

CITY OF EMERYVILLE

INCORPORATED 1896 1333 PARK AVENUE EMERYVILLE, CALIFORNIA 94608-35 17

TEL: (510) 596-4300 FAX: (510) 658-8095

April 30, 2010

Mr. Mark Detterman Alameda County Department of Environmental Health Services 1131 Harbor Bay Parkway Alameda, CA 94502

Subject: City of Emeryville Fire Station No. 2 ACEH RO 0000061

Dear Mark:

Enclosed please find our consultant's report for the above referenced property. The report presents activities undertaken to address the need for current data; this work will compliment and update the historic information in the ACEH file.

The most substantive historic work was completed following tank removal in the mid-1990s. The conclusion of that period of activity was a request for closure by the City consultant at that time. No further activity appears to have taken place following that request.

The results of recent testing show that levels of fuel-related compounds remain in the area previously explored, though at concentrations well below those historically measured. Following your review we can discuss next steps. Given the competing priorities, this file is not a critical priority for the City presently; we can wait for your schedule to clear to discuss.

If you have any near term questions or concerns don't hesitate to give a call.

Thanks for all your help.

Sincerely,

Jasky Nobeck

Markus Niebanck Brownfield Project Coordinator

RECEIVED

9:08 am, May 07, 2010

Alameda County Environmental Health

1970 Broadway, Suite 710 Oakland, CA 94612 pl 510.628.9000

f | 510.628.9009 kleinfelder.com

April 27, 2010 Project Number: 110550

Mr. Markus Niebanck City of Emeryville Economic Development and Housing Department 1333 Park Avenue Emeryville, California, 94608-3517

Subject: Fire Station No. 2 Groundwater Well Redevelopment and Sample Analytical Results, 6303 Hollis Street Emeryville, California

Dear Mr. Niebanck:

Kleinfelder is pleased to present this letter report presenting the results of sampling and analysis conducted by Kleinfelder following well redevelopment activities. Kleinfelder collected a groundwater sample for chemical analysis from the single groundwater monitoring well (MW-1) at Fire Station No. 2, located at Hollis Street Emeryville, California (the site). Plate 1 shows a Site Vicinity Map and Plate 2 a Site Map. This well sampling was performed at the request of the City of Emeryville and in general accordance with the proposal for Geotechnical Engineering Services submitted to the City of Emeryville on February 24, 2010. The following is a summary of the field activities associated with the collection and analyses of the groundwater sample from MW-1.

BACKGROUND

Kleinfelder understands that two single-walled underground storage tanks (USTs), consisting of one 1,000-gallon diesel UST and one 1,000-gallon unleaded gasoline UST, were removed from the site on October 12, 1995 (Plate 2). In September 1997, one two-inch diameter groundwater monitoring well was installed at the site. The well has a total depth of 20 feet and an approximately 15 foot screen interval, from 5 feet to 20 feet below top of casing.

This well was installed approximately fifteen feet away from the former gasoline UST, in the presumed (based on data from neighboring sites) hydraulic down gradient direction. Groundwater monitoring was performed quarterly between September 1997 and June 1998 by Woodward-Clyde Consultants. Concentrations of fuel hydrocarbons and the gasoline additive methyl tertiary butyl ether (MTBE) were detected above regulatory guidance levels (volatile organics and MTBE by EPA Method 8020). Results of analysis of samples collected during the final monitoring event in 1998 indicated the presence of

MTBE at a concentration of 1,000 μ g/L. A Request for Closure was submitted by Woodward-Clyde on October 15, 1998.

FIELD WORK

On April 5, 2010, Kleinfelder retained Penecore Drilling services to redevelop and rehabilitate the existing well (MW-1). MW-1 has reportedly not been monitored for approximately 12 years. Prior to redevelopment activities, the depth to groundwater and the well's total depth were measured from the top of the casing, at 3.4 feet and 20 feet respectively. The water volume in the casing was estimated at 2.65 gallons. Well surging was performed by raising and lowering a two-inch polyurethane collar through the screened interval of the well for approximately 10 to 15 minute periods, and subsequently removing water from the well using a Grundfos submersible pump. The well was alternately surged and purged five times throughout a six hour period. Groundwater parameters including temperature, pH, dissolved oxygen (DO) concentration, electrical conductivity and turbidity were measured as groundwater was removed and recorded after the removal of each well volume

Originally, for well rehabilitation and development, the removal of a maximum of 10 casing volumes was planned; however, throughout the effort, the turbidity, measured in Nephelometric Turbidity Units (NTU), was reported as greater than 400 NTU, the highest turbidity measurement range of the Horiba U-10 multi-parameter water quality meter. Kleinfelder attempted to produce groundwater with less sediment by continuing the swabbing and pumping of water; however, after approximately 82 gallons of water (approximately 30 casing volumes) were removed, turbidity levels remained above the measuring range of the Horiba U-10, and therefore the well development and rehabilitation effort was concluded.

GROUNDWATER SAMPLE COLLECTION AND ANALYSES

On April 7, 2010, Kleinfelder returned to the site to collect a groundwater sample from the well. Depth to groundwater was measured at 3.41 feet from top of casing. Before sample collection, approximately nine and a half gallons (approximately three well volumes) of groundwater were removed. Groundwater parameters readings including temperature, pH, conductivity, and dissolved oxygen, were relatively constant for the last three gallons of water removed. The groundwater sample was contained in laboratory supplied containers, labeled, and stored in a chilled cooler with ice pending delivery to the laboratory for chemical analyses. The sample was delivered to ESC Lab Sciences in Mount Juliet, Tennessee, following chain-of-custody protocols. ESC is a NELAP accredited laboratory with California accreditation number 01157CA. The laboratory was requested to analyze the sample using Environmental Protection Agency (EPA) methods for the following constituents:

- Volatile Organic Compounds (VOCs) and Oxygenates¹ using EPA Method 8260B;
- Total Petroleum Hydrocarbons as gasoline (TPH-g) using EPA Method 8015;
- Total Petroleum Hydrocarbons as diesel range (TPH-d) using EPA Method 3511²/8015;
- Methanol and ethanol using EPA Method 8015; and
- Lead using EPA Method using EPA Method 6010.

The analytical results, presented in Table 1, indicate the presence of the following fuelassociated analytes:

- Benzene reported at 98 micrograms per liter (μg/L);
- Toluene at 25 µg/L;
- Ethylbenzene at 80 µg/L;
- Xylenes at 80 µg/L;
- t-Amyl Alcohol at 290 µg/L;
- MTBE at 69 µg/L;
- TPH-g at 2,300 µg/L;
- Methanol at 130 µg/L;
- TPH-diesel range organics at two carbon ranges:
 - o C-10 to C-22: 380 µg/L;
 - C-22 to C-32: 150 μg/L;
 - ο C-32 to C-40: 39 μg/L; and
- Lead at 2.2 µg/L.

According to ESC, the original TPH-d extraction was compromised due to an error during the initial extraction caused by an equipment failure (bad cap on the extracted vial). Consequently, an additional extraction for the TPH-d analysis was conducted one day past the sample extraction holding time for this analysis.

LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee or warranty,

¹ VOCs and Oxygenate analyses included Benzene, toluene, ethylbenzene, xylenes (BTEX),

^{1,1-}dibromoethane (EDB) 1,2-dichloroethane (EDC), di-ispropyl ether, ethanol, ethyl-tert-butyl ether, methyl tert-butyl ether, t-amyl alcohol, tert-butyl alcohol, and tert-amyl methyl ether

² EPA Method 3015 is the silica gel cleanup procedure that removes non-petroleum hydrocarbons

express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

This report may be used only by the City of Emeryville and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than two (2) years from the date of the report.

The work performed was based on project information provided by the City of Emeryville. If the City of Emeryville does not retain Kleinfelder to review any plans and specifications, including any revisions or modifications to the plans and specifications, Kleinfelder assumes no responsibility for the suitability of our recommendations. In addition, if there are any changes in the field to the plans and specifications, the City of Emeryville must obtain written approval from Kleinfelder's engineer that such changes do not affect our recommendations. Failure to do so will vitiate Kleinfelder's recommendations.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that the City of Emeryville has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. The City of Emeryville is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. The City of Emeryville is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

110550/4 (OAK10R035)/es Copyright 2010, Kleinfelder Page 4 of 5

April 27, 2010

CLOSING

If you have any questions about this report, please contact the undersigned at 510-628-9000.

