### RECEIVED

By Alameda County Environmental Health 1:48 pm, Oct 03, 2016

MCG Investments, LLC c/o Kay & Merkle, LLP 100 The Embarcadero – Penthouse San Francisco, CA 94105 (415) 357-1200

September 30, 2016

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection, Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Letter of Transmittal for Data Gap Investigation Report

Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608

ACEH Fuel Leak Case No. RO0000063, GeoTracker Global ID No.

T0600102099

Dear Mr. Detterman:

As requested in your letter of March 7, 2016, we submit this transmittal letter and accompanying *Data Gap Investigation Report* for the above-reference subject site.

I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

MCG Investments LLC, A California Limited Liability Company

Walter F. Merkle Authorized Agent



### **AllWest Environmental**

# FIRST SEMIANNUAL 2016 GROUNDWATER MONITORING REPORT



Alameda County Fuel Leak Case # RO0000063 GeoTracker Facility Global ID # T0600102099



PREPARED FOR:

Mr. Walter F. Merkle
MCG Investments, LLC
c/o Kay & Merkle
100 The Embarcadero – Penthouse
San Francisco, California 94105

ALLWEST PROJECT 16040.28 September 30, 2016

PREPARED BY:

Sara K. Bloom Project Manager

**REVIEWED BY:** 

Senior Project Manager







| L      | INTRODUCT                                                   | FION                                                                                                                                                                                                                                                                                                                                                     | Page 1           |
|--------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| II.    | PROJECT E                                                   | ACKGROUND                                                                                                                                                                                                                                                                                                                                                | Page 1           |
| III.   | PURPOSE A                                                   | AND SCOPE OF WORK                                                                                                                                                                                                                                                                                                                                        | Page 2           |
| IV.    | FIELD ACTI                                                  | VITIES                                                                                                                                                                                                                                                                                                                                                   | Page 2           |
| V.     | A. Sar                                                      | SSURANCE / QUALITY CONTROL PROGRAM  nple Preservation, Storage and Handling                                                                                                                                                                                                                                                                              | Page 3           |
| VI.    | ANALYTICA                                                   | AL METHODS                                                                                                                                                                                                                                                                                                                                               | Page 3           |
| VII.   | A. Gro                                                      | NT FINDINGS  bundwater Observations  bundwater Analytical Data  boratory QA/QC                                                                                                                                                                                                                                                                           | Page 4<br>Page 4 |
| VIII.  | DISCUSSIO                                                   | N                                                                                                                                                                                                                                                                                                                                                        | Page 5           |
| IX.    | CONCLUSIO                                                   | ONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                  | Page 6           |
| Χ.     | LIMITATION                                                  | IS                                                                                                                                                                                                                                                                                                                                                       | Page 6           |
| XI.    | REFERENC                                                    | ES                                                                                                                                                                                                                                                                                                                                                       | Page 7           |
| TABLE  | S<br>Table 1:<br>Table 2:<br>Table 3:<br>Table 4:           | Summary of Well Construction Details Summary of Groundwater Elevation Data Summary of Groundwater Analytical Data, Total Petroleum Hydrocarbons and VOCs Summary of Groundwater, PNAs/PAHs                                                                                                                                                               |                  |
| FIGURI | Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: | Site Vicinity Map Site Plan with Historical Boring and Monitoring Well Locations Groundwater Elevation Contours, July 14, 2016 TPH-g Isoconcentration Contours in Groundwater, February 4 and July 15, 2016 TPH-d Isoconcentration Contours in Groundwater, July 15, 2016 Benzene Isoconcentration Contours in Groundwater, February 4 and July 15, 2016 |                  |
| APPEN  | Appendix A: Appendix B: Appendix C: Appendix D: Appendix F: | Standard Groundwater Sampling Procedures Field Logs Laboratory Analytical Reports and Chain-of Custody Documentation Groundwater Elevation and Contaminant Concentration Graphs Authorization for Religious and General Conditions                                                                                                                       |                  |



## FIRST SEMIANNUAL 2016 GROUNDWATER MONITORING REPORT

Former McGrath Steel, 6655 Hollis St. & 1471 67th St. Emeryville, CA

Alameda County Fuel Leak Case # RO0000063 GeoTracker Facility Global ID # T0600102099

### I. INTRODUCTION

AllWest conducted semiannual groundwater monitoring on July 14, 2016 at the property referenced above ("the subject site", Figure 1). The monitoring was performed to evaluate potential free product and petroleum hydrocarbons and volatile organic compounds (VOCs) concentrations in subject site groundwater.

### II. PROJECT BACKGROUND

The subject property is located at the southwest corner of the intersection of Hollis and 67<sup>th</sup> Streets in a commercial and industrial district of the City of Emeryville, Alameda County, California. A site vicinity map is included as Figure 1.

The subject property consists of two parcels (Assessor's Parcel Numbers 049-1511-01 and 049-1511-014). Parcel 01, on the southwest corner of Hollis and 67<sup>th</sup> Streets at the 6655 Hollis Street address, is developed with an approximately 4,100 square foot two-story commercial office building constructed in 1947, and a smaller metal tool shed building. Parcel 14, to the west of Parcel 1 at the 1471 67<sup>th</sup> Street address, is developed with an approximately 15,246 square foot light industrial warehouse building constructed circa 1946 (Stellar, 2011).

The subject property was last occupied by CMC Rebar and is currently vacant. Two USTs formerly present under the sidewalk in front of the warehouse at 1471 67<sup>th</sup> Street were removed in 1996. A site plan with former UST locations and historical and current boring and monitoring well locations is included as Figure 2.

Several subsurface investigations and groundwater monitoring events have been performed since 1996. Data indicate the petroleum hydrocarbon plume in groundwater extends beneath the subject property buildings.

Site location and description, background information, and a summary of previous investigations, remedial actions and monitoring activities have been summarized in our *Additional Site Characterization and Interim Remedial Action Workplan* (AllWest, 2011), *Additional Site Characterization Workplan Addendum* (AllWest, 2012a), *Subsurface Investigation* (AllWest, 2013b), *Additional Site Characterization and Monitoring Well Installation Report* (AllWest, 2013e), *Data Gap Investigation Report* (AllWest, 2016b) and *First Semi-Annual* 

Groundwater Monitoring Report (AllWest, 2015a). AllWest conducted quarterly groundwater monitoring from August 2012 to June 2014, and semi-annual monitoring in February 2015.

On December 31, 2013, a Geotech PRC 1-liter capacity product recovery canister-type passive skimming device was placed in well MW-3 (AllWest, 2014a), but was removed on February 5, 2015 due to an insufficient volume of product in the monitoring well to effectively work (AllWest, 2015a).

ACEH, in their letter dated September 15, 2014, reduced groundwater monitoring to a semiannual basis. A *Data Gap Investigation Work Plan* dated October 30, 2015 (AllWest, 2015b) and addendum letter dated January 16, 2016 (AllWest, 2016a) were submitted by AllWest to the ACEH and approved in their letters dated December 12, 2015 and March 7, 2016. The approved subsurface investigation was performed in February and May 2016. The *Data Gap Investigation Report* dated August 3, 2016 (AllWest, 2016b) was submitted by AllWest to the ACEH.

### III. PURPOSE AND SCOPE OF WORK

The purpose of our work was the monitoring and interim mitigation of light non-aqueous phase liquid (LNAPL), dissolved-phase petroleum hydrocarbons in groundwater in the vicinity of the former UST at the subject property, and in the hydraulically down-gradient and cross-gradient directions. The scope of work, as proposed, consisted of the following tasks:

- On July 14, 2016, measured groundwater levels and free product (LNAPL) thickness, purged a minimum of three casing volumes and collected groundwater samples from groundwater monitoring wells AMW-1, AMW-2 and AMW-3, and MW-3;
- Maintained groundwater samples under chain-of-custody and transported them to a Department of Health Services (DHS) certified analytical laboratory for chemical analyses. Analyzed one groundwater sample from each monitoring well for total petroleum hydrocarbons as mineral spirits (TPH-ms) by analytical method SW8021B/8015B, for total petroleum hydrocarbons as diesel (TPHd) by analytical method 8015B with silica gel cleanup, for TPH as gasoline (TPH-g) and VOCs by analytical method SW8260B (full scan) and for polynuclear aromatic hydrocarbons (PNAs/PAHs) by analytical method SW8270C-SIM;
- Prepared a written report describing the sampling event, laboratory data, investigation findings, conclusions and recommendations.

### IV. FIELD ACTIVITIES

On July 14, 2016, AllWest visited the subject site to conduct a semi-annual monitoring event, which included lowering an electric oil/water interface sounding probe into all four well casings to measure the depth to the water and thickness of any potential floating free product (LNAPL) to the nearest 0.01 feet below TOC. Depth to groundwater ranged from 8.37 feet below TOC in MW-3 to 9.53 feet below TOC in AMW-2. No product or sheen were detected or observed in monitoring wells AMW-1, AMW-2 or AMW-3. A free product layer (LNAPL) was measured in monitoring well MW-3, at 0.02 feet thick, and a thin sheen was observed. Depth to groundwater and free product thickness data are included in Table 2.

During this monitoring event, AllWest also reinstalled the 0.125-liter skimmer canister to remove the thin layer of LNAPL present, following sampling activities.

After all initial measurements were completed and recorded, a minimum of three well casing volumes of groundwater were purged with a new, disposable polyethylene bailer. Groundwater characteristics, temperature, pH and conductivity were monitored at each well volume interval. Purging was continued until groundwater parameters stabilized to within 10%.

Groundwater sampling was conducted after water levels recovered to at least 80% of initial level, recorded prior to purging. Groundwater samples were collected from each well with new, disposable polyethylene bailers. Upon bailer retrieval, the water was transferred to appropriate sample bottles furnished by the analytical laboratory. Four 40-milliliter (ml) volatile organic analysis (VOA) glass vials preserved with hydrochloric acid (HCI) were used for TPH-g, TPH-ms, and VOC analysis. Each sample for TPH-d analysis was collected in one 1-liter amber glass bottle preserved with HCl solution. Each sample for PNAs/PAHs analysis was collected in one 1-liter unpreserved amber glass bottle. All sample bottles for VOA had Teflon lined septum/caps and were filled so that no headspace was present. The sample bottles were then labeled and placed in an iced cooler for transport under chain-of-custody control to the analytical laboratory.

To help prevent cross-contamination, all groundwater sampling equipment that came into contact with groundwater was decontaminated prior to sampling. To minimize the possibility of cross-contamination, a new disposable bailer was used to collect each groundwater sample. Well purge water was temporarily stored at the property in a 55-gallon drum, awaiting test results to determine the proper disposal method.

Standard groundwater sampling procedures are included in Appendix A. Groundwater purging and sampling field logs are included in Appendix B.

### V. QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

### A. Sample Preservation, Storage and Handling

To prevent the loss of constituents of interest, all groundwater samples were preserved by storing in an ice chest cooled to 4°C with crushed ice immediately after their collection and during transportation to the laboratory. Samples were stored within the cooler in separate zip-lock plastic bags to avoid cross-contamination.

### B. Chain-Of-Custody Program

All samples collected for this project were transported under chain-of-custody protocol. The chain-of-custody program allows for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The document includes the signature of the collector, date and time of collection, sample number, number and type of sample containers including preservatives, parameters requested for analysis, signatures of persons and inclusive dates involved in the chain of possession. Upon delivery to the laboratory the document also includes the name of the person receiving the samples, and date and time samples were received. Copies of chain-of-custody documentation are included in Appendix C.

### VI. ANALYTICAL METHODS

Groundwater samples from the monitoring wells AMW-1, AMW-2, AMW-3 and MW-3 were analyzed for TPH-ms by analytical method SW8021B/8015Bm, for TPH-d by analytical method SW8015B with silica gel cleanup, for TPH-g and VOCs by analytical method 8260B, and for PNAs/PAHs by analytical method SW8270C-SIM.

All samples were analyzed by a State of California certified independent analytical laboratory, McCampbell Analytical, Inc., of Pittsburg, California. All samples were analyzed on standard five-day turn-around time. Chain of custody documents and laboratory analytical reports are included in Appendix C.

### VII. ASSESSMENT FINDINGS

### A. Groundwater Observations

A thin layer of floating free product (LNAPL) was measured in monitoring well MW-3 on the July 14, 2016 event, measuring 0.02 feet thick.

On July 14, 2016, depths to groundwater ranged from 8.37 feet below TOC in MW-3 to 9.53 feet below TOC in AMW-2. LNAPL was measured in monitoring well MW-3; the depth to free product was 8.35 feet below TOC; depth to water was 8.37 feet below TOC. The well with the highest groundwater elevation was MW-3 at 17.20 feet above NAVD 1988 datum; the well with the lowest groundwater elevation was AMW-1 at 13.27 feet above NAVD 1988 datum.

The wellhead elevation data and depth to water measurements were used to calculate local groundwater flow direction and gradient. The direction of groundwater flow was to the southwest at a gradient of 0.0167 feet per foot. A groundwater elevation contour map is included as Figure 3. Monitoring well construction details are presented on Table 1 and gauging data is provided on Table 2. Groundwater elevation graphs are included in Appendix D.

### B. Groundwater Analytical Data

TPH-g was detected in groundwater samples from AMW-2, AMW-3 and MW-3 at a maximum concentration of 7,900 micrograms per liter (μg/L) in monitoring well MW-3. TPH-ms was detected in the groundwater sample from MW-3 at a concentration of 2,700 μg/L; however, this concentration probably represents TPH-g within the C9-C12 carbon range, since gasoline was characterized as significant, and mineral spirits were not historically stored in the McGrath USTs.

TPH-d with gasoline range compounds characterized as significant was detected in groundwater samples from AMW-3 and MW-3 at a maximum concentration of 1,600  $\mu$ g/L in the groundwater sample from MW-3.

Benzene was detected in AMW-3 and MW-3 at a maximum concentration of 2,000  $\mu$ g/L in the groundwater sample collected from monitoring well MW-3. Toluene was detected in MW-3 at a maximum concentration of 220  $\mu$ g/L in MW-3. Ethylbenzene was detected in MW-3 and AMW-3 at a maximum concentration of 430  $\mu$ g/L in MW-3. Total xylenes were detected in AMW-1, AMW-3 and MW-3 at a maximum concentration of 820  $\mu$ g/L in MW-3.

MTBE was detected in AMW-2 and MW-3 at a maximum concentration of 790  $\mu g/L$  in the groundwater sample from MW-3.

Other VOCs detected in groundwater samples collected from the four site wells, and the maximum concentration of each VOC detected during this investigation, are listed below:

| VOC Detected in Site Groundwater July 14, 2016 | Maximum Concentration (μg/L) |
|------------------------------------------------|------------------------------|
| Tertiary butyl alcohol (TBA)                   | 1,000                        |
| 1,1-Dichloroethene                             | 120                          |
| 1,1-Dichloroethane                             | 2.9                          |
| Naphthalene                                    | 170                          |
| n-Propyl benzene                               | 91                           |
| Trichloroethene (TCE)                          | 18                           |
| 1,2,4-trimethylbenzene                         | 280                          |
| 1,3,5-trimethylbenzene                         | 71                           |

Groundwater analytical results for total petroleum hydrocarbons and VOCs are summarized in Tables 3 and 4, and on Figures 4, 5 and 6.

PNAs/PAHs detected in groundwater samples collected during this investigation were 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene from AMW-2, AMW-3 and MW-3 at maximum respective concentrations of 66  $\mu$ g/L, 110  $\mu$ g/L and 250  $\mu$ g/L in MW-3. PNA/PAH groundwater analytical results are summarized in Table 4. No other COCs were detected at or above laboratory reporting limits in any groundwater samples analyzed during this investigation. Laboratory analytical reports and chain of custody documents are included in Appendix C.

### C. Laboratory QA/QC

A review of groundwater laboratory internal quality assurance/quality control (QA/QC) reports indicates the method blank and sample spike data for all analyses were within the laboratory recovery limits. The samples were also analyzed within the acceptable EPA holding times. The data from the McCampbell Laboratories are considered to be of good quality. Laboratory analytical reports and chain-of-custody records are included in this report as Appendix C.

### VIII. DISCUSSION

Groundwater elevations decreased an average of approximately 1.62 feet overall between the first quarter 2015 and third quarter 2016 monitoring events (Table 2). Groundwater flow direction shifted slightly from the west-northwest to the southwest between the first quarter 2015 and third quarter 2016 monitoring events (Figure 3).

A thin layer of free LNAPL (free product) was measured in monitoring well MW-3 in the former UST vicinity during the July, 2016 monitoring event.

To assess if the identified constituents of concern (COCs) in soil and groundwater pose a risk to human health and the environment, concentrations were compared with ESLs for commercial/industrial land use where groundwater is not a potential drinking water resource compiled by the SFRWQCB in *Tier 2 Interactive Tool, Table T2-1: Tier 2 ESL Input and Output, User's Guide: Derivation and Application of Environmental screening Levels (ESLs)*, Interim Final, February 2016. Although the SFRWQCB *Basin Plan* has designated groundwater in the site vicinity as a potential drinking water resource (SFRWQCB, June 2013), groundwater in the subject site vicinity is not currently used as a drinking water resource. According to the City of Emeryville Public Works Department, a City ordinance prohibits use of groundwater for drinking water purposes due to widespread regional contamination, and no plans exist for future beneficial use.

TPH-g was detected in concentrations exceeding its non-drinking water ESL of 440  $\mu$ g/L in the groundwater sample from MW-3 collected during this monitoring event, at a maximum concentration of 7,900  $\mu$ g/L. TPH-ms also exceeded its non-drinking water ESL of 640  $\mu$ g/L in monitoring well MW-3, at a concentration of 2,700  $\mu$ g/L in; however, this probably represents TPH-g within the TPH-ms range. TPH-d exceeded its non-drinking water ESL of 640  $\mu$ g/L in one groundwater sample collected during this investigation at a concentration of 1,600  $\mu$ g/L in monitoring well MW-3. Groundwater vapor intrusion ESLs have not been established for TPH-g, TPH-ms or TPH-d.

Benzene exceeded its non-drinking water ESL of 9.7  $\mu$ g/L and exceeded its vapor intrusion ESL of 9.7  $\mu$ g/L in one sample, at a concentration of 2,000  $\mu$ g/L in MW-3. Toluene exceeded its non-drinking water ESL of 130  $\mu$ g/L in one sample, at a concentration of 220  $\mu$ g/L in MW-3. Toluene was not detected above the commercial/industrial vapor intrusion ESL for toluene of 30,000  $\mu$ g/L. Ethylbenzene was detected at a concentration exceeding its non-drinking water ESL of 43  $\mu$ g/L and exceeding its vapor intrusion ESL of 110  $\mu$ g/L in the groundwater sample from monitoring well MW-3, at a concentration of 430  $\mu$ g/L. Total xylenes were detected at concentrations exceeding its non-drinking water ESL of 100  $\mu$ g/L in the monitoring well MW-3 groundwater sample, at a concentration of 820  $\mu$ g/L. However, none of the groundwater samples exceeded the commercial/industrial vapor intrusion ESL 11,000  $\mu$ g/L.

MTBE was not detected above its non-drinking water ESL of 1,800  $\mu$ g/L. MTBE did not exceed its vapor intrusion ESL of 11,000  $\mu$ g/L in any of the groundwater samples collected.

2-methylnaphthalene was detected at concentrations exceeding its non-drinking water ESL of 2.1  $\mu$ g/L in the groundwater sample from MW-3 at a concentration of 110  $\mu$ g/L. Vapor intrusion ESLs have not been established for 2-methylnaphthalene. Naphthalene was detected at a concentration exceeding its non-drinking water ESL of 24  $\mu$ g/L in one groundwater sample (MW-3) at a concentration of 250  $\mu$ g/L; naphthalene also exceeded its vapor intrusion ESL of 170  $\mu$ g/L in the groundwater sample from monitoring well MW-3. No other COCs were detected in groundwater samples analyzed in this investigation at concentrations exceeding established applicable ESLs.

The down-gradient extent of the adsorbed and dissolved phase petroleum hydrocarbon plume in soil and groundwater is largely defined and extends from the vicinity of the former McGrath Steel USTs to the west along 67<sup>th</sup> Street to the vicinity of monitoring well AMW-1 west of the former Clearprint Paper Company USTs. The highest COC concentrations occur in monitoring well MW-3 in the vicinity of the former McGrath Steel USTs. The cross-gradient extent of the adsorbed and dissolved phase hydrocarbon plume has not been fully defined, particularly south of 67<sup>th</sup> Street. Measurable free product thickness was observed in well MW-3 during this quarter. A passive 0.125-liter passive product skimming device was reinstalled in the monitoring well.

The chlorinated solvents, 1,1-dichloroethene, and TCE, detected in monitoring wells AMW-1 and AMW-3, do not appear to have originated from the subject site, since they have not been detected in monitoring well MW-3 in the former UST vicinity. However, detection limits for VOCs were elevated for MW-3 due to elevated concentrations of BTEX and MTBE, so an up-gradient source is possible.

Overall, concentrations of COCs detected in groundwater samples during this monitoring event, with the exception of TPH-d, have declined significantly since the previous February 2015 sampling event. Groundwater analytical data and drinking water, non-drinking water and vapor intrusion ESLs are summarized in Tables 3 and 4. TPH-g, TPH-d and benzene isoconcentration maps are shown as Figures 4, 5 and 6, respectively. TPH-g, TPH-d, BTEX, MTBE and naphthalene concentration graphs are included in Appendix D.

### IX. CONCLUSIONS

AllWest collected groundwater samples from four monitoring wells (AMW-1, AMW-2, AMW-3 and MW-3) at the subject site to further assess the extent of LNAPL, adsorbed and dissolved-phase petroleum hydrocarbons in groundwater in the vicinity of the former UST and dispenser source area at the subject property, and in the hydraulically down-gradient and cross-gradient directions. Measurable free product thickness was observed in well MW-3 during this quarter. A passive 0.125-liter passive product skimming device was reinstalled in the monitoring well.

TPH-g, TPH-ms, TPH-d, benzene, toluene, ethylbenzene, total xylenes, 2-methylnaphthalene, naphthalene, and 1,1-dichloroethene were identified in groundwater samples at concentrations exceeding corresponding and applicable SFRWQCB commercial/industrial non-drinking water ESL values.

AllWest concludes the down-gradient extent of the adsorbed and dissolved phase petroleum hydrocarbon plume in soil and groundwater is largely defined and extends from the vicinity of the former McGrath Steel USTs to the west along 67<sup>th</sup> Street to the vicinity of monitoring well AMW-1. The highest COC concentrations occur in monitoring well MW-3 in the vicinity of the former McGrath Steel USTs. The crossgradient extent of the adsorbed and dissolved phase hydrocarbon plume south of 67<sup>th</sup> Street has not been fully defined. The chlorinated solvents, 1,1-dichloroethene, and TCE, detected in monitoring wells AMW-1 and AMW-3, do not appear to have originated from the subject site. As shown in the Appendix D graphs, contaminant concentrations generally show stable and or diminishing concentrations over time.

### X. LIMITATIONS

The work described in this report is performed in accordance with the Environmental Consulting Agreement between MCG Investments, LLC (Client) and AllWest Environmental, Inc., dated September 2014. AllWest

has prepared this report for the exclusive use of the Client for this particular project and in accordance with generally accepted practices at the time of the work. No other warranties, certifications or representations, either expressed or implied are made as to the professional advice offered. The services provided for the Client were limited to their specific requirements; the limited scope allows for AllWest to form no more than an opinion of the actual site conditions. No matter how much research and sampling may be performed, the only way to know about the actual composition and condition of the subsurface of a site is through excavation.

The conclusions and recommendations contained in this report are made based on observed conditions existing at the site, laboratory test results of the submitted samples, and interpretation of a limited data set. It must be recognized that changes can occur in subsurface conditions due to site use or other reasons. Furthermore, the distribution of chemical concentrations in the subsurface can vary spatially and over time. The results of chemical analysis are valid as of the date and at the sampling location only. AllWest is not responsible for the accuracy of the test data from an independent laboratory, or for any analyte quantities falling below the recognized standard detection limits or for the method utilized by the independent laboratories.

Background information that AllWest has used in preparing this report, including but not limited to previous field measurements, analytical results, site plans, and other data, has been furnished to AllWest by the Client, its previous consultants, and/or third parties. AllWest has relied on this information as furnished. AllWest is not responsible for nor has it confirmed the accuracy of this information.

### XI. REFERENCES

Alameda County Environmental Health Services, 2005. Fuel Leak Site Case Closure, Clearprint Paper Co. June 27.

AllWest Environmental, Inc. (AllWest), 2011. Additional Site Characterization and Interim Remedial Action Workplan, Former McGrath Steel, 6655 Hollis Street, and 1471 67<sup>th</sup> Street, Emeryville, California, 94608. September 27.

AllWest, 2012a. Additional Site Characterization Workplan Addendum, Former McGrath Steel, 6655 Hollis Street, and 1471 67<sup>th</sup> Street, Emeryville, California, 94608. July 31.

AllWest, 2012b. Third Quarter 2012 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. August 23.

AllWest, 2013a Fourth Quarter 2012 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. January 9.

AllWest, 2013b. Subsurface Investigation, Former McGrath Steel, 6655 Hollis Street, Emeryville, California. February 4.

AllWest, 2013c. First Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. April 18.

AllWest, 2013d. Second Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608. July 11.

AllWest, 2013e. Additional Site Characterization and Monitoring Well Installation Report, Former McGrath Steel, 6655 Hollis Street, Emeryville, California, August 30.

AllWest, 2014a. Fourth Quarter 2013 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California. January 8.

AllWest, 2014b. Indoor Air Quality Monitoring Work Plan, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. April 1.

AllWest, 2014c. First Quarter 2014 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street, Emeryville, California. April 22.

AllWest, 2014d. Indoor Air Quality Monitoring Work Plan Addendum Letter, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. June 17.

AllWest, 2014e. Indoor Air Quality Monitoring Report, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. July 18.

AllWest, 2014f. Second Quarter 2014 Groundwater Monitoring, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. July 21.

AllWest, 2015a. First Semiannual 2015 Groundwater Monitoring Report, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, California. May 15.

AllWest, 2015b. Data Gap Investigation Workplan, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, CA 94608. October 30.

AllWest, 2016a. Data Gap Investigation Workplan Addendum Letter, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, CA 94608. January 15.

AllWest, 2016b. Data Gap Investigation Report, Former McGrath Steel, 6655 Hollis Street and 1471 67th Street, Emeryville, CA 94608. August 3.

California Regional Groundwater Quality Control Board, San Francisco Bay Region (SFRWQCB), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report. June.

SFRWQCB, 2016. *User's Guide: Derivation and Application of Environmental Screening Levels*, Interim Final – February 2016, Revision 3, May 23.

SFRWQCB, 2013. Water Quality Control Plan (Basin Plan), June 29.

Environmental Strategies Consulting, Inc. (ESC), 2005. *Groundwater Well Destruction at Former Clearprint Paper Company, Inc. Located at 1482 67<sup>th</sup> Street in Emeryville, California*, June 23.

Stellar Environmental Solutions, Inc. (Stellar), 2011. Phase I Environmental Site Assessment, 6655 Hollis Street, Emeryville, California. June.

Subsurface Environmental Corp., 1996. Tank Removal Closure Report. September 16.

Weiss Associates (WA), 1998. Subsurface Investigation Report. August 5.

WA, 2006. Site Characterization Report. March 2.

