RECEIVED

2:10 pm, May 18, 2010

Alameda County Environmental Health

Consulting Engineers and Scientists

1870 Ogden Drive Burlingame, CA 94010 (650) 292-9100 Fax: (650) 552-9012

14 May 2010

To Potential Recipients of Electronic Files:

Erler & Kalinowski, Inc. ("EKI") has provided our CLIENT, Sybase, Inc., with paper copies of the *Site Investigation and Closure Request Report*, dated 14 May 2010, prepared by EKI. An electronic copy of this report, including the text, tables, figures, and appendices, is provided as an uploaded file to the Alameda County Environmental Health Department ("ACEH") ftp site (ftp://alcoftp1.acgov.org) in *.pdf (i.e., Adobe Acrobat) format.

These electronic files are being provided at the request of our CLIENT to fulfill requirements for electronic submittal of information as stated in Alameda County Environmental Cleanup Oversight Programs guidance and for the convenience of our CLIENT. The delivery of electronic media by EKI does not constitute the delivery of our professional work product to others or provide rights of reliance by third parties. Only the original paper prints provided to, and for the sole benefit of, our CLIENT constitute EKI's professional work product. Because the electronic media may be damaged during transfer or altered, the paper prints shall control where there are any differences between the paper prints and the electronic media. EKI makes no warranties, either express or implied, of the merchantability, applicability, compatibility with the recipients' computer equipment or software; of the fitness for any particular purpose for the documents and electronic media; or that the electronic media contain no defects or are virus free.

Under no circumstances shall delivery or access to these electronic files be deemed a sale by EKI. This document and recipient's access to, or receipt of, EKI's work product or electronic files shall not create or imply any contractual relationship between EKI and recipient.

Reuse of EKI's work products by others or modification and use by others of any documents or electronic media prepared by EKI shall be at that party's sole risk. In no event shall EKI be liable for direct or consequential damages as a result of recipient's use, reuse, or modification of these electronic files. No third party reliance is intended or provided by submittal of electronic files by EKI in response to governmental agency requirements.

Sincerely,

ERLER & KALINOWSKI, INC.

Michelle K. King, Ph.D.

Vice President

Site Investigation and Closure Request Report

6601/6603 Shellmound Street Emeryville, California

Prepared by:

Erler & Kalinowski, Inc.

1870 Ogden Drive Burlingame, California 94010

www.ekiconsult.com

14 May 2010

EKI 950074.05

Consulting engineers and scientists

Consulting Engineers and Scientists

1870 Ogden Drive Burlingame, CA 94010 (650) 292-9100 Fax (650) 552-9012

14 May 2010

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

Site Investigation and Closure Request Report

6601/6603 Shellmound Street (formerly Bay Street), Emeryville, California

(EKI 950074.05)

Dear Mr. Detterman:

On behalf of Sybase, Inc. ("Sybase"), Erler & Kalinowski ("EKI"), is pleased to submit the *Site Investigation and Closure Request Report* ("Report") for the property located at 6601/6603 Shellmound Street (formerly Bay Street), California. This Closure Request is being submitted in conclusion to the site investigation conducted in general accordance with the *Work Plan for Additional Site Characterization* dated 1 June 2009 and related documents ("Work Plan").

The Closure Request covers the following items that the Alameda County Environmental Health Department ("ACEH") requested to be covered by additional site characterization:

- (1) Separate phase and dissolved phase contaminant definition,
- (2) Preferential pathway study,
- (3) Source area definition (lateral and vertical extent in soil), and
- (4) Soil gas sampling.

The results of previous investigations at the Site and the additional site characterization presented in this Report indicate the following:

- The lateral extent of petroleum hydrocarbons and related constituents in groundwater have been characterized. Although a sheen is present in the vicinity and downgradient of the former tank area, the extent is limited as shown by the groundwater data at locations MW-5, MW-7, GGW-3 and GGW-4 on Figure 2 of the Report.
- The concentration of benzene in monitoring wells MW-5 and MW-7 have decreased significantly over time to below detection limits, as shown in Table 2. In addition, petroleum hydrocarbon and related constituent concentrations in grab groundwater samples collected in 2010 were significantly lower than those collected in 1996.

- No lateral or vertical conduits were identified during the investigation. Wells located in the vicinity of the Site have shallow screens for groundwater investigation or remediation purposes. Potential lateral conduits were confirmed to be above the groundwater table.
- Petroleum hydrocarbon impacts from the former USTs to soil at the Site are generally in the saturated zone. VOC and PAH concentrations in soil are generally below commercial/industrial ESLs. The Site is paved and there is no direct contact based on the current usage.
- Based on residual VOC concentrations in soil and groundwater, there is no significant vapor intrusion risk to building occupants at 1650 65th Street and 6601/6603 Shellmound Street.

Taken together, closure of the former USTS located at 6601 and 6603 Shellmound Street (formerly Bay Street), Emeryville, California is requested. We look forward to discussing the findings in the Report with you.

GE

Please do not hesitate to call if you have any questions.

Very truly yours,

ERLER & KALINOWSKI, INC.

Michelle K. King, Ph.D.

Vice President

Jeff R. Shaw, P.G. (#7759)

Project Geologist

Expires 31 July 2011

No. 7759

cc: Vince Herington, Sybase
Rob Hansen, Sybase
Brad McInroy, Sybase
Paul Mahoney, Sybase
Todd Maiden, Esq., Reed Smith LLP
Julie Treinen, Griffin Capital

SITE INVESTIGATION AND CLOSURE REQUEST REPORT

6601/6603 Shellmound Street, Emeryville, California

TABLE OF CONTENTS

 1.1 Limitations and Exceptions of Site Investigation	
1.2 Report Reliance	
2 SUMMARY OF BACKGROUND AND SITE HISTORY	
	2 3
	3
2.2 Post-Excavation Groundwater Monitoring	
2.3 1996 Soil and Groundwater Investigation	ل
2.4 1997 Closure Request	
2.5 ACEH 2008 Letter and EKI 2009 Work Plan	
3 FIELD ACTIVITIES	
3.1 Pre-Field Activities	6
3.2 Groundwater Investigation	6
3.3 Preferential Pathway Study	7
3.4 Soil Investigation	8
3.5 Vapor Intrusion Assessment	8
3.6 Investigation-Derived Wastes	9
4 EXTENT OF SEPARATE PHASE AND DISSOLVED PHASE	E HYDROCARBONS IN
GROUNDWATER	9
5 PREFERENTIAL PATHWAY STUDY	11
5.1 Utility Survey	11
5.2 Well Survey	
6 EXTENT OF PETROLEUM HYDROCARBONS IN SOIL	
7 VAPOR INTRUSION ASSESSMENT	
8 CONCLUSIONS AND RECOMMENDATIONS	
9 REFERENCES	17
C.1 PREPARATION	1
LIST OF TABLES	
Table 1 Summary of Groundwater Analytical Data from the Sp	oring 2010 Investigation
Table 2 Summary of Historical Analytical Results for Gro	oundwater Samples from
Monitoring Wells	
Table 3 Summary of Surrounding Wells within 500 Feet of the	
Table 4 Summary of Soil Analytical Data from the Spring 2010	0 Investigation

SITE INVESTIGATION AND CLOSURE REQUEST REPORT

6601/6603 Shellmound Street, Emeryville, California

TABLE OF CONTENTS

LIST OF FIGURES

Figure I	Site Location
Figure 2	Groundwater Sampling Results
Figure 3	Location of Utilities and Cross-Section
Figure 4	Subsurface Conceptual Site Model in the Vicinity of Former USTs, Cross-
	Section A-A'
Figure 4A	Legend, Abbreviations, References, and Notes (to Figure 4)
Figure 5	Soil Sampling Results

APPENDICES

Appendix A	Potentiometric Surface Map
Appendix B	Tables Containing Soil and Groundwater Data from 1996 Investigation
Appendix C	Field Methods and Procedures for Soil and Groundwater Sampling
Appendix D	Drilling Permit
Appendix E	Borehole Logs
Appendix F	Laboratory Data Sheets

1 INTRODUCTION

On behalf of Sybase, Inc. ("Sybase"), Erler & Kalinowski, Inc. ("EKI") is pleased to submit this *Site Investigation and Closure Request Report* ("Closure Request") associated with the underground storage tanks ("USTs") formerly located at 6601 and 6603 Shellmound Street (formerly Bay Street), Emeryville, California (the "Site") (Figure 1). Sybase sold the Site in 1998 and the Site is currently occupied by the Ex'pression College for Digital Arts. Historically, the Site was part of the former Emeryville municipal landfill.

This Closure Request summarizes the result of the additional Site characterization done in general accordance with (1) the *Work Plan for Additional Site Characterization* prepared by EKI on 1 June 2009 ("Work Plan"), (2) the 14 August 2009 approval letter from Alameda County Environmental Health department ("ACEH"), and (3) the 11 September 2009 letter from EKI in response to the approval letter.

The Work Plan was prepared as required by ACEH in a letter dated 29 December 2008 ("ACEH 2008 Letter"). The Work Plan was developed based upon EKI's review of available Site information as summarized below and discussions with ACEH staff by phone on 26 February 2009 and at a meeting on 16 April 2009.

The ACEH 2008 Letter requested the following:

- (1) separate phase and dissolved phase contaminant definition,
- (2) preferential pathway study,
- (3) source area definition (lateral and vertical extent in soil), and
- (4) soil gas sampling.

This Closure Request provides background information and a summary of the Site history, presents information collected during the additional Site characterization, and summarizes the investigation conducted on the four topics identified above. Based on the findings, EKI suggests that no further study or action is necessary and requests that the Site be considered for closure.

1.1 Limitations and Exceptions of Site Investigation

The conclusions and recommendations presented herein are our professional opinion and are not a warranty or guaranty as to the presence, absence, or extent of contamination at the Site or of releases from or near the Site. The facts presented herein are based on available information obtained by EKI and represent existing conditions at the Site at the time the information was collected.

1.2 Report Reliance

This report was prepared pursuant to EKI's Agreement with the Sybase, dated 4 February 2009 and subsequent work authorizations, dated 16 May 2009 and 15 March 2010, and as such, is for the sole use and reliance of the Sybase. Unless specifically authorized in writing in an agreement acceptable to EKI, the reliance on this report by any other entity or third party is not permitted or authorized. Reliance on the information contained in this report by any other entity or third party without written authorization by EKI does not make the third party a beneficiary to EKI's Agreement with Sybase. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at such third party's sole risk.

2 SUMMARY OF BACKGROUND AND SITE HISTORY

Three underground fuel storage tanks were reportedly installed at the Site in 1973.¹ The 6,000-gallon UST was used to store diesel (the easternmost UST) and the 7,500-gallon and 2,000-gallon USTs (central and western USTs, respectively) were used to store gasoline. The USTs were removed from the Site in 1989 (Figure 2) (Dubovsky and Petite, 1990).

Prior to removal of the tanks, all three tanks were inspected and no obvious holes, perforations, or corrosion were noted (Dubovsky and Petite, 1990). During excavation of the tanks, however, petroleum product reportedly flowed from the south wall into the excavation beside the tank. The product that accumulated in the excavation was removed by a hazardous waste hauler. In total, an estimated 2,000 gallons of petroleum product were removed from the excavations (Dubovsky and Petite, 1990).

The Dubovsky Report indicates that the diesel tank was removed in August 1989 and the two gasoline tanks were removed in October 1989, but some overexcavation may have occurred between August 1989 and February 1990 when the tank excavations were backfilled. The exact sequence of events and the extent of overexcavation are not fully described in the Dubovsky Report.

2.1 Excavation Confirmation Sampling

The presumed excavation extent based on the figure in the Dubovsky Report is shown on Figure 2. However, this excavation extent was not confirmed in the drilling performed as part of the Site investigation (see Section 6). Analytical results for soil and groundwater samples collected from the excavation sidewalls and excavation pit, respectively, indicated the presence of total extractable petroleum hydrocarbons quantified as diesel

¹A report prepared by William Dubovsky Environmental and Petite Engineering, dated July 1990 ("Dubovsky and Petite, 1990" or "Dubovsky Report") summarized the history and removal of the USTs and soil and groundwater sampling performed at that time.

("TEPH"), total purgeable petroleum hydrocarbons quantified as gasoline ("TPPH"), oil and grease, and benzene, toluene, ethylbenzene, and xylenes ("BTEX") in both soil and groundwater.

2.2 Post-Excavation Groundwater Monitoring

From 1989 through 1997, groundwater samples were collected from two monitoring wells (MW-5 and MW-7), located off-site and downgradient of the former tanks, and analyzed for TPPH and BTEX (Figure 2). These data were collected as part of investigations for the property at 1650 65th Street, located adjacent to the Site (PES, 1995). EKI collected samples from these wells in 1996 and 1997 on behalf of Sybase and analyzed these samples for TEPH, TPPH, BTEX, and methyl tertiary butyl ether ("MTBE") (EKI, 1997a).

Although MW-5 and MW-7 are located off-site, they are both less than 75 feet downgradient of the former USTs. Appendix A contains a figure depicting the groundwater potentiometric surface in the vicinity of the Site.

Historical groundwater data from MW-5 and MW-7 were statistically evaluated in a closure report for the Site (EKI, 1997a). Results of the Mann-Kendall test for TPPH, benzene, toluene, and xylenes concentrations in groundwater from the wells showed that no statistically significant upward trend was observed. Moreover, a regression analysis of benzene concentrations in groundwater from wells MW-5 and MW-7 showed a downward slope. Taken together, the groundwater data indicated that conditions were stable or improving downgradient of the former USTs (i.e., the plume is stable or shrinking) (EKI, 1997a).

2.3 1996 Soil and Groundwater Investigation

In 1996, EKI installed six soil boreholes at the Site to assess the lateral extent of petroleum hydrocarbons and related constituents in soil and groundwater (EKI, 1996). Results of the groundwater sampling from that investigation are shown on Figure 2 and tables summarizing all soil and groundwater results from the 1996 investigation are provided in Appendix B. Key findings from the investigation were as follows, as updated by the current depiction of the potential tank excavation extent (EKI, 1996):

- Petroleum hydrocarbons and related constituents are present in soil at low concentrations (i.e., up to 360 milligrams per kilogram or mg/kg) in unsaturated zone soil in the vicinity of the former USTs (locations SB-3, SB-4, and SB-5). These results indicate that there are no significant sources of petroleum hydrocarbons remaining in shallow soil.
- The highest concentrations of TEPH and TPPH were detected in soil samples collected from boreholes SB-1 and SB-6, which are located approximately 75 feet

west and 50 feet east of the former USTs, respectively.² The laboratory chromatograms for soil samples collected from borings SB-1 and SB-6 indicate that the hydrocarbons detected at these locations are different from those detected in soil from boreholes SB-2 through SB-5. Therefore, the petroleum hydrocarbons detected in soil for boreholes SB-1 and SB-6 do not likely originate from the former USTs.

- Petroleum hydrocarbon concentrations in groundwater samples collected near the
 former USTs may indicate the presence of separate phase hydrocarbons ("SPH");
 however, downgradient concentrations of petroleum hydrocarbons are not indicative
 of SPH. SPH was observed in the groundwater samples from boreholes SB-5 and
 SB-6, located east of the USTs, but not from boreholes SB-3 and SB-4 which were
 located nearest to the former USTs.
- The origin of the petroleum hydrocarbons detected at locations SB-1, SB-5, and SB-6 is unclear, but may be related to the fact that the Site was once part of the City of Emeryville municipal waste landfill. Because the waste materials disposed in the landfill probably contained various types of petroleum hydrocarbons, these chemicals may be ubiquitous at the Site.
- MTBE was not detected in any of the soil samples. MTBE was detected in only three groundwater samples and all detections were below the drinking water Maximum Contaminant Level ("MCL") of 13 micrograms per liter ("ug/L").
- Polycyclic aromatic hydrocarbons ("PAHs") were not detected in soil samples collected adjacent to the former USTs (samples SB-3 and SB-4). Therefore, PAHs are not likely associated with the former USTs. PAHs were detected in the groundwater sample collected from location SB-6, but are likely associated with the SPH observed at that location. Due to their hydrophobic nature, PAHs are not likely to be mobile in groundwater.
- Of the BTEX compounds, only benzene was detected in groundwater samples at concentrations greater than MCLs.

2.4 1997 Closure Request

In 1997, EKI, on behalf of Sybase, submitted a closure report (EKI, 1997a and 1997b) based on the following findings:

• There are no significant sources of petroleum hydrocarbons related to the former USTs remaining in shallow soil. Downgradient concentrations of petroleum hydrocarbons in groundwater at wells MW-5 and MW-7 are not indicative of SPH.

_

² As discussed in Section 6, the eastern edge of the excavation does not appear to extend as far to the east as shown on the figures. The borehole log for borehole SB-8 does not appear to contain backfill as was observed at borehole SB-7.

- PAHs and MTBE were not detected in soil samples collected at the former UST site.
- Statistical analysis of historical petroleum hydrocarbon and related constituent concentrations in groundwater indicates that TPPH, benzene, toluene, and xylenes concentrations are stable or decreasing (i.e., a stable or shrinking plume).
- Potential carcinogenic risks to current and future Site occupants and workers due to residual chemicals of concern in soil and groundwater relating to the former USTs are within or less than U.S. EPA's acceptable incremental risk range of 10⁻⁶ to 10⁻⁴ (i.e., one in one million to one in ten thousand) and are less than the Proposition 65 notification level of 10⁻⁵. Similarly, potential non-carcinogenic risks are below the threshold hazard quotient of one. These conclusions are still appropriate based on comparison of data to current published screening criteria.
- Potential risks to the environment appear to be minimal based on available water quality objectives derived for the protection of aquatic organisms and human health.

In response to the closure report, ACEH issued a letter, dated 23 June 1998, indicating that ACEH was ready to prepare a case closure memorandum for review by ACEH staff and submittal to the Regional Water Quality Control Board, San Francisco Bay Region ("RWQCB"). The letter further indicated that a case closure letter may be issued within 60 to 90 days of the date of the June 1998 letter. However, a case closure letter for the Site was never received by Sybase and ACEH has since then reportedly lost all of the files for the Site.

2.5 ACEH 2008 Letter and EKI 2009 Work Plan

In 2006, ACEH requested that Sybase provide ACEH with available documents associated with the Site because they had lost their files. ACEH subsequently reviewed the available information for the Site and requested in the ACEH 2008 Letter that (1) the extent of separate phase and dissolved phase petroleum hydrocarbons in groundwater be defined, (2) potential preferential pathways, including both utility lines and nearby wells, be assessed, (3) the vertical and lateral extent of petroleum hydrocarbons in soil be defined, and (4) the vapor intrusion pathway be assessed by performing soil gas sampling. The proposed approach to address the issues in the ACEH 2008 Letter is presented below.

EKI provided the Work Plan in June 2009 for additional site characterization. ACEH conditionally approved the Work Plan based on incorporations of a few minor revisions in a 14 August 2009 letter. EKI provided a response to the approval letter in a follow-up letter dated 11 September 2009. The scope of work for the Site investigation reported herein is summarized below.

3 FIELD ACTIVITIES

In March and April 2010, EKI performed additional Site characterization activities at the Site. Three soil boreholes and four boreholes for grab groundwater sampling were installed at the Site. Soil and groundwater samples were collected and analyzed for petroleum hydrocarbons and related constituents. The sampling locations were selected on the basis of existing data, as well as limitations imposed by the existing buildings and utilities.

A summary of the field activities is provided below, and the methodology is described in more detail in Appendix C. The results of the Site investigation are presented in Sections 4, 5, 6, and 7.

3.1 Pre-Field Activities

Sybase does not own or have any current contractual relationship with the Site owner or the owner of the adjacent 1650 65th Street Property. Sybase contacted the aforementioned owners and the current tenants prior to the start of field activities in order to obtain access. EKI reviewed the planned field work tasks, sampling locations, and schedule with the owner and tenant. Underground Services Alert ("USA") was contacted to identify known buried utilities, and a private utility locating company cleared the proposed drilling locations for buried utilities using electromagnetic detectors and the marked lines from the USA-notified utility companies. The private locator also looked for the presence of the unconfirmed sanitary sewer line potentially located north of the former USTs.

EKI secured an Alameda County Public Works Agency drilling permit (Permit Number W2010-0130), which is attached in Appendix D. EKI subcontracted Gregg Drilling and Testing of Martinez, California, a California-licensed drilling contractor, to perform subsurface work for soil and groundwater sampling. Osborne's Concrete Coring of Fremont, California also provided specific services during installation of the temporary monitoring wells. EKI prepared a site-specific Health and Safety Plan for EKI field personnel and required adherence as appropriate by their contractors.

Groundwater and soil samples were shipped to Curtis & Tompkins, Ltd. of Berkeley, California, which is a California-certified laboratory.

3.2 Groundwater Investigation

EKI's 2009 Work Plan stated that groundwater samples would be collected from three pre-pack temporary monitoring wells, GGW-1 through GGW-3, to be installed at the Site. These monitoring wells were installed south, southeast, and east of the former tank excavation area on 6 March 2010 to characterize the lateral extent of SPH and dissolved phase petroleum hydrocarbons in groundwater. Temporary monitoring wells were chosen for groundwater sample collection to reduce the amount of sediments in samples.

On 9 April 2010, a fourth grab groundwater sampling location, GGW-4, was installed south of GGW-2 to further characterize the lateral extent of impacted groundwater at the Site. Mark Detterman of ACEH agreed to this additional sampling location in an e-mail, dated 10 March 2010. The grab groundwater sampling locations are shown on Figure 2. More detailed information regarding the temporary monitoring well installation is included in the field logs included in Appendix C.

EKI collected samples from the four temporary monitoring wells and the existing monitoring wells MW-5 and MW-7 (see Figure 2). EKI used low-flow sampling techniques and noted whether sheen or SPH was present during groundwater sampling. Grab groundwater samples were analyzed for:

- TPPH using EPA Method 8015M;
- TEPH using EPA Method 8015M;
- BTEX, Fuel Oxygenates, 1,2-dibromoethane ("EDB"), and 1,2-dichloroethane ("EDC") using EPA Method 8260B;
- PAHs by EPA Method 8270C (from the temporary monitoring locations only);
 and
- Total Dissolved Solids ("TDS").

3.3 Preferential Pathway Study

For the utility survey, EKI reviewed an undated survey map (included as Appendix C in the Work Plan) and performed file reviews at the City of Emeryville Building Department and Public Works Department. Figures 3 and 4 depict the locations of the known former and existing utilities at the Site, which include an "unconfirmed storm line" and an existing storm drain line (on the adjacent property) in the vicinity of the former USTs.

However, based on the information reviewed at the Building and Public Works Departments, there is no evidence that a sanitary sewer line is present in that portion of the property; rather, the sanitary sewer line for the 6601 and 6603 Shellmound Street buildings is located at the northern edge of the Site (Figure 3). The unconfirmed sanitary line was not found by the utility locating service used to clear drilling locations. As part of the investigation, EKI field verified of the depth of the existing storm drain south of the former USTs.

EKI submitted a well survey request to the California Department of Water Resources ("DWR"). As discussed with ACEH, the well survey radius was reduced to 500 feet. EKI received the results of the well survey from DWR on 21 May 2009. The results of the well survey are included in Section 5.1 of this Closure Report.

3.4 Soil Investigation

ACEH requested that soil samples be collected deeper than 7.5 feet below ground surface ("ft bgs") at the UST excavation and in the downgradient direction from the UST excavation area. In the 14 August 2009 letter, ACEH also requested that soil samples be collected from the capillary fringe and from depths with high levels of impacts.

Soil boreholes SB-7, SB-8, and SB-9 were drilled and sampled on 9 April 2010, both for geologic logging and chemical analysis. The boreholes SB-7 and SB-8 were installed in the immediate vicinity of the former USTs (on the western and eastern sides of the former USTs, respectively) to characterize the vertical extent of petroleum hydrocarbons (see Figure 5). At borehole SB-7, EKI collected soil samples from approximately 5 ft bgs, 8 ft bgs, and 13 ft bgs, and 20.5 ft bgs. At borehole SB-8, EKI collected samples from approximately 4.5 ft bgs, 13 ft bgs, and 17.5 ft bgs.

The borehole SB-9 was installed approximately 10 to 15 feet south-by-southeast from the former UST excavation area (see Figure 5). This location was selected to assess the lateral extent of petroleum hydrocarbons in soil. EKI collected samples at borehole SB-9 from 5 ft bgs, 9 ft bgs, 12.5 ft bgs, and 19 ft bgs.

The boreholes were drilled using direct-push with a split-barrel sampler to obtain a continuous core to the total depth of the borehole. Details of stratigraphy for all sampling locations are recorded in the borehole logs included in Appendix E. Soil samples also were collected for chemical analysis at an off-site laboratory.

Soil cores were screened with an organic vapor meter ("OVM") equipped with a photoionization detector. The screening was used for soil sampling to identify depths with the highest level of impact for sampling. Soil samples were analyzed for the following constituents:

- TPPH using EPA Method 8015M;
- TEPH using EPA Method 8015M;
- BTEX, Fuel Oxygenates, EDB, and EDC using EPA Method 8260;
- PAHs by EPA Method 8270C; and
- Moisture Content by ASTM D2216.

3.5 Vapor Intrusion Assessment

As discussed in the 2009 Work Plan, groundwater data collected as part of this investigation (including naphthalene) were used to update the vapor intrusion assessment in the Site Investigation Report. In their 14 August 2009 letter, ACEH stipulated that soil concentrations be considered as part of the vapor intrusion assessment.

3.6 Investigation-Derived Wastes

Soil cuttings and cores, purged groundwater from the boreholes and monitoring wells, and rinsate from equipment cleaning were contained in labeled, sealed 55-gallon DOT-approved steel drums, and staged on-site pending receipt of analytical results. A composite sample from the soil drums and a grab sample from the water drum was analyzed for disposal characterization. After the analytical results were reviewed, the wastes were disposed by Clearwater Environmental of Fremont, California, in accordance with applicable laws and regulations as described in the Work Plan.

4 EXTENT OF SEPARATE PHASE AND DISSOLVED PHASE HYDROCARBONS IN GROUNDWATER

The ACEH 2008 Letter indicated that the concentrations of petroleum hydrocarbons detected in groundwater are indicative of the presence of SPH. Based on review of the borehole logs from EKI's 1996 investigation, the petroleum hydrocarbons were generally described as a "sheen." The field notes indicate the presence of "floating product" at some locations, but the thickness of product is not noted, presumably because the groundwater samples were collected from open boreholes, not from monitoring wells (EKI, 1996). No sheen or SPH was observed in the downgradient monitoring wells MW-5 and MW-7 (EKI, 1996, 1997a). As such, data from wells MW-5 and MW-7 are believed to represent dissolved concentrations of petroleum hydrocarbons and related constituents in groundwater.

As discussed above, EKI collected the following samples to further characterize the extent of dissolved phase petroleum hydrocarbons and SPH, if present:

- Four grab groundwater samples from temporary wells installed to the south, southeast, east of the former tank excavation, and east of the building at 1650 65th Street (Figure 2).
- Two groundwater samples from monitoring wells MW-5 and MW-7.

Groundwater samples were analyzed for TEPH, TPPH, BTEX, EDB, EDC, fuel oxygenates, TDS, and PAHs (grab groundwater samples only). A summary of analytical results is shown in Table 1. Results for analytes that were not detected and not listed in Table 1 are provided in the analytical laboratory reports included in Appendix F.

³ As requested by Donna Drogos of ACEH, EKI determined that the top of the screen in wells MW-5 and MW-7 is 6.7 ft bgs. If the water table is deeper than 6.7 feet bgs, then the well is suitable to assess the presence of SPH. Depending on the time of year and amount of rainfall, the water table has historically been higher than 6.7 feet bgs. However, based on the available data, SPH was not present in the wells when the water table was deeper than 6.7 feet bgs.

Laboratory quality control criteria were attained as shown in the analytical laboratory reports.

Sheen, indicative of SPH, was observed in saturated zone soil and on samples collected from locations GGW-1 and GGW-2. The sheen thickness was too thin to be measured. No sheens were observed at locations GGW-3, GGW-4, MW-5, and MW-7. The water table in monitoring wells MW-5 and MW-7 were encountered at 6.81 ft bgs and 5.46 ft bgs, respectively. The water table was thus not deep enough to assess the presence of sheen in well MW-7 based on the top of the screen.³

The following organic analytes were detected in at least one sample: TEPH, TPPH, benzene, toluene, ethylbenzene, xylenes, diisopropyl ether, MTBE, and tert-butyl alcohol. EDB, EDC, other fuel oxygenates not previously mentioned, and PAHs were not detected above laboratory reporting limits.

VOC concentrations in the groundwater samples were all below available California drinking water MCLs with the following exception. Benzene was detected in the groundwater sample collected from location GGW-1 at 56 ug/L and from location GGW-3 at 2.1 ug/L, greater than the MCL of 1 ug/L. However, the benzene groundwater concentration was significantly below the risk-based threshold for vapor intrusion to indoor commercial/industrial air from groundwater (1,800 ug/L).

No MCL exists for TEPH and TPPH; instead, RWQCB (2008) provides an Environmental Screening Level ("ESL") based on gross contamination of 100 ug/L of petroleum hydrocarbons quantified as either diesel or gasoline where groundwater is a potential drinking water resource and an ESL of 210 ug/L for protection of aquatic habitats for non-drinking water resources. TEPH was detected above both of these ESLs in groundwater samples collected from locations GGW-1, GGW-2, and well MW-5, and only the 100 ug/L ESL at location GGW-3. TPPH was detected above the ESL in the groundwater sample collected from location GGW-1.

Tert-butyl alcohol was not detected above the DPH drinking water notification level of 12 ug/L. No drinking water screening level is available for diisopropyl ether, which was detected only in the sample collected from location GGW-3 at 2.4 ug/L.

Total dissolved solids ("TDS") ranged in groundwater samples from 690 mg/L to 1,530 mg/L. Based on California drinking water regulations, these concentrations exceeded secondary MCLs for total dissolved solids as described below. All measured concentrations exceeded the recommended secondary MCL of 500 mg/L. Drinking water concentrations less than the upper secondary MCL of 1,000 mg/L are acceptable if it is neither reasonable nor feasible to provide a more suitable drinking water. Drinking water concentrations between the upper secondary MCL and the short term secondary MCL, 1,500 mg/L, are acceptable only on a temporary basis pending construction of treatment facilities or development of acceptable new water sources.

The RWQCB established a 3,000 mg/L limit for waters that potentially suitable for municipal supplies (RWQCB, 2007). The TDS concentrations measured in Site groundwater are less than this 3,000 mg/L limit. Given that TDS concentrations at the Site exceed the upper secondary MCL, but are less than 3,000 ug/L, the tables in this report present results compared to both the potential drinking water supply and non-drinking water supply ESLs.

Concentrations of petroleum hydrocarbons, BTEX, and MTBE in samples from wells MW-5 and MW-7 decreased significantly compared to historical levels (see Table 2). A statistical analysis of benzene concentrations showed a significant linear decrease in benzene concentrations over time at wells MW-5 and MW-7. In addition, benzene was not detected above reporting limits for the first time in these wells. These results indicate that groundwater concentrations are stable or decreasing (i.e., a stable or shrinking plume). Similarly, the concentrations of TEPH and related constituents decreased significantly in grab groundwater samples collected in 1996 versus those collected in 2010 as part of this investigation (Figure 2). EKI does not know if the lower concentrations in the grab groundwater samples are due to natural attenuation of the petroleum hydrocarbons, improved sampling techniques, or a combination of the two.

As shown on Figure 2, locations MW-5, MW-7, GGW-4, and GGW-3 generally bound the lateral extent of significant petroleum impact in groundwater. Some petroleum hydrocarbons may be present under the northeastern portion of the 1650 65th Street building. However, the available data suggest that the extent under the building would be very limited. In addition, as discussed above, the decrease in concentrations from the mid-1990s to present indicate that the plume is stable or shrinking.

5 PREFERENTIAL PATHWAY STUDY

The ACEH 2008 Letter requested that the Site and vicinity be evaluated for lateral and vertical conduits, such as utilities (including potential backfill in the utility trench) and nearby wells. EKI provided initial findings of the preferential pathway study in the 2009 Work Plan. The entirety of the preferential pathway study is presented below.

5.1 Utility Survey

For the utility survey, EKI reviewed an undated survey map (included as Appendix C in the Work Plan) and performed file reviews at the City of Emeryville Building Department and Public Works Department. Figures 3 and 4 depict the locations of the known former and existing utilities at the Site, which include an "unconfirmed storm line" and an existing storm drain line (on the adjacent property) in the vicinity of the former USTs.

The survey map shows an "unconfirmed storm line" located immediately north of the tank area and extending to the west. Construction drawings from 1994 reviewed during

the Building Department file review indicate that plans were in place to remove, backfill, and compact this storm drain. Although specific depth information was not available for the "unconfirmed storm line," the invert elevations of other storm drain lines present on the western portion of the property at that time were approximately 2 ft bgs. In addition, these other storm drains were 10 inches in diameter. Figure 4 is a cross-section illustrating the subsurface conceptual Site model in the vicinity of the former USTs (see Figure 3 for the location of the cross-section). Assuming the "unconfirmed storm line" is similar to the other on-Site lines existing at that time, the cross-section illustrated on Figure 4 shows that the "unconfirmed storm line" was at a higher elevation than the highest measured water table, even assuming 6 inches of backfill under the pipe. This "unconfirmed storm line" was not found by the utility locating service used to clear drilling locations. Thus, the "unconfirmed storm line" was not likely to have been a conduit to spread petroleum hydrocarbons from the former USTs.

An existing storm drain line is also located on the adjacent property (i.e., 1650 65th Street), approximately 30 feet south of the former USTs. EKI verified the elevation of the invert in the field during the March and April 2010 field activities. According to the measurements, the invert is located approximately 1.5 ft bgs, which is above the highest measured water table, even assuming 6 inches of backfill under the storm drain pipe. Therefore, the storm drain line on the 1650 65th Street property is also not likely to act as a conduit to spread petroleum hydrocarbons in groundwater at the Site.

The survey map also shows a sanitary easement that is 5 feet wide immediately north of the southern property boundary. However, based on the information reviewed at the Building and Public Works Departments and the utility locating survey, there is no evidence that a sanitary sewer line is present in that portion of the property; rather, the sanitary sewer line for the 6601 and 6603 Shellmound Street buildings is located at the northern edge of the Site (Figure 3).

Taken together, the former and existing utilities at the Site are not likely to have caused significant lateral migration of petroleum hydrocarbons and related constituents at the Site.

5.2 Well Survey

In response to ACEH's request, EKI submitted a well survey request to DWR. Eight wells are currently located within 500 feet of the Site. Information about the wells is summarized in Table 3. Most of the wells are shallow groundwater monitoring wells associated with the 1650 65th Street Property (including wells MW-5 and MW-7), located to the south of the Site. Additional information regarding the wells may be found in the well construction logs included in Appendix C.

According to the well logs one of the wells is an extraction well that is not intended for domestic, irrigation, industrial, or municipal use. It was installed as part of a shallow groundwater remediation project at the 1650 65th Street property to address impacts

unrelated to the Site. EKI understands that the extraction well is currently inactive. In addition, all the nearby wells have screens are limited to less than 30 ft bgs. Therefore, these wells are unlikely to be conduits for vertical transfer of contaminants. In addition, they are unlikely to be significant routes of exposure of impacted groundwater to human receptors.

6 EXTENT OF PETROLEUM HYDROCARBONS IN SOIL

The ACEH 2008 Letter requested that soil samples be collected to characterize the vertical and lateral extent of petroleum impacts. In 1996, soil samples were collected from the vadose zone on the eastern and western boundaries of the former UST excavation area (EKI, 1996). The data indicated no significant impact to vadose zone soil from the USTs. The sidewall confirmation soil samples from the tank excavation were collected at a depth of 7.5 ft bgs. Based on EKI's review of the Dubovsky Report, it appears that that the samples from October 1989 were collected after rainfall in which the water level in the tank pit had risen to 7.5 feet bgs (Dubovsky and Petite, 1990). As shown on Figure 4, the average depth to groundwater in the nearby wells is 6.7 feet bgs, which would indicate that the sidewall confirmation soil samples were all collected within the groundwater "smear zone." ACEH requested that soil samples be collected from the capillary fringe and deeper than 7.5 ft bgs at the UST excavation and in the downgradient direction from the UST excavation area.

To characterize the extent of petroleum hydrocarbons in soil, EKI collected the following samples:

- Soil borehole SB-7, installed within the western portion of the UST excavation footprint (Figure 5). EKI collected soil samples at approximately 5 ft bgs, 8 ft bgs, 13 ft bgs, and 20.5 ft bgs.
- Soil borehole SB-8, installed east of the former USTs and potentially in the excavation footprint (Figure 5).⁴ EKI collected soil samples at approximately 4.5 ft bgs, 13 ft bgs, and 17.5 ft bgs.
- Soil borehole SB-9, installed approximately 10 to 15 feet south-to-southeast of the former UST excavation. EKI collected soil samples at approximately 5 ft bgs, 9 ft bgs, 12.5 ft bgs, and 19 ft bgs.

Soil samples were analyzed for TEPH, TPPH, BTEX, EDB, EDC, fuel oxygenates, and PAHs. A summary of analytical results is shown in Table 4 and on Figure 5. Results for

.

⁴ The borehole log for location SB-8 does not appear to contain backfill as was observed at location SB-7. As a result the location SB-8 may be outside of the excavation extent of the former USTs. The borehole log is included in Appendix E.

analytes that were not detected and not listed in Table 4 are provided in the analytical laboratory reports included in Appendix F. Laboratory quality control criteria were attained as shown in the analytical laboratory reports.

The following organic analytes were detected in at least one sample: TEPH, TPPH, benzene, ethylbenzene, xylenes, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorene, phenanthrene, and pyrene. Measured concentrations of these detected chemicals in soil were less than the ESLs, except as discussed below. EDB, EDC, fuel oxygenates, and other PAHs not previously mentioned were not detected above laboratory reporting limits.

TEPH and TPPH concentrations were compared to available soil ESLs, including those protective of groundwater as drinking water (83 mg/kg) and non-drinking water resources (180 mg/kg) as well as commercial/industrial exposure for soil less than 10 ft bgs (450 mg/kg) and greater than 10 ft bgs (4,200 mg/kg). As indicated in Table 4, TEPH and TPPH concentrations in soil samples collected at the Site exceed these various ESLs. The highest concentrations (up to 4,600 mg/kg) were detected in soil samples collected from the saturated zone, where there were observations of visual impacts (i.e., samples from 8 to 13 ft bgs). Petroleum hydrocarbon concentrations were significantly lower (49 to 900 mg/kg) in the capillary fringe samples collected from 4.5 to 5 ft bgs. The lowest overall concentrations were detected in the samples collected from 17.5 to 20.5 ft bgs (6.2 to 78 mg/kg). These findings are also shown on the cross section on Figure 4 and in plan view on Figure 5.

Benzo(a)pyrene ("BaP") was the only PAH or VOC that was present above the ESL. BaP was detected in the 4.5 ft bgs sample from location SB-8 at a concentration of 0.16 mg/kg, which is slightly greater than the commercial/industrial ESL of 0.13 mg/kg.

These results show that residual petroleum hydrocarbons are present in the smear zone and below the water table. Based on visual observation of the borehole logs, the petroleum hydrocarbons do not significantly extend beyond a depth of 14 to 16 ft bgs. The data from 17.5 to 20.5 ft bgs further characterize the vertical extent of impact. Given that the petroleum hydrocarbons are largely in the saturated zone, the extent of impact is best evaluated through assessment of the groundwater data (Section 4).

In addition, the toxic components of petroleum hydrocarbons, namely BTEX and PAHs, are generally not detected or are present at low concentrations (i.e., below the commercial/industrial ESLs). Therefore, the residual petroleum hydrocarbons and related constituents do not pose a significant risk to on-site workers.

7 VAPOR INTRUSION ASSESSMENT

The ACEH 2008 Letter requested that a vapor intrusion assessment be performed including soil gas data. State regulatory guidance (i.e., California Department of Toxic Substances Control, 2005) indicates a preference for soil gas data in performing a vapor intrusion assessment; however, if groundwater is impacted, the guidance recommends that groundwater data also be used in the assessment.

