RECEIVED

10:38 am, Apr 30, 2009

Alameda County Environmental Health

April 27, 2009

Mr. Paresh C. Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject: First Quarter 2009 Groundwater Monitoring and Shallow Well Installation Report YRC, Inc. 1708 Wood Street Oakland, California Fuel Leak Case No. RO0000039 Burns & McDonnell Project No. 48791

Dear Mr. Khatri,

Burns & McDonnell Engineering Company, Inc. (Burns & McDonnell) has been retained by YRC North American Transportation, Inc. (YRC) to prepare a letter report summarizing the groundwater sampling activities and the installation of three shallow groundwater monitoring wells, conducted in the first quarter of 2009 at the YRC Inc. (formerly Roadway Express, Inc.) truck terminal located at 1708 Wood Street, Oakland, California (Site). Figure 1 shows the location of the Site. This work was performed in response to Alameda County Environmental Health Services letter dated May 29, 2008 and described in the Burns & McDonnell *Shallow Monitoring Well Installation Workplan* submitted November 21, 2008.

1.0 Site Description and Location

The Site is currently operating as a trucking facility, which includes a terminal, loading dock, warehouse, business office, with the perimeter used for trailer storage (Figure 2). The Site is secured with a full perimeter fence and staffed by professional security guards.

The Site is situated between Wood Street to the west, 18th Street to the north, 17th Street to the south, and Campbell Street to the east. Across 18th Street is a community park and surrounding businesses are industrial complexes.

2.0 Regional and Site Geology

The Site is located approximately 1 mile east of the central-east portion of the San Francisco Bay, at an elevation of approximately 10 feet above mean sea level (MSL). The Site is near the current

eastern extent of the San Francisco Bay, and in the recent geologic past, was part of the San Francisco Bay. The near-surface geology has largely been controlled by the changing morphology of the San Francisco Bay over geologic time. The closest surface-water bodies to the Site are the Oakland Outer Harbor, located approximately 1 mile west of the Site and the Oakland Inner Harbor, located approximately 1.75 miles south of the Site.

The Site's lithology is characterized by: dark gray, very soft, moist clay inter-bedded with silt and sand layers to a depth of approximately 8 to 10 feet below ground surface (bgs); this is overlying a 5 to 10 foot layer of blackish-brown to gray, soft, clay layer with a distinct peat layer and high organics content; approximately 5 to 10 feet of brown, soft, wet, silty sand and clay extends from approximately 15 to 25 feet bgs; approximately 4 feet of brown, wet, silty clayey sand that extends from approximately 25 to 29 feet bgs.

The Site's hydrology is divided into two separate groundwater zones, a shallow water zone and a deeper water zone. The shallow zone is made up of 1 foot thick sand and silt layers extending from the near surface to approximately 8 to 10 feet bgs. This zone appears to be under semiconfined conditions with a clay layer above and below it. The deeper zone is made up of silty and sandy layers which grade into medium and coarse sand to a depth of approximately 30 feet. This zone also appears to be under confined conditions. The two water zones are separated by a 5 to 10 foot thick layer of soft clay with a characteristic peat layer and high organic content, designated as bay mud.

3.0 Site History and Underground Storage Tank Overview

According to an internal document review conducted by the consultant firm Marshal Miller & Associates, (*Marshall Miller & Associates 2006*) between the years 1987 to 1996, three underground storage tanks (USTs) were properly removed and two USTs were abandoned-in-place.

In March 1987, two USTs (one 10,000 gallon gasoline tank and one 2,000 gallon motor oil tank) were removed from the central-eastern area of the Site (Figure 2). During this work, two other USTs were identified at the northwest corner of the property (one 2,000 gallon waste oil tank and one 10,000 gallon tank of unknown contents). These two USTs were abandoned-in-place (filled with sand slurry and grout) by R.S. Eagan & Co. At that time, R.S. Eagan & Co. installed two monitoring wells, MW-1 and MW-2, within the footprint of the central-eastern excavation.

In April 1996, the remaining 10,000 gallon diesel UST and all associated piping was removed from the central-eastern area of the Site.

In September 2000, One Environment installed three monitoring wells (MW-3, MW-4, and MW-5) around the location of the removed USTs in the central-eastern area of the Site. Well construction details are summarized in Table 1.

In August 2008, Burns & McDonnell removed monitoring wells MW-1 and MW-2. These wells were constructed without a proper sanitary seal and posed a risk as a pathway to the subsurface for contaminants.

4.0 Shallow Monitoring Well Installation

In order to determine the groundwater flow direction and to monitor the impacts in the shallow water zone, three new monitoring wells (MW-6, MW-7, and MW-8), screened in the shallow water zone, were installed in the central-eastern portion of the Site surrounding the location of the former USTs (Figure 3).

4.1 **Permitting and Utility Clearance**

Burns & McDonnell obtained boring and well installation permits from the Alameda County Public Works Agency (ACPWA) prior to conducting field activities. A copy of the final permit is included as Appendix A. Prior to drilling, all proposed boring locations were cleared for subsurface utilities. Burns & McDonnell notified Underground Service Alert (USA) of the proposed boring activities and determined that no local utilities were present in the area. Additionally, Burns & McDonnell retained a subsurface geophysical company to verify that no piping, utilities, or other subsurface obstructions were in the area of each proposed drilling location.

4.2 Drilling and Soil Sampling

On February 18, 2009, an experienced Burns & McDonnell field geologist, under the supervision of a California Professional Geologist, directed RSI Drilling (RSI), an experienced C-57 licensed contractor, in drilling and well construction activities. RSI used a Geoprobe 6600 rig to advance soil borings to an approximate depth of 15 feet bgs. Borings were advanced in two foot intervals to ensure that the borings did not extend through the bay mud layer and into the deeper water zone.

Soil cores were screened with a photo ionization detector (PID) for volatile organic compounds (VOCs) and recorded on boring logs. A soil sample was taken from immediately above the first encountered groundwater and submitted to Accutest Laboratories for analysis. Samples were labeled, designated by boring number, documented on a Chain-of-Custody form, and placed on ice in a cooler for transport to the analytical laboratory.

A 4-inch diameter Geoprobe mounted direct push coring rod was used to ream out the boreholes for completing the borings as monitoring wells. During drilling activities, soil cores were retained for visual classification according to the Unified Soil Classification System. Lithologic descriptions and drilling observations were recorded on boring logs and are included as Appendix B.

Mr. Paresh C. Khatri Alameda County Environmental Health Services April 27, 2009 Page 4 of 7

4.3 Well Installation

Burns & McDonnell supervised the construction of a monitoring well in each of the boreholes. Monitoring wells were constructed with clean, flush-threaded, 1-inch diameter schedule 40 PVC well materials. The well screen, with 0.01-inch machine slotted perforations, extends from the bottom of each boring at 9.5 feet to 4.5 feet below the ground surface. Blank casing was coupled to the screen and extend to near ground surface. A filter pack of Monterey #3 sand, was extend from the bottom of each boring to one-foot above the screened interval. The filter pack was sealed by a one-foot layer of hydrated bentonite pellets. The remaining annular space was filled with cement and a traffic rated, tamper-resistant box, was concreted in place over the wellhead. The new wells were designated MW-6, MW-7, and MW-8.

4.4 Wellhead Survey and Development

Burns & McDonnell retained Luk and Associates, a California Licensed Land Surveyor, to survey the location and elevation of the new wells relative to MSL, in accordance with the California Geotracker requirements. The Surveying report is included as Appendix C.

On February 24, 2009, the new monitoring wells were developed by a combination of surging and pumping with pre-cleaned field equipment. Groundwater parameters (temperature, pH, and specific conductance) were measured using a flow-through cell and recorded on the Well Development Logs (Appendix D). Water was removed from each of the wells until groundwater parameters stabilized and the well was relatively free of sediment. The development water was temporarily stored on-Site in labeled 55-gallon steel drums, pending disposal at an appropriate recycling facility.

5.0 Groundwater Monitoring

On March 6, 2009, Burns & McDonnell gauged depth-to-water (DTW) and collected groundwater samples from the Site's existing groundwater monitoring wells: MW-3 through MW-8 (Figures 3 and 4).

5.1 Depth to Water

Prior to collecting groundwater samples, DTW was measured from the top of casing (TOC) at each well using a clean, battery-operated, oil/water interface probe. Well gauging and groundwater elevations are summarized in Table 2. The DTW for each well was recorded on Groundwater Sampling Forms (Appendix E). The interface probe was cleaned between each well with an Alconox water solution and rinsed with deionized water.

5.2 Well Sampling

The monitoring wells screening in the deep water zone (MW-3, MW-4, and MW-5) were purged with new, disposable polyethylene bailers. Groundwater parameters (temperature, pH, and specific conductance) were measured and recorded on Groundwater Sampling Forms (Appendix E). Water clarity was visually qualified and recorded. After field parameters stabilized to within

+/- 10% over at least three consecutive readings while at a stabilized water elevation, groundwater samples were collected in laboratory supplied sampling bottles.

Because the shallow wells (MW-6, MW-7, and MW-8) were screened in relatively thin water bearing zones and accurate boring logs were available showing the depth of the sandy layers, these wells were purged and sampled using low-flow sampling methods. Clean, new polyethylene tubing was lowered to a depth that matches the shallow sand layer based on the soil borings logged during the installation of the wells. A peristaltic pump was used to maintain a flow rate of approximately 0.5 Liters per minute (L/min). Water levels were monitored and recorded to ensure minimal drawn down. Groundwater parameters (temperature, pH, and specific conductance) were measured using a flow-through cell and recorded on Groundwater Sampling Forms (Appendix E). Once a minimum of 1 Liter was purged and groundwater parameters stabilized, groundwater samples were collected in laboratory supplied sampling bottles while keeping the flow rate constant.

Groundwater samples were uniquely labeled with the well identification, date, time of collection, type of preservative, and analyses to be performed. A duplicate sample was taken from MW-5, and submitted to the laboratory as DUP-1. Once collected, each groundwater sample was immediately placed into an insulated, ice-filled cooler. Samples were transferred under Chain-of-Custody protocol to Accutest Laboratories Inc., a California State Certified Laboratory.

6.0 Groundwater Monitoring Results

6.1 Groundwater Flow Direction and Gradient

On March 6, 2009, static groundwater was observed in the Site's shallow groundwater monitoring wells, at depths ranging from 0.42 feet (MW-7) to 0.60 feet (MW-6) below the TOC, with groundwater elevations ranging from 9.37 feet (MW-8) to 9.53 feet (MW-6) above MSL.

Static groundwater in the Site's deep groundwater monitoring wells was observed at depths ranging from 2.90 feet (MW-4) to 3.68 feet (MW-3) below the TOC, with groundwater elevations ranging from 6.43 feet (MW-3) to 6.65 feet (MW-5) above MSL.

Burns & McDonnell used gauging and well casing elevation data to calculate groundwater elevations. For this sampling event, there is an average difference of 3.2 feet between the shallow groundwater zone elevations and the deep groundwater zone evaluations. In the area of the removed USTs, the flow direction in the shallow groundwater zone was to the east with a gradient of approximately 0.00325 feet per foot (ft/ft). The flow direction in the deep groundwater zone was to the west-northwest with a gradient of approximately 0.0030 ft/ft.

Groundwater elevations are summarized in Table 2 and presented on Figures 3 and 4.

6.2 Groundwater Analytical Results

Samples were analyzed for Total Petroleum Hydrocarbons (TPH) in the Diesel (TPH-d) and Motor Oil (TPH-mo) ranges using Environmental Protection Agency (EPA) Method 8015M.

Silica gel cleanup, EPA Method 3630C, was used prior to analysis for TPH-d and TPH-mo, to remove naturally occurring organic compounds and are flagged with an 'SG' qualifier in Table 2. None of the samples submitted for analysis had concentrations at or above the method detection limit for TPH-d or TPH-mo.

Samples were also analyzed for TPH in the gasoline range (TPH-g), benzene, toluene, ethylbenzene, xylenes (BTEX), and Methyl tert-butyl ether (MTBE) using EPA Method 8260B. None of the samples submitted for analysis had concentrations above the method detection limits for TPH-g, BTEX, or MTBE.

Current and historical groundwater data for all Site monitoring wells is presented in Table 2. Copies of the certified analytical reports and Chain-of-Custody documentation are included as Appendix F.

7.0 Soil Analytical Results

Soil samples were analyzed for TPH-d and TPH-mo using EPA Method 8015M. Silica gel cleanup, EPA Method 3630C, was used prior to analysis for TPH-d and TPH-mo, to remove naturally occurring organic compounds and are flagged with an '*' qualifier in Table 3. None of the soil samples submitted for analysis had concentrations at or above the detection limit for TPH-d or TPH-mo.

Soil samples were also analyzed for TPH-g, BTEX, and MTBE using EPA Method 8260B. None of the soil samples submitted for analysis had concentrations above the method detection limits for TPH-g, BTEX, or MTBE.

Current and historical soil data is presented in Table 3. Copies of the certified analytical reports and Chain-of-Custody documentation are included as Appendix F.

8.0 Summary

Soil samples from the soil borings did not show any petroleum impacts. Groundwater samples from both the monitoring wells screened in the shallow and deep water zones did not show any petroleum impacts above laboratory detection limits. Quarterly groundwater sampling will continue to monitor for potential impacts to the shallow and deep water zones. The next quarterly groundwater monitoring event is scheduled for June 2009.

9.0 Certification

This report was prepared under the supervision of a California Professional Geologist. All statements, conclusions and recommendations are based solely upon published results from previous consultants, field observations by Burns & McDonnell and laboratory analysis performed by a California state-certified laboratory related to the work performed by Burns & McDonnell.

Mr. Paresh C. Khatri Alameda County Environmental Health Services April 27, 2009 Page 7 of 7

If you have any questions regarding this project please feel free to contact either of the undersigned at (650) 871-2926.

