

By Alameda County Environmental Health at 2:40 pm, Aug 27, 2013

ROCKWOOD CHRISTIE LLC c/o TMG PARTNERS 100 Bush Street, Suite 2600 San Francisco, CA 94104 (415) 772-5900

August 26, 2013

241.082.01.001

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Mark Detterman

Transmittal
Remedial Action Report and Request for Case Closure
Former Lerer Brothers Transmission
6340 Christie Avenue
Emeryville, California
Fuel Leak Case No. RO0000057
Geotracker Global ID T0600191821

Dear Mr. Detterman:

Submitted herewith for your review is the *Remedial Action Report and Request for Case Closure*, 6340 Christie Avenue, Emeryville, California, prepared by PES Environmental, Inc. This document has been prepared to provide information about implementation of the Remediation Work Plan for the subject property, as it relates to the above-referenced fuel UST case.

I declare, under penalty of perjury, that the information and recommendations contained in the attached document are true and correct to the best of my knowledge.

Very truly yours, Rockwood Christie LLC

John Eudy

Authorized Representative

Email: jeudy@essexpropertytrust.com

cc: William Mast (PES Environmental)

Nicholas Targ, Esq. (Holland & Knight)

August 27, 2013

241.082.03.009

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Mark Detterman, P.G.

Subject: Remedial Action Report and Request for Case Closure

Former Lerer Brothers Transmission

6340 Christie Avenue

Fuel Leak Case No. RO0000057 GeoTracker Global ID T0600191821

Dear Mr. Detterman:

This *Remedial Action Report and Request for Case Closure* (Report) has been prepared by PES Environmental, Inc. (PES) on behalf of Rockwood Christie LLC (Rockwood Christie), the owner of the property located at 6340 Christie Avenue, in Emeryville, California (the site; Plate 1). This Report provides a summary and discussion of the remedial excavation and verification sampling activities performed in the vicinity of the former underground storage tank (UST) that was removed from the subject property in 1988 and is associated with the subject fuel leak case.

Remedial action activities were conducted in accordance with the *Final Remediation Work Plan*¹ (RWP) that was approved by the City of Emeryville on February 1, 2011. The City of Emeryville provides lead agency oversight for the remediation process described in the RWP, as set forth in the May 1996 Memorandum of Understanding between it, the Regional Water Quality Control Board, and the Department of Toxic Substances Control, as amended on December 22, 1998.

The remedial action activities and results presented herein for the UST area were performed as part of site-wide excavation of the parcels located at 6340 and 6390 Christie Avenue in conjunction with site redevelopment and new building construction.

¹ PES Environmental, Inc., 2011a. Final Remediation Work Plan, Proposed 64th and Christie Residential Building, 64th Street & Christie Avenue, Emeryville, California. February 3.

This Report has been prepared and organized to: (1) summarize the results of the UST remedial action activities; and (2) respond to issues identified in a letter from Alameda County Environmental Health (ACEH) to Rockwood Christie, dated August 15, 2011. A copy of the ACEH letter and related correspondence from PES dated September 6, 2011, are provided in Appendix A.

BACKGROUND INFORMATION

Historical documentation for the site indicates that the 2,000-gallon gasoline UST was removed in 1988. The approximate location of the former UST is shown on Plate 2. Little documentation is available about the removal activities, and no samples were reportedly collected from the tank excavation. Various investigations were performed at the site between 1998 and 2003 by Aqua Science Engineers, Inc. (ASE) to evaluate site conditions in the vicinity of the former UST. Sampling was subsequently conducted in 2004 by PES as part of environmental due diligence during Rockwood Christie's acquisition of the property. Additional soil and groundwater characterization was conducted in March 2011 in support of site redevelopment; the sampling was performed to pre-characterize soil for disposal profiling purposes and to confirm the absence of discrete, previously-unknown sources of groundwater contamination. These prior testing results are summarized in various documents that have previously been provided to ACEH^{2,3,4}.

The results of these investigations indicated the sporadic presence of heavy-fraction petroleum hydrocarbons (i.e., diesel and motor oil), light-fraction petroleum hydrocarbons (gasoline and its constituents), and metals (primarily lead) in the subsurface. Some of the detected chemicals appeared to be attributable to residual contamination associated with the former gasoline UST at the southeast corner of the property. Other detected parameters were related to fill placed at the site when the area was reclaimed from San Francisco Bay in the 1930s to 1940s, or to regional contamination associated with offsite sources. The 2011 site investigation confirmed the direction of the groundwater gradient at the site to be consistent with the regional flow direction (i.e., westerly toward San Francisco Bay)³.

² PES 2005. Phase I Environmental Site Assessment, 6340 Christie Avenue, Emeryville, California. January 21.

³ PES, 2011b. Results of Soil and Groundwater Investigation, and Request for Case Closure, Former Lerer Brothers Transmission, 6340 Christie Avenue. June 28.

⁴ PES, 2011c. Report of Phase II Subsurface Investigation, 6340 and 6390 Christie Avenue, Emeryville, California. October 14.

OBSERVATIONS OF SITE-WIDE EXCAVATION ACTIVITIES

Construction of the new site building required excavation of soil over the entire footprint of two assessor's parcels (49-1492-8 [6340 Christie Avenue, the site] and 49-1492-6-1 [6390 Christie Avenue] to depths ranging from 12.8 to 18.5 feet below ground surface (bgs). In the vicinity of the former UST, the excavation extended to approximately 17.3 feet bgs (Plate 3). Soil excavation and disposal activities were conducted in accordance with the procedures and practices as described in the RWP. The excavation was completed during the months of October 2012 to March 2013. After the final excavation depth had been reached, as specified for foundation construction purposes, verification soil sampling of the excavation bottom was performed, as described below.

Field observations of the excavation bottom indicated that all non-native fill materials had been removed. Soil on the excavation bottom uniformly consisted of native silty sands and sandy clays. No indications of residual contamination were observed using visual, olfactory, and field screening methods (laboratory results are discussed below). Photographs of the excavation bottom, after the final excavation depths had been reached, are presented in Appendix B.

Observations of the excavation sidewalls in the vicinity of the former UST (i.e., at the property boundary) indicate the presence of similar types of soil and debris fill that was encountered in the main excavation area. No indications of residual fuel contamination (i.e., using visual, olfactory, and field screening methods) related to the former UST were identified.

As of the date of this report, building construction is ongoing. As described in the RWP, the building plan includes the design elements of an intrinsically-safe, podium-style building, built over a ventilated subgrade parking level, incorporating a water-proofing barrier.

Prior to completion of the building construction, as described in the RWP, additional minor soil excavation is planned to be performed around the perimeter of the building for utility installation, structural fill placement, and landscaping and sidewalk construction purposes.

EXCAVATION VERIFICATION SAMPLING

Methods and Analysis

Upon reaching the design depth of the building excavation, verification soil samples were collected at 13 locations across the excavation bottom (Plate 2). The purpose of the sampling was to verify that that the target remedial goals specified in the RWP had been met and confirm that removal of the affected soil had been accomplished to the lateral limits of the

planned construction excavation. The samples were collected during February and March 2013. As requested by ACEH, two of the verification samples (EB-1 and EB-2) were collected directly below the former locations of soil borings SB-29 and SB-31. The remaining 11 samples (EB-3 through EB-13) were distributed across the excavation bottom at a spacing of approximately 50 to 60 feet on center.

Discreet soil samples were collected using plastic disposable trowels and Terra Core samplers, and were placed in 16-ounce wide-mouth glass jars and preserved volatile organic analysis (VOA) vials, respectively. Following sample collection, the sample containers were sealed, labeled for identification, and immediately placed in a chilled, thermally-insulated cooler containing bagged ice. The samples were transported under chain-of-custody protocol to Curtis & Tompkins Ltd in Berkeley, California, a California state-certified laboratory. The samples were analyzed for: total petroleum hydrocarbons quantified as gasoline, diesel, and motor oil (TPHg, TPHd, and TPHmo, respectively) using U.S. EPA Method 8015M; volatile organic compounds (VOCs) using U.S. EPA Method 8260B; and Title 22 California Code of Regulations metals using U.S. EPA Method 6010B.

Sampling Results

Excavation bottom verification sample analytical results for organic compounds and metals are summarized in Tables 1 and 2, respectively. Copies of the laboratory analytical reports and chain-of-custody documentation are included on CD-ROM in Appendix C. All verification sample analytical results for TPHg, TPHd, TPHmo, and VOCs were less than the laboratory reporting limits with one exception. In the sample collected at EB-2, TPHd and TPHmo were detected at concentrations of 12 milligrams per kilogram (mg/kg) and 95 mg/kg, respectively.

As shown in Tables 1 and 2, concentrations of TPHg, TPHd, TPHmo, VOCs, and all metals except arsenic in the verification soil samples were less than the remedial goals presented in the approved RWP⁵. Arsenic concentrations ranged from 2.5 to 8.2 mg/kg, within the range of widely-accepted background concentrations for the San Francisco Bay area and less than the background concentration of 24 mg/kg identified at the Lawrence Berkeley National Laboratory site in Berkeley, California⁶.

⁵ Per the RWP, the remedial action cleanup goal for vadose zone soil was equivalent to the November 2008 San Francisco Bay Regional Water Quality Control Board residential direct-exposure Environmental Screening Level. For comparison purposes, the California Environmental Protection Agency (Cal/EPA) Human Health Screening Levels (CHHSLs) for metals in soil in a residential setting are also provided in Table 2.

⁶ 2009, Lawrence Berkeley National Laboratory. *Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory [Revised]*. April.

In addition, benzene and ethylbenzene concentrations in verification samples (i.e., non-detect) were less than levels identified by the California State Water Resources Control Board in the 2012 Low-Threat Underground Storage Tank Case Closure Policy (Low-Threat Policy)⁷. Specifically, Table 1 of the Low-Threat Policy specifies "Concentrations of Petroleum Hydrocarbons in Soil That Will Have No Significant Risk of Adversely Affecting Human Health." The applicable scenarios for the subject site consist of residential direct contact, residential volatilization to outdoor air, and utility worker.

Cross-section A-A' (Plate 3) presents pre- and post-excavation petroleum hydrocarbon concentrations in soil in the vicinity of the former UST. As shown on this figure, soil potentially affected by fuel release(s) from the former tank has been removed, and concentrations in soil at the excavation bottom are within acceptable limits, as described in the RWP and the Low-Threat Policy.

EXCAVATION DEWATERING

During the 2011 site investigation, shallow groundwater was observed at depths ranging from 3.95 to 6.10 feet bgs. As a result, dewatering of the construction site was performed by the project's general contractor, SCM Construction Management Services, Inc. (SCM), and its subcontractors to reduce groundwater inflow into the construction excavation. Existing groundwater data from the March 2011 investigation³ fulfilled the majority of the analytical needs for securing a Special Discharge Permit for construction dewatering from the East Bay Municipal Utility District (EBMUD). However, to comply with EBMUD requirements for analysis of oil and grease, pH, and low-level quantification of polychlorinated biphenyls (PCBs), one additional groundwater sample was collected on August 24, 2012. Sampling methodology and results were provided to EBMUD in a letter dated September 4, 2012; a copy is provided in Appendix D.

Based on the prior data and the additional analytical results, EBMUD issued Special Discharge Permit No. 65767813, dated September 18, 2012⁸. The permit required: (1) an onsite pre-treatment system prior to discharge to the sanitary sewer; and (2) collection of one water sample from the system discharge point after several days of operation of the dewatering system to confirm that concentrations of PCBs were within acceptable limits.

⁷ 2012, State Water Resources Control Board. *Low-Threat Underground Storage Tank Case Closure Policy*. (http://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2012/rs2012_0016atta.pdf).

⁸ East Bay Municipal Utilities District, 2012. Wastewater Discharge Permit No. 65767813. September 18.

A construction dewatering system was installed by Viking Drillers, Inc., including a treatment system consisting of a 20,000-gallon sediment removal tank and a 3,500-gallon sand filter. As required by the EBMUD permit, a water sample from the pre-treatment system effluent (i.e., after passing through the sediment removal tank and sand filter) was collected on October 3, 2012. Total PCBs in the effluent sample met the EBMUD acceptance criteria. Effluent sampling information and test results were provided to EBMUD in a letter dated October 16, 2012 (Appendix D).

The discharge volume from the dewatering system was tracked weekly by the general contractor, SCM. Between system startup on about October 1, 2012 and March 8, 2013 when excavation oversight activities were completed, the dewatering system discharge volume total was 1,723,570 gallons.

CONCLUSIONS

Soil excavation during redevelopment construction has met the objectives of mitigating threats to human health and the environment, as described in the RWP, the June 2011 report, and other project documents and correspondence.

The excavation extended to 17.3 feet bgs at the location of the former UST, and to between 12.8 and 18.5 feet bgs across the entire construction site, thereby removing residual hydrocarbons associated with historical releases from the UST.

Analytical results for all verification soil samples were less than remedial action goals (per the RWP) and less than regulatory limits for residential land use (per the Low-Threat Policy).

On the basis of successful completion of the remedial activities as described herein, on behalf of Rockwood Christie, we respectfully request that ACEH close the fuel leak case for the former Lerer Brothers Transmission site.

Please call any of the undersigned if you have any questions.

Yours very truly,

PES ENVIRONMENTAL, INC.

John Alexander

Senior Staff Engineer

William W. Mast, P.G.

Associate Engineer

Robert S. Creps, P.E.

Principal Engineer

Attachments: Table 1 - Summary of Analytical Results for Verification Soil Samples -

No. 5647

OF CALIF

Organic Compounds

Table 2 - Summary of Analytical Results for Verification Soil Samples - Metals

Plate 1 – Site Location Map

Plate 2 - Verification Sample Locations

Plate 3 - Cross-Section A-A'

Appendix A - ACEH Correspondence

Appendix B - Photographs of Excavation near UST Area

Appendix C – Laboratory Analytical Reports and Chain-of-Custody Forms (provided on CD-ROM)

Appendix D - EBMUD Correspondence

cc: Josh Corzine - Rockwood Christie LLC

Denise Pinkston - Rockwood Christie LLC

TABLES

Table 1 Summary of Analytical Results for Verification Soil Samples - Organic Compounds 64th and Christie Avenue Residential Building 6340 and 6390 Christie Avenue Emeryville, California

Sample ID	Sample Depth	Date Sampled	TPHmo	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	Other VOCs
	(ft bgs)	Gampica	(mg/Kg)	(mg/Kg)	(mg/Kg)	(µg/Kg)	(µg/Kg)	(µg/Kg)	(µg/Kg)	(µg/Kg)
EB-1	17.3	2/1/2013	<5.0	<1.0	<0.19	<4.5	<4.5	<4.5	<4.5	ND
EB-2	17.3	2/1/2013	95	12 Y	<0.16	<4.4	<4.4	<4.4	<4.4	ND
EB-3	18.5	2/1/2013	<5.0	<1.0	<0.18	<4.7	<4.7	<4.7	<4.7	ND
EB-4	17.2	2/1/2013	<5.0	<1.0	<0.23	<4.6	<4.6	<4.6	<4.6	ND
EB-5	16.3	2/4/2013	<5.0	<1.0	<0.22	<7.6	<7.6	<7.6	<7.6	ND
EB-6	14.9	2/7/2013	<5.0	<1.0	<0.21	<4.4	<4.4	<4.4	<4.4	ND
EB-7	13.2	2/7/2013	<5.0	<1.0	<0.20	<4.9	<4.9	<4.9	<4.9	ND
EB-8	12.8	2/7/2013	<5.0	< 0.99	<0.19	<6.9	<6.9	<6.9	<6.9	ND
EB-9	13.6	2/14/2013	<5.0	<1.0	<0.17	<5.6	<5.6	<5.6	<5.6	ND
EB-10	14.5	2/14/2013	<5.0	<1.0	<0.20	<4.6	<4.6	<4.6	<4.6	ND
EB-11	15.3	2/14/2013	<5.0	<1.0	<0.18	<4.4	<4.4	<4.4	<4.4	ND
EB-12	14.3	2/27/2013	<5.0	<1.0	<0.18	<4.7	<4.7	<4.7	<4.7	ND
EB-13	15.9	3/4/2013	<5.0	<1.0	<0.20	<5.8	<5.8	<5.8	<5.8	ND
Approve	d Remedia	l Goal ⁽¹⁾	1,800	540	540	120	320,000	2,300	150,000	
Residenti	ial: Direct C	Contact ⁽²⁾	-	-		1.9	-	21	-	
Residential: 0	Outdoor Vo	latilization ⁽²⁾	-			2.8	-	89		
Uti	ility Worker	(3)	-	-		14	-	314		

Notes:

VOCs = Volatile Organic Compounds.

mg/kg = milligrams per kilogram.

μg/kg = micrograms per kilogram.

ft bgs = Feet below ground surface. Sample collected at exacation bottom; depth is approximate.

< 0.15 = Not detected at or above the indicated laboratory reporting limit.

ND = Not detected. Reporting limit varies. Refer to laboratory analytical report.

-- = Not analyzed or not applicable.

Y = Sample exhibits chromatographic pattern which does not resemble standard.

TPHmo = Total petroleum hydrocarbons quantified as motor oil.

TPHd = Total petroleum hydrocarbons quantified as diesel.

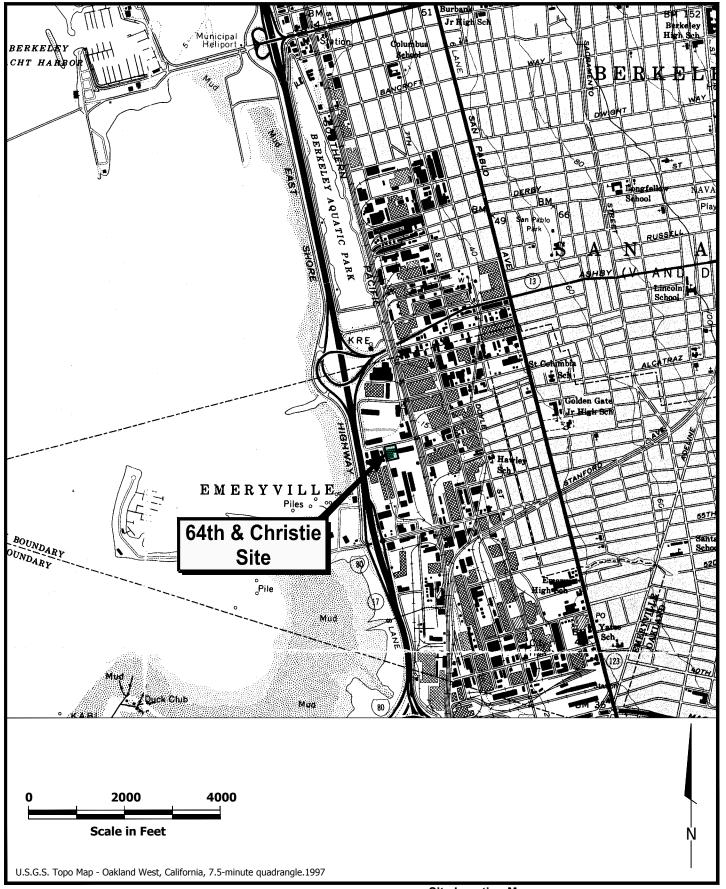
TPHg = Total petroleum hydrocarbons quantified as gasoline.

- (1) The approved project remedial goal was equivalent to the November 2008 Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL): Direct Exposure Soil Screening Levels, Residential Exposure Scenario; HQ = 1 for Non-Carcinogens (Table K-1).
- (2) Concentration in Soil That Will Have No Significant Risk of Adversely Affecting Human Health Residential Direct Contact. SWRCB, 2012.
- (3) Concentration in Soil That Will Have No Significant Risk of Adversely Affecting Human Health Volatilization to Outdoor Air. SWRCB, 2012.
- (4) Concentration in Soil That Will Have No Significant Risk of Adversely Affecting Human Health Utility Worker. SWRCB, 2012.

24108203R004.xlsx - Table 1 8/27/2013

Table 2 Summary of Analytical Results for Verification Soil Samples - Metals 64th and Christie Avenue Residential Building 6340 and 6390 Christie Avenue Emeryville, California

Sample ID	Sample Depth (ft bgs)	Date Sampled	Antimony (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Beryllium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Molyb- denum (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Thallium (mg/kg)	Vanadium (mg/kg)	Zinc (mg/kg)
EB-1	17.3	2/1/2013	<0.49	3.7	79	0.26	<0.25	20	5.6	11	3.8	0.021	<0.25	22	<0.49	<0.25	<0.49	23	27
EB-2	17.3	2/1/2013	<0.52	2.5	34	0.42	0.29	38	9.6	20	4.7	0.028	<0.26	47	<0.52	<0.26	<0.52	34	45
EB-3	18.5	2/1/2013	<0.50	5.4	63	0.37	0.34	34	9.6	18	4.6	0.022	<0.25	42	<0.50	<0.25	<0.50	44	41
EB-4	17.2	2/1/2013	<0.46	4.6	70	0.25	<0.23	59	7.4	11	2.8	<0.018	<0.23	34	<0.46	<0.23	<0.46	44	34
EB-5	16.3	2/4/2013	<0.44	8.2	310	0.49	0.65	52	9.7	25	5.2	0.040	1.4	75	<0.44	<0.22	<0.44	54	53
EB-6	14.9	2/7/2013	<0.48	6.2	58	0.50	<0.24	46	8.8	21	4.7	0.031	0.26	54	0.64	<0.24	<0.48	37	44
EB-7	13.2	2/7/2013	<0.48	5.5	90	0.26	<0.24	48	11	13	2.9	<0.017	0.33	40	<0.48	<0.24	<0.48	44	33
EB-8	12.8	2/7/2013	<0.47	3.5	72	0.31	<0.23	30	6.0	13	4.8	<0.018	<0.23	29	<0.47	<0.23	<0.47	31	26
EB-9	13.6	2/14/2013	<0.48	3.2	44	0.17	<0.24	56	8.9	9.4	2.2	<0.018	<0.24	34	<0.48	<0.24	<0.48	44	27
EB-10	14.5	2/14/2013	<0.45	4.7	120	0.47	<0.23	41	13	19	4.8	0.026	<0.23	60	<0.45	<0.23	<0.45	30	40
EB-11	15.3	2/14/2013	<0.45	8.0	81	0.51	0.31	36	19	24	6.9	0.021	0.57	63	<0.45	<0.23	<0.45	42	41
EB-12	14.3	2/27/2013	<0.48	5.2	110	0.49	<0.24	51	19	22	6.4	<0.017	<0.24	57	<0.48	<0.24	<0.48	47	48
EB-13	15.9	3/4/2013	<0.48	4.9	51	0.24	<0.24	37	7.0	11	2.6	<0.016	<0.24	34	<0.48	<0.24	<0.48	34	34
Approve	ed Remedia	Goal ⁽¹⁾	31	0.39	15,000	150	1.7		910	31,000	260	6.7	390	1,500	390	390	6.3	78	23,000

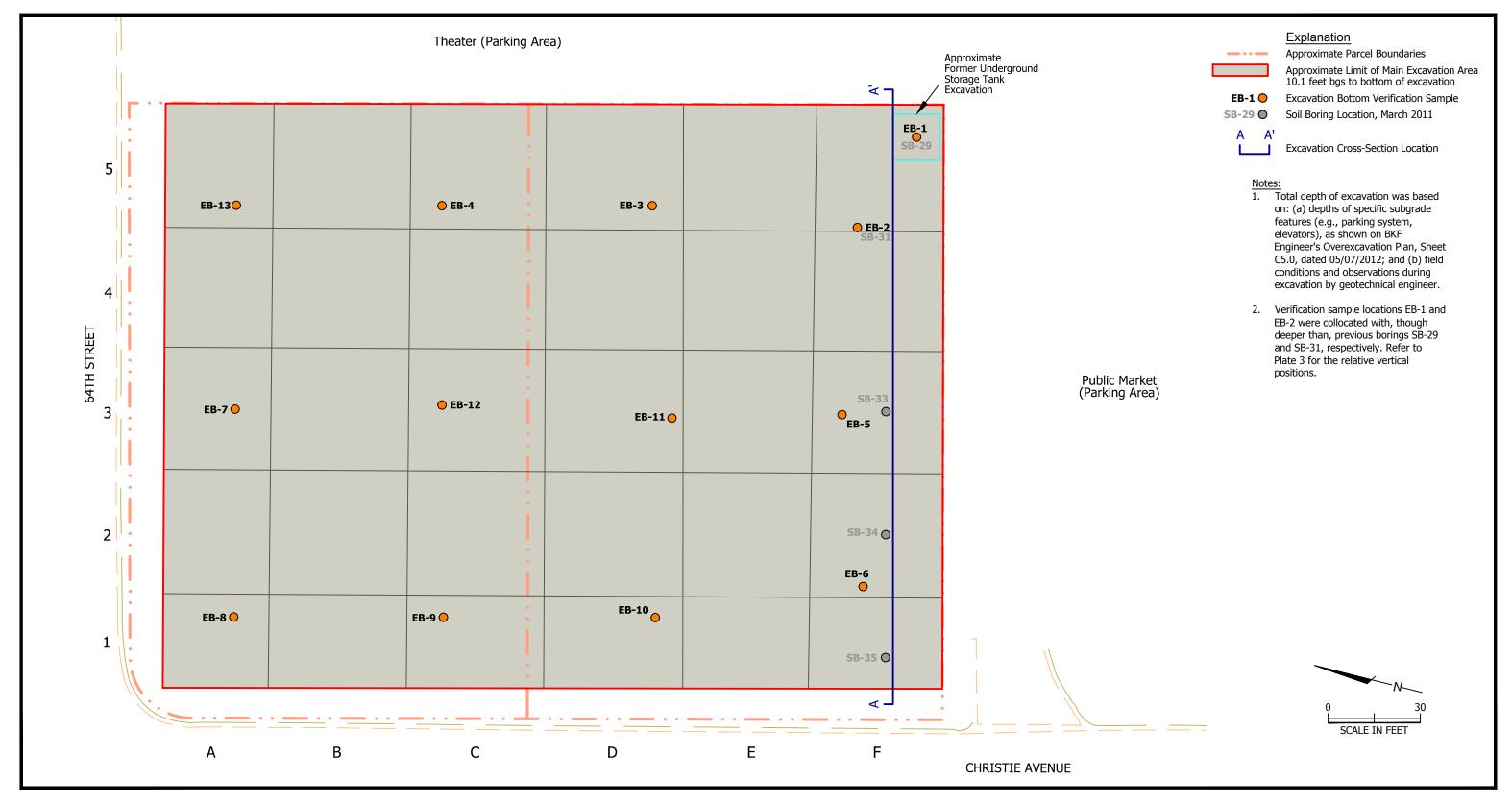

Notes:

ft bgs = Feet below ground surface. Sample collected at exacation bottom; depth is approximate. mg/kg = Milligrams per kilogram.

- < 0.25 = Not detected at or above the indicated laboratory reporting limit.
- -- = Not applicable.
- (1) The approved project remedial goal was equivalent to the November 2008 Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL): Direct Exposure Soil Screening Levels, Residential Exposure Scenario; HQ = 1 for Non-Carcinogens (Table K-1).

24108203R004.xlsx - Table 2

PLATES


Site Location Map
Former UST Remedial Action Report
64th and Christie Residential Building
6340 and 6390 Christie Avenue
Emeryville, California

PLATE

1

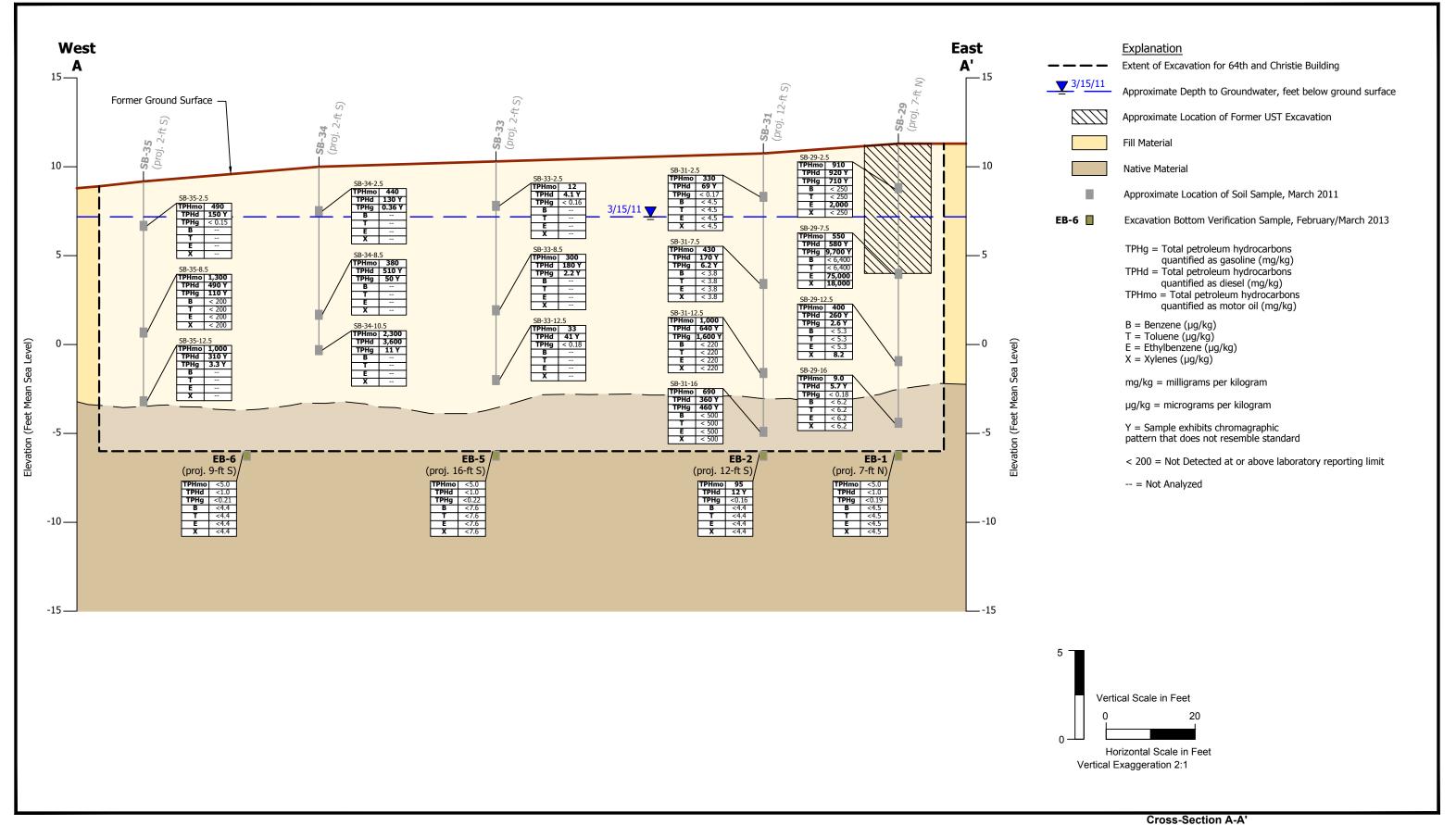
 241.082.03.009
 24108203009_1
 WWM
 8/13

 JOB NUMBER
 DRAWING NUMBER
 REVIEWED BY
 DATE

Verification Sample Locations

Former UST Remedial Action Report 6340 Christie Avenue Emeryville, California

PLATE


241.082.03.009

JOB NUMBER

24108203009_2

DRAWING NUMBER

WWMREVIEWED BY 8/13

Former UST Remedial Action Report 64th and Christie Residential Building 6340 and 6390 Christie Avenue Emeryville, California **3**

241.082.03.009 24108203009_3

JOB NUMBER DRAWING NUMBER

WWM REVIEWED BY

8/13

APPENDIX A

ACEH CORRESPONDENCE

August 15, 2011

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Denise Pinkston Rockwood Christie LLC c/o TMG Partners 100 Bush St., 26th Floor San Francisco, CA94104 (Sent via E-mail to: dpinkston@tmgpartners.com)

Richard and Beverly Gold Trust Lerer Brothers Transmission P.O. Box 117820 Burlingame, CA 94011-7820

Subject: Request for Upload Compliance and Remedial Action Report, for Fuel Leak Case No.

RO0000057 and GeoTracker Global ID T0600191821, Lerer Brothers Transmission, 6340

Christie Avenue, Emeryville, CA 94608

Dear Ms. Pinkston & the Gold Trust:

Alameda County Environmental Health (ACEH) staff has reviewed the case file including the *Phase II Environmental Subsurface Investigation Results*, dated January 21, 2005, the *Draft Remediation Work Plan, Proposed 64th and Christie Building*, dated October 21, 2008, the *Draft Remediation Work Plan Proposed 64th and Christie Residential Building*, dated December 27, 2010 (available currently only on the Envirostor website), the *Results of Soil and Groundwater Investigation and Request for Case Closure*, dated June 28, 2011, which includes as Appendix C the *Results of Pre-Excavation Investigation and Preliminary Soil Characterization, Proposed 64th and Christie Residential Building*, dated June 1, 2011. The reports were prepared and submitted on your behalf by PES Environmental, Inc (PES). Thank you for submitting the reports; they have substantially advanced the understanding of the site.

The subject site is a part of a two parcel redevelopment in which soil will be excavated to a depth of between 11 and 15 feet below grade surface (bgs) from property line to property line. As planned the area of the former UST excavation (southeast corner of parcels) is within the area to be excavated to an approximate depth of 15 feet bgs. It is understood that contaminant concentrations up to 9,700 mg/kg TPHg, 3,600 mg/kg TPHd, 2,300 mg/kg TPHmo, and 1.7 mg/kg benzene have been recently documented in soil beneath the site including beneath the former UST location, but that soil contamination at the site as a whole, as well as in the former UST area, has been documented to rapidly decrease beneath the total depth of artificial fill that ranges between 12 and 15 feet bgs at the site. In the vicinity of the former UST excavation, fill depth was found to be at an approximate depth of 15 feet bgs.

A *Draft Remediation Work Plan Proposed 64th and Christie Residential Building* (December 27, 2010) has been generated and has been approved (December 29, 2010 email available on the Envirostor website) by, and will be overseen by, the City of Emeryville, under an existing MOU with the DTSC (Envirostor Site No. 60001475). To clarify the record, ACEH oversees a separate and different portion of the case than will be handled by the City of Emeryville. As a part of that plan, excavation confirmation samples will be collected every three feet of depth and every 25 linear feet. Because construction dewatering will be required, potentially substantial groundwater extraction is anticipated, but does not yet appear to have been pre-planned. As a consequence and as requested by the City of Emeryville, one bottom sample will be collected for every 1,000 square feet of excavation bottom. Finally, because engineered soil is required to be emplaced to a depth of 4 feet bgs, to a distance of 12.5 feet beyond the southern property line, multiple opportunities to remove petroleum contaminated soil exist at the site, including laterally in remaining sidewalls.

Ms. Pinkston and the Gold Trust RO00000057 August 15, 2011, Page 2

The planned construction will be commercial and residential mixed-use that is also described as intrinsically safe. The specific design (a podium) is described to be in conformance with ASTM International Standard E 2600-08 for intrinsically-safe designs to mitigate vapor intrusion concerns. The lowest level will consist of one subgrade level of underground parking and one street-grade level of parking and commercial establishments, each mechanically ventilated. All further levels will consist of residential units. Because the underground portions of the construction will be below groundwater levels, a subgrade water-proofing barrier will be employed, and is planned to be chemically-compatible for the site due to residual hydrocarbon concentrations in groundwater due to vicinity groundwater contamination sites, due to this case, and due to elevated salinity documented during groundwater sampling at the site.

Because the subject site will be excavated to between 11 and 15 feet bgs, it does not appear that site specific hydrocarbon contamination will significantly contribute to a vapor risk at the site. However, because of the referenced vicinity petroleum plume as described in the referenced reports, and because of methane vapor concentrations up to 85% of a gas sample have been documented beneath the site, mitigation for vapor risks remains a valid concern for regulatory oversight by the City of Emeryville and DTSC.

A remedial goal for groundwater beneath the site has not been identified due to a vicinity groundwater plume that appears to emanate from adjacent properties to the east and south that have existing site management requirements (Emeryville Marketplace - Envirostor Case No. 01290021).

Finally, based on factors and the items discussed in the technical comments below, this fuel leak case cannot be closed at this time. Principally this involves the documented presence of significant residual contaminated soil and groundwater in the vicinity of the former UST location; planned remediation consisting of excavation and over-excavation activities that are anticipated to remove a majority of the contamination, if not all; planned remedial and construction dewatering at the site that are anticipated to remove a majority of the dissolved-phase plume down-gradient of the former UST excavation (e.g. GW13); and subsequent verification sampling to demonstrate remedial effectiveness. This also involves Geotracker and ftp website upload compliance issues. This decision is subject to appeal to the State Water Resources Control Board (SWRCB), pursuant to Section 25299.39(b) of the Health and Safety Code (Thompson-Richter Underground Storage Tank Reform Act - Senate Bill 562). Please contact Mr. George Lockwood in the SWRCB Underground Storage Tank Program at (916) 341-5752 or GLockwood@waterboards.ca.gov for information regarding the appeal process.

Based on ACEH staff review of the case file, we request that you address the following technical comments and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to: mark.detterman@acqov.org) prior to the start of field activities.

TECHNICAL COMMENTS

1. Electronic Report and Data Upload Compliance - A review of the case file on the ACEH ftp site and the State's Geotracker database, indicates that the site is not in compliance with previous directive letters. Pursuant to California Code of Regulations, Title 23, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1, beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the UST or LUST program, must be transmitted electronically to the SWRCB GeoTracker system via the internet. Also, beginning January 1, 2002, all permanent monitoring points utilized to collect groundwater samples (i.e. monitoring wells) and submitted in a report to a regulatory agency, must be surveyed (top of casing) to mean sea level and latitude and longitude to sub-meter accuracy using NAD 83. A California licensed surveyor may be required to perform this work. Please survey all well points to Geotracker standards. Additionally, pursuant to California Code of Regulations, Title 23, Division 3, Chapter 30, Articles 1 and 2, Sections 3893, 3894, and 3895, beginning July 1, 2005, the successful submittal of electronic information (i.e. report in PDF format) shall replace the requirement for the submittal of a paper copy. Please upload all submittals, including future submittals to GeoTracker and ACEH's ftp server by the date specified below. Electronic reporting is additionally described below on the attachments.

Ms. Pinkston and the Gold Trust RO00000057 August 15, 2011, Page 3

- 2. 2005 Phase II Investigation Results Report The January 2005 document is essentially a data transmittal package for an investigation that occurred in December 2004, and is not a complete report. It does not describe the associated investigation and investigation methods including vapor point construction techniques, sampling methodologies, does not include analytical laboratory reports, does not bear a signature or professional stamp, and etc. At the time Technical Comment No. 1 is addressed, please transmit a complete report, to both websites (ACEH ftp site and Geotracker).
- 3. UST Excavation Confirmation Soil Sampling ACEH requests the collection of a minimum of two excavation bottom soil samples to be authoritatively placed beneath the location of soil bores SB-29 and SB-31. Should remedial overexcavation activities be required with depth, or into the southern or eastern sidewalls of the former UST excavation, ACEH additionally requests a 72-hour advanced written notification.
- **4. Remedial Action Report –** In addition to a standard Remedial Action Report, please also ensure groundwater discharge totals, concentrations (influent and effluent), and other pertinent groundwater data are contained in this report. Please forward a final Remedial Action Report by the date identified below.

TECHNICAL REPORT REQUEST

Please submit the following deliverable to ACEH (Attention: Mark Detterman), according to the following schedule:

- September 16, 2011 Geotracker and ACEH ftp Site Compliance
- January 30, 2012 Remedial Completion Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Mark E. Detterman, P.G., C.E.G. Senior Hazardous Materials Specialist

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc: Markus Niebanck, Emeryville Redevelopment Agency, 1333 Park Ave, Emeryville, CA 94608 (sent via electronic mail to mniebanck@ci.emeryville.ca.us)

Robert Creps, PES Environmental, 1682 Novato Blvd, Suite 100, Novato, CA 94947 (sent via electronic mail to RCreps@pesenv.com)

Donna Drogos (sent via electronic mail to donna.drogos@acgov.org)
Mark Detterman (sent via electronic mail to mark.detterman@acgov.org)
Case Electronic File. GeoTracker

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

	REVISION DATE: July 20, 2010
Alameda County Environmental Cleanup Oversight Programs	ISSUE DATE: July 5, 2005
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005;
(LOP and SLIC)	December 16, 2005; March 27, 2009; July 8,
	2010
SECTION: Miscellaneous Administrative Topics &	SUBJECT: Electronic Report Upload (ftp)
Procedures	Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 <u>Documents with password protection will not be accepted.</u>
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

September 6, 2011

241.082.02.002

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Mark Detterman, P.G.

Subject: Former Lerer Brothers Transmission

6340 Christie Avenue, Emeryville, California

Fuel Leak Case No. RO0000057 Geotracker Global ID T0600191821

Dear Mark,

As we discussed on August 17, this letter has been prepared to document our telephone conversation of that date during which you, Will Mast and I discussed the subject fuel leak case, remedial activities¹ to be performed in conjunction with site redevelopment, and clarifications of your recent letter² dated August 15, 2011. Thank you for your review and comments on PES' report presenting the results of soil and groundwater investigations³, and your comprehensive review of the case file. As I indicated during our call, Rockwood Christie and PES very much appreciate the guidance from Alameda County Environmental Health (ACEH) to move this case toward closure.

During our conversation we discussed and you confirmed that, although not explicitly stated in the August 15 letter, ACEH has no objections to the commencement of redevelopment construction, including implementation of the *Final Remedial Work Plan*.

¹ To be completed in accordance with the February 3, 2011 Final Remedial Work Plan, Proposed 64th and Christie Residential Building, 64th Street and Christie Avenue, Emeryville, California (RWP) prepared by PES and approved by the City of Emeryville, the lead environmental agency for the site development and the RWP.

² Alameda County Environmental Health Department, 2011. Request for Upload Compliance and Remedial Action Report, for Fuel Leak Case No. R00000057 and GeoTracker Global ID T0600191821, Lerer Brothers Transmission, 6340 Christie Avenue, Emeryville, CA 94608. August 15.

³ PES Environmental, Inc. 2011. Results of Soil and Groundwater Investigation and Request for Case Closure, Former Lerer Brothers Transmission, 6340 Christie Avenue, Fuel Leak Case No. R00000057, Geotracker Global ID T0600191821. June 28.

Mr. Mark Detterman, P.G. September 6, 2011 Page 2

Regarding Technical Comment 3 contained in the August 15 letter, you clarified that the intent of the comment is to encourage collection of verification sample data in the vicinity of the former tank excavation that will promote issuance of case closure without the need to evaluate residual risk. We discussed that the planned excavation under the RWP is expected to remove, to the extent practicable, the soil contamination attributable to the former tank. Specifically, we discussed the test results from Soil Boring SB-29, which indicate that the tank-impacted soil attenuates at a depth between about 7.5 and 12.5 feet, much shallower than the planned excavation depth of 15 feet.

Lastly, your August 15 letter requests submittal of a remedial completion report by January 30, 2012. I indicated that RWP implementation is closely tied to the redevelopment construction schedule. I stated that our expectation is that the RWP excavation will likely occur in the first half of 2012 and, as such, we expect to be able to prepare and submit a remedial completion report to ACEH soon thereafter. You asked that we document the expected schedule in this letter, and that we keep you informed of the progress of the work.

Again, thank you for your assistance on this case. Please call me or Will Mast if you have any questions, or you can reach me via email at rcreps@pesenv.com.

Yours very truly,

PES ENVIRONMENTAL, INC.