As discussed at the 16 April 2009 meeting, ACEH is most concerned about benzene and naphthalene for the vapor intrusion pathway. EKI reviewed the available groundwater data and compared them to the ESLs for vapor intrusion concerns (RWQCB, 2008). The maximum benzene concentration in groundwater (including the 2006 grab groundwater data and the recent 2010 sampling event) is 160 ug/L, whereas the commercial/industrial ESL is 1,800 ug/L. Only one groundwater sample had been analyzed for naphthalene prior to the 2010 sampling event. Naphthalene was not detected above the laboratory reporting limit of 10,000 ug/L. The commercial/industrial screening level based on the vapor intrusion pathway is 11,000 ug/L. During the 2010 sampling event, naphthalene was not detected above the laboratory reporting limits, which ranged from 9.4 ug/L to 98 ug/L, in the four grab groundwater samples.

ACEH also indicated at our meeting that groundwater data alone may not be sufficient to assess vapor intrusion if significant soil impacts are present. Soil ESLs are not available for the vapor intrusion pathway. EKI evaluated whether the existing benzene concentrations in unsaturated zone soil are present at "source concentrations" by comparing the available data to the direct contact and groundwater protection ESLs. The maximum benzene concentration in the 1996 investigation was 0.019 mg/kg, which is less than both the ESL of 0.27 mg/kg for direct contact under commercial land use and the ESL of 0.044 mg/kg for protection of drinking water resources. Benzene concentrations measured in the confirmation soil samples during the tank removal in 1989 are higher (up to 0.76 mg/kg), but would correspond to a human health risk of 3 x 10^{-6} based on the direct contact pathway.

ACEH commented in their 14 August 2009 letter regarding the Work Plan that if collected soil samples contain higher concentrations than previously detected (i.e., 0.76 mg/kg), sub-slab soil vapor or soil gas samples may be required. However, the maximum benzene concentration measured in soil samples during the 2010 investigation was 0.01 mg/kg. No further analysis for the impact of soil benzene concentrations as part of the vapor intrusion assessment is thereby required.

Naphthalene was not detected in the soil samples analyzed in 1996, although the reporting limits were elevated (Appendix B and EKI, 1996). In addition, naphthalene was not detected in soil samples during the recent 2010 investigation above laboratory reporting limits, which ranged from 0.075 mg/kg to 1.9 mg/kg. In EKI's opinion, the available soil data from the unsaturated zone (where soil impacts could be a source for vapor intrusion) do not show significant impacts from naphthalene.

Based on the investigation results, there is no significant vapor intrusion risk resulting from residual VOCs in soil and groundwater.

8 CONCLUSIONS AND RECOMMENDATIONS

The results of previous investigations and the recent 2010 investigation at the Site indicate the following:

- The lateral extent of petroleum hydrocarbons and related constituents in groundwater have been characterized. Although a sheen is present in the vicinity and downgradient of the former tank area, the extent is limited as shown by the groundwater data at locations MW-5, MW-7, GGW-3 and GGW-4 on Figure 2.
- The concentration of benzene in monitoring wells MW-5 and MW-7 have decreased significantly over time to below detection limits, as shown in Table 2. In addition, petroleum hydrocarbon and related constituent concentrations in grab groundwater samples collected in 2010 were significantly lower than those collected in 1996.
- No lateral or vertical conduits were identified during the investigation. Wells located in the vicinity of the Site have shallow screens for groundwater investigation or remediation purposes. Potential lateral conduits were confirmed to be above the groundwater table.
- Petroleum hydrocarbon impacts from the former USTs to soil at the Site are generally in the saturated zone. VOC and PAH concentrations in soil are generally below commercial/industrial ESLs. The Site is paved and there is no direct contact based on the current usage.
- Based on residual VOC concentrations in soil and groundwater, there is no significant vapor intrusion risk to building occupants at 1650 65th Street and 6601/6603 Shellmound Street.

Taken together, closure of the former USTS located at 6601 and 6603 Shellmound Street (formerly Bay Street), Emeryville, California is requested.

9 REFERENCES

ACEH, 1998. Case Closure for the Three Underground Storage Tanks at 6601 and 6603 Shellmound Street, Emeryville, California 94608 (STID #3696 and 3710), Alameda County Environmental Health, 23 June 1998.

ACEH, 2008. Fuel Leak Case No. RO0000042/RO0000043 and Geotracker Global ID T0600100825/T06001100470, Vacant Facility, 6601 and 6603 Shellmound Street, Emeryville, CA 94608, Alameda County Environmental Health, 29 December 2008.

DTSC, 2005. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, Interim Final, Department of Toxic Substances Control, 7 February 2005.

Dubovsky and Petite, 1990. Environmental Report 6601 and 6603 Shellmound Street, Emeryville, California, William Dubovsky Environmental and Petite Engineering, July 1990.

EKI, 1996. Results of Soil and Groundwater Investigations at 6601 and 6603 Shellmound Street, Emeryville, California, Erler & Kalinowski, Inc., 23 August 1996.

EKI, 1997a. Closure Report, Three Former Underground Storage Tanks at 6601 and 6603 Shellmound Street, Emeryville, California, Erler & Kalinowski, Inc., 18 August 1997.

EKI, 1997b. Addendum to Closure Report – Site Management Plan, Three Former Underground Storage Tanks at 6601 and 6603 Shellmound Street, Emeryville, California, Erler & Kalinowski, Inc., 24 October 1997.

PES, 1995. Year End Summary Report Bioremediation Pilot Study and Quarterly Groundwater Monitoring, November 1995 Sampling Event, Emery Bay Plaza, 1650 65th Street, Emeryville, California, PES Environmental, Inc., 29 December 1995.

RWQCB, 2007. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan), Regional Water Quality Control Board, San Francisco Bay Region, January 2007.

RWQCB, 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Regional Water Quality Control Board, San Francisco Bay Region, May 2008.

Table 1
Summary of Groundwater Analytical Data from the Spring 2010 Investigation

6601/6603 Shellmound Street, Emeryville, California

		Petro Compo (ug/L)	ounds												
Sample Location	Collection Date	ТЕРН	ТРРН	Вепzепе	Toluene	Ethylbenzene	Xylenes, m- & p-	Xylene, 0-	Diisopropyl ether	Methyl tert-butyl ether	Tert-butyl alcohol	1,2-Dibromoethane	1,2-Dichloroethane	PAHs (a,d)	Total dissolved solids (milligrams per liter)
GGW-1	3/6/2010	34,000	550	56	2.7	2.2	4	2.2	< 0.5	1.4	11	< 0.5	< 0.5	ND	1,420
GGW-2	3/6/2010	10,000	90 (e)	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	ND	700
GGW-3	3/6/2010	180 (e)	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5	2.4	< 0.5	<10	< 0.5	< 0.5	ND	1,530
GGW-4	4/9/2010	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	ND	690
MW-5	3/6/2010	250 (e)	99 (e)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2	<10	< 0.5	< 0.5	ND	1,290
MW-7	3/6/2010	< 50	< 50	<1	<1	<1	<1	<1	<1	<1	< 20	<1	<1	ND	780
ESL for drinking wa	ter consumption	210	210	1	150	300	18	00	-	13	12	0.05	0.5	-	500 to 1,500
ESL for C/I vapor in		-	-	1,800	530,000	170,000	160,	,000	-	80,000	-	510	690	-	-
ESL for gross contain	mination,														
in drinking water		100	100	170	40	30	2	0	-	5	50,000	50,000	7,000	-	-
ESL for gross contamination,															
in non-drinking water		2,500	5,000	20,000	400	300	5,3	300	-	1,800	50,000	50,000	50,000	-	-
San Francisco Bay Basin Plan (see															
Reference 2)		-	-	1	150	300	17	50	-	13	-	0.05	0.5	-	3,000

Abbreviations:

"TEPH" = total extractable petroleum hydrocarbons, quantified as diesel

"TPPH" = total purgeable petroleum hydrocarbons, quantified as gasoline

[&]quot;C/I" = commercial/industrial land use

[&]quot;ESL" = Environmental Screening Level (see Reference 1)

[&]quot;MCL" = Maximum Contaminant Level

[&]quot;ND" = not detected above laboratory reporting limits

[&]quot;PAHs" = polycyclic aromatic hydrocarbons

[&]quot;ug/L" = micrograms per liter

[&]quot;VOCs" = volatile organic compounds

Table 1

Summary of Groundwater Analytical Data from the Spring 2010 Investigation

6601/6603 Shellmound Street, Emeryville, California

Notes:

- (a) Concentrations exceeding at least one of the screening criteria are shown in bold text.
- (b) TEPH and TPPH were analyzed using EPA Method 8015M.
- (c) VOCs were analyzed using EPA Method 8260B. This table only includes detected analytes.
- (d) PAHs were analyzed using EPA Method 8270. No PAHs were detected in the groundwater samples.
- (e) Sample exhibits a chromatographic pattern which does not resemble the standard.

References:

- 1. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region, revised May 2008.
- 2. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan), California Regional Water Quality Control Board, San Francisco Bay Region, January 2007.

Table 2
Summary of Historical Analytical Results for Groundwater Samples from Monitoring Wells (a)
6601/6603 Shellmound Street, Emeryville, California

				Chemical (Concentration	n (ug/L) (b)		
Well	Ī					Ethyl-	Total	
Number	Sample Date	TPPH	TEPH	Benzene	Toluene	benzene	Xylenes	MTBE
MW-5	Nov 89	ND	NA	74	ND	ND	4.2	NA
	Feb 90	ND	NA	200	ND	ND	ND	NA
	May 90	ND	ND	110	ND	ND	ND	NA
	Aug 90	ND	700	66	2.2	ND	3.8	NA
	Nov 90	600	900	69	ND	ND	ND	NA
	Mar 91	ND	1100	66	2.3	ND	ND	NA
	May 91	ND	ND	110	ND	ND	ND	NA
	Aug 91	ND	ND	78	2.1	ND	ND	NA
	29 Jan 92	190	NA	90	0.5	<0.3 (c)	0.6	NA
	28 Feb 92	230	NA	110	0.9	< 0.3	0.5	NA
	28 May 92	130	NA	100	< 0.5	< 0.5	< 0.5	NA
	27 Aug 92	520	NA	83	2.0	< 0.5	< 0.5	NA
	10 Nov 92	240	<100	74	1.0	< 0.3	< 0.6	NA
	18 Feb 93	190	NA	56	0.6	< 0.5	< 0.5	NA
	20 May 93	< 200	NA	56	<2	<2	<2	NA
	19 Aug 93	170	NA	50	0.7	< 0.5	< 0.5	NA
	15 Nov 93	220	NA	49	1.0	<1	<1	NA
	14 Feb 94	140	NA	62	< 0.5	< 0.5	< 0.5	NA
	16 May 94	310	NA	140	3.0	<3	<3	NA
	12 Aug 94	500	NA	95	34	4.0	14	NA
	3 Nov 94	400	NA	79	0.6	< 0.5	<2	NA
	9 Feb 95	300	NA	74	0.8	< 0.5	<2	NA
	9 May 95	200	NA	47	0.5	< 0.5	<2	NA
	10 Aug 95	200	NA	46	0.5	< 0.5	<2	NA
	13 Nov 95	300	NA	48	0.7	< 0.5	<2	NA
	15 Jun 96	180	<40,000	39	< 0.5	< 0.5	< 0.5	8.1
	27 Dec 96	220	4,500	54	0.5	< 0.5	< 0.5	15
	19 Jun 97	210	4,800	38	< 0.5	< 0.5	< 0.5	7.5
	6 Mar 10	99	250	< 0.5	< 0.5	< 0.5	<1	2

Table 2
Summary of Historical Analytical Results for Groundwater Samples from Monitoring Wells (a)
6601/6603 Shellmound Street, Emeryville, California

				Chemical (Concentration	n (ug/L) (b)		
Well Number	Sample Date	ТРРН	ТЕРН	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
	Sample Date						·	
MW-7	May 90	NA	600	240	ND	ND	ND	NA
	Aug 90	ND	ND	81	1.8	ND	ND	NA
	Nov 90	ND	800	54	ND	ND	ND	NA
	Mar 91	ND	ND	100	3.6	ND	ND	NA
	May 91	ND	ND	120	2.7	ND	ND	NA
	Aug 91	ND	ND	74	3.3	ND	ND	NA
	29 Jan 92	270	NA	25	0.5	< 0.3	0.8	NA
	28 Feb 92	100	NA	33	0.7	< 0.3	0.7	NA
	28 May 92	150	NA	21	< 0.5	< 0.5	< 0.5	NA
	27 Aug 92	440	NA	11	1.0	< 0.5	< 0.5	NA
	10 Nov 92	370	<100	31	1.2	< 0.3	1.2	NA
	18 Feb 93	270	NA	77	1.3	< 0.5	1.4	NA
	20 May 93	300	NA	150	3.0	<2	3.0	NA
	19 Aug 93	110	NA	40	1.0	< 0.5	1.1	NA
	15 Nov 93	120	NA	15	0.6	< 0.5	2.3	NA
	14 Feb 94	120	NA	38	< 0.5	< 0.5	< 0.5	NA
	17 May 94	<300	NA	61	<3	<3	<3	NA
	10 Aug 94	100	NA	9.0	< 0.5	< 0.5	<2	NA
	3 Nov 94	100	NA	3.0	< 0.5	< 0.5	<2	NA
	9 Feb 95	200	NA	50	0.6	< 0.5	<2	NA
	9 May 95	300	NA	120	1	< 0.5	<2	NA
	10 Aug 95	<50	NA	7.0	< 0.5	< 0.5	<2	NA
	13 Nov 95	90	NA	3.0	< 0.5	< 0.5	<2	NA
	16 Jun 96	< 50	1,000	47	0.87	< 0.5	0.8	6.5
	27 Dec 96	110	2,300	35	0.88	< 0.5	0.79	5.0
	19 Jun 97	200	2,500	59	1.2	< 0.5	< 0.5	8.2
	6 Mar 10	< 50	<50	<1	<1	<1	<2	<1

Abbreviations:

"MTBE" = methyl tert-butyl ether

Notes:

- (a) Samples were collected in 1996 to 2010 by Erler & Kalinowski, Inc. Samples prior to 1992 were collected by Engineering Science. All other data are from PES Environmental, Inc. (December 1995)
- (b) Note that detection limits were not available in the summary tables in PES, December 1995.
- (e) Less than symbol ("<") indicated that the compound was not present above the indicated laboratory reporting limit.

[&]quot;NA" = not analyzed

[&]quot;ND" = not detected

[&]quot;TEPH" = total extractable petroleum hydrocarbons quantified as diesel

[&]quot;TPPH" = total purgeable petroleum hydrocarbons quantified as gasoline

[&]quot;ug/L" = micrograms per liter

Table 3
Summary of Surrounding Wells within 500 Feet of the Site

6601/6603 Shellmound Street, Emeryville, California

	Owner's Well					Total Depth	Screen Interval
Address	Number	State Well Number	Well Type	Installation	Abandonment	(ft bgs)	(ft bgs)
6707 Bay Street	MW-7	15/4W 15D1	Monitoring	1/1990	-	22	7 - 22
	MW-8	15/4W 15D2	Monitoring	1/1990	ı	21.5	7 - 21.5
1650 65th Street	MW-1	15/4W 15E1	Monitoring	7/1987	1/1988	30	9 - 30
	MW-3	15/4W 15E6	Monitoring	11/1989	ı	22	6.6 - 18
	MW-4	15/4W 15E7	Monitoring	11/1989	-	19	6.1 - 15.8
	MW-5	15/4W 15E8	Monitoring	11/1989	-	21.5	6.7 - 17.9
	MW-6	15/4W 15E11/18	Monitoring	3/1990	ı	22.1	7.1 - 21.8
	MW-7	15/4W 15E12/19	Monitoring	3/1990	=	19	6.7 - 18.7
	EW-1	15/4W 15E13	Extraction	3/1990	=	30	8.3 - 28.9

Abbreviations:

[&]quot;ft bgs" = feet below ground surface

Table 4 Summary of Soil Analytical Data from the Spring 2010 Investigation

6601/6603 Shellmound Street, Emeryville, California

			Comp	Petroleum Compounds ng/kg) (a,b) Volatile Organic Compounds (mg/kg) (a,c)											ī	PAHs (ms	g/kg) (a,d)			
Sample Location	Sample Depth (feet bgs)	Collection Date	ТЕРН	TPPH HPPH	Benzene	Toluene	Ethylbenzene	Xylenes, m- & p-	Xylene, o-	1,2-Dibromoethane	1,2-Dichloroethane	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Fluoranthene	Fluorene	Phenanthrene	Pyrene
SB-7	5.0 - 5.5	4/9/2010	100	< 0.23	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092	< 0.092
	8.0 - 8.5	4/9/2010	4,400	160	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
	13.0 - 13.5	4/9/2010	1,000	1.5	0.012	< 0.0051	0.014	0.0066	< 0.0051	< 0.0051	< 0.0051	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	0.16	0.24	0.08
	20.5 - 21.0	4/9/2010	6.2	< 0.18	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078	< 0.078
SB-8	4.5 - 5.0	4/9/2010	900	0.19	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	0.099	0 15	0.16	0.23	0.076	0.18	0.41	< 0.075	0.26	0.39
	13.0 - 13.5	4/9/2010	2,500	0.77	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.08	< 0.08	0.13	0.16	< 0.08	0.11	0 38	0.14	0.49	0.46
	17.5 - 18.0	4/9/2010	12	< 0.21	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.083	< 0.083	< 0.083	< 0.083	< 0.083	< 0.083	< 0.083	< 0.083	< 0.083	< 0.083
SB-9	5.0 - 5.5	4/9/2010	49	< 0.22	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.076	< 0.076	< 0.076	< 0.076	< 0.076	< 0.076	< 0.076	< 0.076	< 0.076	< 0.076
	9.0 - 9.5	4/9/2010	4,600	140	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	< 0.77	< 0.77	< 0.77	< 0.77	< 0.77	< 0.77	1.6	0.9	2.8	2.6
	12.5 - 13.0	4/9/2010	3,200	98	0.0077	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.49	< 0.4	1.1	0.65
	19.0 - 19.5	4/9/2010	78	< 0.23	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.086	< 0.086	< 0.086	< 0.086	< 0.086	< 0.086	< 0.086	< 0.086	< 0.086	< 0.086
ESL for C/I o	lirect exposure	(shallow soil)	450	450	0 27	210	5	10	00	0.044	0.48	26,000	1 3	0.13	1.3	1.3	210	4,400	2,800	3,300	6,600
ESL for C/I o	lirect exposure	(deep soil)	4,200	4,200	12	650	210	42	20	1.7	21	100,000	15	1.5	15	15	2,400	14,000	12,000	11,000	21,000
	ESL for groundwater protection of drinking		83	83	0.044	2.9	3.3	2.	3	0.00033	0.00045	2.8	12	130	46	2.7	23	60	8.9	11	85
		03	0.5	0.044	2.)	٠.٥	۷.	.5	0.00033	0.00043	2.0	12	130	70	2.1	23	00	0.7	11	0.0	
ESL for groundwater protection of non-drinking water resource		180	180	2	9.3	4.7	1	1	1	1.8	2.8	12	130	46	37	23	60	8.9	11	85	

Abbreviations:

"C/I" = commercial/industrial land use

"ESL" = Environmental Screening Level (see Reference 1)

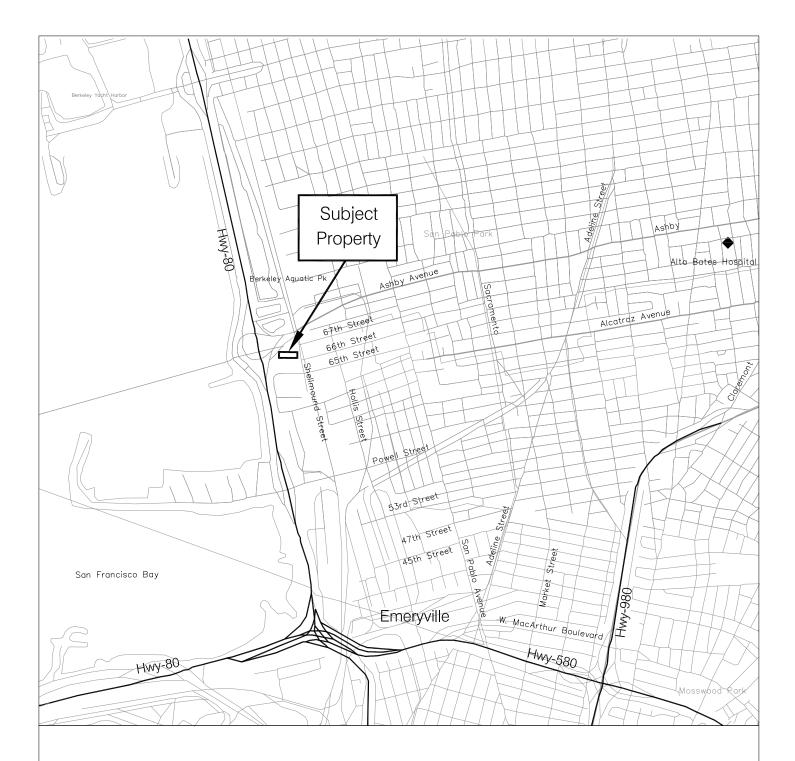
"feet bgs" = feet below ground surface

"mg/kg" = milligrams per kilogram

"PAHs" = polycyclic aromatic hydrocarbons

"TEPH" = total extractable petroleum hydrocarbons, quantified as diesel

"TPPH" = total purgeable petroleum hydrocarbons, quantified as gasoline


"VOCs" = volatile organic compounds

Notes:

- (a) Soil concentrations are reported on a dry-weight basis. Concentrations exceeding at least one of the screening critera are shown in bold text.
- (b) TEPH and TPPH were analyzed using EPA Method 8015M.
- (c) VOCs were analyzed using EPA Method 8260B. This table only includes detected analytes.
- (d) PAHs were analyzed using EPA Method 8270C. This table only includes detected analytes

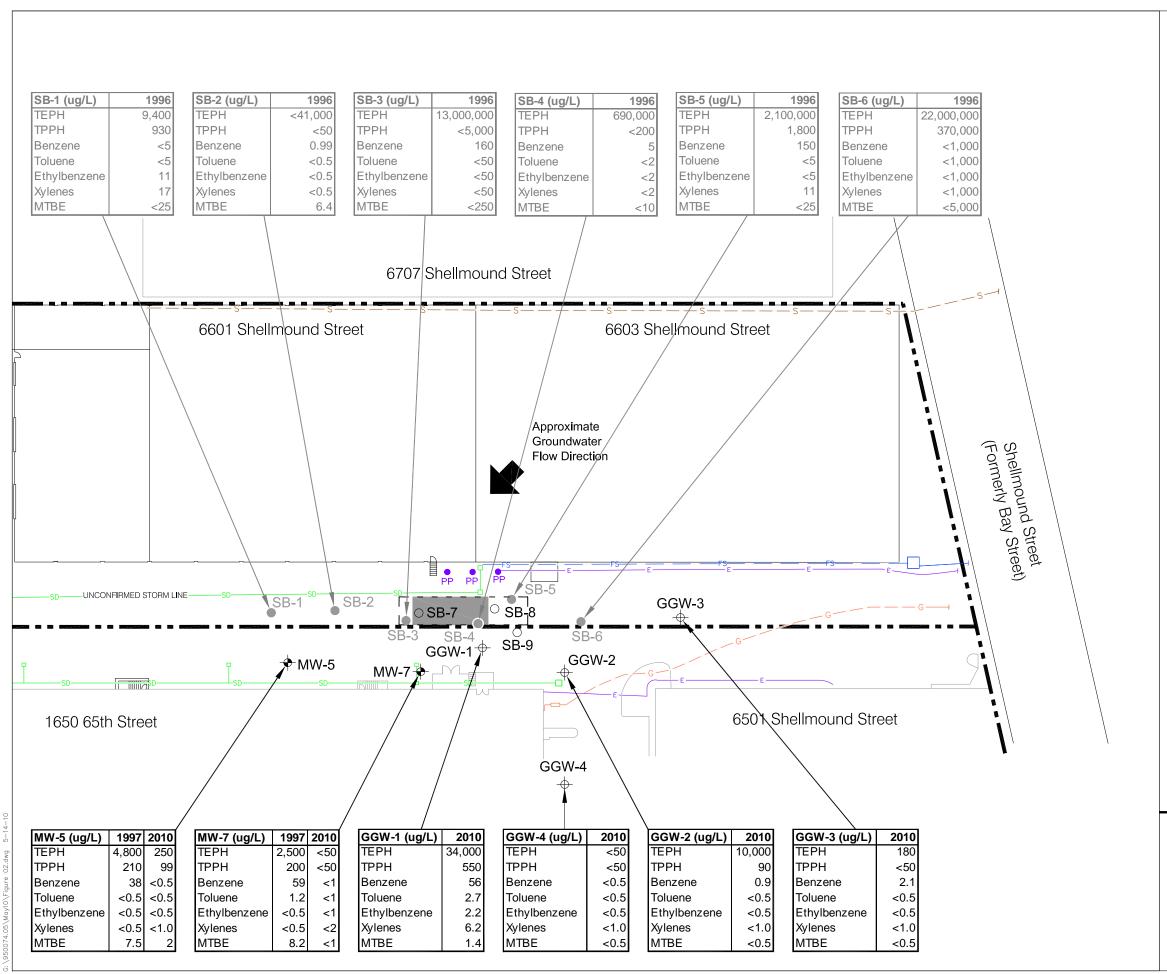
References:

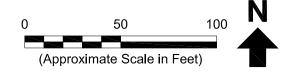
1. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region, revised May 2008.

Notes:

1. All locations are approximate.

0 2500 5000 (Approximate Scale in Feet)


Erler & Kalinowski, Inc.


Site Location

6601/6603 Shellmound Street Emeryville, CA May 2010 EKI 950074.05

Figure 1

05\Mav10\Fluine 01 dwg 5-14-10

Legend:

Approximate Tank Area Approximate Excavation Area (as depicted in Dubovsky and Petite, 1990) Off-Site Monitoring Well Location Soil Boring Location (1996) \circ Soil Boring Location (2010) Grab Groundwater Sampling Location (2010)

Property Boundary

Power Pole (PP) Storm Drain Line

Fire Service Line Sanitary Sewer Line **Electrical Line**

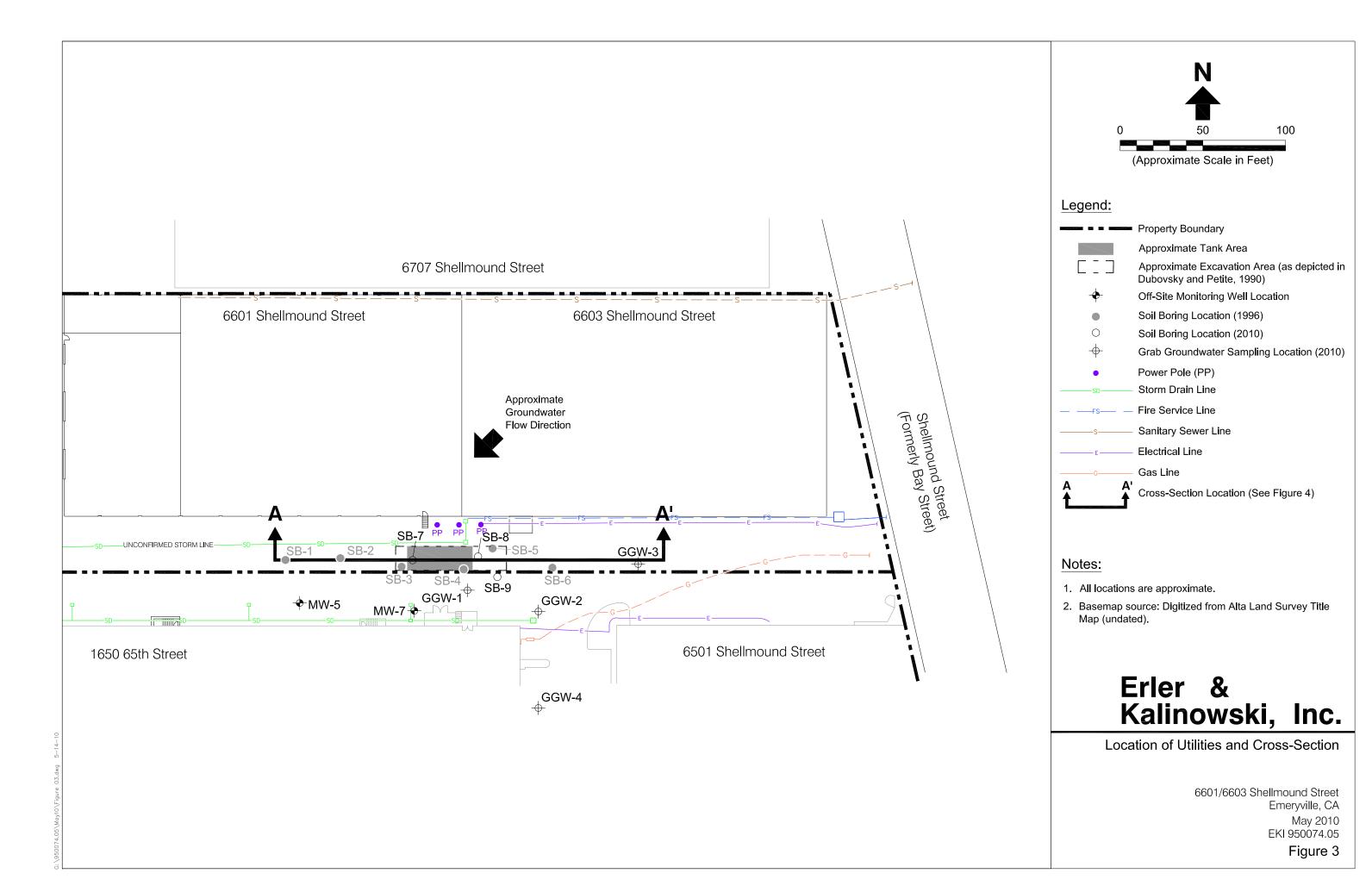
Gas Line

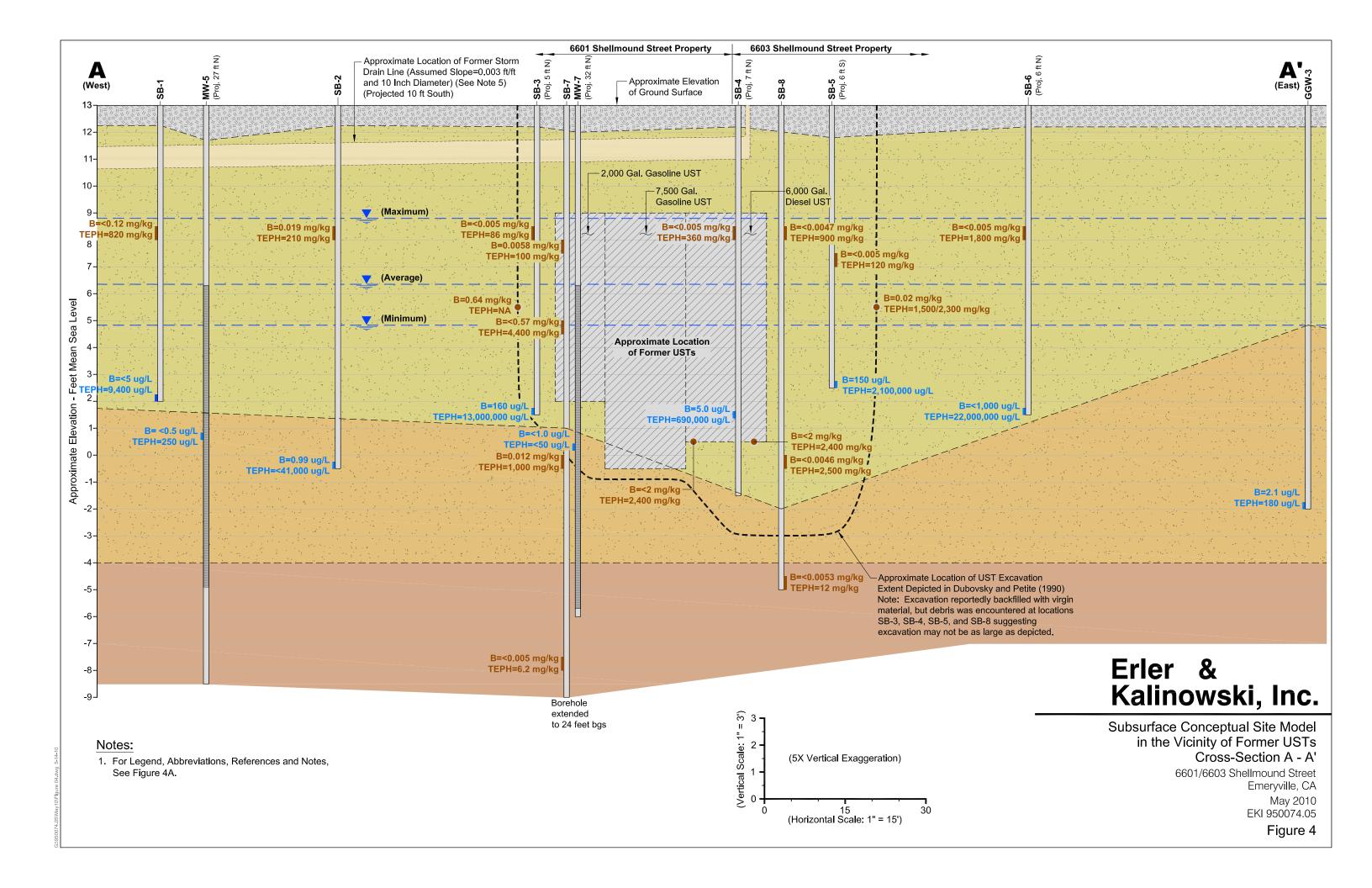
Abbreviations:

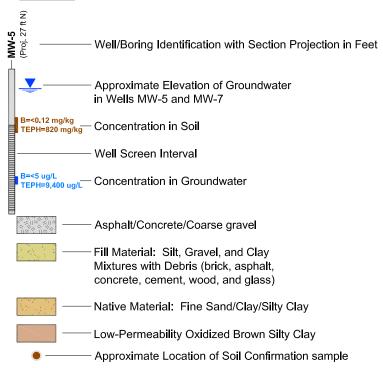
= micrograms per Liter Methyl Tertiary Butyl Ether

= Total Extractable Petroleum Hydrocarbons

= Total Purgeable Petroleum Hydrocarbons


Notes:


- 1. All locations are approximate.
- 2. Basemap source: Digitized from Alta Land Survey Title Map (undated).
- 3. Posted groundwater data are from the 6 March 2010 and 9 April 2010 sampling event. Previous groundwater investigation were conducted in 1996 and 1997.


Erler & Kalinowski, Inc.

Groundwater Sampling Results

6601/6603 Shellmound Street Emeryville, CA May 2010 EKI 950074.05 Figure 2

Abbreviations:

= not detected above stated reporting limit

B = benzene ft = feet Gal. = gallon

MSL = mean sea level

mg/kg = milligrams per kilogram ug/L = micrograms per liter NA = not analyzed

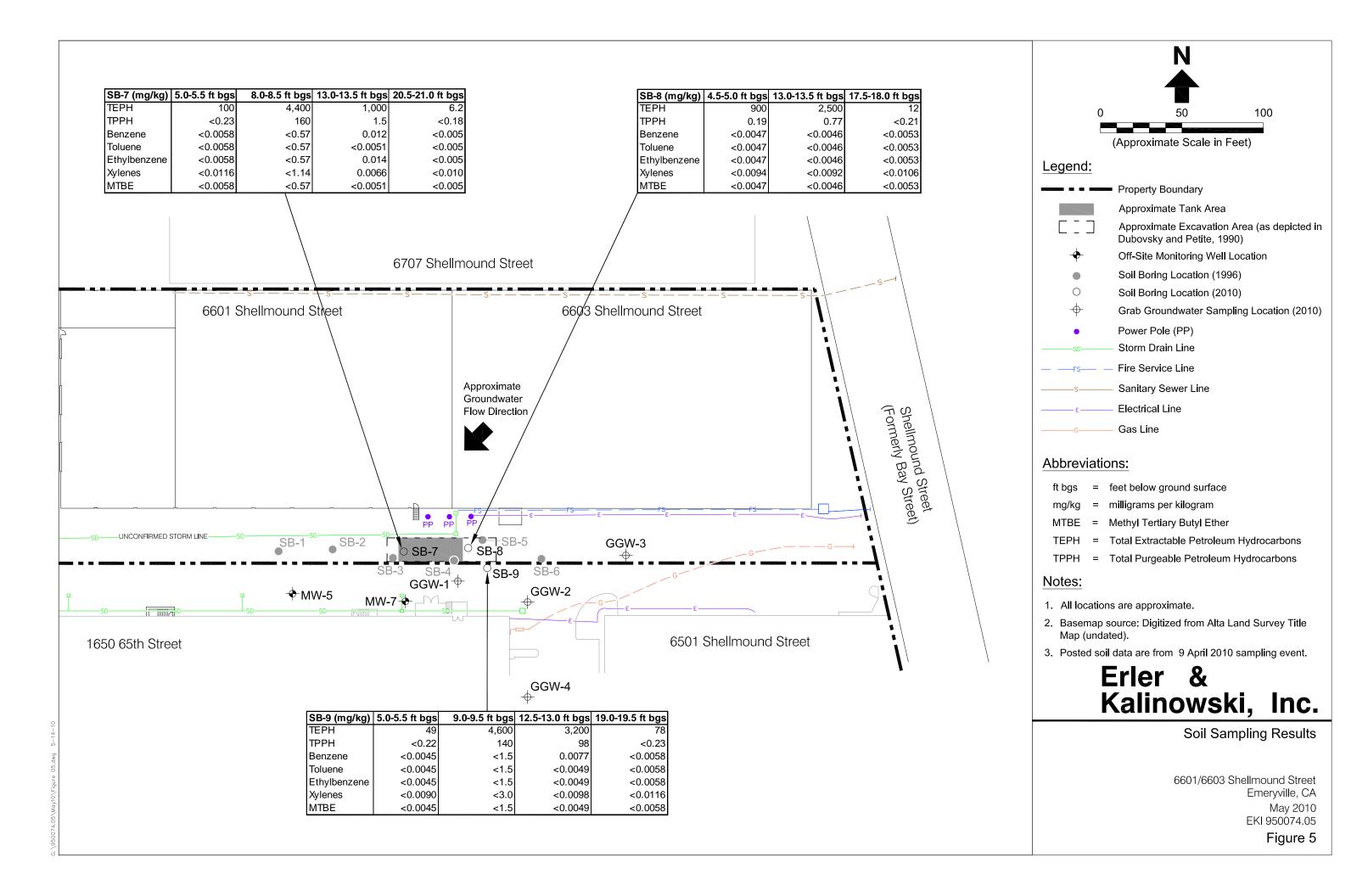
TEPH = total extractable petroleum hydrocarbons

USTs = underground storage tanks

References:

- a) Dubovsky and Petite, 1990. Environmental Report, 6601 and 6603 Bay Street, Emeryville, California, William Dubovsky Environmental and D. Larry Petite, July 1990.
- Engineering-Science, Inc., 1989. Groundwater Contamination Investigation, 1650 65th Street Property, Emeryville, California, Engineering-Science, Inc., November 1989.
- Engineering-Science, Inc., 1990. Evaluation of Groundwater Alternatives and Remedial Action Plan, 65th Street Property, Emeryville, California, Engineering-Science, Inc., November 1990.
- d) EKI, 1996. Results of Soil and Groundwater Investigation at 6601 and 6603 Bay Street, Emeryville, California, Erler & Kalinowski, Inc., 23 August 1996.
- e) EKI, 1997. Closure Report, Three Former Underground Storage Tanks at 6601 and 6603 Bay Street, Emeryville, California, Erler & Kalinowski, Inc., 18 August 1997.