Sincerely,

KLEINFELDER WEST, INC.

Álvaro Domínguez, R

Project Environmental Scientist

SARAH E. KALIKA

Sarah Kalika, PG, R.E.A. I Project Geologist

Enclosures:

Table 1: April 7, 2010 Groundwater Analytical Results City of Emeryville Fire Station No. 2

Plate 1: Site Vicinity Map

Plate 2: Site Map

Appendix A: Laboratory Analytical Results and Chain of Custody Form Appendix B: Development and Purge Logs

Page 5 of 5

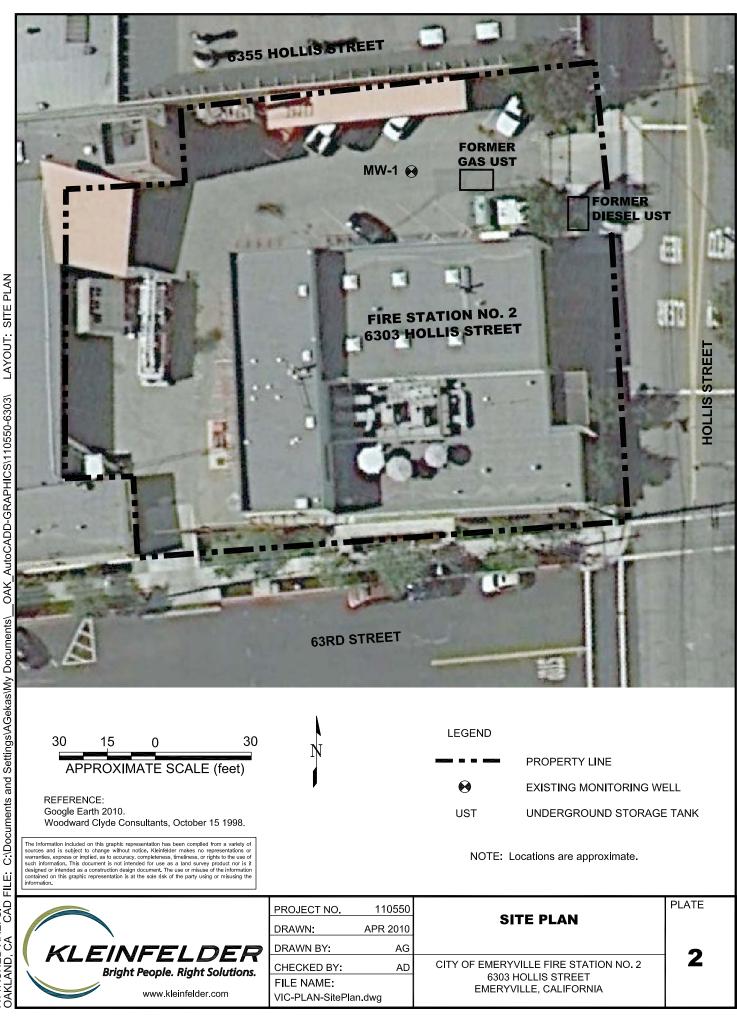
April 27, 2010

TABLES

Table 1

Groundwater Analytical Results City of Emeryville Fire Station No. 2 6303 Hollis Street, City of Emeryville, California

EPA Method	Analyte	MW-1 (April 7, 2010)	ESL DWR	ESL Non DWR
	Benzene (µg/L)	98	1	46
	Toluene (µg/L)	25	40	130
8260B	Ethylbenzene (µg/L)	80	30	43
0200B	Xylenes (µg/L)	90	20	100
	t-Amyl Alcohol (µg/L)	290	NE	NE
	MTBE (µg/L)	69	5.0	1,800
8015M	TPH-g (µg/L)	2,300	100	210
0013101	Methanol (µg/L)	130	100	210
3511/8015	TPH-d range C-10 to C-22 (µg/L)	380*	100	210
	TPH-d range C-22 to C-32 (µg/L)	150*	100	210
	TPH-d range C-32 to C-40 (µg/L)	39*	100	210
6010B	Lead (µg/L)	2.2	2.5	2.5


Acronyms and Notes

DWR	Drinking Water Resource
EPA	Environmental Protection Agency
ESL	Environmental Screening Levels- SFRWQCB- May 2008
В	San Francisco Regional Water Quality Control Board
µg/L	micrograms per Liter
MTBE	Methyl tert Butyl Ether
TPH-d	Total Petroleum Hydrocarbons as diesel (C-10 to C-40 range)
TPH-g	Total Petroleum Hydrocarbons as gasoline
2,300	Exceeds ESL
NE	not established
380*	Diesel extraction performed one day out of holding time

PLATES

LAYOUT: SITE VICINITY ATTACHED IMAGES: Images: 6303 Hollis st.jpg Images: 6303 VIC-MAP.jpg Images: VICIN-MAP 6303 HOLLIS.jpg ATTACHED XREFS: OAKLAND, CA CAD FILE: C:Nocuments and Settings\AGekas\My Documents_OAK_AutoCADD-GRAPHICS\110550-6303\

OAK AutoCADD-GRAPHICS/110550-6303/ ATTACHED IMAGES: Images: 6303 Hollis st.jpg Images: 6303 VIC-MAP.jpg Images: VICIN-MAP 6303 HOLLIS.jpg ATTACHED XREFS: OAKLAND, CA CAD FILE: C:Nocuments and Settings/AGekas\My Documents__OAK_AutoCADD-GRAPHICS\11

APPENDIX A

LABORATORY ANALYTICAL RESULTS AND CHAIN OF CUSTODY FORM

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083

For: Kleinfelder - Oakland, CA Project: Single Well Project April 16, 2010

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Methane, Ethane, Ethene by Method 8015M

Laboratory Control Sample

Sample L453083-01 was analyzed in analytical batch WG472739. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG472739, matrix spike/matrix spike duplicate analysis was performed on sample L453083-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L453083-01 was analyzed in analytical batch WG472114. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG472114 sample duplicate analysis was performed on sample L453143-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG472114 matrix spike/matrix spike duplicate analysis was performed on sample L453143-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Method 8015D/GRO

Laboratory Control Sample

Sample L453083-01 was analyzed in analytical batch WG472720. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG472720 matrix spike/matrix spike duplicate analysis was performed on sample L452860-07. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083

For: Kleinfelder - Oakland, CA Project: Single Well Project April 16, 2010

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Volatile Organic Compounds by Method 8260B

Laboratory Control Sample

Samples L453083-01 and 02 were analyzed in analytical batch WG472498. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Samples L453083-01 and 02 were analyzed in analytical batch WG473269. The laboratory control sample associated with these samples was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG472498 matrix spike/matrix spike duplicate analysis was performed on sample L453083-01. The matrix spike recoveries were below laboratory control limits for Benzene and Ethylbenzene. The spike recoveries for the remaining target compounds were within limits. The relative percent difference was within laboratory limits for all compounds.

Precision for batch WG473269 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L453083-01 was analyzed in analytical batch WG473180. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG473180 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Alvaro Dominguez Kleinfelder - Oakland, CA 1970 Broadway - Suite 710 Oakland, CA 94612

Report Summary

Friday April 16, 2010

Report Number: L453083 Samples Received: 04/08/10 Client Project: 110550

Description: Single Well Project

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Jarred Willis , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Alvaro Dominguez Kleinfelder - Oakland, CA 1970 Broadway - Suite 710 Oakland, CA 94612

Case Narrative

Friday April 16, 2010

Report Number: L453083 Samples Received: 04/08/10 Client Project: 110550

Description: Single Well Project

Other Comments

The DROCAERLVI analysis for L453083-01 (MW1) is being reported out of hold. The initial in-hold extraction may have been compromised in the lab on 4/15 by a bad cap on the extracted vial. So, the sample was re-extracted one day out of hold, and the results are being reported from that run.