Sincerely,

Patrick Bratton Project Manager

Messerotes. Senior Geologist

Attachments:

Figure 1 – Site Location Map Figure 2 – Site Map Figure 3 – Groundwater Elevations Shallow Zone First Quarter 2009 – Former USTs Area Figure 4 – Groundwater Elevations Deep Zone First Quarter 2009 – Former USTs Area

Table 1: Well Construction Details

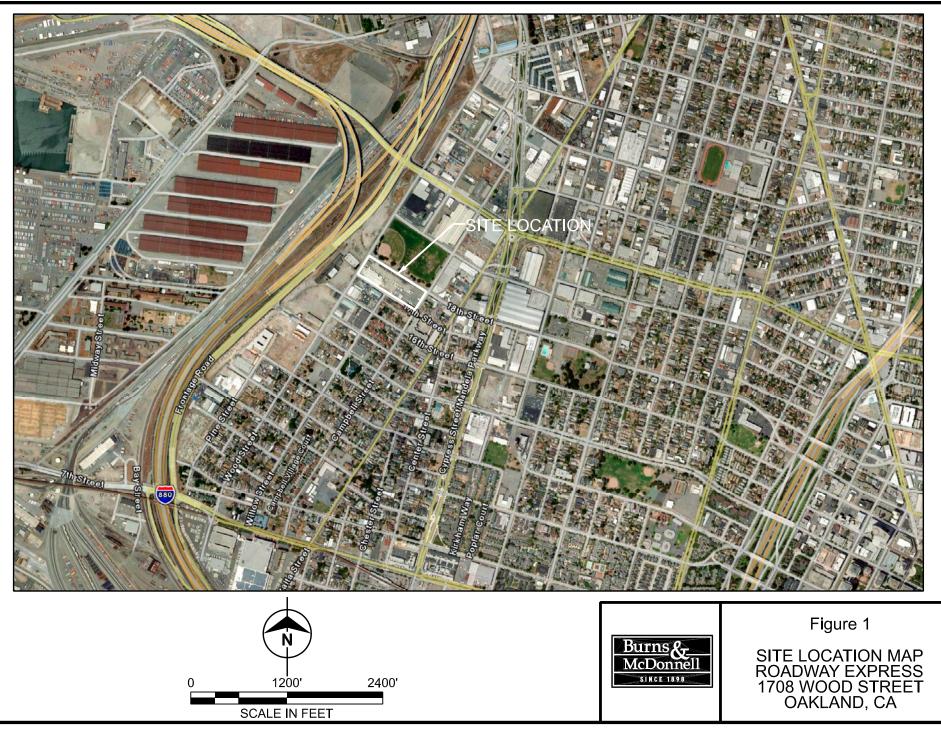
Table 2: Monitoring Well Groundwater Summary

Table 3: Historical Soil Sample Summary

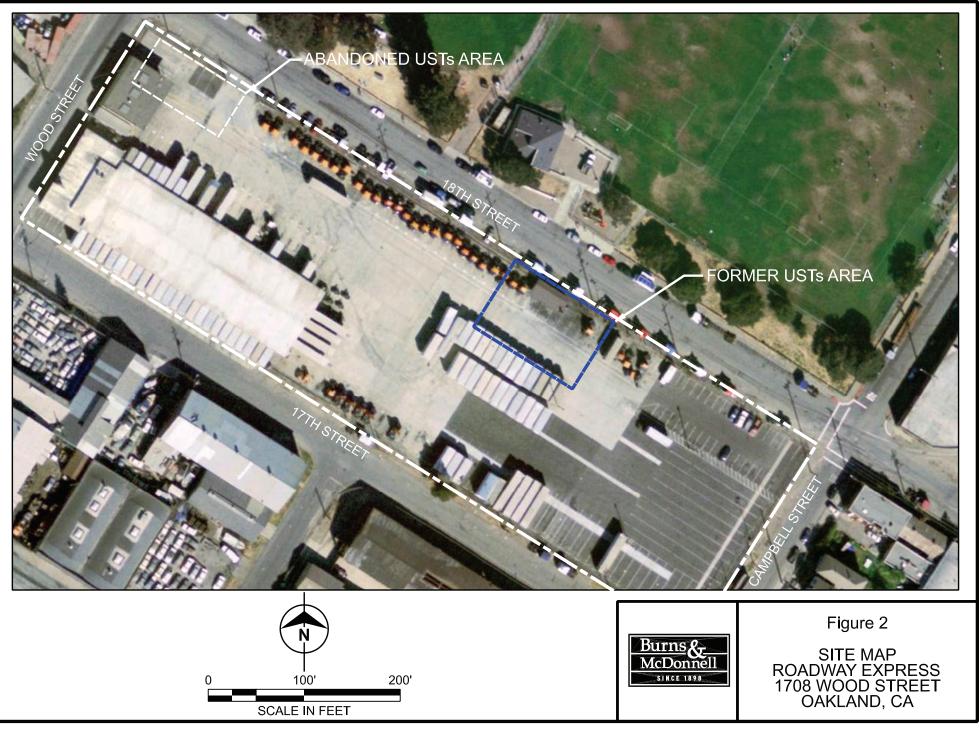
Appendix A – Alameda County Public Works Agency – Water Resources Well Permit

Appendix B – Boring Logs

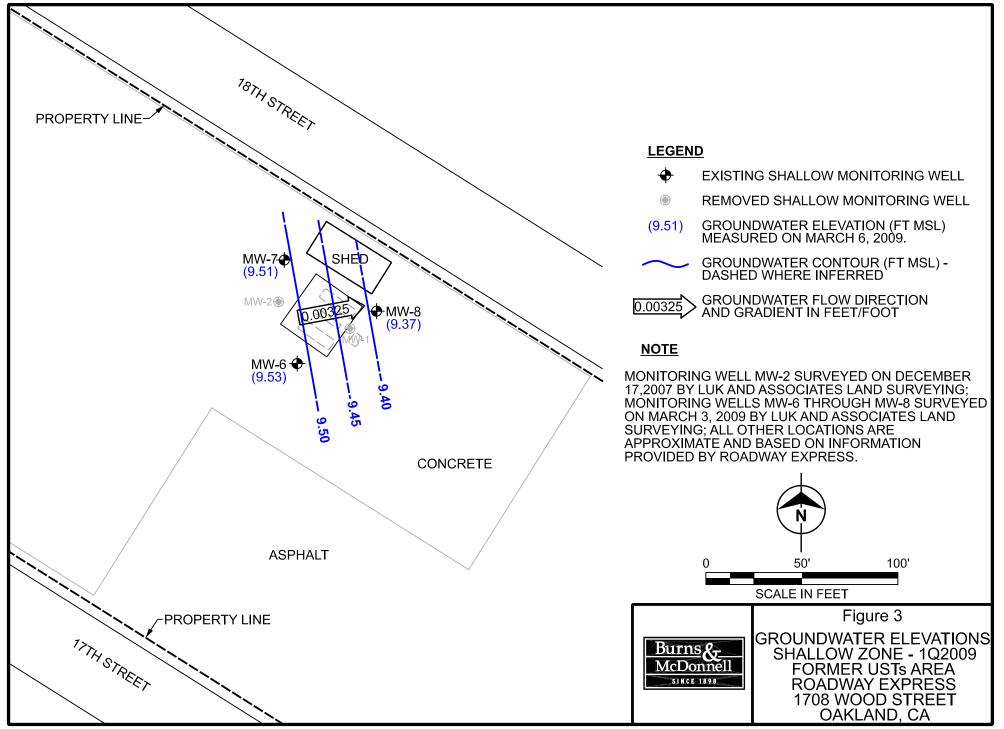
Appendix C – Monitoring Well Survey Report

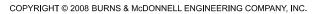

Appendix D – Well Development Logs

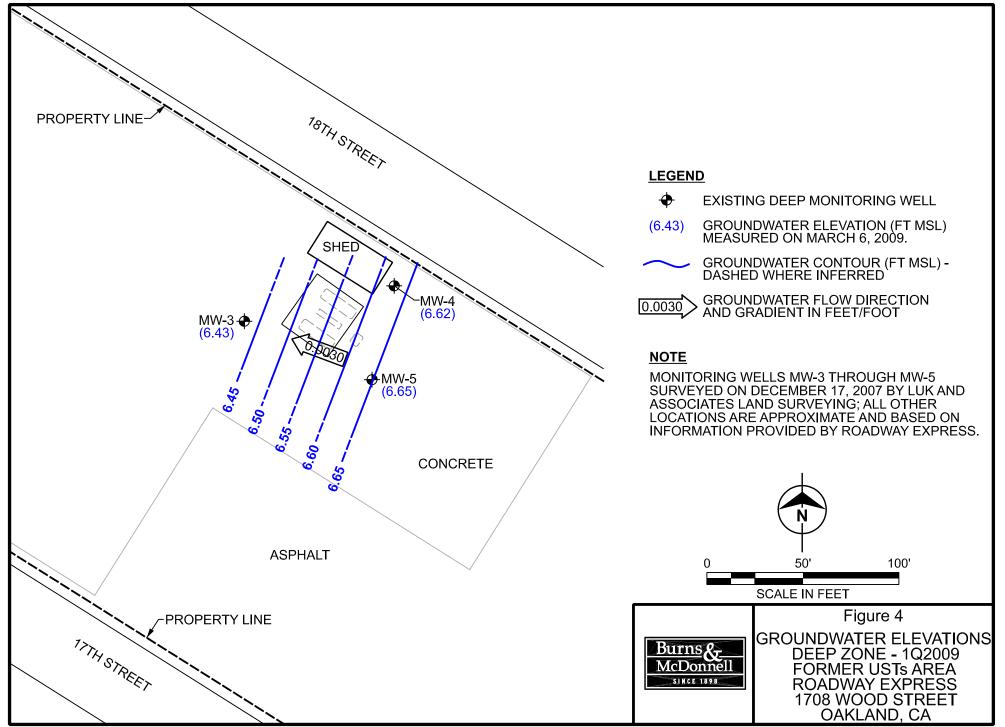
Appendix E – Groundwater Sampling Forms


Appendix F - Laboratory Analytical Reports

FIGURES






K-VYRC ENTERPRISE SERVICES INC/VRCW OAKLAND, CA/USTN/SITE/VRC OAKLAND FIG 1.DGN 12-04-2007 16:40 F_BITTNE

TABLES

TABLE 1

Well Construction Details USF Roadway Express Facility 1708 Wood Street Oakland, California

Well ID	Casing Diameter	Casing Elevation	Construction Depth	Screened Interval
	(Inches)	Feet (1)	Feet (2)	Feet (2)
MW-1	4	unknown	10	0.5-10
MW-2	4	9.89	9.5	0.5-9.5
MW-3	2	10.11	30	10-30
MW-4	2	9.52	30	10-30
MW-5	2	9.97	30	10-30

1 - Elevation in feet above mean sea level

2 - Depth in feet below ground surface

Notes:

- Construction depth and screened intervals for MW-3, MW-4, and MW-5 based on boring logs located in the Additional Groundwater Investigation Report by One Environment, 2001
- Casing elevation for MW-2, MW-3, MW-4, and MW-5 resurveyed by Luk and Associates on December 20, 2007
- Casing elevation for MW-6, MW-7, and MW-8 surveyed by Luk and Associates on March 3, 2009
- In August 2008, Burns & McDonnell removed monitoiring wells MW-1 and MW-2; these wells were constructed without a proper sanitary seal and posed a risk as a pathway to the subsurface for contaminants.

TABLE 2

Monitoring Well Groundwater Summary Groundwater Elevations and Total Petroleum Hydrocarbons in Groundwater Roadway Express 1708 Wood Street

Oakland, California

			Depth to Water							Ethyl-	Total	Total Oil	MTBE	MTBE
			(ft below Top of	Elevation	TPHd	TPHg	TPHmo	Benzene	Toluene	benzene	Xylenes	& Grease	(8021B)	(8260B)
Well ID	Aquifer Zone	Date	Casing)	(ft MSL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)
MW-1	Shallow	24-Jul-97			1,200	50 U						1.4		
Well Al	bandoned Augu	st 2008												
MW-2	Shallow	24-Jul-97			940	50 U						6.2		
MW-2	Shallow	17-Dec-07	1.56	8.33	140									
MW-2	Shallow	28-Mar-08	1.03	8.86	180 BI, SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U				0.5 U
MW-2 (DUP-1)	Shallow	28-Mar-08			160 BI, SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U				0.5 U
MW-2	Shallow	02-Jun-08	1.44	8.45										
MW-2	Shallow	03-Jun-08			120 SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U			2 U	
MW-2 (DUP-1)	Shallow	03-Jun-08			150 SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U			2 U	
Well Al	bandoned Augu	st 2008												
MW-3	Deep	22-Mar-07	4.04	6.07	50 U	50 U						4.75 U		0.5 U
MW-3	Deep	28-Mar-08	4.12	5.99	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U				0.5 U
MW-3	Deep	02-Jun-08	4.35	5.76										
MW-3	Deep	03-Jun-08			50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-3	Deep	10-Sep-08	4.48	5.63	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-3	Deep	29-Dec-08	4.42	5.69	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-3 (DUP-1)	Deep	29-Dec-08			50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-3	Deep	06-Mar-09	3.68	6.43	95 U	50 U	190 U	1 U	1 U	1 U	2 U			1 U
MW-4	Deep	22-Mar-07	3.25	6.27	50 U	50 U						4.75 U		0.5 U
MW-4	Deep	28-Mar-08	3.32	6.2	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U				0.5 U
MW-4	Deep	02-Jun-08	3.56	5.96	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-4	Deep	10-Sep-08	3.91	5.61	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-4	Deep	29-Dec-08	3.71	5.81	50 U	50 U	300 U	0.5 U	0.5 U	0.5 U			2 U	
MW-4	Deep	06-Mar-09	2.90	6.62	95 U	50 U	190 U	1 U	1 U	1 U	2 U			1 U
MW-5	Deep	22-Mar-07	3.73	6.24	500 BI	50 U						4.85 U		0.5 U
MW-5 (DUP-1)	Deep	22-Mar-07			710 BI	50 U						4.75 U		0.5 U
MW-5	Deep	28-Mar-08	3.82	6.15	50 U,SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U				0.5 U
MW-5	Deep	02-Jun-08	4.05	5.92	50 U,SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U			2 U	
MW-5	Deep	10-Sep-08	3.45	6.52	50 U,SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U			2 U	
MW-5 (DUP-1)	Deep	10-Sep-08			50 U,SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U			2 U	
MW-5	Deep	29-Dec-08	4.19	5.78	50 U,SG	50 U	300 U,SG	0.5 U	0.5 U	0.5 U			2 U	
MW-5	Deep	06-Mar-09	3.32	6.65	95 U	50 U	190 U	1 U	1 U	1 U	2 U			1 U
MW-5 (DUP-1)	Deep	06-Mar-09			95 U	50 U	190 U	1 U	1 U	1 U	2 U			1 U
MW-6	Shallow	06-Mar-09	0.60	9.53	95 U	50 U	190 U	1 U	1 U	1 U	2 U			1 U
MW-7	Shallow	06-Mar-09	0.42	9.51	95 U,SG	50 U	190 U	1 U	1 U	1 U	2 U			1 U
MW-8	Shallow	06-Mar-09	0.46	9.37	96 U,SG	50 U	190 U	1 U	1 U	1 U	2 U			1 U
Notoo							1							