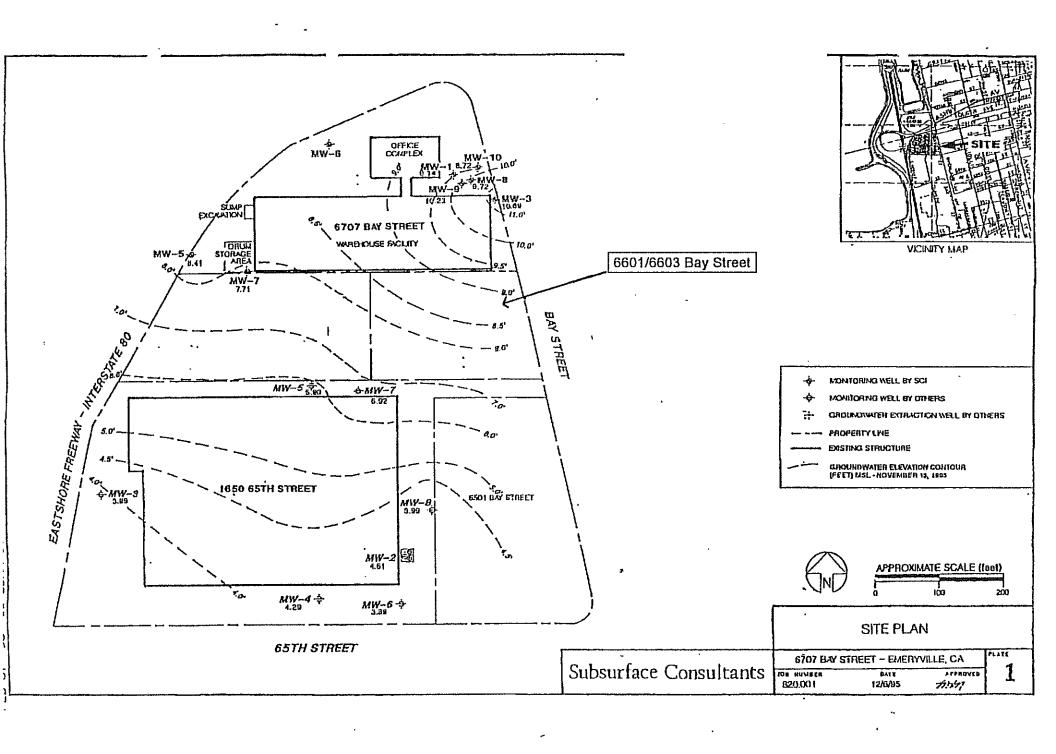
Notes:


- 1. All locations are approximate.
- 2. The data displayed at each location is projected up to approximately 32 feet from either side of the cross-section.
- Data presented on this figure for soil and groundwater are from Dubovsky and Petite, 1990, EKI, 1996, EKI, 1997, and this investigation (2010).
- Geologic information presented on this figure is from Engineering-Science, Inc., 1989 and 1990, EKI, 1996, and this investigation (2010).
- According to construction drawings from 1994, plans were in place to remove, backfill, and compact this storm drain line during improvements and seismic upgrades at the site.

Erler & Kalinowski, Inc.

Legend, Abbreviations, References and Notes

6601/6603 Shellmound Street Emeryville, CA May 2010 EKI 950074.05


Figure 4A

APPENDIX A Potentiometric Surface Map

Groundwater Potentiometric Surface in the Vicinity of 6601/6603 Shellmound Street (Obtained from Subsurface Consultants, Inc., Groundwater Monitoring, November 1995 Event, 15 December 1995)

APPENDIX B Tables Containing Soil and Groundwater Data from 1996 Investigation

(Tables 2 through 7 from EKI, 1996)

Table 2 Summary of Soil and Groundwater Sampling Depths and Analyses (a)

6601 and 6603 Bay Street

Sybase, Inc. Emeryville, California (EKI 950074.03)

Sample ID (b)	Sample Location	Sample Depth (feet bgs) (c)	TPPH as gasoline / BTEX & MTBE (EPA 8015 and 8020)	TEPH as diesel (EPA 8015)	TEPH and Fuel Fingerprint (d)	PAHs (EPA Method 8100)
Soil SB-1-5	SB-1	4.5-5	v	v		
SB-2-5	SB-1	4.5-5 4.5-5	X X	X X		
SB-3-5	SB-3	4.5-5	x	x		x
SB-4-5	SB-4	4.5-5	x	X		x
SB-5-6	SB-5	5.5-6	x	.х		^
SB-6-5	SB-6	4.5-5	x	x		
Groundwater					-	
Travel Blank	-	_	x			
SB-1	SB-1	11.0	x	x		
SB-2	SB-2	13.5	x	x		
SB-3	SB-3	11.5	x		х	
SB-4	SB-4	11.5	×	x		
SB-5	SB-5	10.5	х		х	
SB-6	SB-6	11.5	х		x	х
MW-5	MW-5	18.0 (e)	х	х		
MW-7	MW-7	6.7-18.7 (e)	x	x		

Notes:

- (a) Soil and grab groundwater samples collected by Erler & Kalinowski, Inc. on 15 June 1996 and 16 June 1996.
- (b) See Figure 2 for sampling locations corresponding to Sample ID.
- (c) "feet bgs" denotes feet below ground surface.
 Grab groundwater samples were collected through the hollow stem augers in borings drilled to the depth indicated.
- (d) For a fuel fingerprint analysis, the laboratory attempts to match the sample chromatogram with that of various hydrocarbon standards. The analysis includes the entire extractable range, i.e. from carbon chain lengths C9 to C40.
- (e) Sample depth for the monitoring wells are indicated by the screened interval of the well. For well MW-5, only the bottom depth of the screened interval is known.

Abbreviations:

TPPH = Total Purgeable Petroleum Hydrocarbons

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

MTBE = Methyl tertiary butyl ether

TEPH = Total Extractable Petroleum Hydrocarbons

PAHs = Polycyclic Aromatic Hydrocarbons

Table 3 Total Petroleum Hydrocarbon Concentrations in Soil Samples (a) 6601 and 6603 Bay Street Sybase, Inc. Emeryville, California (EKI 950074.03)

		Total Purgeable Petroleum	n Hydrocarbons		Total Extractable Petroleur	n Hydrocarbons
Sample ID (b)	Conc. as gas (c) (mg/kg)	Laboratory Description of Chromatogram Pattern	Additional Comments (d)	Conc. as diesel (e) (mg/kg)	Laboratory Description of Chromatogram Pattern	Additional Comments (c)
SB-1-5	200	Unidentifiable pattern of hydrocarbons in C8-C12 range.	Mound centered at 17 min. (not observed in other soil samples).		Unidentifiable pattern of hydrocarbons in C9-C24 range.	Mound in less than C12 range (not observed in other soil samples). Mound centered at C28,
SB-2-5	1.1	Pattern characteristic of weathered gasoline in C8-C12 range.	Mound centered at 23 min.		Unidentifiable pattern of hydrocarbons in C9-C24 range.	Mound centered at C30.
SB-3-5	<1.0	Not detected.	Mound centered at 23 min.		Unidentifiable pattern of hydrocarbons in C9-C24 range.	Mound centered at C30.
SB-4-5	4.2	Unidentifiable pattern of hydrocarbons greater than C9.	Mound centered at 23 min.		Unidentifiable pattern of hydrocarbons in C10-C24 range.	Mound centered at C30.
SB-5-6	7.3	Unidentifiable pattern of hydrocarbons greater than C8.	Mound centered at 23 min.	1 '	Unidentifiable pattern of hydrocarbons in C9-C24 range.	Some small peaks in less than C12 range. Mound centered at C30.
SB-6-5	2.5	Unidentifiable pattern of hydrocarbons in C8-C12 range.	Mound centered at 23 min. Also several peaks centered at 17 min.	1,800	Unidentifiable pattern of hydrocarbons in C9-C40 range.	Very different pattern from other soil samples. Discrete peaks at C14, C17, C20, C24, and C28.

Notes:

- (a) Soil samples collected by Erler & Kalinowski, Inc. on 15 June 1996.
- (b) Sampling locations corresponding to Sample ID are shown in Figure 3.
- (c) Concentration quantified as gasoline (includes C6 to C12 compounds).
- (d) Appendix G contains chromatograms from laboratory analysis of soil samples and, for comparison, petroleum hydrocarbon and n-alkane standards.
- (e) Concentration quantified as diesel (includes C9 to C24 compounds).

Table 4 Concentrations of Petroleum Hydrocarbon-Related Compounds in Soil Samples (a) 6601 and 6603 Bay Street

Sybase, Inc. Emeryville, California (EKI 950074.03)

Sample ID (b)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	PAHs (mg/kg)
SB-1-5 SB-2-5	<0.12 0.019	<0.12 <0.005	0.29 <0.005	2.8 0.0092	<0.62 <0.025	NA NA
SB-3-5 SB-4-5	<0.005 <0.005	<0.005 0.0094	<0.005 <0.005	<0.005 0.015	<0.025 <0.025	ND
SB-5-6	<0.005	0.0062	<0.005	0.015	<0.025	ND NA
SB-6-5	<0.005	<0.005	<0.005	0.026	<0.025	NA
PRG (c)	3.2	2,800	690	990	3,400	

Notes:

- (a) Soil samples collected by Erler & Kalinowski, Inc. on 15 June 1996.
- (b) Sampling locations corresponding to Sample ID are shown in Figure 2.
- (c) U.S. EPA Preliminary Remediation Goals ("PRGs") for industrial soils (U.S. EPA, 1 September 1995).

Abbreviations:

MTBE = Methyl tertiary butyl ether

PAHs = Polycyclic Aromatic Hydrocarbons

NA = Not analyzed

ND = No compounds detected above laboratory method detection limits (See Appendix E for laboratory data sheets

Table 5 Total Petroleum Hydrocarbon Concentrations in Groundwater Samples (a) 6601 and 6603 Bay Street Sybase, Inc. Emeryville, California (EKI 950074.03)

		Total Purgeable Petroleum	Hydrocarbons		Total Extractable Petroleum I	Hydrocarbons
Sample ID (b)	Conc. as gas (c)	Laboratory Description of Chromatogram Pattern	Additional Comments (c)	Conc. (d)	Laboratory Description of Chromatogram Pattern	Additional Comments (c)
	(ug/L)			(ug/L)		
SB-1	930	Unidentifiable pattern of hydrocarbons greater than C8.	Discrete peaks in 12-20 min. range.	9,400 (as diesel)	Unidentifiable pattern of hydrocarbons in C9-C24 range.	Mound in less than C12 range.
SB-2	<50	Not detected.	Small mound centered at 24 min.	<41,000 (as diesel)	Not detected.	No peaks visible.
SB-3	<5000	Not detected.	Mound centered at 24 min.	13,000,000 (total extract.)	Pattern characteristic of diesel and unidentifiable pattern of hydrocarbons in C25-C36 range.	Mound centered at C17 with some discrete peaks.
SB-4	<200	Not detected.	Small mound centered at 24 min.	690,000 (as diesel)	Pattern characteristic of weathered diesel.	Mound centered at C17 with some discrete peaks.
SB-5	.,	Unidentifiable pattern of hydrocarbons greater than C11 and discrete peak in C6-C7 range.	Mound centered at 24 min.	2,100,000 (total extract.)	Pattern characteristic of diesel.	Mound centered at C17.
SB-6	, -,-,	Unidentifiable pattern of hydrocarbons greater than C11.	Mound centered at 24 min.	22,000,000 (total extract.)	Pattern characteristic of diesel.	Mound centered at C17.
MW-5	180	Pattern characteristic of weathered gasoline in C6-C12 range.	Discrete peaks in 16-23 min. range.	<40,000 (as diesel)	Not detected.	No peaks visible.
MW-7	<50	Not detected.	No peaks or mounds.	1,000 (as diesel)	Unidentifiable pattern of hydrocarbons in C9-C24 range.	Mound centered at C24 (not observed in other groundwater samples).

Notes:

- (a) Groundwater samples collected by Erler & Kalinowski, Inc. on 15 and 16 June 1996.
- (b) Sampling locations corresponding to Sample ID are shown in Figure 2.
- (c) Concentration quantified as gasoline (includes C6 to C12 compounds).
- (d) Appendix G contains chromatograms from laboratory analysis of samples and, for comparison, petroleum hydrocarbon and n-alkane standards.
- (e) Concentration quantified either as diesel (includes C9 to C24 compounds) or as total extractable petroleum hydrocarbons (includes C9 to C40 compounds).

TABLES.XLS

Table 6

Concentrations of Petroleum Hydrocarbon-Related Compounds in Groundwater Samples (a)

6601 and 6603 Bay Street

Sybase, Inc. Emeryville, California

(EKI 950074.03)

						PA	∖Hs
Sample ID (b)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Acenaph- thene	Fluorene
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
SB-1	<5	<5	11	17	<25	NA	NA
SB-2	0.99	<0.5	<0.5	<0.5	6.4	NA	NA
SB-3	160	<50	<50	<50	<250	NA	NA
SB-4	5.0	<2	<2	<2	<10	NA	NA
SB-5	150	<5	<5	11	<25	NA	NA
SB-6	<1,000	<1,000	<1,000	<1,000	<5,000	12,000- 42,000 (c)	25,000- 96,000 (c)
MW-5	39	<0.5	<0.5	<0.5	8.1	NĄ	NA
MW-7	47	0.87	<0.5	0.8	6.5	NA	NA
************************	440>4094	-4		********************************	*********************		
PRG (d)	0.39	720	1,300	1,400	180	370	240
MCL (e)	1	150	700	1,750	- (f)		-
]							

Notes:

- (a) Groundwater samples collected by Erler & Kalinowski, Inc. on 15 and 16 June 1996.
- (b) Sampling locations corresponding to Sample ID are shown in Figure 2.
- (c) Laboratory indicated that results may be artificially high due to presence of unknown, interfering hydrocarbon. PAHs are most likely associated with free product present in groundwater sample. Therefore, the reported concentrations are likely to be greater than actual aqueous concentrations. Sample analyzed after hold time.
- (d) U.S. EPA Preliminary Remediation Goals ("PRGs") for drinking water (U.S. EPA, 1 September 1995).
- (e) Maximum Contaminant Levels ("MCLs") for drinking water.
- (f) Hyphen indicates that an MCL is not available for this compound.

Abbreviations:

MTBE = Methyl tertiary butyl ether

PAHs = Polycyclic Aromatic Hydrocarbons

NA = Not analyzed

Table 7 Results of Trend Analysis for Groundwater Data from Wells MW-5 and MW-7 (a) 6601 and 6603 Bay Street Sybase, Inc. Emeryville, California (EKI 950074.03)

		Well	VIVV-5		Well MW-7				
Statistical Parameters	TPPH	Benzene	Toluene	Total Xylenes	TPPH	Benzene	Toluene	Total Xylenes	
n (b) S (c) Mann-Kendall Probability (d) Significance Level (f) Result (g)	18 14 0.313 0.05 No upward trend	26 -135 NA (e) 0.05 No upward trend	18 -18 NA (e) 0.05 No upward trend	18 21 0.227 0.05 No upward trend	18 -61 NA (e) 0.05 No upward trend	26 -96 NA (e) 0.05 No upward trend	18 -22 NA (e) 0.05 No upward trend	18 2 0.485 0.05 No upward trend	

Notes:

- (a) The data from Table 1 were evaluated using the Mann-Kendall test. A value equal to half the detection limit was used for concentrations reported to be less than laboratory method detection limits. Because detection limit values were not available for data prior to 1992, only the data from 29 January 1992 to 16 June 1996 were used in the analyses for all compounds except benzene. All historical data for benzene were used because the benzene concentrations were above detection limits. A statistical evaluation of ethylbenzene concentrations was not performed because ethylbenzene concentrations were less than detection limits in all but one sample.
- (b) "n" is the number of sampling events.
- (c) "S" is the Mann-Kendall statistic calculated using the methodology described in Gilbert (1987).
- (d) Mann-Kendall probability is related to the values of S and n, and is obtained from Table A21 in Hollaender and Wolfe (1973).
- (e) A negative S value indicates that the data are clearly not increasing and a Mann-Kendall probability is not applicable ("NA").
- (f) A significance level of 0.05 is recommended by U.S. EPA (1994).
- (g) A negative S value or a Mann-Kendall probability greater than the significance level indicates that there is no upward trend in the data (Gilbert, 1987).

Abbreviations:

TPPH = Total Purgeable Petroleum Hydrocarbons quantified as gasoline

${\bf APPENDIX}\ C$ Field Methods and Procedures for Soil and Groundwater Sampling

APPENDIX C

Field Methods and Procedures for Soil and Groundwater Sampling 6601/6603 Shellmound Street, Emeryville, California

On behalf of Sybase, Inc. ("Sybase"), Erler and Kalinowski, Inc. ("EKI") performed soil and groundwater sampling for chemical analysis at the 6601-6603 Shellmound Street property ("Site") in March and April 2010. This Closure Request summarizes the result of the additional Site characterization done in general accordance with (1) the *Work Plan for Additional Site Characterization* prepared by EKI on 1 June 2009 ("Work Plan"), (2) the 14 August 2009 approval letter from Alameda County Environmental Health department ("ACEH"), and (3) the 11 September 2009 letter from EKI in response to the approval letter.

C.1 PREPARATION

In preparation for field work, EKI applied for and obtained a drilling permit from the Alameda County Public Works Agency ("ACPWA"). The permit, number W2010-0130, was approved on 3 March 2010. A copy of the drilling permit is included at the back of this appendix. A site-specific Health and Safety Plan ("HSP") also was prepared for the work.

EKI contracted with Gregg Drilling and Testing of Martinez, California, ("Gregg") a State of California-licensed drilling contractor, to perform subsurface work for soil and grab groundwater sampling. As specified in the Work Plan, planning included the use of prefabricated dual-pipe casing with "prepack" filter-packed screened sections for grab groundwater sampling, in order to help reduce groundwater sample turbidity.

On Wednesday, 3 March 2010, EKI visited the Site and part of the adjacent property to the south at 1650 65th Street, to mark planned drilling locations, identify access constraints, and to discuss the upcoming field sampling schedule. EKI had scheduled the work for the following Saturday in order to meet the requirements of the current tenant, Ex'pression Digital Arts College. Accompanying EKI on the Site visit were Susan Shirk of TMG Partners and Jacob Warren of Ex'pression. EKI also checked the general condition of the two on-Site monitoring wells scheduled for sampling, MW-5 and MW-7, concluding that the wells did not need development prior to sampling. The planned locations of the soil and grab groundwater sample boreholes were marked on the ground, and Underground Services Alert ("USA") was notified of the work, so that the buried utility owners and operators could mark the locations of their various existing lines.

Two days later, on Friday, 5 March 2010, EKI visited the Site with a private utility locating company to clear the proposed drilling locations for buried utilities using electromagnetic detectors and the marked lines from the USA-notified utility companies. The final borehole locations did not appear to be in conflict with any known utility lines.

C.2 SITE INVESTIGATION

On 6 March 2010, EKI met Gregg at the Site to begin the drilling and sampling project. EKI purged and sampled two onsite monitoring wells, MW-5 and MW-7, while the grab groundwater sample boreholes were being completed to depth.

Each of the locations was cored by Osborne's Concrete Coring of Fremont, California prior to drilling. The concrete cores were left in-place for safety, and were removed only when drilling of a particular borehole began.

Soil boreholes GGW-1, GGW-2, and GGW-3 were drilled on 6 March 2010, using a truck-mounted Marl 2.5 DP combination direct-push and auger rig. The upper five-foot interval of every borehole was drilled out using a 3½-inch diameter hand-auger, so that any unmarked or otherwise undetected utility lines could be discovered without damage or exposure of workers to utility-related hazards. Subsurface materials encountered in the upper five feet of depth generally were poorly sorted, and probably were related to a former landfill at the Site. Brick and concrete fragments were common, which slowed the hand-augering process.

Grab groundwater sampling was conducted in these boreholes, using 1.5-inch ID temporary PVC casing with 0.010-inch slotted casing encased in sand-filled stainless-steel "prepack" screens. As described above, coarse materials encountered in the shallow subsurface slowed drilling, thus, the boreholes planned for soil sampling, SB-7, SB-8, and SB-9, were drilled on a subsequent 9 April 2010 mobilization, using a track-mounted Marl M5T combination direct-push and auger rig. A fourth grab groundwater sample borehole, GGW-4, also was advanced at this time. Borehole locations are shown on Figure 2. Field notes and borehole logs for the investigation are included in Appendix E of this report.

Gregg Drilling pre-cleaned all of the non-disposable drilling and sampling equipment they supplied during the investigation. Disposable equipment such as temporary casing was new and unused. EKI-supplied equipment also either was new or pre-cleaned. The supervising geologist inspected the drilling and sampling equipment for obvious contamination prior to the start of work, and none was evident. No steam-cleaning was performed on-site, as Gregg provided sufficient drillpipe and bits to advance all boreholes in a given day without the need to re-use augers. The sampling equipment was hand-washed in a 3-bin system with a non-phosphate detergent and a double rinse with distilled water. The rinse water generated by decontamination was collected and contained in a DOT-approved 55-gallon drum by the driller.

C.2.1 Grab Groundwater Sampling

Boreholes GGW-1, GGW-2, GGW-3, and GGW-4 were drilled using direct-push with a 2.5-inch inner diameter "macro core" split-barrel sampler to obtain a continuous core to the total depth of the borehole. Afterward, each borehole was reamed with 8.25-inch O.D. hollow-stem augers to facilitate placement of a temporary casing with prepacked screen for grab groundwater sampling.

Soil samples were collected for geologic logging, which was performed by an EKI California Professional Geologist, or a geologist working under the supervision of a Professional Geologist. Stratigraphic and geologic details observed in the cores are provided in the borehole logs in Appendix E.

Soil cores were screened with a Thermo-Electric Model 580-B organic vapor meter ("OVM") equipped with a photoionization detector. The OVM was calibrated upwind and away from the exclusion zone at the beginning of each workday with a mixture of 100 ppmv isobutylene in compressed air.

Separate phase hydrocarbons ("SPH") were encountered in two of the four drilled groundwater sample boreholes. In order to avoid saturating the entire length of sandpack and screen with SPH and potentially biasing the grab groundwater sample analyses, the prepack screen sections were threaded together, saturated with distilled water, then inserted into a plastic sheath constructed from the inner polyethylene liner bag which held the screen during shipping. The bottom of the sheath covering the screen was twisted and loosely taped, then the assembly was inserted into the augers. Once the bottom of the screen extended several feet below the waterline, the casing was pushed down while the sheath was pulled up, until the bottom end came undone and the screen could be fed into the augers through the sheath, past the SPH, to the total depth of the borehole. The screen was inserted quickly, and the sheath was withdrawn and discarded. A ten-foot length of prepack screen with a four-foot blank PVC riser was installed in each grab groundwater sample borehole using this technique.

After placement of the temporary casing, EKI attempted to measure SPH thickness using a product interface probe, but the thickness in the casing was generally limited to a sheen and an actual thickness could not be measured. In accordance with the Work Plan, purging and sampling was conducted using a peristaltic pump with the intake set below the water surface. The intake tubing was emplaced using a stilling tube which was temporarily sealed until its opening was below the water surface.

Groundwater samples were collected from the temporary casing using "low-flow sampling techniques" (i.e., in general accordance with EPA recommended procedures (Low Flow (Minimal Drawdown) Groundwater Sampling Procedures, EPA/540/S-95/504, April 1996, and Use of Low-Flow Methods for Groundwater Purging and Sampling: An Overview, US EPA Region 9, Quick Reference Advisory, December 1995). In accordance with these protocols, groundwater was purged until at least three of

four parameters (temperature, specific conductance, pH, and turbidity) had stabilized. Turbidity remained relatively high in the water samples collected, despite the careful use of prepacked screens.

Following purging, groundwater samples were collected into pre-cleaned, laboratory supplied sample containers appropriate for the method of analysis, using the peristaltic pump. New tubing was used in each borehole. Each sample was labeled with a unique sample number and the date and time of collection, placed in a zip-closure plastic bag, logged onto a chain-of-custody form, and placed in a chilled ice chest for transport to the laboratory. Grab groundwater samples were analyzed by Curtis & Tompkins, Ltd. of Berkeley, California, a California-certified laboratory, for the following constituents:

- Total Purgeable Petroleum Hydrocarbons as gasoline ("TPPH) using EPA Method 8015M;
- Total Extractable Petroleum Hydrocarbons as diesel ("TEPH") ") using EPA Method 8015M;
- benzene, toluene, ethylbenzene, xylenes ("BTEX"), fuel oxygenates, 1,2-dibromoethane, and 1,2-dichloroethane using EPA Method 8260B;
- polycyclic aromatic hydrocarbons ("PAHs") using EPA Method 8270C; and
- total dissolved solids ("TDS").

Laboratory data sheets are included on a CD in Appendix F.

C.2.2 Monitoring Well Sampling

The initial inspection of the two existing on-Site monitoring wells (MW-5 and MW-7) indicated that their condition was acceptable for purposes of groundwater sampling. The wells were purged and sampled using the same low-flow sampling techniques as were used in the temporarily-cased boreholes. In accordance with these protocols, groundwater was purged until at least three of four parameters (temperature, specific conductance, pH, and turbidity) had stabilized. Turbidity of water pumped from the wells was very low, relative to the grab groundwater samples.

Following purging, groundwater samples were collected into pre-cleaned, laboratory supplied sample containers appropriate for the method of analysis, using the peristaltic pump. New tubing was used in each borehole. Each sample was labeled with a unique sample number and the date and time of collection, placed in a zip-closure plastic bag, logged onto a chain-of-custody form, and placed in a chilled ice chest for transport to the laboratory. Grab groundwater samples were analyzed by Curtis & Tompkins, Ltd. for the same set of constituents as the grab groundwater samples. Laboratory data sheets are included on a CD in Appendix F.

C.2.3 Soil Sampling

Soil boreholes SB-7, SB-8, and SB-9 were drilled and sampled on 9 April 2010, both for geologic logging and off-site chemical analysis. The boreholes were drilled using direct-push with a 2.5-inch inner diameter "macro core" split-barrel sampler to obtain a continuous core to the total depth of the borehole.

Soil samples were collected and geologically logged by a California Professional Geologist, or an EKI geologist working under his supervision. Details of stratigraphy for all sampling locations are recorded in the borehole logs in Appendix E. Soil samples also were collected for chemical analysis at Curtis & Tompkins, Ltd.

Soil cores were screened with a Thermo-Electric Model 580-B organic vapor meter ("OVM") equipped with a photoionization detector. The OVM was calibrated upwind and away from the exclusion zone at the beginning of each workday with a mixture of 100 ppmv isobutylene in compressed air.

Samples of soil for chemical analysis were collected in either 5g Encore[®] samplers, for analysis of VOCs and TPH-g, or new laboratory-provided 8-oz glass jars, for nonvolatile analytes. Each sample was labeled with a unique sample number and the date and time of collection, placed in a zip-closure plastic bag, logged onto a chain-of-custody form, and placed in a chilled ice chest for transport to the laboratory.

Soil samples were analyzed for the following constituents:

- TPPH using EPA Method 8015M;
- TEPH using EPA Method 8015M;
- BTEX, fuel oxygenates, 1,2-dibromoethane, and 1,2-dichloroethane using EPA Method 8260B;
- PAHs by EPA Method 8270C; and
- moisture content by ASTM D2216.

Laboratory data sheets are included on a CD in Appendix F.

C.2.4 Grouting and Surface Completion

All boreholes completed at the Site were backfilled with neat cement grout from the total depth of the borehole. Neat cement grout was mixed at the surface using Type I/II Portland cement, and emplaced in each borehole using a tremie pipe from the bottom of

the hole upwards, in accordance with ACPWA requirements. The final surface completion was concrete, dyed black to match the existing asphalt parking lot surface.

ACPWA staff were notified of the work within time frames specified in the drilling permit. Because the initial day of drilling (6 March 2010) fell on a weekend, no grout inspector was available, but an on-site inspection was performed by ACPWA during grouting of boreholes drilled on the second day of investigation, 9 April 2010. ACPWA did not raise any concerns regarding the grouting procedure during or after the inspection.

C.3 INVESTIGATION-DERIVED WASTES

Soil cuttings and cores, purged groundwater from the boreholes and monitoring wells, and rinsate from equipment cleaning were contained in labeled, sealed 55-gallon DOT-approved steel drums, and staged on-site pending receipt of analytical results. A composite sample from the soil drums and a grab sample from the water drum was analyzed for disposal characterization. After the analytical results were reviewed, the wastes were disposed by Clearwater Environmental of Fremont, California, in accordance with applicable laws and regulations as described in the Work Plan.

APPENDIX D Alameda County Public Works Agency Drilling Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 03/03/2010 By jamesy

Permit Numbers: W2010-0130 Permits Valid from 03/06/2010 to 03/08/2010

City of Project Site: Emeryville Application Id: 1267223797462

Site Location: 6601/6603 Bay Street, Emeryville, CA 94608 **Project Start Date:** 03/06/2010 Completion Date: 03/08/2010

Assigned Inspector: Contact John Shouldice at (510) 670-5424 or johns@acpwa.org

Erler & Kalinowski, Inc. - Logan Hansen Phone: 650-292-9100 Applicant:

1870 Ogden Drive, Burlingame, CA 94010

Vince Herington Sybase, Inc. **Property Owner:** Phone: --

One Sybase Drive, Dublin, CA 94568 Client: ** same as Property Owner **

Contact: Phone: 650-292-9100 Jeff Shaw Cell: 650-207-6185

> **Total Due:** \$265.00

Receipt Number: WR2010-0062 Total Amount Paid: \$265 00 Payer Name : Erler & Kalinowski, Inc. - TomPaid By: CHECK PAID IN FULL

Kalinowski

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 6 Boreholes

Work Total: \$265.00 Driller: Gregg Drilling & Testing, Inc. - Lic #: 485165 - Method: hstem

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2010-	03/03/2010	06/04/2010	6	6.00 in.	20.00 ft
0130					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544

For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org

For Drilling Permit information and process contact James Yoo at

Phone: 510-670-6633 FAX: 510-782-1939 Email: <u>Jamesy@acpwa.org</u>

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460

Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460

Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000

Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (<u>www.acgov.org/pwa/wells/index.shtml</u>) for links to additional forms.

APPENDIX E Borehole Logs

BOREHOLE LOCATION	6601 6603 She mound Street, Er	meryv e, Ca forn a			BOREHOLE / WELL NAME	GGW-	1	
DRILLING COMPANY	Gregg Dr ng & Test ng, Inc., C	57 L c. # 485165			PROJECT NAME	6601/6603 Bay Street		
DRILLING METHOD	Ho ow Stem Auger (Mar M2.5 D	P)			PROJECT NUMBER	950074.05		
CONDUCTOR CASING	NA	DIAMETER (inches)	FROM (feet)	то	DATE STARTED	3/6/10	DATE COMPLETED 3/6/10	
BLANK CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	8.0	TOTAL DEPTH 15	
PERFORATED CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATUM NA			
GROUT	Type I/II Port and Cement		FROM (feet) 0.0	TO 15.0	TOP OF CASING		GROUND SURFACE	
SEAL	NA		FROM (feet)	ТО	LOGGED BY Jeff Shaw, PG #7759			
FILTER PACK	NA		FROM (feet)	ТО	CHECKED BY	Jeff Shav	v, PG #7759	
DEMARKS	Hand averaged to E ft han Caman	ad na D mast Dah	WA O	,				

REMARKS Hand augered to 5 ft bgs. Samp ed us ng D rect Push "Macro Core".

			SA	MPLES						(5)	
	TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (ymdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
D - BH AND MW LOG SYBASE2 GPJ EK F V5 GD 4/27/10	8		+ SAM	1 1.6	BLC	0 0 0 0	3 - 4 - 5 - 6 - 7 - 8 -	ASPHALT CONCRETE FLL (SANDY CLAY) black (10YR 2/1) 35% medium to coarse grained sand 65% clay brick fragments and angular clasts to 0.5-inches common stiff moist Brick fragments very common clay has less sand and is stiffer FLL (SAND) dark gray (10YR 4/1) trace clay soft loose moist FLL (CLAY W TH SAND & GRAVEL) black (10YR 2/1) 10% fine gravel 10% fine to coarse grained sand 80% clay brick and wood fragments common possible sheen stiff moist to wet No more brick fragments sheen on core clearly visible weak petroleum odor	FLL (CL)		
I-EK S D - BH AND MW L			_	2		35.2	9 —	SAND W TH GRAVEL very dark brown(10YR 2/2) 20% fine to medium gravel 80% fine to coarse grained sand rounded to angular lithic fragments moderate petroleum odor sheen dense wet	SW		

	ehole & l	7 7 61	1 001	1311 U	CliOII				<u> </u>	<u> </u>	Inc.
PROJE NAME	ECT 6601/	6603	Bay S	treet		PRO NUM	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	GGW 1	1	
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY W	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
1-EK S D - BH AND MW LOG SYBASEZ GPJ EK F V5 GD 4/27/10			2		14.3 24.8 9.9 7.1 7.7	12 — 13 — 14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 —	SAND W TH GRAVEL very dark brown(10YR 2/medium gravel 80% fine to coarse grained sand lithic fragments moderate petroleum odor sheet (continued) Coarse angular gravel interval 4-inches thick CLAY W TH SAND black (10YR 2/1) 5% angula medium to coarse grained sand 75% clay lithic possible altered volcanic in clasts stiff soft wet Total Depth of Borehole = 15 feet	I rounded to angular dense wet ar fine gravel 20% fragments with	CL		

BOREF LOCAT	TION 660	1 66	03 She	moun	d Stree	t, Em	eryv e, Ca forn a			BOREHOLE / WELL NAME	GGW-	2	
DRILLI COMP		egg C	Or ng 8	& Test i	ng, Inc.,	C 5	7 L c. # 485165			PROJECT NAME	6601/6	603 Ba	y Street
DRILLI METHO		ow s	Stem A	uger (N	/lar M2.	.5 DP)			PROJECT NUMBER	95007	4.05	
COND	UCTOR NA						DIAMETER (inches)	FROM (feet)	то	DATE STARTED	3/6/10	DATE COMPL	LETED 3/6/10
BLANK CASIN							DIAMETER (inches)	FROM (feet)	то	BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 15
PERFO CASIN	DRATED NA G						DIAMETER (inches)	FROM (feet)	то	DATUM NA			
GROU	Т Тур	e I/II	l Port aı	nd Cen	nent			FROM 0.0 (feet)	TO 15.0	TOP OF CASING		GROUI SURFA	
SEAL	NA							FROM (feet)	ТО	LOGGED BY	Jeff Shav	w, PG #7	7759
FILTER PACK	R NA							FROM (feet)	ТО	CHECKED BY	Jeff Shav	w, PG #7	7759
		SA	MPLES								111	<u>ه</u>	WELL
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (vmdd)	DEPTH (feet)	MATERIAL	DESCRIPTIC	ON AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	CONSTRUCTI
		T	0.5				ASPHALT						
			4.5		0	1 · 2 ·	F LL (GRAVEL W gravel 30% mediu subangular clasts t medium dense we	m to coarse gra co 2-inches bric	ained sand 5%	clay rounded to	F LL (GP)		
					0	4 -	Brick fragments ve			size loose dry	FLL		
		1 1				5 -					(CL)	1///	
			1		0.2	6 -	sand 10% silt 60% wood fragments up			um odor soft moist	(02)		
		-	0.5		2.1	6 - 7 - 8 -		heen on core ND black(2 5) d subrounded ches common	faint odor wet (2 5/1) 60% g to subangular rare brick fragr	um odor soft moist ravel 40% fine to lithic fragments nents oily sheen	- GP		

Borehole & V	VCI	1 001	istru	StiOii				$\overline{}$		Inc.
PROJECT 6601/0	6603	Bay S	treet		PRO	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	GGW 2	ı	
	SA	MPLES							(1)	
COLLECTED SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
		2		7.1 0.5	12 — 13 — 14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 —	GRAVEL W TH SAND black (2 5Y 2 5/1) 60% g coarse grained sand subrounded to subangular greater than 15-inches common rare brick fragreer than 15 inches common wood (continued) Four-inch silt interval CLAY black (10YR 2/1) 10% fine to coarse grainetroleum odor rare greenish-black mottles soft Total Depth of Borehole = 15 feet	lithic fragments ments oily sheen debris loose wet	CL		

BOREHOLE LOCATION	6601 6603 She mound Street, Er	meryv e, Ca forn a			BOREHOLE / WELL NAME	GGW-	3	
DRILLING COMPANY	Gregg Dr ng & Test ng, Inc., C	57 L c. # 485165			PROJECT NAME	6601/6	6603 Bay Street	
DRILLING METHOD	Ho ow Stem Auger (Mar M2.5 D	P)			PROJECT NUMBER	95007	4.05	
CONDUCTOR CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATE STARTED	3/6/10	DATE COMPLETED 3/6/10	
BLANK CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	8.0	TOTAL DEPTH 15	
PERFORATED CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATUM NA			
GROUT	Type I/II Port and Cement		FROM 0.0 (feet)	TO 15.0	TOP OF CASING		GROUND SURFACE	
SEAL	NA		FROM (feet)	ТО	LOGGED BY	Jeff Shav	v, PG #7759	
FILTER PACK	NA		FROM (feet)	ТО	CHECKED BY Jeff Shaw, PG #7759			
REMARKS	Hand augered to 5 ft bgs. Samp	ed us na Direct Push	"Macro Core					

REMARKS Hand augered to 5 ft bgs. Samp ed us ng D rect Push "Macro Core".

			SA	MPLES						()	
	TIME COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
								ASPHALT			
				1.5			1 —	CONCRETE			
			+			0	_	FLL (GRAVEL W TH S LT AND SAND) brown (10YR 4/3) concrete and lithic fragments common loose dry	F LL (GW)	S	
							2 —	FLL (CLAY) very dark brown(10YR 2/2) 20% fine to coarse grained sand 80% clay grey-green mottled hard moist	F LL (CL)		
				3.5		0	3 —				
						0	4 —	Very hard augering cobbles and concrete fragments near-refusal			
0							5 —	FLL (S LT W TH SAND) black (10YR 2/1) 15% medium to coarse grained sand trace fine angular gravel moist	F LL (ML)		
3D 4/27/10				1.5		0	6 —				
EK F V5 (0	7 —	Metal foil and debris wet	Ā		
SE2 GPJ				1.2			_	Gravel increased with depth (to 20%) CLAY W TH SAND black (10YR 2/1) 10% sub-rounded to sub-angular gravel 15% fine to coarse grained sand 75% clay trace	CL		
3 SYB/						0	8 —	plant material soft moist to wet			
D - BH AND MW LOG SYBASE2 GPJ EK F V5 GD				0			9 —	SLTY GRAVEL W TH SAND black (10YR 2/1) 55% sub-rounded to angular gravel 30% fine to coarse grained sand 15% silt mixed lithic fragments in gravels loose wet generally poor recovery	GW		
- BH Aî							10 —				
I-EKSD				0.2		0	_				

MATERIAL DESCRIPTION AND DRILLING NOTES O SITY GRAVEL WITH SAND black (10VR 2/1) 65% sub-rounded to angular gravels 30% fine to coarse grained sand 15% silt mixed lithic fragments in gravels loose wet generally poor recovery (continued) 1.5 O SITY GRAVEL WITH SAND black (10VR 2/1) 65% sub-rounded to angular gravels loose wet generally poor recovery (continued) O CLAY WITH SAND graveliab black (10VR 2/1) 20% medium to coarse grained sand 50% day Bay mut thrace gravels and shell fragments hydrogen suifile older soft wet 15 2-Inch fine sand layer with shell fragments Total Depth of Borehole = 15 feet 17 18 19 20 21 22 21 22 21 22 22 21 22 22 24				, 00,	iotia	ction					<u> </u>	Inc.
MATERIAL DESCRIPTION AND DRILLING NOTES O. 2 O. 3 I. 5 O. 2 O. 2 O. 2 O. 3 I. 5 O. 3 I. 5 O. 4 I. 5 O. 2 O. 2 O. 2 O. 3 I. 5 O. 4 I. 5 O. 2 O. 2 O. 2 O. 2 O. 3 I. 5 O. 3 I. 5 O. 4 I. 5 O. 5 O	PROJI NAME	ECT 6601	/6603	Bay S	treet		PRO NUM	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	GGW 3		
0.2 SLTY GRAVEL W.TH SAND black (10YR 2/1) 55% sub-rounded to angular gravel 30% fine to coarse grained sand 15% slit mixed films fragments in gravels lose wet generally poor recovery (continued) 12	TIME	SAMPLE NAME				(vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
26 — 27 — 27 — 28 — 28 —	1-EK S D - BRAND MWY LOGS SYBASEZ GFJ EK F VS GD 4/Z/710		SAM	0.2	078	0	12 — 13 — 14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 —	angular gravel 30% fine to coarse grained sand fragments in gravels loose wet generally poor record of the same state of	.15% silt mixed lithi recovery (continued)	GW CC		

BOREHOLE LOCATION 6601 6603 She mound Street, Emeryv e, Ca forn a DRILLING COMPANY Gregg Dr ng & Test ng, Inc., C 57 L c. # 485165 DRILLING METHOD D rect Push (Mar M5) CONDUCTOR CASING NA DIAMETER (inches) FROM (feet		BOREHOLE / WELL NAME PROJECT NAME	GGW-4				
COMPANY Gregg Dr ng & Test ng, Inc., C 57 L c. # 485165 DRILLING METHOD D rect Push (Mar M5) CONDUCTOR CASING NA DIAMETER (inches) FRO (feet)			6601/6				
METHOD D rect Push (Mar M5) CONDUCTOR CASING DIAMETER (inches) FRO (feet			⁷ 6601/6603 Bay Street				
CASING NA (inches) (feet		PROJECT NUMBER	950074	l.05			
		DATE STARTED		DATE COMPLETED 4/9/10			
BLANK CASING NA DIAMETER (inches) FRC	ROM TO et)	BOREHOLE DIAM (inches)		TOTAL DEPTH 13.5			
PERFORATED NA DIAMETER (feet (feet)		DATUM NA					
GROUT Type I/II Port and Cement FRC (feet	OM 0.0 TO et)	TOP OF CASING		GROUND SURFACE			
SEAL NA FRO		LOGGED BY	Adam Abe	e es			
FILTER NA FRO		CHECKED BY	Jeff Shaw	ı, PG #7759			

REMARKS Hand augered to 5 ft bgs. Samp ed us ng D rect Push "Macro Core".