Robert S. Creps, P.E. Principal Engineer

cc: Denise Pinkston - Rockwood Christie LLC

APPENDIX B

PHOTOGRAPHS OF EXCAVATION NEAR UST AREA

Appendix B Photographic Documentation of Excavation Bottom Near Former UST 64th and Christie Avenue Residential Building 6340 and 6390 Christie Avenue Emeryville, California

Photo ID	Date	Description
1	1/28/2013	View to north of excavation bottom from southeast corner of excavation (i.e., below location of former UST).
2	1/28/2013	View to south of excavation bottom near southeast corner of excavation (i.e., below location of former UST).
3	2/4/2013	View to southeast of excavation bottom at southeast corner of excavation (i.e., below location of former UST).
4	2/4/2013	Close up view of soil conditions at verification sample location EB-2.
5	1/25/2013	Composite panorama view to northwest of southeast corner of excavation, from street level.

24108203R004.xlsx - Appx B 8/27/2013

Photo 1.JPG

Photo 2.JPG

Photo 3.JPG

Photo 4.JPG

IrfanView

Photo 5.jpg

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS (PROVIDED ON CD-ROM)

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 242843 ANALYTICAL REPORT

PES Environmental, Inc.

1682 Novato Boulevard

Novato, CA 94947

Project : 241.082.03.006

Location: 64th & Christie Emeryville, CA

Level : II

 Sample ID
 Lab ID

 EB-3
 242843-001

 EB-4
 242843-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: 02/08/2013

Signature:

Desiree N. Tetrault Project Manager (510) 486-0900

Deinee 7. Tetralt

NELAP # 01107CA

1 of 24

CASE NARRATIVE

Laboratory number: 242843

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 02/01/13 Samples Received: 02/01/13

This data package contains sample and QC results for two soil samples, requested for the above referenced project on 02/01/13. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

Matrix spikes QC675498,QC675499 (batch 195235) were not reported because the parent sample required a dilution that would have diluted out the spikes. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

PES Environmental, Inc. Engineering & Environmental Services

CHAIN OF CUSTODY RECORD

1682 NOVATO BOULEVARD, SUITE 100 NOVATO, CALIFORNIA 94947

LABORATORY: C+T	SAMPLEDS:	K		MALYSIS REQUESTED	
DOB NUMBER: 241.082.03.006 NAME/LOCATION: 64+6 + Christie Giver PROJECT MANAGER: Will Mast	11 4		7 2 3	\sqrt{\sq}\}}}\sqrt{\sq}}}}}}\sqrt{\sq}}}}}}}}}}}}\signt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	
NAME/LOCATION: 5+th + Christie Siner	yville (A			2 Mark s	
PROJECT MANAGER: Will /Vast	RECORDER:	\$	NS	ees) Y	
DATE SAMPLE NUMBER /	MATRIX		H W8021 W8260B 5035/80 8015M·	ameters 22	
YR MO DY TIME DESIGNATION	Vapor Water Soil Sedim't	Encore A H 1803 LE LOS	EPA 5035/8010 EPA 5035/8021 EPA 5035/8260B TPHg by 5035/8015M TPHd by 8015M	MNA Parameters (see notes) THE 22 Meth	
1302011555EB-3	X	2 16			
1302011555EB-3 1302011615EB-4		2 16		L X X	
NOTES Turn Around Time: Standard TAT		CHA	IN OF CUSTODY RECORD		ATE TIME
TOTAL AND THE STANDARD A		RELINQUISHED BY: (Signature)	RECEIVED W. A.	2/1	I/I3 1700
]	LETTO STATE OF THE	RECEIVED BY: Soy (WE)	D	ATE TIME
Rosults to: jalexander@pe	senu, com	RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature)	Di	DATE TIME
Wmast		RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature)	Dr	ATE TIME
		DISPATCHED BY: (Signature)	TIME RECEIVED FOR LAB BY: (See	pature) D.	ATE TIME
		METHOD OF SHIPMENT:			
Page of					

COOLER RECEIPT CHECKLIST

Login #	242843 res	Date Rec	eived 2/1	113 1 241.1	Number of coo	olers	<u> </u>
Date Opened Date Logged in							7
1. Did cooler con Shipping		hipping slip (ai				YES (9
2B. Were custody	yy y seals inta	Nan ct upon arrival	ne ?		_ Date Y	ES NO	· (/
3. Were custody4. Were custody5. Is the project in6. Indicate the particular in the p	papers fille identifiable	d out properly from custody	(ink, signed, e papers? (If so	etc)? fill out top	of form)Y	ES NO ES NO)
☐ Bubble ☐ Cloth m 7. Temperature d	aterial	Foam block Cardboard on: * No	□S	tyrofoam		e r towels	
Type of ic	ce used: 🔀	Wet H	Blue/Gel 🔲	None	Temp(°C)		
8. Were Method If YES, w 9. Did all bottles 10. Are there any 11. Are samples i 12. Are sample la 13. Do the sample 14. Was sufficien	es received 5035 samp hat time w arrive unbr missing / e n the appro- bels preser e labels agr	ere they transfe oken/unopened extra samples? opriate containent, in good cond	from the field present?erred to freeze	d. Cooling p	rocess had be	gun YES YES	NO NO NO
16. Did you check 17. Did you docum 18. Did you chang 19. Did you chang 20. Are bubbles > 21. Was the client	es appropr c preservation ment your page the hold ge the hold 66mm absect contacted	f sample sent fiately preserved ves for all bottoreservative characteristics in LIMS time in LIMS ant in VOA san	y papers? for tests reques d? lles for each sa eck? for unpreserved for preserved nples? s sample deliv	ample?ed VOAs? _ terracores?	YIE YE	YES YES NO ES NO ES NO ES NO ES NO YES	N/A N/A N/A N/A N/A

Rev 10, 11/11

Gasoline by GC/FID (5035 Prep) Lab #: 242843 Location: 64th & Christie Emeryville, CA Client: PES Environmental, Inc. Prep: EPA 5035 241.082.03.006 Analysis: EPA 8015B Project#: Batch#: 195225 Matrix: Soil Units: mg/Kg Sampled: 02/01/13 Basis: as received Received: 02/01/13 Diln Fac: 1.000

Field ID: EB-3 Lab ID: 242843-001 Type: SAMPLE Analyzed: 02/05/13

Analyte Result RL
Gasoline C7-C12 ND 0.18

Surrogate %REC Limits
Bromofluorobenzene (FID) 108 62-134

Field ID: EB-4 Lab ID: 242843-002 Type: SAMPLE Analyzed: 02/05/13

AnalyteResultRLGasoline C7-C12ND0.23

Surrogate%RECLimitsBromofluorobenzene (FID)11462-134

Type: BLANK Analyzed: 02/04/13

Lab ID: QC675456

AnalyteResultRLGasoline C7-C12ND0.20

Surrogate %REC Limits

Bromofluorobenzene (FID) 98 62-134

ND= Not Detected RL= Reporting Limit

Page 1 of 1 12.0

Batch QC Report

	Gasoline by GC	/FID (5035 Pre	p)
Lab #:	242843	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 50	35
Project#:	241.082.03.006	Analysis: EPA 80	15B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC675455	Batch#:	195225
Matrix:	Soil	Analyzed:	02/04/13
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.040	104	80-120

C Limits
62-134

Page 1 of 1

	Gasoline by GC/FID (5035 Prep)				
Lab #:	242843	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 5030B			
Project#:	241.082.03.006	Analysis: EPA 8015B			
Field ID:	ZZZZZZZZZ	Diln Fac: 1.000			
MSS Lab ID:	242837-041	Batch#: 195225			
Matrix:	Soil	Sampled: 02/01/13			
Units:	mg/Kg	Received: 02/01/13			
Basis:	as received	Analyzed: 02/04/13			

Type: MS Lab ID: QC675457

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.07808	10.99	11.45	104	33-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	101	62-134	

Type: MSD Lab ID: QC675458

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.091	9.327	102	33-120	2	53

	Total Extrac	table Hydrocarbons
Lab #:	242843	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Matrix:	Soil	Sampled: 02/01/13
Units:	mg/Kg	Received: 02/01/13
Basis:	as received	Prepared: 02/04/13
Diln Fac:	1.000	Analyzed: 02/05/13
Batch#:	195235	

Field ID: EB-3 Lab ID: 242843-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	92	54-129

Field ID: EB-4 Lab ID: 242843-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	104	54-129

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC675496

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	94	54-129	

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Total Extractable Hydrocarbons				
Lab #:	242843	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3550B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Type:	LCS	Diln Fac: 1.000		
Lab ID:	QC675497	Batch#: 195235		
Matrix:	Soil	Prepared: 02/04/13		
Units:	mg/Kg	Analyzed: 02/05/13		

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.76	39.05	78	51-131

Surrogate	%REC	Limits
o-Terphenyl	119	54-129

Purgeable Organics by GC/MS				
Lab #:	242843	Location: 64th	n & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-3	Diln Fac:	0.9328	
Lab ID:	242843-001	Batch#:	195211	
Matrix:	Soil	Sampled:	02/01/13	
Units:	ug/Kg	Received:	02/01/13	
Basis:	as received	Analyzed:	02/04/13	

Analyte	Result	RL	
Freon 12	ND	9.3	
Chloromethane	ND	9.3	
Vinyl Chloride	ND	9.3	
Bromomethane	ND	9.3	
Chloroethane	ND	9.3	
Trichlorofluoromethane	ND	4.7	
Acetone	ND	19	
Freon 113	ND	4.7	
1,1-Dichloroethene	ND	4.7	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.7	
MTBE	ND	4.7	
trans-1,2-Dichloroethene	ND	4.7	
Vinyl Acetate	ND	47	
1,1-Dichloroethane	ND	4.7	
2-Butanone	ND	9.3	
cis-1,2-Dichloroethene	ND	4.7	
2,2-Dichloropropane	ND	4.7	
Chloroform	ND	4.7	
Bromochloromethane	ND	4.7	
1,1,1-Trichloroethane	ND	4.7	
1,1-Dichloropropene	ND	4.7	
Carbon Tetrachloride	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Trichloroethene	ND	4.7	
1,2-Dichloropropane	ND	4.7	
Bromodichloromethane	ND	4.7	
Dibromomethane	ND	4.7	
4-Methyl-2-Pentanone	ND	9.3	
cis-1,3-Dichloropropene	ND	4.7	
Toluene	ND	4.7	
trans-1,3-Dichloropropene	ND	4.7	
1,1,2-Trichloroethane	ND	4.7	
2-Hexanone	ND	9.3	
1,3-Dichloropropane	ND	4.7	
Tetrachloroethene	ND	4.7	

ND= Not Detected RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	242843	Location: 64th	n & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-3	Diln Fac:	0.9328	
Lab ID:	242843-001	Batch#:	195211	
Matrix:	Soil	Sampled:	02/01/13	
Units:	ug/Kg	Received:	02/01/13	
Basis:	as received	Analyzed:	02/04/13	

Analyte	Result	RL	
Dibromochloromethane	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Chlorobenzene	ND	4.7	
1,1,1,2-Tetrachloroethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	
Styrene	ND	4.7	
Bromoform	ND	4.7	
Isopropylbenzene	ND	4.7	
1,1,2,2-Tetrachloroethane	ND	4.7	
1,2,3-Trichloropropane	ND	4.7	
Propylbenzene	ND	4.7	
Bromobenzene	ND	4.7	
1,3,5-Trimethylbenzene	ND	4.7	
2-Chlorotoluene	ND	4.7	
4-Chlorotoluene	ND	4.7	
tert-Butylbenzene	ND	4.7	
1,2,4-Trimethylbenzene	ND	4.7	
sec-Butylbenzene	ND	4.7	
para-Isopropyl Toluene	ND	4.7	
1,3-Dichlorobenzene	ND	4.7	
1,4-Dichlorobenzene	ND	4.7	
n-Butylbenzene	ND	4.7	
1,2-Dichlorobenzene	ND	4.7	
1,2-Dibromo-3-Chloropropane	ND	4.7	
1,2,4-Trichlorobenzene	ND	4.7	
Hexachlorobutadiene	ND	4.7	
Naphthalene	ND	4.7	
1,2,3-Trichlorobenzene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	110	78-131	
1,2-Dichloroethane-d4	93	75-141	
Toluene-d8	102	80-120	
Bromofluorobenzene	110	79-128	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	242843	Location: 64th	n & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-4	Diln Fac:	0.9191	
Lab ID:	242843-002	Batch#:	195211	
Matrix:	Soil	Sampled:	02/01/13	
Units:	ug/Kg	Received:	02/01/13	
Basis:	as received	Analyzed:	02/04/13	

Analyte	Result	RL	
Freon 12	ND	9.2	
Chloromethane	ND	9.2	
Vinyl Chloride	ND	9.2	
Bromomethane	ND	9.2	
Chloroethane	ND	9.2	
Trichlorofluoromethane	ND	4.6	
Acetone	ND	18	
Freon 113	ND	4.6	
1,1-Dichloroethene	ND	4.6	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.6	
MTBE	ND	4.6	
trans-1,2-Dichloroethene	ND	4.6	
Vinyl Acetate	ND	46	
1,1-Dichloroethane	ND	4.6	
2-Butanone	ND	9.2	
cis-1,2-Dichloroethene	ND	4.6	
2,2-Dichloropropane	ND	4.6	
Chloroform	ND	4.6	
Bromochloromethane	ND	4.6	
1,1,1-Trichloroethane	ND	4.6	
1,1-Dichloropropene	ND	4.6	
Carbon Tetrachloride	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Trichloroethene	ND	4.6	
1,2-Dichloropropane	ND	4.6	
Bromodichloromethane	ND	4.6	
Dibromomethane	ND	4.6	
4-Methyl-2-Pentanone	ND	9.2	
cis-1,3-Dichloropropene	ND	4.6	
Toluene	ND	4.6	
trans-1,3-Dichloropropene	ND	4.6	
1,1,2-Trichloroethane	ND	4.6	
2-Hexanone	ND	9.2	
1,3-Dichloropropane	ND	4.6	
Tetrachloroethene	ND	4.6	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	242843	Location: 64th	n & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-4	Diln Fac:	0.9191	
Lab ID:	242843-002	Batch#:	195211	
Matrix:	Soil	Sampled:	02/01/13	
Units:	ug/Kg	Received:	02/01/13	
Basis:	as received	Analyzed:	02/04/13	

Analyte	Result	RL	
Dibromochloromethane	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Chlorobenzene	ND	4.6	
1,1,1,2-Tetrachloroethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	
Styrene	ND	4.6	
Bromoform	ND	4.6	
Isopropylbenzene	ND	4.6	
1,1,2,2-Tetrachloroethane	ND	4.6	
1,2,3-Trichloropropane	ND	4.6	
Propylbenzene	ND	4.6	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	107	78-131	
1,2-Dichloroethane-d4	97	75-141	
Toluene-d8	99	80-120	
Bromofluorobenzene	108	79-128	

RL= Reporting Limit

Page 2 of 2

	Purgeable On	ganics by GC/MS
Lab #:	242843	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	241.082.03.006	Analysis: EPA 8260B
Matrix:	Soil	Batch#: 195211
Units:	ug/Kg	Analyzed: 02/04/13
Diln Fac:	1.000	

Type: BS Lab ID: QC675397

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	27.20	109	70-129
Benzene	25.00	25.27	101	77-125
Trichloroethene	25.00	25.38	102	77-122
Toluene	25.00	23.26	93	78-120
Chlorobenzene	25.00	22.88	92	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	103	78-131	
1,2-Dichloroethane-d4	86	75-141	
Toluene-d8	99	80-120	
Bromofluorobenzene	108	79-128	

Type: BSD Lab ID: QC675398

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	27.23	109	70-129	0	20
Benzene	25.00	24.34	97	77-125	4	20
Trichloroethene	25.00	23.73	95	77-122	7	20
Toluene	25.00	24.90	100	78-120	7	20
Chlorobenzene	25.00	23.43	94	80-120	2	20

Surrogate	%REC	Limits
Dibromofluoromethane	101	78-131
1,2-Dichloroethane-d4	81	75-141
Toluene-d8	101	80-120
Bromofluorobenzene	103	79-128

	Purgeable Organics by GC/MS				
Lab #:	242843	Location:	64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep:	EPA 5035		
Project#:	241.082.03.006	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC675399	Batch#:	195211		
Matrix:	Soil	Analyzed:	02/04/13		
Units:	ug/Kg				

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

	Purgeable Org	anics by G	C/MS
Lab #:	242843	Location: 6	54th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: E	EPA 5035
Project#:	241.082.03.006	Analysis: E	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC675399	Batch#:	195211
Matrix:	Soil	Analyzed:	02/04/13
Units:	ug/Kg		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	78-131	
1,2-Dichloroethane-d4	88	75-141	
Toluene-d8	97	80-120	
Bromofluorobenzene	103	79-128	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

California Title 22 Metals				
Lab #:	242843	Project#: 241.082.03.006		
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA		
Field ID:	EB-3	Diln Fac: 1.000		
Lab ID:	242843-001	Sampled: 02/01/13		
Matrix:	Soil	Received: 02/01/13		
Units:	mg/Kg	Prepared: 02/05/13		
Basis:	as received			

Analyte	Result	RL	Batch# Analyzed Prep Analysis
Antimony	ND	0.50	195287 02/08/13 EPA 3050B EPA 6010B
Arsenic	5.4	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Barium	63	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Beryllium	0.37	0.10	195287 02/08/13 EPA 3050B EPA 6010B
Cadmium	0.34	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Chromium	34	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Cobalt	9.6	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Copper	18	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Lead	4.6	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Mercury	0.022	0.018	195265 02/05/13 METHOD EPA 7471A
Molybdenum	ND	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Nickel	42	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Selenium	ND	0.50	195287 02/08/13 EPA 3050B EPA 6010B
Silver	ND	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Thallium	ND	0.50	195287 02/08/13 EPA 3050B EPA 6010B
Vanadium	44	0.25	195287 02/08/13 EPA 3050B EPA 6010B
Zinc	41	1.0	195287 02/08/13 EPA 3050B EPA 6010B

ND= Not Detected RL= Reporting Limit

	California Title 22 Metals					
Lab #:	242843	Project#: 241.082.03.006				
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA				
Field ID:	EB-4	Diln Fac: 1.000				
Lab ID:	242843-002	Sampled: 02/01/13				
Matrix:	Soil	Received: 02/01/13				
Units:	mg/Kg	Prepared: 02/05/13				
Basis:	as received					

Analyte	Result	RL	Batch# Analyzed Pr	ep Analysis
Antimony	ND	0.46	195287 02/08/13 EPA 305	0B EPA 6010B
Arsenic	4.6	0.23	195287 02/08/13 EPA 305	OB EPA 6010B
Barium	70	0.23	195287 02/08/13 EPA 305	OB EPA 6010B
Beryllium	0.25	0.092	195287 02/08/13 EPA 305	0B EPA 6010B
Cadmium	ND	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Chromium	59	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Cobalt	7.4	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Copper	11	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Lead	2.8	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Mercury	ND	0.018	195265 02/05/13 METHOD	EPA 7471A
Molybdenum	ND	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Nickel	34	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Selenium	ND	0.46	195287 02/08/13 EPA 305	0B EPA 6010B
Silver	ND	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Thallium	ND	0.46	195287 02/08/13 EPA 305	0B EPA 6010B
Vanadium	44	0.23	195287 02/08/13 EPA 305	0B EPA 6010B
Zinc	34	0.92	195287 02/08/13 EPA 305	OB EPA 6010B

ND= Not Detected RL= Reporting Limit

California Title 22 Metals				
Lab #:	242843	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: METHOD		
Project#:	241.082.03.006	Analysis: EPA 7471A		
Analyte:	Mercury	Diln Fac: 1.000		
Type:	BLANK	Batch#: 195265		
Lab ID:	QC675587	Prepared: 02/05/13		
Matrix:	Soil	Analyzed: 02/05/13		
Units:	mg/Kg			

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	California T	itle 22 Metals	
Lab #:	242843	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: METHOD)
Project#:	241.082.03.006	Analysis: EPA 74	171A
Analyte:	Mercury	Batch#:	195265
Matrix:	Soil	Prepared:	02/05/13
Units:	mg/Kg	Analyzed:	02/05/13
Diln Fac:	1.000		

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC675588	0.2083	0.2085	100	80-120		
BSD	QC675589	0.2083	0.2111	101	80-120	1	20

	California Title 22 Metals					
Lab #:	242843	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Diln Fac: 1.000				
Field ID:	ZZZZZZZZZ	Batch#: 195265				
MSS Lab ID:	242874-001	Sampled: 02/04/13				
Matrix:	Soil	Received: 02/04/13				
Units:	mg/Kg	Prepared: 02/05/13				
Basis:	as received	Analyzed: 02/05/13				

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC675590	0.004925	0.2016	0.2178	106	76-138		
MSD	QC675591		0.2232	0.2363	104	76-138	2	42

	California Title 22 Metals					
Lab #:	242843	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: EPA 3050B				
Project#:	241.082.03.006	Analysis: EPA 6010B				
Type:	BLANK	Diln Fac: 1.000				
Lab ID:	QC675697	Batch#: 195287				
Matrix:	Soil	Prepared: 02/05/13				
Units:	mg/Kg	Analyzed: 02/07/13				

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.26	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	California	Title 22 Metals
Lab #:	242843	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3050B
Project#:	241.082.03.006	Analysis: EPA 6010B
Type:	LCS	Diln Fac: 1.000
Lab ID:	QC675698	Batch#: 195287
Matrix:	Soil	Prepared: 02/05/13
Units:	mg/Kg	Analyzed: 02/07/13

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	103.5	104	80-120
Arsenic	50.00	52.61	105	80-121
Barium	100.0	103.2	103	80-120
Beryllium	2.500	2.641	106	80-120
Cadmium	10.00	10.59	106	80-120
Chromium	100.0	102.6	103	80-120
Cobalt	25.00	25.59	102	80-120
Copper	12.50	12.43	99	80-120
Lead	100.0	99.48	99	80-120
Molybdenum	20.00	20.92	105	80-120
Nickel	25.00	25.54	102	80-120
Selenium	50.00	51.36	103	80-120
Silver	10.00	9.855	99	80-120
Thallium	50.00	51.36	103	80-120
Vanadium	25.00	25.56	102	80-120
Zinc	25.00	25.92	104	80-120

Page 1 of 1 20.0

California Title 22 Metals					
Lab #:	242843	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3050B			
Project#:	241.082.03.006	Analysis: EPA 6010B			
Field ID:	ZZZZZZZZZZ	Batch#: 195287			
MSS Lab ID:	242805-001	Sampled: 01/31/13			
Matrix:	Soil	Received: 01/31/13			
Units:	mg/Kg	Prepared: 02/05/13			
Basis:	as received	Analyzed: 02/07/13			
Diln Fac:	1.000				

Type: MS Lab ID: QC675699

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<0.1431	90.09	50.15	56	12-120
Arsenic	1.833	45.05	46.78	100	73-121
Barium	88.84	90.09	174.9	95	51-135
Beryllium	0.4089	2.252	2.593	97	79-120
Cadmium	<0.01440	9.009	8.282	92	74-120
Chromium	134.5	90.09	233.1	110	62-124
Cobalt	19.39	22.52	40.07	92	62-120
Copper	39.03	11.26	51.41	110	48-150
Lead	4.543	90.09	82.67	87	58-124
Molybdenum	<0.05058	18.02	15.59	87	69-120
Nickel	208.0	22.52	238.5	135 NM	49-135
Selenium	1.663	45.05	45.75	98	68-120
Silver	0.1090	9.009	8.973	98	76-120
Thallium	<0.1469	45.05	37.90	84	68-120
Vanadium	62.05	22.52	83.46	95	54-137
Zinc	57.64	22.52	78.21	91	43-147

Type: MSD Lab ID: QC675700

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	93.46	51.17	55	12-120	2	36
Arsenic	46.73	47.02	97	73-121	3	40
Barium	93.46	180.1	98	51-135	1	40
Beryllium	2.336	2.694	98	79-120	1	21
Cadmium	9.346	8.462	91	74-120	2	20
Chromium	93.46	241.2	114	62-124	2	34
Cobalt	23.36	39.90	88	62-120	2	35
Copper	11.68	51.32	105	48-150	1	39
Lead	93.46	84.55	86	58-124	1	44
Molybdenum	18.69	16.12	86	69-120	0	25
Nickel	23.36	232.0	103 NM	49-135	3	37
Selenium	46.73	46.47	96	68-120	2	29
Silver	9.346	9.335	99	76-120	0	29
Thallium	46.73	39.17	84	68-120	0	21
Vanadium	23.36	83.86	93	54-137	1	31
Zinc	23.36	78.53	89	43-147	1	41

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 242844 ANALYTICAL REPORT

PES Environmental, Inc.

1682 Novato Boulevard

Novato, CA 94947

Project : 241.082.03.006

Location: 64th & Christie Emeryville, CA

Level : II

<u>Sample ID</u> <u>Lab ID</u> 242844-001 EB-1 EB-2 242844-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: 02/05/2013

Signature:

Desiree N. Tetrault Project Manager

Deinee 7. Tetralt

(510) 486-0900

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 242844

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 02/01/13 Samples Received: 02/01/13

This data package contains sample and QC results for two soil samples, requested for the above referenced project on 02/01/13. The samples were received on ice and intact, directly from the field.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

Matrix spikes QC675498,QC675499 (batch 195235) were not reported because the parent sample required a dilution that would have diluted out the spikes. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

242844 CHAIN OF CUSTODY RECORD

1682 NOVATO BOULEVARD, SUITE 10
NOVATO, CALIFORNIA 94947

LABORATORY C+T			11		<u>~</u>		01
241 M/2	0.2.00/	SAMPLERS:		24 -4*	Y ANALYSIS REQU	JESTED	
JOB NUMBER: 2 (1, 032	100.000	1			Clean Otes)		
NAME/LOCATION: 6++1	Corrective Coursey	rille CA			Sept 20		
JOB NUMBER: 241.032 NAME/LOCATION: (++1).	mest /	RECORDER:			EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 EPA 5035/8020 TPHg by 5035/8015M TPHmo by 8015M TPHmo by 8015M CUCAN EPA 8270C MNA Parameters (see notes)		
DATE					EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 TPHG by 5035/8015M TPHM by 8015M TPHM by 8015M EPA 8270C MNA Parameters (se	\	
DATE	SAMPLE NUMBER /	MATRIX	2 & Preservatives	DEPTH	8015 8015 8015 8015 8015 8015 8015		
YR MO DY TIME	DESIGNATION		SW 4 SW	IN FEET	035,035,035,035,035,035,035,035,035,035,		
YR MO DY TIME		Vapor Water Soil Sedim't	Unpres. (E EnCore H ₂ SO ₄ HNO ₃ HCI M ₂ O ₇ H	FEET	EPA 5035/8010 EPA 5035/8021 EPA 5035/8260E TPHg by 5035/8260E TPHd by 8015M TPHmo by 8015M MNA Parameters		
1302011520	-B-11						-
1302011520	- p - 7		2 16				_
			2 16				
							-
					- - - - - - - - - -		
							Ш
ŅOTE	Ş			CHAIN OF	CUSTORY RECORD	-	
Turn Around Time:	A TAT		RELINQUISHED BY: (Signature)	RECE	VED BY: (Signature)	DATE TIME	
			RELINQUISHED BY: (Signature) RELINGUISHED BY: (Signature)	(2/1/13 170	28
recults to: ja	exorpler apris	ENV. CEM	RELINGUISHED BY: (Signature)	RECEI	VED BY GORAGE	DATE TIME	E
wm.	234 "	1.1	RELINQUISHED BY: (Signature)	RECE	VED RY: (Senature)	DATE TIME	
						S	-
			RELINQUISHED BY: (Signature)	RECEIV	VED BY: (Signature)	DATE TIME	E
			DISPATCHED BY: (Signature)	DATE TIM	NE RECEIVED FOR LAB BY: (Signature)	DATE	_
					- Constant of the constant of	DATE TIM	-
Page 1 of 1			METHOD OF SHIPMENT:	<u> </u>			\dashv
Page of							- 1

COOLER RECEIPT CHECKLIST

Login # 242844 Date Received 2/1/13 Number of coolers 1 Client Per Project 241 08 2 0 3.006	
Chefit 7() 110ject 2(1.00)	
Date Opened 2/1/13 By (print) & (sign) & Perf	
Date Logged in By (print) (sign) \(\begin \)	
1. Did cooler come with a shipping slip (airbill, etc)YES Note	<u> </u>
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date	₫ NO
2B. Were custody seals intact upon arrival? YES NO	M/A
3. Were custody papers dry and intact when received?	· · ·
4. Were custody papers filled out properly (ink, signed, etc)?	
5. Is the project identifiable from custody papers? (If so fill out top of form) NO	
6. Indicate the packing in cooler: (if other, describe)	
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used: Wet □ Blue/Gel □ None Temp(°C)	
☐ Samples Received on ice & cold without a temperature blank; temp. taken with	IR gun
✓ Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? **TES**	NO
9. Did all bottles arrive unbroken/unopened?	NO
9. Did all bottles arrive unbroken/unopened?	NO NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? YES	NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? YES	NO NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete?	NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers?	NO NO NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? YES	NO NO NO NO NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? YES NO	NO NO NO NO NO N/A
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? YES NO	NO NO NO NO NO N/A
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? YES NO	NO NO NO NO NO N/A
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 10. YES 11. Are samples appropriate containers for indicated tests? 12. Are sample labels agree with custody papers? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 10. YES 11. Are samples any missing / YES 12. Are samples in the appropriate containers for indicated tests? 12. Are samples in the appropriate containers for indicated tests? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. YES 18. NO	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 19. Did you change the hold time in LIMS for preserved terracores? 19. No 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. YES	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. YES 23. NO 24. Did you change the hold time in VOA samples? 25. NO 26. Did you change the hold time in LIMS for preserved terracores? 26. NO 27. Did you change the hold time in LIMS for preserved terracores? 28. NO 29. Did you change the hold time in LIMS for preserved terracores? 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Did you change the hold time in LIMS for preserved terracores? 20. Did you change the hold time in LIMS for preserved terracores? 29. NO 20. Did you change the hold time in LIMS for preserved terracores? 20. Did you change the hold time in LIMS for preserved terracores? 20. Did you change the hold time in LIMS for preserved terracores? 20. Did you change the hold time in LIMS for preserved terracor	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By 14. Did you change the hold time in LIMS for preserved voas? 24. Was the client contacted concerning this sample delivery? 25. NO 26. Did you change the hold time in LIMS for preserved terracores? 26. NO 27. Did you change the hold time in LIMS for preserved terracores? 28. NO 29. Did you change the hold time in LIMS for preserved terracores? 29. NO 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. YES 23. NO 24. Was the client contacted concerning this sample delivery? 25. Date: 26. COMMENTS	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By 14. Did you change the hold time in LIMS for preserved voas? 24. Was the client contacted concerning this sample delivery? 25. NO 26. Did you change the hold time in LIMS for preserved terracores? 26. NO 27. Did you change the hold time in LIMS for preserved terracores? 28. NO 29. Did you change the hold time in LIMS for preserved terracores? 29. NO 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. YES 23. NO 24. Was the client contacted concerning this sample delivery? 25. Date: 26. COMMENTS	NO N
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By 14. Did you change the hold time in LIMS for preserved voas? 24. Was the client contacted concerning this sample delivery? 25. NO 26. Did you change the hold time in LIMS for preserved terracores? 26. NO 27. Did you change the hold time in LIMS for preserved terracores? 28. NO 29. Did you change the hold time in LIMS for preserved terracores? 29. NO 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. YES 23. NO 24. Was the client contacted concerning this sample delivery? 25. Date: 26. COMMENTS	NO N

Rev 10, 11/11

Subject: RE: 241.082.03.006 - C&T Login Summary (242844)

From: "William W. Mast" <wmast@pesenv.com>

Date: 2/4/2013 9:20 AM

To: "Desiree N. Tetrault" <desiree.tetrault@ctberk.com>

CC: Ken Simmons < KSimmons@pesenv.com >, Chris Baldassari < cbaldassari@pesenv.com >, John Alexander

<JAlexander@pesenv.com>

Desiree,

Because of a project issue, is it possible to step up the TAT for just these two samples? 24-hour would be preferable if possible, but let me know what your team can accomplish. Thanks and sorry for the short notice.

Will

From: Desiree N. Tetrault [mailto:desiree|tetrault@ctberk.com]

Sent: Friday, February 01, 2013 7:39 PM

To: Ken Simmons; Chris Baldassari; William W. Mast; John Alexander

Subject: 241.082.03.006 - C&T Login Summary (242844)

C&T Login Summary for 242844

Project: 241.082.03.006 Site: 64th & Christie Emeryville, CA Lab Login #: 242844 Report Level: II Report Due: 02/08/13 PO#: C&T Proj Mgr: Desiree N. Tetrault	Report To: PES Environmental, Inc. 1682 Novato Boulevard Suite 100 Novato, CA 94947 ATTN: Will Mast (415) 899-1600	Bill To: PES Environmental 1682 Novato Boulevard Suite 100 Novato, CA 94947 ATTN: Accounts Payable (415) 899-1600
---	--	--

Client ID	Lab ID	Sampled	Received	Matrix	Analyses	COC#	Comments
EB-1	001		02/01		· · · · · · · · · · · · · · · · · · ·	·•	
		10000000		Soil	E8260		
				Soil	ETVH		
				Soil	SILICA GEL		
				Soil	T22 MET		
				Soil	ТЕНМ		Silica Gel
EB-2	002	02/01	02/01	i			boo b
				Soil	E8260		
				Soil	ETVH		
				Soil	SILICA GEL		
				Soil	T22 MET		
				Soil	TEHM		Silica Gel

Email compiled and sent 02/01/13 07:38 PM.

Gasoline by GC/FID (5035 Prep) Lab #: 242844 Location: 64th & Christie Emeryville, CA Client: PES Environmental, Inc. EPA 5035 Prep: Project#: 241.082.03.006 Analysis: EPA 8015B Matrix: Batch#: 195225 Soil Units: mg/Kg Sampled: 02/01/13 Basis: as received Received: 02/01/13 Diln Fac: 1.000 Analyzed: 02/04/13

Field ID: EB-1 Lab ID: 242844-001

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 0.19

Surrogate %REC	Limits
romofluorobenzene (FID) 84	62-134

Field ID: EB-2 Lab ID: 242844-002

Type: SAMPLE

Analyte	Result	RL	
Gasoline C7-C12	ND	0.16	

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	100	62-134	

Type: BLANK Lab ID: QC675456

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Gasoline by GO	/FID (5035 Pre	p)
Lab #:	242844	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 50)35
Project#:	241.082.03.006	Analysis: EPA 80)15B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC675455	Batch#:	195225
Matrix:	Soil	Analyzed:	02/04/13
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.040	104	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	108	62-134

Page 1 of 1 9.0

	Gasoline by GC	/FID (5035 Prep	o)
Lab #:	242844	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 503	30B
Project#:	241.082.03.006	Analysis: EPA 801	L5B
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000
MSS Lab ID:	242837-041	Batch#:	195225
Matrix:	Soil	Sampled:	02/01/13
Units:	mg/Kg	Received:	02/01/13
Basis:	as received	Analyzed:	02/04/13

Type: MS Lab ID: QC675457

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.07808	10.99	11.45	104	33-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	101	62-134	

Type: MSD Lab ID: QC675458

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.091	9.327	102	33-120	2	53

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	110	62-134

	Total Extract	able Hydrocarbons
Lab #:	242844	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Matrix:	Soil	Sampled: 02/01/13
Units:	mg/Kg	Received: 02/01/13
Basis:	as received	Prepared: 02/04/13
Diln Fac:	1.000	Analyzed: 02/05/13
Batch#:	195235	

Field ID: EB-1 Lab ID: 242844-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	93	54-129

Field ID: EB-2 Lab ID: 242844-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	12 Y	1.0	
Motor Oil C24-C36	95	5.0	

	Surrogate	%REC	Limits	
Г	o-Terphenyl	110	54-129	

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC675496

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	94	54-129

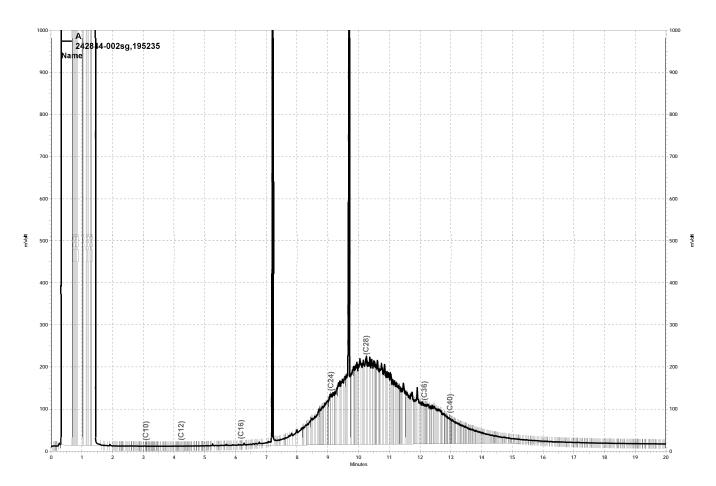
Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

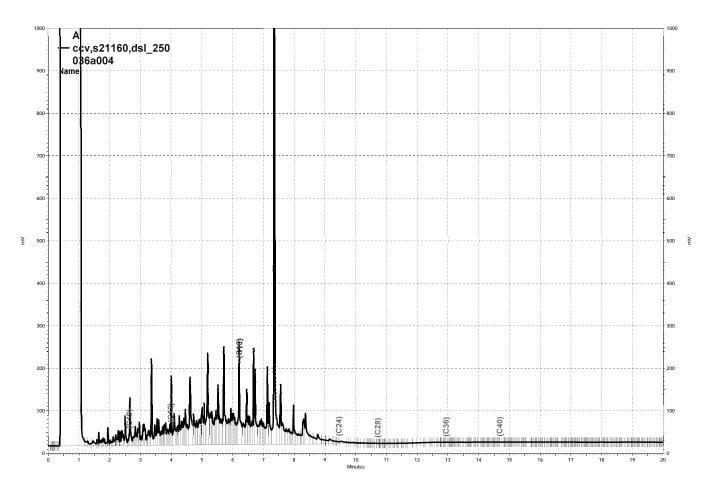
RL= Reporting Limit

-

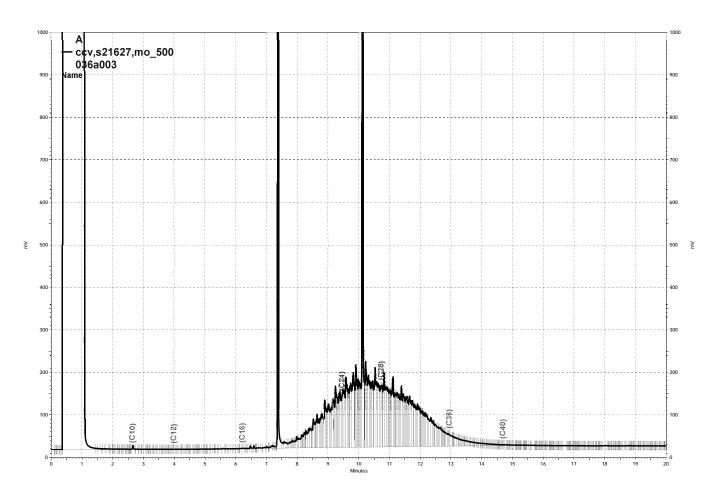
Page 1 of 1 19.0



	Total Extracta	ble Hydrocarbo	ns
Lab #:	242844	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 35	550B
Project#:	241.082.03.006	Analysis: EPA 80	15B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC675497	Batch#:	195235
Matrix:	Soil	Prepared:	02/04/13
Units:	mg/Kg	Analyzed:	02/05/13


Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.76	39.64	80	51-131

Surrogate	%REC	Limits
o-Terphenyl	108	54-129


Page 1 of 1 20.0

\\Lims\gdrive\ezchrom\Projects\GC26\Data\036a009, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\036a004, A

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\036a003, A

	Purgeable O	rganics by GC/M	ıs
Lab #:	242844	Location: 64th	& Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA	5035
Project#:	241.082.03.006	Analysis: EPA	8260B
Field ID:	EB-1	Diln Fac:	0.8929
Lab ID:	242844-001	Batch#:	195211
Matrix:	Soil	Sampled:	02/01/13
Units:	ug/Kg	Received:	02/01/13
Basis:	as received	Analyzed:	02/04/13

Analyte	Result	RL	
Freon 12	ND	8.9	
Chloromethane	ND	8.9	
Vinyl Chloride	ND	8.9	
Bromomethane	ND	8.9	
Chloroethane	ND	8.9	
Trichlorofluoromethane	ND	4.5	
Acetone	ND	18	
Freon 113	ND	4.5	
1,1-Dichloroethene	ND	4.5	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.5	
MTBE	ND	4.5	
trans-1,2-Dichloroethene	ND	4.5	
Vinyl Acetate	ND	45	
1,1-Dichloroethane	ND	4.5	
2-Butanone	ND	8.9	
cis-1,2-Dichloroethene	ND	4.5	
2,2-Dichloropropane	ND	4.5	
Chloroform	ND	4.5	
Bromochloromethane	ND	4.5	
1,1,1-Trichloroethane	ND	4.5	
1,1-Dichloropropene	ND	4.5	
Carbon Tetrachloride	ND	4.5	
1,2-Dichloroethane	ND	4.5	
Benzene	ND	4.5	
Trichloroethene	ND	4.5	
1,2-Dichloropropane	ND	4.5	
Bromodichloromethane	ND	4.5	
Dibromomethane	ND	4.5	
4-Methyl-2-Pentanone	ND	8.9	
cis-1,3-Dichloropropene	ND	4.5	
Toluene	ND	4.5	
trans-1,3-Dichloropropene	ND	4.5	
1,1,2-Trichloroethane	ND	4.5	
2-Hexanone	ND	8.9	
1,3-Dichloropropane	ND	4.5	
Tetrachloroethene	ND	4.5	

RL= Reporting Limit

	Purgeable O	rganics by GC/M	ıs
Lab #:	242844	Location: 64th	& Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA	5035
Project#:	241.082.03.006	Analysis: EPA	8260B
Field ID:	EB-1	Diln Fac:	0.8929
Lab ID:	242844-001	Batch#:	195211
Matrix:	Soil	Sampled:	02/01/13
Units:	ug/Kg	Received:	02/01/13
Basis:	as received	Analyzed:	02/04/13

Analyte	Result	RL	
Dibromochloromethane	ND	4.5	
1,2-Dibromoethane	ND	4.5	
Chlorobenzene	ND	4.5	
1,1,1,2-Tetrachloroethane	ND	4.5	
Ethylbenzene	ND	4.5	
m,p-Xylenes	ND	4.5	
o-Xylene	ND	4.5	
Styrene	ND	4.5	
Bromoform	ND	4.5	
Isopropylbenzene	ND	4.5	
1,1,2,2-Tetrachloroethane	ND	4.5	
1,2,3-Trichloropropane	ND	4.5	
Propylbenzene	ND	4.5	
Bromobenzene	ND	4.5	
1,3,5-Trimethylbenzene	ND	4.5	
2-Chlorotoluene	ND	4.5	
4-Chlorotoluene	ND	4.5	
tert-Butylbenzene	ND	4.5	
1,2,4-Trimethylbenzene	ND	4.5	
sec-Butylbenzene	ND	4.5	
para-Isopropyl Toluene	ND	4.5	
1,3-Dichlorobenzene	ND	4.5	
1,4-Dichlorobenzene	ND	4.5	
n-Butylbenzene	ND	4.5	
1,2-Dichlorobenzene	ND	4.5	
1,2-Dibromo-3-Chloropropane	ND	4.5	
1,2,4-Trichlorobenzene	ND	4.5	
Hexachlorobutadiene	ND	4.5	
Naphthalene	ND	4.5	
1,2,3-Trichlorobenzene	ND	4.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	78-131	
1,2-Dichloroethane-d4	89	75-141	
Toluene-d8	98	80-120	
Bromofluorobenzene	105	79-128	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS			
Lab #:	242844	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 50	35
Project#:	241.082.03.006	Analysis: EPA 82	60B
Field ID:	EB-2	Diln Fac:	0.8726
Lab ID:	242844-002	Batch#:	195211
Matrix:	Soil	Sampled:	02/01/13
Units:	ug/Kg	Received:	02/01/13
Basis:	as received	Analyzed:	02/04/13