# **TABLES**

## TABLE 1 Summary of Well Construction Details

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 16040.28

| Well<br>Number | Casing<br>Diameter<br>(inches) | Borehole<br>Diameter<br>(inches) | Total<br>Depth of<br>Well (feet<br>bgs) | Top-<br>Bottom of<br>Screen<br>(feet bgs) | Screen<br>Length<br>(feet) | Top-<br>Bottom of<br>Filter Pack<br>(feet bgs) |
|----------------|--------------------------------|----------------------------------|-----------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------|
|                |                                |                                  |                                         |                                           |                            |                                                |
| MW-3           | 2                              | 8                                | 29                                      | 9-29                                      | 20                         | 7-29.5                                         |
| AMW-1          | 2                              | 8                                | 24                                      | 9-24                                      | 15                         | 7-24                                           |
| AMW-2          | 2                              | 8                                | 24                                      | 9-24                                      | 15                         | 7-24                                           |
| AMW-3          | 2                              | 8                                | 23                                      | 8-23                                      | 15                         | 6-23                                           |

**Notes:** 

bgs below ground surface

## TABLE 2 Summary of Groundwater Elevation Data

| Well<br>Number | Date        | TOC Elevation<br>(feet msl) | Ground Surface<br>Elevation (feet<br>msl) | Depth to<br>Groundwater (feet<br>below TOC) | Product<br>Thickness<br>(feet) | Groundwater<br>Surface Elevation<br>(feet msl) <sup>a</sup> |
|----------------|-------------|-----------------------------|-------------------------------------------|---------------------------------------------|--------------------------------|-------------------------------------------------------------|
| MW-3           | 10/17/1995  | 22.73                       | 23.17                                     | 9.42                                        | 0.00                           | 13.31                                                       |
| MW-3           | 11/21/1995  | 22.73                       | 23.17                                     | 9.85                                        | 0.00                           | 12.88                                                       |
| MW-3           | 12/23/1995  | 22.73                       | 23.17                                     | 8.52                                        | 0.00                           | 14.21                                                       |
| MW-3           | 1/15/1996   | 22.73                       | 23.17                                     | 8.72                                        | 0.00                           | 14.01                                                       |
| MW-3           | 2/16/1996   | 22.73                       | 23.17                                     | 7.08                                        | 0.04                           | 15.68                                                       |
| MW-3           | 3/28/1996   | 22.73                       | 23.17                                     | 6.78                                        | 0.03                           | 15.97                                                       |
| MW-3           | 8/22/2005   | 22.73                       | 23.17                                     | 12.36                                       | 0.00                           | 10.37                                                       |
| MW-3           | 12/20/2005  | 22.73                       | 23.17                                     | 10.82                                       | 0.00                           | 11.91                                                       |
| MW-3           | 9/14/2011*  | 22.73                       | 23.17                                     | 11.05                                       | 3                              | 13.93                                                       |
| MW-3           | 7/30/2012   | 22.73                       | 23.17                                     | 11.52                                       | 2.65                           | 13.20                                                       |
| MW-3           | 8/2/2012    | 22.73                       | 23.17                                     | 9.22                                        | 1.12                           | 14.35                                                       |
| MW-3           | 12/18/2012  | 22.73                       | 23.17                                     | 8.91                                        | 0.00                           | 13.82                                                       |
| MW-3           | 3/27/2013   | 22.73                       | 23.17                                     | 8.57                                        | 0.20                           | 14.31                                                       |
| MW-3           | 6/27/2013   | 22.73                       | 23.17                                     | 9.90                                        | 0.00                           | 12.83                                                       |
| MW-3           | 8/7/2013    | 25.55                       | 26.00                                     | 9.09                                        | 0.41                           | 16.77                                                       |
| MW-3           | 11/6/2013   | 25.55                       | 26.00                                     | 9.30                                        | 0.15                           | 16.36                                                       |
| MW-3           | 12/31/2013* | 25.55                       | 26.00                                     | 9.16                                        | 0.01                           | 16.40                                                       |
| MW-3           | 2/26/2014*  | 25.55                       | 26.00                                     | 8.92                                        | 0.00                           | 16.63                                                       |
| MW-3           | 3/19/2014   | 25.55                       | 26.00                                     | 8.81                                        | 0.00                           | 16.74                                                       |
| MW-3           | 4/22/2014   | 25.55                       | 26.00                                     | 7.75                                        | 0.00                           | 17.80                                                       |
| MW-3           | 5/29/2014   | 25.55                       | 26.00                                     | 8.28                                        | 0.00                           | 17.27                                                       |
| MW-3           | 6/20/2014   | 25.55                       | 26.00                                     | 8.45                                        | 0.00                           | 17.10                                                       |
| MW-3           | 1/30/2015   | 25.55                       | 26.00                                     | 9.91                                        | 0.00                           | 15.64                                                       |
| MW-3           | 2/28/2015   | 25.55                       | 26.00                                     | 7.52                                        | 0.00                           | 18.03                                                       |
| MW-3           | 7/14/2016   | 25.55                       | 26.00                                     | 8.37                                        | 0.02                           | 17.20                                                       |
|                |             |                             |                                           |                                             |                                |                                                             |
| AMW-1          | 8/7/2013    | 22.09                       | 22.54                                     | 9.54                                        | 0.00                           | 12.55                                                       |
| AMW-1          | 11/6/2013   | 22.09                       | 22.54                                     | 9.62                                        | 0.00                           | 12.47                                                       |
| AMW-1          | 3/19/2014   | 22.09                       | 22.54                                     | 7.73                                        | 0.00                           | 14.36                                                       |
| AMW-1          | 6/20/2014   | 22.09                       | 22.54                                     | 8.81                                        | 0.00                           | 13.28                                                       |
| AMW-1          | 2/28/2015   | 22.09                       | 22.54                                     | 7.61                                        | 0.00                           | 14.48                                                       |
| AMW-1          | 7/14/2016   | 22.09                       | 22.54                                     | 8.82                                        | 0.00                           | 13.27                                                       |
|                |             |                             |                                           |                                             |                                |                                                             |

### TABLE 2 Summary of Groundwater Elevation Data

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 16040.28

| Well<br>Number | Date      | TOC Elevation<br>(feet msl) | Ground Surface<br>Elevation (feet<br>msl) | Depth to<br>Groundwater (feet<br>below TOC) | Product<br>Thickness<br>(feet) | Groundwater<br>Surface Elevation<br>(feet msl) <sup>a</sup> |
|----------------|-----------|-----------------------------|-------------------------------------------|---------------------------------------------|--------------------------------|-------------------------------------------------------------|
| AMW-2          | 8/7/2013  | 23.43                       | 23.73                                     | 9.96                                        | 0.00                           | 13.47                                                       |
| AMW-2          | 11/6/2013 | 23.43                       | 23.73                                     | 10.36                                       | 0.00                           | 13.07                                                       |
| AMW-2          | 3/19/2014 | 23.43                       | 23.73                                     | 8.50                                        | 0.00                           | 14.93                                                       |
| AMW-2          | 6/20/2014 | 23.43                       | 23.73                                     | 9.51                                        | 0.00                           | 13.92                                                       |
| AMW-2          | 2/28/2015 | 23.43                       | 23.73                                     | 6.30                                        | 0.00                           | 17.13                                                       |
| AMW-2          | 7/14/2016 | 23.43                       | 23.73                                     | 9.53                                        | 0.00                           | 13.90                                                       |
|                |           |                             |                                           |                                             |                                |                                                             |
| AMW-3          | 8/7/2013  | 25.16                       | 25.50                                     | 8.94                                        | 0.00                           | 16.22                                                       |
| AMW-3          | 11/6/2013 | 25.16                       | 25.50                                     | 9.34                                        | 0.00                           | 15.82                                                       |
| AMW-3          | 3/19/2014 | 25.16                       | 25.50                                     | 7.25                                        | 0.00                           | 17.91                                                       |
| AMW-3          | 6/20/2014 | 25.16                       | 25.50                                     | 8.37                                        | 0.00                           | 16.79                                                       |
| AMW-3          | 2/28/2015 | 25.16                       | 25.50                                     | 7.26                                        | 0.00                           | 17.90                                                       |
| AMW-3          | 7/14/2016 | 25.16                       | 25.50                                     | 8.47                                        | 0.00                           | 16.69                                                       |

### **Notes:**

Groundwater level measurement only, no sampling

TOC Top of Well Casing

Well MW-3 ground surface and TOC elevations surveyed to feet above mean sea level (msl) per City of feet msl Emeryville Datum, BM#5 by Triad/Holmes Associates October 17, 1995. All ground surface and TOC elevations re-surveyed to NAD 1983 and NAVD 1988 datum by Morrow Surveying, Inc., August 13, 2013.

a Groundwater elevation corrected for free product thickness, assuming density of 0.75 for gasoline.

NM Not Measured

### TABLE 3 Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

|                         | ъ.              |                  |                     |                      |               |         |         | F.0. 1            | 7D ( )           |        |                                                                                                                                                                                    |
|-------------------------|-----------------|------------------|---------------------|----------------------|---------------|---------|---------|-------------------|------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample /<br>Field Point | Date<br>Sampled | TPH-g            | TPH-ms              | TPH-d                | TPH-mo        | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | MTBE   | Other VOCs                                                                                                                                                                         |
| Name                    | Sumpleu         | (µg/L)           | (μg/L)              | (µg/L)               | (μg/L)        | (μg/L)  | (μg/L)  | (μg/L)            | μg/L)            | (μg/L) | (μg/L)                                                                                                                                                                             |
| MW-3                    | 10/17/1995      | 8,600            | ND <100             | 220                  | NA            | 730     | 2,100   | 270               | 1,400            | NA     | NA                                                                                                                                                                                 |
| MW-3                    | 8/22/2005       | 39,000           | NA                  | 2,500                | NA            | 3,100   | 3,800   | 1,100             | 4,700            | 7,200  | Oxygenates - ND (varies)                                                                                                                                                           |
| qualifiers<br>MW-3      | 12/20/2005      | 54,000           | NA                  | L,Y                  | NA            | C 000   | 10.000  | 1 700             | 0.600            | 12 000 | O                                                                                                                                                                                  |
| qualifiers              | 12/20/2003      | 54,000           | NA                  | <b>2,600</b><br>L,Y  | NA            | 6,000   | 10,000  | 1,700             | 9,600            | 12,000 | Oxygenates - ND (varies)                                                                                                                                                           |
| MW-3                    | 8/2/2012        | 27,000           | <b>14,000</b>       | <b>33,000</b> e4, e2 | 680<br>e4, e2 | 1,300   | 3,800   | 400               | 4,500            | 630    | 400 (TBA) 110 (trans-1,3-dichloropropene) 250 (naphthalene) 1,100 (1,2,4-trimethylbenzene) 280 (1,3,5-trimethylbenzene) ND (others - varies)                                       |
| quanners                |                 |                  | ų i                 | C4, C2               | C4, C2        |         |         |                   |                  |        | 140 (naphthalene)                                                                                                                                                                  |
| MW-3                    | 12/18/2012      | 21,000           | <b>12,000</b><br>d1 | <b>2,600</b> e4      | ND <250       | 830     | 1,400   | 450               | 2,600            | 840    | 630 (1,2,4-trimethylbenzene)<br>78 (n-propyl benzene)<br>190 (1,3,5-trimethylbenzene)<br>ND (others - varies)                                                                      |
| quanners                |                 |                  | ų i                 | CŦ                   | C4            |         |         |                   |                  |        | 520 (TBA)                                                                                                                                                                          |
| MW-3                    | 6/27/2013       | 18,000           | NA                  | 2,300                | NA            | 1,900   | 2,000   | 540               | 2,700            | 1,900  | 170 (naphthalene) 650 (1,2,4-trimethylbenzene) 84 (n-propyl benzene) 200 (1,3,5-trimethylbenzene) ND (others - varies)                                                             |
| qualifiers              |                 |                  |                     | e4                   |               |         |         |                   |                  |        | 1,100 (naphthalene)                                                                                                                                                                |
| MW-3                    | 8/7/2013        | 130,000          | 54,000              | 24,000               | NA            | 9,800   | 16,000  | 4,200             | 24,000           | 6,300  | 5,200 (1,2,4-trimethylbenzene)<br>620 (n-propyl benzene)<br>1,500 (1,3,5-trimethylbenzene)<br>ND (others - varies)                                                                 |
| qualifiers              |                 | d1, b6           | d1, b6              | e4, b6               |               | b6, c8  | b6, c8  | b6, c8            | b6, c8           | b6, c8 | b6, c8                                                                                                                                                                             |
| MW-3                    | 11/6/2013       | 49,000           | 19,000              | 6,400                | NA            | 3,200   | 4,900   | 2,100             | 11,000           | 2,600  | 700 (TBA) 140 (n-butyl benzene) 130 (isopropylbenzene) 690 (naphthalene) 460 (n-propyl benzene) 3,200 (1,2,4-trimethylbenzene) 1,000 (1,3,5-trimethylbenzene) ND (others - varies) |
| qualifiers              |                 | d1, b6           | d1, b6              | e4                   |               | c8      | c8      | c8                | c8               | c8     | c8<br>1,500 (TBA)                                                                                                                                                                  |
| MW-3                    | 3/19/2014       | 87,000           | 40,000              | 11,000               | NA            | 5,500   | 7,200   | 2,000             | 11,000           | 4,400  | 480 (naphthalene)<br>340 (n-propyl benzene)<br>2,600 (1,2,4-trimethylbenzene)<br>780 (1,3,5-trimethylbenzene)<br>ND (Others - varies)                                              |
| qualifiers              |                 | d1               | d1                  | e4                   |               |         |         |                   |                  |        | 790 (TBA)                                                                                                                                                                          |
| MW-3                    | 6/20/2014       | <b>54,000</b> d1 | <b>26,000</b><br>d1 | 12,000<br>e4         | NA            | 1,100   | ND <100 | ND <100           | 5,700            | 2,700  | 420 (naphthalene) 2,300 (1,2,4-trimethylbenzene) 610 (1,3,5-trimethylbenzene) ND (Other-varies)                                                                                    |
| quarriers               |                 | ų i              | ų i                 | <u> </u>             |               |         |         |                   |                  |        | 3,400 (TBA)                                                                                                                                                                        |
| MW-3                    | 2/28/2015       | 84,000           | 21,000              | 1,400                | NA            | 7,700   | 4,700   | 1,300             | 6,000            | 5,200  | 430 (naphthalene)<br>150 (n-propyl benzene)<br>1,400 (1,2,4-trimethylbenzene)<br>380 (1,3,5-trimethylbenzene)<br>ND (Other-varies)                                                 |
| qualifiers              |                 | d1               | d1                  | e4                   |               |         |         |                   |                  |        |                                                                                                                                                                                    |

### TABLE 3 Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

| Sample /          | Date      |                    |                    |            |        | _         |           | Ethyl-       | Total    |              | 0.1 710.0                                                                                                                                                      |
|-------------------|-----------|--------------------|--------------------|------------|--------|-----------|-----------|--------------|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Point       | Sampled   | TPH-g              | TPH-ms             | TPH-d      | TPH-mo | Benzene   | Toluene   | benzene      | Xylenes  | MTBE         | Other VOCs                                                                                                                                                     |
| Name              |           | (μg/L)             | (μg/L)             | (μg/L)     | (μg/L) | (μg/L)    | (µg/L)    | (μg/L)       | (µg/L)   | (μg/L)       | (μg/L)                                                                                                                                                         |
| MW-3              | 7/14/2016 | 7,900              | 2,700              | 1,600      | NA     | 2,000     | 220       | 430          | 820      | 790          | t-Butyl alcohol: 1,000<br>Naphthalene: 170<br>n-propyl benzene: 91<br>1,2,3-trimethylbenzene: 280<br>1,3,5- trimethylbenzene: 71                               |
| qualifiers  AMW-1 | 8/7/2013  | ND <50             | d1<br>ND <50       | e4<br>110  | NA     | ND <1.2   | ND <1.2   | ND <1.2      | ND <1.2  | 2.5          | 2.0 (1,1-dichloroethane)<br>39 (1,1-dichloroethene)<br>7.3 (TCE)<br>ND (others, reporting limits<br>vary)                                                      |
| qualifiers        |           | b1                 | b1                 | e7, e1, b1 |        | b1        | b1        | b1           | b1       | b1           | b1<br>2.0 (1,1-dichloroethane)                                                                                                                                 |
| AMW-1             | 11/6/2013 | ND <50             | ND <50             | ND <50     | NA     | ND <1.0   | ND <1.0   | ND <1.0      | ND <1.0  | 2.4          | 50 (1,1-dichloroethane)<br>50 (1,1-dichloroethane)<br>7.6 (TCE)<br>ND (Other-varies)                                                                           |
| AMW-1             | 3/19/2014 | ND <50             | ND <50             | ND <50     | NA     | ND <5.0   | ND <5.0   | ND <5.0      | ND <5.0  | ND <5.0      | 83 (1,1-dichloroethene)<br>7.2 (TCE)<br>ND (Other-varies)                                                                                                      |
| qualifiers        |           | c2, b1             | c2, b1             | b1         |        | b1        | b1        | b1           | b1       | b1           | b1                                                                                                                                                             |
| AMW-1             | 6/20/2014 | ND <50             | ND <50             | ND <100    | NA     | ND <1.0   | ND <1.0   | ND <1.0      | ND <1.0  | 2.3          | 1.8 (1,1-dichloroethane)<br>21 (1,1-dichloroethene)<br>5.4 (TCE),<br>ND (Other-varies)                                                                         |
| quanners          |           | 62, 5              | C2, 5              |            |        |           |           |              |          |              | 2.1 (1,1-dichloroethane)                                                                                                                                       |
| AMW-1             | 2/28/2015 | ND <50             | ND <50             | ND <50     | NA     | ND <0.50  | ND <0.50  | ND<br><0.50  | ND <0.50 | 2.1          | 0.82 (1,2-DCA) 36 (1,1-dichloroethene) 0.59 (DIPE) 0.59 (PCE) 6.8 (TCE) ND (Other-varies)                                                                      |
| AMW-1             | 7/14/2016 | ND (<50)           | ND (<50)           | ND (<50)   | NA     | ND (<2.5) | ND (<2.5) | ND<br>(<2.5) | 2.8      | ND<br>(<2.5) | t-Butyl alcohol: 82<br>1,1-dichloroethane: 2.9<br>Trichloroethane: 9.4                                                                                         |
| qualifiers AMW-2  | 8/7/2013  | 1,300              | c4,S<br>550        | 210        | NA     | 66        | 74        | 48           | 280      | 350          | 22 (naphthalene) 46 (1,2,4-trimethylbenzene) 6.4 (n-propyl benzene) 29 (1,3,5-trimethylbenzene) ND (Other-varies)                                              |
| qualifiers        |           | d1, b1             | d1, b1             | e4, e2, b1 |        | b1        | b1        | b1           | b1       | b1           | b1                                                                                                                                                             |
| AMW-2             | 11/6/2013 | <b>2,200</b><br>d1 | <b>1,400</b><br>d1 | 330<br>e4  | NA     | 130       | 16        | 120          | 270      | 330          | 7.2 (n-butyl benzene) 7.2 (isopropylbenzene) 54 (naphthalene) 23 (n-propyl benzene) 150 (1,2,4-trimethylbenzene) 49 (1,3,5-trimethylbenzene) ND (Other-varies) |
| AMW-2             | 3/19/2014 | 550                | 430                | 190        | NA     | 30        | ND <5.0   | 17           | 19       | 300          | 14 (naphthalene) 6.2 (n-propyl benzene) 38 (1,2,4-trimethylbenzene) 6.0 (1,3,5-trimethylbenzene) ND (Other-varies)                                             |
| qualifiers        |           | d1                 | d1                 | e4         |        |           |           |              |          |              |                                                                                                                                                                |

### TABLE 3 Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

| Sample /<br>Field Point | Date<br>Sampled | TPH-g     | TPH-ms             | TPH-d        | TPH-mo | Benzene  | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes  | МТВЕ         | Other VOCs                                                                                                                                                                                                                     |
|-------------------------|-----------------|-----------|--------------------|--------------|--------|----------|-----------|-------------------|-------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                    | Jumpicu         | (μg/L)    | (μg/L)             | (μg/L)       | (μg/L) | (µg/L)   | (μg/L)    | (μg/L)            | Ayrenes<br>(μg/L) | (μg/L)       | (μg/L)                                                                                                                                                                                                                         |
| AMW-2                   | 6/20/2014       | 370       | 270                | 110          | NA     | 22       | ND <5.0   | 11                | 44                | 380          | 8.4 (naphthalene)<br>40 (1,2,4-trimethylbenzene)<br>ND (Other-varies)                                                                                                                                                          |
| qualifiers AMW-2        | 2/28/2015       | 120       | d1<br>77           | e4<br>ND <50 | NA     | 5.1      | ND <5.0   | ND <5.0           | 5.1               | 260          | 7.4 (1,2,4-trimethylbenzene)                                                                                                                                                                                                   |
| qualifiers              | 2/28/2013       | d1        | d1                 | ND <30       | NA     | 3.1      | ND < 3.0  | ND < 3.0          | 5.1               | 200          | ND (Other-varies)                                                                                                                                                                                                              |
| AMW-2                   | 7/14/2016       | 92        | ND (<50)           | ND (<50)     | NA     | ND (<12) | ND (<12)  | ND                | ND (<12)          | 360          | ND (others, reporting limits                                                                                                                                                                                                   |
| qualifiers              | //14/2010       | 72        | d1                 | ND (<30)     | IVA    | ND (<12) | ND (<12)  | (<12)             | ND (<12)          | 300          | vary)                                                                                                                                                                                                                          |
| AMW-3                   | 8/7/2013        | 2,000     | 1,000              | 340          | NA     | 17       | 72        | 83                | 360               | ND <5.0      | 7.4 (n-butyl benzene) 18 (naphthalene) 76 (1,2,4-trimethylbenzene) 5.2 (1,1-dichloroethane) 140 (1,1-dichloroethane) 18 (n-propyl benzene) 5.3 (1,1,1-trichloroethane) 20 (TCE) 39 (1,3,5-trimethylbenzene) ND (Other-varies)  |
| qualifiers              |                 | d1, b1    | d1, b1             | e4, e2, b1   |        |          |           |                   |                   |              | 5.4 (1,1-dichloroethane)                                                                                                                                                                                                       |
| AMW-3                   | 11/6/2013       | 110       | 99                 | 130          | NA     | ND <5.0  | ND <5.0   | ND <5.0           | ND <5.0           | ND <5.0      | 180 (1,1-dichloroethene)<br>6.1 (1,1,1-trichloroethane)<br>22 (TCE)<br>ND (Other-varies)                                                                                                                                       |
| qualifiers              |                 | d1, c4    | d1, c4             | e4           |        | c8       | c8        | c8                | c8                | c8           | c8                                                                                                                                                                                                                             |
| AMW-3                   | 3/19/2014       | 140       | 110                | 130          | NA     | ND <5.0  | ND <5.0   | 9.3               | ND <5.0           | ND <5.0      | 240 (1,1-dichloroethene)<br>9.0 (naphthalene)<br>19 (TCE)<br>ND (Other-varies)                                                                                                                                                 |
| qualifiers              |                 | d1, c4    | d1, c4             | e4           |        |          |           |                   |                   |              | c8<br>3.4 (1,1-dichloroethane)                                                                                                                                                                                                 |
| AMW-3                   | 6/20/2014       | 320       | 250                | 220          | NA     | 13       | ND <2.5   | 44                | 2.9               | ND <2.5      | 74 (1,1-dichloroethane) 74 (1,1-dichloroethane) 12 (naphthalene) 7.5 (n-propyl benzene) 2.8 (1,1,1-trichloroethane) 9.9 (TCE) 6.8 (1,2,4-trimethylbenzene) ND (Other-varies)                                                   |
| qualifiers              |                 | d1, c4, S | d1, c4, S          | e4           |        |          |           |                   |                   |              | 4.4 (n-butyl benzene)                                                                                                                                                                                                          |
| AMW-3                   | 2/28/2015       | 770       | 560                | 240          | NA     | 7.4      | 3.0       | 28                | 100               | ND <2.5      | 3.6 (1,1-dichloroethane) 77 (1,1-dichloroethene) 3.1 (isopropylbenzene) 16 (naphthalene) 8.9 (n-propyl benzene) 4.0 (1,1,1-trichloroethane) 13 (TCE) 57 (1,2,4-trimethylbenzene) 17 (1,3,5-trimethylbenzene) ND (Other-varies) |
| qualifiers AMW-3        | 7/14/2016       | 210       | d1, c4<br>ND (<50) | e4<br>66     | NA     | 5.4      | ND (<5.0) | 12                | 24                | ND<br>(<5.0) | 1,1-Dichloroethene: 120<br>Naphthalene: 5.1<br>n-Propyl benzene: 6.3<br>Trichloroethene: 18<br>1,2,4-Trimethylbenzene: 10                                                                                                      |
| qualifiers              |                 |           | d1, c4,5           | e4           |        |          |           |                   |                   |              |                                                                                                                                                                                                                                |

### TABLE 3

### Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 16040.28

| Sample /<br>Field Point                                        | Date<br>Sampled                      | TPH-g      | TPH-ms     | TPH-d      | TPH-mo       | Benzene   | Toluene      | Ethyl-<br>benzene | Total<br>Xylenes | МТВЕ         | Other VOCs                                                                                                                                                                                                                                     |
|----------------------------------------------------------------|--------------------------------------|------------|------------|------------|--------------|-----------|--------------|-------------------|------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                                           |                                      | (μg/L)     | (μg/L)     | (μg/L)     | (μg/L)       | (μg/L)    | (μg/L)       | (µg/L)            | (μg/L)           | (µg/L)       | (μg/L)                                                                                                                                                                                                                                         |
| SB-26                                                          | 2/4/2016                             | 1,700      | NA         | NA         | NA           | 310       | 300          | 85                | 370              | 170          | 7.9 (Naphthalene) 7.8 (n-Propyl benzene) 18 (TCE) 67 (1,2,4-Trimethylbenzene) 21 (1,3,5-Trimethylbenzene) ND (other, varies)                                                                                                                   |
| Commercia                                                      | WQCB<br>al/Industrial<br>king water* | 100<br>ON  | 100<br>ON  | 100<br>ON  | 50,000<br>GC | 1.0<br>DE | 40<br>DE/ON  | 30<br>DE/ON       | 20<br>DE/ON      | 5.0<br>DE/ON | 0.5 (1,2-DCA) DE 12 (TBA) DE 5.0 (PCE) DE 5.0 (TCE) DE 0.5 (1,3-dichloropropene) DE 0.17 (naphthalene) DE 5.0 (1,1-dichloroethane)DE 3.2 (1,1-dichloroethane) AHG 62 (1,1,1-trichloroethane) AHG NE or varies (others)                         |
| RWQCB<br>Commercial/Industrial<br>ESLs, non-drinking<br>water* |                                      | 440<br>AHG | 640<br>AHG | 640<br>AHG | 50,000<br>GC | 9.7<br>VI | 130<br>AHG   | 43<br>AHG         | 100<br>AHG       | 1,800<br>ON  | 53 (1,2-DCA) VI<br>18,000 (TBA) AHG<br>8.9 (PCE) AHG<br>49 (TCE) VI<br>33 (1,3-dichloropropene) VI<br>24 (naphthalene) AHG<br>47 (1,1-dichloroethane) AHG<br>3.2 (1,1-dichloroethene) AHG<br>62 (1,1,1-trichloroethane)<br>NE or vary (others) |
| Commercia                                                      | QCB<br>al/Industrial<br>or intrusion | NE         | NE         | NE         | NE           | 9.7<br>VI | 30,000<br>VI | 110<br>VI         | 11,000<br>VI     | 11,000<br>VI | 53 (1,2-DCA) VI<br>26 (PCE) VI<br>49 (TCE) VI<br>33 (1,3-dichloropropene) VI<br>170 (Naphthalene) VI<br>180 (1,1-dichloroethane) VI<br>1,400 (1,1-dichloroethene) VI<br>42,000 (1,1,1-TCA) VI<br>NE or vary (others)                           |

### Notes:

All results are reported in micrograms per liter  $(\mu g/L)$  except where noted.

 1,2-DCA
 1,2-dichloroethane, Analytical Method SW8260B

 DIPE
 Diisopropyl ether, Analytical Method SW8260B

 PCE
 Tetrachloroethene, Analytical Method SW8260B

 TCE
 Trichloroethene, Analytical Method SW8260B

TPH-g Total petroleum hydrocarbons as gasoline, Analytical Method SW8260B, except samples collected on 10/17/95, 8/22/05 and 12/20/05 Analytical

Method SW8015Bm

TPH-ms Total petroleum hydrocarbons Mineral Spirits Range (C9-C12), Analytical Method SW8015Bm

TPH-d Total petroleum hydrocarbons as diesel, C10-C23, Analytical Method SW8015B with silica gel cleanup

TPH-mo Total petroleum hydrocarbons as motor oil, C18-C36, Analytical Method SW8015B with silica gel cleanup

MTBE Methyl tertiary butyl ether, Analytical Method SW8260B
TBA Tertiary butyl alcohol, Analytical Method SW8260B

BTEX Benzene, Toluene, Ethylbenzene, Xylenes, Analytical Method SW8021B on 10/17/95 only; Analytical Method SW8260B on all other dates

VOCs Volatile organic compounds, Analytical Method SW8260B

ND <100 Not detected at or above listed reporting limit

NE Not established NA Not analyzed

### TABLE 3

### Summary of Groundwater Analytical Data Total Petroleum Hydrocarbons and VOCs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 16040.28

| Sample /<br>Field Point | Date<br>Sampled | ТРН-д  | TPH-ms | TPH-d  | TPH-mo | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | МТВЕ   | Other VOCs |
|-------------------------|-----------------|--------|--------|--------|--------|---------|---------|-------------------|------------------|--------|------------|
| Name                    |                 | (µg/L) | (µg/L) | (μg/L) | (µg/L) | (μg/L)  | (µg/L)  | (μg/L)            | (µg/L)           | (μg/L) | (μg/L)     |

### Laboratory Qualifiers:

- L lighter hydrocarbons contributed to the quantitation
- Y sample exhibits chromatographic pattern which does not resemble standard
- b1 aqueous sample that contains greater than ~1 vol. % sediment
- b6 lighter than water immiscible sheen/product is present
- c2 low surrogate recovery caused by matrix interference.
- c4 surrogate recovery outside of the control limits due to coelution with another peak(s)/cluttered chromatogram.
- c8 sample pH is greater than 2
- d1 weakly modified or unmodified gasoline is significant
- d2 heavier gasoline range compounds are significant (aged gasoline?)
- e2 diesel range compounds are significant; no recognizable pattern
- e4 gasoline-range compounds are significant
- e7 oil range compounds are significant
- S spike recovery outside accepted recovery limits

ESL Qualifiers:

DE - Direct Exposure

ON - Odor/Nuisance

GC - Gross Contamination

VI - Vapor Intrusion

AGH - Aquatic Habitat Goal

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for groundwater where groundwater is a potential drinking water resource from Table GW-1 User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final - February 2016, Revision 3 (May 23, 2016).

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for groundwater where groundwater is not a potential drinking water resource from Table GW-2, *User's Guide: Derivation and Application of Environmental Screening Levels,* RWQCB, Interim Final - February 2016, Revision 3 (May 23, 2016).

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion (Volatile Chemicals Only), commercial/industrial land use, fine-coarse mix from Table GW-3, *User's Guide: Derivation and Application of Environmental Screening Levels*, RWQCB, Interim Final - February 2016, Revision 3 (May 23, 2016).

- \* The subject site lies within the City of Emeryville, where groundwater use as a drinking water resource is currently prohibited by City ordinance due to widespread regional contamination, and no plans exist for future benefical groundwater use.
- \*\* Residential vapor intrusion ESL commercial ESL for vapor intrusion not established, soil gas sampling recommended.

