

RECEIVED

2:46 pm, Feb 16, 2011

Alameda County

Environmental Health

Eric Frohnapple, **P.E**. Project Manager Marketing Business Unit

Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-5336 Fax (925) 543-2324 ericf@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Chevron Service Station No. 21-1253

930 Springtown Road Livermore, California

I accept the **Second Semi-Annual 2010 Groundwater Monitoring and Sampling Report and Annual Summary** dated February 15, 2011.

I agree with the conclusions and recommendations presented in this document. The information included is accurate to the best of my knowledge, and appears to meet local agency and Regional Board guidelines. This **Second Semi-Annual 2010 Groundwater Monitoring and Sampling Report and Annual Summary** was prepared by Conestoga Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Eric Frohnapple, P.E. Project Manager

Euc Frohogyle

Attachment: Second Semi-Annual 2010 Groundwater Monitoring and Sampling Report and Annual Summary

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

February 15, 2011

Reference No. 311955

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Second Semi-Annual 2010 Groundwater Monitoring and Sampling Report

And Annual Summary

Former Texaco Service Station 21-1283

3810 Broadway Oakland, California

Fuel Leak Case No. RO0000056

Dear Mr. Mark Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *Second Semi-Annual 2010 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company. Groundwater monitoring and sampling was performed by Gettler-Ryan, Inc. (G-R) of Dublin, California. G-R's December 27, 2010 *Groundwater Monitoring and Sampling Data Package* is included Attachment A. Current groundwater monitoring and sampling data are presented in Table 1. Lancaster Laboratories' January 6, 2011 *Analytical Results* is included as Attachment B. Historical groundwater monitoring and sampling data are included as Attachment C.

RESULTS OF 2010 SAMPLING EVENT

On June 26, 2010 and December 20, 2010, G-R monitored and sampled the site wells per the established schedule. The first semi-annual 2010 groundwater monitoring and sampling event was previously uploaded to Geotracker and ACEH website.

Results of the second semi-annual monitoring event indicate the following:

Groundwater Flow Direction
 Varies (Figure 2)

Depth to Water 20.45 to 29.58 feet below grade

Equal Employment Opportunity Employer

February 15, 2011 Reference No. 311955

Results of the 2010 sampling event are presented below in Table A:

	TA	BLE A: HY	DROCARI	ONS IN G	ROUNDW	ATER 2010				
Well ID	Date	TPHd (µg/L)	TPHg (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl-be nzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)		
Drinking	Water ESL ¹	100	100	1	40	30	20	5		
Potential Vapor Intrusions ESLs		Use Soil Gas	Use Soil Gas	540	380, 000	170,000	160,000	24,000		
MW-1	6/26/2010	340	<50	<0.5	<0.5	<0.5	<0.5	< 0.5		
	12/20/2010	Insufficient Water to Sample								
MW-4	6/26/2010	56	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
	12/20/2010	170	<50	<0.5	<0.5	< 0.5	<0.5	<0.5		
MW-5B	6/26/2010	130	160	<0.5	<0.5	<0.5	<0.5	17		
	12/20/2010	370	150	3	<0.5	<0.5	<0.5	24		
MW-6	6/26/2010	1,300	2,800	230	14	110	120	3		
	12/20/2010	1,000	1,900	150	3	2	4	3		
MW-7	6/26/2010	68	<50	<0.5	<0.5	< 0.5	<0.5	<0.5		
	12/20/2010	52	<50	<0.5	<0.5	<0.5	<0.5	< 0.5		
MW-9	6/26/2010	120	<50	<0.5	<0.5	<0.5	<0.5	13		
	12/20/2010	58	<50	<0.5	<0.5	<0.5	<0.5	1		
MW-10	6/26/2010	93	160	<0.5	<0.5	<0.5	<0.5	2		
	12/20/2010	1,200	300	0.6	<0.5	<0.5	<0.5	3		
MW-11	6/26/2010	<50	<50	<0.5	<0.5	< 0.5	<0.5	<0.5		
	12/20/2010	150	<50	<0.5	<0.5	<0.5	<0.5	< 0.5		
MW-12	6/26/2010	1,200	7,600	580	47	36	1,400	<1		
	12/20/2010	1,100	4,800	500	82	260	800	< 0.5		

Environmental Screening Levels from the California Regional Water Quality Control Board-San Francisco Bay Region Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final – November 2007 (Revised May 2008)

February 15, 2011 Reference No. 311955

<u>CONCLUSIONS</u>

The results of ongoing groundwater monitoring and sampling at the site indicate the following:

- Dissolved TPHd concentrations are centered beneath the fuel USTs in wells MW-6, MW-10, and MW-12 and are defined below or near the drinking water ESL by wells MW-1, MW-4, MW-5B, MW-7, MW-9, and MW-11.
- Dissolved TPHg and benzene concentrations are centered beneath the fuel USTs in wells MW-6 and MW-12, and are defined below or near drinking water ESLs by wells MW-1, MW-4, MW-5B, MW-7, MW-9, MW-10, and MW-11.
- Dissolved MTBE concentrations are minimal and above the drinking water ESL only in well MW-5B.
- Dissolved hydrocarbon concentrations are decreasing in all wells from historical maximum concentrations.

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring

G-R will monitor and sample site wells per the established schedule. CRA will submit a groundwater monitoring and sampling report.

Additional Activity

Based on the groundwater data, CRA will review the site for potential low-risk case closure.

February 15, 2011 Reference No. 311955

Please contact Kiersten Hoey at (510) 420-3347 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Kiersten Hoey

Brandon S. Wilken, PG 7564

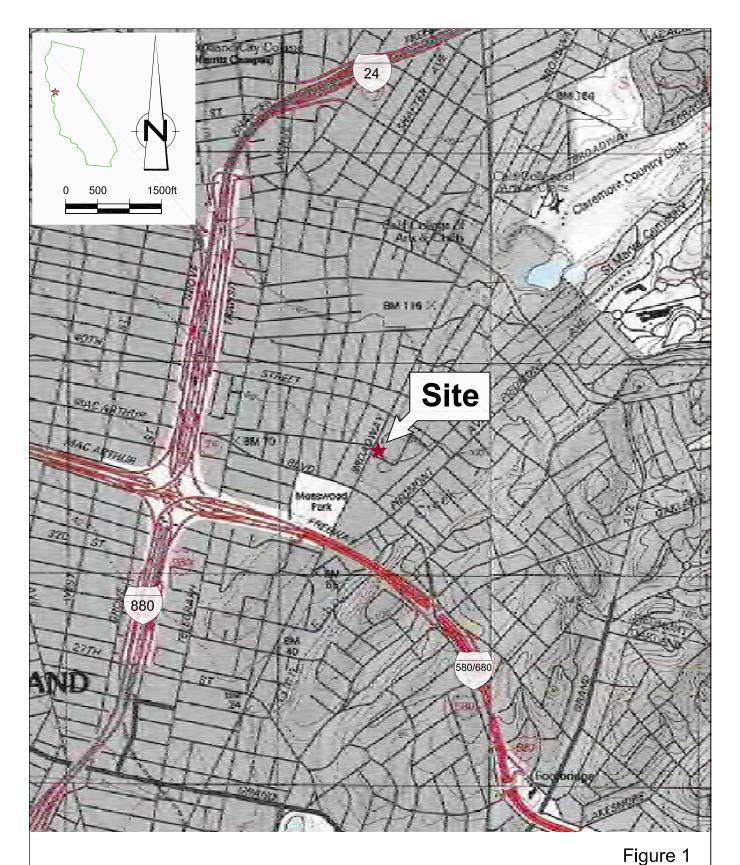
AA/aa/7 Encl.

Figure 1

Site Vicinity Map

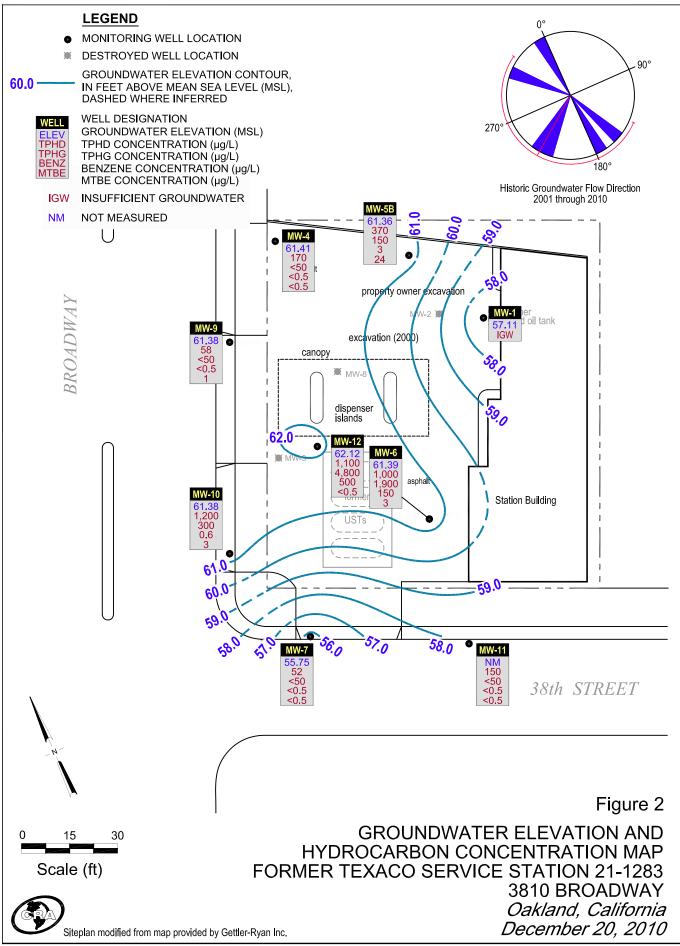
Figure 2 Groundwater Elevation and Hydrocarbon Concentration

Table 1 Groundwater Monitoring and Sampling Data


Attachment A Monitoring Data Package
Attachment B Laboratory Analytical Report

Attachment C Historical Groundwater Monitoring and Sampling Data

cc: Mr. Eric Frohnapple, Chevron


Mr. Joe Zadik

FIGURES

SITE VICINITY MAP FORMER TEXACO SERVICE STATION 21-1283 3810 BROADWAY Oakland, California

TABLE

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA FORMER TEXACO SERVICE STATION 21-1283 3810 BROADWAY OAKLAND, CALIFORNIA

					HYDROC	CARBONS			PRIMARY VOCS				
Location	Date	тос	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	MTBE by SW8260	Ethanol	
	Units	ft	ft	ft-amsl	μg/L	μg/L	µg∕L	µg∕L	µg∕L	µg∕L	μg/L	µg∕L	
MW-1	12/20/2010 ¹	86.69	29.58	57.11	-	-	-	-	-	-	-	-	
MW-4	12/20/2010	83.31	21.90	61.41	170	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	
MW-5B	12/20/2010	85.36	24.00	61.36	370	150	3	<0.5	<0.5	<0.5	24	<50	
MW-6	12/20/2010	86.09	24.70	61.39	1,000	1,900	150	3	2	4	3	<50	
MW-7	12/20/2010	84.11	28.36	55.75	52	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	
MW-9	12/20/2010	82.17	20.79	61.38	58	<50	<0.5	<0.5	<0.5	<0.5	1	<50	
MW-10	12/20/2010	81.83	20.45	61.38	1,200	300	0.6	<0.5	<0.5	<0.5	3	<50	
MW-11	12/20/2010	-	29.05	-	150	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	
MW-12	12/20/2010	84.19	22.07	62.12	1,100	4,800	500	82	260	800	<0.5	<50	
QA	12/20/2010	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

TABLE 1

GROUNDWATER MONITORING AND SAMPLING DATA FORMER TEXACO SERVICE STATION 21-1283 3810 BROADWAY OAKLAND, CALIFORNIA

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 μ g/L = Micrograms per Liter

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene

MTBE = Methyl tert butyl ether

-- = Not available / not applicable

x = Not detected above laboratory method detection limit

* TOC elevations were surveyed June 24, 2002 by Morrow Surveying and are based on a City of Oakland benchmark.

1 Insufficient water - no sample taken

ATTACHMENT A

MONITORING DATA PACKAGE

TRANSMITTAL

December 27, 2010 G-R #386956

TO:

Ms. Kiersten Hoey

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, California 94608

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568 RE: Former Texaco Service Station

3810 Broadway Oakland, California (Site #211283) RO 0000056

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Second Semi-Annual Event of December 20, 2010

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

Trans/211283

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevron #211283	Job#	386956	
Site Address:	3810 Broadway	Event Date:	12-20-10	
City:	Oakland, CA	Sampler:	AW	

WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
MW-1	OK	->	lm	OK			->	N	N	Penco 18"/2	W
MW-4	OK							1	1	Emco /12"/2	1
mw-5B	OK		→	25	0K		->			Boart Longyr/8"/3	
mw-6	oK									Penco/12"/2	
mv-7	0 K						>			Pencal 8"/2	
rw-9	OK									V	
Mw-10	0/<						→			EMCO/12"/2	
mull	OK	19 52	->	ıB	01<					Penico /12"/2	
mv-12	OK						->	7		Boart Longyr 18"/3	
								Н			
											N/

lents	

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

Client/Facility#:	Chevron #2	11283		Job i	Number:	386956			
Site Address:	3810 Broad	way		Ever	nt Date:	12-20	7-10		(inclusive)
City:	Oakland, CA	1		Sam	pler:	AL	/	· · · · · · · · · · · · · · · · · · ·	()
Well ID	MW- \$			Date Mo	onitored:	12-7	20-10		
Well Diameter	2 ir	_ 1.	Ľ	/olume	3/4"= 0.02				1
Total Depth	30.03 ff	-		actor (VF)	4"= 0.66		2"= 0.17 6"= 1.50	3"= 0.38 12"= 5.80	İ
Depth to Water	29.58 ft		Check if water co	olumn is less	then 0.50	ft.			j
	0.45		=				e Volume:		gal
Depth to Water v	w/ 80% Recharge	 € [(Height of	Water Column x 0	.20) + DTW]:					yaı.
						Time Sta	rted:		(2400 hrs)
Purge Equipment:			Sampling Equipm	ent:		Time Cor	npleted:		(2400 hrs)
Disposable Bailer			Disposable Bailer			Depth to	Water:		ft
Stainless Steel Bailer			Pressure Bailer			Hydrocar	bon Thickne	ss:	
Stack Pump Suction Pump			Discrete Bailer			Visual Co	nfirmation/D	escription:	
Grundfos			Peristaltic Pump QED Bladder Pump			Skimmer	/ Absorbant	Sock (circle	one)
Peristaltic Pump	-		Other:			Amt Rem	oved from SI	kimmer:	nal
QED Bladder Pump						Amt Rem	oved from W moved:	/eli:	gal
Other:						Product 1	ransferred to):	
Start Time (purge)):		Weather	Conditions	. /				
Sample Time/Dat		· · · · · · · · · · · · · · · · · · ·		olor:	· /	Odor: Y / I	u .		
Approx. Flow Rat	e:	gpm.		Descriptio		0401. 1 7 1	`		
Did well de-water						al. DTW @	Sampling		
		, .,		<i></i>	9 [,]	a. 5177 @	Camping.		
Time (2400 hr.)	Volume (gal.)	pН	Conductivity (μmhos/orn - μS			D.O.		RP	
(2400 111.)			(μιτιποs/orn - μS	(C /	F)	(mg/L)	(r	nV)	
					<u>F</u>	PRE:	PRE:		
		——,	/						
						POST:	- BOOT		
		/		-		031.	POST:		
		<i>-</i>	LABORATORY	INFORMA	ATION				
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TY		RATORY		ANALYS	ES	
MW-	x/voa vial	YES	HCL	LANC	ASTER T	PH-GRO(8015)/BTEX+MTE	3E(8260)/	
	x/500ml ambers	YES	NP	1 4410		THANOL (826)	•		
	2000iiii airibers	160	NP	LANC	ASTER T	PH-DRO (8015)		
						···			
									-
		00 /	1.1				1 1		
COMMENTS: _	Insu	<i>efficient</i>	H20		o Sa	mpe -	taken		
				/					
						1	emo,	121/1	M
Add/Replaced Lo	ock:	Add/	Replaced Plug:		A	.dd/Replace		,	. —

