438

January 28, 2013

Dear Leonard:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #12071.23; Hollis,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

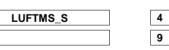
N W	ИсС	am	pbe	ell	A	nc	aly	/tic	co	ıl,	In	C							Cł	HA		C)F	С	US	TC	D	Y	RE	C	OF	RD	/		
	1534 Wi	llow Pc	iss Rd. /	Pitt	tsbu	rg, C	Ca. 9	9456	5-17	701						тι	IRN	AR	OUN	DT	IME	: RU	SH	2	4 HR	4	8 HR	7	2 HR		DAY	r 🗹	10 D.	AY [ן ב
	ww.mcc										m					Ge	oTra	cker I	EDF[9	PDF	9	EDD		Writ	e On	(DW		EQ	uIS [
	Telepho	one: (8)	//) 252-	920	DZ / F	ax:	(923	5) 23			S 14	.0	C																			Clair	m #		
		151			-			-	· · · ·	-	14	-	~		_						,		_		_			_		-,					_
Report To: Leo Company: A(()	havd f	Viles				I To:	-	an								-	L A	-		_	_			Ana	lysis	Rec	uest						-		-
530 Howar	d St. #	\$ 300		-	che										~	TBE	15 BELLI	(KE)							4										
SF. CA 94	1105				E-	Mail	: le	one	ind	0	all	we	+:	1.0	om	8260) / MTBE	12 -	Grease (1664 / 5520 E/B&F)				ters			Hall			(0	-		analysis				
Tele: (415) 30		10			Fa	x: (415	5) =	391		200					8260	201	1552	=	(12		ngel		(s				(6020)	6020)		s ana				
Project #: 207		-11	0.4			-		me:		1L:	5					5 or	HAL	664	(418.	0/ 80	6	s/C		icide	and		NAS	010	10109	()	metals				
Project Location:		ville	CA	1	Pu	rcha	se O	Order	*#							801	d i b	Ise (]	ons	N 826	ticid	clory	des)	Herb	Cs))Cs)	Is / P	8/6		602	ED a				
Sampler Signatur	e: Co		PLING	-	-		N	1AT	RIX				MF	стно	DD	8021	5	Grea	carb	(EP/	I Pes	Are	stici	GI	NO	(SVC	(PAH	/ 200	200.8	010	OLV				
		SAM	PLING							_		H	RE	SER	VED	Gas ((8015) (V	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 /	00.7	Metals (200.7 / 200.8 / 6010 / 6020)	DISSOLVED				
SAMPLE ID	Location/			ers	ter		ater									Has		Ĩ	m	N O	8/80	82 P(41 (151 ()	524/	525/	M/N	als (2	LUFT 5 Metals (200.7	/ 20	-je				
SAMILEID	Field Point Name	Date	Time	Containers	Ground Water	Waste Water	Drinking Water	ater								ILL	TPH as Diesel	trole	trole	BTE	2/ 605	8 / 80	1/ 81	5/81	1.2/1	5.2/6	2	Met	Meth	200.7	sample				
		Date	· · · · ·	Con	puno	iste /	inkin	Sea / Water	_	-	Sludge	e	H	HNO ₃	her	BTEX &	H as	al Po	al Pe	BE	A 50	A 60	A 50'	A 51	A 52	A 52	82	MIT	FT 5	tals (ter sa				
				#	G	Wa	Dr	Sea	Soil	Air	Slu	Other	HCL	HN	Other	BT	T	Tot	Tot	LW	EP	EP	EPA	EP	EPA	EP	EPA	CA	LU	Me	Filter				
B21-4.5-5-	\rightarrow	1/18/13	0830	1					Х			Π					\ge								Х		X								
B21-10-10.5-	7		0856	1					\times			Ц					\ge								\succ		\times								
B21-21.5-22-	7		0935	1					${ imes}$			Ц					\geq								\boxtimes		\ge								
B22-4.5-5-	7		1005	1					\mathbf{X}			\square	_				\bowtie								\bowtie		\ge	-							
B22-10-11.5.	-7		1027	1					Х			Ц					\bowtie								X		X								
B22-14.5-15	7		1034						X	_		Ц	_				X								X		\boldsymbol{X}							_	
B2H-9.5-5-	7		1148	1					X			\square	_				X	-					-	_	\geq		\simeq							_	_
B2H-85-9-	7		1210	1					X			\square	_				X					_			X	- 1	X						_	_	_
B24-21.5-22	>		1244	1					X			\square	_				X							_	X		X							-	_
Disp. Comp	>		1400	\square					${}^{\scriptscriptstyle \!$	-		\square	_				X	-						_	\succ		\ge	-	X			A	X	A	-
**MAI clients MUST						Ļ																						anda					11	~ 1	
gloved, open air, samp	disclose any ole handling	by MAI :	us chemica staff. Non-	discle	osure	o be p	s an i	mmed	liate S	250 s	surch	arge	and	the c	lient	is su	bject	to ful	l legal	l liabi	lity fo	or har	m or m su	ffered	d. Th	ank y	ou fo	r you	r und	ersta	nding	and f	or all	a, iowing	5
us to work safely.	An	1 Martin	Time	_	(Dec	ived		2						T	CE/t	4	Ð	_								-	COM	MEN	TS.		_				
Relinquished By:	N	Date:	Time:	0	Acec	-	By:	_			1	5		G	6001	DCO	NDI			_							-OMI	VIEIN	15:						
Relinguished Bar	XX /	Date:	/ Time:	-	Reco	ived	By:	_	-	-		_	-				ACE A		and the second	AB	-														
	BI	Val	3/72	0		1	5	-0	P	٨	1						LATE ED IN			NER	s														
Relinquished By:	11	Date:	Time	_	Rece	eived	BAC	A	1	~	4		-	-1						-	~ ·	area -	1.0	or	UED		14.77	DDC	MIC.						
industried by:						1	1				V			Р	RES	ERV	ATIC		AS	0&	G M	H<2_	LS	01	HER		HAZA	RDC							
						V																				-			-12						

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1


(925) 252-9262				V	VorkO	rder: 1	1301438	8	ClientC	ode: AWE				
	WaterTrax	WriteOn	✓ EDF	Ē	Excel		EQuIS	√ En	nail	HardCopy	Thir	dParty	J-fla	ag
Report to:					Bi	ll to:				Re	quested T	AT:	5 c	days
Leonard Niles All West Environmental, Inc 530 Howard Street, Ste.300 San Francisco, CA 94105	cc: PO:	₋eonard@allwe ¢12071.23; Holl				All W 530 H	Howard	o /ironment Street, S co, CA 94	te.300		te Receiv te Printe		01/18/2 01/18/2	
(415) 391-2510 FAX: (415) 391-2008	-	, -	-					west1.cor	n				01,10,1	
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6	s (See legen) 7	8 9	10	11	12

1301438-001	B21-4.5-5	Soil	1/18/2013 8:30	Α	Α	A	А			
1301438-002	B21-10-10.5	Soil	1/18/2013 8:56	Α	Α		Α			
1301438-003	B21-21.5-22	Soil	1/18/2013 9:35	Α	Α		Α			
1301438-004	B22-4.5-5	Soil	1/18/2013 10:05	Α	Α		Α			
1301438-005	B22-10-10.5	Soil	1/18/2013 10:27	Α	Α		Α			
1301438-006	B22-14.5-15	Soil	1/18/2013 10:34	Α	Α		Α			
1301438-007	B24-4.5-5	Soil	1/18/2013 11:48	Α	А		А			
1301438-008	B24-8.5-9	Soil	1/18/2013 12:10	Α	Α		Α			
1301438-009	B24-21.5-22	Soil	1/18/2013 12:44	Α	Α		Α			
1301438-010	Disp. Comp.	Soil	1/18/2013 14:00	Α	Α	А	Α			

Test Legend:

1	8270D-PNA_S	
6		
11		

2	GAS8260_S	
7		
12		

PREDF REPORT

5	TPH(D)WSG_S
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A contain testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

3

8

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Date	and Tim	ne Received:	1/18/2013 5	:58:38 PM
Project Name:	#12071.23; Hollis				LogIr	n Review	ved by:		Zoraida Cortez
WorkOrder N°:	1301438	Matrix: <u>Soil</u>			Carri	ier: <u>F</u>	Rob Pringle (M	IAI Courier)	
		<u>Cha</u>	in of Ըւ	ustody (C	OC) Inform	ation			
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No				
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌				
Sample IDs note	d by Client on COC?		Yes	✓	No				
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
			Sample	Receipt	Information	<u>n</u>			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No			NA 🖌	
Shipping contain	er/cooler in good conc	lition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No 🗌				
Sample containe	ers intact?		Yes	✓	No 🗌				
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌				
		Sample Pres	ervatio	<u>n and Ho</u>	<u>ld Time (HT</u>	<u>r) Inform</u>	nation		
All samples rece	ived within holding tim	e?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	er Temp:	3°C			NA	
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes		No 🗌	No VC	OA vials submi	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No				
Metal - pH accep	otable upon receipt (p⊦	I<2)?	Yes		No			NA 🖌	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ice Typ	e: WE	TICE)	1				
* NOTE: If the "N	lo" box is checked, se	e comments below.							

Comments:

	ll Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com					
All West Environmental, Inc	Client F	Project II) : #12	2071.23; Hollis	Date Sample	ed: 01/18/13					
500 H 1 G					Date Receiv	red: 01/18/13	l: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:]	Leona	d Niles	Date Extract	ted: 01/18/13					
San Francisco, CA 94105	Client F	P.O.:			Date Analyz	zed: 01/22/13					
	Volatile Organ	ics by P&	&T an	d GC/MS (Basic '	Target List)*						
Extraction Method: SW5030B	, onache organ	-		od: SW8260B		Work Order: 13014	38				
		. mary a	our moun		9 001 4	Wolk Older. 1901	50				
Lab ID Client ID				B21-	8-001A						
Matrix				B21-							
	Concentration *	DE	Reporting			Concentration *	DE	Reporting			
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit			
Acetone	ND<5.0	100	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.50	100	0.005			
Benzene	ND<0.50	100	0.005	Bromobenzene		ND<0.50	100	0.005			
Bromochloromethane	ND<0.50	100	0.005	Bromodichlorometha	ine	ND<0.50	100	0.005			
Bromoform	ND<0.50	100	0.005	Bromomethane	<u>`````````````````````````````````````</u>	ND<0.50	100	0.005			
2-Butanone (MEK)	ND<2.0	100	0.02	t-Butyl alcohol (TBA	()	ND<5.0	100	0.05			
n-Butyl benzene	1.8	100 100	0.005	sec-Butyl benzene		ND<0.50	100	0.005			
tert-Butyl benzene Carbon Tetrachloride	ND<0.50 ND<0.50	100	0.005	Carbon Disulfide Chlorobenzene		ND<0.50	100 100	0.005			
Chloroethane	ND<0.50	100	0.005	Chloroform		ND<0.50 ND<0.50	100	0.005			
Chloromethane 4-Chlorotoluene	ND<0.50 ND<0.50	100 100	0.005	2-Chlorotoluene Dibromochlorometha		ND<0.50 ND<0.50	100 100	0.005			
	ND<0.40	100	0.005	1,2-Dibromoethane (100	0.005			
1,2-Dibromo-3-chloropropane Dibromomethane	ND<0.40	100	0.004	1,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	ND<0.40 ND<0.50	100	0.004			
1,3-Dichlorobenzene	ND<0.50	100	0.005	1,4-Dichlorobenzene		ND<0.50	100	0.005			
Dichlorodifluoromethane	ND<0.50	100	0.005	1,1-Dichloroethane		ND<0.50	100	0.005			
1,2-Dichloroethane (1,2-DCA)	ND<0.40	100	0.003	1,1-Dichloroethene		ND<0.50	100	0.005			
cis-1,2-Dichloroethene	ND<0.50	100	0.005	trans-1,2-Dichloroeth	ene	ND<0.50	100	0.005			
1,2-Dichloropropane	ND<0.50	100	0.005	1,3-Dichloropropane		ND<0.50	100	0.005			
2,2-Dichloropropane	ND<0.50	100	0.005	1,1-Dichloropropene		ND<0.50	100	0.005			
cis-1,3-Dichloropropene	ND<0.50	100	0.005	trans-1,3-Dichloropro		ND<0.50	100	0.005			
Diisopropyl ether (DIPE)	ND<0.50	100	0.005	Ethylbenzene		3.2	100	0.005			
Ethyl tert-butyl ether (ETBE)	ND<0.50	100	0.005	Freon 113		ND<10	100	0.1			
Hexachlorobutadiene	ND<0.50	100	0.005	Hexachloroethane		ND<0.50	100	0.005			
2-Hexanone	ND<0.50	100	0.005	Isopropylbenzene		ND<0.50	100	0.005			
4-Isopropyl toluene	ND<0.50	100	0.005	Methyl-t-butyl ether	(MTBE)	0.98	100	0.005			
Methylene chloride	ND<0.50	100	0.005	4-Methyl-2-pentanon		ND<0.50	100	0.005			
Naphthalene	3.3	100	0.005	n-Propyl benzene		1.8	100	0.005			
Styrene	ND<0.50	100	0.005	1,1,1,2-Tetrachloroet	hane	ND<0.50	100	0.005			
1,1,2,2-Tetrachloroethane	ND<0.50	100	0.005	Tetrachloroethene		ND<0.50	100	0.005			
Toluene	4.3	100	0.005	1,2,3-Trichlorobenze	ne	ND<0.50	100	0.005			
1,2,4-Trichlorobenzene	ND<0.50	100	0.005	1,1,1-Trichloroethan	e	ND<0.50	100	0.005			
1,1,2-Trichloroethane	ND<0.50	100	0.005	Trichloroethene		ND<0.50	100	0.005			
Trichlorofluoromethane	ND<0.50	100	0.005	1,2,3-Trichloropropa	ne	ND<0.50	100	0.005			
1,2,4-Trimethylbenzene	13	100	0.005	1,3,5-Trimethylbenze	ene	4.1	100	0.005			
Vinyl Chloride	ND<0.50	100	0.005	Xylenes, Total		19	100	0.005			
		Surro	gate R	ecoveries (%)							
%SS1:	11	9		%SS2:		104	1				
%SS3:	95										

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbe</u> "When Q	ll Analytica Quality Counts''	<u>l, Inc.</u>		Toll Free Teleph	v Pass Road, Pittsburg, none: (877) 252-9262 / mpbell.com / E-mail: n			
All West Environmental, Inc	Client I	Project II) : #12	2071.23; Hollis	Date Sample	d: 01/18/13		
520 Harrierd Street, Sta 200					Date Receive	ed: 01/18/13		
530 Howard Street, Ste.300	Client (Contact:	Leona	rd Niles	Date Extracte	ed: 01/18/13		
San Francisco, CA 94105	Client I	P.O.:			Date Analyze	ed: 01/24/13		
	Volatile Organ	ics by P&	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B	8	•		od: SW8260B	8 /	Work Order: 1301	438	
Lab ID				1301/3	88-002A			
Client ID					0-10.5			
Matrix					oil			
Compound	Concentration *	DF	Reporting	Compou		Concentration *	DF	Reporting
•			Limit					Limit
Acetone	ND<50	1000 1000	0.05	tert-Amyl methyl eth Bromobenzene	CI (I AIVIE)	ND<5.0 ND<5.0	1000 1000	0.005
Benzene Bromochloromethane	ND<5.0	1000	0.005	Bromodichlorometha	ane	ND<5.0	1000	0.005
Bromoform	ND<5.0	1000	0.005	Bromomethane	anc	ND<5.0	1000	0.005
2-Butanone (MEK)	ND<3.0	1000	0.005	t-Butyl alcohol (TBA		ND<50	1000	0.005
n-Butyl benzene	7.0	1000	0.002	sec-Butyl benzene	()	ND<50	1000	0.005
tert-Butyl benzene	ND<5.0	1000	0.005	Carbon Disulfide		ND<5.0	1000	0.005
Carbon Tetrachloride	ND<5.0	1000	0.005	Chlorobenzene		ND<5.0	1000	0.005
Chloroethane	ND<5.0	1000	0.005	Chloroform		ND<5.0	1000	0.005
Chloromethane	ND<5.0	1000		2-Chlorotoluene		ND<5.0	1000	0.005
4-Chlorotoluene	ND<5.0	1000			ane	ND<5.0	1000	0.005
1,2-Dibromo-3-chloropropane	ND<4.0	1000	0.003	1,2-Dibromoethane (ND<4.0	1000	0.003
Dibromomethane	ND<5.0	1000	0.004	1,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	ND<5.0	1000	0.004
1,3-Dichlorobenzene	ND<5.0	1000	0.005	1,4-Dichlorobenzene		ND<5.0	1000	0.005
Dichlorodifluoromethane	ND<5.0	1000	0.005	1,1-Dichloroethane	, 	ND<5.0	1000	0.005
1,2-Dichloroethane (1,2-DCA)	ND<4.0	1000	0.004	1,1-Dichloroethene		ND<5.0	1000	0.005
cis-1,2-Dichloroethene	ND<5.0	1000	0.005	trans-1,2-Dichloroet	hene	ND<5.0	1000	0.005
1,2-Dichloropropane	ND<5.0	1000	0.005	1,3-Dichloropropane		ND<5.0	1000	0.005
2,2-Dichloropropane	ND<5.0	1000	0.005	1,1-Dichloropropene		ND<5.0	1000	0.005
cis-1,3-Dichloropropene	ND<5.0	1000	0.005	trans-1,3-Dichloropr		ND<5.0	1000	0.005
Diisopropyl ether (DIPE)	ND<5.0	1000	0.005	Ethylbenzene	•	31	1000	0.005
Ethyl tert-butyl ether (ETBE)	ND<5.0	1000	0.005	Freon 113		ND<100	1000	0.1
Hexachlorobutadiene	ND<5.0	1000	0.005	Hexachloroethane		ND<5.0	1000	0.005
2-Hexanone	ND<5.0	1000	0.005	Isopropylbenzene		ND<5.0	1000	0.005
4-Isopropyl toluene	ND<5.0	1000	0.005	Methyl-t-butyl ether	(MTBE)	7.6	1000	0.005
Methylene chloride	ND<5.0	1000	0.005	4-Methyl-2-pentanor		ND<5.0	1000	0.005
Naphthalene	9.6	1000	0.005	n-Propyl benzene	· · · · · · · · · · · · · · · · · · ·	11	1000	0.005
Styrene	ND<5.0	1000	0.005	1,1,1,2-Tetrachloroe	thane	ND<5.0	1000	0.005
1,1,2,2-Tetrachloroethane	ND<5.0	1000	0.005	Tetrachloroethene		ND<5.0	1000	0.005
Toluene	88	1000	0.005	1,2,3-Trichlorobenze	ene	ND<5.0	1000	0.005
1,2,4-Trichlorobenzene	ND<5.0	1000	0.005	1,1,1-Trichloroethan	e	ND<5.0	1000	0.005
1,1,2-Trichloroethane	ND<5.0	1000	0.005	Trichloroethene		ND<5.0	1000	0.005
Trichlorofluoromethane	ND<5.0	1000	0.005	1,2,3-Trichloropropa	ine	ND<5.0	1000	0.005
1,2,4-Trimethylbenzene	68	1000	0.005	1,3,5-Trimethylbenz	ene	23	1000	0.005
Vinyl Chloride	ND<5.0	1000	0.005	Xylenes, Total		170	1000	0.005
		Surro	ogate R	ecoveries (%)				
%SS1:	11	7		%SS2:		10	6	
%SS3:	9	1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com				
All West Environmental, Inc	Client F	Project IE): #12	2071.23; Hollis	Date Sampl	ed: 01/18/13				
					Date Receiv	ved: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:]	Leona	rd Niles	Date Extrac	xtracted: 01/18/13				
San Francisco, CA 94105	Client F	P.O.:			Date Analyz	zed: 01/24/13				
	Volatile Organi	ics by PA	bT an	d GC/MS (Basic '	Target I ist)*					
Extraction Method: SW5030B	volatile Organ	-		od: SW8260B	Target List)	Work Order: 13014	29			
		Anaryu			0.0024	Work Order. 15014	.30			
Lab ID					8-003A					
Client ID Matrix					1.5-22 pil					
		DE	Reporting				DE	Reporting		
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Ĺimit		
Acetone	ND<3.3	67	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.33	67	0.005		
Benzene	1.2	67	0.005	Bromobenzene		ND<0.33	67	0.005		
Bromochloromethane	ND<0.33	67	0.005	Bromodichlorometha	ane	ND<0.33	67	0.005		
Bromoform	ND<0.33	67	0.005	Bromomethane	```	ND<0.33	67	0.005		
2-Butanone (MEK)	ND<1.3	67	0.02	t-Butyl alcohol (TBA	A)	ND<3.3	67	0.05		
n-Butyl benzene	0.50	67	0.005	sec-Butyl benzene		ND<0.33	67	0.005		
tert-Butyl benzene	ND<0.33	67	0.005	Carbon Disulfide		ND<0.33	67	0.005		
Carbon Tetrachloride	ND<0.33	67	0.005	Chlorobenzene		ND<0.33	67	0.005		
Chloroethane	ND<0.33	67	0.005	Chloroform 2-Chlorotoluene		ND<0.33	67	0.005		
Chloromethane	ND<0.33	67	0.005	Dibromochloromethane		ND<0.33	67	0.005		
4-Chlorotoluene	ND<0.33	67	0.005	1,2-Dibromoethane (EDB)		ND<0.33	67	0.005		
1,2-Dibromo-3-chloropropane Dibromomethane	ND<0.27 ND<0.33	67 67	0.004	1,2-Dichlorobenzene		ND<0.27 ND<0.33	67 67	0.004		
1,3-Dichlorobenzene	ND<0.33	67	0.005	1,4-Dichlorobenzene		ND<0.33	67	0.005		
Dichlorodifluoromethane	ND<0.33	67	0.005	1,1-Dichloroethane		ND<0.33	67	0.005		
1,2-Dichloroethane (1,2-DCA)	ND<0.27	67	0.003	1,1-Dichloroethene		ND<0.33	67	0.005		
cis-1,2-Dichloroethene	ND<0.33	67	0.004	trans-1,2-Dichloroeth	hene	ND<0.33	67	0.005		
1,2-Dichloropropane	ND<0.33	67	0.005	1,3-Dichloropropane		ND<0.33	67	0.005		
2,2-Dichloropropane	ND<0.33	67	0.005	1,1-Dichloropropene		ND<0.33	67	0.005		
cis-1,3-Dichloropropene	ND<0.33	67	0.005	trans-1,3-Dichloropro		ND<0.33	67	0.005		
Diisopropyl ether (DIPE)	ND<0.33	67	0.005	Ethylbenzene	opene	1.8	67	0.005		
Ethyl tert-butyl ether (ETBE)	ND<0.33	67	0.005	Freon 113		ND<6.7	67	0.1		
Hexachlorobutadiene	ND<0.33	67	0.005	Hexachloroethane		ND<0.33	67	0.005		
2-Hexanone	ND<0.33	67	0.005	Isopropylbenzene		ND<0.33	67	0.005		
4-Isopropyl toluene	ND<0.33	67	0.005	Methyl-t-butyl ether	(MTBE)	12	67	0.005		
Methylene chloride	ND<0.33	67	0.005	4-Methyl-2-pentanor		ND<0.33	67	0.005		
Naphthalene	0.77	67	0.005	n-Propyl benzene		0.67	67	0.005		
Styrene	ND<0.33	67	0.005	1,1,1,2-Tetrachloroet	thane	ND<0.33	67	0.005		
1,1,2,2-Tetrachloroethane	ND<0.33	67	0.005	Tetrachloroethene		ND<0.33	67	0.005		
Toluene	4.9	67	0.005	1,2,3-Trichlorobenze	ene	ND<0.33	67	0.005		
1,2,4-Trichlorobenzene	ND<0.33	67	0.005	1,1,1-Trichloroethan	e	ND<0.33	67	0.005		
1,1,2-Trichloroethane	ND<0.33	67	0.005	Trichloroethene		ND<0.33	67	0.005		
Trichlorofluoromethane	ND<0.33	67	0.005	1,2,3-Trichloropropa	ne	ND<0.33	67	0.005		
1,2,4-Trimethylbenzene	4.6	67	0.005	1,3,5-Trimethylbenze	ene	1.5	67	0.005		
Vinyl Chloride	ND<0.33	67	0.005	Xylenes, Total		11	67	0.005		
		Surro	gate R	ecoveries (%)						
%SS1:	12	2		%SS2:		108	3			
%SS3:	88	2		1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytical Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph	Pass Road, Pittsburg, C one: (877) 252-9262 / F npbell.com / E-mail: ma	ax: (925) 252-9269				
All West Environmental, Inc	Client F	Project ID): #12	2071.23; Hollis	Date Sampled	: 01/18/13				
					Date Received	l: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact: 1	Leona	rd Niles	Date Extracted	ed: 01/18/13				
San Francisco, CA 94105	Client P	P.O.:			Date Analyzed	1: 01/24/13				
	Volatile Organi	ics by Pð	&T an	d GC/MS (Basic	Target List)*					
Extraction Method: SW5030B	and the gradest	-		od: SW8260B		Work Order: 13014	138			
Lab ID				130143	8-004A					
Client ID					4.5-5					
Matrix					oil					
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit		
Acetone	ND<1.2	25	0.05	tert-Amyl methyl eth		ND<0.12	25	0.005		
Benzene	0.16	25	0.005	Bromobenzene	·· (1/11/12)	ND<0.12	25	0.005		
Bromochloromethane	ND<0.12	25	0.005	Bromodichlorometha	nne	ND<0.12	25	0.005		
Bromoform	ND<0.12	25	0.005	Bromomethane		ND<0.12	25	0.005		
2-Butanone (MEK)	ND<0.50	25	0.02	t-Butyl alcohol (TBA)	ND<1.2	25	0.05		
n-Butyl benzene	0.54	25	0.005	sec-Butyl benzene)	ND<0.12	25	0.005		
tert-Butyl benzene	ND<0.12	25	0.005	Carbon Disulfide		ND<0.12	25	0.005		
Carbon Tetrachloride	ND<0.12	25	0.005	Chlorobenzene		ND<0.12	25	0.005		
Chloroethane	ND<0.12	25	0.005	Chloroform		ND<0.12	25	0.005		
Chloromethane	ND<0.12	25	0.005	2-Chlorotoluene		ND<0.12	25	0.005		
4-Chlorotoluene	ND<0.12	25	0.005	Dibromochloromethane		ND<0.12	25	0.005		
1,2-Dibromo-3-chloropropane	ND<0.10	25	0.004	1,2-Dibromoethane (EDB)		ND<0.10	25	0.004		
Dibromomethane	ND<0.12	25	0.005	1,2-Dichlorobenzene	}	ND<0.12	25	0.005		
1,3-Dichlorobenzene	ND<0.12	25	0.005	1,4-Dichlorobenzene	}	ND<0.12	25	0.005		
Dichlorodifluoromethane	ND<0.12	25	0.005	1,1-Dichloroethane		ND<0.12	25	0.005		
1,2-Dichloroethane (1,2-DCA)	ND<0.10	25	0.004	1,1-Dichloroethene		ND<0.12	25	0.005		
cis-1,2-Dichloroethene	ND<0.12	25	0.005	trans-1,2-Dichloroet	nene	ND<0.12	25	0.005		
1,2-Dichloropropane	ND<0.12	25	0.005	1,3-Dichloropropane		ND<0.12	25	0.005		
2,2-Dichloropropane	ND<0.12	25	0.005	1,1-Dichloropropene		ND<0.12	25	0.005		
cis-1,3-Dichloropropene	ND<0.12	25	0.005	trans-1,3-Dichloropr	opene	ND<0.12	25	0.005		
Diisopropyl ether (DIPE)	ND<0.12	25	0.005	Ethylbenzene		1.5	25	0.005		
Ethyl tert-butyl ether (ETBE)	ND<0.12	25	0.005	Freon 113		ND<2.5	25	0.1		
Hexachlorobutadiene	ND<0.12	25	0.005	Hexachloroethane		ND<0.12	25	0.005		
2-Hexanone	ND<0.12	25	0.005	Isopropylbenzene		0.16	25	0.005		
4-Isopropyl toluene	0.13	25	0.005	Methyl-t-butyl ether		0.45	25	0.005		
Methylene chloride	ND<0.12	25	0.005	4-Methyl-2-pentanon	ne (MIBK)	ND<0.12	25	0.005		
Naphthalene	0.74		0.005	n-Propyl benzene		0.74	25	0.005		
Styrene	ND<0.12	25	0.005	1,1,1,2-Tetrachloroe	thane	ND<0.12	25	0.005		
1,1,2,2-Tetrachloroethane	ND<0.12	25	0.005	Tetrachloroethene		ND<0.12	25	0.005		
Toluene	ND<0.12	25	0.005	1,2,3-Trichlorobenze		ND<0.12	25	0.005		
1,2,4-Trichlorobenzene	ND<0.12	25	0.005	1,1,1-Trichloroethan	e	ND<0.12	25	0.005		
1,1,2-Trichloroethane	ND<0.12	25	0.005	Trichloroethene		ND<0.12	25	0.005		
Trichlorofluoromethane	ND<0.12	25	0.005	1,2,3-Trichloropropa		ND<0.12	25	0.005		
1,2,4-Trimethylbenzene	4.2	25	0.005	1,3,5-Trimethylbenz	ene	1.4	25	0.005		
Vinyl Chloride	ND<0.12	25	0.005	Xylenes, Total		6.3	25	0.005		
			gate R	ecoveries (%)						
%SS1:	11			%SS2:		107	7			
%SS3:	92	,		1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytical Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com				
All West Environmental, Inc	Client F	Project II): #12	2071.23; Hollis	Date Sample	ed: 01/18/13				
					Date Receiv	red: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:	Leona	rd Niles	Date Extrac	acted: 01/18/13				
San Francisco, CA 94105	Client P	P.O.:			Date Analyz	xed: 01/25/13				
	Volatile Organi	ics by PA	bT an	d GC/MS (Basic '	Target I ist)*					
Extraction Method: SW5030B	volatile Organi	•		od: SW8260B	Taiget List)	Work Order: 13014	29			
		Anaiyu			0.007.	work Order. 15014	50			
Lab ID					8-005A					
Client ID Matrix					0-10.5 pil					
		DE	Reporting				DE	Reporting		
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Ĺimit		
Acetone	ND<2.0	40	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.20	40	0.005		
Benzene	0.79	40	0.005	Bromobenzene		ND<0.20	40	0.005		
Bromochloromethane	ND<0.20	40	0.005	Bromodichlorometha	ine	ND<0.20	40	0.005		
Bromoform	ND<0.20	40	0.005	Bromomethane	```	ND<0.20	40	0.005		
2-Butanone (MEK)	ND<0.80	40	0.02	t-Butyl alcohol (TBA	A)	ND<2.0	40	0.05		
n-Butyl benzene	0.27	40	0.005	sec-Butyl benzene		ND<0.20	40	0.005		
tert-Butyl benzene	ND<0.20	40	0.005	Carbon Disulfide		ND<0.20	40	0.005		
Carbon Tetrachloride	ND<0.20	40	0.005	Chlorobenzene		ND<0.20	40	0.005		
Chloroethane	ND<0.20	40	0.005	Chloroform 2-Chlorotoluene		ND<0.20	40	0.005		
Chloromethane	ND<0.20	40	0.005	Dibromochloromethane		ND<0.20	40	0.005		
4-Chlorotoluene	ND<0.20	40	0.005			ND<0.20	40	0.005		
1,2-Dibromo-3-chloropropane Dibromomethane	ND<0.16 ND<0.20	40 40	0.004	1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene		ND<0.16 ND<0.20	40 40	0.004		
1,3-Dichlorobenzene	ND<0.20	40	0.005	1,4-Dichlorobenzene		ND<0.20	40	0.005		
Dichlorodifluoromethane	ND<0.20	40	0.005	1,1-Dichloroethane		ND<0.20	40	0.005		
1,2-Dichloroethane (1,2-DCA)	ND<0.16	40	0.003	1,1-Dichloroethene		ND<0.20	40	0.005		
cis-1,2-Dichloroethene	ND<0.20	40	0.004	trans-1,2-Dichloroeth	nene	ND<0.20	40	0.005		
1,2-Dichloropropane	ND<0.20	40	0.005	1,3-Dichloropropane		ND<0.20	40	0.005		
2,2-Dichloropropane	ND<0.20	40	0.005	1,1-Dichloropropene		ND<0.20	40	0.005		
cis-1,3-Dichloropropene	ND<0.20	40	0.005	trans-1,3-Dichloropro		ND<0.20	40	0.005		
Diisopropyl ether (DIPE)	ND<0.20	40	0.005	Ethylbenzene	opene	1.2	40	0.005		
Ethyl tert-butyl ether (ETBE)	ND<0.20	40	0.005	Freon 113		ND<4.0	40	0.1		
Hexachlorobutadiene	ND<0.20	40	0.005	Hexachloroethane		ND<0.20	40	0.005		
2-Hexanone	ND<0.20	40	0.005	Isopropylbenzene		ND<0.20	40	0.005		
4-Isopropyl toluene	ND<0.20	40	0.005	Methyl-t-butyl ether	(MTBE)	3.1	40	0.005		
Methylene chloride	ND<0.20	40	0.005	4-Methyl-2-pentanor		ND<0.20	40	0.005		
Naphthalene	0.47	40	0.005	n-Propyl benzene		0.39	40	0.005		
Styrene	ND<0.20	40	0.005	1,1,1,2-Tetrachloroet	hane	ND<0.20	40	0.005		
1,1,2,2-Tetrachloroethane	ND<0.20	40	0.005	Tetrachloroethene		ND<0.20	40	0.005		
Toluene	3.3	40	0.005	1,2,3-Trichlorobenze	ne	ND<0.20	40	0.005		
1,2,4-Trichlorobenzene	ND<0.20	40	0.005	1,1,1-Trichloroethan	e	ND<0.20	40	0.005		
1,1,2-Trichloroethane	ND<0.20	40	0.005	Trichloroethene		ND<0.20	40	0.005		
Trichlorofluoromethane	ND<0.20	40	0.005	1,2,3-Trichloropropa	ne	ND<0.20	40	0.005		
1,2,4-Trimethylbenzene	2.6	40	0.005	1,3,5-Trimethylbenze	ene	0.85	40	0.005		
Vinyl Chloride	ND<0.20	40	0.005	Xylenes, Total		6.0	40	0.005		
		Surro	gate R	ecoveries (%)						
%SS1:	11	6		%SS2:		10	7			
%SS3:	95			1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