			SA	MPLES						(1)	
	TIME COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
-EK S D - BH AND MW LOG SYBASE2 GPJ EK F V5 GD 4/27/10			=	0.33		0 0 0 0 0 0 0	1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 —	ASPHALT Two 2-inch layers of asphalt (pre-cored) FLL (SLTY SAND) light yellowish brown (10YR 6/4) 70% fine to medium grained sand 30% silt dry Sand color darkens to brown (10YR 4/3) hard moist FLL (GRAVEL) gray (10YR 6/1) 100% angular gravel up to 3-inches concrete and lithic fragments common loose dry FLL (SLTY SAND) light yellowish brown (10YR 6/4) 70% fine to medium grained sand 30% silt dry FLL (SANDY SLT) brown (10YR 4/3) 20% fine to medium grained sand 80% silt firm wet FLL (SLTY SAND W TH GRAVEL) very dark gray (10YR 3/1) 20% fine to coarse gravel 65% medium to coarse grained sand 15% silt coarse sand fraction consists primarily of quartz and feldspar grains sand grades from medium to coarse with depth loose wet FLL (CLAY) dark yellowish brown (10YR 3/6) medium plasticity hard dry FLL (SLT) white (10YR 8/1) silt-sized material that may be finely-crushed concrete soft	FLL (SM) FLL (SM) FLL (SM) FLL (SM) FLL (ML)		

	ehole & V	VCI	1 001	istiu	CliOII				<u> </u>	<u> </u>	Inc.
PROJI NAME	ECT 6601/	6603	Bay S	treet		PRO	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	GGW 4		
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY W THE (feet)	BLOW COUNT	M/VO (vmdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
COLLECT S D - BITANU WWW LOG STBASEZ GFJ EN F VS GD 412/10	SAMPL	SAMPLE T	4.2.2. 0.0. 0.5. 1.5	BTOW CO	(/wdd) 0 0 0	12 — 13 — 14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 —	FLL (SAND) black (10YR 2/1) 100% fine grains non-cohesive coarsens downward to fine and m very loose wet Drillers report refusal due to concrete debris or p concrete recovered in sampler shoe Total Depth of Borehole = 13 5 feet	ed sand edium grained sand		GRAPH GRAPH	
EK S D-BHAND MW LOG SY						26 — 27 — 28 —					

BOREHOLE LOCATION	6601 6603 She mound Street, En	meryv e, Ca forn a			BOREHOLE / WELL NAME	SB-7			
DRILLING COMPANY	Gregg Dr ng & Test ng, Inc., C	57 L c. # 485165			PROJECT NAME	6601/6	6603 Bay Street		
DRILLING METHOD	D rect Push (Mar M5)				PROJECT NUMBER	950074.05			
CONDUCTOR CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATE STARTED	4/9/10	DATE COMPLETED 4/9/10		
BLANK CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	2.3	TOTAL DEPTH (feet) 24		
PERFORATED CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATUM NA				
GROUT	Type I/II Port and Cement		FROM (feet) 0.0	TO 24.0	TOP OF CASING		GROUND SURFACE		
SEAL	NA		FROM (feet)	ТО	LOGGED BY	Adam Ab	pe es		
FILTER PACK	NA		FROM (feet)	ТО	CHECKED BY	BY Jeff Shaw, PG #7759			
551115116			·						

REMARKS Hand augered to 5 ft bgs. Samp ed us ng D rect Push "Macro Core".

		SA	MPLES		1				ტ	WE!
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (vmdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTIO
							ASPHALT two 2-inch layers of asphalt (pre-cored)			7777
		+	3.75		0.2	1 — 2 — 3 —	CONCRETE FLL (SAND W TH GRAVEL) brown (10YR 4/3) 15% medium angular gravel 80% fine to medium grained sand gravels are lithic fragments very hard dry	FLL (SP)		
10 07	SB-7-5-5 5	X	3		0 0.4 13.2	5 —	F LL (CLAYEY SAND W TH GRAVEL) very dark gray (10YR 3/1) 10% gravel 50% medium to coarse grained sand 40% clay medium plasticity moist	F LL (SC)		
10 10	SB-7-8-8 5	X	1		17.5 61.4 105 109	7 — 8 — 9 — 10 —	FLL (GRAVEL W TH SAND) very dark grayish brown (10YR 3/2) 60% fine to medium gravel 40% medium to coarse grained sand sheen on core hydrocarbon odor large concrete piece at approximately 9 ft bgs prevented recovery of sample from 9 to 12 ft loose wet	∇ FLL (GP)		

	ehole & V	<u>ve</u>	I Cor	istru	ction				<u> </u>	<u> </u>	Inc.
PROJI NAME	ECT 6601/	6603	Bay S	treet		PRO NUM	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	SB 7	T	
TIME	SAMPLE NAME	SAMPLE TYPE S	RECOVERY THE (feet)	вгом сопит	(vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
10 20	SB-7-13- 13 5	\textstyle	2.5	E	12.1 21.8 51.3 25.2	12 — 13 — 14 — 15 —	SAND black(2 5Y 2 5/1) 100% fine grained san loose wet SAND black(2 5Y 2 5/1) 100% fine to medium orange sandstone cobble prevented recovery lo				
		+	1		4.2 5	16 — 17 — 18 — 19 — 20 —	SLT W TH SAND yellowish brown (10YR 5/8) sand 90% silt medium soft moist	10% fine grained	ML		
10 28	SB-7-20 5- 21	X	4		0.2	21 — 22 — 23 — 24 —	Total Depth of Borehole = 24 feet				
						25 — 26 — 27 — 28 —					

BOREHOLE LOCATION	6601 6603 She mound Street, En	meryv e, Ca forn a			BOREHOLE / WELL NAME	SB-8			
DRILLING COMPANY	Gregg Dr ng & Test ng, Inc., C	57 L c. # 485165			PROJECT NAME	6601/6	6603 Bay Street		
DRILLING METHOD	D rect Push (Mar M5)				PROJECT NUMBER	95007	4.05		
CONDUCTOR CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATE STARTED	4/9/10	DATE COMPLETED 4/9/10		
BLANK CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	2.3	TOTAL DEPTH 18		
PERFORATED CASING	NA	DIAMETER (inches)	FROM (feet)	ТО	DATUM NA				
GROUT	Type I/II Port and Cement		FROM (feet) 0.0	TO 18.0	TOP OF CASING		GROUND SURFACE		
SEAL	NA		FROM (feet)	ТО	LOGGED BY	Adam Ab	pe es		
FILTER PACK	NA		FROM (feet)	ТО	CHECKED BY	BY Jeff Shaw, PG #7759			
551115116			·						

REMARKS Hand augered to 5 ft bgs. Samp ed us ng D rect Push "Macro Core".

		SΔ	MPLES							
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ymdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
S D-BHAND MW LOG SYBASE2 GPJ EKF V5 GD 4/27/10 60 61 C0	SB-8-4 5-5		3.75	BT/	0 0.2 0 0.3 0.2 0.2 1.3	3 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8	ASPHALT two two-inch layers of asphalt (pre-cored) CONCRETE SANDY CLAY W TH GRAVEL dark gray (10YR 4/1) 15% fine to medium gravel 20% fine to coarse grained sand 65% clay medium plasticity dry SAND W TH CLAY dark grayish brown(10YR 4/2) 10% fine angular gravel 65% fine to coarse grained sand 25% clay low plasticity dry FLL (GRAVEL) light yellowish brown (10YR 6/4) large sandstone cobble dry CLAY brown (10YR 4/3) clay layer with common roots and wood (possibly reworked native materials) medium plasticity soft moist to wet	FLL (SC)		
1-EK S D - BH AND MW LOG S			4		4.5	9 — 10 —	Approximately 3-inch thick white subrounded to subangular gravel layer medium plasticity hard dry			

DUI	ehole & I	<i>vei</i>	i Cor	istru	ction	Log			<u> </u>	<u> </u>	Inc.
PROJI NAME	ECT 6601	/6603	Bay S	treet		PRO NUM	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	SB 8		
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY W	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
09 30	SB-8-13- 13 5	X	3		2.1 1.4 0.4 0.5	12 — 13 — 14 — 15 —	CLAY brown (10YR 4/3) clay layer with common (possibly reworked native materials) medium plawet (continued) SANDY CLAY very dark grayish brown (10YR 3 medium grained sand 65% clay from 13 5 ft to wood low plasticity soft wet GRAVEL white (10YR 8/1) 95% angular medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium gravels are of granitic origin very loose dry to medium players.	n gravel 5% clay	F LL (CL)		
09 50	SB-8-17 5- 18	X	2		0 0	16 — 17 — 18 —	SANDY S LT yellowish brown (10YR 5/8) 30% figrained sand 70% silt medium hard dry Total Depth of Borehole = 18 feet		ML		
						20 — 21 — 22 — 23 —					
						24 — 25 — 26 — 27 —					
						28 —					

6601 6603 She mound Street, E	meryv e, Ca forn a	BOREHOLE / WELL NAME	SB-9	SB-9				
Gregg Dr ng & Test ng, Inc., C	PROJECT NAME	6601/6	6603 Bay Street					
D rect Push (Mar M5)		PROJECT NUMBER	95007	950074.05				
NA	DIAMETER (inches)	FROM (feet)	то	DATE STARTED	4/9/10	DATE COMPLETED 4/9/10		
NA	DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	2.3	TOTAL DEPTH 20 (feet)		
) NA	DIAMETER (inches)	FROM (feet)	ТО	DATUM NA				
Type I/II Port and Cement		FROM (feet) 0.0	TO 20.0	TOP OF CASING		GROUND SURFACE		
NA		FROM (feet)	ТО	LOGGED BY	Adam Abe es			
NA		FROM (feet)	ТО	CHECKED BY Jeff Shaw, PG #7759				
	Gregg Dr ng & Test ng, Inc., C D rect Push (Mar M5) NA NA NA Type I/II Port and Cement NA	NA DIAMETER (inches) NA DIAMETER (inches) NA DIAMETER (inches) Type I/II Port and Cement NA	Gregg Dr ng & Test ng, Inc., C 57 L c. # 485165 D rect Push (Mar M5) DIAMETER (inches) FROM (feet) NA DIAMETER (inches) FROM (feet) NA DIAMETER (inches) FROM (feet) Type I/II Port and Cement FROM (feet) NA FROM (feet) NA FROM (feet)	Gregg Dr ng & Test ng, Inc., C 57 L c. # 485165 D rect Push (Mar M5) DIAMETER (inches) FROM (feet) TO (feet) NA DIAMETER (inches) FROM (feet) TO (feet) NA DIAMETER (inches) FROM (feet) TO (feet) Type I/II Port and Cement FROM (feet) TO (feet) NA FROM (feet) TO (feet) NA FROM (feet) TO (feet)	Geogg Dr ng & Test ng, Inc., C 57 L c. # 485165 WELL NAME D rect Push (Mar M5) PROJECT NAME NA DIAMETER (inches) FROM (feet) TO DATE STARTED NA DIAMETER (inches) FROM (feet) TO DATUM (inches) NA DIAMETER (inches) FROM (feet) TO DATUM (inches) NA DIAMETER (inches) FROM (feet) TO DATUM (inches) Type I/II Port and Cement FROM (feet) TO CHECKED BY NA FROM (feet) TO CHECKED BY	Gregg Dr ng & Test ng, Inc., C 57 L c. # 485165		

REMARKS Hand augered to 5 ft bgs. Samp ed us ng D rect Push "Macro Core".

	SAMPLES									G	
TANT	COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	M/O (vmdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
						0		ASPHALT two two-inch layers of asphalt (pre-cored)			7777
			_	1.25		0	1 — 2 —	CONCRETE FLL (SANDY CLAY) very dark gray (10YR 3/1) 25% fine to medium grained sand 75% clay medium plasticity medium hard moist	F LL (CLAY)		
				3.75		0.3	3	FLL (GRAVEL) white (10yr 8/1) 100% coarse gravel possible old concrete layer with large cobbles requiring extensive breaking using a pry-bar dry FLL (CLAYEY SAND) very dark gray (10YR 3/1) 65% medium to coarse grained sand 35% clay dry	F LL (GW) F LL (SC)		
4/27/	3 10	SB-9-5-5- 5 5	X	3		0 0.1	5 — 6 —	FLL (GW) white (10YR 8/1) 100% coarse old concrete layer medium plasticity soft moist to wet FLL (SANDY CLAY) very dark gray (10YR 3/1) 65% medium to coarse grained sand 35% clay as above from 3 5 ft to 5 ft loose moist	F LL (GW) F LL (SC)		
SYBASE2 GPJ EK						26 42.9	7 — - 8 —	F LL (SANDY S LT) light olive brown (2 5Y 5/6) 25% fine grained sand 75% silt medium hard moist	F LL (SM)		
D - BH AND MW LOG SYBASE2 GPJ EK F V5 GD	3 30	SB-9-9-9 5	X	3		59.5	9 —	FLL (GRAVEL) black (10YR 2/1) 95% medium to coarse gravel 5% silt color of material due to presence of free-product and sheen on sample loose wet	F LL ∑ ^(GP)		
1-EK S D - B						41.7 31.4	10 —	CLAY dark gray (10YR 4/1) 5% fine grained sand 95% silt extensive roots present soft moist	CL		

					ction					<u> </u>	Inc.
PROJECT 6601/6603 Bay Street PROJECT NAME						PRO NUN	DJECT 950074.05 MBER 950074.05	BOREHOLE / WELL NAME	SB 9		
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
13 40	SB-9-12 5- 13		3 3	DTC	14.5 14.6 8.2 4.7 26.2 28.7 20.4 5.5 3.8	12 — 13 — 14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 —	SAND light yellowish brown (10YR 6/4) 95% finday loose soft moist GRAVEL W TH SAND dark grayish brown (10YF medium gravel 30% medium to coarse grained states and shell moist CLAY very dark gray (10YR 3/1) roots and shell moist CLAY light yellowish brown (10YR 6/4) roots and common soft moist Total Depth of Borehole = 20 feet	R 4/2) 70% fine to sand loose wet	SW		
						28 —					

Daily Inspection Report No.

Contractor: Grego Prilling, Osborne's Coring EKI Staff On-Site: J. 5haw, R. Lion Weather: overcast Temperature: 55 °F Min to 65 °F Max IDW: 1 Later, 4 soil draws & staging loe EKI Work Hours: 2655 to 1830 (tot: 12) Contractor Hours: 2655 to 1832 Changes, Special Conditions, Delays, Standby Time: Accidents, Damage: Visitors to Site:	1-6603 Bay St. 950074.05
Sampling, Testing: <u>Grab groundwater sampling</u>	
Visitors to Site:	

Work Report (Work done, Personnel/Equipment working): 0655 - EKI, Osborne, Gregg on-site, wilk through 0710 - He's meet, which 580B avm w/100 ppm isobutylene 0730 - Coring 66W-3, R. Lion onsite 0750 - Start HA 66W-3 0840 - Done HA to 5 ft bgs - v. hard, near return @ 3.5 0925 - TD 66W-3 @ 15' ft bgs, Gravel w/ poor recov 10'-13', "Marocoré" next BH for better recov. Brig mad @ to clean off augers. Set prepack casing (14 H total, 0950 - Osborne Cone coving 1005 - HA'ing 66W-2, very wet, pass from rain past few near low in pavement @ catchment.	Lt will use krise; slow all screen
100 - V. hard HA'ing, cobbles & gravels, brick trags	
1135 - TD GGW-2@15 f4 bgs	
1205 - Setting prepark asing W/10' plastic sleeve to se worst of FHP. Siturated prepark W/Distilled Prior to insertion, reamed W/augers prior as w	Water
130 - Breck for lunch & vocand in mit 15, RDL strings	ousite
1345 - Back onsite, GGW-1 HA'Z to 5 ft. 1425 - TD GGW-1 @ 15 ft bgs, ream w/ausers to set as	
1450 - Setting casing w/ plastic sheath, 2x5' + 1x4', 141	+ in BH (CCW)
1500 - Cleaning up, RDL sympling GGW-1 (setting up	to sample)
1700- Growing BHs, left msg W/ ACPWA re growt @ 1520, not doming to site (based on L. Hansen conver	They are
John Shouldice but will visit Mon	
# 1830-EKI & Gregg offsite. Drums: 1 water, 4 soil,	marked (1)
6603-Shellmound Ave. (1100)	

r 🚰	
rtractor: Gregg Dalling & Testing.	Sheet: of <u>2</u>
EKI Staff On-Site: A6 Abeles; RD Lion	Date: 4-9-2010 FRIDAY
Weather: AM - Cod, Culm, Clean.	Project: Subare
Temperature:°F Min_to°F Max	EKI Job No. 950074.05
IDW: Drung of Soil & Water left near freeway, west of	- 4
EKI Work Hours: 0640 to 1700 (tot: 104.) Contractor Hours:	0700 to 1530 (tot: 8:30)
Changes, Special Conditions, Delays, Standby Time:	A. W. Carlon and M. S. C. Carlon and C. Carl
The culty hand aug in to 5ft B 66w-4+8B-9.	
Accidents, Damage:	and the second second
The second of th	and the same of th
Sampling, Testing: Soil Samples (3/4 Samples at 513-	7,89). Water
Sample 666W-4. Drum Samples (Water ?	Sol)
Visitors to Site: John Shouldies (Alamed a County).	and the state of t
The state of the s	and the state of t
Work Report (Work done, Personnel/Equipment working):	
0640 - AGA leaves house to pick up ce for samples.	Contain material contract
0655 - AGA arrives at Site, comes of area around 66W-4	
on Site. Doller - Vance; Helper - Angel. Rig-	- Warl MST track mounteel
combo DP/Auger. Rig transported on support	
0700-AGA shows Grega diffing locations. Dullers	
0705 - AGA leads health and Safety meeting. See t	
0720 - Grega beains hand augerina Vat 66W-4.	
0730 - Dallers reach Hand anger reclical at ~ 3.5' 6	as. More to new location ~
1.5' South of instal attempt.	<u> </u>
C745 - Dallers reach hand auger refusal at ~ 3.5' Lgs	due to concrete layer. More to
new location - 3' east of previous attempt.	3
0800 - Move back to second attempt due to Shallow (<2 ft bas) very solid converte
at third location.	32 3
0805 - Dollers make it to At bas before butting motal on por	coute object on side of hole.
Itand augering stopped by AGA. AGA instructs	dr. llers to move to SB9.
0845 - Drillers reach hard alego refresal at SB-90t	~ 3.5 ft bas. Alst justnets
drillas to mos to SB-Se (pre-wind)	
0855- Drillers reach 5 ft hand angering at SB-8	•
0900 - Drillers begin direct push drilling at SB-	8 using 2.25" macrocone
and 4-ft runs.	
0920 - Dollars reach 18' bas. AGA indicates the	t is total day of boring
513-8 appears to be outside of appla exc	avated during tank
removal due to presence of roots and of	ver native Material
beginning at a proximately 8 bas.	The state of the s
0940 - Drillers clean downhole egici prient and	arout SB-8 to ~ 2'
bas us wa tremse proc. Gout - Type I	IP Portland Coment.
0956 - Drillers hand auges at location SI	3-7, which is pre-cored.
0958- Dollers reach hand anger depth of	
X X	0 pm.+ -

Contractor: Grego Dolling & Testing, Inc. Sheet: 2 of 2
1000 - Dallets Segu DP Sampling at 53-7. Date: Fer 4/9/2016
1025 - Drillers reach depth of 24 bas. 46A Project: Subase
10's hole. EKI Job No. 950544.05
1035 - Textensive Sheen observed in core at
53-7 and lithology indicates that borne is located in tank
removal excavation backful due to presence of concrete and other
1thic rocks to a depth of 13' bas. No shell fragments or roots are
observed above ~ 14' as well. Due to very limited recovery from
16' to 20', borchole was extended to 24' Basin order to Somple
loclow zone where sheen observed and with low organic vapor
meter response. Likely that such an area exists from 16 to 20, but
that debth could not be sampled due to limited recovery. Dollers
could not step off and redrill due to need for tot holes to
be cored.
1040 Dallers cleaning downlook equipment and armitime SB-7.
1110 Dollers resume attempting to hand mand a Gow-4.
110 Drivers resume attempting to hand arget at BGW-4.
145 Pager Lon (DIT) on Site, many and it is
1220 Dillow read hand auget refugal. AGA approved use of
augors spinning slowly to broad through rock layer.
130 Pollers reach 5' bas with angers Proceed to use direct push
To drill hole.
1246 Dallers reach a concrete or rock layer at 13.5. Dallers
report refusal mater level at approximatedly 6' bas.
AGA instructs dirllers to place pre-Pak well w/ 10 ftof
screen in borchole. Por begins calibrating instruments to
prepare for sampling water & GGW-4.
1250 pollers more to SB og and use prose to doll to 5' and
proceed to dr.ll borna.
1330 Drillers reach 20' bas at SB-9 and TD hole.
1350 Dr. lless are cleaning equipment and morring 1DW to back
of building
1450 PDL finishes sampling and drillers grout GEW-4. Dallers
then add # of concrete to bong all lights to surface.
Drillers use Black duc to match existing asphalt
Jane 1 Color: No to the Down on the Alexander of the Color
1510 Grega Off-Ste.
1530 ACA Jand RDL Sample IDW
~ 1600 PDL off-Site with samples to Curtis & Tomokins.
1700 AGA finishes measuring locations relative to buildings.
Storm Drain near GGW-2 has an top elevation of
0.6' bas and a bottom of ~1.7' bas.
1810 AGASH-Site to BKI in Burlingame.

Erler	8	Kalinowski,	Inc.
-------	---	-------------	------

CHAIN OF CUSTODY RECORD

	1		1
PAGE		OF	- Q

CONSULTI	NG ENGINEERS A	AND SCIENTIS	STS	1870 Ogden Drive, Burlingame CA 94010					PHONE: 650-292-9100							FAX: 650-552-9012				
Project Nan	ie			Project No.	<u>.</u>			ANALYSES DECLIECTED								EKI COC No.: (YYYYMMDD-#)				
6601 Bay S	treet				950074.05					ANALYSES REQUESTED										
Location:				Sampled By:			Me	T.	n		Щ	m m		m						
Emeryville,	CA			1	R. Lion /		Method No.	A 8	EPA 8015M EPA 3630		EPA 8260B	EPA 200.8 / EPA 245.1		EPA 8270		***		Revision:		
Reporting:	Format: EDD Ha	ard Copy Format	+ PDE	Laboratory:			Ν̈́c	35	363		260	245.	eld	827				1	(A, B, C, D, etc.)	
	Report Level: II	ara Oopy i Ormai	<u>.</u> ., Di				۴	-	0 >				1			-	-	Date:	By:	
				Curtis & Tor			Ana				31.8		ed							
	ort results to the foll- lansen: lohansen@			2323 Fifth S Berkeley, C			Jyte		တ္	2	×		\$.				1	! 		
	heng: ccheng@ekid			(510) 486-0			Analyte Group	٠.	8 =		BTEX and fuel oxygenates	⊒	0.45				PLACE			
(3) Jeff Sha	aw: jshaw@ekiconsi	ult.com							TPH as Diesel Silica Gel Cleanup		o lo	Title 22 Metals	Field Filtered with 0.45-micron filter				C C	EXPECTED	A	
		Lab Sample			No./Type of	<u> </u>	무	S D		/gen	2 🔀	g	-D	,		ON HOLD	TURNAROUND	AV DOSE		
Field Sam	ole identification	No.	Date	Time Matrix		Containers		Gas	nup		ates	tals	fiter	PAHs	TDS		16	TIME	Remarks	
			, ,	1000		6 VOAs w/ HCI		х			х									
	MW-5		03/06/10	10.30 water		7								-				standard		
			, -,			2 Amber 500-m	1		х											
						1-250-mi pol	y								Х					
			/_/			6 VOAs w/ HCI		х			х									
	MW-7		03/0410	09.44	water	*								-				standard		
		Arthuramour		•••		2 Amber 500-m			х											
						1-250-ml pol	Y								x					
			j /	. ,		6 VOAs w/ HCi		х			х									
	3GW-1		03/06/10	11:44	water	water	2 Amber Liters							<u> </u>	х				standard	
		and the state of t	0-10010	16.11		2 Amber 500-m	i .		x				<u> </u>							
						1-250-ml pol	у		<u> </u>				<u> </u>	<u> </u>	χ				1	
		variation of the state of the s				6 VOAs w/ HCI		х			х		<u> </u>					_		
	GGW-2	***	1.1	ســـــــــــــــــــــــــــــــــــــ	water	2 Amber Liters			<u> </u>				<u> </u>	X				standard		
	:	A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	03 0610	14:55		2 Amber 500-m	<u> </u>		х				<u> </u>	ļ						
			1			1-250-ml pol	<u>,</u>	ļ	ļ				ļ.,.	ļ	х		<u> </u>			
		and the state of t	03/06/10			6 VOAs w/ HCI		х			Х		<u> </u>	<u> </u>				_		
(GGW-3	drawn de recherche	03/66/10	12:50	water ·	2 Amber Liters		ļ	ļ					Х				standard		
		THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPER		4		2 Amber 500-m	<u> </u>	ļ	X				<u> </u>	_				_		
						1-250-ml pol	у	<u> </u>				Ĺ,	<u> </u>]	X					
Special In:	structions:																			
														•						
Relinquishe	ed by:	-{Signature/Affi	liation)		Date ,	Time	R	ecei	ved b	<i>J</i> :			(Sig	nafu	e/Affi	liation o	r Car	rier/Air Bill No.)		
	2/1/		>	ELL	A12 /2 (2)	(1-)					n -	14	(0)9	1		iidii oii o				
		110	N. O. S.		43/08/10	112			ië.		(W	2h	ستثثث	ul			7	18/10 1120		
Relinquish	ea by:	(Signature/Affil	liation)		<u>Daté</u> '	<u>Time</u>	R	ecei	ved by	Ŀ			(Sig	natu	e/Affi	liation)				
	<u></u>																			
Relinguishe	ed by:	(Signature/Affil	liation)		Date	Time	R	ecei	ved by	<u>c</u>			(Sig	natu	e/Affi	liation)				
1					1	1	. I												1	

PROJEC	TNAM	E: (601	BAY	STRE	ET		DATE:	03/	06/10	2	
PROJEC				574.				DATE: PERSOI	NEL:	ZOUER	Lic	'n
Well/Bo	rehole l	D:	W	1W-	7							
WELL V Depth of Well (ft.) Mult. for cas		- 5·	Depth to Water (ft.)	@ =	water Column (ft.)			Multiplier (below) 3,64		Casii (gallons)	ng Volume (* 3.8 =	liters)
PURGE					5			INSTRU	MENT	S:		
Pump Seri PUMP I	ial#		6.5	<u>→</u> 8	fr			Controller Flow-Thro METER:				
START	TIME:_ (data reco		***************************************	END TI	ME:_ <u>0</u>	9:37	orth	SONDE: (See daily	calibratio	on sheet)		
TOTAL	VOLUI	ME PUR	GED:	PLITE	175			DEPTH P	ROBE:			
SAMPL 2 4		500 mi Vo As	. An	BER -				NOTES:				

Clock Time	Elapsed Time (min)	Purge Rate (L/min)	Volume Purged (L)	Casing Volumes removed	Depth to water (feet)	рН	Temperature (C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	RedOx Potential (mV)	Turbidity (NTU)	
68,49	4	0.75	···············		6.01	7.27	15.98	4305		7587	4.84	
08:57		0.12	2.	***************************************	6.41	7.32	16.01	1463	0.51	102.1	5.86	
09.02		0,20			10.54	7.33	16.03	1468	1.08	+50,0	4.18	
09:10		0.12			Calolo	7.33	15,86	1.475	0,36	-1.7	265	
09:21		0414			6.81	7.35	15.91	1472	1.07	-20.9	1.90	
জ: 3 ০			6.		7.10	7.34	16.01	1.477	0.47	-26.0	1.95	
09:37		0,14	7		7.21	7.34	16.05	1.478	032	-29.2	1.92	
·												
					<u> </u>							
			Transmission of the Control of the C	***************************************		the second secon						- 14

	YET A T I T	ern .						די א ידי	46 T	/	7.5	
PROJEC		u			TREET	•		DATE: PERSO	(D) 5/	06/	10	
PROJEC	TNUM	IBER: (45007	4.05				PERSOI	MMEL:	COUR	LLEN	•
Well/Bo	rehole l	(D: <u> </u>	<u> 1W -</u>	-5								
WELL V	OLUM	E CALC	ULATI	ON:								
Depth of	, 020	,	Depth to		Water			Multiplier			ng Volume	
Well (ft.)	10	,	Water (ft.)		Column (ft.)		*	(below)		(gallons)	(* 3.8 =	liters)
Mult. for cas	ina diana	- (e. 51	= 4. 6 inob=1	3.2	-7	*					
PURGE	ang diam. –	OD D	. P. 1677	157C P	n.+4 gais/16.			TATOTEDI	TN ALENIA	C.	·	
E .		OD: P	excepto	4,-,	, , , , , , , , , , , , , , , , , , ,			INSTRU		S :		
Pump Ser	ial#	~ T	0-					Controller				
PUMP I	NLETT	EPTH:	85-3	1367				Flow-Thro	ough Cell	•		
		a O. A	. 0	*** *** ***	~ 1°	1.47		METER:				
START	TIME:	07:5	1	END II	ME: 10	<u>/ · t / </u>		SONDE:		1 3		
	(data reco	ord #)					(See daily	calibratio	on sheet)		
	**^*		~ T) T	0 5								
TOTAL	VOLUI	ME PUR	GED:	7.4	LITERS			DEPTH P	KOBE:			
	7 100	At And Sedimentary	_D /	216	\sim			~ ~ ~ ~ ~				
SAMPL			-	210:	<u>50</u>		an inneria ann mileoch rei reide da bhar bhar bh	NOTES:				
		30 ML			uchenskaach nobre benoemen er obb. er een	gayay ka yikaliyadiyadadaadada kada da da Sabibi dhirok						
le	- V	DAS + H	CL_									
	- 2	50ml	PLAG7	ic_								
	Elle	멀							D			
	pse	rge	ζ.	Cag	ם		Ten		isso	Rec	Turl	
Q	ďΤ	Rat		ging	epti		npe	Co	lve	Š	bidi	
l ock	ime	te (I	ne F	Vo	n to		ratu	m di	(c)	Pot	ŧу (
Clock Time	Elapsed Time (min)	Purge Rate (L/min)	Volume Purged (L)	Casing Volumes removed	Depth to water (feet)		Temperature (C	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	RedOx Potential (mV)	Turbidity (NTU)	
ne	(m)		ged (L)	ed ies		PHI HId	<u> </u>	<u> </u>				
10:17	18	917	3.	·····	6.87	· · · · · · · · · · · · · · · · · · ·		2,139		-1467	2,53	
10:26	27	0.22	5.		6,88			2179		-165.4		
0:31	32	02	le.					2,192				
10:36	37	02	7.		6.88	7,40	16,91	2,208	0,10	7/68,5	1.11	
10:47	48	0.2	9.2		6,88	7.38	16.80	2.156	0,41	-159.9	1.29	

- Cinia	•		**************************************	**************************************					metet tet til tet eccenerationska			

PROJE PROJE	CT NAI CT NUI	ME: 6 MBER:	9501	3Ay :	81 REE 05	- T		DATE:	O3 /	OG / Roce	10 R.L.	er.
	orehole		66 W								,	~ <u>~</u>
WELL Depth of Well (ft.)	VOLUN	IE CAL	CULAT Depth to Water (ft.)	ION: 15:5	Water Column (fi	•	*	Multiplier (below)		Ca: (gallons)	sing Volume (* 3.8	e =liters)
			16; 4-inch=0	.64; 6-inch=	=1.44 gals/ft.			1				
ĺ	E METH	IOD:							UMENT	rs:		
Pump Ser	naj# INHET I	DEPTH.		11 fr	Mani-			Controlle		1.		
OIVIE .	114222			1) 4				METER:	rough Cel	1:		
START	TIME:	15:50	0	END T	IME:	16:41	7	SONDE:				
		ord #			,			(See dail	y calibrati	ion sheet)		
	****			12	•							
TOTAL	, volu	ME PUI	RGED:	121	.0			DEPTH	PROBE:			
SAMPI	LES CO	LLECTE	ED: (2/1/	2:44			NOTES:	No /	NAPI		
6	VOAS			= , , ,		54 E	···		א אינע	NAPL	,	
2	12	THROEF	Z] 54	CENT			
<u> </u>	-7/K	Anbe	Dem			•		_				
<u> </u>	T	5TIC	1	T	·		1	<u> </u>		1	ı	1
Clock Time	Elapsed Time (min)	Purge Rate (L/min)	Volume Purged (L)	Casing Volumes removed	Depth to water (feet)	The state of the s	Temperature	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	RedOx Potential (mV)	Turbidity (NTU)	
me		jin)	D'a_	nes /ed		PH	G		gen (L)	ny fia		
16:03	7	0.36	2.5		9.35	10.72	17,43	1.729	0.07	-407.8	Hou	SHEE
16:13	17	030	5.5		9.30	10,68	17,29	1,6,35	0.06	-408,6	1	
6:23	27	0,25	8.0		9.30	10.70	17,29	1.616	0.04	-423,6	High	
	40	023	11.0					1.571				Į,
6:41	45		120		9.25	10.107	17.18	1.576	0.03	r432.	5 1	
<u> </u>		<u> </u>	200					1.77.6				4
												
**************************************	······								• • • • • • • • • • • • • • • • • • •			
	/											

···········				"								
	erd rd rd announamente mateurik (analisis	••//////re/ammuniammiammiammuni	-1/111/				***************************************		····			
l												

PROJEC	TNAM	E: 66	01	5A1 9	STREE	7		DATE:	03/	06/1	0	
PROJEC	T NUM	BER:	950	074	. 05]	PERSON	INEL:	ROGE	eh	in
Well/Bo			66									
WELL V												
Depth of	OLOWI	Ľ	epth to	· ·	Water			Multiplier (below)	(Casin gallons)	ng Volume (* 3.8 ==	iters)
Well (ft.)			Vater (fl.)		Column (ft.)		*	(DEIOW)	= '	gaironay	(5,0 .	,
Mult. for cas	ing diam. = :	2-inch=0.16;	4-inch=0.6	4; 6-inch=1	.44 gals/ft.		:··					
PURGE	METHO	DD: PE	RIGHT	CTIC	Pun		i	INSTRU		S:		
Pump Seri	al#						1	Controller				
PUMP I	NLET D	EPTH: _					I	Flow-Thro METER:	ough Cell:			
am i Da	CONTRACTO	134	~	די רווגם	ME: /	1:47		SONDE:				
		rd #		THAN II	17117. <u>t</u>		-	(See daily	calibratio	n sheet)		
	(uata recoi	iu fr)		,		
TOTAL	VOLUN	ME PUR	GED:	1341	reco			DEPTH P	ROBE:			
				- ''								
SAMPL	ES COL	LECTE	D: /	45				NOTES:	NAPL	E LAN	DER.	OUT SI
2		nL Ant						sen	EEN	E LAN SHÉ	EN	on Pi
		e Ang	358	***************************************				WATE	e,			
6	VOA	7				,						
	ш	-6							tj	ORP		
	apse	urge	٧	င္က	"		Ten		isso	Red		
C	ă T	, Rai	olun	sing	eptl		aper	Con	lved	O _X)idit	
lock	ime	œ (I	ıe P	Vol	to		atur	duc:	н (ж	Pote (3	
Clock Time	Elapsed Time (min)	Purge Rate (L/min)	Volume Purged (L)	Casing Volumes removed	Depth to water (feet)	pHq	Temperature (C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	RedOx Potential (mV)	Turbidity (NTU)	
13:55	10		2,5	D. 16		9.06	17.30		oll	-378.5	91.5	
		0,25			,	0.11	11,99	1.072	0.06	-347.7		
		0,19				0166	10,01	0,911	- 17	-320./	238	ا حملانا ک
14:17	32	55.0	-7.0			8.let	17.09	4 A	011	-22.27	200.	2000
14:25	40	Q25	9.0		<u> </u>	8,63	17,12	6922	0.06	7071	252	
14:35	50	0.20	11.0			18.63	17.16	0,926	0.03	-33574	253.	SHE
		0,17			~	8.66	17.25	o 936	0.03	352.8	287.	
			, ,									
	<u> </u>					<u> </u>						
	i										<u> </u>	<u> </u>
	<u></u>		I								ļ	
				1			1		1	1	1	1
										1		

					-0			DATE:	<u> </u>	1061	10	
PROJEC PROJEC	TNAM	Е: <i>О</i> О	01 B	My 01	rect			DATE: PERSON	INEL:	PAREL	e his	·~
				_	. 05		***	E DICO OZ	1. (2.2.2.1	<u> </u>		
Well/Bo	· · · · · · · · · · · · · · · · · · ·											i
WELL V Depth of	OLUM	E CALC	ULATIO	DN: "	Water			Multiplier			ng Volume	
Well (ft.)			,		Water Column (ft.)		· •	(below)	= (gailons)	(* 3.8 =	iters)
Mult. for casi	na diam =	- 2-inch=0.16:	4-inch=0.6	== 4: 6-inch=1	.44 gals/ft.		4					
PURGE	-	~ .	RISTI	TUTIC	Pump			INSTRU	MENTS	S:		
Pump Seri		, ,			•			Controller	:			
PUMP II		EPTH: _						Flow-Thro	ough Cell:			
		* * ~ ~	,a			7 20	i	METER:				
START				END TI	ME:	C:57	-	SONDE: (See daily	calibratio	on sheet)		
(data reco	rd #)		(See daily	Canoracic	ni diioot)		•			
TOTAL	VOLUN	ME PUR	GED:	10 Li	EPS			DEPTH P	ROBE:			1
SAMPL	ES COI	LECTE	D. (2)	124	50			NOTES:	10 St	(EEN	NO	LNAPO
	nber							NOTES:	AYER	- H	-25 c	>DOE
2 1	MEER	500 r	n.L									
Ce		, + HCL										
1		n Pou	7		l							
	Elapsed Time (min)	Purg	·	C			Ţ		Dissolved Oxygen (mg/L)	Re		
	sed	ge Ra	√olu	asin	Dep		mpe	S	olve	Ď O X	rbidi	
Clock	[ime	ate ()	me I	g Vo	th to		ratu	mdua (m	(r) (d) (d)	Pot	ty (I	
Clock Time) (mi	Purge Rate (L/min	Volume Purged (L)	Casing Volumes removed	Depth to water (feet)	pH	Temperature (C	Conductivity (mS/cm)	kyge ng/I	RedOx Potential (mV)	Turbidity (NTU)	
	4.			S. D.		8.11	17.34		063	-211.2		
11:29		0.25	<u> </u>				<u> </u>	2.123		1		
1133		0.25			7.10	921	1710	2102	1 20	-71701	267	
11:39		0.17	3.		1.18	201	lilet	2.139		200,16	2011	
11:48	23.	0.16	4.4		7010	8,18		-		2215	245.	
LZ:58	33.	0,22	6.6		7.17	8.17	1753	2.131	0.03	231.1	225.	
13:10		0,05	7.		7.16	8.17	17.28	2.118	0.03	-270,3	2110	1
12:19		1	8,		1	8.17	17.31	2,118	0.02	-287.4	210.	H250
12:29	64.	 	_		7.16	8.17	17.29	2.117	0.02	-294,3	210.	
12:39		0.10			1	8.17	1740	2.121	0.02	-308.7	Z35	
10.01	170	U + 10	10.		1 10	0.00	1	0000				
						<u> </u>						-
	<u> </u>			ļ							<u> </u>	
										<u> </u>		
				·								
			<u> </u>									
	<u> </u>]	<u> </u>									1