Page 2 of 6

XESC						Mt. (61 1-8	65 Lebanon Juliet, TT 5) 758-585 00-767-585 (615) 758	N 37122 3 9
L·A·B S·C·I·E·N·C·E·S						Tax	I.D. 62-0	814289
YOUR LAB OF CHOICE						Est	. 1970	
Alvaro Dominguez Kleinfelder - Oakland, CA 1970 Broadway - Suite 710 Oakland, CA 94612	REPO	RT OF AN	ALYSIS		April 16, 20	10		
Date Received : April 08, 20 Description : Single Well Proje					ESC Sample #	: L45	3083-01	
Sample ID : MW1					Site ID :	FIRESTA	TION 2	
Collected By : Alvaro Collection Date : 04/07/10 00:00					Project # :	110550		
Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Lead	2.2	1.8	5.0	ug/l	J	6010B	04/11/10	1
TPH (GC/FID) Low Fraction Surrogate Recovery-%	2300	40.	100	ug/l		8015D/G	04/13/10	1
a,a,a-Trifluorotoluene(FID)	96.7			% Rec.		8015D/G	04/13/10	1
Methanol Ethanol	130 U	7.0 18.	20. 100	ug/l ug/l			04/13/10 04/13/10	1 1
Volatiles - Oxygenates Benzene Toluene Ethylbenzene Total Xylenes 1,2-Dichloroethane 1,2-Dibromoethane Di-isopropyl ether Ethanol Ethyl tert-butyl ether Methyl tert-butyl ether t-Amyl Alcohol tert-Butyl alcohol tert-Amyl Methyl Ether Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	98. 25. 80. 90. U U U U 69. 290 U U 107. 105. 105. 106.	0.29 0.27 0.22 0.86 0.27 0.48 0.25 230 0.50 0.19 59. 0.50	$ \begin{array}{c} 1.0\\ 5.0\\ 1.0\\ 1.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 250\\ 250\\ 5.0\\ \end{array} $	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10 04/15/10	1 1 1 1 1 5 5 5 5 5 1 1 1 1 1
Diesel Range Organics California C10-C22 Hydrocarbons C22-C32 Hydrocarbons C32-C40 Hydrocarbons Surrogate Recovery	380 150 39.	33. 33. 33.	100 100 100	ug/l ug/l ug/l	D D D D D D D D D D D D D D D D D D D	3511/80 3511/80	04/15/10 04/15/10 04/15/10	1 1 1
o-Terphenyl	107.			% Rec.		2211/80	04/15/10	Ť

U = ND (Not Detected)
RDL = Reported Detection Limit = LOQ = PQL = EQL
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/16/10 08:57 Printed: 04/16/10 09:31

Page 3 of 6

XESC						12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859
L·A·B S·C·I·E·N·C·E·S						Tax I.D. 62-0814289
YOUR LAB OF CHOICE						Est. 1970
Alvaro Dominguez Kleinfelder - Oakland, CA 1970 Broadway - Suite 710 Oakland, CA 94612	REPOF	RT OF AND	ALYSIS		April 16, 2010	
Date Received : April 08, 201 Description : Single Well Proje					ESC Sample # :	L453083-02
Sample ID : BLANK					Site ID : FIRE	STATION 2
Collected By : Alvaro Collection Date : 04/07/10 00:00					Project # : 110)550
Parameter	Result	MDL	RDL	Units	Qualifier Meth	nod Date Dil.
Volatiles - Oxygenates Benzene Toluene Ethylbenzene Total Xylenes 1,2-Dichloroethane Di-isopropyl ether Ethanol Ethyl tert-butyl ether Methyl tert-butyl ether t-Amyl Alcohol tert-Butyl alcohol tert-Amyl Methyl Ether Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	U U U U U U U U U U 106. 109. 106. 109.	0.29 0.27 0.22 0.86 0.27 0.48 0.25 46. 0.10 0.19 12. 12. 0.10	1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 50. 50. 1.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	826 826 826 826 826 826 826 826 826 826	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

U = ND (Not Detected)
RDL = Reported Detection Limit = LOQ = PQL = EQL
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.

Reported: 04/16/10 08:57 Printed: 04/16/10 09:31

Page 4 of 6

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L453083-01	WG473180 WG473180 WG473180 WG473180	SAMP SAMP SAMP	C10-C22 Hydrocarbons C22-C32 Hydrocarbons C32-C40 Hydrocarbons	R1187049 R1187049 R1187049 R1187049	 Q Q
	WG472498 WG472498 WG472114	SAMP SAMP SAMP	Benzene Ethylbenzene Lead	R1185849 R1185849 R1185849 R1179509	Ј Ј Ј Ј Ј

Page 5 of 6

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low

Q

(ESC) Sample held beyond the accepted holding time.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 6 of 6

Summary of Remarks For Samples Printed $04/16/10 \mbox{ at } 09{:}31{:}50$

TSR Signing Reports: 358 RX - Priority Rush

 \mbox{Log} all samples for $\mbox{QC2MODCN}.$ Log all samples for \mbox{EDD} - Geotracker EDF. All samples get \mbox{MDL}/\mbox{RDL} reporting.

Sample: L453083-01 Account: KLEINOCA Received: 04/08/10 09:00 Due Date: 04/16/10 00:00 RPT Date: 04/16/10 08:57

Sample: L453083-02 Account: KLEINOCA Received: 04/08/10 09:00 Due Date: 04/16/10 00:00 RPT Date: 04/16/10 08:57

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Methane, Ethane, Ethene by Method 8015M	, ,	
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472739
Analysis Date:	4/13/2010 9:32:00 AM	Analyst:	0
Instrument ID:	AIRMS3	Extraction Date:	4/13/2010
Sample Numbers	: L453083-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Ethanol Methanol		<0.100 <0.0200	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Ethanol	0.500	0.574	115	70 - 130	
Methanol	0.500	0.582	116	70 - 130	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Ethanol	0.500	0.572	114	70 - 130	
Methanol	0.500	0.594	119	70 - 130	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Methane, Ethane, Ethene by Method 8015M

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472739
Analysis Date:	4/13/2010 9:32:00 AM	Analyst:	0
Instrument ID:	AIRMS3	Extraction Date:	4/13/2010
Sample Numbers	: L453083-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
Ethanol	0.500	0.574	115	0.572	114	70-130	0.2	20	
Methanol	0.500	0.582	116	0.594	119	70-130	2.1	20	

Matrix Spike/Matrix Spike Duplicate

	Spike		L	.45308 %	33-01	%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Ethanol Methanol	0.500 0.500	0.0000 0.130	0.527 0.634	105 101	0.516 0.604	103 94.8	70-130 70-130		2.1 4.8	20 20	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Trace Metals by Method 6010B		
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472114
Analysis Date:	4/11/2010	Analyst:	
Instrument ID:	ICP4	Extraction Date:	4/8/2010
Sample Numbers	: L453083-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Lead	7439-92-1	< 0.00500	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Lead	1.13	1.15	102	85 - 115	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Trace Metals by Method 6010B		
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472114
Analysis Date:	4/11/2010	Analyst:	
Instrument ID:	ICP4	Extraction Date:	4/8/2010
Sample Numbers	: L453083-01		

Sample Duplicate

L453143-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Lead	0.00880	0.0081	8.3	20	

Matrix Spike/Matrix Spike Duplicate

			I	.45314	13-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Lead	1.13	0.00810	1.17	103	1.19	105	75-125		1.7	20	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Method 8015D/GRO		
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472720
Analysis Date:	4/13/2010	Analyst:	293
Instrument ID:	VOCGC7		
Sample Numbers	: L453083-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
TPH (GC/FID) Low Fraction	8006-61-9	< 0.100	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPH (GC/FID) Low Fraction	5.50	5.46	99.2	70 - 124	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
TPH (GC/FID) Low Fraction	5.50	5.50	100	70 - 124	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Method 8015D/GRO
Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/13/2010
Instrument ID:	VOCGC7
Sample Numbers:	L453083-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG472720

Surrogate Summary

Laboratory Sample ID	a,a,a-Trifluoroto ppb	oluene - FID % Rec	a,a,a-Trifluorotoluene - PID ppb % Rec
LCS WG472720	208	104	
LCSD WG472720	209	104	
MS WG472720	210	105	
MSD WG472720	208	104	
Blank WG472720	194	97.1	
L453083-01	193	96.7	

a,a,a-Trifluorotoluene (FID)200 ppbLimits - 62 - 128a,a,a-Trifluorotoluene (PID)200 ppbLimits - 0 - 0