All West Environmental, Inc 530 Howard Street, Ste.300 San Francisco, CA 94105		roject II	<u>)</u> ∙ #1′	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
	Client		$J. \pi 12$	2071.23; Hollis	Date Sampled	: 01/18/13					
	Client (Date Received	l: 01/18/13					
San Francisco, CA 94105	Cheft	Contact:	Leona	rd Niles	Date Extracted	racted: 01/18/13					
	Client P	2.0.:				yzed: 01/25/13					
	Volatile Organi	cs by Pa	&T an	d GC/MS (Basic	Target List)*						
Extraction Method: SW5030B	, on one organi	-		od: SW8260B	Turger List)	Work Order: 13014	38				
Lab ID				130143	8-006A						
Client ID				B22-1	4.5-15						
Matrix				S	oil						
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit			
Acetone	ND<0.50	10	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.050	10	0.005			
Benzene	1.2	10	0.005	Bromobenzene		ND<0.050	10	0.005			
Bromochloromethane	ND<0.050	10	0.005	Bromodichlorometha	ane	ND<0.050	10	0.005			
Bromoform	ND<0.050	10	0.005	Bromomethane		ND<0.050	10	0.005			
2-Butanone (MEK)	ND<0.20	10	0.02	t-Butyl alcohol (TBA	A)	ND<0.50	10	0.05			
n-Butyl benzene	0.11	10	0.005	sec-Butyl benzene		ND<0.050	10	0.005			
tert-Butyl benzene	ND<0.050	10	0.005	Carbon Disulfide		ND<0.050	10	0.005			
Carbon Tetrachloride	ND<0.050	10	0.005	Chlorobenzene		ND<0.050	10	0.005			
Chloroethane	ND<0.050	10	0.005	Chloroform		ND<0.050	10	0.005			
Chloromethane	ND<0.050	10	0.005	2-Chlorotoluene		ND<0.050	10	0.005			
4-Chlorotoluene	ND<0.050	10	0.005	Dibromochloromethane		ND<0.050	10	0.005			
1,2-Dibromo-3-chloropropane	ND<0.040	10	0.004	1,2-Dibromoethane (EDB)		ND<0.040	10	0.004			
Dibromomethane	ND<0.050	10	0.005	1,2-Dichlorobenzene		ND<0.050	10	0.005			
1,3-Dichlorobenzene	ND<0.050	10	0.005	1,4-Dichlorobenzene	2	ND<0.050	10	0.005			
Dichlorodifluoromethane	ND<0.050	10	0.005	1,1-Dichloroethane		ND<0.050	10	0.005			
1,2-Dichloroethane (1,2-DCA)	ND<0.040	10	0.004	1,1-Dichloroethene		ND<0.050	10	0.005			
cis-1,2-Dichloroethene	ND<0.050	10	0.005	trans-1,2-Dichloroeth	nene	ND<0.050	10	0.005			
1,2-Dichloropropane	ND<0.050	10	0.005	1,3-Dichloropropane		ND<0.050	10	0.005			
2,2-Dichloropropane	ND<0.050	10	0.005	1,1-Dichloropropene		ND<0.050	10	0.005			
cis-1,3-Dichloropropene	ND<0.050	10	0.005	trans-1,3-Dichloropr	opene	ND<0.050	10	0.005			
Diisopropyl ether (DIPE)	ND<0.050	10	0.005	Ethylbenzene		0.46	10	0.005			
Ethyl tert-butyl ether (ETBE)	ND<0.050	10	0.005	Freon 113		ND<1.0	10	0.1			
Hexachlorobutadiene	ND<0.050	10	0.005	Hexachloroethane		ND<0.050	10	0.005			
2-Hexanone	ND<0.050	10	0.005	Isopropylbenzene		ND<0.050	10	0.005			
4-Isopropyl toluene	ND<0.050	10	0.005	Methyl-t-butyl ether	(MTBE)	1.2	10	0.005			
Methylene chloride	ND<0.050	10	0.005	4-Methyl-2-pentanor	ne (MIBK)	ND<0.050	10	0.005			
Naphthalene	0.14	10	0.005	n-Propyl benzene		0.14	10	0.005			
Styrene	ND<0.050	10	0.005	1,1,1,2-Tetrachloroet	thane	ND<0.050	10	0.005			
1,1,2,2-Tetrachloroethane	ND<0.050	10	0.005	Tetrachloroethene		ND<0.050	10	0.005			
Toluene	1.7	10	0.005	1,2,3-Trichlorobenze	ene	ND<0.050	10	0.005			
1,2,4-Trichlorobenzene	ND<0.050	10	0.005	1,1,1-Trichloroethan	e	ND<0.050	10	0.005			
1,1,2-Trichloroethane	ND<0.050	10	0.005	Trichloroethene		ND<0.050	10	0.005			
Trichlorofluoromethane	ND<0.050	10	0.005	1,2,3-Trichloropropa		ND<0.050	10	0.005			
1,2,4-Trimethylbenzene	0.81	10	0.005	1,3,5-Trimethylbenze	ene	0.26	10	0.005			
Vinyl Chloride	ND<0.050	10	0.005	Xylenes, Total		2.1	10	0.005			
0/ 551.			ogate R	ecoveries (%)		100	>				
%SS1: %SS3:	91			%SS2:		108	5				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l <u>, Inc</u> .		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com					
All West Environmental, Inc	Client F	Project II	D: #12	2071.23; Hollis	Date Sample	ed: 01/18/13					
520 II 1 Gun at . Gun 200					Date Receiv	ed: 01/18/13					
530 Howard Street, Ste.300	Client C	Contact:	Leonai	rd Niles	Date Extract	acted: 01/18/13					
San Francisco, CA 94105	Client F	P.O.:			Date Analyz	ed: 01/25/13					
	Volatile Organ	ics by Pa	&T an	d GC/MS (Basic '	Target List)*						
Extraction Method: SW5030B		•		od: SW8260B		Work Order: 13014	138				
Lab ID				130143	8-007A						
Client ID					4.5-5						
Matrix					oil						
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit			
Acetone	0.096	1.0	0.05	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.005			
Benzene	ND	1.0	0.005	Bromobenzene	()	ND	1.0	0.005			
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ine	ND	1.0	0.005			
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005			
2-Butanone (MEK)	0.029	1.0	0.02	t-Butyl alcohol (TBA	()	ND	1.0	0.05			
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	*	ND	1.0	0.005			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005			
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005			
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005			
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005			
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005			
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004			
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005			
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005			
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005			
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroeth	nene	ND	1.0	0.005			
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005			
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005			
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropre	opene	ND	1.0	0.005			
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1			
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005			
2-Hexanone	ND	1.0		Isopropylbenzene		ND	1.0	0.005			
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether		0.12	1.0	0.005			
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanor	ne (MIBK)	ND	1.0	0.005			
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005			
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroet	hane	ND	1.0	0.005			
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005			
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenze		ND	1.0	0.005			
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	e	ND	1.0	0.005			
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005			
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa		ND	1.0	0.005			
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenze	ene	ND	1.0	0.005			
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005			
			ogate Re	ecoveries (%)							
%SS1:	12			%SS2:		11	1				
%SS3:	93	3									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytical Quality Counts''	, Inc.		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com			
All West Environmental, Inc	Client P	roject Il	D: #12	2071.23; Hollis	Date Sample	ed: 01/18/13			
520 H 1 Charles 64, 200					Date Receiv	ed: 01/18/13			
530 Howard Street, Ste.300	Client C	Contact:	Leonar	rd Niles	Date Extracted: 01/18/13				
San Francisco, CA 94105	Client P	2.0.:			Date Analyz	zed: 01/24/13			
	Volatile Organi	ics by P	&T an	d GC/MS (Basic	Target List)*				
Extraction Method: SW5030B		Analyt	tical Metho	od: SW8260B		Work Order: 13014	38		
Lab ID				130143	38-008A				
Client ID					-8.5-9				
Matrix				S	oil				
Compound	Concentration *	DF	Reporting Limit	Compou	und	Concentration *	DF	Reporting Limit	
Acetone	ND<5.0	100	0.05	tert-Amyl methyl eth	ner (TAME)	ND<0.50	100	0.005	
Benzene	0.53	100	0.005	Bromobenzene		ND<0.50	100	0.005	
Bromochloromethane	ND<0.50	100	0.005	Bromodichlorometha	ane	ND<0.50	100	0.005	
Bromoform	ND<0.50	100	0.005	Bromomethane		ND<0.50	100	0.005	
2-Butanone (MEK)	ND<2.0	100	0.02	t-Butyl alcohol (TBA	A)	ND<5.0	100	0.05	
n-Butyl benzene	1.2	100	0.005	sec-Butyl benzene	/	ND<0.50	100	0.005	
tert-Butyl benzene	ND<0.50	100	0.005	Carbon Disulfide		ND<0.50	100	0.005	
Carbon Tetrachloride	ND<0.50	100	0.005	Chlorobenzene		ND<0.50	100	0.005	
Chloroethane	ND<0.50	100	0.005	Chloroform		ND<0.50	100	0.005	
Chloromethane	ND<0.50	100	0.005	2-Chlorotoluene		ND<0.50	100	0.005	
4-Chlorotoluene	ND<0.50	100	0.005	Dibromochloromethane		ND<0.50	100	0.005	
1,2-Dibromo-3-chloropropane	ND<0.40	100	0.004	1,2-Dibromoethane (EDB)		ND<0.40	100	0.004	
Dibromomethane	ND<0.50	100	0.005	1,2-Dichlorobenzene		ND<0.50	100	0.005	
1,3-Dichlorobenzene	ND<0.50	100	0.005	1,4-Dichlorobenzene	9	ND<0.50	100	0.005	
Dichlorodifluoromethane	ND<0.50	100	0.005	1,1-Dichloroethane		ND<0.50	100	0.005	
1,2-Dichloroethane (1,2-DCA)	ND<0.40	100	0.004	1,1-Dichloroethene		ND<0.50	100	0.005	
cis-1,2-Dichloroethene	ND<0.50	100	0.005	trans-1,2-Dichloroet	hene	ND<0.50	100	0.005	
1,2-Dichloropropane	ND<0.50	100	0.005	1,3-Dichloropropane	e	ND<0.50	100	0.005	
2,2-Dichloropropane	ND<0.50	100	0.005	1,1-Dichloropropene	e	ND<0.50	100	0.005	
cis-1,3-Dichloropropene	ND<0.50	100	0.005	trans-1,3-Dichloropr	opene	ND<0.50	100	0.005	
Diisopropyl ether (DIPE)	ND<0.50	100	0.005	Ethylbenzene		4.1	100	0.005	
Ethyl tert-butyl ether (ETBE)	ND<0.50	100	0.005	Freon 113		ND<10	100	0.1	
Hexachlorobutadiene	ND<0.50	100	0.005	Hexachloroethane		ND<0.50	100	0.005	
2-Hexanone	ND<0.50	100	0.005	Isopropylbenzene		ND<0.50	100	0.005	
4-Isopropyl toluene	ND<0.50	100	0.005	Methyl-t-butyl ether	(MTBE)	0.53	100	0.005	
Methylene chloride	ND<0.50	100	0.005	4-Methyl-2-pentanon	ne (MIBK)	ND<0.50	100	0.005	
Naphthalene	1.6	100	0.005	n-Propyl benzene		1.6	100	0.005	
Styrene	ND<0.50	100	0.005	1,1,1,2-Tetrachloroe	thane	ND<0.50	100	0.005	
1,1,2,2-Tetrachloroethane	ND<0.50	100	0.005	Tetrachloroethene		ND<0.50	100	0.005	
Toluene	6.8	100	0.005	1,2,3-Trichlorobenze		ND<0.50	100	0.005	
1,2,4-Trichlorobenzene	ND<0.50	100	0.005	1,1,1-Trichloroethan	ie	ND<0.50	100	0.005	
1,1,2-Trichloroethane	ND<0.50	100	0.005	Trichloroethene		ND<0.50	100	0.005	
Trichlorofluoromethane	ND<0.50	100	0.005	1,2,3-Trichloropropa		ND<0.50	100	0.005	
1,2,4-Trimethylbenzene	10	100	0.005	1,3,5-Trimethylbenz	ene	3.5	100	0.005	
Vinyl Chloride	ND<0.50	100	0.005	Xylenes, Total		23	100	0.005	
		Surr	ogate Re	ecoveries (%)					
%SS1:	122			%SS2:		106	5		
%SS3:	93			1					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	II Analytica Quality Counts''	l <u>, Inc.</u>	http://www.mccampbell.com / E-mail: main@mccampbell.com							
All West Environmental, Inc	Client F	Project IE): #12	2071.23; Hollis	Date Sample	ed: 01/18/13				
500 H 1 G					Date Receiv	ed: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact:]	Leona	rd Niles	Date Extract	cted: 01/18/13				
San Francisco, CA 94105	Client F	P.O.:			Date Analyz	ed: 01/25/13				
	Volatile Organ	ics by P&	≩T an	d GC/MS (Basic '						
Extraction Method: SW5030B	· · · · · · · · · · · · · · · · · · ·	-		od: SW8260B		Work Order: 13014	38			
		j			9,000 A		50			
Lab ID Client ID					8-009A 1.5-22					
Matrix					Dil					
	Concentration *		Reporting			Company tractions *	DE	Reporting		
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit		
Acetone	ND<0.10	2.0	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.010	2.0	0.005		
Benzene	0.022	2.0	0.005	Bromobenzene		ND<0.010	2.0	0.005		
Bromochloromethane	ND<0.010	2.0	0.005	Bromodichlorometha	ine	ND<0.010	2.0	0.005		
Bromoform	ND<0.010	2.0 2.0	0.005	Bromomethane)	ND<0.010	2.0	0.005		
2-Butanone (MEK)	ND<0.040		0.02	t-Butyl alcohol (TBA	A)	ND<0.10	2.0	0.05		
n-Butyl benzene	ND<0.010	2.0	0.005	sec-Butyl benzene		ND<0.010	2.0	0.005		
tert-Butyl benzene	ND<0.010	2.0	0.005	Carbon Disulfide		ND<0.010	2.0	0.005		
Carbon Tetrachloride	ND<0.010	2.0	0.005	Chlorobenzene		ND<0.010	2.0	0.005		
Chloroethane	ND<0.010	2.0	0.005	Chloroform 2-Chlorotoluene		ND<0.010	2.0	0.005		
Chloromethane	ND<0.010	2.0	0.005	Dibromochloromethane		ND<0.010	2.0	0.005		
4-Chlorotoluene	ND<0.010	2.0	0.005			ND<0.010	2.0	0.005		
1,2-Dibromo-3-chloropropane Dibromomethane	ND<0.0080	2.0 2.0	0.004	1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene		ND<0.0080	2.0	0.004		
1,3-Dichlorobenzene	ND<0.010 ND<0.010	2.0	0.005	1,4-Dichlorobenzene		ND<0.010 ND<0.010	2.0	0.005		
Dichlorodifluoromethane	ND<0.010	2.0	0.005	1,1-Dichloroethane		ND<0.010	2.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND<0.0080	2.0	0.003	1,1-Dichloroethene		ND<0.010	2.0	0.005		
cis-1,2-Dichloroethene	ND<0.010	2.0	0.004	trans-1,2-Dichloroeth	hene	ND<0.010	2.0	0.005		
1,2-Dichloropropane	ND<0.010	2.0	0.005	1,3-Dichloropropane		ND<0.010	2.0	0.005		
2,2-Dichloropropane	ND<0.010	2.0	0.005	1,1-Dichloropropene		ND<0.010	2.0	0.005		
cis-1,3-Dichloropropene	ND<0.010	2.0	0.005	trans-1,3-Dichloropro		ND<0.010	2.0	0.005		
Diisopropyl ether (DIPE)	ND<0.010	2.0	0.005	Ethylbenzene	opene	0.032	2.0	0.005		
Ethyl tert-butyl ether (ETBE)	ND<0.010	2.0	0.005	Freon 113		ND<0.20	2.0	0.005		
Hexachlorobutadiene	ND<0.010	2.0	0.005	Hexachloroethane		ND<0.010	2.0	0.005		
2-Hexanone	ND<0.010	2.0	0.005	Isopropylbenzene		ND<0.010	2.0	0.005		
4-Isopropyl toluene	ND<0.010	2.0	0.005	Methyl-t-butyl ether	(MTBE)	0.24	2.0	0.005		
Methylene chloride	ND<0.010	2.0	0.005	4-Methyl-2-pentanor		ND<0.010	2.0	0.005		
Naphthalene	ND<0.010	2.0	0.005	n-Propyl benzene		ND<0.010	2.0	0.005		
Styrene	ND<0.010	2.0	0.005	1,1,1,2-Tetrachloroet	hane	ND<0.010	2.0	0.005		
1,1,2,2-Tetrachloroethane	ND<0.010	2.0	0.005	Tetrachloroethene		ND<0.010	2.0	0.005		
Toluene	0.11	2.0	0.005	1,2,3-Trichlorobenze	ne	ND<0.010	2.0	0.005		
1,2,4-Trichlorobenzene	ND<0.010	2.0	0.005	1,1,1-Trichloroethan		ND<0.010	2.0	0.005		
1,1,2-Trichloroethane	ND<0.010	2.0	0.005	Trichloroethene		ND<0.010	2.0	0.005		
Trichlorofluoromethane	ND<0.010	2.0	0.005	1,2,3-Trichloropropa	ne	ND<0.010	2.0	0.005		
1,2,4-Trimethylbenzene	0.065	2.0	0.005	1,3,5-Trimethylbenze	ene	0.019	2.0	0.005		
Vinyl Chloride	ND<0.010	2.0	0.005	Xylenes, Total		0.19	2.0	0.005		
		Surro	gate R	ecoveries (%)						
%SS1:	11		8 .	%SS2:		109)			
%SS3:	92					10,				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l <u>, Inc</u> .		Toll Free Teleph		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com				
All West Environmental, Inc	Client F	Project ID): #12	2071.23; Hollis	Date Sample	ed: 01/18/13				
					Date Receiv	red: 01/18/13				
530 Howard Street, Ste.300	Client C	Contact: 1	Leona	rd Niles	Date Extract	racted: 01/18/13				
San Francisco, CA 94105	Client F	? .0.:			Date Analyz	zed: 01/25/13				
	Volatile Organi	ics by P&	kT an	d GC/MS (Basic '	Target List)*					
Extraction Method: SW5030B	8	-		od: SW8260B	8 /	Work Order: 13014	138			
Lab ID				1301/3	8-010A					
Client ID				Disp.						
Matrix					oil					
Compound	Concentration *	DF 1	Reporting	Compou		Concentration *	DF	Reporting		
•			Limit					Limit		
Acetone	ND<1.0	20	0.05	tert-Amyl methyl eth	er (TAME)	ND<0.10 ND<0.10	20	0.005		
Benzene Bromochloromethane	0.38 ND<0.10	20 20	0.005	Bromobenzene Bromodichlorometha	200	ND<0.10	$\frac{20}{20}$	0.005		
Bromochloromethane	ND<0.10 ND<0.10	20	0.005	Bromodichlorometha	uie	ND<0.10	20	0.005		
2-Butanone (MEK)	ND<0.40	20	0.003)	ND<0.10	20	0.003		
n-Butyl benzene	ND<0.10	20	0.02	t-Butyl alcohol (TBA	()	ND<1.0	20	0.005		
2	ND<0.10	20	0.005	sec-Butyl benzene Carbon Disulfide			20			
tert-Butyl benzene Carbon Tetrachloride	ND<0.10	20	0.005			ND<0.10 ND<0.10	20	0.005		
Chloroethane	ND<0.10	20	0.005	Chlorobenzene Chloroform		ND<0.10	20	0.005		
Chloromethane	ND<0.10	20	0.005	2-Chlorotoluene		ND<0.10	20	0.005		
4-Chlorotoluene	ND<0.10	20	0.005			ND<0.10	20	0.005		
	ND<0.080	20	0.003	Dibromochloromethane 1,2-Dibromoethane (EDB)		ND<0.10	20	0.003		
1,2-Dibromo-3-chloropropane Dibromomethane	ND<0.10	20	0.004	1,2-Dichlorobenzene		ND<0.10	20	0.004		
1,3-Dichlorobenzene	ND<0.10	20	0.005	1,4-Dichlorobenzene		ND<0.10	20	0.005		
Dichlorodifluoromethane	ND<0.10	20	0.005	1,1-Dichloroethane		ND<0.10	20	0.005		
1,2-Dichloroethane (1,2-DCA)	ND<0.080	20	0.003	1,1-Dichloroethene		ND<0.10	20	0.005		
cis-1.2-Dichloroethene	ND<0.10	20	0.005	trans-1,2-Dichloroeth	nene	ND<0.10	20	0.005		
1,2-Dichloropropane	ND<0.10	20	0.005	1,3-Dichloropropane		ND<0.10	20	0.005		
2,2-Dichloropropane	ND<0.10	20	0.005	1,1-Dichloropropene		ND<0.10	20	0.005		
cis-1,3-Dichloropropene	ND<0.10	20	0.005	trans-1,3-Dichloropro		ND<0.10	20	0.005		
Diisopropyl ether (DIPE)	ND<0.10	20	0.005	Ethylbenzene	opene	0.22	20	0.005		
Ethyl tert-butyl ether (ETBE)	ND<0.10	20	0.005	Freon 113		ND<2.0	20	0.1		
Hexachlorobutadiene	ND<0.10	20	0.005	Hexachloroethane		ND<0.10	20	0.005		
2-Hexanone	ND<0.10	20	0.005	Isopropylbenzene		ND<0.10	20	0.005		
4-Isopropyl toluene	ND<0.10	-	0.005	Methyl-t-butyl ether	(MTBE)	2.6	20	0.005		
Methylene chloride	ND<0.10	20	0.005	4-Methyl-2-pentanor		ND<0.10	20	0.005		
Naphthalene	ND<0.10		0.005	n-Propyl benzene	· · · · · · · · · · · · · · · · · · ·	ND<0.10	20	0.005		
Styrene	ND<0.10	20	0.005	1,1,1,2-Tetrachloroet	hane	ND<0.10	20	0.005		
1,1,2,2-Tetrachloroethane	ND<0.10	20	0.005	Tetrachloroethene		ND<0.10	20	0.005		
Toluene	1.0	20	0.005	1,2,3-Trichlorobenze	ne	ND<0.10	20	0.005		
1,2,4-Trichlorobenzene	ND<0.10	20	0.005	1,1,1-Trichloroethan		ND<0.10	20	0.005		
1,1,2-Trichloroethane	ND<0.10	20	0.005	Trichloroethene		ND<0.10	20	0.005		
Trichlorofluoromethane	ND<0.10	20	0.005	1,2,3-Trichloropropa	ne	ND<0.10	20	0.005		
1,2,4-Trimethylbenzene	0.42	20	0.005	1,3,5-Trimethylbenze		0.13	20	0.005		
Vinyl Chloride	ND<0.10	20	0.005	Xylenes, Total		1.4	20	0.005		
•	· ·	1		ecoveries (%)		•				
%SS1:	11		Sare N	%SS2:		105	5			
%\$\$1: %\$\$3:	88			/0002.		10.	,			
Comments:	00	,		1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ell Anc Quality Co		<u>, Inc.</u>		Toll Free Telephor	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	(925) 252-9269		
All West Environmental, Inc		Client Pr	oject ID:	#1207	1.23; Hollis	Date Sampled:	01/18/13		
530 Howard Street, Ste.300						Date Received:	1: 01/18/13		
		Client Co	ontact: Le	onard l	Niles	Date Extracted:	01/22/13		
San Francisco, CA 94105		Client P.	0.:			Date Analyzed:	01/23/13-01/	/24/13	
Polynuc Extraction Method: SW3550B	ear Aror	-	cocarbons			SIM Mode by G	C/MS Work Order: 130	1438	
Lab	ID 1301	438-001A	1301438-	-002A	1301438-003A	1301438-004A			
Client	ID B	21-4.5-5	B21-10-	10.5	B21-21.5-22	B22-4.5-5		Limit for $F=1$	
Mat	rix	S	S		S	S			
	OF	10	20		1	1	S	W	
Compound				Conce	entration		mg/kg	ug/L	
Acenaphthene	N	D<0.10	ND<0.	20	ND	ND	0.01	NA	
Acenaphthylene	N	D<0.10	ND<0.	20	ND	ND	0.01	NA	
Anthracene	N	D<0.10	ND<0.	20	ND	ND	0.01	NA	
Benzo (a) anthracene	N	D<0.10	ND<0.	20	ND	ND	0.01	NA	
Benzo (b) fluoranthene	N	D<0.10	ND<0.	20	ND	ND	0.01	NA	
Benzo (k) fluoranthene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Benzo (g,h,i) perylene	N	D<0.10	ND<0.	20	ND	ND	0.01	NA	
Benzo (a) pyrene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Chrysene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Dibenzo (a,h) anthracene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Fluoranthene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Fluorene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Indeno (1,2,3-cd) pyrene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
1-Methylnaphthalene		0.87		2.1	0.27	0.13	0.01	NA	
2-Methylnaphthalene		1.4		3.7	0.50	0.24	0.01	NA	
Naphthalene		1.6		5.0	0.43	0.15	0.01	NA	
Phenanthrene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
Pyrene	N	ID<0.10	ND<0.	20	ND	ND	0.01	NA	
			Surrogate	Recov	veries (%)				
%SS1		86	101		84	88			
%SS2	Í	76	78		86	88			
Comments						-			

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

	Analytical ality Counts''	<u>, Inc.</u>	Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	(925) 252-9269		
All West Environmental, Inc	Client Pr	roject ID: #120	71.23; Hollis	Date Sampled:	01/18/13		
530 Howard Street, Ste.300				Date Received:	01/18/13		
Soo no ward Sheed, Stele oo	Client C	ontact: Leonard	Niles	Date Extracted:	01/22/13		
San Francisco, CA 94105	Client P.	.0.:		Date Analyzed:	01/23/13-01/	/24/13	
Polynuclea Extraction Method: SW3550B	-	rocarbons (PAI nalytical Method: SW82		SIM Mode by G	C/MS Work Order: 130	1438	
Lab ID	1301438-005A	1301438-006A	1301438-007A	1301438-008A			
Client ID	B22-10-10.5	B22-14.5-15	B24-4.5-5	B24-8.5-9		Limit for $F = 1$	
Matrix	S	S	S	S			
DF	5	1	1	10	S	W	
Compound		Con	centration		mg/kg	ug/L	
Acenaphthene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Acenaphthylene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Anthracene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Benzo (a) anthracene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Benzo (b) fluoranthene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Benzo (k) fluoranthene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Benzo (g,h,i) perylene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Benzo (a) pyrene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Chrysene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Dibenzo (a,h) anthracene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Fluoranthene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Fluorene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Indeno (1,2,3-cd) pyrene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
1-Methylnaphthalene	0.26	0.024	0.013	0.59	0.01	NA	
2-Methylnaphthalene	0.41	0.044	0.025	0.95	0.01	NA	
Naphthalene	0.67	0.058	0.029	0.85	0.01	NA	
Phenanthrene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
Pyrene	ND<0.050	ND	ND	ND<0.10	0.01	NA	
		Surrogate Reco	overies (%)				
%SS1	86	83	84	81			
%SS2	74	83	84	77			
Comments		-			-		

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

McCampbell / "When Qua	Analytical Analytical	<u>, Inc.</u>	Toll Free Teleph	/ Pass Road, Pittsburg, CA none: (877) 252-9262 / Fax: mpbell.com / E-mail: main@	(925) 252-9269			
All West Environmental, Inc	Client Pr	roject ID: #	12071.23; Hollis	Date Sampled:	01/18/13			
720 H				Date Received: 01/18/13				
530 Howard Street, Ste.300	Client Co	ontact: Leon	nard Niles	Date Extracted: 01/22/13				
San Francisco, CA 94105	Client P.	0.:		Date Analyzed:		24/13		
						21,13		
Polynuclear Extraction Method: SW3550B	-	rocarbons (1 alytical Method: {	PAHs / PNAs) using SW8270C-SIM	g SIM Mode by G	C/MS Work Order: 1301	438		
Lab ID	1301438-009A	1301438-0	10A					
Client ID	B24-21.5-22	Disp. Com	ıp.		Reporting DF			
Matrix	S	S						
DF	1	1			S	W		
Compound		(Concentration		mg/kg	ug/L		
Acenaphthene	ND	ND			0.01	NA		
Acenaphthylene	ND	ND			0.01	NA		
Anthracene	ND	ND			0.01	NA		
Benzo (a) anthracene	ND	ND			0.01	NA		
Benzo (b) fluoranthene	ND	ND			0.01	NA		
Benzo (k) fluoranthene	ND	ND			0.01	NA		
Benzo (g,h,i) perylene	ND	ND			0.01	NA		
Benzo (a) pyrene	ND	ND			0.01	NA		
Chrysene	ND	ND			0.01	NA		
Dibenzo (a,h) anthracene	ND	ND			0.01	NA		
Fluoranthene	ND	ND			0.01	NA		
Fluorene	ND	ND			0.01	NA		
Indeno (1,2,3-cd) pyrene	ND	ND			0.01	NA		
1-Methylnaphthalene	ND	0.0	072		0.01	NA		
2-Methylnaphthalene	ND	0.	.13		0.01	NA		
Naphthalene	0.014	0.	.11		0.01	NA		
Phenanthrene	ND	ND			0.01	NA		
Pyrene	ND	ND			0.01	NA		
		Surrogate I	Recoveries (%)					
%SS1	81	84						
%SS2	81	85						
Comments			· · · · · · · · · · · · · · · · · · ·					

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.


Angela Rydelius, Lab Manager

	Campbell Ana "When Quality Con		Toll Free Telepho	Pass Road, Pittsburg ne: (877) 252-9262 / pbell.com / E-mail: r	/ Fax: (925	5) 252-9269		
All West Envir	ronmental, Inc	Client Project ID:	#12071.23; Hollis	Date Sample	ed: 01	/18/13		
530 Howard St	treet Ste 300			Date Receive	ed: 01	/18/13		
550 Howard 5		Client Contact: Le	eonard Niles	Date Extracted 01/18/13				
San Francisco,	CA 94105	Client P.O.:		Date Analyz	ed 01	/22/13-0)1/25/13	
Extraction method: S			Trap and GC/MS* ethods: SW8260B		Wo	ork Order:	1301438	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
001A	B21-4.5-5	S	280		100	92		
002A	B21-10-10.5	S	1900		1000	93		
003A	B21-21.5-22	S	120		67	96		
004A	B22-4.5-5	S	92		25	94		
005A	B22-10-10.5	S	68		100	93		
006A	B22-14.5-15	S	30		10	95		
007A	B24-4.5-5	S	0.45		1	98		
008A	B24-8.5-9	S	250		100	93		
009A	B24-21.5-22	S	1.6		1	99		
010A	Disp. Comp.	S	14		20	93		

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	0.25	mg/kg

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

	Campbell Anal "When Quality Cou	ytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail: 1	/ Fax: (925	5) 252-9269		
All West Enviro	nmental, Inc	Client Project ID:	#12071.23; Hollis	Date Sample	ed: 01	/18/13		
530 Howard Stre	pet Ste 300			Date Receive	ed: 01	/18/13		
550 110 ward 540		Client Contact: Le	eonard Niles	Date Extract	ed 01	01/18/13		
San Francisco, C	CA 94105	Client P.O.:		Date Analyz	ed 01	/19/13-0	01/28/13	
Extraction method: SW:	-		tile Hydrocarbons as I ethods: SW8015Bm	Mineral Spiri		ork Order:	1301438	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
001A	B21-4.5-5	S	410		33	#	d1	
002A	B21-10-10.5	S	1200		200	118	d1	
003A	B21-21.5-22	S	340		200	#	d1	
004A	B22-4.5-5	S	120		10	119	d1	
005A	B22-10-10.5	S	280		20	#	d1	
006A	B22-14.5-15	S	20		1	96	d1	
007A	B24-4.5-5	S	ND		1	119		
008A	B24-8.5-9	S	230		20	94	d1	
009A	B24-21.5-22	S	4.2		1	106	d1	
010A	Disp. Comp.	S	24		10	108	d1	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

	🦉 <u>McCamp</u>	bell A hen Quality		l <u>, Inc.</u>	Toll Fi	ee Telepho	ne: (87	oad, Pittsburg, CA 7) 252-9262 / Fax: om / E-mail: main@	(925) 252-9269			
All We	est Environmental, Ir	nc	Client l	Project ID:	#12071.23; Ho	ollis	Dat	te Sampled:	01/18/13			
530 Ho	oward Street, Ste.300)					Dat	te Received:	01/18/13			
	· · , · · · · · · · · · · · · · · · · ·		Client	Client Contact: Leonard Niles				te Extracted:	01/18/13			
San Fr	ancisco, CA 94105		Client l	P.O.:			Dat	te Analyzed:	01/24/13			
Extraction	n method: SW3050B			Anal	UFT 5 Metals					Work C	Order: 13	301438
Lab ID	Client ID	Matrix	Extraction Typ	e Cadmiu	m Chromium	Lea	ıd	Nickel	Zinc	DF	% SS	Comments
010A	Disp. Comp.	S	TOTAL	ND	53	6.4	4	40	42	1	91	
L	1	1	1	I				1	1	1	1	1

Reporting Limit for DF =1; ND means not detected at or	W	TOTAL	NA	NA	NA	NA	NA	NA
above the reporting limit	S	TOTAL	0.25	0.5	0.5	0.5	5.0	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu$ m filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	Campbell Ana "When Quality Cou		1534 Willow Toll Free Telepl http://www.mcca	v Pass Road, Pitts none: (877) 252-9 mpbell.com / E-m	262 / Fax:	(925) 252-	9269
All West Enviror	nmental, Inc	Client Project I	D: #12071.23; Hollis	Date Sam	npled:	01/18/1	13
530 Howard Stre	et Ste 300			Date Received: 01/18/13			
550 Howard Sile		Client Contact:	Leonard Niles	Date Extracted 01/18/13			
San Francisco, C	A 94105	Client P.O.:		Date Ana	lyzed	01/20/1	13-01/23/13
	Total Extractab	le Petroleum Hy	drocarbons with Silica (Gel Clean-U	J p*		
Extraction method: SW	/3550B/3630C	Analytic	al methods: SW8015B			Work Ord	er: 1301438
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments
1301438-001A	B21-4.5-5	S	40		1	100	e4,e2
1301438-002A	B21-10-10.5	S	180		1	112	e4
1301438-003A	B21-21.5-22	S	22		1	97	e4
1301438-004A	B22-4.5-5	S	9.1		1	104	e4
1301438-005A	B22-10-10.5	S	17		1	94	e4
1301438-006A	B22-14.5-15	S	3.2		1	102	e4
1301438-007A	B24-4.5-5	S	1.8		1	95	e2
1301438-008A	B24-8.5-9	S	44		1	96	e4
1301438-009A	B24-21.5-22	S	2.2		1	104	e2
1301438-010A	Disp. Comp.	S	4.1		1	96	e4,e2
	ng Limit for DF =1;	W	NA			N	A
	ns not detected at or the reporting limit	S	1.0			mg	/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLC / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 74102		WorkO	rder: 1301438
EPA Method: SW8260B Extraction:	SW5030B					;	Spiked Sam	ple ID:	1301422-002A
Analvte	Sample	MSD	MS-MSD	LCS	Acceptance Criteria (%)				
, mayte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	0.050	74.9	78.5	4.73	82.8	56 - 94	30	70 - 130
Benzene	ND	0.050	82.6	87.1	5.25	102	60 - 106	30	70 - 130
t-Butyl alcohol (TBA)	ND	0.20	75.1	76	1.19	78.3	56 - 140	30	70 - 130
Chlorobenzene	ND	0.050	81.4	85	4.35	98.6	61 - 108	30	70 - 130
1,2-Dibromoethane (EDB)	ND	0.050	76.4	84.6	10.2	91.2	54 - 119	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	89.1	97	8.51	107	48 - 115	30	70 - 130
1,1-Dichloroethene	ND	0.050	84.7	88.7	4.56	106	46 - 111	30	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	85.7	88.8	3.63	98.3	53 - 111	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	81.6	85.4	4.56	95.1	61 - 104	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	81.6	85	4.16	92.7	58 - 107	30	70 - 130
Toluene	ND	0.050	82.9	88.4	6.48	102	64 - 114	30	70 - 130
Trichloroethene	ND	0.050	91.4	93.5	2.34	108	60 - 116	30	70 - 130
%SS1:	116	0.12	114	114	0	117	70 - 130	30	70 - 130
%SS2:	113	0.12	115	115	0	117	70 - 130	30	70 - 130
%SS3:	93	0.012	93	102	9.39	102	70 - 130	30	70 - 130

BATCH 74102 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301438-001A	01/18/13 8:30 AM	01/18/13	01/22/13 4:13 PM	1301438-002A	01/18/13 8:56 AM	01/18/13	01/24/13 10:36 PM
1301438-003A	01/18/13 9:35 AM	01/18/13	01/24/13 11:17 PM	1301438-004A	01/18/13 10:05 AM	01/18/13	01/24/13 11:58 PM
1301438-005A	01/18/13 10:27 AM	01/18/13	01/25/13 12:39 AM	1301438-006A	01/18/13 10:34 AM	01/18/13	01/25/13 1:20 AM
1301438-007A	01/18/13 11:48 AM	01/18/13	01/25/13 4:08 PM	1301438-008A	01/18/13 12:10 PM	01/18/13	01/24/13 9:13 PM
1301438-009A	01/18/13 12:44 PM	01/18/13	01/25/13 4:49 PM	1301438-010A	01/18/13 2:00 PM	01/18/13	01/25/13 5:30 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 74149		WorkO	rder: 1301438
EPA Method: SW8270C-SIM Extraction: S	W3550B					;	Spiked Sam	ple ID:	1301437-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	ND	0.20	79.1	82.6	4.25	64.6	30 - 130	30	30 - 130
Chrysene	ND	0.20	94.5	97.6	3.21	83	30 - 130	30	30 - 130
1-Methylnaphthalene	ND	0.20	99.5	104	4.49	84.4	30 - 130	30	30 - 130
2-Methylnaphthalene	ND	0.20	83.2	86.3	3.73	70.4	30 - 130	30	30 - 130
Phenanthrene	ND	0.20	93.5	103	9.31	87.5	30 - 130	30	30 - 130
Pyrene	ND	0.20	84.8	88.1	3.79	74.2	30 - 130	30	30 - 130
% SS1:	81	0.50	79	81	2.40	71	30 - 130	30	30 - 130
%SS2:	81	0.50	80	84	4.06	72	30 - 130	30	30 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with tl	ne following	g exceptior	15:		

BATCH 74149 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301438-001A	01/18/13 8:30 AM	01/22/13	01/24/13 1:32 PM	1301438-002A	01/18/13 8:56 AM	01/22/13	01/24/13 2:00 PM
1301438-003A	01/18/13 9:35 AM	01/22/13	01/23/13 5:17 AM	1301438-004A	01/18/13 10:05 AM	01/22/13	01/24/13 8:01 PM
1301438-005A	01/18/13 10:27 AM	01/22/13	01/24/13 8:29 PM	1301438-006A	01/18/13 10:34 AM	01/22/13	01/23/13 4:52 PM
1301438-007A	01/18/13 11:48 AM	01/22/13	01/23/13 5:20 PM	1301438-008A	01/18/13 12:10 PM	01/22/13	01/24/13 8:56 PM
1301438-009A	01/18/13 12:44 PM	01/22/13	01/24/13 11:15 AM	1301438-010A	01/18/13 2:00 PM	01/22/13	01/23/13 5:51 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	QC Matrix: Soil BatchID						rder: 1301438	
EPA Method: SW8015Bm Extra	ction: SW5030B						Spiked Sam	ple ID:	1301422-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	103	105	2.11	109	70 - 130	20	70 - 130
MTBE	ND	0.10	75	93.9	19.8	113	70 - 130	20	70 - 130
Benzene	ND	0.10	104	101	2.79	106	70 - 130	20	70 - 130
Toluene	ND	0.10	101	99.4	1.18	105	70 - 130	20	70 - 130
Ethylbenzene	ND	0.10	102	98	4.36	101	70 - 130	20	70 - 130
Xylenes	ND	0.30	102	102	0	105	70 - 130	20	70 - 130
%SS:	110	0.10	107	100	6.11	102	70 - 130	20	70 - 130
All target compounds in the Method Blank of this ext NONE	raction batch were ND	less than th	e method	RL with t	ne following	g exception	18:		

			BATCH 74100 SI	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301438-001A	01/18/13 8:30 AM	01/18/13	01/24/13 7:06 PM	1301438-002A	01/18/13 8:56 AM	01/18/13	01/20/13 3:31 AM
1301438-003A	01/18/13 9:35 AM	01/18/13	01/20/13 12:33 AM	1301438-004A	01/18/13 10:05 AM	01/18/13	01/24/13 9:13 PM
1301438-005A	01/18/13 10:27 AM	01/18/13	01/24/13 4:35 PM	1301438-006A	01/18/13 10:34 AM	01/18/13	01/19/13 7:07 PM
1301438-007A	01/18/13 11:48 AM	01/18/13	01/28/13 12:52 PM	1301438-008A	01/18/13 12:10 PM	01/18/13	01/24/13 2:40 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K___QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix: Soil BatchID				74120 WorkOrder: 1301			rder: 1301438	
EPA Method: SW8015Bm Extraction: S	W5030B					:	Spiked Sam	ple ID:	1301498-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	104	106	2.39	111	70 - 130	20	70 - 130
MTBE	ND	0.10	111	114	2.92	117	70 - 130	20	70 - 130
Benzene	ND	0.10	105	105	0	108	70 - 130	20	70 - 130
Toluene	ND	0.10	102	102	0	106	70 - 130	20	70 - 130
Ethylbenzene	ND	0.10	102	101	0.171	104	70 - 130	20	70 - 130
Xylenes	ND	0.30	106	106	0	107	70 - 130	20	70 - 130
%SS:	110	0.10	98	99	1.34	94	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exceptior	18:		

	BATCH 74120 SUMMARY								
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1301438-0	09A 01/18/13 12:44 PM	A 01/18/13	01/28/13 1:22 PM	1301438-010A	01/18/13 2:00 PM	01/18/13	01/19/13 10:35 PM]	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K__QA/QC Officer

QC SUMMARY REPORT FOR SW6020

W.O. Sample Matrix: Soil	QC Matrix: Soil				BatchID: 74063			WorkOrder: 1301438		
EPA Method: SW6020 Extraction: S	W3050B					;	Spiked Sam	ple ID:	1301398-001A	
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	Acceptance Criteria (%)			
, Malyce	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Cadmium	ND	50	108	112	3.92	91.3	75 - 125	20	75 - 125	
Chromium	43	50	104	97.1	3.69	94	75 - 125	20	75 - 125	
Lead	8.0	50	111	122	8.21	93.1	75 - 125	20	75 - 125	
Nickel	44	50	116	109	3.57	95.5	75 - 125	20	75 - 125	
Zinc	43	500	112	116	3.55	94.4	75 - 125	20	75 - 125	
%SS:	90	500	114	119	4.19	97	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exceptior	18:			

BATCH 74063 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1301438-010A	01/18/13 2:00 PM	A 01/18/13	01/24/13 3:52 AM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

AC___QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil			BatchID: 74119		WorkOrder: 1301438						
EPA Method: SW8015B	Extraction: SW	/3550B/363	30C					Spiked Sam	ple ID:	1301437-009A	
Analyte		Sample	Spiked	MS	MS MSD MS-MSD LCS			Acc	cceptance Criteria (%)		
		mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH-Diesel (C10-C23)		ND	40	114	112	1.01	103	70 - 130	30	70 - 130	
%SS:		102	25	104	103	0.776	92	70 - 130	30	70 - 130	
All target compounds in the Method Blank NONE	of this extraction batcl	h were ND	less than th	e method	RL with th	ne following	g exception	ns:			

BATCH 74119 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301438-001A	01/18/13 8:30 AM	01/18/13	01/22/13 7:25 PM	1301438-002A	01/18/13 8:56 AM	01/18/13	01/22/13 5:02 PM
1301438-003A	01/18/13 9:35 AM	01/18/13	01/23/13 2:33 AM	1301438-004A	01/18/13 10:05 AM	01/18/13	01/22/13 6:13 PM
1301438-005A	01/18/13 10:27 AM	01/18/13	01/23/13 6:07 AM	1301438-006A	01/18/13 10:34 AM	01/18/13	01/20/13 2:58 AM
1301438-007A	01/18/13 11:48 AM	01/18/13	01/23/13 10:44 PM	1301438-008A	01/18/13 12:10 PM	01/18/13	01/23/13 3:44 AM
1301438-009A	01/18/13 12:44 PM	01/18/13	01/23/13 4:56 AM	1301438-010A	01/18/13 2:00 PM	01/18/13	01/22/13 9:48 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A _____QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	Client Project ID: #12071.23; Hollis	Date Sampled:	01/17/13
530 Howard Street, Ste.300		Date Received:	01/18/13
550 Howard Bacer, Ser.500	Client Contact: Leonard Niles	Date Reported:	01/28/13
San Francisco, CA 94105	Client P.O.:	Date Completed:	01/25/13

WorkOrder: 1301439

January 28, 2013

Dear Leonard:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#12071.23; Hollis,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