Calibration Form

ek

Personnel:	Rocekhian

Start Time: <u>6861</u> End Time: <u>68:33</u>

Flow Cell: 451 556 mP5

Meter Serial No.: 6642173 Sonde Serial No.: 69 Mb 3

Turbidity Meter:

Sheet _______ of _____ Day/Date: <u>03 /06 / 10</u> Project: <u>660(BAy System</u> EKI Job No.: <u>950074.05</u>

laman	/ Meter:				
		Reference	Units	Reading	Time
Ω	Rinse probe twice with rinse solution and discard				
Specific Conductance	Fill cup with approx. 55 mL of reference solution (immerse probe past vent hole in C	ond/Temp sens	sor)	_	
Specific nductar	Enter reference concentration; Allow 1 minute for equilibration				
黄	Press Enter when stabilized; Record reading	4.49	MS/cm	4.458	08:03
ો (૧	Rinse probe twice with tap or purified water and discard	···			
	Fill cup with approx. 3 mm of water (make sure DO and Temp sensor are NOT imm	ersed in water)			
Ö	Engage only 1 or 2 threads of the transport/calibration cup (DO sensor should be ve				
Dissolved Oxygen (DO)	Enter current local barometric pressure (NOT corrected to MSL); Press Enter		mm Hg	756.5	08:05
<u>></u>	Allow approx. 10 minutes for air to become saturated; Press Enter when stabilized	100	%	96.3	0814
ed	Record DO in % saturation and mg/L		mg/L	10.01	08:14
0	Mix new batch of distilled water saturated with sodium sulfite (Add 2 pinches of sod	ium sulfite per l	_iter)		V
Ž	Fill cup with sodium sulfite solution; Allow approx. 2 minutes for DO to approach <0				
<u>@</u>	Record reading	and the state of t	mg/L -	0.	08:17
n (Record DO in % saturation		%	1.0	08.17
S	Record ORP		mV	-190.	08:17
	Rinse probe twice with tap or purified water and discard				
	Rinse probe twice with rinse solution and discard	w	-/		
PH PH	Fill cup with approx. 30 mL of reference solution (upright position)			13.62	
7	Allow 1 minute for equilibration; Record current Temperature of reference solution		°C	7.1	08:19
pH 7 Buffer	Enter reference concentration (adjusted for current Temp)		7.05	T	1 6
ffe	Allow 1 minute for equilibration; Press Enter when stabilized; Record reading	7.05	Std Units	7.15	08:20
-	Rinse probe twice with tap or purified water and discard		<u></u>		
	Rinse probe twice with rinse solution and discard				
<u> </u> ±	Fill cup with approx. 30 mL of reference solution (upright position)		<u> </u>	1./ /	1.00 510
4	Allow 1 minute for equilibration; Record current Temperature of reference solution		°C	14.1	108:24
W	Enter reference concentration (adjusted for current Temp)	4.	<u> 94</u>	11	1
pH 4 Buffer	Allow 1 minute for equilibration; Press Enter when stabilized; Record reading	4.04	Std Units	, L 	08:24
-	Rinse probe twice with tap or purified water and discard		V 0		
	Rinse probe twice with rinse solution and discard		<u>v</u>		
	Fill cup with approx. 30 mL of reference solution (upright position)			1 . a	T-0-0
문호	Allow 1 minute for equilibration; Record current Temperature of reference solution		°C	13/85	0828
윤호	Enter reference concentration (adjusted for current Temp)			1	100,000
Oxidation- Reduction	Allow 1 minute for equilibration; Press Enter when stabilized; Record reading	246.	mV	214.4	08:28
	Rinse probe twice with tap or purified water and discard				
ω O	Rinse probe twice with rinse solution and discard	VV			
Cher and	Fill cup with approx. 30 mL of pH reference solution (upright position)			I	T.S.
증유	Wait 1 minute and record reading	7.05	Std Unit	7.06	08:31
Check pH and ORP	Fill cup with approx. 30 mL of ORP reference solution (upright position)	1		1272	T . Q . 2 2
	Wait 1 minute and record reading	1246-	mV	212.	08:33
Turbidi	Place reference solution into meter; Enter reference value	1000	T ,	100-	0883
Laibiai	Press start; Record reading HF	0.02	NTUs	0.02	10000

									/				
PROJECT	NAME	i: 60	001 1	BAY E	STREET	-		DATE:	041	09/1	6		
PROJECT	NUME		95	007	4.05	_	,	PERSO	NNEL:	RD.	Lion	`	
Well/Bore	hole II): 6	6W	-4									
WELL VO	LUME	CALC	CULATI	ON:								f.	
Depth of Well (ft.)			Depth to Water (ft.)		Water Column (ft.))		Multiplier (below)		Casi (gallons)	ing Volume * 3.8	=liters)	
Wolf (IL.)	_		6.30) =	(14)	,	*	(0000)	=	(8)	(2.12	,	
Mult. for casing	diam. = 2-	inch=0.16	; 4-inch=0.	64; 6-inch=1	1.44 gals/ft.						MEASI	PIO CT	71
PURGE M		D:							JMENT				1
Pump Serial		DTL.							r: Conso ou gh Cell		1404.	4 7.	00
PUMP INI	LET DE	er i ri.						METER:	Dugir Con	PH	1.0	7 4	190
START TI	ME: 1	3:16	9	END TI	ME: /	4.03			GRESIE	375	20	2 0	02-
	ita record									on sheet)	1.0		
TOTAL V	OLUM	E PUR	GED:					DEPTH I	ROBE: (ORP	244	linu 23	39 m
 SAMPLES	COLL	ECTE	D:	3 A.	BERG)		NOTES:					1
6 VOA			-·	ידרן ע	BUCH	7 14	(:08						
[PLAST	rc)							
													
<u> </u>	T	1											-
,	Elapsed Time (min)	Purge Rate (L/min		0			ij		Dis	R	T		
	sed '	ge R	Volu	asin	Dep		emp	ဥ	solv	edO	ırbic		
	Time	ate (me]	g Va rei	th to		eratı	mdu (r	ed C	x Po	lity (
Clock Time	Î	L/mi	Volume Purged (L)	Casing Volumes removed	Depth to water (feet)	773	Temperature (C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	RedOx Potential (mV)	Turbidity (NTU)		
		<u> </u>		les ed		pHI S		世 (表) //	124 ngl	-			-
13:23	7.		1.2		6,40	6.92	18.4	1109.	1100	-052,	398.	, ,	_
13.35 1			5.0		6,43	6.86	18.1	1090, 1080, 1080,	69%	-05le,	545x	NOSH	ZEN
	29.		810		6.45	6.86	181	1080,	5.9%	- 0,55.	36.6		_
13:55 3	,9		11.0		6.46	6.86	18.1	1080.	5.9 X	-056.	60.4		
1403 4			13.0		26 46	682	18.Z	1078	0,49	-057	26.3		
1100 1				,	29 110	.0			⇒.				
		· · · · · · · · · · · · · · · · · · ·											-
								ļ					-
													_
				***************************************		:							
			,										1
													1
								<u> </u>					-
									***************************************				_
													_

APPENDIX F Laboratory Data Sheets (on CD)

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 218663 ANALYTICAL REPORT

Erler & Kalinowski, Inc.

Project : 950074.05 1870 Ogden Drive Location: 6601 Bay Street

Burlingame, CA 94010-5306 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-5	218663-001
MW-7	218663-002
GGW-1	218663-003
GGW-2	218663-004
GGW-3	218663-005

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: <u>03/12/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 218663

Client: Erler & Kalinowski, Inc.

Project: 950074.05

Location: 6601 Bay Street

Request Date: 03/08/10 Samples Received: 03/08/10

This data package contains sample and QC results for five water samples, requested for the above referenced project on 03/08/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

MW-7 (lab # 218663-002) was diluted due to foaming. No other analytical problems were encountered.

Semivolatile Organics by GC/MS (EPA 8270C):

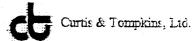
No analytical problems were encountered.

Total Dissolved Solids (TDS) (SM2540C):

No analytical problems were encountered.

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD


218663

PAGE / OF

CONSULTING ENGINEERS	AND SCIENTI	ISTS	1870 Ogden I	Orive, Burlingar	me CA 94010			PH	ONE:	: 650-	292-9	9100					FAX: 650-552-9012	
Project Name			Project No.			Π											EKI COC No.: (Y	YYYMMDD-#)
6601 Bay Street				950074.0	5				AN	ALYS	ES R	EQI	JEST	ED				,
Location:			Sampled By:			3	Ш		<u> </u>	m		1	1					
Emeryville, CA				R. Lion /	· · · · · · · · · · · · · · · · · · ·	etho	ĕ ĕ	EPA	2	PA	PA		Ę				Revision:	
Reporting: Electronic Format: EDD Ha	ard Copy Forma	+ DDE	Laboratory:			Method No.	EPA 8015M	EPA 3630	5	EPA 8260B	EPA 200.8 / EPA 245.1	ē	EPA 8270					(A, B, C, D, etc.)
EPA Data Report Level: II	aru Copy Forma	<u>u</u> . PDF				٩.	_≤	8 €	-	₩	- 4	₩ ₩	70				Date:	By:
				mpkins, Ltd.		Ą				막		red						
Please report results to the foll (1) Logan Hansen: lohansen@	lowing:		2323 Fifth S Berkeley, C			alya		(0				¥.				_		
(2) Cindy Cheng: ccheng@ekid	consult.com		(510) 486-0			e Gi		8 -	,	nd fa		0.4				Ž		
(3) Jeff Shaw: jshaw@ekicons	ult.com					Analyte Group	١.	Silica Gel Cleanup		BTEX and fuel oxygenates	Title 22 Metals	Field Filtered with 0.45-micron filte				PLACE ON HOLD	EXPECTED	
	Lab Sample	1			No CT	<u> </u>	TPH-Gas	Cle	3	xyge	22 -	Cro				ž	TURNAROUND	
Field Sample Identification	No.	Date	Time	Matrix	No./Type of Containers		င့်	anu		nate	eta	_	PAHs	TDS		2	TIME	Remarks
					6 VOAs w/ HCI		χ	<u>~</u>	-	X	S	4	S	S	+	-0		
MW-5		03/06/10	10:50	water	6 VOAS W/ HCI		_		+	+^			-			-	standard	
		010610	_	Water				x	-	-			-		+-+		Standard	
					2 Amber 500-ml			X	\vdash					x		\dashv		
		//			1-250-ml poly					+	<u> </u>	ļ	l	X				
MW-7		03/04/10	09.44	water	6 VOAs w/ HCI		Х	-	-	X	-	-		-+		-	standard	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				water				ļ.,	+-	-	ļ	-	-	-			Standard	
					2 Amber 500-ml			X	┼	-	-				+			
				<u> </u>	1-250-ml poly				 			I	l	X	+			
GGW-1		/ .	11.111		6 VOAs w/ HCI		X	1		X		-	-		-		standard	
		03/06/10	16.77	water	2 Amber Liters				-	-	-	-	X	_	+	-	Standard	
			•		2 Amber 500-ml			X	╁─	-	-				+			
					1-250-ml poly		х			-	 	<u> </u>		X	++			
GGW-2					6 VOAs w/ HCI	.	X			X	-	-			+		standard	
55.1.2		-2 hd10	14.55	water	2 Amber Liters			ł.,		-	-	-	Х	-+-			Standard	
		03 0710	11.00		2 Amber 500-ml			Х	-	+	-	-	-					
		03/06/10			1-250-ml poly				┼	+			<u> </u>	Х		-		
GGW-3		//.	121		6 VOAs w/ HCI		X			X								
3011-3		03/66/10	12:50	water	2 Amber Liters					+		<u> </u>	Х				standard	
					2 Amber 500-ml			X	-	+								
_		<u> </u>		<u> </u>	1-250-ml poly					1	L			х				
Special Instructions:																		
Relinquished by:	(Signature/Affili	iation)		Date j	Time	Re	ecei	ved b	γ:		***	(Sig	natur	e/Affiliat	ion or C	arrie	er/Air Bill No.)	
Court	1 1 1 -		31-1	03/68/10	1120	\mathbf{r}	n 1			715	1/4	_	(1.4	_		2]a	110 1120	
Relinquished by:	(Signature/Affili	iation)		Date 0 / /(/	Time	<u>البان</u> R	LA-	へと ved b	<u>ر بد</u>	10	X Cr			e/Affiliat		10	110 1150	
						177		<u>.</u>	1.			roid	iatul	ar Ailmat	ίσιij			
Relinquished by:	(Cinnet (A 577)	-6																
venudrisued pA:	(Signature/Affili	iation)		<u>Date</u>	<u>Time</u>	Re	ecei	ved b	y :			(Sig	natur	e/Affiliat	ion)			

3 of 36

COOLER RECEIPT CHECKLIST

Login # 28663 Date Received 36/10 Number	of coolers
Client EKT Project GGO BAY ST.	
Date Opened 360 By (print) M. VILLAN (sign) Date Logged in U By (print) (sign)	the la
Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? [YES (circle) on cooler on sam How many Name Date	-
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received?	YES NO NA
 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe) 	YES NO
	None Paper towels ONLY 1 COCUER COUNTY SLAWER COUNTY SLAWER
Type of ice used: Wet Blue/Gel None Temp(°	C) 3.7 STRAFBLANK
☐ Samples Received on ice & cold without a temperature blank	
☐ Samples received on ice directly from the field. Cooling process h	nad begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES XO
9. Did all bottles arrive unbroken/unopened?	YES (NO)
10. Are samples in the appropriate containers for indicated tests?	MES NO
11. Are sample labels present, in good condition and complete?	VES NO
12. Do the sample labels agree with custody papers?	XES NO
13. Was sufficient amount of sample sent for tests requested?	WES NO
14. Are the samples appropriately preserved?	NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES) NO N/A
16. Was the client contacted concerning this sample delivery?	YES NO
If YES, Who was called?By	Date:
COMMENTS. 3 1-11 AMB PROLO FROZIEN/BROKIZE	
•	

SOP Volume: Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Total Volat	ile Hydrocarbo	ons
Lab #:	218663	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B
Project#:	950074.05	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	160750
Units:	ug/L	Sampled:	03/06/10
Diln Fac:	1.000	Received:	03/08/10

Field ID: MW-5 Lab ID: 218663-001 Type: SAMPLE Analyzed: 03/10/10

Analyte	Result	RL	
Gasoline C7-C12	99 Y	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	125	48-162	
Bromofluorobenzene (FID)	100	52-158	

Field ID: MW-7 Lab ID: 218663-002 Type: SAMPLE Analyzed: 03/10/10

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	101	48-162
Bromofluorobenzene (FID)	99	52-158

Field ID: GGW-1 Lab ID: 218663-003 Type: SAMPLE Analyzed: 03/10/10

Analyte	Result	RL	
Gasoline C7-C12	550	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	112	48-162	
Bromofluorobenzene (FID)	116	52-158	

Page 1 of 2

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Total Volatil	e Hydrocarbons	
Lab #:	218663	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B
Project#:	950074.05	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	160750
Units:	ug/L	Sampled:	03/06/10
Diln Fac:	1.000	Received:	03/08/10

Field ID: GGW-2 Lab ID: 218663-004 Type: SAMPLE Analyzed: 03/10/10

Analyte	Result	RL	
Gasoline C7-C12	90 Y	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	101	48-162
Bromofluorobenzene (FID)	103	52-158

 Field ID:
 GGW-3
 Lab ID:
 218663-005

 Type:
 SAMPLE
 Analyzed:
 03/10/10

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	98	48-162
Bromofluorobenzene (FID)	100	52-158

Type: BLANK Analyzed: 03/09/10

Lab ID: QC535347

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	75	48-162	
Bromofluorobenzene (FID)	74	52-158	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Batch QC Report

Total Volatile Hydrocarbons					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B		
Project#:	950074.05	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC535348	Batch#:	160750		
Matrix:	Water	Analyzed:	03/09/10		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	851.1	85	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	128	48-162
Bromofluorobenzene (FID)	102	52-158

Page 1 of 1 5.0

Batch QC Report

	Total Volatile Hydrocarbons				
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B		
Project#:	950074.05	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZ	Batch#:	160750		
MSS Lab ID:	218646-007	Sampled:	03/05/10		
Matrix:	Water	Received:	03/05/10		
Units:	ug/L	Analyzed:	03/09/10		
Diln Fac:	1.000				

Type: MS

Lab ID: QC53	5349
--------------	------

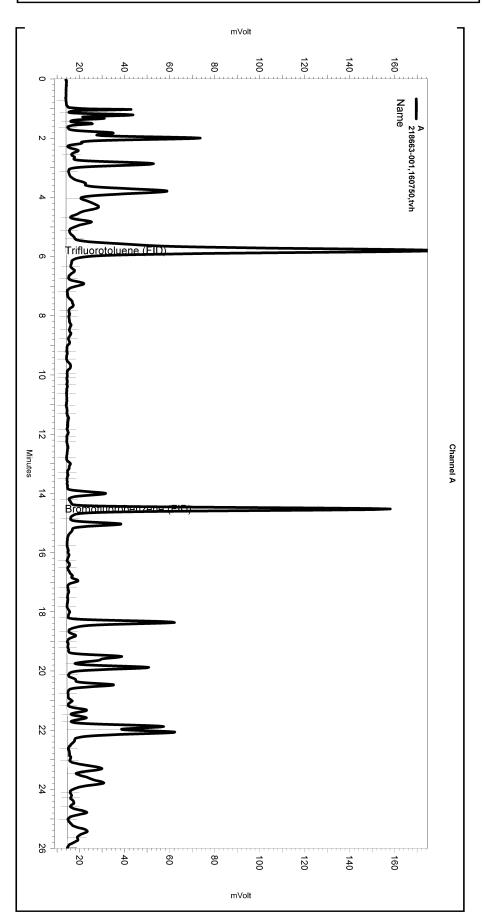
Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	13.89	2,000	2,104	105	49-129

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	135	48-162	
Bromofluorobenzene (FID)	106	52-158	

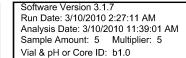
Type: MSD Lab ID: QC535350

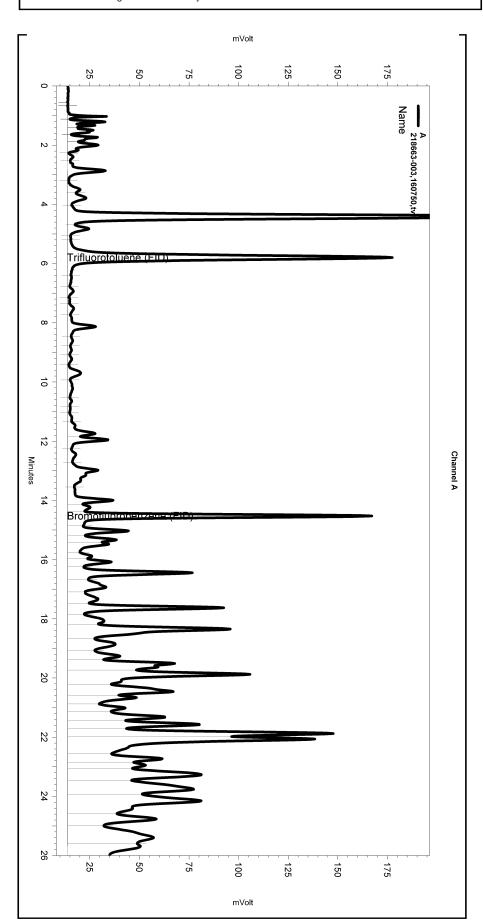
Analyte	Spiked	Result	%REC	Limits	RPD Li
Gasoline C7-C12	2,000	2,101	104	49-129	0 19

Sample Name: 218663-001,160750,tvh

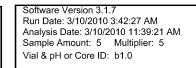

Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\068_020

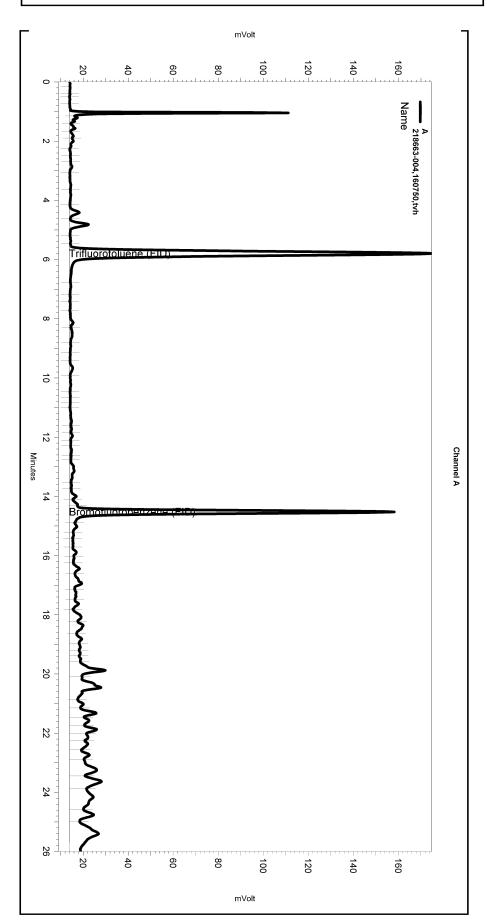
Instrument: GC04 (Offline) Vial: N/A Operator: RSK-175 Analyst (lims2k3\rsk175)

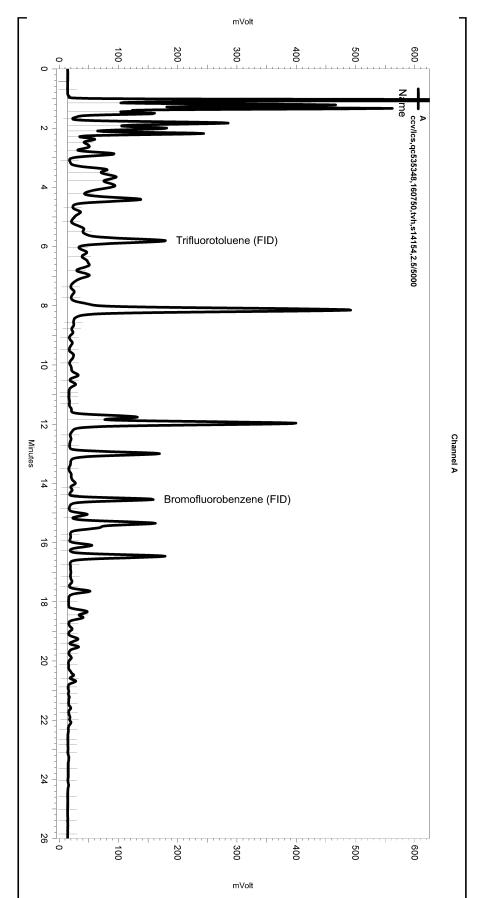

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe036.met


Software Version 3.1.7 Run Date: 3/10/2010 12:34:14 AM

Analysis Date: 3/10/2010 11:38:31 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.0




< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	(Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\	
Enabled Event Type	t Stop (Minutes) (Minutes) Value
Yes Split Peak	5.391 0 0



< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Enabled Event Type Start Stop (Minutes) (Minutes)	Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50	
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\068	_023

< General Method Parameters >					
No items selected for this section					
No items selected for this section					
Integration Events					
Start Stop Enabled Event Type (Minutes) (Minutes) Value					
Yes Width 0 0 0.2 Yes Threshold 0 0 50					
Manual Integration Fixes					
Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\068_025 Start Stop					
Enabled Event Type (Minutes) (Minutes) Value					
Yes Lowest Point Horizontal Baseli 0 26.017 0 Yes Split Peak 14.302 0 0					

Software Version 3.1.7 Run Date: 3/9/2010 10:29:25 AM Analysis Date: 3/10/2010 10:25:16 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

< General Method Parameters	>
No items selected for this section	1
< A >	
No items selected for this section	1
Integration Events	
Sta Enabled Event Type	art Stop (Minutes) (Minutes) Value
Enabled Event Type Yes Width	(Minutes) (Minutes) Value 0 0 0.2
Enabled Event Type Yes Width Yes Threshold Manual Integration Fixes Data File: \\Lims\gdrive\ezchrol	(Minutes) (Minutes) Value 0 0 0.2 0 0 50 m\Projects\GC04\Data\068_003
Enabled Event Type Yes Width Yes Threshold Manual Integration Fixes	(Minutes) (Minutes) Value 0 0 0.2 0 0 50 m\Projects\GC04\Data\068_003

Total Extractable Hydrocarbons Lab #: 218663 6601 Bay Street Location: Client: Erler & Kalinowski, Inc. EPA 3520C Prep: 950074.05 EPA 8015B Project#: Analysis: Matrix: Water Sampled: 03/06/10 Received: Units: ug/L 03/08/10 Diln Fac: 1.000 Prepared: 03/09/10 Batch#: 160762 Analyzed: 03/10/10

Field ID: MW-5 Lab ID: 218663-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	250 Y	50	

Surrogate	%REC	Limits	
o-Terphenyl	95	39-150	

Field ID: MW-7 Lab ID: 218663-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	95	39-150

Field ID: GGW-1 Lab ID: 218663-003 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	34,000	50	

Surrogate	%REC	Limits
o-Terphenyl	85	39-150

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons Lab #: 218663 6601 Bay Street Location: Client: Erler & Kalinowski, Inc. EPA 3520C Prep: 950074.05 EPA 8015B Project#: Analysis: Matrix: Water Sampled: 03/06/10 Units: ug/L Received: 03/08/10 Diln Fac: 1.000 Prepared: 03/09/10 Batch#: 160762 Analyzed: 03/10/10

Field ID: GGW-2 Lab ID: 218663-004 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	10,000	50	

Surrogate	%REC	Limits
o-Terphenyl	92	39-150

Field ID: GGW-3 Lab ID: 218663-005 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	180 Y	50	

Surrogate	%REC	Limits
o-Terphenyl	86	39-150

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC535407

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	99	39-150

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2 25.0

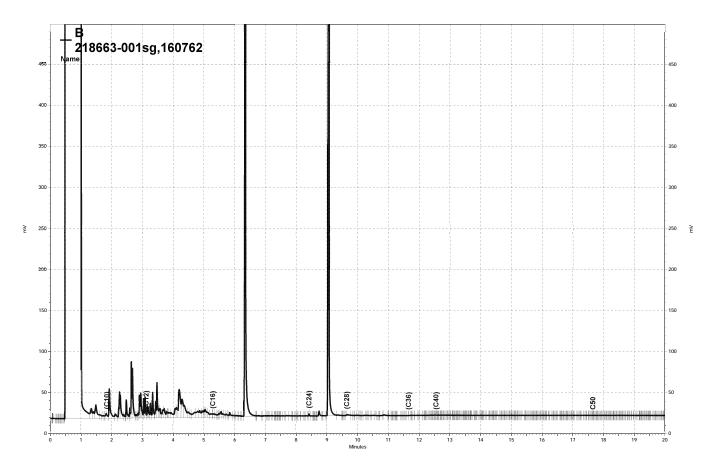
Batch QC Report

Total Extractable Hydrocarbons					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C		
Project#:	950074.05	Analysis:	EPA 8015B		
Matrix:	Water	Batch#:	160762		
Units:	ug/L	Prepared:	03/09/10		
Diln Fac:	1.000	Analyzed:	03/10/10		

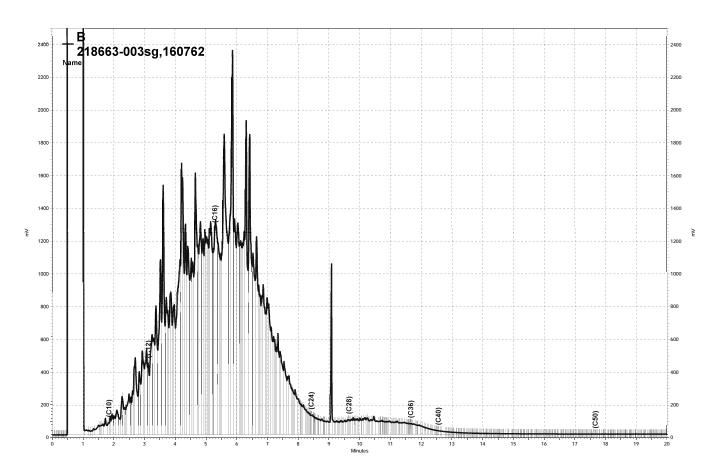
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC535408

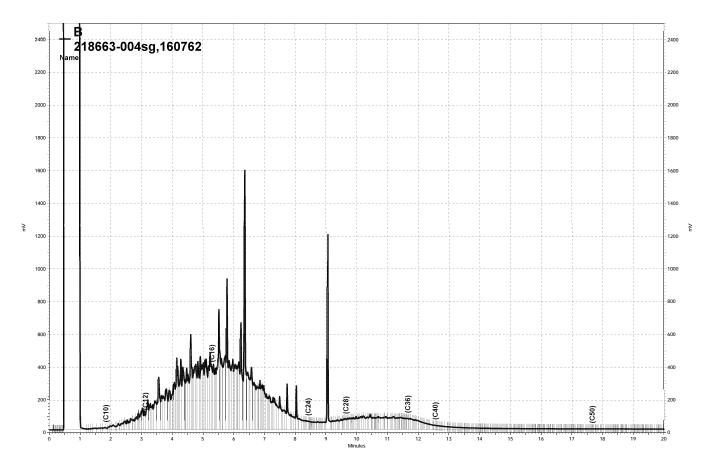
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,200	88	34-144

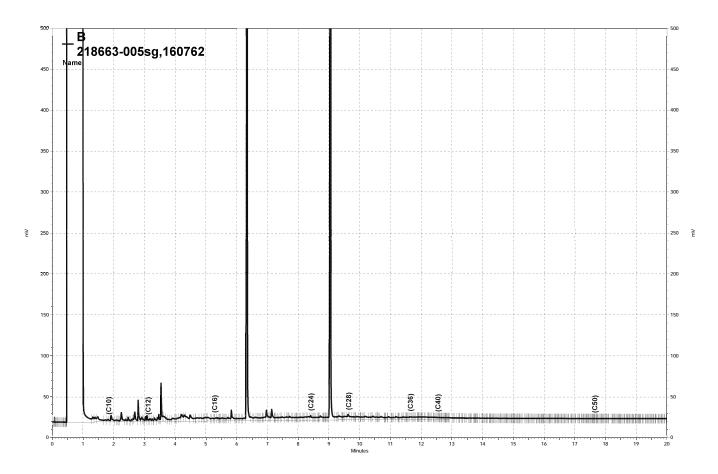

Surrogate	%REC	Limits
o-Terphenvl	102	39-150

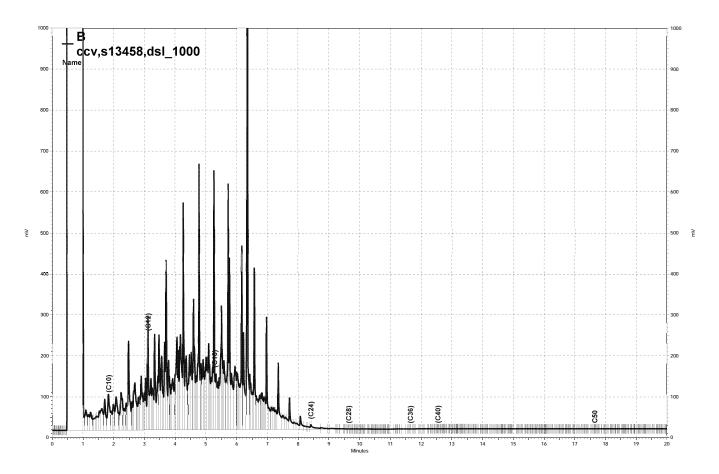
Type: BSD Cleanup Method: EPA 3630C Lab ID:


QC535409

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,320	93	34-144	5	48


Surrogate	%REC	Limits	
o-Terphenyl	109	39-150	


\Lims\gdrive\ezchrom\Projects\GC14B\Data\069b020, B


\Lims\gdrive\ezchrom\Projects\GC14B\Data\069b022, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\069b023, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\069b024, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\069b013, B

	BTXE &	Oxygenates		
Lab #:	218663	Location:	6601 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B	
Project#:	950074.05	Analysis:	EPA 8260B	
Field ID:	MW-5	Batch#:	160772	
Lab ID:	218663-001	Sampled:	03/06/10	
Matrix:	Water	Received:	03/08/10	
Units:	ug/L	Analyzed:	03/10/10	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	2.0	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104	81-124
1,2-Dichloroethane-d4	100	73-140
Toluene-d8	109	88-113
Bromofluorobenzene	102	80-127

ND= Not Detected
RL= Reporting Limit

Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	218663	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	MW - 7	Batch#:	160772
Lab ID:	218663-002	Sampled:	03/06/10
Matrix:	Water	Received:	03/08/10
Units:	ug/L	Analyzed:	03/10/10
Diln Fac:	2.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	20	
MTBE	ND	1.0	
Isopropyl Ether (DIPE)	ND	1.0	
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	
1,2-Dichloroethane	ND	1.0	
Benzene	ND	1.0	
Methyl tert-Amyl Ether (TAME)	ND	1.0	
Toluene	ND	1.0	
1,2-Dibromoethane	ND	1.0	
Ethylbenzene	ND	1.0	
m,p-Xylenes	ND	1.0	
o-Xylene	ND	1.0	

Surrogate	%REC	Limits
Dibromofluoromethane	94	81-124
1,2-Dichloroethane-d4	91	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	98	80-127

ND= Not Detected
RL= Reporting Limit

Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	218663	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	GGW-1	Batch#:	160817
Lab ID:	218663-003	Sampled:	03/06/10
Matrix:	Water	Received:	03/08/10
Units:	ug/L	Analyzed:	03/11/10
Diln Fac:	1.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	11	10	
MTBE	1.4	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	56	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	2.7	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	2.2	0.5	
m,p-Xylenes	4.0	0.5	
o-Xylene	2.2	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 1	102	81-124
1,2-Dichloroethane-d4	94	73-140
Toluene-d8	106	88-113
Bromofluorobenzene	98	80-127

ND= Not Detected RL= Reporting Limit

Page 1 of 1

BTXE & Oxygenates					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B		
Project#:	950074.05	Analysis:	EPA 8260B		
Field ID:	GGW-2	Batch#:	160772		
Lab ID:	218663-004	Sampled:	03/06/10		
Matrix:	Water	Received:	03/08/10		
Units:	ug/L	Analyzed:	03/10/10		
Diln Fac:	1.000				

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	0.9	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane 10	.00	81-124
1,2-Dichloroethane-d4 90	0	73-140
Toluene-d8	.07	88-113
Bromofluorobenzene 99	9	80-127

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

BTXE & Oxygenates						
Lab #:	218663	Location:	6601 Bay Street			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B			
Project#:	950074.05	Analysis:	EPA 8260B			
Field ID:	GGW-3	Batch#:	160772			
Lab ID:	218663-005	Sampled:	03/06/10			
Matrix:	Water	Received:	03/08/10			
Units:	ug/L	Analyzed:	03/10/10			
Diln Fac:	1.000					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	2.4	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	2.1	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 95	5	81-124
1,2-Dichloroethane-d4 81	1	73-140
Toluene-d8	03	88-113
Bromofluorobenzene 97	7	80-127

ND= Not Detected RL= Reporting Limit

Page 1 of 1

BTXE & Oxygenates						
Lab #: Client: Project#:	218663 Erler & Kalinowski, Inc. 950074.05	Location: Prep: Analysis:	6601 Bay Street EPA 5030B EPA 8260B			
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	160772 03/10/10			

Type: BS Lab ID: QC535456

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	99.51	80	36-156
MTBE	25.00	19.38	78	61-123
Isopropyl Ether (DIPE)	25.00	22.56	90	54-139
Ethyl tert-Butyl Ether (ETBE)	25.00	21.37	85	64-133
1,2-Dichloroethane	25.00	21.03	84	66-141
Benzene	25.00	24.67	99	81-122
Methyl tert-Amyl Ether (TAME)	25.00	19.98	80	73-124
Toluene	25.00	27.24	109	82-122
1,2-Dibromoethane	25.00	24.49	98	81-122
Ethylbenzene	25.00	27.10	108	86-125
m,p-Xylenes	50.00	54.56	109	83-127
o-Xylene	25.00	27.21	109	81-122

Surrogate %	%REC	Limits
Dibromofluoromethane 97	7	81-124
1,2-Dichloroethane-d4 94	4	73-140
Toluene-d8 10	04	88-113
Bromofluorobenzene 10	00	80-127

Type: BSD Lab ID: QC535457

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	105.0	84	36-156	5	23
MTBE	25.00	20.94	84	61-123	8	11
Isopropyl Ether (DIPE)	25.00	22.10	88	54-139	2	11
Ethyl tert-Butyl Ether (ETBE)	25.00	22.09	88	64-133	3	11
1,2-Dichloroethane	25.00	20.41	82	66-141	3	12
Benzene	25.00	22.67	91	81-122	8	12
Methyl tert-Amyl Ether (TAME)	25.00	20.35	81	73-124	2	11
Toluene	25.00	26.13	105	82-122	4	12
1,2-Dibromoethane	25.00	25.39	102	81-122	4	11
Ethylbenzene	25.00	26.31	105	86-125	3	12
m,p-Xylenes	50.00	54.03	108	83-127	1	13
o-Xylene	25.00	26.59	106	81-122	2	12

	Surrogate	%REC	Limits
Dibromof.	luoromethane	94	81-124
1,2-Dich	loroethane-d4	92	73-140
Toluene-c	d8	106	88-113
Bromofluo	orobenzene	99	80-127

BTXE & Oxygenates						
Lab #:	218663	Location:	6601 Bay Street			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B			
Project#:	950074.05	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC535458	Batch#:	160772			
Matrix:	Water	Analyzed:	03/10/10			
Units:	ug/L					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	97	81-124
1,2-Dichloroethane-d4	101	73-140
Toluene-d8	103	88-113
Bromofluorobenzene	105	80-127

ND= Not Detected RL= Reporting Limit Page 1 of 1

BTXE & Oxygenates						
Lab #: Client: Project#:	218663 Erler & Kalinowski, Inc. 950074.05	Location: Prep: Analysis:	6601 Bay Street EPA 5030B EPA 8260B			
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	160817 03/11/10			

Type: BS Lab ID: QC535621

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	93.06	74	36-156
MTBE	25.00	19.03	76	61-123
Isopropyl Ether (DIPE)	25.00	21.59	86	54-139
Ethyl tert-Butyl Ether (ETBE)	25.00	20.92	84	64-133
1,2-Dichloroethane	25.00	19.48	78	66-141
Benzene	25.00	22.85	91	81-122
Methyl tert-Amyl Ether (TAME)	25.00	19.76	79	73-124
Toluene	25.00	25.28	101	82-122
1,2-Dibromoethane	25.00	23.12	92	81-122
Ethylbenzene	25.00	25.95	104	86-125
m,p-Xylenes	50.00	51.71	103	83-127
o-Xylene	25.00	25.26	101	81-122