Client/Facility#:	Chevron #2	11283		Job I	Job Number: 386956			
Site Address:	3810 Broad	way		Ever	t Date:	12-	20-10	- (inclusive)
City:	Oakland, CA	\		Sam	pler:		In	.(
Well ID	MW-4			Data Ma	onitored:		20.20	•
Well Diameter	2 ir	<u> </u>	Г				-20-20	-
Total Depth	28.47 ft	-	I	/olume actor (VF)	3/4"= 0.0 4"= 0.6		2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80	1
Depth to Water	21.90 ft		 Check if water co				0 - 1.30 12 - 5.80	j
	657						Volume:_3.5	
Depth to Water v	v/ 80% Recharge	(Height of	Water Column x 0.		23.2	Estimated Purge	volume:	gal.
	_					Time Stan		(2400 hrs)
Purge Equipment:			Sampling Equipm	ent:	/	Time Com	ppleted:	
Disposable Bailer			Disposable Bailer			Depth to V	Vater:	ft ft
Stainless Steel Bailer			Pressure Bailer			Hydrocarb	on Thickness:	ft
Stack Pump Suction Pump			Discrete Bailer			Visual Cor	nfirmation/Description:	
Grundfos			Peristaltic Pump			Skimmer /	Absorbant Sock (circle) one)
Peristaltic Pump			QED Bladder Pump Other:			Amt Remo	ved from Skimmer:	gal
QED Bladder Pump			Julei			Amt Remo	ved from Well:	gal
Other:						Water Ren	noved: ansferred to:	
						L	andienea to.	
Start Time (purge)	: 1010	-	Weather	Conditions		CL	. \	
Sample Time/Date		2-20-1		olor: <u>[]</u>		Odor: Y / A	ndy	
Approx. Flow Rate		gpm.					-	
Did well de-water	/			Descriptio			oudy 22	
Did Woll do Water	"	yes, inne	·	olume	9	gai. DIVV @ 8	Sampling: 23	.01
Time (2400 hr.)	Volume (gal.)	рН	Conductivity	Tempe		D.O.	ORP	
, ,			(µmhos/cm -48	, <u>,</u>	F)	(mg/L)	(mV)	
_1015		7.57	206		<u> </u>	PRE:	PRE:	
1020	2.0	7.44	230		2			
1025	3.5	7.40	232					
				_		POST:	POST: ~	
			LABORATORY	INFORMA	TION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TY	PE LABOR	RATORY		ANALYSES	
MW- LP	6 x voa vial	YES	HCL	LANC	ASTER	TPH-GRO(8015)/ ETHANOL (8260)	/BTEX+MTBE(8260)/	
	2 x 500ml ambers	YES	NP	LANC		TPH-DRO (8015)		
		1				(0010)		
LL								
COMMENTS:						Emci	0/12"/2	
Add/Replaced Lo	ck:	Add/	Replaced Plug:		,	Ndd/Danlass -	Dolt	
		, .uu/I	piacea riug.		_ '	-uu/repiaced	Bolt:	

Older Aut 1	Chevron #2	11283		Job Number:	386956		
Site Address:	3810 Broad	way		Event Date:	12-2	0-10	(inclusive)
City:	Oakland, C	Α	2.5	Sampler:	Aw		
Well ID	MW- 5	B		Date Monitored:	12-20)-(O	
Well Diameter		<u>n.</u>	Volun		02 1"= 0.04	2"= 0.17 3"= 0.38	
Total Depth		<u>t.</u> _	L	r (VF) 4"= 0.0		5"= 1.50 12"= 5.80	j
Depth to Water	24.00 f		Check if water colum 7 = 1.06			/olume: 3 · 5	gal.
Depth to Water v	w/ 80% Recharg	e [(Height of)	Water Column x 0.20)	+ DTWJ: 25.2	Time Starte	d:	(2400 hrs)
Purge Equipment:		8	Sampling Equipment:	/	Time Comp		(2400 hrs)
Disposable Bailer		מ	Disposable Bailer			oduct: ater:	
Stainless Steel Bailer	·	F	ressure Bailer			n Thickness:	ft
Stack Pump			Discrete Bailer			rmation/Description:	
Suction Pump			eristaltic Pump		Skimmes / A	bsorbant Sock (circle	
Grundfos			ED Bladder Pump		Amt Remov	ed from Skimmer:	e one)
Peristaltic Pump QED Bladder Pump		Ĺ	other:		Amt Remov	ed from Well:	gal
Other:					Water Remo	oved: nsferred to:	
					T TOUGHT TIZE	islerted to	
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water	te: <u>0955</u> / e:	12-70-10 gpm.	Sediment De	Cloudy escription:	Odor: 1 N	strong ndy	
Time	Volume (gal.)	pH	Conductivity	Temperature	gal. DTW @ Sa	ampling: 25 ORP	.!\
(2400 hr.)		,	(µmhos/cm - pc)	(O / F)	(mg/L)	(mV)	
0933	1.0	7.46	579	14.8	PRE: -	PRE: -	
0936	20	7.41	604	15.6			
0940	3.5	7.37	619	15.9			
					POST: -		
					F091:	POST:	
SAMPLE ID	(#) CONTAINED		ABORATORY IN		F031:		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES	
SAMPLE ID MW-613	(#) CONTAINER x voa vial	REFRIG.		LABORATORY	TPH-GRO(8015)/B		
		REFRIG.	PRESERV. TYPE	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260)	ANALYSES	
	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY	TPH-GRO(8015)/B	ANALYSES	
	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260)	ANALYSES	
	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260)	ANALYSES	
	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260)	ANALYSES	
	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260)	ANALYSES	
	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260) TPH-DRO (8015)	ANALYSES	"/3-25
MW-613	x voa vial	YES	PRESERV. TYPE HCL	LABORATORY LANCASTER	TPH-GRO(8015)/E ETHANOL (8260) TPH-DRO (8015)	ANALYSES TEX+MTBE(8260)/	73-20
MW-613	2x 500ml ambers	YES YES	PRESERV. TYPE HCL	LANCASTER LANCASTER	TPH-GRO(8015)/E ETHANOL (8260) TPH-DRO (8015)	ANALYSES TEX+MTBE(8260)/	"/3-2g

Client/Facility#: Chevron #211283

	Client/Facility#	Chevron #2	11283		Job Number:		
	Site Address:	3810 Broad	lway		Event Date:	12-20-10	— (inclusive)
	City:	Oakland, C.	A		Sampler:	Aw	
	Purge Equipment: Disposable Bailer	27.98 24.76 3.24 w/ 80% Recharg	xVF e [(Height of	Check if water coluing the column of the col	or (VF) 4"= 0. nn is less then 0.5 x3 case volume + DTW]: 25.3	02 1"= 0.04 2"= 0.17 3"= 0 66 5"= 1.02 6"= 1.50 12"= 5 50 ft. = Estimated Purge Volume:	gal. (2400 hrs) (2400 hrs)
	Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		E F C	Pressure Bailer Discrete Bailer Peristaltic Pump RED Bladder Pump Other:		Hydrocarbon Thickness: Visual Confirmation/Descripti Skimmer / Absorbant Sock (c Amt Removed from Skimmer Amt Removed from Well: Water Removed: Product Transferred to:	rcle one)
	Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.) 1417 1420	te: 1445 /	pH 7.26 7.26	Sediment D	Dark escription:	Odor: OIN Standy gal. DTW @ Sampling: 25 D.O. ORP (mg/L) (mV) PRE: 0.7 PRE: -23	5.07
_				LABORATORY IN	JEORMATION .		
	SAMPLE ID. MW- 6	(#) CONTAINER 6 x voa vial 2x 500ml ambers	REFRIG. YES	PRESERV. TYPE HCL NP	LABORATORY	ANALYSES TPH-GRO(8015)/BTEX+MTBE(8260) ETHANOL (8260) TPH-DRO (8015)	9)/
- -	COMMENTS:	ock:	Add/F	Replaced Plug:		Pemo /12"/2 Add/Replaced Bolt:	
				-			

Client/Facility#:	Chevron #2	11283		Job	Number:	386956		
Site Address:	3810 Broad	way		Ever	nt Date:	12-20	0-10	- (inclusive)
City:	Oakland, C	A		Sam	pler:	Av		_ (<i>molasive)</i>
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump	33.30 f 24.36 f 4.94 w/ 80% Recharg	xVF e [(Height of g f f f	Check if water of the column x Sampling Equipore Pressure Bailer Baile	Volume Factor (VF) column is less 8	e volume =	1"= 0.04 66 5"= 1.02 0 ft. Estimated Purge V Time Starte Time Comp Depth to Pr Depth to W Hydrocarbo Visual Conf Skimmer / A Amt Remov	2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 Volume: 2 - 5 ed:_ oleted:_ oduct:_ ater:_ n Thickness:_ irmation/Description: Absorbant Sock (circled from Skimmer:_ ed from Well:_	gal. (2400 hrs) (2400 hrs) ft ft ft
Other:							nsferred to:	
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.) 113 %	te: 1205 / I	gpm. yes, Time pH 7.15 7.19 7.22	O Water C Sedime		n:	Odor: Y / 10 Cloudy gal. DTW @ S. D.O. (mg/L) PRE: 1.2	/	35
			LABORATOR	Y INFORMA	TION			
SAMPLE ID MW- 7	x voa vial x 500ml ambers	YES YES	PRESERV. T	YPE LABOR	ASTER	TPH-GRO(8015)/E ETHANOL (8260) TPH-DRO (8015)	ANALYSES STEX+MTBE(8260)/	
COMMENTS:						Pear +? / 8	:'/2	
Add/Replaced L	ock:	Add/F	Replaced Plug	j:		Add/Replaced I	Bolt:	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#	#: Chevron #2	11283		Job	Number:	386956			
Site Address:	3810 Broad	way		Eve	nt Date:	12-2	010	(inc	lusive)
City:	Oakland, C	A		Sam	pler:	An	1		
Well ID	MW-9			Date M	onitored:	12-7	20 10		
Well Diameter		<u>n.</u>		Volume	3/4"= 0.02		2"= 0.17	3"= 0.38	
Total Depth Depth to Wate	33.87 ft r 20.79 ft		0	Factor (VF)	4"= 0.66		6"= 1.50	12"= 5.80	
Deptil to water	13.08	**************************************	Check if water				7		
Depth to Water	r w/ 80% Recharge								
Purge Equipment	: /	ш,	Sampling Equip	ment:		Time Start Time Com	pleted:	(2	2400 hrs)
Disposable Bailer			Disposable Baile		/		roduct:	38	ft ´
Stainless Steel Bail	ler		Pressure Bailer				/ater: on Thicknes:		ft
Stack Pump		ı	Discrete Bailer				firmation/De		ft
Suction Pump			Peristaltic Pump						
Grundfos			QED Bladder Pur			Amt Remov	Absorbant S red from Ski	ock (circle one) mmer:	
Peristaltic Pump QED Bladder Pump		(Other:			Amt Remov	ed from We	ell:	gal
Other:						Water Rem	oved:		_
						Product Tra	nsferred to:		
Start Time (purg	e): 1255		Weathe	er Conditions	:	Cloud			
Sample Time/Da	ate: 1330 /	12-20-1) Water (Color:	endy 1	Odor: 17 N	M	odente	
Approx. Flow Ra	ate:	gpm.	Sedime	nt Descriptio	n:		rpudy		
Did well de-water	er?N If	yes, Time	:	Volume:	g	al. DTW @ S	ampling:	22.97	,
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (µmhos/cm - ,		erature	D.O.	OF		
1302	2.5	71-			(F)	(mg/L)	(m	V)	
1310	5.0	7.22	297			PRE: 0.9	PRE:	39	
1317	7.0	121	304	17.					
						OST: 1,2	POST:	-113	
SAMPLE ID	(#) CONTAINER	REFRIG.	LABORATOR						
MW- 9	x voa vial	YES	PRESERV. T		RATORY T	PH-GRO(8015)/	ANALYSE		
	-6		1102			THANOL (8260)	DI EXTIVITO	L(0200)/	
	2x 500ml ambers	YES	NP	LANC	ASTER T	PH-DRO (8015)			
									\Box
									24
COMMENTS:	L		J			Vo	16.1		
-CIMINIEM 19:				····		Penro	18"/	2	
									<u></u>

Add/Donland Dive.

Add/Donlaced Lock

Client/Facility#	Chevron #2	11283		Job Num	ber:	386956			
Site Address:	3810 Broad	way		Event Da	te:	12-7	0-10	— (inclusive)	
City:	Oakland, C	A		Sampler:		A	Aw		
Well ID	MW-16)		Date Monito	red:	12-2	o-10		
Well Diameter	2 i	n.	[va	olume 3/4	"= 0.02	2 1"= 0.04	2"= 0.17 3"= 0.3		
Total Depth	33.10 f	<u>t.</u>			"= 0.66		6"= 1.50 12"= 5.8	-	
Depth to Water	20.45 f		Check if water col		0.50	ft.			
	12.65	_xVF	17 = 2-19	x3 case volu	ıme = l	Estimated Purge	Volume: 6.5	gal.	
Depth to Water	w/ 80% Recharg	e [(Height of	Water Column x 0.2	0) + DTWJ: 27	2.99				
Daniel Emiliana d						Time Start		(2400 hrs)	
Purge Equipment:			Sampling Equipme	nt:		Depth to P	pleted: roduct:	(2400 hrs)	
Disposable Bailer Stainless Steel Baile			Disposable Bailer		_	Depth to W	/ater:	nt ft	
Stack Pump			Pressure Bailer Discrete Bailer		_	Hydrocarbo	on Thickness:	ft	
Suction Pump			Peristaltic Pump	·		Visual Con	firmation/Description	: "	
Grundfos			QED Bladder Pump			Skimmer /	Absorbant Sock (circ	le one)	
Peristaltic Pump			Other:			Amt Remov	ved from Skimmer:_	gal	
QED Bladder Pump						Water Rem	ved from Well:	gal	
Other:						Product Tra	ansferred to:		
									
Start Time (purge	e): <u>1215</u>		Weather C	Conditions:		Cloud	W		
Sample Time/Da	ite: <u>1245 /</u>	12-20-1	Water Col	or: Cloudy	, —	Odor / N	Strong		
Approx. Flow Ra		_gpm.	Sediment	Description: /		C/0			
Did well de-wate	r? If	yes, Time	:Vo	lume:	 g:	al. DTW@S	Sampling: 22	.36	
Time									
(2400 hr.)	Volume (gal.)	рH	Conductivity (µmhos/cm -	Temperature / F		D.O. (mg/L)	ORP (mV)		
1220	7.0	7.09	229	17.7			, ,		
1225	4.0	7.13	249	17.9		PRE:	PRE:		
1230	6.5	7.17	2.55	18.2					
					- <u>-</u>	POST:	POST:		
SAMPLE ID	(#) CONTAINER	REFRIG.	LABORATORY PRESERV. TYPE						
MW- 18	x voa vial	YES	HCL	LANCASTE		PH-GRO(8015)/	ANALYSES BTEX+MTBE(8260)/		
			HOL	- ZANGASTE	Ė	THANOL (8260)	D1 EXTINIT DE (0200)/	1	
	2x 500ml ambers	YES	NP	LANCASTE		PH-DRO (8015)			
					-				
					-				
COMMENTS:					-	S G	12 100		
			50 Marin - 12	2-00		TIPE W	1-111-		
						Mee	, /12 / 2		
Add/Penlessed I	ock:	الماماء ٨	Denless 4 Dt			<u> </u>			
nuurnepiaced L	OCK	Add/I	Replaced Plug: _		Α	dd/Replaced	Bolt:	_	

Client/Facility#:	Chevron #2	11283		Job Number	386956		
Site Address:	3810 Broad	way		Event Date:	12-2	0-10	– (inclusive)
City:	Oakland, C	A		Sampler:	A	W	_ ()
Well ID	MW- (\			Date Monitored	: 12-2	0-10	
Well Diameter		<u>n.</u>	Vol	ume 3/4"= 0	.02 1"= 0.04	2"= 0.17 3"= 0.3	8
Total Depth		<u>ˈt.</u>	Fac	tor (VF) 4"= 0	.66 5"= 1.02	6"= 1.50 12"= 5.8	
Depth to Water			Check if water colu			5.5	
Depth to Water v	(0.15 w/ 80% Rechard	XVF	Water Column x 0.20	x3 case volume	= Estimated Purge	e Volume:	_ gal.
	oo /o reconarg	C [(rieight of	vvater Coldinin x 0.20)+DIW] /	Time Star		(2400 hrs)
Purge Equipment:			Sampling Equipmen	t:		npleted:	(2400 hrs)
Disposable Bailer		[Disposable Bailer			Product:	
Stainless Steel Bailer	r	F	Pressure Bailer			oon Thickness:	ft ft
Stack Pump		ו	Discrete Bailer			nfirmation/Description	
Suction Pump		F	Peristaltic Pump				
Grundfos		0	QED Bladder Pump		Skimmer	Absorbant Sock (circ	le one)
Peristaltic Pump		C	Other:		Amt Remo	oved from Skimmer:	gal
QED Bladder Pump					Water Ren	oved from Well:	gal
Other:						ansferred to:	
Start Time (purge): 1050		Weather C	anditions:	Cla	1	
Sample Time/Dat					C/01		
				r: Cloudy	_Odor: Y / 🐧	<i>y</i>	
Approx. Flow Rat		_gpm.	Sediment D			budy	
Did well de-water	? <u>J</u> II	yes, Time	:Vol	ume:	gal. DTW @	Sampling: 30.	77
Time	Volume (gal.)	nLI	Conductivity	Temperature	D.O.	ORP	
(2400 hr.)	voidine (gai.)	pН	(µmhos/cm - uS)	((g / F)	(mg/L)	(mV)	
1055	7.0	7.36	219	14.9	PRE:	PRE:	
1100	40	7.39	236	15.6			
1105	5.5	7.40	241	16.6			
					POST:	POST:	_
			LABORATORY I	NFORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES	
MW- \	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)	/BTEX+MTBE(8260)/	
					ETHANOL (8260)	
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO (8015))	
							