		McC	am	pbe	ell	A	nc	alyt	ic	al,	In	C						(Cŀ	ΗA	IN	С)F	CI	US	TC	D	Y	RE	C	OF	RD	~	
		1534 Wi	llow Po	ass Rd. /	Pit	sbur	rg, C	a. 94	565-	1701						TU	RN	ARO	UN	DT	ME	:RU	SH	24	HR	4	8 HR	7	2 HR		5 DAY	Y 🚺	10 D.4	Y
	v v	www.mcc	campb	ell.com	n / r	main	@m	ccan	npbe	ell.co						Geo	Trac	ker El	DF		PDF		EDD		Writ	e On	(DW		EQ	QuIS [
		Telepho	one: (8	77) 252-	.926	2/F	ax:	(925)	252-	7269		12	G																			Chil		
				an de					1	z	1-	to	91			EIII	uent	Sam	ple h	cequ	ring	J.,	flag	-	USI	Clea	n Up	Fun	id Pi	oject	:Ц;	Clair	m #	
	Report To: Leo		liles		d			Car		_	am											_		Ana	lysis	Req	uest	_	_	_	_	_		
	Company: AILL	Nest	50					10								Æ		8							F									
+	530 Howay SF, CA 9	d Sta	-300					ulit								8260) / MTBE	2	E/B&F)				- 91			1						sis			1
ł	Tele: (HI5) 3	105	510					(100)								/(05	50	5520 F		_		cener			Pt			(0)	20)		analysis			
ł		071.23			M			Name							-	r 82(13	4/5	8.1)	8021		Congeners		des)	R		(8)	0 / 6(09/00		alsa			
ł	Project Location:			le. C.	A			se Oro		to t	-					8015 0	20	(166	s (41	260/	ides)		~	rbici	an	(s	PN	601	6010)20)	metals			
I	Sampler Signatur		XT	A	01	A	2		-								E H	Grease	-pou	5 Y 8	estici	rocle	cides	I Hei	DCs)	00	Hs/	0.8	0.8 /	0/6	VED			
			SAM	PLING				MA	TRE	x				ETHO		Gas (8021/	15) Que	Se la	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA \$260/ 8021)	505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors /	8141 (NP Pesticides)	8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs) Q vo	525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PMHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	200.8 / 6010 / 6020)	for DISSOLVED			
		Location/			rs	L.		ter								as G	(8015)	Total Petroleum Oil	H	0	/ 808	2 PC	U U	51 (A	24/8	25/8	M / 8	ls (2)	ls (20	/ 200	for D			
	SAMPLE ID	Field Point			Containers	Wate	ater	Wa	E							HAL	as Diesel	rolen	rolen	STE	608	/ 808	/ 814	818	2/62	2/62	A	Meta	leta	00.7	sample			
		Name	Date	Time	onts	pui	ie 🛛	king	Wa		a a	<u>.</u>	- ;:	~	-	Xe	as D	Pet	Pet	E/E	505/	608	507 /	515/	524.	525.	827	117	T S N	ls (2)	r sam			
					Ú#	Ground Water	Waste Water	Drinking Water	Sea / Water Soil	Air	Sludge	Other	HCL	HNO ₃	Other	BTEX	HdT	Tota	Tota	HIW	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAN	TUF	Metals (200.7	Filter :			
ł	B15	B15	1/17/13	0930	3	\times	\vdash	-	+	+	1	Η	\times			+	+	+							\times					\vdash			+	-
5	B15	B15	1	0930	T					+	\vdash	H	\frown			-	-	-							\sim		\times							
V	B15	B15		0930	ī					\top	\square	Π	\times				\triangleleft																	
- I										10	-					- 1	-	-	-			_												
ł	B16	BILO		1149	3	\mathbf{X}				9	1	11	\times			- 1									\mathbf{X}									
4	BIG BIG	B16 B16		1149	3	$\stackrel{\times}{\times}$			1.	9	+		X				\checkmark	+							X									
5	B16 B16 B20	B16		1149	313	\propto			1	P			XX				×								X	-								
5	BIL			1149	١				1.	<u> </u>			XX				\times			*					X		\times							
5	BIL Bro	B16 B20		149	١	XXXXX			1.	<u> </u>			XXX X				×		•	*					XX		\times							
5	B16 B20 B20	B16 B20 B20		149 1411 1411	١	XXXXXX				9			XXX XXX				×		•	*							\times							
5.	BIL B20 B20 B20 B23 B23	B16 B20 B20 B23 B23 B23		1149 1411 1411 1411 1525 1525	13-1-3-	XXXXXXXX			1 .	<u>y</u>			XXX XXX				×		÷.	*							\times							
5.	BIL B20 B20 B20 B23 B23 B23 B23	B16 B20 B20 B23 B23 B23 B23 B23		1149 1411 1411 1411 1525 1525	1311311	XXXXXXXXX				<u>y</u>			XXX XXX						•	*							\times							
5.	B16 B20 B20 B23 B23 B23 B23 B13 **MAI clients MUST	B16 B20 B20 B23 B23 B23 B23 disclose any	dangerou	1149 1411 1411 1411 1525 1525 1525 us chemica	131 31 31	own to	o be p																											
5. 10. 2	BIL BZO BZO BZS BZ3 BZ3 BZ3 BZ3 **MAI clients MUST gloved, open air, samp us to work safely.	B16 B20 B20 B23 B23 B23 B23 disclose any	dangerou	1149 1411 1411 1411 1525 1525 1525 us chemica	131 31 31	own to sure i	o be p neurs	an imn						the cl	ient i	s subj	ect to									ank y	ou foi	r you	r und					
5. 10.	BIL BZO BZO BZS BZ3 BZ3 BZ3 **MAI clients MUST gloved, open air, samp	B16 B20 B20 B23 B23 B23 B23 disclose any	dangerou	149 1411 1411 1525 1525 1525 us chemica staff. Non-o	1 3 1 1 3 1 1 s kn diselo	own to sure i	o be p	an imn						the cl	ient i	s subj	ect to	o full l								ank y		r you	r und					
5. 20.	B16 B20 B20 B20 B23 B23 B23 B13 **MAI clients MUST gloved, open air, samp us to, work safely. Relinquished By:	B16 B20 B20 B23 B23 B23 B23 disclose any	by MAI s	149 1411 1411 1411 1525 1525 1525 us chemica staff. Non-o	1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	own to osure i Rece	o be p ncurs ived B	an imn						the cl	ient i E/t°_ OOD EAD	s subj CON SPAC	ect to	ION_BSEN	egal	liabil						ank y	ou foi	r you	r und					
5. Vo. 7	BIL BZO BZO BZS BZ3 BZ3 BZ3 BZ3 **MAI clients MUST gloved, open air, samp us to work safely.	B16 B20 B20 B23 B23 B23 B23 disclose any	dangerou by MAI s	149 1411 1411 1411 1525 1525 1525 us chemica staff. Non-of Time:	1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	own to osure i Rece	o be p neurs	an imn						the cl	ient i E/t°_ OOD EAD ECH	SPAC	ect to	ON_	egal T N LA	liabil B	ity fo					ank y	ou foi	r you	r und					
5. 50. 2	BIG BZO BZO BZO BZ3 BZ3 BZ3 BZ3 **MAI clients MUST gloved, open air, samp us to work safely. Relinquished By: Relinquished By:	B16 B20 B20 B23 B23 B23 B23 disclose any	by MAI s	149 1411 1411 1411 1525 1525 1525 us chemica staff. Non-of Time:	1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Recei	ived B	an imn						the cl G H D A	ient i CE/t ^e OOD EAD ECH PPRO	SPAC	DITI CE A NAT	ON_ BSEN ED IN	egal T N LA	liabil B	ity fo					ank y	ou foi	r you	r und					
5. 5. 7.	B16 B20 B20 B20 B23 B23 B23 B13 **MAI clients MUST gloved, open air, samp us to, work safely. Relinquished By:	B16 B20 B20 B23 B23 B23 B23 disclose any	by MAI s	149 1411 1411 1411 1525 1525 1525 us chemica staff. Non-of Time:	1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Recei	o be p ncurs ived B	an imn						the cl	ient i CE/C_ OOD EAD ECHI PPRC RESE	S SUDJ CON SPAC LORI DPRL CRVE	ect to	ION_ BSEN ED IN CON LAB	T T TAIN AS	B NERS	ity fo	r har	m suf	Tered	I. Thi	unk y	ou foi	r your	r und TS:					

X

McCampbell Analytical, Inc.

Pittsburg, CA 94565-1701

Page 1 of 1

(925) 252-9262		WorkOrder: 1301439	Client	Code: AWE	
	WaterTraxWriteOn	Excel EQuIS	Email	HardCopy ThirdParty	J-flag
Report to:		Bill to:		Requested TAT:	5 days
Leonard Niles All West Environmental, Inc 530 Howard Street, Ste.300 San Francisco, CA 94105 (415) 391-2510 FAX: (415) 391-2008	Email: Leonard@allwest1.com cc: PO: ProjectNo: #12071.23; Hollis	Darlene Torio All West Enviro 530 Howard Si San Francisco darlene@allwe	treet, Ste.300 , CA 94105	Date Received: Date Printed:	01/18/2013 01/18/2013
			Requested Te	sts (See legend below)	
Lah ID Client ID	Matrix Collection Date		1 5	6 7 8 9 10	n 11 12

	Client ID	Watrix	Collection Date	ποία		2	3	4	5	0	'	0	9	10	 12
1301439-001	B15	Water	1/17/2013 9:30		С	Α	В	Α	В						
1301439-002	B16	Water	1/17/2013 11:49			Α	В		В						
1301439-003	B20	Water	1/17/2013 14:11		С	Α	В		В						
1301439-004	B23	Water	1/17/2013 15:25		С	A	В		В						
1301439-004	DZJ	Waler	1/17/2013 15.25		U	A	D		D						

Test Legend:

1	8270D-PNA_W
6	
11	

2	GAS8260_W	
7		
12		

G-MBTEX_W

3

8

PREDF REPORT

4

9

5	TPH(D)WSG_W
10	

Prepared by: Zoraida Cortez

The following SampIDs: 001A, 001B, 002A, 002B, 003A, 003B, 004A, 004B contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Date a	and Time Received:	1/18/2013 8	:50:51 PM
Project Name:	#12071.23; Hollis				LogIn	Reviewed by:		Zoraida Cortez
WorkOrder N°:	1301439	Matrix: Water			Carrie	r: <u>Rob Pringle (M</u>	Al Courier)	
		<u>Cha</u>	<u>in of Cւ</u>	ustody (C	OC) Informat	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			Sample	e Receipt	Information			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Ho	ld Time (HT)	Information		
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	3°C		NA	
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes		No 🗹	No VOA vials submi	tted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	otable upon receipt (p⊦	1<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments: Sample 003 had headspace.

	ll Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa: npbell.com / E-mail: main	x: (925) 252-9269		
All West Environmental, Inc	Client F	Project II) : #12	2071.23; Hollis	Date Sampled:	01/17/13		
520 Howard Streat Sta 200					Date Received:	01/18/13		
530 Howard Street, Ste.300	Client C	Contact:	01/23/13					
San Francisco, CA 94105	Client F	P.O.:			Date Analyzed:	01/23/13		
	Volatile Organ	ics by Pa	&T an	d GC/MS (Basic '	 Target List)*			
Extraction Method: SW5030B	and the group of t	•		od: SW8260B		Work Order: 13014	439	
Lab ID				130143	9-001A			
Client ID				В	15			-
Matrix				Wa	ater			
Compound	Concentration *	DF	Reporting Limit	Compou	ind	Concentration *	DF	Reporting Limit
Acetone	ND<25	2.5	10	tert-Amyl methyl eth		ND<1.2	2.5	0.5
Benzene	3.1	2.5	0.5	Bromobenzene		ND<1.2	2.5	0.5
Bromochloromethane	ND<1.2	2.5	0.5	Bromodichlorometha	ine	ND<1.2	2.5	0.5
Bromoform	ND<1.2	2.5	0.5	Bromomethane		ND<1.2	2.5	0.5
2-Butanone (MEK)	ND<5.0	2.5	2.0	t-Butyl alcohol (TBA	.)	ND<5.0	2.5	2.0
n-Butyl benzene	9.8	2.5	0.5	sec-Butyl benzene		1.8	2.5	0.5
tert-Butyl benzene	ND<1.2	2.5	0.5	Carbon Disulfide		ND<1.2	2.5	0.5
Carbon Tetrachloride	ND<1.2	2.5	0.5	Chlorobenzene		ND<1.2	2.5	0.5
Chloroethane	ND<1.2	2.5	0.5	Chloroform		ND<1.2	2.5	0.5
Chloromethane	ND<1.2	2.5	0.5	2-Chlorotoluene		ND<1.2	2.5	0.5
4-Chlorotoluene	ND<1.2	2.5	0.5	Dibromochlorometha	ine	ND<1.2	2.5	0.5
1,2-Dibromo-3-chloropropane	ND<0.50	2.5	0.2	1,2-Dibromoethane (EDB)	ND<1.2	2.5	0.5
Dibromomethane	ND<1.2	2.5	0.5	1,2-Dichlorobenzene		ND<1.2	2.5	0.5
1,3-Dichlorobenzene	ND<1.2	2.5	0.5	1,4-Dichlorobenzene		ND<1.2	2.5	0.5
Dichlorodifluoromethane	ND<1.2	2.5	0.5	1,1-Dichloroethane		ND<1.2	2.5	0.5
1,2-Dichloroethane (1,2-DCA)	ND<1.2	2.5	0.5	1,1-Dichloroethene		ND<1.2	2.5	0.5
cis-1,2-Dichloroethene	ND<1.2	2.5	0.5	trans-1,2-Dichloroeth	nene	ND<1.2	2.5	0.5
1,2-Dichloropropane	ND<1.2	2.5	0.5	1,3-Dichloropropane		ND<1.2	2.5	0.5
2,2-Dichloropropane	ND<1.2	2.5	0.5	1,1-Dichloropropene		ND<1.2	2.5	0.5
cis-1,3-Dichloropropene	ND<1.2	2.5	0.5	trans-1,3-Dichloropro	opene	ND<1.2	2.5	0.5
Diisopropyl ether (DIPE)	ND<1.2	2.5	0.5	Ethylbenzene		24	2.5	0.5
Ethyl tert-butyl ether (ETBE)	ND<1.2	2.5	0.5	Freon 113		ND<25	2.5	10
Hexachlorobutadiene	ND<1.2	2.5	0.5	Hexachloroethane		ND<1.2	2.5	0.5
2-Hexanone	ND<1.2	2.5	0.5	Isopropylbenzene		2.6	2.5	0.5
4-Isopropyl toluene	ND<1.2	2.5	0.5	Methyl-t-butyl ether		ND<1.2	2.5	0.5
Methylene chloride	ND<1.2	2.5	0.5	4-Methyl-2-pentanon	e (MIBK)	ND<1.2	2.5	0.5
Naphthalene	27	2.5	0.5	n-Propyl benzene		12	2.5	0.5
Styrene	ND<1.2	2.5	0.5	1,1,1,2-Tetrachloroet	hane	ND<1.2	2.5	0.5
1,1,2,2-Tetrachloroethane	ND<1.2	2.5	0.5	Tetrachloroethene		ND<1.2	2.5	0.5
Toluene	32	2.5	0.5	1,2,3-Trichlorobenze		ND<1.2	2.5	0.5
1,2,4-Trichlorobenzene	ND<1.2	2.5	0.5	1,1,1-Trichloroethan	e	ND<1.2	2.5	0.5
1,1,2-Trichloroethane	ND<1.2	2.5	0.5	Trichloroethene		53	2.5	0.5
Trichlorofluoromethane	ND<1.2	2.5	0.5	1,2,3-Trichloropropa		ND<1.2	2.5	0.5
1,2,4-Trimethylbenzene	100	2.5	0.5	1,3,5-Trimethylbenze	ene	33	2.5	0.5
Vinyl Chloride	ND<1.2	2.5	0.5	Xylenes, Total		160	2.5	0.5
		Surro	ogate R	ecoveries (%)		1		
%SS1:	12			%SS2:		10:	5	
%SS3:	90)]				
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbel "When Q	Analytica	l, Inc.		Toll Free Teleph	Pass Road, Pittsburg, Ca none: (877) 252-9262 / Fa mpbell.com / E-mail: main	x: (925) 252-9269						
All West Environmental, Inc	Client F	Project I	D: #12	2071.23; Hollis	Date Sampled:	01/17/13						
					Date Received	: 01/18/13						
530 Howard Street, Ste.300	Client C	Contact:	: 01/23/13									
San Francisco, CA 94105	Client F	20:			Date Analyzed	: 01/23/13						
			& T on	d CC/MS (Dagia	2							
Extraction Method: SW5030B	volatile Organ	•		d GC/MS (Basic od: SW8260B	Target List)	Work Order: 1301	130					
Lab ID					9_002 A		107					
Client ID												
Matrix					ater							
Compound	Concentration *	DF	Reporting	Compou	und	Concentration *	DF	Reporting				
Acetone	ND<2000	200	Limit 10	tert-Amyl methyl eth		ND<100	200	Limit 0.5				
Benzene	2200	200	0.5	Bromobenzene		ND<100	200	0.5				
Bromochloromethane	ND<100	200	0.5	Bromodichlorometha	ane	ND<100	200	0.5				
Bromoform	ND<100	200	0.5	Bromomethane		ND<100	200	0.5				
2-Butanone (MEK)	ND<400	200	2.0	t-Butyl alcohol (TBA	A)	ND<400	200	2.0				
n-Butyl benzene	ND<100	200	0.5	sec-Butyl benzene	/	ND<100	200	0.5				
tert-Butyl benzene	ND<100	200	0.5	Carbon Disulfide		ND<100	200	0.5				
Carbon Tetrachloride	ND<100	200	0.5	Chlorobenzene		ND<100	200	0.5				
Chloroethane	ND<100	200	0.5	Chloroform		ND<100	200	0.5				
Chloromethane	ND<100	200	0.5	2-Chlorotoluene		ND<100	200	0.5				
4-Chlorotoluene	ND<100	200	0.5	Dibromochlorometha	promochloromethane		200	0.5				
1,2-Dibromo-3-chloropropane	ND<40	200	0.2	1,2-Dibromoethane ((EDB)	ND<100	200	0.5				
Dibromomethane	ND<100	200	0.5	1,2-Dichlorobenzene	•	ND<100	200	0.5				
1,3-Dichlorobenzene	ND<100	200	0.5	1,4-Dichlorobenzene	•	ND<100	200	0.5				
Dichlorodifluoromethane	ND<100	200	0.5	1,1-Dichloroethane		ND<100	200	0.5				
1,2-Dichloroethane (1,2-DCA)	ND<100	200	0.5	1,1-Dichloroethene		ND<100	200	0.5				
cis-1,2-Dichloroethene	ND<100	200	0.5	trans-1,2-Dichloroet	hene	ND<100	200	0.5				
1,2-Dichloropropane	ND<100	200	0.5	1,3-Dichloropropane		ND<100	200	0.5				
2,2-Dichloropropane	ND<100	200	0.5	1,1-Dichloropropene		ND<100	200	0.5				
cis-1,3-Dichloropropene	ND<100	200	0.5	trans-1,3-Dichloropr	opene	ND<100	200	0.5				
Diisopropyl ether (DIPE)	ND<100	200	0.5	Ethylbenzene		1100	200	0.5				
Ethyl tert-butyl ether (ETBE)	ND<100	200	0.5	Freon 113		ND<2000	200	10				
Hexachlorobutadiene	ND<100	200	0.5	Hexachloroethane		ND<100	200	0.5				
2-Hexanone	ND<100	200	0.5	Isopropylbenzene		ND<100	200	0.5				
4-Isopropyl toluene	ND<100	200	0.5	Methyl-t-butyl ether		900	200	0.5				
Methylene chloride	ND<100	200	0.5	4-Methyl-2-pentanon	ne (MIBK)	ND<100	200	0.5				
Naphthalene	190 ND<100	200 200	0.5	n-Propyl benzene 1,1,1,2-Tetrachloroe	thoma	180 ND<100	200 200	0.5				
Styrene 1,1,2,2-Tetrachloroethane					tnane							
Toluene	ND<100 5700	200 200	0.5	Tetrachloroethene 1,2,3-Trichlorobenze	200	ND<100 ND<100	200 200	0.5				
1,2,4-Trichlorobenzene	ND<100	200	0.5	1,1,1-Trichloroethan		ND<100	200	0.5				
1,1,2-Trichloroethane	ND<100	200	0.5	Trichloroethene		ND<100	200	0.5				
Trichlorofluoromethane	ND<100	200	0.5	1,2,3-Trichloropropa	ne	ND<100	200	0.5				
1,2,4-Trimethylbenzene	1600	200	0.5	1,3,5-Trimethylbenz		460	200	0.5				
Vinyl Chloride	ND<100	200	0.5	Xylenes, Total		5800	200	0.5				
2			1	ecoveries (%)		2000						
%SS1:	11		ogate K	%SS2:		10	6					
%SS3:	97			/0002.		10	0					
Comments: b1	97	r		J								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa npbell.com / E-mail: mair	x: (925) 252-9269		
All West Environmental, Inc	Client I	Project II	D: #12	2071.23; Hollis	Date Sampled:	01/17/13		
					Date Received:	01/18/13		
530 Howard Street, Ste.300	Client C	Contact:	01/24/13					
San Francisco, CA 94105	Client I	P.O.:			Date Analyzed:	01/24/13		
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B	volutile organ	•		od: SW8260B	Turger List)	Work Order: 1301	439	
Lab ID				130143	9-003A			
Client ID					20			
Matrix					ater			
Compound	Concentration *	DF	Reporting	Compou	und	Concentration *	DF	Reporting
•			Limit			-		Limit
Acetone	ND<25,000	2500	10	tert-Amyl methyl eth	er (TAME)	ND<1200	2500	0.5
Benzene	21,000	2500	0.5	Bromobenzene		ND<1200	2500	0.5
Bromochloromethane	ND<1200	2500	0.5	Bromodichlorometha	ine	ND<1200	2500	0.5
Bromoform	ND<1200	2500	0.5	Bromomethane	>	ND<1200	2500	0.5
2-Butanone (MEK)	ND<5000	2500	2.0	t-Butyl alcohol (TBA	A)	ND<5000	2500	2.0
n-Butyl benzene	ND<1200	2500	0.5	sec-Butyl benzene		ND<1200	2500	0.5
tert-Butyl benzene Carbon Tetrachloride	ND<1200	2500	0.5	Carbon Disulfide		ND<1200	2500	0.5
	ND<1200 ND<1200	2500	0.5	Chlorobenzene Chloroform		ND<1200	2500	0.5
Chloroethane		2500	0.5			ND<1200	2500	0.5
Chloromethane 4-Chlorotoluene	ND<1200	2500	0.5	2-Chlorotoluene		ND<1200	2500	0.5
	ND<1200	2500	0.5	Dibromochlorometha	ND<1200	2500	0.5	
1,2-Dibromo-3-chloropropane Dibromomethane	ND<500 ND<1200	2500 2500	0.2	1,2-Dibromoethane (1,2-Dichlorobenzene	/	ND<1200 ND<1200	2500 2500	0.5
1,3-Dichlorobenzene	ND<1200	2500	0.5	1,4-Dichlorobenzene		ND<1200	2500	0.5
Dichlorodifluoromethane	ND<1200	2500	0.5	1,1-Dichloroethane		ND<1200	2500	0.5
1,2-Dichloroethane (1,2-DCA)	ND<1200	2500	0.5	1,1-Dichloroethene		ND<1200	2500	0.5
cis-1,2-Dichloroethene	ND<1200	2500	0.5	trans-1,2-Dichloroeth	iene	ND<1200	2500	0.5
1,2-Dichloropropane	ND<1200	2500	0.5	1,3-Dichloropropane		ND<1200	2500	0.5
2,2-Dichloropropane	ND<1200	2500	0.5	1,1-Dichloropropene		ND<1200	2500	0.5
cis-1,3-Dichloropropene	ND<1200	2500	0.5	trans-1,3-Dichloropr		ND<1200	2500	0.5
Diisopropyl ether (DIPE)	ND<1200	2500	0.5	Ethylbenzene	spene	3700	2500	0.5
Ethyl tert-butyl ether (ETBE)	ND<1200	2500	0.5	Freon 113		ND<25,000	2500	10
Hexachlorobutadiene	ND<1200	2500	0.5	Hexachloroethane		ND<1200	2500	0.5
2-Hexanone	ND<1200	2500	0.5	Isopropylbenzene		ND<1200	2500	0.5
4-Isopropyl toluene	ND<1200	2500	0.5	Methyl-t-butyl ether	(MTBE)	2300	2500	0.5
Methylene chloride	ND<1200	2500	0.5	4-Methyl-2-pentanor	· · · · ·	ND<1200	2500	0.5
Naphthalene	ND<1200	2500	0.5	n-Propyl benzene	. /	ND<1200	2500	0.5
Styrene	ND<1200	2500	0.5	1,1,1,2-Tetrachloroet	hane	ND<1200	2500	0.5
1,1,2,2-Tetrachloroethane	ND<1200	2500	0.5	Tetrachloroethene		ND<1200	2500	0.5
Toluene	47,000	2500	0.5	1,2,3-Trichlorobenze	ne	ND<1200	2500	0.5
1,2,4-Trichlorobenzene	ND<1200	2500	0.5	1,1,1-Trichloroethan		ND<1200	2500	0.5
1,1,2-Trichloroethane	ND<1200	2500	0.5	Trichloroethene		ND<1200	2500	0.5
Trichlorofluoromethane	ND<1200	2500	0.5	1,2,3-Trichloropropa	ne	ND<1200	2500	0.5
1,2,4-Trimethylbenzene	1800	2500	0.5	1,3,5-Trimethylbenze		ND<1200	2500	0.5
Vinyl Chloride	ND<1200	2500	0.5	Xylenes, Total		21,000	2500	0.5
		Surr	ogate R	ecoveries (%)				
%SS1:	12			%SS2:		11	8	
%SS3:	10	7						
Comments: b6,b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l, Inc	<u>.</u>	Toll Free Teleph	Pass Road, Pittsburg, one: (877) 252-9262 / npbell.com / E-mail: n							
All West Environmental, Inc	Client F	Project I	D: #12	2071.23; Hollis	Date Sample	d: 01/17/13						
					Date Receive	ed: 01/18/13						
530 Howard Street, Ste.300	Client C	Contact:	Leona	rd Niles	Date Extracte	ed: 01/24/13	: 01/24/13					
San Francisco, CA 94105	Client F				Date Analyze							
,			0.75		2	u. 01/24/15						
	Volatile Organi	•		d GC/MS (Basic	Target List)*	W 1 0 1 1001	100					
Extraction Method: SW5030B		Allaly	lical Meth	od: SW8260B		Work Order: 1301	439					
Lab ID	Lab ID 1301439-004A Client ID B23 Matrix Water											
	C (() *	DE	Reporting			a b b b b b b b b b b	DE	Reporting				
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit				
Acetone	ND	1.0	10	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.5				
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5				
Bromochloromethane	ND	1.0 1.0	0.5	Bromodichlorometha	ane	ND	1.0	0.5				
Bromoform 2 Putanono (MEK)	ND ND	1.0	0.5	Bromomethane	.)	ND ND	1.0	0.5				
2-Butanone (MEK) n-Butyl benzene	0.96	1.0	0.5	t-Butyl alcohol (TBA	A)	1.3	1.0	0.5				
tert-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene Carbon Disulfide		ND	1.0	0.5				
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5				
Chloroethane	ND	1.0	0.5			ND	1.0	0.5				
Chloromethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5				
4-Chlorotoluene	ND	1.0	0.5	2-Chlorotoluene Dibromochloromethane		ND	1.0	0.5				
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (ND	1.0	0.5				
Dibromomethane	ND	1.0	0.2	1,2-Dichlorobenzene		ND	1.0	0.5				
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5				
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	·	ND	1.0	0.5				
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5				
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroet	nene	ND	1.0	0.5				
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5				
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5				
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropr		ND	1.0	0.5				
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	•	1.3	1.0	0.5				
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10				
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5				
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		3.8	1.0	0.5				
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether	(MTBE)	1.8	1.0	0.5				
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanon	ne (MIBK)	ND	1.0	0.5				
Naphthalene	2.1	1.0	0.5	n-Propyl benzene		9.3	1.0	0.5				
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.5				
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5				
Toluene	1.3	1.0	0.5	1,2,3-Trichlorobenze		ND	1.0	0.5				
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan	e	ND	1.0	0.5				
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5				
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa		ND	1.0	0.5				
1,2,4-Trimethylbenzene	3.0	1.0	0.5	1,3,5-Trimethylbenz	ene	0.76	1.0	0.5				
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		5.0	1.0	0.5				
		Suri	ogate R	ecoveries (%)								
%SS1:	12			%SS2:		11	.9					
%SS3:	10	2										
Comments: b1												

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

		Analytical lity Counts''	<u>, Inc.</u>	Toll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	(925) 252-9269	
All West Environmental,	Inc	Client Pr	oject ID: #1	2071.23; Hollis	Date Sampled:	01/17/13	
520 H 104 4 04 0					Date Received:	01/18/13	
530 Howard Street, Ste.3	000	Client Co	ontact: Leona	ard Niles	Date Extracted:	01/23/13	
San Francisco, CA 9410	5	Client P.	0.:		Date Analyzed:	01/24/13-01/	25/13
		A none office Hands			-		
Extraction Method: SW3510C	lynuclear	-	alytical Method: SV	AHs / PNAs) using W8270C-SIM	SIM Mode by G	Work Order: 1301	439
	Lab ID	1301439-001C	1301439-00	3C 1301439-004C			
	Client ID	B15	B20	B23		Reporting DF	
	Matrix	W	W	W		-	
	DF	1	100	1		S	W
Compound			C	oncentration		ug/kg	μg/L
Acenaphthene		ND	ND<50	ND		NA	0.5
Acenaphthylene		ND	ND<50	ND		NA	0.5
Anthracene		ND	ND<50	ND		NA	0.5
Benzo (a) anthracene		ND	ND<50	0.56		NA	0.5
Benzo (b) fluoranthene		ND	ND<50	ND		NA	0.5
Benzo (k) fluoranthene		ND	ND<50	ND		NA	0.5
Benzo (g,h,i) perylene		ND	ND<50	ND		NA	0.5
Benzo (a) pyrene		ND	ND<50	ND		NA	0.5
Chrysene		ND	ND<50	ND		NA	0.5
Dibenzo (a,h) anthracene		ND	ND<50	ND		NA	0.5
Fluoranthene		ND	ND<50	0.94		NA	0.5
Fluorene		ND	ND<50	ND		NA	0.5
Indeno (1,2,3-cd) pyrene		ND	ND<50	ND		NA	0.5
1-Methylnaphthalene		ND	46	0 ND		NA	0.5
2-Methylnaphthalene		ND	75	0 ND		NA	0.5
Naphthalene		ND	170	00 ND<0.55		NA	0.5
Phenanthrene		ND	ND<50	0.75		NA	0.5
Pyrene		ND	ND<50	1.0		NA	0.5
			Surrogate R	ecoveries (%)			
%SS1		68	#	66			
%SS2		64	#	51			
Comments		b1	b1	b1			

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

<u> Мс</u>	Campbell Anal ''When Quality Cou	ytical, Inc. unts''	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
All West Envir	onmental, Inc	Client Project ID:	#12071.23; Hollis	Date Sample	ed: 01	/17/13			
530 Howard St	reet. Ste.300			Date Received: 01/18/13					
	,	Client Contact: Le	eonard Niles	Date Extract	ted 01	/22/13-0)1/24/13		
San Francisco,	CA 94105	Client P.O.:		Date Analyz	ed 01	/22/13-0	01/24/13		
Extraction method: SV			z Trap and GC/MS* ethods: SW8260B		Wo	ork Order:	1301439		
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments		
001A	B15	w	1900		2.5	92	b1		
002A	B16	W	47,000		200	93	b1		
003A	B20	W	160,000		100	100	b6,b1		
004A	B23	w	170		1	101	b1		

Reporting Limit for DF =1; ND means not detected at or	W	50	µg/L
above the reporting limit	S	NA	NA

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCampbell Analytical, Inc. "When Quality Counts"			Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail: 1	/ Fax: (925	5) 252-9269	
All West Enviro	onmental, Inc	Client Project ID:	#12071.23; Hollis	Date Sample	ed: 01	/17/13	
530 Howard Str	reet Ste 300		Date Received: 01/18/13				
000 110 114 54		Client Contact: Le	eonard Niles	Date Extract	ed 01	/23/13	
San Francisco, G	CA 94105	Client P.O.:		Date Analyz	ed 01	/23/13	
Extraction method: SW	_	-	tile Hydrocarbons as M ethods: SW8015Bm	/lineral Spiri		ork Order:	1301439
Lab ID	Client ID	Matrix	TPH(mineral spiri	ts)	DF	% SS	Comments
001B	B15	W	1300		1	#	d1,b1
002B	B16	W	ND<5000	100	101	d1,b1	
003B	B20	W	22,000	200	108	d1,b6,b1	
004B	B23	W	160		1	116	d1,b1

Reporting Limit for DF =1; ND means not detected at or	W	50	µg/L
above the reporting limit	S	NA	NA

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

<u> McC</u>	Campbell Ar When Quality	nalytical, Inc Counts''	1534 Willow Toll Free Teleph http://www.mcca	w Pass Road, Pitts hone: (877) 252-9 mpbell.com / E-m	262 / Fax:	(925) 252-	9269	
All West Environn	nental, Inc	Client Project	ID: #12071.23; Hollis	Date Sam	pled:	01/17/1	13	
530 Howard Street	Ste 300			Date Rec	eived:	01/18/1	13	
	., 510.500	Client Contact	Client Contact: Leonard Niles			Date Extracted 01/18/13		
San Francisco, CA	.94105	Client P.O.:		Date Ana	lyzed	01/23/1	13	
Extraction method: SW35			ydrocarbons with Silica (ical methods: SW8015B	Gel Clean-U	J p ∗	Work Ord	er: 1301439	
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments		
1301439-001B	B15	W	740		1	104	e4,b1	
1301439-002B	B16	W	6300	1	99	e4,b1		
1301439-003B	B20	W	95,000	10	106	e4,b6,b1		
1301439-004B	B23	W	140		1	81	e4,e2,b1	
	Limit for $DF = 1$;	W	50			μg	/L	
	not detected at or e reporting limit	S	NA			N.		

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment b6) lighter than water immiscible sheen/product is present

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 74174		WorkO	rder: 1301439
EPA Method: SW8260B Extraction:	SW5030B					:	Spiked Sam	ple ID:	1301444-008B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	116	118	2.02	117	70 - 130	20	70 - 130
Benzene	1.9	10	89.6	90.8	1.14	102	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	4.7	40	121	124	1.99	117	70 - 130	20	70 - 130
Chlorobenzene	ND	10	97.6	97.2	0.444	99.4	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	111	112	1.57	111	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	92.2	98.5	6.67	105	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	101	102	0.505	110	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	89.6	93.1	3.81	121	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	99.6	103	3.38	114	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	111	114	3.12	116	70 - 130	20	70 - 130
Toluene	0.73	10	101	96.9	3.88	99.8	70 - 130	20	70 - 130
Trichloroethene	ND	10	98.7	100	1.63	99.7	70 - 130	20	70 - 130
%SS1:	100	25	97	101	3.61	101	70 - 130	20	70 - 130
%SS2:	99	25	96	97	0.815	99	70 - 130	20	70 - 130
%SS3:	107	2.5	109	106	2.59	98	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction b NONE	atch were ND	less than th	e method	RL with th	he following	g exception	ns:		

BATCH 74174 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301439-001A	01/17/13 9:30 AM	01/23/13	01/23/13 3:21 AM	1301439-002A	01/17/13 11:49 AM	01/23/13	01/23/13 4:03 AM
1301439-003A	01/17/13 2:11 PM	01/24/13	01/24/13 11:18 PM	1301439-004A	01/17/13 3:25 PM	01/24/13	01/24/13 3:29 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 74187		WorkC	order: 1301439
EPA Method: SW8270C-SIM Extraction: SW3510C Spiked Sample ID: N/A						N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	N/A	10	N/A	N/A	N/A	59.8	N/A	N/A	30 - 130
Chrysene	N/A	10	N/A	N/A	N/A	90.7	N/A	N/A	30 - 130
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	92.9	N/A	N/A	30 - 130
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	76	N/A	N/A	30 - 130
Phenanthrene	N/A	10	N/A	N/A	N/A	90.8	N/A	N/A	30 - 130
Pyrene	N/A	10	N/A	N/A	N/A	78.1	N/A	N/A	30 - 130
%SS1:	N/A	25	N/A	N/A	N/A	76	N/A	N/A	30 - 130
%SS2:	N/A	25	N/A	N/A	N/A	79	N/A	N/A	30 - 130
All target compounds in the Method Blank of this extraction ba	atch were ND	less than th	e method	RL with th	he following	g exception	s:		

BATCH 74187 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301439-001C	01/17/13 9:30 AM	01/23/13	01/24/13 10:19 PM	1301439-003C	01/17/13 2:11 PM	01/23/13	01/25/13 12:29 PM
1301439-004C	01/17/13 3:25 PM	01/23/13	01/25/13 12:57 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water				BatchID: 74182		WorkOrder: 1301439		
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1301440-002B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	6400	60	NR	NR	NR	102	N/A	N/A	70 - 130
MTBE	2000	10	NR	NR	NR	90.3	N/A	N/A	70 - 130
Benzene	350	10	NR	NR	NR	96	N/A	N/A	70 - 130
Toluene	2000	10	NR	NR	NR	95.5	N/A	N/A	70 - 130
Ethylbenzene	500	10	NR	NR	NR	94.4	N/A	N/A	70 - 130
Xylenes	2700	30	NR	NR	NR	94.1	N/A	N/A	70 - 130
%SS:	103	10	NR	NR	NR	99	N/A	N/A	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exceptio	ns:		

BATCH 74182 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1301439-001B	01/17/13 9:30 AM	01/23/13	01/23/13 3:45 AM	1301439-002B	01/17/13 11:49 AM	01/23/13	01/23/13 11:11 PM		
1301439-003B	01/17/13 2:11 PM	01/23/13	01/23/13 6:12 AM	1301439-004B	01/17/13 3:25 PM	I 01/23/13	01/23/13 4:14 AM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

_QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

d MS % Rec.	MSD	MS-MSD		Spiked Sam	•		
-		MS-MSD	LCS	Acc	eptance	Criteria (%)	
0/ Dee				Acceptance Criteria (%)			
% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
N/A	N/A	N/A	110	N/A	N/A	70 - 130	
N/A	N/A	N/A	102	N/A	N/A	70 - 130	
) n	N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A 102		N/A N/A N/A N/A N/A	

BATCH 74125 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301439-001B	01/17/13 9:30 AM	01/18/13	01/23/13 1:44 AM	1301439-002B	01/17/13 11:49 AM	01/18/13	01/23/13 3:47 PM
1301439-003B	01/17/13 2:11 PM	01/18/13	01/23/13 8:21 PM	1301439-004B	01/17/13 3:25 PM	01/18/13	01/23/13 5:09 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K__QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	All West Environmental, Inc Client Project ID: #12071.23; Hollis					
530 Howard Street, Ste.300		Date Received:	01/18/13			
550 Howard Bacer, Sec.500	Client Contact: Leonard Niles	Date Reported:	01/28/13			
San Francisco, CA 94105	Client P.O.:	Date Completed:	01/25/13			