Surrogate	%REC	Limits
Dibromofluoromethane	95	81-124
1,2-Dichloroethane-d4	93	73-140
Toluene-d8	106	88-113
Bromofluorobenzene	101	80-127

Type: BSD Lab ID: QC535622

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	101.1	81	36-156	8	23
MTBE	25.00	19.32	77	61-123	1	11
Isopropyl Ether (DIPE)	25.00	20.86	83	54-139	3	11
Ethyl tert-Butyl Ether (ETBE)	25.00	21.13	85	64-133	1	11
1,2-Dichloroethane	25.00	19.41	78	66-141	0	12
Benzene	25.00	23.11	92	81-122	1	12
Methyl tert-Amyl Ether (TAME)	25.00	20.32	81	73-124	3	11
Toluene	25.00	24.97	100	82-122	1	12
1,2-Dibromoethane	25.00	23.23	93	81-122	0	11
Ethylbenzene	25.00	24.84	99	86-125	4	12
m,p-Xylenes	50.00	51.86	104	83-127	0	13
o-Xylene	25.00	25.04	100	81-122	1	12

Surrogate	%REC	Limits
Dibromofluoromethane	97	81-124
1,2-Dichloroethane-d4	95	73-140
Toluene-d8	103	88-113
Bromofluorobenzene	99	80-127

BTXE & Oxygenates						
Lab #:	218663	Location:	6601 Bay Street			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B			
Project#:	950074.05	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC535623	Batch#:	160817			
Matrix:	Water	Analyzed:	03/11/10			
Units:	ug/L					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate %	%REC	Limits
Dibromofluoromethane 99	9	81-124
1,2-Dichloroethane-d4 10	02	73-140
Toluene-d8 10	03	88-113
Bromofluorobenzene 10	05	80-127

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS						
Lab #:	218663	Location:	6601 Bay Street			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C			
Project#:	950074.05	Analysis:	EPA 8270C			
Field ID:	GGW-1	Batch#:	160787			
Lab ID:	218663-003	Sampled:	03/06/10			
Matrix:	Water	Received:	03/08/10			
Units:	ug/L	Prepared:	03/10/10			
Diln Fac:	10.00	Analyzed:	03/11/10			

Analyte	Result	RL	
Naphthalene	ND	98	
Acenaphthylene	ND	98	
Acenaphthene	ND	98	
Fluorene	ND	98	
Phenanthrene	ND	98	
Anthracene	ND	98	
Fluoranthene	ND	98	
Pyrene	ND	98	
Benzo(a)anthracene	ND	98	
Chrysene	ND	98	
Benzo(b)fluoranthene	ND	98	
Benzo(k)fluoranthene	ND	98	
Benzo(a)pyrene	ND	98	
Indeno(1,2,3-cd)pyrene	ND	98	
Dibenz(a,h)anthracene	ND	98	
Benzo(g,h,i)perylene	ND	98	

Surrogate	%REC	Limits
Nitrobenzene-d5	DO	34-113
2-Fluorobiphenyl	DO	36-115
Terphenyl-d14	DO	1-124

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C		
Project#:	950074.05	Analysis:	EPA 8270C		
Field ID:	GGW-2	Batch#:	160787		
Lab ID:	218663-004	Sampled:	03/06/10		
Matrix:	Water	Received:	03/08/10		
Units:	ug/L	Prepared:	03/10/10		
Diln Fac:	1.000	Analyzed:	03/11/10		

Analyte	Result	RL	
Naphthalene	ND	9.9	
Acenaphthylene	ND	9.9	
Acenaphthene	ND	9.9	
Fluorene	ND	9.9	
Phenanthrene	ND	9.9	
Anthracene	ND	9.9	
Fluoranthene	ND	9.9	
Pyrene	ND	9.9	
Benzo(a)anthracene	ND	9.9	
Chrysene	ND	9.9	
Benzo(b)fluoranthene	ND	9.9	
Benzo(k)fluoranthene	ND	9.9	
Benzo(a)pyrene	ND	9.9	
Indeno(1,2,3-cd)pyrene	ND	9.9	
Dibenz(a,h)anthracene	ND	9.9	
Benzo(g,h,i)perylene	ND	9.9	

Surrogate	%REC	Limits	
Nitrobenzene-d5	84	34-113	
2-Fluorobiphenyl	73	36-115	
Terphenyl-d14	22	1-124	

ND= Not Detected
RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C		
Project#:	950074.05	Analysis:	EPA 8270C		
Field ID:	GGW-3	Batch#:	160787		
Lab ID:	218663-005	Sampled:	03/06/10		
Matrix:	Water	Received:	03/08/10		
Units:	ug/L	Prepared:	03/10/10		
Diln Fac:	1.000	Analyzed:	03/11/10		

Analyte	Result	RL	
Naphthalene	ND	9.4	
Acenaphthylene	ND	9.4	
Acenaphthene	ND	9.4	
Fluorene	ND	9.4	
Phenanthrene	ND	9.4	
Anthracene	ND	9.4	
Fluoranthene	ND	9.4	
Pyrene	ND	9.4	
Benzo(a)anthracene	ND	9.4	
Chrysene	ND	9.4	
Benzo(b)fluoranthene	ND	9.4	
Benzo(k)fluoranthene	ND	9.4	
Benzo(a)pyrene	ND	9.4	
Indeno(1,2,3-cd)pyrene	ND	9.4	
Dibenz(a,h)anthracene	ND	9.4	
Benzo(g,h,i)perylene	ND	9.4	

Surrogate	%REC	Limits	
Nitrobenzene-d5	85	34-113	
2-Fluorobiphenyl	76	36-115	
Terphenyl-d14	26	1-124	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

Polynuclear Aromatics by GC/MS					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C		
Project#:	950074.05	Analysis:	EPA 8270C		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC535508	Batch#:	160787		
Matrix:	Water	Prepared:	03/10/10		
Units:	ug/L	Analyzed:	03/11/10		

Analyte	Result	RL	
Naphthalene	ND	10	
Acenaphthylene	ND	10	
Acenaphthene	ND	10	
Fluorene	ND	10	
Phenanthrene	ND	10	
Anthracene	ND	10	
Fluoranthene	ND	10	
Pyrene	ND	10	
Benzo(a)anthracene	ND	10	
Chrysene	ND	10	
Benzo(b)fluoranthene	ND	10	
Benzo(k)fluoranthene	ND	10	
Benzo(a)pyrene	ND	10	
Indeno(1,2,3-cd)pyrene	ND	10	
Dibenz(a,h)anthracene	ND	10	
Benzo(g,h,i)perylene	ND	10	

Surrogate	%REC	Limits
Nitrobenzene-d5	84	34-113
2-Fluorobiphenyl	80	36-115
Terphenyl-d14	86	1-124

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS					
Lab #:	218663	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C		
Project#:	950074.05	Analysis:	EPA 8270C		
Matrix:	Water	Batch#:	160787		
Units:	ug/L	Prepared:	03/10/10		
Diln Fac:	1.000	Analyzed:	03/11/10		

Type: BS Lab ID: QC535509

Analyte	Spiked	Result	%REC	Limits
Naphthalene	30.00	21.71	72	49-111
Acenaphthylene	30.00	23.96	80	39-135
Acenaphthene	30.00	26.36	88	45-117
Fluorene	30.00	24.09	80	51-116
Phenanthrene	30.00	24.39	81	51-115
Anthracene	30.00	22.86	76	53-116
Fluoranthene	30.00	24.30	81	50-115
Pyrene	30.00	24.43	81	43-131
Benzo(a)anthracene	30.00	26.23	87	52-115
Chrysene	30.00	25.07	84	46-125
Benzo(b)fluoranthene	30.00	27.19	91	43-123
Benzo(k)fluoranthene	30.00	27.36	91	35-139
Benzo(a)pyrene	30.00	24.91	83	39-111
Indeno(1,2,3-cd)pyrene	30.00	26.19	87	26-138
Dibenz(a,h)anthracene	30.00	26.31	88	31-134
Benzo(g,h,i)perylene	30.00	26.53	88	27-146

Surrogate	%REC	Limits
Nitrobenzene-d5	81	34-113
2-Fluorobiphenyl	82	36-115
Terphenyl-d14	86	1-124

Type: BSD Lab ID: QC535510

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Naphthalene	30.00	24.39	81	49-111	12	29
Acenaphthylene	30.00	26.62	89	39-135	11	27
Acenaphthene	30.00	29.46	98	45-117	11	34
Fluorene	30.00	26.49	88	51-116	10	30
Phenanthrene	30.00	26.98	90	51-115	10	28
Anthracene	30.00	25.33	84	53-116	10	27
Fluoranthene	30.00	26.43	88	50-115	8	27
Pyrene	30.00	27.39	91	43-131	11	29
Benzo(a)anthracene	30.00	29.18	97	52-115	11	29
Chrysene	30.00	27.98	93	46-125	11	29
Benzo(b)fluoranthene	30.00	30.01	100	43-123	10	34
Benzo(k)fluoranthene	30.00	29.73	99	35-139	8	33
Benzo(a)pyrene	30.00	26.94	90	39-111	8	31
Indeno(1,2,3-cd)pyrene	30.00	28.42	95	26-138	8	33
Dibenz(a,h)anthracene	30.00	28.52	95	31-134	8	33
Benzo(g,h,i)perylene	30.00	28.37	95	27-146	7	33

	Surrogate	%REC	Limits
N	itrobenzene-d5	90	34-113
2	-Fluorobiphenyl	90	36-115
	erphenyl-d14	92	1-124

Total Dissolved Solids (TDS)										
Lab #:	218663	Location:	6601 Bay Street							
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD							
Project#:	950074.05	Analysis:	SM2540C							
Analyte:	Total Dissolved Solids	Sampled:	03/06/10							
Matrix:	Water	Received:	03/08/10							
Units:	mg/L	Prepared:	03/09/10							
Batch#:	160755	Analyzed:	03/10/10							

Field ID	Type Lab ID	Result	RL	Diln Fac
MW-5	SAMPLE 218663-001	1,290	13	1.250
MW-7	SAMPLE 218663-002	780	10	1.000
GGW-1	SAMPLE 218663-003	1,420	11	1.111
GGW-2	SAMPLE 218663-004	700	11	1.111
GGW-3	SAMPLE 218663-005	1,530	13	1.250
	BLANK QC535379	ND	10	1.000

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Total Dissolved Solids (TDS)										
Lab #:	218663	Location:	6601 Bay Street								
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD								
Project#:	950074.05	Analysis:	SM2540C								
Analyte:	Total Dissolved Solids	Batch#:	160755								
Field ID:	ZZZZZZZZZ	Sampled:	03/03/10								
MSS Lab ID:	218583-006	Received:	03/03/10								
Matrix:	Water	Prepared:	03/09/10								
Units:	mg/L	Analyzed:	03/10/10								

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim	Diln Fac
BS	QC535380		104.0	90.00		87	75-106			1.000
BSD	QC535381		104.0	90.00		87	75-106	0	15	1.000
SDUP	QC535382	12,140		12,160	100.0			0	12	10.00

RL= Reporting Limit

RPD= Relative Percent Difference

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 219374 ANALYTICAL REPORT

Erler & Kalinowski, Inc.

1870 Ogden Drive

Burlingame, CA 94010-5306

Project : 950074.05

Location: 6601 Bay Street

Level : II

Sample ID GGW-4 <u>Lab ID</u> 219374-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>04/19/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 219374

Client: Erler & Kalinowski, Inc.

Project: 950074.05

Location: 6601 Bay Street

Request Date: 04/09/10 Samples Received: 04/09/10

This data package contains sample and QC results for one water sample, requested for the above referenced project on 04/09/10. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Semivolatile Organics by GC/MS (EPA 8270C):

No analytical problems were encountered.

Total Dissolved Solids (TDS) (SM2540C):

No analytical problems were encountered.

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

24374	,		1
PAGE	-	_ OF _	

CONSULTING ENGINEERS	AND SCIENTI	STS	1870 Ogden [Orive, Burlingan	ne CA 94010		Ī	PHON	IE: 65	0-29	2-9100)	-			FAX: 650-552-901:	2	
Project Name 6601 Bay Street			Project No. 950074.05				ANALYSES REQUESTED							EKI COC No.: (YYYYMMDD-#)				
			R. Lion /			Method No. Ana	EPA 8015M	EPA 8015M	L 2000	EPA 8260B (BTE	EPA 200.8 / With 0.4	EPA 8270 2	10 r	c		Revision Date:	: (A, B, C, D, etc.) By:	
(1) Logan Hansen: lohansen@ (2) Cindy Cheng: ccheng@eki (3) Jeff Shaw: jshaw@ekicons	ekiconsult.com consult.com ult.com	Date	Berkeley, C (510) 486-0	A 94710 900	No./Type of	Analyte Group	TPH-Gas	TPH as Die Silica Gel Clear	y and rue oxygen	BTEX and fuel oxygenates	with 0.45-micron filter Title 22 Metals				PLACE ON HOLD	EXPECTED TURNAROUND	_	
ricia Gampie Identification	No.	Date	rime	Matrix	Containers		Gas	nus es	100	ates	filter	PAHs	TDS		<u> </u>	TIME	Remarks	
MW-5				water	6 VOAs w/ HCI 2 Amber 500-ml 1-250-ml poly		X	x /	,	×		·	x			standard	POL	
MW-7				water	6 VOAs w/ HCI 2 Amber 500-ml 1-250-ml poly		x	×	,	×		<u></u>	×	-		standard	(01)	し
GGW 4		04/09/10	1408	water	6 VOAs w/ HCI Amber Liters 2 Amber 000ml		x	x	,	x		x	X			standard		
COMP				water	6 VOAs w/ HCI 2 Amber Liters 2 Amber 500-ml 1-250-ml poly		x	x	,	×		×	x			standard	PO	/
00W-3				water	6 VOAs w/ HCI 2 Amber Liters 2 Amber 500 ml 1-250-ml poly		x ,	x	,	×		X	×			standard	P	XL
Special Instructions:	DD E	DC &	EDB	TO AN	ALYTE LIST					 -	,	· -	<u> </u>					
Relinquished by: Relinquished by:	(Signature/Affilia	on		Date / / / / / / Date	Time 1523		/>	ed by:	I,			n	A	iation o	Carri	ier/Air Bill No.)		
Relinguished by:	(Signature/Affilia	ation)		<u>Date</u>	Time	Re	ceive	d by:			(Sig	natur	e/Affi	iation)		10 <u>, U</u> , 1		

COOLER RECEIPT CHECKLIST

Login # Z19374 Date Received 4/90 Client EV1 Project 6	Number of cool 3601-6603 BAY 37	ers Z
Date Opened 4/9/10 By (print) M. VILLONCE Date Logged in By (print)	_	ele
Did cooler come with a shipping slip (airbill, etc) Shipping info	YE	ES NO
2A. Were custody seals present? YES (circle) How many Name 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, 5. Is the project identifiable from custody papers? (If so 6. Indicate the packing in cooler: (if other, describe)	Date	NO 8 NO
☐ Bubble Wrap ☐ Foam blocks ☐ E	ags □ None tyrofoam □ Paper	towels
Type of ice used:	None Temp(°C)	
Samples Received on ice & cold without a ter	nperature blank	
☐ Samples received on ice directly from the fiel	d. Cooling process had beg	un
8. Were Method 5035 sampling containers present?	er?	YES MO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers for indica	ted tests?	XES NO
11. Are sample labels present, in good condition and con		YES NO
12. Do the sample labels agree with custody papers?	. 10	YES NO
13. Was sufficient amount of sample sent for tests reque 14. Are the samples appropriately preserved?		ES NO
15. Are bubbles > 6mm absent in VOA samples?	YES	NO N/A
16. Was the client contacted concerning this sample deli	very?	YES NO
If YES, Who was called?By	Date:	
COMMENTS		

SOP Volume:

Client Services

Section:

Page:

1.1.2

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Total Volatile Hydrocarbons									
Lab #:	219374	Location:	6601 Bay Street						
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B						
Project#:	950074.05	Analysis:	EPA 8015B						
Field ID:	GGW-4	Batch#:	161875						
Matrix:	Water	Sampled:	04/09/10						
Units:	ug/L	Received:	04/09/10						
Diln Fac:	1.000								

Type: SAMPLE Analyzed: 04/11/10

Lab ID: 219374-001

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	95	48-162
Bromofluorobenzene (FID)	92	52-158

Type: BLANK Analyzed: 04/10/10

Lab ID: QC539941

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Total Volatile Hydrocarbons					
Lab #:	219374	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B		
Project#:	950074.05	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC539942	Batch#:	161875		
Matrix:	Water	Analyzed:	04/10/10		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	902.7	90	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	128	48-162
Bromofluorobenzene (FID)	97	52-158

Page 1 of 1 5.0

Total Volatile Hydrocarbons					
Lab #:	219374	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B		
Project#:	950074.05	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	161875		
MSS Lab ID:	219314-005	Sampled:	04/06/10		
Matrix:	Water	Received:	04/07/10		
Units:	ug/L	Analyzed:	04/11/10		
Diln Fac:	1.000				

Type: MS

Lab ID: QC539943

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,538	2,000	3,310	89	49-129

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	155	48-162	
Bromofluorobenzene (FID)	114	52-158	

Type: MSD

Lab ID: QC539944

Gasoline C7-C12 2 000 3 084 77 49-19		
Gasoline C7-C12 2,000 3,084 77 49-12	9 7	19

Surrogate	%REC	Limits
Trifluorotoluene (FID)	159	48-162
Bromofluorobenzene (FID)	115	52-158

Total Extractable Hydrocarbons					
Lab #:	219374	Location:	6601 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C		
Project#:	950074.05	Analysis:	EPA 8015B		
Field ID:	GGW-4	Batch#:	161908		
Matrix:	Water	Sampled:	04/09/10		
Units:	ug/L	Received:	04/09/10		
Diln Fac:	1.000	Prepared:	04/12/10		

 Type:
 SAMPLE
 Analyzed:
 04/13/10

 Lab ID:
 219374-001
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	imits	
o-Terphenyl	107	39-150	

Type: BLANK Analyzed: 04/14/10 Lab ID: QC540074 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits	
o-Terphenyl	105	39-150	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Total Extractable Hydrocarbons						
Lab #:	219374	Location:	6601 Bay Street			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C			
Project#:	950074.05	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC540075	Batch#:	161908			
Matrix:	Water	Prepared:	04/12/10			
Units:	ug/L	Analyzed:	04/14/10			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,497	100	34-144

Surrogate	%REC	Limits
o-Terphenyl	112	39-150

Page 1 of 1

	BTXE & Oxygenates						
Lab #:	219374	Location:	6601 Bay Street				
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B				
Project#:	950074.05	Analysis:	EPA 8260B				
Field ID:	GGW-4	Batch#:	161891				
Lab ID:	219374-001	Sampled:	04/09/10				
Matrix:	Water	Received:	04/09/10				
Units:	ug/L	Analyzed:	04/12/10				
Diln Fac:	1.000						

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	108	81-124
1,2-Dichloroethane-d4	121	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	100	80-127

ND= Not Detected RL= Reporting Limit

Page 1 of 1

BTXE & Oxygenates						
Lab #: Client:	219374 Erler & Kalinowski, Inc.	Location: Prep:	6601 Bay Street EPA 5030B			
Project#:	950074.05	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	161891			
Units: Diln Fac:	ug/L 1.000	Analyzed:	04/12/10			

Type: BS Lab ID: QC540016

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	96.58	77	36-156
MTBE	25.00	21.27	85	61-123
Isopropyl Ether (DIPE)	25.00	24.74	99	54-139
Ethyl tert-Butyl Ether (ETBE)	25.00	22.52	90	64-133
1,2-Dichloroethane	25.00	28.92	116	66-141
Benzene	25.00	26.48	106	81-122
Methyl tert-Amyl Ether (TAME)	25.00	23.90	96	73-124
Toluene	25.00	25.88	104	82-122
1,2-Dibromoethane	25.00	23.09	92	81-122
Ethylbenzene	25.00	27.01	108	86-125
m,p-Xylenes	50.00	54.24	108	83-127
o-Xylene	25.00	26.69	107	81-122

Surrogate	%REC	Limits	
Dibromofluoromethane	95	81-124	
1,2-Dichloroethane-d4	119	73-140	
Toluene-d8	99	88-113	
Bromofluorobenzene	94	80-127	

Type: BSD Lab ID: QC540017

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	99.93	80	36-156	3	23
MTBE	25.00	21.39	86	61-123	1	11
Isopropyl Ether (DIPE)	25.00	24.53	98	54-139	1	11
Ethyl tert-Butyl Ether (ETBE)	25.00	22.38	90	64-133	1	11
1,2-Dichloroethane	25.00	28.09	112	66-141	3	12
Benzene	25.00	25.11	100	81-122	5	12
Methyl tert-Amyl Ether (TAME)	25.00	23.25	93	73-124	3	11
Toluene	25.00	24.77	99	82-122	4	12
1,2-Dibromoethane	25.00	23.13	93	81-122	0	11
Ethylbenzene	25.00	25.79	103	86-125	5	12
m,p-Xylenes	50.00	52.03	104	83-127	4	13
o-Xylene	25.00	25.88	104	81-122	3	12

Surrogate	%REC	Limits
Dibromofluoromethane	95	81-124
1,2-Dichloroethane-d4	118	73-140
Toluene-d8	99	88-113
Bromofluorobenzene	94	80-127

	BTXE &	Oxygenates	
Lab #:	219374	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5030B
Project#:	950074.05	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC540018	Batch#:	161891
Matrix:	Water	Analyzed:	04/12/10
Units:	ug/L		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	103	81-124
1,2-Dichloroethane-d4	119	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	100	80-127

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Polynuclear i	Aromatics by G	GC/MS	
Lab #:	219374	Location:	6601 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	GGW-4	Batch#:	161951	
Lab ID:	219374-001	Sampled:	04/09/10	
Matrix:	Water	Received:	04/09/10	
Units:	ug/L	Prepared:	04/13/10	
Diln Fac:	1.000	Analyzed:	04/14/10	

Analyte	Result	RL	
Naphthalene	ND	9.9	
Acenaphthylene	ND	9.9	
Acenaphthene	ND	9.9	
Fluorene	ND	9.9	
Phenanthrene	ND	9.9	
Anthracene	ND	9.9	
Fluoranthene	ND	9.9	
Pyrene	ND	9.9	
Benzo(a)anthracene	ND	9.9	
Chrysene	ND	9.9	
Benzo(b)fluoranthene	ND	9.9	
Benzo(k)fluoranthene	ND	9.9	
Benzo(a)pyrene	ND	9.9	
Indeno(1,2,3-cd)pyrene	ND	9.9	
Dibenz(a,h)anthracene	ND	9.9	
Benzo(g,h,i)perylene	ND	9.9	

Surrogate	%REC	Limits
Nitrobenzene-d5	48	34-113
2-Fluorobiphenyl	53	36-115
Terphenyl-d14	57	1-124

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Polynuclear .	Aromatics by G	GC/MS
Lab #:	219374	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C
Project#:	950074.05	Analysis:	EPA 8270C
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC540225	Batch#:	161951
Matrix:	Water	Prepared:	04/13/10
Units:	ug/L	Analyzed:	04/14/10

Analyte	Result	RL	
Naphthalene	ND	10	
Acenaphthylene	ND	10	
Acenaphthene	ND	10	
Fluorene	ND	10	
Phenanthrene	ND	10	
Anthracene	ND	10	
Fluoranthene	ND	10	
Pyrene	ND	10	
Benzo(a)anthracene	ND	10	
Chrysene	ND	10	
Benzo(b)fluoranthene	ND	10	
Benzo(k)fluoranthene	ND	10	
Benzo(a)pyrene	ND	10	
Indeno(1,2,3-cd)pyrene	ND	10	
Dibenz(a,h)anthracene	ND	10	
Benzo(g,h,i)perylene	ND	10	

Surrogate	%REC	Limits
Nitrobenzene-d5	64	34-113
2-Fluorobiphenyl	66	36-115
Terphenyl-d14	83	1-124

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Polynuclear	Aromatics by G	C/MS
Lab #:	219374	Location:	6601 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C
Project#:	950074.05	Analysis:	EPA 8270C
Matrix:	Water	Batch#:	161951
Units:	ug/L	Prepared:	04/13/10
Diln Fac:	1.000	Analyzed:	04/14/10

Type: BS Lab ID: QC540226

Analyte	Spiked	Result	%REC	Limits
Naphthalene	30.00	16.25	54	49-111
Acenaphthylene	30.00	18.69	62	39-135
Acenaphthene	30.00	20.60	69	45-117
Fluorene	30.00	19.93	66	51-116
Phenanthrene	30.00	18.88	63	51-115
Anthracene	30.00	18.52	62	53-116
Fluoranthene	30.00	17.67	59	50-115
Pyrene	30.00	25.09	84	43-131
Benzo(a)anthracene	30.00	19.81	66	52-115
Chrysene	30.00	19.82	66	46-125
Benzo(b)fluoranthene	30.00	22.23	74	43-123
Benzo(k)fluoranthene	30.00	21.91	73	35-139
Benzo(a)pyrene	30.00	17.73	59	39-111
Indeno(1,2,3-cd)pyrene	30.00	15.78	53	26-138
Dibenz(a,h)anthracene	30.00	16.19	54	31-134
Benzo(g,h,i)perylene	30.00	15.58	52	27-146

Surrogate	%REC	Limits
Nitrobenzene-d5	57	34-113
2-Fluorobiphenyl	66	36-115
Terphenyl-d14	88	1-124

Type: BSD Lab ID: QC540227

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Naphthalene	30.00	15.92	53	49-111	2	29
Acenaphthylene	30.00	16.99	57	39-135	10	27
Acenaphthene	30.00	18.96	63	45-117	8	34
Fluorene	30.00	17.85	59	51-116	11	30
Phenanthrene	30.00	16.75	56	51-115	12	28
Anthracene	30.00	16.31	54	53-116	13	27
Fluoranthene	30.00	15.44	51	50-115	13	27
Pyrene	30.00	22.60	75	43-131	10	29
Benzo(a)anthracene	30.00	17.79	59	52-115	11	29
Chrysene	30.00	17.52	58	46-125	12	29
Benzo(b)fluoranthene	30.00	18.79	63	43-123	17	34
Benzo(k)fluoranthene	30.00	20.09	67	35-139	9	33
Benzo(a)pyrene	30.00	15.60	52	39-111	13	31
Indeno(1,2,3-cd)pyrene	30.00	13.39	45	26-138	16	33
Dibenz(a,h)anthracene	30.00	13.63	45	31-134	17	33
Benzo(g,h,i)perylene	30.00	13.26	44	27-146	16	33

Surrogate	%REC	Limits
Nitrobenzene-d5	56	34-113
2-Fluorobiphenyl	62	36-115
Terphenyl-d14	79	1-124

Total Dissolved Solids (TDS)										
Lab #:	219374	Location:	6601 Bay Street							
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD							
Project#:	950074.05	Analysis:	SM2540C							
Analyte:	Total Dissolved Solids	Batch#:	161943							
Field ID:	GGW-4	Sampled:	04/09/10							
Matrix:	Water	Received:	04/09/10							
Units:	mg/L	Prepared:	04/13/10							
Diln Fac:	1.000	Analyzed:	04/14/10							

Type	Lab ID	Result	RL	
SAMPLE	219374-001	690	10	
BLANK	QC540194	ND	10	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Total Dissolved Solids (TDS)										
Lab #:	219374	Location:	6601 Bay Street							
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD							
Project#:	950074.05	Analysis:	SM2540C							
Analyte:	Total Dissolved Solids	Batch#:	161943							
Field ID:	ZZZZZZZZZ	Sampled:	04/07/10							
MSS Lab ID:	219303-040	Received:	04/07/10							
Matrix:	Water	Prepared:	04/13/10							
Units:	mg/L	Analyzed:	04/14/10							

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim	Diln Fac
BS	QC540195		104.0	96.00		92	75-106			1.000
BSD	QC540196		104.0	94.00		90	75-106	2	15	1.000
SDUP	QC540197	1,633		1,648	12.50			1	12	1.250

RL= Reporting Limit

RPD= Relative Percent Difference

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 219372 ANALYTICAL REPORT

Erler & Kalinowski, Inc. Project : 950074.05 1870 Ogden Drive Location : 6601-6603 Bay Street Burlingame, CA 94010-5306 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
SB-8-4.5-5	219372-001
SB-8-13-13.5	219372-002
SB-8-17.5-18	219372-003
SB-7-5-5.5	219372-004
SB-7-8-8.5	219372-005
SB-7-13-13.5	219372-006
SB-7-20.5-21	219372-007
SB-9-5-5.5	219372-008
SB-9-9-9.5	219372-009
SB-9-12.5-13	219372-010
SB-9-19-19.5	219372-011

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: <u>04/19/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 219372

Client: Erler & Kalinowski, Inc.

Project: 950074.05

Location: 6601-6603 Bay Street

Request Date: 04/09/10 Samples Received: 04/09/10

This data package contains sample and QC results for eleven soil samples, requested for the above referenced project on 04/09/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

Matrix spikes QC540200,QC540201 (batch 161944) were not reported because the parent sample required a dilution that would have diluted out the spikes. Many samples were diluted due to the dark and viscous nature of the sample extracts. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

Matrix spikes were not performed for this analysis in batch 162048 because matrix or site history indicated the recoveries would be non-meaningful. Low recoveries were observed for 1,2-dibromoethane in the MS/MSD for batch 161890; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. SB-7-8-8.5 (lab # 219372-005) and SB-9-9-9.5 (lab # 219372-009) were diluted due to high hydrocarbons. No other analytical problems were encountered.

Semivolatile Organics by GC/MS (EPA 8270C):

SB-9-12.5-13 (lab # 219372-010) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Moisture (ASTM D2216/CLP):

No analytical problems were encountered.

219372

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

PAGE OF 3

CONSULTING ENGINEERS	STS	1870 Ogden Drive, Burlingame CA 94010				PHC	NE:	650	-292	-9100)		FAX: 650-552-9012		
Project Name 6601-6603 Bay Street			Project No.	950074.08		ANALYSES REQUESTED								POIGOFOA.	
Location: 6601-6603 Shellmound Street, Emeryville, CA Reporting: Electronic Format: EDF Hard Copy Format: PDF EPA Data Report Level: II Please report results to the following:			Sampled By: AG Abeles Laboratory: Curtis & Tompkins, LTD 2323 Fifth Street,			Method No. Analyte	8260B + ED(8015M TPH-gasoline	8015M TPH-diese	8270 PAHs	Rese	Field Filtered with 0.45-micron filter		Revision Date:	
(1) Michelle King: mkking@ekiconsult.com (2) Cindy Cheng: ccheng@ekiconsult.com (3) Jeff Shaw: jshaw@ekiconsult.com			attn: Tracy Babjar / John Goyette		lyte Group	+ EDC + EDB	asoline	liesel		Rescent Washure	th 0.45-micron	PLACE ON HOLD	EXPECTED TURNAROUND		
Field Sample Identification	Lab Sample No.	Date	Time	Matrix	No./Type of Containers						16	₽	음	TIME	Remarks
58-8-4.5-5		4/9/2010	c915	Soil	3x 5g Encores 3x 5g Encores -oz soil sampl	e jar	メ	×	×	×	×			545	
5B-8-13-13.5			6930		3x 5g Encores 3x 5g Encores -oz soil sampl	e jar		メ	×	×	×			510	
SB-8-17.5-18			0950		3x 5g Encores 3x 5g Encores 5 -oz soil sampl	e jar		×	X	×	*			STD	
58-7-5-5.5			1007		3x 5g Encores 3x 5g Encores \$\forall \text{-oz soil sample}\$	e jar	*	×	*	*	×			SID	
SB-7-8-8.5		-	1010		3x 5g Encores 3x 5g Encores 5 -oz soil sampl	e jar	*	×	×	7	×			SID	
Special Instructions: Perfort all Pesul Reliphonished by	ts as Da	y weight						•							
Ida Unles Els			Date Time Received by: Signature/Affiliation or Carrier/Air Bill No.)					<u>.)</u>							
Relinquished by: (Signature/Affiliation)				Date 4/9/10	Time 1523		eceiv	7			8	ature/A	- â	len	
Relinquished by:	(Signature/Affili	ation)		<u>Date</u>	Time	R	eceiv	ed b	v:	•	(Sigr	ature/&	filiatio	ou)	

719372

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

CONSULTING ENGINEERS	1870 Ogden Drive, Burlingame CA 94010											PAGE OF				
Project Name				Drive, burninga	ime CA 94010		PHO	ONE	: 650	-292	-9100)		FAX: 650-552-9012		
6601-6603 Bay Street			Project No.			ANALYSES DECLIFORMS								EKI COC No.: (YYYYMMDD-#)		
Location:			950074.05			ANALYSES REQUESTED								20100409-1		
6601-6603 Shellmound Street	t, Emeryville, CA	4	Sampled By: AG Abels			Me						\top		(0)		
Reporting:	, , , , , ,		Laboratory:	PG TYPU		Method	_		_		j	곫		Revision	1:	
Electronic Format: EDF Hard Copy Format: PDF			<u>Luboratory.</u>			d No.	8260B	016	9	8270	- 1	ä			(A, B, C, D, etc.)	
EPA Data Report Level: II			Curtis & To	mpkins, LTD		_		Š	Ž	70		Field Filtered	1	Date:	By:	
Please report results to the following:			2323 Fifth :	Street,		An	旧品	P	모	¥	30				ŕ	
(1) Michelle King: mkking@ek	iconsult com		Berkeley, C			Analyte	Č X	8015M TPH-gasoline	8015M TPH-diese	" k	3	₽	- ₽			
(2) Cindy Cheng: ccheng@eki (3) Jeff Shaw: jshaw@ekicons	consult.com		(510) 486-0 attn: Tracy	วยบบ Babjar / John (Povotto	ହ	E S	ofine	<u>o</u>	PAHs	۱ ۴	0.45	PLACE			
	T.COM			242jai / 00iiii (ooyette	Group	BTEX + Oxygenates + EDC + EDB	_			₹	<u> </u>	ΕO	EVDEOTED		
Field Sample Identification	Lab Sample No.	Date	Time	Matrix	No./Type of Containers		ates			,	Marthan	with 0.45-micron filter	ON HOLD	EXPECTED TURNAROUND		
					3x 5g Encores		Z	_		_		<u> ē</u>	5	TIME	Remarks	
SB-7-13-13,5		4/09/2010	1020	Soil	3x 5g Encores			×		\dashv			\vdash	a .	_ 	
					√-oz soil sample 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	e jar			×	× ;	~	_		SID		
				 				\Box							ı	
SB-7-20.5-21			1628	12.0	3x 5g Encores		X			_						
			1020	Soil	3x 5g Encores S -oz soil sample		int		X	XXX		+		510		
					S oz son sample	z jai				~ 7	_					
SB-9-5-5.5			מ פר ל	1.0	3x 5g Encores		~	_		_	_					
1-5-11			1330 Soil		3x 5g Encores		/						510			
			1310			jar			<u> </u>	く り	4	4 1				
SB-9-9-9.5					3x 5g Encores	-	\times	\dashv	-+			\dashv				
25-1-1-4.5			1330	Soil	3x 5g Encores			×	\dashv	-	- -	+-1		-/-		
					√oz soil sample	jar			×	ح ,	4	+ -		STO		
58-9-12.5-13			1340	Sorl	3x 5g Encores		~	Z			4_	-				
			130	0014	3x 5g Encores -oz soil sample	iar			2		_ _	+		510		
Special Instructions:						Jai	\vdash	-		× >	-	+ -	-		ŀ	
Please Report	all re	sulto re	do. li	e alt												
Relinquished by:	(Signature/Affilia	tion)	200	Date .	Time											
(1) do . (1) 2		, , ,	Time	Rec	eived			<u>(S</u>	ignate	re/Mili	ation	or Carrier/Air Bill No.)				
Relinquished by: (Signature/Affikation)			4/9/2010 1430			/	/(21	1	1	VS	14				
(Signature/Attriation)			Date / Time			Rec	eived	by:	—–	(S	ignatu	ıre/Affili	ation)			
(Como men			4/9/10 1523			St VI										
Relinquished by: (Signature/Affiliation)						RA	eived	//	-	Ź	10	-	2	21-		
\cup				-		1766	GIVEU	υV.		72	<u>ıgnatı</u>	re/Affili	etion)			
=FieldDataForms_IDC 00400000																

219372

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

PAGE 3___ OF 3___

CONSULTING ENGINEERS A	AND SCIENTIS	STS	1870 Ogden D	rive, Burlingam	e CA 94010		PHC	NE:	650-	-292	-910	0		F	AX: 650-552-9012	
Project Name 6601-6603 Bay Street			Project No.	950074.05			AN	IALY	/SES	RE	QUE	STED			EKI COC No.: (Y 20100409-	
Location: 6601-6603 Shellmound Street, Reporting:	rd Copy Format	PDF	Sampled By: Laboratory: Curtis & Ton 2323 Fifth S Berkeley, C/	treet,		Method No. Analyte	8260B + EDC	8015M TPH-gasoline	8015M TPH-diesel	8270 PAHs	Porce		Field Filtered with 0 45-micron filter	P	Revision: Date:	(A, B, C, D, etc.) By:
(1) Michelle King: mkking@ekid (2) Cindy Cheng: ccheng@ekid (3) Jeff Shaw: jshaw@ekiconsu	consult.com consult.com		(510) 486-09		oyette	te Group	BTEX + Oxygenates + EDC + EDB	soline	sel		Percent Monthau		0 45-micro	PLACE ON	EXPECTED	
Field Sample Identification	Lab Sample No.	Date	Time	Matrix	No./Type of Containers		3.				E.		n filter	ON HOLD	TURNAROUND TIME	Remarks
SB-9-19-19.5		4/09/2016	1346	Soil	3x 5g Encores 3x 5g Encores 6 -oz soil samp		7	メ	X	×	×				SID	
					3x 5g/Encores 3x 5g Encores -oz soil samp		r									
					3x 5g Encores 3x 5g Encores -oz soil samp		r				/					
			/		3x 5g Encores 3x 5g Encores -oz soi/samp		ır								,	
					3x 5g Encores 3x 5g Encores -oz soil samp	1	ır						'	-		
Special Instructions: Please Report	tall T	results	as Dry	weg	H		_									
Please Report	(Signature/Affil	iation) ECT		19/2010	Time 1436		Recei	veo (By: U	1	v (Sig	ynature V			n or Carrier/Air Bill No	<u>).)</u>
Relinquished by:	(Signature/Affil	iation)		Date /9/10	1523		Recei	Z) W	1	•	_	nature	ı			
Relinquished by:	(Signature/Affil	iation)		<u>Date</u>	Time		Recei	ved l	o <u>y:</u>		<u> </u>	gnature	e/Affi	iliatio		

COOLER RECEIPT CHECKLIST

Login # 219372 Date Received 4/9/10 Number of coolers 2 Client EKI Project 6601-6603 BAY STREET Date Opened 4/9/10 By (print) M VILLO NUBL (sign) MARCHINE
Date Opened 4/9/10 By (print) M.VILLONUSE (sign) Date Logged in By (print) (sign)
1. Did cooler come with a shipping slip (airbill, etc) YES NO Shipping info
2A. Were custody seals present? TYES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? YES NO WA 3. Were custody papers dry and intact when received? NO 4. Were custody papers filled out properly (ink, signed, etc)?
5. Is the project identifiable from custody papers? (If so fill out top of form)YES NO 6. Indicate the packing in cooler: (if other, describe)
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation:
Type of ice used: ☐ Wet ☐ Blue/Gel ☐ None Temp(°C)
☑ Samples Received on ice & cold without a temperature blank
☐ Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? /Geo. YES NO
9. Did all bottles arrive unbroken/unopened?
10. Are samples in the appropriate containers for indicated tests? NO
11. Are sample labels present, in good condition and complete? NO
12. Do the sample labels agree with custody papers? NO
13. Was sufficient amount of sample sent for tests requested? YES NO 14. Are the samples appropriately preserved? YES NO YES
15. Are bubbles > 6mm absent in VOA samples? YES NO MA
16. Was the client contacted concerning this sample delivery? YES NO
If YES, Who was called? By Date:
COMMENTS