Analyte	Result	RL	
Freon 12	ND	8.7	
Chloromethane	ND	8.7	
Vinyl Chloride	ND	8.7	
Bromomethane	ND	8.7	
Chloroethane	ND	8.7	
Trichlorofluoromethane	ND	4.4	
Acetone	ND	17	
Freon 113	ND	4.4	
1,1-Dichloroethene	ND	4.4	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.4	
MTBE	ND	4.4	
trans-1,2-Dichloroethene	ND	4.4	
Vinyl Acetate	ND	44	
1,1-Dichloroethane	ND	4.4	
2-Butanone	ND	8.7	
cis-1,2-Dichloroethene	ND	4.4	
2,2-Dichloropropane	ND	4.4	
Chloroform	ND	4.4	
Bromochloromethane	ND	4.4	
1,1,1-Trichloroethane	ND	4.4	
1,1-Dichloropropene	ND	4.4	
Carbon Tetrachloride	ND	4.4	
1,2-Dichloroethane	ND	4.4	
Benzene	ND	4.4	
Trichloroethene	ND	4.4	
1,2-Dichloropropane	ND	4.4	
Bromodichloromethane	ND	4.4	
Dibromomethane	ND	4.4	
4-Methyl-2-Pentanone	ND	8.7	
cis-1,3-Dichloropropene	ND	4.4	
Toluene	ND	4.4	
trans-1,3-Dichloropropene	ND	4.4	
1,1,2-Trichloroethane	ND	4.4	
2-Hexanone	ND	8.7	
1,3-Dichloropropane	ND	4.4	
Tetrachloroethene	ND	4.4	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS			
Lab #:	242844	Location: 64th	n & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA	5035
Project#:	241.082.03.006	Analysis: EPA	8260B
Field ID:	EB-2	Diln Fac:	0.8726
Lab ID:	242844-002	Batch#:	195211
Matrix:	Soil	Sampled:	02/01/13
Units:	ug/Kg	Received:	02/01/13
Basis:	as received	Analyzed:	02/04/13

Analyte	Result	RL	
Dibromochloromethane	ND	4.4	
1,2-Dibromoethane	ND	4.4	
Chlorobenzene	ND	4.4	
1,1,1,2-Tetrachloroethane	ND	4.4	
Ethylbenzene	ND	4.4	
m,p-Xylenes	ND	4.4	
o-Xylene	ND	4.4	
Styrene	ND	4.4	
Bromoform	ND	4.4	
Isopropylbenzene	ND	4.4	
1,1,2,2-Tetrachloroethane	ND	4.4	
1,2,3-Trichloropropane	ND	4.4	
Propylbenzene	ND	4.4	
Bromobenzene	ND	4.4	
1,3,5-Trimethylbenzene	ND	4.4	
2-Chlorotoluene	ND	4.4	
4-Chlorotoluene	ND	4.4	
tert-Butylbenzene	ND	4.4	
1,2,4-Trimethylbenzene	ND	4.4	
sec-Butylbenzene	ND	4.4	
para-Isopropyl Toluene	ND	4.4	
1,3-Dichlorobenzene	ND	4.4	
1,4-Dichlorobenzene	ND	4.4	
n-Butylbenzene	ND	4.4	
1,2-Dichlorobenzene	ND	4.4	
1,2-Dibromo-3-Chloropropane	ND	4.4	
1,2,4-Trichlorobenzene	ND	4.4	
Hexachlorobutadiene	ND	4.4	
Naphthalene	ND	4.4	
1,2,3-Trichlorobenzene	ND	4.4	

Surrogate	%REC	Limits	
Dibromofluoromethane	109	78-131	
1,2-Dichloroethane-d4	94	75-141	
Toluene-d8	97	80-120	
Bromofluorobenzene	111	79-128	

RL= Reporting Limit

Page 2 of 2

	Purgeable On	eganics by GC/MS
Lab #:	242844	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	241.082.03.006	Analysis: EPA 8260B
Matrix:	Soil	Batch#: 195211
Units:	ug/Kg	Analyzed: 02/04/13
Diln Fac:	1.000	

Type: BS Lab ID: QC675397

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	27.20	109	70-129
Benzene	25.00	25.27	101	77-125
Trichloroethene	25.00	25.38	102	77-122
Toluene	25.00	23.26	93	78-120
Chlorobenzene	25.00	22.88	92	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	103	78-131	
1,2-Dichloroethane-d4	86	75-141	
Toluene-d8	99	80-120	
Bromofluorobenzene	108	79-128	

Type: BSD Lab ID: QC675398

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	27.23	109	70-129	0	20
Benzene	25.00	24.34	97	77-125	4	20
Trichloroethene	25.00	23.73	95	77-122	7	20
Toluene	25.00	24.90	100	78-120	7	20
Chlorobenzene	25.00	23.43	94	80-120	2	20

Surrogate	%REC	Limits
Dibromofluoromethane	101	78-131
1,2-Dichloroethane-d4	81	75-141
Toluene-d8	101	80-120
Bromofluorobenzene	103	79-128

	Purgeable O	ganics by GC/MS	
Lab #:	242844	Location: 64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 5035	
Project#:	241.082.03.006	Analysis: EPA 8260B	
Type:	BLANK	Diln Fac: 1.000	
Lab ID:	QC675399	Batch#: 195211	
Matrix:	Soil	Analyzed: 02/04/13	
Units:	ug/Kg		

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	242844	Location:	64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep:	EPA 5035	
Project#:	241.082.03.006	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC675399	Batch#:	195211	
Matrix:	Soil	Analyzed:	02/04/13	
Units:	ug/Kg			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	78-131	
1,2-Dichloroethane-d4	88	75-141	
Toluene-d8	97	80-120	
Bromofluorobenzene	103	79-128	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	California T	itle 22 Metals
Lab #:	242844	Project#: 241.082.03.006
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA
Field ID:	EB-1	Diln Fac: 1.000
Lab ID:	242844-001	Sampled: 02/01/13
Matrix:	Soil	Received: 02/01/13
Units:	mg/Kg	Prepared: 02/04/13
Basis:	as received	

Analyte	Result	RL	Batch# Analyzed Prep Analysis
Antimony	ND	0.49	195238 02/05/13 EPA 3050B EPA 6010B
Arsenic	3.7	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Barium	79	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Beryllium	0.26	0.098	195238 02/05/13 EPA 3050B EPA 6010B
Cadmium	ND	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Chromium	20	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Cobalt	5.6	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Copper	11	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Lead	3.8	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Mercury	0.021	0.016	195224 02/04/13 METHOD EPA 7471A
Molybdenum	ND	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Nickel	22	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Selenium	ND	0.49	195238 02/05/13 EPA 3050B EPA 6010B
Silver	ND	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Thallium	ND	0.49	195238 02/05/13 EPA 3050B EPA 6010B
Vanadium	23	0.25	195238 02/05/13 EPA 3050B EPA 6010B
Zinc	27	0.98	195238 02/05/13 EPA 3050B EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals					
Lab #:	242844	Project#: 241.082.03.006			
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA			
Field ID:	EB-2	Diln Fac: 1.000			
Lab ID:	242844-002	Sampled: 02/01/13			
Matrix:	Soil	Received: 02/01/13			
Units:	mg/Kg	Prepared: 02/04/13			
Basis:	as received				

Analyte	Result	RL	Batch# Anal	yzed	Prep	Analysis
Antimony	ND	0.52	195238 02/0	5/13 EPA	3050B	EPA 6010B
Arsenic	2.5	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Barium	34	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Beryllium	0.42	0.10	195238 02/0	5/13 EPA	3050B	EPA 6010B
Cadmium	0.29	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Chromium	38	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Cobalt	9.6	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Copper	20	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Lead	4.7	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Mercury	0.028	0.016	195224 02/0	4/13 METE	HOD	EPA 7471A
Molybdenum	ND	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Nickel	47	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Selenium	ND	0.52	195238 02/0	5/13 EPA	3050B	EPA 6010B
Silver	ND	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Thallium	ND	0.52	195238 02/0	5/13 EPA	3050B	EPA 6010B
Vanadium	34	0.26	195238 02/0	5/13 EPA	3050B	EPA 6010B
Zinc	45	1.0	195238 02/0	5/13 EPA	3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals						
Lab #:	242844	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Diln Fac: 1.000				
Type:	BLANK	Batch#: 195224				
Lab ID:	QC675450	Prepared: 02/04/13				
Matrix:	Soil	Analyzed: 02/04/13				
Units:	mg/Kg					

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals						
Lab #:	242844	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Batch#: 195224				
Matrix:	Soil	Prepared: 02/04/13				
Units:	mg/Kg	Analyzed: 02/04/13				
Diln Fac:	1.000					

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC675451	0.2083	0.2116	102	80-120		
BSD	QC675452	0.2083	0.2071	99	80-120	2	20

California Title 22 Metals						
Lab #:	242844	Location: 64th	& Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: METHO	OD OT			
Project#:	241.082.03.006	Analysis: EPA 7	7471A			
Analyte:	Mercury	Diln Fac:	1.000			
Field ID:	ZZZZZZZZZ	Batch#:	195224			
MSS Lab ID:	242818-001	Sampled:	01/31/13			
Matrix:	Soil	Received:	01/31/13			
Units:	mg/Kg	Prepared:	02/04/13			
Basis:	as received	Analyzed:	02/04/13			

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC675453	0.06201	0.2193	0.3252	120	76-138		
MSD	QC675454		0.1984	0.2909	115	76-138	3	42

California Title 22 Metals					
Lab #:	242844	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3050B			
Project#:	241.082.03.006	Analysis: EPA 6010B			
Type:	BLANK	Diln Fac: 1.000			
Lab ID:	QC675507	Batch#: 195238			
Matrix:	Soil	Prepared: 02/04/13			
Units:	mg/Kg	Analyzed: 02/05/13			

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.25	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

California Title 22 Metals					
Lab #: Client: Project#:	242844 PES Environmental, Inc. 241.082.03.006	Location: 64th & Christie Emeryville, CA Prep: EPA 3050B Analysis: EPA 6010B			
Matrix: Units: Diln Fac:	Soil mg/Kg 1.000	Batch#: 195238 Prepared: 02/04/13 Analyzed: 02/05/13			

Type: BS Lab ID: QC675508

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	105.4	105	80-120
Arsenic	50.00	54.34	109	80-121
Barium	100.0	103.8	104	80-120
Beryllium	2.500	2.711	108	80-120
Cadmium	10.00	10.76	108	80-120
Chromium	100.0	102.9	103	80-120
Cobalt	25.00	25.95	104	80-120
Copper	12.50	12.81	102	80-120
Lead	100.0	102.9	103	80-120
Molybdenum	20.00	21.40	107	80-120
Nickel	25.00	25.76	103	80-120
Selenium	50.00	52.70	105	80-120
Silver	10.00	9.995	100	80-120
Thallium	50.00	52.84	106	80-120
Vanadium	25.00	25.57	102	80-120
Zinc	25.00	26.89	108	80-120

Type: BSD Lab ID: QC675509

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	102.1	102	80-120	3	20
Arsenic	50.00	52.35	105	80-121	4	20
Barium	100.0	101.9	102	80-120	2	20
Beryllium	2.500	2.653	106	80-120	2	20
Cadmium	10.00	10.33	103	80-120	4	20
Chromium	100.0	101.1	101	80-120	2	20
Cobalt	25.00	24.96	100	80-120	4	20
Copper	12.50	12.60	101	80-120	2	20
Lead	100.0	99.43	99	80-120	3	23
Molybdenum	20.00	20.65	103	80-120	4	20
Nickel	25.00	24.77	99	80-120	4	20
Selenium	50.00	50.15	100	80-120	5	20
Silver	10.00	9.847	98	80-120	1	20
Thallium	50.00	50.86	102	80-120	4	20
Vanadium	25.00	25.13	101	80-120	2	20
Zinc	25.00	24.76	99	80-120	8	20

	California T	itle 22 Metals
Lab #:	242844	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3050B
Project#:	241.082.03.006	Analysis: EPA 6010B
Field ID:	ZZZZZZZZZZ	Batch#: 195238
MSS Lab ID:	242866-001	Sampled: 02/04/13
Matrix:	Soil	Received: 02/04/13
Units:	mg/Kg	Prepared: 02/04/13
Basis:	as received	Analyzed: 02/05/13
Diln Fac:	1.000	

Type: MS Lab ID: QC675510

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	0.3850	103.1	69.25	67	12-120
Arsenic	5.694	51.55	58.14	102	73-121
Barium	46.56	103.1	148.9	99	51-135
Beryllium	0.1696	2.577	2.896	106	79-120
Cadmium	0.05202	10.31	10.43	101	74-120
Chromium	33.82	103.1	134.4	98	62-124
Cobalt	3.399	25.77	28.16	96	62-120
Copper	6.201	12.89	19.38	102	48-150
Lead	17.74	103.1	117.4	97	58-124
Molybdenum	0.1510	20.62	20.28	98	69-120
Nickel	17.52	25.77	43.45	101	49-135
Selenium	<0.1613	51.55	49.70	96	68-120
Silver	<0.04027	10.31	10.10	98	76-120
Thallium	<0.1418	51.55	49.82	97	68-120
Vanadium	21.85	25.77	47.35	99	54-137
Zinc	20.04	25.77	46.45	102	43-147

Type: MSD Lab ID: QC675511

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	102.0	70.75	69	12-120	3	36
Arsenic	51.02	59.85	106	73-121	4	40
Barium	102.0	149.8	101	51-135	1	40
Beryllium	2.551	2.924	108	79-120	2	21
Cadmium	10.20	10.77	105	74-120	4	20
Chromium	102.0	137.5	102	62-124	3	34
Cobalt	25.51	29.09	101	62-120	4	35
Copper	12.76	19.63	105	48-150	2	39
Lead	102.0	115.2	95	58-124	1	44
Molybdenum	20.41	20.88	102	69-120	4	25
Nickel	25.51	44.14	104	49-135	2	37
Selenium	51.02	50.12	98	68-120	2	29
Silver	10.20	10.14	99	76-120	1	29
Thallium	51.02	51.09	100	68-120	4	21
Vanadium	25.51	48.29	104	54-137	3	31
Zinc	25.51	45.47	100	43-147	2	41

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

Laboratory Job Number 242879 ANALYTICAL REPORT

PES Environmental, Inc.

1682 Novato Boulevard

Novato, CA 94947

Project : 241.082.03.006

Location: 64th & Christie Emeryville, CA

Level : II

Sample ID EB-5

<u>Lab ID</u> 242879-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: 02/11/2013

Signature:

Desiree N. Tetrault

Deine 7. Tetralt

Project Manager (510) 486-0900

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 242879

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 02/04/13 Samples Received: 02/04/13

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 02/04/13. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

Matrix spikes QC675805,QC675806 (batch 195315) were not reported because the parent sample required a dilution that would have diluted out the spikes. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

EB-5 (lab # 242879-001) was not diluted; the low sample weight is due to 5035 packaging. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

LAD	ODA:	En	ES giner	ring C	& I	invi	ron	me	أخلم	Sé	rvic	29								`` ``	į.						<i>.</i>			Ţ.,.		<u> </u>		/ 1 1	_			~ *****	4	3 (4 5	N 115)	899	HO, 1-16	CA 00	FAX	(415	D, SU 1.949 5) 89 9	47
LAB	OHA	OHY:		1)		1	:	20			2				_	37	livir	CEF	S : (,	<u> </u>	-7-		T-			~									-			_	, V	3 7	NAL	Y31	3 R	EQU	EST	ED		
JOB	NUM	BER:		<u>+ </u>	. <u>0</u>	36	۱ س <u>ر</u> ا د سر	0.) , i		<u>0</u>				_ ,	_				_								,											()	7			•					
NAN	15 / L	OCATI	ON:	,4.	1.	+ (<u>~ f - '</u>	4		€	<u> </u>	20	ZV	<u>i </u>		_<_	\triangle																					3:4	3		otes.	4	ୁ				
PRO	JECT	MAN.	ON:	U	1:1	<u>(</u>	_/	1/6	立							RE	:co	RDE	:R: 、	\rightarrow	4																	SM 5M		3		see I	717	7				
			DATE												7				RIX	_								aine ative)EPTI		6	2 2	2560B	35/801	15M	8015M		neters (7	X				
YI	3	МО	DY		TII	ИE				MPL DES				1		Vapor	Water	Soil	Sedim't			Unpres.	EnCore	H ₂ SO ₄	HNO3	딮	A.O.F.	reen					IN FEET		EDA 5035/9010	EPA 5035/8021	EPA 5035/8260B	TPHg by 5035/8015M	TPHd by 8015M	TPHmo by 8015M	EPA 8270C	MNA Parameters (see notes)	7					
1	5) 2	OL	 	5	1	0	F.	B	_	5							X				2	_	_	_	_	i	(+						"	J LL	1	X	X	X	ш		X				-	-
	\perp	\perp												1	-												\dashv						\perp		1	-	1						1	1	-			1-
																													\top							1	1					1	+	+				+
															1		T					İ			7				_		\vdash			$\dagger \dagger$			+		-	1			+	+			1	+
																											1	+	+	-	-			\Box	F	+-	+			_			+	+	-	\vdash	+	+
														\dagger	1	\vdash			-			-				1	\dashv	+	+	+				H	\vdash	+-							+	-	+-	\vdash	+	+
											1			+	1	\vdash	 		 						-	+	-	+	+	+	-	-	-	$\vdash \vdash$	-	+		+-		\dashv		+	-	+		\vdash	+	+
				+		\dashv				+	+	+	+	+	1	\vdash	-	\vdash	 			\dashv	\dashv	\dashv	\dashv	-	\dashv	+	+	-				╀╌┨	-	-	-	\vdash				-	+	+	+-	\vdash	+	+
	-								-	\dashv		_	+	+	-		-	-	-					\dashv	\dashv	-	\dashv	-	+			\vdash			-	-	-	+-		\dashv		-	\perp	+	-	\vdash	+	+
		-		+			\dashv			\dashv	+	+		+	-	-		_	-	-		-		_		_	\downarrow		-	-				$\perp \downarrow$	L	\perp	-	-		_			1		-	\sqcup	\perp	\perp
		+	-	+		-	_	-	\dashv	-	+	+	+	+	-	L		_	-			\dashv	\dashv	\dashv	_		_		_	1						1		<u> </u>							ļ.,	\perp	_	1_
	+	-	-	-			\dashv	4	\dashv	-	-	\perp	\perp	-		<u> </u>	_												\perp	\perp				Ш														
			Щ.													L																			L													
			 -			N	ОТІ								<u>-</u>			-		Т													1 4 14 1	<u> </u>	LIOT.		<u> </u>	-00										
Turn	Arou	nd Tim	e:	51					. ~	72	$\overline{\tau}$			•						-	RELI	VQU	#HE	ВҮ	: (Sig	pa til le)	1	1		-1	CI	IAIN (DS10			:00:	KD.							DAT	E	TIM

NOIES	CHAIN OF CUSTODY RECO	RD
Turn Around Time: 3 tander 72 T	RELINQUISHEE BY: (Signature) RECEIVED GY: (Signature)	2/4/13/53L
	RECEIVED BY: (Signature)	DATE TIME
results to: jobanne Opesany con	RELINQUISHED BY: (Signature) RECEIVED BY: (Signature)	DATE TIME
wmast " "	RELINQUISHED BY: (Signature) RECEIVED BY: (Signature)	DATE TIME
	DISPATCHED BY: (Signature) DATE TIME RECEIVED FOR L	AB BY: (Signature) DATE TIME
Page <u>i</u> of \	METHOD OF SHIPMENT:	

COOLER RECEIPT CHECKLIST

Rev 10, 11/11

Gasoline by GC/FID (5035 Prep) Lab #: 242879 Location: 64th & Christie Emeryville, CA Client: PES Environmental, Inc. EPA 5035 Project#: 241.082.03.006 Analysis: EPA 8015B Field ID: EB-5 Batch#: 195275 Matrix: Soil Sampled: 02/04/13 Units: mg/Kg Received: 02/04/13 Basis: as received Analyzed: 02/05/13 Diln Fac: 1.000

Type: SAMPLE Lab ID: 242879-001

AnalyteResultRLGasoline C7-C12ND0.22

Surrogate %REC	Limits
Bromofluorobenzene (FID) 99	62-134

Type: BLANK Lab ID: QC675638

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	98	62-134	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline by	GC/FID (5035 Prep)
Lab #:	242879	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	241.082.03.006	Analysis: EPA 8015B
Type:	LCS	Diln Fac: 1.000
Lab ID:	QC675637	Batch#: 195275
Matrix:	Soil	Analyzed: 02/05/13
Units:	mg/Kg	

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.003	100	80-120

Surrogate %REC 1	Limits
romofluorobenzene (FID) 98 (62-134

Page 1 of 1 12.0

Gasoline by GC/FID (5035 Prep)				
Lab #:	242879	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 5030B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Field ID:	ZZZZZZZZZ	Diln Fac: 1.000		
MSS Lab ID:	242898-001	Batch#: 195275		
Matrix:	Soil	Sampled: 02/05/13		
Units:	mg/Kg	Received: 02/05/13		
Basis:	as received	Analyzed: 02/05/13		

Type: MS Lab ID: QC675639

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.1134	9.259	4.320	45	33-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	95	62-134

Type: MSD Lab ID: QC675640

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.53	4.538	42	33-120	8	53

Total Extractable Hydrocarbons				
Lab #:	242879	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3550B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Field ID:	EB-5	Batch#: 195315		
Matrix:	Soil	Sampled: 02/04/13		
Units:	mg/Kg	Received: 02/04/13		
Basis:	as received	Prepared: 02/06/13		
Diln Fac:	1.000	Analyzed: 02/07/13		

Type: SAMPLE Cleanup Method: EPA 3630C

Type: SAMPLE Lab ID: 242879-001

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	58	54-129

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC675803

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	74	54-129	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Total Extractable Hydrocarbons				
Lab #:	242879	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3550B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Type:	LCS	Diln Fac: 1.000		
Lab ID:	QC675804	Batch#: 195315		
Matrix:	Soil	Prepared: 02/06/13		
Units:	mg/Kg	Analyzed: 02/07/13		

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	50.14	36.18	72	51-131

Surrogate	%REC	Limits
o-Terphenyl	74	54-129

Page 1 of 1

Purgeable Organics by GC/MS					
Lab #:	242879	Location: 64th & Chr	istie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 5035			
Project#:	241.082.03.006	Analysis: EPA 8260B			
Field ID:	EB-5	Diln Fac: 1.5	15		
Lab ID:	242879-001	Batch#: 195	245		
Matrix:	Soil	Sampled: 02/	04/13		
Units:	ug/Kg	Received: 02/	04/13		
Basis:	as received	Analyzed: 02/	05/13		

Analyte	Result	RL	
Freon 12	ND	15	
Chloromethane	ND	15	
Vinyl Chloride	ND	15	
Bromomethane	ND	15	
Chloroethane	ND	15	
Trichlorofluoromethane	ND	7.6	
Acetone	ND	30	
Freon 113	ND	7.6	
1,1-Dichloroethene	ND	7.6	
Methylene Chloride	ND	30	
Carbon Disulfide	ND	7.6	
MTBE	ND	7.6	
trans-1,2-Dichloroethene	ND	7.6	
Vinyl Acetate	ND	76	
1,1-Dichloroethane	ND	7.6	
2-Butanone	ND	15	
cis-1,2-Dichloroethene	ND	7.6	
2,2-Dichloropropane	ND	7.6	
Chloroform	ND	7.6	
Bromochloromethane	ND	7.6	
1,1,1-Trichloroethane	ND	7.6	
1,1-Dichloropropene	ND	7.6	
Carbon Tetrachloride	ND	7.6	
1,2-Dichloroethane	ND	7.6	
Benzene	ND	7.6	
Trichloroethene	ND	7.6	
1,2-Dichloropropane	ND	7.6	
Bromodichloromethane	ND	7.6	
Dibromomethane	ND	7.6	
4-Methyl-2-Pentanone	ND	15	
cis-1,3-Dichloropropene	ND	7.6	
Toluene	ND	7.6	
trans-1,3-Dichloropropene	ND	7.6	
1,1,2-Trichloroethane	ND	7.6	
2-Hexanone	ND	15	
1,3-Dichloropropane	ND	7.6	
Tetrachloroethene	ND	7.6	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable O	rganics by GC/M	S
Lab #:	242879	Location: 64th	& Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5	5035
Project#:	241.082.03.006	Analysis: EPA 8	3260B
Field ID:	EB-5	Diln Fac:	1.515
Lab ID:	242879-001	Batch#:	195245
Matrix:	Soil	Sampled:	02/04/13
Units:	ug/Kg	Received:	02/04/13
Basis:	as received	Analyzed:	02/05/13

Analyte	Result	RL	
Dibromochloromethane	ND	7.6	
1,2-Dibromoethane	ND	7.6	
Chlorobenzene	ND	7.6	
1,1,1,2-Tetrachloroethane	ND	7.6	
Ethylbenzene	ND	7.6	
m,p-Xylenes	ND	7.6	
o-Xylene	ND	7.6	
Styrene	ND	7.6	
Bromoform	ND	7.6	
Isopropylbenzene	ND	7.6	
1,1,2,2-Tetrachloroethane	ND	7.6	
1,2,3-Trichloropropane	ND	7.6	
Propylbenzene	ND	7.6	
Bromobenzene	ND	7.6	
1,3,5-Trimethylbenzene	ND	7.6	
2-Chlorotoluene	ND	7.6	
4-Chlorotoluene	ND	7.6	
tert-Butylbenzene	ND	7.6	
1,2,4-Trimethylbenzene	ND	7.6	
sec-Butylbenzene	ND	7.6	
para-Isopropyl Toluene	ND	7.6	
1,3-Dichlorobenzene	ND	7.6	
1,4-Dichlorobenzene	ND	7.6	
n-Butylbenzene	ND	7.6	
1,2-Dichlorobenzene	ND	7.6	
1,2-Dibromo-3-Chloropropane	ND	7.6	
1,2,4-Trichlorobenzene	ND	7.6	
Hexachlorobutadiene	ND	7.6	
Naphthalene	ND	7.6	
1,2,3-Trichlorobenzene	ND	7.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	110	78-131	
1,2-Dichloroethane-d4	92	75-141	
Toluene-d8	100	80-120	
Bromofluorobenzene	113	79-128	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Purgeable On	ganics by GC/MS
Lab #:	242879	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	241.082.03.006	Analysis: EPA 8260B
Matrix:	Soil	Batch#: 195245
Units:	ug/Kg	Analyzed: 02/05/13
Diln Fac:	1.000	

Type: BS Lab ID: QC675528

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	31.32	125	70-129
Benzene	25.00	26.40	106	77-125
Trichloroethene	25.00	26.59	106	77-122
Toluene	25.00	24.44	98	78-120
Chlorobenzene	25.00	23.41	94	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	108	78-131	
1,2-Dichloroethane-d4	87	75-141	
Toluene-d8	96	80-120	
Bromofluorobenzene	108	79-128	

Type: BSD Lab ID: QC675529

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	29.25	117	70-129	7	20
Benzene	25.00	25.46	102	77-125	4	20
Trichloroethene	25.00	26.29	105	77-122	1	20
Toluene	25.00	25.06	100	78-120	3	20
Chlorobenzene	25.00	23.33	93	80-120	0	20

Surrogate	%REC	Limits	
Dibromofluoromethane	109	78-131	
1,2-Dichloroethane-d4	86	75-141	
Toluene-d8	99	80-120	
Bromofluorobenzene	109	79-128	

Purgeable Organics by GC/MS							
Lab #:	242879	Location: 64th & Christie Emeryville, CA					
Client:	PES Environmental, Inc.	Prep: EPA 5035					
Project#:	241.082.03.006	Analysis: EPA 8260B					
Type:	BLANK	Diln Fac: 1.000					
Lab ID:	QC675530	Batch#: 195245					
Matrix:	Soil	Analyzed: 02/05/13					
Units:	ug/Kg						

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS							
Lab #:	242879	Location: 6	4th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: E	CPA 5035				
Project#:	241.082.03.006	Analysis: E	PA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC675530	Batch#:	195245				
Matrix:	Soil	Analyzed:	02/05/13				
Units:	ug/Kg						

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	110	78-131	
1,2-Dichloroethane-d4	94	75-141	
Toluene-d8	100	80-120	
Bromofluorobenzene	107	79-128	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	242879	Location: 64th & Christie Emeryville, CA					
Client:	PES Environmental, Inc.	Prep: EPA 5030B					
Project#:	241.082.03.006	Analysis: EPA 8260B					
Field ID:	ZZZZZZZZZZ	Batch#: 195245					
MSS Lab ID:	242867-004	Sampled: 01/31/13					
Matrix:	Soil	Received: 02/01/13					
Units:	ug/Kg	Analyzed: 02/05/13					
Basis:	as received						

Type: MS Diln Fac: 0.9901

Lab ID: QC675621

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<1.260	49.50	53.83	109	55-126
Benzene	<0.6832	49.50	49.75	101	57-120
Trichloroethene	<0.7376	49.50	45.86	93	49-138
Toluene	<0.4598	49.50	46.16	93	53-120
Chlorobenzene	<0.3475	49.50	41.28	83	48-120

Surrogate	%REC	Limits
Dibromofluoromethane	106	78-131
1,2-Dichloroethane-d4	86	75-141
Toluene-d8	100	80-120
Bromofluorobenzene	104	79-128

Type: MSD Diln Fac: 0.9634

Lab ID: QC675622

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	48.17	52.52	109	55-126	0	40
Benzene	48.17	47.35	98	57-120	2	37
Trichloroethene	48.17	46.07	96	49-138	3	40
Toluene	48.17	45.14	94	53-120	0	38
Chlorobenzene	48.17	39.59	82	48-120	1	39

Surrogate	%REC	Limits	
Dibromofluoromethane	105	78-131	
1,2-Dichloroethane-d4	87	75-141	
Toluene-d8	98	80-120	
Bromofluorobenzene	107	79-128	

California Title 22 Metals							
Lab #:	242879	Project#: 241.082.03.006					
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA					
Field ID:	EB-5	Diln Fac: 1.000					
Lab ID:	242879-001	Sampled: 02/04/13					
Matrix:	Soil	Received: 02/04/13					
Units:	mg/Kg	Prepared: 02/05/13					
Basis:	as received						

Analyte	Result	RL	Batch# Analyzed	Prep	Analysis
Antimony	ND	0.44	195287 02/08/13 H	EPA 3050B	EPA 6010B
Arsenic	8.2	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Barium	310	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Beryllium	0.49	0.088	195287 02/08/13 H	EPA 3050B	EPA 6010B
Cadmium	0.65	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Chromium	52	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Cobalt	9.7	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Copper	25	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Lead	5.2	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Mercury	0.040	0.017	195265 02/05/13 N	METHOD	EPA 7471A
Molybdenum	1.4	0.22	195287 02/08/13 B	EPA 3050B	EPA 6010B
Nickel	75	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Selenium	ND	0.44	195287 02/08/13 H	EPA 3050B	EPA 6010B
Silver	ND	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Thallium	ND	0.44	195287 02/08/13 H	EPA 3050B	EPA 6010B
Vanadium	54	0.22	195287 02/08/13 H	EPA 3050B	EPA 6010B
Zinc	53	0.88	195287 02/08/13 H	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals						
Lab #:	242879	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Diln Fac: 1.000				
Type:	BLANK	Batch#: 195265				
Lab ID:	QC675587	Prepared: 02/05/13				
Matrix:	Soil	Analyzed: 02/05/13				
Units:	mg/Kg					

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals						
Lab #:	242879	Location: 64th &	Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: METHOD)			
Project#:	241.082.03.006	Analysis: EPA 74	171A			
Analyte:	Mercury	Batch#:	195265			
Matrix:	Soil	Prepared:	02/05/13			
Units:	mg/Kg	Analyzed:	02/05/13			
Diln Fac:	1.000					

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC675588	0.2083	0.2085	100	80-120		
BSD	QC675589	0.2083	0.2111	101	80-120	1	20

California Title 22 Metals						
Lab #:	242879	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Diln Fac: 1.000				
Field ID:	ZZZZZZZZZ	Batch#: 195265				
MSS Lab ID:	242874-001	Sampled: 02/04/13				
Matrix:	Soil	Received: 02/04/13				
Units:	mg/Kg	Prepared: 02/05/13				
Basis:	as received	Analyzed: 02/05/13				

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC675590	0.004925	0.2016	0.2178	106	76-138		
MSD	QC675591		0.2232	0.2363	104	76-138	2	42

California Title 22 Metals						
Lab #:	242879	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: EPA 3050B				
Project#:	241.082.03.006	Analysis: EPA 6010B				
Type:	BLANK	Diln Fac: 1.000				
Lab ID:	QC675697	Batch#: 195287				
Matrix:	Soil	Prepared: 02/05/13				
Units:	mg/Kg	Analyzed: 02/07/13				

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.26	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals						
Lab #:	242879	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: EPA 3050B				
Project#:	241.082.03.006	Analysis: EPA 6010B				
Type:	LCS	Diln Fac: 1.000				
Lab ID:	QC675698	Batch#: 195287				
Matrix:	Soil	Prepared: 02/05/13				
Units:	mg/Kg	Analyzed: 02/07/13				

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	103.5	104	80-120
Arsenic	50.00	52.61	105	80-121
Barium	100.0	103.2	103	80-120
Beryllium	2.500	2.641	106	80-120
Cadmium	10.00	10.59	106	80-120
Chromium	100.0	102.6	103	80-120
Cobalt	25.00	25.59	102	80-120
Copper	12.50	12.43	99	80-120
Lead	100.0	99.48	99	80-120
Molybdenum	20.00	20.92	105	80-120
Nickel	25.00	25.54	102	80-120
Selenium	50.00	51.36	103	80-120
Silver	10.00	9.855	99	80-120
Thallium	50.00	51.36	103	80-120
Vanadium	25.00	25.56	102	80-120
Zinc	25.00	25.92	104	80-120

Page 1 of 1 15.0

California Title 22 Metals					
Location: 64th & Christie Emeryville, CA					
nc. Prep: EPA 3050B Analysis: EPA 6010B					
Batcĥ#: 195287					
Sampled: 01/31/13					
Received: 01/31/13 Prepared: 02/05/13					
Analyzed: 02/07/13					

Type: MS Lab ID: QC675699

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<0.1431	90.09	50.15	56	12-120
Arsenic	1.833	45.05	46.78	100	73-121
Barium	88.84	90.09	174.9	95	51-135
Beryllium	0.4089	2.252	2.593	97	79-120
Cadmium	<0.01440	9.009	8.282	92	74-120
Chromium	134.5	90.09	233.1	110	62-124
Cobalt	19.39	22.52	40.07	92	62-120
Copper	39.03	11.26	51.41	110	48-150
Lead	4.543	90.09	82.67	87	58-124
Molybdenum	<0.05058	18.02	15.59	87	69-120
Nickel	208.0	22.52	238.5	135 NM	49-135
Selenium	1.663	45.05	45.75	98	68-120
Silver	0.1090	9.009	8.973	98	76-120
Thallium	<0.1469	45.05	37.90	84	68-120
Vanadium	62.05	22.52	83.46	95	54-137
Zinc	57.64	22.52	78.21	91	43-147

Type: MSD Lab ID: QC675700

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	93.46	51.17	55	12-120	2	36
Arsenic	46.73	47.02	97	73-121	3	40
Barium	93.46	180.1	98	51-135	1	40
Beryllium	2.336	2.694	98	79-120	1	21
Cadmium	9.346	8.462	91	74-120	2	20
Chromium	93.46	241.2	114	62-124	2	34
Cobalt	23.36	39.90	88	62-120	2	35
Copper	11.68	51.32	105	48-150	1	39
Lead	93.46	84.55	86	58-124	1	44
Molybdenum	18.69	16.12	86	69-120	0	25
Nickel	23.36	232.0	103 NM	49-135	3	37
Selenium	46.73	46.47	96	68-120	2	29
Silver	9.346	9.335	99	76-120	0	29
Thallium	46.73	39.17	84	68-120	0	21
Vanadium	23.36	83.86	93	54-137	1	31
Zinc	23.36	78.53	89	43-147	1	41

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

Laboratory Job Number 242980 ANALYTICAL REPORT

PES Environmental, Inc.

1682 Novato Boulevard

Novato, CA 94947

Project : 241.082.03.006

Location: 64th & Christie Emeryville, CA

Level : II

Sample ID	<u>Lab ID</u>
EB-6	242980-001
EB-7	242980-002
EB-8	242980-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Desiree N. Tetrault Project Manager (510) 486-0900

Deine 7. Tetralt

NELAP # 01107CA

1 of 28

Date: 02/13/2013

CASE NARRATIVE

Laboratory number: 242980

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 02/07/13 Samples Received: 02/07/13

This data package contains sample and QC results for three soil samples, requested for the above referenced project on 02/07/13. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

Matrix spikes were not performed for this analysis in batch 195375 due to insufficient sample amount. EB-8 (lab # 242980-003) was not diluted; the low sample weight is due to 5035 packaging. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

High recovery was observed for arsenic in the MSD for batch 195448; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPD was within limits. Zinc was detected above the RL in the method blank for batch 195448; this analyte was detected in samples at a level at least 10 times that of the blank. No other analytical problems were encountered.