 							
COMMENTS:		_	-		Penro	11/12/	3
					- I ANK O	/10/11	
							
	50,000		***************************************				
Add/Replaced Lo	ook:	A ما ما دا	Replaced Plug: _			Bolt:	

Client/Facility#	: Chevron #2	11283		Job Numbe	er: 3	386956			
Site Address:	3810 Broad	lway		Event Date	: -	12-	20-10		· (inclusive)
City:	Oakland, C	A		Sampler:	_	B			. (110143146)
Well ID	MW- \2			Date Monitore	d:	12-	20-10		
Well Diameter	2 i	n.	1/-1						T
Total Depth	29.51	— t.	Volu Fact		0.02 0.66	1"= 0.04 5"= 1.02	2"= 0.17 6"= 1.50	3"= 0.38 12"= 5.80	1
Depth to Water			ـــــا Check if water colu				0 = 1.00	12 - 3.00	}
	7.44	XVF .						40	
Denth to Water	w/ 80% Recharg				e = Esi	imated Purg	e Volume:	110	gal.
Dopur to Water	w/ 60 /6 Nechary	e ((ueign) or	vvater Column x 0.20	+ DIW]: _2 3.	3 0	Time Sta	rted:		(2400 hrs)
Purge Equipment:		9	Sampling Equipment				1 1 1		
Disposable Bailer			Disposable Bailer	· /		Depth to	Product:		ft
Stainless Steel Baile	er		ressure Bailer		•		Water:		ft
Stack Pump			Piscrete Bailer				bon Thicknes infirmation/De		ft
Suction Pump			eristaltic Pump		•	Visual Co	niii mayon/D	escription:	
Grundfos			ED Bladder Pump		•	Skimmer	/ Absorbant	Sock (circle	one)
Peristaltic Pump			ther:			Amt Rem	oved from Si	dmmer:	gal
QED Bladder Pump				*		Amt Rem	oved from VV moved:	ell:	gal
Other:							ransferred to	:	
						L			
Start Time (purge	1340		Weather Co	anditions:		Clou	٨		
•	ite: 1405/1	7-20-10		: _ Cloudy					
Cample imicibe									
					0	dor: 🕖 i		5	
Approx. Flow Ra	ite:	gpm.	Sediment D	escription:		Clo	ndy		
	ite:		Sediment D			Clo			29
Approx. Flow Ra Did well de-wate	r?	gpm. yes, Time:	Sediment D	escription: /		Cloo DTW @	જો ્ Sampling:	23.	29
Approx. Flow Ra	ite:	gpm.	Sediment D	escription: / me:		Clo. DTW @ D.O.	Sampling:	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.)	r? N If	gpm. yes, Time	Sediment D Conductivity (µmhos/cm - µs)	escription: / ime:	_ gal.	DTW @	Sampling:	23.	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 13 45	r?	gpm. yes, Time: pH 7.37	Sediment D Volu Conductivity (µmhos/cm - µs)	escription: / ime: Temperature (C) F) 17.7		DTW @	Sampling:	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345	r? N If	gpm. yes, Time	Conductivity (µmhos/cm - µs) 518	Temperature	_ gal.	DTW @	Sampling:	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 13 45	volume (gal.)	gpm. yes, Time: pH 7.37	Sediment D Volu Conductivity (µmhos/cm - µs)	escription: / ime: Temperature (C) F) 17.7	gal.	D.O. (mg/L)	Sampling: O (n	23.	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345	volume (gal.)	gpm. yes, Time: pH 7.37	Conductivity (µmhos/cm - µs) 518	Temperature	_ gal.	D.O. (mg/L)	Sampling:	23.	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345	volume (gal.)	gpm. yes, Time: pH 7.37 7.41 7.41	Conductivity (µmhos/cm - µs) 518 522 530	Temperature	gal.	D.O. (mg/L)	Sampling: O (n	23.	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345	volume (gal.)	gpm. yes, Time: pH 7.37 7.41 7.41	Conductivity (µmhos/cm - µs) 518	Temperature	gal.	D.O. (mg/L)	Sampling: O (n PRE: POST:	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350	volume (gal.) 1 · 5 3 · 0 4 · 0	gpm. yes, Time. pH 7.37 7.41 7.41	Sediment D Volu Conductivity (µmhos/cm - µ3) 518 522 530 ABORATORY IN PRESERV. TYPE	rescription: / me:	gal.	D.O. (mg/L) E:	Sampling: O (n PRE: POST:	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	volume (gal.) 1 · 5 3 · 0 1 · 0 (#) CONTAINER	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG.	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II	rescription: / me:	gal. PR PO	D.O. (mg/L) E:	Sampling: O (n PRE: POST: ANALYS	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	volume (gal.) 1 · 5 3 · 0 1 · 0 (#) CONTAINER	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG.	Sediment D Volu Conductivity (µmhos/cm - µ3) 518 522 530 ABORATORY IN PRESERV. TYPE	rescription: / me:	PR. PO:	D.O. (mg/L) E: ST:	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: ST: H-GRO(8015	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: ST: H-GRO(8015	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: ST: H-GRO(8015	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: ST: H-GRO(8015	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: ST: H-GRO(8015	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23 .	29
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355 SAMPLE ID MW-17	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: H-GRO(8015 HANOL (826 H-DRO (8016)	Sampling: On (n) PRE: POST: ANALYS ()/BTEX+MTE (0) (5)	23. RP (nV)	
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: H-GRO(8015 HANOL (826 H-DRO (8016)	Sampling: On (n) PRE: POST: ANALYS ()/BTEX+MTE (0) (5)	23. RP (nV)	
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355 SAMPLE ID MW-17	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: H-GRO(8015 HANOL (826 H-DRO (8016)	Sampling: O (n PRE: POST: ANALYS D)/BTEX+MTE	23. RP (nV)	
Approx. Flow Ra Did well de-wate Time (2400 hr.) 1345 1350 1355 SAMPLE ID MW-17	Volume (gal.) 1 · 5 3 · 0 IP · 0 (#) CONTAINER × voa vial	gpm. yes, Time. pH 7.37 7.41 7.41 REFRIG. YES	Sediment D Volu Conductivity (µmhos/cm - µs) 518 522 530 ABORATORY II PRESERV. TYPE HCL	rescription: / remerature (£) F) 17.7 14.7 18.5	PR. PO:	D.O. (mg/L) E: H-GRO(8015 HANOL (826 H-DRO (8016)	Sampling: On (n) PRE: POST: ANALYS ()/BTEX+MTE (0) (5)	23. RP (nV)	

Chevron California Region Analysis Request/Chain of Custody

17	2414-67	For Lancaster Laboratories use only		000000
10	Acct. #:	Sample #	_ Group #:_	020286

								Analyses Requested					7							
Facility #: SS#211283-OML G-R#38695	6 Global ID	T0600101	108		Matrix					Р	rese	rva	tion	Coc	des			Preserv	ative Co	des
Facility #: 3810 BROADWAY, OAKLAND Site Address:	, CA			_			1	H					_	H			1	H = HCl	T = Thic	
Site Address:		RAHK	Hoe	- _		_			Gel Cleanup	1								N = HNO ₃	B = Na(
Chevron PM: Lead Consultant: Dublin, CA 9456					m (n)	1	2		Cle			Ш						S = H ₂ SO ₄		
Consultant/Office: Deanna L. Harding (deanna@grinc.com)					Potable NPDES	9.	8021		a Ge					d				☐ J value repor		
Consultant Prj. Mgr.:	sama@gmic				S P				Silica			П	П	0)				Must meet lo possible for 8	west detection 260 comp	ction limits ounds
Consultant Prj. Mgr.: 925-551-7555 Consultant Phone #:	925- Fax #:	551-7899				1 7	00 10 19 8060-K71		02			Method	Method	00				8021 MTBE Co	nfirmation	
Sampler: Alex Word						Ì			D DE		nates	\$						☐ Confirm high	est hit by 8	3260
				osile		A Air	MIB	IS MC	15 MC	scan	Oxygenates	ad	d Lea	THAMOL				Confirm all hi		
Sample Identification	Date Collected	Time	Grab	Soil	Water	Oil Air	BTEX + MTRF	TPH 8015 MOD GRO	TPH 8015 MOD DRO	8260 full scan		Total Lead	Dissolved Lead	F		1		☐ Run ox		
Sample Identification (C.F.)	12-20-10	Collected		2 0		0 1	- 100	怎	F	8		F		777		+		Comments /		
- rnw-4		1040				5	Z S		V		\dashv	1	-	1		+			temarks	
mw - 5B		0955				S	źK	\nearrow				\dashv	-	\Rightarrow		+	+	1		
mw-6		1445		1		4		次			\top	_	-	\Im		+		Please forwar	d the lab r	esults
mw - 7		1205				Q		校			\dashv	\top		\Rightarrow		+		directly to the	Lead Con	
Mw - 9		1330		\top		E		*			\top	\top		\Rightarrow		+		and o	ct G-R.	1
Mu -10		1245	X		152	5	? X	欠			1.	\top		H		\top				
mw-11		1120			5	8	$\leq \times$		∇					Ż						
mw-12	V	1405	\times		X	Q	z >	\times	X					X						
				_												\perp				
				╀-		\perp		_					_	\perp		\perp				
				+-		_	+	+			_		_	\perp	-	_	1			
		Relinqu	ished b							Date	Tie	ne								
Turnaround Time Requested (TAT) (please cir. STD. TAT 72 hour 48 hour		Telliqu	isiled b	y •		gen (d. 10 — Markenin dik repekter serie				70-10		10	HE	Ceiv	ed by:	n bi	A 100	281	Date FCIC	Time ! 516
24 hour 4 day 5 day		Relinqu	ished b	y:		(С	Date	Tir	ne	Re	ceiv	ed by:	1	0		Date	Time
D. D. L. O. I		Relinqu	ished by	y:		- 1	- "			Date	Tir	ne	Re	ceiv	ed by:				Date	Time
Data Package Options (please circle if required) QC Summary Type I - Full EDF/EDD														30.71					Date	11110
Type VI (Raw Data) Coelt Deliverable not need		Relinqui											Re	ceiv	ed by:				Date	Time
WIP (RWQCB)		UPS		FedEx			er													
Disk		Temper	ature U	pon R	eceipt_							_ C°	Cu	stod	y Seal	s Int	act?	Yes No		

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

January 06, 2011

Project: 211283

Submittal Date: 12/22/2010 Group Number: 1226734 PO Number: 0015060774 Release Number: FROHNAPPLE State of Sample Origin: CA

Client Sample Description	Lancaster Labs (LLI) #
QA-T-101220 NA Water	6172416
MW-4-W-101220 Grab Water	6172417
MW-5B-W-101220 Grab Water	6172418
MW-6-W-101220 Grab Water	6172419
MW-7-W-101220 Grab Water	6172420
MW-9-W-101220 Grab Water	6172421
MW-10-W-101220 Grab Water	6172422
MW-11-W-101220 Grab Water	6172423
MW-12-W-101220 Grab Water	6172424

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	CRA c/o Gettler-Ryan	Attn: Rachelle Munoz
ELECTRONIC COPY TO	Chevron c/o CRA	Attn: Report Contact
ELECTRONIC	Chevron	Attn: Anna Avina
COPY TO ELECTRONIC	CRA	Attn: Kiersten Hoey
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-101220 NA Water

LLI Sample # WW 6172416 Facility# 211283 Job# 386956 GRD LLI Group # 1226734 3810 Broadway-Oakland T0600101108 QA Account # 10904

Project Name: 211283

Collected: 12/20/2010 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

1283Q

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F103642AA	12/30/2010 07:29	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 07:29	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 13:51	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 13:51	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-4

ragerori

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172417

Project Name: 211283

Collected: 12/20/2010 10:40 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

12834

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethanol		64-17-5	N.D.	50	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	170	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution
No.					Date and Time		Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 11:33	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 11:33	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 17:54	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 17:54	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103570002A	12/24/2010 16:38	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	1	103570002A	12/23/2010 13:30	Kelli M Barto	1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5B-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-5B

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172418

Project Name: 211283

Collected: 12/20/2010 09:55 by AW Chevror

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

12835

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	3	0.5	1
10943	Ethanol		64-17-5	N.D.	50	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Buty	/l Ether	1634-04-4	24	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	150	50	1
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	370	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
No.					Date and Time		Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 11:55	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 11:55	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 18:18	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 18:18	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103570002A	12/24/2010 15:32	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	1	103570002A	12/23/2010 13:30	Kelli M Barto	1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-6-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-6

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172419

Project Name: 211283

Collected: 12/20/2010 14:45 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

12836

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	150	0.5	1
10943	Ethanol		64-17-5	N.D.	50	1
10943	Ethylbenzene		100-41-4	2	0.5	1
10943	Methyl Tertiary Buty	yl Ether	1634-04-4	3	0.5	1
10943	Toluene		108-88-3	3	0.5	1
10943	Xylene (Total)		1330-20-7	4	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	1,900	50	1
GC Ext	cractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	1,000	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 12:17	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 12:17	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 18:42	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 18:42	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103570002A	12/24/2010 15:54	Melissa McDermott	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	103570002A	12/23/2010 13:30	Kelli M Barto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-7-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-7

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172420

Project Name: 211283

Collected: 12/20/2010 12:05 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

12837

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethanol		64-17-5	N.D.	50	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	52	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 12:38	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 12:38	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 19:06	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 19:06	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103570002A	12/24/2010 16:16	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	1	103570002A	12/23/2010 13:30	Kelli M Barto	1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-9-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-9

LLI Sample # WW 6172421 LLI Group # 1226734 Account # 10904

Project Name: 211283

Collected: 12/20/2010 13:30 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

12839

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1
10943	Ethanol		64-17-5	N.D.	50	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Buty	yl Ether	1634-04-4	1	0.5	1
10943	Toluene		108-88-3	N.D.	0.5	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Ext	tractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	58	53	1
	The LCS/LCSD recover	ries for 1	DRO are outside the	e QC limits. Results	from the	
	reextraction are wit	thin the	limits. The hold	cime had expired prior	to the	
	reextraction. Simila	ar result:	s were obtained in	both extracts. The o	lient was	

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

notified and approved reporting the out of hold data.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tim	ne		Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010	13:00	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010	13:00	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010	19:31	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010	19:31	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103620022A	12/29/2010	10:42	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	2	103620022A	12/28/2010	23:30	Sherry L Morrow	1
	(Waters)							

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-10-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-10

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172422

Project Name: 211283

Collected: 12/20/2010 12:45 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

28310

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor			
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l				
10943	Benzene		71-43-2	0.6	0.5	1			
10943	Ethanol		64-17-5	N.D.	50	1			
10943	Ethylbenzene		100-41-4	N.D.	0.5	1			
10943	Methyl Tertiary Buty	yl Ether	1634-04-4	3	0.5	1			
10943	Toluene		108-88-3	N.D.	0.5	1			
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1			
GC Vol	latiles	SW-846	8015B	ug/l	ug/l				
01728	TPH-GRO N. CA water	C6-C12	n.a.	300	50	1			
		SW-846		ug/l	ug/l				
06609	TPH-DRO CA C10-C28		n.a.	1,200	52	1			
	The LCS/LCSD recoveries for DRO are outside the QC limits. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction. The DRO result for the original extraction is 1,700 ug/l. The client was notified and approved reporting the out of hold data.								

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 13:2	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 13:2	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 19:5	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 19:5	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103620022A	12/29/2010 12:5	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	2	103620022A	12/28/2010 23:3) Sherry L Morrow	1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-11-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-11

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172423

Project Name: 211283

Collected: 12/20/2010 11:20 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

28311

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor				
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l					
10943	Benzene		71-43-2	N.D.	0.5	1				
10943	Ethanol		64-17-5	N.D.	50	1				
10943	Ethylbenzene		100-41-4	N.D.	0.5	1				
10943	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1				
10943	Toluene		108-88-3	N.D.	0.5	1				
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1				
GC Vol	latiles	SW-846	8015B	ug/l	ug/l					
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1				
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l					
06609	TPH-DRO CA C10-C28		n.a.	150	53	1				
	The LCS/LCSD recoveries for DRO are outside the QC limits. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction. The DRO result for the original extraction is 220 ug/l. The client was notified and approved reporting the out of hold data.									