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Method 8015D/GRO
Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/13/2010
Instrument ID:	VOCGC7
Sample Numbers:	L453083-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG472720
Analyst:	293

Laboratory Control Sample/ Laboratory Control Sample Duplicate										
	•	-	%	-	%	Control	-	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
TPH (GC/FID) Low Fraction	5.50	5.46	99.2	5.50	100	70-124		0.9	20	

Matrix Spike/Matrix Spike Duplicate

]	L45286	50-07						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
TPH (GC/FID) Low Fraction	5.50	0.0000	5.31	96.6	5.62	102	55-109		5.6	20	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Method 8015D/GRO
Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/13/2010
Instrument ID:	VOCGC7
Sample Numbers:	L453083-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG472720Analyst:293

FileID:0412_34.D Date:4/13/2010 Time:12:05 AM IS - FID IS - PID RT RT Response Response 12 Hour Std 6332255 4.68 Upper Limit 12664510 5.18 Lower Limit 3166127.5 4.18

Internal Standard Response and Retention Time Summary

Sample ID	Response	RT	Response	RT
DI 1 WG (2020)	5504440	4.50		
Blank WG472720	5594442	4.68		
LCS WG472720	6599860	4.68		
LCSD WG472720	6558082	4.68		
MS WG472720	6572218	4.68		
MSD WG472720	6385505	4.68		

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Method 8015D/GRO
Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/13/2010
Instrument ID:	VOCGC7
Sample Numbers:	L453083-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG472720
Analytic Dattin.	WG4/2/20

Internal Standard Response and Retention Time Summary						
FileID:0412_	52.D	Date:4/13/2010	Т	Time:8:17 AM		
		IS - FID	IS - PID			
	Response	RT	Response	RT		
12 Hour Std	6805051	4.68				
Upper Limit	13610102	5.18				
Lower Limit	3402525.5	4.18				
Sample ID	Response	RT	Response	RT		
L453083-01	4781367	4.68				

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B Test: Project No: 110550 Matrix: Water - mg/L Single Well Project TN00003 Project: EPA ID: Analytic Batch: WG472498 Collection Date: 4/7/2010 Analysis Date: 4/14/2010 Analyst: 498 Instrument ID: VOCMS20

Sample Numbers: L453083-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
Methyl tert-butyl ether	1634-04-4	<0.0010	
Di-isopropyl ether	108-20-3	< 0.0010	
Benzene	71-43-2	< 0.0010	
1,2-Dichloroethane	107-06-2	< 0.0010	
Toluene	108-88-3	< 0.0050	
1,2-Dibromoethane	106-93-4	< 0.0010	
Ethylbenzene	100-41-4	< 0.0010	
m&p-Xylene	1330-20-7	< 0.0030	
o-Xylene	1330-20-7	< 0.0030	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B Test: Project No: 110550 Matrix: Water - mg/L Single Well Project TN00003 Project: EPA ID: Analytic Batch: WG473269 Collection Date: 4/7/2010 Analysis Date: 4/15/2010 Analyst: 126 Instrument ID: VOCMS21

Sample Numbers: L453083-01, -02

Method Blank

Analyte	CAS	PQL	Qualifiers
Ethanol	64-17-5	< 0.100	
tert-Butyl alcohol	75-65-0	< 0.0500	
Ethyl tert-butyl ether	637-92-3	< 0.0010	
t-Amyl Alcohol	75-85-4	< 0.0500	
tert-Amyl Methyl Ether	994-05-8	< 0.0010	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472498
Analysis Date:	4/14/2010	Analyst:	498
Instrument ID:	VOCMS20		
Sample Numbers	: L453083-01, -02		

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0250	0.0264	106	51 - 142	
Di-isopropyl ether	0.0250	0.0266	107	63 - 139	
Benzene	0.0250	0.0238	95.1	67 - 126	
1,2-Dichloroethane	0.0250	0.0239	95.8	63 - 137	
Toluene	0.0250	0.0226	90.4	72 - 122	
1,2-Dibromoethane	0.0250	0.0231	92.5	75 - 126	
Ethylbenzene	0.0250	0.0245	98.0	76 - 129	
m&p-Xylene	0.0500	0.0489	97.8	74 - 128	
o-Xylene	0.0250	0.0257	103	78 - 128	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Test:	Volatile Organic Compounds by Method 8260B		
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472498
Analysis Date:	4/14/2010	Analyst:	498
Instrument ID:	VOCMS20		
Sample Numbers	: L453083-01, -02		

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0250	0.0238	95.3	51 - 142	
Di-isopropyl ether	0.0250	0.0250	99.9	63 - 139	
Benzene	0.0250	0.0239	95.6	67 - 126	
1,2-Dichloroethane	0.0250	0.0234	93.8	63 - 137	
Toluene	0.0250	0.0238	95.0	72 - 122	
1,2-Dibromoethane	0.0250	0.0240	96.1	75 - 126	
Ethylbenzene	0.0250	0.0246	98.3	76 - 129	
m&p-Xylene	0.0500	0.0496	99.2	74 - 128	
o-Xylene	0.0250	0.0246	98.4	78 - 128	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473269
Analysis Date:	4/15/2010	Analyst:	126
Instrument ID:	VOCMS21		
Sample Numbers	: L453083-01, -02		

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0250	0.0268	107	51 - 142	
Di-isopropyl ether	0.0250	0.0301	120	63 - 139	
Benzene	0.0250	0.0259	104	67 - 126	
Toluene	0.0250	0.0236	94.6	72 - 122	
Ethylbenzene	0.0250	0.0273	109	76 - 129	
m&p-Xylene	0.0500	0.0541	108	74 - 128	
o-Xylene	0.0250	0.0277	111	78 - 128	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473269
Analysis Date:	4/15/2010	Analyst:	126
Instrument ID:	VOCMS21		
Sample Numbers	: L453083-01, -02		

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Methyl tert-butyl ether	0.0250	0.0250	100	51 - 142	
Di-isopropyl ether	0.0250	0.0287	115	63 - 139	
Benzene	0.0250	0.0254	101	67 - 126	
Toluene	0.0250	0.0231	92.3	72 - 122	
Ethylbenzene	0.0250	0.0268	107	76 - 129	
m&p-Xylene	0.0500	0.0527	105	74 - 128	
o-Xylene	0.0250	0.0270	108	78 - 128	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Test:	Volatile Organic Co
Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/14/2010
Instrument ID:	VOCMS20
Sample Numbers:	L453083-01, -02

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG472498
Analyst:	

Surrogate Summary

Dibromofluoromethane Toluene		luene-d8	4-Bromot	fluorobenzene	Alternate Surrogate a,a,a-Trifluorotoluene		
ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
44.0	110	42.6	107	40.4	101	44.8	112
40.9	102	43.1	108	39.9	99.8	42.9	107
42.9	107	42.2	106	41.6	104	43.1	108
41.8	105	43.6	109	41.8	104	41.5	104
41.9	105	42.6	107	43.8	110	42.6	107
43.6	109	42.4	106	43.7	109	42.3	106
42.0	105	42.9	107	42.2	106	42.1	105
Dibromof	luoromethane		40 ppb	79 - 125			
Toluene -	d8			87 - 114			
4-Bromof	luorobenzene		40 ppb	75 - 128			
	ppb 44.0 40.9 42.9 41.8 41.9 43.6 42.0 Dibromof Toluene -	ppb % Rec 44.0 110 40.9 102 42.9 107 41.8 105 41.9 105 43.6 109	ppb % Rec ppb 44.0 110 42.6 40.9 102 43.1 42.9 107 42.2 41.8 105 43.6 41.9 105 42.6 43.6 109 42.4 42.0 105 42.9 Dibromofluoromethane Toluene - d8 4-Bromofluorobenzene	ppb % Rec ppb % Rec 44.0 110 42.6 107 40.9 102 43.1 108 42.9 107 42.2 106 41.8 105 43.6 109 41.9 105 42.6 107 43.6 109 42.4 106 42.0 105 42.9 107 Dibromofluoromethane 40 ppb Toluene - d8 40 ppb 4-Bromofluorobenzene 40 ppb	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DibromofluoromethaneToluene-d84-Bromofluorobenzenea,a,a-Tri ppbppb% Recppb% Recppb% Recppb44.011042.610740.410144.840.910243.110839.999.842.942.910742.210641.610443.141.810543.610941.810441.541.910542.610743.811042.643.610942.410643.710942.342.010542.910742.210642.1Dibromofluoromethane40 ppb79 - 125Toluene - d840 ppb87 - 11440 ppb75 - 128