WorkOrder: 1301440

January 28, 2013

Dear Leonard:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **#12071.23; Hollis,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	McCampbell Analytical, Inc.														CI	HA		C)F	С	US	TC	D	Y	RE	С	O	RD							
	1534 Wi	llow Po	ss Rd. /	Pit	tsbu	rg, C	Ca.	9450	5-1	701						т	URN	AR	OUN	DT	IME	E: RU	SH	2	4 HR	4	8 HR	7	2 HR		5 DA	Y D	10 D/	AY Ę	2
· · ·	www.mcc										m					Ge	oTra	cker l	EDF	0	PDF		EDD		Writ	e On	(DW		EC	Juis					
	Telepho	one: (8)	77) 252-	-926	52 / F	ax:	(92	5) 25	2-9	269	1.1																					C 1.1			
									13	30	14	-4	0			EI	fluen	t San	nple	Requ	iirinş	; "J"	flag	<u> </u>	UST	Clea	in Up	Fur	id Pr	ojec	ŧЦ;	Clair	n #	i.	-
		Viles	5		Bi			aro		Lai							_	_			_			Ana	lysis	Rec	uest			_		_	_		
Company: AIII		#				Car	rol	0	111	ves	+1	- C	on	1	_	E		6							ot										
530 Howa	rd St	. #3		~	C	hou	dil	hav	10	al	live	st	11	Co	m	8260) / MTBE	M-	Grease (1664 / 5520 E/B&F)													sis				
Sau France Tele: (415) 3			9910	25				ena						.0	om	(09	100	2201		-		gener			HOT			6020)	6020)		analysis				
	Tele: $(415) 391 - 2510$ Fax: $(415) 391 - 2008$ Project #: 12011.23 Project Name: $401(i5)$										-	or 82	E	4/5	8.1)	8021		Conf		des)	5		(5)	0 / 6			metals a								
Project Location:		mi	lle C	A				rde		- m						015 0	P.	166	s (41	260/	ides)	ILS /	-	rbici	and	(s	PN	601	601(020)					
Sampler Signatur	reilit		Acris	C	6											1/8	30	ease	rbon	PA 8	estic	rocle	cides	1 Hei	S)	00	Hs/	90.8	0.8 /	0 / 6(VED				
			PLING				N	1AT	RIX				-	SER	OD VED	Gas (8021	pho (& Gr	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	8141 (NP Pesticides)	8151 (Acidic Cl Herbicides)	524.2 / 624 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 /	LUFT 5 Metals (200.7 / 200.8 / 6010 /	Metals (200.7 / 200.8 / 6010 / 6020)	for DISSOLVED				
	1			2			10					Π				as Ga	(8015)	Total Petroleum Oil &	n Hy	INO	8081	PCB	NP 1	I (Ac	4 82	5/82	1/83	s (20)	(200	200.8	r DI				
SAMPLE ID	Location/ Field Point			Containers	Vate	tter	Wat	er								Hd		oleur	oleur	TEX	/ 809	8082	814)	815	/ 62	/ 625	SIM	letal	etals	0.7 /	ple fe				
	Name	Date	Time	nta	A pu	Wa	ding	Water						_		\$ 1	as Diesel	Petr	Petro	£ / B	150	180	507 /	515/	24.2	\$25.2	8270	17 N	5 M	s (20	sample				
			1.1	# C0	Ground Water	Waste Water	Drinking Water	Sea /	Soil	Air	Sludge	Other	HCL	HNO	Other	BTEX	HdT	otal	otal	IBI	EPA 5	PA (EPA	EPA 5	EPA 5	PA	EPA	WV:	LAN'	fetal	Filter				
	0.0	11		_	L,	-	-	~	s	~	<i>3</i> 2	Ĕ	-	-	Ĕ	-	-	-	-	~	-	-	-	-	-	-	-	-	-	~	-		\neg	+	\neg
B22	B22	1/18/13		3	X							Н	A			-									\mid	_		_		_			-	-	_
822	B22		1100	1	X							\square	X	-		_	Х																_	_	_
322	B22		1100	1	\geq							\square															\ge							_	
B24	BZH		1320	3	X							Ц	${ imes}$											1	\ge	_									
B24	B24		1320	1	X							Ц															${ imes}$								
B24	B24		1320	1	\succ								\times				\bowtie																		
821	B21		1347	3	\times								\times												\bowtie										
B21	B21		1347	1	X								\times				\bowtie																		
P		1	0	1								H	-														-					H	-	-	_
	N	A	out		-		F					П						1	10	1	1	1	A	y	P										
	the											П						P	P																
**MAI clients MUST	disclose any	dangerou	is chemica	ls kn	nown t	o be p	reser	nt in t	heir s	uhmi	tted s	samp	ples in	n con	centr	ation	ns tha	t may	caus	e imr	nedia	te har	m or	serio	us fut	ure h	ealth	enda	ngerr	nent	as a r	esult e	fbrie	ef,	
gloved, open air, sam	ple handling	by MAI s	taff. Non-	discl	osure	incurs	s an i	mmee	liates	\$250 s	urch	arge	and	the c	lient	is su	bject	to ful	llegal	liabi	ility fo	or har	m su	fferee	d. Th	ank y	ou fo	r you	r und	ersta	nding	and f	or all	owing	
Relinquished By:	Th	Date: /	Time		Rece	ived	By:		/	-	/		/		CE/t°											(COM	MEN	TS:						
Vish	1 A	4813	5/45	0	1	-	-			L	_	1					NDITACE /			-															
Relinquished By:	~ 7	Date:	Time	/	Rece	ived	By:	1	1	A	L	/	/	I	DECH	ILOI	RINA	TED	IN L/	-	0														
4	1	8B	172	30	L	n	N	V	U	U	$\langle $						ED IN			-															
Relinquished By:	-1	Date:	Time	:	Reco	ived	By:				1	-		1				VC	AS	80	GN	IET.	LS	OT	HER	1	HAZA	RDC	US:						
1						V								P	RES	ERV	ATIC	DN			p	H<2_													1

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Lab ID Client	D C	Matrix	Collection Date	Hold	1	2	3	Rec 4	quested 5	Tests 6	(See legend	d belov 8	· ·	10	11	12
San Francisco, CA 94105 (415) 391-2510 FAX: (415) 391-20	-	#12071.23; Holl	lis				ranciso ne@all\	,			Da	te Pr	inted:	01	1/18/2()13
Leonard Niles All West Environmental, Inc 530 Howard Street, Ste.300	Email: cc: PO:	Leonard@allwe	st1.com			All W		rironme	ntal, Ind Ste.300		Da	ite Re	ceived:	01	1/18/2()13
Report to:						ll to:				L			ed TAT:	' L	5 da	-
Pittsburg, CA 94565-1701 (925) 252-9262	⊡WaterTrax	□WriteOn	□EDF		orkO		3 0144(EQuIS	-	Clie Email		de: AWE □HardCopy		ThirdPart	/ [J-flag	r

1301440-001	B22	Water	1/18/2013 11:00	С	А	В				
1301440-002	B24	Water	1/18/2013 13:20	С	Α	В				
1301440-003	B21	Water	1/18/2013 13:47		A	В				

Test Legend:

1	8270D-PNA_W
6	
11	

2	GAS8260_W	
7		
12		

3	G-MBTEX_W
8	

	4	
ſ		1
	9	

5	
10	

The following SampIDs: 001A, 001B, 002A, 002B, 003A, 003B contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Zoraida Cortez

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Date a	and Time Received:	1/18/2013 9	:12:28 PM
Project Name:	#12071.23; Hollis				LogIn	Reviewed by:		Zoraida Cortez
WorkOrder N°:	1301440	Matrix: <u>Water</u>			Carrie	r: <u>Rob Pringle (M</u>	Al Courier)	
		<u>Cha</u>	<u>in of Cι</u>	<u>istody (C</u>	OC) Informat	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No			
			<u>Sample</u>	Receipt	Information			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🖌	
Shipping contain	er/cooler in good conc	lition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Ho	old Time (HT)	Information		
All samples rece	ived within holding tim	e?	Yes	✓	No			
Container/Temp	Blank temperature		Coole	r Temp:	3°C		NA	
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	tted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No			
Metal - pH accep	otable upon receipt (p⊦	1<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ісе Тур	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

	ll Analytica Quality Counts''	l <u>, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
All West Environmental, Inc	Client I	Project II): #12	2071.23; Hollis	Date Sampled:	01/18/13				
520 H					Date Received:	01/18/13				
530 Howard Street, Ste.300	Client C	Contact:	Leona	rd Niles	Date Extracted:	01/25/13				
San Francisco, CA 94105	Client I	P.O.:			Date Analyzed:	: 01/25/13				
	Volatile Organ	ics by Pa	&T an	d GC/MS (Basic	Target List)*					
Extraction Method: SW5030B	volutile Organ	•		od: SW8260B	Turget Elst)	Work Order: 1301	440			
Lab ID		-		130144	0-001A					
Client ID					22					
Matrix					ater					
Compound	Concentration *	DF	Reporting	Compor		Concentration *	DF	Reporting		
•			Limit			-		Limit		
Acetone Benzene	ND<10,000 7700	1000 1000	10 0.5	tert-Amyl methyl eth Bromobenzene	er (TAME)	ND<500 ND<500	1000 1000	0.5		
Bromochloromethane	ND<500	1000	0.5	Bromobenzene Bromodichlorometha	ane	ND<500	1000	0.5		
Bromoform	ND<500	1000	0.5	Bromomethane		ND<500	1000	0.5		
2-Butanone (MEK)	ND<2000	1000	2.0	t-Butyl alcohol (TBA)		ND<2000	1000	2.0		
n-Butyl benzene	ND<500	1000	0.5	sec-Butyl benzene		ND<2000	1000	0.5		
tert-Butyl benzene	ND<500	1000	0.5	Carbon Disulfide		ND<500	1000	0.5		
Carbon Tetrachloride	ND<500	1000	0.5	Chlorobenzene		ND<500	1000	0.5		
Chloroethane	ND<500	1000	0.5	Chloroform		ND<500	1000	0.5		
Chloromethane	ND<500	1000	0.5	2-Chlorotoluene		ND<500	1000	0.5		
4-Chlorotoluene	ND<500	1000	0.5	Dibromochlorometha	ane	ND<500	1000	0.5		
1,2-Dibromo-3-chloropropane	ND<200	1000	0.2	1,2-Dibromoethane		ND<500	1000	0.5		
Dibromomethane	ND<500	1000	0.5	1,2-Dichlorobenzene		ND<500	1000	0.5		
1,3-Dichlorobenzene	ND<500	1000	0.5	1,4-Dichlorobenzene		ND<500	1000	0.5		
Dichlorodifluoromethane	ND<500	1000	0.5	1,1-Dichloroethane		ND<500	1000	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<500	1000	0.5	1,1-Dichloroethene		ND<500	1000	0.5		
cis-1,2-Dichloroethene	ND<500	1000	0.5	trans-1,2-Dichloroet	hene	ND<500	1000	0.5		
1,2-Dichloropropane	ND<500	1000	0.5	1,3-Dichloropropane		ND<500	1000	0.5		
2,2-Dichloropropane	ND<500	1000	0.5	1,1-Dichloropropene		ND<500	1000	0.5		
cis-1,3-Dichloropropene	ND<500	1000	0.5	trans-1,3-Dichloropr	opene	ND<500	1000	0.5		
Diisopropyl ether (DIPE)	ND<500	1000	0.5	Ethylbenzene	•	3500	1000	0.5		
Ethyl tert-butyl ether (ETBE)	ND<500	1000	0.5	Freon 113		ND<10,000	1000	10		
Hexachlorobutadiene	ND<500	1000	0.5	Hexachloroethane		ND<500	1000	0.5		
2-Hexanone	ND<500	1000	0.5	Isopropylbenzene		ND<500	1000	0.5		
4-Isopropyl toluene	ND<500	1000	0.5	Methyl-t-butyl ether	(MTBE)	8100	1000	0.5		
Methylene chloride	ND<500	1000	0.5	4-Methyl-2-pentanon	ne (MIBK)	ND<500	1000	0.5		
Naphthalene	910	1000	0.5	n-Propyl benzene		ND<500	1000	0.5		
Styrene	ND<500	1000	0.5	1,1,1,2-Tetrachloroe	thane	ND<500	1000	0.5		
1,1,2,2-Tetrachloroethane	ND<500	1000	0.5	Tetrachloroethene		ND<500	1000	0.5		
Toluene	26,000	1000	0.5	1,2,3-Trichlorobenze		ND<500	1000	0.5		
1,2,4-Trichlorobenzene	ND<500	1000	0.5	1,1,1-Trichloroethan	e	ND<500	1000	0.5		
1,1,2-Trichloroethane	ND<500	1000	0.5	Trichloroethene		ND<500	1000	0.5		
Trichlorofluoromethane	ND<500	1000	0.5	1,2,3-Trichloropropa		ND<500	1000	0.5		
1,2,4-Trimethylbenzene	2300	1000	0.5	1,3,5-Trimethylbenz	ene	590	1000	0.5		
Vinyl Chloride	ND<500	1000	0.5	Xylenes, Total		21,000	1000	0.5		
		Surro	ogate R	ecoveries (%)						
%SS1:	11	9	-	%SS2:		12	1	-		
%SS3:	10	4		1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytical Quality Counts''	l, Inc	<u>-</u>	Toll Free Teleph	v Pass Road, Pittsburg, hone: (877) 252-9262 / mpbell.com / E-mail: m	Fax: (925) 252-9269		
All West Environmental, Inc	Client F	Project I	D: #12	2071.23; Hollis	Date Sample	d: 01/18/13		
					Date Receive	d: 01/18/13		
530 Howard Street, Ste.300	Client C	Contact:	Leona	rd Niles	Date Extracte	d: 01/24/13		
San Francisco, CA 94105	Client F	P.O.:			Date Analyze	ed: 01/24/13		
	Volatile Organ	ics bv P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B	0	•		od: SW8260B	0	Work Order: 13014	440	
Lab ID				130144	40-002A			
Client ID				В	24			
Matrix				W	ater			
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reportin Limit
Acetone	ND<1000	100	10	tert-Amyl methyl eth	ner (TAME)	ND<50	100	0.5
Benzene	340	100	0.5	Bromobenzene		ND<50	100	0.5
Bromochloromethane	ND<50	100	0.5	Bromodichlorometh	ane	ND<50	100	0.5
Bromoform	ND<50	100	0.5	Bromomethane		ND<50	100	0.5
2-Butanone (MEK)	ND<200	100	2.0	t-Butyl alcohol (TBA	A)	ND<200	100	2.0
n-Butyl benzene	ND<50	100	0.5	sec-Butyl benzene	,	ND<50	100	0.5
tert-Butyl benzene	ND<50	100	0.5	Carbon Disulfide		ND<50	100	0.5
Carbon Tetrachloride	ND<50	100	0.5	Chlorobenzene		ND<50	100	0.5
Chloroethane	ND<50	100	0.5	Chloroform		ND<50	100	0.5
Chloromethane	ND<50	100	0.5	2-Chlorotoluene		ND<50	100	0.5
4-Chlorotoluene	ND<50	100	0.5	Dibromochlorometh	ane	ND<50	100	0.5
1,2-Dibromo-3-chloropropane	ND<20	100	0.2	1,2-Dibromoethane		ND<50	100	0.5
Dibromomethane	ND<20	100	0.2	1,2-Dichlorobenzene	· /	ND<50	100	0.5
1,3-Dichlorobenzene	ND<50	100	0.5	1,4-Dichlorobenzene		ND<50	100	0.5
Dichlorodifluoromethane	ND<50	100	0.5	1,1-Dichloroethane		ND<50	100	0.5
1,2-Dichloroethane (1,2-DCA)	ND<50	100	0.5	1,1-Dichloroethene		ND<50	100	0.5
cis-1,2-Dichloroethene	ND<50	100	0.5	trans-1,2-Dichloroet	hana	ND<50	100	0.5
1		100		1,3-Dichloropropane			100	0.5
1,2-Dichloropropane	ND<50 ND<50	100	0.5			ND<50 ND<50	100	0.5
2,2-Dichloropropane				1,1-Dichloropropene				
cis-1,3-Dichloropropene Diisopropyl ether (DIPE)	ND<50 ND<50	100 100	0.5	trans-1,3-Dichloropr Ethylbenzene	opene	ND<50	100 100	0.5
Ethyl tert-butyl ether (ETBE)	ND<50	100	0.5	Freon 113		ND<1000	100	10
Hexachlorobutadiene	ND<50	100	0.5	Hexachloroethane		ND<50	100	0.5
2-Hexanone	ND<50	100	0.5	Isopropylbenzene		ND<50	100	0.5
4-Isopropyl toluene	ND<50	100	0.5	Methyl-t-butyl ether		2500	100	0.5
Methylene chloride	ND<50	100	0.5	4-Methyl-2-pentanon	ne (MIBK)	ND<50	100	0.5
Naphthalene	130	100	0.5	n-Propyl benzene	.1	87	100	0.5
Styrene	ND<50	100	0.5	1,1,1,2-Tetrachloroe	thane	ND<50	100	0.5
1,1,2,2-Tetrachloroethane	ND<50	100	0.5	Tetrachloroethene		ND<50	100	0.5
Toluene	2100	100	0.5	1,2,3-Trichlorobenze		ND<50	100	0.5
1,2,4-Trichlorobenzene	ND<50	100	0.5	1,1,1-Trichloroethan	ie	ND<50	100	0.5
1,1,2-Trichloroethane	ND<50	100	0.5	Trichloroethene		ND<50	100	0.5
Trichlorofluoromethane	ND<50	100	0.5	1,2,3-Trichloropropa		ND<50	100	0.5
1,2,4-Trimethylbenzene	710	100	0.5	1,3,5-Trimethylbenz	ene	220	100	0.5
Vinyl Chloride	ND<50	100	0.5	Xylenes, Total		2800	100	0.5
		Suri	ogate R	ecoveries (%)				
%SS1:	12	0		%SS2:		12	0	
%SS3:	10	4		I				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbel "When Q	ll Analytica Quality Counts''	<u>l, Inc.</u>		Toll Free Teleph	/ Pass Road, Pittsburg, C none: (877) 252-9262 / F mpbell.com / E-mail: ma	Fax: (925) 252-9269			
All West Environmental, Inc	Client l	Project II	D: #12	2071.23; Hollis	Date Sampled	: 01/18/13			
					Date Received	l: 01/18/13			
530 Howard Street, Ste.300	Client	Contact:	Leona	rd Niles	Date Extracted: 01/25/13				
San Francisco, CA 94105	Client l	P.O.:			Date Analyzed				
	Volatile Organ	ics by Pa	&T an	d GC/MS (Basic	Target List)*				
Extraction Method: SW5030B	, one organ	•		od: SW8260B	geo 22000)	Work Order: 1301	440		
Lab ID				130144	0-003A				
Client ID					21				
Matrix					ater				
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit	
Acetone	ND<50,000	5000	10	tert-Amyl methyl eth		ND<2500	5000	0.5	
Benzene	ND<2500	5000	0.5	Bromobenzene	(1111112)	ND<2500	5000	0.5	
Bromochloromethane	ND<2500	5000	0.5	Bromodichloromethane		ND<2500	5000	0.5	
Bromoform	ND<2500	5000	0.5	Bromomethane		ND<2500	5000	0.5	
2-Butanone (MEK)	ND<10.000	5000	2.0	t-Butyl alcohol (TBA)		ND<10,000	5000	2.0	
n-Butyl benzene	ND<2500	5000	0.5	sec-Butyl benzene		ND<2500	5000	0.5	
tert-Butyl benzene	ND<2500	5000	0.5	Carbon Disulfide		ND<2500	5000	0.5	
Carbon Tetrachloride	ND<2500	5000	0.5	Chlorobenzene		ND<2500	5000	0.5	
Chloroethane	ND<2500	5000	0.5	Chloroform		ND<2500	5000	0.5	
Chloromethane	ND<2500	5000	0.5	2-Chlorotoluene		ND<2500	5000	0.5	
4-Chlorotoluene	ND<2500	5000	0.5	Dibromochlorometha	ane	ND<2500	5000	0.5	
1,2-Dibromo-3-chloropropane	ND<1000	5000	0.2	1,2-Dibromoethane (EDB)		ND<2500	5000	0.5	
Dibromomethane	ND<2500	5000	0.5	1,2-Dichlorobenzene		ND<2500	5000	0.5	
1,3-Dichlorobenzene	ND<2500	5000	0.5	1,4-Dichlorobenzene		ND<2500	5000	0.5	
Dichlorodifluoromethane	ND<2500	5000	0.5	1,1-Dichloroethane		ND<2500	5000	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<2500	5000	0.5	1,1-Dichloroethene		ND<2500	5000	0.5	
cis-1,2-Dichloroethene	ND<2500	5000	0.5	trans-1,2-Dichloroet	hene	ND<2500	5000	0.5	
1,2-Dichloropropane	ND<2500	5000	0.5	1,3-Dichloropropane		ND<2500	5000	0.5	
2,2-Dichloropropane	ND<2500	5000	0.5	1,1-Dichloropropene	2	ND<2500	5000	0.5	
cis-1,3-Dichloropropene	ND<2500	5000	0.5	trans-1,3-Dichloropr	opene	ND<2500	5000	0.5	
Diisopropyl ether (DIPE)	ND<2500	5000	0.5	Ethylbenzene		ND<2500	5000	0.5	
Ethyl tert-butyl ether (ETBE)	ND<2500	5000	0.5	Freon 113		ND<50,000	5000	10	
Hexachlorobutadiene	ND<2500	5000	0.5	Hexachloroethane		ND<2500	5000	0.5	
2-Hexanone	ND<2500	5000	0.5	Isopropylbenzene		ND<2500	5000	0.5	
4-Isopropyl toluene	ND<2500	5000	0.5	Methyl-t-butyl ether		140,000	5000	0.5	
Methylene chloride	ND<2500	5000	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND<2500	5000	0.5	
Naphthalene	ND<2500	5000	0.5	n-Propyl benzene		ND<2500	5000	0.5	
Styrene	ND<2500	5000	0.5	1,1,1,2-Tetrachloroe	thane	ND<2500	5000	0.5	
1,1,2,2-Tetrachloroethane	ND<2500	5000	0.5	Tetrachloroethene		ND<2500	5000	0.5	
Toluene	6100	5000	0.5	1,2,3-Trichlorobenze		ND<2500	5000	0.5	
1,2,4-Trichlorobenzene	ND<2500	5000 5000	0.5	1,1,1-Trichloroethan Trichloroethene	e	ND<2500	5000	0.5	
1,1,2-Trichloroethane Trichlorofluoromethane	ND<2500 ND<2500	5000	0.5	1,2,3-Trichloropropa	ne	ND<2500 ND<2500	5000 5000	0.5	
1,2,4-Trimethylbenzene	ND<2500	5000	0.5	1,3,5-Trimethylbenz		ND<2500	5000	0.5	
Vinyl Chloride	ND<2500	5000	0.5	Xylenes, Total		6200	5000	0.5	
vinyi Chionae	1111<2300			•		0200	5000	0.5	
0/ 001			ogate R	ecoveries (%)			0		
%SS1:	12			%SS2:		11	8		
%\$\$\$3:	10	0							

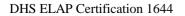
ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell</u> "When Qua	Analytical	<u>, Inc.</u>	Toll Free Telepl	v Pass Road, Pittsburg, CA none: (877) 252-9262 / Fax: mpbell.com / E-mail: main@	(925) 252-9269		
All West Environmental, Inc	Client Pr	oject ID: 4	#12071.23; Hollis	Date Sampled:	01/18/13		
530 Howard Street, Ste.300				Date Received:	01/18/13		
550 Howard Street, Ste.500	Client Co	ontact: Leo	nard Niles	Date Extracted:	01/23/13		
San Francisco, CA 94105	Client P.	0.:		Date Analyzed:	01/25/13		
Polynuclear Extraction Method: SW3510C	-	rocarbons (alytical Method:	PAHs / PNAs) using SW8270C-SIM	g SIM Mode by G	C/MS Work Order: 1301	440	
Lab ID	1301440-001C	1301440-0	002C				
Client ID	B22	B24			Reporting Limit DF =1		
Matrix	W	W					
DF	100	10			S	W	
Compound			Concentration		ug/kg	μg/L	
Acenaphthene	ND<50	ND<5.0)		NA	0.5	
Acenaphthylene	ND<50	ND<5.0)		NA	0.5	
Anthracene	ND<50	ND<5.0)		NA	0.5	
Benzo (a) anthracene	ND<50	ND<5.0)		NA	0.5	
Benzo (b) fluoranthene	ND<50	ND<5.0)		NA	0.5	
Benzo (k) fluoranthene	ND<50	ND<5.0)		NA	0.5	
Benzo (g,h,i) perylene	ND<50	ND<5.0)		NA	0.5	
Benzo (a) pyrene	ND<50	ND<5.0)		NA	0.5	
Chrysene	ND<50	ND<5.0)		NA	0.5	
Dibenzo (a,h) anthracene	ND<50	ND<5.0)		NA	0.5	
Fluoranthene	ND<50	ND<5.0)		NA	0.5	
Fluorene	ND<50	ND<5.0)		NA	0.5	
Indeno (1,2,3-cd) pyrene	ND<50	ND<5.0)		NA	0.5	
1-Methylnaphthalene	280		20		NA	0.5	
2-Methylnaphthalene	420		30		NA	0.5	
Naphthalene	1300		80		NA	0.5	
Phenanthrene	ND<50	ND<5.0)		NA	0.5	
Pyrene	ND<50	ND<5.)		NA	0.5	
		Surrogate	Recoveries (%)				
%SS1	#	61					
%SS2	#	#					
Comments							

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor


#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

	ampbell Ana ''When Quality Cou	l <u>ytical, Inc.</u> _{unts''}	Toll Free Telepho	Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail: 1	/ Fax: (925	5) 252-9269	
All West Environme	ental, Inc	Client Project ID:	#12071.23; Hollis	Date Sample	ed: 01	/18/13	
530 Howard Street,	Ste 300			Date Receiv	ed: 01	/18/13	
		Client Contact: Le	eonard Niles	Date Extract	ted 01	/24/13-0	01/25/13
San Francisco, CA	94105	Client P.O.:		Date Analyz	ed 01	/24/13-0	01/25/13
Extraction method: SW5030			Trap and GC/MS* ethods: SW8260B		We	ork Order:	1301440
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments
001A	B22	W	110,000		100	98	
002A	B24	W	17,000		100	102	
003A	B21	W	41,000		200	100	

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

Mc Mc	McCampbell Analytical, Inc. "When Quality Counts"			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
All West Enviro	nmental, Inc	Client Project ID:	#12071.23; Hollis	Date Sample	ed: 01	/18/13			
530 Howard Stre	eet Ste 300			Date Receiv	ved: 01	/18/13			
		Client Contact: Le	eonard Niles	Date Extract	ted 01	/23/13			
San Francisco, C	CA 94105	Client P.O.:		Date Analyz	zed 01	/23/13			
Extraction method: SW		-	tile Hydrocarbons as I ethods: SW8015Bm	Mineral Spiri		ork Order:	1301440		
Lab ID	Client ID	Matrix		TPH(mineral spirits) DF % SS Com					
001B	B22	W	17,000		200	101	d1		
002B	B24	W	7600		100	103	d1		
003B	B21	W	16,000		100	111	d1		

Reporting Limit for DF =1; ND means not detected at or	W	50	µg/L
above the reporting limit	S	NA	NA

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

	Campbell Anal "When Quality Cou	<u>ytical, Inc.</u> ^{ints''}	1534 Willow Toll Free Telepho http://www.mccan		262 / Fax:	(925) 252-	9269
All West Enviror	nmental, Inc	Client Project ID:	#12071.23; Hollis	Date Sam	pled:	01/18/1	.3
530 Howard Stre	et Ste 300			Date Rec	eived:	01/18/1	.3
550 Howard Sile		Client Contact: L	eonard Niles	Date Extr	acted	01/18/1	.3
San Francisco, C	A 94105	Client P.O.:		Date Ana	lyzed	01/23/1	.3
Extraction method: SW		e Petroleum Hydr Analytical m	rocarbons with Silica G	Gel Clean-U	J p*	Work Ord	er: 1301440
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments
1301440-001B	B22	W	8800	1	103	e4	
1301440-002B	B24	W	2700	1	101	e4	
1301440-003B	B21	W	3900		1	100	e4
	a Limit for DE -1.						

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e4) gasoline range compounds are significant.

QC SUMMARY REPORT FOR SW8015B

V.O. Sample Matrix: Water QC Matrix: Water			BatchID: 74125			WorkOrder: 1301440				
EPA Method: SW8015B	Extraction: SW351	0C/3630	DC				ę	Spiked Sam	ple ID:	N/A
Analyte	Sar	ample Spiked MS MSD			MSD	MS-MSD	LCS	Acceptance Criteria (%)		
, and yes	μί	g/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	Ν	J/A	1000	N/A	N/A	N/A	110	N/A	N/A	70 - 130
%SS:	Ν	I/A	625	N/A	N/A	N/A	102	N/A	N/A	70 - 130
All target compounds in the Method Blank of NONE	this extraction batch we	ere ND le	ess than th	e method	RL with th	ne following	g exception	s:		

BATCH 74125 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301440-001B	01/18/13 11:00 AM	01/18/13	01/23/13 3:03 AM	1301440-002B	01/18/13 1:20 PM	01/18/13	01/23/13 4:01 AM
1301440-003B	01/18/13 1:47 PM	01/18/13	01/23/13 2:52 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

↓ _QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 74174		WorkO	rder: 1301440
EPA Method: SW8260B Extr	action: SW5030B						Spiked Sam	ple ID:	1301444-008B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, united	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	116	118	2.02	117	70 - 130	20	70 - 130
Benzene	1.9	10	89.6	90.8	1.14	102	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	4.7	40	121	124	1.99	117	70 - 130	20	70 - 130
Chlorobenzene	ND	10	97.6	97.2	0.444	99.4	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	111	112	1.57	111	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	92.2	98.5	6.67	105	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	101	102	0.505	110	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	89.6	93.1	3.81	121	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	99.6	103	3.38	114	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	111	114	3.12	116	70 - 130	20	70 - 130
Toluene	0.73	10	101	96.9	3.88	99.8	70 - 130	20	70 - 130
Trichloroethene	ND	10	98.7	100	1.63	99.7	70 - 130	20	70 - 130
%SS1:	100	25	97	101	3.61	101	70 - 130	20	70 - 130
%SS2:	99	25	96	97	0.815	99	70 - 130	20	70 - 130
%SS3:	107	2.5	109	106	2.59	98	70 - 130	20	70 - 130

BATCH 74174 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301440-001A	01/18/13 11:00 AM	01/25/13	01/25/13 12:36 AM	1301440-002A	01/18/13 1:20 PM	01/24/13	01/24/13 4:48 PM
1301440-003A	01/18/13 1:47 PM	01/25/13	01/25/13 1:15 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 74187		WorkC	order: 1301440
EPA Method: SW8270C-SIM Extraction: S	W3510C					ę	Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	N/A	10	N/A	N/A	N/A	59.8	N/A	N/A	30 - 130
Chrysene	N/A	10	N/A	N/A	N/A	90.7	N/A	N/A	30 - 130
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	92.9	N/A	N/A	30 - 130
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	76	N/A	N/A	30 - 130
Phenanthrene	N/A	10	N/A	N/A	N/A	90.8	N/A	N/A	30 - 130
Pyrene	N/A	10	N/A	N/A	N/A	78.1	N/A	N/A	30 - 130
%SS1:	N/A	25	N/A	N/A	N/A	76	N/A	N/A	30 - 130
%SS2:	N/A	25	N/A	N/A	N/A	79	N/A	N/A	30 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exception	IS:		

BATCH 74187 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301440-001C	01/18/13 11:00 AM	01/23/13	01/25/13 11:34 AM	1301440-002C	01/18/13 1:20 PM	01/23/13	01/25/13 12:01 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 74182	WorkOrder: 1301440				
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1301440-002B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	6400	60	NR	NR	NR	102	N/A	N/A	70 - 130		
MTBE	2000	10	NR	NR	NR	90.3	N/A	N/A	70 - 130		
Benzene	350	10	NR	NR	NR	96	N/A	N/A	70 - 130		
Toluene	2000	10	NR	NR	NR	95.5	N/A	N/A	70 - 130		
Ethylbenzene	500	10	NR	NR	NR	94.4	N/A	N/A	70 - 130		
Xylenes	2700	30	NR	NR	NR	94.1	N/A	N/A	70 - 130		
%SS:	103	10	NR	NR	NR	99	N/A	N/A	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exception	ns:				

			BATCH 74182 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301440-001B	01/18/13 11:00 AM	01/23/13	01/23/13 6:42 AM	1301440-002B	01/18/13 1:20 PM	01/23/13	01/23/13 8:10 AM
1301440-003B	01/18/13 1:47 PM	01/23/13	01/23/13 8:40 AM	1301440-003B	01/18/13 1:47 PM	01/23/13	01/23/13 11:41 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

_QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	Client Project ID: #12071.23; Hollis	Date Sampled: 01/16/13
530 Howard Street, Ste.300		Date Received: 01/17/13
550 Howard Bacer, Sec.500	Client Contact: Leonard Niles	Date Reported: 01/25/13
San Francisco, CA 94105	Client P.O.:	Date Completed: 01/25/13

WorkOrder: 1301401

January 25, 2013

Dear Leonard:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: #12071.23; Hollis,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	МсС	am	npbe		Α	nc	vlr	/tic	~	Ir	Ir								С	HA		10)F	С	US	TC		Y	RE	С	OF	RD		-	
												IC.	• •			T		JAT	OU	UD 7	IM	2. DI	ICT I		4.110	-	0.110		2 110				/		
	1534 Wi vww.mco		ass Rd. /								m																			_		Y 🚺	10 DA	Y L	1
			77) 252-													G	eoTra	acker	EDF	Ľ	PDF		EDI		Writ	te On	n (DV	V)	EQ	uIS [
								12	50	1	41	0	1			Ef	fluer	nt Sa	mple	Requ	irin	g "J"	flag		UST	Clea	an U	p Fu	nd Pr	oject	;	Clair	m #		-
Report To: Leo	mard	Niles	5		Bil	l To	: C	ari	11	Za	me	211	2	-	-		_	_			_		_	Ana	lysis	Rec	ques	t	_				-	-	-
Company: All						aro	16	al	In	est	1	. C	on					6							ľ										
530 Howar		#30	00	(ch	oul	ih	an	0	all	we	st	1.	co	m	8260) / MTBE	W_	E/B&F)																	
SF, CA G	14105	10				Mail							st1	. , C	om	10	5	0.6				ners						(0)	6		analysis				
Tele: (415) 3 Project #: (207		510				x: (0			-		tid	1 5520	÷.	021)		onge		Î				/ 6020)	602		ls an				
Project Location:	Gago	will	e . (A		rcha				111	>				-	8015 or	P	(1664	(418	60/8	3	\$/0		oicid			NAS	6010	010	(0)	metals				
Sampler Signatur	res 1/2-	1	L	×,	2	rena	at U	ruci	m			_			-		6		pons	A 82	sticid	oclor	ides)	Hert	Cs)	S)	Is / I	8/0	8/6	/ 602	ED				
	T	1	PLING	Π			N	1AT	RIX			_		ETH	OD VED	Gas 8021	20	& Grease	1 4	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 /	5 Metals (200.7 / 200.8 / 6010 / 6020)	Metals (200.7 / 200.8 / 6010 / 6020)	Filter sample for DISSOLVED				
				2			h					Τ			Γ	s Ga	(8015)	10	Hy	ONL	8081	PCB	a.	(Aci	/ 82(/ 82	/ 831	(200	(200.	00.8	DIS				
SAMPLE ID	Location/ Field Point			Containers	ater	ter	Drinking Water	Б								PHa			leun	LEX	08 / 1	9082	8141	8151	624	625	NIS	etals	stals	7/2	le foi				
	Name	Date	Time	ntai	Ground Wate	Waste Water	Bui	Sea / Water								& T	TPH as Diesel	etro	etro	/ B1	05/6	08/8	14	15/	24.2	25.2	Ra	7 M	5 Me	(200	duue				
				S	rour	aste	rink	1	Soil	.=	Sludge	Other	HCL	HNO,	Other	BTEX	Ha	tal	tal	TBE	V SI	9 V.	A S(V SI	A 5.	V 5.	EPA 8	IWN	LUFT	etals	ter s				
				#	9	3	ā	š	S.	Air	S	ō	Ē	Ξ	ō	B	F	Te	1º	M	EF	EF	EP	EF	EP	EF	EP	C	EL	M	Ξ				
B18-10-10.5.	7	1/10/13	0922	1					\ge							${ m imes}$	$1 \times$										X								
B18-15.5-10-	7	1	0945	1					\times							\succ	\mathbb{X}	1									\bowtie						1		
B25-10-10.5-	7		1127	i					\aleph			Т				X	1	1									X								
B25-15-15.5.	->		1141	1					\mathbf{X}			Τ					15	ł									X							+	
B17-8.5-9-	7		1411	i					$\overline{\times}$			t				\mathbf{x}	\mathbf{X}	1									\bigtriangledown						+	+	
B19-10-10.5-	5		1545	T					\mathbf{X}	ſ		t				Ń	\mathbb{X}	1									R							+	-
B19-H.5-15-	>		1600	ì					$\overline{\mathbf{X}}$			+				Ń	长										$\langle \cdot \rangle$						+	+	-
pri lis is		V	1000	,								+				r		1	1					1	2		r					+			-
01		11	le		-			-	-		-	F	F					+	-		1	A		\vdash (\mathcal{F}					-	-	-	-	+	-
111	1	10	w		_						+	+		-		+		n	Α,		4	45	T		-							+	+	+	-
U	A					\vdash	_		-	-	-	+		-	-	-			H		1		-		-	-						-	+	+	_
**MAI clients MUST	disclose any	dangeroj	us chemica	ls kno	own te	o he n	reser	t in t	heir s	ubm	itted	sam	nles i	n cor	lcent	ratio	ns the	at me	V cans	e imr	nedia	te har	III OF	sario	ne fut	ure h	aalth	anda					Christ		_
gloved, open air, sam	ple handling	by MAI s	staff. Non-d	lisclo	sure i	ncurs	an ir	nmed	liate 5	\$250	surch	harg	e and	the c	client	is su	bject	to fu	ll lega	l liabi	lity fo	or har	m su	ffered	. Th	ank y	ou fo	r you	r und	ersta	nding	and f	or allo	wing	
us to work safely. Relinquished By:	A	Date	Time:		Rece	ived I	3v:				-	7			CE/r		- 8								_	(OM	MEN	TS.						_
1 toth	14	enti	3 140	2/4		-		-	~		7	4		(GOO	DCC	ONDI	TIO								2		VIEN	1.5.						
Relinquished ID.	2 Th	Date:	Time:	1	Rece	ived I	3v:			_	<	-	-				RINA		ENT_ IN L	AB	-														
	1/1	1.1	- 111	$\langle $	1	2	A	1		1)			A	PPR	ROPE	LAT	E CO	NTAI		S	1													
Relinquished By:	-4	Date:	- 6/- Time:	-	Rece	A	N	1	\wedge	R	_			-1	RES	DERV	EDI																		
Kennquistieu by:	/	Date:	rime:		Rece		sy:			V				F	PRES	ERV	ATIO		OAS	0&		H<2_		OTI	IER	I	HAZA	RDO	US:						
				-	-				_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_				

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				V	VorkO	rder: 1	301401	1	Cli	entCo	de: AW	Е				
	WaterTrax	WriteOn	✓ EDF	E	xcel		EQuIS	✓	Email		HardCo	ру [ThirdPa	ty	_J-flaថ	g
Report to:					Bi	ll to:					I	Reques	sted TAT:		5 da	ays
Leonard Niles All West Environmental, Inc 530 Howard Street, Ste.300 San Francisco, CA 94105 (415) 391-2510 FAX: (415) 391-2008	cc: PO: ProjectNo: ;	Leonard@allwe #12071.23; Hol				All W 530 F San F	loward	vironmo Street co, CA	ental, In , Ste.300 .94105 com				Received: Printed:)1/17/2()1/17/2(
								Re	equested	Tests	(See lege	end bel	ow)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

1301401-001	B18-10-10.5	Soil	1/16/2013 9:22	Α	Α	Α	Α				
1301401-002	B18-15.5-16	Soil	1/16/2013 9:45	А	А		А				
1301401-003	B25-10-10.5	Soil	1/16/2013 11:27	А	А		А				
1301401-004	B25-15-15.5	Soil	1/16/2013 11:41	А	А		А				
1301401-005	B17-8.5-9	Soil	1/16/2013 14:11	А	А		Α				
1301401-006	B19-10-10.5	Soil	1/16/2013 15:45	А	Α		Α				
1301401-007	B19-14.5-15	Soil	1/16/2013 16:00	А	Α		А				

Test Legend:

1	8270D-PNA_S
6	
11	

2	G-MBTEX_S	
7		
12		

3 PREDF REPORT 8

4 TPH(DMO)WSG_S 9

5	
10	

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name: All West Environmental, Inc					Date	Date and Time Received: 1/17/2013 5:43:55 PM						
Project Name: #12071.23; Hollis					LogIn	Reviewed by:	Zoraida Cortez					
WorkOrder N°:	1301401	Matrix: <u>Soil</u>			Carrie	er: <u>Rob Pringle (M</u>	AI Courier)					
Chain of Custody (COC) Information												
Chain of custody	present?		Yes	✓	No							
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌							
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌							
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌							
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌							
Sampler's name	noted on COC?		Yes	✓	No							
Sample Receipt Information												
Custody seals intact on shipping container/cooler?					No 🗌		NA 🖌					
Shipping container/cooler in good condition?				✓	No 🗌							
Samples in proper containers/bottles?				✓	No 🗌							
Sample containers intact?				✓	No 🗌							
Sufficient sample volume for indicated test?				✓	No 🗌							
Sample Preservation and Hold Time (HT) Information												
All samples rece	ived within holding tim	e?	Yes	✓	No							
Container/Temp Blank temperature			Coole	r Temp:	2.8°C		NA					
Water - VOA vials have zero headspace / no bubbles?			Yes		No 🗌	No VOA vials subm	itted 🗹					
Sample labels checked for correct preservation?			Yes	✓	No 🗌							
Metal - pH acceptable upon receipt (pH<2)?			Yes		No 🗌		NA 🖌					
Samples Received on Ice?			Yes	✓	No 🗌							
(Ice Type: WET ICE)												
* NOTE: If the "No" box is checked, see comments below.												