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 13:4	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 13:4	Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10357A53A	12/24/2010 20:1	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10357A53A	12/24/2010 20:1	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103620022A	12/29/2010 11:0	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	2	103620022A	12/28/2010 23:3	Sherry L Morrow	1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-12-W-101220 Grab Water

Facility# 211283 Job# 386956 GRD

3810 Broadway-Oakland T0600101108 MW-12

LLI Group # 1226734 Account # 10904

LLI Sample # WW 6172424

Project Name: 211283

Collected: 12/20/2010 14:05 by AW Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 12/22/2010 10:55 Reported: 01/06/2011 16:11

28312

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10943	Benzene		71-43-2	500	5	10
10943	Ethanol		64-17-5	N.D.	50	1
10943	Ethylbenzene		100-41-4	260	5	10
10943	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene		108-88-3	82	0.5	1
10943	Xylene (Total)		1330-20-7	800	5	10
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	4,800	250	5
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	1,100	53	1
	reextraction are wi	thin the ar result	limits. The hold t s were obtained in	e QC limits. Result ime had expired pri- both extracts. The data.	or to the	

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 14:06	Anita M Dale	1
10943	UST VOCs by 8260B - Water	SW-846 8260B	1	F103642AA	12/30/2010 14:27	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F103642AA	12/30/2010 14:06	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F103642AA	12/30/2010 14:27	Anita M Dale	10
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10362A53A	12/28/2010 19:20	Martha L Seidel	5
01146	GC VOA Water Prep	SW-846 5030B	1	10362A53A	12/28/2010 19:20	Martha L Seidel	5
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	103620022A	12/29/2010 12:09	Melissa McDermott	1
02376	Extraction - Fuel/TPH	SW-846 3510C	2	103620022A	12/28/2010 23:30	Sherry L Morrow	1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1226734

Reported: 01/06/11 at 04:11 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: F103642AA Benzene	Sample numbe	r(s): 617	2416-61724 ug/l	124 97		79-120		
Ethanol Ethylbenzene	N.D. N.D.	50. 0.5	ug/l ug/l	101 95		54-149 79-120		
Methyl Tertiary Butyl Ether Toluene	N.D.	0.5	ug/l	90 98		76-120 76-120 79-120		
Xylene (Total)	N.D. N.D.	0.5 0.5	ug/l ug/l	96		80-120 80-120		
Batch number: 10357A53A	Sample numbe							
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	91	91	75-135	0	30
Batch number: 10362A53A TPH-GRO N. CA water C6-C12	Sample numbe	r(s): 617 50.	2424 ug/l	89	84	75-135	6	30
Batch number: 103570002A	Sample numbe	r(s): 617	2417-61724	120				
TPH-DRO CA C10-C28	N.D.	32.	ug/l	85	94	56-122	10	20
Batch number: 103620022A	Sample numbe							
TPH-DRO CA C10-C28	N.D.	32.	ug/l	93	89	56-122	4	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: F103642AA	Sample	number(s): 6172416	5-61724	24 UNSF	K: P172427			
Benzene	103	104	80-126	1	30				
Ethanol	100	100	37-164	0	30				
Ethylbenzene	102	104	71-134	3	30				
Methyl Tertiary Butyl Ether	93	101	72-126	9	30				
Toluene	103	104	80-125	0	30				
Xylene (Total)	102	103	79-125	2	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Group Number: 1226734 Client Name: Chevron

Reported: 01/06/11 at 04:11 PM

Surrogate Quality Control

	mber: F103642AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6172416	98	97	100	98	
6172417	98	98	100	100	
6172418	98	98	100	102	
6172419	100	94	101	105	
6172420	101	96	102	101	
6172421	101	97	99	102	
6172422	100	98	101	101	
6172423	103	98	101	101	
6172424	98	93	103	109	
Blank	97	96	100	99	
LCS	99	98	100	101	
MS	98	98	100	102	
MSD	97	98	100	102	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 10357A53A

Trifluorotoluene-F

71
69
71
126
67
68
75
67
76
89
88

Limits: 63-135

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 10362A53A Trifluorotoluene-F

6172424	78
Blank	74
LCS	88
LCSD	88

Limits: 63-135

Analysis Name: TPH-DRO CA C10-C28

Batch number: 103570002A Orthoterphenyl

6172417	77
6172418	77
6172419	76
6172420	88
Blank	82

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1226734

Reported: 01/06/11 at 04:11 PM

Surrogate Quality Control

LCS 101 LCSD 103 Limits: 59-131

Analysis Name: TPH-DRO CA C10-C28

Batch number: 103620022A

Orthoterphenyl

6172421 95 6172422 101 6172423 94 6172424 104 Blank 101 LCS 123 LCSD 118

Limits: 59-131

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratories		1228	16-P	7 Acct. #:	/ <u>(</u>	90	4:	Sample	e# <u>(</u>	caster Lab 172 Y Request	oratories u / しー え ^し ed	150 0	Group #: 020	,
Facility #: SS#211283-OML G-R#38	5956 Global ID	#T0600101108	Mat	trix				Pre	serva	tion Code	es		Preservative Co	des
Site Address 3810 BROADWAY, OAKLA Chevron PM: EF L Consultant/Office: G-R, Inc., 6747 Sierra	ND, CA					1 1	Cleanup			H			H = HCl T = Thi N = HNO ₃ B = Nat S = H ₂ SO ₄ O = Oth	osulfate OH
G-R, Inc., 6747 Sierra	Court, Suite J,	Dublin, CA 94568	3 음	<u>හ</u>	ا إ	⊐¦	8						☐ J value reporting need	ed
Deanna L. Harding Consultant Prj. Mgr.:	c.com)	_	NPDES	ag	<u>ğ</u>	Silica (\$260			Must meet lowest dete possible for 8260 comp	ction limits counds	
Consultant Phone #925-551-7555	Fax #: 925	5-551-7899	_ ─	- '	ъ ኘ	GRO A	뎵		Method	Method C82			8021 MTBE Confirmation	ı
Sampler: Alex Worg		Composite Soil Water	Air	Total Number	BIEX + MIBE 8260 TPH 8015 MOD GRO	TPH 8015 MOD DRO	8260 full scan		Dissolved Lead M			☐ Confirm highest hit by	0	
Sample Identification	Date	Time &	Soil		gal	Ž Ž	¥ 8	26 12 13 13 13 13 13 13 13 13 13 13 13 13 13	otal Lead	Nos E		İ	☐ Run oxy's on higl ☐ Run oxy's on all I	
CA	Collected	Collected $\bar{\sigma}$			2	\	=	8	<u> </u>			-		
	1	1040		7	źΚ	\Rightarrow	\forall		+	$\overline{}$			Comments / Remarks	j
mw - 51	2	0955	$+$ κ		8 K	\ll	Θ	+	+ +	$-\Theta$	+ + -	\vdash		
mw - 6	' 	1445		7	e K	+	\bowtie		+ - -	\rightarrow	+	╁		
mw-7		1205			8 5	\Rightarrow	\bowtie		╁┼	\rightarrow	 	-	Please forward the tab directly to the Lead Con	
mw - 9		1330	$+$ κ	- 3	5	\Rightarrow	\bowtie		╂	+		-	and cc: G-R.	Junaria
MW-10		1245			8 5	Ж	Θ	-	++	\rightarrow	+	\vdash		
mw-11		1120			8 5	钬	\Diamond	+	† †	$\rightarrow \triangleright$	 	H		
Mw-12	. 1/	1405		- 41	8 D	$\langle X \rangle$	(X)	_	 		 	 		
		', '	1 /	-	ľ	*			1 1	- 17	 	\vdash		
				 					1-+	_ _ _	 			
				'- -					1-1	· - -	 			.]
					\top				1		1			İ
Turnaround Time Requested (TAT) (please 27	•	Relinquished b	у:	2			1	ate 4-10 /	Time	Received	A list	n	Date Date	Time 1516
24 hour 4 day 5 day Relinquished by				6			, pa	7.1	Time なか	Receive	E E		Date	Time
Data Package Options (please circle if require	ed)	Relinquished b	у:	1			Da	ite	Time	Receive	J.by:	\geq	Date	Time
QC Summary Type I - Full	EDF/EDD	Polinguish and h	Corress	i						-			<i></i>	
Type VI (Raw Data)			Relinquished by Commercial Carrier: UPS FedEx Other					Received by: Date Time COST						
Disk	Temperature U	Temperature Upon Receipt 0.3-1.5 C° Custody Seaks Infact?				Wes. No.								

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	I	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- **J** estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight basis**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C

HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

Former Texaco Service Station (Site #211283) 3810 Broadway

Oakland, California

TPH- TPH- MTBE by MTBE by													
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В		E	X	8021♦	8260	ETHANOL
DATE	(ft.)	(fl.)	(msl)	(fi.)	(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
MW-1										11. G	V.G.		**************************************
06/28/96	86.69	21.77	64.92		<50	<100	<0.5	<1.0	<1.0	<2.0		1.2.	
10/10/96	86.69	23.26	63.43	-	<400	520	9.2	53	17	70	22	16	**
11/07/96	86,69	23.27	63.42	14		_	4	1	-			-	-
12/18/97	86.69	19.70	66.99	12	<50	2,200	<3.0	<3.0	<3.0	<3.0	<200		144
04/06/98	86.69	16.88	69.81	-	<50	1,600	16.4	0.8	<0.5	<0.5	38.3	-	-
06/18/98	86.69	19.78	66,91	_	280	330	7.8	<0.5	<0.5	<0.5	<0.5	**	
08/31/98	86.69	21.71	64.98	-	150	<50	1.5	<0.5	<0.5	<0.5	<2.5	-	-
12/21/98	86.69	22.15	64.54	-	130	130	2.3	0.90	<0.5	<0.5	110	13	-
03/24/99	86.69	19.55	67.14	-	305	1,520	11.7	<2.50	<2.50	<2.50	21.6	<25.0	
06/25/99	86.69	21.60	65.09	-	207	231	5.29	<0.500	<0.500	<0.500	3.94	1.01	7
09/24/99	86.69	22.58	64.11		71.7	58.6	6.03	<0.500	<0.500	<0.500	3.70	20.00	_
12/29/99	86.69	22.81	63.88	-	345	117	4.26	<0.500	<0.500	1.97	26.2	<0.500	-
03/21/00	86.69	19.00	67.69	-	319	834	<0.500	<0.500	<0.500	<0.500	21.5	-0.500	2
07/26/00	86.69	21,50	65.19	+	125	<50.0	<0.500	<0.500	< 0.500	<0.500	<2.50		2
09/06/00	86.69	21.90	64.79	**	192	88.1	15.60	<0.500	<0.500	<0.500		-	
11/29/00	86.92	22.05	64.87	-	331	<50.0	3.52	<0.500	<0.500	<0.500	1		-
03/06/01	86.92	19.79	67.13	-		-	175	-		-0.500	_	-	2
03/23/01	86,92	20.15	66.77		5	204	10.7	< 0.500	< 0.500	< 0.500			
06/19/015	86.92	21.78	65.14	-	330	<50	<0.50	<0.50	<0.50	<0.50	-	0.87	
09/05/016	86.92	24.37	62.55	-	400	74	<0.50	0.63	<0.50	2.7	-	<5.0	
12/20/01°	86.92	20.25	66.67	-	530	59	1.7	<0.50	<0.50	<0.50	-	<5.0	*
06/25/02	86.69	21.64	65.05	0.00	490°	<50	<0.50	<0.50	<0.50	<1.5	<2.5	2.0	
09/18/02	86.69	22.44	64.25	0.00	180	<50	<0.50	<0.50	< 0.50	<1.5	<2.5		-
12/19/02	86.69	21.49	65.20	0.00	320	<50	<0.50	<0.50	<0.50	<1.5	<2.5	-	
03/20/03	86.69	20.92	65.77	0.00	UNABLE TO		ND IN WELL	4.50				-	-
06/23/0310	86.69	21.34	65.35	0.00	310	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	-
09/22/0310	86.69	22.46	64.23	0.00	150	<50	<0.5	<0.5	<0.5	<0.5	- D.	<0.5	<50
12/22/03 10	86.69	22.10	64.59	0.00	350	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/22/0410	86.69	20.42	66.27	0.00	270	<50	<0.5	<0.5	<0.5	<0.5	-	2	<50
06/21/0410	86.69	21.93	64.76	0.00	130	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
09/20/0410	86.69	22.99	63.70	0.00	240	<50	<0.5	<0.5	<0.5	<0.5	3	<0.5	<50
12/20/0410	86.69	21.78	64.91	0.00	320°	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/28/0510	86.69	19.28	67.41	0.00	400°	<50	<0.5	<0.5	<0.5	<0.5		0.6	<50

Former Texaco Service Station (Site #211283)

							Oakland, C	alifornia						
						TPH-	TPH-					MTBE by	MTBE by	
WELL ID/		TOC*	DTW	GWE	SPHT	DRO	GRO	В	T	E	X	8021♦	8260	ETHANOL
DATE		(fl.)	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(pg/L)
MW-1 (cont	0													
06/27/0510		86.69	20.82	65.87	0.00	20012	<50	<0.5	<0.5	<0.5	<0.5	ω.	<0.5	<50
09/19/0510		86.69	22.17	64.52	0.00	62	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	
12/19/0510		86.69	22.06	64.63	0.00	36016	<50	<0.5	0.8	<0.5	<0.5		<0.5	<50
03/27/0610		86.69	18.27	68.42	0.00	320	77	<0.5	0.5	2	4	70	0.7	<50
06/26/06 ¹⁰		86.69	20,20	66.49	0.00	290	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
09/25/0610		86.69	21.86	64.83	0.00	270	<50	<0.5	<0.5	<0.5	<0.5	**		<50
12/18/06		86.69	21.60	65.09			DUE TO BEN				-0.5	=	<0.5	<50
03/19/0710	NP18	86.69	20.82	65.87	0.00	630	<50	<0.5	<0.5	<0.5	<0.5		-0.6	-50
06/25/0710	NP18	86.69	28.62	58.07	0.00	4,10019	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
09/24/07	55	86.69	DRY	70	7577	4,100	_	-				-	<0.5	<50
12/18/07		86.69	29.35	57.34	UNABLE	TO SAMPLE	DUE TO INS				77	-	-	**
03/11/08		86.69	28.41	58.28			DUE TO BEN			-			**	**
06/11/0810	NP16	86.69	25.87	60.82	0.00	2,200	760	<0.5	<0.5	<0.5	<0.5	-	<0.5	
09/22/0810	NP18	86.69	24.18	62.51	0.00	700	190	<0.5	<0.5	<0.5	<0.5	-		<50
12/22/0810	316	86.69	23.30	63.39	0.00	290	65	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/23/0910	NP18	86.69	21.35	65.34	0.00	1,500	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5 0.9	<50
06/22/0910	NP 18	86.69	22.06	64.63	0.00	87	<50	<0.5	<0.5	<0.5	<0.5	-		<50
12/02/09 ¹⁰	2.0	86.69	25.02	61.67	0.00	530	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
06/26/1010	NP18	86.69	24.83	61.86	0.00	340	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
		(CENT)	2 112	71.00	o.u.	540	50	40.3	40.3	40.5	70.5	-	<0.5	<50
MW-4														
06/28/96		83.31	18.83	64.48	-	<50	<100	<0.5	<1.0	<1.0	<2.0		-	-
10/10/96		83.31	19.84	63.47	-	<50	650	3.9	65	22	120	<5.0	=	-
1/07/96		83.31	19.84	63.47	-								-	
12/18/97		83.31	17.77	65.54		2,000	<50	< 0.5	< 0.5	<0.5	<0.5	<30	-	
04/06/98		83.31	15.45	67.86	**	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<30	_	
06/18/98		83.31	16.89	66.42	-	53	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	-	
08/31/98		83.31	18.48	64.83	120	60	<50	< 0.5	<0.5	<0.5	<0.5	<2.5		1.2
12/21/98		83.31	18.80	64.51	**	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5		-
3/24/99		83.31	16.70	66.61	-	<50.0	<50.0	<0.500	< 0.500	< 0.500	< 0.500	<2.00	-	**
06/25/99		83.31	18.16	65.15	100	128	<50.0	< 0.500	< 0.500	<0.500	<0.500	<2.00	724	_
09/24/99		83.31	19.12	64.19		<50.0	<50.0	< 0.500	< 0.500	< 0.500	<0.500	<2.50	-	