CHAIN OF CUSTODY RECORD

1682 NOVATO BOULEVARD, SUITE 100 NOVATO, CALIFORNIA 94947

LABORATORY: C+T	a care	· · · · · · · · · · · · · · · · · ·				√ 3(415) 899-1600 F	
JOB NUMBER:	· · · · · · · · · · · · · · · · · · ·	SAMPLERS: 7/-	T 27 t			ANALYSIS REQUE	STED
JOB NUMBER:	- h					5M	
NAME/LOCATION: 64 FL + C	-hoistle, Enoryville	I CA				92 2 92 2 260	
PROJECT MANAGER: WIII	en ist	RECORDER:	AL				
DATE		MATRIX	# of Containers			3010 3021 3260B 335/801 335/801 3015M 8015M	7.71
YR MO DY TIME	SAMPLE NUMBER / DESIGNATION	Vapor Water Soil Sedim't	Unpres. IC EnCore H2SO4 HOS HCI CORE HCI CORE CORE CORE CORE CORE CORE CORE CORE	DEP IN FEE	N	EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 TPHG by 5035/8015M TPHG by 8015M TPHM by 8015M TPHM by 8015M ALL THL Z THL THL	
1302071440	EB-6 EB-7	X	2. 16			XXX XX	
1302071500	EB-7 EB-8		2 16			XXX XX	
							
Turn Around Time:	s and TAT					STODY RECORD	
			RELINOUSHED BY: (Signature)		Pa	BY: (Signature)	DATE TIME 2/1/13 1600 DATE TIME
Soul results to	· jalexante Ope	GRAU, COIN		F	RECEIVED	BY: (Signature)	DATE TIME
	WWXS("		RELINQUISHED BY: (Signature)	R	RECEIVED	3Y: (Signature)	DATE TIME
			RELINQUISHED BY: (Signature)	R	RECEIVED	3Y: (Signature)	DATE TIME
		D	DISPATCHED BY: (Signature)	DATE	TIME F	RECEIVED FOR LAB BY: (Signature)	DATE TIME
Page of(м	METHOD OF SHIPMENT:	1			

COOLER RECEIPT CHECKLIST

Login #	242980 PES	Date Received 2/7/13 Number of coole Project 64th Chushe	ers <u> </u>
Date Opened Date Logged	<u>2 7 13</u> By in <u>↓</u> By	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1. Did cooler Shipp	come with a shi	pping slip (airbill, etc)YE	s ((0)
How in 2B. Were custo 3. Were custo 4. Were custo 5. Is the proje 6. Indicate the	nany	nt?	S NO MA J NO J NO J NO J NO
7. Temperatur	e documentation	☐ Styrologn ☐ Paper to : * Notify PM if temperature exceeds 6°C Wet ☐ Blue/Gel ☐ None Temp(°C)	oweis
		on ice & cold without a temperature blank; temp. taken	
_		n ice directly from the field. Cooling process had begun	
8. Were Meth If YES 9. Did all bottl 10. Are there a 11. Are sample 12. Are sample 13. Do the sam 14. Was suffic 15. Are the sam 16. Did you ch 17. Did you do 18. Did you ch 19. Did you ch 20. Are bubble 21. Was the cli If YES,	od 5035 sampling, what time were less arrive unbroken my missing / extremely extremely appropriate labels present, apple labels agreed ient amount of somples appropriate eck preservative cument your present ange the hold time ange the hold time is > 6mm absent ent contacted c	re they transferred to freezer? *** *** *** *** *** *** *** *** *** *	ES NO YES NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO N
COMMENTS 5) NU PULL #	is sveahed on	COC. Legged in under existing proj # 241.082 03.01	\i.
	<u> </u>		

Rev 10, 11/11

Gasoline by GC/FID (5035 Prep) Location: 64th & Christie Emeryville, CA Prep: EPA 5035 Lab #: 242980 Client: Prep: PES Environmental, Inc. Analysis: EPA 8015B Project#: 241.082.03.006 Batch#: 195400 Matrix: Soil Sampled: 02/07/13 Units: mg/Kg Basis: as received Received: 02/07/13 1.000 Diln Fac: Analyzed: 02/08/13

Field ID: EB-6 Lab ID: 242980-001

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 0.21

Surrogate %REC Limits
Bromofluorobenzene (FID) 99 62-134

Field ID: EB-7 Lab ID: 242980-002

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 0.20

Surrogate %REC Limits
Bromofluorobenzene (FID) 100 62-134

Field ID: EB-8 Lab ID: 242980-003

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 0.19

Surrogate %REC Limits
Bromofluorobenzene (FID) 99 62-134

Type: BLANK Lab ID: QC676126

Analyte Result RL
Gasoline C7-C12 ND 0.20

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 62-134

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline by GC	!/FID (5035 Pre	p)
Lab #:	242980	Location: 64th &	Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 50)35
Project#:	241.082.03.006	Analysis: EPA 80)15B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC676123	Batch#:	195400
Matrix:	Soil	Analyzed:	02/08/13
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.012	101	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	99	62-134

Page 1 of 1 15.0

	Gasoline by (C/FID (5035 Prep)	
Lab #:	242980	Location: 64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 5030B	
Project#:	241.082.03.006	Analysis: EPA 8015B	
Field ID:	ZZZZZZZZZ	Diln Fac: 1.000	
MSS Lab ID:	242982-005	Batch#: 195400	
Matrix:	Soil	Sampled: 02/06/13	
Units:	mg/Kg	Received: 02/07/13	
Basis:	as received	Analyzed: 02/08/13	

Type: MS Lab ID: QC676124

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	<0.05280	10.64	6.383	60	33-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	97	62-134	

Type: MSD Lab ID: QC676125

Analyte	Spiked	Result	%REC	Limits	RPD I	Lim
Gasoline C7-C12	10.31	6.753	66	33-120	9 !	53

Total Extractable Hydrocarbons Location: 64th & Christie Emeryville, CA Prep: EPA 3550B Lab #: 242980 PES Environmental, Inc. Client: Prep: Analysis: EPA 8015B Project#: 241.082.03.006 02/07/13 02/07/13 Sampled: Matrix: Soil Received: Units: mg/Kg Basis: as received Prepared: 02/08/13 Diln Fac: 1.000 02/11/13 Analyzed: Batch#: 195401

Field ID: EB-6 Lab ID: 242980-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	85	54-129	

Field ID: EB-7 Lab ID: 242980-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate %REC Limit
-Terphenyl 93 54-12

Field ID: EB-8 Lab ID: 242980-003 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	0.99	
Motor Oil C24-C36	ND	5.0	

Surrogate
o-Terphenvl

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC676129

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	95	54-129

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Total Extract	able Hydrocarbons
Lab #:	242980	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Type:	LCS	Diln Fac: 1.000
Lab ID:	QC676130	Batch#: 195401
Matrix:	Soil	Prepared: 02/08/13
Units:	mg/Kg	Analyzed: 02/11/13

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	50.04	34.43	69	51-131

Surrogate	%REC	Limits
o-Terphenyl	96	54-129

Page 1 of 1

	Total Extract	cable Hydrocarbons
Lab #:	242980	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#: 195401
MSS Lab ID:	242979-001	Sampled: 02/07/13
Matrix:	Soil	Received: 02/07/13
Units:	mg/Kg	Prepared: 02/08/13
Basis:	as received	Analyzed: 02/11/13
Diln Fac:	1.000	

Type: MS Lab ID: QC676131

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	0.2551	49.70	44.10	88	34-144

Surrogate	%REC	Limits
o-Terphenyl	108	54-129

Type: MSD Lab ID: QC676132

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.98	38.99	78	34-144	13	52

Surrogate	%REC	Limits	
o-Terphenyl	105	54-129	

	Purgeable On	rganics by GC/	MS
Lab #:	242980	Location: 64th	n & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA	5035
Project#:	241.082.03.006	Analysis: EPA	8260B
Field ID:	EB-6	Diln Fac:	0.8772
Lab ID:	242980-001	Batch#:	195375
Matrix:	Soil	Sampled:	02/07/13
Units:	ug/Kg	Received:	02/07/13
Basis:	as received	Analyzed:	02/08/13

Analyte	Result	RL	
Freon 12	ND	8.8	
Chloromethane	ND	8.8	
Vinyl Chloride	ND	8.8	
Bromomethane	ND	8.8	
Chloroethane	ND	8.8	
Trichlorofluoromethane	ND	4.4	
Acetone	ND	18	
Freon 113	ND	4.4	
1,1-Dichloroethene	ND	4.4	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.4	
MTBE	ND	4.4	
trans-1,2-Dichloroethene	ND	4.4	
Vinyl Acetate	ND	44	
1,1-Dichloroethane	ND	4.4	
2-Butanone	ND	8.8	
cis-1,2-Dichloroethene	ND	4.4	
2,2-Dichloropropane	ND	4.4	
Chloroform	ND	4.4	
Bromochloromethane	ND	4.4	
1,1,1-Trichloroethane	ND	4.4	
1,1-Dichloropropene	ND	4.4	
Carbon Tetrachloride	ND	4.4	
1,2-Dichloroethane	ND	4.4	
Benzene	ND	4.4	
Trichloroethene	ND	4.4	
1,2-Dichloropropane	ND	4.4	
Bromodichloromethane	ND	4.4	
Dibromomethane	ND	4.4	
4-Methyl-2-Pentanone	ND	8.8	
cis-1,3-Dichloropropene	ND	4.4	
Toluene	ND	4.4	
trans-1,3-Dichloropropene	ND	4.4	
1,1,2-Trichloroethane	ND	4.4	
2-Hexanone	ND	8.8	
1,3-Dichloropropane	ND	4.4	
Tetrachloroethene	ND	4.4	

RL= Reporting Limit

Page 1 of 2

	Purgeable O	ganics by GC/MS	
Lab #:	242980	Location: 64th & Chr	ristie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035	
Project#:	241.082.03.006	Analysis: EPA 8260B	
Field ID:	EB-6	Diln Fac: 0.8	3772
Lab ID:	242980-001	Batch#: 195	5375
Matrix:	Soil	Sampled: 02/	/07/13
Units:	ug/Kg	Received: 02/	/07/13
Basis:	as received	Analyzed: 02/	/08/13

Analyte	Result	RL	
Dibromochloromethane	ND	4.4	
1,2-Dibromoethane	ND	4.4	
Chlorobenzene	ND	4.4	
1,1,1,2-Tetrachloroethane	ND	4.4	
Ethylbenzene	ND	4.4	
m,p-Xylenes	ND	4.4	
o-Xylene	ND	4.4	
Styrene	ND	4.4	
Bromoform	ND	4.4	
Isopropylbenzene	ND	4.4	
1,1,2,2-Tetrachloroethane	ND	4.4	
1,2,3-Trichloropropane	ND	4.4	
Propylbenzene	ND	4.4	
Bromobenzene	ND	4.4	
1,3,5-Trimethylbenzene	ND	4.4	
2-Chlorotoluene	ND	4.4	
4-Chlorotoluene	ND	4.4	
tert-Butylbenzene	ND	4.4	
1,2,4-Trimethylbenzene	ND	4.4	
sec-Butylbenzene	ND	4.4	
para-Isopropyl Toluene	ND	4.4	
1,3-Dichlorobenzene	ND	4.4	
1,4-Dichlorobenzene	ND	4.4	
n-Butylbenzene	ND	4.4	
1,2-Dichlorobenzene	ND	4.4	
1,2-Dibromo-3-Chloropropane	ND	4.4	
1,2,4-Trichlorobenzene	ND	4.4	
Hexachlorobutadiene	ND	4.4	
Naphthalene	ND	4.4	
1,2,3-Trichlorobenzene	ND	4.4	

Surrogate	%REC	Limits	
Dibromofluoromethane	81	78-131	
1,2-Dichloroethane-d4	76	75-141	
Toluene-d8	108	80-120	
Bromofluorobenzene	92	79-128	

RL= Reporting Limit

Page 2 of 2

	Purgeable Organics by GC/MS				
Lab #:	242980	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 5035			
Project#:	241.082.03.006	Analysis: EPA 8260B			
Field ID:	EB-7	Diln Fac: 0.9766			
Lab ID:	242980-002	Batch#: 195375			
Matrix:	Soil	Sampled: 02/07/13			
Units:	ug/Kg	Received: 02/07/13			
Basis:	as received	Analyzed: 02/08/13			

3 ma last a	Result	RL	
Analyte			
Freon 12	ND	9.8	
Chloromethane	ND	9.8	
Vinyl Chloride	ND	9.8	
Bromomethane	ND	9.8	
Chloroethane	ND	9.8	
Trichlorofluoromethane	ND	4.9	
Acetone	ND	20	
Freon 113	ND	4.9	
1,1-Dichloroethene	ND	4.9	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	4.9	
MTBE	ND	4.9	
trans-1,2-Dichloroethene	ND	4.9	
Vinyl Acetate	ND	49	
1,1-Dichloroethane	ND	4.9	
2-Butanone	ND	9.8	
cis-1,2-Dichloroethene	ND	4.9	
2,2-Dichloropropane	ND	4.9	
Chloroform	ND	4.9	
Bromochloromethane	ND	4.9	
1,1,1-Trichloroethane	ND	4.9	
1,1-Dichloropropene	ND	4.9	
Carbon Tetrachloride	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Trichloroethene	ND	4.9	
1,2-Dichloropropane	ND	4.9	
Bromodichloromethane	ND	4.9	
Dibromomethane	ND	4.9	
4-Methyl-2-Pentanone	ND	9.8	
cis-1,3-Dichloropropene	ND	4.9	
Toluene	ND	4.9	
trans-1,3-Dichloropropene	ND	4.9	
1,1,2-Trichloroethane	ND	4.9	
2-Hexanone	ND	9.8	
1,3-Dichloropropane	ND	4.9	
Tetrachloroethene	ND	4.9	
Tectaciiioroeciieiie	עוו	サ・フ	

RL= Reporting Limit

Page 1 of 2

	Purgeable O	rganics by GC/	MS
Lab #:	242980	Location: 64t	h & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA	5035
Project#:	241.082.03.006	Analysis: EPA	8260B
Field ID:	EB-7	Diln Fac:	0.9766
Lab ID:	242980-002	Batch#:	195375
Matrix:	Soil	Sampled:	02/07/13
Units:	ug/Kg	Received:	02/07/13
Basis:	as received	Analyzed:	02/08/13

Analyte	Result	RL	
Dibromochloromethane	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Chlorobenzene	ND	4.9	
1,1,1,2-Tetrachloroethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	
Styrene	ND	4.9	
Bromoform	ND	4.9	
Isopropylbenzene	ND	4.9	
1,1,2,2-Tetrachloroethane	ND	4.9	
1,2,3-Trichloropropane	ND	4.9	
Propylbenzene	ND	4.9	
Bromobenzene	ND	4.9	
1,3,5-Trimethylbenzene	ND	4.9	
2-Chlorotoluene	ND	4.9	
4-Chlorotoluene	ND	4.9	
tert-Butylbenzene	ND	4.9	
1,2,4-Trimethylbenzene	ND	4.9	
sec-Butylbenzene	ND	4.9	
para-Isopropyl Toluene	ND	4.9	
1,3-Dichlorobenzene	ND	4.9	
1,4-Dichlorobenzene	ND	4.9	
n-Butylbenzene	ND	4.9	
1,2-Dichlorobenzene	ND	4.9	
1,2-Dibromo-3-Chloropropane	ND	4.9	
1,2,4-Trichlorobenzene	ND	4.9	
Hexachlorobutadiene	ND	4.9	
Naphthalene	ND	4.9	
1,2,3-Trichlorobenzene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	78-131	
1,2-Dichloroethane-d4	88	75-141	
Toluene-d8	95	80-120	
Bromofluorobenzene	90	79-128	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	242980	Location: 64th	n & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA	5035		
Project#:	241.082.03.006	Analysis: EPA	8260B		
Field ID:	EB-8	Diln Fac:	1.381		
Lab ID:	242980-003	Batch#:	195375		
Matrix:	Soil	Sampled:	02/07/13		
Units:	ug/Kg	Received:	02/07/13		
Basis:	as received	Analyzed:	02/08/13		

Analyte	Result	RL	
Freon 12	ND	14	
Chloromethane	ND	14	
Vinyl Chloride	ND	14	
Bromomethane	ND	14	
Chloroethane	ND	14	
Trichlorofluoromethane	ND	6.9	
Acetone	ND	28	
Freon 113	ND	6.9	
1,1-Dichloroethene	ND	6.9	
Methylene Chloride	ND	28	
Carbon Disulfide	ND	6.9	
MTBE	ND	6.9	
trans-1,2-Dichloroethene	ND	6.9	
Vinyl Acetate	ND	69	
1,1-Dichloroethane	ND	6.9	
2-Butanone	ND	14	
cis-1,2-Dichloroethene	ND	6.9	
2,2-Dichloropropane	ND	6.9	
Chloroform	ND	6.9	
Bromochloromethane	ND	6.9	
1,1,1-Trichloroethane	ND	6.9	
1,1-Dichloropropene	ND	6.9	
Carbon Tetrachloride	ND	6.9	
1,2-Dichloroethane	ND	6.9	
Benzene	ND	6.9	
Trichloroethene	ND	6.9	
1,2-Dichloropropane	ND	6.9	
Bromodichloromethane	ND	6.9	
Dibromomethane	ND	6.9	
4-Methyl-2-Pentanone	ND	14	
cis-1,3-Dichloropropene	ND	6.9	
Toluene	ND	6.9	
trans-1,3-Dichloropropene	ND	6.9	
1,1,2-Trichloroethane	ND	6.9	
2-Hexanone	ND	14	
1,3-Dichloropropane	ND	6.9	
Tetrachloroethene	ND	6.9	

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	242980	Location: 64t	h & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA	5035		
Project#:	241.082.03.006	Analysis: EPA	8260B		
Field ID:	EB-8	Diln Fac:	1.381		
Lab ID:	242980-003	Batch#:	195375		
Matrix:	Soil	Sampled:	02/07/13		
Units:	ug/Kg	Received:	02/07/13		
Basis:	as received	Analyzed:	02/08/13		

Analyte	Result	RL	
Dibromochloromethane	ND	6.9	
1,2-Dibromoethane	ND	6.9	
Chlorobenzene	ND	6.9	
1,1,1,2-Tetrachloroethane	ND	6.9	
Ethylbenzene	ND	6.9	
m,p-Xylenes	ND	6.9	
o-Xylene	ND	6.9	
Styrene	ND	6.9	
Bromoform	ND	6.9	
Isopropylbenzene	ND	6.9	
1,1,2,2-Tetrachloroethane	ND	6.9	
1,2,3-Trichloropropane	ND	6.9	
Propylbenzene	ND	6.9	
Bromobenzene	ND	6.9	
1,3,5-Trimethylbenzene	ND	6.9	
2-Chlorotoluene	ND	6.9	
4-Chlorotoluene	ND	6.9	
tert-Butylbenzene	ND	6.9	
1,2,4-Trimethylbenzene	ND	6.9	
sec-Butylbenzene	ND	6.9	
para-Isopropyl Toluene	ND	6.9	
1,3-Dichlorobenzene	ND	6.9	
1,4-Dichlorobenzene	ND	6.9	
n-Butylbenzene	ND	6.9	
1,2-Dichlorobenzene	ND	6.9	
1,2-Dibromo-3-Chloropropane	ND	6.9	
1,2,4-Trichlorobenzene	ND	6.9	
Hexachlorobutadiene	ND	6.9	
Naphthalene	ND	6.9	
1,2,3-Trichlorobenzene	ND	6.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	96	78-131	
1,2-Dichloroethane-d4	83	75-141	
Toluene-d8	96	80-120	
Bromofluorobenzene	92	79-128	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	242980	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 5035			
Project#:	241.082.03.006	Analysis: EPA 8260B			
Matrix:	Soil	Batch#: 195375			
Units:	ug/Kg	Analyzed: 02/08/13			
Diln Fac:	1.000				

Type: BS Lab ID: QC676030

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	28.05	112	70-129
Benzene	25.00	27.79	111	77-125
Trichloroethene	25.00	26.88	108	77-122
Toluene	25.00	27.90	112	78-120
Chlorobenzene	25.00	25.18	101	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	93	78-131	
1,2-Dichloroethane-d4	78	75-141	
Toluene-d8	97	80-120	
Bromofluorobenzene	91	79-128	

Type: BSD Lab ID: QC676031

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	26.14	105	70-129	7	20
Benzene	25.00	25.45	102	77-125	9	20
Trichloroethene	25.00	24.99	100	77-122	7	20
Toluene	25.00	26.55	106	78-120	5	20
Chlorobenzene	25.00	24.54	98	80-120	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	95	78-131
1,2-Dichloroethane-d4	77	75-141
Toluene-d8	96	80-120
Bromofluorobenzene	87	79-128

Purgeable Organics by GC/MS					
Lab #:	242980	Location:	64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep:	EPA 5035		
Project#:	241.082.03.006	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC676032	Batch#:	195375		
Matrix:	Soil	Analyzed:	02/08/13		
Units:	ug/Kg				

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	242980	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 5035		
Project#:	241.082.03.006	Analysis: EPA 8260B		
Type:	BLANK	Diln Fac: 1.000		
Lab ID:	QC676032	Batch#: 195375		
Matrix:	Soil	Analyzed: 02/08/13		
Units:	ug/Kg			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	96	78-131	
1,2-Dichloroethane-d4	80	75-141	
Toluene-d8	96	80-120	
Bromofluorobenzene	90	79-128	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

California Title 22 Metals				
Lab #:	242980	Project#: 241.08	32.03.006	
Client:	PES Environmental, Inc.	Location: 64th &	Christie Emeryville, CA	
Field ID:	EB-6	Basis:	as received	
Lab ID:	242980-001	Diln Fac:	1.000	
Matrix:	Soil	Sampled:	02/07/13	
Units:	mg/Kg	Received:	02/07/13	

Analyte	Result	RL	Batch# Prepared	Analyzed Prep	Analysis
Antimony	ND	0.48	195448 02/11/13	02/13/13 EPA 3050B	EPA 6010B
Arsenic	6.2	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Barium	58	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Beryllium	0.50	0.095	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Cadmium	ND	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Chromium	46	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Cobalt	8.8	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Copper	21	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Lead	4.7	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Mercury	0.031	0.016	195391 02/08/13	02/08/13 METHOD	EPA 7471A
Molybdenum	0.26	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Nickel	54	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Selenium	0.64	0.48	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Silver	ND	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Thallium	ND	0.48	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Vanadium	37	0.24	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B
Zinc	44	0.95	195448 02/11/13	02/12/13 EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals				
Lab #:	242980	Project#: 241.08	32.03.006	
Client:	PES Environmental, Inc.	Location: 64th &	Christie Emeryville, CA	
Field ID:	EB-7	Basis:	as received	
Lab ID:	242980-002	Diln Fac:	1.000	
Matrix:	Soil	Sampled:	02/07/13	
Units:	mg/Kg	Received:	02/07/13	

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.48	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Arsenic	5.5	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Barium	90	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Beryllium	0.26	0.096	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Cadmium	ND	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Chromium	48	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Cobalt	11	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Copper	13	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Lead	2.9	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Mercury	ND	0.017	195391	02/08/13	02/08/13	METHOD	EPA 7471A
Molybdenum	0.33	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Nickel	40	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Selenium	ND	0.48	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Silver	ND	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Thallium	ND	0.48	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Vanadium	44	0.24	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Zinc	33	0.96	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals				
Lab #:	242980	Project#: 241.08	32.03.006	
Client:	PES Environmental, Inc.	Location: 64th &	Christie Emeryville, CA	
Field ID:	EB-8	Basis:	as received	
Lab ID:	242980-003	Diln Fac:	1.000	
Matrix:	Soil	Sampled:	02/07/13	
Units:	mg/Kg	Received:	02/07/13	

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.47	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Arsenic	3.5	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Barium	72	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Beryllium	0.31	0.093	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Cadmium	ND	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Chromium	30	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Cobalt	6.0	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Copper	13	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Lead	4.8	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Mercury	ND	0.018	195391	02/08/13	02/08/13	METHOD	EPA 7471A
Molybdenum	ND	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Nickel	29	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Selenium	ND	0.47	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Silver	ND	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Thallium	ND	0.47	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Vanadium	31	0.23	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B
Zinc	26	0.93	195448	02/11/13	02/12/13	EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals				
Lab #:	242980	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: METHOD		
Project#:	241.082.03.006	Analysis: EPA 7471A		
Analyte:	Mercury	Diln Fac: 1.000		
Type:	BLANK	Batch#: 195391		
Lab ID:	QC676084	Prepared: 02/08/13		
Matrix:	Soil	Analyzed: 02/08/13		
Units:	mg/Kg			

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals				
Lab #:	242980	Location: 64th &	Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: METHOD)	
Project#:	241.082.03.006	Analysis: EPA 74	171A	
Analyte:	Mercury	Batch#:	195391	
Matrix:	Soil	Prepared:	02/08/13	
Units:	mg/Kg	Analyzed:	02/08/13	
Diln Fac:	1.000			

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC676085	0.2083	0.2202	106	80-120		
BSD	QC676086	0.2083	0.2128	102	80-120	3	20

California Title 22 Metals				
Lab #:	242980	Location: 64th & Christie Emeryville,	, CA	
Client:	PES Environmental, Inc.	Prep: METHOD		
Project#:	241.082.03.006	Analysis: EPA 7471A		
Analyte:	Mercury	Diln Fac: 1.000		
Field ID:	ZZZZZZZZZ	Batch#: 195391		
MSS Lab ID:	242846-003	Sampled: 01/31/13		
Matrix:	Soil	Received: 02/01/13		
Units:	mg/Kg	Prepared: 02/08/13		
Basis:	as received	Analyzed: 02/08/13		

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC676087	0.007860	0.2232	0.2533	110	76-138		
MSD	QC676088		0.2155	0.2434	109	76-138	1	42

California Title 22 Metals				
Lab #:	242980	Location: 64th & 0	Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 305	0B	
Project#:	241.082.03.006	Analysis: EPA 601	0B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC676324	Batch#:	195448	
Matrix:	Soil	Prepared:	02/11/13	
Units:	mg/Kg	Analyzed:	02/12/13	

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.25	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	1.3 b	1.0	

b= See narrative

ND= Not Detected

RL= Reporting Limit

California Title 22 Metals				
Lab #:	242980	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3050B		
Project#:	241.082.03.006	Analysis: EPA 6010B		
Matrix:	Soil	Batch#: 195448		
Units:	mg/Kg	Prepared: 02/11/13		
Diln Fac:	1.000	Analyzed: 02/12/13		

Type: BS Lab ID: QC676325

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	97.38	97	80-120
Arsenic	50.00	50.49	101	80-121
Barium	100.0	98.16	98	80-120
Beryllium	2.500	2.502	100	80-120
Cadmium	10.00	10.21	102	80-120
Chromium	100.0	97.54	98	80-120
Cobalt	25.00	23.96	96	80-120
Copper	12.50	12.02	96	80-120
Lead	100.0	97.09	97	80-120
Molybdenum	20.00	19.90	100	80-120
Nickel	25.00	23.97	96	80-120
Selenium	50.00	48.45	97	80-120
Silver	10.00	9.554	96	80-120
Thallium	50.00	49.33	99	80-120
Vanadium	25.00	24.38	98	80-120
Zinc	25.00	25.50	102	80-120

Type: BSD Lab ID: QC676326

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	96.84	97	80-120	1	20
Arsenic	50.00	49.69	99	80-121	2	20
Barium	100.0	97.19	97	80-120	1	20
Beryllium	2.500	2.480	99	80-120	1	20
Cadmium	10.00	10.13	101	80-120	1	20
Chromium	100.0	96.72	97	80-120	1	20
Cobalt	25.00	23.94	96	80-120	0	20
Copper	12.50	11.90	95	80-120	1	20
Lead	100.0	95.95	96	80-120	1	23
Molybdenum	20.00	19.95	100	80-120	0	20
Nickel	25.00	24.03	96	80-120	0	20
Selenium	50.00	48.81	98	80-120	1	20
Silver	10.00	9.441	94	80-120	1	20
Thallium	50.00	49.18	98	80-120	0	20
Vanadium	25.00	24.12	96	80-120	1	20
Zinc	25.00	25.15	101	80-120	1	20

California Title 22 Metals				
Lab #:	242980	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3050B		
Project#:	241.082.03.006	Analysis: EPA 6010B		
Field ID:	ZZZZZZZZZZ	Batch#: 195448		
MSS Lab ID:	242979-001	Sampled: 02/07/13		
Matrix:	Soil	Received: 02/07/13		
Units:	mg/Kg	Prepared: 02/11/13		
Basis:	as received	Analyzed: 02/12/13		
Diln Fac:	1.000			

Type: MS Lab ID: QC676327

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	0.7034	100.0	54.92	54	12-120
Arsenic	2.450	50.00	51.56	98	73-121
Barium	24.98	100.0	127.0	102	51-135
Beryllium	0.1417	2.500	2.581	98	79-120
Cadmium	0.04547	10.00	9.759	97	74-120
Chromium	36.96	100.0	130.8	94	62-124
Cobalt	5.617	25.00	28.78	93	62-120
Copper	5.124	12.50	17.99	103	48-150
Lead	1.511	100.0	94.28	93	58-124
Molybdenum	0.06820	20.00	18.82	94	69-120
Nickel	32.37	25.00	57.17	99	49-135
Selenium	<0.1581	50.00	47.12	94	68-120
Silver	<0.03947	10.00	9.398	94	76-120
Thallium	<0.1390	50.00	45.47	91	68-120
Vanadium	29.71	25.00	55.52	103	54-137
Zinc	22.24	25.00	46.93	99	43-147

Type: MSD Lab ID: QC676328

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	99.01	53.74	54	12-120	1	36
Arsenic	49.50	65.75	128 *	73-121	25	40
Barium	99.01	123.6	100	51-135	2	40
Beryllium	2.475	2.584	99	79-120	1	21
Cadmium	9.901	9.799	99	74-120	1	20
Chromium	99.01	131.8	96	62-124	1	34
Cobalt	24.75	29.00	94	62-120	2	35
Copper	12.38	19.38	115	48-150	8	39
Lead	99.01	94.70	94	58-124	1	44
Molybdenum	19.80	18.83	95	69-120	1	25
Nickel	24.75	58.43	105	49-135	3	37
Selenium	49.50	47.78	97	68-120	2	29
Silver	9.901	9.452	95	76-120	2	29
Thallium	49.50	46.05	93	68-120	2	21
Vanadium	24.75	54.29	99	54-137	2	31
Zinc	24.75	46.32	97	43-147	1	41

Page 1 of 1

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 243126 ANALYTICAL REPORT

PES Environmental, Inc. Project : 241.082.03.006

1682 Novato Boulevard Location: 64th & Christie Emeryville, CA

Novato, CA 94947 Level : II

Sample ID	<u>Lab ID</u>
EB-9	243126-001
EB-10	243126-002
EB-11	243126-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Deine 7. Tetreult

Desiree N. Tetrault Project Manager (510) 486-0900 Date: 02/22/2013

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 243126

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 02/14/13 Samples Received: 02/14/13

This data package contains sample and QC results for three soil samples, requested for the above referenced project on 02/14/13. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High recoveries were observed for benzene in the MS/MSD for batch 195617; the parent sample was not a project sample, the LCS was within limits, the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated samples. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

High recoveries were observed for beryllium, cobalt, and copper in the MS/MSD for batch 195688; the parent sample was not a project sample, and the BS/BSD were within limits. High RPD was observed for beryllium; the RPD was acceptable in the BS/BSD. No other analytical problems were encountered.

243126 CHAIN OF CUSTODY RECORD

1682 NOVATO BOULEVARD, SUITE 100 NOVATO, CALIFORNIA 94947

LABORATORY: C+1		(110) 000 1000 1700 (410) 000-1001
JOB NUMBER:	ONINFLENS.	GANALYSIS REQUESTED
	Emplified A	otes)
PROJECT MANAGER: Will Must	RECORDER: A	
PROJECT MANAGER: VE I TO VECTOR		11 10 10 10 10 10 10 10 10 10 10 10 10 1
DATE	MATRIX # of Containers & Preservatives DEPTH	EPA 5035/8010 EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 TPHg by 5035/8015M TPHd by 8015M TPHmo by 8015M EPA 8270C MNA Parameters (see
SAMPLE NU DESIGNA		35/8C 35/8C 35/8C 35/8C 35/8C 77C 32 32
YR MO DY TIME	NOIL EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 TPHg by 5035/8 TPHmo by 8015M TPHmo by 8015M MNA Parameters THL 22 M VCC	
1302141200 88-9		
1302141220 EB-9	· · · · · · · · · · · · · · · · · · ·	
71	2 16	
5 13 02 14 1250 GB-11		NXX XX
		
		┨ <u>┠┤┼┼┼┼┼┼┼┼┼┼┼┼┼┼</u>
NOTES	CHANGO	CUIOTODY DECORD
Turn Around Time: Stemman TAT	RELINOUISMED BY: (Signature) RECE	CUSTODY RECORD VED BY: (Signature) DATE TIME
	RELINQUISMED BY: (Signature) RECE RECENQUISMED BY: (Signature) RECE	Pat 1535
results to: jalex	aude a peseny as a reprodustred by (Signature)	IVED BY: (Signature) DATE TIME
w mo	RELINQUISHED BY: (Signature)	IVED BY: (Signature) DATE TIME
	RELINQUISHED BY: (Signature) RECE	IVED BY: (Signature) DATE TIME
	DISPATCHED BY: (Signature) DATE TH	ME RECEIVED FOR LAB BY: (Signature) DATE TIME
	METHOD OF SHIPMENT:	
Page of		
	WHITE-Laboratory COPY YELLOW-Project Office Copy PINK-Field or Office Copy	w

COOLER RECEIPT CHECKLIST

CG	Curtis & To	ompkins, Ltd	l

Login # 243126 Date Client PES	Received 2/14/13 N Project 64th	umber of coolers
Date Opened 2/14/3 By (print) Date Logged in By (print)	(sign) (sign)	Ada Mal
Did cooler come with a shipping sli Shipping info	p (airbill, etc)	YES NO
2A. Were custody seals present?	☐ YES (circle) on cooler Name rival? when received? erly (ink, signed, etc)? ody papers? (If so fill out top o	DateYES NO N/A YES NO YES NO
☐ Bubble Wrap ☐ Foam ☐ Cloth material ☐ Cardb 7. Temperature documentation:	oard Styrofoam	
Type of ice used: Wet	☐ Blue/Gel ☐ None ☐	Temp(°C)
☐ Samples Received on ice &	cold without a temperature bla	nk; temp. taken with IR gun
Samples received on ice dir	ectly from the field. Cooling pr	ocess had begun
8. Were Method 5035 sampling conta If YES, what time were they tr 9. Did all bottles arrive unbroken/unop 10. Are there any missing / extra samp 11. Are samples in the appropriate con 12. Are sample labels present, in good 13. Do the sample labels agree with cu 14. Was sufficient amount of sample s 15. Are the samples appropriately pres 16. Did you check preservatives for all 17. Did you document your preservativ 18. Did you change the hold time in Li 19. Did you change the hold time in Li 20. Are bubbles > 6mm absent in VOA 21. Was the client contacted concerning	ansferred to freezer? bened? cles? condition and complete? condition and complete? estody papers? ent for tests requested? erved? bottles for each sample? we check? MS for unpreserved VOAs? MS for preserved terracores? A samples?	YES NO N/A
If YES, what time were they tr 9. Did all bottles arrive unbroken/unor 10. Are there any missing / extra samp 11. Are samples in the appropriate con 12. Are sample labels present, in good 13. Do the sample labels agree with cu 14. Was sufficient amount of sample s 15. Are the samples appropriately present. Did you check preservatives for all 17. Did you document your preservatives. Did you change the hold time in Li 19. Did you change the hold time in Li	ansferred to freezer?	YES NO N/A
If YES, what time were they tr 9. Did all bottles arrive unbroken/unop 10. Are there any missing / extra samp 11. Are samples in the appropriate cor 12. Are sample labels present, in good 13. Do the sample labels agree with cu 14. Was sufficient amount of sample s 15. Are the samples appropriately pres 16. Did you check preservatives for all 17. Did you document your preservative 18. Did you change the hold time in Li 19. Did you change the hold time in Li 20. Are bubbles > 6mm absent in VOA 21. Was the client contacted concerning	ansferred to freezer?	YES NO N/A
If YES, what time were they tr 9. Did all bottles arrive unbroken/unor 10. Are there any missing / extra samp 11. Are samples in the appropriate cor 12. Are sample labels present, in good 13. Do the sample labels agree with cu 14. Was sufficient amount of sample s 15. Are the samples appropriately pres 16. Did you check preservatives for all 17. Did you document your preservativ 18. Did you change the hold time in Li 19. Did you change the hold time in Li 20. Are bubbles > 6mm absent in VOA 21. Was the client contacted concerning If YES, Who was called?	ansferred to freezer? pened? ples? ples? condition and complete? pent for tests requested? perved? bottles for each sample? percheck? IMS for unpreserved VOAs? A samples? peg this sample delivery? By	YES NO N/A

Gasoline by GC/FID (5035 Prep) Location: 64th & Christie Emeryville, CA Prep: EPA 5035 Lab #: 243126 Client: Prep: PES Environmental, Inc. Project#: 241.082.03.006 Analysis: EPA 8015B Batch#: 195609 Matrix: Soil Sampled: 02/14/13 Units: mg/Kg Basis: as received Received: 02/14/13 1.000 Diln Fac: Analyzed: 02/15/13

Field ID: EB-9 Lab ID: 243126-001

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 0.17

Surrogate %REC Limits
Bromofluorobenzene (FID) 86 64-139

Field ID: EB-10 Lab ID: 243126-002

Type: SAMPLE

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 0.20

Surrogate %REC Limits
Bromofluorobenzene (FID) 80 64-139

Field ID: Lab ID: 243126-003

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 0.18

Surrogate %REC Limits
Bromofluorobenzene (FID) 81 64-139

Type: BLANK Lab ID: QC677000

Analyte Result RL
Gasoline C7-C12 ND 0.20

Surrogate %REC Limits
Bromofluorobenzene (FID) 77 64-139

ND= Not Detected RL= Reporting Limit Page 1 of 1

Gasoline by GC/FID (5035 Prep)				
Lab #:	243126	Location: 64th &	Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 50	035	
Project#:	241.082.03.006	Analysis: EPA 80)15B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC676999	Batch#:	195609	
Matrix:	Soil	Analyzed:	02/15/13	
Units:	mg/Kg			

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.015	101	80-120

Surrogate %REC Li	imits
Bromofluorobenzene (FID) 84 64	4-139

Page 1 of 1

Gasoline by GC/FID (5035 Prep)				
Lab #:	243126	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 5030B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Field ID:	ZZZZZZZZZZ	Diln Fac: 1.000		
MSS Lab ID:	243121-001	Batch#: 195609		
Matrix:	Soil	Sampled: 02/14/13		
Units:	mg/Kg	Received: 02/14/13		
Basis:	as received	Analyzed: 02/15/13		

Type: MS Lab ID: QC677001

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.1796	10.75	8.038	73	42-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	87	64-139	

Type: MSD Lab ID: QC677002

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.42	7.976	75	42-120	2	42

Total Extractable Hydrocarbons Location: 64th & Christie Emeryville, CA Prep: EPA 3550B Lab #: 243126 PES Environmental, Inc. Client: Prep: Analysis: EPA 8015B Project#: 241.082.03.006 02/14/13 02/14/13 Sampled: Matrix: Soil Received: Units: mg/Kg Basis: as received Prepared: 02/19/13 Diln Fac: 1.000 02/20/13 Analyzed: Batch#: 195668

Field ID: EB-9 Lab ID: 243126-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

	0 = = =		
Surrogate	%REC	Limits	
o-Terphenyl	78	62-136	

Field ID: EB-10 Lab ID: 243126-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	80	62-136	

Field ID: EB-11 Lab ID: 243126-003 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenvl	82	62-136	

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC677261

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	73	62-136

ND= Not Detected RL= Reporting Limit Page 1 of 1

Total Extractable Hydrocarbons					
Lab #:	243126	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3550B			
Project#:	241.082.03.006	Analysis: EPA 8015B			
Type:	LCS	Diln Fac: 1.000			
Lab ID:	QC677263	Batch#: 195668			
Matrix:	Soil	Prepared: 02/19/13			
Units:	mg/Kg	Analyzed: 02/20/13			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	50.00	38.08	76	62-130

Surrogate	%REC	Limits
o-Terphenyl	74	62-136

	Total Extracta	ble Hydrocarbons
Lab #:	243126	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Field ID:	EB-9	Batch#: 195668
MSS Lab ID:	243126-001	Sampled: 02/14/13
Matrix:	Soil	Received: 02/14/13
Units:	mg/Kg	Prepared: 02/19/13
Basis:	as received	Analyzed: 02/20/13
Diln Fac:	1.000	

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC677264

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	<0.2792	50.02	32.10	64	39-148

Surrogate	%REC	Limits
o-Terphenyl	68	62-136

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC677265

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.68	35.68	72	39-148	11	45

	Surrogate	%REC	Limits
o-Terphe	phenyl	71	62-13

Purgeable Organics by GC/MS					
Lab #:	243126	Location: 64th	h & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA	5035		
Project#:	241.082.03.006	Analysis: EPA	8260B		
Field ID:	EB-9	Diln Fac:	1.124		
Lab ID:	243126-001	Batch#:	195617		
Matrix:	Soil	Sampled:	02/14/13		
Units:	ug/Kg	Received:	02/14/13		
Basis:	as received	Analyzed:	02/16/13		

Analyte	Result	RL	
Freon 12	ND	11	
Chloromethane	ND	11	
Vinyl Chloride	ND	11	
Bromomethane	ND	11	
Chloroethane	ND	11	
Trichlorofluoromethane	ND	5.6	
Acetone	ND	22	
Freon 113	ND	5.6	
1,1-Dichloroethene	ND	5.6	
Methylene Chloride	ND	22	
Carbon Disulfide	ND	5.6	
MTBE	ND	5.6	
trans-1,2-Dichloroethene	ND	5.6	
Vinyl Acetate	ND	56	
1,1-Dichloroethane	ND	5.6	
2-Butanone	ND	11	
cis-1,2-Dichloroethene	ND	5.6	
2,2-Dichloropropane	ND	5.6	
Chloroform	ND	5.6	
Bromochloromethane	ND	5.6	
1,1,1-Trichloroethane	ND	5.6	
1,1-Dichloropropene	ND	5.6	
Carbon Tetrachloride	ND	5.6	
1,2-Dichloroethane	ND	5.6	
Benzene	ND	5.6	
Trichloroethene	ND	5.6	
1,2-Dichloropropane	ND	5.6	
Bromodichloromethane	ND	5.6	
Dibromomethane	ND	5.6	
4-Methyl-2-Pentanone	ND	11	
cis-1,3-Dichloropropene	ND	5.6	
Toluene	ND	5.6	
trans-1,3-Dichloropropene	ND	5.6	
1,1,2-Trichloroethane	ND	5.6	
2-Hexanone	ND	11	
1,3-Dichloropropane	ND	5.6	
Tetrachloroethene	ND	5.6	

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	243126	Location: 64th	h & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA	5035		
Project#:	241.082.03.006	Analysis: EPA	8260B		
Field ID:	EB-9	Diln Fac:	1.124		
Lab ID:	243126-001	Batch#:	195617		
Matrix:	Soil	Sampled:	02/14/13		
Units:	ug/Kg	Received:	02/14/13		
Basis:	as received	Analyzed:	02/16/13		

Analyte	Result	RL	
Dibromochloromethane	ND	5.6	
1,2-Dibromoethane	ND	5.6	
Chlorobenzene	ND	5.6	
1,1,1,2-Tetrachloroethane	ND	5.6	
Ethylbenzene	ND	5.6	
m,p-Xylenes	ND	5.6	
o-Xylene	ND	5.6	
Styrene	ND	5.6	
Bromoform	ND	5.6	
Isopropylbenzene	ND	5.6	
1,1,2,2-Tetrachloroethane	ND	5.6	
1,2,3-Trichloropropane	ND	5.6	
Propylbenzene	ND	5.6	
Bromobenzene	ND	5.6	
1,3,5-Trimethylbenzene	ND	5.6	
2-Chlorotoluene	ND	5.6	
4-Chlorotoluene	ND	5.6	
tert-Butylbenzene	ND	5.6	
1,2,4-Trimethylbenzene	ND	5.6	
sec-Butylbenzene	ND	5.6	
para-Isopropyl Toluene	ND	5.6	
1,3-Dichlorobenzene	ND	5.6	
1,4-Dichlorobenzene	ND	5.6	
n-Butylbenzene	ND	5.6	
1,2-Dichlorobenzene	ND	5.6	
1,2-Dibromo-3-Chloropropane	ND	5.6	
1,2,4-Trichlorobenzene	ND	5.6	
Hexachlorobutadiene	ND	5.6	
Naphthalene	ND	5.6	
1,2,3-Trichlorobenzene	ND	5.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	98	80-124	
1,2-Dichloroethane-d4	92	80-137	
Toluene-d8	93	80-120	
Bromofluorobenzene	88	79-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	243126	Location: 64tl	h & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-10	Diln Fac:	0.9107	
Lab ID:	243126-002	Batch#:	195617	
Matrix:	Soil	Sampled:	02/14/13	
Units:	ug/Kg	Received:	02/14/13	
Basis:	as received	Analyzed:	02/16/13	

Analyte	Result	RL	
Freon 12	ND	9.1	
Chloromethane	ND	9.1	
Vinyl Chloride	ND	9.1	
Bromomethane	ND	9.1	
Chloroethane	ND	9.1	
Trichlorofluoromethane	ND	4.6	
Acetone	ND	18	
Freon 113	ND	4.6	
1,1-Dichloroethene	ND	4.6	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.6	
MTBE	ND	4.6	
trans-1,2-Dichloroethene	ND	4.6	
Vinyl Acetate	ND	46	
1,1-Dichloroethane	ND	4.6	
2-Butanone	ND	9.1	
cis-1,2-Dichloroethene	ND	4.6	
2,2-Dichloropropane	ND	4.6	
Chloroform	ND	4.6	
Bromochloromethane	ND	4.6	
1,1,1-Trichloroethane	ND	4.6	
1,1-Dichloropropene	ND	4.6	
Carbon Tetrachloride	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Trichloroethene	ND	4.6	
1,2-Dichloropropane	ND	4.6	
Bromodichloromethane	ND	4.6	
Dibromomethane	ND	4.6	
4-Methyl-2-Pentanone	ND	9.1	
cis-1,3-Dichloropropene	ND	4.6	
Toluene	ND	4.6	
trans-1,3-Dichloropropene	ND	4.6	
1,1,2-Trichloroethane	ND	4.6	
2-Hexanone	ND	9.1	
1,3-Dichloropropane	ND	4.6	
Tetrachloroethene	ND	4.6	

RL= Reporting Limit

Purgeable Organics by GC/MS				
Lab #:	243126	Location: 64tl	h & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-10	Diln Fac:	0.9107	
Lab ID:	243126-002	Batch#:	195617	
Matrix:	Soil	Sampled:	02/14/13	
Units:	ug/Kg	Received:	02/14/13	
Basis:	as received	Analyzed:	02/16/13	

Analyte	Result	RL	
Dibromochloromethane	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Chlorobenzene	ND	4.6	
1,1,1,2-Tetrachloroethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	
Styrene	ND	4.6	
Bromoform	ND	4.6	
Isopropylbenzene	ND	4.6	
1,1,2,2-Tetrachloroethane	ND	4.6	
1,2,3-Trichloropropane	ND	4.6	
Propylbenzene	ND	4.6	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-124	
1,2-Dichloroethane-d4	88	80-137	
Toluene-d8	95	80-120	
Bromofluorobenzene	90	79-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	243126	Location: 64th	n & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-11	Diln Fac:	0.8741	
Lab ID:	243126-003	Batch#:	195617	
Matrix:	Soil	Sampled:	02/14/13	
Units:	ug/Kg	Received:	02/14/13	
Basis:	as received	Analyzed:	02/16/13	

Analyte	Result	RL	
Freon 12	ND	8.7	
Chloromethane	ND	8.7	
Vinyl Chloride	ND	8.7	
Bromomethane	ND	8.7	
Chloroethane	ND	8.7	
Trichlorofluoromethane	ND	4.4	
Acetone	ND	17	
Freon 113	ND	4.4	
1,1-Dichloroethene	ND	4.4	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.4	
MTBE	ND	4.4	
trans-1,2-Dichloroethene	ND	4.4	
Vinyl Acetate	ND	44	
1,1-Dichloroethane	ND	4.4	
2-Butanone	ND	8.7	
cis-1,2-Dichloroethene	ND	4.4	
2,2-Dichloropropane	ND	4.4	
Chloroform	ND	4.4	
Bromochloromethane	ND	4.4	
1,1,1-Trichloroethane	ND	4.4	
1,1-Dichloropropene	ND	4.4	
Carbon Tetrachloride	ND	4.4	
1,2-Dichloroethane	ND	4.4	
Benzene	ND	4.4	
Trichloroethene	ND	4.4	
1,2-Dichloropropane	ND	4.4	
Bromodichloromethane	ND	4.4	
Dibromomethane	ND	4.4	
4-Methyl-2-Pentanone	ND	8.7	
cis-1,3-Dichloropropene	ND	4.4	
Toluene	ND	4.4	
trans-1,3-Dichloropropene	ND	4.4	
1,1,2-Trichloroethane	ND	4.4	
2-Hexanone	ND	8.7	
1,3-Dichloropropane	ND	4.4	
Tetrachloroethene	ND	4.4	

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	243126	Location: 64th	n & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	5035	
Project#:	241.082.03.006	Analysis: EPA	8260B	
Field ID:	EB-11	Diln Fac:	0.8741	
Lab ID:	243126-003	Batch#:	195617	
Matrix:	Soil	Sampled:	02/14/13	
Units:	ug/Kg	Received:	02/14/13	
Basis:	as received	Analyzed:	02/16/13	