	Alternate Surrogate	
a,a,a-Trifluorotoluene	40 ppb	84 - 114

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473269
Analysis Date:	4/15/2010	Analyst:	126
Instrument ID:	VOCMS21	-	
Sample Numbers:	: L453083-01, -02		

Surrogate Summary

Laboratory	Dibromo	fluoromethane	То	luene-d8	4-Bromo	fluorobenzene		ite Surrogate ifluorotoluene
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
Blank WG473269	36.6	91.5	39.6	98.9	38.6	96.6	40.7	102
L453083-02	36.2	90.4	40.0	100	38.9	97.3	41.2	103
L453083-01	36.3	90.8	39.5	98.7	39.8	99.5	41.3	103
LCS WG473269	36.5	91.3	39.1	97.7	38.4	96.1	41.1	103
LCSD WG473269	36.3	90.6	39.0	97.6	37.5	93.8	40.9	102

Dibromofluoromethane	40 ppb	79 - 125
Toluene - d8	40 ppb	87 - 114
4-Bromofluorobenzene	40 ppb	75 - 128
	Alternate Surrogate	
a,a,a-Trifluorotoluene	40 ppb	84 - 114

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Water - mg/L

TN00003

498

Analytic Batch: WG472498

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Matrix:

EPA ID:

Analyst:

Volatile Organic Compounds by Method 8260B

Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/14/2010
Instrument ID:	VOCMS20
Sample Numbers:	L453083-01, -02

Matrix Spike/Matrix Spike Duplicate

L453083-01

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Methyl tert-butyl ether	0.0250	0.0690	0.0788	39.3	0.0846	62.5	24-167		7.1	22	
Di-isopropyl ether	0.0250	0.0000	0.0175	70.2	0.0207	82.9	39-160		17	21	
Benzene	0.0250	0.0977	0.0892	-34.0	0.102	16.7	16-158	J6	13	21	
1,2-Dichloroethane	0.0250	0.0000	0.0125	49.9	0.0151	60.4	29-167		19	21	
Toluene	0.0250	0.0250	0.0312	24.7	0.0376	50.4	22-152		19	22	
1,2-Dibromoethane	0.0250	0.0000	0.0150	60.1	0.0183	73.2	41-149		20	21	
Ethylbenzene	0.0250	0.0796	0.0803	3.1	0.0932	54.7	29-150	J6	15	24	
m&p-Xylene	0.0500	0.0735	0.0922	37.4	0.107	66.5	24-151		15	23	
o-Xylene	0.0250	0.0171	0.0323	61.1	0.0370	79.6	32-151		13	23	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Test:	Volatile Organic Con
Project No:	110550
Project:	Single Well Project
Collection Date:	4/7/2010
Analysis Date:	4/14/2010
Instrument ID:	VOCMS20
Sample Numbers:	L453083-01, -02

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG472498Analyst:498

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Methyl tert-butyl ether	0.0250	0.0264	106	0.0238	95.3	51-142		10	20	
Di-isopropyl ether	0.0250	0.0266	107	0.0250	99.9	63-139		6.5	20	
Benzene	0.0250	0.0238	95.1	0.0239	95.6	67-126		0.6	20	
1,2-Dichloroethane	0.0250	0.0239	95.8	0.0234	93.8	63-137		2.1	20	
Toluene	0.0250	0.0226	90.4	0.0238	95.0	72-122		5.0	20	
1,2-Dibromoethane	0.0250	0.0231	92.5	0.0240	96.1	75-126		3.8	20	
Ethylbenzene	0.0250	0.0245	98.0	0.0246	98.3	76-129		0.3	20	
m&p-Xylene	0.0500	0.0489	97.8	0.0496	99.2	74-128		1.4	20	
o-Xylene	0.0250	0.0257	103	0.0246	98.4	78-128		4.2	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Volatile Organic Compounds by Method 8260B

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473269
Analysis Date:	4/15/2010	Analyst:	126
Instrument ID:	VOCMS21		
Sample Numbers:	: L453083-01, -02		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Laboratory Control Sample/ Laboratory Control Sample Duplicate									
	-	-	%	•	%	Control	- %	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RPI	D Limits	Qualifier
Methyl tert-butyl ether	0.0250	0.0268	107	0.0250	100	51-142	6.8	20	
Di-isopropyl ether	0.0250	0.0301	120	0.0287	115	63-139	4.7	20	
Benzene	0.0250	0.0259	104	0.0254	101	67-126	2.2	20	
Toluene	0.0250	0.0236	94.6	0.0231	92.3	72-122	2.4	20	
Ethylbenzene	0.0250	0.0273	109	0.0268	107	76-129	1.6	20	
m&p-Xylene	0.0500	0.0541	108	0.0527	105	74-128	2.5	20	
o-Xylene	0.0250	0.0277	111	0.0270	108	78-128	2.6	20	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Volatile Organic Compounds by Method 8260	B	
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG472498
Analysis Date:	4/14/2010	Analyst:	498
Instrument ID:	VOCMS20		
Sample Numbers	: L453083-01, -02		

Internal Standard Response and Retention Time Summary

FileID:0414_31.D	Date:4/14/2010				Time:8:19 PM			
	IS1		IS2		IS3		IS4	
	Response	RT	Response	RT	Response	RT	Response	RT
12 Hour Std	1577474	6.49	2385656	6.96	388434	8.5	1295884	11.25
Upper Limit	3154948	6.99	4771312	7.46	776868	9	2591768	11.75
Lower Limit	788737	5.99	1192828	6.46	194217	8	647942	10.75
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT
Blank WG472498 L453083-01 L453083-02 LCS WG472498 LCSD WG472498 MS WG472498 MSD WG472498	1406970 1535434 1388392 1356349 1530921 1740439 1567590	6.5 6.5 6.49 6.5 6.49 6.5	2154770 2338872 2161750 2029686 2293526 2606569 2382757	6.96 6.96 6.96 6.96 6.96 6.96 6.96	326486 355761 326926 319345 362046 403350 375469	8.5 8.5 8.5 8.5 8.5 8.5 8.5	1157210 1227625 1190014 1105056 1172108 1449663 1272152	11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Volatile Organic Compounds by Method 8260)B	
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473269
Analysis Date:	4/15/2010	Analyst:	126
Instrument ID:	VOCMS21		
Sample Numbers	: L453083-01, -02		

Internal Standard Response and Retention Time Summary

FileID:0415_02.D		Date:4/15/2010				Time:2:42 PM			
	IS1		IS2		IS3		IS4		
	Response	RT	Response	RT	Response	RT	Response	RT	
12 Hour Std	1310607	6.05	2179261	6.54	320092	8.16	1062626	11	
Upper Limit	2621214	6.55	4358522	0.94 7.04	640184	8.66	2125252	11.5	
Lower Limit	655303.5	5.55	1089630.5	6.04	160046	7.66	531313	10.5	
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT	
Blank WG473269	1047172	6.05	1779773	6.55	255073	8.17	875161	11	
L453083-01	1085197	6.05	1822811	6.55	257443	8.17	880096	11	
L453083-02	1047971	6.05	1752932	6.54	251601	8.17	856552	11	
LCS WG473269	1270861	6.05	2087444	6.54	305207	8.17	1023231	11	
LCSD WG473269	1232958	6.05	2033326	6.54	297538	8.17	993565	11	

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Test:	Diesel Range Organics by Method 8015	,	
Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473180
Analysis Date:	4/15/2010	Analyst:	267
Instrument ID:	SVGC21	Extraction Date:	4/15/2010
Sample Numbers	: L453083-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
C10-C22 Hydrocarbons C22-C32 Hydrocarbons C32-C40 Hydrocarbons		<0.10 <0.10 <0.10	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
C10-C22 Hydrocarbons	0.75	0.73	96.7	50 - 150	
C22-C32 Hydrocarbons	0.75	0.65	86.8	50 - 150	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
C10-C22 Hydrocarbons	0.75	0.73	97.5	50 - 150	
C22-C32 Hydrocarbons	0.75	0.65	86.9	50 - 150	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Diesel Range Organics by Method 8015