Former Texaco Service Station (Site #211283) 3810 Broadway

Oakland, California

						Oakland, C	alitomia						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	B	T	E	X	8021♦	8260	ETHANOL
DATE	(fl.)	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4 (cont)													
12/29/99	83.31	19.08	64.23		169	<50.0	<0.500	< 0.500	< 0.500	<0.500	<5.00		
03/21/00	83.31	16.10	67.21		<50.0	<50.0	<0.500	< 0.500	<0.500	<0.500	<2.50		
07/26/00	83.31	OBSTRUCT		ELL							~2.30	••	••
09/06/00	83.31	18.52	64.79		5	<50.0	< 0.500	< 0.500	<0.500	<0.500			
11/29/00	83.63	18.75	64.88		183	<50.0	< 0.500	< 0.500	<0.500	<0.500			
03/06/01	83.63	17.81	65.82		50.9	<50.0	<0.500	<0.500	<0.500	< 0.500			**
06/19/01 ⁶	83.63	18.55	65.08		<50	<50	<0.50	<0.50	<0.50	<0.50		<0.50	••
09/05/01 ⁶	83.63	19.10	64.53		710	<50	<0.50	< 0.50	<0.50	<0.50		<5.0	
12/20/016	83.63	17.55	66.08		460	<50	<0.50	< 0.50	<0.50	<0.50		<5.0	
06/25/02	83.31	18.39	64.92	0.00	250	<50	<0.50	<0.50	<0.50	<1.5	<2.5		••
09/18/02	83.31	19.16	64.15	0.00	160	<50	<0.50	<0.50	<0.50	<1.5	<2.5		
12/19/02	83.31	18.14	65.17	0.00	56	<50	<0.50	<0.50	<0.50	<1.5	<2.5		••
03/20/03	83.31	17.76	65.55	0.00	180	<50	<0.50	<0.50	<0.50	<1.5	<2.5		
06/23/03 ¹⁰	83.31	18.13	65.18	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	••
09/22/03 ¹⁰	83.31	19.08	64.23	0.00	110	<50	<0.5	<0.5	<0.5	<0.5		<0.5	 <50
12/22/0310	83.31	18.78	64.53	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/22/04 ¹⁰	83.31	17.31	66.00	0.00	130	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/21/04 ¹⁰	83.31	18.67	64.64	0.00	87	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
09/20/04 ¹⁰	83.31	19.58	63.73	0.00	120	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
12/20/04 ¹⁰	83.31	18.59	64.72	0.00	66°	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50 <50
03/28/05 ¹⁰	83.31	16.82	66.49	0.00	71 ⁹	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
06/27/05 ¹⁰	83.31	17.61	65.70	0.00	12012	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
09/19/05 ¹⁰	83.31	19.00	64.31	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	**	<0.5	<50
12/19/05 ¹⁰	83.31	18.69	64.62	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/27/06 ¹⁰	83.31	15.05	68.26	0.00	160	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
06/26/06 ¹⁰	83.31	16.81	66.50	0.00	110	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
09/25/06 ¹⁰	83.31	18.59	64.72	0.00	120	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
12/18/06 ¹⁰	83.31	18.26	65.05	0.00	250	<50	<0.5	<0.5	<0.5	<0.5		<0.5 <0.5	<50
03/19/07 ¹⁰	83.31	17.62	65.69	0.00	93	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/25/07 ¹⁰	83.31	24.82	58.49	0.00	4,60019	<50	<0.5	<0.5	<0.5	<0.5		<0.5 <0.5	<50
09/24/07 ¹⁰	83.31	26.76	56.55	0.00	4,300	94	<0.5	<0.5	<0.5	<0.5		0.6	<50 <50
12/18/07 ¹⁰	83.31	25.91	57.40	0.00	3,700	<50	<0.5	<0.5	<0.5	<0.5		0.6	<50
03/11/08 ¹⁰	83.31	25.15	58.16	0.00	430	54	<0.5	<0.5	<0.5	<0.5		0.6	
•					· - •	÷ ·		-0.5	~0.5	~0.5		0.0	<50

Former Texaco Service Station (Site #211283)

			4444444444	400000000000		Oakland, C	alitornia				37,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1		,
WELL ID	TOC*	DTW	GWE	SPHT	TPH- DRO	TPH-					MTBE by	MTBE by	
DATE	(fi.)	(fi.)	(msl)	(ft.)		GRO	В	T	E	X.	8021.♦	8260	ETHANOL
	<u></u>	· · · · · · · · · · · · · · · · · · ·	(mai)	(JL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)
MW-4 (cont)													
06/11/0810	83.31	22.53	60.78	0.00	520	<50	<0.5	<0.5	< 0.5	<0.5		< 0.5	<50
09/22/0810	83.31	20.99	62.32	0.00	59	<50	<0.5	<0.5	< 0.5	<0.5	-	<0.5	<50
12/22/0810	83.31	19.93	63.38	0.00	260	<50	< 0.5	<0.5	<0.5	< 0.5	-	<0.5	<50
03/23/0910	83.31	18.17	65.14	0.00	74	<50	< 0.5	< 0.5	<0.5	<0.5	144	<0.5	<50
06/22/0910	83.31	18.90	64.41	0.00	<50	<50	<0.5	< 0.5	<0.5	<0.5	(44)	<0.5	<50
12/02/0910	83.31	21.63	61.68	0.00	<50	<50	<0.5	<0.5	<0.5	< 0.5	**	<0.5	<50
06/26/10 ¹⁰	83.31	21.56	61.75	0.00	56	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
MW-5B													
06/25/02 ⁷	85.36	20.48	64.88	0.00	320	660	89	1.9	39	11	130	-	-
09/18/02	85.36	21.18	64.18	0.00	480	1,100	220	1.2	19	<1.5	35	-	
12/19/02	85.36	20.36	65.00	0.00	330	<50	< 0.50	<0.50	<0.50	<1.5	190	12	
03/20/03	85.36	INACCESS	IBLE - VEH	IICLE OVER									-
06/23/03 ¹⁰	85.36	20.18	65.18	0.00	300	<50	<0.5	<0.5	<0.5	<0.5		290	
09/22/03 ¹⁰	85.36	21.19	64.17	0.00	200	91	19	<0.5	3	<0.5	2	260	<50
12/22/0310	85.36	20.85	64.51	0.00	410	99	18	<0.5	<0.5	<0.5	-	52	<50
03/22/04 ¹⁰	85.36	19.26	66.10	0.00	400	<50	<0.5	<0.5	<0.5	<0.5	-	210	<50
06/21/04 ¹⁰	85.36	20.70	64.66	0.00	270	<50	<0.5	<0.5	<0.5	<0.5	-	100	<50
09/20/04 ¹⁰	85.36	21.69	63.67	0.00	430	<50	<0.5	<0.5	<0.5	<0.5	4	9	<50
12/20/0410	85.36	20.56	64.80	0.00	400°	<50	<0.5	<0.5	<0.5	<0.5	4	48	<50
03/28/05 ¹⁰	85.36	18.12	67.24	0.00	480°	<50	<0.5	<0.5	<0.5	<0.5		67	<50
06/27/05 ¹⁰	85.36	19.61	65.75	0.00	350 ¹³	<50	<0.5	<0.5	<0.5	<0.5	2	57	<50
09/19/05 ¹⁰	85.36	20.88	64.48	0.00	220	<50	<0.5	<0.5	<0.5	<0.5	-	32	<50
12/19/0510	85.36	20.74	64.62	0.00	330 ¹⁶	<50	<0.5	<0.5	<0.5	<0.5		21	<50
03/27/06 ¹⁰	85.36	17.10	68.26	0.00	550	<50	<0.5	<0.5	<0.5	<0.5		31	<50
06/26/06 ¹⁰	85.36	19.05	66.31	0.00	410	<50	<0.5	<0.5	<0.5	<0.5		30	<50
09/25/06 ¹⁰	85.36	20.61	64.75	0.00	320	<50	<0.5	<0.5	<0.5	<0.5	2	25	<50
12/18/06 ¹⁰	85.36	20.35	65.01	0.00	580	<50	<0.5	<0.5	<0.5	<0.5	-	14	
03/19/07 ¹⁰	85.36	19.62	65.74	0.00	170	<50	<0.5	<0.5	<0.5	<0.5	_		<50
06/25/07 ¹⁰	85.36	26.94	58.42	0.00	950 ¹⁹	250 ¹⁹	2	<0.5	0.6	1		24	<50
09/24/07 ¹⁰	85.36	28.78	56.58	0.00	1,300	1,900	5	0.6	3	5		15	<50
12/18/07 ¹⁰	85.36	27.98	57.38	0.00	560	2,100	19	<0.5	2			25	<50
12/10/07	00.00	27.20	57.50	0.00	200	2,100	17	~0.5	Z	4	-	28	<50

Former Texaco Service Station (Site #211283) 3810 Broadway

Oakland, California

					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Oakland, C	antomia						
WELL ID/	707/05/05	Was process 7			TPH-	TPH-					MTBE by	MTBE by	
	TOC*	DTW	GWE	SPHT	DRO	GRO	В		E	X	8021♦	8260	ETHANOL
DATE	(fi.)	(ft.)	(msl)	(ft.)	(μg/L)	(pg/L)	(pg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
MW-5B (cont)													
03/11/0810	85.36	27.17	58.19	0.00	290	640	16	<0.5	4	0.5	-	38	<50
06/11/0810	85,36	24.51	60.85	0.00	280	1,100	20	<0.5	6	1		21	<50
09/22/0810	85.36	22.85	62.51	0.00	110	280	9	< 0.5	<0.5	<0.5	_	22	<50
12/22/0810	85.36	22.00	63.36	0.00	220	200	2	<0.5	<0.5	<0.5	- 24	25	<50
03/23/0910	85.36	20.20	65.16	0.00	240	97	<0.5	<0.5	<0.5	<0.5	_	11	<50
06/22/0910	85.36	20.92	64.44	0.00	97	220	<0.5	<0.5	<0.5	<0.5	-	7	<50
12/02/0910	85.36	23.74	61.62	0.00	130	130	<0.5	< 0.5	<0.5	<0.5	-	8	<50
06/26/1010	85.36	23.60	61.76	0.00	130	160	<0.5	<0.5	<0.5	<0.5	_	17	<50
						200				-		36	-50
MW-6													
10/10/96	86.09	22.44	63.65	-	500	45,000	8,300	2,900	810	3,100	190	40 ¹	- 2
11/07/96	86.09	22.60	63.49	-				-,				-	
12/18/97	86.09	22.28	63.81	44	1,900	60,000	12,000	9,800	1,800	8,600	<2,000	44	-
04/06/98	86.09	19.90	66.19	***	<50	30,500	5,950	3,720	952	3,750	<1,000	-	
06/18/98	86.09	20.49	65.60		1,100	23,000	2,600	540	410	1,300	<250	_	1 2
08/31/98	86.09	21.05	65.04	**	1,800	17,000	3,400	460	530	1,800	<250		-
12/21/98	86.09	21.74	64.35		930	7,900	1,900	510	280	730	150	2.6	-
03/24/99	86.09	21.18	64.91	**	763	12,200	1,970	327	338	794	<40.0	<50.0	-
06/25/99	86.09	21.34	64.75	-	1,050	14,800	2,040	1,080	406	1,430	<40.0		-
09/24/99	86.09	22.28	63.81	340	1,720	17,200	2,810	1,330	489	2,340	<50.0	-	-
12/29/99	86.09	24.96	61.13	-	1,480	14,700	2,790	974	469	1,720	<500	4	-
03/21/00	86.09	18.70	67.39	-	1,120	20,000	4,160	962	719	2,330	<250		- <u>L</u>
07/26/00	86.09	INACCESS	IBLE	-								44	
09/06/00	86.09	INACCESS	IBLE	-							-	-	-
11/29/00	86.48	21.30	65.18	(2)	2,060	22,800	4,120	2,010	872	3,180	-	-	
03/06/01	86.48	19.05	67.43	-	2,220	32,100	3,760	4,590	1,160	5,360	4		3
06/19/01 ⁶	86.48	21.11	65.37		<1,500	40,000	2,800	6,000	1,200	5,300	-	<25	-
09/05/01 ⁶	86.48	21.37	65.11	_	<1,000	18,000	3,800	800	730	1,400	-	<200	-
12/20/01 ⁶	86.48	19.80	66.68		<1,300	29,000	2,600	3,700	1,100	4,100	_	<100	-
06/25/02	86.09	21.13	64.96	0.00	2,500	21,000	2,200	1,800	850	2,100	<100		-
09/18/02	86.09	22.00	64.09	0.00	1,300	13,000	1,700	480	610	970	110	-	2
12/19/02	86.09	20.98	65.11	0.00	2,700	20,000	2,900	620	770	2,100	<20	-	

As of 06/26/10

Former Texaco Service Station (Site #211283) 3810 Broadway

Oakland, California

					Oakland, C	alifornia						
				TPH-	TPH-					MTBE by	MTBE by	
TOC*	DTW	GWE	SPHT	DRO	GRO	B	T	r	X	8021♦	8260	ETHANOL
(fL)	(ft.)	(msl)	(ft.)	(µg/L)	(ng/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
86.09	20.23	65.86	0.00	2,600	23,000	1,500	2,200	920	3,400	<100		
86.09	20.96	65.13	0.00	2,400	21,000	2,000	1,400	890	2,500		6	-
86.09	21.95	64.14	0.00	1,800	7,400	920	220	360	580	1	5	<50
86.09	21.63	64.46	0.00	2,300	9,700	1,700	240	450	1,000	0	6	<10011
86.09	20.31	65.78	0.00	2,700	23,000	1,500	1,400	830	2,800	-	4	<250
86.09	20.64	65.45	0.00	2,800	20,000	2,000	2,300	1,100	3,800		4	<130
86.09	22.29	63.80	0.00	1,300	4,600	480	65	200	260	-	4	<100
				1990								
												<250
				The state of the s					700000			<250
												<100
		1 To 1 To 1			The second second							<100
			100		The second second	0.000						110
				7.23								<50
100.1104	10 May 10						The state of the s		12/11/4			<250
				The second second	and the second							<100
												<50
												<100
												-
					- 3							-
												-
AA AA					40.00							
									0.8			<50
	The second second							0	1			<50
		1000						1		-		<50
					24.					122		<50
												<50
	20,74									-		<50
60.09	24.14	01.95	0.00	1,300	2,800	230	14	110	120	-	3	<50
86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09 86.09	21.33 19.65 19.86 20.49 21.49 18.28 19.08 20.02 20.57 20.56 DRY DRY DRY 25.35 23.51 22.75 20.48 21.40 24.48 24.14	64.76 66.44 66.23 65.60 64.60 67.81 67.01 66.07 65.52 65.53 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1,500 2,400° 2,100 ¹⁴ 2,300 1,900 ¹⁴ 1,300 2,300 2,100 2,700 2,700 820 780 880 2,100 1,900 1,200 1,300	9,500 13,000 15,000 18,000 13,000 14,000 23,000 18,000 14,000 17,000 1,400 1,400 1,100 7,900 7,300 3,200 2,800	1,500 1,100 1,100 1,300 1,900 740 660 580 1,200 990 110 52 39 460 370 170 230	220 550 1,300 1,200 190 420 1,700 1,200 370 560 <0.5 <0.5 <0.5 140 210 10 14	450 600 790 800 620 600 870 760 680 840 — — 6 6 6 1 470 330 39	840 1,600 2,600 2,500 890 1,400 3,000 2,600 1,300 2,100 			- 5 - 3 - 3 - 5 - 2 - 3 - 1 - 4 - 3 4 - 6 - 6 - 6 - 3 - 4 - 3

Former Texaco Service Station (Site #211283)

	1.7.2					Oakland, C	California						
WELL ID/	TOC*	DTW	GWE	SPHT	TPH- DRO	TPH- GRO	В	Ŧ	E	X	MTBE by 8021♦	MTBE by 8260	ETHANOL
DATE	(fL)	(ft.)	(msl)	(ft.)	(μg/L)	(pg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(jig/L)	(µg/L)	(µg/L)
MW-7													
10/10/96	84.11	20.78	63.33		<50	<50	0.6	<0.5	<0.5	<0.5	<5.0		
11/07/96	84.11	20.80	63.31									49	
12/18/97	84.11	17.27	66.84		<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
04/06/98	84.11	15.91	68.20	**	<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
06/18/98	84.11	17.95	66.16		<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
08/31/98	84.11	19.40	64.71		<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5	••	
12/21/98	84.11	19.75	64.36		<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5	••	
03/24/99	84.11	17.54	66.57		51.3	<50.0	<0.500	< 0.500	<0.500	< 0.500	<2.00		
06/25/99	84.11	19.22	64.89		<50.0	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.00		
09/24/99	84.11	20.18	63.93		<50.0	<50.0	< 0.500	< 0.500	<0.500	< 0.500	<2.50	••	
12/29/99	84.11	20.15	63.96		99.0	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<5.00	••	
03/21/00	84.11	16.35	67.76		<50.0	<50.0	< 0.500	<0.500	< 0.500	< 0.500	<2.50		••
07/26/00	84.11	18.99	65.12		<50.0	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	••	
09/06/00	84.11	19.49	64.62		5	<50.0	< 0.500	< 0.500	<0.500	< 0.500			
11/29/00	84.44	19.52	64.92		<50.0	<50.0	< 0.500	<0.500	<0.500	<0.500		••	
03/06/01	84.44	17.15	67.29		<50.0	<50.0	< 0.500	<0.500	<0.500	< 0.500			
06/19/01 ⁶	84.44	19.30	65.14		<50	<50	<0.50	< 0.50	<0.50	< 0.50		< 0.50	••
09/05/016	84.44	20.22	64.22		<50	<50	0.64	0.84	0.94	5.2		<5.0	
12/20/016	84.44	17.85	66.59		<50	<50	<0.50	< 0.50	<0.50	<0.50		<5.0	
06/25/02	84.11	19.30	64.81	0.00	<50	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5		
09/18/02	84.11	20.10	64.01	0.00	170	<50	< 0.50	<0.50	<0.50	<1.5	<2.5		
12/19/02	84.11	18.73	65.38	0.00	<50	<50	< 0.50	<0.50	<0.50	<1.5	<2.5		
03/20/03	84.11	18.86	65.25	0.00	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5		
06/23/0310	84.11	19.00	65.11	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	
09/22/0310	84.11	20.05	64.06	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
12/22/0310	84.11	19.72	64.39	0.00	72	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/22/0410	84.11	17.94	66.17	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/21/04 ¹⁰	84.11	19.53	64.58	0.00	73	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
09/20/0410	84.11	20.59	63.52	0.00	69	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
12/20/0410	84.11	19.43	64.68	0.00	67 ⁹	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/28/0510	84.11	16.68	67.43	0.00	69 ⁹	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/27/05 ¹⁰	84.11	18.43	65.68	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50