Analyte	Result	RL	
Dibromochloromethane	ND	4.4	
1,2-Dibromoethane	ND	4.4	
Chlorobenzene	ND	4.4	
1,1,1,2-Tetrachloroethane	ND	4.4	
Ethylbenzene	ND	4.4	
m,p-Xylenes	ND	4.4	
o-Xylene	ND	4.4	
Styrene	ND	4.4	
Bromoform	ND	4.4	
Isopropylbenzene	ND	4.4	
1,1,2,2-Tetrachloroethane	ND	4.4	
1,2,3-Trichloropropane	ND	4.4	
Propylbenzene	ND	4.4	
Bromobenzene	ND	4.4	
1,3,5-Trimethylbenzene	ND	4.4	
2-Chlorotoluene	ND	4.4	
4-Chlorotoluene	ND	4.4	
tert-Butylbenzene	ND	4.4	
1,2,4-Trimethylbenzene	ND	4.4	
sec-Butylbenzene	ND	4.4	
para-Isopropyl Toluene	ND	4.4	
1,3-Dichlorobenzene	ND	4.4	
1,4-Dichlorobenzene	ND	4.4	
n-Butylbenzene	ND	4.4	
1,2-Dichlorobenzene	ND	4.4	
1,2-Dibromo-3-Chloropropane	ND	4.4	
1,2,4-Trichlorobenzene	ND	4.4	
Hexachlorobutadiene	ND	4.4	
Naphthalene	ND	4.4	
1,2,3-Trichlorobenzene	ND	4.4	

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-124	
1,2-Dichloroethane-d4	86	80-137	
Toluene-d8	97	80-120	
Bromofluorobenzene	89	79-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	243126	Location: 64t	th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA	A 5035	
Project#:	241.082.03.006	Analysis: EPA	A 8260B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC677042	Batch#:	195617	
Matrix:	Soil	Analyzed:	02/15/13	
Units:	ug/Kg			

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	26.25	105	67-132
Benzene	25.00	28.20	113	77-126
Trichloroethene	25.00	23.67	95	76-127
Toluene	25.00	25.78	103	76-124
Chlorobenzene	25.00	25.21	101	76-120

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-124	
1,2-Dichloroethane-d4	113	80-137	
Toluene-d8	94	80-120	
Bromofluorobenzene	93	79-127	

Page 1 of 1 6.0

	Purgeable Org	anics by	GC/MS
Lab #:	243126	Location:	64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep:	EPA 5035
Project#:	241.082.03.006	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC677043	Batch#:	195617
Matrix:	Soil	Analyzed:	02/15/13
Units:	ug/Kg		

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	243126	Location: 6	54th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: E	EPA 5035		
Project#:	241.082.03.006	Analysis: E	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC677043	Batch#:	195617		
Matrix:	Soil	Analyzed:	02/15/13		
Units:	ug/Kg				

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-124	
1,2-Dichloroethane-d4	92	80-137	
Toluene-d8	94	80-120	
Bromofluorobenzene	88	79-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	243126	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: EPA 5030B				
Project#:	241.082.03.006	Analysis: EPA 8260B				
Field ID:	ZZZZZZZZZZ	Batch#: 195617				
MSS Lab ID:	243123-002	Sampled: 02/13/13				
Matrix:	Soil	Received: 02/14/13				
Units:	ug/Kg	Analyzed: 02/16/13				
Basis:	as received					

Type: MS Diln Fac: 0.9488

Lab ID: QC677061

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.4120	47.44	56.86	120	52-132
Benzene	<0.4085	47.44	62.58	132 *	54-121
Trichloroethene	0.5734	47.44	52.83	110	46-138
Toluene	<0.2967	47.44	56.57	119	47-120
Chlorobenzene	<0.3701	47.44	51.03	108	41-120

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-124
1,2-Dichloroethane-d4	106	80-137
Toluene-d8	96	80-120
Bromofluorobenzene	87	79-127

Type: MSD Diln Fac: 0.8913

Lab ID: QC677062

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	44.56	51.67	116	52-132	3	46
Benzene	44.56	57.34	129 *	54-121	2	43
Trichloroethene	44.56	48.73	108	46-138	2	50
Toluene	44.56	52.61	118	47-120	1	53
Chlorobenzene	44.56	48.16	108	41-120	0	50

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-124	
1,2-Dichloroethane-d4	102	80-137	
Toluene-d8	95	80-120	
Bromofluorobenzene	88	79-127	

^{*=} Value outside of QC limits; see narrative

RPD= Relative Percent Difference

Page 1 of 1 8.0

California Title 22 Metals					
Lab #:	243126	Project#: 241.082.03.006			
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA			
Field ID:	EB-9	Diln Fac: 1.000			
Lab ID:	243126-001	Sampled: 02/14/13			
Matrix:	Soil	Received: 02/14/13			
Units:	mg/Kg	Prepared: 02/19/13			
Basis:	as received				

Analyte	Result	RL	Batch# Analyzed	Prep	Analysis
Antimony	ND	0.48	195688 02/20/13 E	PA 3050B	EPA 6010B
Arsenic	3.2	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Barium	44	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Beryllium	0.17	0.095	195688 02/20/13 E	PA 3050B	EPA 6010B
Cadmium	ND	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Chromium	56	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Cobalt	8.9	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Copper	9.4	0.25	195688 02/20/13 E	PA 3050B	EPA 6010B
Lead	2.2	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Mercury	ND	0.018	195661 02/19/13 M	ETHOD	EPA 7471A
Molybdenum	ND	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Nickel	34	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Selenium	ND	0.48	195688 02/21/13 E	PA 3050B	EPA 6010B
Silver	ND	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Thallium	ND	0.48	195688 02/20/13 E	PA 3050B	EPA 6010B
Vanadium	44	0.24	195688 02/20/13 E	PA 3050B	EPA 6010B
Zinc	27	0.95	195688 02/20/13 E	PA 3050B	EPA 6010B

California Title 22 Metals					
Lab #:	243126	Project#: 241.082.03.006			
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA			
Field ID:	EB-10	Diln Fac: 1.000			
Lab ID:	243126-002	Sampled: 02/14/13			
Matrix:	Soil	Received: 02/14/13			
Units:	mg/Kg	Prepared: 02/19/13			
Basis:	as received				

Analyte	Result	RL	Batch# Analyzed	Prep	Analysis
Antimony	ND	0.45	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Arsenic	4.7	0.23	195688 02/21/13 EPA	. 3050B E	EPA 6010B
Barium	120	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Beryllium	0.47	0.090	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Cadmium	ND	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Chromium	41	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Cobalt	13	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Copper	19	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Lead	4.8	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Mercury	0.026	0.018	195661 02/19/13 MET	HOD E	EPA 7471A
Molybdenum	ND	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Nickel	60	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Selenium	ND	0.45	195688 02/21/13 EPA	. 3050B E	EPA 6010B
Silver	ND	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Thallium	ND	0.45	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Vanadium	30	0.23	195688 02/20/13 EPA	. 3050B E	EPA 6010B
Zinc	40	0.90	195688 02/20/13 EPA	. 3050B E	EPA 6010B

California Title 22 Metals					
Lab #:	243126	Project#: 241.082.03.006			
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA			
Field ID:	EB-11	Diln Fac: 1.000			
Lab ID:	243126-003	Sampled: 02/14/13			
Matrix:	Soil	Received: 02/14/13			
Units:	mg/Kg	Prepared: 02/19/13			
Basis:	as received				

Analyte	Result	RL	Batch# Analyzed Prep Analysis
Antimony	ND	0.45	195688 02/20/13 EPA 3050B EPA 6010B
Arsenic	8.0	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Barium	81	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Beryllium	0.51	0.091	195688 02/20/13 EPA 3050B EPA 6010B
Cadmium	0.31	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Chromium	36	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Cobalt	19	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Copper	24	0.24	195688 02/20/13 EPA 3050B EPA 6010B
Lead	6.9	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Mercury	0.021	0.018	195661 02/19/13 METHOD EPA 7471A
Molybdenum	0.57	0.23	195688 02/21/13 EPA 3050B EPA 6010B
Nickel	63	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Selenium	ND	0.45	195688 02/21/13 EPA 3050B EPA 6010B
Silver	ND	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Thallium	ND	0.45	195688 02/20/13 EPA 3050B EPA 6010B
Vanadium	42	0.23	195688 02/20/13 EPA 3050B EPA 6010B
Zinc	41	0.91	195688 02/20/13 EPA 3050B EPA 6010B

Page 1 of 1

	California	Title 22 Metals	
Lab #:	243126	Location: 64th & Christie Eme	ryville, CA
Client:	PES Environmental, Inc.	Prep: METHOD	
Project#:	241.082.03.006	Analysis: EPA 7471A	
Analyte:	Mercury	Diln Fac: 1.000	
Type:	BLANK	Batch#: 195661	
Lab ID:	QC677220	Prepared: 02/19/13	
Matrix:	Soil	Analyzed: 02/19/13	
Units:	mg/Kg		

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals					
Lab #:	243126	Location: 64th &	Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: METHOD)		
Project#:	241.082.03.006	Analysis: EPA 74	171A		
Analyte:	Mercury	Batch#:	195661		
Matrix:	Soil	Prepared:	02/19/13		
Units:	mg/Kg	Analyzed:	02/19/13		
Diln Fac:	1.000				

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC677221	0.2083	0.2283	110	80-120		
BSD	QC677222	0.2083	0.2233	107	80-120	2	20

California Title 22 Metals					
Lab #:	243126	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: METHOD			
Project#:	241.082.03.006	Analysis: EPA 7471A			
Analyte:	Mercury	Diln Fac: 1.000			
Field ID:	ZZZZZZZZZ	Batch#: 195661			
MSS Lab ID:	243105-007	Sampled: 02/14/13			
Matrix:	Soil	Received: 02/14/13			
Units:	mg/Kg	Prepared: 02/19/13			
Basis:	as received	Analyzed: 02/19/13			

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC677223	0.3092	0.2119	0.5059	93	72-135		
MSD	QC677224		0.2232	0.5527	109	72-135	7	42

	California T	itle 22 Metals
Lab #:	243126	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3050B
Project#:	241.082.03.006	Analysis: EPA 6010B
Type:	BLANK	Diln Fac: 1.000
Lab ID:	QC677374	Batch#: 195688
Matrix:	Soil	Prepared: 02/19/13
Units:	mg/Kg	

Analyte	Result	RL	Analyzed	
Antimony	ND	0.50	02/20/13	
Arsenic	ND	0.25	02/20/13	
Barium	ND	0.25	02/20/13	
Beryllium	ND	0.10	02/20/13	
Cadmium	ND	0.25	02/20/13	
Chromium	ND	0.25	02/20/13	
Cobalt	ND	0.25	02/20/13	
Copper	ND	0.26	02/20/13	
Lead	ND	0.25	02/20/13	
Molybdenum	ND	0.25	02/20/13	
Nickel	ND	0.25	02/20/13	
Selenium	ND	0.50	02/21/13	
Silver	ND	0.25	02/20/13	
Thallium	ND	0.50	02/20/13	
Vanadium	ND	0.25	02/20/13	
Zinc	ND	1.0	02/20/13	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	California	Title 22 Metals
Lab #: Client: Project#:	243126 PES Environmental, Inc. 241.082.03.006	Location: 64th & Christie Emeryville, CA Prep: EPA 3050B Analysis: EPA 6010B
Matrix: Units: Diln Fac:	Soil mg/Kg 1.000	Batch#: 195688 Prepared: 02/19/13

Type: BS Lab ID: QC677375

Analyte	Spiked	Result	%REC	Limits	Analyzed
Antimony	100.0	92.66	93	80-120	02/20/13
Arsenic	50.00	47.47	95	80-120	02/20/13
Barium	100.0	94.62	95	80-120	02/20/13
Beryllium	2.500	2.532	101	80-120	02/20/13
Cadmium	10.00	9.958	100	80-120	02/20/13
Chromium	100.0	94.66	95	80-120	02/20/13
Cobalt	25.00	23.60	94	80-120	02/20/13
Copper	12.50	12.21	98	80-120	02/20/13
Lead	100.0	92.91	93	80-120	02/20/13
Molybdenum	20.00	19.65	98	80-120	02/20/13
Nickel	25.00	23.68	95	80-120	02/20/13
Selenium	50.00	51.77	104	80-120	02/21/13
Silver	10.00	9.155	92	80-120	02/20/13
Thallium	50.00	45.51	91	80-120	02/20/13
Vanadium	25.00	23.94	96	80-120	02/20/13
Zinc	25.00	23.82	95	80-120	02/20/13

Type: BSD Lab ID: QC677376

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	Analyzed
Antimony	100.0	88.61	89	80-120	4	20	02/20/13
Arsenic	50.00	45.23	90	80-120	5	20	02/20/13
Barium	100.0	90.92	91	80-120	4	20	02/20/13
Beryllium	2.500	2.415	97	80-120	5	20	02/20/13
Cadmium	10.00	9.592	96	80-120	4	20	02/20/13
Chromium	100.0	90.87	91	80-120	4	20	02/20/13
Cobalt	25.00	22.64	91	80-120	4	20	02/20/13
Copper	12.50	11.69	94	80-120	4	20	02/20/13
Lead	100.0	88.59	89	80-120	5	22	02/20/13
Molybdenum	20.00	18.73	94	80-120	5	20	02/20/13
Nickel	25.00	22.83	91	80-120	4	20	02/20/13
Selenium	50.00	50.79	102	80-120	2	20	02/21/13
Silver	10.00	8.846	88	80-120	3	20	02/20/13
Thallium	50.00	43.08	86	80-120	5	20	02/20/13
Vanadium	25.00	22.98	92	80-120	4	20	02/20/13
Zinc	25.00	22.93	92	80-120	4	20	02/20/13

California Title 22 Metals									
Lab #:	243126	Location: 64th & Christie Emeryville, CA							
Client:	PES Environmental, Inc.	Prep: EPA 3050B							
Project#:	241.082.03.006	Analysis: EPA 6010B							
Field ID:	ZZZZZZZZZZ	Diln Fac: 1.000							
MSS Lab ID:	243075-001	Batch#: 195688							
Matrix:	Soil	Sampled: 02/13/13							
Units:	mg/Kg	Received: 02/13/13							
Basis:	as received	Prepared: 02/19/13							

Lab ID: QC677377 Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits	Analyzed
Antimony	0.4613	94.34	41.84	44	8-120	02/20/13
Arsenic	19.83	47.17	64.25	94	71-121	02/20/13
Barium	173.7	94.34	246.5	77	48-133	02/20/13
Beryllium	0.4174	2.358	3.326	123 *	78-120	02/20/13
Cadmium	0.3923	9.434	8.902	90	69-120	02/20/13
Chromium	29.59	94.34	111.4	87	60-122	02/20/13
Cobalt	12.20	23.58	31.80	83	61-120	02/20/13
Copper	27.80	11.79	56.10	240 *	44-151	02/20/13
Lead	205.8	94.34	302.3	102	52-120	02/20/13
Molybdenum	0.6153	18.87	16.89	86	67-120	02/20/13
Nickel	20.72	23.58	41.34	87	45-134	02/20/13
Selenium	0.1938	47.17	43.73	92	67-120	02/21/13
Silver	0.1945	9.434	8.534	88	66-120	02/20/13
Thallium	<0.1568	47.17	37.20	79	62-120	02/20/13
Vanadium	37.83	23.58	57.25	82	55-137	02/20/13
Zinc	128.7	23.58	145.2	70 NM	38-146	02/20/13

Type: MSD Lab ID: QC677378

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	Analyzed
Antimony	92.59	41.21	44	8-120	0	29	02/20/13
Arsenic	46.30	58.67	84	71-121	8	34	02/20/13
Barium	92.59	287.8	123	48-133	16	45	02/20/13
Beryllium	2.315	2.607	95	78-120	23 *	20	02/20/13
Cadmium	9.259	8.712	90	69-120	0	23	02/20/13
Chromium	92.59	108.2	85	60-122	2	34	02/20/13
Cobalt	23.15	41.58	127 *	61-120	28	37	02/20/13
Copper	11.57	40.62	111	44-151	31	35	02/20/13
Lead	92.59	276.9	77	52-120	8	51	02/20/13
Molybdenum	18.52	16.72	87	67-120	1	20	02/20/13
Nickel	23.15	40.23	84	45-134	2	38	02/20/13
Selenium	46.30	44.33	95	67-120	3	27	02/21/13
Silver	9.259	8.374	88	66-120	0	30	02/20/13
Thallium	46.30	36.60	79	62-120	0	20	02/20/13
Vanadium	23.15	53.91	69	55-137	5	30	02/20/13
Zinc	23.15	140.4	50 NM	38-146	3	36	02/20/13

^{*=} Value outside of QC limits; see narrative NM= Not Meaningful: Sample concentration > 4X spike concentration RPD= Relative Percent Difference

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

Laboratory Job Number 243418 ANALYTICAL REPORT

PES Environmental, Inc.

Project : 241.082.03.006

1682 Novato Boulevard Novato, CA 94947

Location: 64th & Christie Emeryville, CA

Date: 03/06/2013

Level : II

<u>Sample ID</u> EB-12

<u>Lab ID</u> 243418-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Desiree N. Tetrault Project Manager

Deine 7. Tetralt

(510) 486-0900

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 243418

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 02/27/13 Samples Received: 02/27/13

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 02/27/13. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

Matrix spikes were not performed for this analysis in batch 195996 due to insufficient sample amount. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

Matrix spikes were not performed for this analysis in batch 195918 due to insufficient sample amount. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

CHAIN OF CUSTODY

Project		Phone (5 Fax (5 Sc	isiness Since 1 510) 486-05 510) 486-05 campler: () eport To: () company: ()	878 200 532 ∴∴ ∴∴ €≤≤	M	ust	/	Soh			18 -		Rois	5/m-(5)	/ Spel election	727. X	Y 11		lin of	stod	_	sf	
Turnarou	nd Time: □ RUSH	≰Standard Er		MAT	<u>@</u>	Containers 2		CHEN RESER	IICAI		\$ 5		P 28	2 8	3 70 8	7 2							
No.	E6-12	Date Collected	Time Collected	Water X Solid/sis		b # of Con		H2SO4		None (6)	MOR		1 TPH.	16.15	I CET I	2 2							
		2/27/13	1020			7				2	1 6			7									
Notes:	Standard TAT	SAMPLE RECEIPT Intact Cold On Ice Ambient	JLT.	Al.	efan!	leui:		DATE: DATE:		TIME		5	0		vé	2	RI L	au	VED	 E:	27,1 TIN	13:	- -

COOLER RECEIPT CHECKLIST

Login # 243418 Date Received 2/27/13 Number of coolers Client PES Project 6444 + Christie
Date Opened 2/27/15 By (print) (sign) (sign) Date Logged in By (print) (sign)
1. Did cooler come with a shipping slip (airbill, etc)YES NOYES NOYES NOYES NOYES NOYES NOYES NOYES NOYES NOYES NO
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? YES NO (N/A)
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe)
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C
Type of ice used: Wet Blue/Gel None Temp(°C)
Samples Received on ice & cold without a temperature blank; temp. taken with IR gun
Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? YES NO If YES, what time were they transferred to freezer? 1920 9. Did all bottles arrive unbroken/unopened? YES NO
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. Date: 24. NO 25. NO 26. NO 27. NO 27. NO 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. Are bubbles > 6mm absent in VOA samples? 23. Date: 24. NO 25. NO 26. NO 26. NO 27. NO 27
11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 10. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 12. VES NO V/A
11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By 24. Date: 25. NO 26. NO 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Date: 21. Was the client contacted concerning this sample delivery? 22. Date: 23. NO 24. Date: 25. NO 26. NO 27. Did 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Date: 21. Was the client contacted concerning this sample delivery? 21. Date: 22. Date: 23. NO 24. Date: 25. NO 26. NO 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 29. Date: 20. Date: 29. Date: 20. Date: 29.
11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By 24. Date: 25. NO 26. NO 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Date: 21. Was the client contacted concerning this sample delivery? 22. Date: 23. NO 24. Date: 25. NO 26. NO 27. Did 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Date: 21. Was the client contacted concerning this sample delivery? 21. Date: 22. Date: 23. NO 24. Date: 25. NO 26. NO 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 29. Date: 20. Date: 29. Date: 20. Date: 29.
11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By 24. Date: 25. NO 26. NO 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Date: 21. Was the client contacted concerning this sample delivery? 22. Date: 23. NO 24. Date: 25. NO 26. NO 27. Did 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 20. Date: 21. Was the client contacted concerning this sample delivery? 21. Date: 22. Date: 23. NO 24. Date: 25. NO 26. NO 27. Did 28. NO 29. NO 20. Are bubbles > 6mm absent in VOA samples? 29. Date: 20. Date: 29. Date: 20. Date: 29.

Rev 10, 11/11

Gasoline by GC/FID (5035 Prep) Lab #: 243418 Location: 64th & Christie Emeryville, CA Client: PES Environmental, Inc. EPA 5035 Project#: 241.082.03.006 Analysis: EPA 8015B Field ID: EB-12 Batch#: 195996 Matrix: Soil Sampled: 02/27/13 Units: mg/Kg Received: 02/27/13 Basis: as received Analyzed: 03/01/13 Diln Fac: 1.000

Type: SAMPLE Lab ID: 243418-001

Analyte Result RL
Gasoline C7-C12 ND 0.18

Surrogate %REC	Limits	
orobenzene (FID) 88	64-139	

Type: BLANK Lab ID: QC678557

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	84	64-139

ND= Not Detected RL= Reporting Limit

Page 1 of 1 10.0

Gasoline by GC/FID (5035 Prep)				
Lab #:	243418	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 5035		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Matrix:	Soil	Batch#: 195996		
Units:	mg/Kg	Analyzed: 03/01/13		
Diln Fac:	1.000			

Type: BS Lab ID: QC678555

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	0.9705	97	80-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	87	64-139	

Type: BSD Lab ID: QC678556

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1.000	0.9480	95	80-120	2	20

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	89	64-139	

Total Extractable Hydrocarbons				
Lab #:	243418	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3550B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Field ID:	EB-12	Batch#: 195951		
Matrix:	Soil	Sampled: 02/27/13		
Units:	mg/Kg	Received: 02/27/13		
Basis:	as received	Prepared: 02/28/13		
Diln Fac:	1.000	Analyzed: 02/28/13		

Type: SAMPLE Cleanup Method: EPA 3630C

Type: SAMPLE Lab ID: 243418-001

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	84	62-136	

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC678363

Analyte	Result	RL	
Diesel C10-C24	ND	0.99	
Motor Oil C24-C36	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Total Extractable Hydrocarbons				
Lab #:	243418	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3550B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Type:	LCS	Diln Fac: 1.000		
Lab ID:	QC678364	Batch#: 195951		
Matrix:	Soil	Prepared: 02/28/13		
Units:	mg/Kg	Analyzed: 02/28/13		

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.83	52.17	105	62-130

Surrogate	%REC	Limits
o-Terphenyl	123	62-136

	Total Extracta	ble Hydrocarbons
Lab #:	243418	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#: 195951
MSS Lab ID:	243415-001	Sampled: 02/26/13
Matrix:	Soil	Received: 02/27/13
Units:	mg/Kg	Prepared: 02/28/13
Basis:	as received	Analyzed: 02/28/13
Diln Fac:	1.000	

Type: MS

Lab ID: QC678365

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	2.540	49.64	47.47	90	39-148

Surrogate	%REC	Limits
o-Terphenyl	86	62-136

Type: MSD Lab ID: QC678366

Analyte	Spiked	Result	%REC	Limits	RPD 1	Lim
Diesel C10-C24	49.96	47.07	89	39-148	1 '	45

Sur	rogate	%REC	Limits
- 1 1	3	0.4	60 126
lo-Terphenyl		84	62-136

	Purgeable O	ganics by GC/MS	
Lab #:	243418	Location: 64th & Christie Emeryvil	lle, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035	
Project#:	241.082.03.006	Analysis: EPA 8260B	
Field ID:	EB-12	Diln Fac: 0.9452	
Lab ID:	243418-001	Batch#: 195918	
Matrix:	Soil	Sampled: 02/27/13	
Units:	ug/Kg	Received: 02/27/13	
Basis:	as received	Analyzed: 02/27/13	

Freon 12	Analyte	Result	RL	
Chloromethane ND 9.5 Vinyl Chloride ND 9.5 Bromomethane ND 9.5 Chloroethane ND 9.5 Trichlorofluoromethane ND 4.7 Acetone ND 4.7 Freon 113 ND 4.7 1,1-Dichloroethene ND 4.7 Methylene Chloride ND 4.7 Methylene Chloride ND 4.7 MTBE ND 4.7 MTBE ND 4.7 Vinyl Acetate ND 4.7 Vinyl Acetate ND 4.7 1,1-Dichloroethane ND 4.7 2-Butanone ND 4.7 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 2,2-Dichloropropane ND 4.7 Bromochloromethane ND 4.7 1,1-Trichloroethane ND 4.7 1,2-Dichloropropane ND 4.7 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
Vinyl Chloride ND 9.5 Bromomethane ND 9.5 Chloroethane ND 9.5 Trichlorofluoromethane ND 4.7 Acetone ND 19 Freon 113 ND 4.7 1,1-Dichloroethene ND 4.7 Methylene Chloride ND 4.7 Carbon Disulfide ND 4.7 MTBE ND 4.7 trans-1,2-Dichloroethene ND 4.7 Vinyl Acetate ND 4.7 1,1-Dichloroethane ND 4.7 2-Butanone ND 4.7 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Bromochloromethane ND 4.7 Bromochloropropene ND 4.7 1,1-Trichloroethane ND 4.7 1,2-Dichloropropene ND 4.7 2-Dichloropropane ND 4.7 Benzene ND 4.7				
Bromomethane				
Chloroethane	_			
Trichlorofluoromethane				
Acetone				
Freon 113				
1,1-Dichloroethene ND 4.7 Methylene Chloride ND 19 Carbon Disulfide ND 4.7 MTBE ND 4.7 trans-1,2-Dichloroethene ND 4.7 Vinyl Acetate ND 4.7 1,1-Dichloroethane ND 4.7 2-Butanone ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 1,2-Dichloropropane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
Methylene Chloride ND 19 Carbon Disulfide ND 4.7 MTBE ND 4.7 trans-1,2-Dichloroethene ND 4.7 Vinyl Acetate ND 4.7 1,1-Dichloroethane ND 4.7 2-Butanone ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
Carbon Disulfide ND 4.7 MTBE ND 4.7 trans-1,2-Dichloroethene ND 4.7 Vinyl Acetate ND 4.7 1,1-Dichloroethane ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1,1-Trichloroethane ND 4.7 1,1,1-Trichloropropane ND 4.7 1,2-Dichloropropane ND 4.7 1,2-Dichloropropane ND 4.7 Trichloroethane ND 4.7 1,2-Dichloroethane ND 4.7 1,2-Dichloroethane ND 4.7 Trichloroethane ND 4.7 Benzene ND 4.7 Trichloropropane ND 4.7 Trichloropropane ND 4.7 Benzene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7				
MTBE ND 4.7 trans-1,2-Dichloroethene ND 4.7 Vinyl Acetate ND 47 1,1-Dichloroethane ND 4.7 2-Butanone ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1-Tichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 1,2-Dichloropropane ND 4.7 Bromodichloromethane ND 4.7 Bromodichloromethane ND 4.7 Bromodichloromethane ND 4.7	_			
trans-1,2-Dichloroethene ND 4.7 Vinyl Acetate ND 47 1,1-Dichloroethane ND 4.7 2-Butanone ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Trichloroethane ND 4.7 1,2-Dichloroethane ND 4.7 Trichloroethane ND 4.7 Benzene ND 4.7 Trichloroethane ND 4.7 Benzene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7 Bromodichloromethane ND 4.7				
Vinyl AcetateND471,1-DichloroethaneND4.72-ButanoneND9.5cis-1,2-DichloroetheneND4.72,2-DichloropropaneND4.7ChloroformND4.7BromochloromethaneND4.71,1,1-TrichloroethaneND4.71,1-DichloropropeneND4.7Carbon TetrachlorideND4.71,2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
1,1-Dichloroethane ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Trichloroethene ND 4.7 Trichloroethene ND 4.7 Trichloropropane ND 4.7 Benzene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7				
2-Butanone ND 9.5 cis-1,2-Dichloroethene ND 4.7 2,2-Dichloropropane ND 4.7 Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 Trichloroethene ND 4.7 Benzene ND 4.7 Bromodichloropropane ND 4.7 Bromodichloromethane ND 4.7 Bromodichloromethane ND 4.7 Bromodichloromethane ND 4.7	_			
cis-1,2-DichloroetheneND4.72,2-DichloropropaneND4.7ChloroformND4.7BromochloromethaneND4.71,1,1-TrichloroethaneND4.71,1-DichloropropeneND4.7Carbon TetrachlorideND4.71,2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
2,2-DichloropropaneND4.7ChloroformND4.7BromochloromethaneND4.71,1,1-TrichloroethaneND4.71,1-DichloropropeneND4.7Carbon TetrachlorideND4.71,2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
Chloroform ND 4.7 Bromochloromethane ND 4.7 1,1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
Bromochloromethane ND 4.7 1,1,1-Trichloroethane ND 4.7 1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
1,1,1-TrichloroethaneND4.71,1-DichloropropeneND4.7Carbon TetrachlorideND4.71,2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
1,1-Dichloropropene ND 4.7 Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 Trichloropropane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
Carbon Tetrachloride ND 4.7 1,2-Dichloroethane ND 4.7 Benzene ND 4.7 Trichloroethene ND 4.7 1,2-Dichloropropane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
1,2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
Trichloroethene ND 4.7 1,2-Dichloropropane ND 4.7 Bromodichloromethane ND 4.7 Dibromomethane ND 4.7	1			
1,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7				
Bromodichloromethane ND 4.7 Dibromomethane ND 4.7				
Dibromomethane ND 4.7				
cis-1,3-Dichloropropene ND 4.7	_			
Toluene ND 4.7				
trans-1,3-Dichloropropene ND 4.7				
1,1,2-Trichloroethane ND 4.7				
2-Hexanone ND 9.5				
1,3-Dichloropropane ND 4.7				
Tetrachloroethene ND 4.7				

-

Purgeable Organics by GC/MS					
Lab #:	243418	Location: 64tl	h & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA	5035		
Project#:	241.082.03.006	Analysis: EPA	8260B		
Field ID:	EB-12	Diln Fac:	0.9452		
Lab ID:	243418-001	Batch#:	195918		
Matrix:	Soil	Sampled:	02/27/13		
Units:	ug/Kg	Received:	02/27/13		
Basis:	as received	Analyzed:	02/27/13		

Analyte	Result	RL	
Dibromochloromethane	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Chlorobenzene	ND	4.7	
1,1,1,2-Tetrachloroethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	
Styrene	ND	4.7	
Bromoform	ND	4.7	
Isopropylbenzene	ND	4.7	
1,1,2,2-Tetrachloroethane	ND	4.7	
1,2,3-Trichloropropane	ND	4.7	
Propylbenzene	ND	4.7	
Bromobenzene	ND	4.7	
1,3,5-Trimethylbenzene	ND	4.7	
2-Chlorotoluene	ND	4.7	
4-Chlorotoluene	ND	4.7	
tert-Butylbenzene	ND	4.7	
1,2,4-Trimethylbenzene	ND	4.7	
sec-Butylbenzene	ND	4.7	
para-Isopropyl Toluene	ND	4.7	
1,3-Dichlorobenzene	ND	4.7	
1,4-Dichlorobenzene	ND	4.7	
n-Butylbenzene	ND	4.7	
1,2-Dichlorobenzene	ND	4.7	
1,2-Dibromo-3-Chloropropane	ND	4.7	
1,2,4-Trichlorobenzene	ND	4.7	
Hexachlorobutadiene	ND	4.7	
Naphthalene	ND	4.7	
1,2,3-Trichlorobenzene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	80-124	
1,2-Dichloroethane-d4	127	80-137	
Toluene-d8	108	80-120	
Bromofluorobenzene	98	79-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable Org	anics by GC	C/MS
Lab #:	243418	Location: 64	th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EP	PA 5035
Project#:	241.082.03.006	Analysis: EP	PA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC678229	Batch#:	195918
Matrix:	Soil	Analyzed:	02/27/13
Units:	ug/Kg		

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable O	rganics by GC/MS	
Lab #:	243418	Location: 64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 5035	
Project#:	241.082.03.006	Analysis: EPA 8260B	
Type:	BLANK	Diln Fac: 1.000	
Lab ID:	QC678229	Batch#: 195918	
Matrix:	Soil	Analyzed: 02/27/13	
Units:	ug/Kg		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-124	
1,2-Dichloroethane-d4	124	80-137	
Toluene-d8	104	80-120	
Bromofluorobenzene	100	79-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Purgeable O	rganics by GC/MS
Lab #:	243418	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	241.082.03.006	Analysis: EPA 8260B
Matrix:	Soil	Batch#: 195918
Units:	ug/Kg	Analyzed: 02/27/13
Diln Fac:	1.000	

Type: BS Lab ID: QC678230

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	20.00	18.97	95	67-132
Benzene	20.00	20.23	101	77-126
Trichloroethene	20.00	19.72	99	76-127
Toluene	20.00	20.32	102	76-124
Chlorobenzene	20.00	17.46	87	76-120

Surrogate	%REC	Limits	
Dibromofluoromethane	110	80-124	
1,2-Dichloroethane-d4	131	80-137	
Toluene-d8	107	80-120	
Bromofluorobenzene	100	79-127	

Type: BSD Lab ID: QC678231

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	20.00	19.70	98	67-132	4	27
Benzene	20.00	21.27	106	77-126	5	20
Trichloroethene	20.00	20.89	104	76-127	6	22
Toluene	20.00	22.65	113	76-124	11	26
Chlorobenzene	20.00	18.93	95	76-120	8	21

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-124
1,2-Dichloroethane-d4	128	80-137
Toluene-d8	113	80-120
Bromofluorobenzene	99	79-127

California Title 22 Metals				
Lab #:	243418	Project#: 241.082.03.006		
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA		
Field ID:	EB-12	Diln Fac: 1.000		
Lab ID:	243418-001	Sampled: 02/27/13		
Matrix:	Soil	Received: 02/27/13		
Units:	mg/Kg	Analyzed: 02/28/13		
Basis:	as received			

Analyte	Result	RL	Batch# Prepared Prep Analysis
Antimony	ND	0.48	195936 02/27/13 EPA 3050B EPA 6010B
Arsenic	5.2	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Barium	110	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Beryllium	0.49	0.095	195936 02/27/13 EPA 3050B EPA 6010B
Cadmium	ND	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Chromium	51	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Cobalt	19	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Copper	22	0.25	195936 02/27/13 EPA 3050B EPA 6010B
Lead	6.4	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Mercury	ND	0.017	195953 02/28/13 METHOD EPA 7471A
Molybdenum	ND	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Nickel	57	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Selenium	ND	0.48	195936 02/27/13 EPA 3050B EPA 6010B
Silver	ND	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Thallium	ND	0.48	195936 02/27/13 EPA 3050B EPA 6010B
Vanadium	47	0.24	195936 02/27/13 EPA 3050B EPA 6010B
Zinc	48	0.95	195936 02/27/13 EPA 3050B EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	California	Title 22 Metals	
Lab #:	243418	Location: 64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 3050B	
Project#:	241.082.03.006	Analysis: EPA 6010B	
Type:	BLANK	Diln Fac: 1.000	
Lab ID:	QC678314	Batch#: 195936	
Matrix:	Soil	Prepared: 02/27/13	
Units:	mg/Kg	Analyzed: 02/28/13	

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.26	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	California '	Title 22 Metals
Lab #:	243418	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3050B
Project#:	241.082.03.006	Analysis: EPA 6010B
Matrix:	Soil	Batch#: 195936
Units:	mg/Kg	Prepared: 02/27/13
Diln Fac:	1.000	Analyzed: 02/28/13

Type: BS Lab ID: QC678315

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	103.9	104	80-120
Arsenic	50.00	53.01	106	80-120
Barium	100.0	106.3	106	80-120
Beryllium	2.500	2.765	111	80-120
Cadmium	10.00	10.84	108	80-120
Chromium	100.0	105.9	106	80-120
Cobalt	25.00	26.33	105	80-120
Copper	12.50	12.85	103	80-120
Lead	100.0	100.9	101	80-120
Molybdenum	20.00	21.32	107	80-120
Nickel	25.00	25.96	104	80-120
Selenium	50.00	51.85	104	80-120
Silver	10.00	10.25	102	80-120
Thallium	50.00	52.40	105	80-120
Vanadium	25.00	26.49	106	80-120
Zinc	25.00	26.61	106	80-120

Type: BSD Lab ID: QC678316

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	104.5	104	80-120	1	20
Arsenic	50.00	53.10	106	80-120	0	20
Barium	100.0	105.8	106	80-120	1	20
Beryllium	2.500	2.746	110	80-120	1	20
Cadmium	10.00	10.79	108	80-120	0	20
Chromium	100.0	105.3	105	80-120	1	20
Cobalt	25.00	26.22	105	80-120	0	20
Copper	12.50	12.81	103	80-120	0	20
Lead	100.0	100.9	101	80-120	0	22
Molybdenum	20.00	21.32	107	80-120	0	20
Nickel	25.00	25.90	104	80-120	0	20
Selenium	50.00	51.54	103	80-120	1	20
Silver	10.00	10.14	101	80-120	1	20
Thallium	50.00	52.24	104	80-120	0	20
Vanadium	25.00	26.21	105	80-120	1	20
Zinc	25.00	26.47	106	80-120	1	20

	California Title 22 Metals				
Lab #:	243418	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3050B			
Project#:	241.082.03.006	Analysis: EPA 6010B			
Field ID:	ZZZZZZZZZZ	Batch#: 195936			
MSS Lab ID:	243347-003	Sampled: 02/22/13			
Matrix:	Soil	Received: 02/22/13			
Units:	mg/Kg	Prepared: 02/27/13			
Basis:	as received	Analyzed: 02/28/13			
Diln Fac:	1.000				

Type: MS Lab ID: QC678317

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<0.1513	96.15	58.71	61	8-120
Arsenic	5.132	48.08	50.29	94	71-121
Barium	175.6	96.15	247.9	75	48-133
Beryllium	0.4312	2.404	2.789	98	78-120
Cadmium	0.08016	9.615	8.966	92	69-120
Chromium	28.17	96.15	118.4	94	60-122
Cobalt	11.01	24.04	31.79	86	61-120
Copper	19.06	12.02	30.20	93	44-151
Lead	7.727	96.15	88.32	84	52-120
Molybdenum	< 0.05347	19.23	17.21	89	67-120
Nickel	37.01	24.04	59.77	95	45-134
Selenium	< 0.1393	48.08	42.82	89	67-120
Silver	<0.07119	9.615	9.072	94	66-120
Thallium	<0.1553	48.08	41.97	87	62-120
Vanadium	48.71	24.04	72.35	98	55-137
Zinc	48.65	24.04	64.17	65	38-146

Type: MSD Lab ID: QC678318

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	99.01	61.69	62	8-120	2	29
Arsenic	49.50	51.97	95	71-121	1	34
Barium	99.01	256.0	81	48-133	2	45
Beryllium	2.475	2.953	102	78-120	3	20
Cadmium	9.901	9.496	95	69-120	3	23
Chromium	99.01	121.2	94	60-122	0	34
Cobalt	24.75	33.18	90	61-120	2	37
Copper	12.38	30.67	94	44-151	0	35
Lead	99.01	93.74	87	52-120	3	51
Molybdenum	19.80	18.25	92	67-120	3	20
Nickel	24.75	60.92	97	45-134	1	38
Selenium	49.50	45.78	92	67-120	4	27
Silver	9.901	9.653	97	66-120	3	30
Thallium	49.50	44.49	90	62-120	3	20
Vanadium	24.75	73.13	99	55-137	0	30
Zinc	24.75	66.95	74	38-146	3	36

	California	Title 22 Metals	
Lab #:	243418	Location: 64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: METHOD	
Project#:	241.082.03.006	Analysis: EPA 7471A	
Analyte:	Mercury	Diln Fac: 1.000	
Type:	BLANK	Batch#: 195953	
Lab ID:	QC678371	Prepared: 02/28/13	
Matrix:	Soil	Analyzed: 02/28/13	
Units:	mg/Kg		

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals										
Lab #:	243418	Location: 64th &	Christie Emeryville, CA							
Client:	PES Environmental, Inc.	Prep: METHOD)							
Project#:	241.082.03.006	Analysis: EPA 74	171A							
Analyte:	Mercury	Batch#:	195953							
Matrix:	Soil	Prepared:	02/28/13							
Units:	mg/Kg	Analyzed:	02/28/13							
Diln Fac:	1.000									

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC678372	0.2083	0.2114	101	80-120		
BSD	QC678373	0.2083	0.2134	102	80-120	1	20

California Title 22 Metals										
Lab #:	243418	Location: 64th &	Christie Emeryville, CA							
Client:	PES Environmental, Inc.	Prep: METHOD)							
Project#:	241.082.03.006	Analysis: EPA 74	.71A							
Analyte:	Mercury	Diln Fac:	1.000							
Field ID:	ZZZZZZZZZ	Batch#:	195953							
MSS Lab ID:	243440-002	Sampled:	02/28/13							
Matrix:	Soil	Received:	02/28/13							
Units:	mg/Kg	Prepared:	02/28/13							
Basis:	as received	Analyzed:	02/28/13							

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC678374	0.04179	0.2049	0.2617	107	72-135		
MSD	QC678375		0.2155	0.2770	109	72-135	1	42

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

Laboratory Job Number 243525 ANALYTICAL REPORT

PES Environmental, Inc.

1682 Novato Boulevard

Novato, CA 94947

Project : 241.082.03.006

Location: 64th & Christie Emeryville, CA

Level : II

Sample ID EB-13

<u>Lab ID</u> 243525-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: 03/11/2013

Signature:

Desiree N. Tetrault Project Manager

Deine 7. Tetralt

(510) 486-0900

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 243525

Client: PES Environmental, Inc.

Project: 241.082.03.006

Location: 64th & Christie Emeryville, CA

Request Date: 03/04/13 Samples Received: 03/04/13

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 03/04/13. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

Low recoveries were observed for mercury in the MS/MSD for batch 196068; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPD was within limits. High recoveries were observed for barium and vanadium in the MSD for batch 196053; the parent sample was not a project sample, and the BS/BSD were within limits. High RPD was observed for vanadium in the MS/MSD for batch 196053; the RPD was acceptable in the BS/BSD. No other analytical problems were encountered.