### TABLE 4 Summary of Groundwater Analytical Data PNAs/PAHs

| Sample /<br>Field<br>Point                                     | Date<br>Sampled                      | Benzo (a) anthracene | Fluoranthene | 1-Methylnaphthalene | 2-Methylnaphthalene | Naphthalene | Phenanthrene | Pyrene        | Other<br>PNAs/PAHs |
|----------------------------------------------------------------|--------------------------------------|----------------------|--------------|---------------------|---------------------|-------------|--------------|---------------|--------------------|
| Nome                                                           |                                      | (µg/L)               | (μg/L)       | (µg/L)              | (µg/L)              | (μg/L)      | (µg/L)       | (μg/L)        | (μg/L)             |
| MW-3                                                           | 8/7/2013                             | ND <50               | ND <50       | 390                 | 710                 | 890         | ND <50       | ND <50        | ND <50             |
| qualifiers                                                     | b6                                   |                      |              |                     |                     |             |              |               |                    |
| MW-3                                                           | 11/6/2013                            | ND <25               | ND <25       | 330                 | 620                 | 1,100       | ND <25       | ND <25        | ND <25             |
| qualifiers                                                     | c1                                   |                      |              |                     |                     |             |              |               |                    |
| MW-3                                                           | 3/19/2014                            | ND <10               | ND <10       | 80                  | 150                 | 360         | ND <10       | ND <10        | ND <10             |
| MW-3                                                           | 6/20/2014                            | ND <21               | ND <21       | 110                 | 210                 | 410         | ND <21       | ND <21        | ND <21             |
| MW-3                                                           | 2/28/2015                            | ND <25               | ND <25       | 700                 | 1,400               | 1,100       | ND <25       | ND <25        | ND <25             |
| qualifiers                                                     | c1                                   |                      |              |                     |                     |             |              |               |                    |
| MW-3                                                           | 7/14/2016                            | ND (<5.0)            | ND (<5.0)    | 66                  | 110                 | 250         | ND (<5.0)    | ND<br>(<5.0)  | ND (<5.0)          |
|                                                                |                                      | T                    |              |                     |                     | 1           |              |               |                    |
| AMW-1<br>qualifiers                                            | 8/7/2013<br>b1                       | ND <0.5              | ND <0.5      | ND <0.5             | ND <0.5             | ND <0.5     | ND <0.5      | ND <0.5       | ND <0.5            |
| AMW-1                                                          | 11/6/2013                            | ND < 0.50            | ND < 0.50    | ND < 0.50           | ND < 0.50           | ND <0.50    | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-1                                                          | 3/19/2014                            | ND < 0.50            | ND < 0.50    | ND < 0.50           | ND < 0.50           | ND <0.50    | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-1                                                          | 6/20/2014                            | ND <2.1              | ND <2.1      | ND <11              | ND <2.1             | ND <2.1     | ND <2.1      | ND <2.1       | ND <2.1            |
| AMW-1                                                          | 2/28/2015                            | ND <0.50             | ND < 0.50    | ND <0.50            | ND <0.50            | ND <0.50    | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-1                                                          | 7/14/2016                            | ND (<0.50)           | ND (<0.50)   | ND (<0.50)          | ND (<0.50)          | ND (<0.50)  | ND (<0.50)   | ND<br>(<0.50) | ND (<0.50)         |
|                                                                |                                      |                      |              |                     |                     |             |              |               |                    |
| AMW-2<br>qualifiers                                            | 8/7/2013<br>b1                       | ND <0.5              | ND <0.5      | 1.5                 | 1.6                 | 7.7         | ND <0.5      | ND <0.5       | ND <0.5            |
| AMW-2                                                          | 11/6/2013                            | ND <0.50             | ND <0.50     | 5.4                 | 9.2                 | 26          | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-2                                                          | 3/19/2014                            | ND <0.50             | ND < 0.50    | 2.3                 | 2.6                 | 13          | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-2                                                          | 6/20/2014                            | ND <2.1              | ND <2.1      | ND <10              | ND <2.1             | 2.1         | ND <2.1      | ND <2.1       | ND <2.1            |
| AMW-2                                                          | 2/28/2015                            | ND < 0.50            | ND < 0.50    | ND < 0.50           | ND < 0.50           | 0.96        | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-2                                                          | 7/14/2016                            | ND (<0.50)           | ND (<0.50)   | 0.56                | 0.77                | 3.1         | ND (<0.50)   | ND<br>(<0.50) | ND (<0.50)         |
|                                                                |                                      |                      |              |                     |                     |             |              |               |                    |
| AMW-3 qualifiers                                               | 8/7/2013<br>b1                       | ND <0.5              | ND <0.5      | 3.2                 | ND <0.5             | ND <0.5     | ND <0.5      | ND < 0.5      | ND <0.5            |
| AMW-3                                                          | 11/6/2013                            | ND < 0.50            | ND <0.50     | 1.5                 | 2.6                 | 7.5         | ND < 0.50    | ND <0.50      | ND < 0.50          |
| AMW-3                                                          | 3/19/2014                            | ND < 0.50            | ND < 0.50    | 2.7                 | 2.8                 | 6.3         | ND < 0.50    | ND <0.50      | ND <0.50           |
| AMW-3                                                          | 6/20/2014                            | ND <1.5              | ND <1.5      | ND <7.4             | ND <1.5             | 2.3         | ND <1.5      | ND < 1.5      | ND <1.5            |
| AMW-3                                                          | 2/28/2015                            | ND < 0.50            | ND < 0.50    | 4.4                 | 6.7                 | 9.4         | ND < 0.50    | ND < 0.50     | ND < 0.50          |
| AMW-3                                                          | 7/14/2016                            | ND (<0.50)           | ND (<0.50)   | 0.96                | 0.95                | 4.5         | ND (<0.50)   | ND<br>(<0.50) | ND (<0.50)         |
| Commerci                                                       | QCB<br>al/Industrial<br>king water*  | 0.027<br>AHG         | 8.0<br>AHG   | NE                  | 2.1<br>AHG          | 0.17<br>DE  | 4.6<br>AHG   | 2.0<br>AHG    | Vary               |
| RWQCB<br>Commercial/Industrial<br>ESLs, non-drinking<br>water* |                                      | 0.027<br>AHG         | 8.0<br>AHG   | NE                  | 2.1<br>AHG          | 24<br>AHG   | 4.6<br>AHG   | 2.0<br>AHG    | Vary               |
| RW<br>Commerci                                                 | QCB<br>al/Industrial<br>or intrusion | NE                   | NE           | NE                  | NE                  | 170<br>VI   | NE           | NE            | Vary               |

### TABLE 4 Summary of Groundwater Analytical Data PNAs/PAHs

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 16040.28

**Notes:** All results are reported in micrograms per liter ( $\mu$ g/L) except where noted.

All samples analyzed by McCampbell Analytical, Inc., Pittsburg, California

PNAs/PAHs = Polynuclear Aromatic Hydrocarbons/Polycyclic Aromatic Hydrocarbons by analytical method SW8270C-SIM

ND < 0.50 - Not detected at or above listed reporting limit

NE - Not established

 Laboratory Qualifiers:
 ESL Qualifiers:

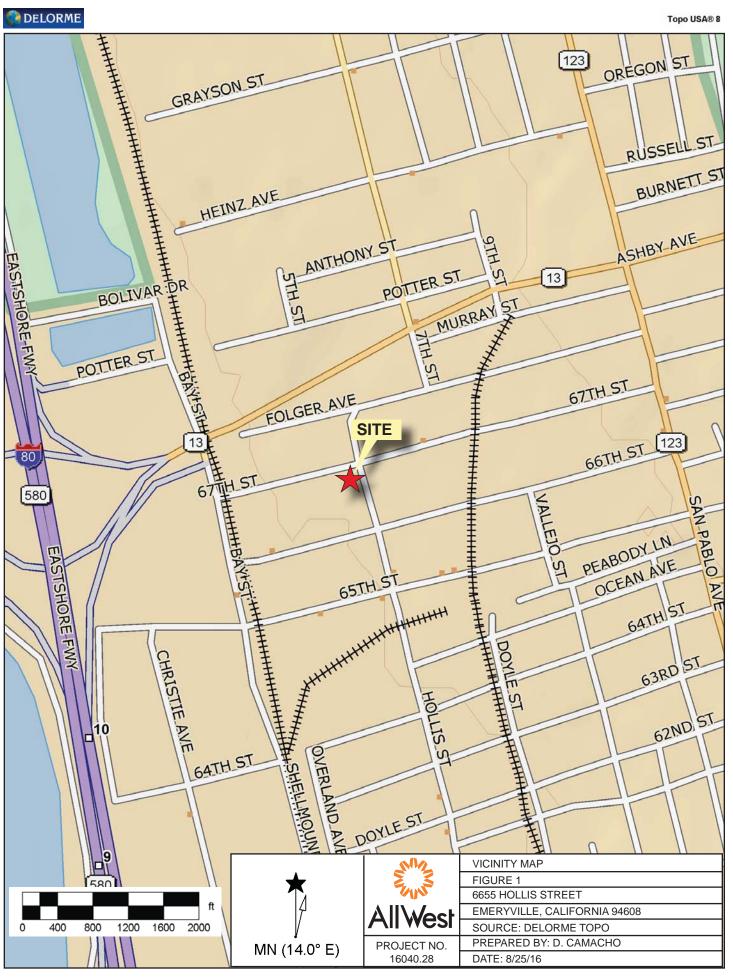
 b1 - Aqueous sample that contains greater than ~1 vol. % sediment
 DE - Direct Exposure

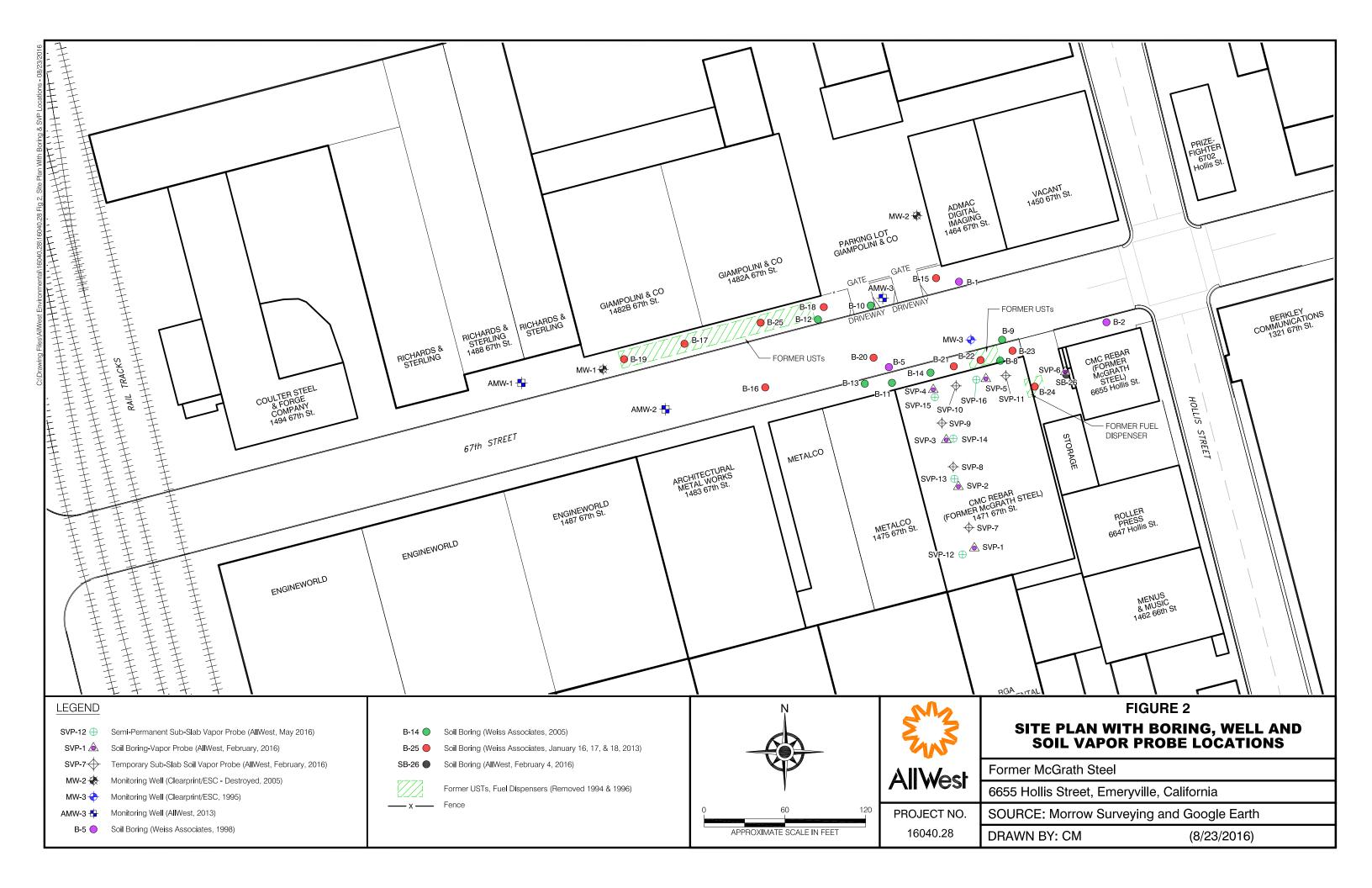
b6 - Lighter than water immiscible sheen/product is present.

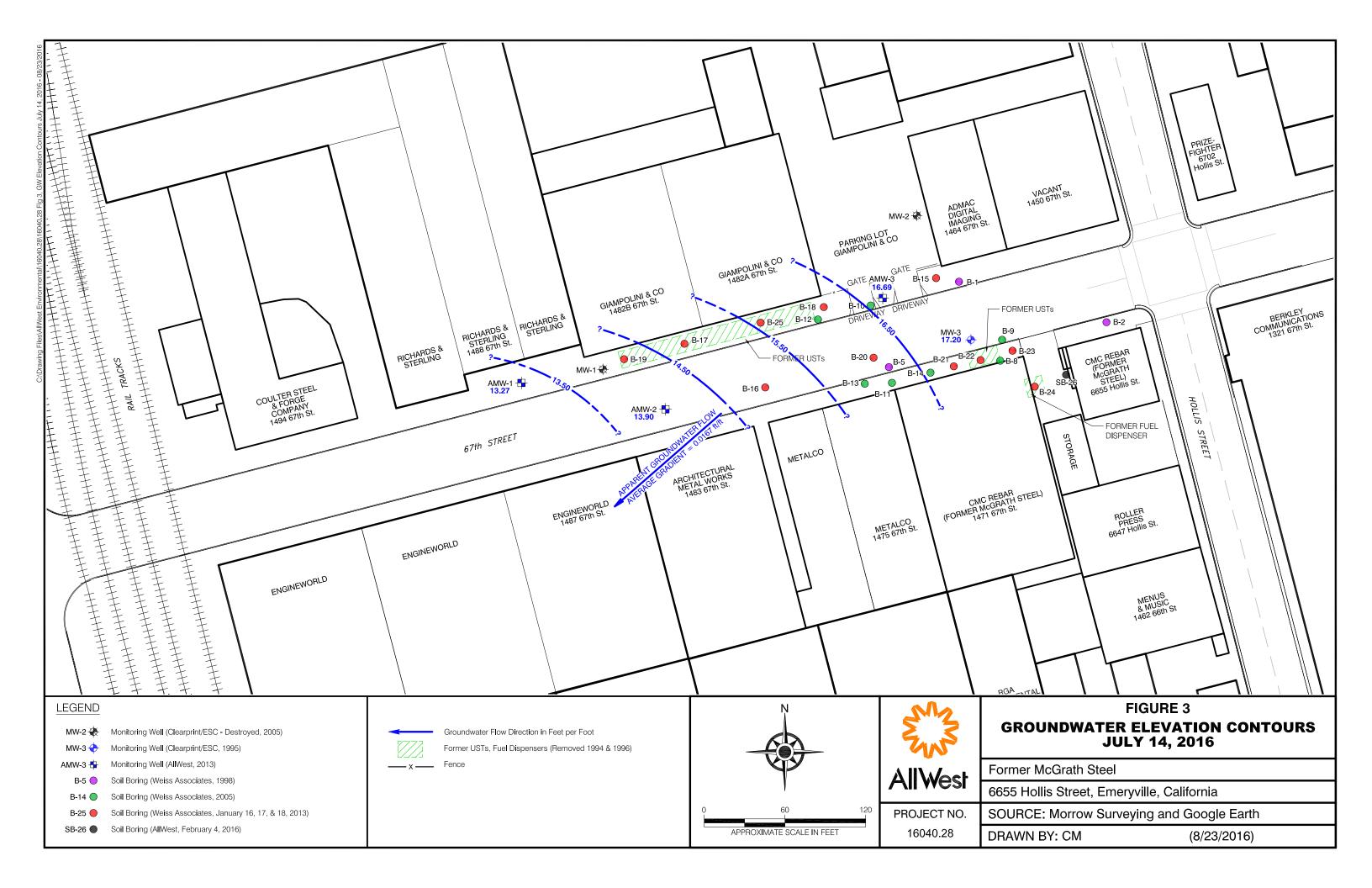
ON - Odor/Nuisance

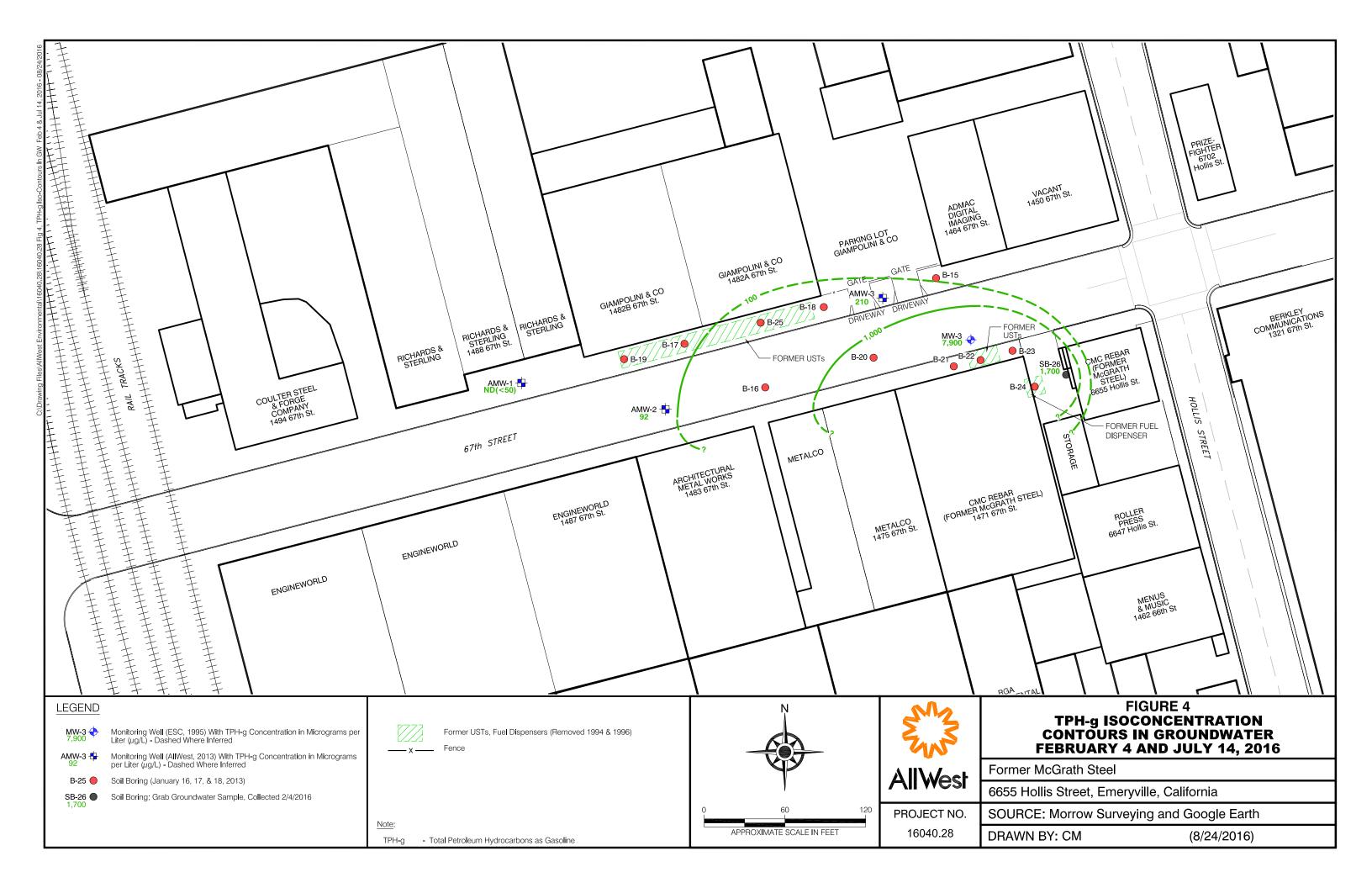
c1 - surrogate recovery outside of the control limits due to the dilution of the sample. GC - Gross Contamination VI - Vapor Intrusion

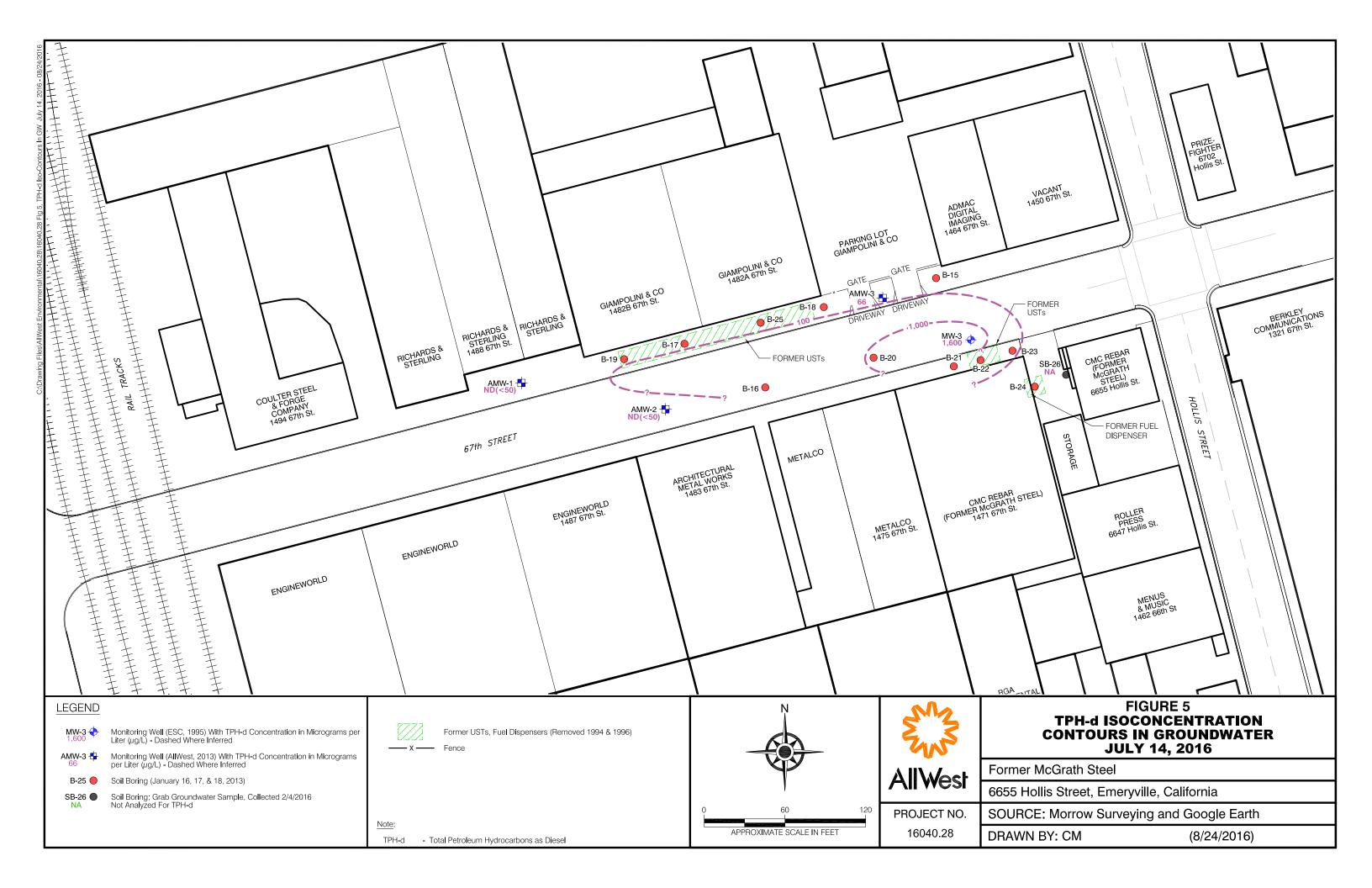
AGH - Aquatic Habitat Goal

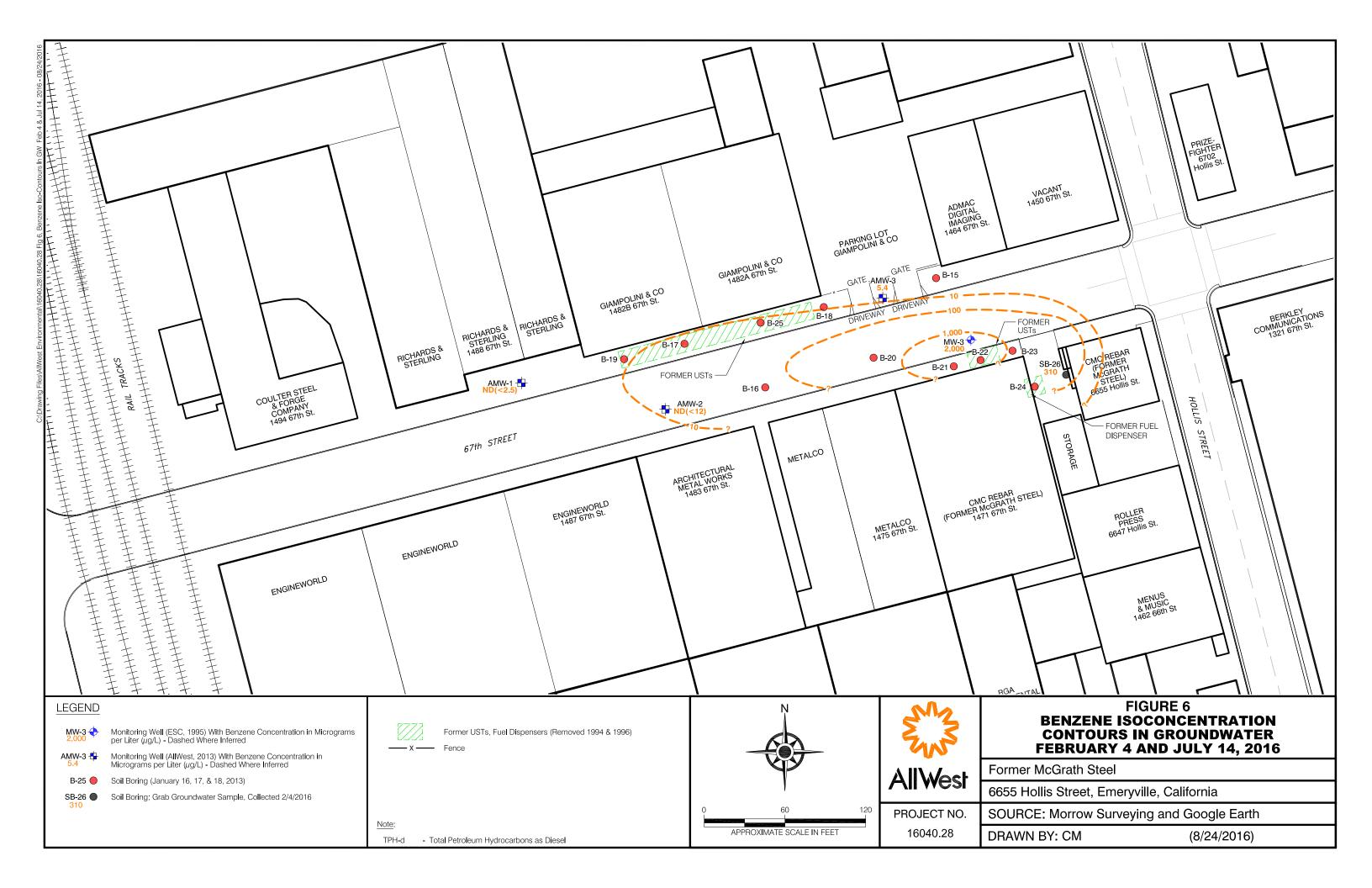

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for groundwater where groundwater is a potential drinking water resource from Table GW-1, *User's Guide: Derivation and Application of Environmental Screening Levels*, RWQCB, Interim Final - February 2016, Revision 3 (May 23, 2016).


San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for groundwater where groundwater is not a potential drinking water resource from Table GW-2, *User's Guide: Derivation and Application of Environmental Screening Levels*, RWQCB, Interim Final - February 2016, Revision 3 (May 23, 2016).


San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for evaluation of potential vapor intrusion, commercial/industrial land use, fine-coarse mix from Table GW-3, *User's Guide: Derivation and Application of Environmental Screening Levels,* RWQCB, Interim Final - February 2016, Revision 3 (May 23, 2016).


# **FIGURES**














# **APPENDIX A**



### **Groundwater Monitoring Well Development and Sampling**

Groundwater monitoring wells will be developed with the combination of surging and pumping actions. The wells will be alternately surged with a surging block for five minutes and pumped with a submersible pump for two minutes. The physical characteristics of the groundwater, such as water color and clarity, pH, temperature, and conductivity, will be monitored during well development. Well development will be considered complete when the groundwater is relatively sediment-free and groundwater characteristic indicators are stabilized (consecutive readings within 10% of each other).

Groundwater will be sampled from the developed wells no sooner than 48 hours after well development to allow stabilization of groundwater conditions. Prior to groundwater sampling, a proper purging process will be performed at each well. The purpose of well purging is to remove fine grained materials from the well casing and to allow fresh and more representative water to recharge the well. Prior to well purging, an electric water depth sounder will be lowered into the well casing to measure the depth to the water to the nearest 0.01 feet. A clear poly bailer will then be lowered into the well casing and partially submerged. Upon retrieval of the clear bailer, the surface of the water column retained in the bailer will be carefully examined for any floating product or product sheen.

After all initial measurements are completed and recorded, the well will be purged by an electrical submersible pump or a bailer. A minimum of 3 well volumes of groundwater will be purged and groundwater characteristics (temperature, pH, and conductivity) monitored at each well volume interval. Purging is considered complete when indicators are stabilized (consecutive readings within 10% of each other) and the purged water is relatively free of sediments.

Groundwater sampling will be conducted after the water level has recovered to at least 80% of the initial level, recorded prior to purging. The groundwater sample will be collected by a disposable bailer. Upon retrieval of the bailer, the retained water will be carefully transferred to appropriate sample bottle furnished by the analytical laboratory. All sample bottles will have a Teflon lined septum/cap and be filled such that no headspace is present. Then the sample bottles will be labeled and immediately placed on ice to preserve the chemical characteristics of its content.

To prevent cross contamination, all groundwater sampling equipment that comes in contact with the groundwater will be thoroughly decontaminated prior to sampling. A disposable bailer will be used to collect the groundwater samples. Sample handling, storage, and transport procedures described in the following sections will be employed. All well development and purging water will be temporarily stored on-site in 55-gallon drums awaiting test results to determine the proper disposal method.