Notes:

U = Sample not detected above detection limit

 μ g/L = Micrograms per liter

--- = Not sampled/analyzed for this constituent

SG = Silica Gel Cleanup (EPA 3630) run to remove natually occuring organic compounds

BI = Sample exhibits chromatographic pattern which does not resemble standard

MSL = Mean Sea Level

TABLE 3 Historical Soil Sample Summary Total Petroleum Hydrocarbons, Motor Oil, BTEX, and MTBE Roadway Express 1708 Wood Street Oakland, California

Sample ID	Date Sampled	Depth	TPH-Gasoline	TPH-Diesel	TPH-Motor Oil	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Analytical Rep	orting Units	(Feet bgs)	mg/Kg	mg/Kg	mg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg	µg/Kg
B-1	24-Jul-97	4	<1	<1						
B-3	24-Jul-97	6	<1	240						
B-4	24-Jul-97	7	<1	<1						
B-5	24-Jul-97	3.5	<1	5.4						
B-6	24-Jul-97	5	<1	<1						
B-7	24-Jul-97	3	<1	<1						
B-8	24-Jul-97	2	<1	<1						
MW-3	6-Sep-00	5	ND	ND						
MW-3	6-Sep-00	10	ND	ND						
MW-4	6-Sep-00	5	ND	ND						
MW-4	6-Sep-00	10	ND	ND						
MW-5	6-Sep-00	5	ND	ND						
MW-5	6-Sep-00	10	ND	ND						
BM-2	10-Dec-07	5	<0.50	8.8 Y	86					
BM-2	10-Dec-07	13	<0.50	<5.0						
BM-6	10-Dec-07									
BM-7	10-Dec-07	6	<0.50	<5.0	86					
BM-8	10-Dec-07	7	<0.50	<120	1,700					
BM-9	10-Dec-07	5	<0.50	<5.0	83					
BM-10	4-Aug-08	5	<0.93	4.5* Y	12*	<4.6	<4.6	<4.6	<4.6	<19
BM-10	4-Aug-08	24	<0.91	<0.99	<5.0	<4.5	<4.5	<4.5	<4.5	<18
BM-11	4-Aug-08	2.6	<0.94	30* Y	860* Y	<4.7	<4.7	<4.7	<4.7	<19
BM-11	4-Aug-08	11	<0.93	<1.0*	<5.0	<4.6	<4.6	<4.6	<4.6	<19
BM-11	4-Aug-08	20	<1.0	1.1* Y	<5.0	<4.6	<4.6	<4.6	<4.6	<18
BM-12	4-Aug-08	3	<0.98	65* Y	130*	<4.6	<4.6	<4.6	<4.6	<18
BM-12	5-Aug-08	9.6	<0.93	1.2* Y	10*	<4.7	<4.7	<4.7	<4.7	<19
BM-12	5-Aug-08	19.6	<0.98	<0.99	<5.0	<4.9	<4.9	<4.9	<4.9	<20
BM-13	5-Aug-08	3.6	<1.0	3.7* Y	13*	<5.2	<5.2	<5.2	<5.2	<21
BM-13	5-Aug-08	21	<1.1	<1.0	<5.0	<5.3	<5.3	<5.3	<5.3	<21
BM-14	5-Aug-08	3	<1.0	56* Y	90*	<5.0	<5.0	<5.0	<5.0	<20
BM-14	5-Aug-08	17.6	<0.99	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20
BM-14	5-Aug-08	23.6	<0.95	<0.99	<5.0	<4.8	<4.8	<4.8	<4.8	<19
BM-15	5-Aug-08	3.6	<1.0	45* Y	320*	<5.1	<5.1	<5.1	<5.1	<20
BM-15	5-Aug-08	11	<0.98	1.3* Y	11*	<4.9	<4.9	<4.9	<4.9	<20
BM-16	5-Aug-08	19	<1.0	2.4* Y	13*	<5.2	<5.2	<5.2	<5.2	<21
BM-16	5-Aug-08	29	<0.99	<1.0*	<5.0	<5.0	<5.0	<5.0	<5.0	<20
BM-17	6-Aug-08	10.6	<1.0	2.4* Y	16*	<5.0	<5.0	<5.0	<5.0	<20
BM-17	6-Aug-08	23.2	<0.97	3.1* Y	15*	<4.9	<4.9	<4.9	<4.9	<19
BM-17	6-Aug-08	25	<1.0	1.3* Y	8.2	<5.2	<5.2	<5.2	<5.2	<21
BM-18	6-Aug-08	2.6	<0.97	3.7* Y	16*	<4.9	<4.9	<4.9	<4.9	<19
BM-18	6-Aug-08	8.6	<1.0	<1.0*	<5.0*	<5.1	<5.1	<5.1	<5.1	<20
BM-18	6-Aug-08	12.6	<0.93	2.0* Y	13*	<4.7	<4.7	<4.7	<4.7	<19
BM-19	6-Aug-08	7.8	<0.98	7.6* Y	15*	<4.9	<4.9	<4.9	<4.9	<20
BM-19	6-Aug-08	11	<0.98	3.7* Y	19*	<4.9	<4.9	<4.9	<4.9	<20
BM-19	6-Aug-08	19	<0.97	<1.0* Y	<5.0	<4.9	<4.9	<4.9	<4.9	<19
BM-19	6-Aug-08	22	<0.94	<1.0	<5.0	<4.7	<4.7	<4.7	<4.7	<19
MW-6	18-Feb-09	4	<0.1	<10*	<20*	<5.0	<5.0	<5.0	<10	<5.0
MW-7	18-Feb-09	4	<0.099	<9.8*	<20*	<5.0	<5.0	<5.0	<9.9	<5.0
MW-8	18-Feb-09	5	<0.1	<10*	<20*	<5.0	<5.0	<5.0	<10	<5.0

Notes:

NDE Sample not detected above detection limit; unable to find detection limit in prior sampling reports < ## = Sample not detected above detection limit of ## --- = Not sampled/analyzed for this constituent Boring Locations are indicated on Figures 1 and 2

Boing Locations are indicated on Figures 1 and 2 * = Result after silica gel clean-up procedure, EPA Method 3630C Y = Sample exhibits chromatagraphic pattern that does not resemble the standard mg/Kg = Milligrams per Kilogram µg/Kg = Micrograms per Kilogram bgs = Below Ground Surface

APPENDIX A

ALAMEDA COUNTY PUBLIC WORKS AGENCY WATER RESOURCES WELL PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(5	
Application Approved	d on: 02/10/2009 By jamesy	Permit Numbers: W2009-0129 to W2009-0131 Permits Valid from 02/18/2009 to 02/28/2009
Application Id: Site Location:	1233945793114 1709 Wood St (Boodwoy Evpress), Opkland, C (City of Project Site:Oakland
Project Start Date: Assigned Inspector:	1708 Wood St (Roadway Express), Oakland, CA 02/18/2009 Contact Vicky Hamlin at (510) 670-5443 or vicky	Completion Date:02/28/2009
Applicant:	Burns & McDonnell - Patrick Bratton	Phone: 650-871-2926
Property Owner:	393 E Grand Avenue Ste J, South San Francisc YRC - North American Transportation c/o Ruber	
Client:	Byerly 10990 Roe Avenue, Overland, KS 66211 ** same as Property Owner **	
	Receipt Number: WR2009-0051	Total Due: \$1035.00 Total Amount Paid: \$1035.00

Payer Name : Burns & McDonnell Paid By: CHECK

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells Driller: RSI - Lic #: 802334 - Method: auger

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2009-	02/10/2009	05/19/2009	MW-6	8.00 in.	1.00 in.	1.00 ft	15.00 ft
0129							
W2009-	02/10/2009	05/19/2009	MW-7	8.00 in.	1.00 in.	1.00 ft	15.00 ft
0130							
W2009-	02/10/2009	05/19/2009	MW-8	8.00 in.	1.00 in.	1.00 ft	15.00 ft
0131							

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Work Total: \$1035.00

PAID IN FULL

Alameda County Public Works Agency - Water Resources Well Permit

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

APPENDIX B

BORING LOGS

Reviewed By:

Boring/Well Construction Log

YRCW Roadway Express Oakland 48791 Ground Elevation Location ~10 1708 Wood Street North West corner of Site Air Monitoring Equipment Mini RAE 2000 PID Drilling Method Borehole Size Casing Type/Diam. Screen Type/Slot Direct Push 4" PVC/1" Slotted PVC/0.010" Drilling Company: RSI Drilling Driller(s): Jorilling Rig: Geoprobe 6600 Type of Sampler: Date: 2/18/09 Logged by: Patrick Brattor Depth Gocorrete Concrete CONCRETE	leeve on
Air Monitoring Equipment Mini RAE 2000 PID Screen Type/Slot Drilling Method Borehole Size Casing Type/Diam. Screen Type/Slot Direct Push 4" PVC/1" Slotted PVC/0.010" Drilling Company: RSI Drilling Driller(s): Jose and Gill Drilling Rig: Geoprobe 6600 Type of Sampler: Geoprobe SI Date: 2/18/09 Logged by: Patrick Brattor Depth (feet) BGL S Lithologic Description Class Blow Count Recov. Run/ Time Sample	Total Footage 10 Depth to Water Top of Casing Elevation 6.0 ft. bgs 10.1 ft above MSL bert Image: state st
Mini RAE 2000 PID Drilling Method Borehole Size Casing Type/Diam. Screen Type/Slot Direct Push 4" PVC/1" Slotted PVC/0.010" Drilling Company: RSI Drilling Driller(s): Jose and Gill Drilling Rig: Geoprobe 6600 Type of Sampler: Geoprobe SI Date: 2/18/09 Logged by: Patrick Bratter Depth (feet) BGL O Blow Si Recov. Run/ Time Sample Besig.	10 Depth to Water Top of Casing Elevation 6.0 ft. bgs 10.1 ft above MSL bert Image: state stat
Direct Push 4" PVC/1" Slotted PVC/0.010" Drilling Company: RSI Drilling Driller(s): Jose and Gill Drilling Rig: Geoprobe 6600 Type of Sampler: Geoprobe SI Date: 2/18/09 Logged by: Patrick Bratter Depth (feet) BGL Or Blow Count Recov. Run/ Time	6.0 ft. bgs 10.1 ft above MSL bert leeve on PID (ppm) Well Diagram
Drilling Company: RSI Drilling Drilling Rig: Geoprobe 6600 Type of Sampler: Type of Sampler: Date: 2/18/09 Depth (feet) BGL O Solution Description Class Blow Count Recov. Run/ Time Desig.	bert leeve on PID (ppm) Well Diagram
Drilling Rig: Geoprobe 6600 Type of Sampler: Geoprobe SI Sampler: Date: 2/18/09 Logged by: Patrick Bratto Depth (feet) BGL 0 2 Lithologic Description Class Blow Count Recov. Run/ Time Sample Desig.	eeve on PID (ppm) Well Diagram
Date: 2/18/09 Logged by: Patrick Bratte Depth (feet) BGL Obscription Class Blow Count Recov. Run/ Time Sample	on PID (ppm) Well Diagram
Depth (feet) BGL O Description Class Blow Count Recov. Run/ Time Sample Desig.	PID (ppm) Well Diagram
$\begin{array}{c c} (feet) & O \\ BGL & \supset \end{array} & Description \end{array} \begin{array}{c c} Class \\ Count \\ Count$	PID (ppm) BZ/BH/S Well Diagram
Fill FILL - gravel and silt, brown	0/9.0/0
ML SILT - brown	
SP SAND - very dark gray to black, 2.5Y 3/1, fine to medium grained, subangular 100%	0/0/0
5 CL CLAY - light gray, soft	
SP SAND - very dark gray to black, 2.5Y 3/1, fine to medium grained, subangular	
SP Same as above, wet 100%	
OL BAY MUD, grasses 100%	
10 END OF BORING, TD = 10.0 ft. bgs	

Reviewed By:

Boring/Well Construction Log

— B	Burns		ct Name RCW Roadway Expre	ess Oakland	Project N 4879		er				Boring/Well MW-7	l Number
	&	Grou	nd Elevation	Location	4079	1					Page	
McI	Doni	nell ~	10	1708	Wood Stre	et - Ce	ntral Eastern	portion	of the site			1 of 1
	RAE 200	Equipment									Total Foota 10	ge
	Drilling M		Borehole Size	Casing T	ype/Diam.		Scree	n Type/	/Slot	De	pth to Water	Top of Casing Elevation
	Direct F		4"		C/1"	_		i PVC/0.			5.5 ft. bgs	9.9 ft above MSL
Drilling	Compar		RSI Drilling		0,1		Driller(s): Jose and Gilbert				0.0 h. 5go	
Drilling	-	-	Geoprobe 6600				Type of		oprobe Sle			
Date:			2/18/09				Sampler: Logged by:		rick Bratto			
Depth	S		Likkelenie			Die		Dure	Comple	e	PID (ppm)	
(feet) BGL	USCS		Lithologic Description		Class	Blov Cour		Run/ Time	Sample Desig.	Sample	BZ/BH/S	Well Diagram
	Concrete		ГЕ		P & 4 P							
	Fill	Ell L - grav	vel and silt, brown								0/11/0	
		FILL - grav										
_	ML	SILT - brov	wn									
_	-										0/0/0	
	- SP		ry dark gray to blac	k 2 5Y 3/1							0/0/0	
		fine to med	dium grained, subar	igular, moist								
-	-											
	- OL	CLAY - lig	ht gray, soft									
_	-						100%		MW-7-4		0/0/0	
			ry dark gray to blac	k 2 5Y 3/1								
5-		fine to med	dium grained, subar	igular, wet								
5												
_	-						100%				0/0/0	
	OL	BAY MUD	- gray, soft									
	ŌĹ	BAY MUD	- black, peat				100%				0/0/0	
	PT	PEAT - cla	iy, gray		<u></u>							
_					<u>1/ 1/ 1/ 1/</u>							
					<u><u>v</u> <u>v</u> <u>v</u></u>							
					<u><u><u></u> <u></u> <u></u></u></u>	r	100%				0/0/0	
10-			ORING, 10.0 ft. bg	S /	· · · · · ·							
			0	/								
	1											
	Proothin		I-Poro Holo - S-Sr									