CHAIN OF CUSTODY

	Curtis & Tompk	ins Labo	ratorie	25		T 111					52-18 T	-			2.1.21						age		_ of	<u> </u>
U	Curtis & Tompk	ICAL TESTING	LABORATO	3 Y 878	c	et LC	OGIN	۱#_	24	352	25				ΔN	AIV				Custo QUE	•	#		
	Fifth Street ey, CA 94710	Phone (5	10) 486-09 10) 486-05	200										clecum										
	No: 241.082.03.006		ampler:	A																				
	Name: 64th + Christia		port To: W		Un-	<u>st/</u>	<u>)</u>	shn	Sla	tens	<u>le</u>		1											
	P. O. No:		ompany: $arphi$	165									مار			ol.								
EDD For			lephone: 4									2000		2008 2015	15	3								
Turnarou	und Time: Rush	Standard En	nail: jale	xand uast	25	11	250	uv.	11	`		V	0 0	300		80								
Lab	Sample ID.	SAMPI		MATI	RIX	Containers		CHEN	11CA		3/2	-		عَىٰ ج	22	<u>ئە</u> س								
No.		Date Collected	Time Collected	Water Solid/Ss		# of Cor	НСІ	H2SO4	Naoh	None /c	Magh	TOT	1 0 T	TPHI	7+16	KOC								
	EB-13	3/4/13	1430	X	+	9	-	-	+=	2		1	dΣ	X	X	X	+	+	+-	+-	\vdash	+	+	+
		7 1											1			1	1	\top	\top		П	\top	+	+
					$\perp \! \! \perp \! \! \! \perp$] [工	
				++	+				+	╄-			\perp	<u> </u>			\perp	_		_	\square	\bot		$\perp \perp$
					+				+	-	┨	-	+-	╆		\dashv	_	_	+	4	\vdash	\dashv	+	
				\Box	+				╁	╁	1 1	-	+		\vdash	+	+	+	+	+	\vdash	+		
					††				┪┈	1	1 1		+			十	\dashv	+	+	+	\vdash	+	_	+
											1 [T		1	\top	T				11
	·			+	Ш] [
			1	\rightarrow	$+\!\!\!+\!\!\!\!+$					_]]	_	↓	-				\perp		\perp		\perp	\bot	$\perp \perp$
			++		++		\vdash		+	╁—	┨	+	+-			\dashv	-	\perp	_	+		+	+	+
Notes:	Standard TAT	SAMPLE		R	ELIN	NQUI:	SHE	D BY:	1		<u> </u>			Ι Λ			REC	EIV	ED I	BY:			Ш	ᅥ
	Standard 1A1	RECEIPT	pt.	Alex	and	<u>lo_</u>	, !	DATE:	5/4	TIME	: [50	2 _		1	0	U	1	X			1413	3 TIM	E: 15	טט
		□ Cold		·				DATE:		TIME	:	_ _						v	ι	DATE:		TIMI	E:	
		On ice	Pills					DATE:		TIME	:	- -		· <u>.</u>						DATE:		TIMI	E:	
												i												1

3 of 23

COOLER RECEIPT CHECKLIST

Login # 243525 Date Received 3/4/13 Number of coolers
Login # 243525 Date Received 3/4/13 Number of coolers 1 Client Project 241.082.03.006
Date Opened 3413 By (print) & (sign) & Lem
Date Logged in
1. Did cooler come with a shipping slip (airbill, etc) YES Shipping info
2A. Were custody seals present? ☐ YES (circle) on cooler on samples ☐ NO How many Name Date
2B. Were custody seals intact upon arrival?YES NO NA
3. Were custody papers dry and intact when received?
4. Were custody papers filled out properly (ink, signed, etc)?
Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C
Type of ice used: ☑ Wet ☐ Blue/Gel ☐ None Temp(°C)
☑ Samples Received on ice & cold without a temperature blank; temp. taken with IR guin
☑ Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? PLYCITATION 9. Did all bottles arrive unbroken/unopened? YES NO
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? YES NO YES NO
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? YES NO N/A
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? YES NO N/A
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? YES NO WA
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? YES NO WA
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 10. Are bubbles > 6mm absent in VOA samples? 11. Are samples in the appropriate containers for indicated tests? 12. NO 13. NO 14. Was sufficient amount of sample sent for tests requested? 15. NO 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO 10. NO 1
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO N/A 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? YES NO
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in DIMS for preserved terracores? 19. Did you change the hold time in
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. NO N/A 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? YES NO
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 10. Are bubbles > 6mm absent in VOA samples? 11. Was the client contacted concerning this sample delivery? 12. Was the client contacted concerning this sample delivery? 13. Did to the wife was called? 14. We sample all tests? 15. NO 16. Did you change the hold time in LIMS for preserved terracores? 16. Did you change the hold time in LIMS for preserved terracores? 17. Did you change the hold time in LIMS for preserved terracores? 18. Did you change the hold time in LIMS for preserved terracores? 19. NO 10. NO
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. By COMMENTS
10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 10. Are bubbles > 6mm absent in VOA samples? 11. Was the client contacted concerning this sample delivery? 12. Was the client contacted concerning this sample delivery? 13. Did to the wife was called? 14. We sample all tests? 15. NO 16. Did you change the hold time in LIMS for preserved terracores? 16. Did you change the hold time in LIMS for preserved terracores? 17. Did you change the hold time in LIMS for preserved terracores? 18. Did you change the hold time in LIMS for preserved terracores? 19. NO 10. NO

Rev 10, 11/11

Gasoline by GC/FID (5035 Prep) Lab #: 243525 Location: 64th & Christie Emeryville, CA Client: PES Environmental, Inc. EPA 5035 Prep: Project#: 241.082.03.006 Analysis: EPA 8015B Field ID: EB-13 Diln Fac: 1.000 Matrix: Soil Batch#: 196083 Units: mg/Kg Sampled: 03/04/13 Basis: as received Received: 03/04/13

Type: SAMPLE Analyzed: 03/06/13

Lab ID: 243525-001

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

Surrogate %REC	Limits	
orobenzene (FID) 88	64-139	

Type: BLANK Analyzed: 03/05/13

Lab ID: QC678904

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

ND= Not Detected RL= Reporting Limit

Page 1 of 1 10.0

Gasoline by GC/FID (5035 Prep)									
Lab #:	243525	Location: 64th &	Christie Emeryville, CA						
Client:	PES Environmental, Inc.	Prep: EPA 50	035						
Project#:	241.082.03.006	Analysis: EPA 80)15B						
Type:	LCS	Diln Fac:	1.000						
Lab ID:	QC678903	Batch#:	196083						
Matrix:	Soil	Analyzed:	03/05/13						
Units:	mg/Kg								

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.013	101	80-120

Surrogate %REC Limi	
omofluorobenzene (FID) 89 64-1	

Page 1 of 1

Gasoline by GC/FID (5035 Prep)				
Lab #:	243525	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 5030B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Field ID:	ZZZZZZZZZZ	Diln Fac: 1.000		
MSS Lab ID:	243420-001	Batch#: 196083		
Matrix:	Soil	Sampled: 02/27/13		
Units:	mg/Kg	Received: 02/27/13		
Basis:	as received	Analyzed: 03/05/13		

Type: MS Lab ID: QC678905

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.07687	10.64	9.242	86	42-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	96	64-139

Type: MSD Lab ID: QC678906

Analyte	Spiked	Result	%REC	Limits	RPD Lim	1
Gasoline C7-C12	10.53	8.778	83	42-120	4 42	_

Total Extractable Hydrocarbons				
Lab #:	243525	Location: 64th & Christie Emeryville, CA		
Client:	PES Environmental, Inc.	Prep: EPA 3550B		
Project#:	241.082.03.006	Analysis: EPA 8015B		
Field ID:	EB-13	Batch#: 196073		
Matrix:	Soil	Sampled: 03/04/13		
Units:	mg/Kg	Received: 03/04/13		
Basis:	as received	Prepared: 03/05/13		
Diln Fac:	1.000	Analyzed: 03/06/13		

SAMPLE 243525-001 Cleanup Method: EPA 3630C туре: Lab ID: Type:

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	104	62-136	

Cleanup Method: EPA 3630C Type: BLANK

Lab ID: QC678869

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

ſ	Surrogate	%REC	Limits
ſ	o-Terphenyl	127	62-136

ND= Not Detected RL= Reporting Limit Page 1 of 1

Total Extractable Hydrocarbons			
Lab #:	243525	Location: 64th & Christie Emeryville, CA	
Client:	PES Environmental, Inc.	Prep: EPA 3550B	
Project#:	241.082.03.006	Analysis: EPA 8015B	
Type:	LCS	Diln Fac: 1.000	
Lab ID:	QC678870	Batch#: 196073	
Matrix:	Soil	Prepared: 03/05/13	
Units:	mg/Kg	Analyzed: 03/06/13	

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.58	50.82	102	62-130

Surrogate	%REC	Limits
o-Terphenyl	125	62-136

Page 1 of 1 20.0

	Total Extrac	table Hydrocarbons
Lab #:	243525	Location: 64th & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 3550B
Project#:	241.082.03.006	Analysis: EPA 8015B
Field ID:	EB-13	Batch#: 196073
MSS Lab ID:	243525-001	Sampled: 03/04/13
Matrix:	Soil	Received: 03/04/13
Units:	mg/Kg	Prepared: 03/05/13
Basis:	as received	Analyzed: 03/06/13
Diln Fac:	1.000	

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC678871

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	0.4906	49.75	52.65	105	39-148

Surrogate	%REC	Limits
o-Terphenyl	127	62-136

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC678872

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.61	50.40	101	39-148	4	45

Surrogate	%REC	Limits	
o-Terphenyl	127	62-136	

	Purgeable On	rganics by GC/	
Lab #:	243525	Location: 64tl	h & Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA	5035
Project#:	241.082.03.006	Analysis: EPA	8260B
Field ID:	EB-13	Diln Fac:	1.152
Lab ID:	243525-001	Batch#:	196054
Matrix:	Soil	Sampled:	03/04/13
Units:	ug/Kg	Received:	03/04/13
Basis:	as received	Analyzed:	03/05/13

Preon 12	Analyte	Result	RL	
Chloromethane ND 12 Vinyl Chloride ND 12 Bromomethane ND 12 Chloroethane ND 12 Trichlorofluoromethane ND 5.8 Acetone ND 23 Freon 113 ND 5.8 1,1-Dichloroethene ND 5.8 Methylene Chloride ND 5.8 Carbon Disulfide ND 5.8 MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 5.8 trans-1,2-Dichloroethane ND 5.8 1,1-Dichloroethane ND 5.8 2-Butanone ND 5.8 2-Butanone ND 5.8 2-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,2-Dichloropropane ND 5.8				
Vinyl Chloride ND 12 Bromomethane ND 12 Chloroethane ND 12 Trichlorofluoromethane ND 5.8 Acetone ND 5.8 Freon 113 ND 5.8 1,1-Dichloroethene ND 5.8 Methylene Chloride ND 23 Carbon Disulfide ND 5.8 MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 5.8 1,1-Dichloroethane ND 5.8 2-Butanone ND 5.8 2,2-Dichloroptopane ND 5.8 2,2-Dichloropropane ND 5.8 2,2-Dichloroptomethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1,2-Dichloropropene ND 5.8 1,2-Dichloropropane ND 5.8 Benzene ND 5.8 </td <td></td> <td></td> <td></td> <td></td>				
Bromomethane				
Chloroethane ND 12 Trichlorofluoromethane ND 5.8 Acetone ND 23 Freon 113 ND 5.8 1,1-Dichloroethene ND 5.8 Methylene Chloride ND 23 Carbon Disulfide ND 5.8 MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 5.8 1,1-Dichloroethane ND 5.8 2,Butamone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Bromochloromethane ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethane ND 5.8 </td <td>_</td> <td></td> <td></td> <td></td>	_			
Trichlorofluoromethane ND 5.8 Acetone ND 23 Freon 113 ND 5.8 1,1-Dichloroethene ND 5.8 Methylene Chloride ND 23 Carbon Disulfide ND 5.8 MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 5.8 1,1-Dichloroethane ND 5.8 2-Butanone ND 5.8 2-Butanone ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1,1-Trichloropropene ND 5.8 1,1-Dichloropropene ND 5.8 1,2-Dichloropropene ND 5.8 2-Dichloropropene ND 5.8 Trichloropropene ND 5.8 Trichloropropene ND 5.8 <				
Acetone ND 23 Freon 113 ND 5.8 1,1-Dichloroethene ND 5.8 Methylene Chloride ND 23 Carbon Disulfide ND 5.8 MTBE ND 5.8 Trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 5.8 1,1-Dichloroethane ND 5.8 2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 2,2-Dichloropropane ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Prichloropopane ND 5.8 Benzene ND 5.8 Trichloropopane ND 5.8 Bromodichloromethane ND 5.				
Freon 113				
1,1-Dichloroethene				
Methylene Chloride ND 5.8 Carbon Disulfide ND 5.8 MTBE ND 5.8 MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 5.8 1,1-Dichloroethane ND 5.8 2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 2,2-Dichloropropane ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 1,2-Dichloroethane ND 5.8 1,2-Dichloroethane ND 5.8 Prichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Promodichloromethane ND 5.8 1,2-Dichloropropene ND 5.8 Promodichloropropene ND 5.8 10tene ND				
Carbon Disulfide ND 5.8 MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 58 1,1-Dichloroethane ND 5.8 2-Butanone ND 5.8 2-Butanone ND 5.8 2,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 1,2-Dichloropropane ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 1,2-Dichloropropane ND 5.8 Promodichloropropene ND 5.8 Toluene ND 5.8 4-Methyl-2-Pentanone ND				
MTBE ND 5.8 trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 58 1,1-Dichloroethane ND 5.8 2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Trichloromomethane ND 5.8 Promodichloromethane ND 5.8 Dibromomethane ND 5.8 Pollularity 5.8 5.8 4-Methyl-2-Pentanone ND 5.8 Toluene ND 5.8 Carbolioropropene ND 5.8<	_			
trans-1,2-Dichloroethene ND 5.8 Vinyl Acetate ND 58 1,1-Dichloroethane ND 5.8 2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Promodichloromethane ND 5.8 Dibromomethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 5.8 Toluene ND 5.8 Toluene ND 5.8 Trichloroethane ND 5.8 Toluene ND 5.8 Trichl				
Vinyl Acetate ND 58 1,1-Dichloroethane ND 5.8 2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 1,2-Dichloropropane ND 5.8 1,2-Dichloromethane ND 5.8 Dibromomethane ND 5.8 0 ibromomethane ND 5.8 4-Methyl-2-Pentanone ND 5.8 Toluene ND 5.8 Toluene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
1,1-Dichloroethane ND 5.8 2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 1,2-Dichloropropene ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 5.8 Toluene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
2-Butanone ND 12 cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 5.8 Toluene ND 5.8 Toluene ND 5.8 Trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12	_			
cis-1,2-Dichloroethene ND 5.8 2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 5.8 Toluene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
2,2-Dichloropropane ND 5.8 Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
Chloroform ND 5.8 Bromochloromethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 Dibromomethane ND 5.8 Toluene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
Bromochloromethane ND 5.8 1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 Trichloropropane ND 5.8 Bromodichloromethane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
1,1,1-Trichloroethane ND 5.8 1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 Trichloropropane ND 5.8 Bromodichloromethane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 Dibromomethane ND 5.8 Toluene ND 5.8 Toluene ND 5.8 Trichloropropene ND 5.8 Toluene ND 5.8 Trichloropropene ND 5.8 Toluene ND 5.8 Trichloropropene ND 5.8				
1,1-Dichloropropene ND 5.8 Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 Trichloropropane ND 5.8 Carbon Tetrachloropropane ND 5.8 Trichloroethene ND 5.8 Trichloropropane ND 5.8 Carbon Tetrachloropropane ND 5.8 Trichloroethene ND 5.8 Carbon Tetrachloropropane ND 5.8 Trichloropropane ND 5.8 Carbon Tetrachloropropane N				
Carbon Tetrachloride ND 5.8 1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 5.8				
1,2-Dichloroethane ND 5.8 Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
Benzene ND 5.8 Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
Trichloroethene ND 5.8 1,2-Dichloropropane ND 5.8 Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12	1			
1,2-DichloropropaneND5.8BromodichloromethaneND5.8DibromomethaneND5.84-Methyl-2-PentanoneND12cis-1,3-DichloropropeneND5.8TolueneND5.8trans-1,3-DichloropropeneND5.81,1,2-TrichloroethaneND5.82-HexanoneND12				
Bromodichloromethane ND 5.8 Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
Dibromomethane ND 5.8 4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
4-Methyl-2-Pentanone ND 12 cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
cis-1,3-Dichloropropene ND 5.8 Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
Toluene ND 5.8 trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12	<u> </u>			
trans-1,3-Dichloropropene ND 5.8 1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
1,1,2-Trichloroethane ND 5.8 2-Hexanone ND 12				
2-Hexanone ND 12				
1.10 Diction optopation 100 0.0				
Tetrachloroethene ND 5.8				

ND= Not Detected RL= Reporting Limit

Page 1 of 2 13.0

	Purgeable O	rganics by GC/M	s
Lab #:	243525	Location: 64th	& Christie Emeryville, CA
Client:	PES Environmental, Inc.	Prep: EPA 5	5035
Project#:	241.082.03.006	Analysis: EPA 8	3260B
Field ID:	EB-13	Diln Fac:	1.152
Lab ID:	243525-001	Batch#:	196054
Matrix:	Soil	Sampled:	03/04/13
Units:	ug/Kg	Received:	03/04/13
Basis:	as received	Analyzed:	03/05/13

Analyte	Result	RL	
Dibromochloromethane	ND	5.8	
1,2-Dibromoethane	ND	5.8	
Chlorobenzene	ND	5.8	
1,1,1,2-Tetrachloroethane	ND	5.8	
Ethylbenzene	ND	5.8	
m,p-Xylenes	ND	5.8	
o-Xylene	ND	5.8	
Styrene	ND	5.8	
Bromoform	ND	5.8	
Isopropylbenzene	ND	5.8	
1,1,2,2-Tetrachloroethane	ND	5.8	
1,2,3-Trichloropropane	ND	5.8	
Propylbenzene	ND	5.8	
Bromobenzene	ND	5.8	
1,3,5-Trimethylbenzene	ND	5.8	
2-Chlorotoluene	ND	5.8	
4-Chlorotoluene	ND	5.8	
tert-Butylbenzene	ND	5.8	
1,2,4-Trimethylbenzene	ND	5.8	
sec-Butylbenzene	ND	5.8	
para-Isopropyl Toluene	ND	5.8	
1,3-Dichlorobenzene	ND	5.8	
1,4-Dichlorobenzene	ND	5.8	
n-Butylbenzene	ND	5.8	
1,2-Dichlorobenzene	ND	5.8	
1,2-Dibromo-3-Chloropropane	ND	5.8	
1,2,4-Trichlorobenzene	ND	5.8	
Hexachlorobutadiene	ND	5.8	
Naphthalene	ND	5.8	
1,2,3-Trichlorobenzene	ND	5.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	113	80-124	
1,2-Dichloroethane-d4	100	80-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	100	79-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	243525	Location: 64th & Christie Emeryville, CA					
Client:	PES Environmental, Inc.	Prep: EPA 5035					
Project#:	241.082.03.006	Analysis: EPA 8260B					
Matrix:	Soil	Batch#: 196054					
Units:	ug/Kg	Analyzed: 03/05/13					
Diln Fac:	1.000						

Type: BS Lab ID: QC678791

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	28.99	116	67-132
Benzene	25.00	27.99	112	77-126
Trichloroethene	25.00	28.20	113	76-127
Toluene	25.00	28.22	113	76-124
Chlorobenzene	25.00	25.65	103	76-120

Surrogate	%REC	Limits	
Dibromofluoromethane	96	80-124	
1,2-Dichloroethane-d4	94	80-137	
Toluene-d8	98	80-120	
Bromofluorobenzene	95	79-127	

Type: BSD Lab ID: QC678792

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	28.79	115	67-132	1	27
Benzene	25.00	27.39	110	77-126	2	20
Trichloroethene	25.00	28.02	112	76-127	1	22
Toluene	25.00	27.45	110	76-124	3	26
Chlorobenzene	25.00	25.01	100	76-120	3	21

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-124
1,2-Dichloroethane-d4	90	80-137
Toluene-d8	97	80-120
Bromofluorobenzene	96	79-127

Purgeable Organics by GC/MS							
Lab #:	243525	Location: 64th & Christie Emeryville, CA					
Client:	PES Environmental, Inc.	Prep: EPA 5035					
Project#:	241.082.03.006	Analysis: EPA 8260B					
Type:	BLANK	Diln Fac: 1.000					
Lab ID:	QC678795	Batch#: 196054					
Matrix:	Soil	Analyzed: 03/05/13					
Units:	ug/Kg						

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS							
Lab #:	243525	Location: 64th & Christie Emeryville, Ca	A				
Client:	PES Environmental, Inc.	Prep: EPA 5035					
Project#:	241.082.03.006	Analysis: EPA 8260B					
Type:	BLANK	Diln Fac: 1.000					
Lab ID:	QC678795	Batch#: 196054					
Matrix:	Soil	Analyzed: 03/05/13					
Units:	ug/Kg						

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-124	
1,2-Dichloroethane-d4	93	80-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	99	79-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	243525	Location: 64t	h & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: EPA	5030B				
Project#:	241.082.03.006	Analysis: EPA	8260B				
Field ID:	ZZZZZZZZZZ	Batch#:	196054				
MSS Lab ID:	243420-001	Sampled:	02/27/13				
Matrix:	Soil	Received:	02/27/13				
Units:	ug/Kg	Analyzed:	03/06/13				
Basis:	as received						

Type: MS Diln Fac: 0.9823

Lab ID: QC678861

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.5846	49.12	61.27	125	52-132
Benzene	<0.6811	49.12	56.75	116	54-121
Trichloroethene	<0.7094	49.12	55.53	113	46-138
Toluene	<0.7461	49.12	53.01	108	47-120
Chlorobenzene	<0.6116	49.12	47.30	96	41-120

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-124	
1,2-Dichloroethane-d4	103	80-137	
Toluene-d8	94	80-120	
Bromofluorobenzene	96	79-127	

Type: MSD Diln Fac: 0.9597

Lab ID: QC678862

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	47.98	54.60	114	52-132	9	46
Benzene	47.98	50.39	105	54-121	10	43
Trichloroethene	47.98	49.57	103	46-138	9	50
Toluene	47.98	47.00	98	47-120	10	53
Chlorobenzene	47.98	42.55	89	41-120	8	50

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-124	
1,2-Dichloroethane-d4	102	80-137	
Toluene-d8	94	80-120	
Bromofluorobenzene	97	79-127	

California Title 22 Metals					
Lab #:	243525	Project#: 241.082.03.006			
Client:	PES Environmental, Inc.	Location: 64th & Christie Emeryville, CA			
Field ID:	EB-13	Diln Fac: 1.000			
Lab ID:	243525-001	Sampled: 03/04/13			
Matrix:	Soil	Received: 03/04/13			
Units:	mg/Kg	Analyzed: 03/05/13			
Basis:	as received				

Analyte	Result	RL	Batch# Prepared	i Prep	Analysis
Antimony	ND	0.48	196053 03/04/13	3 EPA 3050B	EPA 6010B
Arsenic	4.9	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Barium	51	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Beryllium	0.24	0.095	196053 03/04/13	3 EPA 3050B	EPA 6010B
Cadmium	ND	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Chromium	37	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Cobalt	7.0	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Copper	11	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Lead	2.6	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Mercury	ND	0.016	196068 03/05/13	3 METHOD	EPA 7471A
Molybdenum	ND	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Nickel	34	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Selenium	ND	0.48	196053 03/04/13	3 EPA 3050B	EPA 6010B
Silver	ND	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Thallium	ND	0.48	196053 03/04/13	3 EPA 3050B	EPA 6010B
Vanadium	34	0.24	196053 03/04/13	3 EPA 3050B	EPA 6010B
Zinc	34	0.95	196053 03/04/13	3 EPA 3050B	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals					
Lab #:	243525	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3050B			
Project#:	241.082.03.006	Analysis: EPA 6010B			
Type:	BLANK	Diln Fac: 1.000			
Lab ID:	QC678784	Batch#: 196053			
Matrix:	Soil	Prepared: 03/04/13			
Units:	mg/Kg	Analyzed: 03/05/13			

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.26	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals					
Lab #:	243525	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3050B			
Project#:	241.082.03.006	Analysis: EPA 6010B			
Matrix:	Soil	Batch#: 196053			
Units:	mg/Kg	Prepared: 03/04/13			
Diln Fac:	1.000	Analyzed: 03/05/13			

Type: BS Lab ID: QC678785

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	102.6	103	80-120
Arsenic	50.00	52.81	106	80-120
Barium	100.0	101.6	102	80-120
Beryllium	2.500	2.639	106	80-120
Cadmium	10.00	10.30	103	80-120
Chromium	100.0	98.56	99	80-120
Cobalt	25.00	24.64	99	80-120
Copper	12.50	12.62	101	80-120
Lead	100.0	96.69	97	80-120
Molybdenum	20.00	20.05	100	80-120
Nickel	25.00	24.61	98	80-120
Selenium	50.00	50.92	102	80-120
Silver	10.00	9.649	96	80-120
Thallium	50.00	50.87	102	80-120
Vanadium	25.00	24.66	99	80-120
Zinc	25.00	25.05	100	80-120

Type: BSD Lab ID: QC678786

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	101.9	102	80-120	1	20
Arsenic	50.00	52.32	105	80-120	1	20
Barium	100.0	101.8	102	80-120	0	20
Beryllium	2.500	2.641	106	80-120	0	20
Cadmium	10.00	10.31	103	80-120	0	20
Chromium	100.0	98.90	99	80-120	0	20
Cobalt	25.00	24.73	99	80-120	0	20
Copper	12.50	12.57	101	80-120	0	20
Lead	100.0	96.13	96	80-120	1	22
Molybdenum	20.00	19.87	99	80-120	1	20
Nickel	25.00	24.67	99	80-120	0	20
Selenium	50.00	50.47	101	80-120	1	20
Silver	10.00	9.673	97	80-120	0	20
Thallium	50.00	50.43	101	80-120	1	20
Vanadium	25.00	24.69	99	80-120	0	20
Zinc	25.00	25.09	100	80-120	0	20

California Title 22 Metals					
Lab #:	243525	Location: 64th & Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: EPA 3050B			
Project#:	241.082.03.006	Analysis: EPA 6010B			
Field ID:	ZZZZZZZZZ	Batch#: 196053			
MSS Lab ID:	243480-005	Sampled: 02/27/13			
Matrix:	Soil	Received: 03/01/13			
Units:	mg/Kg	Prepared: 03/04/13			
Basis:	as received	Analyzed: 03/05/13			
Diln Fac:	1.000				

Type: MS Lab ID: QC678787

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	0.5479	96.15	63.16	65	8-120
Arsenic	4.664	48.08	54.01	103	71-121
Barium	127.3	96.15	228.6	105	48-133
Beryllium	0.2946	2.404	2.849	106	78-120
Cadmium	0.4934	9.615	9.863	97	69-120
Chromium	27.15	96.15	123.0	100	60-122
Cobalt	7.856	24.04	30.99	96	61-120
Copper	5.385	12.02	17.97	105	44-151
Lead	45.28	96.15	120.6	78	52-120
Molybdenum	0.3401	19.23	18.67	95	67-120
Nickel	7.916	24.04	32.68	103	45-134
Selenium	0.2394	48.08	47.97	99	67-120
Silver	<0.06796	9.615	9.318	97	66-120
Thallium	<0.1482	48.08	47.20	98	62-120
Vanadium	27.84	24.04	50.12	93	55-137
Zinc	13.45	24.04	37.08	98	38-146

Type: MSD Lab ID: QC678788

Analyte	Spiked	Result	%REC	Limits RPD	Lim
Antimony	97.09	63.20	65	8-120 1	29
Arsenic	48.54	57.90	110	71-121 6	34
Barium	97.09	274.4	151 *	48-133 18	45
Beryllium	2.427	3.038	113	78-120 6	20
Cadmium	9.709	9.714	95	69-120 2	23
Chromium	97.09	130.6	107	60-122 5	34
Cobalt	24.27	36.93	120	61-120 17	37
Copper	12.14	18.77	110	44-151 4	35
Lead	97.09	121.3	78	52-120 0	51
Molybdenum	19.42	18.59	94	67-120 1	20
Nickel	24.27	33.97	107	45-134 3	38
Selenium	48.54	47.83	98	67-120 1	27
Silver	9.709	9.301	96	66-120 1	30
Thallium	48.54	46.50	96	62-120 2	20
Vanadium	24.27	75.19	195 *	55-137 40 *	30
Zinc	24.27	39.76	108	38-146 6	36

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

California Title 22 Metals						
Lab #:	243525	Location: 64th & Christie Emeryville, CA				
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Diln Fac: 1.000				
Type:	BLANK	Batch#: 196068				
Lab ID:	QC678843	Prepared: 03/05/13				
Matrix:	Soil	Analyzed: 03/05/13				
Units:	mg/Kg					

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals						
Lab #:	243525	Location: 64th &	Christie Emeryville, CA			
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 74	71A			
Analyte:	Mercury	Batch#:	196068			
Matrix:	Soil	Prepared:	03/05/13			
Units:	mg/Kg	Analyzed:	03/05/13			
Diln Fac:	1.000					

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC678844	0.2083	0.2263	109	80-120		
BSD	QC678845	0.2083	0.2299	110	80-120	2	20

California Title 22 Metals						
Lab #:	243525	Location: 64th & Christie E	meryville, CA			
Client:	PES Environmental, Inc.	Prep: METHOD				
Project#:	241.082.03.006	Analysis: EPA 7471A				
Analyte:	Mercury	Diln Fac: 1.000				
Field ID:	ZZZZZZZZZ	Batch#: 196068				
MSS Lab ID:	243522-001	Sampled: 03/04/13				
Matrix:	Soil	Received: 03/04/13				
Units:	mg/Kg	Prepared: 03/05/13				
Basis:	as received	Analyzed: 03/05/13				

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC678846	0.1838	0.2049	0.2799	47 *	72-135		
MSD	QC678847		0.2049	0.2737	44 *	72-135	2	42

^{*=} Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

APPENDIX D

EBMUD CORRESPONDENCE

September 4, 2012

241.082.03.003

Rockwood Christie LLC c/o: Essex Property Trust, Inc. 925 East Meadow Drive Palo Alto, CA 94303

Attention: Mr. Josh Corzine

Subject: Supplemental Groundwater Sampling & Results

64th and Christie Residential Building

64th Street & Christie Avenue

Emeryville, California

Dear Mr. Corzine:

This letter has been prepared by PES Environmental, Inc. (PES) to document the collection and testing results of supplemental groundwater sampling at the proposed 64th and Christie Residential Building redevelopment project (6340 and 6390 Christie Avenue) in Emeryville, California (Plate 1). The groundwater sampling was conducted on August 24, 2012 to provide additional characterization data as required by East Bay Municipal Utility District (EBMUD) in association with a Special Discharge Permit being processed for construction dewatering discharge.

PRE-FIELD ACTIVITIES AND GENERAL PROCEDURES

Pre-field activities consisted of the following: (1) obtaining a drilling permit from Alameda County Public Works Agency (ACPWA), (2) contacting Underground Service Alert, (3) retaining C Cruz of Milpitas, California, a private utility locator, to perform utility clearance at all sampling locations, and (4) retaining and scheduling Cascade Drilling of Richmond, California, a licensed drilling contractor possessing a valid C-57 water well contractor's license, to perform the groundwater sampling, A copy of the ACPWA drilling permit is provided in Appendix A.

Mr. Josh Corzine September 4, 2012 Page 2

Groundwater Sampling Methods

Borehole drilling and groundwater sampling services were conducted in accordance with California Department of Water Resource Water Well Standards (Bulletin 74-90). Grab groundwater sampling was conducted at one location (GW-14, as shown on Plate 1). Work was conducted in accordance with the existing site-specific Health and Safety Plan.

The boring for GW-14 was advanced via direct-push technology utilizing a truck-mounted drill rig. A pre-packed well screen was installed into the open borehole (from 7 to 17 feet below ground surface [bgs]). Utilizing low flow techniques groundwater sample GW-14 was obtained from the temporary well within first water-bearing zone. A peristaltic pump was used to obtain the sample. To reduce turbidity, prior to sampling approximately 3 gallons of water was purged from the temporary well.

The groundwater sample was analyzed by Vista Analytical Services, Inc. of El Dorado Hills, California for PCB congeners by EPA Method 1668C (reported as a sum of 209 congeners), and in accordance with San Francisco Bay Area Regional Water Quality Control Board (RWQCB)¹ protocols. The sample was also analyzed by Curtis and Tompkins of Berkeley, California for: (1) oil and grease by EPA Method 1664 HEM-SGT; and (2) pH by Standard Method 4500-H+B. Both laboratories are certified by the State of California for the analyses performed.

After collection of the groundwater sample, the temporary well casing was removed and the boring was tremie-grouted in accordance with ACPWA permit requirements. ACPWA was notified of the work within the timeframe specified in the drilling permit, and a grout inspector performed an on-site inspection during grouting activities. No soil cuttings were generated. Decontamination fluid was collected in a 5-gallon bucket and clearly labeled and stored in a secure portion of the site pending disposal.

Results

The laboratory reports and chain-of-custody documentation for groundwater sample GW-14 are provided in Appendix B. Total PCBs were detected at a concentration of 0.0594 micrograms per liter (μ g/L). Oil and Grease was not detected at or above the laboratory reporting limit of 4.8 milligrams per liter (mg/L), and pH was reported at 7.6 standard units.

¹ San Francisco Bay Regional Water Quality Control Board, 2011. Sampling Analysis and Reporting Protocols Using EPA Method 1668C for Final Order No. R2-2011-0012, NPDES Permit No. CA0038849. May 17.

Mr. Josh Corzine September 4, 2012 Page 3

We trust that this is the information you require at this time. Please call either of the undersigned if you have any questions.

Yours very truly,

PES ENVIRONMENTAL, INC.

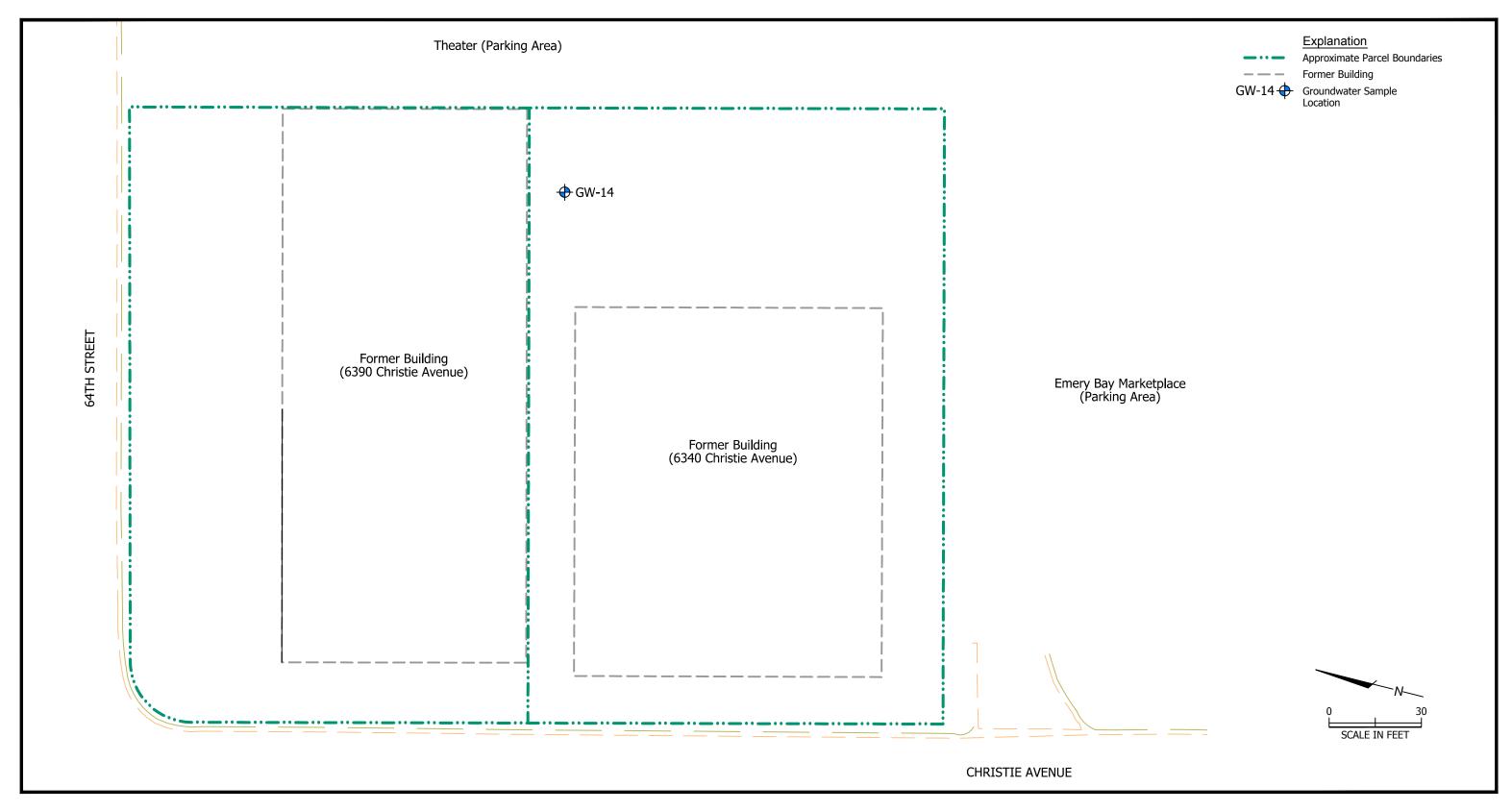
Christopher J. Baldassari, P.G.

Senior Geologist

William W. Mast, P.G.

Principal Engineer

cc: Allen Bates, SCM Construction Management Services


Attachments: Plate 1 – Groundwater Sampling Location

Appendix A - Alameda County Public Works Agency Permit

Appendix B - Laboratory Analytical Reports and Chain-of-Custody

Documentation

PLATE

Site Plan and Sample Location 64th and Christie Residential Building 6340 and 6390 Christie Avenue Emeryville, California

PLATE

241.082.02.003 241-08202003_SM-1 JOB NUMBER DRAWING NUMBER

WWMREVIEWED BY

8/12

APPENDIX A

ALAMEDA COUNTY PUBLIC WORKS AGENCY PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/16/2012 By vickyh1

Permit Numbers: W2012-0569

Permits Valid from 08/27/2012 to 08/27/2012

Application Id: 1344989171963 City of Project Site: Emeryville

Site Location: 6340 (6390) Christie Avenue

Project Start Date: 08/27/2012 Completion Date:08/27/2012

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: PES Environmental, Inc. - Chris Baldassari Phone: 415-899-1600

1682 Novato Boulevard, Novato, CA 94947

Property Owner: Rockwood Christie LLC
925 East Meadow Drive, Palo Alto, CA 94303

Phone: --

Client: ** same as Property Owner **

Total Due: \$265.00

Receipt Number: WR2012-0257 Total Amount Paid: \$265.00

Payer Name : Chris J Baldassari Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 1 Boreholes

Driller: Gregg Drilling & Testing - Lic #: 485165 - Method: DP Work Total: \$265.00

Specifications

 Permit
 Issued Dt
 Expire Dt
 #
 Hole Diam
 Max Depth

 Number
 Boreholes

 W2012 08/16/2012
 11/25/2012
 1
 2.00 in.
 17.00 ft

0569

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and

Alameda County Public Works Agency - Water Resources Well Permit

coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

August 30, 2012

Vista Project I.D.: 33954

Mr. Chris Baldassari PES Environmental, Inc. 1682 Novato Boulevard Suite 100 Novato, CA

Dear Mr. Baldassari,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on August 25, 2012. This work was authorized under your Purchase Order No. 241.082.03.003. This sample was extracted and analyzed using EPA Method 1668C for 209 PCB Congeners and homologue totals. A rush turnaround time was provided for this work.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at calvin@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Calvin Tanaka Senior Scientist

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Project 33954 Page 1 of 20

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	2
Sample Inventory	3
Analytical Results	4
Qualifiers	16
Certifications	17
Sample Receipt	18