# **APPENDIX B**

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PURGE TA                                 | ADIE                 | WELL ID: AMW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -/              |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| AllWest                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TORGETA                                  | ADLE                 | Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |  |  |  |  |  |  |  |
|                                                                 | Former M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grath Steel                              | LOCAT                | ION:6655 Hollis St.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>        |  |  |  |  |  |  |  |
| PROJECT NO                                                      | Former M.<br>0: 16040, 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201011101                                | DATEP                | URGED: 7/14/14/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emery VIlle     |  |  |  |  |  |  |  |
| PURGED/SA                                                       | MPLED BY: Leo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nard Vills                               | DATE S.              | AMPLED: 7 / 4 //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7               |  |  |  |  |  |  |  |
| TIME SAMPI                                                      | LED: 7:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                      | TO BOTTOM (feet): 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.43            |  |  |  |  |  |  |  |
| DEPTH TO W                                                      | VATER (feet): 8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82 ag: 14                                |                      | COLUMN HEIGHT (fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |  |  |  |  |
| CALCULATE                                                       | ED PURGE (gallon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s): 7,0                                  | CASING               | VOLUME (gallons):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.34            |  |  |  |  |  |  |  |
| ACTUAL PU                                                       | RGE (gallons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>7</sup> , 0                         |                      | Volume 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |  |  |  |  |  |  |  |
| DEVELOPMENT QUARTERLY BIANNUAL OTHER                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| SAMPLE TYI                                                      | PE: Groundwate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er S                                     | urface Water         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |  |  |  |  |
| CASING DIA<br>Casing Volum<br>(gallons per fo                   | METER: $2^{\infty} \times \frac{\times}{10^{-1}}$ ot): $1.6^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 3" 4"<br>16) (0.38)<br>E disposable ba | (0.66)<br>ilev ×36": | = 0.25 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | SUREMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| VOLUME                                                          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EMP PH                                   |                      | DISSOLVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |  |  |  |  |  |
| (gal)                                                           | I HIME I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | grees C) (units)                         | CONDUCTION (umhos/cr | VILY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TURBIDITY       |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (units)                                  | (unmos/ci            | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (NTU)           |  |  |  |  |  |  |  |
| 0.25                                                            | 16:37 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3 6.60                                  | 1,130                | - Allegania -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Silty           |  |  |  |  |  |  |  |
| 2.5<br>5.0                                                      | 16:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 666                                   | 11146                | - Comment of the Comm | Silty           |  |  |  |  |  |  |  |
| 3,0                                                             | 19:30 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,62                                     | 1-11-15              | Consequence of the second of t | SUTY            |  |  |  |  |  |  |  |
| 7 3                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (16 6.61                                 | 11176                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -\Silty         |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +/              |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE IN                                | FORMATION            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| SAMPLE INFORMATION  SAMPLE DEPTH TO WATER (feet): 895 Analyses: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| I                                                               | PURGING EQUII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PMENT                                    |                      | AMDI ING EQUIDAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
| _                                                               | SAMPLING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| Centrifugal                                                     | · ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ler (Teflon)                             | Centrifugal          | Pump Bailer (Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | flon            |  |  |  |  |  |  |  |
| Submersible                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ler (PVC or disposable)                  | Submersible          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cor disposable) |  |  |  |  |  |  |  |
| Peristalitic P<br>Purge Pump                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ler (Stainless Steel)                    | Peristaltic P        | umpBailer (Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ainless Steel)  |  |  |  |  |  |  |  |
| Other:                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Purge Pump           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| Comments: (                                                     | the second secon |                                          | Other:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
| Comments:                                                       | NUITUR PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                  |                            |                               |                        | WELL TO 1011/2                       |                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|----------------------------|-------------------------------|------------------------|--------------------------------------|-----------------|--|--|
| AINACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                  | PURGE T                    | ABLE                          |                        | L ID: <u>AMW</u> -                   |                 |  |  |
| All West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fire - DAM                                     |                  |                            |                               | 1                      | , ,                                  |                 |  |  |
| PROJECT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0: 16040                                       | McGro            | ath Steel                  |                               | OCATION:               | 6655 Hollis, St.,                    | Fmenyville      |  |  |
| PURGED/SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O: 16040,<br>AMPLED BY:                        | 1 0 2 101        | 11/1905                    |                               | MILL I ORGI            | D. 1/1 T/16                          |                 |  |  |
| TIME SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLED: 1/4/3                                    | Leonu            | wa Nic                     |                               |                        | LED: 7/14/1                          | <i>b</i>        |  |  |
| DEPTH TO W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER (feet):                                  | ): 9,53          | @9:1                       |                               |                        | OTTOM (feet): 'Z'<br>UMN HEIGHT (fee |                 |  |  |
| CALCULATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ED PURGE (g                                    | gallons):        | 9.78                       | C                             | 'ASING VOL             | UMN HEIGHT (fee<br>UME (gallons): 3  | x): 20.5 1      |  |  |
| ACTUAL PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JRGE (gallons)                                 | 9,7              | 5                          | >                             | ×3 1/06                | In 1.5                               | ,10             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEVELOPMENT QUARTERLY BIANNUAL \(\sum \) OTHER |                  |                            |                               |                        |                                      |                 |  |  |
| SAMPLE TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PE: Ground                                     | dwater _         | {                          | Surface W                     | Vater                  | Other                                |                 |  |  |
| SAMPLE TYPE: Groundwater $\times$ Surface Water Other  CASING DIAMETER: $2" \times 3 \ 3" \ 4"$ Casing Volume (0.16) (0.38) (0.66)  (gallons per foot): $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ $ .6" $ |                                                |                  |                            |                               |                        |                                      |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T                                              | ·                | FIELD MEA                  | ASUREM                        | IENTS                  |                                      |                 |  |  |
| VOLUME<br>(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIME                                           | TEMP (degrees    | * 1 * * * *                | 1                             | DUCTIVITY mhos/cm)     | DISSOLVED<br>OXYGEN                  | TURBIDITY (NTU) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10:34                                          | 21.8             | 6,32                       |                               | 92                     | (mg/L)                               | 1 , ' '         |  |  |
| 3,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10145                                          | 21,1             | 6.50                       | +1/5                          | 75                     |                                      | grey Kith       |  |  |
| 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10155                                          | 21,3             |                            | 1/25                          | 40                     |                                      | 9rey, 51/4/     |  |  |
| 9.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14:05                                          | 20.7             | 6.47                       | 1,58                          | 81                     |                                      | gray siltie     |  |  |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del> </del>                                   | ,                |                            |                               |                        |                                      |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                  |                            | 1                             |                        |                                      |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                  |                            | <del> </del>                  |                        |                                      |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                  |                            | +                             | IXI                    | LA non-oves=                         | NALLA           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                  |                            |                               | 1.71                   | 11111=7                              | PAITS           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                  | SAMPLE IN                  | FORMA                         |                        | LA volta                             | rna             |  |  |
| SAMPLE DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TH TO WAT                                      | ER (feet):       | : [U, [] An                | nalyses:2                     |                        | -c1=VOCs, 2×V                        | DASWHC1=TPH     |  |  |
| 80% RECHAR<br>ODOR: MOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                  | SAMPLE TURB                | BIDITY:                       | cloud                  | (4. /                                | . TPH-BAS       |  |  |
| ODOK: VIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAIVI                                          | PLEBUI           | TTLE/PRESERVA              | ATIVE: <u></u>                | 4×40Asu                | JHC1, 1x(CA)                         | W/HCl           |  |  |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PURGING E                                      | QUIPME           | NT                         |                               | SAMPLING EQUIPMENT     |                                      |                 |  |  |
| Contribucal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                                              | - ·: /m          |                            |                               |                        | DHIO EXCITETY                        | N I             |  |  |
| Centrifugal l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | Bailer (To       | Teflon) PVC or disposable) |                               | trifugal Pump          | Bailer (Tefl                         |                 |  |  |
| Peristalitic P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bailer (S                                      | Stainless Steel) | Subr                       | mersible Pump<br>staltic Pump |                        | or disposable)                       |                 |  |  |
| Purge Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | _ ,              |                            |                               | statue Pump<br>ge Pump | Bailer (Stair                        | nless Steel)    |  |  |
| Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | -                |                            | Other:                        | У                      |                                      |                 |  |  |
| Comments: Dolphin lock on cap, unlocked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                  |                            |                               |                        |                                      |                 |  |  |

|                                                                                                                                                                                                                                 | PURGE TABL                                              | E WEL Page                                                                         | WELL ID: AMW-3 Page of        |                    |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|--------------------|--|--|--|--|
| AllWest                                                                                                                                                                                                                         |                                                         |                                                                                    |                               |                    |  |  |  |  |
| SITE NAME: Former McC                                                                                                                                                                                                           | ovath Steel                                             | LOCATION: 6655 Hollis St., Emery ville                                             |                               |                    |  |  |  |  |
| PROJECT NO: 6040.28                                                                                                                                                                                                             | 1140                                                    | DATE PURGED: 7/14/16                                                               |                               |                    |  |  |  |  |
| PURGED/SAMPLED BY: Leav                                                                                                                                                                                                         | ravol NIES                                              | DATE SAMPLED: 7/14/16                                                              |                               |                    |  |  |  |  |
| TIME SAMPLED: 15:58                                                                                                                                                                                                             | (7) (0) (2) (2)                                         | DEPTH TO BOTTOM (feet): 22.22                                                      |                               |                    |  |  |  |  |
| DEPTH TO WATER (feet): S. GALCULATED PURGE (gallons)                                                                                                                                                                            | -1 (0 9; 23                                             | WATER COLUMN HEIGHT (feet): 13-75                                                  |                               |                    |  |  |  |  |
| ACTUAL PURGE (gallons) 6                                                                                                                                                                                                        | 76                                                      | CASING VOLUME (gallons): 2.20                                                      |                               |                    |  |  |  |  |
| ACTUAL PURGE (gallons) 675 X3 Volumes                                                                                                                                                                                           |                                                         |                                                                                    |                               |                    |  |  |  |  |
| DEVELOPMENT QUARTERLY BIANNUAL OTHER                                                                                                                                                                                            |                                                         |                                                                                    |                               |                    |  |  |  |  |
| SAMPLE TYPE: Groundwater Surface Water Other                                                                                                                                                                                    |                                                         |                                                                                    |                               |                    |  |  |  |  |
| CASING DIAMETER: $2^{n} \times 3^{n} = 4^{n}$ Casing Volume $(0.16)$ $(0.38)$ $(0.66)$ (gallons per foot): $1.6^{n}$ DFE disposable bailer $\times 36^{n} = 0.75$ gal                                                           |                                                         |                                                                                    |                               |                    |  |  |  |  |
| FIELD MEASUREMENTS                                                                                                                                                                                                              |                                                         |                                                                                    |                               |                    |  |  |  |  |
| B   f   N/1 →                                                                                                                                                                                                                   | EMP PH Corees C) (units)                                | ONDUCTIVITY (umhos/cm)                                                             | DISSOLVED<br>OXYGEN<br>(mg/L) | TURBIDITY<br>(NTU) |  |  |  |  |
| 0,25 15:27 20.                                                                                                                                                                                                                  | 9 6.61 1                                                | 241                                                                                | (116 2)                       | clouds             |  |  |  |  |
|                                                                                                                                                                                                                                 | 0 659 1                                                 | ,065                                                                               |                               | cloudy fre         |  |  |  |  |
| 4.55 NS 15:43 21.                                                                                                                                                                                                               | 5 6.61                                                  | 1997                                                                               |                               | silty arev         |  |  |  |  |
| 6,13 15:51 21                                                                                                                                                                                                                   | 6 6,61                                                  | 985                                                                                |                               | SIHV. grey         |  |  |  |  |
|                                                                                                                                                                                                                                 |                                                         |                                                                                    |                               | 1.72               |  |  |  |  |
|                                                                                                                                                                                                                                 |                                                         |                                                                                    |                               |                    |  |  |  |  |
|                                                                                                                                                                                                                                 |                                                         |                                                                                    |                               |                    |  |  |  |  |
|                                                                                                                                                                                                                                 |                                                         |                                                                                    |                               | ·                  |  |  |  |  |
|                                                                                                                                                                                                                                 |                                                         | · · · · · · · · · · · · · · · · · · ·                                              |                               |                    |  |  |  |  |
|                                                                                                                                                                                                                                 | CAMPIE INFO                                             | NA TION                                                                            |                               |                    |  |  |  |  |
| SAMPLE INFORMATION  SAMPLE DEPTH TO WATER (feet): 8.6   Analyses: UUCS, TPH-9/ms, TPH-d, PAHS  80% RECHARGE: (Y/N (1(.22)) SAMPLE TURBIDITY: cloudy to sifty, grey  ODOR: 10 SAMPLE BOTTLE/PRESERVATIVE: 4×10As with (1×14m/HC) |                                                         |                                                                                    |                               |                    |  |  |  |  |
| PURGING EQUIPMENT SAMPLING EQUIPMENT                                                                                                                                                                                            |                                                         |                                                                                    |                               |                    |  |  |  |  |
| Centrifugal PumpBaile<br>Submersible PumpBaile<br>Peristalitic PumpBaile<br>Purge Pump<br>Other:                                                                                                                                | er (Teflon) er (PVC or disposable) er (Stainless Steel) | _Centrifugal Pump<br>_Submersible Pump<br>_Peristaltic Pump<br>_Purge Pump<br>her: | Bailer (Tefl                  |                    |  |  |  |  |
| Did not bail dry, recovered quickly                                                                                                                                                                                             |                                                         |                                                                                    |                               |                    |  |  |  |  |

| All West                                                                                                                                                                                                                                | PURGE TABI                                                 | LE W.                                                                                                                                                                                                 | WELL ID: MW-3 Page of      |                                                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|--|--|--|--|
| SITE NAME: Former McC<br>PROJECT NO: 16040, 28<br>PURGED/SAMPLED BY: Leon<br>TIME SAMPLED: 13:15<br>DEPTH TO WATER (feet): Froduct<br>CALCULATED PURGE (gallons)                                                                        | nard Niles<br>water-8;<br>1-8,351 @912                     | LOCATION: 6655, Hollis, St, Emeryville DATE PURGED: 7/14/16  DATE SAMPLED: 7/14/16  37 DEPTH TO BOTTOM (feet): 29.50  8 WATER COLUMN HEIGHT (feet): 2/./3  CASING VOLUME (gallons): 3,38  X3 Volume 5 |                            |                                                                    |  |  |  |  |
| DEVELOPMENT QUARTERLY BIANNUAL OTHER SAMPLE TYPE: Groundwater Surface Water Other                                                                                                                                                       |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |
| CASING DIAMETER: $2^{n} \times 3^{n} = 4^{n}$ Casing Volume $(0.16)$ $(0.38)$ $(0.66)$ (gallons per foot): $(0.6)$ $(0.66)$                                                                                                             |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                         | FIELD MEASU                                                | REMENTS                                                                                                                                                                                               |                            |                                                                    |  |  |  |  |
| (gal) TIME (degr                                                                                                                                                                                                                        | EMP PH (units)                                             | CONDUCTIVI<br>(umhos/cm)                                                                                                                                                                              | TY DISSOLVED OXYGEN (mg/L) | TURBIDITY<br>(NTU)                                                 |  |  |  |  |
| $\begin{array}{c cccc} 0.25 &   .45 & 20 \\ 3.5 &   .207 & 20 \\ 7.0 &   .223 & 20 \\ 10.25 &   .2.39 & 20 \end{array}$                                                                                                                 | 0.5 6.37<br>6.3 6.38<br>6.40<br>7.1 6.41                   | 1,572<br>1,535<br>1,537<br>1,594                                                                                                                                                                      |                            | cloudy fy<br>droplets<br>grey, sitty<br>grey, sitty<br>grey, sitty |  |  |  |  |
|                                                                                                                                                                                                                                         |                                                            |                                                                                                                                                                                                       |                            | ,                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                         |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |
| SAMPLE INFORMATION  SAMPLE DEPTH TO WATER (feet): 12,60 Analyses: 1005, Tht-g/Tht-ms, Tht-dhatte  80% RECHARGE: Y/N (12,60') SAMPLE TURBIDITY: 2000 Jayey  ODOR: HC SAMPLE BOTTLE/PRESERVATIVE: 4×40ml VOA WHOLLIK (LAWHOLLIK)          |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |
| PURGING EQUIPMENT SAMPLING EQUIPMENT                                                                                                                                                                                                    |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |
| Submersible PumpBailePeristalitic PumpBailePurge Pump Other:                                                                                                                                                                            | er (Teflon) er (PVC of disposable) er (Stainless Steel) Or | Centrifugal Pump Submersible Pump Peristaltic Pump Purge Pump ler:                                                                                                                                    |                            |                                                                    |  |  |  |  |
| Comments: Unlocked, Vant box partially theoded-couldn't bent.  Casoline odor in well. 0,02 ft free froduct in well.  RODIFT product in bailer-brown theodor droplets in water  slow water evel recovery after purginal did not had devi |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |
| No measureable product that hess post-purge, Installed passive combtex product stimmer after sampling, 7,5+10+ cable from ToC, float travel 7,5-10 + below toc                                                                          |                                                            |                                                                                                                                                                                                       |                            |                                                                    |  |  |  |  |

# APPENDIX C



"When Quality Counts"

### **Analytical Report**

**WorkOrder:** 1607641

**Report Created for:** All West Environmental, Inc

2141 Mission Street, Ste 100 San Francisco, CA 94110

**Project Contact:** Leonard Niles

**Project P.O.:** 

**Project Name:** Hollis- GWM 2016

**Project Received:** 07/15/2016

Analytical Report reviewed & approved for release on 07/22/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.



1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

#### **Glossary of Terms & Qualifier Definitions**

Client: All West Environmental, Inc Project: 16040.28; Hollis-GWM 2016

WorkOrder: 1607641

#### **Glossary Abbreviation**

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

### **Glossary of Terms & Qualifier Definitions**

Client: All West Environmental, Inc Project: 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

#### **Analytical Qualifiers**

S Surrogate spike recovery outside accepted recovery limits

c4 surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.

d1 weakly modified or unmodified gasoline is significant

e4 gasoline range compounds are significant.

#### **Quality Control Qualifiers**

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.



### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date (           | Collected | Instrument | Batch ID         |
|-------------------------------|--------------|--------|------------------|-----------|------------|------------------|
| AMW-1                         | 1607641-001B | Water  | 07/14/2016 17:08 |           | GC16       | 124066           |
| Analytes                      | Result       |        | <u>RL</u>        | <u>DF</u> |            | Date Analyzed    |
| Acetone                       | ND           |        | 50               | 5         |            | 07/21/2016 12:30 |
| tert-Amyl methyl ether (TAME) | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Benzene                       | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Bromobenzene                  | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Bromochloromethane            | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Bromodichloromethane          | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Bromoform                     | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Bromomethane                  | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 2-Butanone (MEK)              | ND           |        | 10               | 5         |            | 07/21/2016 12:30 |
| t-Butyl alcohol (TBA)         | 82           |        | 10               | 5         |            | 07/21/2016 12:30 |
| n-Butyl benzene               | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| sec-Butyl benzene             | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| tert-Butyl benzene            | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Carbon Disulfide              | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Carbon Tetrachloride          | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Chlorobenzene                 | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Chloroethane                  | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Chloroform                    | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Chloromethane                 | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 2-Chlorotoluene               | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 4-Chlorotoluene               | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Dibromochloromethane          | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,2-Dibromo-3-chloropropane   | ND           |        | 1.0              | 5         |            | 07/21/2016 12:30 |
| 1,2-Dibromoethane (EDB)       | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Dibromomethane                | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,2-Dichlorobenzene           | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,3-Dichlorobenzene           | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,4-Dichlorobenzene           | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| Dichlorodifluoromethane       | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,1-Dichloroethane            | 2.9          |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,2-Dichloroethane (1,2-DCA)  | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,1-Dichloroethene            | 62           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| cis-1,2-Dichloroethene        | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| trans-1,2-Dichloroethene      | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,2-Dichloropropane           | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 1,3-Dichloropropane           | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
| 2,2-Dichloropropane           | ND           |        | 2.5              | 5         |            | 07/21/2016 12:30 |
|                               |              |        |                  |           |            |                  |

(Cont.)



### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID        | Matrix | Date C    | Collected Instrument | Batch ID         |  |
|-------------------------------|---------------|--------|-----------|----------------------|------------------|--|
| AMW-1                         | 1607641-001B  | Water  | 07/14/2   | 016 17:08 GC16       | 124066           |  |
| <u>Analytes</u>               | <u>Result</u> |        | <u>RL</u> | <u>DF</u>            | Date Analyzed    |  |
| 1,1-Dichloropropene           | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| cis-1,3-Dichloropropene       | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| trans-1,3-Dichloropropene     | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Diisopropyl ether (DIPE)      | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Ethylbenzene                  | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Ethyl tert-butyl ether (ETBE) | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Freon 113                     | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Hexachlorobutadiene           | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Hexachloroethane              | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 2-Hexanone                    | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Isopropylbenzene              | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 4-Isopropyl toluene           | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Methyl-t-butyl ether (MTBE)   | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Methylene chloride            | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 4-Methyl-2-pentanone (MIBK)   | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Naphthalene                   | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| n-Propyl benzene              | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Styrene                       | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,1,1,2-Tetrachloroethane     | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,1,2,2-Tetrachloroethane     | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Tetrachloroethene             | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Toluene                       | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,2,3-Trichlorobenzene        | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,2,4-Trichlorobenzene        | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,1,1-Trichloroethane         | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,1,2-Trichloroethane         | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Trichloroethene               | 9.4           |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Trichlorofluoromethane        | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,2,3-Trichloropropane        | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,2,4-Trimethylbenzene        | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| 1,3,5-Trimethylbenzene        | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Vinyl Chloride                | ND            |        | 2.5       | 5                    | 07/21/2016 12:30 |  |
| Xylenes, Total                | 2.8           |        | 2.5       | 5                    | 07/21/2016 12:30 |  |

### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method: SW5030B** 

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

| <b>Volatile Organics</b> | by P&T and | GC/MS    | (Basic Target List) |
|--------------------------|------------|----------|---------------------|
| , 0100110 01501100       | ~,         | 0 0,1.20 | (20010 20150        |

| Client ID            | Lab ID         | Matrix | Date C        | ollected Instrument | Batch ID         |  |
|----------------------|----------------|--------|---------------|---------------------|------------------|--|
| AMW-1                | 1607641-001B   | Water  | 07/14/20      | 116 17:08 GC16      | 124066           |  |
| <u>Analytes</u>      | Result         |        | <u>RL</u>     | <u>DF</u>           | Date Analyzed    |  |
| Surrogates           | <u>REC (%)</u> |        | <u>Limits</u> |                     |                  |  |
| Dibromofluoromethane | 99             |        | 70-130        |                     | 07/21/2016 12:30 |  |
| Toluene-d8           | 108            |        | 70-130        |                     | 07/21/2016 12:30 |  |
| 4-BFB                | 85             |        | 70-130        |                     | 07/21/2016 12:30 |  |



### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date (    | Collected Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|----------------------|------------------|
| AMW-2                         | 1607641-002B | Water  | 07/14/2   | 016 11:13 GC16       | 124066           |
| <u>Analytes</u>               | Result       |        | <u>RL</u> | <u>DF</u>            | Date Analyzed    |
| Acetone                       | ND           |        | 250       | 25                   | 07/21/2016 13:11 |
| tert-Amyl methyl ether (TAME) | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Benzene                       | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Bromobenzene                  | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Bromochloromethane            | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Bromodichloromethane          | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Bromoform                     | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Bromomethane                  | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 2-Butanone (MEK)              | ND           |        | 50        | 25                   | 07/21/2016 13:11 |
| t-Butyl alcohol (TBA)         | ND           |        | 50        | 25                   | 07/21/2016 13:11 |
| n-Butyl benzene               | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| sec-Butyl benzene             | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| tert-Butyl benzene            | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Carbon Disulfide              | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Carbon Tetrachloride          | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Chlorobenzene                 | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Chloroethane                  | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Chloroform                    | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Chloromethane                 | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 2-Chlorotoluene               | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 4-Chlorotoluene               | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Dibromochloromethane          | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2-Dibromo-3-chloropropane   | ND           |        | 5.0       | 25                   | 07/21/2016 13:11 |
| 1,2-Dibromoethane (EDB)       | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Dibromomethane                | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2-Dichlorobenzene           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,3-Dichlorobenzene           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,4-Dichlorobenzene           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Dichlorodifluoromethane       | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,1-Dichloroethane            | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2-Dichloroethane (1,2-DCA)  | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,1-Dichloroethene            | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| cis-1,2-Dichloroethene        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| trans-1,2-Dichloroethene      | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2-Dichloropropane           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,3-Dichloropropane           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 2,2-Dichloropropane           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
|                               |              |        |           |                      |                  |

(Cont.)

Angela Rydelius, Lab Manager

### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date (    | Collected Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|----------------------|------------------|
| AMW-2                         | 1607641-002B | Water  | 07/14/2   | 2016 11:13 GC16      | 124066           |
| Analytes                      | Result       |        | <u>RL</u> | <u>DF</u>            | Date Analyzed    |
| 1,1-Dichloropropene           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| cis-1,3-Dichloropropene       | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| trans-1,3-Dichloropropene     | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Diisopropyl ether (DIPE)      | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Ethylbenzene                  | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Ethyl tert-butyl ether (ETBE) | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Freon 113                     | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Hexachlorobutadiene           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Hexachloroethane              | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 2-Hexanone                    | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Isopropylbenzene              | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 4-Isopropyl toluene           | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Methyl-t-butyl ether (MTBE)   | 360          |        | 12        | 25                   | 07/21/2016 13:11 |
| Methylene chloride            | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 4-Methyl-2-pentanone (MIBK)   | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Naphthalene                   | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| n-Propyl benzene              | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Styrene                       | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,1,1,2-Tetrachloroethane     | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,1,2,2-Tetrachloroethane     | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Tetrachloroethene             | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Toluene                       | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2,3-Trichlorobenzene        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2,4-Trichlorobenzene        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,1,1-Trichloroethane         | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,1,2-Trichloroethane         | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Trichloroethene               | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Trichlorofluoromethane        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2,3-Trichloropropane        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,2,4-Trimethylbenzene        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| 1,3,5-Trimethylbenzene        | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Vinyl Chloride                | ND           |        | 12        | 25                   | 07/21/2016 13:11 |
| Xylenes, Total                | ND           |        | 12        | 25                   | 07/21/2016 13:11 |

### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016 WorkOrder: 1607641

**Extraction Method: SW5030B** 

Analytical Method: SW8260B

Unit:  $\mu g/L$ 

| Volatile Organics | by P&T and GC/MS | S (Basic Target List) |
|-------------------|------------------|-----------------------|
|                   |                  |                       |

| Client ID            | Lab ID         | Matrix | Date Co               | ollected Instrument | Batch ID         |  |
|----------------------|----------------|--------|-----------------------|---------------------|------------------|--|
| AMW-2                | 1607641-002B   | Water  | 07/14/2016 11:13 GC16 |                     | 124066           |  |
| <u>Analytes</u>      | Result         |        | <u>RL</u>             | <u>DF</u>           | Date Analyzed    |  |
| Surrogates           | <u>REC (%)</u> |        | <u>Limits</u>         |                     |                  |  |
| Dibromofluoromethane | 97             |        | 70-130                |                     | 07/21/2016 13:11 |  |
| Toluene-d8           | 109            |        | 70-130                |                     | 07/21/2016 13:11 |  |
| 4-BFB                | 83             |        | 70-130                |                     | 07/21/2016 13:11 |  |
| Analyst(s): MW       |                |        |                       |                     |                  |  |



### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date C          | Collected | Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------------|-----------|------------|------------------|
| MW-3                          | 1607641-003B | Water  | 07/14/2016 13:1 |           | GC16       | 124066           |
| Analytes                      | Result       |        | <u>RL</u>       | <u>DF</u> |            | Date Analyzed    |
| Acetone                       | ND           |        | 1000            | 100       |            | 07/21/2016 13:53 |
| tert-Amyl methyl ether (TAME) | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Benzene                       | 2000         |        | 50              | 100       |            | 07/21/2016 13:53 |
| Bromobenzene                  | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Bromochloromethane            | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Bromodichloromethane          | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Bromoform                     | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Bromomethane                  | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 2-Butanone (MEK)              | ND           |        | 200             | 100       |            | 07/21/2016 13:53 |
| t-Butyl alcohol (TBA)         | 1000         |        | 200             | 100       |            | 07/21/2016 13:53 |
| n-Butyl benzene               | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| sec-Butyl benzene             | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| tert-Butyl benzene            | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Carbon Disulfide              | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Carbon Tetrachloride          | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Chlorobenzene                 | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Chloroethane                  | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Chloroform                    | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Chloromethane                 | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 2-Chlorotoluene               | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 4-Chlorotoluene               | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Dibromochloromethane          | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,2-Dibromo-3-chloropropane   | ND           |        | 20              | 100       |            | 07/21/2016 13:53 |
| 1,2-Dibromoethane (EDB)       | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Dibromomethane                | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,2-Dichlorobenzene           | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,3-Dichlorobenzene           | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,4-Dichlorobenzene           | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| Dichlorodifluoromethane       | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,1-Dichloroethane            | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,2-Dichloroethane (1,2-DCA)  | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,1-Dichloroethene            | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| cis-1,2-Dichloroethene        | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| trans-1,2-Dichloroethene      | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,2-Dichloropropane           | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 1,3-Dichloropropane           | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
| 2,2-Dichloropropane           | ND           |        | 50              | 100       |            | 07/21/2016 13:53 |
|                               |              |        |                 |           |            |                  |

(Cont.)