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473180
Analysis Date:	4/15/2010	Analyst:	267
Instrument ID:	SVGC21	Extraction Date:	4/15/2010
Sample Numbers	: L453083-01		

Surrogate Summary

 Laboratory Sample ID	o-terphenylD ppm	% Rec	
Blank WG473180 LCS WG473180 LCSD WG473180 L453083-01	0.0159 0.0154 0.0155 0.0215	79.4 77.0 77.5 107	

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859

Tax I.D 62-0814289

Est. 1970

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L453083 Kleinfelder - Oakland, CA

Diesel Range Organics by Method 8015

Project No:	110550	Matrix:	Water - mg/L
Project:	Single Well Project	EPA ID:	TN00003
Collection Date:	4/7/2010	Analytic Batch:	WG473180
Analysis Date:	4/15/2010	Analyst:	267
Instrument ID:	SVGC21	Extraction Date:	4/15/2010
Sample Numbers	: L453083-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
C10-C22 Hydrocarbons	0.75	0.73	96.7	0.73	97.5	50-150		0.8	20	
C22-C32 Hydrocarbons	0.75	0.65	86.8	0.65	86.9	50-150		0.1	20	

		Bill	ing informatio	n:			A	nalys	is/Con	tainer	/Preser	vative			Chain of Cust	odv
Kleinfelder - Oaklaı	nd. CA													**	Page of	
	iu, eik		\ aaayinta I	Davahla									D060)		
1970 Broadway - Suite 710			Accounts Payable 1970 Broadway - Suite 710									1				
				1970 Bloadway - Sulle 710											inc	
Oakland,CA 94612		0	Dakland,C	A 94612												
										Ŵ					うく	
			nail:							03					· I · E · N · C · E Danon Road	:•s
Report to: Álvaro Domínguez		E		ominguez@	kleinfeld	er.cor				ΑH					, TN 37122	
Project Pescription: Single Well Project			City/Stat Collected		mul	le	ICI		Methanol / Ethanol 40mlClr-HCl	Total Lead by 6010 500mlHDPE-HNO3					0) 767-5859 5) 758-5858	
	Client Project #:		Lab P	roject #			h-H		븝	HI	U				5) 758-5859	
Phone: (510) 628-9000 FAX: (510) 628-9009	1/05	50	KLE	EINOCA-SI	NGLEWI	ELL	DROCAERLVI 40mlAmb-HCI		JmC	00m	V82600XY 40mlAmb-HCI					
Collected by (print) AIVARO	Site/Facility ID#; Find St	nhat 2	P.O.#:	:			0ml	ĨĊ	ol 4(105	lAm					
Collected by (signature):	Rush? (Lab MUST Be	Notified)	Date Resul	ts Needed	1	/I 4	GRO 40mlAmb HC	Jan	09	U U		Acc	tnum KLEIN		se only)
	· ·						T	Am	E	by	4		Ter	nplate/Prelogin T	63451/D2	1 4092
Immediately				Email? N	o X _{Ves}	-	EF	m) (ad	X		Co	oler # 3-10	5945115	14002
Packed on Ice N Y		· · · · · · · · · · · · · · · · · · ·				No. of	C V	40	an	Γ	So			pped Via: Fed		d
			1			+Cntrs	RO	RO	leth	ota]	82(ppeu via. reu	EA GIUU	u
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time			G	Z	Ē			Rei	marks/Contaminan	t Sample #	(lab only)
MWI		GW				11	X	X	X	X	X			2	453083	5-01
BLONK						1					X					-02
			· · · · · · · · · · · · · · · · · · ·													
· · · · · · · · · · · · · · · · · · ·																
*Matrix: SS - Soil GW - Groundwater WW	- WasteWater DV	V - Drinking Wat	ter OT - Othe					l				pH		Temp		
Remarks: Days and a D	n Tra	Cu [°] H	LIA									p11		remp _		
normans scopres of e	TI FOU	~ <u>×</u> 4	60									Flow	,	Other		
Remarks: Drupped off C	ile, C	A _							,							
1.						430	f] 9;	804	60	69						
Relinquished by: (Signature)	Date:	Time:	Recei	ved by: (Signatu	ire)				S	amples	s returne		'S C	ondition:	(lab use	only)
Relinquished by (Signature)	Date:	Time:	Recei	ved by: (Signatu	ire)				-0.		Ex□Co	urier Bottles Rece		OK		
)			·	*			3	v v	emp:	4	12		OC Seal Intact:	· /	NA
Relinquished by: (Signature)	Date:	Time:	Receive	d for lab by: (Si	gnature)				D	ate:		Time:	, p	H Checked:	NCF:	
L			U. 7		1	1				8.1		00		22	35 of 35	
			V						4	-8.1	0	090	D			