Comments:

McCampbell / "When Qua	Analytical lity Counts''					(925) 252-9269		
All West Environmental, Inc	Client Pr	Client Project ID: #12071.23; Hollis			Date Sampled: 01/16/13			
530 Howard Street, Ste.300					Date Received: 01/17/13			
	Client Co	ontact: Leo	onard N	Viles	Date Extracted: 01/22/13			
San Francisco, CA 94105	Client P.	0.:			Date Analyzed:	analyzed: 01/23/13-01/24/13		
Polynuclear Extraction Method: SW3550B	•	cocarbons (alytical Method:		, e	SIM Mode by G	C/MS Work Order: 130	1401	
Lab ID	1301401-001A	1301401-0	002A	1301401-003A	1301401-004A			
Client ID	B18-10-10.5	B18-15.5-16		B25-10-10.5	B25-15-15.5	Reporting Limit for DF =1		
Matrix	S	S		S	S			
DF	10	1		1	1	S	W	
Compound			Conce		mg/kg	ug/L		
Acenaphthene	ND<0.10	ND		ND	ND	0.01	NA	
Acenaphthylene	ND<0.10	ND		ND	ND	0.01	NA	
Anthracene	ND<0.10	ND		ND	ND	0.01	NA	
Benzo (a) anthracene	ND<0.10	ND		0.013	ND	0.01	NA	
Benzo (b) fluoranthene	ND<0.10	ND		ND	ND	0.01	NA	
Benzo (k) fluoranthene	ND<0.10	ND		ND	ND	0.01	NA	
Benzo (g,h,i) perylene	ND<0.10	ND		ND	ND	0.01	NA	
Benzo (a) pyrene	ND<0.10	ND		ND	ND	0.01	NA	
Chrysene	ND<0.10	ND		0.013	ND	0.01	NA	
Dibenzo (a,h) anthracene	ND<0.10	ND		ND	ND	0.01	NA	
Fluoranthene	ND<0.10	ND		0.037	ND	0.01	NA	
Fluorene	ND<0.10	ND		ND	ND	0.01	NA	
Indeno (1,2,3-cd) pyrene	ND<0.10	ND		ND	ND	0.01	NA	
1-Methylnaphthalene	0.69	69 ND		0.014	ND	0.01	NA	
2-Methylnaphthalene	1.1	ND		0.028	ND	0.01	NA	
aphthalene 0.47		ND		0.012	ND	0.01	NA	
Phenanthrene	ND<0.10	ND		0.043	ND	0.01	NA	
Pyrene	ND<0.10	ND		0.033	ND	0.01	NA	
		Surrogate I	Recov	eries (%)				
%SS1	83	78		77	75			
%SS2	81	76		78	75			
Comments								

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

McCampbell / "When Qua	Analytical lity Counts''	<u>, Inc.</u>	Toll Free Telephor	ass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bell.com / E-mail: main@	(925) 252-9269		
All West Environmental, Inc	Client Pr	Client Project ID: #12071.23; Hollis Date Sampled:				01/16/13	
530 Howard Street, Ste.300				Date Received: 01/17/13			
550 Howard Sileet, Sie.500	Client Co	ontact: Leonard	Niles	Date Extracted: 01/22/13			
San Francisco, CA 94105	Client P.	0.:		Date Analyzed: 01/23/13-01/24/13			
-	-		Is / PNAs) using	SIM Mode by G			
Extraction Method: SW3550B Lab ID		alytical Method: SW82			Work Order: 1301	401	
Client ID	1301401-005A B17-8.5-9	1301401-006A B19-10-10.5	1301401-007A B19-14.5-15		Peporting	Limit for	
Chent ID	B17-0.5-9	B19-10-10.5	D19-14.3-13		Reporting Limit for DF =1		
Matrix	S	S	S				
DF	1	10	1		S	W	
Compound		Cone	centration		mg/kg	ug/L	
Acenaphthene	ND	ND<0.10	ND		0.01	NA	
Acenaphthylene	ND	ND<0.10	ND		0.01	NA	
Anthracene	ND	ND<0.10	ND		0.01	NA	
Benzo (a) anthracene	ND	ND<0.10	ND		0.01	NA	
Benzo (b) fluoranthene	ND	ND<0.10	ND		0.01	NA	
Benzo (k) fluoranthene	ND	ND<0.10	ND		0.01	NA	
Benzo (g,h,i) perylene	ND	ND<0.10	ND		0.01	NA	
Benzo (a) pyrene	ND	ND<0.10	ND		0.01	NA	
Chrysene	ND	ND<0.10	ND		0.01	NA	
Dibenzo (a,h) anthracene	ND	ND<0.10	ND		0.01	NA	
Fluoranthene	ND	ND<0.10	ND		0.01	NA	
Fluorene	ND	ND<0.10	ND		0.01	NA	
Indeno (1,2,3-cd) pyrene	ND	ND<0.10	ND		0.01	NA	
1-Methylnaphthalene	ND	0.48	0.26		0.01	NA	
2-Methylnaphthalene	ND	0.76	0.50		0.01	NA	
Naphthalene	ND	0.72	0.50		0.01	NA	
Phenanthrene	ND	ND<0.10	0.014		0.01	NA	
Pyrene	ND	ND<0.10	ND		0.01	NA	
		Surrogate Reco	overies (%)				
%SS1	80	83	77				
%SS2	81	75	79				
Comments			·				

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

McCampbell . "When Qua	Analytical lity Counts''	<u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
All West Environmental, Inc	Client P	roject ID: #1207	1.23; Hollis	Date Sampled:	01/16/13					
530 Howard Street, Ste.300				Date Received:	01/17/13					
550 Howard Street, Stc.500	Client C	ontact: Leonard	Niles	Date Extracted:	01/17/13					
San Francisco, CA 94105	Client P	.0.:		Date Analyzed: 01/17/13-01/22/13						
Gasoline Range (C6-C12) and Extraction Method: SW5030B	-	Range (C9-C12) alytical Method: SW802	·	ocarbons with BT	EX and N Work Order:					
Lab ID	1301401-001A	1301401-002A	1301401-003A	1301401-004A						
Client ID	B18-10-10.5	B18-15.5-16	B25-10-10.5	B25-15-15.5	Reporting Limit fo					
Matrix	S	S	S	S	1					
DF	100	1	1	1	S	W				
Compound		Conce	entration		mg/Kg	ug/L				
TPH(g)	450	ND	16	ND	1.0	NA				
TPH(mineral spirits)	430	ND	6.8	ND	1.0	NA				
MTBE	ND<5.0	ND	ND	ND	0.05	NA				
Benzene	ND<0.50	ND	0.0088	ND	0.005	NA				
Toluene	ND<0.50	ND	0.034	ND	0.005	NA				
Ethylbenzene	8.0	ND	0.30	ND	0.005	NA				
Xylenes	25	ND	0.015	ND	0.005	NA				
	Surr	ogate Recoveries	s (%)			<u>.</u>				
%SS:	#	96	91	90						
Comments	d2,d9		d1		<u> </u>					
* water and vapor samples are reported in μ, and all TCLP & SPLP extracts in mg/L.	g/L, soil/sludge/solid	samples in mg/kg, w	ipe samples in µg/wi	ipe, product/oil/non-ac	lueous liquid	samples				
# cluttered chromatogram; sample peak coel Surrogate Standard; DF = Dilution Factor	utes w/surrogate pea	k; low surrogate recov	ery due to matrix int	terference; $\%$ SS = Per	cent Recover	y of				
The following descriptions of the TPH chron		in nature and McCar	npbell Analytical is a	not responsible for the	ir interpretatio	on:				

d1) weakly modified or unmodified gasoline is significant
d2) heavier gasoline range compounds are significant (aged gasoline?)
d9) no recognizable pattern

McCampbell / ''When Qua	Analytical lity Counts''	<u>, Inc.</u>	Toll Free Telepho	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fax: pbell.com / E-mail: main(x: (925) 252-9269						
All West Environmental, Inc	Client P	roject ID: #120	71.23; Hollis	Date Sampled:	01/16/13						
530 Howard Street, Ste.300				Date Received:	Date Received: 01/17/13						
550 Howard Babbl, Stel.500	Client C	Contact: Leonard	Niles	Date Extracted:	01/17/13						
San Francisco, CA 94105	Client P	.0.:		Date Analyzed:	01/17/13-01/22/13						
Gasoline Range (C6-C12) and Extraction Method: SW5030B	-	Range (C9-C12 nalytical Method: SW802	· ·	ocarbons with B	TEX and M Work Order:						
Lab ID	1301401-005A	1301401-006A	1301401-007A								
Client ID	B17-8.5-9	B19-10-10.5	B19-14.5-15		Reporting DF						
Matrix	S	S	S								
DF	1	20	20		S	W					
Compound		Conc	entration		mg/Kg	ug/L					
TPH(g)	ND	360	240		1.0	NA					
TPH(mineral spirits)	ND	350	240		1.0	NA					
МТВЕ	ND	ND<1.0	ND<1.0		0.05	NA					
Benzene	ND	0.31	0.12		0.005	NA					
Toluene	ND	0.23	0.16		0.005	NA					
Ethylbenzene	ND	8.8	5.7		0.005	NA					
Xylenes	ND	26	14		0.005	NA					
	Surr	ogate Recoverie	s (%)								
%SS:	85	#	#								
Comments		d1	d1								
* water and vapor samples are reported in μg and all TCLP & SPLP extracts in mg/L. # cluttered chromatogram; sample peak coel Surrogate Standard; DF = Dilution Factor	-										

d1) weakly modified or unmodified gasoline is significant
d2) heavier gasoline range compounds are significant (aged gasoline?)
d9) no recognizable pattern

<u> </u>	Campbell Anal "When Quality Cou		Toll Free 7	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com								
All West Envir	ronmental, Inc	Client Project	ID: #12071.23; Hollis	5 Date Sampled:	01/16	/13						
530 Howard St	traat Sta 200			Date Received:	01/17	/13						
550 110 walu St	licel, Slc.300	Client Contact	: Leonard Niles	Date Extracted:	01/17/13							
San Francisco,	CA 94105	Client P.O.:		Date Analyzed:	01/18/13-01/24/13							
Extraction method:			methods: SW8015B	Silica Gel Clean-Up*	W	ork Order:	1301401					
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments					
1301401-001A	B18-10-10.5	S	60	5.4	1	96	e4,e2					
1301401-002A	B18-15.5-16	S	2.4	ND	1	93	e2					
1301401-003A	B25-10-10.5	S	3.4	ND	1	96	e2					
1301401-004A	B25-15-15.5	S	ND	ND	1	96						
1301401-005A	B17-8.5-9	S	ND	ND	1	97						
1301401-006A	B19-10-10.5	S	32	ND	1	117	e4					
1301401-007A	B19-14.5-15	S	11	ND	1	98	e4					

Reporting Limit for $DF = 1$; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil	QC Matrix	Soil			BatchID	: 74148	WorkOrder: 1301401						
EPA Method: SW8270C-SIM Extraction: S	SW3550B					;	Spiked Sam	ple ID:	1301401-004A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)						
, indyte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS/MSD RPD		LCS				
Benzo (a) pyrene	ND	0.20	67.7	63.8	5.98	60.7	30 - 130	30	30 - 130				
Chrysene	ND	0.20	97.2	93.9	3.52	86.1	30 - 130	30	30 - 130				
1-Methylnaphthalene	ND	0.20	102	99.3	2.93	88.1	30 - 130	30	30 - 130				
2-Methylnaphthalene	ND	0.20	84.2	82.7	1.74	73.8	30 - 130	30	30 - 130				
Phenanthrene	ND	0.20	96.6	98	1.43	89.8	30 - 130	30	30 - 130				
Pyrene	ND	0.20	83.2	80.1	3.81	76	30 - 130	30	30 - 130				
%SS1:	75	0.50	82	80	2.47	73	30 - 130	30	30 - 130				
%SS2:	75	0.50	83	81	3.00	73	30 - 130	30	30 - 130				
All target compounds in the Method Blank of this extraction b NONE	atch were ND	less than th	e method	RL with the	he following	g exceptior	is:						

BATCH 74148 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301401-001A	01/16/13 9:22 AM	01/22/13	01/24/13 7:06 PM	1301401-002A	01/16/13 9:45 AM	01/22/13	01/23/13 9:04 PM
1301401-003A	01/16/13 11:27 AM	01/22/13	01/23/13 9:31 PM	1301401-004A	01/16/13 11:41 AM	01/22/13	01/23/13 7:14 PM
1301401-005A	01/16/13 2:11 PM	01/22/13	01/23/13 9:59 PM	1301401-006A	01/16/13 3:45 PM	01/22/13	01/24/13 7:33 PM
1301401-007A	01/16/13 4:00 PM	01/22/13	01/23/13 10:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	BatchID: 74052 WorkOrder: 1301									
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1301371-057A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	0.60	103	95.1	8.07	102	70 - 130	20	70 - 130	
MTBE	ND	0.10	90.9	97.2	6.62	88.7	70 - 130	20	70 - 130	
Benzene	ND	0.10	106	99.4	6.21	96.3	70 - 130	20	70 - 130	
Toluene	ND	0.10	104	98.3	5.55	94.6	70 - 130	20	70 - 130	
Ethylbenzene	ND	0.10	104	98.5	5.85	94.9	70 - 130	20	70 - 130	
Xylenes	ND	0.30	104	99.2	4.83	95.5	70 - 130	20	70 - 130	
%SS:	91	0.10	107	99	7.65	70	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	exception	ns:			

			BATCH 74052 SI	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301401-001A	01/16/13 9:22 AM	01/17/13	01/22/13 7:21 PM	1301401-002A	01/16/13 9:45 AM	01/17/13	01/17/13 11:07 PM
1301401-003A	01/16/13 11:27 AM	01/17/13	01/18/13 12:07 AM	1301401-004A	01/16/13 11:41 AM	01/17/13	01/18/13 12:36 AM
1301401-005A	01/16/13 2:11 PM	01/17/13	01/19/13 9:47 PM	1301401-006A	01/16/13 3:45 PM	01/17/13	01/19/13 10:17 PM
1301401-007A	01/16/13 4:00 PM	01/17/13	01/19/13 6:47 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

AL__QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matrix		BatchID	: 74051	WorkOrder: 1301401								
EPA Method: SW8015B Ex	traction: SW3550B/36	30C					Spiked Sam	ple ID:	1301371-057A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS				
TPH-Diesel (C10-C23)	ND	40	99.5	99.8	0.318	110	70 - 130	30	70 - 130				
% SS:	96	25	92	92	0	103	70 - 130	30	70 - 130				
All target compounds in the Method Blank of this NONE		-			he following			50	70 150				

BATCH 74051 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301401-001A	01/16/13 9:22 AM	01/17/13	01/24/13 3:30 AM	1301401-002A	01/16/13 9:45 AM	01/17/13	01/23/13 9:33 PM
1301401-003A	01/16/13 11:27 AM	01/17/13	01/18/13 5:55 PM	1301401-004A	01/16/13 11:41 AM	01/17/13	01/18/13 12:35 AM
1301401-005A	01/16/13 2:11 PM	01/17/13	01/18/13 1:46 AM	1301401-006A	01/16/13 3:45 PM	01/17/13	01/19/13 2:21 PM
1301401-007A	01/16/13 4:00 PM	01/17/13	01/19/13 1:13 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

_QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

All West Environmental, Inc	Client Project ID: #12071.23; Hollis	Date Sampled: 01/16/13
530 Howard Street, Ste.300		Date Received: 01/17/13
550 Howard Bacer, Sec.500	Client Contact: Leonard Niles	Date Reported: 01/25/13
San Francisco, CA 94105	Client P.O.:	Date Completed: 01/25/13

WorkOrder: 1301410

January 25, 2013

Dear Leonard:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#12071.23; Hollis,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	McCampbell Analytical, Inc.																		Cł	A		C	F	CI	US	TC	D	Y	RE	C		RD			٦
	1534 Wil													E		т	URN	ARC	DUN	DT	IME	: RU	SH	24	HR	4	B HR	7	2 HR	05	DAY		10 D/	AY [
v v	ww.mcc	ampb	ell.com	/ r	main	@m	ccc	mp	bell	.coi	m	Y')	G	2	-	Ge	eoTrac	ker E	DF	Ń	PDF		EDD		Writ	e On	(DW		EQ	uIS					
	Telepho					ax: (925) 25	2-92	269		1	21				fluent															Clair	× #		
		1.0	301	4	10											EI	nuen	. San	ipie i	Kequ	in my								lu Fr	ojeci	ų,	Clam	n #		-
	west	Vile	5	_		To:								_										Ana	lysis	Req	uest					_	_	_	_
530 Howa		#300	= 300 choulinen@allwest1.com												TBE		&F)							4t											
	94105		E-Mail: leonard @ allwest 1, com											8260) / MTBE	5-	Grease (1664 / 5520 E/B&F)				ers			PH			6	_		analysis						
Tele: (415) 3		D	Fax: (415) 397-2008											\$260)	- m	552(-	(1208)		ngen		()	L K			6020	6020		ana						
Project #: 20	11.23	-14	Project Name: Hollis											S or S	HA	664 /	418.1	0/ 80	ŝ	/ Co		cides	and		NAs)	010/	/ 010	6	metals						
Project Location: Sampler Signatur	Enery	VINE	Me, CA Purchase Order#												-	108	Lin	lse (1	ons (826	ticid	clors	des)	lerb	(S)	Cs)	s/P	8/6	8 / 6(602	ED n				
Sampler Signatur			AMPLING MATRIX METHO												DD	(8021	no		Total Petroleum Hydrocarbons (418.1)	ONLY (EPA 8260/	8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	8141 (NP Pesticides)	8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	5 Metals (200.7 / 200.8 / 6010 / 6020)	Metals (200.7 / 200.8 / 6010 / 6020)	for DISSOLVED				
		SAMI	LING			_						\neg	PRE	SER	VED	Gas ((8015))il &	lydro	NLY	81 (C	CB's	VP Pe	Acidi	8260	8270	310	00.7	00.7	0.8/6	DISS				
SAMPLE ID	Location/			ers	ter	-	ater									H as		mm	m	O X		82 P	141 ()	151 (524 /	525/	W/W	als (2	als (2	/ 20	for				
	Field Point Name	Date	Time	tain	Wa	Vate	M BI	Water								& TP	Diese	trole	trole	BTEX	5/ 600	8 / 80	507/81		1.2 / 6	5.27	30	Met	Meti	200.7	sample 1				
			-	Containers	Ground Water	Waste Water	Drinking Water	Sea / W	-		Sludge	Other	H	4NO3	Other		TPH as Diesel	Total Petroleum Oil &	tal P	MTBE /	EPA 505/ 608 /	A 60	A 50	EPA 515/	A 52	A 52	A 82	J W	LUFT 5	tals (Filter sa				
				#	ē	Ŵ	Dr	Se	Soil	Air	Slt	ŏ	HCL	H	ŏ	BT	d.L	To	To	M	EP	EP	EPA	EP	EPA	EP	EP	CA	FI	Me	E				
B18	B18	1/16/3	1000	3	\times								\times												\ge										
, B18	BIB	1	1000	1	\times																						\ge								
BIS	BIS		1000	1	\succ								\times				\times																		
B25	B25		1330	2	\times								\times												\ge										
B25	B25		1330	1	\ge	-																					\ge								
B25	BZS		1330	1	\times								\ge				X																		
BIJ	BIT		1426	3	\times								\ge	_											${ imes}$										
B17	BIT		1426	1	\mathbf{X}									,													\times								
B17	BIT		1426	1	X								\ge				X																		
D BT9	B19		1620	3	\times								\ge												\bowtie										
B19	319	V	1620	4	X																						\times								
**MAI clients MUST gloved, open air, sam	disclose any ole handling	dangerou by MAI s	taff. Non-d	ls kn lisclo	own to sure i	be p	resen an ir	t in t	heir s liate S	ubmi	tted s	arge	ples in and	n con the c	lient	ratio is su	ns that	t may to full	caus	e imn liabi	nediat lity fo	te har	m or m suf	serio Tered	us fut I. The	ture h ank y	ealth	enda r vou	ngerr r und	nent : ersta	as a re nding	sult o	f brid or all	ef, owing	,
us to work safely.							_	_								h	0												_					o n n	<u></u>
Relinquished By:	IL.	Date:	Timez 3/40	Received By: GOOD CONDITION HEAD SPACE ABSI											NT	-						(OM	MEN	TS:										
Relinquished By:	- /	Date:	Time:										DECHLORINATED IN LAB APPROPRIATE CONTAINERS																						
21	21	17/13	YLI.	5		ll	X	1	1	2	1	-					ED IN																		
Relinquished By:	1	Date:	Time:	ne: Received By:															AS	0&0	GM	1ETA	LS	OTI	HER	I	IAZA	RDO	OUS:						
						(1		P	PRES	ERV	ATIO	N	_		p	H<2_				_									

	ЛсС	am	pbe	ell	A	nc	aly	/tic	cc	ıl,	In	C.							Cŀ	HA		IC)F	C	US	TC	D	Y	RE	С	OF	2D			
	1534 Wi	llow Pc	iss Rd. /	Pitt	tsbui	rg, C	Ca. 9	9456	5-17	701	8	PI	XE	3£	5	τu	RN	ARC	DUN	DT	IME	C: RU	SH	24	4 HR	4	8 HR	7	2 HR		5 DAY	(🔽	10 D/	AY C	1
~ ~ ~	ww.mcc	ampb	ell.com	1/ r	main	@m	ICCC		bell	.co	m		6	27	2	- Geo	Trac	ker E	DF	9	PDF		EDE		Writ	e On	(DW		EQ	uIS [
	ww.mcc Telepho	one: (8/	(7) 252-	920	2/F	ax:	(923	o) 20	2-41	207	10	/	0																			Clai	m #		
	_																					, ,				_				ojee					_
Report To: Leov Company: Ai(and M	lies				l To:							<u></u>		-					_	_			Ana	lysis	Rec	uest							-	-
530 Howard	1 St	#3	00			IDU										TBE	~	&F)																	
SF. CA 9	4105					Mail										8260) / MTBE	-m-	0 E/B				lers						6	~		analysis				
Tele: (415) 39					Fa	x: (4	415)	39	1-	20	00	1		_	8260	t2	1552	G	[]		onger		s)			_	(6020)	6020		s ana				
Project #: 70	71.23	>		1		oject rcha				211	is	_	_		-	5 or	4.0	1664	(418.	50/ 80	(3)	s/C		icide			NAs	010	/ 010	(0)	netal				
Project Location: Sampler Signatur	e: 07	JAN	Le l	4	O Pu	rena	se O	ruer	#	_					-	1/ 801	2.S	ase (bons	A 82(sticid	oclor	ides)	Hert	(S)	0Cs)	Hs / I	0.8/	8/6	/ 602	/ED				
			PLING	Γ			N	1AT	RIX			I		THO		Gas (8021/	and "	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 /	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Metals (200.7 / 200.8 / 6010 / 6020)	sample for DISSOLVED metals				
				2			L.									as Ga	(8015)	n Oil	n Hy	INO	8081	PCB	NP I	I (Ac	4 / 82	5/82	1 831	s (200	(200	200.8	r DI				
SAMPLE ID	Location/ Field Point			Containers	Ground Water	ater	Drinking Water	er								LPH		oleur	olcur	TEX	608 /	8082	814	815	2/62	2 / 62	NIS (Metal	letals	0.7 /	ple fo				
	Name	Date	Time	onta	\ pur	Waste Water	king	Sea / Water			ee.	5		~	ħ	X&	TPH as Diesel	I Petr	l Petr	E/B	505/	608 /	507 /	515/	524.2	525.2	827(117 V	T 5 N	ils (20	r sam				
				# C	Grot	Was	Drin	Sca	Soil	Air	Sludge	Other	HCL	HNO	Other	BTEX	TPH	Tota	Tota	MTB	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAN	10F	Meta	Filter				
BIG	BI9	1/16/13	1620	1	X								X				X																	+	
Pro-				1										/																					7
												7																						1	
		1																	1													\square			
			0.																								0			/					
		1	1-1		1																			1		0	X	-		-					
		Hor	X										_										-	A	29	~								\rightarrow	
		ye										4	_		\square			_		\square	W	x												+	_
	1 -			-								-	_		\square																			+	_
				-				-	-			+	-	_	\square				-	F			_						_		_			+	4
**MAI clients MUST	disclose any	dangero	is chemics	als kn	lown t	o he r	reser	at in t	heir s	ubmi	tted s	amp	les ir	n con	centr	ation	s that	tmay	caus	e imr	nedia	te har	mor	serio	us fut	ure h	ealth	enda	ngerr	nent	95.9 1	esult	ofbrid	-f	4
gloved, open air, samp																																			
us to work safely.	AN	Date:	Time	:	Rece	ived	By:		1						CE/t°			201042								(OM	MEN	TS:						
Alton	VI	17/1	3140	1			C	7		1)					BSE		_															
Relinquished By.	h	Pate:	Time	:_	Rece	eived 1	By:		0	1	-	/		D	ECH	ILOR	INA'	CON	IN LA	and the second second	5														
12	1/1	12/13	6/	S	/	H	10	N	L	~	\square							LAI																	
Relinquished By:	/	Date:	Time	:	Rece	ived	By:				1				1030				AS	0&					HER		IAZA	RDO	OUS:						
						· (1		Р	RESI	ERV	ATIO	N			p	H<2_				_									

McCampbell Analytical, Inc.

Pittsburg, CA 94565-1701

Page 1 of 1

(925) 252-9262				We	orkOrd	er: 1	30141(0	Clier	ntCod	le: AWE	Ľ				
	WaterTrax	WriteOn	✓ EDF	Ex	cel	E	EQuIS	VE	mail		HardCop	у	ThirdPa	ırty	J-fla	зg
Report to:					Bill to) :					R	eque	sted TAT:		5 0	days
Leonard Niles All West Environmental, Inc 530 Howard Street, Ste.300 San Francisco, CA 94105 (415) 391-2510 FAX: (415) 391-2008	cc: PO:	Leonard@allwe #12071.23; Holl				All We 530 H San F	loward ranciso	o vironmer Street, \$ co, CA 9 west1.co	Ste.300 4105		_		Received: Printed:		01/17/2 01/17/2	
								Req	uested T	Fests (See legen	ıd be	low)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

1301410-001	B18	Water	1/16/2013 10:00	В	Α	С	Α			
1301410-002	B25	Water	1/16/2013 13:30	В	А	С				
1301410-003	B17	Water	1/16/2013 14:26	В	А	С				
1301410-004	B19	Water	1/16/2013 16:20	В	А	С				

Test Legend:

1	8270D-PNA_W
6	
11	

2	GAS8260_W	
7		
12		

3	G-MBTEX_W
8	

PREDF REPORT

4

9

5	
10	

Prepared by: Zoraida Cortez

The following SampIDs: 001A, 001C, 002A, 002C, 003A, 003C, 004A, 004C contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Date	and T	ime Received:	1/17/2013 8	:35:09 PM
Project Name:	#12071.23; Hollis				Loglı	n Revi	ewed by:		Zoraida Cortez
WorkOrder N°:	1301410	Matrix: Water			Carri	ier:	Rob Pringle (M	Al Courier)	
		<u>Cha</u>	in of Cι	<u>ustody (C</u>	OC) Inform	ation			
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No				
Chain of custody	agrees with sample la	ibels?	Yes	✓	No 🗌				
Sample IDs note	d by Client on COC?		Yes	✓	No				
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
			<u>Sample</u>	Receipt	Information	<u>n</u>			
Custody seals in	tact on shipping contai	ner/cooler?	Yes		No 🗌			NA 🗹	
Shipping contain	er/cooler in good cond	ition?	Yes	✓	No				
Samples in prope	er containers/bottles?		Yes	✓	No				
Sample containe	rs intact?		Yes	✓	No				
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌				
		Sample Pres	ervatio	n and Ho	<u>ld Time (HT</u>	<u>F) Info</u>	rmation		
All samples recei	ived within holding tim	e?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	er Temp:	3°C			NA	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No 🗌	No	VOA vials submi	tted	
Sample labels ch	necked for correct pres	ervation?	Yes	✓	No				
Metal - pH accep	table upon receipt (p⊢	I<2)?	Yes		No			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ісе Тур	e: WE	TICE)	1				
* NOTE: If the "N	lo" box is checked, se	e comments below.							

Comments:

	Analytica	<u>l, Inc.</u>		Toll Free Teleph	/ Pass Road, Pittsburg, hone: (877) 252-9262 / 1 mpbell.com / E-mail: m	Fax: (925) 252-9269		
All West Environmental, Inc	Client I	Project II) : #12	2071.23; Hollis	Date Sampled	l: 01/16/13		
					Date Receive	d: 01/17/13		
530 Howard Street, Ste.300	Client (Contact:	Leona	rd Niles	Date Extracte	d: 01/22/13		
San Francisco, CA 94105	Client I	P.O.:			Date Analyze	d: 01/22/13		
	Volatile Organ	ics by PA	&T an	d GC/MS (Basic	Target I ist)*			
Extraction Method: SW5030B	volatile Organ	•		od: SW8260B	Target List)	Work Order: 1301	410	
		Allalyti				work order. 1501	410	
Lab ID					0-001A			
Client ID					18 ater			
Matrix			Reporting					Reporting
Compound	Concentration *	DF	Limit	Compor		Concentration *	DF	Limit
Acetone	ND<250	25	10	tert-Amyl methyl eth	ner (TAME)	ND<12	25	0.5
Benzene	17	25	0.5	Bromobenzene		ND<12	25	0.5
Bromochloromethane	ND<12	25	0.5	Bromodichlorometh	ane	ND<12	25	0.5
Bromoform	ND<12	25	0.5	Bromomethane		ND<12	25	0.5
2-Butanone (MEK)	ND<50	25	2.0	t-Butyl alcohol (TBA	A)	ND<50	25	2.0
n-Butyl benzene	ND<12	25	0.5	sec-Butyl benzene		ND<12	25	0.5
tert-Butyl benzene	ND<12	25	0.5	Carbon Disulfide		ND<12	25	0.5
Carbon Tetrachloride	ND<12	25	0.5	Chlorobenzene		ND<12	25	0.5
Chloroethane	ND<12	25	0.5	Chloroform		ND<12	25	0.5
Chloromethane	ND<12	25	0.5	2-Chlorotoluene		ND<12	25	0.5
4-Chlorotoluene	ND<12	25	0.5	Dibromochlorometh		ND<12	25	0.5
1,2-Dibromo-3-chloropropane	ND<5.0	25	0.2	1,2-Dibromoethane	· · · · ·	ND<12	25	0.5
Dibromomethane	ND<12	25	0.5	1,2-Dichlorobenzene		ND<12	25	0.5
1,3-Dichlorobenzene	ND<12	25	0.5	1,4-Dichlorobenzene	•	ND<12	25	0.5
Dichlorodifluoromethane	ND<12	25	0.5	1,1-Dichloroethane		ND<12	25	0.5
1,2-Dichloroethane (1,2-DCA)	ND<12	25	0.5	1,1-Dichloroethene		ND<12	25	0.5
cis-1,2-Dichloroethene	ND<12	25	0.5	trans-1,2-Dichloroet		ND<12	25	0.5
1,2-Dichloropropane	ND<12	25	0.5	1,3-Dichloropropane		ND<12	25	0.5
2,2-Dichloropropane	ND<12	25	0.5	1,1-Dichloropropene		ND<12	25	0.5
cis-1,3-Dichloropropene	ND<12	25	0.5	trans-1,3-Dichloropr	opene	ND<12	25	0.5
Diisopropyl ether (DIPE)	ND<12	25	0.5	Ethylbenzene		290	25	0.5
Ethyl tert-butyl ether (ETBE)	ND<12	25	0.5	Freon 113		ND<250	25	10
Hexachlorobutadiene	ND<12	25	0.5	Hexachloroethane		ND<12	25	0.5
2-Hexanone	ND<12	25	0.5	Isopropylbenzene		15	25	0.5
4-Isopropyl toluene	ND<12	25	0.5	Methyl-t-butyl ether	· · · ·	ND<12	25	0.5
Methylene chloride	ND<12	25	0.5	4-Methyl-2-pentanon	ne (MIBK)	ND<12	25	0.5
Naphthalene	64	25	0.5	n-Propyl benzene 1,1,1,2-Tetrachloroe	thone	57 ND<12	25	0.5
Styrene	ND<12	25	0.5		thane		25	0.5
1,1,2,2-Tetrachloroethane	ND<12 ND<12	25 25	0.5	Tetrachloroethene 1,2,3-Trichlorobenze	200	ND<12 ND<12	25 25	0.5
Toluene 1,2,4-Trichlorobenzene	ND<12 ND<12	25	0.5	1,1,1-Trichloroethan		ND<12	25	0.5
1,1,2-Trichloroethane	ND<12	25	0.5	Trichloroethene		ND<12	25	0.5
Trichlorofluoromethane	ND<12	25	0.5	1,2,3-Trichloropropa	ane	ND<12	25	0.5
1,2,4-Trimethylbenzene	380	25	0.5	1,3,5-Trimethylbenz		100	25	0.5
Vinyl Chloride	ND<12	25	0.5	Xylenes, Total	~	1100	25	0.5
·	110 \12			•		1100	23	0.5
0/ 551.	10		gate K	ecoveries (%)		93	2	
%SS1:	10			%SS2:		9.	5	
%SS3: Comments: b1	70	υ						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l, Inc.		Toll Free Teleph	Pass Road, Pittsburg, C one: (877) 252-9262 / F npbell.com / E-mail: ma	ax: (925) 252-9269		
All West Environmental, Inc	Client I	Project II	D: #12	2071.23; Hollis	Date Sampled	: 01/16/13		
520 H 1 G					Date Received	: 01/17/13		
530 Howard Street, Ste.300	Client C	Contact:	Leona	rd Niles	Date Extracted	I: 01/22/13		
San Francisco, CA 94105	Client I	P.O.:			Date Analyzed	l: 01/22/13		
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B		•		od: SW8260B		Work Order: 13014	410	
Lab ID				130141	0-002A			
Client ID				В	25			
Matrix				Wa	ater			
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ine	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	2.4	1.0	2.0	t-Butyl alcohol (TBA	A)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometha	ane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	1	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	:	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	0.55	1.0	0.5	1,1-Dichloroethene		1.5	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroet	nene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	1	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropr	opene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		4.3	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether		23	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND	1.0	0.5
Naphthalene	3.0	1.0	0.5	n-Propyl benzene		1.5	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroet	thane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenze		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan	e	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		0.83	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa		ND	1.0	0.5
1,2,4-Trimethylbenzene	4.8	1.0	0.5	1,3,5-Trimethylbenze	ene	1.0	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		1.4	1.0	0.5
			ogate R	ecoveries (%)				
%SS1:	10			%SS2:		93		
%SS3:	78	8						
Comments: c8,b1								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbe</u> "When Q	Il Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Teleph		g, CA 94565-1701 2 / Fax: (925) 252-9269 main@mccampbell.com					
All West Environmental, Inc	Client H	Project II): #1	2071.23; Hollis	Date Sampl	ed: 01/16/13					
					Date Receiv	ved: 01/17/13	I: 01/17/13				
530 Howard Street, Ste.300	Client (Contact:	Leona	rd Niles	Date Extrac	ted: 01/18/13					
San Francisco, CA 94105	Client F		Leona			zed: 01/18/13					
,			0.75		5	Led. 01/10/15					
Extraction Method: SW5030B	Volatile Organ	•		d GC/MS (Basic od: SW8260B	Target List)*	Work Order: 1301	410				
Lab ID					0-003A						
Client ID					17						
Matrix					ater						
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reportin Limit			
Acetone	ND	1.0	10	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	A)	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	ane	ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane	(EDB)	ND	1.0	0.5			
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	•	ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	•	ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5			
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroet		ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropr	opene	ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5			
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether		ND	1.0	0.5			
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanon	ne (MIBK)	ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	n-Propyl benzene	.1	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenze		ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan	e	ND	1.0	0.5			
1,1,2-Trichloroethane Trichlorofluoromethane	ND	1.0	0.5	Trichloroethene		ND ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND ND	1.0 1.0	0.5	1,2,3-Trichloropropa		ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ene	ND	1.0	0.5			
vinyi Cillonde	ND					ND	1.0	0.3			
0/ 981			ogate R	ecoveries (%)			7				
%SS1:	12			%SS2:		10	/				

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	II Analytica Quality Counts''	<u>I, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
All West Environmental, Inc	Client I	Project II	D: #12	2071.23; Hollis	Date Sample	ed: 01/16/13				
520 Harriard Street Sta 200					Date Receiv	red: 01/17/13				
530 Howard Street, Ste.300	Client (Contact:	Leona	rd Niles	Date Extract	ted: 01/19/13				
San Francisco, CA 94105	Client I	P.O.:			Date Analyz	xed: 01/19/13				
	Volatile Organ	ics by Pa	&T an	d GC/MS (Basic	Target List)*					
Extraction Method: SW5030B		Analyti	ical Meth	od: SW8260B		Work Order: 1301	410			
Lab ID					0-004A					
Client ID					19					
Matrix			D		ater			Desertion		
Compound	Concentration *	DF	Reporting Limit	Compou	und	Concentration *	DF	Reporting Limit		
Acetone	ND<100	10	10	tert-Amyl methyl eth	ner (TAME)	ND<5.0	10	0.5		
Benzene	6.5	10	0.5	Bromobenzene		ND<5.0	10	0.5		
Bromochloromethane	ND<5.0	10	0.5	Bromodichlorometha	ane	ND<5.0	10	0.5		
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5		
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA	A)	ND<20	10	2.0		
n-Butyl benzene	27	10	0.5	sec-Butyl benzene		7.3	10	0.5		
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide		ND<5.0	10	0.5		
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5		
Chloroethane	ND<5.0	10	0.5	Chloroform		ND<5.0	10	0.5		
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene		ND<5.0	10	0.5		
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochlorometha	ane	ND<5.0	10	0.5		
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane ((EDB)	ND<5.0	10	0.5		
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene	e	ND<5.0	10	0.5		
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzene	e	ND<5.0	10	0.5		
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethane		ND<5.0	10	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene		ND<5.0	10	0.5		
cis-1,2-Dichloroethene	ND<5.0	10	0.5	trans-1,2-Dichloroet	hene	ND<5.0	10	0.5		
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane	e	ND<5.0	10	0.5		
2,2-Dichloropropane	ND<5.0	10	0.5	1,1-Dichloropropene	2	ND<5.0	10	0.5		
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropr	opene	ND<5.0	10	0.5		
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene		150	10	0.5		
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113		ND<100	10	10		
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane		ND<5.0	10	0.5		
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene		14	10	0.5		
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether	(MTBE)	ND<5.0	10	0.5		
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND<5.0	10	0.5		
Naphthalene	44	10	0.5	n-Propyl benzene		57	10	0.5		
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroe	thane	ND<5.0	10	0.5		
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5		
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenze		ND<5.0	10	0.5		
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethan	e	ND<5.0	10	0.5		
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		ND<5.0	10	0.5		
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropa		ND<5.0	10	0.5		
1,2,4-Trimethylbenzene	290	10	0.5	1,3,5-Trimethylbenz	ene	89	10	0.5		
Vinyl Chloride	ND<5.0	10	0.5	Xylenes, Total		350	10	0.5		
		Surr	ogate R	ecoveries (%)						
%SS1:	11	8		%SS2:		10	6			
%SS3:	90	~		1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Comments		b1	b1	b1	b1			
%SS2		#	73	53	71			
%SS1		54	76	65	72			
			Surrogate Reco	veries (%)				
Pyrene		ND<5.0	ND	ND	ND	NA	0.5	
Phenanthrene		ND<5.0	0.88	ND	0.67	NA	0.5	
Naphthalene		67	12	ND	28	NA	0.5	
2-Methylnaphthalene		36	6.8	ND	27	NA	0.5	
1-Methylnaphthalene		22	4.4	ND	15	NA	0.5	
Indeno (1,2,3-cd) pyrene		ND<5.0	ND	ND	ND	NA	0.5	
Fluorene		ND<5.0	ND	ND	ND	NA	0.5	
Fluoranthene		ND<5.0	ND	ND	ND	NA	0.5	
Dibenzo (a,h) anthracene		ND<5.0	ND	ND	ND	NA	0.5	
Chrysene		ND<5.0	ND	ND	ND	NA	0.5	
Benzo (a) pyrene		ND<5.0	ND	ND	ND	NA	0.5	
Benzo (g,h,i) perylene		ND<5.0	ND	ND	ND	NA	0.5	
Benzo (k) fluoranthene		ND<5.0	ND	ND	ND	NA	0.5	
Benzo (b) fluoranthene		ND<5.0	ND	ND	ND	NA	0.5	
Benzo (a) anthracene		ND<5.0	ND	ND	ND	NA	0.5	
Anthracene		ND<5.0 ND ND ND		ND	NA	0.5		
Acenaphthylene		ND<5.0	ND	ND	ND	NA	0.5	
Acenaphthene		ND<5.0	1.1	ND	ND	NA	0.5	
Compound			Conc	entration	1	ug/kg	µg/L	
	DF	10	1	1	1	S	W	
	Matrix	W	W	W	W	C	***	
С	lient ID	B18	B25	B17	B19	Reporting Limit for DF =1		
		1301410-001B	1301410-002B	1301410-003B	1301410-004B		T • • •	
Extraction Method: SW3510C		-	alytical Method: SW82		SIM Mode by G	Work Order: 1301	410	
San Francisco, CA 94105		Client P.			Date Analyzed:	01/24/13-01/	25/13	
			ontact: Leonard	Niles	Date Extracted:	01/23/13		
530 Howard Street, Ste.30)			Date Received:	01/17/13			
All West Environmental, In	nc	Client Pr	oject ID: #120'	71.23; Hollis	Date Sampled:	01/16/13		