Former Texaco Service Station (Site #211283)

	* * * * * * T * * * * * * *				·	Oakland, (alifornia						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В	T	E	X	8021.♦	8260	ETHANOL.
DATE	(ft.)	(fL)	(msl)	(ft.)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7 (cont)											_		
09/19/0510	84.11	19.77	64.34	0.00	<50	<50	< 0.5	<0.5	<0.5	<0.5		<0.5	<50
12/19/0510	84.11	19.38	64.73	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
03/27/0610	84.11	15.51	68.60	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
06/26/0610	84.11	17.85	66.26	0.00	70	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
09/25/0610	84.11	19.53	64.58	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	_	<0.5	<50
12/18/0610	84.11	19.28	64.83	0.00	270	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
03/19/07 ¹⁰	84.11	18.32	65.79	0.00	81	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
06/25/07 ¹⁰	84.11	26.92	57.19	0.00	65	<50	<0.5	<0.5	<0.5	<0.5	-	1	<50
09/24/07 ¹⁰	84.11	28.32	55.79	0.00	<150	<50	<0.5	<0.5	<0.5	<0.5	2	0.7	<50
12/18/0710	84.11	27.61	56.50	0.00	130	<50	<0.5	<0.5	<0.5	<0.5	4	1	<50
03/11/0810	84.11	26.63	57.48	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
06/11/0810	84.11	23.43	60.68	0.00	98	<50	<0.5	<0.5	<0.5	<0.5	5	<0.5	<50
09/22/0810	84.11	21.69	62.42	0.00	54	<50	<0.5	<0.5	<0.5	<0.5	_	<0.5	<50
12/22/0810	84.11	20.78	63.33	0.00	120	<50	<0.5	<0.5	<0.5	<0.5	_	<0.5	<50
03/23/09 ¹⁰ NP ²²	84.11	18.45	65.66	0.00	58	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/22/0910	84.11	19.70	64.41	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	2	<0.5	<50
12/02/0910	84.11	22.40	61.71	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<50
06/26/1010	84.11	22.44	61.67	0.00	68	<50	⊲0.5	<0.5	<0.5	<0.5	2	<0.5	<50
					4.5	34		-0.0	-0.5	4.5	-	40.5	>0
MW-9													
10/10/96	82.17	18.62	63.55		520	80	2.5	13	2.2	13	<5.0	10421	
1/07/96	82.17	63.53	18.64	199								**	**
12/18/97	82.17	16.42	65.75	4	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<30	4	-
14/06/98	82.17	14.00	68.17		<50	<50	<0.5	< 0.5	< 0.5	<0.5	<30	**	
06/18/98	82.17	15.33	66.84	+	100	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5	-	-
8/31/98	82.17	17.14	65.03	240	57	<50	<0.5	< 0.5	<0.5	<0.5	<2.5		-
2/21/98	82.17	17.40	64.77	-	71	<50	<0.5	<0.5	<0.5	<0.5	<2.5	**	-
3/24/99	82.17	16.22	65.95	-	84.0	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.00	÷	-
06/25/99	82.17	16.90	65.27	-	92.0	<50.0	< 0.500	< 0.500	<0.500	< 0.500	<2.00	-	
9/24/99	82.17	17.89	64.28	4	<50.0	<50.0	< 0.500	<0.500	<0.500	<0.500	<2.50	-	-
12/29/99	82.17	18.01	64.16	-	52.8	<50.0	< 0.500	<0.500	< 0.500	< 0.500	<5.00		
3/21/00	82.17	14.80	67.37		72.4	<50.0	<0.500	< 0.500	<0.500	< 0.500	<2.50		-

Table 1
Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station (Site #211283) 3810 Broadway

Oakland, California

		. * . * . * . * . * . * . * . * . * . *				Oakland, C	alifornia						
WELL ID/	ngin kral, king 42				TPH-	TPH-					MTBE by	MTBE by	
150000000000000000000000000000000000000	TOC*	DTW	GWE	SPHT	DRO	GRO	B	T	Ľ	X	8021♦	8260	ETHANOL
DATE	(fi.)	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-9 (cont)													
07/26/00	82.17	17.17	65.00	-	83.6	<50.0	< 0.500	<0.500	< 0.500	< 0.500	<2.50	4	1
09/06/00	82.17	17.95	64.22		74.3	<50.0	< 0.500	<0.500	<0.500	< 0.500	**		-
11/29/00	82.52	18.10	64.42	-	96.2	<50.0	< 0.500	<0.500	<0.500	<0.500	-	-	
03/06/01	82.52	16.75	65.77	-	94.2	<50.0	<0.500	< 0.500	<0.500	<0.500	**	12	2
06/19/01 ⁶	82.52	17.83	64.69	-	<50	<50	< 0.50	<0.50	< 0.50	<0.50	-	<0.50	-
09/05/01 ⁶	82.52	17.98	64.54	100	<50	<50	<0.50	<0.50	<0.50	1.6	4	<5.0	
12/20/016	82.52	16.85	65.67	-	84	<50	<0.50	<0.50	<0.50	<0.50	-	<5.0	-
06/25/02	82.17	17.12	65.05	0.00	100	<50	< 0.50	<0.50	<0.50	<1.5	<2.5	-	1
09/18/02	82.17	17.76	64.41	0.00	170	<50	< 0.50	<0.50	<0.50	<1.5	<2.5		
12/19/02	82.17	16.83	65.34	0.00	73	<50	< 0.50	<0.50	<0.50	<1.5	<2.5		-
03/20/03	82.17	16.61	65.56	0.00	87	<50	<0.50	<0.50	<0.50	<1.5	25	-	-
06/23/0310	82.17	17.14	65.03	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	-	0.7	144
09/22/0310	82.17	17.72	64.45	0.00	66	<50	<0.5	<0.5	<0.5	<0.5	-	0.7	<50
12/22/0310	82.17	17.44	64.73	0.00	94	<50	<0.5	<0.5	<0.5	<0.5	-	0.7	<50
03/22/04 ¹⁰	82,17	16.07	66.10	0.00	<50	<50	< 0.5	<0.5	<0.5	<0.5	-	0.7	<50
06/21/04 10	82.17	17.38	64.79	0,00	80	<50	< 0.5	<0.5	<0.5	<0.5	-	1	<50
09/20/0410	82.17	18.14	64.03	0.00	120	<50	<0.5	<0.5	<0.5	<0.5	-	1	<50
12/20/0410	82.17	17.15	65.02	0.00	749	<50	<0.5	<0.5	<0.5	<0.5	-	2	<50
03/28/0510	82.17	15.47	66.70	0.00	849	<50	<0.5	<0.5	<0.5	<0.5		3	<50
06/27/0510	82.17	16.41	65.76	0.00	14012	<50	<0.5	<0.5	<0.5	<0.5	-	3	<50
09/19/0510	82.17	17.42	64.75	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	-	5	<50
12/19/0510	82.17	17.93	64.24	0.00	5217	<50	<0.5	<0.5	<0.5	<0.5	(Q)	5	<50
03/27/0610	82,17	13.75	68.42	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	44	7	<50
06/26/06 ¹⁰	82.17	15.90	66.27	0.00	110	<50	< 0.5	<0.5	<0.5	<0.5	-	9	<50
09/25/0610	82.17	17.27	64.90	0.00	57	<50	<0.5	< 0.5	<0.5	<0.5	-	8	<50
12/18/0610	82.17	16.67	65.50	0.00	220	<50	<0.5	<0.5	<0.5	<0.5	-	7	<50
03/19/0710	82.17	16.16	66.01	0.00	210	<50	<0.5	<0.5	<0.5	< 0.5	4	9	<50
06/25/0710	82.17	23.84	58.33	0.00	74	<50	<0.5	<0.5	< 0.5	<0.5	-	6	<50
09/24/0710	82.17	25.68	56.49	0.00	280	<50	<0.5	<0.5	<0.5	<0.5	4	2	<50
12/18/07	82.17	INACCESS	IBLE	-	-	-	-		-	-	2		
03/11/08 ¹⁰	82.17	24.07	58.10	0.00	<50	<50	<0.5	< 0.5	<0.5	<0.5	-	< 0.5	<50
06/11/0810	82.17	21.23	60.94	0.00	120	<50	<0.5	<0.5	< 0.5	<0.5	9	<0.5	<50
09/22/0810	82.17	19.52	62.65	0.00		<50	<0.5	<0.5	<0.5	<0.5	_	<0.5	<50

Former Texaco Service Station (Site #211283)

inassassas an an an an an an an an an an an an an	7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>, , , , , , , , , , , , , , , , , , , </u>	Oakland, C	alitornia	***********					
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID	TOC*	DTW	GWE	SPHT	DRO	GRO	В		E	X	8021.♦	8260	ETHANOL
DATE	(fL)	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
MW-9 (cont)													
11/06/0810	82.17	19.15	63.02	0.00	<5021	-	24	140		-	(H)	-	-
12/22/0810	82.17	18.58	63,59	0.00	190	<50	<0.5	< 0.5	<0.5	<0.5	-	7	<50
03/23/09	82.17	INACCESS	SIBLE				**	4	-	-	-	-	-
06/22/0910	82.17	17.60	64.57	0.00	<50	<50	< 0.5	<0.5	<0.5	< 0.5	44	29	<50
12/02/0910	82.17	20.44	61.73	0.00	90	<50	<0.5	<0.5	<0.5	<0.5		21	<50
06/26/1010	82.17	20.38	61.79	0.00	120	<50	<0.5	<0.5	<0.5	<0.5	-	13	<50
MW-10													
10/10/96	81.83	18.40	63.43	-2	<50	<50	<0.5	-0.5	-0.5	-0.5			
11/07/96	81.83	18.43	63.40					<0.5	<0.5	<0.5	<5.0	-	**
12/18/97	81.83	16.18	65.65	-	<50	350	6.9	0.07	0.88	0.33		-	-
04/06/98	81.83	14.39	67.44	-	<50	2,300	224	0.87	81.4	0.77	<30		
06/18/98	81.83	15.11	66.72	-	320	7,200	310	168	83	253	<30	-	-
08/31/98	81.83	17.03	64.80	-	120	7,200 460	510	210 8.2	5.1	280	<0.5	-	
12/21/98	81.83	17.32	64.51		79	120	5.5	8.2 <1.0	3.1 <1.0	10	<5.0		-
03/24/99	81.83	15.25	66.58	2	923	1,330	3.3 85 .9	42.9	29.7	<1.0 95.2	8.7	<2.0	-
06/25/99	81.83	16.82	65.01	**	167	1,130	115	42.9 32.6	17.2		20.4	<25.0	- -
09/24/99	81.83	17.75	64.08	6	76.7	382	20.0	<1.00	2.21	36.3 1.37	<4.00		-
12/29/99	81.83	18.13	63.70	**	107	114	9.03	<0.500	0.531		8.83	-	*
03/21/00	81.83	14.22	67.61	_	194	1,270	86.3	52.3	38.1	<0.500 102	<5.00 19.5	-	-
07/26/00	81.83	16.61	65.22	-	192	562	74.8	7.51	24.3	14.8	13.3		
09/06/00	81.83	17.08	64.75	-	205	606	93.4	5.36	16.7	38.9		<1.004	
11/29/00	82.16	16.90	65.26	-	258	583	40.0	1.46	4.69	15.8			_
03/06/01	82.16	14.80	67.36		199	837	34.2	26.4	20.8	27.5		-	-
06/19/01 ⁶	82.16	16.85	65.31	2	<50	400	47	2.6	8.8	17		0.60	10. 2 1
09/05/01 ⁶	82.16	17.87	64.29	-	<100	230	20	< 0.50	1.2			0.60	-
12/20/01 ⁶	82.16	15.54	66.62	-	110	300	13		1.7	5.3		<5.0	-
06/25/02	81.83	16.93	64.90	0.00	180	810	180	2.5 3.2	1.7	4.6	~-	<5.0	(4)
09/18/02	81.83	17.68	64.15	0.00	200	260	24	3.2 <2.0	2.5	8.0	<2.5	-	***
12/19/02	81.83	16.36	65.47	0.00	86	360	25			5.0	2.9	-	
03/20/03	81.83	16.32	65.51	0.00	200	620	25 21	0.60 5.3	<0.50 6.0	1.5	<5.0	-	-
06/23/03 ¹⁰	81.83	16.57	65.26	0.00	290	1,500				13	<10	0.7	
UU/23/U3	01.03	10.57	03.20	0.00	290	1,300	170	23	40	93		0.7	

Former Texaco Service Station (Site #211283)

F 						Oakland, (California						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В	T	E	X	8021♦	8260	ETHANOL
DATE	(fi.)	(ft.)	(msl)	(fi.)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
MW-10 (cont)													
09/22/0310	81.83	17.60	64.23	0.00	180	480	48	3	7	17	E .	0.8	<50
12/22/0310	81.83	17.31	64.52	0.00	120	230	7	<0.5	<0.5		-	0.9	<50
03/22/0410	81.83	15.58	66.25	0.00	230	1,500	72	26	30	82	-	0.7	<50
06/21/0410	81.83	17.12	64.71	0.00	220	1,000	120	29	47	73	-	2	<50
09/20/0410	81.83	18,12	63.71	0.00	230	470	36	5	6	20		2	<50
12/20/0410	81.83	17.01	64.82	0.00	1709	480	13	2	1	7	-	2	<50
03/28/0510	81.83	14.64	67.19	0.00	4509	1,900	64	46	55	140	-	1	<50
06/27/0510	81.83	15.99	65.84	0.00	40015	1,700	140	61	33	180	-	3	<50
09/19/0510	81.83	17.35	64.48	0.00	170	1,200	98	35	58	110	-	5	<50
12/19/0510	81.83	17.12	64.71	0.00	16014	1,000	61	23	200	47	**	5	<50
03/27/0610	81.83	13.35	68.48	0.00	180	670	6	4	8	11	-	5	<50
06/26/06 ¹⁰	81.83	15.10	66.73	0.00	580	4,700	220	110	150	390	122	0.8	<50
09/25/0610	81.83	17.10	64.73	0.00	480	4,400	290	180	200	350	-	4	<50
12/18/0610	81.83	16.75	65.08	0.00	2,900	2,500	270	97	97	170	1.4	1	<50
03/19/0710	81.83	15.91	65.92	0.00	650	2,000	150	43	52	88	-	1	<50
06/25/0710	81.83	24.41	57.42	0.00	7,60019	<5019	<0.5	<0.5	< 0.5	< 0.5	-	4	<50
09/24/0710	81.83	25,96	55.87	0.00	8,400	88	<0.5	<0.5	<0.5	<0.5	140	2	<50
12/18/07	81.83	INACCESS	IBLE - WEL	L UNDER	WATER	14	- 4	-	-	-	**	-	-
03/11/0810	81.83	24.56	57.27	0.00	1,200	190	1	<0.5	< 0.5	<0.5	4	2	<50
06/11/0810	81.83	20.97	60.86	0.00	2,500	190	2	<0.5	<0.5	<0.5	14.	2	<50
09/22/08 ¹⁰	81.83	19.27	62,56	0.00		500	2	<0.5	<0.5	< 0.5	_	0.7	<50
11/06/0810	81.83	18.92	62.91	0.00	550 ²¹	-	-	-	-	(44)	4.	-	-
12/22/0810	81.83	18.38	63.45	0.00	750	530	1	< 0.5	<0.5	<0.5	-	0.8	<50
03/23/09	81.83	INACCESS	IBLE		-	-			-	2	-	200	2
06/22/0910	81.83	17.45	64.38	0.00	1,100	970	26	14	46	79	-	0.6	<50
12/02/0910	81.83	20.12	61.71	0.00	86	170	1	<0.5	<0,5	0.9	-	0.9	<50
06/26/10 ¹⁰	81.83	20.14	61.69	0.00	93	160	<0.5	<0.5	<0.5	<0.5	2	2	<50
										2,040		19	
MT11/ 44													
MW-11		25.61											
08/08/00		25.61	-	7	**	••		••			-	2	**
08/16/00	••	25.50	-	-	56.80	<50.0	<0.500	<0.500	<0.500	< 0.500	-		-
09/06/00		25.90		-	 5	<50.0	<0.500	< 0.500	< 0.500	< 0.500	-	-	