APPENDIX B

DEVELOPMENT AND PURGE LOGS

Purge Characterization NAME: Fire Station # 2 LOCATION: 6303 Hollis Street, Emeryville, CA MELL ID: MW-1 DATE / TIME SAMPLED DATE / TIME SAMPLED DEPTH TO WATER COLUMN HEIGHT (feet): 2,0,0,1 DEPTH TO WATER COLUMN HEIGHT (feet): 2,0,0,1 DATE / TIME SAMPLED VARENCOLUMN HEIGHT (feet): 2,0,0,1 DATE / TIME SAMPLED VALUAN HEIGHT (feet): 2,0,0,1 DATE / TIME SAMPLED DATE / TIME SAMPLED ACTUAL PURGE (gallons): 2,0,0,1 DATE / TIME SAMPLED OUTON (feet): 2,0,0,1 DATE / TIME SAMPLED OUTON (feet): 2,0,0,1 DEPTH TO WATER: 3,47 CALCOLUMATE PURGE (gallons): 2,0,0 DEPTH TO WATER: 0 Other:	KLEINFELDER	PROJECT NO: 110550
SITE NAME: Fire Station # 2 LOCATION: 6303 Hollis Street, Emeryville, CA MELLID: MW-1 DATE PURGED: 5-Apr-10 2URGEDISAMPLED BY: Alvaro DATE PURGED: 5-Apr-10 2URGEDISAMPLED BY: Alvaro DATE PURGED: 5-Apr-10 2URGEDISAMPLED BY: 2.0.05 ! DEPTH TO WATER: 3.47 MATER COLUMN HEIGHT (feet): 2.0.25 ! ACTUAL PURGE (gallons): 2.64 2.7 g2/lows: CASING VOLUME (gallons): 2.65 ACTUAL PURGE (gallons): 39 Other: Development: X Quarterly: Biannual: Other: Casing Diameter: 2" X 3" 4" 6" 6" Casing Diameter: 2" X 3" 4" 6.66 (1.02) 6" 6" Casing Volume 0.16 0.38 0.066 1.02 6" 6" 6" Casing Volume 0.16 0.38 0.03 1.72 5.0 (1.02) 6" (2.60) Casing Volume 0.16 0.38 0.03 1.72 5.0 (2.61) (1.72) (1.72)	Purge C	
VELL D: MW-1 DATE PURGED: 5-Apr-10 2URGED/SAMPLED BY: Alvaro DATE / TIME SAMPLED: 5-Apr-10 2URGED/SAMPLED BY: Alvaro DATE / TIME SAMPLED: 5-Apr-10 2URGED/SAMPLED BOTTOM (feet): 2.0.01 DEPTH TO WATER: 3.57 2ASING VOLUME (gallons): 2.6.67 CALCULATED PURGE (gallons): 2.6.67 2ASING VOLUME (gallons): 2.6.67 ACTUAL PURGE (gallons): 3.67 2Asing Diameter: 2" X Surface Water: Other: 0.16 2asing Volume 0.16 0.38 4" (0.66) 6" 1.50 8" 2asing Volume 0.16 0.38 4" 0.66 1.50 8" (2.60) Volume TIME SAUREMENTS Volume Volume (gallons): 2.6 6.32 0.03 1.72 5.0 Volume 15.2 6.32 0.03 1.72 5.0 Volume 15.2 6.32 0.03 1.72 5.0 Volume 15.2 6.32 </td <td></td> <td></td>		
Durged Dame Date Time SAMPLED: DEPTH TO BOTTOM (feet): 20.0° DEPTH TO WATER: 3.47 WATER COLUMN HEIGHT (feet): 2.6° ACTUAL PURGE (gallons): 2.6° Development x Quarterly: Biannual: Other:		LOCATION: 6303 Hollis Street, Emeryville, CA
DEPTH TO BOTTOM (feet): 20.00° DEPTH TO WATER: 3.4° MATER COLUMN HEIGHT (feet): 22.6° ACTUAL PURGE (gallons): 27.9° ASING VOLUME (gallons): 22.6° ACTUAL PURGE (gallons): 27.9° Development x Quarterly: Biannual: Other:		
WATER COLUMN HEIGHT (feet): $//_{2}6^{1}$ CALCULATED PURGE (gallons): $2^{1}6^{4}$ 2.7 gallons:: ACTUAL PURGE (gallons): $2^{1}6^{4}$ ACTUAL PURGE (gallons): $2^{1}6^{4}$ Casing Volume Other: Sample Type: Groundwater:X Surface Water: Other: Casing Diameter: $2^{n} \frac{X}{0.16}$ 3" development x Quarterly: Biannual: Other: Casing Diameter: $2^{n} \frac{X}{0.16}$ 3"		
CASING VOLUME (gallons): 2.65 ACTUAL PURGE (gallons): 2.10 2.1 2.2000 Development x Quarterly: Biannual: Other: Casing Diameter: $2''' ×'' Surface Water: Other: Casing Volume Other: Other: Casing Volume TIME PURged TEMP PH CONDUCTIVITY O TURBIDITY Volume TIME PURged TEMP PH CONDUCTIVITY O TURBIDITY (gallons) (degrees C) (umhos/cm) (mg/L) (INTU) O TS-2 Go TS-2 Co 1912 Q TS-2 Colspan= 2 Colspan= 2 $		
Development x Quarterly: Biannual: Other: Sample Type: Groundwater: X Surface Water: Other: Casing Diameter: $2"$ X_{-} $3"_{}$ $4"_{}$ 0.66 $5"_{}$ $6"_{}$ $8"_{-}$ Casing Diameter: $2"$ X_{-} $3"_{}$ $4"_{}$ 0.66 $5"_{}$ $6"_{}$ $8"_{}$ Casing Diameter: $2"_{-}$ $X_{}$ $3"_{}$ $4"_{}$ 0.66 $5"_{}$ $6"_{}$ $8"_{}$ Casing Diameter: $2"_{-}$ $X_{}$ $3"_{}$ $4"_{}$ 0.66 $5"_{}$ $6"_{}$ $8"_{}$ Casing Diameter: $2"_{}$ $X_{}$ $Y_{}$ <td< td=""><td></td><td>ACTUAL PURGE (gallons): C/est 27 collons,</td></td<>		ACTUAL PURGE (gallons): C/est 27 collons,
Sample Type: Groundwater: X_{-} Surface Water: Other: Casing Diameter: $2^{+} \frac{X}{0.16}$ $3^{-}_{-0.16}$ $4^{+}_{-0.66}$ $5^{-}_{-1.02}$ $6^{+}_{-1.50}$ $8^{-}_{-1.50}$ Casing Diameter: $2^{+} \frac{X}{0.16}$ $3^{-}_{-0.66}$ $5^{-}_{-1.020}$ $6^{+}_{-1.500}$ $8^{-}_{-1.500}$ TIME Purged TEMP PH CONDUCTIVITY DO TURBIDITY (gallons) 90^{5} $15^{-}_{-1.5}$ $6^{-}_{-0.52}$ $700^{-}_{-0.33}$ $4^{-}_{-7.2}$ $2^{-}_{-2.4}$ $97^{-}_{-1.5}$ $15^{-}_{-1.5}$ $6^{-}_{-0.52}$ $700^{-}_{-3.52}$ $4^{-}_{-7.52}$ $2^{-}_{-5.0}$ $10^{-}_{-1.5}$ $15^{-}_{-1.5}$ $6^{-}_{-0.52}$ $700^{-}_{-3.52}$ $4^{-}_{-7.52}$ $2^{-}_{-5.0}$ $10^{-}_{-1.5}$ $4^{-}_{-1.5}$ $0^{-}_{-2.52}$ $4^{-}_{-7.52}$ $3^{-}_{-7.50}$ $10^{-}_{-1.5}$ $4^{-}_{-1.5}$ $0^{-}_{-2.52}$ $4^{-}_{-7.52}$ $3^{-}_{-7.50}$ $10^{-}_{-1.5}$ $4^{-}_{-1.5}$ $0^{-}_{-2.52}$ $4^{-}_{-7.52}$ $3^{-}_{-7.50}$ $10^{-}_{-1.5}$ $4^{-}_{-1.5}$ $0^{-}_{-2.52}$ $3^{-}_{-7.52}$ $4^{-}_{-7.52}$ $3^{-}_{-7.52}$		
Data and the set of the	Development: x Quarterly:_	Biannual:Other:
Time column in a 2" well FIELD MEASUREMENTS TIME Purged TEMP pH CONDUCTIVITY DO TURBIDITY (gallons) (degrees C) 903 $\frac{1}{25}$ $$		
Time column in a 2" well FIELD MEASUREMENTS TIME Purged TEMP pH CONDUCTIVITY DO TURBIDITY (gallons) (degrees C) 903 $\frac{1}{25}$ $$	Sasing Diameter: 2"_ 🗴 3"	4" 5" 6" 8"
Time column in a 2" well FIELD MEASUREMENTS TIME Purged TEMP pH CONDUCTIVITY DO TURBIDITY (gallons) (degrees C) 903 $\frac{1}{25}$ $$	Sasing Volume 0.16 0.38	(0.66) (1.02) (1.50) (2.60)
Volume TIMEPurged Purged (gallons)TEMP (degrees C)pH (umhos/cm)CONDUCTIVITY (umhos/cm)DO (mg/L)TURBIDITY (NTU)903 155 134 413 $5/cm$ 9.72 32.4 9720 15.2 6.43 2003 9.72 32.4 9740 15.2 6.43 2003 9.72 -5.0 $10.4K$ 4.20 18.1 6.26 2.523 4.54 -5.0 $10.4K$ 4.00 18.1 6.26 2.523 4.54 -5.0 12.40 4.00 18.4 4.74 20.534 4.40 6.53 12.40 4.00 18.4 4.74 20.534 4.40 6.63 12.40 4.00 18.4 4.74 20.534 4.40 6.63 12.40 4.00 18.4 4.74 20.534 4.40 6.63 12.40 4.00 19.42 4.054 2.452 4.474 6.634 13.00 202 19.42 4.054 2.452 4.474 6.634 13.00 202 19.42 4.054 2.452 4.490 6.634 13.00 202 19.42 4.054 2.452 4.490 6.634 13.00 202 19.42 4.054 2.452 4.490 6.634 13.00 202 19.42 4.054 2.452 4.490 6.634 13.00 202 19.42 4.054 2.452 2	ater column times 0.16 = gallons in water column in a 2" well	