SOP Volume:

Client Services

Section:

Page:

1.1.2

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Gasoline by GC/FID (5035 Prep) Lab #: 219372 6601-6603 Bay Street Location: Client: Erler & Kalinowski, Inc. Prep: EPA 5035 950074.05 EPA 8015B Project#: Analysis: 04/09/10 Matrix: Soil Sampled: 04/09/10 Units: mg/Kg Received: Basis: dry

Field ID: SB-8-4.5-5 Diln Fac: 1.000
Type: SAMPLE Batch#: 161874
Lab ID: 219372-001 Analyzed: 04/11/10

Moisture: 11%

Analyte	Result	RL	
Gasoline C7-C12	0.19 Y	0.18	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	103	38-168
Bromofluorobenzene (FID)	103	27-175

Field ID: SB-8-13-13.5 Diln Fac: 1.000
Type: SAMPLE Batch#: 161874
Lab ID: 219372-002 Analyzed: 04/11/10

Moisture: 17%

Analyte	Result	RL	
Gasoline C7-C12	0.77 Y	0.33	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	104	38-168	
Bromofluorobenzene (FID)	98	27-175	

Field ID: SB-8-17.5-18 Diln Fac: 1.000
Type: SAMPLE Batch#: 161874
Lab ID: 219372-003 Analyzed: 04/11/10

Moisture: 21%

Anal	yte Resul	lt RL
Gasoline C7-C12	ND	0.21

	Surrogate	%REC	Limits
Trifl	luorotoluene (FID)	99	38-168
_	ofluorobenzene (FID)	98	27-175

Field ID: SB-7-5-5.5 Diln Fac: 1.000
Type: SAMPLE Batch#: 161874
Lab ID: 219372-004 Analyzed: 04/11/10

Moisture: 28%

Analyte	Result	RL	
Gasoline C7-C12	ND	0.23	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	100	38-168
Bromofluorobenzene (FID)	98	27-175

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 4

Gasoline by GC/FID (5035 Prep) 6601-6603 Bay Street Lab #: 219372 Location: Client: Erler & Kalinowski, Inc. EPA 5035 Prep: Analysis: Sampled: Project#: 950074.05 EPA 8015B 04/09/10 Soil Matrix: 04/09/10 Units: mg/Kg Received: Basis: dry

Field ID: SB-7-8-8.5 Diln Fac: 10.00 Type: SAMPLE Batch#: 161906 Lab ID: 219372-005 Analyzed: 04/13/10

Moisture: 13%

Analyte	Result	RL	
Gasoline C7-C12	160 Y	11	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	134	38-168	
Bromofluorobenzene (FID)	142	27-175	

Field ID: SB-7-13-13.5 Diln Fac: 1.000
Type: SAMPLE Batch#: 161874
Lab ID: 219372-006 Analyzed: 04/11/10

Moisture: 17%

Analyte	Result	RL	
Gasoline C7-C12	1.5	0.22	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	137	38-168	
Bromofluorobenzene (FID)	131	27-175	

Field ID: SB-7-20.5-21 Diln Fac: 1.000 Type: SAMPLE Batch#: 161874 Lab ID: 219372-007 Analyzed: 04/11/10

Moisture: 16%

Analyte	Result	RL	
Gasoline C7-C12	ND	0.18	

	Surrogate	%REC	Limits
Tr		102	38-168
Br	romofluorobenzene (FID)	103	27-175

Field ID: SB-9-5-5.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 161874 Lab ID: 219372-008 Analyzed: 04/11/10

Moisture: 13%

Analyte	Result	RL	
Gasoline C7-C12	ND	0.22	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	104	38-168	
Bromofluorobenzene (FID)	97	27-175	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 4

Gasoline by GC/FID (5035 Prep) 6601-6603 Bay Street Lab #: 219372 Location: Client: Erler & Kalinowski, Inc. EPA 5035 Prep: Analysis: Sampled: Project#: 950074.05 EPA 8015B 04/09/10 Soil Matrix: 04/09/10 Units: mg/Kg Received: Basis: dry

Field ID: SB-9-9-9.5 Diln Fac: 5.000 Type: SAMPLE Batch#: 161906 Lab ID: 219372-009 Analyzed: 04/13/10

Moisture: 14%

Analyte	Result	RL	
Gasoline C7-C12	140 Y	5.8	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	120	38-168	
Bromofluorobenzene (FID)	164	27-175	

Field ID: SB-9-12.5-13 Diln Fac: 5.000 Type: SAMPLE Batch#: 161906 Lab ID: 219372-010 Analyzed: 04/13/10

Moisture: 17%

Analyte	Result	RL	
Gasoline C7-C12	98 Y	6.0	

	Surrogate	%REC	Limits	
Trifl	luorotoluene (FID)	111	38-168	
Bromo	ofluorobenzene (FID)	146	27-175	

Field ID: SB-9-19-19.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 161874 Lab ID: 219372-011 Analyzed: 04/11/10

Moisture: 23%

Analyte	Result	RL	
Gasoline C7-C12	ND	0.23	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	104	38-168
Bromofluorobenzene (FID)	108	27-175

Type: BLANK Batch#: 161874 Lab ID: QC539937 Analyzed: 04/10/10

Diln Fac: 1.000

Analyte	Result	RL	
2 2 2 2 2 2 2 2		0.00	
Gasoline C7-C12	ND	0.20	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 4

2 & Kalinowski, Inc.	Location: Prep:	6601-6603 Bay Street EPA 5035 EPA 8015B
.05	Sampled: Received:	04/09/10 04/09/10
	='	& Kalinowski, Inc. Prep: 4.05 Analysis: Sampled:

Type: Lab ID: Diln Fac: 161906 04/12/10 BLANK Batch#: QC540065 1.000 Analyzed:

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	101	38-168
Bromofluorobenzene (FID)	100	27-175

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Gasoline by GC/FID (5035 Prep)						
Lab #:	219372	Location:	6601-6603 Bay Street			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035			
Project#:	950074.05	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC539938	Batch#:	161874			
Matrix:	Soil	Analyzed:	04/10/10			
Units:	mg/Kg					

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	0.9435	94	74-123

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	38-168
Bromofluorobenzene (FID)	100	27-175

Page 1 of 1 5.0

	Gasoline by GC/FID (5035 Prep)						
Lab #:	219372	Location:	6601-6603 Bay Street				
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035				
Project#:	950074.05	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000				
MSS Lab ID:	219364-006	Batch#:	161874				
Matrix:	Soil	Sampled:	04/08/10				
Units:	mg/Kg	Received:	04/09/10				
Basis:	as received	Analyzed:	04/10/10				

Type: MS Lab ID: QC539939

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.7046	9.615	9.881	95	14-138

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	131	38-168	
Bromofluorobenzene (FID)	105	27-175	

Type: MSD Lab ID: QC539940

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.615	9.709	94	14-138	2	52

	Gasoline by (GC/FID (5035 F	Prep)
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC540066	Batch#:	161906
Matrix:	Soil	Analyzed:	04/12/10
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	0.9530	95	74-123

Surrogate	%REC	Limits
Trifluorotoluene (FID)	109	38-168
Bromofluorobenzene (FID)	100	27-175

Page 1 of 1 7.0

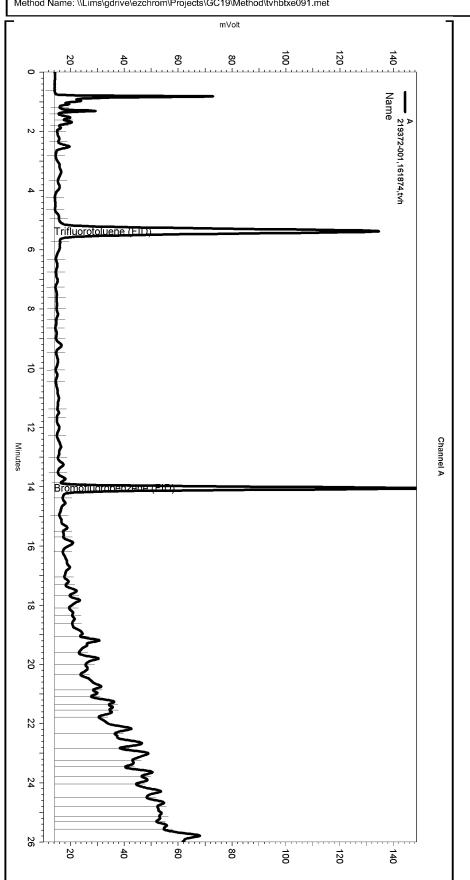
	Gasoline by	GC/FID (5035 F	Prep)
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000
MSS Lab ID:	219369-020	Batch#:	161906
Matrix:	Soil	Sampled:	04/01/10
Units:	mg/Kg	Received:	04/02/10
Basis:	as received	Analyzed:	04/12/10

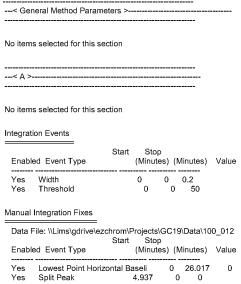
Type: MS Lab ID: QC540067

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.07791	10.20	9.106	88	14-138

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	130	38-168	
Bromofluorobenzene (FID)	102	27-175	

Type: MSD Lab ID: QC540068


Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.901	8.696	87	14-138	2	52

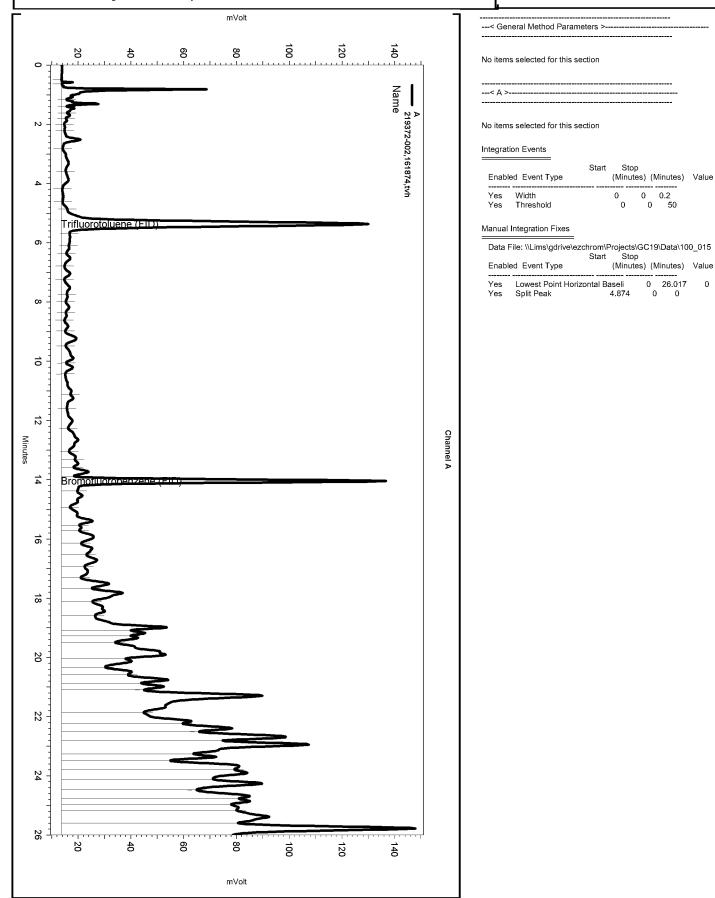

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\100.seq Sample Name: 219372-001,161874,tvh

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\100_012

Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/11/2010 2:16:58 AM Analysis Date: 4/12/2010 10:59:17 AM Sample Amount: 6.1 Multiplier: 6.1 Vial & pH or Core ID: a

mVolt

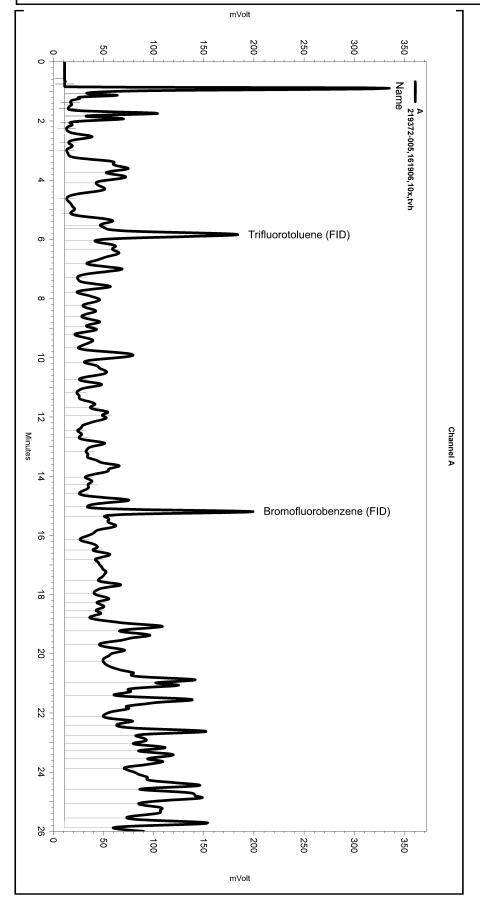

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\100.seq Sample Name: 219372-002,161874,tvh

Data File: \\Lims\gdrive\ezchrom\\Projects\\GC19\\Data\\100_015 \\
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims\2k3\\tvh2) \\
Method \Name: \\Lims\gdrive\ezchrom\\Projects\\GC19\\Method\\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/11/2010 4:09:44 AM Analysis Date: 4/12/2010 11:28:06 AM Sample Amount: 3.7 Multiplier: 3.7 Vial & pH or Core ID: a

0 0.2 0 50

0 26.017 0 0



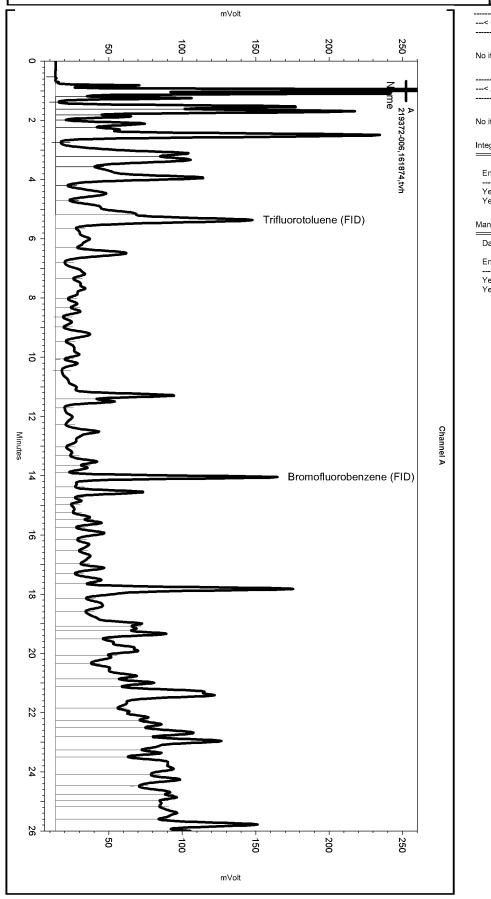
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\102.seq

Software Version 3.1.7 Run Date: 4/13/2010 7:02:54 AM Analysis Date: 4/13/2010 1:05:05 PM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: a

< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\102_030 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0 Yes Split Peak 5.645 0 0

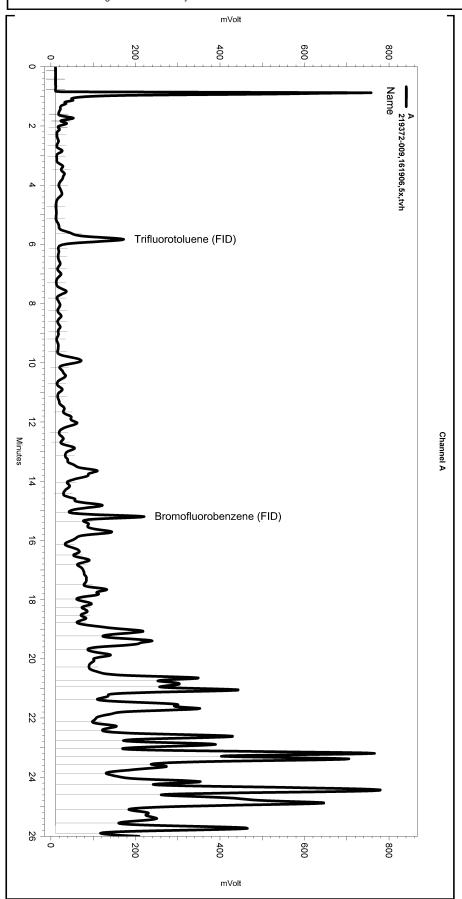
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\100.seq


Sample Name: 219372-006,161874,tvh

Data File: \\Lims\\gdrive\ezchrom\\Projects\\GC19\Data\\100_019

Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

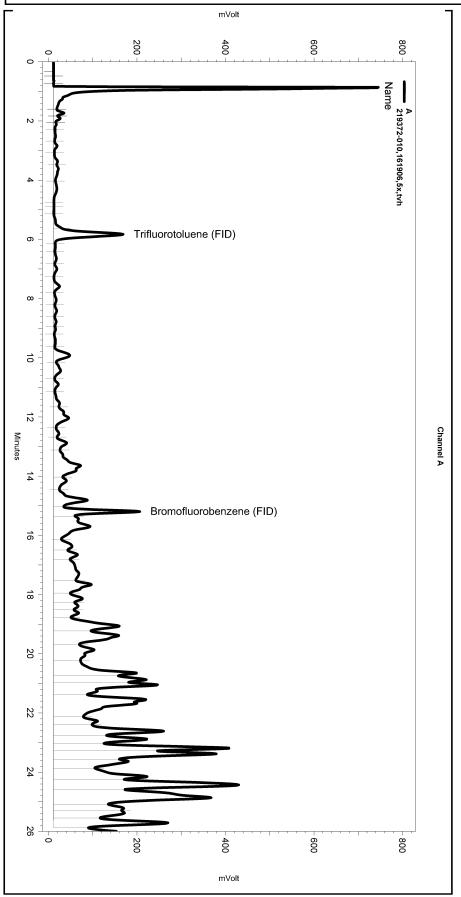
Method Name: \\Lims\\gdrive\ezchrom\\Projects\\GC19\Method\\tvhbtxe091.met


Software Version 3.1.7 Run Date: 4/11/2010 6:40:03 AM Analysis Date: 4/12/2010 11:28:33 AM Sample Amount: 5.59 Multiplier: 5.59 Vial & pH or Core ID: a

< General Method Parameters >	·
No items selected for this section	
< A >	
No items selected for this section	
No items selected for this section	
Integration Events	
	t Stop
Enabled Event Type	(Minutes) (Minutes) Value
Yes Width	0 0 0.2
Yes Threshold	0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom	\Projects\GC19\Data\100_019
Star	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizontal I	Baseli 0 26.017 0
Yes Split Peak	5.191 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\102.seq

Software Version 3.1.7 Run Date: 4/13/2010 7:38:57 AM Analysis Date: 4/13/2010 1:05:11 PM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

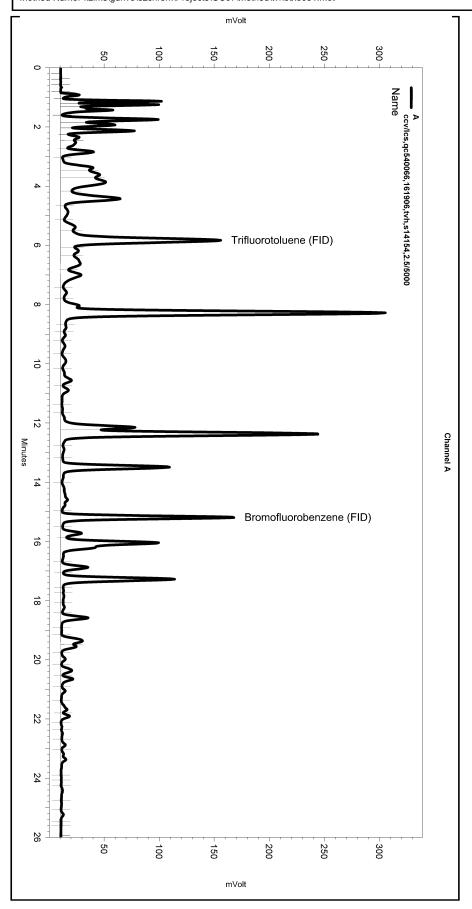


< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\102_031 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0 Yes Split Peak 5.651 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\102.seq

Software Version 3.1.7 Run Date: 4/13/2010 8:14:50 AM Analysis Date: 4/13/2010 1:05:21 PM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

< General Method Parameters >	>
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Star Enabled Event Type	t Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizontal Yes Split Peak	Baseli 0 26.017 0 5.637 0 0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\102.seq Sample Name: ccv/lcs,qc540066,161906,tvh,s14154,2.5/5000

Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\102_003

Instrument: GC07 (Offline) Vial: N/A Operator: RSK-175 Analyst (lims2k3\rsk175)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/12/2010 9:29:56 AM Analysis Date: 4/13/2010 12:12:24 PM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: {Data Description}

< General Method Parameters >
No items selected for this section
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\102_003
Enabled Event Type (Minutes) (Minutes) Value
None

Total Extractable Hydrocarbons Lab #: 219372 6601-6603 Bay Street Location: Erler & Kalinowski, Inc. SHAKER TABLE Client: Prep: 950074.05 Project#: Analysis: EPA 8015B Matrix: Soil Sampled: 04/09/10 04/09/10 Units: mg/Kg Received: Basis: dry 04/13/10 Prepared: 161944 Batch#:

Field ID: SB-8-4.5-5 Diln Fac: 10.00 Type: SAMPLE Analyzed: 04/13/10 Lab ID: 219372-001 Cleanup Method: EPA 3630C

Moisture: 11%

AnalyteResultRLDiesel C10-C24900 Y11

Surrogate %REC Limits
0-Terphenyl DO 16-164

Field ID: SB-8-13-13.5 Diln Fac: 5.000
Type: SAMPLE Analyzed: 04/14/10
Lab ID: 219372-002 Cleanup Method: EPA 3630C

Moisture: 17%

 Analyte
 Result
 RL

 Diesel C10-C24
 2,500
 6.0

Surrogate %REC Limits
o-Terphenyl 95 16-164

Field ID: SB-8-17.5-18 Diln Fac: 1.000
Type: SAMPLE Analyzed: 04/14/10
Lab ID: 219372-003 Cleanup Method: EPA 3630C

Moisture: 21%

 Analyte
 Result
 RL

 Diesel C10-C24
 12
 1.3

Surrogate %REC Limits
o-Terphenyl 121 16-164

Field ID: SB-7-5-5.5 Diln Fac: 2.000
Type: SAMPLE Analyzed: 04/13/10
Lab ID: 219372-004 Cleanup Method: EPA 3630C
Moisture: 28%

Moisture: 28%

AnalyteResultRLDiesel C10-C241002.8

Surrogate %REC Limits
o-Terphenyl 113 16-164

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

Total Extractable Hydrocarbons Lab #: 219372 Location: 6601-6603 Bay Street Client: Erler & Kalinowski, Inc. SHAKER TABLE Prep: 950074.05 Project#: EPA 8015B Analysis: Sampled: 04/09/10 Matrix: Soil 04/09/10 Units: mg/Kg Received: Basis: Prepared: 04/13/10 dry 161944 Batch#:

Field ID: SB-7-8-8.5 Diln Fac: 20.00 Type: SAMPLE Analyzed: 04/14/10 Lab ID: 219372-005 EPA 3630C Cleanup Method: 13% Moisture:

Analyte Result RL Diesel C10-C24 4,400 23

Surrogate %REC Limits o-Terphenyl DO 16-164

Field ID: SB-7-13-13.5 Diln Fac: 5.000 SAMPLE Analyzed: 04/14/10 Type: Lab ID: 219372-006 Cleanup Method: EPA 3630C

Moisture: 17%

Analyte Result RLDiesel C10-C24 1,000 6.0

Surrogate %REC Limits o-Terphenyl 16-164

Field ID: SB-7-20.5-21 Diln Fac: 1.000 SAMPLE Analyzed: 04/14/10 Type: Lab ID: 219372-007 Cleanup Method: EPA 3630C

Moisture: 16%

Analyte Result RLDiesel C10-C24 $1.\overline{2}$ 6.2

Surrogate %REC Limits 85 o-Terphenyl 16-164

2.000 Field ID: SB-9-5-5.5 Diln Fac: 04/14/10 Type: SAMPLE Analyzed: Lab ID: 219372-008 Cleanup Method: EPA 3630C

Moisture: 13%

Result Analyte RL 49 Y Diesel C10-C24 2.3

Limits Surrogate o-Terphenyl 82 16-164

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected RL= Reporting Limit

Page 2 of 3 25.1

Total Extractable Hydrocarbons Lab #: 219372 Location: 6601-6603 Bay Street SHAKER TABLE Client: Erler & Kalinowski, Inc. Prep: 950074.05 Project#: EPA 8015B Analysis: Sampled: 04/09/10 Matrix: Soil 04/09/10 Units: mg/Kg Received: dry 161944 Basis: Prepared: 04/13/10 Batch#:

Field ID: SB-9-9-9.5 Diln Fac: 25.00 Type: SAMPLE Analyzed: 04/14/10 Lab ID: 219372-009 Cleanup Method: EPA 3630C 14% Moisture:

Analyte Result RL Diesel C10-C24 4,600 29

Surrogate %REC Limits o-Terphenyl DO 16-164

Field ID: SB-9-12.5-13 Diln Fac: 10.00 SAMPLE Analyzed: 04/14/10 Type: Lab ID: 219372-010 Cleanup Method: EPA 3630C

Moisture: 17%

Analyte Result RLDiesel C10-C24 3,200

Surrogate %REC Limits o-Terphenyl 16-164

Field ID: SB-9-19-19.5 Diln Fac: 1.000 SAMPLE Analyzed: 04/14/10 Type: Lab ID: 219372-011 Cleanup Method: EPA 3630C

Moisture: 23%

Analyte Result RLDiesel C10-C24 1.3 78

Surrogate %REC Limits o-Terphenyl 94 16-164

BLANK 04/14/10 Type: Analyzed: QC540198 Lab ID: Cleanup Method: EPA 3630C

Diln Fac: $\tilde{1}.000$

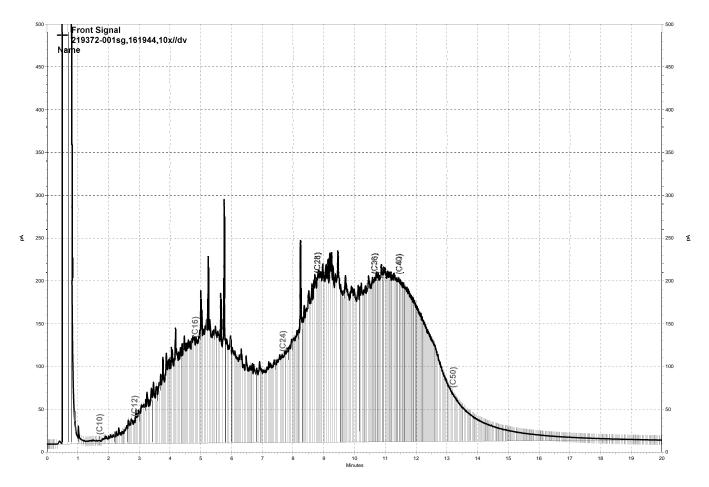
Analyte Result Diesel C10-C24 ND 1.0

%REC Limits Surrogate o-Terphenyl 120 16-164

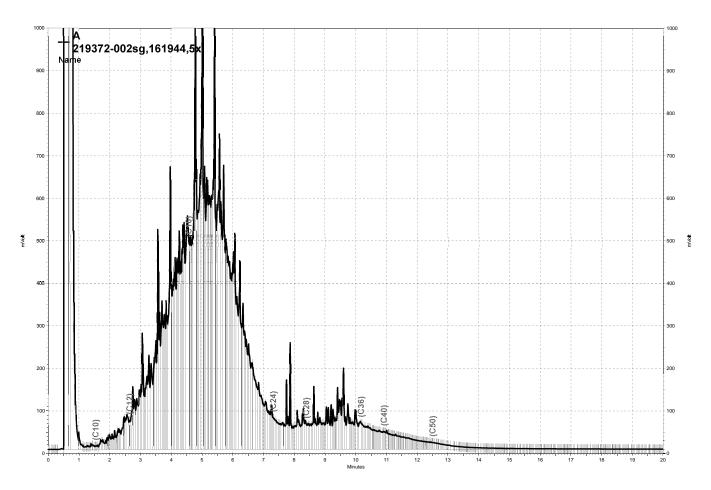
Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected RL= Reporting Limit

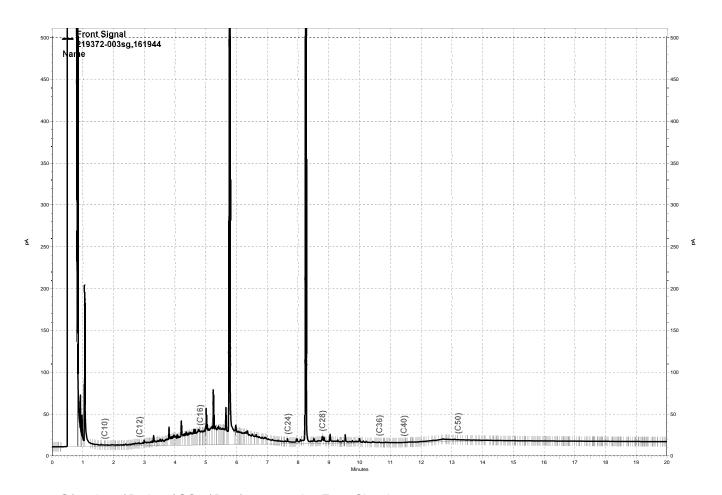
Page 3 of 3

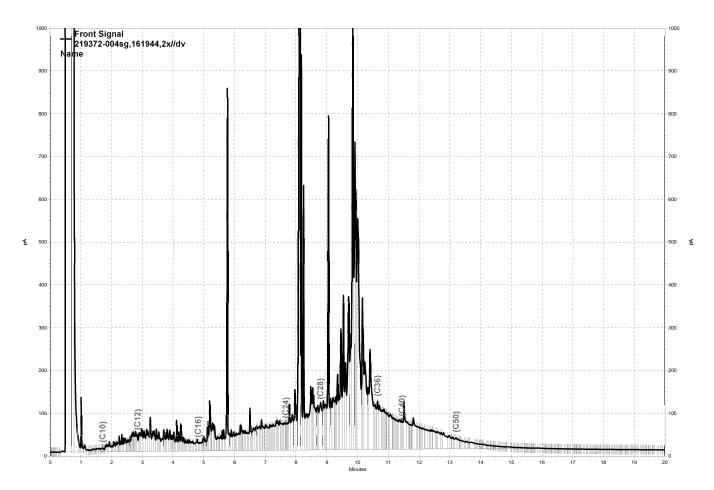

Total Extractable Hydrocarbons				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	SHAKER TABLE	
Project#:	950074.05	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC540199	Batch#:	161944	
Matrix:	Soil	Prepared:	04/13/10	
Units:	mg/Kg	Analyzed:	04/14/10	

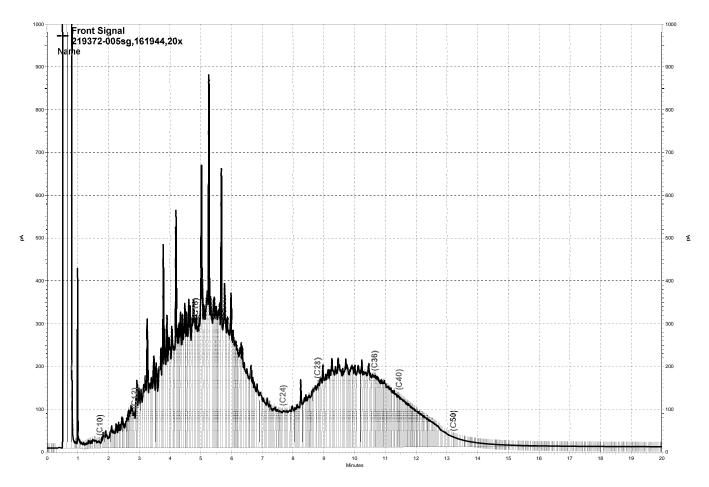
Cleanup Method: EPA 3630C

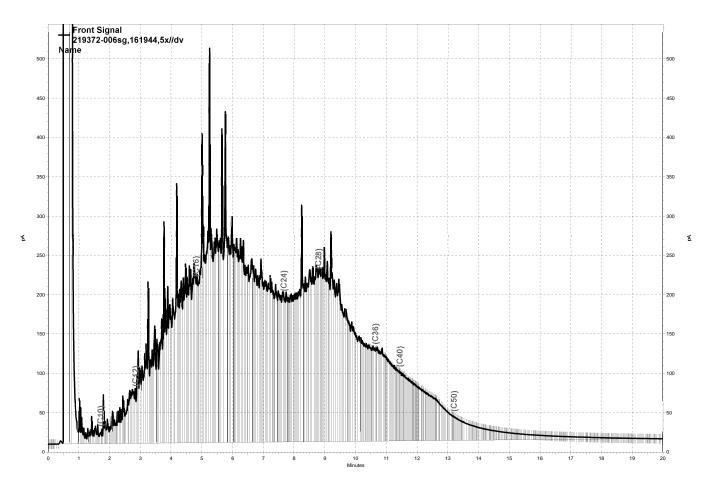

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.97	58.69	117	36-151

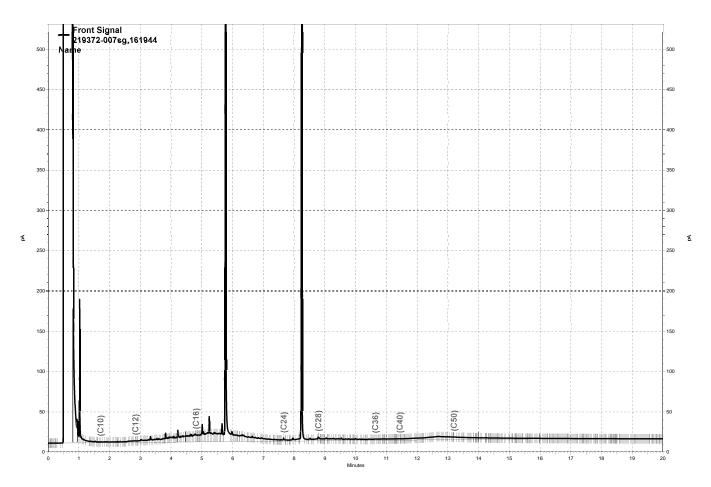
Surrogate	%REC	Limits
o-Terphenyl	122	16-164

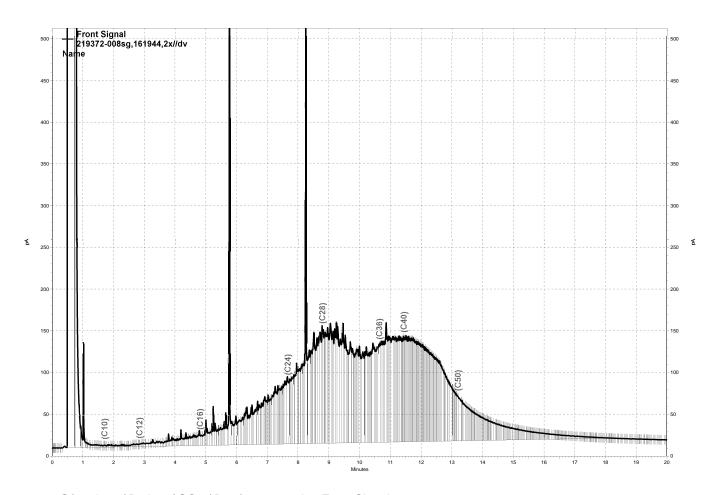

Page 1 of 1 26.0

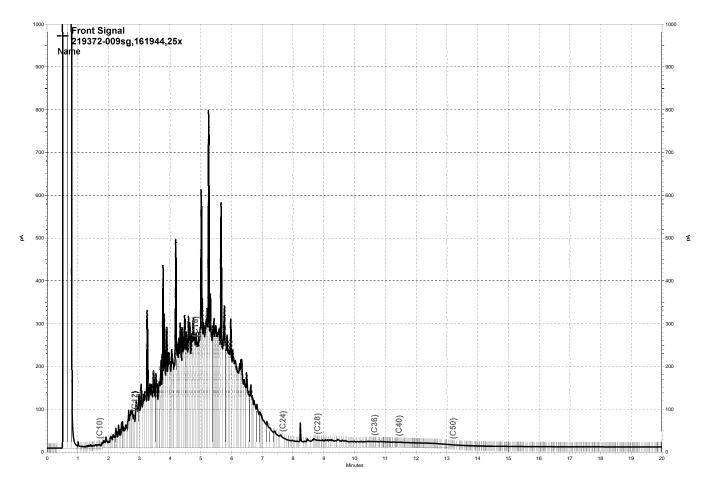

G:\ezchrom\Projects\GC27\Data\103a019.dat, Front Signal

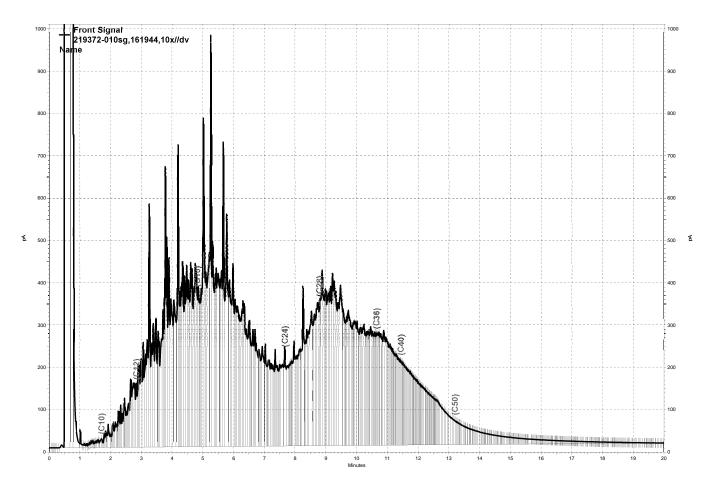

\\Lims\gdrive\ezchrom\Projects\GC26\Data\104a013, A

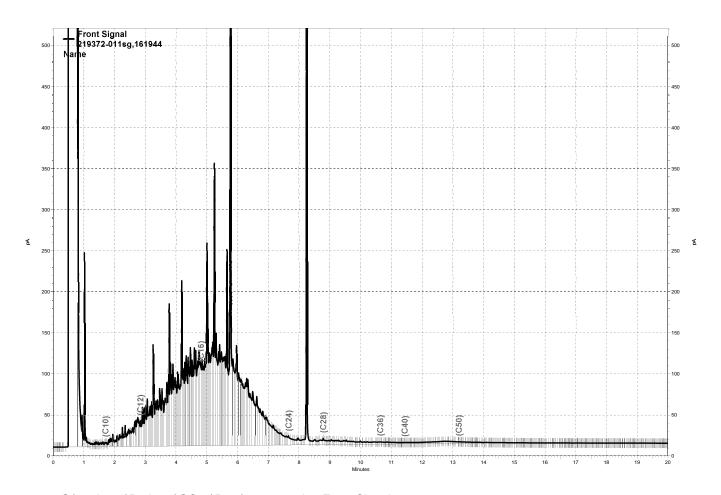

G:\ezchrom\Projects\GC27\Data\103a028.dat, Front Signal

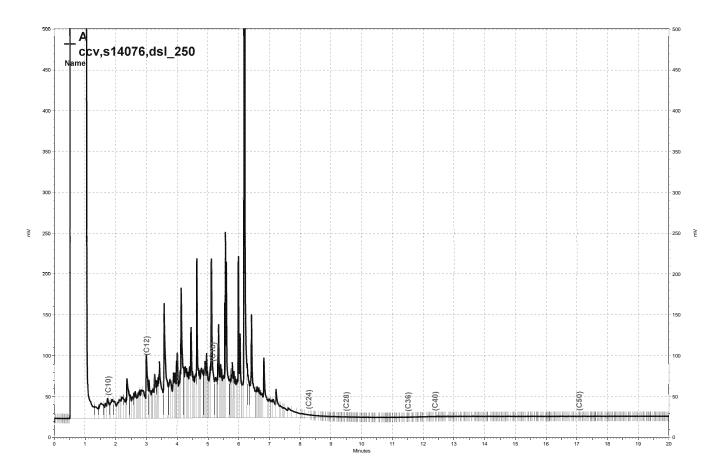

G:\ezchrom\Projects\GC27\Data\103a021.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\104a006.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\103a023.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\103a029.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\103a024.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\104a007.dat, Front Signal