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

	Campbell And "When Quality C	alytical, Inc. Jounts''	Toll Free Telepho	ow Pass Road, Pittsburg, CA 94565-1701 ephone: (877) 252-9262 / Fax: (925) 252-9269 ccampbell.com / E-mail: main@mccampbell.com						
All West Environ	mental, Inc	Client Project ID:	#12071.23; Hollis	Date Sampled: 01/16/13						
530 Howard Stree	et, Ste.300			Date Receiv	ed: 01	/17/13				
	,	Client Contact: Le	eonard Niles	Date Extract	ted 01	/18/13-0	01/19/13			
San Francisco, C.	A 94105	Client P.O.:		Date Analyz	ed 01	/18/13-0	01/19/13			
Extraction method: SW50)30B		z Trap and GC/MS* ethods: SW8260B		Wo	ork Order:	1301410			
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments			
001A	B18	W	8300		10	93	b1			
002A	B25	W	270		1	96	b1			
003A	B17	W	190		1	94	b1			
004A	B19	w	5000		10	93	b1			

Reporting Limit for DF =1; ND means not detected at or	W	50	µg/L
above the reporting limit	S	NA	NA

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

DHS ELAP Certification 1644

C Mc	Campbell Anal "When Quality Cou	l <u>ytical, Inc.</u> unts''	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
All West Enviro	onmental, Inc	Client Project ID	: #12071.23; Hollis	Date Sampled: 01/16/13						
530 Howard Str	eet, Ste.300			Date Receiv	red: 01	/17/13				
		Client Contact: I	Leonard Niles	Date Extract	ted 01	/18/13-0	01/23/13			
San Francisco, O	CA 94105	Client P.O.:		Date Analyz	zed 01	/18/13-0	01/23/13			
Extraction method: SW	—	-	hatile Hydrocarbons as methods: SW8021B/8015Bm	Mineral Spir		ork Order:	1301410			
Lab ID	Client ID	Matrix	TPH(mineral spiri	ts)	DF	% SS	Comments			
001C	B18	W	4800		10	108	d2,b1			
002C	B25	W	87		1	118	d2,b1			
003C	B17	W	ND		1	99	b1			
004C	B19	W	3000		3.3	121	d2,b1			

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment d2) heavier gasoline range compounds are significant (aged gasoline?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

<u> С М</u>	cCampbell Anal "When Quality Cou	ytical, Ind	C. Toll Free Teleph	ow Pass Road, Pittsburg, CA 94565-1701 phone: (877) 252-9262 / Fax: (925) 252-9269 :ampbell.com / E-mail: main@mccampbell.com					
All West Envi	ironmental, Inc	Client Project	Date Sam	Date Sampled: 01/16/13					
530 Howard S	Street Ste 300			Date Rec	eived:	01/17/2	13		
550 110 ward E	Jucet, 510.500	Client Contac	t: Leonard Niles	Date Extr	racted	01/17/1	13		
San Francisco	o, CA 94105	Client P.O.:		Date Ana	lyzed	01/20/2	13-01/23/13		
Extraction method:			Hydrocarbons with Silica (tical methods: SW8015B	Gel Clean-U	U p*	Work Ord	er: 1301410		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments		
1301410-001C	B18	W	1500		1	71	e4,b1		
1301410-002C	B25	W	340		1	95	e7,e4,e2,b1		
1301410-003C	B17	W	320		1	102	e7,e2,b1		
1301410-004C	B19	W	1300		1	100	e4,b1		
Repo	orting Limit for $DF = 1$;	W	50			110	/T		

Reporting Limit for DF =1; ND means not detected at or	W	50	µg/L
above the reporting limit	S	NA	NA

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant, no recognizable patient e4) gasoline range compounds are significant.

e7) oil range compounds are significant

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix: Water BatchID: 74129				: 74129	WorkOrder: 1301410			
EPA Method: SW8260B Extraction:	SW5030B					;	Spiked Sam	ple ID:	1301377-008B
Analvte	Sample	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)			
, mayte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND<5.0	10	86.3	80	5.35	108	70 - 130	20	70 - 130
Benzene	ND<5.0	10	109	106	2.53	106	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND<20	40	118	110	6.37	111	70 - 130	20	70 - 130
Chlorobenzene	ND<5.0	10	104	105	1.51	106	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND<5.0	10	115	109	5.68	114	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	120	115	4.36	111	70 - 130	20	70 - 130
1,1-Dichloroethene	ND<5.0	10	109	107	2.39	108	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND<5.0	10	114	110	3.74	110	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	117	113	3.97	111	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	260	10	NR	NR	NR	113	N/A	N/A	70 - 130
Toluene	ND<5.0	10	92.9	95.3	2.47	103	70 - 130	20	70 - 130
Trichloroethene	ND<5.0	10	116	111	4.17	113	70 - 130	20	70 - 130
%SS1:	117	25	121	115	5.13	113	70 - 130	20	70 - 130
%SS2:	108	25	105	106	0.920	110	70 - 130	20	70 - 130
%SS3:	106	2.5	100	98	1.83	101	70 - 130	20	70 - 130

BATCH 74129 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301410-001A	01/16/13 10:00 AM	01/22/13	01/22/13 4:09 PM	1301410-002A	01/16/13 1:30 PM	01/22/13	01/22/13 4:52 PM
1301410-003A	01/16/13 2:26 PM	01/18/13	01/18/13 6:02 PM	1301410-004A	01/16/13 4:20 PM	01/19/13	01/19/13 2:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water BatchID: 741			: 74138	WorkOrder: 1301410				
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1301377-007A
Analyte	Sample Spiked MS M		MSD	MS-MSD	LCS	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	104	99.8	3.81	105	70 - 130	20	70 - 130
MTBE	ND	10	93.3	94.4	1.22	88.7	70 - 130	20	70 - 130
Benzene	ND	10	97	97.1	0.0538	100	70 - 130	20	70 - 130
Toluene	ND	10	97	96.9	0.136	99.8	70 - 130	20	70 - 130
Ethylbenzene	ND	10	96.1	96.2	0.0356	97.9	70 - 130	20	70 - 130
Xylenes	ND	30	96.7	96.4	0.272	97.2	70 - 130	20	70 - 130
%SS:	104	10	97	98	1.20	97	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with tl	he following	g exceptio	ns:		

BATCH 74138 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
1301410-001C	01/16/13 10:00 AM	01/22/13	01/22/13 8:20 PM	1301410-002C	01/16/13 1:30 PM	01/18/13	01/18/13 4:58 PM			
1301410-003C	01/16/13 2:26 PM	01/23/13	01/23/13 9:42 PM	1301410-004C	01/16/13 4:20 PM	01/22/13	01/22/13 10:49 PM			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

K___QA/QC Officer

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water	QC Matrix: Water BatchID: 74187 WorkOrder: 1			rder: 1301410					
EPA Method: SW8270C-SIM Extraction: S	SW3510C					9	Spiked Sam	ple ID:	N/A
Analvte	Sample	Sample Spiked MS			MS-MSD	LCS	Acceptance Criteria (%)		
, indyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	N/A	10	N/A	N/A	N/A	59.8	N/A	N/A	30 - 130
Chrysene	N/A	10	N/A	N/A	N/A	90.7	N/A	N/A	30 - 130
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	92.9	N/A	N/A	30 - 130
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	76	N/A	N/A	30 - 130
Phenanthrene	N/A	10	N/A	N/A	N/A	90.8	N/A	N/A	30 - 130
Pyrene	N/A	10	N/A	N/A	N/A	78.1	N/A	N/A	30 - 130
%SS1:	N/A	25	N/A	N/A	N/A	76	N/A	N/A	30 - 130
%SS2:	N/A	25	N/A	N/A	N/A	79	N/A	N/A	30 - 130
All target compounds in the Method Blank of this extraction b NONE	atch were ND	less than th	e method	RL with th	he following	g exception	IS:		

BATCH 74187 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301410-001B	01/16/13 10:00 AM	01/23/13	01/25/13 11:06 AM	1301410-002B	01/16/13 1:30 PM	01/23/13	01/24/13 5:43 PM
1301410-003B	01/16/13 2:26 PM	01/23/13	01/24/13 6:10 PM	1301410-004B	01/16/13 4:20 PM	01/23/13	01/24/13 6:38 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015B

EPA Method: Sw8015B Extraction: Sw3510C/3630C Spiked Spiked											
Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)					
µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS			
N/A	1000	N/A	N/A	N/A	109	N/A	N/A	70 - 130			
N/A	625	N/A	N/A	N/A	101	N/A	N/A	70 - 130			
	Sample µg/L N/A	Sample Spiked µg/L µg/L N/A 1000	Sample Spiked MS μg/L μg/L % Rec. N/A 1000 N/A	Sample Spiked MS MSD μg/L μg/L % Rec. % Rec. N/A 1000 N/A N/A	Sample Spiked MS MSD MS-MSD μg/L μg/L % Rec. % Rec. % RPD N/A 1000 N/A N/A N/A	Sample Spiked MS MSD MS-MSD LCS μg/L μg/L % Rec. % Rec. % RPD % Rec. N/A 1000 N/A N/A N/A 109	Sample Spiked MS MSD MS-MSD LCS Accord Accord μg/L μg/L % Rec. % Rec. % RPD % Rec. MS / MSD N/A 1000 N/A N/A N/A 109 N/A	Sample Spiked MS MSD MS-MSD LCS Acceptance µg/L µg/L % Rec. % Rec. % RPD % Rec. MS / MSD RPD N/A 1000 N/A N/A N/A 109 N/A N/A			

BATCH 74050 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301410-001C	01/16/13 10:00 AM	01/17/13	01/23/13 8:29 AM	1301410-002C	01/16/13 1:30 PM	01/17/13	01/23/13 7:18 AM
1301410-003C	01/16/13 2:26 PM	01/17/13	01/20/13 1:04 PM	1301410-004C	01/16/13 4:20 PM	01/17/13	01/20/13 4:29 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

All West Environmental, Inc	Client Project ID: #13019.23; Hollis	Date Sampled:	08/01/13-08/02/13
2141 Mission Street, Ste 100		Date Received:	08/02/13
	Client Contact: Christopher Houlihan	Date Reported:	08/09/13
San Francisco, CA 94110	Client P.O.:	Date Completed:	08/09/13

WorkOrder: 1308107

August 09, 2013

Dear Christopher:

Enclosed within are:

- 1) The results of the **9** analyzed samples from your project: **#13019.23; Hollis,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	ИсС	am	pbe	ell	A	nc	aly	/tic	cc	яl,	In	C.	3)					į	CI	HA		10)F	С	US	TC	D	Y	RE	С	O	RD			
	1534 Wi	llow Po	ass Rd. /	Pit	tsbu	rg, (Ca. 9	9456	5-1	701				1		τι	IRN	AR	OUN	D T	IMI	E:RU	JSH	2	4 HR	4	8 HR		2 HR		5 DA	Y 🗹	10 D.	AY [2
v v	www.mcc	campb	ell.com	1/1	mair	@m	ICC(amp	bel	l.co	m	0	1	2)	Ge	oTra	cker l	EDF	Ø	PDF		EDD		Writ	te On	(DW		EQ	uIS					
0	Telepho										2	10	С,			Ff	luon	t San	anle	Real	irin		flag		UST	Clas	n Ur	Eur	d De	olec		Clai			.
	BAL						_		-		10	-				LI	iuen	t Sal	upre	Keq	in in;	5 0							IU FI	ojec	· LI ·	Clai			_
Report To:		er H	oulik	an	Bil			ar			lov				-					-	-			Ana	lysis	Req	uest	-	_						_
Company: All 2141 Mis	hest	et.	Su	+	0 1	DC		ne	ina	all	Ne.	st 1	st	1.	Cou	BIK		(H3)														10			
	cisco							nou	lih.	an	Qa	114	es	1.	Con	ne		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)				crs						-			ysis	8			
Tele: (415) 3	91-2:	510			Fa	x: (41	5) 1	39	2	20	00	8			or 8260)		5520	-	1		EPA 608 / 8082 PCB's ; Ar od ars / Congeners		-				CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	5 Metals (200.7 / 200.8 / 6010 / 6020)		Filter sample for DISSOLVED metals analysis	~			
Project #: 13C			0	1				ne:		511	's				_	S or 8		664 /	418.1	0,80	1	/ Ca		cides			NAs)	10/	10/0		ctuls	ŧ			
Project Location:		yvil	le, C	Y	Pu	rcha	se C)rde	r#						-	8015		se ()	ans,	826	ticide	dors	lcs)	lerbi	(8)	(S)	s / P	8/6	8 / 60	602(SD m	à	.		
Sampler Signatur	re:		10	-	10		V	IAT	RIX			Т	ME	THO	DD	(8021)		Grea	arb	(EPA	1 Pest	Ar.	sticie	01	(VOC	(SVO	PAH	/200	2001	010/	1/10	~			
		SAM	PLING			_						P	RE	SERV	ED	Cass ((8015)	31 &	Total Petroleum Hydrocarbons (418.1)	MTBE/ BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Pedicides)	B's	EPA 507 / 8141 (NP Perticides)	f(PA 515 / 8151 (Acidic Cl Herbicides)	(PA 524.2 / 624 / 8260 (VOCs)	(PA 525.2762578270 (SVOC3)	EPA 8270 SIM / 8310 (PAHs / PNAs)	00.7	00.7/	Metals (200.7/200.8/6010/6020)	DISSI	Na			
SAMPLE ID	Location/			ers	5		ater									N.		- III		X OI	1 80	82 PC	41 ()	51 (/	24/2	25/1	M/8	als (2	ds (2	/ 200	for 1	, i			
SAMPLEID	Field Point Name	Date	Time	ain	Wat	Vate	N.S.	ater								HdL	Diese	trale	trolo	BTE	N 608	1/80	/ 81	18/3	2/6	2/6	70 SI	Met	Meta	200.7	mple	IM_			
		Dure	THIC	# Containers	Ground Water	Waste Water	Drinking Water	Sea \Water	_		Sludge	ler		HNO,	ler.	BTEX &	TP11 as Diesel	al Pe	al Pe	198.	A SOF	A 60	A 500	A 515	A 524	A 525	A 82	M 17	LUFT 5	tals (cr su	Hd			
				#	5	W	D	Sea	Soil	Air	Slu	Other	HCL	≦	Other	BT	Ê.	Tet	Tet	IW	EP	EP.	EP.	KP.	RP.	KP.	EP.	CA	LU	Mc	Filt	F			
AMW-2-65-7	AMW-2	8/1/13	1238	1					Х							X	Х										X					\ge			
AMW-2-15.5-16	AM4-2		1326	1					\times							\times	\times										\times					\times			
AMW-2-23-23.5	Anw-2	V	1334	1					\times							\ge	X										Х					Х			
AMW-3-6.5-7	AMW-3	8/2/13	0823	1					\ge							X	X							- 1			X					\geq			
AMW-3-9-9.5	AMW-3		0840	1					X							X	X										X					X			
AMW-3-12-12.5			0846	1					Х							\times	Х										Х				_	Х			
AMW-1-6.5-7			1120	1					Х							X	X										X					X		_	
AMW-1-12.5-13	AMW-1		1130	1					X	_						\times	\times					_				_	X					\ge	-	-	
AMW-1-18.5-P	AMW-1		1144	1					${}^{\times}$							\geq	\times		_								\times					\times		_	_
		-									_				_				-	-				_				-	-	_			-	-	-
******									-				1							-	-		-					_						_	-
**MAI clients MUST gloved, open air, samp																																			
us to work safely. Relinguished By:		Date:	Time:	_	Rece	ived I	Bur	-	/				_	To	1/49	5	0	_								0	OM	TEN.	rę.			1	-		_
	1.8	2/1	7/3	49	Rece	i eu	4	\sim	>	~		-		G	OOD	CO	NDIT									C	UME	ALC: N	10:						
Retinquished by:	57	Dater	Time:	1	Rece	ived I	By:			-	-	-	_	-				BSE	-	B_	_														
1	1.81	2/12	3/7/	5	1	1	>	0	X	-								CON		NERS	5														
Relinquished By:	-/	Date:	Time:	~	Rece	ived I	B(:)	+(>)		-							0.84		IFT .	1.6	OT	IFP		1474	PDO	IIC.						
	/	1					V		000					PH	RESI	ERV	TIO		AS	020		H<2_	LS	011	LEK		IAZA	1000	03:						
				_	-	_	_		_				_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	_	_	_			

McCampbell Analytical, Inc.

AMW-2-23-23.5

AMW-3-6.5-7

AMW-3-9-9.5

AMW-3-12-12.5

AMW-1-6.5-7

AMW-1-12.5-13

AMW-1-18.5-19

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

А

А

А

А

А

А

А

Page 1 of 1

(925) 25	2-9262				V	VorkO	rder: 1	30810	7	Clie	entCod	le: AWE					
		WaterTrax	w WriteOn	✓ EDF	Ē	Excel		EQuIS	√	Email]HardCopy	T	ThirdPart	у	_J-flag	g
Report to:						Bi	ll to:					Rec	luested	HTAT:		5 d	ays
2141 Mission	rironmental, Inc n Street, Ste 100 co, CA 94110	Email: cc: PO: ProjectNo:	choulihan@allw leonard@allwes #13019.23; Holl	t1.com			All W 2141 San F	Missio ⁻ rancis	lb vironme n Street co, CA s west1.c	, Ste 10 94110			te Rec te Prir	eived: nted:	-	8/02/20 8/02/20	
									Rec	uested	Tests (See legend	below	')			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	В	9	10	11	12
1308107-001	AMW-2-6.5-7		Soil	8/1/2013 12:38		Α	Α	Α	A								
1308107-002	AMW-2-15.5-1	6	Soil	8/1/2013 13:26		А	А		А								

 \square

А

А

А

А

А

А

А

А

А

А

А

А

А

А

8/1/2013 13:34

8/2/2013 8:23

8/2/2013 8:40

8/2/2013 8:46

8/2/2013 11:20

8/2/2013 11:30

8/2/2013 11:44

Test Legend:

1308107-003

1308107-004

1308107-005

1308107-006

1308107-007

1308107-008

1308107-009

1	8270D-PNA_S
6	
11	

2	G-MBTEX_S	
7		
12		

Soil

Soil

Soil

Soil

Soil

Soil

Soil

3 PREDF REPORT 8 4 TPH(D)_S 9

5	
10	

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Date a	nd Time Received:	8/2/2013 6:3	35:54 PM
Project Name:	#13019.23; Hollis				Login i	Reviewed by:		Jena Alfaro
WorkOrder N°:	1308107	Matrix: <u>Soil</u>			Carrier	: Rob Pringle (M	AI Courier)	
		<u>Cha</u>	in of Cu	ustody (C	OC) Informat	ion		
Chain of custody	present?		Yes	✓	No			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No			
Date and Time or	f collection noted by C	lient on COC?	Yes	✓	No			
Sampler's name	noted on COC?		Yes	✓	No			
			<u>Sample</u>	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No		NA 🖌	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No			
Samples in prope	er containers/bottles?		Yes	✓	No			
Sample containe	ers intact?		Yes	✓	No			
Sufficient sample	e volume for indicated	test?	Yes	✓	No			
		Sample Pres	servatio	n and Ho	ld Time (HT)	Information		
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	5°C		NA	
Water - VOA vial	Is have zero headspac	e / no bubbles?	Yes		No 🗌	No VOA vials submi	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No			
Metal - pH accep	otable upon receipt (p⊦	I<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No			
		(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

McCampbell . "When Qua	Analytical ulity Counts''	<u>, Inc.</u>	Toll Free Telephor	ass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bbell.com / E-mail: main@	(925) 252-9269		
All West Environmental, Inc	Client Pr	oject ID: #130	19.23; Hollis	Date Sampled:	08/01/13-08/	/02/13	
2141 Mission Street, Ste 100				Date Received: 08/02/13			
	Client Co	ontact: Christo	oher Houlihan	Date Extracted:	08/05/13		
San Francisco, CA 94110	Client P.	0.:		Date Analyzed:	08/05/13-08/	/07/13	
Polynuclear Extraction Method: SW3550B	-	ocarbons (PA) alytical Method: SW8	Hs / PNAs) using	SIM Mode by G	C/MS Work Order: 1308	8107	
Lab ID	1308107-001A	1308107-002A	1308107-003A	1308107-004A			
Client ID	AMW-2-6.5-7	AMW-2-15.5-16	AMW-2-23-23.5	AMW-3-6.5-7	Reporting DF	Limit for $F = 1$	
Matrix	S	S	S	S			
DF	1	20	1	1	S	W	
Compound		Con	centration		mg/kg	ug/L	
Acenaphthene	ND	ND<0.20	ND	ND	0.01	NA	
Acenaphthylene	ND	ND<0.20	ND	ND	0.01	NA	
Anthracene	ND	ND<0.20	ND	ND	0.01	NA	
Benzo (a) anthracene	ND	ND<0.20	ND	ND	0.01	NA	
Benzo (b) fluoranthene	ND	ND<0.20	ND	ND	0.01	NA	
Benzo (k) fluoranthene	ND	ND<0.20	ND	ND	0.01	NA	
Benzo (g,h,i) perylene	ND	ND<0.20	ND	ND	0.01	NA	
Benzo (a) pyrene	ND	ND<0.20	ND	ND	0.01	NA	
Chrysene	ND	ND<0.20	ND	ND	0.01	NA	
Dibenzo (a,h) anthracene	ND	ND<0.20	ND	ND	0.01	NA	
Fluoranthene	ND	ND<0.20	ND	ND	0.01	NA	
Fluorene	ND	ND<0.20	ND	ND	0.01	NA	
Indeno (1,2,3-cd) pyrene	ND	ND<0.20	ND	ND	0.01	NA	
1-Methylnaphthalene	ND	1.4	ND	ND	0.01	NA	
2-Methylnaphthalene	ND	2.4	ND	ND	0.01	NA	
Naphthalene	ND	2.5	ND	ND	0.01	NA	
Phenanthrene	ND	ND<0.20	ND	ND	0.01	NA	
Pyrene	ND	ND<0.20	ND	ND	0.01	NA	
		Surrogate Rec	overies (%)				
%SS1	109	120	118	113			
%SS2	105	109	118	115			
Comments							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

CDPH ELAP 1644 ♦ NELAP 12283CA

HK Analyst's Initial

	Analytical Analytical	<u>, Inc.</u>	Toll Free Telephor	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bbell.com / E-mail: main@	(925) 252-9269				
All West Environmental, Inc	Client Pr	oject ID: #1301	9.23; Hollis	Date Sampled:	08/01/13-08/02/13				
2141 Mission Street, Ste 100				Date Received:	Received: 08/02/13				
2141 Wission Street, Ste 100	Client Co	ontact: Christop	her Houlihan	Date Extracted:	08/05/13				
San Francisco, CA 94110	Client P.	0.:		Date Analyzed:	ed: 08/05/13-08/07/13				
Polynuclear Extraction Method: SW3550B	•	cocarbons (PAH alytical Method: SW827	, 0	SIM Mode by G	C/MS Work Order: 1308	3107			
Lab ID	1308107-005A	1308107-006A	1308107-007A	1308107-008A					
Client ID	AMW-3-9-9.5	AMW-3-12-12.5	AMW-1-6.5-7	AMW-1-12.5-13	Reporting DF				
Matrix	S	S	S	S					
DF	10	5	1	1	S	W			
Compound		Conc	entration		mg/kg	ug/L			
Acenaphthene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Acenaphthylene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Anthracene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Benzo (a) anthracene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Benzo (b) fluoranthene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Benzo (k) fluoranthene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Benzo (g,h,i) perylene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Benzo (a) pyrene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Chrysene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Dibenzo (a,h) anthracene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Fluoranthene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Fluorene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Indeno (1,2,3-cd) pyrene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
1-Methylnaphthalene	0.93	0.30	ND	ND	0.01	NA			
2-Methylnaphthalene	1.6	0.51	ND	ND	0.01	NA			
Naphthalene	1.2	0.37	ND	ND	0.01	NA			
Phenanthrene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
Pyrene	ND<0.10	ND<0.050	ND	ND	0.01	NA			
		Surrogate Reco	veries (%)						
%SS1	120	104	124	120					
%SS2	110	100	118	117					
Comments									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

McCampbell . "When Qua	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
All West Environmental, Inc	Client Pr	Client Project ID: #13019.23; Hollis			Date Sampled: 08/01/13-08/02/13		
2141 Mission Street, Ste 100				Date Received:	08/02/13		
2141 Wission Sueet, Ste 100	Client Co	ontact: Ch	nristopher Houlihan	Date Extracted:	08/05/13		
San Francisco, CA 94110	Client P.	0.:		Date Analyzed:	08/05/13-08/	07/13	
Polynuclear Extraction Method: SW3550B	•		(PAHs / PNAs) using d: SW8270C-SIM	g SIM Mode by G	C/MS Work Order: 1308	107	
Lab ID	1308107-009A	5					
Client ID	AMW-1-18.5-19				Reporting DF		
Matrix	S						
DF	100				S	W	
Compound			Concentration		mg/kg	ug/L	
Acenaphthene	ND<1.0				0.01	NA	
Acenaphthylene	ND<1.0				0.01	NA	
Anthracene	ND<1.0				0.01	NA	
Benzo (a) anthracene	ND<1.0				0.01	NA	
Benzo (b) fluoranthene	ND<1.0				0.01	NA	
Benzo (k) fluoranthene	ND<1.0				0.01	NA	
Benzo (g,h,i) perylene	ND<1.0				0.01	NA	
Benzo (a) pyrene	ND<1.0				0.01	NA	
Chrysene	ND<1.0				0.01	NA	
Dibenzo (a,h) anthracene	ND<1.0				0.01	NA	
Fluoranthene	ND<1.0				0.01	NA	
Fluorene	ND<1.0				0.01	NA	
Indeno (1,2,3-cd) pyrene	ND<1.0				0.01	NA	
1-Methylnaphthalene	1.2				0.01	NA	
2-Methylnaphthalene	1.5				0.01	NA	
Naphthalene	ND<1.0				0.01	NA	
Phenanthrene	1.4				0.01	NA	
Pyrene	ND<1.0				0.01	NA	
		Surrogate	e Recoveries (%)	1			
%SS1	#						
%SS2	#						
Comments							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

CDPH ELAP 1644 ♦ NELAP 12283CA

MCCAMDDEll ANAlyTICAL, INC. Toll Free Telephone: (877) 252-9262 / Fax:							
Client Pr	oject ID: #1301	9.23; Hollis	Date Sampled:	08/01/13-0	08/02/13		
			Date Received:	08/02/13			
Client Co	ontact: Christoph	ner Houlihan	Date Extracted:	08/02/13			
Client P.	0.:		Date Analyzed:	08/05/13-0	08/07/13		
-		•	arbons with BTI				
1308107-001A	1308107-002A	1308107-003A	1308107-004A				
AMW-2-6.5-7	AMW-2-15.5-16	AMW-2-23-23.5	AMW-3-6.5-7	Reporting Limit fo DF =1			
S	S	S	S				
1	20	1	1	S	W		
	Conce	entration		mg/Kg	ug/L		
ND	430	ND	ND	1.0	NA		
ND	440	ND	ND	1.0	NA		
ND	ND<2.0	ND	ND	0.05	NA		
ND	1.3	ND	ND	0.005	NA		
ND	8.3	ND	ND	0.005	NA		
ND	10	ND	ND	0.005	NA		
ND	45	ND	ND	0.005	NA		
Surre	gate Recoveries	s (%)	·	·			
83	#	92	83				
	lity Counts'' Client Pr Client Co Client Pr Client Pr ineral Spirits R And 1308107-001A AMW-2-6.5-7 S 1 ND ND	Ity Counts'' Iter Client Project ID: #1301 Client Project ID: #1301 Client Contact: Christoph Client P.O.: Client P.O.: ineral Spirits Range (C9-C12) Nanatytical Method: SW802 Nanatytical Method: SW802 1308107-001A 1308107-002A AMW-2-6.5-7 AMW-2-15.5-16 S S 1 20 ND 430 ND 440 ND 440 ND 1.3 ND 1.3 ND 8.3 ND 10 ND 45 Surregate Recoveries	Analytical, Inc., http://www.mccam Toll Free Telephon Client Project ID: #13019.23; Hollis Client Contact: Christopher Houlihan Client P.O.: Interview ineral Spirits Range (C9-C12) Volatile Hydroot Analytical Method: SW8021B/8015Bm 1308107-001A 1308107-002A 1308107-003A AMW-2-6.5-7 AMW-2-15.5-16 AMW-2-23-23.5 S S S 1 20 1 ND 430 ND ND 440 ND ND ND ND ND 8.3 ND ND 1.3 ND ND 45 ND	Andivine and second	http://www.mccampbell.com / E-mail: main@mccampbell.com / Date Received: 08/02/13 Date Sampled: 08/02/13 Omclos Client Contact: Christopher Houlihan Date Analyzed: 08/05/13-C Date Analyzed: 08/05/13-C interal Spirits Range (C9-C12) Volatile Hydrocarbons with BTEX and MT AndW:2-05-7 Matwitterate: Work Order: 1308107-001A 1308107-002A 1308107-003A 1308107-004A AMW-2-05-7 AMW-2-15-5-16 AMW-2-23-23.5 AMW-3-6.5-7 mg/Kg S S S S S Mg ND Add0 ND ND 1.0 ND ND		

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant
 d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bbell.com / E-mail: main@	(925) 252-9269					
All West Environmental, Inc	Client Pr	oject ID: #1301	9.23; Hollis	Date Sampled: 08/01/13-08/02/12			
2141 Mission Street, Ste 100				Date Received:	08/02/13		
	Client Co	ontact: Christoph	ner Houlihan	Date Extracted:	08/02/13		
San Francisco, CA 94110	Client P.	0.:		Date Analyzed:	08/05/13-0	08/07/13	
Gasoline Range (C6-C12), M Extraction Method: SW5030B	-	ange (C9-C12)	•	arbons with BTI	EX and M Work Order:		
Lab ID	1308107-005A	1308107-006A	1308107-007A	1308107-008A			
Client ID	AMW-3-9-9.5	AMW-3-12-12.5	AMW-1-6.5-7	AMW-1-12.5-13	Reporting Limit fo DF =1		
Matrix	S	S	S	S			
DF	10	5	1	1	S	W	
Compound		Conce	entration		mg/Kg	ug/L	
TPH(g)	240	41	ND	ND	1.0	NA	
TPH(mineral spirits)	260	44	ND	ND	1.0	NA	
MTBE	0.90	ND<0.25	ND	ND	0.05	NA	
Benzene	0.26	0.078	ND	ND	0.005	NA	
Toluene	1.3	0.28	ND	ND	0.005	NA	
Ethylbenzene	5.1	0.96	ND	ND	0.005	NA	
Xylenes	18	4.6 ND		ND	0.005	NA	
	Surro	ogate Recoveries	s (%)		•		
%SS:	#	104	85	80			
		d1			1		

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant
 d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

COL, Inc.1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com				
d: 08/01/13-0	08/02/13			
ed: 08/02/13				
ed: 08/02/13				
ed: 08/05/13-0)8/07/13			
BTEX and M Work Order:				
Reporting DF	Limit for			
S	W			
mg/Kg	ug/L			
1.0	NA			
1.0	NA			
0.05	NA			
0.005	NA			
	-			
	non-aqueous liquid = Percent Recover or their interpretati			

d1) weakly modified or unmodified gasoline is significantd7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

All West Enviro	nmental, Inc	Client Project	Client Project ID: #13019.23; Hollis			Date Sampled: 08/01/13-08/02/13				
				Date Rece	eived:	08/02/1	3			
2141 Mission St	reet, Ste 100	Client Conta	ct: Christopher Houlihan	Date Extra	acted	08/02/1	3			
San Francisco, C	CA 94110	Client P.O.:								
Extraction method: SV			e Petroleum Hydrocarbon ytical methods: SW8015B	s*		Work Orde	er: 1308107			
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments			
1308107-001A	AMW-2-6.5-7	S	ND		1	95				
1308107-002A	AMW-2-15.5-16	S	83		1	98	e4,e2			
1308107-003A	AMW-2-23-23.5	S	ND	1	123					
1308107-004A	AMW-3-6.5-7	S	1.0	1	121	e7,e2				
1308107-005A	AMW-3-9-9.5	S	82		1	100	e4,e7,e2			
1308107-006A	AMW-3-12-12.5	S	28		1	98	e4,e2			
1308107-007A	AMW-1-6.5-7	S	13		1	95	e7,e1			
1308107-008A	AMW-1-12.5-13	S	2.9		1	94	e7,e1			
1308107-009A	AMW-1-18.5-19	S	1900		1	109	e7,e1			
	ng Limit for DF $=1$; ans not detected at or	W	W NA			N	A			
	the reporting limit	S	1.0			mg/	Kg			

by dilution of original extract.

SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e1) unmodified or weakly modified diesel is significant

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

CDPH ELAP 1644 ♦ NELAP 12283CA

MAM Analyst's Initial

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil	QC Matrix: Soil				BatchID: 80162			WorkOrder: 1308107			
EPA Method: SW8270C-SIM Extraction: S	W3550B					;	Spiked Sam	ple ID:	1308107-009A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
, indigeo	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
Benzo (a) pyrene	ND<1	0.20	NR	NR	NR	50	N/A	N/A	30 - 130		
Chrysene	ND<1	0.20	NR	NR	NR	58.4	N/A	N/A	30 - 130		
1-Methylnaphthalene	1.2	0.20	NR	NR	NR	71.4	N/A	N/A	30 - 130		
2-Methylnaphthalene	1.5	0.20	NR	NR	NR	60.4	N/A	N/A	30 - 130		
Phenanthrene	1.4	0.20	NR	NR	NR	68.4	N/A	N/A	30 - 130		
Pyrene	ND<1	0.20	NR	NR	NR	63.1	N/A	N/A	30 - 130		
%SS1:	#	0.50	NR	NR	NR	90	N/A	N/A	30 - 130		
%SS2:	#	0.50	NR	NR	NR	87	N/A	N/A	30 - 130		
All target compounds in the Method Blank of this extraction be NONE	atch were ND	less than th	e method	RL with the	he following	g exceptior	18:				

BATCH 80162 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308107-001A	08/01/13 12:38 PM	08/05/13	08/05/13 6:16 PM	1308107-002A	08/01/13 1:26 PM	08/05/13	08/06/13 9:33 PM
1308107-003A	08/01/13 1:34 PM	08/05/13	08/06/13 5:46 PM	1308107-003A	08/01/13 1:34 PM	08/05/13	08/07/13 10:11 PM
1308107-004A	08/02/13 8:23 AM	08/05/13	08/07/13 10:36 PM	1308107-005A	08/02/13 8:40 AM	08/05/13	08/06/13 9:58 PM
1308107-006A	08/02/13 8:46 AM	08/05/13	08/06/13 10:23 PM	1308107-007A	08/02/13 11:20 AM	08/05/13	08/07/13 12:02 AM
1308107-008A	08/02/13 11:30 AM	08/05/13	08/07/13 11:01 PM	1308107-009A	08/02/13 11:44 AM	08/05/13	08/06/13 10:48 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CDPH ELAP 1644 ♦ NELAP 12283CA

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	Soil QC Matrix: Soil			BatchID	: 80107	WorkOrder: 1308107			
EPA Method: SW8021B/8015Bm Extraction: SW5030B							Spiked Sam	ple ID:	1308090-024A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, and yee	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	102	98	4.13	107	70 - 130	20	70 - 130
MTBE	ND	0.10	80.1	76.8	4.13	88	70 - 130	20	70 - 130
Benzene	ND	0.10	90.7	86.1	5.28	101	70 - 130	20	70 - 130
Toluene	ND	0.10	93.9	90.7	3.40	103	70 - 130	20	70 - 130
Ethylbenzene	ND	0.10	94.3	91.6	2.95	103	70 - 130	20	70 - 130
Xylenes	ND	0.30	102	98.9	2.68	110	70 - 130	20	70 - 130
%SS:	97	0.10	83	80	2.87	90	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE									

BATCH 80107 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1308107-001A	08/01/13 12:38 PM	08/02/13	08/05/13 10:48 PM	1308107-002A	08/01/13 1:26 PM	08/02/13	08/05/13 8:19 PM		
1308107-003A	08/01/13 1:34 PM	08/02/13	08/07/13 7:08 AM	1308107-004A	08/02/13 8:23 AM	08/02/13	08/05/13 11:47 PM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K__QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 80119	WorkOrder: 1308107				
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1308109-008A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	0.60	102	105	2.64	106	70 - 130	20	70 - 130		
MTBE	ND	0.10	96.7	96.2	0.486	94.6	70 - 130	20	70 - 130		
Benzene	ND	0.10	110	111	0.359	109	70 - 130	20	70 - 130		
Toluene	ND	0.10	108	109	0.412	109	70 - 130	20	70 - 130		
Ethylbenzene	ND	0.10	115	116	0.105	116	70 - 130	20	70 - 130		
Xylenes	ND	0.30	117	117	0	116	70 - 130	20	70 - 130		
%SS:	91	0.10	95	98	2.79	98	70 - 130	20	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with tl	he following	g exception	ns:				

			BATCH 80119 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308107-005A	08/02/13 8:40 AM	08/02/13	08/06/13 7:56 PM	1308107-006A	08/02/13 8:46 AM	08/02/13	08/06/13 4:25 PM
1308107-007A	08/02/13 11:20 AM	08/02/13	08/06/13 2:15 AM	1308107-008A	08/02/13 11:30 AM	08/02/13	08/06/13 2:44 AM
1308107-009A	08/02/13 11:44 AM	08/02/13	08/06/13 8:26 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K__QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC	QC Matrix: Soil E					: 80120		WorkOrder: 1308107			
EPA Method: SW8015B	Extraction: SW355	50B						Spiked Sam	ple ID:	1308107-001A		
Analyte	Sa	mple	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)				
, inc. j co	mı	mg/Kg mg/Kg		% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH-Diesel (C10-C23)	Γ	ND	40	102	107	4.77	122	70 - 130	30	70 - 130		
%SS:		95	25	94	92	2.03	96	70 - 130	30	70 - 130		
All target compounds in the Method Blank NONE	c of this extraction batch we	ere ND le	ess than th	e method	RL with th	ne following	exception	ns:				

BATCH 80120 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308107-001A	08/01/13 12:38 PM	08/02/13	08/06/13 12:57 AM	1308107-002A	08/01/13 1:26 PM	08/02/13	08/06/13 3:14 AM
1308107-003A	08/01/13 1:34 PM	08/02/13	08/07/13 7:01 PM	1308107-004A	08/02/13 8:23 AM	08/02/13	08/07/13 5:47 PM
1308107-005A	08/02/13 8:40 AM	08/02/13	08/06/13 6:39 AM	1308107-006A	08/02/13 8:46 AM	08/02/13	08/06/13 2:05 AM
1308107-007A	08/02/13 11:20 AM	08/02/13	08/06/13 7:48 AM	1308107-008A	08/02/13 11:30 AM	08/02/13	08/06/13 5:31 AM
1308107-009A	08/02/13 11:44 AM	08/02/13	08/08/13 5:53 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K__QA/QC Officer

CDPH ELAP 1644 ♦ NELAP 12283CA

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

All West Environmental, Inc	Client Project ID: #13019.23; Hollis	Date Sampled: 08/02/13
2141 Mission Street, Ste 100		Date Received: 08/02/13
	Client Contact: Christopher Houlihan	Date Reported: 08/07/13
San Francisco, CA 94110	Client P.O.:	Date Completed: 08/07/13

WorkOrder: 1308110

August 07, 2013

Dear Christopher:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #13019.23; Hollis,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	ИсС	am	pbe	ell	A	nc	aly	tic	20	al,	In	c.				CHAIN OF CUSTODY RECORD						,													
	1534 Wi www.mcc	llow Pa	· iss Rd. / ell.com	/ Pit	tsbu mair	rg, C n@m	Ca. 9	9456 amp	5-1. bel	701 I.co	m	~	4	11	C															2 - 🛄 5 QuIS (Y 📝	10 D.A	ιy [2
C	Telepho										1	5) ~																			Clair	m #		·
Report To:	LO BA	L 11		D .	T Bil	0 6	. 7	-	Ter		-	av i	0		-				·						lysis						_				_
Company: ZI	11/05-	1							0	11		1 1	1	m	1	~		0		Γ	Γ						u cou								
2141 Mis San Fran	sion cisco	ST	941	10	E-	eo Mail	aci cl	100	all	an (a a	1.	LE es	11.	Cor	0)7 MTB		20 E/B&I				chers			6- H			20)	(0)		ualy sis				
Tele: (415)3 Project #: 130				_	Fa	x: (Nar) ne:	311	Î	200	38			-	or 826		4 / 55	8.1)	8021)		Cong		des)	TPH		(87	0 / 60	0 602		tals ar				
Project Location:	Emen		, CA	A	Pu	rcha										8015		e (166	ns (41	82.60/	cid cs)	lors/	6	erbici		8	/ PN/	\$7.601	601	8020)	Dmd				
Sampler Signatur	re: CC	r	-4	2	eel	5	N	LAT	RIX			_	MF	THO	D	(8021/8		Greats	curbo	EPA:	Posti	Ared	sticide	d H	VOC	SVOC	PAHs	200.8	200.8	010/0	DLVE				
1		SAMI	PLING				N	LAI	KIA					SERV		Gas (b	(8015)	311.65	lydro	NLY (81 (CI	B's ;	NP Pe	Acidic	8260 (82.70 (310 (12.000	00.77	8/6	DISSO				
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea / Water	-		Sludge	Other	Т	HNO	Other	BTEX & TPH as (TPH as Diesel (80	Total Petroleum Oil & Greave (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/8021)	EPA 505/ 608 / 8081 (CI Posticidos)	EPA 608 / 8082 PCB's ; Arodors / Congener	EPA 507 / 8141 (NP Posticides)	RPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 6010 6020)	Metals (200.7/200.8/6010/6020)	fülter sample for DISSOLVED metals analysis				
				#	ð	Ŵ	Dri	Sea	Soil	Air	Shu	ē	EC	Ē	00	BT	đ	Tor	÷	Ξ	EP.	ŝ	RP	RP	ŝ	RP	КР	S	LU LU	M	12				
Disposal Comp]	- DC-1	8/2/13	1300						Х																\times				${ imes}$					-	
, ,				-	-				_	_	-	\square		-	4	_						-	-					_					-	1	\leq
				-	-				-			H	-	-	_							-										\square	-	+	-
		-										\vdash			-							1	1	1			-							1	
			(1)										_							1					/								
	\square		ad	P																	1			3											
	$\left \left(\right) \right\rangle$	10	5										_		_		-1	r			b	2		-							_			-	_
		P		-	-		-		-	_	-	$\left \right $	-	-	_		-	$\left \right $	A		K			-			_		-				-	+	-
				-			-	_	_	-		\vdash			-		/	×				-		-			-							+	-
**MAI clients MUST			s chemica	uls kn		obep	resen	t in t	heir s	ubmi	itted s	ampl	es in	conc	centr	ation	s that	t may	caus	e im r	a edia	te han	m or	serio											
gloved, open air, samp us to work safely.	lehandling	by MAI s	taff. Non-	disclo	-	_		nmed	liates	250	surch	arge 2	ind			-		to full	legal	lliab	lity fo	or hai	m sui	Ifered	I. The					erstar	nding	and I	or all	owing	1
Relinquished By:	1-8	Date:	Time:	1	-	ived I	_	~	\leq	~	-	/	1	G H	00I EAD	D COI	CE A	BSE	NT_	-	-					C	OM	MEN	TS:						
Relinquished By:	78	Date: Z/B	7 Time:	5	Rece	ived	1	57	5	2				Al	PPR	OPRI ERVI	ATE	CON	TAI		s														
Relinquished By:		Date:	Time		Rece	ived	By:							PI	RESI	ERVA	TIO		AS	0&		ÆT.ª H<2_	LS	OTI	HER	E	IAZA	RDO	US:						

McCampbell Analytical, Inc.