BORING/WELL YRC OAKLAND.GPJ BURNS&MC.GDT 4/20/09

BZ=Breathing Zone BH=Bore Hole S=Sample

Reviewed By:

Boring/Well Construction Log

E	Burn		ect Name YRCW Roadway Expre	ss Oakland	Project N 4879		er			Boring/	Well Number			
	_&	Grou	und Elevation	Location						Page	<u> </u>			
MC Air Mor	Don	nell - Equipment	~10	1708 \	Nood Stre	et - Ce	ntral Eastern	portion	of the site	Total Fo	1 of 1			
	RAE 20									10	Joinge			
	Drilling N	lethod	Borehole Size	Casing T	ype/Diam.		Scree	n Type	/Slot	Depth to W	/ater Top of Casing Elevation			
	Direct F	[⊃] ush	4"	PV	C/1"		Slotted	PVC/0.	.010"	6.0 ft. bg	s 9.8 ft above MSL			
Drilling	Compa	ny:	RSI Drilling				Driller(s):	Jos	e and Gilb	ert				
Drilling	Rig:		Geoprobe 6600				Type of Sampler:	Ge	oprobe Sle	eve				
Date:			2/18/09			Logged by: Patrick Bratton								
Depth (feet)	nscs		Lithologic		Class	Blov		Run/	Sample) Well Diagram			
BGL			Description			Cour	nt	Time	Desig.	BZ/BH/S				
	Concret	e CONCRE	TE											
	Fill	FILL - ang	gular gravel, black wi	th coarse										
-	1	sand, sim	ilar to asphalt											
			ay, sand layers											
_	1	s gro	.,,											
					╞┊┊╡									
_		fine to me	ery dark gray to black edium grained, suban	, ∠.51 3/1, gular										
	L	L												
	¯ ōL¯	CLAY - lię	ght gray, soft											
_	4						100%			0/0/0				
	SP		ense - gray, fine grair	ned, silty										
		CLAY - liq	ght gray, soft											
5-	1								MW-8-5	16/0/0				
			ery dark gray to black	(, 2.5Y 3/1.	<u></u>									
_	1	fine to me	edium, subangular, w silt lenses	et; with some			100%			0/0/0				
			SIIL ICH 1963											
_	1													
	- PT-		rown, heavy organics	, weed like — –	<u></u>									
_	-		, , , , , , , , , , , , , , , , , , , ,	, <u>.</u>	1/ 1/ 1/		100%			0/0/0				
					<u> \\ /</u> \\ \/									
					<u>// \// \/</u>									
_		BAY MUE	D - grasses											
							1000/			0/0/0				
40							100%			0/0/0				
10-		END OF	BORING, TD = 10.0	ft. bgs _/										
_														
D7-	Breathin		H=Bore Hole S=Sa											

APPENDIX C

MONITORING WELL SURVEY REPORT

Luk and Associates 738 Alfred Nobel Drive Hercules, CA 94547 510-724-3388 Fax: 510-724-3383

Civil Engineering Land Planning Land Surveying

March 3, 2009 Job No. 27151-10

Patrick Bratton Burns & McDonnell Engineering Co., Inc. 393 East Grand Avenue, Suite J South San Francisco, CA 94002

Subject: Monitoring Well Survey 1708 Wood Street Oakland, California

Dear Patrick:

Monitoring well locations have been converted to Coordinate System NAD 83, California, Zone 3, and the elevations are based on NAVD 88. The following monitoring wells have been located per your request:

Well No.	Description	Northing	Easting	Latitude (N)	Longitude (W)	Elevation
MW6	TOP OF PVC	2124183.189	6043399.839	37° 48' 53.93061"	122º 17' 39.31255"	10.131'
MW7	TOP OF PVC	2124237.116	6043393.144	37° 48' 54.46240"	122° 17' 39.40886"	9.932'
MW8	TOP OF PVC	2124210.479	6043441.188	37º 48' 54.20820"	122° 17' 38.80385"	9.830'

Also, please note the followings:

- 1. The X, Y, and Z value is obtained by GPS (Global Positioning System) method.
- 2. The GPS equipment is the Trimble R8 Rover Kit O SC/SW, 450-170 MHZ.
- 3. The X and Y accuracy is 0.03' horizontally and is based on the exact measurement point of the top of the pipe.
- 4. The elevation accuracy is 0.04' vertically and is based on the exact measurement point of the top of the pipe.

Please feel free to give me a call if you have any questions.

Sincerely yours,

LUK AND ASSOCIATES CIVIL ENGINEERS/SURVEYORS/PLANNERS

Paul Canumay, P.L.S. 3272 Project Surveyor

APPENDIX D

WELL DEVELOPMENT LOGS

WELL DEVELOPMENT FORM- Continuation

Site Name: <u>VR-C- OAKLAN</u> D

Project Number, <u>पश्चित्र २।</u>

Well ID: MW-6

1225

ł

Recorded By: Patrick Prote-

Observa	tions Dur	ing Well	Developm	ent			-	
Date	Time	WL	סד	Volume	Temp	pН	Conductivity	Remarks
	1330	4.6	9.01	1				Setup
	1335	~		L:+	15.51	7.35	5013	Very Claushy fines silt & Mool
	(337	<i></i>			15,46	\$.70	4 <i>808)</i>	Cloudy, fines
	1339				15.61			Slightly Cloudy
	1391	1		(.00)	15.36	6.47	4861	slightly CO-RY
	1345		~					Surge well
	1352-	<u> </u>		1.50]5.63	9.22	5435	Very Clouchy fines Sitt and
	1754	_	/_	1.75	15.56	6:15	561.8	Cloudy, Sines
	1400	- - رې		z.0				Surge Well
	1406			2.5	13.92	6.68	5557	Goudy Sines
1	1408		······	2.75	15.71	7.08	3561	stightly cloudy
	1410					6.91	5578	Slightly Churly
	1402	~		3.50				Surge well
	1920				15.74	7,32	5637	Cloudy, Finos
'	1423			<u>4.0</u>				Clandy fines
	1428			4.25	15.48	6.47	5632	slightly Cloudy
	1430		<u>-</u>			<u> </u>		Sarge well
	1435			450	15.34	7.55	5434 .	Claudy, finas, silt
	1438	-			L			Cloudy
	1439	<u></u>		5.0	16.03	6.50	<u>5392</u> .	Clear
	1440	<u> </u>			<u> </u>			Surge Well_
:	<u>1448</u>			5.5	15.39	7.00	5334	Cloudy
	14.50			<u> 4.75</u>		6.67	3348	Mostly Clear
	1452		- 20		15.30	1	1	Clear
<u> </u>	14 99				15.32	6.47	5337	Clear
<u> . </u>		0.95	<u>9.42</u>	· ·	<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·
				<u>. </u>				

Notes:

Votume units are in gallens

Conductivity utilits are in microsiemens per centimeter (µS/cm)

<u>.</u>

WELL DEVELOPMENT FORM- Continuation

Site Name: <u>ソズム - クムにム</u>Nア Project Number: <u>48</u>フ へい

MW-7

Well ID;

Recorded By: <u>70.441-1- 15.0-116-1</u> Date: <u>2-24-69</u>

200

Date	Tirr≠	WZ,	π	Volume	Temp	p t 5	Conductivity	Remarks
	12.10	0.24				1.80		
- 44	- 1150	0.24		524	16.67			cloudy sediment
	145			1				Slightly Clandy
	1217			1		1		Sligtly Clanchy
	12.19			0.35	16.75	6.84	2193	Stightly Clendy
	;221	<u> </u>		1.0	16.77	6.91	2 <i>0</i> 97	Mostly Clear
								Sarac well
	1236	_ _	ļ	1.75	17.06	6,97	(843	Cloudy, Sectiment
	1240		ł	2.0	16.71	6.91	180 8	Slightly Clandy
	1242		· j	2.25	16.62	7.63	1793	Stinny Chudy
	1244	1.51	iq.XQ	2.50	16.52	7.23	1980	Sligning Cloudy
	12ゴン		કર છે					Suge well
	1253	·	ļ	3.0	17.9	7.94	1900	Cloudy Fires any
	1256	1	ļ	3,25	17.0	72.73	1864	Slightly Clempt y
	12.58			3.5	16.85	7.65	1874	Scignity Claudia
	1300		L.	3.75	6.86	-7,00	1 <i>88</i> 9	Mostly Clean
	1302	•		ч. 0 -	•		1858	Clear
	1398	1.35	9.30					· · ·
	-							· .
								·

Notes:

Volume units are in gallons

Conductivity units are in microsientens per centimeter (uS/cm)

Well Valune = 9.05, (1) × 0.0408= 0.37 gallons M: Q.24 10 Volumes = 3:7 gallons TD · 9 · 29 K:KGeneralidevelopment - 2007

WELL DEVELOPMENT FORM- Continuation

Site Name: <u>VR C- OAK-LAN</u>D

.

Project Number: 48791

MW-B

Well ID:

.

t

ż

ί,

Å

Recorded By: Yatrick Bratton Date: 2-24-09

Date	Time	WL	TD	Voluzne	Terro	pН	Cenductivity	Remarks
	1518	0.35	946	-				
	1525			En:+	16.13	8.07	2273	Clear
	1527		-					Clear
	1530			0.75	16.74	6.94	2453	Clear .
	1532		·					Sargewell
	1535	~		1.0	17.71	6.89	1877	Clear
	1542			1.25	17.73	7.43	1779	Clear fund Racharging Sto
	1943			1.3				Surger well
<u>.</u>								Leave will to Recharge
	1557			2.0	17,92	8.52	1945	Leavenue to Recensige Cloudy, fines Slightly Cloudy
	1600			2.25	17.29	7.11	1698	Stightly Cloudy
	1602	~		2.50	17.67	6.87	1739	Clear
	1605				17.83			Clear
	1608			3.0	17,57	7.08	1705	Clear
		:						
•								
								۲۰۰ میں ا

Notes:

Volume units are in gallons

Conductivity writs are in microsiemens per continueter ($\mu S(cm)$

APPENDIX E

GROUNDWATER SAMPLING FORMS

M		nell			GROUNDWATER SAMPLING FORM		
Project N	не: <u>УР-С</u> lumber d By:	48791			Well Number: Well Type: Monitor Extraction Other: Date: Sample Time:1 2.30		
Purge N		0.11			Purge Volume		
	pe: <u>2:</u>				Casing Diameter (D in inches):		
	Method: _				Total Depth of Casing (TD in feet BTOC): <u>29.5</u>		
Other-Ty	pe:				Water Level Depth (WL in feet BTOC): 3.68		
	Purge Volume Calculation: $(24.5) - (3.69) \times (2)^2 \times 3 \times 0.0408 = 12.6$ TD (feet) W1 (feet) D (inches) # Vols Purge Volume (galions)						
Total Volume Generated (gallons): 13							
Field Parameter Measurements							
гіели на Тіте	Volume	Temp	pH	Conductivity	Remarks		
1205		16.64	7.28	7228	Clear		
1213	4.2	18-31	7.29	7022	Clear		
<u> </u>		_					

11412		10-21			
j220 :	8.4	19.02	6.88	7041	Slightly Cloudy Slightly Cloudy Sample
1228	12.6	19. iD	6.72	7005	Slightly Glandy
					Sanple
					1
	-				
	-				

Notes:

Temperature is measured in degrees Celsius

Volume units are in gallons

Conductivity units are in microslemens per centimeter (mS/cm)

Sampling Inform	ation			
Sample Point	Sample Designator	# of Containers	Preservatives	Analysis/Comments
14-3	MW-3	7_		TProc. MO
-	Aw-3	4	મબ	TANG BJEK MYBE
		•		· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·

.

M	urns cDon	nell			GROUNDWATER SAMPLING FORM				
Project I	ne: <u>VR (</u> Number: <u>-</u> d By:	1879)		- ,	Well Number: Well-Type: Monito Extraction Other: Date: Sample Time:				
Baller-Ty	<u>Method</u> pe: <u>2-in</u>				Purge Volume Casing Diameter (D in inches):				
	Method: _				Total Depth of Casing (TD in feet BTOC): <u>29.4</u> Water Level Depth (WL in feet BTOC): <u>2.90</u>				
<u>(२</u> १.५ ^{TD (feet)} Total Vo	Purge Volume Calculation: $(29.4) - (2.90)$ $X (2 -)^2 X 3$ $X 0.0408 = 13.0$ TD (feet) $U (Inches)$ # VolsPurge Volume (gallons)Total Volume Generated (gallons): 13.2Start Time: $1^{2}55$ Stop Time: 13.30								
Field Pa	rameter i	leasuren	nents						
Time	Volume	Temp	pH	Conductivity	Remarks				
1257	Initial			5646	Clear				
1523	4.3	15.16	6.35	5932	Clear				

4.3	15.16	6.95	5933	Clea/
8.6	18.06	6.32	5237	Slightly Claudy
3.0	17.94	6.98	5109	Stannety Cloudy
ĺ				Sample
				· · · ·
- 1	Í	ĺ		
	1		i	
·				
	1.3 3.6 3.0	1.3 15.16 3.6 18.06 3.0 17.94	1.3 15.16 6.35 3.6 18.06 6.35 3.0 17.99 6.88 	1.3 15.16 6.95 5933 3.6 18.06 6.93 5237 3.0 17.94 6.98 509

Notes:

Temperature is measured in degrees Celsius

Volume units are in gallons

Conductivity units are in nacroslemens per centimeter (mS/cm)

Sampling information							
Sample Point	Sample Designator	# of Containers	Preservatives	Analysis/Comments			
MW.4	MW-4	2_		TPHamo			
	MW-4	너	Hel	TPM, BTEX, HTBE			
				· · · ·			