TIMEPurged (gallons)TEMP (degrees C)PHCONDUCTIVITY (umhos/cm)DOTURBIDITY (NTU) $9v^3$ 125 134 125 134 127 32.4 997 O 15.2 6.63 003 9.72 32.4 997 O 15.2 6.63 0.243 4.72 5.0 $10.4K$ 4.0 16.1 6.260 0.243 4.552 5.0 $10.4K$ 4.0 16.1 6.260 0.521 7.90 636 $10.4K$ 4.0 16.1 6.260 0.521 7.90 636 $10.4K$ 4.00 18.1 6.210 9.631 9.641 12.00 632 19.2 7.97 2.612 9.631 12.00 632 19.2 7.97 2.612 9.631 12.00 632 19.2 7.97 9.663 12.00 632 19.2 7.97 9.663 12.00 632 19.2 1.64 9.631 12.00 632 19.2 1.64 9.631 12.00 12.2 7.97 9.6631 9.6631 12.00 12.2 7.972 9.272 9.272 12.00 12.2 12.2 12.2 9.272 12.00 12.2 12.2 9.272 9.272 12.00 12.2 12.2 9.272 9.272 12.00 12.2 12.2 9.272 9.272 12.00 $12.$	FIELD ME	EASUREMENTS
(gallons)(degrees C)(umhos/cm)(mg/L)(NTU) 903 125 134 1.12 $3/2$ $3/2$ $3/2$ 912 0 15.2 6.33 003 9.72 -50 1912 0 15.2 6.33 0.233 9.72 -50 $10.4K$ 4.0 15.2 6.33 0.233 9.72 -50 $10.4K$ 4.0 15.2 6.33 0.232 4.55 -50 $10.4K$ 4.0 15.2 6.34 0.524 -50 6.56 $10.4K$ 4.0 15.4 6.35 9.754 9.400 $10.4K$ 4.20 15.4 6.354 0.524 -5.52 $10.4K$ 4.20 15.4 4.246 0.554 9.474 12.4 0.554 9.474 0.554 9.474 12.4 12.4 1.054 0.554 9.474 12.4 12.4 1.054 0.554 9.474 12.4 1.054 0.554 9.474 9.474 12.4 1.054 0.2352 8.374 9.474 12.4 1.054 0.2352 8.374 9.474 12.4 1.054 0.2352 8.374 9.474 12.4 1.52 1.054 0.2352 8.374 12.4 1.054 0.2352 8.374 9.474 12.4 1.52 1.52 1.52 1.52 12.4 1.52 1.52 1.52 1.52		
903 134 4.13 $5/6m$ 9.72 32.4 9172 0 15.2 6.03 0.23 9.72 32.4 141 $2.r$ 15.2 6.03 0.23 9.72 -5.0 $10.4K$ 4.0 18.1 6.20 0.23 9.72 -5.0 $10.4K$ 4.0 18.1 6.20 0.23 9.74 -5.0 $10.4K$ 4.0 18.1 6.20 0.23 9.74 -5.0 $10.4K$ 4.0 18.1 6.70 0.23 9.77 4.50 6.63 9.74 -5.0 1240 4.0 19.6 7.20 6.63 9.774 -7.50 6.63 9.774 4.64 7.97 9.772 9.777	5 · · · · · · · pi i	CONDUCTIVITY DO TURBIDITY
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(gallons) (degrees C)	(umhoş/cm) (mg/L) (NTU)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	903 15 124 112	
$\frac{1}{141}$ $\frac{7}{2}$, $\frac{1}{152}$ <t< td=""><td>10 10 10 10</td><td></td></t<>	10 10 10 10	
$10-T_{1}$ </td <td></td> <td>$\frac{.003}{$</td>		$\frac{.003}{$
$10-T_{1}$ </td <td></td> <td>0.263 0.59 -5.0</td>		0.263 0.59 -5.0
12 40 13 6 14 6	$\frac{10.94}{0.72}$ $\frac{4.0}{1.00}$ $\frac{18.1}{1.00}$ $\frac{6.16}{0.000}$	0.521
AMPLE #: ANALYSIS: DUANTITY: (See COC) OLUME: LAB: YPE: RESERVATION: Centrifugal Pump Centrifugal Pump Centrifugal Pump _XSubmersible Pump Centrifugal Pump Peristaltic Pump Submersible Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Bailer (stainless steel) Other:	$\frac{1000}{12100} = \frac{100}{100} = \frac{100}{100}$	0.534 4.40 6,36
AMPLE #: ANALYSIS: DUANTITY: (See COC) OLUME: LAB: YPE: RESERVATION: Centrifugal Pump Centrifugal Pump Centrifugal Pump _XSubmersible Pump Centrifugal Pump Peristaltic Pump Submersible Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Bailer (stainless steel) Other:	1240 30 14.6 4.09	<u>D.619 8.69 off Azt</u>
AMPLE #: ANALYSIS: DUANTITY: (See COC) OLUME: LAB: YPE: RESERVATION: Centrifugal Pump Centrifugal Pump Centrifugal Pump _XSubmersible Pump Centrifugal Pump Peristaltic Pump Submersible Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Bailer (stainless steel) Other:	1200 <u>62 19-2 7.04</u>	0.752 <u>8.77</u> Achat
AMPLE #: ANALYSIS: DUANTITY: (See COC) OLUME: LAB: YPE: RESERVATION: Centrifugal Pump Centrifugal Pump Centrifugal Pump _XSubmersible Pump Centrifugal Pump Peristaltic Pump Submersible Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Bailer (stainless steel) Other:	O A M D L F	11
ANALTOR: ANALTOR: OLUME: YPE: YPE: RESERVATION: Centrifugal Pump Centrifugal Pump X_Submersible Pump Centrifugal Pump Purge Pump Centrialtic Pump Purge Pump Peristaltic Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Other:		
OLUME: (jee coc) End. YPE: RESERVATION: PURGING EQUIPMENT SAMPLING EQUIPMENT Centrifugal Pump Centrifugal Pump X_Submersible Pump X_Submersible Pump Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Gother: Other: Other:	A	
YPE: RESERVATION: PURGING EQUIPMENT SAMPLING EQUIPMENT Centrifugal Pump Centrifugal Pump Submersible Pump XSubmersible Pump Peristaltic Pump Yeristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (PVC or disposable) Bailer (stainless steel)		LAD.
PURGING EQUIPMENT SAMPLING EQUIPMENT Centrifugal Pump Centrifugal Pump _X_Submersible Pump Centrifugal Pump Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (stainless steel) Bailer (stainless steel) Other:		
PURGING EQUIPMENT SAMPLING EQUIPMENT Centrifugal Pump Centrifugal Pump _XSubmersible Pump XSubmersible Pump Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (PVC or disposable) Bailer (PVC or disposable) Other: Other:		
Centrifugal Pump Centrifugal Pump X_Submersible Pump X_Submersible Pump Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (PVC or disposable) Bailer (stainless steel) Bailer (stainless steel) Other: Other:		
X_ Submersible Pump X_ Submersible Pump Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (PVC or disposable) Bailer (PVC or disposable) Bailer (stainless steel) Other:	PURGING EQUIPMENT	SAMPLING EQUIPMENT
X_ Submersible Pump X_ Submersible Pump Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (PVC or disposable) Bailer (PVC or disposable) Bailer (stainless steel) Other:	Centrifugal Pump	Contrifuged Dum-
Peristaltic Pump Peristaltic Pump Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (PVC or disposable) Bailer (PVC or disposable) Bailer (stainless steel) Bailer (stainless steel) Other: Other:		
Purge Pump Purge Pump Bailer (Teflon) Bailer (Teflon) Bailer (PVC or disposable) Bailer (PVC or disposable) Bailer (stainless steel) Bailer (stainless steel) Other: Other:		
Bailer (Teflon) Bailer (Teflon) Bailer (PVC or disposable) Bailer (PVC or disposable) Bailer (stainless steel) Bailer (stainless steel) Other: Other:		
Bailer (PVC or disposable)		
Bailer (stainless steel)Bailer (stainless steel)Other:		Bailer (Teflon)
Bailer (stainless steel)Bailer (stainless steel)Other:	Bailer (PVC or disposable)	Bailer (PVC or disposable)
Other:Other:		
	Other:	
omments:		
	omments:	

PROJECT <u>Em</u> SUBJECT <u>P</u>	EINFEL enjuille Fire rye Wofe			JECT NO// Лиаль До EWED BY		OFOF / \/ DATEO
Toto Wat	l Depth er Column	· •	19-82 Je	et . 0.16 galloy 1	Aport = 6	2-63-g-
// 55 /203 /2 ⁰⁶ /2 ¹² /2 ¹⁵	Volumelgelo 0 1.0 205 4.0 5-0	PH 6-70 6-68 6-67 6-66 6-65	D.O 5.40 4.50 3.37 3.00 2.70	T.(C°) 18.20 17.44 17.31 17.32 17.32	ORP 265 252.8 227.1 203.4	um 5/cm ² 03930 0.786 0.797 0.822 0.833
12 19 12 25	6.5 7.5	6.68 6.65 6.65 6.65	2=47 2-20	17.52 17.49 17.44 17.44 17.44	173.0 49	0.853 0.859

DO = Dissolved Oxygen C° = Degrees Celcius ORP = Oxydeter Reduction Putential UmS/om² = Conductivity - microssiemens per continueter square.

A WARD Yomiyug