Project 33954 Page 2 of 20

Section I: Sample Inventory Report Date Received: 8/25/2012

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

33954-001 GW-14

Project 33954 Page 3 of 20

ANALYTICAL RESULTS

Project 33954 Page 4 of 20

Method Blank									EPA	Method	1668C
Matrix:	Aqueous	QC Bat	ch No.:	463′	7	Lab Sample:	0-MB001				
Sample Size:	1.00 L	Date	Extracted	28-4	Aug-12	Date Analyzed:	29-Aug-12	TEQ(WH	O-2005 I	Mammal) :	0.000466
Analyte	Conc. (pg/L)	RL a	DL b	MDL	Qualifiers	Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers
PCB-1	ND	25.0	4.11	3.61		PCB-41/64/71/72	ND	25.0	2.23	16.5	
PCB-2	ND	25.0	4.73	5.43		PCB-42/59	ND		2.39	11.1	
PCB-3	ND	25.0	4.72	3.39		PCB-43/49	ND		2.67	8.79	
PCB-4/10	ND	50.0	10.7	5.85		PCB-44	ND		3.37	6.08	
PCB-5/8	ND	50.0	9.38	5.96		PCB-45	ND		2.90	7.49	
PCB-6	ND	50.0	9.63	5.33		PCB-46	ND		3.18	6.39	
PCB-7/9	ND	50.0	9.30	7.69		PCB-47	ND		2.47	5.27	
PCB-11	10.4	50.0		14.6	J	PCB-48/75	ND		2.21	8.94	
PCB-12/13	ND	50.0	9.91	12.4		PCB-50	ND	25.0	3.28	7.74	
PCB-14	ND	50.0	9.03	9.40		PCB-51	ND	25.0	2.45	7.82	
PCB-15	ND	50.0	9.17	2.52		PCB-52/69	ND	25.0	2.30	14.8	
PCB-16/32	ND	25.0	2.12	8.55		PCB-53	ND	25.0	2.52	8.48	
PCB-17	ND	25.0	2.32	7.90		PCB-54	ND	25.0	2.44	5.54	
PCB-18	ND	25.0	2.50	5.50		PCB-55	ND	25.0	2.03	4.02	
PCB-19	ND	25.0	2.46	5.57		PCB-56/60	ND	25.0	2.14	13.9	
PCB-20/21/33	ND	25.0	1.85	54.5		PCB-57	ND	25.0	1.97	3.62	
PCB-22	ND	25.0	1.97	22.8		PCB-58	ND	25.0	1.91	5.22	
PCB-23	ND	25.0	1.83	16.7		PCB-61/70	ND	25.0	1.99	9.77	
PCB-24/27	ND	25.0	1.71	9.50		PCB-62	ND	25.0	2.28	5.06	
PCB-25	ND	25.0	1.95	9.43		PCB-63	ND	25.0	1.97	6.38	
PCB-26	ND	25.0	1.83	10.4		PCB-65	ND	25.0	2.32	6.51	
PCB-28	ND	25.0	1.81	7.63		PCB-67	ND	25.0	2.13	7.33	
PCB-29	ND	25.0	1.77	7.85		PCB-68	ND	25.0	2.05	7.41	
PCB-30	ND	25.0	1.56	6.55		PCB-73	ND	25.0	2.11	7.45	
PCB-31	ND	25.0	1.76	13.1		PCB-74	ND	25.0	1.92	8.44	
PCB-34	ND	25.0	1.79	9.29		PCB-76/66	ND	25.0	1.95	10.4	
PCB-35	ND	25.0	2.16	9.12		PCB-77	4.66	25.0		5.01	J
PCB-36	ND	25.0	2.00	12.9		PCB-78	ND	25.0	2.22	5.24	
PCB-37	ND	25.0	2.01	10.0		PCB-79	ND	25.0	2.04	4.51	
PCB-38	ND	25.0	2.10	17.8		PCB-80	ND	25.0	1.88	2.62	
PCB-39	ND	25.0	1.97	11.8		PCB-81	ND	25.0	2.02	5.64	
PCB-40	ND	25.0	3.75	9.27		PCB-82	ND		7.42	8.87	

a.Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Method Blank									EPA	Method	1668C
Matrix:	Aqueous	QC Bate	ch No.:	4637		Lab Sample:	0-MB001				
Sample Size:	1.00 L	Date 1	Extracted:	28-Aug-	-12	Date Analyzed:	29-Aug-12	TEQ(WH	O-2005 I	Mammal) :	0.000466
Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers	Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers
PCB-83	ND	25.0	4.63	4.95		PCB-127	ND	25.0		3.32	
PCB-84/92	ND	25.0	6.29	6.38		PCB-128/162	ND		2.85	7.97	
PCB-85/116	ND	25.0	5.35	8.32		PCB-129	ND		3.44	6.66	
PCB-86	ND	25.0	7.17	8.03		PCB-130	ND		3.60	10.7	
PCB-87/117/125	ND	25.0	4.72	10.8		PCB-131	ND		3.92	5.74	
PCB-88/91	ND	25.0	6.52	15.8		PCB-132/161	ND		2.96	11.5	
PCB-89	ND	25.0	7.10	6.17		PCB-133/142	ND	25.0	3.68	10.4	
PCB-90/101	ND	25.0	5.81	8.81		PCB-134/143	ND		3.68	10.1	
PCB-93	ND	25.0	7.10	19.1		PCB-135	ND	25.0	6.54	8.55	
PCB-94	ND	25.0	6.63	4.94		PCB-136	ND	25.0	4.75	7.83	
PCB-95/98/102	ND	25.0	6.00	22.2		PCB-137	ND	25.0	3.22	6.47	
PCB-96	ND	25.0	5.87	7.30		PCB-138/163/164	4 ND	25.0	2.59	4.06	
PCB-97	ND	25.0	5.74	8.73		PCB-139/149	ND	25.0	5.94	7.55	
PCB-99	ND	25.0	5.67	10.9		PCB-140	ND	25.0	7.15	12.0	
PCB-100	ND	25.0	6.62	6.77		PCB-141	ND	25.0	3.18	6.38	
PCB-103	ND	25.0	6.54	7.69		PCB-144	ND	25.0	5.99	8.06	
PCB-104	ND	25.0	4.82	5.89		PCB-145	ND	25.0	4.84	9.72	
PCB-105	ND	25.0	2.65	4.59		PCB-146/165	ND	25.0	2.94	6.36	
PCB-106/118	ND	25.0	4.41	10.2		PCB-147	ND	25.0	6.84	7.85	
PCB-107/109	ND	25.0	4.40	10.4		PCB-148	ND	25.0	6.34	4.01	
PCB-108/112	ND	25.0	5.54	9.73		PCB-150	ND	25.0	4.94	9.67	
PCB-110	ND	25.0	4.70	4.52		PCB-151	ND	25.0	6.58	9.59	
PCB-111/115	ND	25.0	4.04	7.06		PCB-152	ND	25.0	4.68	6.32	
PCB-113	ND	25.0	5.13	8.37		PCB-153	ND	25.0	3.05	6.11	
PCB-114	ND	25.0	3.08	8.70		PCB-154	ND	25.0	6.37	5.65	
PCB-119	ND	25.0	4.08	7.04		PCB-155	ND		4.36	6.99	
PCB-120	ND	25.0	3.86	5.63		PCB-156	ND	25.0	2.60	3.64	
PCB-121	ND	25.0	4.86	10.8		PCB-157	ND	25.0	2.69	7.41	
PCB-122	ND	25.0	3.62	6.51		PCB-158/160	ND		2.52	10.9	
PCB-123	ND	25.0	4.55	3.95		PCB-159	ND		2.43	6.98	
PCB-124	ND	25.0	4.08	2.17		PCB-166	ND	25.0	2.61	4.99	
PCB-126	ND	25.0	3.80	8.80		PCB-167	ND		2.63	7.42	

a.Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Method Blank								EPA Method 1668C				
Matrix:	Aqueous	QC Batch	No.:	4637		Lab Sample:	0-MB001					
Sample Size:	1.00 L	Date Ex	xtracted:	28-Aı	ıg-12	Date Analyzed:	29-Aug-12	TEQ(WHO-2005	Mammal) :	: 0.000466		
Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers	Analyte	Conc. (pg/L)	RL a b	MDL c	Qualifiers		
PCB-168	ND	25.0	2.47	4.40		PCB-201	ND	25.0 4.38	5.54			
PCB-169	ND	25.0	3.60	5.54		PCB-202	ND	25.0 4.46	9.73			
PCB-170	ND	25.0	2.72	5.39		PCB-204	ND	25.0 4.38	6.10			
PCB-171	ND		2.42	6.69		PCB-205	ND	25.0 2.14	6.61			
PCB-172	ND	25.0	2.56	4.57		PCB-206	ND	25.0 6.01	3.69			
PCB-173	ND	25.0	3.28	5.13		PCB-207	ND	25.0 3.27	4.76			
PCB-174	ND	25.0	2.89	9.74		PCB-208	ND	25.0 3.23	3.48			
PCB-175	ND	25.0	3.19	8.82		PCB-209	ND	25.0 20.1	4.22			
PCB-176	ND	25.0	2.33	9.21		Total monoCB	ND	25.0 4.73				
PCB-177	ND	25.0	2.89	6.91		Total diCB	10.4	50.0				
PCB-178	ND	25.0	3.10	8.85		Total triCB	ND	25.0 2.50				
PCB-179	ND	25.0	2.52	8.93		Total tetraCB	4.66	25.0				
PCB-180	ND	25.0	2.66	8.17		Total pentaCB	ND	25.0 7.42				
PCB-181	ND	25.0	2.56	4.66		Total hexaCB	ND	25.0 7.15				
PCB-182/187	ND	25.0	2.94	8.74		Total heptaCB	ND	25.0 3.28				
PCB-183	ND	25.0	2.69	5.75		Total octaCB	ND	25.0 6.67				
PCB-184	ND	25.0	2.44	7.24		Total nonaCB	ND	25.0 6.01				
PCB-185	ND	25.0	2.54	3.52		Total decaCB	ND	25.0 20.1				
PCB-186	ND	25.0	2.32	7.99		Total PCB	15.0	50.0				
PCB-188	ND	25.0	2.10	2.04								
PCB-189	ND	25.0	1.96	5.01								
PCB-190	ND	25.0	2.03	4.58								
PCB-191	ND	25.0	1.99	4.53								
PCB-192	ND	25.0	2.14	7.35								
PCB-193	ND	25.0	2.04	8.46								
PCB-194	ND	25.0	2.83	4.52								
PCB-195	ND	25.0	3.00	7.97								
PCB-196/203	ND	25.0	5.53	7.15								
PCB-197	ND	25.0	4.14	4.76								
PCB-198	ND	25.0	6.43	11.3								
PCB-199	ND	25.0	6.67	8.05								
PCB-200	ND	25.0	4.58	7.57								

a.Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Method Blank						EPA Method 1668C
Matrix: Aqueou	ıs	QC Ba	tch No.:	4637	Lab Sample:	0-MB001
Sample Size: 1.00 L		Date E	xtracted:	28-Aug-12	Date Analyzed:	29-Aug-12
Internal Standard	% Recovery	LCL -	UCL	Qualifier		
IS 13C-PCB-1	84.8	5	145			
13C-PCB-3	79.3	5	145			
13C-PCB-4	91.4	5	145			
13C-PCB-11	87.5	5	145			
13C-PCB-9	84.9	5	145			
13C-PCB-19	100	5	145			
13C-PCB-28	94.0	5	145			
13C-PCB-32	97.7	5	145			
13C-PCB-37	102	5	145			
13C-PCB-47	72.4	5	145			
13C-PCB-52	70.1	5	145			
13C-PCB-54	61.8	5	145			
13C-PCB-70	84.4	5	145			
13C-PCB-77	82.7	10	145			
13C-PCB-80	81.9	10	145			
13C-PCB-81	85.4	10	145			
13C-PCB-95	84.8	10	145			
13C-PCB-97	91.3	10	145			
13C-PCB-101	89.5	10	145			
13C-PCB-104	71.1	10	145			
13C-PCB-105	77.1	10	145			
13C-PCB-114	76.3	10	145			
13C-PCB-118	88.0	10	145			
13C-PCB-123	91.6	10	145			
13C-PCB-126	72.0	10	145			
13C-PCB-127	78.8	10	145			
13C-PCB-138	86.0	10	145			
13C-PCB-141	87.1	10	145			
13C-PCB-153	85.6	10	145			
13C-PCB-155	85.5	10	145			

Method Blank						EPA Method 1668C
Matrix:	Aqueous		QC Batch No.:	4637	Lab Sample:	0-MB001
Sample Size:	1.00 L		Date Extracted:	28-Aug-12	Date Analyzed:	29-Aug-12
Internal Stand	ard	% Recovery	LCL - UCL	Qualifier		

Inte	rnal Standard	% Recovery	LCL -	UCL	Qualifier
IS	13C-PCB-156	80.5	10	145	
	13C-PCB-157	80.5	10	145	
	13C-PCB-159	84.1	10	145	
	13C-PCB-167	83.6	10	145	
	13C-PCB-169	77.9	10	145	
	13C-PCB-170	93.9	10	145	
	13C-PCB-180	92.0	10	145	
	13C-PCB-188	74.0	10	145	
	13C-PCB-189	86.9	10	145	
	13C-PCB-194	90.4	10	145	
	13C-PCB-202	83.3	10	145	
	13C-PCB-206	91.0	10	145	
	13C-PCB-208	88.3	10	145	
	13C-PCB-209	96.4	10	145	
CRS	13C-PCB-79	91.7	10	145	
	13C-PCB-178	100	10	145	

	Conc. (ng/mL) 51.6 53.0 219 112 47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4 48.8	4637 28-Aug-12 OPR Limits 30 - 67.5 30 - 67.5 120 - 270 60 - 135 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5		•	0-OPR001 29-Aug-12 %R 80.2 76.1 87.1 84.7 95.3 109 64.0 92.2 94.2 69.9 80.8 80.3 92.4	LCL-UCL 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	Qualifier
Spike Conc. 50.0 50.0 200 100 50.0 50.0 50.0 50.0 50.0 50.0 50.	Conc. (ng/mL) 51.6 53.0 219 112 47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	OPR Limits 30 - 67.5 30 - 67.5 120 - 270 60 - 135 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5		13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-11 13C-PCB-19 13C-PCB-37 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	%R 80.2 76.1 87.1 84.7 95.3 109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	Qualifier
50.0 50.0 200 100 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	51.6 53.0 219 112 47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 120 - 270 60 - 135 30 - 67.5 30 - 67.5	IS	13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-11 13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-114	80.2 76.1 87.1 84.7 95.3 109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	Qualifier
50.0 200 100 50.0 50.0 50.0 50.0 50.0 50.0 50.	53.0 219 112 47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 120 - 270 60 - 135 30 - 67.5 30 - 67.5	IS	13C-PCB-3 13C-PCB-4 13C-PCB-11 13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	76.1 87.1 84.7 95.3 109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
200 100 50.0 50.0 50.0 50.0 50.0 50.0 50.	53.0 219 112 47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 120 - 270 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-4 13C-PCB-11 13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	87.1 84.7 95.3 109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
100 50.0 50.0 50.0 50.0 50.0 50.0 100 50.0 50.0 50.0	112 47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	60 - 135 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-11 13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	84.7 95.3 109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	47.2 48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	95.3 109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 50.0 50.0 50.0 50.0 100 50.0 50.	48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	109 64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 50.0 50.0 50.0 100 50.0 50.0 5	48.6 50.4 46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	64.0 92.2 94.2 69.9 80.8 80.3	15 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 50.0 50.0 100 50.0 50.0 50.0	46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	92.2 94.2 69.9 80.8 80.3	40 - 145 40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 50.0 50.0 100 50.0 50.0 50.0	46.8 50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	92.2 94.2 69.9 80.8 80.3	40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 50.0 100 50.0 50.0 50.0	50.0 52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	94.2 69.9 80.8 80.3	40 - 145 40 - 145 40 - 145 40 - 145	
50.0 50.0 100 50.0 50.0 50.0	52.3 49.7 105 47.7 53.4	30 - 67.5 30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118	69.9 80.8 80.3	40 - 145 40 - 145 40 - 145	
50.0 100 50.0 50.0 50.0	49.7 105 47.7 53.4	30 - 67.5 60 - 135 30 - 67.5 30 - 67.5		13C-PCB-105 13C-PCB-114 13C-PCB-118	80.8 80.3	40 - 145 40 - 145	
100 50.0 50.0 50.0	105 47.7 53.4	60 - 135 30 - 67.5 30 - 67.5		13C-PCB-114 13C-PCB-118	80.3	40 - 145	
50.0 50.0 50.0	47.7 53.4	30 - 67.5 30 - 67.5		13C-PCB-118			
50.0 50.0	53.4	30 - 67.5			/2.1		
50.0					94.6	40 - 145	
				13C-PCB-126	77.1	40 - 145	
30.0	48.5	30 - 67.5		13C-PCB-155	89.3	40 - 145	
50.0	47.1	30 - 67.5		13C-PCB-156	87.5	40 - 145	
30.0	31.2	30 - 07.3	CDS				
			CKS				
	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	50.0 47.9 50.0 49.5 50.0 49.6 50.0 51.1 50.0 50.7 50.0 49.8 50.0 51.1 50.0 49.2 50.0 50.4	50.0 47.9 30 - 67.5 50.0 49.5 30 - 67.5 50.0 49.6 30 - 67.5 50.0 51.1 30 - 67.5 50.0 50.7 30 - 67.5 50.0 49.8 30 - 67.5 50.0 51.1 30 - 67.5 50.0 49.2 30 - 67.5 50.0 50.4 30 - 67.5	50.0 47.9 30 - 67.5 50.0 49.5 30 - 67.5 50.0 49.6 30 - 67.5 50.0 51.1 30 - 67.5 50.0 50.7 30 - 67.5 50.0 49.8 30 - 67.5 50.0 51.1 30 - 67.5 50.0 49.2 30 - 67.5 50.0 50.4 30 - 67.5	50.0 47.9 30 - 67.5 13C-PCB-157 50.0 49.5 30 - 67.5 13C-PCB-167 50.0 49.6 30 - 67.5 13C-PCB-169 50.0 51.1 30 - 67.5 13C-PCB-188 50.0 50.7 30 - 67.5 13C-PCB-189 50.0 49.8 30 - 67.5 13C-PCB-194 50.0 51.1 30 - 67.5 13C-PCB-202 50.0 49.2 30 - 67.5 13C-PCB-206 50.0 50.4 30 - 67.5 13C-PCB-208 50.0 51.2 30 - 67.5 13C-PCB-209	50.0 47.9 30 - 67.5 13C-PCB-157 87.8 50.0 49.5 30 - 67.5 13C-PCB-167 90.8 50.0 49.6 30 - 67.5 13C-PCB-169 84.3 50.0 51.1 30 - 67.5 13C-PCB-188 81.1 50.0 50.7 30 - 67.5 13C-PCB-189 98.3 50.0 49.8 30 - 67.5 13C-PCB-194 95.2 50.0 51.1 30 - 67.5 13C-PCB-202 93.0 50.0 49.2 30 - 67.5 13C-PCB-206 102 50.0 50.4 30 - 67.5 13C-PCB-208 92.7 50.0 51.2 30 - 67.5 13C-PCB-209 102 CRS 13C-PCB-79 111	50.0 47.9 30 - 67.5 13C-PCB-157 87.8 40 - 145 50.0 49.5 30 - 67.5 13C-PCB-167 90.8 40 - 145 50.0 49.6 30 - 67.5 13C-PCB-169 84.3 40 - 145 50.0 51.1 30 - 67.5 13C-PCB-188 81.1 40 - 145 50.0 50.7 30 - 67.5 13C-PCB-189 98.3 40 - 145 50.0 49.8 30 - 67.5 13C-PCB-194 95.2 40 - 145 50.0 51.1 30 - 67.5 13C-PCB-202 93.0 40 - 145 50.0 49.2 30 - 67.5 13C-PCB-206 102 40 - 145 50.0 50.4 30 - 67.5 13C-PCB-208 92.7 40 - 145 50.0 51.2 30 - 67.5 13C-PCB-209 102 40 - 145 CRS 13C-PCB-79 111 40 - 145

Sample ID:	GW-14								EPA	Method	1668C
Client Data			Sample	<u>Data</u>		Laboratory Data					
	nvironmental, Inc.		Matrix:	Aqu	ieous	Lab Sample:	33954-001		Date Rec	eived: 25	-Aug-12
			Sample	Size:	1.03 L	QC Batch No.:	4637		Date Ext	acted: 28	-Aug-12
Date Collected:	24-Aug-12					Date Analyzed:	30-Aug-12	TEOWI	UO 2005 1	Mammal)	. 1.62
Time Collected:	1040					Date Allaryzed.	30-Aug-12	TEQ(W)	110-2003	viaiiiiiai)	. 1.02
		a	b	c				a		c	
Analyte	Conc. (pg/L)	RL	DL	MDL	Qualifiers	Analyte	Conc. (pg/L)	RL	DL	MDL	Qualifiers
PCB-1	27.1	24.2		3.61		PCB-41/64/71/72	367	24.2		16.5	
PCB-2	ND	24.2	4.79	5.43		PCB-42/59	74.1	24.2		11.1	
PCB-3	9.45	24.2		3.39	J	PCB-43/49	628	24.2		8.79	
PCB-4/10	15.6	48.4		5.85	J	PCB-44	1090	24.2		6.08	
PCB-5/8	27.5	48.4		5.96	J	PCB-45	13.7	24.2		7.49	J
PCB-6	6.71	48.4		5.33	J	PCB-46	ND	24.2	16.4	6.39	
PCB-7/9	ND	48.4	9.16	7.69		PCB-47	96.9	24.2		5.27	
PCB-11	32.2	48.4		14.6	J,B	PCB-48/75	41.5	24.2		8.94	
PCB-12/13	ND	48.4	9.84	12.4		PCB-50	ND	24.2	5.61	7.74	
PCB-14	ND	48.4	8.96	9.40		PCB-51	18.7	24.2		7.82	J
PCB-15	ND	48.4	9.10	2.52		PCB-52/69	2160	24.2		14.8	
PCB-16/32	16.6	24.2		8.55	J	PCB-53	49.6	24.2		8.48	
PCB-17	10.1	24.2		7.90	J	PCB-54	ND	24.2	4.18	5.54	
PCB-18	29.4	24.2		5.50		PCB-55	19.2	24.2		4.02	J
PCB-19	ND	24.2	3.38	5.57		PCB-56/60	234	24.2		13.9	
PCB-20/21/33	20.0	24.2		54.5	J	PCB-57	ND	24.2	3.06	3.62	
PCB-22	9.83	24.2		22.8	J	PCB-58	ND	24.2	2.96	5.22	
PCB-23	ND	24.2	3.06	16.7		PCB-61/70	1600	24.2		9.77	
PCB-24/27	ND	24.2	2.08	9.50		PCB-62	ND	24.2	4.09	5.06	
PCB-25	ND	24.2	3.26	9.43		PCB-63	20.5	24.2		6.38	J
PCB-26	7.97	24.2		10.4	J	PCB-65	ND	24.2	4.17	6.51	
PCB-28	32.9	24.2		7.63		PCB-67	ND	24.2	3.31	7.33	
PCB-29	ND	24.2	2.97	7.85		PCB-68	4.98	24.2		7.41	J
PCB-30	ND	24.2	2.14	6.55		PCB-73	ND	24.2	3.84	7.45	
PCB-31	55.9	24.2		13.1		PCB-74	373	24.2		8.44	
PCB-34	ND	24.2	3.00	9.29		PCB-76/66	483	24.2		10.4	
PCB-35	ND	24.2	4.21	9.12		PCB-77	22.9	24.2		5.01	J,B
PCB-36	ND	24.2	3.89	12.9		PCB-78	ND	24.2	3.65	5.24	,
PCB-37	7.96	24.2		10.0	J	PCB-79	43.1	24.2		4.51	
PCB-38	ND	24.2	4.09	17.8		PCB-80	ND	24.2	2.84	2.62	
PCB-39	ND	24.2	3.83	11.8		PCB-81	8.58	24.2		5.64	J
PCB-40	32.7	24.2		9.27		PCB-82	480	24.2		8.87	
100-40	J - ,	_ ··-		 .				_ · · · _			

a. Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Page 1 of 5

Project 33954 Page 11 of 20

Sample ID:	GW-14								EPA	Method	1668C
Client Data			Sample	Data		Laboratory Data					
	nvironmental, Inc.		Matrix:	Aqu	eous	Lab Sample:	33954-001	Date Received: 25-Aug-12			-Aug-12
Project: NA			Sample	Size:	1.03 L	QC Batch No.:	4637		Date Extracted: 28-Aug-12		
Date Collected:	24-Aug-12				1.03 L						Č
Time Collected:	1040					Date Analyzed:	30-Aug-12	TEQ(WI	HO-2005	Mammal)	: 1.62
Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers	Analyte	Conc. (pg/L)	RL a	b DL	MDL c	Qualifiers
					Qualifiers	-	40,				Qualifiers
PCB-83	ND 1790	24.2 24.2	5.37	4.95 6.38		PCB-127 PCB-128/162	ND 664	24.2 24.2	4.72	3.32 7.97	
PCB-84/92	650	24.2		8.32		PCB-128/102 PCB-129	207	24.2		6.66	
PCB-85/116	14.9	24.2		8.03	J	PCB-129 PCB-130	247	24.2		10.7	
PCB-86	1660	24.2		10.8	J	PCB-130 PCB-131	ND	24.2	7.83	5.74	
PCB-87/117/125	580	24.2		15.8		PCB-132/161	992	24.2	7.65	11.5	
PCB-88/91	45.8	24.2		6.17		PCB-133/142	103	24.2		10.4	
PCB-89 PCB-90/101	45.8	24.2		8.81		PCB-134/143	197	24.2		10.4	
PCB-90/101 PCB-93	ND	24.2	7.70	19.1		PCB-135	343	24.2		8.55	
PCB-93	19.4	24.2	7.70	4.94	J	PCB-136	394	24.2		7.83	
PCB-94 PCB-95/98/102	3180	24.2		22.2	J	PCB-137	248	24.2		6.47	
PCB-95/96/102 PCB-96	13.5	24.2		7.30	J	PCB-138/163/164	3480	24.2		4.06	
PCB-97	1290	24.2		8.73	3	PCB-139/149	2260	24.2		7.55	
PCB-99	1990	24.2		10.9		PCB-140	23.7	24.2		12.0	J
PCB-100	11.2	24.2		6.77	J	PCB-141	605	24.2		6.38	•
PCB-103	26.1	24.2		7.69		PCB-144	136	24.2		8.06	
PCB-104	ND	24.2	5.92	5.89		PCB-145	ND	24.2	4.95	9.72	
PCB-105	1400	24.2		4.59		PCB-146/165	392	24.2		6.36	
PCB-106/118	4030	24.2		10.2		PCB-147	83.7	24.2		7.85	
PCB-107/109	248	24.2		10.4		PCB-148	ND	24.2	6.48	4.01	
PCB-108/112	169	24.2		9.73		PCB-150	ND	24.2	5.05	9.67	
PCB-110	4920	24.2		4.52		PCB-151	541	24.2		9.59	
PCB-111/115	92.4	24.2		7.06		PCB-152	ND	24.2	4.78	6.32	
PCB-113	ND	24.2	5.85	8.37		PCB-153	2990	24.2		6.11	
PCB-114	85.1	24.2		8.70		PCB-154	43.1	24.2		5.65	
PCB-119	68.5	24.2		7.04		PCB-155	ND	24.2	4.46	6.99	
PCB-120	9.89	24.2		5.63	J	PCB-156	432	24.2		3.64	
PCB-121	ND	24.2	5.27	10.8		PCB-157	102	24.2		7.41	
PCB-122	40.4	24.2		6.51		PCB-158/160	450	24.2		10.9	
PCB-123	60.6	24.2		3.95		PCB-159	ND	24.2	4.97	6.98	
PCB-124	154	24.2		2.17		PCB-166	19.5	24.2		4.99	J
PCB-126	14.3	24.2		8.80	J	PCB-167	170	24.2		7.42	

a. Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Page 2 of 5

Project 33954 Page 12 of 20

Sample ID:	GW-14								EPA	Method	1668C
Client Data			Sample	<u>Data</u>		Laboratory Data					
Name: PES E	nvironmental, Inc.		Matrix:	Aaı	ieous	Lab Sample:	33954-001		Date Red	reived: 25.	- Aug-12
Project: NA				•		•		Date Received: 25-Aug-12 Date Extracted: 28-Aug-12			Č
Date Collected:	24-Aug-12		Sample	Size:	1.03 L	QC Batch No.:	4637		Date Ext	racted: 28	-Aug-12
Time Collected:	1040					Date Analyzed:	30-Aug-12	TEQ(WI	HO-2005	Mammal)	: 1.62
Time Concetcu.	1040	a	b	c				a	b	c	
Analyte	Conc. (pg/L)	RL a	DL	MDL	Qualifiers	Analyte	Conc. (pg/L)	RL	DL	MDL	Qualifiers
PCB-168	ND	24.2	4.93	4.40		PCB-201	88.2	24.2		5.54	
PCB-169	ND	24.2	6.05	5.54		PCB-202	148	24.2		9.73	
PCB-170	490	24.2		5.39		PCB-204	ND	24.2	4.93	6.10	
PCB-171	142	24.2		6.69		PCB-205	16.9	24.2		6.61	J
PCB-172	78.7	24.2		4.57		PCB-206	712	24.2		3.69	
PCB-173	13.6	24.2		5.13	J	PCB-207	67.7	24.2		4.76	
PCB-174	600	24.2		9.74		PCB-208	250	24.2		3.48	
PCB-175	ND	24.2	26.8	8.82	I	PCB-209	813	24.2		4.22	
PCB-176	88.8	24.2		9.21		Total monoCB	36.5	24.2			
PCB-177	299	24.2		6.91		Total diCB	82.0	48.4			В
PCB-178	119	24.2		8.85		Total triCB	191	24.2			
PCB-179	321	24.2		8.93		Total tetraCB	7380	24.2			В
PCB-180	1360	24.2		8.17		Total pentaCB	27600	24.2			
PCB-181	ND	24.2	3.57	4.66		Total hexaCB	15100	24.2			
PCB-182/187	905	24.2		8.74		Total heptaCB	5090	24.2			I
PCB-183	402	24.2		5.75		Total octaCB	2080	24.2			
PCB-184	ND	24.2	3.03	7.24		Total nonaCB	1030	24.2			
PCB-185	77.1	24.2		3.52		Total decaCB	813	24.2			
PCB-186	ND	24.2	2.89	7.99		Total PCB	59400	48.4			В
PCB-188	ND	24.2	2.61	2.04							
PCB-189	18.3	24.2		5.01	J						
PCB-190	101	24.2		4.58							
PCB-191	19.7	24.2		4.53	J						
PCB-192	ND	24.2	2.98	7.35							
PCB-193	55.7	24.2		8.46							
PCB-194	345	24.2		4.52							
PCB-195	135	24.2		7.97							
PCB-196/203	622	24.2		7.15							
PCB-197	25.8	24.2		4.76							
PCB-198	ND	24.2	21.0	11.3							
PCB-199	622	24.2		8.05							
PCB-200	72.6	24.2		7.57							

a. Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Page 3 of 5

Project 33954 Page 13 of 20

Sample ID: GW-14							EPA Method 1668C
Client Data Name: PES Environm Project: Date Collected: 24-Aug-		Sample I Matrix: Sample S	Aqueous ize: 1.03 L		Laboratory Data Lab Sample: QC Batch No.:	33954-001 4637	Date Received: 25-Aug-12 Date Extracted: 28-Aug-12
Time Collected: 1040					Date Analyzed	30-Aug-12	
Internal Standard	% Recovery	LCL -	UCL	Qualif	fier		
13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-11 13C-PCB-9 13C-PCB-19 13C-PCB-19 13C-PCB-32 13C-PCB-37 13C-PCB-37 13C-PCB-52 13C-PCB-52 13C-PCB-54 13C-PCB-70 13C-PCB-70 13C-PCB-70 13C-PCB-80 13C-PCB-81 13C-PCB-95 13C-PCB-95 13C-PCB-101 13C-PCB-104 13C-PCB-104 13C-PCB-105 13C-PCB-114 13C-PCB-118 13C-PCB-123 13C-PCB-126 13C-PCB-126	73.0 72.1 84.6 85.2 85.7 90.3 88.4 93.8 96.2 77.6 76.2 63.2 90.5 87.7 87.0 87.6 88.3 94.9 92.2 77.9 79.4 80.9 87.6 93.4 74.3 82.3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	145 145 145 145 145 145 145 145 145 145	Qualif			
13C-PCB-138 13C-PCB-141 13C-PCB-153 13C-PCB-155	85.4 88.1 85.9 96.9	10 10 10 10	145 145 145 145				

Sample ID: GW-14				EPA Method 1668C
Client Data Name: PES Environmental, Inc. Project: Date Collected: 24-Aug-12 Time Collected: 1040	Sample Data Matrix: Aqueous Sample Size: 1.03 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed	33954-001 4637 30-Aug-12	Date Received: 25-Aug-12 Date Extracted: 28-Aug-12
Internal Standard % Recovery	LCL - UCL Quali	fier		

Inter	rnal Standard	% Recovery	LCL -	UCL	Qualifier
IS	13C-PCB-156	79.6	10	145	
	13C-PCB-157	81.1	10	145	
	13C-PCB-159	85.7	10	145	
	13C-PCB-167	84.5	10	145	
	13C-PCB-169	77.6	10	145	
	13C-PCB-170	89.9	10	145	
	13C-PCB-180	91.5	10	145	
	13C-PCB-188	77.3	10	145	
	13C-PCB-189	83.5	10	145	
	13C-PCB-194	86.6	10	145	
	13C-PCB-202	82.4	10	145	
	13C-PCB-206	95.4	10	145	
	13C-PCB-208	94.4	10	145	
	13C-PCB-209	94.5	10	145	
CRS	13C-PCB-79	99.9	10	145	
	13C-PCB-178	99.3	10	145	
1					

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H Recovery was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Project 33954 Page 16 of 20

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	CA00413
Alabama Dept of Environmental Management	41610
Arizona Department Of Health Services	AZ0639
Arkansas Dept of Environmental Quality	11-035-0
California Dept of Health – NELAP	02102CA
Colorado Dept of Public Health & Environment	N/A
Connecticut Dept of Public Health	PH-0182
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Dept of Health	E87777
Indiana Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Louisiana Department of Health and Hospitals	LA110017
Maine Department of Health	2010021
Michigan Department of Natural Resources	9932
Mississippi Department of Health	N/A
Nevada Division of Environmental Protection	CA004132011-1
New Jersey Dept of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Dept of Health & Human Services	06700
North Dakota Dept of Health	R-078
Oklahoma Dept of Environmental Quality	2011-120
Oregon Laboratory Accreditation Program	CA200001
Pennsylvania Dept of Environmental Protection	68-00490
South Carolina Dept of Health	87002001
Tennessee Dept of Environment and Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-11-2
Utah Dept of Health	CA16400
Virginia Dept of General Services	00013
Washington Department of Ecology	C584
Wisconsin Dept of Natural Resources	998036160

Project 33954 Page 17 of 20

ABORA	ATOF	RY:	V	5	TO	Δ	onn oviro	ly	tre	al						SA	AMPL	ER.	S: _	K	cn	0	7 Div	NV	NO	ns		33	39	54	6.1	G	,					415)) 899	9-160	00 F	(415)	94947 899-16
JOB NU NAME / PROJEC	MBE	ER: _	2 DN:_	41	44	09 h	52 -C	h	18	tir	e/	E	ne	ryi	rill	e,_	CA	r		K															15M				MNA Parameters (see notes)		500		
			ATE								PLE	NU	MBE	R/			1	TAN	RIX				_				taine vative	1		DE	PTIA		5/8010	5/8021	5035/80	8015M	y 8015M	20	ameters	1111	(veroc)		
YR	N	10		Υ		TIM	E				ESIG					Vanor	Water	Soil	Sedim't		o cardal	Cipies.	H ₂ SO ₄	HNO	HOI					7	EET		EPA 5035/8010	EPA 5035/8021	TPHa by	TPHd by	TPHmo by 8015M	EPA 8270C	MNA Par	0	rcos		
12	0	8	2	4	1	O	40		51	.	- 12	-1					X				2	>																		<i></i> /			
																																								+			
								+				-																					1	+	-						+		

NOTES		CHA	AIN OF C	USTODY RECORD		
Turn Around Time: 5 - day AT	RELINQUISHED BY: (Signature)		1	DBY: (Signature)	8/24/T	TIME L 1216
See Bottle Priority on labels	HELINOVISHEO BY (Signature) UPS		RECEIVE	na Albertalet	0/25/2/2 DATE	TIME 0853
A-Primary	RELINQUISHED BY: (Signature)		RECEIVE	D BY: (Signature)	DATE	TIME
B - Secondary	RELINQUISHED BY: (Signature)		RECEIVE	D BY: (Signature)	DATE	TIME
Extra Extra.	DISPATCHED BY: (Signature)	DATE	TIME	RECEIVED FOR LAB BY: (Signature)	DATE	TIME
Page of of	METHOD OF SHIPMENT: Shipped via U	PS				

SAMPLE LOG-IN CHECKLIST

Vista Project #: TAT Location: Date/Time Initials: Samples Arrival: Shelf/Rack: X Initials: Location: Logged In: Shelf/Rack: Hand Delivered By: FedEx UPS On Trac DHL Other Delivered Dry Ice Preservation: Ice Blue Ice None Temp °C Time: Thermometer ID: IR-2

				YES	NO	NA
Adequate Sample Volum	e Received? A	B.C. Contain	irs	V		
Holding Time Acceptable	,			/		
Shipping Container(s) Int	act?					
Shipping Custody Seals I	ntact?			1		V
Shipping Documentation	Present?			/		
Airbill Ti	rk#			/		
Sample Container Intact?						
Sample Custody Seals In	tact?					
Chain of Custody / Samp	le Documentation	Present?		V,		
COC Anomaly/Sample A	cceptance Form co	ompleted?		1		
If Chlorinated or Drinking	Water Samples, A	cceptable Pres	ervation?			
Na ₂ S ₂ O ₃ Preservation Do	cumented?	COC	Sample Container	. (None	
Shipping Container	Vista	Client	Retain R	eturn	Disp	ose)

Comments:

Chain of Custody Anomaly/Sample Acceptance Form

Client: PES Environmental, Inc.		Project Number	33954
Contact: Chris Baldassari		Date Received:	Aug 25 2012
Fax Number: 415-8991601		Documented by/dat	e: 43013 8/25/12
Please review the following informati	ion and com	nlete the Client Authorization s	ection. To comply with
NELAC regulations, we must receive			
Thank You. (Fax #916-673-0106)		on before proceeding with samp	ore analysis.
Thank 10a. (1ax "510-075-0100"))		
The following information or item is	needed to pr	oceed with analysis:	
Complete Chain-of-Custody		Preservative	Collector's Name
Test Method Requested	一	Sample Identification	Sample Type
☐ Analyte List Requested	$\overline{\Box}$	Sample Collection Date / Time	Sample Location
			-
Fl. C.11	A		
The following anomalies were noted.			e analysis.
i i	imples Affect		XY.
Temperature outside 6.	°C	Ice present? Yes	No
	es Affected		
	es Affected	/	
	es Affected	-	
	es Affected		
	es Affected		
	es Affected	-	
Other			
l 			
ć			
Client Authorization			
		<u> </u>	1 1 -1
Proceed With Analysis: YES	NO	Signature and Date	dunta 8/27/2012
Client Comments/Instructions:			
Chefit Comments/firstructions.			

Vista Analytical Laboratory El Dorado Hills, CA 95762 Phone: (916) 673-1520 Fax:(916) 673-0106

Project 33954 Page 20 of 20

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 239134 ANALYTICAL REPORT

PES Environmental, Inc. 1682 Novato Boulevard

Novato, CA 94947

Project : 241.082.02.003

Location : 64th & Christie

Date: 08/31/2012

Level : II

Sample ID GW-14 <u>Lab ID</u> 239134-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Isabelle Choy
Project Manager
(510)204-2223

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 239134

Client: PES Environmental, Inc.

Project: 241.082.02.003
Location: 64th & Christie

Request Date: 08/24/12 Samples Received: 08/24/12

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 08/24/12. The sample was received intact.

Hydrocarbon Oil & Grease (SGT-HEM) (EPA 1664A):

Matrix spikes were not performed for this analysis due to insufficient sample volume. No analytical problems were encountered.

pH (EPA 9040C):

No analytical problems were encountered.

CHAIN OF CUSTODY

C	Curtis & Tompk ENVIRONMENTAL ANALYT	cins Lab	Oratorio LABORATO Business Since	es Ry	С	&T L0	OGIN	# <i>(</i>	239	913	Y .								usto	age _ ody #		_ of _	<i></i>
Project Project Project EDD For	P. O. No:	Phone Fax	(510) 486-09 (510) 486-05	200 532 (en	Si Ma	m 18t	10n	s				4500-H4R	by 16CH HOURSON	A	NAL	ΥΤΙС	AL	REC	QUE	ST			
Lab No.	Sample ID.	SAM Date Collected	PLING	MATI	SIX	of Containers	PRE	SER	ICAL /ATIV	/E		74	+ 650										
	SW-14	8/24/12	Time Collected	X No		#	HC HC	HNO3		None		X	δ X										
Notes:		SAMPLE RECEIPT Intact Cold On Ice Ambient	Res	RI	ELING	Sinc	DA DA	TE: %/2 TE:	TI	ME: ME:	202	: <i>U</i>	L Par		190	REC	EIVEI	∕ DA	8/2 TE:	TI	ME:	/2	02

COOLER RECEIPT CHECKLIST

Login # 239/34 Date Received 8/24//2 Number Client PES ENV: (en Ment) Project 6414 Ch	of coolers
Date Opened 8/14/1 By (print) # (sign) Late Logged in W By (print) (sign)	en Almal
Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? YES (circle) on cooler on sa How many Name Date_	mples [] NO
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe)	YES NO NA YES NO YES NO YES NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ 7. Temperature documentation: * Notify PM if temperature exceeds 6°	
Type of ice used: ☐ Wet ☐ Blue/Gel ☐ None Temp(°	C)
☐ Samples Received on ice & cold without a temperature blank; tem	p. taken with IR gun
☐ Samples received on ice directly from the field. Cooling process h	ad begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples?	
11. Are samples in the appropriate containers for indicated tests?	
13. Do the sample labels agree with custody papers?	YES NO
15. Are the samples appropriately preserved?	YES (10) N/A YES NO N/A YES NO N/A
18. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO OTA YES NO OTA
20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By	YES NO N/A YES NO Date:
COMMENTS 19. Only 1 this 1 liter Amber received	for both
14. Only the liter Amber received PH & oils grape analysis. 15. seceived unpreserved, added 5 ml on 8/14/12 @ 1230 to pH < 2 by #1.	of HCL (# K29026

Rev 10, 11/11

Curtis & Tompkins Sample Preservation for 239134

<u>Sample pH: <2 >9 >12 Other</u> -001a [] [] ____

5 of 9

	Hydrocarbon Oil & Grease (SGT-HEM)										
Lab #:	239134	Location:	64th & Christie								
Client:	PES Environmental, Inc.	Prep:	METHOD								
Project#:	241.082.02.003	Analysis:	EPA 1664A								
Analyte:	Hydrocarbon Oil & Grease	Batch#:	189949								
Field ID:	GW-14	Sampled:	08/24/12								
Matrix:	Water	Received:	08/24/12								
Units:	mg/L	Analyzed:	08/29/12								

Type	Lab ID	Result	RL	Diln Fac
SAMPLE	239134-001	ND	4.80	0.9600
BLANK	QC653849	ND	5.00	1.000

ND= Not Detected RL= Reporting Limit

Page 1 of 1

5.0

Batch QC Report

	Hydrocarbon Oil	& Grease (SG	Г-НЕМ)
Lab #:	239134	Location:	64th & Christie
Client:	PES Environmental, Inc.	Prep:	METHOD
Project#:	241.082.02.003	Analysis:	EPA 1664A
Analyte:	Hydrocarbon Oil & Grease	Diln Fac:	1.000
Matrix:	Water	Batch#:	189949
Units:	mg/L	Analyzed:	08/29/12

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC653850	20.00	24.60	123	64-132		
BSD	QC653851	20.00	21.70	109	64-132	13	34

рН				
Lab #:	239134	Location:	64th & Christie	
Client:	PES Environmental, Inc.	Prep:	METHOD	
Project#:	241.082.02.003	Analysis:	EPA 9040C	
Analyte:	рН	Diln Fac:	1.000	
Field ID:	GW-14	Batch#:	189833	
Lab ID:	239134-001	Sampled:	08/24/12 10:40	
Matrix:	Water	Received:	08/24/12	
Units:	SU	Analyzed:	08/24/12 13:40	

Result	RL	
7.6	1.0	


Batch QC Report

Нф				
Lab #:	239134	Location:	64th & Christie	
Client:	PES Environmental, Inc.	Prep:	METHOD	
Project#:	241.082.02.003	Analysis:	EPA 9040C	
Analyte:	рН	Units:	SU	
Field ID:	GW-14	Diln Fac:	1.000	
Type:	SDUP	Batch#:	189833	
MSS Lab ID:	239134-001	Sampled:	08/24/12 10:40	
Lab ID:	QC653340	Received:	08/24/12	
Matrix:	Water	Analyzed:	08/24/12 13:40	

MSS Result	Result	RL	RPD	Lim
7.600	7.740	1.000	2	20

RL= Reporting Limit

RPD= Relative Percent Difference

September 18, 2012

CERTIFIEDMAIL (Return Receipt Requested) Certified Mail No. 7005 2570 0000 6629 3516

Mr. Josh Corzine Rockwood Christie LLC 925 East Meadow Drive Palo Alto, CA 94303

Dear Mr. Corzine:

Re: Wastewater Discharge Permit No. 65767813

Enclosed is the Special Discharge Permit (Permit) for Rockwood Christie LLC for the facility located at 6340 Christie Avenue, Emeryville, California. Please read the Permit terms and conditions and the enclosed *EBMUD Special Discharge Permit Standard Terms and Conditions*, July 2010 Edition. A copy of *EBMUD Ordinance No. 311* is also enclosed. As a Permit Holder, you are legally responsible for complying with all Permit conditions and requirements.

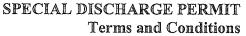
Rockwood Christie LLC shall report to the Environmental Services Division any changes, permanent or temporary, to the premises or operations that significantly affect the quality or volume of permitted discharge or deviate from the terms and conditions under which the Permit was granted.

If you have any questions regarding this Permit, please contact Nadia Borisova of the Environmental Services Division at (510) 287-1065.

Sincerely,

BENNETT K. HORENSTEIN

Manager of Environmental Services


W:\NAB\IDS\Permits\Special Discharge\Permits\Rockvood Christie\Permit Cover Letter.doc

BKH:NVB:nvb

Enclosures

Recycled Paper

P.O. BOX 24055 . OAKLAND . CA 94623-1055 . (510) 287-1405

PERMIT NUMBER 65767813 Rockwood Christie LLC

GENERAL CONDITIONS

- I. Permit Holder shall comply with all items of the latest version of Special Discharge Permit Standard Terms and Conditions.
- II. Permit Holder shall discharge Special Discharge Wastewater only from the specific source described in the *Special Discharge Permit Terms & Conditions, Criteria and Fees* form. The discharge of all other wastewater must comply with EBMUD Ordinance.
- III. Permit Holder shall immediately cease discharge of treated or managed Special Discharge Wastewater if not in compliance with any of the terms and conditions of this Special Discharge Permit.
- IV. This Special Discharge Permit is considered a waiver of EBMUD Ordinance, prohibiting:
 - o Discharge of wastewater directly into a manhole or other opening into the community sewer system, contingent upon approval from the City of Oakland.
- V. Permit Holder shall not discharge Special Discharge Wastewater authorized by this Special Discharge Permit after the expiration date.