G:\ezchrom\Projects\GC27\Data\103a026.dat, Front Signal

G:\ezchrom\Projects\GC27\Data\103a034.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC17A\Data\103a032, A

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-8-4.5-5	Diln Fac:	0.8347
Lab ID:	219372-001	Batch#:	161890
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 11%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	94	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	59-139	
1,2-Dichloroethane-d4	108	54-153	
Toluene-d8	106	83-118	
Bromofluorobenzene	116	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

BTXE & Oxygenates				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035	
Project#:	950074.05	Analysis:	EPA 8260B	
Field ID:	SB-8-13-13.5	Diln Fac:	0.7716	
Lab ID:	219372-002	Batch#:	161890	
Matrix:	Soil	Sampled:	04/09/10	
Units:	ug/Kg	Received:	04/09/10	
Basis:	dry	Analyzed:	04/12/10	

Moisture: 17%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	93	
MTBE	ND	4.6	
Isopropyl Ether (DIPE)	ND	4.6	
Ethyl tert-Butyl Ether (ETBE)	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Methyl tert-Amyl Ether (TAME)	ND	4.6	
Toluene	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	59-139	
1,2-Dichloroethane-d4	107	54-153	
Toluene-d8	105	83-118	
Bromofluorobenzene	130	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-8-17.5-18	Diln Fac:	0.8375
Lab ID:	219372-003	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 21%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	110	
MTBE	ND	5.3	
Isopropyl Ether (DIPE)	ND	5.3	
Ethyl tert-Butyl Ether (ETBE)	ND	5.3	
1,2-Dichloroethane	ND	5.3	
Benzene	ND	5.3	
Methyl tert-Amyl Ether (TAME)	ND	5.3	
Toluene	ND	5.3	
1,2-Dibromoethane	ND	5.3	
Ethylbenzene	ND	5.3	
m,p-Xylenes	ND	5.3	
o-Xylene	ND	5.3	

Surrogate	%REC	Limits	
Dibromofluoromethane	93	59-139	
1,2-Dichloroethane-d4	101	54-153	
Toluene-d8	95	83-118	
Bromofluorobenzene	106	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-7-5-5.5	Diln Fac:	0.8319
Lab ID:	219372-004	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 28%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	120	
MTBE	ND	5.8	
Isopropyl Ether (DIPE)	ND	5.8	
Ethyl tert-Butyl Ether (ETBE)	ND	5.8	
1,2-Dichloroethane	ND	5.8	
Benzene	ND	5.8	
Methyl tert-Amyl Ether (TAME)	ND	5.8	
Toluene	ND	5.8	
1,2-Dibromoethane	ND	5.8	
Ethylbenzene	ND	5.8	
m,p-Xylenes	ND	5.8	
o-Xylene	ND	5.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	89	59-139	
1,2-Dichloroethane-d4	103	54-153	
Toluene-d8	101	83-118	
Bromofluorobenzene	109	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-7-8-8.5	Diln Fac:	100.0
Lab ID:	219372-005	Batch#:	162048
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/15/10

Moisture: 13%

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	11,000
MTBE	ND	570
Isopropyl Ether (DIPE)	ND	570
Ethyl tert-Butyl Ether (ETBE)	ND	570
1,2-Dichloroethane	ND	570
Benzene	ND	570
Methyl tert-Amyl Ether (TAME)	ND	570
Toluene	ND	570
1,2-Dibromoethane	ND	570
Ethylbenzene	ND	570
m,p-Xylenes	ND	570
o-Xylene	ND	570

Surrogate %R	REC	Limits
Dibromofluoromethane 83		59-139
1,2-Dichloroethane-d4 88		54-153
Toluene-d8 97		83-118
Bromofluorobenzene 100)	61-146
Trifluorotoluene (MeOH) 102	2	25-170

ND= Not Detected
RL= Reporting Limit

Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-7-13-13.5	Diln Fac:	0.8475
Lab ID:	219372-006	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 17%

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	100
MTBE	ND	5.1
Isopropyl Ether (DIPE)	ND	5.1
Ethyl tert-Butyl Ether (ETBE)	ND	5.1
1,2-Dichloroethane	ND	5.1
Benzene	12	5.1
Methyl tert-Amyl Ether (TAME)	ND	5.1
Toluene	ND	5.1
1,2-Dibromoethane	ND	5.1
Ethylbenzene	14	5.1
m,p-Xylenes	6.	5.1
o-Xylene	ND	5.1

Surrogate	%REC	Limits	
Dibromofluoromethane	80	59-139	
1,2-Dichloroethane-d4	89	54-153	
Toluene-d8	96	83-118	
Bromofluorobenzene	101	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-7-20.5-21	Diln Fac:	0.8333
Lab ID:	219372-007	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 16%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	90	59-139	
1,2-Dichloroethane-d4	88	54-153	
Toluene-d8	96	83-118	
Bromofluorobenzene	105	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-9-5-5.5	Diln Fac:	0.7837
Lab ID:	219372-008	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 13%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	90	
MTBE	ND	4.5	
Isopropyl Ether (DIPE)	ND	4.5	
Ethyl tert-Butyl Ether (ETBE)	ND	4.5	
1,2-Dichloroethane	ND	4.5	
Benzene	ND	4.5	
Methyl tert-Amyl Ether (TAME)	ND	4.5	
Toluene	ND	4.5	
1,2-Dibromoethane	ND	4.5	
Ethylbenzene	ND	4.5	
m,p-Xylenes	ND	4.5	
o-Xylene	ND	4.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	81	59-139	
1,2-Dichloroethane-d4	96	54-153	
Toluene-d8	99	83-118	
Bromofluorobenzene	106	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-9-9-9.5	Diln Fac:	250.0
Lab ID:	219372-009	Batch#:	162048
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/15/10

Moisture: 14%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	29,000	
MTBE	ND	1,500	
Isopropyl Ether (DIPE)	ND	1,500	
Ethyl tert-Butyl Ether (ETBE)	ND	1,500	
1,2-Dichloroethane	ND	1,500	
Benzene	ND	1,500	
Methyl tert-Amyl Ether (TAME)	ND	1,500	
Toluene	ND	1,500	
1,2-Dibromoethane	ND	1,500	
Ethylbenzene	ND	1,500	
m,p-Xylenes	ND	1,500	
o-Xylene	ND	1,500	

Surrogate	%REC	Limits	
Dibromofluoromethane	81	59-139	
1,2-Dichloroethane-d4	86	54-153	
Toluene-d8	107	83-118	
Bromofluorobenzene	97	61-146	
Trifluorotoluene (MeOH)	105	25-170	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-9-12.5-13	Diln Fac:	0.8052
Lab ID:	219372-010	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 17%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	97	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	7.7	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	85	59-139	
1,2-Dichloroethane-d4	92	54-153	
Toluene-d8	101	83-118	
Bromofluorobenzene	108	61-146	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Field ID:	SB-9-19-19.5	Diln Fac:	0.8929
Lab ID:	219372-011	Batch#:	161895
Matrix:	Soil	Sampled:	04/09/10
Units:	ug/Kg	Received:	04/09/10
Basis:	dry	Analyzed:	04/12/10

Moisture: 23%

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	120	
MTBE	ND	5.8	
Isopropyl Ether (DIPE)	ND	5.8	
Ethyl tert-Butyl Ether (ETBE)	ND	5.8	
1,2-Dichloroethane	ND	5.8	
Benzene	ND	5.8	
Methyl tert-Amyl Ether (TAME)	ND	5.8	
Toluene	ND	5.8	
1,2-Dibromoethane	ND	5.8	
Ethylbenzene	ND	5.8	
m,p-Xylenes	ND	5.8	
o-Xylene	ND	5.8	

Surrogate	%REC	Limits	ន	
Dibromofluoromethane	91	59-139	9	
1,2-Dichloroethane-d4	92	54-153	3	
Toluene-d8	97	83-118	8	
Bromofluorobenzene	104	61-146	6	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC540014	Batch#:	161890
Matrix:	Soil	Analyzed:	04/12/10
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	95	59-139
1,2-Dichloroethane-d4	97	54-153
Toluene-d8	103	83-118
Bromofluorobenzene	103	61-146

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC540015	Batch#:	161890
Matrix:	Soil	Analyzed:	04/12/10
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	140.3	112	32-148
MTBE	25.00	23.58	94	47-136
Isopropyl Ether (DIPE)	25.00	26.89	108	43-148
Ethyl tert-Butyl Ether (ETBE)	25.00	25.15	101	51-139
1,2-Dichloroethane	25.00	26.39	106	54-150
Benzene	25.00	28.19	113	73-134
Methyl tert-Amyl Ether (TAME)	25.00	24.73	99	65-131
Toluene	25.00	30.18	121	72-134
1,2-Dibromoethane	25.00	26.55	106	70-133
Ethylbenzene	25.00	29.71	119	74-134
m,p-Xylenes	50.00	61.04	122	74-133
o-Xylene	25.00	28.90	116	73-127

Surrogate	%REC	Limits
Dibromofluoromethane	97	59-139
1,2-Dichloroethane-d4	102	54-153
Toluene-d8	102	83-118
Bromofluorobenzene	98	61-146

Page 1 of 1 40.0

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC540026	Batch#:	161895
Matrix:	Soil	Analyzed:	04/12/10
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	93	59-139
1,2-Dichloroethane-d4	105	54-153
Toluene-d8	97	83-118
Bromofluorobenzene	106	61-146

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC540027	Batch#:	161895
Matrix:	Soil	Analyzed:	04/12/10
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	100.0	99.22	99	32-148
MTBE	20.00	17.59	88	47-136
Isopropyl Ether (DIPE)	20.00	20.36	102	43-148
Ethyl tert-Butyl Ether (ETBE)	20.00	19.53	98	51-139
1,2-Dichloroethane	20.00	19.12	96	54-150
Benzene	20.00	18.81	94	73-134
Methyl tert-Amyl Ether (TAME)	20.00	17.34	87	65-131
Toluene	20.00	20.06	100	72-134
1,2-Dibromoethane	20.00	17.83	89	70-133
Ethylbenzene	20.00	19.66	98	74-134
m,p-Xylenes	40.00	40.37	101	74-133
o-Xylene	20.00	20.07	100	73-127

Surrogate	%REC	Limits
Dibromofluoromethane	98	59-139
1,2-Dichloroethane-d4	97	54-153
Toluene-d8	99	83-118
Bromofluorobenzene	104	61-146

Page 1 of 1 42.0

BTXE & Oxygenates					
Lab #:	219372	Location:	6601-6603 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035		
Project#:	950074.05	Analysis:	EPA 8260B		
Field ID:	ZZZZZZZZZZ	Batch#:	161895		
MSS Lab ID:	219364-006	Sampled:	04/08/10		
Matrix:	Soil	Received:	04/09/10		
Units:	ug/Kg	Analyzed:	04/12/10		
Basis:	as received	-			

Type: Lab ID: MS QC540047 Diln Fac: 0.8741

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	71.63	218.5	257.2	85	22-153
MTBE	<1.322	43.71	33.27	76	38-136
Isopropyl Ether (DIPE)	<1.128	43.71	39.39	90	28-152
Ethyl tert-Butyl Ether (ETBE)	<0.8502	43.71	39.33	90	39-144
1,2-Dichloroethane	<0.8174	43.71	31.72	73	39-143
Benzene	18.39	43.71	61.18	98	53-139
Methyl tert-Amyl Ether (TAME)	<0.5538	43.71	35.45	81	52-133
Toluene	1.371	43.71	35.89	79	49-139
1,2-Dibromoethane	<0.5260	43.71	31.30	72	46-137
Ethylbenzene	7.402	43.71	43.77	83	38-145
m,p-Xylenes	1.463	87.41	69.67	78	38-145
o-Xylene	<0.9860	43.71	35.96	82	38-141

Surrogate	%REC	Limits	
Dibromofluoromethane	100	59-139	
1,2-Dichloroethane-d4	93	54-153	
Toluene-d8	101	83-118	
Bromofluorobenzene	107	61-146	

Type: MSD Lab ID: QC540048 Diln Fac: 0.8772

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	219.3	224.6	70	22-153	14	41
MTBE	43.86	32.03	73	38-136	4	36
Isopropyl Ether (DIPE)	43.86	35.28	80	28-152	11	29
Ethyl tert-Butyl Ether (ETBE)	43.86	35.88	82	39-144	10	28
1,2-Dichloroethane	43.86	31.03	71	39-143	3	24
Benzene	43.86	59.54	94	53-139	3	35
Methyl tert-Amyl Ether (TAME)	43.86	34.20	78	52-133	4	27
Toluene	43.86	35.94	79	49-139	0	33
1,2-Dibromoethane	43.86	32.53	74	46-137	4	27
Ethylbenzene	43.86	45.32	86	38-145	3	36
m,p-Xylenes	87.72	73.16	82	38-145	5	37
o-Xylene	43.86	35.86	82	38-141	1	36

Surrogate	%REC	Limits
Dibromofluoromethane	91	59-139
1,2-Dichloroethane-d4	88	54-153
Toluene-d8	93	83-118
Bromofluorobenzene	102	61-146

BTXE & Oxygenates					
Lab #:	219372	Location:	6601-6603 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035		
Project#:	950074.05	Analysis:	EPA 8260B		
Field ID:	ZZZZZZZZZZ	Batch#:	161890		
MSS Lab ID:	219304-004	Sampled:	04/07/10		
Matrix:	Soil	Received:	04/07/10		
Units:	ug/Kg	Analyzed:	04/12/10		
Basis:	dry	-			

Type: MS Moisture: 88% Lab ID: QC540049 Diln Fac: 0.9862

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<58.84	2,055	1,494	73	22-153
MTBE	10.31	410.9	261.8	61	38-136
Isopropyl Ether (DIPE)	<6.218	410.9	255.6	62	28-152
Ethyl tert-Butyl Ether (ETBE)	<5.222	410.9	248.6	61	39-144
1,2-Dichloroethane	<1.783	410.9	206.8	50	39-143
Benzene	<4.818	410.9	259.9	63	53-139
Methyl tert-Amyl Ether (TAME)	<5.431	410.9	236.2	57	52-133
Toluene	8.329	410.9	242.1	57	49-139
1,2-Dibromoethane	<5.119	410.9	143.1	35 *	46-137
Ethylbenzene	<6.228	410.9	197.3	48	38-145
m,p-Xylenes	<9.970	821.8	368.3	45	38-145
o-Xylene	<4.962	410.9	176.3	43	38-141

Surrogate	%REC	Limits	
Dibromofluoromethane	99	59-139	
1,2-Dichloroethane-d4	102	54-153	
Toluene-d8	108	83-118	
Bromofluorobenzene	120	61-146	

Type: MSD Moisture: 88% Lab ID: QC540050 Diln Fac: 0.9671

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	2,015	1,890	94	22-153	25	41
MTBE	403.0	300.5	72	38-136	16	36
Isopropyl Ether (DIPE)	403.0	301.2	75	28-152	18	29
Ethyl tert-Butyl Ether (ETBE)	403.0	289.2	72	39-144	17	28
1,2-Dichloroethane	403.0	205.1	51	39-143	1	24
Benzene	403.0	251.2	62	53-139	1	35
Methyl tert-Amyl Ether (TAME)	403.0	262.6	65	52-133	13	27
Toluene	403.0	222.0	53	49-139	7	33
1,2-Dibromoethane	403.0	132.9	33 *	46-137	5	27
Ethylbenzene	403.0	176.1	44	38-145	9	36
m,p-Xylenes	805.9	323.5	40	38-145	11	37
o-Xylene	403.0	153.5	38	38-141	12	36

Surrogate	%REC	Limits
Dibromofluoromethane	102	59-139
1,2-Dichloroethane-d4	103	54-153
Toluene-d8	112	83-118
Bromofluorobenzene	127	61-146

Page 1 of 1

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

	BTXE &	Oxygenates	
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 5035
Project#:	950074.05	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC540603	Batch#:	162048
Matrix:	Soil	Analyzed:	04/15/10
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	85	59-139
1,2-Dichloroethane-d4	105	54-153
Toluene-d8	107	83-118
Bromofluorobenzene	105	61-146

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

	BTXE &	Oxygenates	
Lab #: Client: Project#:	219372 Erler & Kalinowski, Inc. 950074.05	Location: Prep: Analysis:	6601-6603 Bay Street EPA 5035 EPA 8260B
Matrix: Units: Diln Fac:	Soil ug/Kg 1.000	Batch#: Analyzed:	162048 04/15/10

Type: BS Lab ID: QC540604

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	100.0	92.34	92	32-148
MTBE	20.00	15.72	79	47-136
Isopropyl Ether (DIPE)	20.00	16.57	83	43-148
Ethyl tert-Butyl Ether (ETBE)	20.00	16.28	81	51-139
1,2-Dichloroethane	20.00	19.18	96	54-150
Benzene	20.00	18.18	91	73-134
Methyl tert-Amyl Ether (TAME)	20.00	16.94	85	65-131
Toluene	20.00	20.97	105	72-134
1,2-Dibromoethane	20.00	18.10	91	70-133
Ethylbenzene	20.00	19.13	96	74-134
m,p-Xylenes	40.00	40.90	102	74-133
o-Xylene	20.00	21.25	106	73-127

Surrogate	%REC	Limits
Dibromofluoromethane	96	59-139
1,2-Dichloroethane-d4	107	54-153
Toluene-d8	103	83-118
Bromofluorobenzene	95	61-146

Type: BSD Lab ID: QC540605

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	100.0	88.64	89	32-148	4	30
MTBE	20.00	16.01	80	47-136	2	23
Isopropyl Ether (DIPE)	20.00	15.85	79	43-148	4	20
Ethyl tert-Butyl Ether (ETBE)	20.00	16.55	83	51-139	2	22
1,2-Dichloroethane	20.00	19.50	98	54-150	2	21
Benzene	20.00	18.25	91	73-134	0	19
Methyl tert-Amyl Ether (TAME)	20.00	17.28	86	65-131	2	21
Toluene	20.00	21.94	110	72-134	4	19
1,2-Dibromoethane	20.00	18.56	93	70-133	3	24
Ethylbenzene	20.00	21.42	107	74-134	11	22
m,p-Xylenes	40.00	44.10	110	74-133	8	22
o-Xylene	20.00	21.91	110	73-127	3	22

Surrogate	%REC	Limits	
Dibromofluoromethane	93	59-139	
1,2-Dichloroethane-d4	107	54-153	
Toluene-d8	105	33-118	
Bromofluorobenzene	97	51-146	

Polynuclear Aromatics by GC/MS				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	SB-8-4.5-5	Batch#:	161915	
Lab ID:	219372-001	Sampled:	04/09/10	
Matrix:	Soil	Received:	04/09/10	
Units:	ug/Kg	Prepared:	04/12/10	
Basis:	dry	Analyzed:	04/13/10	
Diln Fac:	1.000			

Moisture: 11%

Analyte	Result	RL	
Naphthalene	ND	75	
Acenaphthylene	ND	75	
Acenaphthene	ND	75	
Fluorene	ND	75	
Phenanthrene	260	75	
Anthracene	99	75	
Fluoranthene	410	75	
Pyrene	390	75	
Benzo(a)anthracene	150	75	
Chrysene	180	75	
Benzo(b)fluoranthene	230	75	
Benzo(k)fluoranthene	76	75	
Benzo(a)pyrene	160	75	
Indeno(1,2,3-cd)pyrene	ND	75	
Dibenz(a,h)anthracene	ND	75	
Benzo(g,h,i)perylene	ND	75	

Surrogate	%REC	Limits
Nitrobenzene-d5	60	27-106
2-Fluorobiphenyl	63	30-113
Terphenyl-d14	53	18-133

ND= Not Detected
RL= Reporting Limit

Page 1 of 1

	Polynuclear i	Aromatics by G	GC/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Field ID:	SB-8-13-13.5	Batch#:	161915
Lab ID:	219372-002	Sampled:	04/09/10
Matrix:	Soil	Received:	04/09/10
Units:	ug/Kg	Prepared:	04/12/10
Basis:	dry	Analyzed:	04/13/10
Diln Fac:	1.000		

Moisture: 17%

Analyte	Result	RL	
Naphthalene	ND	80	
Acenaphthylene	ND	80	
Acenaphthene	ND	80	
Fluorene	140	80	
Phenanthrene	490	80	
Anthracene	ND	80	
Fluoranthene	380	80	
Pyrene	460	80	
Benzo(a)anthracene	ND	80	
Chrysene	110	80	
Benzo(b)fluoranthene	160	80	
Benzo(k)fluoranthene	ND	80	
Benzo(a)pyrene	130	80	
<pre>Indeno(1,2,3-cd)pyrene</pre>	ND	80	
Dibenz(a,h)anthracene	ND	80	
Benzo(g,h,i)perylene	ND	80	

Surrogate	%REC	Limits
Nitrobenzene-d5	59	27-106
2-Fluorobiphenyl	59	30-113
Terphenyl-d14	53	18-133

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

	Polynuclear A	Aromatics by G	GC/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Field ID:	SB-8-17.5-18	Batch#:	161915
Lab ID:	219372-003	Sampled:	04/09/10
Matrix:	Soil	Received:	04/09/10
Units:	ug/Kg	Prepared:	04/12/10
Basis:	dry	Analyzed:	04/13/10
Diln Fac:	1.000		

21% Moisture:

Analyte	Result	RL	
Naphthalene	ND	83	
Acenaphthylene	ND	83	
Acenaphthene	ND	83	
Fluorene	ND	83	
Phenanthrene	ND	83	
Anthracene	ND	83	
Fluoranthene	ND	83	
Pyrene	ND	83	
Benzo(a)anthracene	ND	83	
Chrysene	ND	83	
Benzo(b)fluoranthene	ND	83	
Benzo(k)fluoranthene	ND	83	
Benzo(a)pyrene	ND	83	
Indeno(1,2,3-cd)pyrene	ND	83	
Dibenz(a,h)anthracene	ND	83	
Benzo(g,h,i)perylene	ND	83	

Surrogate	%REC	Limits
Nitrobenzene-d5	49	27-106
2-Fluorobiphenyl	48	30-113
Terphenyl-d14	54	18-133

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Polynuclear A	romatics by GC	/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Field ID:	SB-7-5-5.5	Batch#:	161915
Lab ID:	219372-004	Sampled:	04/09/10
Matrix:	Soil	Received:	04/09/10
Units:	ug/Kg	Prepared:	04/12/10
Basis:	dry	Analyzed:	04/13/10
Diln Fac:	1.000		

Moisture: 28%

Analyte	Result	RL	
Naphthalene	ND	92	
Acenaphthylene	ND	92	
Acenaphthene	ND	92	
Fluorene	ND	92	
Phenanthrene	ND	92	
Anthracene	ND	92	
Fluoranthene	ND	92	
Pyrene	ND	92	
Benzo(a)anthracene	ND	92	
Chrysene	ND	92	
Benzo(b)fluoranthene	ND	92	
Benzo(k)fluoranthene	ND	92	
Benzo(a)pyrene	ND	92	
Indeno(1,2,3-cd)pyrene	ND	92	
Dibenz(a,h)anthracene	ND	92	
Benzo(g,h,i)perylene	ND	92	

Surrogate	%REC	Limits	
Nitrobenzene-d5	65	27-106	
2-Fluorobiphenyl	61	30-113	
Terphenyl-d14	63	18-133	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 OI 1

	Polynuclear A	romatics by GC	/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Field ID:	SB-7-8-8.5	Batch#:	161915
Lab ID:	219372-005	Sampled:	04/09/10
Matrix:	Soil	Received:	04/09/10
Units:	ug/Kg	Prepared:	04/12/10
Basis:	dry	Analyzed:	04/14/10
Diln Fac:	25.00		

Moisture: 13%

Analyte	Result	RL	
Naphthalene	ND	1,900	
Acenaphthylene	ND	1,900	
Acenaphthene	ND	1,900	
Fluorene	ND	1,900	
Phenanthrene	ND	1,900	
Anthracene	ND	1,900	
Fluoranthene	ND	1,900	
Pyrene	ND	1,900	
Benzo(a)anthracene	ND	1,900	
Chrysene	ND	1,900	
Benzo(b)fluoranthene	ND	1,900	
Benzo(k)fluoranthene	ND	1,900	
Benzo(a)pyrene	ND	1,900	
Indeno(1,2,3-cd)pyrene	ND	1,900	
Dibenz(a,h)anthracene	ND	1,900	
Benzo(g,h,i)perylene	ND	1,900	

Surrogate	%REC	Limits
Nitrobenzene-d5	DO	27-106
2-Fluorobiphenyl	DO	30-113
Terphenyl-d14	DO	18-133

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	SB-7-13-13.5	Batch#:	161915	
Lab ID:	219372-006	Sampled:	04/09/10	
Matrix:	Soil	Received:	04/09/10	
Units:	ug/Kg	Prepared:	04/12/10	
Basis:	dry	Analyzed:	04/13/10	
Diln Fac:	1.000			

Moisture: 17%

Analyte	Result	RL	
Naphthalene	ND	80	
Acenaphthylene	ND	80	
Acenaphthene	ND	80	
Fluorene	160	80	
Phenanthrene	240	80	
Anthracene	ND	80	
Fluoranthene	ND	80	
Pyrene	80	80	
Benzo(a)anthracene	ND	80	
Chrysene	ND	80	
Benzo(b)fluoranthene	ND	80	
Benzo(k)fluoranthene	ND	80	
Benzo(a)pyrene	ND	80	
Indeno(1,2,3-cd)pyrene	ND	80	
Dibenz(a,h)anthracene	ND	80	
Benzo(g,h,i)perylene	ND	80	

Surrogate	%REC	Limits
Nitrobenzene-d5	49	27-106
2-Fluorobiphenyl	60	30-113
Terphenyl-d14	52	18-133

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

Polynuclear Aromatics by GC/MS				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	SB-7-20.5-21	Batch#:	161915	
Lab ID:	219372-007	Sampled:	04/09/10	
Matrix:	Soil	Received:	04/09/10	
Units:	ug/Kg	Prepared:	04/12/10	
Basis:	dry	Analyzed:	04/13/10	
Diln Fac:	1.000			

16% Moisture:

Analyte	Result	RL	
Naphthalene	ND	78	
Acenaphthylene	ND	78	
Acenaphthene	ND	78	
Fluorene	ND	78	
Phenanthrene	ND	78	
Anthracene	ND	78	
Fluoranthene	ND	78	
Pyrene	ND	78	
Benzo(a)anthracene	ND	78	
Chrysene	ND	78	
Benzo(b)fluoranthene	ND	78	
Benzo(k)fluoranthene	ND	78	
Benzo(a)pyrene	ND	78	
<pre>Indeno(1,2,3-cd)pyrene</pre>	ND	78	
Dibenz(a,h)anthracene	ND	78	
Benzo(g,h,i)perylene	ND	78	

Surrogate	%REC	Limits
Nitrobenzene-d5	57	27-106
2-Fluorobiphenyl	56	30-113
Terphenyl-d14	56	18-133

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	SB-9-5-5.5	Batch#:	161915	
Lab ID:	219372-008	Sampled:	04/09/10	
Matrix:	Soil	Received:	04/09/10	
Units:	ug/Kg	Prepared:	04/12/10	
Basis:	dry	Analyzed:	04/13/10	
Diln Fac:	1.000			

Moisture: 13%

Analyte	Result	RL	
Naphthalene	ND	76	
Acenaphthylene	ND	76	
Acenaphthene	ND	76	
Fluorene	ND	76	
Phenanthrene	ND	76	
Anthracene	ND	76	
Fluoranthene	ND	76	
Pyrene	ND	76	
Benzo(a)anthracene	ND	76	
Chrysene	ND	76	
Benzo(b)fluoranthene	ND	76	
Benzo(k)fluoranthene	ND	76	
Benzo(a)pyrene	ND	76	
Indeno(1,2,3-cd)pyrene	ND	76	
Dibenz(a,h)anthracene	ND	76	
Benzo(g,h,i)perylene	ND	76	

Surrogate	%REC	Limits
Nitrobenzene-d5	39	27-106
2-Fluorobiphenyl	48	30-113
Terphenyl-d14	43	18-133

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 OI 1

Polynuclear Aromatics by GC/MS				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	SB-9-9-9.5	Batch#:	161915	
Lab ID:	219372-009	Sampled:	04/09/10	
Matrix:	Soil	Received:	04/09/10	
Units:	ug/Kg	Prepared:	04/12/10	
Basis:	dry	Analyzed:	04/14/10	
Diln Fac:	10.00			

Moisture: 14%

Analyte	Result	RL	
Naphthalene	ND	770	
Acenaphthylene	ND	770	
Acenaphthene	ND	770	
Fluorene	900	770	
Phenanthrene	2,800	770	
Anthracene	ND	770	
Fluoranthene	1,600	770	
Pyrene	2,600	770	
Benzo(a)anthracene	ND	770	
Chrysene	ND	770	
Benzo(b)fluoranthene	ND	770	
Benzo(k)fluoranthene	ND	770	
Benzo(a)pyrene	ND	770	
Indeno(1,2,3-cd)pyrene	ND	770	
Dibenz(a,h)anthracene	ND	770	
Benzo(g,h,i)perylene	ND	770	

Surrogate	%REC	Limits
Nitrobenzene-d5	DO	27-106
2-Fluorobiphenyl	DO	30-113
Terphenyl-d14	DO	18-133

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Polynuclear Aromatics by GC/MS				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B	
Project#:	950074.05	Analysis:	EPA 8270C	
Field ID:	SB-9-12.5-13	Batch#:	161915	
Lab ID:	219372-010	Sampled:	04/09/10	
Matrix:	Soil	Received:	04/09/10	
Units:	ug/Kg	Prepared:	04/12/10	
Basis:	dry	Analyzed:	04/13/10	
Diln Fac:	5.000			

Moisture: 17%

Analyte	Result	RL	
Naphthalene	ND	400	
Acenaphthylene	ND	400	
Acenaphthene	ND	400	
Fluorene	ND	400	
Phenanthrene	1,100	400	
Anthracene	ND	400	
Fluoranthene	490	400	
Pyrene	650	400	
Benzo(a)anthracene	ND	400	
Chrysene	ND	400	
Benzo(b)fluoranthene	ND	400	
Benzo(k)fluoranthene	ND	400	
Benzo(a)pyrene	ND	400	
Indeno(1,2,3-cd)pyrene	ND	400	
Dibenz(a,h)anthracene	ND	400	
Benzo(g,h,i)perylene	ND	400	

Surrogate	%REC	Limits
Nitrobenzene-d5	52	27-106
2-Fluorobiphenyl	50	30-113
Terphenyl-d14	50	18-133

ND= Not Detected RL= Reporting Limit Page 1 of 1

ge 1 of 1

	Polynuclear i	Aromatics by G	C/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Field ID:	SB-9-19-19.5	Batch#:	161915
Lab ID:	219372-011	Sampled:	04/09/10
Matrix:	Soil	Received:	04/09/10
Units:	ug/Kg	Prepared:	04/12/10
Basis:	dry	Analyzed:	04/13/10
Diln Fac:	1.000		

Moisture: 23%

Analyte	Result	RL	
Naphthalene	ND	86	
Acenaphthylene	ND	86	
Acenaphthene	ND	86	
Fluorene	ND	86	
Phenanthrene	ND	86	
Anthracene	ND	86	
Fluoranthene	ND	86	
Pyrene	ND	86	
Benzo(a)anthracene	ND	86	
Chrysene	ND	86	
Benzo(b)fluoranthene	ND	86	
Benzo(k)fluoranthene	ND	86	
Benzo(a)pyrene	ND	86	
Indeno(1,2,3-cd)pyrene	ND	86	
Dibenz(a,h)anthracene	ND	86	
Benzo(g,h,i)perylene	ND	86	

Surrogate	%REC	Limits
Nitrobenzene-d5	52	27-106
2-Fluorobiphenyl	48	30-113
Terphenyl-d14	48	18-133

ND= Not Detected RL= Reporting Limit Page 1 of 1

ge 1 of 1 20.1

	Polynuclear	Aromatics by G	GC/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC540090	Batch#:	161915
Matrix:	Soil	Prepared:	04/12/10
Units:	ug/Kg	Analyzed:	04/13/10

Analyte	Result	RL	
Naphthalene	ND	66	
Acenaphthylene	ND	66	
Acenaphthene	ND	66	
Fluorene	ND	66	
Phenanthrene	ND	66	
Anthracene	ND	66	
Fluoranthene	ND	66	
Pyrene	ND	66	
Benzo(a)anthracene	ND	66	
Chrysene	ND	66	
Benzo(b)fluoranthene	ND	66	
Benzo(k)fluoranthene	ND	66	
Benzo(a)pyrene	ND	66	
Indeno(1,2,3-cd)pyrene	ND	66	
Dibenz(a,h)anthracene	ND	66	
Benzo(g,h,i)perylene	ND	66	

Surrogate	%REC	Limits
Nitrobenzene-d5	58	27-106
2-Fluorobiphenyl	63	30-113
Terphenyl-d14	55	18-133

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

	Polynuclear	Aromatics by G	GC/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC540091	Batch#:	161915
Matrix:	Soil	Prepared:	04/12/10
Units:	ug/Kg	Analyzed:	04/13/10

Analyte	Spiked	Result	%REC	Limits
Naphthalene	1,000	561.8	56	39-120
Acenaphthylene	1,000	546.2	55	29-141
Acenaphthene	1,000	564.5	56	35-118
Fluorene	1,000	613.7	61	34-126
Phenanthrene	1,000	586.0	59	38-122
Anthracene	1,000	578.1	58	38-127
Fluoranthene	1,000	606.3	61	39-121
Pyrene	1,000	521.1	52	28-136
Benzo(a)anthracene	1,000	602.4	60	36-123
Chrysene	1,000	604.2	60	32-132
Benzo(b)fluoranthene	1,000	545.6	55	29-130
Benzo(k)fluoranthene	1,000	558.6	56	36-127
Benzo(a)pyrene	1,000	501.8	50	24-128
Indeno(1,2,3-cd)pyrene	1,000	572.1	57	27-135
Dibenz(a,h)anthracene	1,000	570.4	57	31-133
Benzo(g,h,i)perylene	1,000	580.9	58	27-139

Surrogate	%REC	Limits	
Nitrobenzene-d5	55	27-106	
2-Fluorobiphenyl	58	30-113	
Terphenyl-d14	55	18-133	

Page 1 of 1 22.0

	Polynuclear A	romatics by GC	/MS
Lab #:	219372	Location:	6601-6603 Bay Street
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	950074.05	Analysis:	EPA 8270C
Field ID:	SB-8-4.5-5	Batch#:	161915
MSS Lab ID:	219372-001	Sampled:	04/09/10
Matrix:	Soil	Received:	04/09/10
Units:	ug/Kg	Prepared:	04/12/10
Basis:	dry	Analyzed:	04/13/10
Diln Fac:	1.000		

Type: MS Moisture: 11%

Lab ID: QC540092

Analyte	MSS Result	Spiked	Result	%REC	Limits
Naphthalene	22.80	1,115	624.4	54	32-116
Acenaphthylene	<17.71	1,115	644.0	58	23-143
Acenaphthene	30.65	1,115	586.3	50	28-114
Fluorene	52.02	1,115	597.6	49	31-117
Phenanthrene	264.4	1,115	822.5	50	18-128
Anthracene	98.82	1,115	705.4	54	32-121
Fluoranthene	413.3	1,115	927.1	46	23-121
Pyrene	389.5	1,115	978.7	53	20-135
Benzo(a)anthracene	154.1	1,115	764.6	55	18-129
Chrysene	179.7	1,115	796.1	55	18-131
Benzo(b)fluoranthene	234.1	1,115	959.9	65	20-131
Benzo(k)fluoranthene	75.94	1,115	792.9	64	26-131
Benzo(a)pyrene	161.2	1,115	695.6	48	18-121
Indeno(1,2,3-cd)pyrene	59.67	1,115	337.1	25	6-121
Dibenz(a,h)anthracene	<15.02	1,115	311.7	28	10-118
Benzo(g,h,i)perylene	67.91	1,115	303.3	21	1-127

Surrogate	%REC	Limits
Nitrobenzene-d5	60	27-106
2-Fluorobiphenyl	60	30-113
Terphenyl-d14	59	18-133

Polynuclear Aromatics by GC/MS					
Lab #:	219372	Location:	6601-6603 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B		
Project#:	950074.05	Analysis:	EPA 8270C		
Field ID:	SB-8-4.5-5	Batch#:	161915		
MSS Lab ID:	219372-001	Sampled:	04/09/10		
Matrix:	Soil	Received:	04/09/10		
Units:	ug/Kg	Prepared:	04/12/10		
Basis:	dry	Analyzed:	04/13/10		
Diln Fac:	1.000				

Type: MSD Moisture: 11%

Lab ID: QC540093

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Naphthalene -	1,116	702.8	61	32-116	12	45
Acenaphthylene	1,116	719.6	64	23-143	11	43
Acenaphthene	1,116	650.5	56	28-114	10	44
Fluorene	1,116	649.3	54	31-117	8	43
Phenanthrene	1,116	945.5	61	18-128	14	52
Anthracene	1,116	784.8	61	32-121	11	45
Fluoranthene	1,116	1,113	63	23-121	18	54
Pyrene	1,116	1,169	70	20-135	18	58
Benzo(a)anthracene	1,116	905.5	67	18-129	17	50
Chrysene	1,116	922.3	67	18-131	15	52
Benzo(b)fluoranthene	1,116	1,149	82	20-131	18	57
Benzo(k)fluoranthene	1,116	951.2	78	26-131	18	52
Benzo(a)pyrene	1,116	828.4	60	18-121	17	57
Indeno(1,2,3-cd)pyrene	1,116	384.0	29	6-121	13	51
Dibenz(a,h)anthracene	1,116	362.9	33	10-118	15	49
Benzo(g,h,i)perylene	1,116	347.0	25	1-127	13	53

Surrogate	%REC	Limits
Nitrobenzene-d5	68	27-106
2-Fluorobiphenyl	66	30-113
Terphenyl-d14	64	18-133

Moisture				
Lab #:	219372	Location:	6601-6603 Bay Street	
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD	
Project#:	950074.05	Analysis:	ASTM D2216/CLP	
Analyte:	Moisture, Percent	Batch#:	161946	
Matrix:	Soil	Sampled:	04/09/10	
Units:	%	Received:	04/09/10	
Diln Fac:	1.000	Analyzed:	04/13/10	

Field ID	Lab ID	Result	RL	
SB-8-4.5-5	219372-001	11	1	
SB-8-13-13.5	219372-002	17	1	
SB-8-17.5-18	219372-003	21	1	
SB-7-5-5.5	219372-004	28	1	
SB-7-8-8.5	219372-005	13	1	
SB-7-13-13.5	219372-006	17	1	
SB-7-20.5-21	219372-007	16	1	
SB-9-5-5.5	219372-008	13	1	
SB-9-9-9.5	219372-009	14	1	
SB-9-12.5-13	219372-010	17	1	
SB-9-19-19.5	219372-011	23	1	

Moisture					
Lab #:	219372	Location:	6601-6603 Bay Street		
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD		
Project#:	950074.05	Analysis:	ASTM D2216/CLP		
Analyte:	Moisture, Percent	Units:	%		
Field ID:	SB-9-19-19.5	Diln Fac:	1.000		
Type:	SDUP	Batch#:	161946		
MSS Lab ID:	219372-011	Sampled:	04/09/10		
Lab ID:	QC540208	Received:	04/09/10		
Matrix:	Soil	Analyzed:	04/13/10		

MSS Result	Result	RL	RPD	Lim
23.47	22.75	1.000	3	44

RL= Reporting Limit

RPD= Relative Percent Difference