Pittsburg, CA 94565-1701

Page 1 of 1

(925) 252-9262				WorkOr	der: 1308110	Client	Code: AWE		
	WaterTrax	WriteOn	✓ EDF	Excel	EQuIS	Email	HardCopy	ThirdParty	J-flag
Report to:				Bill	to:		Req	uested TAT:	5 days
Christopher Houlihan All West Environmental, Inc 2141 Mission Street, Ste 100 San Francisco, CA 94110 (415) 391-2510 FAX: (415) 391-2008	cc: PO:	choulihan@allwe leonard@allwest #13019.23; Hollis	1.com		Carol Ramelb All West Envir 2141 Mission San Francisco darlene@allw	ronmental, Inc Street, Ste 100 o, CA 94110		e Received: e Printed:	08/02/2013 08/02/2013

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1308110-001	Disposal Comp 1	Soil	8/2/2013 13:00		۸	۸	۸									[]

Test Legend:

1	GAS8260_S
6	
11	

2	LUFTMS_S
7	
12	

3	PREDF REPORT
8	

[4	
	9	

5	
10	

The following SampID: 001A contains testgroup.

Prepared by: Jena Alfaro

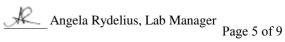
Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	All West Environme	ntal, Inc			Da	ate and ⁻	Time Received:	8/2/2013 7:1	3:26 PM
Project Name:	#13019.23; Hollis				Lo	ogIn Rev	viewed by:		Jena Alfaro
WorkOrder N°:	1308110	Matrix: <u>Soil</u>			C	arrier:	<u>Rob Pringle (M</u>	AI Courier)	
		<u>Cha</u>	in of Cu	ustody (C	OC) Info	rmation	l		
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No				
Chain of custody	agrees with sample la	abels?	Yes	✓	No				
Sample IDs note	d by Client on COC?		Yes	✓	No				
Date and Time or	f collection noted by C	lient on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
			Sample	Receipt	Informat	<u>tion</u>			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No			NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No				
Samples in prope	er containers/bottles?		Yes	✓	No				
Sample containe	rs intact?		Yes	✓	No				
Sufficient sample	e volume for indicated	test?	Yes	✓	No				
		Sample Pres	servatio	n and Ho	old Time ((HT) Info	ormation		
All samples recei	ived within holding tim	e?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	er Temp:	5°C			NA	
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes		No	No	VOA vials submi	tted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No				
Metal - pH accep	otable upon receipt (p⊦	I<2)?	Yes		No			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ісе Тур	be: WE	TICE))				
* NOTE: If the "N	lo" box is checked, se	e comments below.							

Comments:



Compound Concentration DP Las Compound Concentration DP Las Acetone ND 1.0 0.005 Bromobenzene ND 1.0 0.005 Benzene 0.0062 1.0 0.005 Bromobenzene ND 1.0 0.005 Bromoform ND 1.0 0.005 Bromomethane ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 Cabon Disulfide ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 Cabon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorothane ND 1.0 0.005 Chlorothane ND 1.0 0.005 Chlorothane ND 1.0 0.005 L'Ditromo-Schloropropane ND 1.0 0.005 L'Ditromochance ND 1.0 0.005 1.2-Ditchorothane ND 1.0 0.005 L'Dichlorothane		ll Analytical Quality Counts''	, Inc	<u>.</u>	Toll Free Teleph	Pass Road, Pittsburg, one: (877) 252-9262 / npbell.com / E-mail: m			
2141 Mission Street, Sie 100 Client Contact: Christopher Houlihan Date Extracted: 08/02/13 San Francisco, CA 94110 Client P.O.: Date Analyzed: 08/05/13 Stanching Method: SW2008 Volatile Organics by P&T and GC/MS (Basic Target List)* Isometion Method: SW2008 Voto Order: 1308110-001A Standing Method: SW2008 Voto Order: 1308110-001A Compound Concentration * DF Number of Standing Standin	All West Environmental, Inc	Client P	roject I	D: #13	3019.23; Hollis	Date Sample	d: 08/02/13		
Client P.O.: Date Extraction <						Date Receive	d: 08/02/13		
San Francisco, CA 94110 Client P.O.: Date Analyzed: 08/05/13 Volatile Organics by P&T and GC/MS (Basic Target List)* Kanacion Method: \$W5000 Work Order: 1208110 Labit ID TOTAL Compound Concentration * DF Researce Researce Concentration * DD 10 0.0000 Researce ND 1.0 0.0000 Researce ND 1.0 0.0000 Researce ND 1.0 0.0000 Researce ND 1.0 0.0000 Conc	2141 Mission Street, Ste 100	Client C	Contact:	Christo	opher Houlihan	Date Extracte	ed: 08/02/13		
Volatile Organics by P&T and GC/MS (Basic Target List)* Exaction Method: SW30368 Vork Onler: J38110 Lab D Disposal Cong 1 Work Onler: J388110-001A Client ID Disposal Cong 1 Noil Noil Compound Concentration * DF Free Mark Noil Per Mark Compound Concentration * DF Per Mark Compound Concentration * DF Free Mark Acetone ND 1.0 0.005 Bromochloromehane ND 1.0 0.005 Bromochloromehane ND 1.0 0.005 Bromochloromehane ND 1.0 0.005 Bromochloromehane ND 1.0 0.005 Reserve ND 1.0 0.005 Statuane ND 1.0 0.005 Reserve ND 1.0 0.005 Bromochloromehane ND 1.0 0.005 Chorobhane ND 1.0 0.005 Carbon flat ND 1.0 0.005	San Francisco, CA 94110				1				
Exanction Method: SW3038 Analytical Method: SW3020 Work Order: 108 Lahs ID		Volatile Organi	es hy P	9.87 an	d CC/MS (Basic)				
Lab ID 1308110-001A Disposal Comp 1 Disposal Comp 1 Disposal Comp 1 Disposal Comp 1 Compound Concentration * DF Reporting 1 Actione ND 1.0 0.005 terr Concentration * DF Reporting 1 Actione ND 1.0 0.005 terr Bromochoromchane ND 1.0 0.005 Concontration * DP 1.0 0.005 Concontration * ND 1.0 0.005 Concontrati	Extraction Method: SW5030B	Volatile Organi	-			Target List)	Work Order: 13081	10	
Bisolal Comp 1 Matrix Soil Compound Concentration * DF Nerview Lines Compound Concentration * DF Nerview Lines Acetone ND 1.0 0.05 BernAmyl methyl ether (TAME) ND 1.0 0.005 Bernsene 0.0060 1.0 0.005 Bromochicheromethane ND 1.0 0.005 Bromochiormethane ND 1.0 0.005 Bromochicheromethane ND 1.0 0.005 2-Buturence (MKK) ND 1.0 0.005 keronomethane ND 1.0 0.005 Carbora Tetrachloride ND 1.0 0.005 keronomethane ND 1.0 0.005 Chiorochnane ND 1.0 0.005 Chiorochnane ND 1.0 0.005 Chiorochnane ND 1.0 0.005 Lichorochnane ND 1.0 0.005 Chiorochnane ND 1.0 0.005 Lichorochane ND 1.0	Lab ID					0-001A		-	
Matrix Description Soli Compound Concentration * DF Team Compound Concentration * DF Team Acctone ND 1.0 0.005 tert-Amyl methylether (TAME) ND 1.0 0.005 Bromofornethane ND 1.0 0.005 Bromodichloromethane ND 1.0 0.005 Bromoform ND 1.0 0.005 Bromodichloromethane ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 Carbon Ternchorde ND 1.0 0.005 Carbon Ternchorde ND 1.0 0.005 Carbon Ternchorde ND 1.0 0.005 Chlorothnae ND 1.0 0.005 Chlorothnae ND 1.0 0.005 Chlorothnae ND 1.0 0.005 Chlorothnae ND 1.0 0.005 Chlorothnae ND 1.0 0.005 Schorothoromethane ND 1.0 0.005 Labl									
Compound Concentration DIP image Compound Concentration DIP image Accione ND 1.0 0.005 Bromobenzene ND 1.0 0.005 Bromoform ND 1.0 0.005 Bromodentane ND 1.0 0.005 Bromoform ND 1.0 0.005 Bromodentane ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 1-Buty Ibenzene ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chloroform ND 1.0 0.005 Chloroschane ND 1.0 0.005 Chloroschane ND 1.0 0.005 Chloroschane ND 1.0 0.005 1.2-Dichoroschane ND 1.0 0.005 1.2-Dichoroschane ND 1.0 0.005 1.2-Dichloroschane					1	1			
Acctone ND 1.0 0.05 left-Amyl methyl ether (TAME) ND 1.0 0.000 Benzene 0.0062 1.0 0.005 Bromochloromethane ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 carbon Disulfide ND 1.0 0.005 carbon Tetrachloride ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Charbon Tetrachloride ND 1.0 0.005 Charbon Tetrachloride ND 1.0 0.005 Chloromethane ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 1.2-Dibromo-Schoropropane ND 1.0 0.005 1.4-Dichlorobenzene ND 1.0 0.005 1.3-Dichlororothane ND 1	Compound	Concentration *	DF		Compou	ınd	Concentration *	DF	Reporting Limit
Benzene 0.0062 1.0 0.005 Bromokenzene ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 Bromochlane ND 1.0 0.005 Semondorm ND 1.0 0.005 Bromochlane ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 tert-Buryl benzene ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorothane ND 1.0 0.005 Chlorothane ND 1.0 0.005 Chlorothane ND 1.0 0.005 1.2-Dibrome-s-chloropopane ND 1.0 0.005 1.2-Dibromochane (EDB) ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1.2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 <	Acetone	ND	1.0		tert-Amyl methyl eth	er (TAME)	ND	1.0	0.005
Bronochloromethane ND 1.0 0.005 Bronodichloromethane ND 1.0 0.005 Bronochlorom ND 1.0 0.005 Bronomethane ND 1.0 0.005 2-Butanone (MEK) ND 1.0 0.005 LeButyl lackohl (TBA) ND 1.0 0.005 n-Butyl benzene 0.0090 1.0 0.005 Carbon Disulfide ND 1.0 0.005 chron Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloromchane ND 1.0 0.005 Schlorobenzene ND 1.0 0.005 Chloromchane ND 1.0 0.005 Schlorobenzene ND 1.0 0.005 1.2-Dichlorobenzene ND 1.0 0.005 L-Dichlorobenzene ND 1.0 0.005 1.2-Dichlorophane ND 1.0 0.005 L-Dichlorobenzene ND 1.0 0.005 1.2-Dichlorophone ND 1.0 0.005									0.005
2-Butanone (MEK) ND 1.0 0.00 I-Butyl alcohol (TBA) ND 1.0 0.005 n-Butyl benzene 0.000 1.0 0.005 sce-Butyl benzene ND 1.0 0.005 Charbon Tetrachloride ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Chloromethane ND 1.0 0.005 Chloromethane ND 1.0 0.005 Chloromethane ND 1.0 0.005 2-Chloromethane ND 1.0 0.005 1.2-Dirboron-3-chloropropane ND 1.0 0.005 1.2-Dirchorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1.1-Dichlorobenzene ND 1.0 0.005 1.2-Dirchoropropane ND 1.0 0.005 1.1-Dichlorobenzene ND 1.0 0.005 1.3-Dichloropropane ND 1.0 0.005 1.3-Dichloropropane ND 1.0 0.005 2.2-Dichloropropane ND						ane			0.005
n-Butyl benzene 0.0090 1.0 0.005 sce-Butyl benzene ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chioroetnace ND 1.0 0.005 Chloroethane ND 1.0 0.005 Chloroothenzee ND 1.0 0.005 Chloroethane ND 1.0 0.005 Chloroothenzee ND 1.0 0.005 Chloroothene ND 1.0 0.005 Chloroothenzee ND 1.0 0.005 1.2-Dibromo-3-chloropropane ND 1.0 0.005 1.2-Dibromo-chane (EDB) ND 1.0 0.005 1.3-Dichlorobenzee ND 1.0 0.005 1.4-Dichlorobenzee ND 1.0 0.005 1.3-Dichlorobenzee ND 1.0 0.005 I-1-Dichloroethene ND 1.0 0.005 1.2-Dichloroethene ND 1.0 0.005 I-3-Dichloroethene ND 1.0 0.005 1.2-Dichloroethene ND 1.0	Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
tert-Buryl benzene ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorochenzene ND 1.0 0.005 Chlorochtane ND 1.0 0.005 Chloroform ND 1.0 0.005 Chlorochtane ND 1.0 0.005 Chlorochtane ND 1.0 0.005 1.2-Diromo-schloropropane ND 1.0 0.005 1.4-Dichlorochane ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1.4-Dichlorochane ND 1.0 0.005 1.2-Dichloromethane ND 1.0 0.005 1.4-Dichlorochane ND 1.0 0.005 1.2-Dichloromethane ND 1.0 0.005 1.3-Dichlorochane ND 1.0 0.005 1.2-Dichloromethane ND 1.0 0.005 1.3-Dichloropropane ND 1.0 0.005 1.2-Dichloropropane ND 1.0	2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
	n-Butyl benzene	0.0090	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
Chloroethane ND 1.0 0.005 Chlorofum ND 1.0 0.005 Chloromethane ND 1.0 0.005 Dibromochloromethane ND 1.0 0.005 1.2-Dibromo-3-chloropropane ND 1.0 0.005 Li2-Dibromochlane ND 1.0 0.004 1.3-Dichlorobenzene ND 1.0 0.005 Li2-Dibromochlane ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 Li2-Dichlorobenzene ND 1.0 0.005 1.2-Dichlorobethane ND 1.0 0.005 Li-Dichlorobetnee ND 1.0 0.005 1.2-Dichloropethane ND 1.0 0.005 Li-Dichloropethene ND 1.0 0.005 1.2-Dichloropropane ND 1.0 0.005 Li-Dichloropropane ND 1.0 0.005 2.2-Dichloropropane ND 1.0 0.005 Haylenzene ND 1.0 0.005 2.2-Dichloropropane ND 1.0 <td>tert-Butyl benzene</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>Carbon Disulfide</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.005</td>	tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Chloromethane ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 4-Chlorotoluene ND 1.0 0.004 12-Dibromo-shane (EDB) ND 1.0 0.004 1.2-Dibromo-shane oppone ND 1.0 0.005 1.2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1.4-Dichlorobenzene ND 1.0 0.005 1.2-Dichlorothane (1,2-DCA) ND 1.0 0.005 1.1-Dichlorothane ND 1.0 0.005 1.2-Dichlorothane (1,2-DCA) ND 1.0 0.005 trans-1,2-Dichlorothane ND 1.0 0.005 1.2-Dichloroptone ND 1.0 0.005 trans-1,3-Dichloroptone ND 1.0 0.005 2.2-Dichloroptone ND 1.0 0.005 trans-1,3-Dichloroptone ND 1.0 0.005 2.2-Dichloroptone ND 1.0 0.005 trans-1,3-Dichloroptone ND 1.0 0.005 2.2-Dichloropto	Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
4-Chlorotoluene ND 1.0 0.005 Dibromochane (EDB) ND 1.0 0.005 1.2-Dibromo-3-chloropropane ND 1.0 0.005 1.2-Dibromochane (EDB) ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1.2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1.4-Dichlorobenzene ND 1.0 0.005 1.2-Dichloroethane (1,2-DCA) ND 1.0 0.005 1.3-Dichloroethane ND 1.0 0.005 1.2-Dichloroethane (1,2-DCA) ND 1.0 0.005 1.3-Dichloroethane ND 1.0 0.005 1.2-Dichloroptane ND 1.0 0.005 1.3-Dichloroptane ND 1.0 0.005 1.2-Dichloroptopane ND 1.0 0.005 Itans-1.3-Dichloroptopene ND 1.0 0.005 1.1.1.0 0.005 Frecon 113 ND 1.0 0.005 2.1-Dichloroptopane ND 1.0	Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
1,2-Dibromo-3-chloropropane ND 1.0 0.004 1,2-Dibromoethane (EDB) ND 1.0 0.004 Dibromomethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 1,2-Dichlorodenane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.005 rans-1,2-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.005 rans-1,2-Dichloroethane ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 rans-1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 Ethylten-Johlorypropane ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 Ethylten-Johlorypropane ND 1.0 0.005	Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
Dibronomethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.005 trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 5:1-3.2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 6:is1-3.2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloroptnape ND 1.0 0.005	4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometha	ane	ND	1.0	0.005
1.3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.004 1,1-Dichloroethene ND 1.0 0.005 is:1,2-Dichloroethene ND 1.0 0.005 trans-1,2-Dichloroethene ND 1.0 0.005 is:1,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropane ND 1.0 0.005 is:1,3-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 bilsopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene 0.029 1.0 0.005 2-Hexanone ND 1.0 0.005 Kenyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Hexanone ND 1.0 0.005 1,1,2.	1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dichlorodifluoromethane ND 1.0 0.005 1.1-Dichloroethane ND 1.0 0.005 1.2-Dichloroethane (1,2-DCA) ND 1.0 0.004 1.1-Dichloroethane ND 1.0 0.005 cis-1,2-Dichloroethane ND 1.0 0.005 1.3-Dichloroethane ND 1.0 0.005 2,2-Dichloroptopane ND 1.0 0.005 1.3-Dichloroptopane ND 1.0 0.005 2,2-Dichloroptopane ND 1.0 0.005 1.1-Dichloroptopene ND 1.0 0.005 2,2-Dichloroptopane ND 1.0 0.005 Itrans-1,3-Dichloroptopene ND 1.0 0.005 Bistyptert-butyl ether (ETBE) ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylenzene ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylenzene ND 1.0 0.005 2-Hexanone ND <td>Dibromomethane</td> <td>ND</td> <td>1.0</td> <td>0.005</td> <td>1,2-Dichlorobenzene</td> <td>1</td> <td>ND</td> <td>1.0</td> <td>0.005</td>	Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	1	ND	1.0	0.005
1.2-Dichloroethane (1,2-DCA) ND 1.0 0.004 1,1-Dichloroethene ND 1.0 0.005 cis.1,2-Dichloroethene ND 1.0 0.005 trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 trans-1,2-Dichloroethene ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.005 Freno 113 ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 Styrene	1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	1	ND	1.0	0.005
cis-1,2-Dichloroethene ND 1.0 0.005 trans-1,2-Dichloropropane ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Ethyl tert-butyl ether (DPE) ND 1.0 0.005 Feron 113 ND 1.0 0.005 2-Hexanlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Alexanon ND 1.0 0.005 I+thyl-t-butyl ether (MTBE) ND 1.0 0.005 Alexanone ND 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 1.10		ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1.2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropane ND 1.0 0.005 2,2-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropl ether (DIPE) ND 1.0 0.005 Freon 113 ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Hexachlorobutadiene ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-r-butyl ether (MTBE) 0.0074 1.0 0.005 Styrene ND 1.0 0.005 I-transchloroethane ND 1.0 0.005 Styrene ND 1.0 0.005 I-transchloroethane ND 1.0 0.005 1,1.2.2-Tetrachloroethane ND <td>1,2-Dichloroethane (1,2-DCA)</td> <td>ND</td> <td>1.0</td> <td>0.004</td> <td>1,1-Dichloroethene</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.005</td>	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene 0.029 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.005 4-kacahlorobutadiene ND 1.0 0.005 Isopropyl benzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Methylene chloride ND 1.0 0.005 I+methyle-zpentanone (MIBK) ND 1.0 0.005 Styrene ND 1.0 0.005 I+reachloroethane ND 1.0 0.005 1,1,2-Zretrachloroethane ND 1.0 0.005 I+methyle-zpentanone (MIBK) ND 1.0 0.005 1,1,2-	cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroetl	nene	ND	1.0	0.005
cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene 0.029 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylenzene ND 1.0 0.005 4-Isopropyl oluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Naphthalene 0.0099 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1-2-Tetrachloroethane ND 1.0 0.005 1,2,2-Tetrachloroethane ND 1.0 0.005 1,1,1-2-Tetrachloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-2-Tetrachloroethane ND 1.0 0.005 1,2,4-Tr	· · · · · · · · · · · · · · · · · · ·			0.005	1,3-Dichloropropane				0.005
Disopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene 0.029 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropyl benzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Styrene ND 1.0 0.005 I.1,1,2-Tetrachloroethane ND 1.0 0.005 1,2,2-Tetrachloroethane ND 1.0 0.005 Iterachloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Iterachloroethane ND 1.0 0.005 1,2,4-Trichloroethane	2,2-Dichloropropane								0.005
Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freen 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene 0.0099 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 Toluene 0.013 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,2,4-Trichlorofthane N					<i>,</i>	opene			0.005
Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene 0.0099 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 Styrene ND 1.0 0.005 retrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 retrachloroethane ND 1.0 0.005 1,2,4-Tricholorobenzene ND 1.0 0.005 ritchloroethane ND 1.0 0.005 1,2,4-Tricholorobenzene ND 1.0 0.005 ritchloroethane ND 1.0 0.005 1,2,4-Trinethylbenzene 0.07	· · · · · · · · · · · · · · · · · · ·								0.005
2-Hexanone ND 1.0 0.005 Isopropylenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) 0.0074 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene 0.0099 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 Styrene ND 1.0 0.005 retrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 retrachloroethane ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trinchlorofhune ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene <td></td> <td>i i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		i i							
A-Isopropyl toluene ND 1.0 0.005 Methyl-butyl ether (MTBE) 0.0074 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene 0.0099 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 1,2,2-Tetrachloroethane ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 1,2,3-Trichloropopane ND 1.0 0.005 1,2,4-									
Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene 0.0099 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene 0.013 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.014 1.0 0.005 Vinyl Chloride <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Naphthalene 0.0099 1.0 0.005 n-Propyl benzene 0.012 1.0 0.005 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene 0.013 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 Vinyl Chloride ND	· · · · ·	- i i							
Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene 0.013 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 %SS1: 88						ne (MIBK)			
1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene 0.013 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 %SS1: 88 %SS2: 68 - - - %SS3: 75 - - - - - -						1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	*	i i				inane			
1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 SSS1: SSS2: %SS2: 68 - - %SS3: - 75 - - - -									
1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene 0.0073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.014 1.0 0.005 SSS1: SSS2: SS2: SS2: SS2: SS2: SS2: SS2: SS2: <td></td> <td>i i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		i i							
Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 Surveyste Reversies (%) %SS1: 88 %SS2: Surveyste Reversies (%) %SS3: 0.75 5						e			
1,2,4-Trimethylbenzene 0.073 1.0 0.005 1,3,5-Trimethylbenzene 0.025 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 Surrogate Recoveries (%) %SS1: 88 %SS2: 68 5 %SS3: 75 5 5 5						ne			
Vinyl Chloride ND 1.0 0.005 Xylenes, Total 0.14 1.0 0.005 Surrogate Recoveries (%) %SS1: 88 %SS2: 68 5 %SS3: 75 5 5 5									
Surrogate Recoveries (%) %SS1: 88 %SS2: 68 %SS3: 75 68		i i							1
%SS1: 88 %SS2: 68 %SS3: 75 68	, mji Chloride	ND		1			0.17	1.0	0.005
%SS3: 75	0/ 551.	00		rogate Re			C0		
					%SSZ:		68		
Comments: c9		/5							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

c9) internal standard is out of acceptance criteria due to matrix interference therefore values are estimated

C Mc	Campbell Ana "When Quality Con	lytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail:	/ Fax: (92	5) 252-9269	
All West Enviro	onmental, Inc	Client Project ID:	#13019.23; Hollis	Date Sample	ed: 08	/02/13	
2141 Mission S	treet Ste 100			Date Receiv	ed: 08	/02/13	
2141 101351011 5	licet, Sie 100	Client Contact: C	hristopher Houlihan	Date Extract	ted 08	/02/13	
San Francisco, G	CA 94110	Client P.O.:		Date Analyz	ed 08	/05/13	
Extraction method: SW			x Trap and GC/MS* hethods: SW8260B	-	Wo	ork Order:	1308110
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments
001A	Disposal Comp 1	S	1.4		1	99	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	0.25	mg/kg

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

CDPH ELAP 1644 ♦ NELAP 12283CA

BB Analyst's Initial

Angela Rydelius, Lab Manager

	McCamp	bell Ar hen Quality		<u>Inc.</u>	Toll Fre	e Telepho	one: (Road, Pittsburg, CA (877) 252-9262 / Fax: ll.com / E-mail: main@	(925) 252-9269	1		
All We	est Environmental, Ir	nc	Client Pro	ject ID:	#13019.23; Hol	llis	D	Date Sampled:	08/02/13			
2141 N	Aission Street, Ste 10	00					D	Date Received:	08/02/13			
			Client Co	ntact: Ch	ristopher Houlił	nan	D	Date Extracted:	08/02/13			
San Fr	ancisco, CA 94110		Client P.C).:			D	Date Analyzed:	08/03/13			
Extraction	n method: SW3050B				UFT 5 Metals* tical methods: SW6					Work (Order: 1	308110
Lab ID	Client ID	Matrix	Extraction Type	Cadmiun	n Chromium	Lea	nd	Nickel	Zinc	DF	% SS	Comments
001A	Disposal Comp 1	S	TOTAL	ND	60	6.4	4	42	53	1	108	
-												
	ting Limit for DF =1;	W	TOTAL	NA	NA	NA	4	NA	NA		NA	1
	eans not detected at or ve the reporting limit	S	TOTAL	0.25	0.5	0.5	5	0.5	5.0	1	mg/I	Kg
*water sa	mples are reported in µg/	L, product/oi	l/non-aqueous liqu	id samples a	nd all TCLP / STLO	C / DIST	LC	/ SPLP extracts are	e reported in mg	g/L, soil/s	sludge/sc	lid samples

in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu$ m filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

CDPH ELAP 1644 ♦ NELAP 12283CA

DB Analyst's Initial

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

EPA Method: SW8260B	Extraction: S	W5030B					;	Spiked Sam	ple ID:	1308090-024A
Analyte Amyl methyl ether (TAME) izene ityl alcohol (TBA) orobenzene Dibromoethane (EDB) Dichloroethane (1,2-DCA) Dichloroethene sopropyl ether (DIPE) yl tert-butyl ether (ETBE) thyl-t-butyl ether (MTBE) uene thoroethene SS1: SS2: SS3: I target compounds in the Method Blank of this extraction DNE = MS/MSD recovery and/or %RPD was out of accepta		Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyte		mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)		ND	0.050	61.3	45,F1	26.3	83.4	56 - 94	30	70 - 130
Benzene		ND	0.050	75.1	74.4	0.994	80.8	60 - 106	30	70 - 130
t-Butyl alcohol (TBA)		ND	0.20	72.9	73	0.129	88.4	56 - 140	30	70 - 130
Chlorobenzene		ND	0.050	76.8	75.7	1.37	87.3	61 - 108	30	70 - 130
1,2-Dibromoethane (EDB)		ND	0.050	75.7	74.5	1.53	83.5	54 - 119	30	70 - 130
1,2-Dichloroethane (1,2-DCA)		ND	0.050	70.8	70.5	0.343	76.9	48 - 115	30	70 - 130
1,1-Dichloroethene		ND	0.050	76.2	75.6	0.821	73.2	46 - 111	30	70 - 130
Diisopropyl ether (DIPE)		ND	0.050	75.3	75.5	0.229	80.8	53 - 111	30	70 - 130
Ethyl tert-butyl ether (ETBE)		ND	0.050	73.5	73.9	0.536	80.1	61 - 104	30	70 - 130
Methyl-t-butyl ether (MTBE)		ND	0.050	72.4	71.2	1.64	78.2	58 - 107	30	70 - 130
Toluene		ND	0.050	80	78.4	2.05	86	64 - 114	30	70 - 130
Trichloroethene		ND	0.050	77	77.1	0.0979	104	60 - 116	30	70 - 130
%SS1:		100	0.82	100	94	6.56	101	70 - 130	30	70 - 130
%SS2:		96	0.32	92	91	0.985	77	70 - 130	30	70 - 130
%SS3:		92	0.032	92	92	0	83	70 - 130	30	70 - 130
NONE						he following	g exceptior	15:		
		BATCH 8	30108 SUN	MMARY						
Lab ID Date Sample	d Date Extracted	Date Anal		Lab ID		Date S	Sampled	Date Ext	racted	Date Analyzed

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308110-001A	08/02/13 1:00 PM	M 08/02/13	08/05/13 10:41 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CDPH ELAP 1644 ♦ NELAP 12283CA

QC SUMMARY REPORT FOR SW6020

EPA Method: SW6020	Extraction: SW3050B					9	Spiked Sample ID: N/A						
Analyte	Sample	e Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)						
Analyte mium omium d kel	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS				
Cadmium	N/A	50	N/A	N/A	N/A	91.7	N/A	N/A	75 - 125				
Chromium	N/A	50	N/A	N/A	N/A	95.3	N/A	N/A	75 - 125				
Lead	N/A	50	N/A	N/A	N/A	91.9	N/A	N/A	75 - 125				
Nickel	N/A	50	N/A	N/A	N/A	97.2	N/A	N/A	75 - 125				
Zinc	N/A	500	N/A	N/A	N/A	96.2	N/A	N/A	75 - 125				
%SS:	N/A	500	N/A	N/A	N/A	89	N/A	N/A	70 - 130				

			BATCH 80117 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308110-001A	08/02/13 1:00 PM	1 08/02/13	08/03/13 6:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

CDPH ELAP 1644 ♦ NELAP 12283CA

QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

All West Environmental, Inc	Client Project ID: #13019.23; Hollis	Date Sampled: 08/07/13
2141 Mission Street, Ste 100		Date Received: 08/08/13
	Client Contact: Christopher Houlihan	Date Reported: 08/15/13
San Francisco, CA 94110	Client P.O.:	Date Completed: 08/14/13

WorkOrder: 1308292

August 15, 2013

Dear Christopher:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#13019.23; Hollis,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

(117)						-						1	(PAG	FA	- 1	-	7			IN	10		0	IC	TC		V	DE	0				
	McC	am	pbe	ell	A	n	aly	tic	CO	11,	In	d.		of	17	2)		ΠA			JΓ	C	05	IC	JU	T	KE	C		RD	/	
	1534 Wi												-	_	_	TU	RN	AR	OUN	DT	IMI	RU	SH	2	HR		8 HR		72 HR		5 DA	Y DI	0 DA	YE
	www.mco										m			~	0					1	-		/	_		_		_		QuIS [
	Telepho									· ·		4	5	29	4																			
GL	OBAL	1.0.	TO	60	001	02	200	90	7	(5	00	2.			Eff	luen	t San	aple	Requ	irin	t "J"	flag		UST	Clea	n UI	Fu	nd Pr	oject	t 🗋	; Clain	1 #	
Report To: Car	istophe	r He	outite	'n		l To	_		len								_		_	_	_			Ana	lysis	Req	uest			_	_		_	
	West	CL :	+ 1			-	en	1 200	-			1.			_	316		9														2		
1 pm	ncisco	DTT	#100	10			ard.	_			-	1.0		(or		MITH	Jel	E/B&				=									sis	02		
San (415)		2510		0			415					200			M	or 8260) / MTBE	.ca	5520		=		Congeners						(070)	020)		smaly	120		
and the second se	019.2	3					t Nan	ae:	110							or 8.	1.1.	647	118.1	/ 802	2			cides)			(SV)	10/0	10/6	-	ctals	BOIS		
Project Location		gvill	q,C	A	Pu	rcha	ise O	rder	#			_	_		_	8015	5	se (16	ons (2	826	licide	dors	(8)	Ierbi	(8)	Cs)	s/Pl	8/6	8 / 60	6020	8D m	202		
Sampler Signatu	re	(10	I	B		M	AT	RIX				ME	THO	D	(8021/	tim.	Grea	carb	(EPA	1 Post	Are	sticio	a l	0.00	(SVO	PAH	/200.	2001	010/	OLVI	Ind		
	SAMPLING MATRIX										_			SERV		Gas ((8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Peticides)	EPA 608 / 8082 PCB's ; Arodors/	EPA 507 / 8141 (NP Posticides)	EPA S15 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 (8260 NOC3)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	(200.7 / 200.8 / 6010 / 6020)	Metals (200.7 / 200.8 / 6010 / 6020)	DISSOLVED metals	Hd		
SAMPLE ID	Location/			ers	ter	-	ater									Has		mm	mm	O XO	8/80	82 P(141 ()	151 (/	140	625/1	WI/8	tals (2	als (2	7/20		F		
Ortific and and	Field Point Name	Date	Time	tain	1 Wa	Wate	N St	ater								& TPH	TPH as Diesel	drolo	drok	BTF	5/ 608	8/80	7/8	5/8	4.2/(5.2/(270 SI	7 Met	Metals	(200.	sample for	ê		
	1000000			Con	oune	aste	inkir	a / W	-	Air	Sludge	Other	HCL	HNOs	Other	BTEX J	Has	tal P	tal P	rBE/	A 50	A 60	A 50	A51	A 52	A 52	EPA 82	I W	LUPTS	dtals (Filter s	Hal		
	SAMPLE ID Field Point Name Date Time Time University Name Name Date Time Value Name Name Name Name Name Name Name Nam												1	Ξ	ō	BI	F	Ě	Ť	N	8	-	B	ġ	EI	B	8	0	F	M	E	E	\perp	\rightarrow
ANW-3				2	\bowtie								4	_	_	_									Х								-	
AMW-3			-	2	X	-		_	_	-		P	4		-	_		-					_	_			_					\bowtie	+	+
AMUJ-3	AMW-3		0951	1	X					_		P	4	-	_	_	\geq									_	\checkmark	-				\vdash	+	+
AMW-3	AMW-3		0951	1	\sim				-	-				-	-	_		-					_	-		-	$ \frown $	-					+	+
AMW-2	AMW-2		1048	2	Ø	-	-	-			-	HR	X	-	-	_		-	-	-				-	×.						-		+	+
AMW-2	AMW-2		1048	-	Ð				-	-		HK	H		-		$\overline{\mathbf{x}}$						-	-		_	-	-				\cap	+	+
AMW-2	ANNEZ		1048	1	\Diamond	-			-	-		H	7		-	-			-				-	-			X			\square			+	+
AMU-2 MW-3	AMW-2 MW-3	/	1239	2	\triangleright	-		_		-			Z												X		\sim						+	+
MW-3	MW-3		1239	2	\triangleright					-		K	2												-							X		
MW-3	MW-3		1239	T	R								2				X																	
**MAI clients MUST gloved, open air, sam	disclose any	dangero	us chemic:	als ku	lown t	obej										ation	s tha	t may	caus															
us to work safely.	Anding	oy MAI	Hall. Non-	discl				u m ed	itare 5	430 8	surcă	arge a	ad	2.2.2.2.2		0	10	to full	regal	1 11 2 61	ary f	or nar	m su:	nerec	. 16					erstal	nam	, and 10	r allo	wing
Refinquished By:	1. ~	Date:	Time	44	Rece	ived	By:	2	-	_	-	1				m co		ION								0	OM	MEN	TS:					
Reinquished Ba:	2-04	Date:	/ Anne	4	Rece	ived	RO		-	6		-	1					BSE		AB	-													
adindaring pie:	1	24	2 1/	~	Rece		7	5/	\bigcirc					AP	PR	OPRI	LATE	CON	TAI	NER	s													
Relinquished By:		Date:	Time		Rece	ivel	BV	1	_					PR	151	LICVI	DI	NLAI		-		-			-			-						
resultance pit	J	2 are.	Time		inter	er cu	. 40							PR	ESI	ERV	TIO		AS	\$0		H<2_	LS	OTI	IER	1	IAZA	RDO	JUS:					
					_		_	_	_				_									_												_

(777)												/	-	5			-	0		1.4	IN			0		TC		V	DE						
	McC	am	pbe	ell	А	nc	aly	tio	CC	al,	In	6	. 1	PA	GE	2	2)	CI	HA		10)F	C	02	IC	טנ	Y	KF	C		RD	/		
	1534 Wi	llow Po	iss Rd. /	Pit	tsbu	ra, C	a. 9	9450	5-1	701		1			01	TI	IRN	AR	DUN	DT	IME	RI	JSH	2	HR.	4	8 HR		2 HR		5 DA	YD	10 D.	AY [a
	www.mcc	ampb	ell.com	11	main	@m	icco	amp	bel	.co	m					Ge	Tra	her I	DE	tr/	PDF	m	FDI		Writ	e On	(DW		EC	SIn					
	Telepho															L																			
G	LOBA	L	D -	10			_									Eff	luen	t San	ple	Requ	iiring	g "J"	flag	9	UST	Clea	nn Up	Fu	id Pr	ojec	t 🗋 ;	; Clai	m #		-
Report To:	istophe	r Hon	lihan		Bil	l To	· v	ar	en	e	lov	10	4		1		_	_	_	_	_		_	Ana	lysis	Rec	uest	1					_	_	
Company: All	West	FI 3	ŧ100	_	a	arl	ene	2.6	20	11	Jes	1	LI	Co	m	BK		3														ħ			
	ssion	-	#100		F	le ou Mail x: ()	nav	al	10	Iwi	est	1.	CC	11	1	EW.	N	C/B&													sis	spirit			
San Fran Tele: (415) 3	1 Cisco	EN S	1911	10	Fa	x: (415	10 11	291	nan	e	a11	We	57-1		(08	2	20		-		gene						020)	(0)		mady				
Project #: [30		10			Pro	oject	Nar	ne:	271			00				r 82	1,C	4/5	8.1)	8021		Con		des)			3	0/0	0/ 60		als a	neval			
Project Location		wille	ICA	0	Pu	rcha	se O	rde	r#							015	:5	(166	s (41	260/	id cs)	urs/	-	rbici		(8	PN/	601	6010	020)	me	L'in			
Sampler Signatu			then	L	0	_		-	-							(8021/8015	7	calse	rbon	PA 8	estic	rod	cides	He	DCs)	/00	HIS	00.8	0.8/	0/0	VEL	10			
	C	SAM	PLING				M	IAT	RIX					ETH	OD VED	N (83)	(8015) With silica	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Posticidos)	EPA 608 / 8082 PCB's ; Arodors / Congeners	EPA 507 / 8141 (NP Pesticides)	KPA S15 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 626 / 8260 (NDCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Metals (200.7 / 200.8 / 6010 / 6020)	sample for DISSOLVED metals analysis	HAIS			
				20			10									as Gas	801	i Oil	a Hy	ONI	8081	PCI	I UN	I (Ac	18	5/82	/ 83	s (20	(200	2002	r DI	20			
SAMPLE ID	Location/ Field Point			# Containers	Ground Water	ter	Drinking Water	5								PH		oleun	oleur	LEX	/ 808	8082	814)	815	162	1625	SIM	letal	ctalls	0.77	lefe	920			
	Name	Date	Time	ntai	Mpt	Waste Water	ing	Sea \Water								BTEX & TPH	TPH as Diesel	Potre	Potro	C/B	02/0	8	110	15/	24.2	25.2	\$270	17 N	S M	50	luns	0			
				S	Lou	aste	rink	- In	Soil	Air	Sludge	Other	HCL	HNO,	Other	TEX	PHa	otal	otal	TBF	PAS	PA6	PAS	PAS	PA5	PAS	EPA 8	MM	UFT	dall	Filter	HJ			
				#	0	2	9	s	×.	V	s	0	Ξ	Ξ	0	~	F	+	+	×	R	×	В	В	8	В	R	0	-	Z	2	E			
MW-3	MW-3	8/7/13	1239	1	X																						\ge								
AMW+1	AMW-1		1400	2	X		_						\boxtimes												\boxtimes			_							
AMW-1	AMN-1		1400	2	×								X																			\bowtie			
AMW-1	AMW-1		1400	1	X								X				X																		
AMW-1	AMW-1	V	1400	1	\mathbf{X}							Π					1										X								
1	/ little .	- ¥	1.00	-								Π																							-
						\wedge						P														~									
		20	1				2		-	-		Η														1		-	-	-					
	($\left(\right)$	2	Ø	P	26		-		-		Η							-		η.	1	5	Et.	gy	yer.	F	-						_	
		X	2									H			-						12	10					-	-							
				-						-		\vdash		-			-		-	-		-	-	-	-		-			_				_	
**MAI clients MUST	disclose area	dangara	is chemics	le los	own t	o ho r	FORCE	t in t	hair	ubmi	tted	L	pler i		Cont	ration	the the	t man	C2.00	e ima	n ordina	to have		sorio	ne fut	ure b	calth	anda	ngora	nont	25.0.7	osult	ofbri	of	
gloved, open air, sam us to work safely.																																			g
Reinquished By:	0-	Hate:	Time:	1	Rece	ived 1	By:			*	-	STORES OF	-		CE/f		NDD	TION								(COM	MEN	TS:						
10×Dar	VE		5159		6	-	-	2	00000	SCHOOL SC			-	1	IEAI	SPA	CE	BSE	NT_	_															
Relinquished By:		Sate:	Time:	-	Rece	ived]	By		_									CON		-	s														
	+18	81	5/60	C	2	1	2	7	5		2							LAI		-															
Relinquished By:		Date:	Time:		Rece	ived (By.	-				_						VO	AS	0&	G 1	ET	LS	OTI	IER	I	HAZA	RDO	US:						-
														I	PRES	ERV	ATIC					H<2_				_									
					_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	

McCampbell Analytical, Inc.