Angela Rydelius, Lab Manager

### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date (    | Collected Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|----------------------|------------------|
| MW-3                          | 1607641-003B | Water  | 07/14/2   | 016 13:15 GC16       | 124066           |
| <u>Analytes</u>               | Result       |        | <u>RL</u> | <u>DF</u>            | Date Analyzed    |
| 1,1-Dichloropropene           | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| cis-1,3-Dichloropropene       | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| trans-1,3-Dichloropropene     | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Diisopropyl ether (DIPE)      | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Ethylbenzene                  | 430          |        | 50        | 100                  | 07/21/2016 13:53 |
| Ethyl tert-butyl ether (ETBE) | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Freon 113                     | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Hexachlorobutadiene           | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Hexachloroethane              | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 2-Hexanone                    | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Isopropylbenzene              | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 4-Isopropyl toluene           | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Methyl-t-butyl ether (MTBE)   | 790          |        | 50        | 100                  | 07/21/2016 13:53 |
| Methylene chloride            | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 4-Methyl-2-pentanone (MIBK)   | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Naphthalene                   | 170          |        | 50        | 100                  | 07/21/2016 13:53 |
| n-Propyl benzene              | 91           |        | 50        | 100                  | 07/21/2016 13:53 |
| Styrene                       | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,1,1,2-Tetrachloroethane     | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,1,2,2-Tetrachloroethane     | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Tetrachloroethene             | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Toluene                       | 220          |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,2,3-Trichlorobenzene        | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,2,4-Trichlorobenzene        | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,1,1-Trichloroethane         | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,1,2-Trichloroethane         | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Trichloroethene               | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Trichlorofluoromethane        | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,2,3-Trichloropropane        | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,2,4-Trimethylbenzene        | 280          |        | 50        | 100                  | 07/21/2016 13:53 |
| 1,3,5-Trimethylbenzene        | 71           |        | 50        | 100                  | 07/21/2016 13:53 |
| Vinyl Chloride                | ND           |        | 50        | 100                  | 07/21/2016 13:53 |
| Xylenes, Total                | 820          |        | 50        | 100                  | 07/21/2016 13:53 |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method: SW5030B** 

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

| Client ID            | Lab ID         | Matrix | Date C        | ollected Instrument | Batch ID         |  |  |
|----------------------|----------------|--------|---------------|---------------------|------------------|--|--|
| MW-3                 | 1607641-003B   | Water  | 07/14/20      | 016 13:15 GC16      | 124066           |  |  |
| <u>Analytes</u>      | Result         |        | <u>RL</u>     | <u>DF</u>           | Date Analyzed    |  |  |
| <u>Surrogates</u>    | <u>REC (%)</u> |        | <u>Limits</u> |                     |                  |  |  |
| Dibromofluoromethane | 97             |        | 70-130        |                     | 07/21/2016 13:53 |  |  |
| Toluene-d8           | 109            |        | 70-130        |                     | 07/21/2016 13:53 |  |  |
| 4-BFB                | 83             |        | 70-130        |                     | 07/21/2016 13:53 |  |  |



### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016 WorkOrder: 1607641

**Extraction Method: SW5030B** Analytical Method: SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date C    | Batch ID       |                  |
|-------------------------------|--------------|--------|-----------|----------------|------------------|
| AMW-3                         | 1607641-004B | Water  | 07/14/20  | 016 15:58 GC16 | 124066           |
| Analytes                      | Result       |        | <u>RL</u> | <u>DF</u>      | Date Analyzed    |
| Acetone                       | ND           |        | 100       | 10             | 07/21/2016 15:56 |
| tert-Amyl methyl ether (TAME) | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Benzene                       | 5.4          |        | 5.0       | 10             | 07/21/2016 15:56 |
| Bromobenzene                  | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Bromochloromethane            | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Bromodichloromethane          | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Bromoform                     | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Bromomethane                  | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 2-Butanone (MEK)              | ND           |        | 20        | 10             | 07/21/2016 15:56 |
| t-Butyl alcohol (TBA)         | ND           |        | 20        | 10             | 07/21/2016 15:56 |
| n-Butyl benzene               | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| sec-Butyl benzene             | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| tert-Butyl benzene            | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Carbon Disulfide              | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Carbon Tetrachloride          | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Chlorobenzene                 | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Chloroethane                  | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Chloroform                    | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Chloromethane                 | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 2-Chlorotoluene               | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 4-Chlorotoluene               | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Dibromochloromethane          | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,2-Dibromo-3-chloropropane   | ND           |        | 2.0       | 10             | 07/21/2016 15:56 |
| 1,2-Dibromoethane (EDB)       | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Dibromomethane                | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,2-Dichlorobenzene           | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,3-Dichlorobenzene           | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,4-Dichlorobenzene           | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| Dichlorodifluoromethane       | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,1-Dichloroethane            | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,2-Dichloroethane (1,2-DCA)  | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,1-Dichloroethene            | 120          |        | 5.0       | 10             | 07/21/2016 15:56 |
| cis-1,2-Dichloroethene        | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| trans-1,2-Dichloroethene      | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,2-Dichloropropane           | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 1,3-Dichloropropane           | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |
| 2,2-Dichloropropane           | ND           |        | 5.0       | 10             | 07/21/2016 15:56 |

(Cont.)

Angela Rydelius, Lab Manager

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

#### Volatile Organics by P&T and GC/MS (Basic Target List)

| Client ID                     | Lab ID       | Matrix | Date (    | Collected Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|----------------------|------------------|
| AMW-3                         | 1607641-004B | Water  | 07/14/2   | 016 15:58 GC16       | 124066           |
| Analytes                      | Result       |        | <u>RL</u> | <u>DF</u>            | Date Analyzed    |
| 1,1-Dichloropropene           | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| cis-1,3-Dichloropropene       | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| trans-1,3-Dichloropropene     | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Diisopropyl ether (DIPE)      | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Ethylbenzene                  | 12           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Ethyl tert-butyl ether (ETBE) | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Freon 113                     | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Hexachlorobutadiene           | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Hexachloroethane              | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 2-Hexanone                    | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Isopropylbenzene              | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 4-Isopropyl toluene           | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Methyl-t-butyl ether (MTBE)   | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Methylene chloride            | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 4-Methyl-2-pentanone (MIBK)   | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Naphthalene                   | 5.1          |        | 5.0       | 10                   | 07/21/2016 15:56 |
| n-Propyl benzene              | 6.3          |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Styrene                       | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,1,1,2-Tetrachloroethane     | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,1,2,2-Tetrachloroethane     | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Tetrachloroethene             | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Toluene                       | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,2,3-Trichlorobenzene        | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,2,4-Trichlorobenzene        | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,1,1-Trichloroethane         | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,1,2-Trichloroethane         | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Trichloroethene               | 18           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Trichlorofluoromethane        | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,2,3-Trichloropropane        | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,2,4-Trimethylbenzene        | 10           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| 1,3,5-Trimethylbenzene        | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Vinyl Chloride                | ND           |        | 5.0       | 10                   | 07/21/2016 15:56 |
| Xylenes, Total                | 24           |        | 5.0       | 10                   | 07/21/2016 15:56 |

### **Analytical Report**

**Client:** All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

Unit: μg/L

#### **Volatile Organics by P&T and GC/MS (Basic Target List)**

| Lab ID       | Matrix                                | Date Collected Instru                       | ıment Batch ID                                                                                                          |
|--------------|---------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1607641-004B | Water                                 | 07/14/2016 15:58 GC16                       | 124066                                                                                                                  |
| Result       |                                       | <u>RL</u> <u>DF</u>                         | Date Analyzed                                                                                                           |
| REC (%)      |                                       | <u>Limits</u>                               |                                                                                                                         |
| 100          |                                       | 70-130                                      | 07/21/2016 15:56                                                                                                        |
| 108          |                                       | 70-130                                      | 07/21/2016 15:56                                                                                                        |
| 86           |                                       | 70-130                                      | 07/21/2016 15:56                                                                                                        |
|              | 1607641-004B  Result  REC (%) 100 108 | 1607641-004B Water  Result  REC (%) 100 108 | Result         RL         DF           REC (%)         Limits           100         70-130           108         70-130 |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45 **Date Prepared:** 7/20/16-7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

| TPH(g) by Purge & Trap and GC/MS |                |        |                     |            |                  |  |  |
|----------------------------------|----------------|--------|---------------------|------------|------------------|--|--|
| Client ID                        | Lab ID         | Matrix | Date Collected      | Instrument | Batch ID         |  |  |
| AMW-1                            | 1607641-001B   | Water  | 07/14/2016 17:08    | GC16       | 124066           |  |  |
| Analytes                         | Result         |        | <u>RL</u> <u>DF</u> |            | Date Analyzed    |  |  |
| TPH(g)                           | ND             |        | 50 1                |            | 07/20/2016 22:05 |  |  |
| Surrogates                       | <u>REC (%)</u> |        | <u>Limits</u>       |            |                  |  |  |
| Dibromofluoromethane             | 101            |        | 70-130              |            | 07/20/2016 22:05 |  |  |
| Analyst(s): KF                   |                |        |                     |            |                  |  |  |
| Client ID                        | Lab ID         | Matrix | Date Collected      | Instrument | Batch ID         |  |  |
| AMW-2                            | 1607641-002B   | Water  | 07/14/2016 11:13    | GC16       | 124066           |  |  |
| Analytes                         | <u>Result</u>  |        | <u>RL</u> <u>DF</u> |            | Date Analyzed    |  |  |
| TPH(g)                           | 92             |        | 50 1                |            | 07/20/2016 22:45 |  |  |
| Surrogates                       | <u>REC (%)</u> |        | <u>Limits</u>       |            |                  |  |  |
| Dibromofluoromethane             | 99             |        | 70-130              |            | 07/20/2016 22:45 |  |  |
| Analyst(s): KF                   |                |        |                     |            |                  |  |  |
| Client ID                        | Lab ID         | Matrix | Date Collected      | Instrument | Batch ID         |  |  |
| MW-3                             | 1607641-003B   | Water  | 07/14/2016 13:15    | GC16       | 124066           |  |  |
| Analytes                         | <u>Result</u>  |        | <u>RL</u> <u>DF</u> |            | Date Analyzed    |  |  |
| TPH(g)                           | 7900           |        | 500 10              |            | 07/20/2016 23:24 |  |  |
| Surrogates                       | REC (%)        |        | <u>Limits</u>       |            |                  |  |  |
| Dibromofluoromethane             | 100            |        | 70-130              |            | 07/20/2016 23:24 |  |  |
| Analyst(s): KF                   |                |        |                     |            |                  |  |  |
| Client ID                        | Lab ID         | Matrix | Date Collected      | Instrument | Batch ID         |  |  |
| AMW-3                            | 1607641-004B   | Water  | 07/14/2016 15:58    | GC16       | 124066           |  |  |
| <u>Analytes</u>                  | <u>Result</u>  |        | <u>RL</u> <u>DF</u> |            | Date Analyzed    |  |  |
| TPH(g)                           | 210            |        | 50 1                |            | 07/21/2016 00:04 |  |  |
| Surrogates                       | REC (%)        |        | <u>Limits</u>       |            |                  |  |  |
| Dibromofluoromethane             | 103            |        | 70-130              |            | 07/21/2016 00:04 |  |  |
| Analyst(s): KF                   |                |        |                     |            |                  |  |  |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45 **Date Prepared:** 7/19/16

**Project:** 16040.28; Hollis-GWM 2016

WorkOrder: 1607641 Extraction Method: SW3510C

**Analytical Method:** SW8270C-SIM

Unit:  $\mu g/L$ 

| Client ID                | Lab ID         | Matrix | Date C        | Collected Instrument | Batch ID         |
|--------------------------|----------------|--------|---------------|----------------------|------------------|
| AMW-1                    | 1607641-001C   | Water  | 07/14/20      | 016 17:08 GC17       | 123974           |
| <u>Analytes</u>          | Result         |        | <u>RL</u>     | <u>DF</u>            | Date Analyzed    |
| Acenaphthene             | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Acenaphthylene           | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Anthracene               | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Benzo (a) anthracene     | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Benzo (a) pyrene         | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Benzo (b) fluoranthene   | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Benzo (g,h,i) perylene   | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Benzo (k) fluoranthene   | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Chrysene                 | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Dibenzo (a,h) anthracene | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Fluoranthene             | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Fluorene                 | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| 1-Methylnaphthalene      | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| 2-Methylnaphthalene      | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Naphthalene              | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Phenanthrene             | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| Pyrene                   | ND             |        | 0.50          | 1                    | 07/19/2016 16:56 |
| <u>Surrogates</u>        | <u>REC (%)</u> |        | <u>Limits</u> |                      |                  |
| 1-Fluoronaphthalene      | 66             |        | 30-130        |                      | 07/19/2016 16:56 |
| 2-Fluorobiphenyl         | 63             |        | 30-130        |                      | 07/19/2016 16:56 |
| Analyst(s): REB          |                |        |               |                      |                  |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/19/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW3510C

**Analytical Method:** SW8270C-SIM

Unit:  $\mu g/L$ 

| Client ID                | Lab ID         | Matrix | Date C        | Collected Instrument | Batch ID         |
|--------------------------|----------------|--------|---------------|----------------------|------------------|
| AMW-2                    | 1607641-002C   | Water  | 07/14/20      | 016 11:13 GC17       | 123974           |
| Analytes                 | Result         |        | <u>RL</u>     | <u>DF</u>            | Date Analyzed    |
| Acenaphthene             | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Acenaphthylene           | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Anthracene               | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Benzo (a) anthracene     | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Benzo (a) pyrene         | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Benzo (b) fluoranthene   | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Benzo (g,h,i) perylene   | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Benzo (k) fluoranthene   | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Chrysene                 | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Dibenzo (a,h) anthracene | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Fluoranthene             | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Fluorene                 | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| 1-Methylnaphthalene      | 0.56           |        | 0.50          | 1                    | 07/19/2016 17:25 |
| 2-Methylnaphthalene      | 0.77           |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Naphthalene              | 3.1            |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Phenanthrene             | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| Pyrene                   | ND             |        | 0.50          | 1                    | 07/19/2016 17:25 |
| <u>Surrogates</u>        | <u>REC (%)</u> |        | <u>Limits</u> |                      |                  |
| 1-Fluoronaphthalene      | 74             |        | 30-130        |                      | 07/19/2016 17:25 |
| 2-Fluorobiphenyl         | 66             |        | 30-130        |                      | 07/19/2016 17:25 |
| Analyst(s): REB          |                |        |               |                      |                  |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45 **Date Prepared:** 7/19/16

**Project:** 16040.28; Hollis-GWM 2016

WorkOrder: 1607641 Extraction Method: SW3510C

Analytical Method: SW8270C-SIM

Unit:  $\mu g/L$ 

| Client ID                | Lab ID         | Matrix | Date C        | Collected Instrument | Batch ID         |
|--------------------------|----------------|--------|---------------|----------------------|------------------|
| MW-3                     | 1607641-003C   | Water  | 07/14/2       | 016 13:15 GC35       | 123974           |
| Analytes                 | Result         |        | <u>RL</u>     | <u>DF</u>            | Date Analyzed    |
| Acenaphthene             | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Acenaphthylene           | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Anthracene               | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Benzo (a) anthracene     | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Benzo (a) pyrene         | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Benzo (b) fluoranthene   | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Benzo (g,h,i) perylene   | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Benzo (k) fluoranthene   | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Chrysene                 | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Dibenzo (a,h) anthracene | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Fluoranthene             | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Fluorene                 | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| 1-Methylnaphthalene      | 66             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| 2-Methylnaphthalene      | 110            |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Naphthalene              | 250            |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Phenanthrene             | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| Pyrene                   | ND             |        | 5.0           | 10                   | 07/20/2016 10:44 |
| <u>Surrogates</u>        | <u>REC (%)</u> |        | <u>Limits</u> |                      |                  |
| 1-Fluoronaphthalene      | 107            |        | 30-130        |                      | 07/20/2016 10:44 |
| 2-Fluorobiphenyl         | 105            |        | 30-130        |                      | 07/20/2016 10:44 |
| Analyst(s): REB          |                |        |               |                      |                  |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45 **Date Prepared:** 7/19/16

**Project:** 16040.28; Hollis-GWM 2016

WorkOrder: 1607641 Extraction Method: SW3510C

Analytical Method: SW8270C-SIM

Unit:  $\mu g/L$ 

| Client ID                | Lab ID         | Matrix | Date Co       | ollected Instrument | Batch ID         |
|--------------------------|----------------|--------|---------------|---------------------|------------------|
| AMW-3                    | 1607641-004C   | Water  | 07/14/20      | 16 15:58 GC17       | 123974           |
| Analytes                 | Result         |        | <u>RL</u>     | <u>DF</u>           | Date Analyzed    |
| Acenaphthene             | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Acenaphthylene           | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Anthracene               | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Benzo (a) anthracene     | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Benzo (a) pyrene         | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Benzo (b) fluoranthene   | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Benzo (g,h,i) perylene   | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Benzo (k) fluoranthene   | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Chrysene                 | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Dibenzo (a,h) anthracene | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Fluoranthene             | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Fluorene                 | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| 1-Methylnaphthalene      | 0.96           |        | 0.50          | 1                   | 07/19/2016 18:22 |
| 2-Methylnaphthalene      | 0.95           |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Naphthalene              | 4.5            |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Phenanthrene             | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Pyrene                   | ND             |        | 0.50          | 1                   | 07/19/2016 18:22 |
| Surrogates               | <u>REC (%)</u> |        | <u>Limits</u> |                     |                  |
| 1-Fluoronaphthalene      | 64             |        | 30-130        |                     | 07/19/2016 18:22 |
| 2-Fluorobiphenyl         | 60             |        | 30-130        |                     | 07/19/2016 18:22 |
| Analyst(s): REB          |                |        |               |                     |                  |

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/19/16-7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8021B/8015Bm

Unit:  $\mu g/L$ 

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

| Client ID            | Lab ID         | Matrix            | Date C         | ollected Instrument | Batch ID         |
|----------------------|----------------|-------------------|----------------|---------------------|------------------|
| AMW-1                | 1607641-001A   | Water             | 07/14/20       | 016 17:08 GC3       | 124009           |
| <u>Analytes</u>      | Result         |                   | <u>RL</u>      | <u>DF</u>           | Date Analyzed    |
| TPH(g)               |                |                   | 50             | 1                   | 07/21/2016 05:15 |
| MTBE                 |                |                   | 5.0            | 1                   | 07/21/2016 05:15 |
| Benzene              |                |                   | 0.50           | 1                   | 07/21/2016 05:15 |
| Toluene              |                |                   | 0.50           | 1                   | 07/21/2016 05:15 |
| Ethylbenzene         |                |                   | 0.50           | 1                   | 07/21/2016 05:15 |
| TPH(mineral spirits) | ND             |                   | 50             | 1                   | 07/21/2016 05:15 |
| Xylenes              |                |                   | 1.5            | 1                   | 07/21/2016 05:15 |
| Surrogates           | <u>REC (%)</u> | <u>Qualifiers</u> | <u>Limits</u>  |                     |                  |
| aaa-TFT              | 172            | S                 | 70-130         |                     | 07/21/2016 05:15 |
| Analyst(s): IA       |                |                   | Analytical Com | ments: c4           |                  |

| Client ID            | Lab ID Matrix  |       | Date C        | Collected Instrument | Batch ID         |  |
|----------------------|----------------|-------|---------------|----------------------|------------------|--|
| AMW-2                | 1607641-002A   | Water | 07/14/20      | 016 11:13 GC3        | 124007           |  |
| <u>Analytes</u>      | <u>Result</u>  |       | <u>RL</u>     | <u>DF</u>            | Date Analyzed    |  |
| TPH(g)               |                |       | 50            | 1                    | 07/19/2016 12:45 |  |
| MTBE                 |                |       | 5.0           | 1                    | 07/19/2016 12:45 |  |
| Benzene              |                |       | 0.50          | 1                    | 07/19/2016 12:45 |  |
| Toluene              |                |       | 0.50          | 1                    | 07/19/2016 12:45 |  |
| Ethylbenzene         |                |       | 0.50          | 1                    | 07/19/2016 12:45 |  |
| TPH(mineral spirits) | ND             |       | 50            | 1                    | 07/19/2016 12:45 |  |
| Xylenes              |                |       | 1.5           | 1                    | 07/19/2016 12:45 |  |
| <u>Surrogates</u>    | <u>REC (%)</u> |       | <u>Limits</u> |                      |                  |  |
| aaa-TFT              | 103            |       | 70-130        |                      | 07/19/2016 12:45 |  |

Analytical Comments: d1

Analyst(s): IA

### **Analytical Report**

Client: All West Environmental, Inc

**Date Received:** 7/15/16 16:45

**Date Prepared:** 7/19/16-7/21/16

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641

**Extraction Method:** SW5030B

**Analytical Method:** SW8021B/8015Bm

Unit:  $\mu g/L$ 

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

| Client ID            | Lab ID       | Matrix             | Date Co        | ollected Instrument | Batch ID         |  |
|----------------------|--------------|--------------------|----------------|---------------------|------------------|--|
| MW-3                 | 1607641-003A | 1607641-003A Water |                | 16 13:15 GC3        | 124007           |  |
| <u>Analytes</u>      | Result       |                    | <u>RL</u>      | <u>DF</u>           | Date Analyzed    |  |
| TPH(g)               |              |                    | 1000           | 20                  | 07/21/2016 04:45 |  |
| MTBE                 |              |                    | 100            | 20                  | 07/21/2016 04:45 |  |
| Benzene              |              |                    | 10             | 20                  | 07/21/2016 04:45 |  |
| Toluene              |              |                    | 10             | 20                  | 07/21/2016 04:45 |  |
| Ethylbenzene         |              |                    | 10             | 20                  | 07/21/2016 04:45 |  |
| TPH(mineral spirits) | 2700         |                    | 1000           | 20                  | 07/21/2016 04:45 |  |
| Xylenes              |              |                    | 30             | 20                  | 07/21/2016 04:45 |  |
| <u>Surrogates</u>    | REC (%)      |                    | <u>Limits</u>  |                     |                  |  |
| aaa-TFT              | 112          |                    | 70-130         |                     | 07/21/2016 04:45 |  |
| Analyst(s): IA       |              |                    | Analytical Com | ments: d1           |                  |  |

Client ID Lab ID Matrix Date Collected Instrument Batch ID

| Client ID            | Lab ID         | Matrix     | Date (         | ollected Instrument | Batch ID         |  |
|----------------------|----------------|------------|----------------|---------------------|------------------|--|
| AMW-3                | 1607641-004    | A Water    | 07/14/2        | 016 15:58 GC3       | 124007           |  |
| <u>Analytes</u>      | <u>Result</u>  |            | <u>RL</u>      | <u>DF</u>           | Date Analyzed    |  |
| TPH(g)               |                |            | 50             | 1                   | 07/19/2016 14:51 |  |
| MTBE                 |                |            | 5.0            | 1                   | 07/19/2016 14:51 |  |
| Benzene              |                |            | 0.50           | 1                   | 07/19/2016 14:51 |  |
| Toluene              |                |            | 0.50           | 1                   | 07/19/2016 14:51 |  |
| Ethylbenzene         |                |            | 0.50           | 1                   | 07/19/2016 14:51 |  |
| TPH(mineral spirits) | ND             |            | 50             | 1                   | 07/19/2016 14:51 |  |
| Xylenes              |                |            | 1.5            | 1                   | 07/19/2016 14:51 |  |
| <u>Surrogates</u>    | <u>REC (%)</u> | Qualifiers | <u>Limits</u>  |                     |                  |  |
| aaa-TFT              | 318            | S          | 70-130         |                     | 07/19/2016 14:51 |  |
| Analyst(s): IA       |                |            | Analytical Con | nments: d1,c4       |                  |  |

### **Analytical Report**

Client: All West Environmental, Inc WorkOrder: 1607641

**Date Received:** 7/15/16 16:45 **Extraction Method:** SW3510C/3630C

**Date Prepared:** 7/19/16 **Analytical Method:** SW8015B

**Project:** 16040.28; Hollis-GWM 2016 **Unit:** μg/L

| Total                | Extractable Petroleu | ım Hydro | carbons with Silica Gel Clean-Up |                  |
|----------------------|----------------------|----------|----------------------------------|------------------|
| Client ID            | Lab ID               | Matrix   | Date Collected Instrument        | Batch ID         |
| AMW-1                | 1607641-001A         | Water    | 07/14/2016 17:08 GC9b            | 123966           |
| Analytes             | Result               |          | <u>RL</u> <u>DF</u>              | Date Analyzed    |
| TPH-Diesel (C10-C23) | ND                   |          | 50 1                             | 07/19/2016 15:24 |
| <u>Surrogates</u>    | REC (%)              |          | <u>Limits</u>                    |                  |
| C9                   | 90                   |          | 70-130                           | 07/19/2016 15:24 |
| Analyst(s): TK       |                      |          |                                  |                  |
| Client ID            | Lab ID               | Matrix   | Date Collected Instrument        | Batch ID         |
| AMW-2                | 1607641-002A         | Water    | 07/14/2016 11:13 GC9b            | 123966           |
| Analytes             | <u>Result</u>        |          | RL DF                            | Date Analyzed    |
| TPH-Diesel (C10-C23) | ND                   |          | 50 1                             | 07/19/2016 16:03 |
| Surrogates           | REC (%)              |          | <u>Limits</u>                    |                  |
| C9                   | 87                   |          | 70-130                           | 07/19/2016 16:03 |
| Analyst(s): TK       |                      |          |                                  |                  |
| Client ID            | Lab ID               | Matrix   | Date Collected Instrument        | Batch ID         |
| MW-3                 | 1607641-003A         | Water    | 07/14/2016 13:15 GC9a            | 123966           |
| Analytes             | Result               |          | <u>RL</u> <u>DF</u>              | Date Analyzed    |
| TPH-Diesel (C10-C23) | 1600                 |          | 50 1                             | 07/19/2016 15:24 |
| Surrogates           | REC (%)              |          | <u>Limits</u>                    |                  |
| C26                  | 95                   |          | 70-130                           | 07/19/2016 15:24 |
| Analyst(s): TK       |                      |          | Analytical Comments: e4          |                  |
| Client ID            | Lab ID               | Matrix   | Date Collected Instrument        | Batch ID         |
| AMW-3                | 1607641-004A         | Water    | 07/14/2016 15:58 GC9a            | 123966           |
| Analytes             | <u>Result</u>        |          | RL DF                            | Date Analyzed    |
| TPH-Diesel (C10-C23) | 66                   |          | 50 1                             | 07/19/2016 16:03 |
| Surrogates           | REC (%)              |          | <u>Limits</u>                    |                  |
| C9                   | 82                   |          | 70-130                           | 07/19/2016 16:03 |
| Analyst(s): TK       |                      |          | Analytical Comments: e4          |                  |

### **Quality Control Report**

**Client:** All West Environmental, Inc

**Date Prepared:** 7/20/16 **Date Analyzed:** 7/20/16 GC16 **Instrument: Matrix:** 

Water

**Project:** 16040.28; Hollis-GWM 2016 WorkOrder: 1607641 **BatchID:** 124066

**Extraction Method: SW5030B Analytical Method:** SW8260B

Unit: μg/L

**Sample ID:** MB/LCS-124066

1607641-002BMS/MSD

#### **QC Summary Report for SW8260B**

| Analyte                       | MB<br>Result | LCS<br>Result | RL   | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|-------------------------------|--------------|---------------|------|------------|---------------|-------------|---------------|
| Acetone                       | ND           | -             | 10   | -          | -             | -           | -             |
| tert-Amyl methyl ether (TAME) | ND           | 10.1          | 0.50 | 10         | -             | 101         | 54-140        |
| Benzene                       | ND           | 10.6          | 0.50 | 10         | -             | 106         | 47-158        |
| Bromobenzene                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromochloromethane            | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromodichloromethane          | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromoform                     | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromomethane                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| 2-Butanone (MEK)              | ND           | -             | 2.0  | -          | -             | -           | -             |
| t-Butyl alcohol (TBA)         | ND           | 34.7          | 2.0  | 40         | -             | 87          | 42-140        |
| n-Butyl benzene               | ND           | -             | 0.50 | -          | -             | -           | -             |
| sec-Butyl benzene             | ND           | -             | 0.50 | -          | -             | -           | -             |
| tert-Butyl benzene            | ND           | -             | 0.50 | -          | -             | -           | -             |
| Carbon Disulfide              | ND           | -             | 0.50 | -          | -             | -           | -             |
| Carbon Tetrachloride          | ND           | -             | 0.50 | -          | -             | -           | -             |
| Chlorobenzene                 | ND           | 9.81          | 0.50 | 10         | -             | 98          | 43-157        |
| Chloroethane                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| Chloroform                    | ND           | -             | 0.50 | -          | -             | -           | -             |
| Chloromethane                 | ND           | -             | 0.50 | -          | -             | -           | -             |
| 2-Chlorotoluene               | ND           | -             | 0.50 | -          | -             | -           | -             |
| 4-Chlorotoluene               | ND           | -             | 0.50 | -          | -             | -           | -             |
| Dibromochloromethane          | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2-Dibromo-3-chloropropane   | ND           | -             | 0.20 | -          | -             | -           | -             |
| 1,2-Dibromoethane (EDB)       | ND           | 9.39          | 0.50 | 10         | -             | 94          | 44-155        |
| Dibromomethane                | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2-Dichlorobenzene           | ND           | -             | 0.50 | -          | _             | -           | -             |
| 1,3-Dichlorobenzene           | ND           | -             | 0.50 | -          | _             | -           | -             |
| 1,4-Dichlorobenzene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| Dichlorodifluoromethane       | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,1-Dichloroethane            | ND           | -             | 0.50 | _          | -             | _           | _             |
| 1,2-Dichloroethane (1,2-DCA)  | ND           | 9.57          | 0.50 | 10         | _             | 96          | 66-125        |
| 1,1-Dichloroethene            | ND           | 9.93          | 0.50 | 10         | _             | 99          | 47-149        |
| cis-1,2-Dichloroethene        | ND           | -             | 0.50 | -          | _             | -           | -             |
| trans-1,2-Dichloroethene      | ND           | -             | 0.50 | _          | -             | -           | _             |
| 1,2-Dichloropropane           | ND           |               | 0.50 |            |               |             |               |
| 1,3-Dichloropropane           | ND           |               | 0.50 | -          |               | -           | _             |
| 2,2-Dichloropropane           | ND           | -             | 0.50 | -          | -             | -           | -             |

### **Quality Control Report**

Client: All West Environmental, Inc

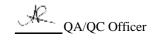
**Date Prepared:** 7/20/16 **Date Analyzed:** 7/20/16 **Instrument:** GC16