Burns & McDonnell SINCE 1898	<u>GROUNDWATER SAMPLING FORM</u>							
Project Number: 487 9 1	Well Number: Well-Type: Monitor Extraction Other: Date:Sample Time:1410							
Purge Method Purge Volume Bailer-Type: Pumping Method: Other-Type: Water Level Depth (WL in feet BTOC):								
Purge Volume Calculation: $(29.5) - (332) \times (2)^2 \times 3 \times 0.0408 = 12.8$ TD (feet) WL (feet) D (modes) # Vols Purge Volume (gallons) Total Volume Generated (gallons): Start Time: 1340 Stop Time: 1420								
Field Parameter Measurements								
Time Volume Temp pH Conductivity	Remarks							
1343 Inital 16.98 6.68 5894 Mustly Clean, yo Mour Jint, no about								
1350 4.3 14.42 G.65 8028 Sign	ly Ciruchy yollow is a							
	y Cleudy yellowish							
	ly claudy, yellowish							
	Sample							

Notes:

Temperature is measured in degrees Celsius

Volume units are in galtons

Conductivity units are in microsiemens per centimeter (mS/cm)

Sampling Inform	ation			
Semple Point	Sample Designator	# of Containers	Preservatives	Analysis/Comments
Mw~5	TMW-3	2	· ·	18thd me
· · · · · · · · · · · · · · · · · · ·	MW-5	. 4	NCI	THIS, BEEX + MTBE
	Que1	2		TPHOLONO
	Pup-1	ч	MCI	TPha. BTEXHT1BE

M		nell			<u>GROUNDWATER SAMPLING FORM</u>					
Site Nam Review N	ae: <u>YRC</u> lumber: <u>H</u>	<u>- Oak</u> 8791	land	-	Well Number:6					
Recorded	d By:	PB			Date: 3-6-09 Sample Time: 1545					
Pumping	lethod pe: Method: <u>k</u> pe:		<u> </u>		Purge Volume I Casing Diameter (D in inches): I Total Depth of Casing (TD in feet BTOC): 9.5 Water Level Depth (WL in feet BTOC): 0.6	Casing Diameter (D in inchas): Total Depth of Casing (TD in feet BTOC):				
<u>Purge V</u>	olume Ca	lculation	<u>.</u>	20	ow Flow Sompling					
<u>(</u>			(<u>_)" X</u> #Vols	Purge Volume (gallons)					
	lume Ger n: <u>152</u>	nerated (g	-	<u>2.5</u> • <u>1550</u>	2					
Field Pa	rameter N	leasurem	ierits							
Time	Volume	Temp	<u>pH</u>	Conductivity	y Remarks					
1530	2.7	14.49	6.49	3740	Cient DTW ~ 0.6					
153(.	6.25	4.34	6.34	3962						
1532	0.50	[स.स]	6.33	4125	Ular 1.75					

1532	0.0	[[4.4]	6.33	9142	Clear	1.77	
1533	0.75	1466	6.27	4279	U.u.	2:0	
153 H	1.0	14,50	6.24	4404	Llev	1.90	
1530	1.25	19,47	6.23	4527	()ear	1.90	
1537	1.50	14,59	6.22	4637	Clear	2.0	
F539	1.75	14.67	6,22	4642	clear	2.0	
1540	2.0	14.66	621	4902	Ciner	i. 9	
1542	2.25	14.71	6.24	4667	Clear	2.0	
1343	2.50	19.75	6.21	4702	Cleo/	2.0	

-

Notes:

Temperature is measured in degrees Celsius Volume units are in-gelions レントレンシ Conductivity units are in microsiemens per centimeter (mS/cm)

Sampling Information								
Sample Point	Sample Designator	# of Containers	Preservatives	Analysis/Comments				
M-6	MW-6	2		TPHd, mo				
		ч	44	TPHO BTEX MTBE				

Burn McDo	onnell			GROUNDWATER SAMPLING FORM
Site Name: <u>Y</u>	C. Oakl	a-d_		Well Number: M W - 🍯 7
Project Number				Well Type: Monitor Extraction Other:
Recorded By:	PB -			Date: 3-6-09 Sample Time: 1505
Purge Metho	1			Purge Volume
Bailer-Type:				Casing Diameter (D in inches): 1 inches
Pumping Metho	d: <u>bu Fla</u>	~~∕		Total Depth of Casing (TD In feet BTOC):
Other-Type:				Water Level Depth (WL in feet BTOC):
Purge Volum	<u>Calculation</u>	<u>n:</u> 	ليني Fle	
() - (C TD (feet) WL		(Inches)	<u></u>	<u></u>
Total Volume	Generated (Liters gallono):	30	N
Start Time: 1	<u>450</u>	Stop Tim	e: <u>157C</u>	
Field Paramet	er Measurer	nents		
Tame Volu	ne Temp	pH	Conductivity	Remarks
1452 En:	+ 15.94	7.83	2053	Lizar Che
1453 6.29	16.05	7.37	1956	Ciscir NM
1454 0.50	16.13	7.07	1790	Clear DTW 1.40
1455 0.75	16.13	6.44	1711	Clear Drug 1.40
1456 1.0	14.17	6.87	1617	Clar DTW 1.70
1458 1.2	5 16.11	6.83	1624	Clear Diw 1.45
3459 1.50	> 16.01	6.82	1595	CIERT PN 1.30

PTW 1.45 1500 1.75 15.99 6.80 1523 Line/ 6.79 0TW 1.45 2.0 16.02 1566 1501 Claser 1378 6.78 DTW 145 2.25 6.07 Clear 503 2.50 1588 15.94 6.77 mi 1.45 1504 Clear

Notes:

Temperature is measured in degrees Celsius

Volume units are In galloes Litz/

Conductivity units are in microslemens per centimeter (mS/cm)

npling Informa	ation			
Sample Point	Sample Designator	# of Containers	Preservatives	Analysis/Comments
19w-7	Mw-7	2-		TPH2, no
		Ч	Mel	TPH, BTEX, MTBE
	<u> </u>	•		· · · · ·

M	irns cDon	nell				<u>GROUNDWATER</u>	R SAMPLING I	FORM	
Project N Recorded <u>Purge N</u> Bailer-Ty	iumber: <u>4</u> 1 By: <u>lethod</u> pe:			.	We Da Pu Ca	ell Number: $MW - 8$ ell Type:- <u>Constar</u> Extraction C te: <u>3-6-09</u> rge Volume sing Diameter (D in inches):	Other: Sample Time: 1	· ·	
		Low F <u>10</u>				al Depth of Casing (TD in feet ter Level Depth (WL in feet BT	Co. 1		
(TD (feet) Total Vo Start Time) (WL (fee: lume Get a: <u>{ (</u>)-X 1) D(2 2	(inches) (in	~ Flo "*vols <u>*</u> vols e: <u>1635</u>	X ().0408 = Purge Volume (gallons)	-		J
Field Pa	· · · · · · · · · · · · · · · · · · ·	Measuren.	· · · · · · · · · · · · · · · · · · ·						4
Time	Volume	Temp	pH magazi	Conductivity		Remark	9		- I .
1611		16.06	7.22	· · · · ·	Guer	Drw 1.5			
1612	0.25	(c.) S	6.83		Clark	DTV 1.9			-
1614	0.5	15.76			Clear	PT~ 2.0			-
1616	0.75	r		3188	Chear .	DTW Z-Z		• •	Gr. Sate
161 8	1.0			3166	Clear		tonly drawing	dan, red	ing fren Rate
1622	1.25	15.99	6.35	3086	Clark	ptv -2.4			1
16-26- -	4-50								-
<u> </u>					>^^^	-pic			
								· · · ·	1.
		1							4

Volume units are in galloos Likwy

Conductivity units are in microsiemens per contineter (mS/cm)

Sampling Information						
Sample Point	Sample Designator	# of Containers	Preservatives	Analysis/Comments		
MW-8	Mw-8	2		TPHOL, no		
· · ·		4	на	TPHA DTEX, BIBE		
		•.		·····		

APPENDIX F

LABORATORY ANALYTICAL REPORTS

- Date: April 1, 2009
- To: Patrick Bratton
- From: Michelle Beckman
- Re: QA/QC Review of Analytical Data Yellow Freight – Oakland March 2009 Groundwater Samples Project Number (48791 – Yellow Freight - Oakland)

Groundwater samples were collected on March 6, 2009. Samples were analyzed for one or more of the following parameters:

Analysis	Method
Groundwater Samples – Accutest Laboratories of Santa G	Clara, California
Total Petroleum Hydrocarbons (TPH)	
Gasoline C6-C10	SW-846 Methods 5030B / 8260B
Diesel C10-C28	SW-846 Methods 3510C / 8015B M
Diesel C10-C28 (Silica Gel Cleanup [SGCU])	SW-846 Methods 3510C / 3630C / 8015B M
Motor Oil >C28-C40	SW-846 Methods 3510C / 8015B M
Motor Oil >C28-C40 (SGCU)	SW-846 Methods 3510C / 3630C / 8015B M
Volatile Organic Compounds (VOCs)	
Methyl-tert-butyl ether (MTBE)	SW-846 Methods 5030B / 8260B
Benzene, Toluene, Ethylbenzene, and Xylene (BTEX)	

The following data set was reviewed in support of this investigation:

Lab	Data Set	Date Collected	Matrix	
Accutest	C4751	3/6/2009	Groundwater	

The quality assurance/quality control (QA/QC) results for the analyses were evaluated for achievement of any method-specific QA/QC criteria. Data qualifiers, when appropriate, were assigned according to the guidelines presented in *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review* (NFGO), 1999. No data required qualification as a result of the data review. The QA/QC review results are discussed in the following paragraphs.

- 1. <u>Chain-of-Custody</u> No problems were noted with the chain-of-custody (COC) forms.
- 2. <u>Requested Analyses Completed</u> All samples were analyzed as requested on the COCs.
- 3. <u>Holding Times</u> All samples were extracted and/or analyzed within the method holding times.
- 4. <u>Sample Preservation</u> No problems were noted with sample preservation.
- 5. <u>Laboratory Method Blanks</u> Method blanks were reviewed to determine the potential for sample cross contamination due to handling within the laboratory. No detections of target compounds were noted in the method blanks.

Memorandum April 1, 2009 Page 2

- 6. <u>Trip Blanks</u> No trip blanks were submitted for analysis.
- <u>Surrogates</u> Surrogates are added for organic analyses. Surrogates are compounds not normally found in the environment that are added (spiked) into samples and analyzed for percent recovery (REC). Maximum and minimum limits on the REC are set by the laboratory for the method used.

All surrogate RECs were within control limits.

8. <u>Blank Spike (BS)/Blank Spike Duplicate (BSD)</u> – The BS contains a matrix similar to that of the sample that has been spiked with known concentrations of target analytes. The BS is prepared and analyzed by the same method as the samples. As a measure of analytical accuracy, the results of the BS are compared against the known analyte concentrations in the spike to determine REC. The purpose of the BS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference. The BSD is a duplicate preparation and analysis of the BS. Results of the BS and BSD are compared to each other to determine analytical precision using the relative percent difference (RPD).

All BS/BSD results were within QC limits.

- 9. <u>Matrix Spike and Matrix Spike Duplicate (MS/MSD)</u> MS and MSDs are typically run for organic analyses performed using a soil or water matrix. A sample is split into three portions (original, MS, and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results are compared against the unspiked portion of the sample for REC of the spike. Additionally, the results are compared against each other using a relative percent difference (RPD) to determine reproducibility.
 - MS/MSD analyses were conducted on Sample MW-3 (Lab ID C4751-1) for BTEX and MTBE analyses. All results were within QC limits.
 - No project-specific MS/MSD analyses were provided for the other analyses in this data package. Analytical accuracy and precision for these analyses were assessed based on the associated surrogate and BS/BSD results. All results were within control limits and no qualifiers were added based on this omission.
- 10. <u>Field Duplicate Results</u> Table 1 provides a summary of the field duplicate results. The following field duplicate sample was collected:
 - MW-5 and Dup-1: All analytes were adequately replicated.
- 11. <u>Detection and Quantitation Limits</u> No dilutions were required to account for matrix interference and/or high concentrations of target analytes.

Memorandum April 1, 2009 Page 3

12. <u>Conclusion</u> – No data were qualified as a result of the QA/QC review. All data are usable in reporting the results of this investigation.

Attachments

Table 1 – Field Duplicate Results – MW-5 and Dup-1

Table 1 Field Duplicate Results - MW-5 and Dup-1 Yellow Freight - Oakland

Sample Name Date Sampled Laboratory Number		MW-5 3/6/2009 C4751-3		Dup-1 3/6/2009 C4751-7	3/6/2009		
Parameter	Units						
Volatile Organic Compoun	ds						
All VOCs	μg/L	Not Detecte	d	Not Detected	d	Yes	
Total Petroleum Hydrocarl	oons			-		-	
Gasoline C6-C10	µg/L	50	U	50	U	Yes	
Diesel C10-C28	µg/L	95	U	95	U	Yes	
Motor Oil >C28-C40	µg/L	190	U	190	U	Yes	

µg/L = micrograms per liter

U = Not Detected. Value reported is the detection limit.

03/16/09

Technical Report for

Burns and McDonnell Engineering

T0600102107-YRC-Roadway Express, Oakland, CA

48791

Accutest Job Number: C4751

Sampling Date: 03/06/09

Report to:

Burns and McDonnell Engineering

fbittner@burnsmcd.com

ATTN: Fabrizio Bittner

Total number of pages in report: 24

and/or state specific certification programs as applicable.