Former Texaco Service Station (Site #211283)

3810 Broadway

CLUST THE CONTRACTOR				·		Oakland, C	California						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В	T	E	X	8021♦	8260	ETHANOL
DATE	(ft.)	(fl.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11 (cont)												-	
11/29/00	90.63	25.80	64.83		63.8	<50.0	< 0.500	<0.500	<0.500	<0.500		••	
03/06/01	90.63	23.32	67.31		<50.0	<50.0	<0.500	<0.500	<0.500	<0.500			
06/19/01 ⁶	90.63	25.57	65.06		<50	<50	<0.50	<0.50	<0.50	< 0.50		<0.50	
09/05/01 ⁶	90.63	26.42	64.21		<50	<50	<0.50	<0.50	<0.50	0.68	••	<5.0	
12/20/01 ⁶	90.63	24.27	66.36		<50	<50	<0.50	< 0.50	<0.50	<0.50	••	<5.0	
06/25/02	8	25.51	8	0.00	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5		
09/18/02	8	26.31	8	0.00	80	<50	< 0.50	<0.50	<0.50	<1.5	<2.5	•-	••
12/19/02	8	25.08	8	0.00	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5	••	••
03/20/03	8	24.87	8	0.00	<50	<50	< 0.50	0.51	<0.50	<1.5	<2.5		••
06/23/0310	8	25.21	8	0.00	140	<50	<0.5	<0.5	<0.5	<0.5		<0.5	••
09/22/0310	8	26.26	8	0.00	52	<50	<0.5	<0.5	<0.5	<0.5		1	<50
12/22/03 10	8	25.97	8	0.00	69	<50	<0.5	<0.5	<0.5	<0.5	••	2	<50
03/22/0410	8	24.13	8	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
06/21/04 ¹⁰	8	25.74	8	0.00	79	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
09/20/0410	8	26.83	8	0.00	140	<50	<0.5	<0.5	<0.5	<0.5	••	4	<50
12/20/0410	8	25.67	8	0.00	54 ⁹	<50	<0.5	<0.5	<0.5	<0.5	••	3	<50
03/28/0510	8	23.03	8	0.00	58 ⁹	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/27/0510	8	24.61	8	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
09/19/05 ¹⁰	8	25.98	8	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	••	0.6	<50
12/19/05 ¹⁰	8	25.93	8	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		2	<50
03/27/0610	8	21.81	8	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/26/0610	8	24.00	8	0.00	64	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
09/25/0610	8	25.75	8	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
12/18/06 ¹⁰	8	25.55	8	0.00	140	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
03/19/0710	8	24.58	8	0.00	63	<50	<0.5	<0.5	<0.5	<0.5		<0.5	<50
06/25/07 ¹⁰	8	32.81	8	0.00	130	<50	< 0.5	<0.5	<0.5	<0.5		1	<50
09/24/0710	8	34.24	8	0.00	110	<50	<0.5	<0.5	<0.5	<0.5		2	<50
12/18/0710	8	33.52	8	0.00	90	<50	<0.5	<0.5	<0.5	<0.5	••	2	<50
03/11/08 ¹⁰	8	32.55	8	0.00	52	<50	<0.5	< 0.5	<0.5	<0.5		<0.5	<50
06/11/08 ¹⁰	8	29.77	8	0.00	96	<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
09/22/0810	8	27.91	8	0.00		<50	<0.5	<0.5	<0.5	<0.5	••	<0.5	<50
11/06/08 ¹⁰	8	27.65	8	0.00	<50 ²¹		••						
12/22/0810	8	27.03	8	0.00	61	<50	<0.5	<0.5	<0.5	<0.5		0.6	<50
									3.0	V		0.0	-20

Table 1
Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station (Site #211283)

3810 Broadway

MW-11 (cost) MW-11 (cost) MW-1	Paris and the second second						Oakland, C	California						
DATE (fb.) (fb.) (fb.) (fb.) (fb.) (gb.) (THE REPORT OF THE PERSON NAMED IN						A CONTRACTOR OF THE STATE OF TH	MTBE by	
MW-11 (cost) 03/21/09 ¹⁶		Office of the second second		0-0000000000000000000000000000000000000		040000000000000	V->0000000000000000	ACRES CONTRACTOR CONTRACTOR		10000-01-4-1-5-11-11-1		8021♦	8260	ETHANOL
03/23/09 ¹⁰	DATE	(IL)	(fL)	(ptsl)	(fL)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
0.6722/09 ¹⁰	MW-11 (cont)													
120209 06	03/23/0910		25.03	*	0.00	<50	<50	< 0.5	< 0.5	< 0.5	<0.5		<0.5	<50
12/02/09 0	06/22/0910	_*	25.84		0.00	<50	<50							
MW-12	12/02/0910	_*	28.54	-23	0.00	<50	<50							
106/25/02 ² 84.19 18.65 65.54 0.00 410 1,000 340 8.2 16 8.3 11 09/18/02 84.19 19.67 64.52 0.00 230 130 52 <0.50 <0.50 <1.5 9.8 12/12/90/2 84.19 18.67 65.52 0.00 450 <50 11 <0.50 <0.50 <1.5 <2.5 303/20/03 84.19 17.97 66.22 0.00 300 280 120 1.9 11 <1.5 2.6 14	06/26/10 ¹⁰	4	28.58	-2	0.00	<50	<50	<0.5	<0.5	<0.5				
106/25/02 ² 84.19 18.65 65.54 0.00 410 1,000 340 8.2 16 8.3 11 09/18/02 84.19 19.67 64.52 0.00 230 130 52 <0.50 <0.50 <1.5 9.8 12/12/90/2 84.19 18.67 65.52 0.00 450 <50 11 <0.50 <0.50 <1.5 <2.5 303/20/03 84.19 17.97 66.22 0.00 300 280 120 1.9 11 <1.5 2.6 14	MW-12													
09/18/02 84.19 19.67 64.52 0.00 230 130 52 0.50 0.50 0.50 0.15 9.8		84.19	18.65	65.54	0.00	410	1.000	340	9.2	16	0.2	1.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/18/02						•							
03/20/03 84.19 17.97 66.22 0.00 300 280 120 1.9 11 <1.5 2.6 — — 06/23/03 ¹⁰ 84.19 18.27 65.92 0.00 400 400 130 4 1 0.7 — 14 — 05.06/23/03 ¹⁰ 84.19 19.52 64.67 0.00 270 <50 9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	12/19/02													
06/23/03 ¹⁰ 84.19 18.27 65.92 0.00 400 400 130 4 1 0.7 - 14 - 1992/203 ¹⁰ 84.19 19.52 64.67 0.00 270 <50 9 <0.5 <0.5 <0.5 <0.5 - 9 <50 12/22/03 ¹⁰ 84.19 19.75 64.44 0.00 130 720 130 29 10 46 - 2 <50 05/22/04 ¹⁰ 84.19 17.06 67.13 0.00 240 <50 3 <0.5 <0.5 1 - 0.5 <50 05/22/04 ¹⁰ 84.19 18.82 65.37 0.00 350 140 43 <0.5 <0.5 <0.5 1 - 0.5 <50 05/22/04 ¹⁰ 84.19 19.99 64.20 0.00 340 <50 <0.5 <0.5 <0.5 <0.5 <0.5 - 8 05/22/04 ¹⁰ 84.19 19.99 64.20 0.00 340 <50 <0.5 <0.5 <0.5 <0.5 <0.5 - 2 05/22/04 ¹⁰ 84.19 19.94 64.20 0.00 160° 1,300 400 28 31 31 31 - 1 <50 05/22/05 ¹⁰ 84.19 17.53 66.66 0.00 170 ¹³ <50 <0.5 <0.5 <0.5 <0.5 <0.5 - 1 <0.5 05/22/05 ¹⁰ 84.19 19.94 65.15 0.00 190 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 - 1 <0.5 05/22/06 ¹⁰ 84.19 19.94 65.15 0.00 190 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	03/20/03													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/23/03 ¹⁰													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/20/04 ¹⁰													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		84.19	16.42										_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/27/05 ¹⁰	84.19	17.53											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/19/05 ¹⁰	84.19	19.04	65.15	0.00									
$03/27/06^{10}$ 84.19 15.45 68.74 0.00 140 130 33 0.7 1 4 0.8 <50 06/26/06^{10} 84.19 16.70 67.49 0.00 220 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	12/19/05 ¹⁰	84.19	19.41											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/27/06 ¹⁰	84.19	15.45	68.74	0.00									
$09/25/06^{10}$ 84.19 18.81 65.38 0.00 200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	06/26/06 ¹⁰	84.19	16.70	67.49	0.00									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/25/06 ¹⁰	84.19	18.81	65.38	0.00									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/18/06 ¹⁰	84.19	18.94	65.25	0.00	410	240							
$06/25/07^{10}$ 84.19 25.80 58.39 0.00 1,600 ¹⁹ 5,500 ¹⁹ 1,000 ¹⁹ 190 ¹⁹ 170 ¹⁹ 320 ¹⁹ = 2 <100 $09/24/07^{10}$ 84.19 27.88 56.31 0.00 2,300 <50 0.7 <0.5 <0.5 <0.5 <0.5 = 1 <50 $12/18/07^{10}$ 84.19 27.06 57.13 0.00 550 230 17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	03/19/07 ¹⁰	84.19	17.83	66.36	0.00	200								
$09/24/07^{10}$ 84.19 27.88 56.31 0.00 2,300 <50 0.7 <0.5 <0.5 <0.5 < 0.5 = 1 <50 $12/18/07^{10}$ 84.19 27.06 57.13 0.00 550 230 17 <0.5 <0.5 <0.5 = <0.5 <50 $03/11/08^{10}$ 84.19 25.60 58.59 0.00 1,100 7,000 960 330 410 860 = <1 <100 $03/11/08^{10}$ 84.19 23.04 (1.15 0.00 1.700 7.000 960 330 410 860 = <1 <100	06/25/07 ¹⁰	84.19	25.80	58.39	0.00	1,60019								
$12/18/07^{10}$ 84.19 27.06 57.13 0.00 550 230 17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	09/24/07 ¹⁰	84.19	27.88	56.31	0.00	•								
$03/11/08^{10}$ 84.19 25.60 58.59 0.00 1,100 7,000 960 330 410 860 - <1 <100	12/18/07 ¹⁰	84.19	27.06	57.13	0.00									
2410010 9410 22.04 (115 0.00 1.00	03/11/08 ¹⁰	84.19	25.60	58.59	0.00	1,100	7,000							
	06/11/08 ¹⁰	84.19	23.04	61.15	0.00	1,700		2,400		210	270		<1	<130

Table 1 Groundwater Monitoring Data and Analytical Results Former Texaco Service Station (Site #211283)

						Oakland, C	California						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В		E	X	8021♦	8260	ETHANOL
DATE	(ft.)	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(pg/L)	(µg/L)	(jug/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)
MW-12 (cont)													
09/22/0810	84.19	21.48	62,71	0.00	-	13,000	1,800	93	480	1,200	-	16	<100
11/06/0810	84.19	21.20	62.99	0.00	1,60021	-	-	**	-	14	(in)	-	-100
12/22/0810	84.19	20.90	63.29	0.00	1,800	7,700	1,400	220	310	560	-	7	<100
03/23/0910	84.19	18.02	66.17	0.00	3,400	4,900	620	170	170	320		3	<50
06/22/0910	84.19	18.83	65.36	0,00	500	1,100	100	19	35	43	44	1	<50
12/02/0910	84.19	22.61	61.58	0.00	110	<50	<0.5	< 0.5	<0.5	<0.5	-	<0.5	<50
06/26/10 ¹⁰	84.19	21.83	62.36	0.00	1,200	7,600	580	47	36	1,400	-	<1	<100
MW-2													
06/28/96	85.83	22.10	63.73	1.35								-	
10/10/96	85.83	22.36	63.47		1,800	99,000	4,100	9,400	2,300	9,900	390	<251	**
11/07/96	85.83	22.39	63.45**	0.01									3
12/18/97	85.83	20.19	65.64		4,700	24,000	600	1,800	750	2,400	<2,000	_	
04/06/98	85.83	18.00	67.83	44	9.5	20,100	252	448	430	1,410	<200	-	•
06/18/98	85.83	19.63	66.20	-	5,200	20,000	240	370	270	790	<50	2	-
08/31/98	85.83	21.01	64.82	6-7	19,000	72,000	270	990	630	1,700	<125		14-
12/21/98	85.83	21.31	64.52	-	13,000	290	8.7	18	9.7	38	10	29	-
03/24/99	85.83	19.18	66.65	144	5,590	80,400	651	1,860	1,120	3,730	<40.0	<100	
06/25/99	85.83	20.78	65.05	44	12,100	34,700	504	1,300	716	2,160	<40.0		- 3
09/24/99	85.83	21.82	64.01		108	6,510	1,030	350	183	680	<50.0		-
12/29/99	85.83	22.17	63.90**	0.30				••	••			4	-
01/07/00	85.83	22.84	63.30**	0.39			4.4	4	-			-	112
03/21/00	3	18.19	••		41,100	54,100	1,260	3,320	2,180	8,200	<1,250	144	-
DESTROYED								42.0	-40.00	-,	1,=01		
MW-3													
06/28/96	83.18	19.04	64.14	-	••	-				**		-	10.74
10/10/96	83.18	19.51	63.67	-	1,200	110,000	6,600	16,000	2,200	12,000	<250	2	**
11/07/96	83.18	19.40	63.78	-								194	1.00
12/18/97	83.18	18.79	64.39		6,100,000	180,000	1,500	16,000	4,600	23,000	<3,000	-	-
04/06/98	83.18	16.58	66.64	0.05				-		••		-	-4:
06/18/98	83.18			$>2.0^{2}$		74	-	4	100	-		***	

Former Texaco Service Station (Site #211283)

3810 Broadway

						Oakland, C	alifornia						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT :	DRO	GRO	B	T	E	X	8021.♦	8260	ETHANOL
DATE	(ft.)	(fL)	(msl)	(fl.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)
MW-3 (cont)													
08/31/98	83.18	19.56	63.68	0.07									
12/21/98	83.18	20.23	65.13	2.73	••								
03/24/99	83.18	16.76	67.11	0.86									
06/25/99	83.18	18.47	64.95	0.30									
09/24/99	83.18	19.43	63.81	0.08					••	••			
12/29/99	83.18	19.25	63.96	0.04									
01/07/00	83.18	19.87	63.37	0.07			••		••				
DESTROYED													
MW-5													
10/10/96	85.41	21.93	63.48		<50	1,800	34	4.7	11	44	21	5.0 ¹	
11/07/96	85.41	21.96	63.45	••				••				J.V	
12/18/97	85.41	19.81	65.60		<50	1,200	15	<1.0	15	<1.0	72	••	••
04/06/98	85.41	17.43	67.98		<50	1,000	126	0.5	0.8	1.5	<30		
06/18/98	85.41	19.15	66.26		100	110	6.9	<0.5	<0.5	<0.5	<0.5		
08/31/98	85.41	20.46	64.95		120	480	5.3	<2.5	<2.5	<2.5	<12	••	••
12/21/98	85.41	20.91	64.50		100	270	16	2.9	1.3	<1.0	34	<2.0	
03/24/99	85.41	18.74	66.67		93.3	143	2.80	<0.500	0.749	<0.500	<2.00	<5.00	••
06/25/99	85.41	20.31	65.10		125	847	6.61	< 0.500	0.611	<0.500	2.69	<2.00	
09/24/99	85.41	21.36	64.05		94.0	563	6.00	<2.50	<2.50	<2.50	25.1		••
12/29/99	85.41	21.41	64.00		173	896	16.6	1.48	8.92	2.67	61.1	< 0.500	
03/21/00	85.41	18.13	67.28		158	858	53.7	<1.00	21.4	8.00	11.6	-0.500	
07/26/00	85.41	OBSTRUCT	TION IN WEL	L	••			••					••
09/06/00	85.41	20.33	65.08		231	670	153	<2.50	7.87	<2.50			••
11/29/00	85.13	OBSTRUCT	TION IN WEL	L									••
03/06/01	85.13	OBSTRUCT	TION IN WEL	L				••			••		
06/19/01	85.13	OBSTRUCT	TION IN WEL	L							••		
09/05/01	85.13	OBSTRUCT	TION IN WEL	L	••								
12/02/01	85.13	OBSTRUCT	TION IN WEL	L	••								
DESTROYED													