Pittsburg, CA 94565-1701

Page 1 of 1

(925) 252-9262				Wo	rkOrde	r: 1308	8292	C	lient	Code: AW	E				
	WaterTrax	WriteOn	✓ EDF	Ex	el	EQu	uIS	Email		HardCo	ру	ThirdPa	rty	_J-fla	ıg
Report to:					Bill to:					F	Reque	ested TAT:		5 c	days
Christopher Houlihan All West Environmental, Inc 2141 Mission Street, Ste 100 San Francisco, CA 94110 (415) 391-2510 FAX: (415) 391-2008	CC: PO:	choulihan@allw ≭13019.23; Holl			A 2 S	141 Mis an Frar	Enviro ssion S ncisco,	onmental, I Street, Ste , CA 94110 st1.com	100	_		Received: Printed:		08/08/2 08/08/2	
								Requeste	ed Tes	ts (See lege	nd be	elow)			
Lab ID Client ID		Matrix	Collection Date	Hold	1 :	2 :	3	4 5	6	7	8	9	10	11	12

1308292-001	AMW-3	Water	8/7/2013 9:51	А	С	В	А			
1308292-002	AMW-2	Water	8/7/2013 10:48	А	С	В				
1308292-003	MW-3	Water	8/7/2013 12:39	А	С	В				
1308292-004	AMW-1	Water	8/7/2013 14:00	А	С	В				

Test Legend:

1	8260B_W
6	
11	

2	8270D-PNA_W
7	
12	

3 G-MBTEX_W 8 4 PREDF REPORT
9

5	
10	

The following SampIDs: 001B, 002B, 003B, 004B contain testgroup.

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	All West Environm	ental, Inc			D	ate and ⁻	Time Received:	8/8/2013 5:	12:51 PM
Project Name:	#13019.23; Hollis				L	ogIn Rev	iewed by:		Jena Alfaro
WorkOrder N°:	1308292	Matrix: Water			С	arrier:	<u>Rob Pringle (M</u>	Al Courier)	
		<u>Cha</u>	in of Cu	stody (C	OC) Info	ormation			
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No				
Chain of custody	agrees with sample	labels?	Yes	✓	No				
Sample IDs note	d by Client on COC?		Yes	✓	No				
Date and Time or	f collection noted by	Client on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
			Sample	Receipt	Informa	<u>tion</u>			
Custody seals int	tact on shipping cont	ainer/cooler?	Yes		No			NA 🗹	
Shipping contain	er/cooler in good con	dition?	Yes	✓	No				
Samples in prope	er containers/bottles?	,	Yes	✓	No				
Sample containe	rs intact?		Yes	✓	No				
Sufficient sample	e volume for indicated	I test?	Yes	✓	No				
		Sample Pres	servatio	n and Ho	old Time	<u>(HT) Infc</u>	ormation		
All samples recei	ived within holding tir	ne?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	r Temp:	2.6°C			NA	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No	🗌 No	VOA vials submi	tted	
Sample labels ch	necked for correct pre	eservation?	Yes	✓	No				
Metal - pH accep	otable upon receipt (p	H<2)?	Yes		No			NA 🖌	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ісе Тур	be: WE	TICE))				
* NOTE: If the "N	lo" box is checked, s	ee comments below.							

Comments:

	ll Analytical Quality Counts''	l, Inc	<u>.</u>	Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa npbell.com / E-mail: mair	x: (925) 252-9269		
All West Environmental, Inc	Client F	Project I	D: #13	3019.23; Hollis	Date Sampled:	08/07/13		
2141 Mission Street, Ste 100					Date Received:	08/08/13		
2141 Mission Sueet, Ste 100	Client C	Contact:	Christe	opher Houlihan	Date Extracted:	: 08/12/13		
San Francisco, CA 94110	Client P	P.O.:			Date Analyzed	: 08/12/13		
Extraction Method: SW5030B	Volatile Organi	-		d GC/MS (Basic od: SW8260B	Target List)*	Work Order: 1308	292	
Lab ID					2-001A			
Client ID					W-3			
Matrix			Reporting	Wa	ater			Reporting
Compound	Concentration *	DF	Limit	Compou	ınd	Concentration *	DF	Limit
Acetone	ND<100	10	10	tert-Amyl methyl eth	er (TAME)	ND<5.0	10	0.5
Benzene	17	10	0.5	Bromobenzene		ND<5.0	10	0.5
Bromochloromethane	ND<5.0	10	0.5	Bromodichlorometha	ane	ND<5.0	10	0.5
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA	A)	ND<20	10	2.0
n-Butyl benzene	7.4	10	0.5	sec-Butyl benzene		ND<5.0	10	0.5
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide		ND<5.0	10	0.5
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5
Chloroethane	ND<5.0	10	0.5	Chloroform		ND<5.0	10	0.5
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene		ND<5.0	10	0.5
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochlorometha	ane	ND<5.0	10	0.5
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane (EDB)	ND<5.0	10	0.5
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene	:	ND<5.0	10	0.5
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzene		ND<5.0	10	0.5
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethane		5.2	10	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene		140	10	0.5
cis-1,2-Dichloroethene	ND<5.0	10	0.5	trans-1,2-Dichloroet	nene	ND<5.0	10	0.5
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane		ND<5.0	10	0.5
2,2-Dichloropropane	ND<5.0	10	0.5	1,1-Dichloropropene		ND<5.0	10	0.5
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropr	opene	ND<5.0	10	0.5
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene		83	10	0.5
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113		ND<100	10	10
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane		ND<5.0	10	0.5
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene		ND<5.0	10	0.5
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether	(MTBE)	ND<5.0	10	0.5
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND<5.0	10	0.5
Naphthalene	18	10	0.5	n-Propyl benzene		18	10	0.5
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroet	thane	ND<5.0	10	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5
Toluene	72	10	0.5	1,2,3-Trichlorobenze	ene	ND<5.0	10	0.5
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethan	e	5.3	10	0.5
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		20	10	0.5
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropa	ne	ND<5.0	10	0.5
1,2,4-Trimethylbenzene	76	10	0.5	1,3,5-Trimethylbenze	ene	39	10	0.5
Vinyl Chloride	ND<5.0	10	0.5	Xylenes, Total		360	10	0.5
		Surr	ogate R	ecoveries (%)				
%SS1:	11	2		%SS2:		9	7	
%SS3:	10	1						
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytical Quality Counts''	l, Inc	<u>.</u>	Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa npbell.com / E-mail: mair	x: (925) 252-9269		
All West Environmental, Inc	Client P	Project I	D: #13	3019.23; Hollis	Date Sampled:	08/07/13		
2141 Mission Street, Ste 100					Date Received:	08/08/13		
2141 Mission Street, Ste 100	Client C	Contact:	Christe	opher Houlihan	Date Extracted:	08/12/13		
San Francisco, CA 94110	Client P	P.O.:			Date Analyzed	: 08/12/13		
Extraction Method: SW5030B	Volatile Organi	-		d GC/MS (Basic od: SW8260B	Target List)*	Work Order: 1308	292	
Lab ID					2-002A			
Client ID					W-2			
Matrix			Reporting	Wa	ater			Reporting
Compound	Concentration *	DF	Limit	Compou	ınd	Concentration *	DF	Limit
Acetone	ND<100	10	10	tert-Amyl methyl eth	er (TAME)	ND<5.0	10	0.5
Benzene	66	10	0.5	Bromobenzene		ND<5.0	10	0.5
Bromochloromethane	ND<5.0	10	0.5	Bromodichlorometha	ane	ND<5.0	10	0.5
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA	A)	ND<20	10	2.0
n-Butyl benzene	ND<5.0	10	0.5	sec-Butyl benzene		ND<5.0	10	0.5
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide		ND<5.0	10	0.5
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5
Chloroethane	ND<5.0	10	0.5	Chloroform		ND<5.0	10	0.5
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene		ND<5.0	10	0.5
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochlorometha	ane	ND<5.0	10	0.5
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane (EDB)	ND<5.0	10	0.5
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene		ND<5.0	10	0.5
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzene		ND<5.0	10	0.5
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethane		ND<5.0	10	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene		ND<5.0	10	0.5
cis-1,2-Dichloroethene	ND<5.0	10	0.5	trans-1,2-Dichloroet	nene	ND<5.0	10	0.5
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane		ND<5.0	10	0.5
2,2-Dichloropropane	ND<5.0	10	0.5	1,1-Dichloropropene		ND<5.0	10	0.5
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropr	opene	ND<5.0	10	0.5
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene		48	10	0.5
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113		ND<100	10	10
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane		ND<5.0	10	0.5
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene		ND<5.0	10	0.5
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether	(MTBE)	350	10	0.5
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND<5.0	10	0.5
Naphthalene	22	10	0.5	n-Propyl benzene		6.4	10	0.5
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroet	thane	ND<5.0	10	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5
Toluene	74	10	0.5	1,2,3-Trichlorobenze	ene	ND<5.0	10	0.5
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethan	e	ND<5.0	10	0.5
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		ND<5.0	10	0.5
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropa	ne	ND<5.0	10	0.5
1,2,4-Trimethylbenzene	46	10	0.5	1,3,5-Trimethylbenze	ene	29	10	0.5
Vinyl Chloride	ND<5.0	10	0.5	Xylenes, Total		280	10	0.5
		Surr	ogate R	ecoveries (%)				
%SS1:	11	2		%SS2:		9'	7	
%SS3:	10	3						
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytica Quality Counts''	l, Inc	•	Toll Free Teleph	Pass Road, Pittsburg, C. one: (877) 252-9262 / Fa npbell.com / E-mail: main	x: (925) 252-9269		
All West Environmental, Inc	Client F	Project I	D: #1	3019.23; Hollis	Date Sampled:	08/07/13		
					Date Received	: 08/08/13		
2141 Mission Street, Ste 100	Client C	Contact:	Christ	opher Houlihan	Date Extracted	: 08/12/13		
San Francisco, CA 94110	Client F			•	Date Analyzed	: 08/12/13		
	Volatile Organi	ics hy P	&T an	d GC/MS (Basic	2			
Extraction Method: SW5030B	volatile Organ	-		od: SW8260B	Taiget List)	Work Order: 1308	292	
Lab ID		,			2-003A			
Client ID					V-3			
Matrix					ater			
Compound	Concentration *	DF	Reporting	Compou		Concentration *	DF	Reporting
			Limit 10					Limit
Acetone	ND<10,000 9800	1000 1000	10 0.5	tert-Amyl methyl eth	er (TAIVIE)	ND<500	1000 1000	0.5
Benzene Bromochloromethane	9800 ND<500	1000	0.5	Bromobenzene Bromodichlorometha	200	ND<500 ND<500	1000	0.5
Bromoform	ND<500	1000	0.5	Bromomethane	lite	ND<500	1000	0.5
2-Butanone (MEK)	ND<2000	1000	2.0	t-Butyl alcohol (TBA	.)	ND<2000	1000	2.0
n-Butyl benzene	ND<500	1000	0.5	sec-Butyl benzene	()	ND<2000	1000	0.5
tert-Butyl benzene	ND<500	1000	0.5	Carbon Disulfide		ND<500	1000	0.5
Carbon Tetrachloride	ND<500	1000	0.5	Chlorobenzene		ND<500	1000	0.5
Chloroethane	ND<500	1000	0.5	Chloroform		ND<500	1000	0.5
Chloromethane	ND<500	1000	0.5	2-Chlorotoluene		ND<500	1000	0.5
4-Chlorotoluene	ND<500	1000	0.5	Dibromochlorometha	200	ND<500	1000	0.5
1,2-Dibromo-3-chloropropane	ND<200	1000	0.2	1,2-Dibromoethane (ND<500	1000	0.5
Dibromomethane	ND<500	1000	0.2	1,2-Dichlorobenzene		ND<500	1000	0.5
1.3-Dichlorobenzene	ND<500	1000	0.5	1,4-Dichlorobenzene		ND<500	1000	0.5
Dichlorodifluoromethane	ND<500	1000	0.5	1,1-Dichloroethane	, ,	ND<500	1000	0.5
1,2-Dichloroethane (1,2-DCA)	ND<500	1000	0.5	1,1-Dichloroethene		ND<500	1000	0.5
cis-1,2-Dichloroethene	ND<500	1000	0.5	trans-1,2-Dichloroet	iene	ND<500	1000	0.5
1,2-Dichloropropane	ND<500	1000	0.5	1,3-Dichloropropane		ND<500	1000	0.5
2,2-Dichloropropane	ND<500	1000	0.5	1,1-Dichloropropene		ND<500	1000	0.5
cis-1,3-Dichloropropene	ND<500	1000	0.5	trans-1,3-Dichloropr		ND<500	1000	0.5
Diisopropyl ether (DIPE)	ND<500	1000	0.5	Ethylbenzene	opene	4200	1000	0.5
Ethyl tert-butyl ether (ETBE)	ND<500	1000	0.5	Freon 113		ND<10,000	1000	10
Hexachlorobutadiene	ND<500	1000	0.5	Hexachloroethane		ND<500	1000	0.5
2-Hexanone	ND<500	1000	0.5	Isopropylbenzene		ND<500	1000	0.5
4-Isopropyl toluene	ND<500	1000	0.5	Methyl-t-butyl ether	(MTBE)	6300	1000	0.5
Methylene chloride	ND<500	1000	0.5	4-Methyl-2-pentanor		ND<500	1000	0.5
Naphthalene	1100	1000	0.5	n-Propyl benzene		620	1000	0.5
Styrene	ND<500	1000	0.5	1,1,1,2-Tetrachloroe	thane	ND<500	1000	0.5
1,1,2,2-Tetrachloroethane	ND<500	1000	0.5	Tetrachloroethene		ND<500	1000	0.5
Toluene	16,000	1000	0.5	1,2,3-Trichlorobenze	ene	ND<500	1000	0.5
1,2,4-Trichlorobenzene	ND<500	1000	0.5	1,1,1-Trichloroethan		ND<500	1000	0.5
1,1,2-Trichloroethane	ND<500	1000	0.5	Trichloroethene		ND<500	1000	0.5
Trichlorofluoromethane	ND<500	1000	0.5	1,2,3-Trichloropropa	ne	ND<500	1000	0.5
1,2,4-Trimethylbenzene	5200	1000	0.5	1,3,5-Trimethylbenz	ene	1500	1000	0.5
Vinyl Chloride	ND<500	1000	0.5	Xylenes, Total		24,000	1000	0.5
		Suri	ogate R	ecoveries (%)				
%SS1:	11		<u> </u>	%SS2:		97	7	
%SS3:	10							
Comments: b6, c8								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ll Analytical Quality Counts''	l, Inc	<u>.</u>	Toll Free Teleph	v Pass Road, Pittsburg, Ca one: (877) 252-9262 / Fa npbell.com / E-mail: main	x: (925) 252-9269		
All West Environmental, Inc	Client P	Project I	D: #13	3019.23; Hollis	Date Sampled:	08/07/13		
2141 Mission Street Ste 100					Date Received	: 08/08/13		
2141 Mission Street, Ste 100	Client C	Contact:	Christo	opher Houlihan	Date Extracted	: 08/13/13		
San Francisco, CA 94110	Client P	2.0.:			Date Analyzed	: 08/13/13		
	Volatile Organi	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B	C	-		od: SW8260B		Work Order: 1308	292	
Lab ID				130829	2-004A			
Client ID				AM	W-1			
Matrix				Wa	ater			
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit
Acetone	ND<25	2.5	10	tert-Amyl methyl eth		ND<1.2	2.5	0.5
Benzene	ND<1.2	2.5	0.5	Bromobenzene		ND<1.2	2.5	0.5
Bromochloromethane	ND<1.2	2.5	0.5	Bromodichlorometha	ane	ND<1.2	2.5	0.5
Bromoform	ND<1.2	2.5	0.5	Bromomethane		ND<1.2	2.5	0.5
2-Butanone (MEK)	ND<5.0	2.5	2.0	t-Butyl alcohol (TBA	N)	ND<5.0	2.5	2.0
n-Butyl benzene	ND<1.2	2.5	0.5	sec-Butyl benzene	•)	ND<1.2	2.5	0.5
tert-Butyl benzene	ND<1.2	2.5	0.5	Carbon Disulfide		ND<1.2	2.5	0.5
Carbon Tetrachloride	ND<1.2	2.5	0.5	Chlorobenzene		ND<1.2	2.5	0.5
Chloroethane	ND<1.2	2.5	0.5	Chloroform		ND<1.2	2.5	0.5
Chloromethane	ND<1.2	2.5	0.5	2-Chlorotoluene		ND<1.2	2.5	0.5
4-Chlorotoluene	ND<1.2	2.5	0.5	Dibromochlorometha	ane	ND<1.2	2.5	0.5
1,2-Dibromo-3-chloropropane	ND<0.50	2.5	0.2	1,2-Dibromoethane		ND<1.2	2.5	0.5
Dibromomethane	ND<1.2	2.5	0.5	1,2-Dichlorobenzene		ND<1.2	2.5	0.5
1,3-Dichlorobenzene	ND<1.2	2.5	0.5	1,4-Dichlorobenzene	•	ND<1.2	2.5	0.5
Dichlorodifluoromethane	ND<1.2	2.5	0.5	1,1-Dichloroethane		2.0	2.5	0.5
1,2-Dichloroethane (1,2-DCA)	ND<1.2	2.5	0.5	1,1-Dichloroethene		39	2.5	0.5
cis-1,2-Dichloroethene	ND<1.2	2.5	0.5	trans-1,2-Dichloroet	hene	ND<1.2	2.5	0.5
1,2-Dichloropropane	ND<1.2	2.5	0.5	1,3-Dichloropropane		ND<1.2	2.5	0.5
2,2-Dichloropropane	ND<1.2	2.5	0.5	1,1-Dichloropropene		ND<1.2	2.5	0.5
cis-1,3-Dichloropropene	ND<1.2	2.5	0.5	trans-1,3-Dichloropr		ND<1.2	2.5	0.5
Diisopropyl ether (DIPE)	ND<1.2	2.5	0.5	Ethylbenzene		ND<1.2	2.5	0.5
Ethyl tert-butyl ether (ETBE)	ND<1.2	2.5	0.5	Freon 113		ND<25	2.5	10
Hexachlorobutadiene	ND<1.2	2.5	0.5	Hexachloroethane		ND<1.2	2.5	0.5
2-Hexanone	ND<1.2	2.5	0.5	Isopropylbenzene		ND<1.2	2.5	0.5
4-Isopropyl toluene	ND<1.2	2.5	0.5	Methyl-t-butyl ether	(MTBE)	2.5	2.5	0.5
Methylene chloride	ND<1.2	2.5	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND<1.2	2.5	0.5
Naphthalene	ND<1.2	2.5	0.5	n-Propyl benzene		ND<1.2	2.5	0.5
Styrene	ND<1.2	2.5	0.5	1,1,1,2-Tetrachloroe	thane	ND<1.2	2.5	0.5
1,1,2,2-Tetrachloroethane	ND<1.2	2.5	0.5	Tetrachloroethene		ND<1.2	2.5	0.5
Toluene	ND<1.2	2.5	0.5	1,2,3-Trichlorobenze	ene	ND<1.2	2.5	0.5
1,2,4-Trichlorobenzene	ND<1.2	2.5	0.5	1,1,1-Trichloroethan	e	ND<1.2	2.5	0.5
1,1,2-Trichloroethane	ND<1.2	2.5	0.5	Trichloroethene		7.3	2.5	0.5
Trichlorofluoromethane	ND<1.2	2.5	0.5	1,2,3-Trichloropropa	ine	ND<1.2	2.5	0.5
1,2,4-Trimethylbenzene	ND<1.2	2.5	0.5	1,3,5-Trimethylbenz	ene	ND<1.2	2.5	0.5
Vinyl Chloride	ND<1.2	2.5	0.5	Xylenes, Total		ND<1.2	2.5	0.5
		Suri	ogate R	ecoveries (%)				
%SS1:	11:	3		%SS2:		9	7	
%SS3:	102	2						
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Analytical ality Counts''	<u>, Inc.</u>	Toll Free Telephor	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bbell.com / E-mail: main@	(925) 252-9269			
All West Environmental, Inc	Client Pr	oject ID: #130	19.23; Hollis	Date Sampled:	08/07/13			
2141 Mission Street, Ste 100				Date Received:	08/08/13			
2141 Wission Street, Ste 100	Client C	ontact: Christop	oher Houlihan	Date Extracted:	08/09/13			
San Francisco, CA 94110	Client P.	0.:		Date Analyzed:	08/09/13-08/	12/13		
Polynuclean Extraction Method: SW3510C	•	cocarbons (PAI alytical Method: SW82	Hs / PNAs) using 70C-SIM	SIM Mode by G	C/MS Work Order: 1308			
Lab ID	1308292-001C	1308292-002C	1308292-003C	1308292-004C				
Client ID	AMW-3	AMW-2	MW-3	AMW-1		Limit for $T=1$		
Matrix	W	W	W	W				
DF	1	1	100	1	S	W		
Compound		Con	centration		ug/kg	μg/L		
Acenaphthene	ND	ND	ND<50	ND	NA	0.5		
Acenaphthylene	ND	ND	ND<50	ND	NA	0.5		
Anthracene	ND	ND	ND<50	ND	NA	0.5		
Benzo (a) anthracene	ND	ND	ND<50	ND	NA	0.5		
Benzo (b) fluoranthene	ND	ND	ND<50	ND	NA	0.5		
Benzo (k) fluoranthene	ND	ND	ND<50	ND	NA	0.5		
Benzo (g,h,i) perylene	ND	ND	ND<50	ND	NA	0.5		
Benzo (a) pyrene	ND	ND	ND<50	ND	NA	0.5		
Chrysene	ND	ND	ND<50	ND	NA	0.5		
Dibenzo (a,h) anthracene	ND	ND	ND<50	ND	NA	0.5		
Fluoranthene	ND	ND	ND<50	ND	NA	0.5		
Fluorene	ND	ND	ND<50	ND	NA	0.5		
Indeno (1,2,3-cd) pyrene	ND	ND	ND<50	ND	NA	0.5		
1-Methylnaphthalene	3.2	1.5	390	ND	NA	0.5		
2-Methylnaphthalene	ND	1.6	710	ND	NA	0.5		
Naphthalene	ND	7.7	890	ND	NA	0.5		
Phenanthrene	ND	ND	ND<50	ND	NA	0.5		
Pyrene	ND	ND	ND<50	ND	NA	0.5		
		Surrogate Reco	overies (%)					
%SS1	86	100	#	102				
%SS2	80	88	#	93				
Comments	b1	b1	b6	b1				

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

	McCampbell Anal "When Quality Cou	lytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg, CA 94565-1701 one: (877) 252-9262 / Fax: (925) 252-9 npbell.com / E-mail: main@mccampbell			
All We	est Environmental, Inc	Client Project ID:	#13019.23; Hollis	Date Sampled: 08/07/1	3		
2141 N	fission Street, Ste 100			Date Received: 08/08/1	3		
21111	ission bucct, ble 100	Client Contact: C	Christopher Houlihan	Date Extracted: 08/09/1	3-08/1	3/13	
San Fra	ancisco, CA 94110	Client P.O.:		Date Analyzed: 08/09/1	3-08/13	3/13	
	Gasoline Range (C6-C12) Miner method: SW5030B		(C9-C12) Volatile Hydrau alytical methods: SW8021B/80			I Spirit	
Lab ID	Client ID	Matrix	TPH(g)	TPH(mineral spirits)	DF	% SS	Comments
001B	AMW-3	W	2000	1000	1	#	d1,b1
002B	AMW-2	W	1300	550	1	126	d1,b1
003B	MW-3	W	130,000	54,000	100	#	d1,b6
004B	AMW-1	W	ND	ND	1	#	b1
	Reporting Limit for DF =1; ND means not detected at or above	W	50	50		μg/I	
	the reporting limit	S	NA	NA		NA	

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

CDPH ELAP 1644 ♦ NELAP 12283CA

Angela Rydelius, Lab Manager

ID: #13019.23; Hollis t: Christopher Houlihan ydrocarbons with Silica (ical methods: SW8015B TPH-Diesel (C10-C23) 340 210 24,000 110		eived: racted lyzed	08/08/1 08/08/1 08/09/1	13 13-08/13/13 er: 1308292 Comments e4,e2,b1
Tydrocarbons with Silica (ical methods: SW8015B TPH-Diesel (C10-C23) 340 210 24,000	Date Extr Date Ana	acted lyzed J p * DF 1 1	08/08/1 08/09/1 Work Orde % SS 96	13 13-08/13/13 er: 1308292 Comments e4,e2,b1
Tydrocarbons with Silica (ical methods: SW8015B TPH-Diesel (C10-C23) 340 210 24,000	Date Ana	lyzed J p * DF 1 1	08/09/1 Work Orde % SS 96	13-08/13/13 er: 1308292 Comments e4,e2,b1
ical methods: SW8015B TPH-Diesel (C10-C23) (C10-C23) 340 210 24,000 24,000		J p* DF 1 1	Work Orde	er: 1308292 Comments e4,e2,b1
ical methods: SW8015B TPH-Diesel (C10-C23) (C10-C23) 340 210 24,000 24,000	Gel Clean-U	DF 1 1	% SS 96	Comments e4,e2,b1
(C10-C23) 340 210 24,000		1	96	e4,e2,b1
210 24,000		1		
24,000			94	04 - 7 1-1
		5	1 1	e4,e2,b1
110			108	e4,b6
		1	110	e7,e1,b1
50			μg.	
	NA	NA	NA	16

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

e1) unmodified or weakly modified diesel is significant

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

CDPH ELAP 1644 ♦ NELAP 12283CA

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water	(QC Matrix:	Water			BatchID	: 80354		WorkO	order: 1308292
EPA Method: SW8015B	Extraction: SW	SW3510C/3630C				ę	Spiked Sam	ple ID:	e Criteria (%)	
Analyte		Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)	
		µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)		N/A	1000	N/A	N/A	N/A	104	N/A	N/A	70 - 130
%SS:		N/A	625	N/A	N/A	N/A	108	N/A	N/A	70 - 130
All target compounds in the Method Blank NONE	of this extraction batcl	h were ND	less than th	e method	RL with th	ne following	g exception	is:		

BATCH 80354 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308292-001B	08/07/13 9:51 AM	08/08/13	08/09/13 9:51 PM	1308292-002B	08/07/13 10:48 AM	08/08/13	08/09/13 11:04 PM
1308292-003B	08/07/13 12:39 PM	08/08/13	08/13/13 5:15 PM	1308292-004B	08/07/13 2:00 PM	08/08/13	08/09/13 8:38 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

CDPH ELAP 1644 ♦ NELAP 12283CA

K__QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 80452		WorkO	order: 1308292
EPA Method: SW8260B Extraction: S	W5030B						Spiked Sam	ple ID:	1308332-003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	20	110	107	2.57	117	70 - 130	20	70 - 130
Benzene	ND	20	99.6	95.8	3.85	99.8	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	80	118	112	5.02	106	70 - 130	20	70 - 130
Chlorobenzene	ND	20	94.9	92.2	2.87	97.7	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	20	104	103	0.626	107	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	20	100	97.2	3.05	102	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	20	109	109	0	109	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	20	108	105	2.55	109	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	20	109	107	1.23	109	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	20	104	103	0.846	104	70 - 130	20	70 - 130
Toluene	ND	20	93.8	91.1	2.97	97.6	70 - 130	20	70 - 130
Trichloroethene	ND	20	99.2	96.7	2.56	103	70 - 130	20	70 - 130
%SS1:	100	25	101	101	0	102	70 - 130	20	70 - 130
%SS2:	102	25	102	102	0	102	70 - 130	20	70 - 130
%SS3:	99	2.5	96	98	2.85	97	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction be NONE	atch were ND	less than th	e method	RL with t	he following	g exception	ns:		

BATCH 80452 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308292-002A	08/07/13 10:48 AM	08/12/13	08/12/13 11:04 PM	1308292-003A	08/07/13 12:39 PM	08/12/13	08/12/13 11:47 PM
1308292-004A	08/07/13 2:00 PM	08/13/13	08/13/13 12:30 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A ____QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 80461		WorkO	rder: 1308292
EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sam	ple ID:	1308295-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	20	104	116	11.4	106	70 - 130	20	70 - 130
Benzene	ND	20	94.2	90.9	3.57	90.9	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	80	103	100	2.77	92.1	70 - 130	20	70 - 130
Chlorobenzene	ND	20	91.8	88.5	3.68	88.7	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	20	102	103	1.02	104	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	20	88.4	87.9	0.568	92.8	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	20	104	99.9	4.03	107	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	20	99.6	99.4	0.145	98.2	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	20	100	100	0	97.4	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	20	99	99.8	0.784	94.8	70 - 130	20	70 - 130
Toluene	ND	20	91.7	88.2	3.91	93.7	70 - 130	20	70 - 130
Trichloroethene	ND	20	94	90	4.28	96.8	70 - 130	20	70 - 130
%SS1:	109	25	109	111	1.64	110	70 - 130	20	70 - 130
%SS2:	96	25	96	96	0	97	70 - 130	20	70 - 130
%SS3:	95	2.5	98	97	0.563	95	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE									

BATCH 80461 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308292-001A	08/07/13 9:51 AM	M 08/12/13	08/12/13 9:35 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A___QA/QC Officer

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 80341		WorkC	order: 1308292	
EPA Method: SW8270C-SIM Extraction: S	W3510C					5	Spiked Sam	ple ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Benzo (a) pyrene	N/A	10	N/A	N/A	N/A	59.3	N/A	N/A	30 - 130	
Chrysene	N/A	10	N/A	N/A	N/A	66.4	N/A	N/A	30 - 130	
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	82.1	N/A	N/A	30 - 130	
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	68.7	N/A	N/A	30 - 130	
Phenanthrene	N/A	10	N/A	N/A	N/A	74.6	N/A	N/A	30 - 130	
Pyrene	N/A	10	N/A	N/A	N/A	71.9	N/A	N/A	30 - 130	
%SS1:	N/A	25	N/A	N/A	N/A	97	N/A	N/A	30 - 130	
%SS2:	N/A	25	N/A	N/A	N/A	93	N/A	N/A	30 - 130	
All target compounds in the Method Blank of this extraction ba NONE	atch were ND	less than th	e method	RL with th	ne following	g exception	s:			

BATCH 80341 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308292-001C	08/07/13 9:51 AM	08/09/13	08/12/13 12:39 PM	1308292-002C	08/07/13 10:48 AM	08/09/13	08/09/13 4:52 PM
1308292-003C	08/07/13 12:39 PM	08/09/13	08/12/13 1:04 PM	1308292-004C	08/07/13 2:00 PM	08/09/13	08/09/13 5:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

AC___QA/QC Officer

CDPH ELAP 1644 ♦ NELAP 12283CA

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 80444		WorkO	rder: 1308292
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1308318-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	97.2	95.9	1.42	95.4	70 - 130	20	70 - 130
MTBE	ND	10	100	90.8	10.1	89	70 - 130	20	70 - 130
Benzene	ND	10	109	103	6.00	104	70 - 130	20	70 - 130
Toluene	ND	10	111	104	6.95	106	70 - 130	20	70 - 130
Ethylbenzene	ND	10	111	103	7.29	105	70 - 130	20	70 - 130
Xylenes	ND	30	113	104	7.44	106	70 - 130	20	70 - 130
%SS:	107	10	101	102	0.600	104	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	exception	ns:		

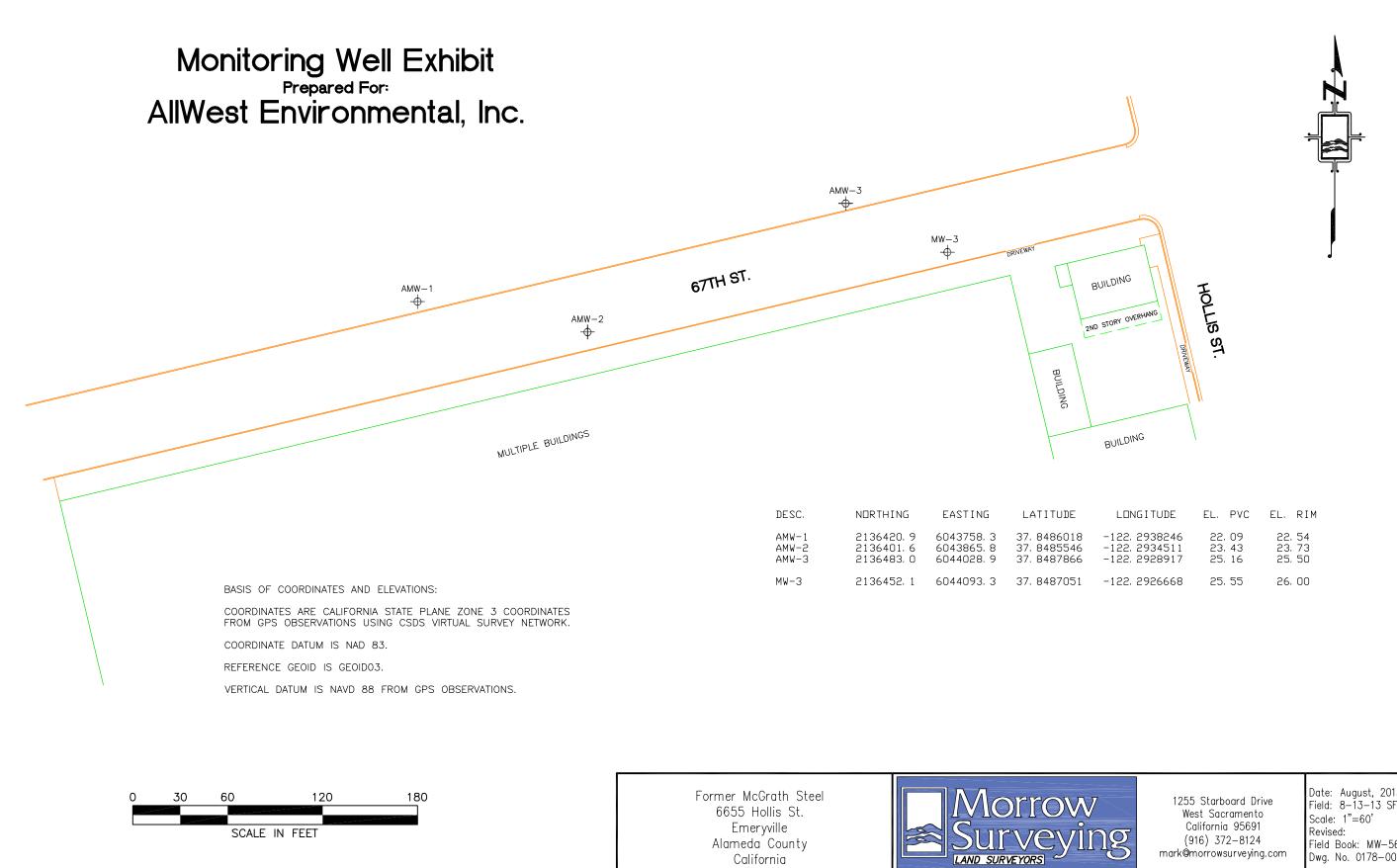
			BATCH 80444 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308292-001B	08/07/13 9:51 AM	08/09/13	08/09/13 3:14 PM	1308292-002B	08/07/13 10:48 AM	08/09/13	08/09/13 3:45 PM
1308292-002B	08/07/13 10:48 AM	08/13/13	08/13/13 5:49 AM	1308292-003B	08/07/13 12:39 PM	08/09/13	08/09/13 4:16 PM
1308292-004B	08/07/13 2:00 PM	08/09/13	08/09/13 4:46 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.


cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

AL__QA/QC Officer

APPENDIX F

Date: August, 2013 Field: 8-13-13 SF Field Book: MW-56 Dwg. No. 0178-002 MAM