COMPLIANCE REQUIREMENTS

- I. Permit Holder shall pre-treat or manage all Special Discharge Wastewater prior to discharge to the side sewer. Pretreatment or management shall be sufficient to achieve compliance with the limits established in this Special Discharge Permit.
- II. Permit Holder shall post a sign in the work area stating "All Wastewater Discharge must comply with the Special Discharge Permit."
- III. Permit Holder shall not discharge to the sanitary sewer during a rain event or within 24 hours after a rain event, which is defined as any precipitation greater than a drizzle.
- IV. Permit Holder shall not discharge wastewater at a flow rate greater than 100 gallons per minute.
- V. All discharge volume shall be calculated by discharge flow meter located on the treatment system and certified to EBMUD by logging info: date, time, and volume. Log will be signed by Site Manager and submitted to EBMUD Representative quarterly, at a minimum.
- VI. Permit Holder shall obtain approval if required from the City of Emeryville for the side sewer discharge location through which the special discharge wastewater is to be discharged, and shall comply with the terms and conditions set by this public agency owning the sanitary sewer system at the subject location.

WASTEWATER DISCHARGE LIMITS

Permit Holder shall not discharge Special Discharge Wastewater into the community sewer if the strength of the wastewater exceeds EBMUD Ordinance Wastewater Discharge Limits.

MONITORING AND REPORTING REQUIREMENTS

- I. Permit Holder shall monitor wastewater discharge operations to ensure compliance with the terms and conditions of this Special Discharge Permit. Data submitted includes analyses for VOCs, Metals, Oil and Grease Hydrocarbon and pH and meets EBMUD's Ordinance limits. PCBs congeners data for a non-pretreated sample indicate PCBs at 0.0594 microgram per liter exceeding the PCB congeners limit of 0.017 microgram per liter in accordance with the California Regional Water Quality Control Board's Order R2-2011-012. A pretreatment system is required to ensure PCBs removal. EBMUD reserves the right to require additional testing if the site work warrants. The groundwater will be pumped through a 20,000-gallon sediment removal tank to a 3,500-gallon sand filter and 2,000 lb GAC treatment system prior to discharge to the sanitary sewer, as depicted in the attached to the application schematic flow diagram.
- II. Discharge logs and analytical data shall be submitted quarterly (calendar year) to EBMUD Environmental Services Division, Nadia Borisova, MS 702, PO Box 24055, Oakland, CA 94623, or via facsimile at 510 287-0621 or email to nborisov@ebmud.com

SPECIAL DISCHARGE PERMIT

Terms and Conditions

PERMIT NUMBER 65767813 Rockwood Christie LLC

INSPECTIONS

The District may conduct random, unannounced inspections to verify compliance with the terms and conditions of this Special Discharge Permit. Permit Holder shall grant District personnel access to the facility and discharge logs to conduct inspections and collect Special Discharge Wastewater samples.

ENFORCEMENT AND PENALTIES

Failure to comply with the terms and conditions of this Special Discharge Permit and Special Discharge Permit Standard Terms and Conditions may result in enforcement actions, including violation follow-up fees, civil enforcement penalties, and administrative fines of up to \$5,000 per day.

RATES AND CHARGES

This Special Discharge Permit may be amended to include changes to rates and charges that may be established by the District during the term of this Special Discharge Permit. Billing is at \$0.02 per gallon and the Special Discharge permit fee is \$995.

AUTHORIZATION

Special Discharger Permit Holder is hereby authorized to discharge Special Discharge Wastewater to the community sewer, subject to compliance with EBMUD Ordinance, Special Discharge Permit Terms and Conditions, and billing conditions.

Effective:

9/21/2012

Expiration: October 31, 2013

for Director, Wastewater Department

21 SEP 12

Date

October 16, 2012

241.082.03.003

Rockwood Christie LLC c/o: Essex Property Trust, Inc. 925 East Meadow Drive Palo Alto, CA 94303

Attention: Mr. Josh Corzine

Subject: October 2012 Sampling Results

Groundwater Dewatering System 64th and Christie Residential Building

64th Street & Christie Avenue

Emeryville, California

Dear Mr. Corzine:

This letter has been prepared by PES Environmental, Inc. (PES) to document the collection and testing results of a water sample obtained from the construction dewatering system operated at the proposed 64th and Christie Residential Building redevelopment project in Emeryville, California. The sampling was conducted to provide additional data for PCB concentrations as required by the Special Discharge Permit issued by East Bay Municipal Utility District (EBMUD) dated September 18, 2012¹. The pre-treatment system consists of a 20,000-gallon sediment removal tanks and a 3,500-gallon sand filter. In accordance with the conditions of the discharge permit, groundwater from the construction dewatering wells is pumped through the pre-treatment system prior to discharge to the EBMUD sanitary sewer.

Sampling Methods

A water sample was obtained from the pre-treatment system effluent on October 3, 2012 (i.e., after passing through the sediment removal tank and sand filter). The water sample was slowly decanted into 1-liter glass amber containers. Upon collection, the containers were labeled for identification and immediately placed in a chilled, thermally-insulated cooler containing bagged ice. The cooler containing the water sample was delivered under chain-of-custody protocol to Vista Analytical Services, Inc. of El Dorado Hills, a laboratory certified by the

¹ East Bay Municipal Utilities District, 2012. Wastewater Discharge Permit No. 65767813. September 18.

Mr. Josh Corzine October 16, 2012 Page 2

State of California to perform the requested PCB congeners analysis by EPA Method 1668C (reported as a sum of 209 congeners), and in accordance with San Francisco Bay Area Regional Water Quality Control Board (RWQCB)² protocols.

Results

The laboratory reports and chain-of-custody documentation for water sample DW-Disch are provided in Appendix A. Total PCBs were detected at a concentration of 0.00499 micrograms per liter (μ g/L), less than the EBMUD Ordinance limit for PCB congeners limit of 0.017 μ g/L.

We trust that this is the information you require at this time. Please call either of the undersigned if you have any questions.

Yours very truly,

PES ENVIRONMENTAL, INC.

Christopher J. Baldassari, P.G.

Senior Geologist

William W. Mast, P.G.

Principal Engineer

cc: Allen Bates, SCM Construction Management Services

Attachment: Appendix A – Laboratory Analytical Report and Chain-of-Custody

Documentation

² San Francisco Bay Regional Water Quality Control Board, 2011. Sampling Analysis and Reporting Protocols Using EPA Method 1668C for Final Order No. R2-2011-0012, NPDES Permit No. CA0038849. May 17.

APPENDIX A

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

October 15, 2012

Vista Project I.D.: 34043

Mr. Chris Baldassari PES Environmental, Inc. 1682 Novato Boulevard Suite 100 Novato, CA

Dear Mr. Baldassari,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on October 04, 2012. This sample was extracted and analyzed using EPA Method 1668C for 209 PCB Congeners and homologue totals. A standard turnaround time was provided for this work.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at calvin@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Calvin Tanaka Senior Scientist

0.6.00a.

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Table of Contents

Case Narrative	1
Table of Contents	2
Sample Inventory	3
Analytical Results.	4
Qualifiers	16
Certifications	17
Sample Receipt	18

Project 34043 Page 2 of 19

Section I: Sample Inventory Report Date Received: 10/4/2012

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

34043-001 DW-Disch.

Project 34043 Page 3 of 19

ANALYTICAL RESULTS

Project 34043 Page 4 of 19

Method Blank								EPA	Method	1668C
Matrix:	Aqueous	QC Bat	ch No.:	4739	Lab Sample:	0-MB001				
Sample Size:	1.00 L	Date	Extracted	9-Oct-12	Date Analyzed:	10-Oct-12	TEQ(WHO	O-2005 I	Mammal) :	0
Analyte	Conc. (pg/L)	RL a	DL b	MDL C Qualifiers	Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers
PCB-1	ND	25.0	5.94	3.61	PCB-41/64/71/72	ND	25.0	2.30	16.5	
PCB-2	ND	25.0	6.28	5.43	PCB-42/59	ND		2.47	11.1	
PCB-3	ND	25.0	6.27	3.39	PCB-43/49	ND		2.61	8.79	
PCB-4/10	ND	50.0	25.6	5.85	PCB-44	ND		3.47	6.08	
PCB-5/8	ND	50.0	20.1	5.96	PCB-45	ND	25.0	2.82	7.49	
PCB-6	ND	50.0	20.7	5.33	PCB-46	ND	25.0	3.10	6.39	
PCB-7/9	ND	50.0	20.0	7.69	PCB-47	ND	25.0	2.55	5.27	
PCB-11	ND	50.0	20.6	14.6	PCB-48/75	ND	25.0	2.27	8.94	
PCB-12/13	ND	50.0	20.6	12.4	PCB-50	ND	25.0	3.10	7.74	
PCB-14	ND	50.0	18.8	9.40	PCB-51	ND	25.0	2.39	7.82	
PCB-15	ND	50.0	19.1	2.52	PCB-52/69	ND	25.0	2.24	14.8	
PCB-16/32	ND	25.0	2.41	8.55	PCB-53	ND	25.0	2.46	8.48	
PCB-17	ND	25.0	2.64	7.90	PCB-54	ND	25.0	2.31	5.54	
PCB-18	ND	25.0	2.85	5.50	PCB-55	ND	25.0	1.96	4.02	
PCB-19	ND	25.0	3.02	5.57	PCB-56/60	ND	25.0	2.07	13.9	
PCB-20/21/33	ND	25.0	2.12	54.5	PCB-57	ND	25.0	2.07	3.62	
PCB-22	ND	25.0	2.25	22.8	PCB-58	ND	25.0	2.00	5.22	
PCB-23	ND	25.0	2.09	16.7	PCB-61/70	ND	25.0	2.08	9.77	
PCB-24/27	ND	25.0	1.94	9.50	PCB-62	ND	25.0	2.35	5.06	
PCB-25	ND	25.0	2.23	9.43	PCB-63	ND	25.0	2.06	6.38	
PCB-26	ND	25.0	2.09	10.4	PCB-65	ND	25.0	2.39	6.51	
PCB-28	ND	25.0	2.06	7.63	PCB-67	ND	25.0	2.23	7.33	
PCB-29	ND	25.0	2.03	7.85	PCB-68	ND		2.12	7.41	
PCB-30	ND	25.0	1.91	6.55	PCB-73	ND		2.06	7.45	
PCB-31	ND	25.0	2.01	13.1	PCB-74	ND		2.01	8.44	
PCB-34	ND	25.0	2.05	9.29	PCB-76/66	ND		2.04	10.4	
PCB-35	ND	25.0	2.34	9.12	PCB-77	ND		4.69	5.01	
PCB-36	ND	25.0	2.17	12.9	PCB-78	ND		2.36	5.24	
PCB-37	ND	25.0	2.17	10.0	PCB-79	ND		1.97	4.51	
PCB-38	ND	25.0	2.28	17.8	PCB-80	ND		1.82	2.62	
PCB-39	ND	25.0	2.13	11.8	PCB-81	ND		2.15	5.64	
PCB-40	ND	25.0	3.86	9.27	PCB-82	ND		9.70	8.87	

a.Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Method Blank								EPA 1	Method	1668C
Matrix:	Aqueous	QC Bat	ch No.:	4739	Lab Sample:	0-MB001				
Sample Size:	1.00 L	Date	Extracted	9-Oct-12	Date Analyzed:	10-Oct-12	TEQ(WHO-	-2005 N	Iammal) :	0
Analyte	Conc. (pg/L)	RL a	DL b	MDL C Qualifiers	Analyte	Conc. (pg/L)	RL a	b DL	MDL c	Qualifiers
PCB-83	ND	25.0	5.53	4.95	PCB-127	ND	25.0 4	4.18	3.32	
PCB-84/92	ND	25.0	7.38	6.38	PCB-128/162	ND	25.0 3	3.16	7.97	
PCB-85/116	ND	25.0	6.38	8.32	PCB-129	ND	25.0	3.53	6.66	
PCB-86	ND	25.0	8.56	8.03	PCB-130	ND	25.0 3		10.7	
PCB-87/117/125	ND	25.0	5.64	10.8	PCB-131	ND	25.0	3.61	5.74	
PCB-88/91	ND	25.0	7.85	15.8	PCB-132/161	ND	25.0 2	2.72	11.5	
PCB-89	ND	25.0	8.34	6.17	PCB-133/142	ND	25.0 3	3.38	10.4	
PCB-90/101	ND	25.0	6.82	8.81	PCB-134/143	ND	25.0 3	3.38	10.1	
PCB-93	ND	25.0	8.53	19.1	PCB-135	ND	25.0 7	7.66	8.55	
PCB-94	ND	25.0	7.97	4.94	PCB-136	ND	25.0 5	5.56	7.83	
PCB-95/98/102	ND	25.0	7.21	22.2	PCB-137	ND	25.0 3	3.12	6.47	
PCB-96	ND	25.0	6.50	7.30	PCB-138/163/164	4 ND	25.0 2	2.66	4.06	
PCB-97	ND	25.0	6.86	8.73	PCB-139/149	ND	25.0	6.95	7.55	
PCB-99	ND	25.0	6.66	10.9	PCB-140	ND	25.0 8	8.38	12.0	
PCB-100	ND	25.0	7.33	6.77	PCB-141	ND	25.0 3	3.07	6.38	
PCB-103	ND	25.0	7.25	7.69	PCB-144	ND	25.0 7	7.01	8.06	
PCB-104	ND	25.0	5.34	5.89	PCB-145	ND	25.0 5	5.67	9.72	
PCB-105	ND	25.0	3.60	4.59	PCB-146/165	ND	25.0 2	2.70	6.36	
PCB-106/118	ND	25.0	5.94	10.2	PCB-147	ND	25.0 8	8.01	7.85	
PCB-107/109	ND	25.0	5.75	10.4	PCB-148	ND	25.0 7	7.43	4.01	
PCB-108/112	ND	25.0	6.61	9.73	PCB-150	ND	25.0 5	5.79	9.67	
PCB-110	ND	25.0	5.62	4.52	PCB-151	ND	25.0 7	7.70	9.59	
PCB-111/115	ND	25.0	4.82	7.06	PCB-152	ND	25.0 5	5.48	6.32	
PCB-113	ND	25.0	6.02	8.37	PCB-153	ND	25.0 2	2.80	6.11	
PCB-114	ND	25.0	3.62	8.70	PCB-154	ND	25.0 7	7.46	5.65	
PCB-119	ND	25.0	4.88	7.04	PCB-155	ND	25.0 5	5.11	6.99	
PCB-120	ND	25.0	4.61	5.63	PCB-156	ND	25.0 2	2.90	3.64	
PCB-121	ND	25.0	5.85	10.8	PCB-157	ND	25.0	3.10	7.41	
PCB-122	ND	25.0	4.25	6.51	PCB-158/160	ND	25.0 2	2.58	10.9	
PCB-123	ND	25.0	5.94	3.95	PCB-159	ND	25.0 2	2.70	6.98	
PCB-124	ND	25.0	5.34	2.17	PCB-166	ND	25.0 2	2.90	4.99	
PCB-126	ND	25.0	5.22	8.80	PCB-167	ND	25.0 2	2.80	7.42	

a.Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Method Blank									EPA	Method	1668C
Matrix:	Aqueous	QC Bat	ch No.:	4739		Lab Sample:	0-MB001				
Sample Size:	1.00 L	Date	Extracted:	9-Oc	t-12	Date Analyzed:	10-Oct-12	TEQ(WHO	D-2005	Mammal) :	0
Analyte	Conc. (pg/L)	RL a	DL b	MDL C	Qualifiers	Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers
PCB-168	ND	25.0	2.27	4.40		PCB-201	ND	25.0	5.28	5.54	
PCB-169	ND	25.0	5.80	5.54		PCB-202	ND	25.0	5.38	9.73	
PCB-170	ND	25.0	4.02	5.39		PCB-204	ND	25.0	5.28	6.10	
PCB-171	ND	25.0	3.12	6.69		PCB-205	ND	25.0	2.42	6.61	
PCB-172	ND	25.0	3.30	4.57		PCB-206	ND	25.0	3.74	3.69	
PCB-173	ND	25.0	4.23	5.13		PCB-207	ND	25.0	1.97	4.76	
PCB-174	ND	25.0	3.72	9.74		PCB-208	ND	25.0	1.95	3.48	
PCB-175	ND	25.0	2.80	8.82		PCB-209	ND	25.0	4.01	4.22	
PCB-176	ND	25.0	2.05	9.21		Total monoCB	ND	25.0			
PCB-177	ND	25.0	3.73	6.91		Total diCB	ND	50.0			
PCB-178	ND	25.0	2.72	8.85		Total triCB	ND	25.0	3.02		
PCB-179	ND	25.0	2.21	8.93		Total tetraCB	ND	25.0			
PCB-180	ND	25.0	3.43	8.17		Total pentaCB	ND	25.0	9.70		
PCB-181	ND	25.0	3.30	4.66		Total hexaCB	ND	25.0	8.38		
PCB-182/187	ND	25.0	2.58	8.74		Total heptaCB	ND	25.0	4.23		
PCB-183	ND	25.0	2.36	5.75		Total octaCB	ND	25.0	8.04		
PCB-184	ND	25.0	2.14	7.24		Total nonaCB	ND	25.0	3.74		
PCB-185	ND	25.0	3.27	3.52		Total decaCB	ND	25.0	4.01		
PCB-186	ND	25.0	2.04	7.99		Total PCB	ND	50.0			
PCB-188	ND	25.0	1.84	2.04							
PCB-189	ND	25.0	2.95	5.01							
PCB-190	ND	25.0	3.00	4.58							
PCB-191	ND	25.0	2.57	4.53							
PCB-192	ND	25.0	2.76	7.35							
PCB-193	ND	25.0	2.63	8.46							
PCB-194	ND	25.0	3.21	4.52							
PCB-195	ND	25.0	3.40	7.97							
PCB-196/203	ND	25.0	6.66	7.15							
PCB-197	ND	25.0	4.99	4.76							
PCB-198	ND	25.0	7.75	11.3							
PCB-199	ND	25.0	8.04	8.05							
PCB-200	ND	25.0	5.52	7.57							

a.Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Method Blank						EPA Method 1668C
Matrix: Aqueous	S	QC Ba	tch No.:	4739	Lab Sample:	0-MB001
Sample Size: 1.00 L		Date E	xtracted:	9-Oct-12	Date Analyzed:	10-Oct-12
Internal Standard	% Recovery	LCL -	UCL	Qualifier		
IS 13C-PCB-1	50.4	5	145			
13C-PCB-3	50.6	5	145			
13C-PCB-4	82.2	5	145			
13C-PCB-11	85.4	5	145			
13C-PCB-9	79.4	5	145			
13C-PCB-19	69.8	5	145			
13C-PCB-28	78.0	5	145			
13C-PCB-32	72.0	5	145			
13C-PCB-37	87.4	5	145			
13C-PCB-47	79.6	5	145			
13C-PCB-52	80.5	5	145			
13C-PCB-54	69.2	5	145			
13C-PCB-70	91.4	5	145			
13C-PCB-77	90.1	10	145			
13C-PCB-80	89.1	10	145			
13C-PCB-81	90.6	10	145			
13C-PCB-95	89.9	10	145			
13C-PCB-97	98.3	10	145			
13C-PCB-101	98.9	10	145			
13C-PCB-104	81.4	10	145			
13C-PCB-105	88.8	10	145			
13C-PCB-114	96.2	10	145			
13C-PCB-118	89.4	10	145			
13C-PCB-123	95.7	10	145			
13C-PCB-126	76.2	10	145			
13C-PCB-127	92.5	10	145			
13C-PCB-138	96.6	10	145			
13C-PCB-141	102	10	145			
13C-PCB-153	105	10	145			
13C-PCB-155	83.8	10	145			

Chemist: DMS Page 4 of 5 Approved by: Calvin Tanaka 15-Oct-2012 12:56

Method Blank					EPA Method 1668C
Matrix:	Aqueous	QC Batch No.:	4739	Lab Sample:	0-MB001
Sample Size:	1.00 L	Date Extracted:	9-Oct-12	Date Analyzed:	10-Oct-12
Internal Stand	ard % Rec	overy I.C IICI	Qualifiar		

rnal Standard	% Recovery	LCL -	UCL	Quaimer
13C-PCB-156	83.7	10	145	
13C-PCB-157	84.9	10	145	
13C-PCB-159	95.7	10	145	
13C-PCB-167	93.3	10	145	
13C-PCB-169	63.0	10	145	
13C-PCB-170	71.6	10	145	
13C-PCB-180	80.4	10	145	
13C-PCB-188	90.1	10	145	
13C-PCB-189	68.7	10	145	
13C-PCB-194	96.6	10	145	
13C-PCB-202	74.8	10	145	
13C-PCB-206	102	10	145	
13C-PCB-208	100	10	145	
13C-PCB-209	96.0	10	145	
13C-PCB-79	96.6	10	145	
13C-PCB-178	104	10	145	
	13C-PCB-156 13C-PCB-157 13C-PCB-159 13C-PCB-167 13C-PCB-169 13C-PCB-170 13C-PCB-180 13C-PCB-188 13C-PCB-189 13C-PCB-194 13C-PCB-202 13C-PCB-206 13C-PCB-206 13C-PCB-208 13C-PCB-209 13C-PCB-79	13C-PCB-156 83.7 13C-PCB-157 84.9 13C-PCB-159 95.7 13C-PCB-167 93.3 13C-PCB-169 63.0 13C-PCB-170 71.6 13C-PCB-180 80.4 13C-PCB-188 90.1 13C-PCB-189 68.7 13C-PCB-194 96.6 13C-PCB-202 74.8 13C-PCB-206 102 13C-PCB-206 102 13C-PCB-208 100 13C-PCB-209 96.0 13C-PCB-79 96.6	13C-PCB-156 83.7 10 13C-PCB-157 84.9 10 13C-PCB-159 95.7 10 13C-PCB-167 93.3 10 13C-PCB-169 63.0 10 13C-PCB-170 71.6 10 13C-PCB-180 80.4 10 13C-PCB-188 90.1 10 13C-PCB-189 68.7 10 13C-PCB-194 96.6 10 13C-PCB-202 74.8 10 13C-PCB-206 102 10 13C-PCB-208 100 10 13C-PCB-209 96.0 10 13C-PCB-79 96.6 10	13C-PCB-156 83.7 10 145 13C-PCB-157 84.9 10 145 13C-PCB-159 95.7 10 145 13C-PCB-167 93.3 10 145 13C-PCB-169 63.0 10 145 13C-PCB-170 71.6 10 145 13C-PCB-180 80.4 10 145 13C-PCB-188 90.1 10 145 13C-PCB-189 68.7 10 145 13C-PCB-194 96.6 10 145 13C-PCB-202 74.8 10 145 13C-PCB-206 102 10 145 13C-PCB-208 100 10 145 13C-PCB-209 96.0 10 145 13C-PCB-79 96.6 10 145

Chemist: DMS Page 5 of 5 Approved by: Calvin Tanaka 15-Oct-2012 12:56

Matrix:								EPA M	lethod 16680
	Aqueous	(QC Batch No.:	4739	Lab S	ample:	0-OPR001		
Sample Size:	1.00 L	I	Date Extracted:	9-Oct-12	Date A	analyzed DB-1:	10-Oct-12		
Analyte		Spike Conc.	Conc. (ng/mL)	OPR Limits		Labeled Standard	%R	LCL-UCL	Qualifier
PCB-1		50.0	63.4	30 - 67.5	IS	13C-PCB-1	48.3	15 - 145	
PCB-3		50.0	62.4	30 - 67.5		13C-PCB-3	50.1	15 - 145	
PCB-4/10		200	223	120 - 270		13C-PCB-4	79.0	15 - 145	
PCB-15		100	109	60 - 135		13C-PCB-11	88.8	15 - 145	
PCB-19		50.0	52.4	30 - 67.5		13C-PCB-19	70.5	15 - 145	
PCB-37		50.0	45.4	30 - 67.5		13C-PCB-37	112	15 - 145	
PCB-54		50.0	51.6	30 - 67.5		13C-PCB-54	67.9	15 - 145	
PCB-77		50.0	49.2	30 - 67.5		13C-PCB-77	96.2	40 - 145	
PCB-81		50.0	51.3	30 - 67.5		13C-PCB-81	100	40 - 145	
PCB-104		50.0	50.8	30 - 67.5		13C-PCB-104	74.7	40 - 145	
PCB-105		50.0	51.2	30 - 67.5		13C-PCB-105	84.4	40 - 145	
PCB-106/118		100	107	60 - 135		13C-PCB-114	91.8	40 - 145	
PCB-114		50.0	49.1	30 - 67.5		13C-PCB-118	98.1	40 - 145	
PCB-123		50.0	53.2	30 - 67.5		13C-PCB-123	103	40 - 145	
PCB-126		50.0	51.2	30 - 67.5		13C-PCB-126	76.4	40 - 145	
PCB-155		50.0	52.6	30 - 67.5		13C-PCB-155	83.8	40 - 145	
PCB-156		50.0	52.0	30 - 67.5		13C-PCB-156	88.8	40 - 145	
PCB-157		50.0	51.6	30 - 67.5		13C-PCB-157	89.4	40 - 145	
PCB-167		50.0	53.0	30 - 67.5		13C-PCB-167	92.5	40 - 145	
PCB-169		50.0	52.8	30 - 67.5		13C-PCB-169	76.9	40 - 145	
PCB-188		50.0	51.6	30 - 67.5		13C-PCB-188	89.8	40 - 145	
PCB-189		50.0	53.0	30 - 67.5		13C-PCB-189	71.6	40 - 145	
PCB-202		50.0	51.8	30 - 67.5		13C-PCB-194	102	40 - 145	
PCB-205		50.0	47.7	30 - 67.5		13C-PCB-202	80.3	40 - 145	
PCB-206		50.0	48.2	30 - 67.5		13C-PCB-206	103	40 - 145	
PCB-208		50.0	50.0	30 - 67.5		13C-PCB-208	102	40 - 145	
PCB-209		50.0	51.7	30 - 67.5		13C-PCB-209	96.6	40 - 145	
20,		20.0	0111	20 01.2	CRS	13C-PCB-79	105	40 - 145	
					0218	13C-PCB-178	103	40 - 145	

Sample ID:	DW-Disch.								EPA	Method	1668C
Client Data			Sample	Data		Laboratory Data					
Name: PES E	nvironmental, Inc.		Matrix:	Aar	ieous	Lab Sample:	34043-001		Date Red	ceived: 4-(Oct-12
Project: NA				•		•		Date Extracted: 9-Oct-12			
Date Collected:	3-Oct-12		Sample	Size:	1.04 L	QC Batch No.:	4739		Date Ext	racted: 9-(Oct-12
Time Collected:	1030					Date Analyzed:	11-Oct-12	TEQ(WI	HO-2005	Mammal)	: 0.348
Time Conected.	1030		1-						L.		
Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers	Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers
PCB-1	71.6	23.9		3.61		PCB-41/64/71/72	33.9	23.9		16.5	
PCB-2	ND	23.9	8.85	5.43		PCB-42/59	10.7	23.9		11.1	J
PCB-3	7.22	23.9		3.39	J	PCB-43/49	91.8	23.9		8.79	
PCB-4/10	156	47.8		5.85		PCB-44	42.1	23.9		6.08	
PCB-5/8	74.6	47.8		5.96		PCB-45	ND	23.9	2.78	7.49	
PCB-6	84.7	47.8		5.33		PCB-46	6.81	23.9		6.39	J
PCB-7/9	ND	47.8	60.4	7.69		PCB-47	21.5	23.9		5.27	J
PCB-11	34.3	47.8		14.6	J	PCB-48/75	3.88	23.9		8.94	J
PCB-12/13	ND	47.8	62.2	12.4		PCB-50	ND	23.9	2.92	7.74	
PCB-14	ND	47.8	56.7	9.40		PCB-51	32.9	23.9		7.82	
PCB-15	ND	47.8	57.6	2.52		PCB-52/69	124	23.9		14.8	
PCB-16/32	90.3	23.9		8.55		PCB-53	74.0	23.9		8.48	
PCB-17	41.2	23.9		7.90		PCB-54	34.6	23.9		5.54	
PCB-18	125	23.9		5.50		PCB-55	ND	23.9	1.71	4.02	
PCB-19	93.7	23.9		5.57		PCB-56/60	6.85	23.9		13.9	J
PCB-20/21/33	15.5	23.9		54.5	J	PCB-57	ND	23.9	1.78	3.62	
PCB-22	8.64	23.9		22.8	J	PCB-58	ND	23.9	1.72	5.22	
PCB-23	ND	23.9	2.31	16.7		PCB-61/70	25.6	23.9		9.77	
PCB-24/27	48.9	23.9		9.50		PCB-62	ND	23.9	2.12	5.06	
PCB-25	21.2	23.9		9.43	J	PCB-63	ND	23.9	1.77	6.38	
PCB-26	40.5	23.9		10.4		PCB-65	ND	23.9	2.16	6.51	
PCB-28	ND	23.9	22.3	7.63		PCB-67	ND	23.9	1.92	7.33	
PCB-29	ND	23.9	2.24	7.85		PCB-68	ND	23.9	1.91	7.41	
PCB-30	ND	23.9	1.83	6.55		PCB-73	2.48	23.9		7.45	J
PCB-31	30.6	23.9		13.1		PCB-74	5.78	23.9		8.44	J
PCB-34	ND	23.9	2.27	9.29		PCB-76/66	13.9	23.9		10.4	J
PCB-35	ND	23.9	2.03	9.12		PCB-77	5.19	23.9		5.01	J
PCB-36	ND	23.9	1.88	12.9		PCB-78	ND	23.9	2.19	5.24	
PCB-37	ND	23.9	1.88	10.0		PCB-79	3.29	23.9		4.51	J
PCB-38	ND	23.9	1.97	17.8		PCB-80	ND	23.9	1.59	2.62	
PCB-39	ND	23.9	1.85	11.8		PCB-81	ND	23.9	1.99	5.64	
PCB-40	ND	23.9	3.48	9.27		PCB-82	ND	23.9	5.71	8.87	

a. Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Page 1 of 5

Project 34043 Page 11 of 19

Sample ID:	DW-Disch.								EPA :	Method	1668C
Client Data			Sample	Data		Laboratory Data					
Name: PES E	nvironmental, Inc.		Matrix:	Aar	ieous	Lab Sample:	34043-001		Date Rec	eived: 4-(Oct-12
Project: NA				•		•		Date Extracted: 9-Oct-12			
Date Collected:	3-Oct-12		Sample	Size:	1.04 L	QC Batch No.:	4739		Date Exti	racted: 9-(Oct-12
Time Collected:	1030					Date Analyzed:	11-Oct-12	TEQ(WI	HO-2005 I	Mammal)	: 0.348
Time Conected.	1030		ļ,								
Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers	Analyte	Conc. (pg/L)	RL a	DL b	MDL c	Qualifiers
PCB-83	ND	23.9	3.83	4.95		PCB-127	ND	23.9	3.32	3.32	
PCB-84/92	54.6	23.9		6.38		PCB-128/162	11.4	23.9		7.97	J
PCB-85/116	9.14	23.9		8.32	J	PCB-129	4.12	23.9		6.66	J
PCB-86	ND	23.9	5.94	8.03		PCB-130	7.87	23.9		10.7	J
PCB-87/117/125	19.7	23.9		10.8	J	PCB-131	ND	23.9	3.77	5.74	
PCB-88/91	21.4	23.9		15.8	J	PCB-132/161	26.8	23.9		11.5	
PCB-89	ND	23.9	5.47	6.17		PCB-133/142	6.17	23.9		10.4	J
PCB-90/101	90.0	23.9		8.81		PCB-134/143	7.27	23.9		10.1	J
PCB-93	ND	23.9	5.86	19.1		PCB-135	23.4	23.9		8.55	J
PCB-94	ND	23.9	5.48	4.94		PCB-136	21.0	23.9		7.83	J
PCB-95/98/102	129	23.9		22.2		PCB-137	4.15	23.9		6.47	J
PCB-96	ND	23.9	4.46	7.30		PCB-138/163/164	93.8	23.9		4.06	
PCB-97	20.4	23.9		8.73	J	PCB-139/149	124	23.9		7.55	
PCB-99	51.8	23.9		10.9		PCB-140	ND	23.9	6.81	12.0	
PCB-100	5.19	23.9		6.77	J	PCB-141	16.5	23.9		6.38	J
PCB-103	9.71	23.9		7.69	J	PCB-144	ND	23.9	5.70	8.06	
PCB-104	ND	23.9	3.66	5.89		PCB-145	ND	23.9	4.61	9.72	
PCB-105	12.7	23.9		4.59	J	PCB-146/165	32.3	23.9		6.36	
PCB-106/118	39.6	23.9		10.2		PCB-147	ND	23.9	13.1	7.85	
PCB-107/109	6.54	23.9		10.4	J	PCB-148	ND	23.9	6.04	4.01	
PCB-108/112	5.57	23.9		9.73	J	PCB-150	ND	23.9	4.70	9.67	
PCB-110	103	23.9		4.52		PCB-151	48.2	23.9		9.59	
PCB-111/115	ND	23.9	3.34	7.06		PCB-152	ND	23.9	4.45	6.32	
PCB-113	1.76	23.9		8.37	J	PCB-153	122	23.9		6.11	
PCB-114	ND	23.9	2.96	8.70		PCB-154	16.8	23.9		5.65	J
PCB-119	5.73	23.9		7.04	J	PCB-155	ND	23.9	4.15	6.99	
PCB-120	ND	23.9	3.19	5.63		PCB-156	6.65	23.9		3.64	J
PCB-121	ND	23.9	4.02	10.8		PCB-157	3.10	23.9		7.41	J
PCB-122	ND	23.9	3.48	6.51		PCB-158/160	ND	23.9	8.40	10.9	
PCB-123	ND	23.9	3.50	3.95		PCB-159	ND	23.9	2.30	6.98	
PCB-124	ND	23.9	3.14	2.17		PCB-166	ND	23.9	2.46	4.99	
PCB-126	3.46	23.9		8.80	J	PCB-167	ND	23.9	2.12	7.42	

a. Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Page 2 of 5

Project 34043 Page 12 of 19

Sample ID:	DW-Disch.								EPA :	Method	1668C
Client Data			Sample	Data		Laboratory Data					
Name: PES E	nvironmental, Inc.		Matrix:	Aaı	ieous	Lab Sample:	34043-001		Date Rec	eived: 4-(Oct-12
Project: NA			1			1		Date Extracted: 9-Oct-12			
Date Collected:	3-Oct-12		Sample	Size:	1.04 L	QC Batch No.:	4739		Date Exti	acted: 9-(Oct-12
Time Collected:	1030					Date Analyzed:	11-Oct-12	TEQ(W)	HO-2005	Mammal)	: 0.348
Time conceed.	1030	a	b	c				a	ь	c	
Analyte	Conc. (pg/L)	RL a	DL	MDL	Qualifiers	Analyte	Conc. (pg/L)	RL	DL	MDL	Qualifiers
PCB-168	ND	23.9	2.37	4.40		PCB-201	13.2	23.9		5.54	J
PCB-169	ND	23.9	3.36	5.54		PCB-202	33.7	23.9		9.73	
PCB-170	27.8	23.9		5.39		PCB-204	ND	23.9	5.01	6.10	
PCB-171	7.03	23.9		6.69	J	PCB-205	ND	23.9	1.90	6.61	
PCB-172	6.21	23.9		4.57	J	PCB-206	599	23.9		3.69	
PCB-173	ND	23.9	3.67	5.13		PCB-207	34.6	23.9		4.76	
PCB-174	42.7	23.9		9.74		PCB-208	232	23.9		3.48	
PCB-175	3.01	23.9		8.82	J	PCB-209	821	23.9		4.22	
PCB-176	7.02	23.9		9.21	J	Total monoCB	78.8	23.9			
PCB-177	22.7	23.9		6.91	J	Total diCB	349	47.8			
PCB-178	ND	23.9	9.63	8.85		Total triCB	515	23.9			
PCB-179	28.5	23.9		8.93		Total tetraCB	540	23.9			
PCB-180	96.6	23.9		8.17		Total pentaCB	589	23.9			
PCB-181	ND	23.9	2.87	4.66		Total hexaCB	575	23.9			
PCB-182/187	80.6	23.9		8.74		Total heptaCB	369	23.9			
PCB-183	26.4	23.9		5.75		Total octaCB	286	23.9			
PCB-184	ND	23.9	2.26	7.24		Total nonaCB	865	23.9			
PCB-185	4.55	23.9		3.52	J	Total decaCB	821	23.9			
PCB-186	ND	23.9	2.15	7.99		Total PCB	4990	47.8			
PCB-188	ND	23.9	1.95	2.04							
PCB-189	3.01	23.9		5.01	J						
PCB-190	7.42	23.9		4.58	J						
PCB-191	ND	23.9	2.23	4.53							
PCB-192	ND	23.9	2.39	7.35							
PCB-193	5.59	23.9		8.46	J						
PCB-194	28.7	23.9		4.52							
PCB-195	ND	23.9	9.03	7.97							
PCB-196/203	78.1	23.9		7.15							
PCB-197	ND	23.9	4.73	4.76							
PCB-198	ND	23.9	7.36	11.3							
PCB-199	133	23.9		8.05							
PCB-200	ND	23.9	5.25	7.57							

a. Reporting Limit. b. Sample specific Detection Limit. c. Laboratory Method Detection Limits (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B, based on a one liter sample volume. MDLs are subject to update.

Page 3 of 5

Project 34043 Page 13 of 19

Sample ID: DW-Disc	h				EPA Method 1668C		
Client Data Name: PES Environment Project: Date Collected: 3-Oct-12 Time Collected: 1030	tal, Inc.	Sample D Matrix: Sample Si	Aqueous ize: 1.04 L		Laboratory Data Lab Sample: QC Batch No.: Date Analyzed	34043-001 4739 11-Oct-12	Date Received: 4-Oct-12 Date Extracted: 9-Oct-12
Internal Standard	% Recovery	LCL -	UCL	Quali	ier		
IS 13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-9 13C-PCB-9 13C-PCB-19 13C-PCB-28 13C-PCB-32 13C-PCB-37 13C-PCB-37 13C-PCB-52 13C-PCB-54 13C-PCB-54 13C-PCB-70 13C-PCB-70 13C-PCB-77 13C-PCB-80 13C-PCB-81 13C-PCB-95 13C-PCB-91 13C-PCB-101 13C-PCB-104 13C-PCB-104 13C-PCB-105 13C-PCB-105 13C-PCB-114 13C-PCB-118 13C-PCB-123 13C-PCB-127 13C-PCB-127 13C-PCB-138 13C-PCB-138	50.6 52.9 87.9 100 91.1 78.4 84.6 82.4 105 78.5 77.1 65.6 91.1 96.2 94.6 92.0 93.3 103 103 81.6 78.0 84.8 98.6 104 74.3 84.5 99.6 102	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	145 145 145 145 145 145 145 145 145 145				

Sample ID: DW-Disch.			EPA Method 1668C
Client Data Name: PES Environmental, Inc. Project: Date Collected: 3-Oct-12 Time Collected: 1030	Sample Data Matrix: Aqueous Sample Size: 1.04 L	Laboratory Data Lab Sample: 34043 QC Batch No.: 4739 Date Analyzed 11-Oc	Date Extracted: 9-Oct-12
Internal Standard % Recovery	LCL - UCL	Qualifier	

Internal Standard		% Recovery	LCL - UCL		Qualifier
IS	13C-PCB-156	94.6	10	145	
	13C-PCB-157	94.2	10	145	
	13C-PCB-159	103	10	145	
	13C-PCB-167	98.9	10	145	
	13C-PCB-169	89.5	10	145	
	13C-PCB-170	96.8	10	145	
	13C-PCB-180	97.4	10	145	
	13C-PCB-188	88.5	10	145	
	13C-PCB-189	91.2	10	145	
	13C-PCB-194	98.2	10	145	
	13C-PCB-202	83.4	10	145	
	13C-PCB-206	108	10	145	
	13C-PCB-208	111	10	145	
	13C-PCB-209	104	10	145	
CRS	13C-PCB-79	107	10	145	
	13C-PCB-178	106	10	145	

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H Recovery was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Project 34043 Page 16 of 19

CERTIFICATIONS

Accrediting Authority	Certificate Number		
Alaska Department of Environmental Conservation	CA00413		
Alabama Dept of Environmental Management	41610		
Arizona Department Of Health Services	AZ0639		
Arkansas Dept of Environmental Quality	11-035-0		
California Dept of Health – NELAP	02102CA		
Colorado Dept of Public Health & Environment	N/A		
Connecticut Dept of Public Health	PH-0182		
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01		
Florida Dept of Health	E87777		
Indiana Department of Health	N/A		
Louisiana Department of Environmental Quality	01977		
Louisiana Department of Health and Hospitals	LA110017		
Maine Department of Health	2010021		
Michigan Department of Natural Resources	9932		
Mississippi Department of Health	N/A		
Nevada Division of Environmental Protection	CA004132011-1		
New Jersey Dept of Environmental Protection	CA003		
New York Department of Health	11411		
North Carolina Dept of Health & Human Services	06700		
North Dakota Dept of Health	R-078		
Oklahoma Dept of Environmental Quality	2011-120		
Oregon Laboratory Accreditation Program	CA200001		
Pennsylvania Dept of Environmental Protection	68-00490		
South Carolina Dept of Health	87002001		
Tennessee Dept of Environment and Conservation	TN02996		
Texas Commission on Environmental Quality	T104704189-11-2		
Utah Dept of Health	CA16400		
Virginia Dept of General Services	00013		
Washington Department of Ecology	C584		
Wisconsin Dept of Natural Resources	998036160		

Project 34043 Page 17 of 19

Engineering & Environmental Services	СНА	IN OF CUSTODY RE	1682 NOVATO BOULEVARD, SUITE 100 NOVATO, CALIFORNIA 94947 4,2 (415) 899-1600 FAX (415) 899-1601
LABORATORY: Vista	SAMPLERS:	M. Ruttress	ANALYSIS REQUESTED
NAME/LOCATION: 64+++ Christie, Envery			
NAME/LOCATION: 647 + Christie, Envery	ville_		
PROJECT MANAGER: W- Mast	RECORDER: _	MB	WS N S S S S S S S S
DATE SAMPLE NUMBER /	MATRIX	# of Containers & Preservatives	5/8010 5/8021 5/8021 5/8260B 5035/80 8015M 9y 8015M 0C ameters
YR MO DY TIME DESIGNATION	Vapor Water Soil Sedim't	Unpress. EnCore H ₂ SO ₄ HNO ₃	# = # = # = # = # = # = # = # = # = # =
1210031030 DW-Disch.	X	3	
	+		
	1		
NOTES			CHAIN OF CUSTODY RECORD
Turn Around Time: Standard (15 - day)		RELINOUISHED BY: (Signature)	REGEIVED BY: (Signature) Attended to the property of the prop
		RELINQUISHED BY: (Signature)	
		RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE TIME
		RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE TIME
			ATE TIME RECEIVED FOR LAB BY: (Signature) DATE TIME
		METHOD OF SHIPMENT:	

SAMPLE LOG-IN CHECKLIST

Vista Project #: Date/Time Initials: Location: WR - 2 Samples Arrival: Em 10/4/12 0731 Shelf/Rack: N/A

Location: Initials: Logged In: 10/4/12/308 Shelf/Rack: Hand FedEx **UPS** Delivered By: On Trac DHL Other Delivered Preservation: Ice Blue Ice Dry Ice None 4.2 Temp °C Time: Thermometer ID: IR-1

0733

				YES	NO	NA
Adequate Sample Vol	ume Received?	A, B, C Co	ntainers	V		
Holding Time Acceptable?				V		
Shipping Container(s)	Intact?			~		
Shipping Custody Sea	ls Intact?			V		
Shipping Documentati	on Present?			V		
Airbill	Trk# 7991	1533 6:	227	V		
Sample Container Intact?				V		
Sample Custody Seals Intact?			1	,	V	
Chain of Custody / Sample Documentation Present?			/			
COC Anomaly/Sample Acceptance Form completed?			1	V		
If Chlorinated or Drinki	ng Water Samples,	Acceptable Pres	servation?			V
Na ₂ S ₂ O ₃ Preservation Documented? COC Sample Container				None		
Shipping Container	Vista	Client	Retain Re	eturn)	Disp	ose
Comments:		-	(6			