Matrix: Water

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641 **BatchID:** 124066

**Extraction Method:** SW5030B **Analytical Method:** SW8260B


**Unit:** μg/L

Sample ID: MB/LCS-124066

1607641-002BMS/MSD

#### **QC Summary Report for SW8260B**

| Analyte                       | МВ     | LCS    | RL   | SPK | MB SS | LCS  | LCS    |
|-------------------------------|--------|--------|------|-----|-------|------|--------|
|                               | Result | Result |      | Val | %REC  | %REC | Limits |
| 1,1-Dichloropropene           | ND     | -      | 0.50 | -   | -     | -    | -      |
| cis-1,3-Dichloropropene       | ND     | -      | 0.50 | -   | -     | -    | -      |
| trans-1,3-Dichloropropene     | ND     | -      | 0.50 | -   | -     | -    | -      |
| Diisopropyl ether (DIPE)      | ND     | 10.4   | 0.50 | 10  | -     | 104  | 57-136 |
| Ethanol                       | ND     | -      | 50   | -   | -     | -    | -      |
| Ethylbenzene                  | ND     | -      | 0.50 | -   | -     | -    | -      |
| Ethyl tert-butyl ether (ETBE) | ND     | 10.2   | 0.50 | 10  | -     | 102  | 55-137 |
| Freon 113                     | ND     | -      | 0.50 | -   | -     | -    | -      |
| Hexachlorobutadiene           | ND     | -      | 0.50 | -   | -     | -    | -      |
| Hexachloroethane              | ND     | -      | 0.50 | -   | -     | -    | -      |
| 2-Hexanone                    | ND     | -      | 0.50 | -   | -     | -    | -      |
| Isopropylbenzene              | ND     | -      | 0.50 | -   | -     | -    | -      |
| 4-Isopropyl toluene           | ND     | -      | 0.50 | -   | -     | -    | -      |
| Methyl-t-butyl ether (MTBE)   | ND     | 9.87   | 0.50 | 10  | -     | 99   | 53-139 |
| Methylene chloride            | ND     | -      | 0.50 | -   | -     | -    | -      |
| 4-Methyl-2-pentanone (MIBK)   | ND     | -      | 0.50 | -   | -     | -    | -      |
| Naphthalene                   | ND     | -      | 0.50 | -   | -     | -    | -      |
| n-Propyl benzene              | ND     | -      | 0.50 | -   | -     | -    | -      |
| Styrene                       | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,1,1,2-Tetrachloroethane     | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,1,2,2-Tetrachloroethane     | ND     | -      | 0.50 | -   | -     | -    | -      |
| Tetrachloroethene             | ND     | -      | 0.50 | -   | -     | -    | -      |
| Toluene                       | ND     | 10.3   | 0.50 | 10  | -     | 103  | 52-137 |
| 1,2,3-Trichlorobenzene        | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,2,4-Trichlorobenzene        | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,1,1-Trichloroethane         | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,1,2-Trichloroethane         | ND     | -      | 0.50 | -   | -     | -    | -      |
| Trichloroethene               | ND     | 10.1   | 0.50 | 10  | -     | 101  | 43-157 |
| Trichlorofluoromethane        | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,2,3-Trichloropropane        | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,2,4-Trimethylbenzene        | ND     | -      | 0.50 | -   | -     | -    | -      |
| 1,3,5-Trimethylbenzene        | ND     | -      | 0.50 | -   | -     | -    | -      |
| Vinyl Chloride                | ND     | -      | 0.50 | -   | -     | -    | -      |
| Xylenes, Total                | ND     | -      | 0.50 | -   | -     | -    | -      |



### **Quality Control Report**

Client: All West Environmental, Inc

Date Prepared: 7/20/16Date Analyzed: 7/20/16Instrument: GC16Matrix: Water

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641 **BatchID:** 124066

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

**Unit:** μg/L

**Sample ID:** MB/LCS-124066

1607641-002BMS/MSD

| Analyte              | MB<br>Result | LCS<br>Result | RL | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|----------------------|--------------|---------------|----|------------|---------------|-------------|---------------|
| Surrogate Recovery   |              |               |    |            |               |             |               |
| Dibromofluoromethane | 23.8         | 24.9          |    | 25         | 95            | 100         | 70-130        |
| Toluene-d8           | 28.0         | 25.0          |    | 25         | 112           | 100         | 70-130        |
| 4-BFB                | 2.12         | 2.33          |    | 2.5        | 85            | 93          | 70-130        |

| Analyte                       | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD   | RPD<br>Limit |
|-------------------------------|--------------|---------------|------------|---------------|------------|-------------|------------------|-------|--------------|
| tert-Amyl methyl ether (TAME) | 11.1         | 10.7          | 10         | ND            | 111        | 107         | 69-139           | 3.16  | 20           |
| Benzene                       | 13.6         | 13.1          | 10         | ND            | 136        | 131         | 69-141           | 3.43  | 20           |
| t-Butyl alcohol (TBA)         | 43.8         | 39.9          | 40         | ND            | 109        | 100         | 41-152           | 9.16  | 20           |
| Chlorobenzene                 | 10.0         | 9.90          | 10         | ND            | 100        | 99          | 77-120           | 1.47  | 20           |
| 1,2-Dibromoethane (EDB)       | 10.4         | 10.2          | 10         | ND            | 104        | 102         | 76-135           | 1.19  | 20           |
| 1,2-Dichloroethane (1,2-DCA)  | 11.1         | 10.6          | 10         | ND            | 111        | 106         | 73-139           | 4.09  | 20           |
| 1,1-Dichloroethene            | 11.5         | 11.2          | 10         | ND            | 115        | 112         | 59-140           | 2.45  | 20           |
| Diisopropyl ether (DIPE)      | 10.6         | 9.94          | 10         | ND            | 106        | 99          | 72-140           | 6.29  | 20           |
| Ethyl tert-butyl ether (ETBE) | 10.7         | 10.3          | 10         | ND            | 107        | 103         | 71-140           | 4.13  | 20           |
| Methyl-t-butyl ether (MTBE)   | 178          | 169           | 10         | ND            | 1780,F1    | 1690,F1     | 73-139           | 5.36  | 20           |
| Toluene                       | 10.3         | 10.2          | 10         | ND            | 103        | 102         | 71-128           | 0.780 | 20           |
| Trichloroethene               | 11.1         | 11.0          | 10         | ND            | 111        | 110         | 64-132           | 0.348 | 20           |
| Surrogate Recovery            |              |               |            |               |            |             |                  |       |              |
| Dibromofluoromethane          | 25.5         | 25.5          | 25         |               | 102        | 102         | 73-131           | 0     | 20           |
| Toluene-d8                    | 24.5         | 24.6          | 25         |               | 98         | 98          | 72-117           | 0     | 20           |
| 4-BFB                         | 2.39         | 2.45          | 2.5        |               | 96         | 98          | 74-116           | 2.42  | 20           |

### **Quality Control Report**

Client: All West Environmental, Inc

Date Prepared: 7/20/16Date Analyzed: 7/20/16Instrument: GC16Matrix: Water

**Project:** 16040.28; Hollis-GWM 2016

WorkOrder: 1607641

**BatchID:** 124066 **Extraction Method:** SW5030B

**Analytical Method:** SW8260B

**Unit:**  $\mu$ g/L

Sample ID: MB/LCS-124066

1607641-002BMS/MSD

|                      | QC Sun       | nmary Re      | eport fo   | or TPH(g)     |            |             |             |             |               |
|----------------------|--------------|---------------|------------|---------------|------------|-------------|-------------|-------------|---------------|
| Analyte              | MB<br>Result | LCS<br>Result |            | RL            | SPK<br>Val |             | B SS<br>REC | LCS<br>%REC | LCS<br>Limits |
| TPH(g)               | ND           | -             |            | 50            | -          | -           |             | -           | -             |
| Surrogate Recovery   |              |               |            |               |            |             |             |             |               |
| Dibromofluoromethane | 24.2         | 25.4          |            |               | 25         | 97          | 7           | 102         | 70-130        |
| Analyte              | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/M        | -           | PD RPI        |
| VOC (C6-C12)         | N/A          | -             |            | N/A           | N/A        | N/A         | -           | ١           | I/A           |
| Surrogate Recovery   |              |               |            |               |            |             |             |             |               |
| Dibromofluoromethane | N/A          | -             |            |               | N/A        | N/A         | -           |             | N/A           |

### **Quality Control Report**

Client: All West Environmental, Inc

**Date Prepared:** 7/19/16 **Date Analyzed:** 7/19/16 **Instrument:** GC17

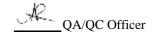
Matrix: Water

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641 **BatchID:** 123974

**Extraction Method:** SW3510C

**Analytical Method:** SW8270C-SIM


**Unit:** μg/L

Sample ID: MB/LCS/LCSD-123974

#### QC Summary Report for SW8270C

| Analyte                  | MB<br>Result | RL   | SPK<br>Val | MB SS<br>%REC | MB SS<br>Limits |
|--------------------------|--------------|------|------------|---------------|-----------------|
|                          | Result       |      | Vai        | /orec         | Lillits         |
| Acenaphthene             | ND           | 0.50 | -          | -             | -               |
| Acenaphthylene           | ND           | 0.50 | -          | -             | -               |
| Anthracene               | ND           | 0.50 | -          | -             | -               |
| Benzo (a) anthracene     | ND           | 0.50 | -          | -             | -               |
| Benzo (a) pyrene         | ND           | 0.50 | -          | -             | -               |
| Benzo (b) fluoranthene   | ND           | 0.50 | -          | -             | -               |
| Benzo (g,h,i) perylene   | ND           | 0.50 | -          | -             | -               |
| Benzo (k) fluoranthene   | ND           | 0.50 | -          | -             | -               |
| Chrysene                 | ND           | 0.50 | -          | -             | -               |
| Dibenzo (a,h) anthracene | ND           | 0.50 | -          | -             | -               |
| Fluoranthene             | ND           | 0.50 | -          | -             | -               |
| Fluorene                 | ND           | 0.50 | -          | -             | -               |
| Indeno (1,2,3-cd) pyrene | ND           | 0.50 | -          | -             | -               |
| 1-Methylnaphthalene      | ND           | 0.50 | -          | -             | -               |
| 2-Methylnaphthalene      | ND           | 0.50 | -          | -             | -               |
| Naphthalene              | ND           | 0.50 | -          | -             | -               |
| Phenanthrene             | ND           | 0.50 | -          | -             | -               |
| Pyrene                   | ND           | 0.50 | -          | -             | -               |
| Surrogate Recovery       |              |      |            |               |                 |
| 1-Fluoronaphthalene      | 16.5         |      | 25         | 66            | 45-129          |
| 2-Fluorobiphenyl         | 16.3         |      | 25         | 65            | 47-125          |

| Analyte             | LCS<br>Result | LCSD<br>Result | SPK<br>Val | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD  | RPD<br>Limit |
|---------------------|---------------|----------------|------------|-------------|--------------|--------------------|------|--------------|
| Benzo (a) pyrene    | 6.90          | 6.39           | 10         | 69          | 64           | 12-152             | 7.68 | 25           |
| Chrysene            | 5.92          | 5.60           | 10         | 59          | 56           | 28-116             | 5.59 | 25           |
| 1-Methylnaphthalene | 7.76          | 7.42           | 10         | 78          | 74           | 48-125             | 4.51 | 25           |
| 2-Methylnaphthalene | 7.09          | 6.82           | 10         | 71          | 68           | 41-124             | 3.95 | 25           |
| Phenanthrene        | 6.78          | 6.52           | 10         | 68          | 65           | 36-123             | 3.75 | 25           |
| Pyrene              | 5.93          | 5.84           | 10         | 59          | 58           | 29-118             | 1.64 | 25           |
| Surrogate Recovery  |               |                |            |             |              |                    |      |              |
| 1-Fluoronaphthalene | 15.9          | 16.4           | 25         | 64          | 66           | 45-129             | 3.28 | 25           |
| 2-Fluorobiphenyl    | 15.6          | 15.7           | 25         | 63          | 63           | 47-125             | 0    | 25           |



### **Quality Control Report**

Client: All West Environmental, Inc

**Date Prepared:** 7/19/16 **Date Analyzed:** 7/19/16

**Instrument:** GC3

Matrix: Water

**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641 **BatchID:** 124007

**Extraction Method:** SW5030B

Analytical Method: SW8021B/8015Bm

Unit:  $\mu g/L$ 

**Sample ID:** MB/LCS-124007

1607674-001AMS/MSD

### QC Summary Report for SW8021B/8015Bm

| Analyte      | MB<br>Result | LCS<br>Result | RL   | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|--------------|--------------|---------------|------|------------|---------------|-------------|---------------|
| TPH(btex)    | ND           | 58.3          | 40   | 60         | -             | 97          | 70-130        |
| MTBE         | ND           | 8.74          | 5.0  | 10         | -             | 87          | 70-130        |
| Benzene      | ND           | 9.87          | 0.50 | 10         | -             | 99          | 70-130        |
| Toluene      | ND           | 10.1          | 0.50 | 10         | -             | 101         | 70-130        |
| Ethylbenzene | ND           | 10.4          | 0.50 | 10         | -             | 104         | 70-130        |
| Xylenes      | ND           | 31.1          | 1.5  | 30         | -             | 104         | 70-130        |

aaa-TFT 9.42 9.30 10 94 93 70-130

| Analyte            | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD  | RPD<br>Limit |
|--------------------|--------------|---------------|------------|---------------|------------|-------------|------------------|------|--------------|
| TPH(btex)          | 58.8         | 56.1          | 60         | ND            | 98         | 94          | 70-130           | 4.61 | 20           |
| MTBE               | 8.58         | 9.09          | 10         | ND            | 86         | 91          | 70-130           | 5.81 | 20           |
| Benzene            | 9.89         | 9.41          | 10         | ND            | 96         | 91          | 70-130           | 4.96 | 20           |
| Toluene            | 9.52         | 9.48          | 10         | ND            | 95         | 95          | 70-130           | 0    | 20           |
| Ethylbenzene       | 9.81         | 9.80          | 10         | ND            | 98         | 98          | 70-130           | 0    | 20           |
| Xylenes            | 29.4         | 29.3          | 30         | ND            | 98         | 98          | 70-130           | 0    | 20           |
| Surrogate Recovery |              |               |            |               |            |             |                  |      |              |
| aaa-TFT            | 9.20         | 9.18          | 10         |               | 92         | 92          | 70-130           | 0    | 20           |

### **Quality Control Report**

Client: All West Environmental, Inc

**Date Prepared:** 7/20/16 **Date Analyzed:** 7/20/16

**Instrument:** GC7

Matrix: Water

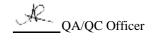
**Project:** 16040.28; Hollis-GWM 2016

**WorkOrder:** 1607641 **BatchID:** 124009

**Extraction Method:** SW5030B

**Analytical Method:** SW8021B/8015Bm

Unit:  $\mu g/L$ 


**Sample ID:** MB/LCS-124009

1607637-002AMS/MSD

| QC Summary Report for SW8021B/8015Bm |
|--------------------------------------|
|--------------------------------------|

| Analyte            | MB<br>Result | LCS<br>Result | RL   | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|--------------------|--------------|---------------|------|------------|---------------|-------------|---------------|
| TPH(btex)          | ND           | 52.5          | 40   | 60         | -             | 87          | 70-130        |
| MTBE               | ND           | 7.26          | 5.0  | 10         | -             | 73          | 70-130        |
| Benzene            | ND           | 8.13          | 0.50 | 10         | -             | 81          | 70-130        |
| Toluene            | ND           | 7.94          | 0.50 | 10         | -             | 79          | 70-130        |
| Ethylbenzene       | ND           | 8.30          | 0.50 | 10         | -             | 83          | 70-130        |
| Xylenes            | ND           | 27.4          | 1.5  | 30         | -             | 91          | 70-130        |
| Surrogate Recovery |              |               |      |            |               |             |               |
| aaa-TFT            | 9.59         | 9.57          |      | 10         | 96            | 96          | 70-130        |

| Analyte            | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD | RPD<br>Limit |
|--------------------|--------------|---------------|------------|---------------|------------|-------------|------------------|-----|--------------|
| TPH(btex)          | NR           | NR            |            | 620           | NR         | NR          | -                | NR  |              |
| MTBE               | NR           | NR            |            | ND<50         | NR         | NR          | -                | NR  |              |
| Benzene            | NR           | NR            |            | 360           | NR         | NR          | -                | NR  |              |
| Toluene            | NR           | NR            |            | 12            | NR         | NR          | -                | NR  |              |
| Ethylbenzene       | NR           | NR            |            | 58            | NR         | NR          | -                | NR  |              |
| Xylenes            | NR           | NR            |            | 44            | NR         | NR          | -                | NR  |              |
| Surrogate Recovery |              |               |            |               |            |             |                  |     |              |
| aaa-TFT            | NR           | NR            |            |               | NR         | NR          | -                | NR  |              |



### **Quality Control Report**

Client: All West Environmental, Inc

**Date Prepared:** 7/19/16

**Date Analyzed:** 7/20/16

**Instrument:** GC39A

Matrix: Water
Project: 16040.28; Hollis-GWM 2016

WorkOrder: 1607641

**BatchID:** 123966

**Extraction Method:** SW3510C/3630C

**Analytical Method:** SW8015B

Unit:  $\mu g/L$ 

Sample ID: MB/LCS/LCSD-123966

| Analyte                 | MB<br>Result | RL  | SPK<br>Val | MB SS<br>%REC | MB SS<br>Limits |
|-------------------------|--------------|-----|------------|---------------|-----------------|
| TPH-Diesel (C10-C23)    | ND           | 50  | -          | -             | -               |
| TPH-Motor Oil (C18-C36) | ND           | 250 | -          | -             | -               |
| TPH-Kerosene (C9-C18)   | ND           | 50  | -          | -             | -               |

#### **Surrogate Recovery**

C9 571 625 91 65-122

| Analyte              | LCS<br>Result | LCSD<br>Result | SPK<br>Val | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD   | RPD<br>Limit |
|----------------------|---------------|----------------|------------|-------------|--------------|--------------------|-------|--------------|
| TPH-Diesel (C10-C23) | 1080          | 1090           | 1000       | 108         | 109          | 61-157             | 1.19  | 30           |
| Surrogate Recovery   |               |                |            |             |              |                    |       |              |
| C9                   | 572           | 567            | 625        | 92          | 91           | 65-122             | 0.933 | 30           |

FAX: (415) 391-2008

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(360) 618-2789

### **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

5 days:

07/15/2016

Requested TAT:

Date Received:

WorkOrder: 1607641 ClientCode: AWE

|  | WriteOn | <b>✓</b> EDF | Excel | <b>EQuIS</b> | <b>✓</b> Email | HardCopy | ThirdParty | ☐J-flag |
|--|---------|--------------|-------|--------------|----------------|----------|------------|---------|
|--|---------|--------------|-------|--------------|----------------|----------|------------|---------|

Report to:

Leonard Niles

Email: Leonard@allwest1.com

Darlene Torio

All West Environmental, Inc cc/3rd Party: darlene@allwest1.com; All West Environmental, Inc 2141 Mission Street, Ste 100 PO: 2141 Mission Street, Ste 100

San Francisco, CA 94110 ProjectNo: 16040.28; Hollis-GWM 2016 San Francisco, CA 94110 Date Logged: 07/15/2016

darlene@allwest1.com

|             |           |        |                 |      | Requested Tests (See legend below) |   |   |   |   |   |   |   |   |    |    |    |
|-------------|-----------|--------|-----------------|------|------------------------------------|---|---|---|---|---|---|---|---|----|----|----|
| Lab ID      | Client ID | Matrix | Collection Date | Hold | 1                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1607641-001 | AMW-1     | Water  | 7/14/2016 17:08 |      | В                                  | В | С | Α | С | Α |   |   |   |    |    |    |
| 1607641-002 | AMW-2     | Water  | 7/14/2016 11:13 |      | В                                  | В | С | Α |   | Α |   |   |   |    |    |    |
| 1607641-003 | MW-3      | Water  | 7/14/2016 13:15 |      | В                                  | В | С | Α |   | Α |   |   |   |    |    |    |
| 1607641-004 | AMW-3     | Water  | 7/14/2016 15:58 |      | В                                  | В | С | Α |   | Α |   |   |   |    |    |    |

#### **Test Legend:**

| 1 | 8260B_W      | 2  | 8260GAS_W   |   | 3 8270_PNA_W |
|---|--------------|----|-------------|---|--------------|
| 5 | PREDF REPORT | 6  | TPH(D)WSG_W |   | 7            |
| 9 |              | 10 |             | • | 11           |

| 4  | G-MBTEX_W |
|----|-----------|
| 8  |           |
| 12 |           |

Prepared by: Valerie Riva

The following SampIDs: 001A, 001B, 002A, 002B, 003A, 003B, 004A, 004B contain testgroup.

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

#### **WORK ORDER SUMMARY**

| Client Name: | ALL WEST ENVIRONMENTAL, INC | QC Level: LEVEL 2             | <b>Work Order:</b> 1607641    |
|--------------|-----------------------------|-------------------------------|-------------------------------|
| Project:     | 16040.28; Hollis-GWM 2016   | Client Contact: Leonard Niles | <b>Date Logged:</b> 7/15/2016 |

Comments: Contact's Email: Leonard@allwest1.com

|              |           | ☐WaterTrax | ☐WriteOn ☑EDF                                                                                                                                                                                                                                                                                                                                                                | Excel                     | ]Fax <b>✓</b> Email   | HardC              | opyThirdPart           | у 🔲 Ј  | -flag               |             |
|--------------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|--------------------|------------------------|--------|---------------------|-------------|
| Lab ID       | Client ID | Matrix     | Test Name                                                                                                                                                                                                                                                                                                                                                                    | Containers<br>/Composites | Bottle & Preservative | De-<br>chlorinated | Collection Date & Time | TAT    | Sediment<br>Content | Hold SubOut |
| 1607641-001A | AMW-1     | Water      | Multi-Range TPH(g,d,mo) by EPA 8015Bm                                                                                                                                                                                                                                                                                                                                        | 2                         | VOA w/ HCl            |                    | 7/14/2016 17:08        | 5 days | Present             |             |
| 1607641-001B | AMW-1     | Water      | TPH(g) & 8260 (Basic List) by P&T<br>GCMS                                                                                                                                                                                                                                                                                                                                    | 2                         | VOA w/ HCl            |                    | 7/14/2016 17:08        | 5 days | Present             |             |
| 1607641-001C | AMW-1     | Water      | SW8270C (PAHs/PNAs) <1-<br>Methylnaphthalene, 2-<br>Methylnaphthalene, Acenaphthene,<br>Acenaphthylene, Anthracene, Benzo (a<br>anthracene, Benzo (a) pyrene, Benzo (b<br>fluoranthene, Benzo (g,h,i) perylene,<br>Benzo (k) fluoranthene, Chrysene,<br>Dibenzo (a,h) anthracene, Fluoranthene,<br>Fluorene, Indeno (1,2,3-cd) pyrene,<br>Naphthalene, Phenanthrene, Pyrene> | ))                        | 1LA                   |                    | 7/14/2016 17:08        | 5 days | Present             |             |
| 1607641-002A | AMW-2     | Water      | Multi-Range TPH(g,d,mo) by EPA<br>8015Bm                                                                                                                                                                                                                                                                                                                                     | 2                         | VOA w/ HCl            |                    | 7/14/2016 11:13        | 5 days | Present             |             |
| 1607641-002B | AMW-2     | Water      | TPH(g) & 8260 (Basic List) by P&T<br>GCMS                                                                                                                                                                                                                                                                                                                                    | 2                         | VOA w/ HCl            |                    | 7/14/2016 11:13        | 5 days | Present             |             |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

#### **WORK ORDER SUMMARY**

Client Name:ALL WEST ENVIRONMENTAL, INCQC Level: LEVEL 2Work Order: 1607641Project:16040.28; Hollis-GWM 2016Client Contact: Leonard NilesDate Logged: 7/15/2016

Comments: Contact's Email: Leonard@allwest1.com

|              |           | WaterTrax | ☐WriteOn ☑EDF ☐                                                                                                                                                                                                                                                                                                                                     | Excel                     | ]Fax <b></b> ✓Email   | HardC              | opyThirdPar            | ty 🗀   | J-flag              |             |
|--------------|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|--------------------|------------------------|--------|---------------------|-------------|
| Lab ID       | Client ID | Matrix    | Test Name                                                                                                                                                                                                                                                                                                                                           | Containers<br>/Composites | Bottle & Preservative | De-<br>chlorinated | Collection Date & Time | TAT    | Sediment<br>Content | Hold SubOut |
| 1607641-002C | AMW-2     | Water     | SW8270C (PAHs/PNAs) <1- Methylnaphthalene, 2- Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Benzo (a) anthracene, Benzo (a) pyrene, Benzo (b) fluoranthene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Chrysene, Dibenzo (a,h) anthracene, Fluoranthene, Fluorene, Indeno (1,2,3-cd) pyrene, Naphthalene, Phenanthrene, Pyrene> |                           | ILA                   |                    | 7/14/2016 11:13        | 5 days | Present             |             |
| 1607641-003A | MW-3      | Water     | Multi-Range TPH(g,d,mo) by EPA<br>8015Bm                                                                                                                                                                                                                                                                                                            | 2                         | VOA w/ HCl            |                    | 7/14/2016 13:15        | 5 days | Present             |             |
| 1607641-003B | MW-3      | Water     | TPH(g) & 8260 (Basic List) by P&T<br>GCMS                                                                                                                                                                                                                                                                                                           | 2                         | VOA w/ HCl            |                    | 7/14/2016 13:15        | 5 days | Present             |             |
| 1607641-003C | MW-3      | Water     | SW8270C (PAHs/PNAs) <1- Methylnaphthalene, 2- Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Benzo (a) anthracene, Benzo (a) pyrene, Benzo (b) fluoranthene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Chrysene, Dibenzo (a,h) anthracene, Fluoranthene, Fluorene, Indeno (1,2,3-cd) pyrene, Naphthalene, Phenanthrene, Pyrene> |                           | 1LA                   |                    | 7/14/2016 13:15        | 5 days | Present             |             |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

#### **WORK ORDER SUMMARY**

| <b>Client Name:</b> | ALL WEST ENVIRONMENTAL, INC | QC Level: LEVEL 2             | <b>Work Order:</b> 1607641    |
|---------------------|-----------------------------|-------------------------------|-------------------------------|
| Project:            | 16040.28; Hollis-GWM 2016   | Client Contact: Leonard Niles | <b>Date Logged:</b> 7/15/2016 |