WINCLE E

 Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference
 L

Launie Alter Mushy

Laurie Glantz-Murphy Laboratory Director

Certifications: CA (08258CA) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Northern California • 3334 Victor Court • Santa Clara, CA 95054 • tel: 408-588-0200 • fax: 408-588-0201 • http://www.accutest.com

Table of Contents

-1 22 3

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C4751-1: MW-3	5
2.2: C4751-2: MW-4	7
2.3: C4751-3: MW-5	9
2.4: C4751-4: MW-6	11
2.5: C4751-5: MW-7	13
2.6: C4751-5A: MW-7	15
2.7: C4751-6: MW-8	16
2.8: C4751-6A: MW-8	18
2.9: C4751-7: DUP-1	19
2.10: C4751-8: TRIP BLANKS	21
Section 3: Misc. Forms	22
3.1: Chain of Custody	23

Sample Summary

Burns and McDonnell Engineering

Job No: C4751

T0600102107-YRC-Roadway Express, Oakland, CA Project No: 48791

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C4751-1	03/06/09	12:30	03/10/09	AQ	Ground Water	MW-3
C4751-2	03/06/09	13:20	03/10/09	AQ	Ground Water	MW-4
C4751-3	03/06/09	14:10	03/10/09	AQ	Ground Water	MW-5
C4751-4	03/06/09	15:45	03/10/09	AQ	Ground Water	MW-6
C4751-5	03/06/09	15:05	03/10/09	AQ	Ground Water	MW-7
C4751-5A	03/06/09	15:05	03/10/09	AQ	Ground Water	MW-7
C4751-6	03/06/09	16:30	03/10/09	AQ	Ground Water	MW-8
C4751-6A	03/06/09	16:30	03/10/09	AQ	Ground Water	MW-8
C4751-7	03/06/09	00:00	03/10/09	AQ	Ground Water	DUP-1
C4751-8	03/06/09	00:00	03/10/09	AQ	Trip Blank Water	TRIP BLANKS

C4751

Sample Results

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	ple ID: C475 AQ - SW84	1-1 Ground Wa 46 8260B	ater RC-Roadway Ex	xpress, Oa	Date Sampled:03/06/09Date Received:03/10/09Percent Solids:n/aDakland, CA03/10/09			
Run #1 Run #2	File ID W4784.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164	
Run #1 Run #2	Purge Volum 10.0 ml	e						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND	$ \begin{array}{r} 1.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 50 \end{array} $	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.30 \\ 0.70 \\ 0.50 \\ 25 \end{array}$	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 97% 101%		60-12 60-12 60-12	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Ксро		Analysis		Page 1 of 1	
Client Sample ID:MW-3Lab Sample ID:C4751-1Date Sampled:03/06/09Matrix:AQ - Ground WaterDate Received:03/10/09Method:SW846 8015B MSW846 3510CPercent Solids:n/aProject:T0600102107-YRC-Roadway Express, Oakland, CA								
Run #1 Run #2	File ID GG4332.D	DF 1	Analyzed 03/11/09	By JH	Prep Date 03/11/09	Prep Batch OP781	Analytical Batch GGG166	
Run #1 Run #2	Initial Volume 1050 ml	Final V 1.0 ml	olume					

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.095 0.19	$0.048 \\ 0.095$	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	77%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Samj Matrix: Method: Project:	AQ - SW84	Ground Wa 46 8260B	ater RC-Roadway Ex	press, Oa	Date Sampled:03/06/09Date Received:03/10/09Percent Solids:n/aOakland, CA		
Run #1 Run #2	File ID W4785.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164
Run #1 Run #2	Purge Volum 10.0 ml	e					

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND ND	1.0 1.0 2.0 1.0 50	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.30 \\ 0.70 \\ 0.50 \\ 25 \end{array}$	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	93% 99% 99%		60-1 60-1 60-1	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Repo	ort of A	Analysis		Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ple ID: C4751-2 AQ - G SW846	round Wa 8015B M	ter SW846 3510 RC-Roadway Ex	-	Date Sampled: Date Received: Percent Solids: akland, CA	03/10/09	
Run #1 Run #2	File ID GG4333.D	DF 1	Analyzed 03/11/09	By JH	Prep Date 03/11/09	Prep Batch OP781	Analytical Batch GGG166
Run #1 Run #2	Initial Volume 1050 ml	Final V 1.0 ml	olume				

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	75%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sar Lab Samj Matrix: Method: Project:	AQ - SW84	1-3 Ground Wa 46 8260B	tter Date Sample Percent Solid RC-Roadway Express, Oakland, CA			d: 03/10/09		
Run #1 Run #2	File ID W4786.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164	
Run #1 Run #2	Purge Volum 10.0 ml	e						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND ND	1.0 1.0 1.0 2.0 1.0 50 $ 50 $	0.30 0.50 0.30 0.70 0.50 25	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 98% 98%		60-1 60-1 60-1	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Page 1 of				
Client Sar Lab Samp Matrix: Method: Project:	ole ID: C4751 AQ - SW84	-3 Ground Wat 6 8015B M	er SW846 3510 C-Roadway Ex		Date Sampleo Date Received Percent Solid akland, CA	d: 03/10/09	
	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	File ID GG4334.D	DF 1	Analyzed 03/11/09	Ву ЈН	Prep Date 03/11/09	Prep Batch OP781	Analytical Batch GGG166

Run #2			
Run #2	00.00.02	-	00/11/
Run #1	GG4334.D	1	03/11/0

	Initial Volume	Final Volume
Run #1	1050 ml	1.0 ml
Run #2		

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	78%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	AQ - SW84	1-4 Ground Wa 46 8260B	ater RC-Roadway Ex	spress, Oa	Date Sampled:03/06/09Date Received:03/10/09Percent Solids:n/aOakland, CA03/06/09		
Run #1 Run #2	File ID W4787.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164
Run #1 Run #2	Purge Volum 10.0 ml	e					

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND ND	$ \begin{array}{r} 1.0\\ 1.0\\ 2.0\\ 1.0\\ 50 \end{array} $	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.30 \\ 0.70 \\ 0.50 \\ 25 \end{array}$	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 99% 100%		60-1 60-1 60-1	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample ID: MW-6

File ID

GG4335.D

Lab Sample ID:

Matrix:

Method:

Project:

Run #1

Run #2

		Repo		Page 1 of 1	N		
C4 A0 SV	W-6 4751-4 Q - Ground Wat V846 8015B M)600102107-YR	SW846 3510		Date Sampled: Date Received: Percent Solids: Oakland, CA	03/10/09		
)	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	

OP781

GGG166

	Initial Volume	Final Volume
Run #1	1050 ml	1.0 ml
Run #2		

1

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	58%		45-1	40%	

03/11/09

JH

03/11/09

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Samj Matrix: Method: Project:	AQ - SW84	Ground Wa 46 8260B	ater RC-Roadway Ex	press, Oa	Date Sample Date Receive Percent Solid Ikland, CA		
Run #1 Run #2	File ID W4788.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164
Run #1 Run #2	Purge Volum 10.0 ml	e					

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND	$ \begin{array}{r} 1.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 50 \end{array} $	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.30 \\ 0.70 \\ 0.50 \\ 25 \end{array}$	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 98% 100%		60-1 60-1 60-1	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

							8
Client Sa	mple ID: MW-7						
Lab Sam	ple ID: C4751-	5			Date Sample	d: 03/06/09	
Matrix:	- AQ - G	AQ - Ground Water			Date Receive	ed: 03/10/09	
Method:	SW846	8015B M	SW846 3510	С	Percent Solid	ds: n/a	
Project:	T06001	02107-YR	C-Roadway Ex	press, O	akland, CA		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	GG4351.D	1	03/11/09	JH	03/11/09	OP781	GGG166
	Initial Volume	Final Vo	olume				
Run #1 Run #2	1050 ml	1.0 ml					

TPH Extractable

CAS No.	Compound	Result	RL	MDL	L Units	
	TPH (C10-C28) TPH (> C28-C40)	0.0832 ND	0.095 0.19	0.048 0.095	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	70%		45-1-	40%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

2.5 2

			Repo	ort of A	Analysis		Page 1 of 1
Client Sa Lab Sam	mple ID: MW-7 ple ID: C4751-:	5 \			Date Sample	ed: 03/06/09	
Matrix: Method:	AQ - G	AQ - Ground Water SW846 8015B M SW846 3510C T0600102107-YRC-Roadway Express, Oa			Date Sample Date Receive Percent Solid		
Project:							
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	GG4391.D	1	03/12/09	JH	03/12/09	OP788	GGG167
	Initial Volume	Final V	olume				
Run #1	1050 ml	1.0 ml					

TPH Extractable w/ Silica Gel Cleanup

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	53%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Samj Matrix: Method: Project:	AQ - SW8	1-6 Ground Wa 46 8260B	ater RC-Roadway Ex	press, Oa	Date Sampled: 03/06/09 Date Received: 03/10/09 Percent Solids: n/a Dakland, CA				
Run #1 Run #2	File ID W4789.D	DF 1	Analyzed 03/12/09	BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164		
Run #1 Run #2	Purge Volum 10.0 ml	e							

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND ND	$ \begin{array}{r} 1.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 50 \end{array} $	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.30 \\ 0.70 \\ 0.50 \\ 25 \end{array}$	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	95% 98% 99%	60-130% 60-130% 60-130%		30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa	mple ID: MW-8	3					
Lab Sam	ple ID: C4751	-6			Date Sample	ed: 03/06/09	
Matrix:	AQ -	Q - Ground Water			Date Receive	ed: 03/10/09	
Method:	SW84	6 8015B M	SW846 3510	С	Percent Solid	ds: n/a	
Project:	T0600	102107-YR	C-Roadway Ex	press, Oa	akland, CA		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GG4352.D	1	03/11/09	JĤ	03/11/09	OP781	GGG166
Run #2							
	Initial Volum	e Final Vo	olume				
	initian volum						
Run #1	1040 ml	1.0 ml					

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0594 ND	0.096 0.19	0.048 0.096	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	82%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Repo	ort of A	Analysis		Page 1 of 1	
Client Sa	mple ID: MW-8							
Lab Sam	ple ID: C4751-	6A			Date Sample	ed: 03/06/09		
Matrix:	AQ - G	round Water			Date Receive	Date Received: 03/10/09		
Method:	SW846	8015B M	1 SW846 3510					
Project:	T06001	02107-Y	RC-Roadway Ex	xpress, O	akland, CA			
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	GG4392.D	1	03/12/09	JH	03/12/09	OP788	GGG167	
Run #2								
	Initial Volume	Final V	Volume					
Run #1	1040 ml	1.0 ml						

TPH Extractable w/ Silica Gel Cleanup

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	60%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Samj Matrix: Method: Project:	AQ - SW84	Ground Wa 46 8260B		press, Oa	Date Sampled: 03/06/09 Date Received: 03/10/09 Percent Solids: n/a ess, Oakland, CA					
Run #1 Run #2	File ID W4790.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164			
Run #1 Run #2	Purge Volum 10.0 ml	e								

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND ND	$ \begin{array}{r} 1.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 50 \end{array} $	0.30 0.50 0.30 0.70 0.50 25	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	94% 99% 98%		60-1 60-1 60-1	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

	ant Sample ID: DUP-1 Sample ID: C4751-7 trix: AQ - Ground Water hod: SW846 8015B M SW846 3510						
Client Sa	mple ID: DUP-1						
Lab Sam	ple ID: C4751-	7			Date Sample	d: 03/06/09	
•		round Wat	ter		Date Receive	ed: 03/10/09	
Method:	SW846	8015B M	SW846 3510	С	Percent Solid	ls: n/a	
Project:	T06001	02107-YR	C-Roadway Ex	press, O	akland, CA		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GG4353.D	1	03/11/09	JH	03/11/09	OP781	GGG166
Run #2							
	Initial Volume	Final V	olume				
Run #1	1050 ml	1.0 ml					
π un #1	1050 mi						

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	84%		45-1	40%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Lab Samj Matrix: Method: Project:	AQ - SW84	1-8 Trip Blank 46 8260B	Water RC-Roadway Ex	press, Oa	Date Sampled: 03/06/09 Date Received: 03/10/09 Percent Solids: n/a s, Oakland, CA					
Run #1 Run #2	File ID W4783.D	DF 1	Analyzed 03/12/09	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VW164			
Run #1 Run #2	Purge Volum 10.0 ml	e								

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND ND ND ND ND ND	$ \begin{array}{r} 1.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 50 \end{array} $	$\begin{array}{c} 0.30 \\ 0.50 \\ 0.30 \\ 0.70 \\ 0.50 \\ 25 \end{array}$	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	96% 97% 100%		60-1 60-1 60-1	30%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Section 3