Former Texaco Service Station (Site #211283)

3810 Broadway

*****************						Oakland, C	alifornia						
					TPH-	TPH-					MTBE by	MTBE by	
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В	T	E	X	8621♦	8260	ETHANOL
DATE	(fl.)	(fl.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	()ug/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8													
10/10/96	84.01	20.82	63.19	14	110	17,000	1,300	1,200	64	1,300	110	<5.0	-
11/07/96	84.01	20.44	63.57		-	-	-	-	-	-	4	-5.0	-
12/18/97	84.01	19.36	64.65	-	630	15,000	3,600	1,800	410	930	<600	-	-
04/06/98	84.01	16.19	67.82		<50	32,300	8,230	5,900	718	2,120	<1,000		
06/18/98	84.01	17.75	66.26	-	<50	74,000	5,400	4,500	700	2,200	2,400	-	_
08/31/98	84.01	INACCESS	SIBLE	-	144	-	4	-	+	-	-	2	-
12/21/98	84.01	19.48	64.53	_	1,200	9,600	2,600	410	220	300	700	<2.0	-
03/24/99	84.01	17.44	66.57	-	2,890	86,100	9,890	11,700	1,650	7,130	<200	<250	-
06/25/99	84.01	20.69	63.40**	0.10	-	-		1.	-	-	**	-	
07/01/99	84.01	20.45	65.07**	1.89	-	(4)	-	-	-	42	-		4
09/24/99	84.01	20.98	64.25**	1.53	- 4	40	2		-	-		-	
12/29/99	84.01	20.25	63.97**	0.26	-	-7				-	-	_	-
01/07/00	84.01	21.00	63.33**	0.40	122	+	-	**	-	-	**	-	
DESTROYED								1.02					-
TRIP BLANK													
QA													
06/25/02		÷	-	-		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5		
09/18/02	••	44	12	0.00	-	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	**	1.4
12/19/02	••	-	-		-	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	**	-
03/20/03		-	-	1441	-	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5		
06/23/03 ¹⁰	••	**	-	1-4	-	<50	<0.5	<0.5	< 0.5	<0.5		<0.5	
09/22/03 ¹⁰		-	-	70	-	<50	<0.5	<0.5	< 0.5	<0.5	2.	<0.5	
12/22/03 ¹⁰		44	14	4	1,21	<50	<0.5	< 0.5	<0.5	<0.5	_	<0.5	••
03/22/04 ¹⁰					3-6	<50	< 0.5	<0.5	<0.5	<0.5	-	<0.5	
06/21/04 ¹⁰		.42		-	-	<50	<0.5	<0.5	<0.5	<0.5	4	<0.5	
09/20/04 ¹⁰		**	-		-	<50	<0.5	<0.5	<0.5	<0.5	_	<0.5	
12/20/04 ¹⁰		-	-	175	77	<50	<0.5	<0.5	<0.5	<0.5		<0.5	
03/28/05 ¹⁰		-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	2	<0.5	
06/27/05 ¹⁰		-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	
09/19/05 ¹⁰		-	1,4	4:	-	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	
12/19/05 ¹⁰		-			4	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	

Former Texaco Service Station (Site #211283) 3810 Broadway

A			
Oaklan	a. c	alite	rnia

					TPH-	TPH-					MTBE by	MTBE by				
WELL ID/	TOC*	DTW	GWE	SPHT	DRO	GRO	В	T	E	X	8021	8260	ETHANOL			
DATE	(fu)	(fL)	(ft.)	(fL)	(fL)	(msl)	(ft.)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(jug/L)	(μg/L)	(µg/L)	(µg/L)	(pg/L)
QA (cont)										-						
03/27/0610	(-)	-	**	-	194	<50	<0.5	< 0.5	<0.5	<0.5		<0.5	-			
06/26/06 ¹⁰	-		-	-	75	<50	< 0.5	<0.5	< 0.5	< 0.5	4	<0.5	-			
09/25/0610	-	1.0	44	·		<50	< 0.5	< 0.5	<0.5	<0.5	-	<0.5	1.2			
12/18/0610	=	-	-	A-5		<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	**			
03/19/0710	-	-	-	+	-	<50	< 0.5	< 0.5	< 0.5	<0.5		<0.5	-			
06/25/0710	*	-	-	-	190	<50	<0.5	<0.5	< 0.5	<0.5		<0.5				
09/24/0710	100	-	-	-	**	<50	< 0.5	< 0.5	<0.5	<0.5		<0.5				
12/18/0710	-	-	-	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	4	<0.5	1-2			
03/11/0810	+	(m-	100	-	i ee	<50	< 0.5	< 0.5	<0.5	<0.5	-	<0.5	-			
06/11/08 ²⁰	(22)		-	-	-	4	-	-	-	144	2	2	44			
09/22/0810	-	97	(-	**	-	<50	< 0.5	< 0.5	<0.5	<0.5	-	<0.5	7-4			
12/22/0810	-	-	-	**	**	<50	< 0.5	< 0.5	<0.5	<0.5	-	<0.5	-			
03/23/0910	100	-		4		<50	< 0.5	<0.5	<0.5	<0.5	-	<0.5				
06/22/0910	-	1	**	-	-	<50	< 0.5	<0.5	<0.5	<0.5	-	<0.5	-			
12/02/0910	-	44	-	-		<50	<0.5	<0.5	<0.5	< 0.5		<0.5				
06/26/1010	-	-	**	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	_			

Table 1

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station (Site #211283) 3810 Broadway Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 25, 2002, were compiled from reports prepared by Toxichem Management Systems, Inc.

TOC = Top of Casing	TPH = Total Petroleum Hydrocarbons	MTBE = Methyl Tertiary Butyl Ether
(ft.) = Feet	DRO = Diesel Range Organics	(ppb) = Parts per billion
DTW = Depth to Water	GRO = Gasoline Range Organics	$(\mu g/L)$ = Micrograms per liter
GWE = Groundwater Elevation	B = Benzene	= Not Measured/Not Analyzed
(msl) = Mean Sea Level	T = Toluene	QA = Quality Assurance/Trip Blank
SPH = Separate-phase hydrocarbons	E = Ethylbenzene	NP= No Purge
SPHT = Separate-phase hydrocarbon thickness	X = Xvlenes	

- TOC elevations were surveyed June 24, 2002, by Morrow Surveying, and are based on City of Oakland Benchmark.
- GWE corrected for the presence of SPH; correction factor = [(TOC DTW)+(0.80 x SPHT)].
- Prior to June 25, 2002, MTBE was analyzed by EPA Method 8020.
- MTBE confirmed by EPA Method 8240.
- 2 Free product could not be accurately measured.
- 3 TOC altered.
- Analyzed outside EPA recommended hold time.
- 5 Sample containers broken during transport to laboratory.
- TPH-GRO and BTEX analyzed by EPA Method 8260.
- 7 Well development performed.
- 8 MW-11 was inaccessible during the re-surveying. TOC was not measured.
- Laboratory report indicates the observed sample pattern is not typical of diesel/#2 fuel oil.
- 10 BTEX analyzed by EPA Method 8260.
- 11 Ethanol was previously reported as <50 ppb.
- 12 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel.
- 13 Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range.
- Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range earlier than #2 fuel.
- 15 Laboratory report indicates the observed sample patterns are not typical of #2 fuel/diesel. They elute in the DRO range earlier and later than #2 fuel.
- 16 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel and contains individual peaks eluting in the DRO range.
- 17 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. The reported result is due to an individual peak (s) eluting in the DRO range. 18
 - No purge due to bent casing.
- 19 Laboratory confirmed analytical result.
- 20 Sample containers not received at laboratory.
- 21 Laboratory report indicates the DRO analysis was performed on a resample due to a laboratory error during the extraction / analysis of the first submission.
- No purge due to wells location in active construction zone.

Table 2

Field Measurements

Former Texaco Service Station (Site #211283)

WELL ID	DATE	D.O. Pre Purging	ORP Pre Purging	D.O.	ORP	ĐO	ORP
		(mg/L)	rre rurging (mV)	Mid-Purging (mg/L)	Mid-Purging (mV)	Post Purging (mg/L)	Post Purging
MW-6	09/24/99	1.00	-	_	-	1,20	_
	12/29/99	1.30		4		1.50	
	03/21/00	3.00	_	_		4.30	1.5
	11/29/00	2.00	-	12.		1.80	
	03/06/01	3.70	-			4.00	-
	06/19/01	3.00	-	2.	_	3.40	**
	09/05/01	10.40		24	124	10.80	-
	12/20/01	1.30	-	-	-	1.50	-
	06/25/02	1.00	-	0.60	-	0.40	
	09/18/02	0.60	58	0.90	69	1.00	72
	12/19/02	1.20	71	-	4	1.10	79
	03/20/03	0.40	-93	644	-	1.60	-87
	06/23/03	0.90	64		-	1.20	78
	09/22/03	1.10	70	-		1.30	76
	12/22/03	0.90	68	-	_	1.00	70
	03/22/04	1.00	74	2	_	1.20	82
	06/21/04	1.10	72	-		1.10	86
	09/20/04	1.20	68		_	1,30	76
	12/20/04	1.00	71	-	_	1.10	80
	03/28/05	1.10	75	L		1.10	86
	06/27/05	1,10	78			1.20	90
	09/19/05	2.90	_1	-	<u> </u>	1.20	1
	12/19/05	1.00	69	- 2		1.00	74
	03/27/06	1.60	89	-	15	1.20	75
	06/26/06	1.40	105		2	1.20	82
	09/25/06	1.20	103	-	2	1.30	91
	12/18/06	1.20	87	12		_1	_2
	03/19/07	1,9	-57		_	1.6	-63
	06/25/07	DRY	-		2	2.0	-03
	09/24/07	DRY	,2	2	4	-	_
	12/18/07	DRY	100	-		-	-
	03/11/08	DRY	-				1
	06/11/08	0.9	53		2	1.1	67
	09/22/08	1.3	-27	_	0.00	1.6	-17
	12/22/08	1.2	-65	_	-	0.9	-54
	03/23/09	0.4	-81	-		0.9	-150
	06/22/09	.70	-95		(2)	.60	-84
	12/02/09	0.5	-45			0.8	-39
	06/26/10	1.1	-67	W		1.3	-94
	00/20/10				-	1.3	-24
∕IW-7	09/24/99	1.40	4	-	4.5	1.60	4
	12/29/99	2.30	**	1.00	11 (40	1.80	-
	03/21/00	5.80	-	-	-	9.00	44
	07/26/00	6.00	+		460	6.60	
	09/06/00	4.30		24	100	5.00	_
	11/29/00	4.00	-	**	-	3.70	-
	03/06/01	4.70	-	-	-	5.10	
211283.xls/#3	86956		19				As of 06/26/10

Table 2
Field Measurements

Former Texaco Service Station (Site #211283) 3810 Broadway

Oakland, California

WELL ID	DATE	Đ.O.	ORP	D.O.	ORP	ЪO	ORP
		Pre Purging	Pre Purging	Mid-Purging	Mid-Purging	Post Purging	Post Purgin
		(mg/L)	(mV)	(mg/L)	(mV)	(mg/L)	(mV)
MW-7	06/19/01	3.80	-	-	-	4.20	Sec. 1
(cont)	09/05/01	6.70			-	7.10	-
	12/20/01	4.90	-	4-	-	5.00	-
	06/25/02	1,00	9	1.40	***	1.30	-
	09/18/02	1.80	112	1.90	98	2.10	102
	12/19/02	1.30	121		4	1.60	110
	03/20/03	2.60	129	4	-	2.70	152
	06/23/03	1.70	122	(2)	-	1.90	140
	09/22/03	1.40	92	· +	-	1.70	124
	12/22/03	1.50	98	4		1.60	114
	03/22/04	1.30	90		144	1.50	96
	06/21/04	1.50	106	+	-	1.70	126
	09/20/04	1.40	115	+	-	0.96	110
	12/20/04	1.30	88	4	-	1.40	95
	03/28/05	1.40	92		-	1.40	88
	06/27/05	1.50	106	***	-	1.40	94
	09/19/05	3.70	17	-	4	3.10	29
	12/19/05	1.40	85	-		1.30	90
	03/27/06	1.80	126	-	-	2.10	132
	06/26/06	1.60	119		-	1.80	121
	09/25/06	1.70	125			1.60	124
	12/18/06	1.40	130	-	_	_2	_2
	03/19/07	2.8	-10	-	-	2.3	-13
	06/25/07	1.8	119	4	2	1.5	98
	09/24/07	1.7	1.3	-		94	76
	12/18/07	2.1	68	*	-	1.8	73
	03/11/08	1.8	93	-	-	1.7	104
	06/11/08	1.5	-32	(m)		1.3	-46
	09/22/08	1.2	27	7	100	1.5	39
	12/22/08	1.8	85	4		1.7	80
	03/23/09	1.4	185	_		2	_
	06/22/09	1.9	120	-	12	1.7	112
	12/02/09	2.0	61	-		1.8	65
	06/26/10	1.6	89	-	2	1.8	102
		7.6	250				
IW-9	09/24/99	1.00	-	343	4	1.20	4
	12/29/99	3.30	-	-	-	2.70	**
	03/21/00	3.20	-		142	7.30	-
	07/26/00	3.60		**	-	1.80	140
	09/06/00	3.80		-	4	4.00	+
	11/29/00	2.00		4	240	2.00	-
	03/06/01	4.00	-	*	1.4	4.90	-
	06/19/01	3.40	-	÷		4.00	-
	09/05/01	2.70	-	**	340	2.00	44
	12/20/01	2.20		••	-	2.20	1,40
	06/25/02	0.90		1.00	4	1.20	
	00,25,02						

Table 2 Field Measurements

Former Texaco Service Station (Site #211283)

	Oakland, California												
WELL ID	DATE	D.O. Pre Purging (mg/L)	ORP Pre Purging (mV)	D.O. Mid-Purging (mg/L)	ORP Mid-Purging (mV)	DO Post Purging (mg/L)	ORP Post Purging (mV)						
MW-9	12/19/02	1.80	126	_	-	1.10	98						
(cont)	03/20/03	0.10	206		***	1.10	193						
	06/23/03	1,20	146	-	-	1.00	138						
	09/22/03	1.10	126	OH. 1		1.00	130						
	12/22/03	1.30	134		44	1.20	142						
	03/22/04	3.70	120	4	144	1.40	126						
	06/21/04	3.50	108		144	1.20	116						
	09/20/04	2.70	54	-		1.10	62						
	12/20/04	2.50	72	. 4.	-	1.40	80						
	03/28/05	2.80	92		(**)	1.70	68						
	06/27/05	2.60	82	44	122	1,50	62						
	09/19/05	1.00	-38	-	-	0.60	-30						
	12/19/05	2.10	76	<u> </u>	20	2.20	68						
	03/27/06	2.20	136	-	-	1.90	125						
	06/26/06	2.40	122	9	e-	2.00	115						
	09/25/06	2.10	116	-		1.90	120						
	12/18/06	1.80	131	_	-	2	_2						
	03/19/07	1.7	-03		44	2.1	-11						
	06/25/07	2,2	11	-	-	2.0	73						
	09/24/07	2.4	2.2	4	_	93	75						
	12/18/07	INACCESSIBLE - V		ATER		-							
	03/11/08	2.2	76	-	-	1.9	63						
	06/11/08	1.9	103			1.9	117						
	09/22/08	14	32	-	-	21	51						
	12/22/08	2.3	115		42	2.1	109						
	03/23/09	INACCESSIBLE	-	-	-	-	-						
	06/22/09	2.1	98	4	2.0	1.9	91						
	12/02/09	1.8	76	-	-	2.0	69						
	06/26/10	1.3	63	-	*	1.7	107						
∕W-10	09/19/05	1.40	-97	-		0.80	-98						
	03/23/09	INACCESSIBLE	÷	-) * >	-	-2-						
fW-2	09/24/99	1.00	-		40	0.80	2.						
	12/29/99	2.60	-	_	1000		-						
	03/21/00	3.30	5.70	_	-	3.60	-						
	DESTROYED												

Table 2

Field Measurements

Former Texaco Service Station (Site #211283) 3810 Broadway Oakland, California

EXPLANATIONS:

Dissolved oxygen concentrations prior to June 25, 2002, were compiled from reports prepared by Toxichem Management Systems, Inc.

D.O. = Dissolved Oxygen

mg/L = milligrams per liter

ORP = Oxidation Reduction Potential

(mV) = Millivolts

-- = Not Measured

- ¹ ORP reading under range.
- ² Field technician inadvertently missed readings.