Comments: Contact's Email: Leonard@allwest1.com

|              |           | ☐WaterTrax ☐Write@                                                             | On <b>▼</b> EDF                                                                                                                                                                                                                                                                                                                                                                           | Excel                     | ]Fax <b>☑</b> Email   | HardC              | opyThirdPar            | у 🗀    | J-flag              |             |
|--------------|-----------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|--------------------|------------------------|--------|---------------------|-------------|
| Lab ID       | Client ID | Matrix Test N                                                                  | lame                                                                                                                                                                                                                                                                                                                                                                                      | Containers<br>/Composites | Bottle & Preservative | De-<br>chlorinated | Collection Date & Time | TAT    | Sediment<br>Content | Hold SubOut |
| 1607641-004A | AMW-3     | Water Multi-<br>8015B                                                          | Range TPH(g,d,mo) by EPA                                                                                                                                                                                                                                                                                                                                                                  | 2                         | VOA w/ HCl            |                    | 7/14/2016 15:58        | 5 days | Present             |             |
| 1607641-004B | AMW-3     | Water TPH(g<br>GCMS                                                            | ) & 8260 (Basic List) by P&T                                                                                                                                                                                                                                                                                                                                                              | 2                         | VOA w/ HCl            |                    | 7/14/2016 15:58        | 5 days | Present             |             |
| 1607641-004C | AMW-3     | Methy:<br>Methy:<br>Acenaj<br>anthrac<br>fluorar<br>Benzo<br>Dibenz<br>Fluorer | 70C (PAHs/PNAs) <1- Inaphthalene, 2- Inaphthalene, Acenaphthene, Inaphthalene, Acenaphthene, Inaphthalene, Anthracene, Benzo (a) Inaphthalene, Anthracene, Benzo (a) Inaphthalene, Benzo (a) Inaphthalene, Benzo (b) Ithene, Benzo (g,h,i) perylene, Ithene, Benzo (g,h,i) perylene, Ithene, Chrysene, Ithene, Chrysene, Ithene, Indeno (1,2,3-cd) pyrene, Inalene, Phenanthrene, Pyrene> | )                         | 1LA                   |                    | 7/14/2016 15:58        | 5 days | Present             |             |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

|   | AWA. |
|---|------|
| _ | 187  |
| 1 |      |
|   | 1    |

## McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

| CHAIN    | OF | CUSTODY | RECORD |
|----------|----|---------|--------|
| CILILATI |    | COSTOD  |        |

| CHAIN OF             | C021 | UDY.  | KECU    | KD     |       |
|----------------------|------|-------|---------|--------|-------|
| TURN AROUND TIME     |      |       |         |        | A     |
| 3.5                  | RUSH | 24 HR | 48 HR   | 72 HR  | 5 DAY |
| GeoTracker EDF 💆 PDF | Ø Ex | cel 📮 | Write ( | n (DW) |       |

| Telephone: (877) 252-9262 Fax: (925) 252-9269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 |          |          |          |          | GeoTracker EDF PDF Excel Write On (DW) |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------------|-----------------|----------|----------|----------|----------|----------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|-----------------------|-------------------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|----------------------|-------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------------------------|------------------------------------|-------------------------|----------|--|---|
| Report To: Leonard Niles Bill To: Darlene Torio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 |          |          |          |          |                                        |                            |                                                                                                         | Check if sample is effluent and "J" flag is required |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 |          |          |          |          |                                        |                            |                                                                                                         | ⊢                                                    |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       | Comm                          | ents                           |                                      |                                             |                                                             |                                    |                         |          |  |   |
| Project Location: 6655 Hollis, Street, Emeryville, CA Sampler Signature: Leonard Vislan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 |          |          |          |          |                                        | Grease (1664 / 5520 E/B&F) | carbons (418.1)                                                                                         | 8021 (HVOCs)                                         | EPA 602 / 8021)      | Pesticides)           | EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners | sticides)                             | Cl Herbicides)                    | VOCS)/TPH-9/TPH-WS                  | 1                    | 8270 SIM / 8310 (PAHs / PNAs) maphthalene | 200.8 / 6010 / 6020)                  | 200.8 / 6010 / 6020)          | 0 / 6020)                      | sample for DISSOLVED metals analysis |                                             | **Indi-<br>here if<br>sample<br>potenti<br>danger<br>handle | these<br>s are<br>ally<br>ous to   |                         |          |  |   |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOCATION/<br>Field Point<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                           | Date    | Time  | # Containers  | Type Containers | er       | Soil     |          |          | PRE:                                   |                            | Other                                                                                                   | BTEX & TPH as Gas (0                                 | TPH as Diesel (8015) | Total Petroleum Oil & | Total Petroleum Hydrocarbons (418.1)            | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (EPA 602 / 8021) | EPA 505/ 608 / 8081 (CI Pesticides) | EPA 608 / 8082 PCB's | EPA 507 / 8141 (NP Pesticides)            | EPA 515 / 8151 (Acidic Cl Herbicides) | EPA 524.2 / 624 / 8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOĆs) | EPA 8270 SIM / 8310 (                | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)                 | Lead (200.7 / 200.8 / 6010 / 6020) | Filter sample for DISSC |          |  | P |
| AMW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/14/16 | 17:08 | 4             | VOA             | X        |          |          | )        | $\langle \rangle$                      |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       | $\times$                      |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | '   '   |       | 1             | ILA             | X        | ,        |          |          | ( >                                    |                            |                                                                                                         |                                                      | X                    |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       | ′                             |                                |                                      |                                             |                                                             | T                                  |                         |          |  |   |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V       | V     | 1             | ILA             | X        |          |          |          | <                                      |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                | X                                    |                                             |                                                             | T                                  |                         |          |  |   |
| Marilla Millianos) Na antigario de la companya del companya del companya de la co |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 |          |          |          | 7        |                                        |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             | $\neg$                             |                         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 | $\vdash$ |          | П        | 十        | +                                      | 1                          |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               | $\dashv$                       | $\dashv$                             | $\exists$                                   |                                                             | -                                  |                         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 | -        | +        | -        | $\dashv$ | -                                      | +                          | +                                                                                                       |                                                      | -                    |                       |                                                 | -                                     | -                                 | -                                   | -                    |                                           |                                       |                               | -                              |                                      |                                             | -                                                           | $\dashv$                           | $\dashv$                | $\dashv$ |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               | 1               | $\vdash$ | -        | //       | $\dashv$ | +                                      | +-                         | +                                                                                                       |                                                      |                      | _                     |                                                 |                                       |                                   |                                     |                      |                                           |                                       | _                             | _                              | $\dashv$                             | _                                           | _                                                           | $\dashv$                           | _                       |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *       |       |               |                 |          | <u> </u> | 10       | 1        |                                        |                            |                                                                                                         |                                                      |                      | -                     |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       |       | 111           | X               | IX       | W        | 10       | 4        | _                                      |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       | - 1                           |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       | 2010  | <del>~~</del> |                 | -4-      |          |          |          |                                        |                            |                                                                                                         |                                                      |                      |                       |                                                 | $\neg$                                |                                   |                                     |                      |                                           | T                                     |                               |                                |                                      | $\neg$                                      | $\neg$                                                      | $\neg$                             | 7                       |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 | +        | +        | $\vdash$ | +        | +                                      | +                          | +                                                                                                       | -                                                    | -                    | -                     |                                                 | -                                     | -                                 | $\dashv$                            | -                    | -                                         | -                                     | -                             | $\dashv$                       | -                                    | $\rightarrow$                               | $\rightarrow$                                               | +                                  | $\rightarrow$           | -        |  |   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 | 1        | _        |          |          | _                                      | _                          | $\vdash$                                                                                                | _                                                    | _                    | _                     |                                                 | _                                     |                                   | _                                   |                      | _                                         | _                                     | _                             | _                              | _                                    | $\rightarrow$                               | $\rightarrow$                                               | $\dashv$                           | _                       |          |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |               |                 |          |          |          |          |                                        |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             | -                                  |                         |          |  |   |
| gloved, open air, samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *MAI clients MUST disclose any dangerous chemicals known to be present in their submitted samples in concentrations that may cause immediate harm or serious future health endangerment as a result of brief, cloved, open air, sample handling by MAI staff. Non-disclosure incurs an immediate \$250 surcharge and the client is subject to full legal liability for harm suffered. Thank you for your understanding and for allowing us to work safely. |         |       |               |                 |          |          |          |          |                                        |                            |                                                                                                         |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
| Relanquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eonard lifes 15to 160 /                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |               |                 |          |          |          |          |                                        |                            | ICE/P 3.8 WETCE GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS  COMMENTS: |                                                      |                      |                       |                                                 |                                       |                                   |                                     |                      |                                           |                                       |                               |                                |                                      |                                             |                                                             |                                    |                         |          |  |   |
| Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date:   | Time: |               | ived/By         |          |          | ,        | 1        | •                                      | 4                          | $\neg$                                                                                                  | rKi                                                  | ESEF                 | (VE)                  | D IN                                            |                                       |                                   | —<br>0&                             | G                    | MET                                       | ΓALS                                  | s c                           | тн                             | ER                                   |                                             |                                                             |                                    |                         |          |  |   |

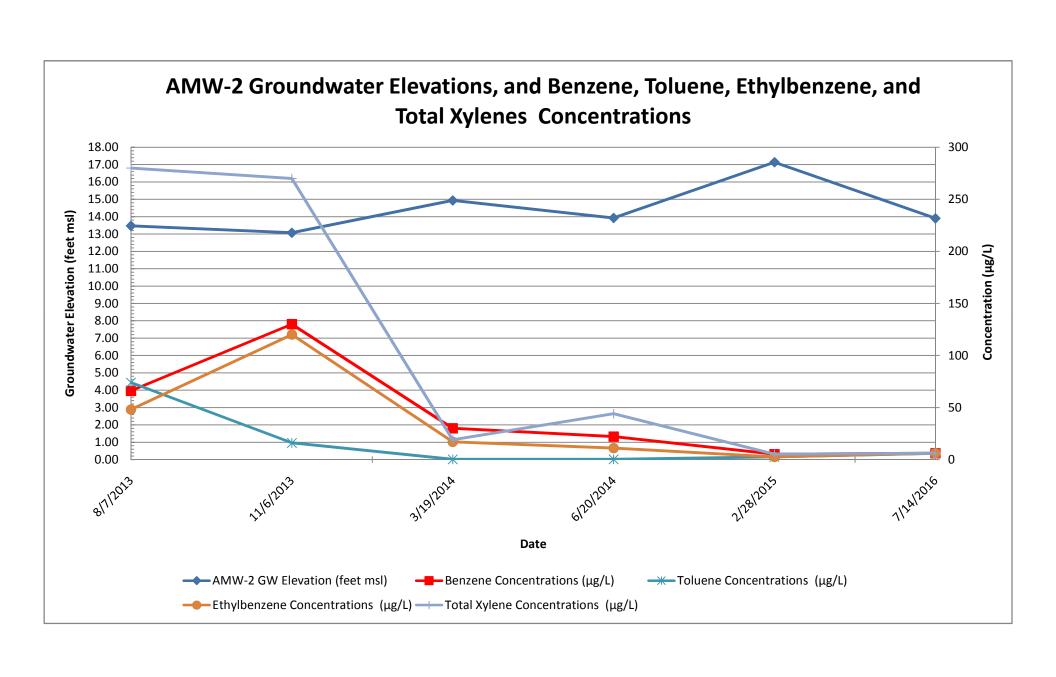
PRESERVATION

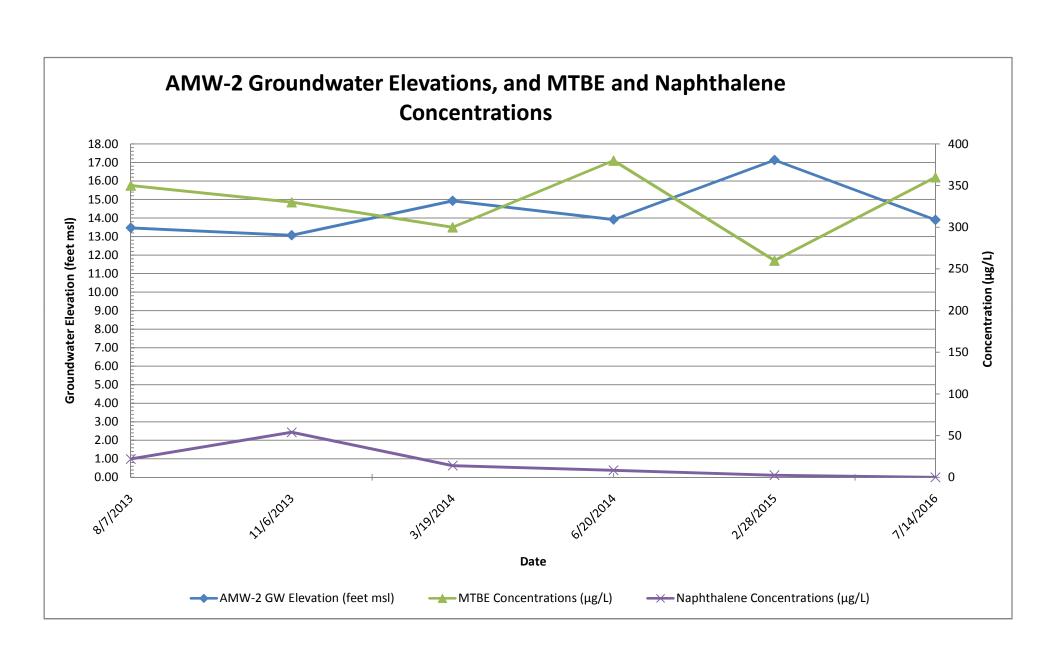
pH<2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |             |            |                 | 1       | 6     | 07                | 6                    | 4                                                                                                                                                                                                                                                               |                  |                                          |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       |          |        |                                           |                                             |                                             |                                    |                                      |        |              |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|-------------|------------|-----------------|---------|-------|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|----------------------------|-----------------------------------------------------|--------|----------|--------|-------|-----------|-------------------------------------------------|-----------------|---------------------------------------|----------|--------|-------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|--------------------------------------|--------|--------------|-------------------|
| N AUG. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>McCAMP</b>                            | BELL       | ANA         | LY         | TIC             | AL      | , II  | VC.               |                      |                                                                                                                                                                                                                                                                 |                  |                                          | Г                          |                                                     |        |          | (      | CH    | Al        | N                                               | 01              | 7 C                                   | 'US      | ST     | 01                                        | DY                                          | R                                           | E                                  | $\overline{\mathbb{C}}$              | RD     |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            | LLOW PA     |            |                 |         |       |                   |                      |                                                                                                                                                                                                                                                                 |                  |                                          | l 1                        | CUE                                                 | RN     | AR       |        |       |           |                                                 |                 |                                       |          |        |                                           | J Î                                         |                                             |                                    |                                      | ]      | ) i          | X                 |
| PITTSBURG, CA 94565-1701  Website: <a href="mailto:www.mccampbell.com">www.mccampbell.com</a> Email: main@mccampbell.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |            |             |            |                 |         |       |                   |                      |                                                                                                                                                                                                                                                                 | 1                |                                          |                            |                                                     |        |          |        |       |           |                                                 | RUS             | Н                                     | 24       | HR     |                                           | 48 F                                        | -IR                                         | 72                                 | HR 5 C                               | OAY    |              |                   |
| Telephone: (877) 252-9262 Fax: (925) 252-9269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |            |             |            |                 |         |       |                   |                      |                                                                                                                                                                                                                                                                 |                  | GeoTracker EDF A PDF Excel Write On (DW) |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       |          |        |                                           |                                             |                                             |                                    |                                      |        |              |                   |
| Demont Tool -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Report To: Land Allec Pill To: Do Land T |            |             |            |                 |         |       |                   |                      |                                                                                                                                                                                                                                                                 |                  |                                          | L                          | Check if sample is effluent and "J" flag is require |        |          |        |       |           |                                                 |                 |                                       |          | ired   |                                           |                                             |                                             |                                    |                                      |        |              |                   |
| Report To: Leonard Niles Bill To: Parlene Torio Company: AllWest Environmental, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |            |             |            |                 |         |       |                   |                      |                                                                                                                                                                                                                                                                 | _                | _                                        | _                          | _                                                   |        | A        | nal    | ysis  | Rec       | ues                                             |                 |                                       | <i>a</i> |        | _                                         |                                             | 0                                           | ther                               | Comm                                 | ients  |              |                   |
| 2141 Missic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VESTEN                                   | Viron      | men         | tin        | , IV            | ۲.      |       | 10                | -16                  |                                                                                                                                                                                                                                                                 | 11               |                                          |                            |                                                     |        |          |        |       |           | 90                                              |                 |                                       | TPH-M    |        | 8270 SIM / 8310 (PAHS / PNAS) Waphtualent |                                             |                                             |                                    |                                      |        | **Indi       | icate             |
| San France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | isco C                                   | A 94       | -1/0        | T-Ma       | il·Da           | con     | aro   | Pallu             | 1114                 | 1es  <br>+ 1                                                                                                                                                                                                                                                    | 40               | com                                      | BE                         |                                                     | 3&F)   |          |        |       |           | ener                                            |                 |                                       | 9        |        | 3                                         |                                             |                                             |                                    |                                      |        | here if      |                   |
| Tele: (4/5)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |            |             |            |                 |         |       | - 20              |                      |                                                                                                                                                                                                                                                                 | , 20             | 1                                        | 801S) / MTBE               |                                                     | 0 E/I  |          |        |       |           | Cong                                            |                 |                                       | 6-       |        | 14                                        |                                             | _                                           |                                    | lysis                                |        | sampl        |                   |
| Project #: 1604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.28                                    |            | 1           | Proje      | ct Na           | me:     | 12    | is-(              | 2w                   | M                                                                                                                                                                                                                                                               | 20               | 14                                       | (\$10)                     |                                                     | / 552  | <u>-</u> | (\$:   | 21)   |           | ors/                                            |                 | <u>s</u>                              | PH-      | )      | 35                                        | 6020                                        | 6020                                        |                                    | s ana                                |        | potent       | cially<br>rous to |
| Project Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :6655 H                                  | ollis 2    | 5+., E      | me         | ryl             | rille   | 2, (  | CA                |                      |                                                                                                                                                                                                                                                                 |                  | 0                                        | +                          |                                                     | 664    | (418.    | VOC    | / 80  | es)       | rock                                            |                 | icide                                 | H        |        | NAs)                                      | 010                                         | 10/                                         |                                    | netals                               |        | handle       |                   |
| Sampler Signatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re: Leon                                 | and.       | Vill        | 1          | /               |         | /     |                   |                      |                                                                                                                                                                                                                                                                 |                  |                                          | 802                        |                                                     | ase () | suoc     | H) H   | 1 602 | ticid     | EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners | des)            | EPA 515 / 8151 (Acidic Cl Herbicides) | 3        | Cs)    | ls/P                                      | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | LUFT 5 Metals (200,7 / 200,8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) | sample for DISSOLVED metals analysis |        |              |                   |
| San Francisco, CA 94110 E-Mail: Darlene@allwest 1. com Tele: (415)39/-2510 Fax: (415)391-2008 Project Location: 6655 Hollis St., Emery Ville, CA Sampler Signature: Lovand Ville Sampler Signature: Lotal Petroleum Oil & Crease (1801) 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8010 / 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8021 (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8021 (HVOC3) (HVOC3) WITHER BLEX ONLY (EPA 802.21 / 6011 8021 (HVOC3) (HVO |                                          |            |             |            |                 |         |       |                   | ONE                  | 507 / 8141 (NP Pesticides)                                                                                                                                                                                                                                      | 5                | EPA 524.2 / 624 / 8260 (VOCs)            | 525.2 / 625 / 8270 (SVOCs) | PAL                                                 | / 200  | 200.     | 10/6   | )LV   |           |                                                 |                 |                                       |          |        |                                           |                                             |                                             |                                    |                                      |        |              |                   |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |            |             | ۱.,        | ers             |         | Т     | 1 1               | - 1                  | RES                                                                                                                                                                                                                                                             | ERV              | ED                                       | Gas (                      | 12)                                                 | S II   | lydre    | 8010   | VLY.  | 2) [2     | B's                                             | IP P.           | cidi                                  | 3260     | 3270   | 310                                       | 00.7                                        | 0.77                                        | 09/                                | ISSC                                 |        |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOCATION/                                |            |             | Containers | Type Containers |         |       |                   | 1                    |                                                                                                                                                                                                                                                                 |                  |                                          | 38                         | TPH as Diesel (8015)                                | um C   | m F      | 01/    | X O   | / 808     | 32 PC                                           | 5               | S1 (A                                 | 24/8     | 25/8   | M/8                                       | ıls (2                                      | ls (2(                                      | 200.8                              | for D                                |        |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Point<br>Name                      | Date       | Date Time   | tai.       | Con             | 1.1     |       | ۵                 |                      |                                                                                                                                                                                                                                                                 |                  |                                          | TPI                        | Siese                                               | trole  | trole    | 2/6    | BTE   | / 608     | / 80                                            | / 81            | / 81                                  | 2/6      | 2/6    | 10 SI                                     | Met                                         | Meta                                        | 17.0                               | nple                                 |        |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Date       | 1 111110    | l o        | be (            | Water   | = .   | Sludge            | Other                |                                                                                                                                                                                                                                                                 | HNO <sub>3</sub> | Other                                    | BTEX & TPH                 | l as l                                              | ıl Pe  | Il Pe    | 505    | BE/   | 505       | 809                                             | 507             | 515                                   | 524      | 525    | 827                                       | 117                                         | TS                                          | 50                                 | r san                                |        |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |             | #          | F,              | 😤       | Soil  | SIS               |                      | HCL                                                                                                                                                                                                                                                             | E                | ŏ                                        | BTE                        | TPI                                                 | Tots   | Tots     | EPA    | MT    | EPA       | EPA                                             | EPA             | EPA                                   | EPA      | EPA    | EPA                                       | CAN                                         | LUF                                         | Lead                               | Filter                               |        |              |                   |
| AMW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMW-2                                    | 7/14/16    | 11:13       | 4          | VOA             | X       |       |                   | >                    | <x< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>X</td><td>1</td><td>1</td><td></td><td></td><td><math>\dashv</math></td><td><math>\dashv</math></td><td>+</td><td></td><td></td></x<> |                  |                                          |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       | X        | 1      | 1                                         |                                             |                                             | $\dashv$                           | $\dashv$                             | +      |              |                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                        | 77         | 1,          | ĺ          | ILA             |         |       |                   | 7                    | (X                                                                                                                                                                                                                                                              |                  |                                          |                            | X                                                   |        |          |        |       |           |                                                 |                 | 1                                     |          | $\top$ |                                           |                                             |                                             | 7                                  |                                      |        |              |                   |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                        | V          | V           | i          | ILA             | X       |       |                   | 1>                   | 8                                                                                                                                                                                                                                                               | 1                | U                                        |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       |          |        | X                                         | M                                           | 17                                          | n                                  |                                      | +      |              |                   |
| MW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-3                                     | 7/14/13    | 13:15       | 4          | VOA             | X       |       |                   | 1                    | X                                                                                                                                                                                                                                                               |                  |                                          |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       | <        |        |                                           |                                             |                                             | $\dashv$                           |                                      | $\top$ |              |                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                        | 1          | Ī           | ì          | ILA             | X       |       |                   | X                    | ×                                                                                                                                                                                                                                                               |                  |                                          |                            | X                                                   |        |          |        |       |           |                                                 | $\exists$       | 1                                     | +        | $\neg$ | $\exists$                                 | $\neg$                                      | 7                                           | $\dashv$                           | $\neg$                               | $\neg$ |              |                   |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                        |            | V           | İ          | ILA             | X       |       |                   | X                    |                                                                                                                                                                                                                                                                 |                  |                                          |                            |                                                     |        |          | $\neg$ |       | $\forall$ | $\neg$                                          | 1               | $\neg$                                | 1        |        | Z                                         | $\dashv$                                    | $\forall$                                   | $\dashv$                           | +                                    | $\top$ |              |                   |
| AMW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMW-3                                    | 7/14/13    | 15:58       | 4          | VOA             | X       |       |                   | X                    | X                                                                                                                                                                                                                                                               |                  | $\neg$                                   |                            |                                                     |        |          | 7      |       |           |                                                 | 1               |                                       | X        |        | 1                                         |                                             |                                             | $\dashv$                           | $\top$                               | $\top$ |              |                   |
| 7, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                        | 7.7        | 1           | 1          | ILA             | X       |       |                   | X                    | X                                                                                                                                                                                                                                                               |                  | $\neg$                                   |                            | X                                                   |        | 1        | $\neg$ | 7     | $\exists$ |                                                 | $\neg \uparrow$ | 7                                     | 1        | 1      | 1                                         |                                             | 7                                           | 1                                  | $\neg$                               |        |              |                   |
| <b>N</b> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                        | 1/         | V           | 1          | ILA             | X       |       | $\dagger \dagger$ | $\overrightarrow{V}$ | -                                                                                                                                                                                                                                                               |                  | $\neg$                                   |                            | _                                                   | $\neg$ | $\top$   | 7      | 1     | $\neg$    |                                                 | 1               | +                                     | 1        |        | X                                         | $\dashv$                                    | $\dashv$                                    | $\dashv$                           | $\dashv$                             | _      |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | V /        | 11:1        | ,          | 15/1            |         | +     | ++                | +^                   | +                                                                                                                                                                                                                                                               | Н                | $\dashv$                                 | +                          | $\dashv$                                            | 1      | +        | +      | +     | +         | +                                               | +               | +                                     | $\pm$    | 1      |                                           |                                             |                                             |                                    | _                                    |        |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Levna                                    | rd         | Ville       | A          |                 |         |       | -                 | +                    | +                                                                                                                                                                                                                                                               |                  | -                                        |                            | $\dashv$                                            | _      |          | _      | -     |           |                                                 |                 |                                       |          | +      | +                                         |                                             | $\dashv$                                    | $\dashv$                           | +                                    | +      |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |             |            |                 |         |       | 1 1               |                      |                                                                                                                                                                                                                                                                 |                  |                                          |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       |          |        |                                           |                                             |                                             |                                    |                                      |        |              |                   |
| **MAI clients MUST of<br>gloved, open air, samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | disclose any dan<br>de handling by N     | gerous che | micals kno  | wn to      | be pre          | sent ii | thei  | r subm            | itted                | samp                                                                                                                                                                                                                                                            | oles i           | n coi                                    | ncen<br>clier              | tratio                                              | ons t  | hat n    | iay c  | ause  | imm       | edia                                            | te ha           | rm o                                  | seri     | ous    | futur                                     | re he                                       | alth                                        | enda                               | nger                                 | ment a | s a result o | f brief,          |
| allowing us to work sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fely.                                    |            | .on discio. |            | vuis a          |         | cuiat | 0200              | Juici                | an ge                                                                                                                                                                                                                                                           | anu              | the                                      | cnell                      | . 13 3                                              | abje   | 10       | an I   | cgar  | iauti     | ity It                                          | и па            | i iii St                              | mer      | cu. I  | uan                                       | ik yo                                       | u 101                                       | you                                | ı und                                | erstan | uing and fe  | υr                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |             |            |                 |         |       |                   |                      |                                                                                                                                                                                                                                                                 |                  |                                          |                            |                                                     |        |          |        |       |           |                                                 |                 |                                       |          |        |                                           |                                             |                                             |                                    |                                      |        |              |                   |

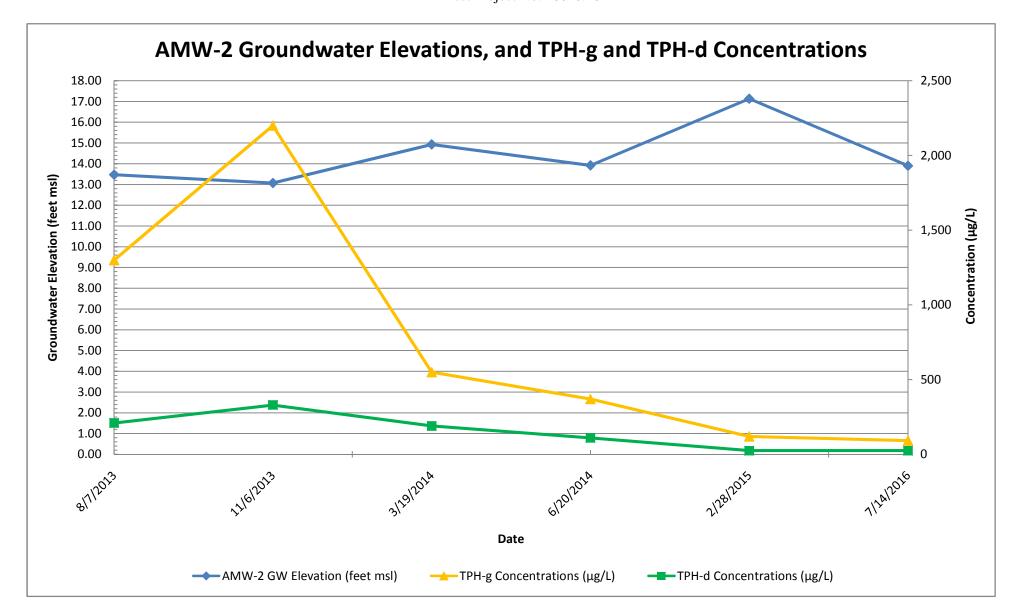
COMMENTS:

ABSENT\_\_\_\_\_ TPH as gasoline and mineral
ABSENT\_\_\_ Spirits (TPH-9/TPH ms),
E CONTAINERS\_\_ VOCS With fuel OXYGENATES,
VOAS O&G METALS OTHER

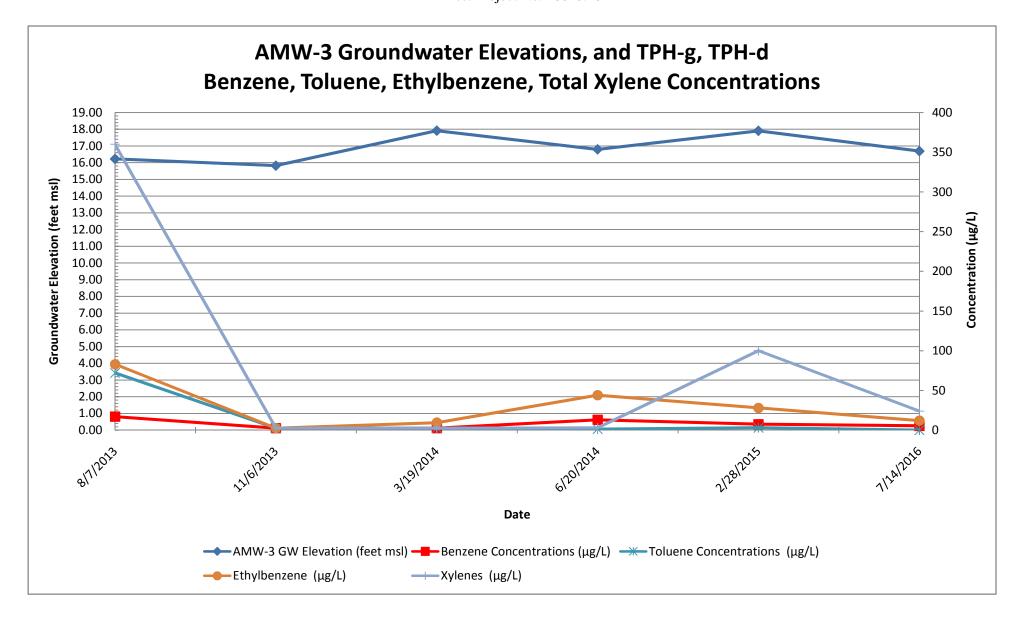

N\_\_\_\_\_ pH<2 Relinquished By: Honard Time: Received By. ICE/t° Date: GOOD CONDITION HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB\_ Belinquished By: Date: Time: Received By: PRESERVATION