ω

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

Burns & McDonnell Engineering 339 E. Grand Avenue, Suite J So San Francisco, CA 9400 Laboratory: Accurtest Document Control No: 000609 1:51 Address: 3,3,3,4 V:c+o-Court Address: 3,3,3,4 V:c+o-Court Laboratory: Accurtest Lab. Reference No. or Episode No.: So San Francisco, CA 9400 Phone: (60) 871-2653 Santhe Clara, 95054 Lab. Reference No. or Episode No.: Attention: 2,0-c+ B/s.rtfram Clay Santhe Clara, 95054 Telephone: (40 0) 588 0.0200 Project Number: 48 7 9 1 Sample Depth Sample Type Matrix Sample Number: 48 7 9 1 Sample Event Sample Depth Sample Depth Sample Type Matrix Group or Sample Number: 48 7 9 1 Sample Event Sample Depth Sample Collected (in feed) Barrie Sample Type Group or Sample Number: 48 7 9 1 Sample Event Sample Depth Sample Type Matrix MW-3 1+7 2009 3-6 1/20 WG - 3 6 MW-4 Lab 2009 3-6 1/30 WG - 3 6 X X X X X MW-5 Istr 2009 3-6 1/50 WG - 4 6 X X X X Accurtest Fee MW-6 Istr 2009 3-6 1/50 WG - 7 6 X X X X Accurtest Fee MW-7 Istr 2009 </th <th>Burns McDon</th> <th></th> <th></th> <th>F</th> <th>Request fo</th> <th>or Chem</th> <th>ical Ana</th> <th>alysis a</th> <th>nd Cha</th> <th>in of</th> <th>Custo</th> <th>ody l</th> <th>Reco</th> <th>ord</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Burns McDon			F	Request fo	or Chem	ical Ana	alysis a	nd Cha	in of	Custo	ody l	Reco	ord								
So. San Francisco, CA 94080 Phone: (BGI) 871-2926 Fax: (BGI) 871-2935 Address: 3.334 V:cto: Court City/State/Zip: Santa Clara, 95054 Telephone: (40+) 588-0200 Project Number: 48791 Citent Name: VRC-Oakland Sample Event Sample Depth Sample Depth Sample Depth Collected Sample Depth Collected Sample Depth Sample Depth Collected Sample Depth Sample Depth Collected Sample Depth Sample Dep																						
MW-4 13t 2009 3r6 1320 W6 -2 6 X X X X Standard Tw MW-5 1st 2009 3r6 1410 W6 -3 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-7 1st 2009 3r6 1505 W6 -4 6 X X X X X MW-8 1st 2009 3r6 1505 W6 -5 5 X X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 W6 -7 6 X X X X X Pup-1 1st 2009 3r6 W6 -7 6 X X X X X Keld 4 Voas - - - 8 X - - - W/47° Terp - - - - -				Addres	^{s:} 33'	34 V	licto	- C	onth	-				1			74	7	/in / ext	7 7		
MW-4 13t 2009 3r6 1320 W6 -2 6 X X X X Standard Tw MW-5 1st 2009 3r6 1410 W6 -3 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-7 1st 2009 3r6 1505 W6 -4 6 X X X X X MW-8 1st 2009 3r6 1505 W6 -5 5 X X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 W6 -7 6 X X X X X Pup-1 1st 2009 3r6 W6 -7 6 X X X X X Keld 4 Voas - - - 8 X - - - W/47° Terp - - - - -																/	Ê		5/8/		/	
MW-4 1st 2009 3r6 1320 W6 -2 6 X X X X Standard Tw MW-5 1st 2009 3r6 1410 W6 -3 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-6 1st 2009 3r6 1595 W6 -4 6 X X X X arande time MW-7 1st 2009 3r6 1505 W6 -4 6 X X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 W6 -7 6 X X X X X Pup-1 1st 2009 3r6 W6 -7 6 X X X X X Keld 4 Voas - - - 8 X - - Alit A-bu Nlp erch creept Sm ple 6 M/4 - - -	Attention: R	trick Bra	tton	Telepho	one: (40	18)58	38-0	0200							./.	10	/ Ø	3				
MW-4 1st 2009 3r6 1320 W6 -2 6 X X X X Standard Tw MW-5 1st 2009 3r6 1410 W6 -3 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-6 1st 2009 3r6 1595 W6 -4 6 X X X X arande time MW-7 1st 2009 3r6 1505 W6 -4 6 X X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 W6 -7 6 X X X X X Pup-1 1st 2009 3r6 W6 -7 6 X X X X X Keld 4 Voas - - - 8 X - - Alit A-bu Nlp erch creept Sm ple 6 M/4 - - -	Project Numb	Der: 487	91										1		all of	14	~~/~/	\$ <u>}</u> (57 <u>.</u>	n/		
MW-4 1st 2009 3r6 1320 W6 -2 6 X X X X Standard Tw MW-5 1st 2009 3r6 1410 W6 -3 6 X X X X arande time MW-6 1st 2009 3r6 1545 W6 -4 6 X X X X arande time MW-6 1st 2009 3r6 1595 W6 -4 6 X X X X arande time MW-7 1st 2009 3r6 1505 W6 -4 6 X X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 1630 K X X X X MW-8 1st 2009 3r6 W6 -7 6 X X X X X Pup-1 1st 2009 3r6 W6 -7 6 X X X X X Keld 4 Voas - - - 8 X - - Alit A-bu Nlp erch creept Sm ple 6 M/4 - - -										Matrix	(er of ners		¥.	20) J	+º/	بي معنى ا	P P	1751		
MW-4 131 2009 3-6 1320 WG -2 G X X X X Standard Time MW-5 1st 2009 3-6 1410 WG -3 G X X X X arande time MW-6 1st 2009 3-6 1545 WG -4 G X X X X arande time MW-6 1st 2009 3-6 1545 WG -4 G X X X X arande time MW-7 1st 2009 3-6 1505 WG -4 G X X X X X MW-8 1st 2009 3-6 1630 WG -5 S X X X X X MW-8 1st 2009 3-6 1630 WG -7 G X X X X X MW-8 1st 2009 3-6 WG -7 G X X X X X Pup-1 1st 2009 3-6 WG -7 G X X X X X Keid 4 Voa's - - - 8 X X X MW-9 - - -	S				e Event					g	7		lumbe		Å	4	5 ^{29/1}	<u>ب</u> ر کرد	507	C	7 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Round	Year		· · · · · · · · · · · · · · · · · · ·		1	Liqu	Solic	Gas	20	/i	$\overline{Y}'_{/}$	1 de			eu -	Rema	irks	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MW-3		1.+	2009			3-6	1230	WG	-1		6	X		x λ	< x	·				
MW-S 1st 2009 3-6 1410 WG -3 G X X X X around time MW-6 1st 20091 3-6 1545 WG -4 G X X X X MW-7 1st 2009 3-6 1505 WG -5 G X X X X MW-8 1st 2009 3-6 1630 WG -5 G X X X X MW-8 1st 2009 3-6 1630 WG -5 G X X X X MW-8 1st 2009 3-6 1630 WG -7 G X X X X Dup-1 1st 2009 3-6 1630 WG -7 G X X X X MW-8 1st 2009 3-6 1630 WG -7 G X X X X Dup-1 1st 2009 3-6 1630 WG -7 G X X X X MW-8 - - - - 8 X - Recid 4 Voa's - - - - - - - N(4.70 Tarp - - - - - - - -		MW-4		lst	2009			3-6	1320	WG	-2		6	x		xΧ	X				. Tun	
MW-7 1st 2009 3.6 1505 WG - 5 6 X X X MW-8 1st 2009 3.6 1630 WG - 6 5 X X X Dup-1 1st 2009 3.6 1630 WG - 7 6 X X X Tr.p Blanks - - -8 3 X - Revid H Voa's - - -8 3 X - W(4.7° Terfp - - - - - - W(4.7° Terfp - - - - - - -		MW-5		Ist	2009			1 /	1	1				Х	>	χХ	X		ara	nd -	rime	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MW-6		lst	2009			3-6	1545	WG	-4		6	X)	xх	X					
MW-8 1st 2009 3-6 1630 W6 5 X		MW-7		lst	2009			3-6					6	X	Ŋ	хX	X					
Dup-1 1st 2009 3-6 WG ~7 6 x x x x Trip Blanks - -8 3 x - Redd 4 Voa's - - -8 3 x - Redd 4 Voa's - - - - - New d 4 Voa's - - - - - New d 4 Voa's - - - - -		MW-8		155	2009			3-6					1	X	>	xх	X		Com	mB t	report	+
Trip Blanks8 3 X Redd 4 Voa's 2 Lit A-bu NLP each except so ple -6 Okit Onicy and Somple -8 Ovoa's onicy W(4.7° Terp		Pup-1		154	2009			3-6	-	WG	~7			x)	×χ	×Χ					
2 Lit A-bu NIP / CE Except som the Control Souple - 8 Count -									`		-8		3	×			_]
		Red 4	Voais Lit A-ba	u NLP>	each	eyee	int se	-jole -	60	44-1	÷∕\;£	y a		e	m fi	ile-	86	2) U	od's c	NLY		
Sampler (signature): Special Instructions: Symphone EDP		w[4.	7° Tenj	,																		
TOG00102107	Sampler (signatu	ure):	, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Sampler (si	gnature):		,			Spec	ial In			-					er El	DF	
Relinquished, By (signature): Date/Time Received By (signature): Date/Time 3/16/03 Yes No	Relinquished	By (signature):			Received I	35 (signature)	<		Date/Ti 3/10/0	me	Yes [nt in (Contai No	iner:]				on Recei	ot:	
Relinquished By (signative): 2. Date/Time 2. 1/3/2 Walking 3/0 13/2 Laboratory Comments:		By (signature):	39	ate/Time		1.	ndo		Date/Ti 3100	me 3V	Labo	rator	y Co	mmer	nts:							

C4751: Chain of Custody Page 1 of 2

<u>ω</u>

ω

Accutest Laboratories Northern California STANDARD OPERATING PROCEDURE

Sample Receiving Checklist

Sample Control Initial

Review Chain of Custody The Chain of Custody is to be completely and legibly filled out by Client. Are these regulatory (NPDES) samples? Yes (No circle one spH requested? Yes / No circle one UWas Client informed that hold time is 15 min? Yes / No circle one If yes, did Client consent to continue? The sample within hold time? (Yes / No circle one Are sample in danger of exceeding its hold-time within 6-48 hours? Deport to info is complete and legible, including; □ Type of deliverable needed □ Name □ Address g-phone 🗆 e-mail Bill to info is complete and legible, including; DPO# Credit card Contact Daddress D-phone Demail Contact and/or Project Manager identified, including; **D**hone ere-mail Project name / number Decial requirements? Ges / No circle one Ges / No circle one □-Sample IDs / date & time of collection provided? Yes / No circle one LIS Matrix listed and correct? 11 Analyses listed are those we do or client has authorized a subcontract? Kes / No circle one Nes / No circle one Chain is signed and dated by both client and sample custodian? Approved by □ TAT requested available? Review Coolers: 700 GHT Were Coolers temperatures measured at ≤6°C? Cooler # If cooler is outside the ≤6°C; note down below the affected bottles in that cooler · Note that ANC does NOT accept evidentiary samples. (We do not lock refrigerators) Shipment Method Heautest Cornier Unbroken: Yes / No circle one Custody Seals: Present : Yes / No circle one Review of Sample Bottles: If you answer no, explain below R-Sample ID / bottle number / Date / Time of bottle labels match the COC? (Yee / No circle one (Yes) / No circle one □ Sample bottle intact? a is there enough samples for requested analyses? If so, were samples placed in proper containers were no Proper Preservatives? Check pH on preserved samples except 1664, 625, 8270 and VOAs and list below

Are VOAs received without headspace? Size of bubble (not greater than 6mm in diameter) Yes / No circle one List sample ID and affected container

Lab #	Client Sample ID	pH Check	Other Comments/Issues
			······································
	10 (11 m)		

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

\\Anc-srv-file1\Entech-Data\Laboratory\Sample_Control\Form_Sample Receipt Checklist_Rev0.doc

of 24

03/04/09

Technical Report for

Burns and McDonnell Engineering

T0600102107-YRC-Roadway Express, Oakland, CA

47561

Accutest Job Number: C4487

Sampling Date: 02/18/09

Report to:

Burns and McDonnell Engineering 393 East Grand Avenue Suite J San Francisco, CA 94080 pbratton@burnsmcd.com

ATTN: Patrick Bratton

Total number of pages in report: 22

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ramie Ston Muphy

Laurie Glantz-Murphy Laboratory Director

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

ACCUTEST LABORATORIES Y E A R S 1956-2006

Note: This report is password protected to disallow document modification or assembly. A password to unlock this report is available from your client service representative.

Table of Contents

N

ω

4

G

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C4487-1: MW-6-4	5
2.2: C4487-2: MW-7-4	7
2.3: C4487-3: MW-8-5	9
Section 3: Misc. Forms	11
3.1: Chain of Custody	12
Section 4: GC/MS Volatiles - QC Data Summaries	14
4.1: Method Blank Summary	15
4.2: Blank Spike Summary	16
4.3: Matrix Spike/Matrix Spike Duplicate Summary	18
Section 5: GC Semi-volatiles - QC Data Summaries	19
5.1: Method Blank Summary	20
5.2: Blank Spike/Blank Spike Duplicate Summary	21
5.3: Matrix Spike/Matrix Spike Duplicate Summary	22

Sample Summary

Burns and McDonnell Engineering

Job No: C4487

T0600102107-YRC-Roadway Express, Oakland, CA Project No: 47561

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C4487-1	02/18/09	11:25 PB	02/19/09	SO	Soil	MW-6-4
C4487-2	02/18/09	10:10 PB	02/19/09	SO	Soil	MW-7-4
C4487-3	02/18/09	10:50 PB	02/19/09	SO	Soil	MW-8-5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Results

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	le ID: C S(S)	IW-6-4 4487-1 O - Soil W846 8260B 0600102107-YR	C-Roadway Ex	press, Oa	Date Sample Date Receive Percent Solic kland, CA	ed: 02/19/09	
Run #1 Run #2	File ID M4612.D	DF 1	Analyzed 02/20/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM150
Run #1 Run #2	Initial We 5.00 g	ight					
Purgeable	Aromatics,	MTBE					
CAS No.	Compou	nd	Result	RL	MDL Unit	s Q	

CAB III.	Compound	Kesun	KL	MDL	Units	
71-43-2	Benzene	ND	5.0	1.5	ug/kg	
108-88-3	Toluene	ND	5.0	1.5	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg	
1330-20-7	Xylene (total)	ND	10	4.0	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.0	ug/kg	
	TPH-GRO (C6-C10)	ND	100	50	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		60-1	30%	
2037-26-5	Toluene-D8	112%		60-1	30%	
460-00-4	4-Bromofluorobenzene	95%		60-1	30%	

(a) All results reported on wet weight basis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sample ID:

Client Sample ID: MW-6-4

C4487-1

Analysis		Page 1 of 1	2
Date Sampled: Date Received:			
Percent Solids:	n/a ^a		

Matrix: Method: Project:	SO - Soil SW846 8015B M SW846 3510C T0600102107-YRC-Roadway Express				Date Received: Percent Solids: akland, CA			
Run #1 Run #2	File ID GG4074.D	DF 1	Analyzed 03/02/09	Ву JH	Prep Date 03/02/09	Prep Batch OP748	Analytical Batch GGG159	
Run #1 Run #2	Initial Weight 10.0 g actable w/ Silica	Final V 1.0 ml						

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	10 20	5.0 10	mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	# 2 Limits		
630-01-3	Hexacosane	75%	45-140%		40%	

(a) All results reported on wet weight basis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sar Lab Samp Matrix: Method: Project:	ole ID: C448 SO - SW8	87-2 Soil 46 8260B	RC-Roadway Ex	press, Oa	Date Sample Date Receive Percent Solie kland, CA	ed: 02/19/09	
Run #1 Run #2	File ID M4615.D	DF 1	Analyzed 02/20/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM150
Run #1 Run #2	Initial Weigh 5.03 g	nt					
Purgeable CAS No.	Aromatics, M Compound	TBE	Result	RL	MDL Unit	s Q	

САБ	110.	Compound	Kesun	KL	MDL	Units	
71-4	3-2	Benzene	ND	5.0	1.5	ug/kg	
108-	88-3	Toluene	ND	5.0	1.5	ug/kg	
100-4	41-4	Ethylbenzene	ND	5.0	1.5	ug/kg	
1330)-20-7	Xylene (total)	ND	9.9	4.0	ug/kg	
1634	-04-4	Methyl Tert Butyl Ether	ND	5.0	0.99	ug/kg	
		TPH-GRO (C6-C10)	ND	99	50	ug/kg	
CAS	No.	Surrogate Recoveries	Run# 1	Run# 2	# 2 Limits		
1868	8-53-7	Dibromofluoromethane	108%	60-130%			
2037	-26-5	Toluene-D8	111%	60-130%			
460-0	00-4	4-Bromofluorobenzene	96%	60-130%			

(a) All results reported on wet weight basis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Repo	ort of A	Analysis		Page 1 of 1	
Client Sar Lab Samp Matrix: Method: Project:	ole ID: C4487- SO - So SW846	MW-7-4 Date Sampled: 02/18/09 C4487-2 Date Received: 02/19/09 GO - Soil Date Received: 02/19/09 SW846 8015B M SW846 3510C Percent Solids: n/a ^a C0600102107-YRC-Roadway Express, Oakland, CA CA Call Content Solid State N/a ^b						
Run #1 Run #2	File ID GG4081.D	DF 1	Analyzed 03/02/09	Ву ЈН	Prep Date 03/02/09	Prep Batch OP748	Analytical Batch GGG159	
Run #1 Run #2	Initial Weight 10.2 g	Final 1.0 ml	Volume					

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	9.8 20	4.9 9.8	mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	76%		45-1	40%	

(a) All results reported on wet weight basis.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

2.2

Client Sar Lab Samp Matrix: Method: Project:	ole ID: C44 SO SW3	7-8-5 87-3 - Soil 846 8260B 00102107-YF	RC-Roadway Ex	xpress, Oal	Date Sample Date Receive Percent Solic kland, CA	ed: 02/19/09	
Run #1 Run #2	File ID M4616.D	DF 1	Analyzed 02/20/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM150
Run #1 Run #2	Initial Weig 5.00 g	ht					
Purgeable CAS No.	Aromatics, M Compound		Result	RL	MDL Unit:	s Q	

	I I I I				
71-43-2	Benzene	ND	5.0	1.5	ug/kg
108-88-3	Toluene	ND	5.0	1.5	ug/kg
100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg
1330-20-7	Xylene (total)	ND	10	4.0	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.0	ug/kg
	TPH-GRO (C6-C10)	ND	100	50	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	108%		60-13	30%
2037-26-5	Toluene-D8	111%		60-13	80%
460-00-4	4-Bromofluorobenzene	95%		60-13	30%

(a) All results reported on wet weight basis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

	2.3
Page 1 of 1	N

Report	of	Analysis
heport	UI	

Client San Lab Samp Matrix: Method: Project:	le ID: C4487- SO - So SW846	-3 pil 5 8015B M	SW846 3510 C-Roadway Ex		Date I Percer	Sampled: Received nt Solids	: 02/19/09	
Run #1 Run #2	File ID GG4082.D	DF 1	Analyzed 03/02/09	Ву ЈН	Prep D 03/02/0		Prep Batch OP748	Analytical Batch GGG159
Run #1 Run #2	Initial Weight 10.0 g	Final Vo 1.0 ml	olume					
TPH Extr	actable w/ Silica	Gel Clean	up					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH (C10-C2	8)	ND	10	5.0	mg/kg		

	TPH (> C28-C40)	ND	20	10 mg/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
630-01-3	Hexacosane	72%		45-140%

(a) All results reported on wet weight basis.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

			Acci HAIN	rte	-5-														
		C	HAĪN	1 OI	² C	US	TC	DY											
		Fresh Ponds Corporate Village, Building B 2235 Route 130, Dayton, NJ 08810										Accutest	Job #:						
		73	2-329-020	00 FA				/3480				Accutest			C	448	37		
Client Information		Facil	lity Inform	nation						Analy	tical Info	ormation							· · .
Name Burns & McDonnell Address 393 East Grand Ava 086591 City State Zip	Project Nam	• YR	C-00	ikla	n Q	_		S.	ITBE										
Address 393 East Grand Ave 08591	Location		c					R.	×, ₹										
City State Zip South San Francisco CA 94080	Project/PO #	Project Name YR C-Oakland Location Roadway Express Project/PO#: 48791						SARC 015M	, BTE										
Send Report to: Patricle Bratton Phone #: (650) 871 - 2926 x 225	FAX #:							BRDISDROCKD- TPH-Diesel 8015M	TPH-Gasoline, BTEX, MTBE (8260B)										
	Collection	1	-			serva			60B 60B										
Field ID / Point of Collection Date	Time	Sampled By	Matrix	# of bottles	HCL	HN03	H2So4	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	TP (82	0	0								
	1125	PB	Soil	1			×	×	×							-			
	1 1010	PB.	Soil	1			_\x	· ×	×			L			1	-2			
MW-8-5' 2-18-09	1050	PB	Soil	1			×	×	×						-	-3			
													ļ						
						\downarrow		ļ											
Reid 3 Acetate																		_	
W 2.0° Teup													1						
						+							1					1	
							-						1	· ·					
Turnaround Information				Data	Delive	rable	Inforr	nation				Comme	ents / Ren	narks					
21 Day Standard Approve	ed By:	NJ Re	duced			Comm	ercial	"A"		*Ru~	Sil	ica	Gel	Crean	MP P	nor .	to		
14 Day		NJ Ful	11		N.	Comm	ercial	"в" 🛧											
7 Days EMERGENCY Stando	ard	FULL	CLP			SP Ca	tegor	/ B		Garl	ممم	er T	D	stor 0.			nd daalahan ang		
Other 10 (Days) Turn Ar	round	Disk D	eliverable		<u> </u>	State F	orms												
RUSH TAT is for FAX data		Other	(Specify)							10	600	510	210	/					
unless previously approved.										I		r	,					124122500 1040 ⁰⁰⁰⁰	
Relinguished by Sample Custody Daty Time:		Received By		e sample	s chan			on, includin Jished By:	g courier (lelivery.	Date Time:			Received B	y:				
Relinduished by Sampler: Date Time:	0828	1	-OD	\langle , \rangle			2 🕼				Data Th			2					المرجع برا
Relariquished by Sampler: Date Time:		Received B	SAN .	And	al	\circ		1964	aus		Date Time:			Received B	y:				
Relinquished by Sampler: Date Time:		Received By	The second				Seal #	<u>U</u>		reserved wh	ere applica	(On Ice:					
5		5	~																

C4487: Chain of Custody Page 1 of 2

ω

Sample Receiving Checklist

ς,

Job #_______ Sample Control Initial ______ JM

Review Chain of Custody The Chain of Custody is to be completely and legibly filled out by Client. Are these regulatory (NPDES) samples? Yes (No circle one Is pH requested? Yes (No circle one I Was Client informed that hold time is 15 min? Yes / No circle one If yes, did Client consent to continue? Are sample within hold time? Yes / No circle one Are sample in danger of exceeding its hold-time within 6-48 hours? Report to info is complete and legible, including;

D Type of deliverable needed Warne D Address Prone De-mail
□ #Sill to info is complete and legible, including; □ PO# □ Credit card □ Contact □ address □ phone □ c-mail
Defontact and/or Project Manager identified, including; Defone Defonition e-mail
Project name / number Decial requirements? Yes / No circle one
Sample IDs / date & time of collection provided?
It's Matrix listed and correct? (Yes) No circle one
Analyses listed are those we do er-client has authorized a subcontract? (Yes / No circle one
Chain is signed and dated by both client and sample custodian?
TAT requested available? Approved by
Review Coolers:
$\frac{\text{Review Coolers:}}{\text{evere Coolers temperatures measured at ≤6°C? Cooler # Temp \frac{20}{3}°C$
\bullet If cooler is outside the $\leq 6^{\circ}$ C; note down below the affected bottles in that cooler
 Note that ANC does NOT accept evidentiary samples. (We do not lock refrigerators)
Shipment Method Accutest Conner
Custody Seals: Present : Yes / No circle one Unbroken: Yes / No circle one
Review of Sample Bottles: If you answer no, explain below
Sample ID / bottle number / Date / Time of bottle labels match the COC? Yes / No circle one
Sample bottle intact? (Yes / No circle one
Is there enough samples for requested analyses? If so, were samples placed in proper containers (Yes) / No circle one

Proper Preservatives? Check pH on preserved samples except 1664, 625, 8270 and VOAs and list below

□ Are VOAs received without headspace? Size of bubble (not greater than 6mm in diameter) Yes / No circle one List sample ID and affected container

Lab #	Client Sample ID	pH Check	Other Comments/Issues
	· · · · · · · · · · · · · · · · · · ·		······································

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

\\Anc-srv-file1\Entech-Data\Laboratory\Sample_Control\Form_Sample Receipt Checklist_Rev0.doc

ACCUTEST.

Section 4

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number:	C4487										
Account:	BMECASF Burns and McDonnell Engineering										
Project:	T0600102107-YRC-Roadway Express, Oakland, CA										
Sample	File ID	DF	Analyzed 02/20/09	By	Prep Date	Prep Batch	Analytical Batch				
VM150-MB	M4610.D	1		XB	n/a	n/a	VM150				
The QC repor	ted here app	lies to the	following sam	ples:		Method: SW	7846 8260B				

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total) TPH-GRO (C6-C10)	ND ND ND ND ND	5.0 5.0 5.0 5.0 10	1.5 1.5 1.0 1.5 4.0 50	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

CAS No.	Surrogate Recoveries	Limits	
2037-26-5	Dibromofluoromethane	101%	60-130%
	Toluene-D8	111%	60-130%
	4-Bromofluorobenzene	94%	60-130%

Page 1 of 1

4

Blank Spike Summary

Account: Project:		BMECASF Burns and McDonnell Engineering T0600102107-YRC-Roadway Express, Oakland, CA										
Sample VM150-BS	File ID M4606.D	DF 1	Analyzed 02/20/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM150					
The QC repor	ted here app	lies to the	following sam	ples:		Method: SW	7846 8260B					

C4487-1, C4487-2, C4487-3

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
71-43-2 100-41-4	Benzene Ethylbenzene	40 40	40.8 43.7	102 109	60-130 60-130
1634-04-4 108-88-3 1330-20-7	Methyl Tert Butyl Ether Toluene Xylene (total)	40 40 120	38.6 41.7 126	97 104 105	60-130 60-130 60-130
1000 20 7		120	120	100	00 100
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	103% 109% 100%	60-1	30% 30% 30%	

4.2

Blank Spike Summary

1868-53-7

2037-26-5

460-00-4

Dibromofluoromethane

4-Bromofluorobenzene

Toluene-D8

Job Numb Account: Project:	BMECASF		McDonnell E oadway Expre	0	U			
Sample VM150-BS	File ID M4609.D	DF 1	Analyzed 02/20/09	By XB	Pr n/	rep Date a	Prep Batch n/a	Analytical Batch VM150
-	ported here appl C4487-2, C4487-3		following san	nples:			Method: SW	7846 8260B
CAS No.	Compound		Spike ug/kg	BSP ug/kg	BSP %	Limits		
	TPH-GRO (C6-0	C10)	250	260	104	60-130		
CAS No.	Surrogate Reco	veries	BSP	Lin	nits			

60-130%

60-130%

60-130%

100%

112%

95%

Page 1 of 1

4.2

4

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	C4487
Account:	BMECASF Burns and McDonnell Engineering
Project:	T0600102107-YRC-Roadway Express, Oakland, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C4497-3MS	M4619.D	1	02/20/09	XB	n/a	n/a	VM150
C4497-3MSD	M4620.D	1	02/20/09	XB	n/a	n/a	VM150
C4497-3	M4613.D	1	02/20/09	XB	n/a	n/a	VM150

The QC reported here applies to the following samples:

Method: SW846 8260B

C4487-1, C4487-2, C4487-3

CAS No.	Compound	C4497-3 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	ND ND ND ND ND	39.8 39.8 39.8 39.8 39.8 119	37.4 39.7 37.4 38.3 114	94 100 94 96 96	33.8 36.0 35.6 35.0 103	85 91 90 88 86	10 10 5 9 10	60-130/30 60-130/30 60-130/30 60-130/30 60-130/30
CAS No.	Surrogate Recoveries	MS	MSD	C44	497-3	Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	105% 109% 103%	102% 107% 100%	104 110 93%	%	60-130% 60-130% 60-130%	6		

```
Page 1 of 1
```

4.3 4

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Numb Account: Project:	BMECASF		McDonnell Er adway Expres	0 0	, CA			
Sample OP748-MB	File ID GG4077.D	DF 1	Analyzed 03/02/09	Ву ЈН	Prep I 03/02/		Prep Batch OP748	Analytical Batch GGG159
-	ported here appli C4487-2, C4487-3	es to the fo	ollowing samp	ples:			Method: SW	7846 8015 B M
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH (C10-C28) TPH (> C28-C4	0)	ND ND	10 20	5.0 10	mg/kg mg/kg		
CAS No.	Surrogate Recov	veries		Limits	;			
630-01-3	Hexacosane		81%	45-140)%			

5.<u>1</u>

G

Blank Spike/Blank Spike Duplicate Summary

Job Number:	C4487
Account:	BMECASF Burns and McDonnell Engineering
Project:	T0600102107-YRC-Roadway Express, Oakland, CA

Sample OP748-BS OP748-BSD	File ID GG4078.D GG4079.D	DF 1 1	Analyzed 03/02/09 03/02/09	By JH JH	Prep Date 03/02/09 03/02/09	Prep Batch OP748 OP748	Analytical Batch GGG159 GGG159		
The QC repor	The QC reported here applies to the following samples: Method: SW846 8015B M								
C4487-1, C4487-2, C4487-3									

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	BSD mg/kg	BSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)	100 100	69.4 76.1	69 76	67.6 77.4	68 77	3 2	45-140/30 45-140/30
CAS No.	Surrogate Recoveries	BSP	BSI)	Limits			
630-01-3	Hexacosane	79%	77%	, D	45-140%	Ó		

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	C4487
Account:	BMECASF Burns and McDonnell Engineering
Project:	T0600102107-YRC-Roadway Express, Oakland, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP748-MS	GG4148.D	1	03/04/09	JH	03/02/09	OP748	GGG160
OP748-MSD	GG4149.D	1	03/04/09	JH	03/02/09	OP748	GGG160
C4563-7	GG4087.D	1	03/03/09	JH	03/02/09	OP748	GGG159

The QC reported here applies to the following samples:

Method: SW846 8015B M

C4487-1, C4487-2, C4487-3

CAS No.	Compound	C4563-7 mg/kg Q	Spike mg/kg	MS mg/kg	MS %	MSD mg/kg	MSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)	ND ND	100 100	70.3 82.6	70 83	68.2 86.8	68 87	3 5	45-140/30 45-140/30
CAS No.	Surrogate Recoveries	MS	MSD	C4563-7		Limits			
630-01-3	Hexacosane	72%	80%	80%	ó	45-140%	, D		