1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

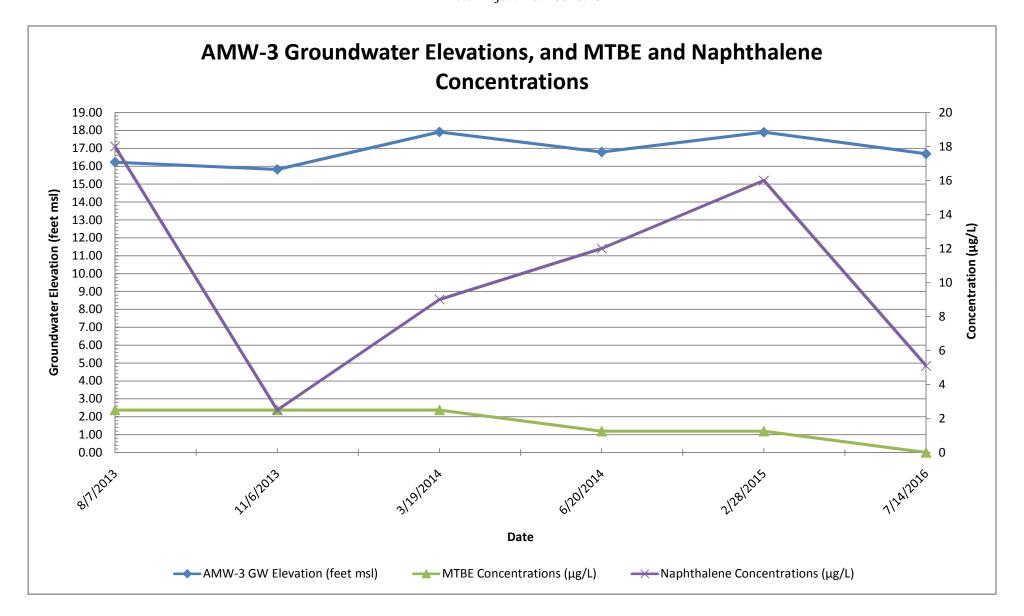
### **Sample Receipt Checklist**

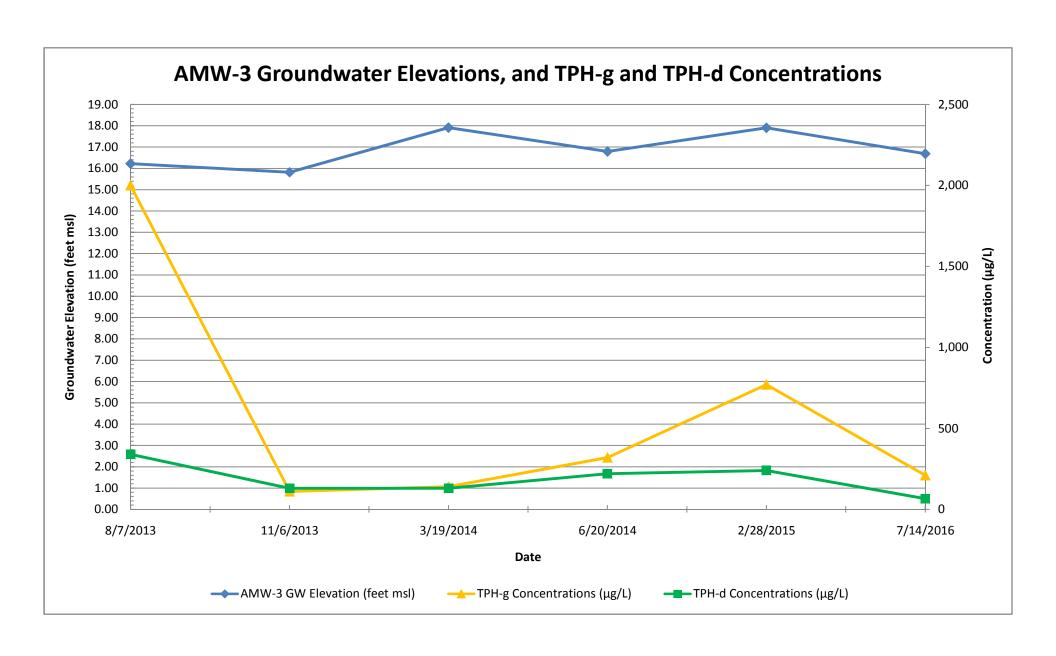

| Client Name:                | All West      | Environme     | ntal, Inc                   |        |           | Date and Time Received: | 7/15/2016 16:45 |
|-----------------------------|---------------|---------------|-----------------------------|--------|-----------|-------------------------|-----------------|
| Project Name:               | 16040.2       | B; Hollis-GV  | /M 2016                     |        |           | Date Logged:            | 7/15/2016       |
| WorkOrder №:                | 1607641       |               | Matrix: Water               |        |           | Received by:            | Valerie Riva    |
| Carrier:                    | Bernie C      | ummins (MA    | Al Courier)                 |        |           | Logged by:              | Valerie Riva    |
|                             |               |               | Chain of C                  | ustod  | (COC)     | Information             |                 |
| Chain of custody            | present?      |               |                             | Yes    | •         | No 🗆                    |                 |
| Chain of custody            | signed wh     | nen relinquis | hed and received?           | Yes    | •         | No 🗆                    |                 |
| Chain of custody            | agrees w      | th sample la  | abels?                      | Yes    | ✓         | No 🗆                    |                 |
| Sample IDs note             | ed by Clien   | t on COC?     |                             | Yes    | <b>✓</b>  | No 🗆                    |                 |
| Date and Time of            | of collection | n noted by C  | lient on COC?               | Yes    | <b>✓</b>  | No 🗆                    |                 |
| Sampler's name              | noted on (    | COC?          |                             | Yes    | <b>✓</b>  | No 🗆                    |                 |
|                             |               |               | Sampl                       | e Rece | eipt Info | rmation                 |                 |
| Custody seals in            | itact on shi  | pping conta   | iner/cooler?                | Yes    |           | No 🗆                    | NA 🗹            |
| Shipping contain            | ner/cooler i  | n good cond   | ition?                      | Yes    | <b>✓</b>  | No 🗆                    |                 |
| Samples in prop             | er containe   | ers/bottles?  |                             | Yes    | <b>✓</b>  | No 🗆                    |                 |
| Sample containe             | ers intact?   |               |                             | Yes    | •         | No 🗆                    |                 |
| Sufficient sample           | e volume f    | or indicated  | test?                       | Yes    | •         | No 🗆                    |                 |
|                             |               |               | Sample Preservation         | on and | Hold Ti   | me (HT) Information     |                 |
| All samples rece            | eived within  | holding tim   | e?                          | Yes    | <b>✓</b>  | No 🗆                    |                 |
| Sample/Temp B               | lank tempe    | erature       |                             |        | Temp      | :                       | NA 🗹            |
| Water - VOA via             | ls have ze    | ro headspac   | e / no bubbles?             | Yes    | ✓         | No 🗌                    | NA 🗌            |
| Sample labels cl            | hecked for    | correct pres  | ervation?                   | Yes    | ✓         | No 🗌                    |                 |
| pH acceptable u             | pon receip    | t (Metal: <2; | 522: <4; 218.7: >8)?        | Yes    |           | No 🗌                    | NA 🗹            |
| Samples Receiv              | ed on Ice?    |               |                             | Yes    | ✓         | No 🗌                    |                 |
|                             |               |               | (Ice Type                   | e: WE  | TICE      | )                       |                 |
| UCMR3 Sample Total Chlorine |               | l acceptable  | upon receipt for EPA 522?   | Yes    |           | No 🗆                    | NA <b>✓</b>     |
|                             |               | •             | upon receipt for EPA 218.7, |        |           | No 🗆                    | NA 🗹            |
| 300.1, 537, 53              |               |               | ,                           |        |           |                         |                 |
|                             |               |               |                             |        |           |                         |                 |
|                             |               |               |                             |        |           | - — — — — — — -         |                 |
| Comments:                   | <u> </u>      |               | - — — — — — — —             |        |           | - — — — — — — — -       |                 |

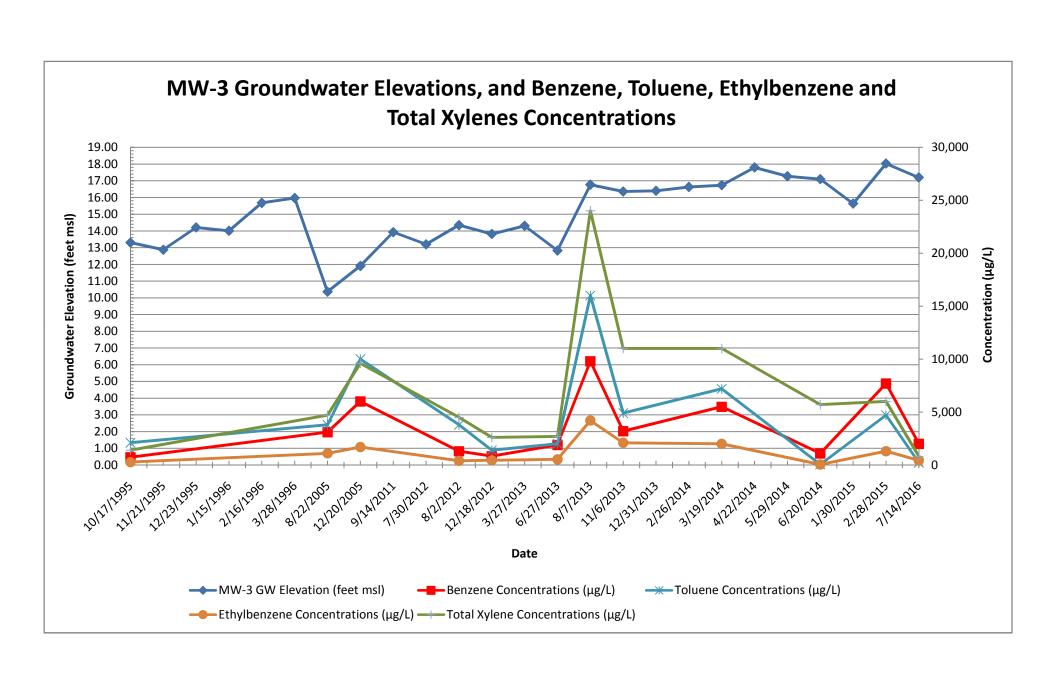
# APPENDIX D

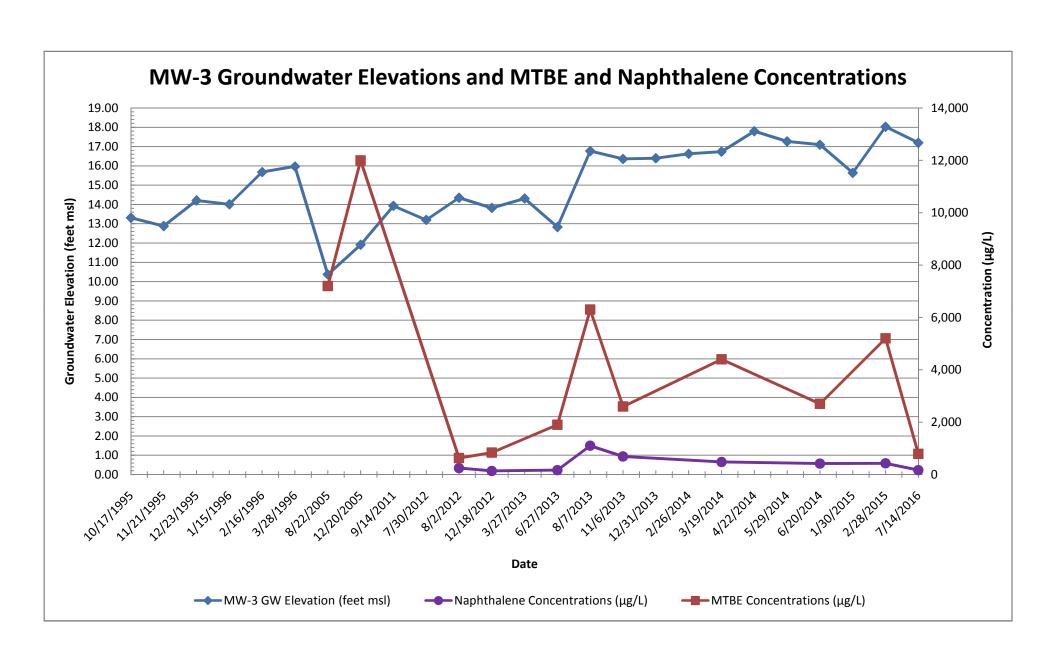


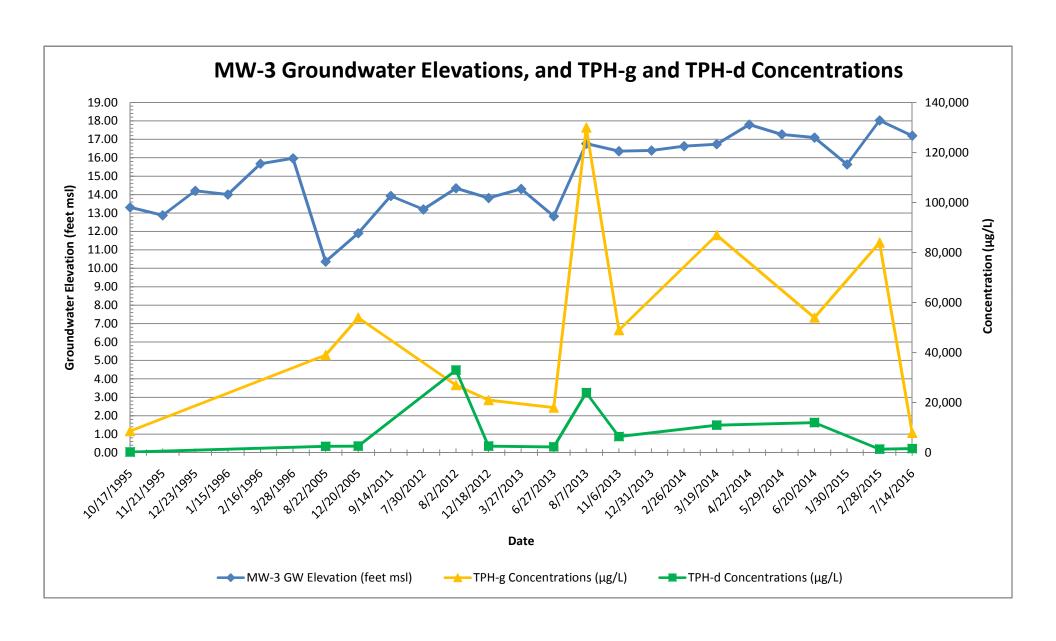




FORMER McGRATH STEEL 6655 HOLLIS STREET EMERYVILLE, CA AllWest Project No. 16040.28





FORMER McGRATH STEEL 6655 HOLLIS STREET EMERYVILLE, CA AllWest Project No. 16040.28





FORMER McGRATH STEEL 6655 HOLLIS STREET EMERYVILLE, CA AllWest Project No. 16040.28











# **APPENDIX E**



### **APPLICATION FOR AUTHORIZATION TO USE**

| REPORT TITLE:                                                                                 | 1ST SEMIANNUAL                                                                     | 2016 GROUNDWAT                                                                 | ER MONITORING REPORT                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               | Former McGrath Ste<br>6655 Hollis St. & 147<br>Emeryville, CA                      |                                                                                |                                                                                                                                                                                                                                                            |
| PROJECT NUMBER:                                                                               | 16040.28                                                                           |                                                                                |                                                                                                                                                                                                                                                            |
| То:                                                                                           | AllWest Environmental,<br>2141 Mission Street, St<br>San Francisco, CA 941         | uite 100                                                                       |                                                                                                                                                                                                                                                            |
| From (Applicant):                                                                             |                                                                                    |                                                                                |                                                                                                                                                                                                                                                            |
|                                                                                               |                                                                                    |                                                                                |                                                                                                                                                                                                                                                            |
|                                                                                               | (Please clearly identify use or copy this docum                                    |                                                                                | person/entity applying for permission to                                                                                                                                                                                                                   |
| Ladies and Gentlemen:                                                                         |                                                                                    |                                                                                |                                                                                                                                                                                                                                                            |
| Applicant states they have the methodology, findings and co                                   |                                                                                    | eport and had the oppor                                                        | rtunity to discuss with AllWest the report's                                                                                                                                                                                                               |
| Applicant hereby applies for the purpose for which you wi                                     |                                                                                    |                                                                                | as described above, for the purpose of (state here                                                                                                                                                                                                         |
| provisions in the General Co<br>finding, or conclusion issued<br>agreeable, please sign below | nditions to the Work Auth<br>by AllWest shall be subje<br>v and return one copy of | norization Agreement prect to the limitations sta<br>this letter to us along w | ct understanding that Applicant is bound by all rovided below. Every report, recommendation, ited in the Agreement and subject report(s). If this if ith the applicable fees. Upon receipt and if ion at its sole discretion or require additional re-use. |
|                                                                                               | sue the report in the nam                                                          | ne of the Applicant; the                                                       | ly. If desired, for an additional \$150 report report date, however, will remain the same. All                                                                                                                                                             |
| REQUES                                                                                        | TED BY                                                                             |                                                                                | APPROVED BY                                                                                                                                                                                                                                                |
| Applicant (                                                                                   | Company                                                                            |                                                                                | AllWest Environmental, Inc.                                                                                                                                                                                                                                |
| Print Name                                                                                    | and Title                                                                          |                                                                                | Print Name and Title                                                                                                                                                                                                                                       |
| Signature                                                                                     | and Date                                                                           |                                                                                | Signature and Date                                                                                                                                                                                                                                         |
|                                                                                               |                                                                                    |                                                                                |                                                                                                                                                                                                                                                            |

5/15/15 Page 1 of 4

#### GENERAL CONDITIONS TO THE WORK AUTHORIZATION AGREEMENT

It is hereby agreed that the Client retains AllWest to provide services as set forth in the Work Authorization attached hereto (the "Work"). This contract shall be controlled by the following terms and conditions, and these terms and conditions shall also control any further assignments performed pursuant to this Work Authorization. Client's signature on this Work Authorization constitutes Client's agreement to the all terms to this contract, including these General Conditions.

#### **FEES AND COSTS**

AllWest shall charge for work performed by its personnel at the rates identified in the Work Authorization. These rates are subject to reasonable increases by AllWest upon giving Client 30 days advance notice. Reimbursable Costs will be charged to the Client in addition to the fees for the basic services under this Agreement and all Additional Services (defined below) under the Agreement. Reimbursable Costs include, but are not limited to, expenses for travel, including transportation, meals, lodging, long distance telephone and other related expenses, as well as the costs of reproduction of all drawings for the Client's use, costs for specifications and type-written reports, permit and approval fees, automobile travel reimbursement, costs and fees of subcontractors, and soil and other materials testing. No overtime is accrued for time spent in travel. All costs incurred which relate to the services or materials provided by a contractor or subcontractor to AllWest shall be invoiced by AllWest on the basis of cost plus twenty percent (20%). Automobile travel reimbursement shall be at the rate of fifty- eight cents (\$0.58) per mile. All other reimbursable costs shall be invoiced and billed by AllWest at the rate of 1.1 times the direct cost to AllWest. Reimbursable costs will be charged to the client only as outlined in the Work Authorization if the scope of work is for Phase I Environmental Site Assessment, Property Condition Assessment, Seismic Assessment or ALTA survey. Invoices for work performed shall be submitted monthly. Payment will be due upon receipt of invoice. Client shall pay interest on the balance of unpaid invoices which are overdue by more than 30 days, at a rate of 18% per annum as well as all attorney fees and costs incurred by AllWest to secure payment of unpaid invoices. AllWest may waive such fees at its sole discretion.

#### STANDARD OF CARE

AllWest will perform its work in accordance with the standard of care of its industry, as it is at the time of the work being performed, and applicable in the locale of the work being performed. AllWest makes no other warranties, express or implied regarding its work.

#### **LIMITATION OF REMEDIES**

Client expressly agrees that to the fullest extent permitted by law, Client's remedies for any liability incurred by AllWest, and/or its employees or agents, for any and all claims arising from AllWest's services, shall be \$50,000 or its fees, whichever is greater.

Client may request a higher limitation of remedies, but must do so in writing. Upon such written request, AllWest may agree to increase this limit in exchange for a mutually negotiated higher fee commensurate with the increased risk to AllWest. Any such agreed increase in fee and limitation of remedies amount must be memorialized by written agreement which expressly amends the terms of this clause.

As used in this section, the term "limitation of remedies" shall apply to claims of any kind, including, but not limited to, claims brought in contract, tort, strict liability, or otherwise, for any and all injuries, claims, losses, expenses, or damages whatsoever arising out of or in any way related to AllWest's services or the services of AllWest's subcontractors, consultants, agents, officers, directors, and employees from any cause(s). AllWest shall not be liable for any claims of loss of profits or any other indirect, incidental, or consequential damages of any nature whatsoever. Client & AllWest have specifically negotiated this limitation.

#### **INDEMNIFICATION**

Notwithstanding any other provision of this Agreement, Client agrees, to the fullest extent permitted by law, to waive any claim against, release from any liability or responsibility for, and , indemnify and hold harmless AllWest, its employees, agents and sub-consultants (collectively, Consultant) from and against any and all damages, liabilities, claims, actions or costs of any kind, including reasonable attorney's fees and defense costs, arising or alleged to arise out of or to be in any way connected with the Project or the performance or non-performance of Consultant of any services under this Agreement, excepting only any such liabilities determined by a court or other forum of competent jurisdiction to have been caused by the negligence or willful misconduct of Consultant. This provision shall be in addition to any rights of indemnity that Consultant may have under the law and shall survive and remain in effect following the termination of this Agreement for any reason. Should any part of this provision be determined to be unenforceable, AllWest and Client agree that the rest of the provision shall apply to the maximum extent permitted by law. The Client's duty to defend AllWest shall arise immediately upon tender of any matter potentially covered by the above obligations to indemnify and hold harmless.

#### **MEDIATION & JUDICIAL REFERENCE**

In an effort to resolve any conflicts or disputes that arise regarding the performance of this agreement, the Client & AllWest agree that all such disputes shall be submitted to non-binding mediation, using a mutually agreed upon mediation service experienced in the resolution of construction disputes. Unless the parties mutually agree otherwise, such mediation shall be a condition precedent to the initiation of any other adjudicative proceedings. It is further agreed that any dispute that is not settled pursuant to such mediation shall be adjudicated by a court appointed referee in accordance with the Judicial Reference procedures as set forth in California Code of Civil Procedure Section 638 et seq. The parties hereby mutually agree to waive any right to a trial by jury regarding any dispute arising out of this agreement.

The parties further agree to include a similar mediation, Judicial Reference & waiver of jury trial provision in their agreements with other independent contractors & consultants retained for the project and require them to similarly agree to these dispute resolution procedures. The cost of said Mediation shall be split equally between the parties. This agreement to mediate shall be specifically enforceable under the prevailing law of the jurisdiction in which this agreement was signed.

#### **HAZARDOUS WASTE**

Client acknowledges that AllWest and its sub-contractors have played no part in the creation of any hazardous waste, pollution sources, nuisance, or chemical or industrial disposal problem, which may exist, and that AllWest has been retained for the sole purpose of performing the services set out in the scope of work within this Agreement, which may include, but is not necessarily limited to such services as assisting the Client in assessing any problem which may exist and in assisting the

5/15/15

Client in formulating a remedial program. Client acknowledges that while necessary for investigations, commonly used exploration methods employed by AllWest may penetrate through contaminated materials and serve as a connecting passageway between the contaminated material and an uncontaminated aquifer or groundwater, possibly inducing cross contamination. While back-filling with grout or other means, according to a state of practice design is intended to provide a seal against such passageway, it is recognized that such a seal may be imperfect and that there is an inherent risk in drilling borings of performing other exploration methods in a hazardous waste site.

AllWest will not sign or execute hazardous waste manifests or other waste tracking documents on behalf of Client unless Client specifically establishes AllWest as an express agent of Client under a written agency agreement approved by AllWest. In addition, Client agrees that AllWest shall not be required to sign any documents, no matter requested by whom, that would have the effect of AllWest providing any form of certification, guarantee, or warranty as to any matter or to opine on conditions for which the existence AllWest cannot ascertain. Client also agrees that it shall never seek or otherwise attempt to have AllWest provide any form of such certification, guarantee or warranty in exchange for resolution of any disputes between Client and AllWest, or as a condition precedent to making payment to AllWest for fees and costs owing under this Agreement.

Client understands and agrees that AllWest is not, and has no responsibility as, a generator, operator, treater, storer, transporter, arranger or disposer of hazardous or toxic substances found or identified at the site, including investigation-derived waste. The Client shall undertake and arrange for the removal, treatment, storage, disposal and/or treatment of hazardous material and investigation derived waste (such as drill cuttings) and further, assumes full responsibility for such wastes to the complete exclusion of any responsibility, duty or obligation upon AllWest. AllWest's responsibilities shall be limited to recommendations regarding such matters and assistance with appropriate arrangements if authorized by Client.

#### **FORCE MAJUERE**

7. Neither party shall be responsible for damages or delays in performance under this Agreement caused by acts of God, strikes, lockouts, accidents or other events or condition (other than financial inability) beyond the other Party's reasonable control.

#### **TERMINATION**

8. This Agreement may be terminated by either party upon ten (10) days' written notice should the other party substantially fail to perform in accordance with its duties and responsibilities as set forth in this Agreement and such failure to perform is through no fault of the party initiating the termination. Client agrees that if it chooses to terminate AllWest for convenience, and AllWest has otherwise satisfactorily performed its obligations under this Agreement to that point, AllWest shall be paid no less than eighty percent (80%) of the contract price, provided, however, that if AllWest shall have completed more than eighty percent of the Work at the time of said termination, AllWest shall be compensated as provided in the Work Authorization for all services performed prior to the termination date which fall within the scope of work described in the Work Authorization and may as well, at its sole discretion and in accordance with said Schedule of Fees, charge Client, and Client agrees to pay AllWest's reasonable costs and labor in winding up its files and removing equipment and other materials from the Project.

Upon notice of termination by Client to AllWest, AllWest may issue notice of such termination to other consultants, contractors, subcontractors and to governing agencies having jurisdiction over the Project, and take such other actions as are reasonably necessary in order to give notice that AllWest is no longer associated with the Project and to protect AllWest from claims of liability from the work of others.

#### **DOCUMENTS**

9. Any documents prepared by AllWest, including, but not limited to proposals, project specifications, drawings, calculations, plans and maps, and any ideas and designs incorporated therein, as well as any reproduction of the above are instruments of service and shall remain the property of AllWest and AllWest retains copyrights to these instruments of service. AllWest grants to Client a non-exclusive license to use these instruments of service for the purpose of completing and maintaining the Project. The Client shall be permitted to retain a copy of any instruments of service, but Client expressly agrees and acknowledges that the instruments of service may not be used by the Client on other projects, or for any other purpose, except the project for which they were prepared, unless Client first obtains a written agreement expanding the license to such use from AllWest, and with appropriate compensation to AllWest. Client further agrees that such instruments of service shall not be provided to any third parties without the express written permission of AllWest.

Client shall furnish, or cause to be furnished to AllWest all documents and information known to Client that relate to the identity, location, quantity, nature, or characteristics of any asbestos, PCBs, or any other hazardous materials or waste at, on or under the site. In addition, Client will furnish or cause to be furnished such reports, data, studies, plans, specifications, documents and other information on surface or subsurface site conditions, e.g., underground tanks, pipelines and buried utilities, required by AllWest for proper performance of its services. IF Client fails to provide AllWest with all hazardous material subject matter reports including geotechnical assessments in its possession during the period that AllWest is actively providing its services (including up to 30 days after its final invoice), Client shall release AllWest from any and all liability for risks and damages the Client incurs resulting from its reliance on AllWest's professional opinion. AllWest shall be entitled to rely upon Client - provided documents and information in performing the services required in this Agreement; however, AllWest assumes no responsibility or liability for the accuracy or completeness of Client-provided documents. Client-provided documents will remain the property of the Client.

#### **ACCESS TO PROJECT**

10. Client grants to AllWest the right of access and entry to the Project at all times necessary for AllWest to perform the Work. If Client is not the owner of the Project, then Client represents that Client has full authority to grant access and right of entry to AllWest for the purpose of AllWest's performance of the Work. This right of access and entry extends fully to any agents, employees, contractors or subcontractors of AllWest upon reasonable proof of association with AllWest. Client's failure to provide such timely access and permission shall constitute a material breach of this Agreement excusing AllWest from performance of its duties under this Agreement.

#### **CONFIDENTIAL INFORMATION**

11. Both Client and AllWest understand that in conjunction with AllWest's performance of the Work on the project, both Client and AllWest may receive or be exposed to Proprietary Information of the other. As used herein, the term "Proprietary Information" refers to any and all information of a confidential, proprietary or secret nature which may be either applicable to, or relate in any way to: (a) the personal, financial or other affairs of the business of each of the Parties, or (b) the

research and development or investigations of each of the Parties. Proprietary Information includes, for example and without limitation, trade secrets, processes, formulas, data, know-how, improvements, inventions, techniques, software technical data, developments, research projects, plans for future development, marketing plans and strategies. Each of the Parties agrees that all Proprietary Information of the other party is and shall remain exclusively the property of that other party. The parties further acknowledge that the Proprietary Information of the other party is a special, valuable and unique asset of that party, and each of the Parties agrees that at all times during the terms of this Agreement and thereafter to keep in confidence and trust all Proprietary Information of the other party, whether such Proprietary Information was obtained or developed by the other party before, during or after the term of this Agreement. Each of the Parties agrees not to sell, distribute, disclose or use in any other unauthorized manner the Proprietary Information of the other party. AllWest further agrees that it will not sell, distribute or disclose information or the results of any testing obtained by AllWest during the performance of the Work without the prior written approval of Client unless required to do so by federal, state or local statute, ordinance or regulation.

#### INDEPENDENT CONTRACTOR

12. Both Client and AllWest agree that AllWest is an independent contractor in the performance of the Work under this Agreement. All persons or parties employed by AllWest in connection with the Work are the agents, employees or subcontractors of AllWest and not of Client. Accordingly, AllWest shall be responsible for payment of all taxes arising out of AllWest's activities in performing the Work under this Agreement.

#### **ENTIRE AGREEMENT**

13. This Agreement contains the entire agreement between the Parties pertaining to the subject matter contained in it and supersedes and replaces in its entirety all prior and contemporaneous proposals, agreements, representations and understandings of the Parties. The Parties have carefully read and understand the contents of this Agreement and sign their names to the same as their own free act.

#### **INTEGRATION**

14. This is a fully integrated Agreement. The terms of this Agreement may be modified only by a writing signed by both Parties. The terms of this Agreement were fully negotiated by the Parties and shall not be construed for or against the Client or AllWest but shall be interpreted in accordance with the general meaning of the language in an effort to reach the intended result.

#### MODIFICATION / WAIVER / PARTIAL INVALIDITY

15. Failure on the part of either party to complain of any act or omission of the other, or to declare the other party in default, shall not constitute a waiver by such party of its rights hereunder. If any provision of this Agreement or its application be unenforceable to any extent, the Parties agree that the remainder of this Agreement shall not be affected and shall be enforced to the greatest extent permitted by law.

#### **INUREMENT / TITLES**

16. Subject to any restrictions on transfers, assignments and encumbrances set forth herein, this Agreement shall inure to the benefit of and be binding upon the undersigned Parties and their respective heirs, executors, legal representatives, successors and assigns. Paragraph titles or captions contained in this Agreement are inserted only as a matter of convenience, and for reference only, and in no way limit, define or extend the provisions of any paragraph. , et al., incurred in that action or proceeding, in addition to any other relief to which it or they may be entitled.

#### **AUTHORITY**

17. Each of the persons executing this Agreement on behalf of a corporation does hereby covenant and warrant that the corporation is duly authorized and existing under the laws of its respective state of incorporation, that the corporation has and is qualified to do business in its respective state of incorporation, that the corporation has the full right and authority to enter into this Agreement, and that each person signing on behalf of the corporation is authorized to do so. If the Client is a joint venture, limited liability company or a partnership, the signatories below warrant that said entity is properly and duly organized and existing under the laws of the state of its formation and pursuant to the organizational and operating document of the entity, and the laws of the state of its formation, said signatory has authority act on behalf of and commit the entity to this Agreement.

#### **COUNTERPARTS**

18. This Agreement may be signed in counterparts by each of the Parties hereto and, taken together, the signed counterparts shall constitute a single document.

#### THIRD PARTY BENEFICIARIES / CONTROLLING LAW

19. There are no intended third party beneficiaries of this Agreement. The services, data & opinions expressed by AllWest are for the sole use of the client, are for a particular project and may not be relied upon by anyone other than the client. This Agreement shall be controlled by the laws of the State of California and any action by either party to enforce this Agreement shall be brought in San Francisco County, California.

#### TIME BAR TO LEGAL ACTION

20. Any legal actions by either party against the other related to this Agreement, shall be barred after one year has passed from the time the claimant knew or should have known of its claim, and under no circumstances shall be initiated after two years have passed from the date by which AllWest completes its services.